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Abstract 

The Faeroe Plateau Lava Group (FPLG) of the Faeroe Islands, NE Atlantic, has been re- 

examined in order to understand its stratigraphy, structure, environment of eruption and 

evolution, for both the volcanic and the associated sedimentary lithologies. The FPLG has 

an exposed and drilled stratigraphic thickness of ca. 6.5 km on the Faeroe Islands and is 

separated into five formations. 

The Lower Basalt Formation (LBF) is ca. 4.5 km thick and is dominated by subaerial 
tabular-classic facies lava flows, with average thicknesses of ca. 25 m. These were erupted 

at high effusion rates, travelled significant distances rapidly, and each flow was emplaced 
in a matter of weeks to a few months. The recognition of the Stapin Vent, SuÖuroy, 

indicates that small point source vents contributed pyroclastic material to the land surface, 

with the major fissure eruptions most likely located to the west of the Faeroe Islands. The 

exposed ca. 900 m of the LBF is predominantly composed of prismatically jointed lava 

flows, which were emplaced into relatively dry environments. Weathering of the lava flow 

tops in the upper ca. 100 m of the LBF resulted in the formation of significant palaeosols 
(reddened boles), which implies hiatuses in the volcanic activity of up to 140 kyrs. During 

these hiatuses, terrestrial environments (fluviatile, lacustrine and swamps) were established 

and partial erosion of the lava topography ensued. The resulting sedimentary/epiclastic 
lithologies consist of volcaniclastic conglomerates through to mudstones and coals. The 

volcaniclastic rocks are composed of reworked palagonitised basaltic tephra and lithoclasts 

of basalt lava and pre-existing volcaniclastic rocks. The damming of river channels by 

lavas and the association of columnar jointed flows with fluviatile/lacustrine strata implies 

that columnar jointing is directly related to lavas that were erupted into wet environments. 

Geochemical analysis of the volcanic interval in Well 214/4-1, Faeroe-Shetland Basin, has 

enabled a correlation to the Lower Basalt Formation of the Faeroe Islands, ca. 240 km to 

the W. The volcanic interval consists of a ca. 450 m thick sequence of hyaloclastites, 

which are overlain by a ca. 50 m thick subaerial lava sequence. This volcanic interval is 

interpreted to have formed at a palaeoshoreline environment, where subaerial lavas flowed 

from the land surface into a substantial body of water at least 450 m deep (i. e. the Faeroe- 

Shetland Basin at that time), resulting in the quenching and fragmentation of magma to 

produce the hyaloclastites. Well 214/4-1 is <50 km to the SE of the Faeroe-Shetland 

Escarpment, which has previously been interpreted as a hyaloclastite delta, thus implying 

that there are a number of unrecognised hyaloclastite units within the Faeroe-Shetland 
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Basin and that the coastline was steadily encroaching W/NW, towards the Faeroe Islands 
during the volcanic interval. 

The overlying ca. 10 in thick Coal-bearing Formation (CBF) represents a significant hiatus 

in the volcanic activity at the end of LBF times. Erosion and subsidence of the lava field 

led to the development of an expansive lacustrine environment, which resulted in the 

accumulation of plant material and associated detritus and chemical sediments, mainly 
ironstones, and the formation of mineable coal seams. Petrographic and geochemical 

analysis of siderite spherules within the ironstone beds from two localities on Suburoy 

have helped to define margin- and centre- of-lake environments, at least 10 km apart. 
Contemporaneous fluviatile lithologies in West Suöuroy are composed of reworked 

palagonitised tephra, basalt lava clasts and plant material. 

Renewed volcanism marked an abrupt change from the inter-eruption facies of the CBF to 

the aggrading syn-eruption facies of the Volcaniclastic Sandstone Formation (VSF). The 

VSF is at least 30 m thick and comprises the initial deposition of laterally extensive, 

olivine-phyric, vitric tuffs, >8 m thick. This input of volcanic debris to the land surface 

swamped the CBF fluviatile systems and, possibly combined with high rainfall, produced 

sheet floods, which resulted in mass flow deposits. The destabilisation of the land surface 
by the destruction of vegetation by pyroclastic activity also may have aided in the 

mobilisation of volcanic debris. The resulting volcaniclastic debris and hyperconcentrated 

flow deposits are characterised by tabular geometries, consisting of volcaniclastic 

mudstones through to conglomerates, that are poorly sorted and matrix supported. These 

units are dominated by reworked palagonitised basaltic tephra and minor amounts of 
basalt. 

The ca. 1.4 km thick Middle Basalt Formation (MBF) consists of ca. 20 m thick subaerial 

compound-braided facies lava flows made up of thinner flow units, <0.5 to 2m in 

thickness. The MBF Javas were erupted at lower effusion rates than those of the Lower and 
Upper basalt formations. The flow units of the MBF are either S-type (spongy) or, more 

commonly, P-type (pipe-bearing) pahoehoe lava that was emplaced passively by an 
inflation (endogenous) mechanism through efficient lava tube networks. Calculations 

based upon the thicknesses of P-type flow crusts, suggest that the flow units were active 
for periods of a few hours up to a few days, and that the compound lava flows were 

emplaced over periods of months to years. The relatively rare interlava lithologies 

deposited during hiatuses in the MBF volcanism consist of fluviatile volcaniclastic 

sandstones and siltstones, commonly contained within channel structures. The sandstones 
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are composed of reworked palagonitised basaltic tephra and plant material, indicating that 

the surrounding land surface was vegetated. A re-examination of some of the vents defined 

by Rasmussen & Noe-Nygaard (1970b), for example, Sundsmunnin, Viöoy, suggests that 

many of them are, in fact, epiclastic conglomeratic deposits and, consequently, no MBF 

vents are recognised. 

The boundary between the Middle and Upper basalt formations is not represented by a 

simple major hiatus akin to the CBF, although a thin (ca. 10 m thick) volcaniclastic debris 

flow, represented by exposures ca. 34 km apart, is recognised. This sedimentary unit is a 

volcaniclastic conglomerate that is poorly sorted, matrix supported, and has a 
homogeneous clast population dominated by plagioclase-phyric basalt. These data imply 

that during early UBF times there was an influx of pyroclastic debris onto the land surface, 

which was mobilised by surface water and/or high rainfall, producing sheet flood deposits. 

The Upper Basalt Formation (UBF) is ca. 900 m thick, although a few hundred metres 

have been removed by erosion. The UBF is dominated by subaerially erupted, 

prismatically jointed, tabular-classic lava flows, with average thicknesses between 8 and 

11 m. Akin to the LBF, these lavas were emplaced rapidly, in weeks to a few months, from 

high effusion rate eruptions. The identification of a small vent, dominated by upward- 

terminating minor intrusions associated with highly brecciated country rock material, at 

Hüsiö millum Gjäir on Viooy, may represent a localised feeder to UBF flows. Hiatuses in 

the volcanism during UBF times saw the development of fluviatile and lacustrine 

environments, together with palaeosol surfaces which were commonly vegetated, with the 

rare preservation of tree moulds within the basal parts of lava flows. The interlava 

lithologies consist of volcaniclastic sandstones and siltstones composed predominantly of 

reworked palagonitised basaltic tephra. Some of the lavas that flowed over these strata 

were brecciated and subsequently agglutinated, implying that they were emplaced into wet 

environments. 
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1 Introduction 

1.1 Background 

Hydrocarbon exploration over the past three decades has increasingly targeted rift basins 

on continental margins such as the NE Atlantic margin (Brooks & Glennie 1987; Parker 

1993; Fleet & Boldy 1999) and offshore Namibia (Jerram et al. 1999). These basins are 
typically dominated by a range of volcanic facies from Continental Flood Basalts (CFBs) 

to volcaniclastic deposits (Mathisen & McPherson 1991; Jerram 2002). As a consequence, 
hydrocarbon exploration has been impeded by the presence of these vast thicknesses of 
flood basalts, which disrupt seismic responses, known as the sub-basalt imaging problem, 

that make it difficult to recognise trap structures potentially containing reservoirs of 
hydrocarbons (Kiorboe & Petersen 1995; Richardson et al. 1999; Planke et al. 2000; 

Jerram 2002; White et al. 2003). Traditional studies of CFBs have concentrated primarily 

on their geochemistry (Waagstein 1977; Wood 1979; Hald & Waagstein 1984; Waagstein 

1988; Saunders et al. 1997; Kerr 1999; Larsen et al. 1999; Chambers & Fitton 2000; Holm 

et al. 2001) and geochronology (Tarling 1970; Abrahamsen et al. 1984; Hitchen & Ritchie 

1993; Sharma 1994; Sinton et al. 1998; Tegner et al. 1998; Waagstein et al. 2001; Riisager 

et al. 2002a; Waagstein et al. 2002). However, with the interest, in part, from the 

petroleum industry, investigations have moved towards understanding their evolution, in 

particular in terms of environment of eruption (Williamson & Bell 1994; Self et al. 1996; 

Self et al. 1997; Lyle & Preston 1998; Jerram et al. 1999; Lyle 2000; Jerram 2002). 

CFBs occur throughout the geologic past and include, for example, the Siberian Traps (ca. 

251-249 Ma), the Parana-Etendeka Flood Basalt Province (ca. 134-129 Ma), the Deccan 

Traps (ca. 66 Ma), the North Atlantic Igneous Province (ca. 62-58 Ma), and the Columbia 

River Basalt Group (ca. 16.5-14.5 Ma) (Walker 1993; Ernst & Buchan 2001). These flood 

basalts have no modern analogues, which has made it difficult to understand their complex 
internal and external architectures (Jerram 2002). However, comparisons of flow 

architectures of the Columbia River Basalt Group with flows erupted in the last 60 years 

on Hawaii have led to a better understanding of the processes involved in the formation of 

vast thicknesses of basalt lava flows (Self et al. 1996). This, coupled with advances in 

seismic volcanostratigraphy (Planke et al. 2000; Planke 2001), the interpretation of facies 

architecture from seismic data, has aided in the interpretation of environment of eruption 
directly from the facies architecture observed in lava flows. The terminology used in 

describing facies architecture is discussed in Section 2.1. 
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Interlava lithologies occur inbetween lava flows within CFB provinces and help in the 

understanding the facies architecture observed in the overlying lava flow(s), for example, 

the development of columnar jointing in flows is closely associated with the presence of 
fluviatile and lacustrine sediments (Lyle & Preston 1998; Lyle 2000). The interlava 

lithologies can be derived by either pyroclastic or epiclastic processes in a wide range of 

environments (Fisher & Schmincke 1984; Cas & Wright 1987; Fisher & Smith 1991; 

Smith 1991; McPhie et al. 1993; Orton 1996). Pyroclastic deposits are more rarely 

preserved in the rock record because they are rapidly reworked by surface processes 
(Fisher & Schmincke 1984; Suthren 1985; Cas & Wright 1987; Fisher & Smith 1991; 

Smith 1991; Orton 1996). However, these processes differ from those of non-volcanic 

areas, for example, volcaniclastic debris flows travel far greater distances than their non- 

volcanic counterparts (Smith & Lowe 1991). Furthermore, pyroclastic activity rapidly adds 

volcanic debris to the surrounding land surface, which is usually quickly reworked and 

swamps pre-existing alluvial environments (e. g. fluvial and lacustrine) (Smith 1987a; b; 

1991; Haughton 1993; Bahk & Chough 1996; Nakayama & Yoshikawa 1997). 

This abrupt input of large volumes of volcanic debris can see, for example, a swift 

transformation from meandering stable fluvial channels to rapidly aggrading braided 

channels (Smith 1987a; b; 1991; Haughton 1993; Bahk & Chough 1996; Nakayama & 

Yoshikawa 1997), which are commonly associated with the development of lahars 

(volcaniclastic debris and hyperconcentrated flows) (Janda et al. 1981; Lowe et al. 1986; 

Naranjo et al. 1986; Cas & Wright 1987; Smith & Lowe 1991; Orton 1996; Lirer et al. 

2001). The resulting lahar and flood deposits are interpreted as having formed during syn- 

eruption periods, whereas, inter-eruption depositional processes lead to the formation of 
`normal' fluvial, lacustrine and palaeosol lithofacies (Smith 1988; Besly & Collinson 1991; 

Smith 1991; Wilkins et al. 1994; Bahk & Chough 1996; Bell et al. 1996; Orton 1996; 

Widdowson et al. 1997; Retallack 2001). The interplay between these syn- and inter- 

eruption depositional processes is complex due to the role of aggradation and basin 

subsidence (Smith 1988; 1991; Bahk & Chough 1996; Orton 1996). Therefore, a clear 

understanding of the processes involved in the formation of volcaniclastic facies will aid in 

the interpretation of the environment of eruption and deposition of lava flows and interlava 

lithologies, respectively. The terminology used in describing volcaniclastic lithologies in 

this study is outlined in Section 2.2. 
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1.2 Objectives 

Since the publication, over 30 years ago, of the `Geology of the Faeroe Islands' by 

Rasmussen & Noe-Nygaard (1969; 1970b) advances in our understanding of the volcanic 

processes occurring in the formation of flood basalts has aided in the understanding of their 

evolution through time, their emplacement mechanisms and their environments of eruption 

(e. g. Jerram 2002). In those 30 years, work on the Faeroe Islands has focused on the 

petrography (Hald & Waagstein 1984; Waagstein & Hald 1984; Waagstein et al. 1984), 

geochemistry (Waagstein 1977; Jensen 1978; 1979; Wood 1979; Jensen 1982; Gariepy et 

al. 1983; Hald & Waagstein 1983; 1984; Jensen 1985; Waagstein 1988; Larsen et al. 1999) 

and geochronology (Koul & Chadderton 1980; Koul et al. 1983; Waagstein 1988; Sharma 

1994; Waagstein et al. 2001; Riisager et al. 2002a; b; Waagstein et al. 2002) of the lavas of 

the Faeroe Plateau Lava Group with little attention being given to their emplacement 

mechanisms and evolution of environments of eruption through time. Their associated 

interlava lithologies have been poorly represented in the literature with only minor 

investigations into their mineralogy (Sabine 1971; Parra et al. 1987), palaeomagnetism 

(Lovlie 1975; Lovlie & Kvingedal 1975; Lovlie 1976) and palynology (Jolley 1997; Ellis 

et al. 2002), especially the Coal-bearing Formation (Lund 1983; 1989; Jolley 1997). The 

locations of minor interlava lithologies have been reported by Rasmussen & Noe-Nygaard 

(1969; 1970b), but their petrography and modes of formation have received little attention 

and under current volcaniclastic classification schemes many of the lithologies need to be 

re-examined. 

Therefore, the overall objective of this study, through a new investigation of lava flow 

facies architecture and the lithological and genetic classification of interlava lithologies, is 

to understand the environment of eruption and deposition throughout the evolution of the 

Faeroe Plateau Lava Group of the Faeroe Islands (Fig. 1.1) and Faeroe-Shetland Basin, NE 

Atlantic. This was approached by comparing field observations of lava flows and 

associated lithologies of the Faeroe Islands to other CFB provinces and the basalt lavas 

erupted on Hawaii. Interlava lithologies were examined in order to determine whether 

they were emplaced by pyroclastic or epiclastic processes. Once this had been 

accomplished, characteristics of the lithologies were compared to pyroclastic and epiclastic 

rocks of other volcanic settings to try and accurately determine the processes involved in 

their transportation and the environment of deposition. As an adjunct to the main study, 

igneous material acquired from Well 214/4-1, Faeroe-Shetland Basin (Fig. 1.2), was 

petrographically examined and geochemically analysed, in an attempt to correlate the 
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offshore material to the volcanic succession encountered on the Faeroe Islands and to 

understand the mode of emplacement of the igneous-bearing lithologies. 

1.3 Faeroe Plateau Lava Group 

The Palaeogene Faeroe Plateau Lava Group (FPLG), part of the North Atlantic Igneous 

Province, comprises extensive flood basalt lavas and associated subaqueous lithologies 

such as hyaloclastite deltas that were erupted east of the rift fissure (Noe-Nygaard 1974; 

Waagstein 1988; Ritchie & Hitchen 1996; Larsen et al. 1999; Ritchie et al. 1999), which 

was centred around East Greenland in the early Palaeocene (Danian, ca. 65-63 Ma) 

(Larsen et al. 1999; Ellis et al. 2002). Prior to continental break-up, the Faeroe Islands and 

East Greenland may have been as little as 60 km apart, and certainly the distance was <100 

km (Larsen et al. 1999). The FPLG covers an area of the NE Atlantic including the Faeroe 

Islands and an area to the SE extending into parts of the Faeroe-Shetland Basin (identified 

from seismic data and Well 205/9-1 (Fig. 1.2)) (see Chapter 8) (Hitchen & Ritchie 1987; 

1993; Stoker et al. 1993; Ritchie & Hitchen 1996; Naylor et al. 1999; Ritchie et al. 1999; 

Ellis et al. 2002). The Faeroe-Shetland Basin began to subside in Eocene times (Turner & 

Scrutton 1993) after the thermal contraction of the proto-Icelandic plume (Saunders et al. 

1997), which restricted magmatism to the active rift. 

A geochemical correlation between the FPLG on the Faeroe Islands and Nansen Fjord 

volcanic succession, East Greenland, suggests that the flood basalts had pre- and syn- 

break-up (see below) aerial extents of 70,000 and 220,000 km2, respectively (Larsen et al. 

1999). The FPLG has a proven thickness of ca. 6,500-7,000 m, consisting of ca. 3,000 m 

exposed on the Faeroe Islands, and ca. 3,565 m proven in the wells Lopra-1 (2,178 m 

drilled in 1981) and 1A (a further 1,387 m drilled in 1996) (Rasmussen & Noe-Nygaard 

1970b; Hald & Waagstein 1984; Waagstein et al. 1984; Waagstein 1988; Ellis et al. 2002). 

The Faeroe Islands consist of 18 main islands covering a distance E-W of ca. 80 km and 

N-S of ca. 115 km, with an overall area of 1,400 km2. The islands have a dominant NW- 

SE trend and are located ca. 280 km NW of Scotland and ca. 400 km SE of Iceland (Fig. 

1.1). The landscape of the Faeroe Islands has been sculpted by glacial action producing 

mountainous terrain, with Slaettaratindur, at a height of 882 in, being the highest peak on 

the islands. The Faeroe Islands and its insular shelf form the Faeroe Block (Waagstein 

1988), which along with the Rockall Plateau are believed to be continental (Bott et al. 
1974; Roberts 1975; Gariepy et al. 1983; Hald & Waagstein 1983) and make up the Faeroe 

Rise microcontinent (Bott & Watts 1971; Roberts et al. 1983). 
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It is on the Faeroe Islands that the FPLG is subdivided into five formations based on 

lithology and facies architecture (basalt formations) (Rasmussen & Noe-Nygaard 1969; 

1970a; b; Noe-Nygaard 1974; Waagstein 1977; 1988; Rasmussen & Noe-Nygaard 1990). 

Figures 1.3 to 1.5 summarise the distribution and stratigraphic relationships of the FPLG 

formations of the Faeroe Islands. The three basalt formations, Lower (LBF), Middle 

(MBF) and Upper (UBF) are quite clearly separated on geochemical plots of TiO2/FeOT 

vs. FeOT/MgO and TiO2/FeOT vs. Mg # (Figs. 1.6 & 1.7) (Waagstein 1988; Larsen et al. 

1999) and the geochemistry of these formations shall be discussed in more detail in the 

relevant chapters: 3,6, and 7, respectively. The pre-break-up succession is composed of 

the LBF and the syn-break-up succession consists of the Middle and Upper basalt 

formations (Larsen et al. 1999). The Coal-bearing Formation (CBF) inbetween the Lower 

Basalt and Volcaniclastic Sandstone formations represents a major hiatus in the volcanic 

activity, no significant hiatus is observed between the Middle and Upper Basalt formations. 

Age data for the FPLG are at present very poorly constrained by radiometric techniques 

(Waagstein et al. 2002), although, in particular, the CBF is well constrained by 

biostratigraphy (Lund 1983; 1989; Jolley 1997). The upper section of the LBF has a 

palynoflora assemblage contained within interlava coals yielding an age of 57.5-60.56 Ma 

(Ellis et al. 2002). This assemblage is similar to the palynoflora assemblage recovered 

from the sediments below and within the lavas of Well 205/9-1, indicating that the lavas in 

Well 205/9-1 are comparable to the LBF (Ellis et al. 2002). The palynoflora assemblage of 

the CBF is comparable to the assemblages encountered in offshore wells from the base of 

the F2 subdivision of the Flett Formation (i. e. Ypresian (ca. 57 Ma)) (Fig. 1.8) (Jolley 

1997; Naylor et al. 1999). Figure 1.8 is a correlation of the volcanic rocks within the North 

Atlantic Igneous Province alongside the most up to date isotopic age data, nannofossil 

zones and magnetochrons. The LBF has a R-N-R-N-R palaeomagnetic signature, whereas 

the Middle and Upper basalt formations have a reversed signature (Waagstein 1988). 

Ritchie et al. (1999) suggested that the Lower Basalt Formation was erupted during 

magnetochrons C27R-C26N, with a few flows in C25R and that the Middle and Upper 

basalt formations were erupted during C24R. However, Riisager et al. (2002a) suggested 

that the exposed part of the LBF was erupted later during magnetochrons C26N-C24R, 

although they agreed that the Middle and Upper basalt formations were erupted during 

C24R (Fig. 1.8). 
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1.4 Thesis Outline 

In order to give a comprehensive examination of the lavas of the Faeroe Plateau Lava 

Group (FPLG) of the Faeroe Islands the terminology used to describe and interpret them is 

presented in Chapter 2, Section 2.1. In the current literature there are two ways of 

classifying volcaniclastic lithologies, using either their mode of formation or deposition. 

Chapter 2, Section 2.2 discusses the two classification schemes and outlines a consistent 

approach used in this thesis for describing and interpreting them. Chapters 3 to 7 describe 

and interpret new information from the five formations recognised from the FPLG of the 

Faeroe Islands. Chapter 3 describes the facies architecture of the lava flows, as well as the 

lithologies of three interlava sections of the Lower Basalt Formation; these data are used to 

present environments of eruption and deposition, respectively, for the formation. Chapter 4 

describes the Coal-bearing Formation that marks a major hiatus in the volcanic activity. 
The chapter focuses on the petrography, crystallography and mineral chemistry of 
ironstone beds from two localities on Suöuroy, because they have not been previously 

reported in the literature. These detailed studies provide additional evidence to help 

understand the environment of deposition. The second half of the chapter describes and 

interprets the sandstone and conglomerate beds that overlie the coal seams. In Chapter 5, 

three traverses from the Volcaniclastic Sandstone Formation not previously reported in the 

literature, are described using the volcaniclastic classification scheme outlined in Chapter 

2, Section 2.2. The traverses are correlated to one another and new modes of formation and 

environments of deposition are proposed. 

Chapters 6 and 7 describe the internal and external architectures of the lavas, as well as 
five and seven new interlava sections from the Middle and Upper basalt formations, 

respectively. These data are used to interpret the environments of eruption of the lavas and 

the environments of deposition for the interlava lithologies. A summary of the extrusive 

and intrusive volcanic rocks of the Faeroe-Shetland Basin is given in Chapter 8 before the 

petrography and geochemistry of the volcanic interval of Well 214/4-1 is presented. These 

data are used to correlate the volcanic interval of Well 214/4-1 to the volcanic succession 

of the Faeroe Islands and environments of eruption and deposition are determined for the 

volcanic lithologies within the well. Chapter 9, Section 9.1 summarises the facies 

architectures and environments of eruption of the lavas of the FPLG investigated on the 

Faeroe Islands and within the Faeroe-Shetland Basin. Section 9.2 discusses the 

environments of deposition for the interlava lithologies of the Faeroe Islands in terms of 
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inter- and syn-eruption facies. Section 9.3 collates all of the information gleaned from the 

present study and proposes an evolution of the Faeroe Plateau Lava Group. 
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2 Terminology 

This chapter sets out the terminology used in the thesis for describing different types of 
basaltic lava flows. Focus then turns to the emplacement mechanisms, vesicle patterns and 

prismatic and columnar jointing of Continental Flood Basalt lavas and the features 

associated with them. A brief summary of the characteristics of Basaltic Plains Volcanism 

is also given. The second half of the chapter discusses the problems involved in describing 

volcaniclastic lithologies, particularly on whether the emphasis of the classification scheme 

should be based on the volcanic origin of the fragments or the mode of deposition. The 

chapter presents a consistent approach to the lithological and genetic volcaniclastic 

classification schemes used in this thesis. Lastly, a description of how the colour names 

and numerical designations used throughout the thesis is given. 

2.1 Lava Flows 

Lava flows are coherent masses of magma that are erupted in a single continuous 

outpouring at the Earth's surface during essentially non-explosive effusive volcanic 

activity (Cas & Wright 1987; McPhie et al. 1993). Lava flows are differentiated into two 

broad groups: low viscosity and high viscosity types (Walker 1970; 1973). The viscosity of 

the lava is dependant on a number of factors, although volatile and silica contents are the 

dominant controlling agents (Walker 1970; 1973). As volatile and silica contents increase 

so does the viscosity of the lava. As a consequence, high viscosity lavas are associated 

with andesitic, dacitic and rhyolitic compositions, whereas low viscosity lavas are 

commonly basaltic in composition (Walker 1970; 1973). The resultant geometry or aspect 

ratio (average thickness/horizontal extent) of the lava flow is a consequence of the 

viscosity and the rate of effusion during eruption of the lava (Walker 1970; 1973). Basaltic 

lavas are commonly thin, laterally extensive and have high volumes compared to more 

silicic types (Fig. 2.1). The effect of viscosity and effusion rate during the eruption of a 
lava flow has led to the distinction between two geometric lava flow types: simple lava 

flows and compound lava flows (Walker 1970; 1973) (Fig. 2.2). A simple lava flow is 

made up of one flow unit (an individual package of lava that is surrounded by a chilled 

crust), whereas a compound lava flow is composed of numerous flow units (Walker 1970). 

Walker (1973) suggested that the length of the lava flow is controlled by the rate of 

effusion: the higher the rate the more far-reaching the flow, whereas viscosity is important 

in determining thickness of flow, i. e. the higher the viscosity the greater the thickness. 

Simple lavas are considered by Walker (1973) to have been produced by high effusion 
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rates, whereas compound lavas are considered to have formed from low effusion rate 

eruptions (Walker 1970; 1973). Topography can also influence the length and thickness of 

a flow, such as in a topographic depression, but is otherwise a relatively unimportant factor 

(Walker 1973). 

2.1.1 Types of Basaltic Lava Flow 

This thesis is concerned with the characteristics of basaltic lava flows or low viscosity 

(low-silica) types and therefore terminology outlined here shall exclusively concentrate on 

basaltic lava flows. Basaltic lava flows are erupted from either fissure (linear vent) or 

central vent (point source) systems as coherent flows or as fire fountains of lava that 

reconstitute around the vent and then flow away (Walker 1970; 1973; Swanson et al. 1975; 

Basaltic Volcanism Study Project 1981; Cas & Wright 1987; McPhie et al. 1993). Basaltic 

lavas can be erupted in subaerial or subaqueous environments and the resultant textures 

reflect this (Basaltic Volcanism Study Project 1981; Cas & Wright 1987; McPhie et al. 

1993) (Fig. 2.3). 

Most of the terminology used in describing subaerial basaltic lava flows originates from 

actively forming lava flows erupted from central vent systems on the island of Hawaii i 

(Wentworth & Macdonald 1953; MacDonald 1967; Basaltic Volcanism Study Project 

1981; Cas & Wright 1987; McPhie et al. 1993; Walker 1993). Subaerial basaltic lava flows 

commonly exhibit either of two end-member flow types: a'a or pahoehoe (Wentworth & 

Macdonald 1953; MacDonald 1967; Basaltic Volcanism Study Project 1981; Cas & 

Wright 1987; McPhie et al. 1993; Walker 1993). A'a lavas have a rough, jagged, and spiny 

surface composed of scoriaceous lava fragments known as clinker (Cas & Wright 1987; 

McPhie et al. 1993) and they usually have a massive interior with irregularly distributed, 

elongate vesicles, which were deformed during flowage (Cas & Wright 1987; McPhie et 

al. 1993). A'a flows on Hawaii advance at high volumetric flow rates (>5-10 m3/s) 

(Rowland & Walker 1990), which causes continuous disruption of the flow crust resulting 

in heat loss of the core and leading to increased crystallinity and viscosity of the lava 

(Cashman et al. 1999). These viscous a'a flows advance in a caterpillar fashion, overriding 

clinker that has fallen off the front of the flow and which may lead to the development of 

channels in which lavas are constrained (Cas & Wright 1987; Rowland & Walker 1990; 

McPhie et al. 1993). A'a flows on Hawaii range in thickness from 2-3 m, up to no more 

than 20 m, depending on the rate of effusion (Cas & Wright 1987; McPhie et al. 1993). 
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Fig. 2.3. Textures in ideal cross-sections through (a) a'a and (b) pahoehoe (mostly subaerial), and (c) pillow 
lava (subaqueous). Features that indicate younging are indicated with red arrows. Black areas are vesicles 
or former vesicles. After McPhie et aL (1993) based on Easton & Johns (1986). 
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Pahoehoe lavas form at low volumetric flow rates (<5-10 m3/s) on Hawaii (Rowland & 

Walker 1990) and are characterised by having a smooth, billowy or ropy surface 
(Wentworth & Macdonald 1953; MacDonald 1967; Basaltic Volcanism Study Project 

1981; Cas & Wright 1987; McPhie et at 1993; Walker 1993) and can be classified on their 

vesicle pattern as either S-type or P-type (Wilmoth & Walker 1993). S-type or spongy 

pahoehoe contains >30% vesicles that are commonly <4 mm in diameter (Wilmoth & 

Walker 1993). P-type or pipe vesicle-bearing pahoehoe contains <30% vesicles, which are 

usually larger than the vesicles in S-type pahoehoe (Wilmoth & Walker 1993). P-type 

pahoehoe flows that are emplaced on slopes of <4° and commonly exhibit pipe vesicles in 

the basal crust of the lava flow (Walker 1987; Wilmoth & Walker 1993). Pahoehoe 

advances as (thin) 10-50 cm thick toes and, as a result of rapid chilling, the toe will 

develop an insulating skin <1-2 mm thick (Hon et at 1994). This thin insulating skin will 

contain the injection of fresh lava, which results in the inflation of the toe to as much as 4 

m in thickness as the skin thickens and forms a rigid upper crust (Hon et at 1994). 

Eventually the pressure (hydro `magmastatic' head) exerted by the continued injection of 

fresh lava will rupture the insulating skin and the protrusion of a new toe will occur at the 

front of the flow (Hon et at 1994). Locally increased supply rates of fresh lava can lead to 

the folding of the hot, flexible crust, producing a ropy surface that can be used as a 

palaeoflow indicator (MacDonald 1972; Fink & Fletcher 1978). 

Tumuli and lava-rise pits are surface features on pahoehoe flow fields and are produced 

during the uplift of a lava crust during the inflation of a pahoehoe lava flow (Walker 1991). 

As the flow migrates away from the vent, upslope coalescence of toes leads to the 

formation of a lava tube network (Rowland & Walker 1990; Hon et al. 1994) (Fig. 2.4). 

Lava tube networks allow fresh lava to travel huge distances to the front of the flow 

without a major loss in temperature (Rowland & Walker 1990; Hon et al. 1994). Lava 

tubes can also form from roofmg-over of lava channels and are commonly observed 

forming proximal to the vent (Peterson & Swanson 1974; Greeley 1987; Peterson et al. 

1994; Dragoni et al. 1995). S-type pahoehoe is believed to spend less than an hour 

travelling within the tube network before it emerges at the front of the lava flow, whereas 
P-type pahoehoe is considered to have spent more than a day in the tube network (Wilmoth 

& Walker 1993) and consequently P-type pahoehoe is characteristic of the inflation mode 

of lava emplacement. 

Lava flows on Hawai'i commonly begin as pahoehoe and change into a'a away from the 

vent (Cas & Wright 1987; McPhie et al. 1993). The transition from pahoehoe (near- 

Newtonian rheology) to a'a (Bingham rheology) lava is marked by surface crust 
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Fig. 2.4. Tube system in a pahoehoe lava flow. Master tubes (a) form by the coalescence of several adjacent 
smaller tubes or by roofing-over of open channels. Master tubes deliver lava to the distal parts of flows, 
Where there is a system of small distributary tubes (b). At the flow front, the lava emerges in several small 
single flow unit tubes (c). Single flow unit tubes have cross-section areas of about I m2. After McPhie et aL 
(1993) based on Rowland & Walker (1990). 
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differences, with lavas going from pahoehoe to slabby pahoehoe to scoriaceous-spinose a'a 

and finally, to clinker-dominated a'a at the distal parts of the lava flows, i. e. away from the 

vent (Lipman & Banks 1987). Across the transition vesicularity decreases, deformation of 

vesicles is greater, and plagioclase microlite crystallinity increases (Cashman et al. 1999; 

Polacci et al. 1999). The increase in crystallinity increases the viscosity and yield strength 

of the lava and at high strain rates leads to the formation of a'a with a distinctive clinker 

surface (Cashman et al. 1999). Recent studies have shown that a transition from a'a to 

pahoehoe lavas can occur but is restricted to where lavas flow from steep slopes to level 

ground and undergo a reduction in strain rate (Hon et al. 2003). 

Pillow lavas are the characteristic basaltic lava flow type produced in subaqueous settings 
(Jones 1968; Moore et al. 1973; Moore 1975; Cas & Wright 1987; McPhie et al. 1993) and 

are the subaqueous equivalent of (subaerial) pahoehoe lava flows. Pillow lavas commonly 

exhibit features (e. g. ropes) associated with pahoehoe (Jones 1968; Moore 1975; Cas & 

Wright 1987; McPhie et al. 1993). Pillows are typically elliptical in cross-section and 

range from 10 cm to several metres in diameter (Jones 1968; Moore 1975; Cas & Wright 

1987; McPhie et al. 1993). The pillows are interconnected via a tube network, again 

analogous with the emplacement of pahoehoe lava flows (Jones 1968; Moore 1975; Cas & 

Wright 1987; McPhie et al. 1993). Subaerial lavas that interact more fully with water can 

result in fragmentation that produces hydroclastites, commonly hyaloclastites (lava flowing 

into water) or peperites (lava flowing into water-saturated sediments). These lithologies are 

more fully dealt with in Section 2.2.2.2. 

2.1.2 Continental Flood Basalts 

Continental Flood Basalts (CFBs) are extremely voluminous, with lava fields ranging in 

volume from 105-107 km3, compared to lava shield volcanoes (e. g. Hawai'i) that have 

volumes between 1,000-40,000 km3 (Walker 1993). CFBs consist of vast 10-60 m thick 

sheets of lava with extremely low aspect ratios, which are commonly tholeiitic in 

composition (Cas & Wright 1987, and references therein). Simple lava flows, as described 

by Walker (1970), are characteristic of many CFB provinces, although compound lava 

flows do occur. Jerram (2002) referred to simple lava flows as tabular-classic facies and 

compound lava flows as compound-braided facies when describing lava flows from CFB 

provinces in terms of their facies architecture (Fig. 2.5). 
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(a) Tabular-classic Facies Architecture (b) Compound-braided Facies Architecture 
Fig. 2.5. Two main styles of facies architecture for lava flows in Continental Flood Basalt provinces. (a) 
Tabular-classic facies. Prismatic flows are erupted in and environments whereas columnar jointed flows 
are erupted in wet environments. (b) Compound-braided facies. Lava flows are made up of numerous 
anastomosing pahoehoe flow sheets and lobes. After Jerram (2002). 
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2.1.2.1 Emplacement Mechanisms for CFBs 

Initial investigations suggested that large flood basalts within CFB provinces were 

emplaced as high effusion rate turbulent flows (Shaw & Swanson 1970a; Swanson et al. 
1975). However, more recent studies of the eruptions of pahoehoe lavas on Hawaii have 

been extrapolated to suggest that long flood basalt flows of CFBs could have been 

emplaced by thermally efficient lava tube networks (Shaw & Swanson 1970a; Swanson et 

al. 1975; Greeley 1987; Keszthelyi 1995; Sakimoto & Zuber 1998) or as large inflated 

compound pahoehoe sheet flows, both of which are emplaced at lower effusion rates (Hon 

et al. 1994; Self et al. 1996; Self et al. 1997). 

The hypothesis introduced by Shaw & Swanson (1970a) for the Yakima Basalt Subgroup 

(Grande Ronde, Wanapum, and Saddle Mountain basalt formations) of the Columbia River 

Basalt Group (CRBG) involved extremely rapid emplacement mechanisms. The lava flows 

in the CRBG have travelled distances in excess of 100 km, displaying only minor 

crystallisation over their entire length, presumably as a result of restricted syn- 

emplacement cooling (Shaw & Swanson 1970a; Swanson et al. 1975). Shaw & Swanson 

(1970a) suggested that the lava flows would travel turbulently during very rapid eruption 

rates and, as a consequence, this would reduce the overall flow time and reduce the impact 

of turbulent cooling until 100 km or more of travel. This would suggest that such large 

tabular-classic flows would have been emplaced over a week to a few months (Shaw & 

Swanson 1970a; Swanson et al. 1975; Reidel & Tolan 1992; Reidel 1998). According to 

Keszthelyi & Self (1998), rapidly emplaced lava flows should be dominated by a'a lava 

flow features, especially rubbly flow tops and bottoms. The transition from turbulent to 

laminar flow at the end of the eruption period may explain the preservation of pahoehoe 
flow features in localised areas (Reidel & Tolan 1992). 

Self et at (1996) & Self et at (1997) have argued against a high effusion rate turbulent 

flow model for the emplacement of some of the CFB lava flows and suggested that some 

of the flows were emplaced as large inflated pahoehoe lava flow fields at low effusion 

rates over many years to decades. This hypothesis is based on field observations for the 

Roza Member of the Wanapum Basalt Formation within the CRBG and by comparing 

them to the features formed during the active emplacement of inflating pahoehoe flow 

fields on Hawaii (Hon et at 1994). The emplacement mechanism is analogous to that for 

thin pahoehoe sheets outlined in Section 2.1.1, but involves larger volumes and longer 

emplacement time periods. The inflation or `swell' hypothesis for CFBs is summarised in 

Figure 2.6. As with pahoehoe sheets on Hawaii, inflated CFBs display ropy surfaces, 
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Fig. 2.6. Schematic cross-sections of emplacement of a generic inflating pahoehoe lava flow. Vertical scale 
varies from 1-5 in for Hawaiian flows to 5-50 m for Continental Flood Basalt flows. (a) Flow arrives as a 
small, slow-moving lobe of molten lava held inside a stretchable, chilled visco-elastic skin with a brittle 
crust on top. Bubbles are initially trapped in both the upper and basal crusts. (b) Continued injection of 
lava into the lobe results in inflation (lifting of the upper crust) and new breakouts. During inflation, 
bubbles rising from the fluid core become trapped in the visco-elastic mush at the base of the upper crust, 
forming horizontal vesicular zones (HVZ). The growth of the lower crust, in which pipe vesicles develop, is 
much slower. Relatively rapid cooling and motion during inflation results in irregular jointing in the upper 
crust. (c) After stagnation, diapirs of vesicular residuum form vertical cylinders and horizontal vesicle 
sheets within the crystallising lava core. Slow cooling of the stationary liquid core forms more regular 
joints. (d) Emplacement history of the lava flow is preserved in vesicle distribution and jointing patterns 
within the frozen lava. After SelfetaL (1996). 

Chapter 2 Terminology Page 24 



Simon R. Passey 

lobes, tumuli, pipe vesicles (P-type pahoehoe), and so on. The large, inflated pahoehoe 
CFBs are also generally compound in nature, again analogous with the pahoehoe flow 

fields on Hawaii i. 

One feature lacking from the CRBG, but which is observed to develop during the inflation 

of pahoehoe flow fields on Hawaii, are lava tubes (Hon et al. 1994; Self et al. 1996; Self 

et al. 1997; Self et al. 1998). Lava tubes are also observed within the CFB province of the 

Cenozoic Volcanic Provinces of northern Queensland, Australia and are believed to have 

been of major importance in flow emplacement of the long lava flows observed in the 

province (Atkinson et al. 1975; Stephenson et al. 1998). A possible reason why lava tubes 

are not observed in some CFBs is because they may have been destroyed by internal 

flowage within ponded lavas (Cas & Wright 1987), or that lava tubes which formed on 

slopes of less than 0.5° commonly do not drain, are lens-shaped, and as a consequence are 
difficult to recognise in the field (Self et al. 1997). 

2.1.2.2 Vesicle Patterns in CFBs 

The lack of vesicles in the middle and bottom sections of thick lavas is a common feature 

associated with slowly solidifying flows that were emplaced rapidly (Aubele et al. 1988; 

Sahagian et al. 1989; Walker 1993). As the lava flow slowly solidifies there is time for the 

bubbles to migrate to the top of the flow and therefore produce the noticeable vesicular 

flow tops (Aubele et al. 1988; Sahagian et al. 1989; Walker 1993). However, large lava 

flows that have formed by endogenous (inflating) processes have been mistaken for rapidly 

emplaced lava flows and, therefore, detailed analysis of vesicle distribution, in terms of 

changing vesicularity and vesicle size through a lava flow, is needed to distinguish 

between them (Cashman & Kauahikaua 1997). 

Cashman & Kauahikaua (1997) demonstrated that within inflated lava flows there is a 

rapid downward decrease in vesicularity and a downward increase in both average and 

maximum vesicle size, this layer is referred to as a horizontal vesicle zones (HVZ). This 

contrasts with the vesicle patterns observed for the rapidly emplaced ponded Alae lava 

lake, Hawaii, which exhibits a downward increase in vesicularity and a downward 

decrease in maximum vesicle size (Peck 1978; Cashman & Kauahikaua 1997). Cashman & 

Kauahikaua (1997) also noted that inflated lava flows should have a normalised upper 

vesicular zone thickness (upper vesicular zone thickness/total flow thickness) in the range 
0.4-0.6. This contrasts with rapidly emplaced lava flows, which have a normalised upper 
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vesicular zone thickness that decreases as flow thickness increases (Cashman & 

Kauahikaua 1997). 

There are also a number of vesicle-related features that make inflated lava flows easily 
distinguishable from rapidly emplaced lava flows. For example, the lava flows from the 

CRBG, which have been identified as inflated lavas, particularly the Roza Member, exhibit 
horizontal vesicle zones, horizontal vesicle sheets, vertical cylinders and pipe vesicles (Self 

et al. 1997; Thordarson & Self 1998). Each injection of fresh lava into an inflating flow 

produces a horizontal vesicle zone (HVZ) as described above (Self et al. 1996; Self et al. 
1998). Bubbles rise through the fluid core and become trapped at the base of the upper 

crust as it grows downwards due to cooling (Fig 2.6b) (Self et al. 1996; Self et al. 1998; 

Walker et al. 1999). Therefore, an inflated lava flow may exhibit a number of HVZs 

representing successive cycles of injection of fresh lava into the middle of the flow (Self et 

al. 1996; Self et al. 1998; Walker et al. 1999). After the stagnation of an inflating lava 

flow, due for example, to the cessation of injection of fresh lava, crystallisation of the 

dense core causes incompatible elements, including volatiles, to concentrate in the 

residuum (Self et al. 1996; Self et al. 1998). Secondary vesiculation can cause this 

residuum to rise as diapers (vertical cylinders), which can hit the base of the upper crust 

and spread to form horizontal vesicle sheets (HVSs) (Fig. 2.6c) (Self et al. 1996; Self et al. 
1998). The depth between the lowermost horizontal vesicle zone and the uppermost 
horizontal vesicle sheet marks the base of the upper crust when inflation ended (Fig 2.6d) 

(Self et al. 1996; Self et al. 1998). 

2.1.2.3 Development of Prismatic and Columnar Jointing in CFBs 

Many large lava flows in CFB provinces exhibit prismatic or columnar jointing (Cas & 

Wright 1987). Prismatic jointing is formed as the result of volume reduction (contraction) 

during cooling (crystallisation) of lava flows from magmatic to atmospheric temperatures 

(Cas & Wright 1987; Walker 1993). The volume reduction can be as much as several 

percent and is accommodated in part by vertical to near-vertical joints that propagate 

perpendicular to the cooling surfaces, i. e. the top, bottom and sides of the lava flow (Cas & 

Wright 1987; Walker 1993). If the jointing consists of regular prisms that are uniform in 

size they are referred to as columnar jointing (Cas & Wright 1987; Walker 1993). 

A columnar jointed lava flow is commonly segregated into two or three tiers, which are 

referred collectively as a multi-tiered flow (Tomkeieff 1940, and references therein; Spry 

1962; Swanson 1967; Long & Wood 1986). Figure 2.7 shows a typical multi-tiered flow 
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Fig. 2.7. Typical intraflow structures present in Grande Ronde Basalt flows, Columbia River Basalt 
Group, USA. Fractures in this figure are represented in a stylised manner, fracture widths are not to scale. 
After Long & Wood (1986). 
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from the Grande Ronde Basalt Formation of the CRBG. The nomenclature used for multi- 
tiered flows is that proposed by Long & Wood (1986). The basal tier is made up of regular, 

well-developed columns and is known as the (lower or basal) colonnade. The base of the 

colonnade may contain pillow lavas if the lava flow was erupted into a water-saturated 

environment. Overlying the colonnade is the entablature, which is characterised by 

irregular and hackly, curvi-columnar columns that frequently have a much smaller spacing 
than the columns in the colonnade. Sometimes overlying the entablature is an upper 

colonnade, which in turn is overlain by a vesicular flow top. 

Prismatic, or poorly developed jointing appears to be a common feature of lava flows that 

have been erupted in and environments e. g. the Parana-Etendeka flood basalts, Namibia 

(Jerram et al. 1999; Jerram et al. 2000; Jerram 2002). In contrast, the formation of well- 
developed columnar jointed lava flows (particularly multi-tired flows) are indicative of 

eruption in wet environments and can also be associated with six common features, listed 

below (Lyle 2000): 

(i) Evidence of large volume flows and high effusion rates; 

(ii) Associated interlava lacustrine or fluviatile sedimentary rocks; 
(iii) Palaeoclimatic and palaeobotanical evidence for high rainfall and abundant 

surface water; 
(iv) Palaeotopography allowing the ponding of lava flows, which may dam pre- 

existing river drainage systems; 
(v) Association of hyaloclastites and pillowed facies at the base of lava flows; 

(vi) Textural evidence of quenching within the entablature. 

2.1.3 Basaltic Plains Volcanism 

Basaltic Plains Volcanism consists of large lava flows intermediate in style and volume 
between Hawaiian lavas and CFBs (Greeley 1982). The term Basaltic Plains Volcanism 

was introduced by Greeley (1976; 1977; 1982) to distinguish the Snake River Group 

Basalts, Snake River Plain, Idaho from the CRBG. Basaltic Plains basalts are similar to 

CFBs in being high volume flows, having fissure vent systems and planar geometries 
(Greeley 1982) and are similar to Hawaiian basalts, consisting of compound pahoehoe lava 

flow fields that are erupted from low lying shield volcanoes and emplaced via lava tube 

networks as well as lava channels (Greeley 1982). The compound flow fields erupted from 

the low-lying shield volcanoes are on average 35 m thick and are made up of flow units ca. 
1-5 m thick (Greeley 1982). Lavas erupted from fissures are on average 10 m thick and 
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infill the low-lying areas inbetween shield volcanoes to give an overall planar geometry 
(Greeley 1982). Figure 2.8 is a block diagram depicting the main features of Basaltic 

Plains Volcanism. 

2.2 Volcaniclastic Rocks 

Due to the common misuse of terminology in the classification of volcaniclastic rocks in 

the literature, it is necessary to clarify the classification scheme used in this thesis. For 

example, the term agglomerate (a pyroclastic conglomerate) has in the past been applied to 

any volcaniclastic conglomerate/breccia, irrespective of being pyroclastic or epiclastic in 

origin, and has been associated with being a pyroclastic fall deposit in close proximity to a 

vent. However, in the majority of the classification schemes in use, an agglomerate is a 

pyroclastic rock (irrespective of its actual pyroclastic origin, i. e. fall, flow or surge) that 

contains more than 75% pyroclasts that have a mean diameter >64 mm and have an 

ellipsoidal, discoidal, or irregular shape, or have a cow-dung or bread crust texture (see 

Section 2.2.2). Cas & Wright (1987) have demonstrated that there are over 30 different 

ways to produce a volcaniclastic conglomerate/breccia, and agglomerate umbrellas less 

than half of them. The term Volcaniclastic was established by Fisher (1961; 1966) and 

redefined by Fisher & Smith (1991) to include: 

`the entire spectrum of clastic materials composed in part or entirely of 

volcanic fragments, formed by any particle forming mechanism (e. g. 

pyroclastic, hydroclastic, epiclastic and autoclastic), transported by any 

mechanism, deposited in any physiogenetic environment or mixed with any 

other volcaniclastic type or with any non-volcanic fragment types in any 

proportion'. 

Gillespie & Styles (1999) suggested that to be classified as a volcaniclastic rock, the rock 

must contain more than 10% by volume of volcanic debris. Volcanic debris is defined by 

Gillespie & Styles (1999) as: 

`fragments originating by volcanic processes, either primary or after 

redeposition'. 
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Fig. 2.8. Block diagram showing the relationship of low shields, major lava tube flows, and fissure flows 
within Basaltic Plains volcanic provinces. After Greeley (1977; 1982). 
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2.2.1 Volcaniclastic Fragments 

Volcaniclastic rocks are classified on the recognition and distinction between various 

volcaniclastic fragments which make up the rocks (Fisher 1961; Schmid 1981; Fisher & 

Schmincke 1984; Cas & Wright 1987; Fisher & Smith 1991; Gillespie & Styles 1999). 

Volcaniclastic fragments have commonly been divided into two categories: (i) pyroclastic 

fragments (pyroclasts) and (ii) epiclastic fragments (epiclasts) (e. g. Fisher & Schminke 

1984; Cas & Wright 1987). However, problems have arisen in the classification of 

volcaniclastic rocks in differentiating between pyroclasts and epiclasts. This ambiguity has 

occurred because some workers believe the volcanic origin of the fragments (Fisher & 

Schmincke 1984) is the important aspect in the classification scheme, whereas other 

workers believe it is the mode of deposition that is important (Cas & Wright 1987). The 

problem involves defining when a pyroclast becomes an epiclast (see Section 2.2.1.2 for 

discussion). To overcome this ambiguity Gillespie & Styles (1999) defined three categories 

of volcaniclastic fragments, these are as follows: 

(i) Pyroclastic fragments (pyroclasts): `fragments that have formed as a direct 

result of volcanic activity and have not been reworked by sedimentary 

processes'; 
(ii) Reworked pyroclastic fragments: `fragments that have formed as a direct 

result of volcanic activity and have been reworked by sedimentary 

processes'; 
(iii) Epiclastic fragments (epiclasts): `fragments whose origin, as fragments, is a 

direct result of surface (sedimentary) processes'. 

2.2.1.1 Pyroclastic Fragments (Pyroclasts) 

Pyroclasts are generated by disruption as a direct result of explosive volcanic action and 

deposited by transport processes resulting directly from this activity (Cas & Wright 1987; 

McPhie et al. 1993; Gillespie & Styles 1999). Pyroclasts can be subdivided into six 

distinguishable categories: (i) juvenile fragments, (ii) hydroclasts, (iii) autoclasts, (iv) 

cognate fragments, (v) accidental fragments, and (vi) alloclastic fragments. The six 

categories of pyroclasts are defined by Fisher & Schminke (1984) as follows: 

(i) Juvenile (or essential) fragments are `derived directly from the erupting 

magma and consist of dense or inflated particles of chilled melt, or crystals 

that were in the magma prior to eruption'; 
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(ii) Hydroclasts are `formed from steam explosions at magma-water interfaces, 

and also by rapid chilling and mechanical granulation of lava that comes in 

contact with water or water-saturated sediments'; 
(iii) Autoclasts are ̀ formed by mechanical friction or gaseous explosion during 

movement of lava'; 

(iv) Cognate (or accessory) fragments are `fragmented co-magmatic volcanic 

rocks from previous eruptions of the same volcano'; 
(v) Accidental fragments are `derived from the subvolcanic basement and 

therefore may be of any composition'; 
(vi) Alloclastic fragments are formed by the `disruption of pre-existing volcanic 

rocks by igneous processes beneath the Earth's surface, with or without the 
intrusion of fresh magma'. 

For the purposes of the classification scheme outlined in Section 2.2.2, pyroclasts are 
distinguished by their grain size (Fisher 1961) (Fig. 2.9). Bombs are pyroclasts that have a 

mean diameter >64 mm and have a shape (e. g. ellipsoidal, discoidal, irregular etc. ) or 
texture (e. g. cow-dung, bread crust bombs etc. ) which indicates that they were in a wholly 

or partly molten state during their formation and subsequent transport (MacDonald 1972; 

Schmid 1981; Fisher & Schmincke 1984; Cas & Wright 1987; Gillespie & Styles 1999). 

Blocks are pyroclasts that have a mean diameter >64 mm and which have an angular to 

sub-angular shape, indicating they were solid during transport (MacDonald 1972; Schmid 

1981; Fisher & Schmincke 1984; Cas & Wright 1987; Gillespie & Styles 1999). Lapilli are 

Pyroclasts of any shape with a mean diameter between 2 to 64 mm (MacDonald 1972; 

Schmid 1981; Fisher & Schmincke 1984; Cas & Wright 1987; Gillespie & Styles 1999). 

Ash grains are pyroclasts with a mean diameter <2 mm (MacDonald 1972; Schmid 1981; 
Fisher & Schmincke 1984; Cas & Wright 1987; Gillespie & Styles 1999). Ash grains are 

subdivided into coarse ash, which have a mean diameter between 0.063 to 2 mm and fine 

ash, which have a mean diameter <0.063 mm (MacDonald 1972; Schmid 1981; Fisher & 

Schmincke 1984; Cas & Wright 1987; Gillespie & Styles 1999). The boundaries between 

Glast types correspond to divisions on the Wentworth Scale (Wentworth 1922). 

A number of qualifier terms are added to the grain size names outlined above to further 

classify the pyroclasts. Pumice (or pumiceous) is a highly vesicular volcanic glass of silicic 
affinity with or without crystals, whereas scoria (or scoriaceous) is the basaltic or andesitic 
equivalent. These terms would be added to the front of the pyroclast name, for example, 
scoriaceous lapilli or pumiceous lapilli. Ash grains that are composed of volcanic glass are 
term glassy shards and these are subdivided into three forms: cuspate shards, platy shards, 
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Clast or 
Phi crystal 

size In Sedimentary Pyroclastic Crystalline Rocks 
units clasts fragments 

Lo Scale 

Boulders 

-8 256 
Blocks and Bombs 

-7 128- Cobbles 
Very Coarsely 

Crystalline 
-6 64 

J 
W 

-5 32 
0 

Pebbles 
-4 16- 

Lapilli 

-3 8 
Coarsely Crystalline 

-2 4 
Granules 

-1 2 
Very Coarse Sand 

0 1 
Coarse Sand Medium Crystalline 

1 0.5 0 
Medium Sand Coarse Ash 

Cl) 2 0.25 
Fine Sand 

3 0.125 
Very Fine Sand Finely Crystalline 

4 0.063 

5 0.032- 

6 0.016- Silt 
Very Finely Crystalline 

7 0.008 Fine Ash 

8 0.004 

Clay Cryptocrystalline 

Fig. 2.9. Grain size chart for Sedimentary, Pyroclastic and Crystalline Rocks. Modified after Gillespie & 
Styles (1999). 
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and pumice/scoria shards. Accretionary lapilli are spheroidal, lapilli-sized aggregates of 

ash, which form two different textures (i) rim-type: a core of coarse ash surrounded by a 

rim of finer ash, this may alternate, and (ii) core-type: aggregate of coarse ash without the 

rim of finer ash. Fiamme are elongate, flattened, glassy lens with flame-like shapes. 
Alignment of the long dimensions of the fiammes produces a eutaxitic texture. 

2.2.1.2 Epiclastic Fragments (Epiclasts) 

Epiclasts are fragments that have formed by epiclastic (surface sedimentary) processes (i. e. 

weathering, erosion, transport and deposition) at the Earth's surface. Different workers 
disagree as to whether epiclasts have to come solely from the disruption of pre-existing 

consolidated rocks or whether unconsolidated deposits can be considered as a source. 
Schmid (1981) defined epiclasts as `crystals, crystal fragments, glass and rock fragments 

that have been liberated from any type of pre-existing consolidated rock (volcanic or non- 

volcanic) by weathering or erosion and transported from the site of origin by gravity, air, 

water or ice'. This definition is accepted and used by Fisher & Schminke (1984) and 
Fisher & Smith (1991). Cas & Wright (1987) however suggested that epiclasts are either 
`produced by normal surface fragmentation processes or were finally deposited by normal 

surface processes, irrespective of their fragmentation mode, or both'. Therefore, the source 
for the epiclasts under the definition of Cas & Wright (1987) can be either pre-existing 

consolidated rocks or unconsolidated deposits. As a consequence, Gillespie & Styles 

(1999) introduced a third category referred to as reworked pyroclastic fragments (see 

Section 2.2.1). 

However, classification schemes in current use for volcaniclastic rocks require the division 

of fragments into either pyroclasts or epiclasts. Schmid (1981) suggested that if the 

pyroclastic origin of the reworked pyroclasts is identifiable they should be treated as 

pyroclasts, but if there is any uncertainty in the origin of the fragments they should be 

treated as epiclasts as they have undergone epiclastic (surface) processes. McPhie et al. 
(1993) suggested that if the volcaniclastic rock is dominated by reworked pyroclasts the 

rock will have a narrow range in clast types and composition i. e. fairly homogeneous, 

whereas in lithologies dominated by epiclasts the rock will be heterogeneous in clast type 

and composition. However, exceptions to this rule do occur and care is required when 
trying to identify volcaniclastic fragments (Cas & Wright 1987; McPhie et al. 1993). 
Within this study reworked pyroclasts shall be considered as epiclasts, as they were 
deposited by epiclastic (surface) rather than pyroclastic processes. 
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2.2.2 Classification of Volcaniclastic Rocks 

Cas & Wright (1987) stated that there are two schemes in naming volcaniclastic rocks (i) 

the non-genetic (lithological) and (ii) the genetic. The classification scheme in this thesis 

shall be primarily lithological, even though the resulting rock name shall imply a general 

origin for the rock, i. e. pyroclastic or epiclastic. The actual origin, or the genetic, 

classification of the volcaniclastic rocks (e. g. pyroclastic fall, pyroclastic flow, pyroclastic 

surge, lacustrine, fluvial, alluvial, etc. ) shall be dealt with after all lithological and field 

facies characteristics have been evaluated. Care has to be taken in classifying ancient 

volcaniclastic rocks, as diagenesis rapidly alters glassy material to clays and destroys 

primary depositional textures (Fisher & Schmincke 1984; Cas & Wright 1987; Reading 

1996; Tucker 1996a; Gillespie & Styles 1999). 

2.2.2.1 Lithological Classification Scheme 

The lithological classification scheme used in this study is based on the format proposed by 

Schmid (1981) (Fig. 2.10). This scheme involves dividing the volcaniclastic rock 

components into pyroclasts and epiclasts (volcanic (including reworked pyroclasts) and 

non-volcanic, and including minor amounts of biogenic, chemical sedimentary and 

authigenic constituents). This scheme will categorise the rock as one of three forms of 

volcaniclastic rock, which are (i) pyroclastic rocks, (ii) tuffites, and (iii) epiclastic (or 

volcaniclastic sedimentary) rocks. Pyroclastic rocks contain >75% pyroclastic fragments 

and <25% epiclasts. Tuffites, which are a mixture of pyroclastic and epiclastic fragments, 

contain 25-75% pyroclastic fragments and 25-75% epiclasts. Epiclastic rocks contain 

<25% pyroclastic fragments and >75% epiclasts. Once the rock has been categorised it can 
be further subdivided on its average fragment size to obtain its lithological rock name. 

The classification scheme used here deals adequately with well sorted pyroclastic rocks. 
However, poorly sorted pyroclastic rocks should be additionally classified using the 

triangular plot proposed by Fisher & Schmincke (1984) (Fig. 2.11). Tuffs and lapillistones 

can be further subdivided depending on their fragmental composition and the qualifier 
terms vitric, lithic, and crystal can be added to the rock name, for example lithic 

lapillistone (Fig. 2.12). If the pyroclastic rock is made up of >50% reworked pyroclastic 
fragments then the qualifier term reworked should be added to the rock name, for example 

reworked lapillistone (Gillespie & Styles 1999). A rock composed of glass shards or 
formerly glassy shards have a vitriclastic texture in thin section (McPhie et al. 1993). 
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Average fragment size in Epiclastic rocks 
Pyroclastic rocks Tuffites (or Volcanlclastic 

mm sedimentary rocks) 

Agglomerate or 
Pyroclastic Breccla Tuffaceous Voicaniclastic 

64 Conglomerate/Breccia Conglomerate/Breccla 
Lapillistone 

2 ....................... ---. ---.. --.... _........ ........ ........ -....... 
Coarse Tuff Tuffaceous Sandstone Voicaniclastic Sandstone 

0.063 .... ........... .......... ......................... 
Fine Tuff Tuffaceous Mudstone Volcaniclastic Mudstone 

Amount of pyroclastic 100-75% 75-25% 25.0% fragments by volume 

Amount of epiclastic 0-25% 25-75% 75-100% fragments by volume 

Fig. 2.10. Classification of volcaniclastic rocks containing more than 10% volcanic debris. Adapted after 
Gillespie & Styles (1999) based on Schmid (1981). 

Blocks and Bombs 
(>64 mm) 

Agglomerate or /\A, 
ýPyroclastic Breccia 

Tuff-breccia 

Lapillistone )ýk \ Lapilli_tuff ff 
Tuff 

Lapilli 
(2-64 mm) 

Ash 
(<2 mm) 

Fig. 2.11. Classification of poorly sorted pyroclastic rocks. After Fisher (1966). 

Pumice, glass 

Vtric 
0 

/ Crystal I Lithic \ 
Tuff/Lapillistone Tuff/Lapillistone 

Crystals, /I 
crystal fragments Rock fragments 

Fig. 2.12. Classification and nomenclature of tuffs and lapillistones based on their fragmental 
composition. Adapted after Schmid (1981). 
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Gillespie & Styles (1999) noted that in consolidated rocks, particularly ancient rocks, it is 

difficult or virtually impossible to accurately distinguish between the three main types of 

volcaniclastic rocks, i. e. the percentage of pyroclastic and epiclastic fragments, particularly 
if the fragments are all volcanic. If there is any ambiguity in naming the rock, but there is 

clearly a volcanic constituent, then the rock shall be classified under the tuffite category 
(Gillespie & Styles 1999). 

2.2.2.2 Genetic Classification 

The lithological classification scheme outlined in Section 2.2.2.1 constrains the clast- 
forming processes and begins to categorise the volcaniclastic rocks into two broad genetic 

groups: pyroclastic and epiclastic. Pyroclastic rocks can be further subdivided into five 

subgroups: autoclastites, hydroclastites, pyroclastic falls, pyroclastic flows, and pyroclastic 

surges. Autoclastic deposits and hydroclastites commonly involve the fragmentation of 
lava flows and are not the result of primary pyroclastic (not initiated by the original 

eruption) or epiclastic processes. As a consequence, autoclastic deposits and hydroclastites 

are considered separately and have their own genetic classification scheme in the literature. 

Autoclastitic deposits (autobreccias) are composed of abundant autoclasts, which were 

produced by the mechanical friction or the gaseous explosion during the movement of lava 

flows. Hydroclastites are the result of magma coming into contact with water and the rapid 

chilling and quenching that ensues causing fragmentation. Two main types of 
hydroclastites are recognised: hyaloclastites and peperites. Hyaloclastites are formed when 
lava flows into water or over water-saturated sediments, whereas peperites are formed 

when lava intrudes and mingles with unconsolidated or poorly consolidated, typically wet, 

sediments (White et al. 2000; Skilling et al. 2002). 

Pyroclastic fall deposits are composed of pyroclasts that are produced and ejected by an 

explosive eruption of any composition. Pyroclastic flow deposits are the result of a hot, 

high-concentration, ground-hugging, highly mobile, gas-particle flow generated by a 

volcanic eruption. There are three different pyroclastic flow types that can be produced 
depending on the setting and mode of generation: (i) block and ash flows (or nuee ardentes 

or hot avalanches), (ii) scoria and ash flows, and (iii) pumice pyroclastic flows (deposits of 

which are know as ignimbrites). Pyroclastic surge deposits are the result of ground- 
hugging, dilute, particulate flows in which pyroclasts are carried laterally, entrained in 

turbulent gas. There are two types of pyroclastic surges (i) base surges, and (ii) ash cloud 

or ground surges (associated with pyroclastic flows). 
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Epiclastic processes that occur in a volcanic setting range from those that are observed in 

non-volcanic regions, e. g. fluvial or lacustrine, to those that are unique in volcanic 

provinces. The reader is referred to Reading (1996) for an overview of the `normal' 

epiclastic processes that can occur within non- and volcanic regions. Lahars are unique to 

volcanic settings and is an umbrella term used to cover a wide range of processes and 
deposits which occur during a rapidly flowing mixture of debris and water that originated 

at a volcano edifice (Rodolfo 1989; Smith & Fritz 1989; Smith & Lowe 1991). The 

processes and deposits from a lahar range from volcaniclastic debris to hyperconcentrated 

flows and combinations of these inbetween (Janda et al. 1981; Pierson & Scott 1985; Lowe 

et al. 1986; Naranjo et al. 1986; Smith 1986; Rodolfo 1989; Smith & Lowe 1991; Coussot 

& Meunier 1996; Sohn et al. 1999; Kessler & Bedard 2000; Lavigne et al. 2000; Lirer et 

al. 2001). These debris and hyperconcentrated flow processes differ from their non- 

volcanic counterparts in that they are commonly lacking a clay component and usually 

travel far greater distances (Janda et al. 1981; Pierson & Scott 1985; Smith & Lowe 1991; 

Yarnold 1993; Coussot & Meunier 1996; Sohn et al. 1999; Kessler & Bddard 2000; Lirer 

et al. 2001). Another epiclastic lithology unique to volcanic settings is a volcaniclastic 

debris avalanche, which is a rapid and far reaching granular flow initiated from a large- 

volume landside (Smith & Lowe 1991; Calvari et al. 1998; Schneider & Fisher 1998; 

Kessler & Bedard 2000; Reubi & Hernandez 2000). Such volcaniclastic debris avalanches 

can transform into lahars distally from the volcanic edifice (Smith & Lowe 1991; Calvari 

et al. 1998; Schneider & Fisher 1998; Kessler & Bedard 2000; Reubi & Hernandez 2000). 

The epiclastic processes, which are unique to volcanic settings, can be initiated by both 

volcanic and non-volcanic activity (Smith & Lowe 1991) and Figure 2.13 outlines the main 

generating events. However, due to the large volumes of volcanic debris preserved within 

the resulting deposits of these events, it has been postulated that they commonly occur 

during syn-eruption periods when there is a rapid and abrupt increase in debris from 

pyroclastic events (Smith 1987a; b; 1988; 1991; Haughton 1993; Bahk & Chough 1996; 

Orton 1996). This compares to inter-eruption periods, when the amount of volcanic debris 

available for transportation has been greatly removed by lahars during the syn-eruption 

periods (Smith 1987a; b; 1988; 1991; Haughton 1993; Bahk & Chough 1996; Orton 1996). 

The inter-eruption periods are characterised by the development of fluvial systems, which 

contrasts with syn-eruption periods dominated by rapidly aggrading braided channels and 
flooding episodes (Smith 1987a; b; 1988; 1991; Haughton 1993; Bahk & Chough 1996; 

Orton 1996). 
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By examining the lithofacies character and textural features of a volcaniclastic deposit it is 

possible to distinguish between pyroclastic falls, flows, surges and epiclastic deposits, as 

well as constraining the depositional setting (subaerial, subaqueous, etc. ) and its proximity 

to the source region (McPhie et al. 1993). The lithofacies character of a volcaniclastic 
deposit is fundamental in recognising the mode of transport and depositional processes in 

the formation of the deposit (McPhie et al. 1993). This involves examining bedforms, 

geometry, structures, internal organisation and nature of contacts of the volcaniclastic 
deposit (McPhie et al. 1993). The presence of welding and other textural evidence of hot 

emplacement are significant in recognising primary pyroclastic deposits (McPhie et al. 

1993). 

Similar processes of transportation and deposition are involved in the formation of primary 

pyroclastic, reworked pyroclastic and epiclastic deposits. Regardless of the mode of 

fragmentation, the processes involved in transportation consist of clasts and interstitial 

fluid (gas or liquid). In primary pyroclastic deposits, transportation can be continuous, with 

the original mode of fragmentation with the interstitial fluid commonly involving volcanic 

gas, whereas reworked pyroclastic and epiclastic deposits involve surface sedimentary 

transporting agents (water, wind, etc. ). Whether the deposit is pyroclastic, reworked 

pyroclastic or epiclastic three broad transport processes operate in the formation of the 

aforementioned deposits. The three broad transport processes are defined by McPhie et al. 

(1993) as follows: 

(i) Mass-flow transport: `groups of clasts, or clasts plus interstitial fluid (air, 

water, volcanic gas) move together and interact; mass flows vary widely in 

rheology and particle concentration'; 
(ii) Traction transport: ̀ clasts are entrained in moving interstitial fluid (air, 

water, volcanic gas) and are free to behave independently'; 

(iii) Suspension transport: `clasts are fully suspended in interstitial fluid (air, 

water, volcanic gas)'. 

Although it may be possible to distinguish between deposits formed by different transport 

methods, difficultly arises in distinguishing between deposits that have formed from the 

same transport method. For example, it may be possible to distinguish between a 

pyroclastic flow and a pyroclastic surge deposit, but it can be near impossible to 

distinguish between a non-welded pyroclastic flow from a water supported epiclastic mass 
flow deposit (McPhie et al. 1993). The only way to discriminate between these two types 
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of deposit is to identify welding and other textural features of hot emplacement, which are 
indicative of a primary pyroclastic mode of origin. 

For the purpose of this study, which is examining ancient volcaniclastic rocks, it is 

essential to compare and contrast the deposits observed with deposits formed by the 

various transport methods outlined in Table 2.1. To summarise all the known volcaniclastic 

rock types here would be both time consuming and repetitive, for example Cas & Wright 

(1987) list over 40 different volcaniclastic rocks based on their grain size and texture 

alone. Therefore, the volcaniclastic rocks described in this thesis shall be compared and 

contrasted with the various volcaniclastic rocks reported in Fisher & Schmincke (1984), 

Cas & Wright (1987), McPhie et al. (1993) and other relevant sources in the appropriate 

sections. 

GENETIC DOMINANT TRANSPO RT 
CATEGORY Mass-flow Traction Suspension 

Primary Pyroclastic " Pyroclastic " Pyroclastic " Fallout 
" Water-settled 

Deposits flows surges fallout 
" Turbidity 

currents 
" Debris flows, 

Fluvial and " Suspension 
Reworked mud flows 

shallow associated with Pyroclastic Deposits " Grain flows 
subaqueous mass flows 

& 
Epiclastic Deposits 

" Density- 
modified grain 

currents " Hemipelagic 

flows " Waves suspension 

" Slides, debris 
avalanches 

Table 2.1 Mass-flow, traction and suspension transport processes that operate in the formation of 
pyroclastic, reworked pyroclastic and epiclastic deposits. Modified after McPhie et aL (1993). 

2.3 Colour Appellations 

All colour appellations used in this study are based upon dry samples viewed in natural 

light. The colour names and their numerical designations presented are based upon the 

Munsell system of colour identification used in the Rock-Color Chart (Rock-Color Chart 

Committee 1995). A complete description of how colour names are determined as well as 

their numerical designations can be seen in Figure 2.14. 
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Fig. 2.14. Form of the Rock-Color Chart for field use based on the Munsell system. After the Rock-Color 
Chart Committee (1995) (a) The dimensions of the colour solid, approximately a sphere, which has a 
natural grey axis grading from white at the top to black at the bottom. This property of lightness is called 
value. Around the circumference or equator of the solid are the 10 major hues, each of which is separated 
into 10 numbered divisions, so that 5 marks the middle of the hue and 10 marks the boundary between one 
hue and the next. Thus any particular hue can be designated by a number and a letter such as 5R or 10YR. 
Any single vertical section through the neutral grey axis and a particular hue constitutes a colour chart on 
which the colours grade in value from light at the top to dark at the bottom, and in chroma (degree of 
saturation) from grey at the left to the most vivid colours at the right. Both value and chroma are numbered 
so any particular colour can be given a numerical designation representing hue, value, and chroma such as 
5R 6/4 and 10YR 8/2. (b) The purple section of the colour solid. (c) A sample page from the Rock-Color 
Chart. The Munsell colour chips cannot be reproduced with any degree of accuracy and the colours 
presented here should be regarded as a representation only. 

Chapter 2 Terminology Page 42 



Simon R. Passey 

3 Lower Basalt Formation 

This chapter describes and interprets the lava flows of the Lower Basalt Formation (LBF) 

in terms of facies architecture and environment of eruption. Previous work has 

concentrated on the petrography and geochemistry of the lavas and little attention has been 

given to the interlava lithologies of the upper ca. 100 m of the formation. Using the 

classification scheme outlined in Section 2.2, three new sections consisting of 

volcaniclastic lithologies are described. Environments of deposition are proposed for the 

interlava lithologies and their relationship and influence on lava flow architectures are 

evaluated. 

3.1 Distribution 

The Lower Basalt Formation (LBF) has an exposed stratigraphic thickness of ca. 900 m 

(Fig. 3.1) and a further ca. 3,565 m have been proven by the onshore well, Lopra-1 & IA, 

at Lopra on SuÖuroy (Rasmussen & Noe-Nygaard 1970b; Waagstein et al. 1984; Ellis et 

al. 2002). The LBF crops out on the islands of Suöuroy, Vägar, Tindhölmur and Mykines 

(Fig. 1.3). Rasmussen & Noe-Nygaard (1970b) noted that the lava flows on SuÖuroy dip 

towards the NNE, NE and ENE at an average inclination of ca. 12°, whereas the flows on 

Mykines dip towards the SE and ESE at an average inclination of ca. 15°. This, according 

to Waagstein (1988), along with seismic and well data, suggests that the depocentre for the 

LBF is located in the central or southern region of the Faeroe Islands. Figure 3.2 is a 

geological map of SuÖuroy where the majority of the LBF is exposed on the Faeroe 

Islands. 

3.2 Lava Flows 

3.2.1 Petrology & Geochemistry 

The LBF flows are Fe-rich tholeiites, which are primarily aphyric, finely to medium 

crystalline basalts displaying an intergranular texture (Rasmussen & Noe-Nygaard 1970b; 

Hald & Waagstein 1984; Waagstein & Hald 1984; Waagstein 1988; Larsen et al. 1999) 

(Fig. 3.3). However, infrequent plagioclase-phyric basalts also occur (Rasmussen & Noe- 

Nygaard 1970b; Hald & Waagstein 1984; Waagstein & Hald 1984; Waagstein 1988; 

Larsen et al. 1999). The average modal mineralogy of the LBF lava flows is presented in 

Table 3.1. The lava flows of the LBF are fairly homogenous and show very little variation, 
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Fig. 3.1. Stratigraphic logs for the exposed 890 m of the Lower Basalt Formation (LBF), Suöuroy, Faeroe 
Islands. Sections 1,2,4 and 5 form the ideal section of Rasmussen & Noe-Nygaard (1969; 1970b). 
Volcaniclastic rocks that have been identified are highlighted in red. Three lava flows that are discussed in 
the text are indicated. The average lava flow thickness for the exposed LBF sequence is ca. 25 m, although 
flow thicknesses range from ca. 10 to ca. 70 m. 
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Fig. 3.3. Photomicrographs of the uppermost lava flow of the Lower Basalt Formation, from a disused 

quarry, ca. 1 km SW of Hvalba, Suöuroy, Faeroe Islands. (a) & (c) Photomicrographs under plane- 
polarised light. (b) & (d) Photomicrographs under cross-polarised light. The lava is a predominantly 
aphyric fine grained basalt displaying an intergranular texture. The lava consists of laths of plagioclase 
feldspar and subhedrat crystals of clinopyroxene. (a) & (b) These photomicrographs contain an extremely 
rare (<1 vol. %) plagioclase feldspar phenocryst that is compositional zoned. 
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chemically or texturally, within individual lava flows as well as over the 4.5 km thickness 

of the LBF. 

Plagioclase Feldspars 36 % 
Clinopyroxenes 44 % 

Black ores 11 % 
Glass and green alteration products 9% 

Olivine and pseudomorphs after olivine 0.2 % 

Table 3.1. The average modal mineralogy of a lava flow from the LBF. After Rasmussen and Noe- 
Nygaard (1970b). 

The LBF, as depicted in Fig. 3.4, is quite separate from the other formations in occupying 

the low-Ti tholeiite field, with a high FeOT/MgO ratio and a low TiO2/FeOT ratio 

(Waagstein 1988). This separation of formations is also replicated by Larsen et al. (1999) 

in a TiO2JFeOT vs. Mg # diagram (Fig. 3.5a). Larsen et al. (1999) showed that the LBF has 

an Mg # that falls between 40 and 55 throughout the upper 3 km thickness of the 

formation, and with 12-16 wt. % FeOT (Fig. 3.5b). The LBF flows have a LREE-enriched 

signature which suggests they were derived by the partial melting of deep mantle blobs or 

of the subcontinental lithosphere during upwelling of the asthenosphere (Bollingberg et al. 

1975; Gariepy et al. 1983; Saunders et al. 1997). 

3.2.2 Morphology 

The LBF flows are laterally extensive, with sheet-like geometries, and are massive with 

vesicular and rubbly top zones. Reddened tops of lava flows typically inweather the cliff 

sections at Beinisverb and north of Soyöistangi, Suouroy. These reddened tops, as well as 

some interlava lithologies, highlight the typically planar upper surfaces to the flows (Fig. 

3.6). This layer cake appearance and associated terraced terrain is characteristic of simple 

lava flows (Walker 1970), also known as tabular-classic flow facies (Jerram 2002) (Figs. 

2.2 & 2.5), which are common within subaerial Continental Flood Basalt (CFB) provinces 

(Cas & Wright 1987, and references therein). The subaerial lava flows are believed to 

continue to a depth of ca. 2,550 m within wells Lopra-1 & 1A (Ellis et al. 2002), giving an 

overall thickness for the subaerial sequence of ca. 3,450 m. Individual flows can be traced 

E-W across Suöuroy, a distance of ca. 9 km. Although it is difficult to determine aspect 

ratios (average thickness/horizontal extent) of these flows from two-dimensional cliff 

exposures, it is clear that low values (<0.005) are common, which suggests high effusion 

rates during eruption (Walker 1973). 
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Fig. 3.4. TiOJFeOT vs. FeOT/MgO diagram for basalt lavas from the Faeroe Plateau Lava Group, Faeroe 
Islands (FeOT = total iron recalculated as FeO). The oblique full line and the vertical stippled line mark the 
proposed boundaries between high-Ti olivine tholeiites, high-Ti tholeiites, low-Ti olivine tholeiites, and 
low-Ti tholeiites. LBF = Lower Basalt Formation, MBF = Middle Basalt Formation, UBF = Upper Basalt 
Formation. After Waagstein (1988). 
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Lithologies 

Fig. 3.6. Views of Lower Basalt Formation (LBF) lava flows. (a) Cliff section N of Soydistangi, SuOuroy, 
Faeroe Islands. Eight tabular lava flows of the LBF. Reddened flow tops and interlava lithologies highlight 
the planar and sheet-like geometries of the lava flows. The LBF is overlain by the Coal-bearing Formation 
(CBF), which in turn is overlain by the compound Middle Basalt Formation (MBF). The cliffs are ca. 400 

m high. (b) Four prismatic lava flows at Heygsmüli, ca. 1.5 km SW of Hvalba, Su6uroy, Faeroe Islands. 
Interlava lithologies highlight the planar and sheet-like geometries of the lava flows. The cliff is ca. 80 m 
high. 
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Flow edges are rare within the LBF, but Rasmussen & Noe-Nygaard (1970b) have 

observed wedging out of flows in the following cliff sections on Suöuroy: N of 
Belluhälsur, ca. 2.5 km NW of Sumba and N of Lomvigastakkur, ca. 1 km S of Lopra. The 

erosion of flow tops is observed within the LBF and a good example is quite clearly seen 
in the cliffs S of Vägseici, Suouroy (Fig. 3.7), suggesting substantial hiatuses in the 

outpouring of the LBF. Waagstein (1988) has suggested that interfingering of lava flows is 

commonplace within the LBF, based on the variation in thickness and number of flows 

along cliff sections as well as misfits between overlapping geochemical profiles. 

3.2.3 Flow Thicknesses 

The stratigraphically lowest (and therefore oldest) lava flows from the exposed sequence of 

the LBF crop out at the Beinisvor6 cliff section, ca. 3 km NW of Sumba, in the S of 

Suouroy, comprising ca. 19 tabular flows within a thickness of 469 m (Fig. 3.8). These 

data yield an average flow thickness of ca. 25 m. However, flows within this sequence 

range from ca. 10 m to ca. 70 m. The Skarvatangi Lava Flow (2°d flow from the top of the 

LBF) is 17 m thick. The average flow thickness for the entire (exposed and drilled) LBF is 

ca. 20 m (Rasmussen & Noe Nygaard 1970b; Waagstein et al. 1984). The average flow 

thickness for the LBF is comparable to the 15 to 35 m average flow thicknesses found for 

the flood basalts of the Columbia River Basalt Group (CRBG) (Waters 1961) and the 

Deccan Traps (Choubey 1973; Subbarao & Sukheswala 1981). They are also comparable 

to the average flow thickness of 17 m for the flood basalts of eastern Iceland (Walker 

1963). 

3.2.4 Reddened Tops and Environment of Eruption 

The contemporaneous subaerial chemical weathering of lava flow tops produces the 

distinctive reddened tops observed throughout CFB provinces (e. g. Wilkins et al. 1994; 

Widdowson et al. 1997). These reddened flow tops are dominant throughout the lower 

sections of the LBF (e. g. at Beinisvor6) (Fig 3.8). If these reddened tops show a 

weathering profile down through fine-grained altered material into fresh basalt, and retain 

relic features of the unaltered lava flow they are termed saprolitic boles (Widdowson et al. 
1997). These saprolitic boles are prevalent throughout the upper sections of the upper LBF. 

To form saprolitic boles the lava flow tops need to have been exposed for hundreds or even 

thousands of years (Wilkins et al. 1994; Widdowson et al. 1997) and according to the 

calculations of Nahon (1991) 1 mm of basalt will remain fresh, depending on the climate, 
for 40 to 68 years. 
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Fig. 3.7. Cliff section S of Vägseibi, ca. 1 km S of Vägur, Suöuroy, Faeroe Islands. The flow top of the basal 

lava is an erosional surface, which has produced the relatively steep-sided hummock. The hummock may 
have been formed by two adjacent channels. The presence of this erosional surface suggests substantial 
hiatuses in the outpouring of the Lower Basalt Formation. 

Fig. 3.8. Beinisvord cliff section, ca. 3 km NW of Sumba, Suduroy, Faeroe Islands. The cliff section consists 
of the stratigraphically lowest (and therefore oldest) lavas from the exposed sequence of the Lower Basalt 
Formation. The cliff section is ca. 469 m high and comprises ca. 19 tabular lava flows identified from their 
reddened flow tops. These data yield an average flow thickness of ca. 25 m. However, flows within this 
sequence range from ca. 10 m to ca. 70 m. 
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The formation of bole horizons can lead to the development of a soil profile upon lava flow 

tops. Reddened soil profiles have been recognized from the upper parts of the LBF (Parra 

et al. 1987). Argillisation, the replacement or alteration of feldspars to form clay minerals, 

of basalt lavas by meteoric fluids has given rise to the formation of either eutrophic 

(containing high levels of plant nutrients) or vertic (containing abundant swelling-clay) soil 

profiles, implying a warm temperate climate with alternating moist and dry seasons (Parra 

et al. 1987). The argillites analysed by Parra et al. (1987) still retain a high Si02 content, 

placing them in the kaolinitised basalt field and therefore still within the bole field rather 

than the extreme alteration laterite field (Schellmann 1986; Widdowson et al. 1997). To 

form a1 to 2m thick kaolinitic basalt i. e. a reddened bole, under humid temperate 

conditions would take 68,000-136,000 years (Nahon 1991). 

3.2.5 Development of Prismatic and Columnar Jointing 

Prismatic or poorly developed jointed lava flows are common throughout the 900 m of the 

exposed LBF (Fig. 3.9). Prismatic jointed lava flows are more prevalent in the lower 

sections of the LBF and particularly good examples are observed in the cliff section at 

Beinisvorb, Suöuroy (Fig. 3.8). At the base of prismatic lava flows, in the upper sections of 

the LBF, brecciation and pillow-like lobes are evident. This is quite clearly observed in the 

Hvalbiarei6i Lava Flow (2°d flow from the top of the LBF), in Hvalbiareiöi Bay, 1.5 km 

SW of Hvalba, Suöuroy (Fig. 3.10). Here, a ca. 15 m thick prismatic lava flow has breccia 

pockets and pillow-like lobes (pinch-and-swell structures) within ca. 1.0-1.5 m of the base. 

These structures are interpreted to be part of the lava flow because they have a sharp 

contact with the underlying unit and the breccia has a gradational contact with the lava 

flow. The pillow-like lobes are defined by having elliptical shapes, which form a pinch- 

and-swell structures along the base of the lava flow. The pinch-and-swell structures make 

the upper surface of the underlying sedimentary rock appear hummocky. The pillow-like 

lobes are suggestive of a wet substrate (cf. Campbell et al. 2001). The breccia pockets are 

commonly found located within the pinch/nip sections of the pinch-and-swell structures. 

The breccias consist of blocky, almost jigsaw fit, clasts of basalt, which are 

compositionally and texturally the same as the basalt from the overlying lava flow. The 

breccias are matrix poor, which suggests that they are either autobreccias or hyaloclastites 

rather than peperites (cf. McPhie et al. 1993). As the breccias are found in conjunction 

with the pillow-like lobes it implies that the breccias formed from quenching in surface 

water rather than from autobrecciation (cf. McPhie et al. 1993); consequently they are 

recognised as hyaloclastites. The lava flow overlies and has a sharp contact with a ca. 1.5 
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Fig. 3.9. Prismatically jointed lava flow in a disused quarry ca. 1 km SE of Tvoroyri, Suburoy, Faeroe 
Islands. Prismatically jointed lavas are indicative of lava flows erupted into a dry environment. The lava 
flow is ca. 9m thick. 
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Fig. 3.10. Prismatically jointed Hvalbiareioi Lava Flow (2° flow from the top of the LBF), in Hvalbiareidi 
Bay, 1.5 km SW of Hvalba, Suöuroy, Faeroe Islands. (a) The base of the lava flow exhibits pillow-like lobes 
and contains hyaloclastite pockets, both indicative of the lava flow advancing into standing water. Notice 
the hummocky boundary between the lava flow and the underlying sedimentary rock. The Hvalbiareiöi 
Lava Flow is ca. 17 in thick. (b) The yellow dotted line delineates the left-handside hyaloclastite pocket in 
(a). (c) A yellow dotted line delineates the right-handside hyaloclastite pocket in (a). The pillow-like lobe is 
identified by its elliptical shape. Notice how both hyaloclastites are contained within the base of the lava 
flow. The compass is ca. 10 x6 cm. 
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m thick blackish red (5R 2/2) heterogeneous sedimentary sequence, which ranges from a 

conglomerate to a siltstone (see Section 3.3.2.3). No pillow-like lobes are observed within 

the flow bases within the lower part of the LBF. 

The Skarvatangi Lava Flow, ca. 1 km E of Fro$ba, Su6uroy, is prismatically jointed and 

has basal breccia pockets but no pillow-like lobes (Fig. 3.11). The flow extends from 

Skarvatangi point and is exposed for at least ca. 1 km along its length, inland. It is the 2nd 

lava flow from the top of the LBF and is the next lava flow above the columnar jointed 

Külugjögv Lava Flow (see below). The Skarvatangi Lava Flow is ca. 17 m thick and 

overlies a ca. 6-7 m thick volcanic fluviatile sedimentary sequence. The contact between 

the Skarvatangi Lava Flow and the underlying sedimentary sequence is planar and sharp 

rather than the hummocky contact observed beneath the Hvalbiarei6i Lava Flow, which is 

at a similar stratigraphic position (Fig. 3.1). The breccia pockets range in size from 6x0.6 

m to 14 x6m. They consist of blocky clasts of basalt from the overlying lava flow set in a 

matrix of volcaniclastic siltstone, presumably of the same composition as the underlying 

siltstone (see Section 3.3.2.2). Some of the blocky clasts have a jigsaw fit texture. The 

breccia appears to be a blocky peperite comparable to those described by Busby-Spera & 

White (1987) and Skilling et al. (2002), which suggests that the siltstone was locally `wet' 

at the time of eruption of the lava flow. The width of the prisms within the lower 2-3 m of 

the Skarvatangi Lava Flow is on the order of ca. 60 cm, whereas in the remaining 14-15 m 

the width increases to ca. 2 m. The transition in size between the two sets of prisms is 

sharp and planar and therefore may represent a median parting, which is where the cooling 

surfaces that propagated from the top and bottom of the flow meet (Walker 1993). 

However, median partings usually occur in or near the middle of a lava flow (Walker 

1993) but in the Skarvatangi Lava Flow the offset may represent uneven cooling rates. 

The occurrence of multi-tiered flows is extremely rare within the LBF, but many of the 

common features associated with such flows are observed (see Section 2.1.2.3). There is, 

however, one lava flow that can quite clearly be divided into a colonnade and entablature. 

The multi-tiered lava flow is observed dipping to the ENE in a roadside section N of Hov, 

Suouroy (Fig. 3.12). The base of the lava flow is not observed but the colonnade has a 

minimum thickness of ca. 8-10 in. The colonnade is composed of regular columns that 

have a uniform width of ca. 1.8 m. There is a sharp and planar contact between the 

colonnade and the overlying entablature. The maximum observed thickness of the 

entablature is ca. 8-10 m, but the top of the flow is not observed. The entablature consists 

of 20-30 cm wide curvi-columnar columns. 

Chapter 3 Lower Basalt Formation Page 55 



Simon R. Passey 

(a) (b) 

VdV id 

`e, 

Lava 

Fig. 3.11. Views of the Skarvatangi Lava Flow, ca. 1 km E of Frobba, Suburoy, Faeroe Islands. (a) The 
Skarvatangi Lava Flow overlies and has a sharp planar contact with, a fluviatile sedimentary sequence. 
The fluviatile sedimentary sequence consists of a volcaniclastic conglomerate overlain by a volcaniclastic 
siltstone (VS). A blocky peperite is observed at the base of the lava flow. This has formed from the 
interaction between the hot lava and the water-saturated sediment. (b) The Skarvatangi Lava Flow 

exhibits what appears to be a median parting where there is a change in the width of individual columns. 
Below the median parting the columns have an average width of ca. 60 cm and above the median parting 
the columns have an average width of ca. 2 m. (c) A blocky peperite contained within the base of the lava 
flow. Notice the sharp contact between the underlying sedimentary rock and the blocky peperite, which 
suggests that the peperite is part of the lava flow. (d) A close up of the blocky peperite in (c). The peperite 
consists of angular clasts of basalt from the overlying lava flow set in a matrix of volcaniclastic siltstone, 
presumably of the same composition as the underlying siltstone. Some of the blocky clasts have a jigsaw fit 
texture. The red dotted line delineates the extent of the blocky peperite. The lack of peperite along the 
entire length of the lava flow suggests that the water was restricted to certain areas within the sediment. 
The hammer is ca. 40 cm long and the compass is ca. 10 x6 cm. 

Chapter 3 Lower Basalt Formation Page 56 

ýý 
ý_ : ýý 

(c) o. /_ 



Simon R. Paste 

PC A W I. " QQ O' 

Oy 

- 1l i i4l -r ""ýf. L OC 

rü g. ý- 

(0 
:jº -5 CL 

a 

1ý , Yrýt., " Vý 
ýi. i y aE"i 

wZ= E-ý s 
r, T 4.0 

ý+ 4 00 

ýwO 

6> 

L 8ý 
cc 'o. 
w äo 
äßo 

g 
oaaý 

yo" ä 
wy 

zä 

w 

fl 
w 

" 
cc Ou 
a 

.0 :a 
"Cd> 

" L. 

"Z 
Ou Vi 

Ö 

.0 WEI 
yD 

ßö"8 co 

r: 6 

iO 

: r, 
ÖQÖ 

cl, 

Dý' iýý 
"I' 

.r 
6} C 

, i, i ýý, ý' ýý, ßi, 1 �> ,ýý "ý Q .c I 

Chapter 3 Lower Basalt Formation Page 57 



Simon R. Passey 

The majority of the LBF flows which exhibit columnar jointing would belong to the 

colonnade of multi-tiered lava flows of Long & Wood (1986). The columnar jointed lava 

flows become more prevalent in the upper sections of the exposed 900 m thick LBF. A 

good example of columnar jointing is observed in the Külugjögv Lava Flow, which is the 

3rd flow from the top of the LBF. The Külugjögv Lava Flow is exposed in a coastal section 
E of FroÖba, Suöuroy and is exposed for ca. 700 m inland. The thickness of the flow varies 

along its length, but is on average ca. 20 m. In the coastal exposure, the Külugjögv Lava 

Flow displays superb fan-shaped columns (Fig. 3.13). The orientation of the fan-shaped 

columnar jointing can be used to recognise relief of ca. 20-30 m on the underlying land 

surface. The Külugjögv Lava Flow overlies a volcaniclastic breccia, composed of 

apparently unbedded clasts of vesiculated and non-vesiculated basalt, which has been 

differentially eroded and subsequently inundated by the Külugjögv Lava Flow. The base of 

the lava flow exhibits vesicles with ca. 1 cm diameters, as well as pillow-like lobes. The 

upper surface of the lava flow is planar and dips towards the ENE. 

The inland exposure of the Külugjögv Lava Flow crops out alongside the main road 200 m 

SW of Hamar (Fig. 3.14). The base of the flow is not exposed at this locality. The tops of 

the pronounced rusty orange weathering columns have what appears to be a sharp contact 

with differentially weathered grey columns. The columns are very regular and have a 

uniform width of ca. 2 m. Individual columns exhibit horizontal markings, also referred to 

as chisel marks (James 1920), that alternate from smooth to rough portions over a distance 

of ca. 8-10 cm (Fig. 3.15). This alternation is considered to indicate the direction in which 

the column joint surface propagated (DeGraff & Aydin 1987). These chisel structures 

represent a cycle of stress build-up and stress-release, which also produce the fractures that 

define the columns (Ryan & Sammis 1978). 

3.2.6 Internal Structure 

The lava flows are massive, with a very uniform and disperse vesicular pattern except for 

the densely populated vesicular and rubbly flow top. The vesicular and rubbly flow tops 

are generally several metres in thickness (Rasmussen & Noe-Nygaard 1970b; Waagstein 

1988). Pipe vesicles are rare or absent from the base of the lava flows. There is also a lack 

of vesicles within the lower and middle sections of the lava flows from the LBF. 

Horizontal vesicle sheets and vertical vesicle cylinders are similarly lacking from the LBF 

lava flows. The vesicles are commonly infilled with secondary minerals, such as 

chalcedony, quartz and calcite. 
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Fig. 3.14. View of the colonnade tier of the Külugj6gv Lava Flow, ca. 200 m SW of Hämar, Suöuroy, Faeroe 
Islands. The base of the flow is not exposed at this locality. The tops of the pronounced rusty orange 
weathering columns have what appears to be a sharp contact with differentially weathered grey columns. 
The columns are very regular and have a uniform width of ca. 2 m. 
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Fig. 3.15. View of the chisel structures on a column from the Kdlugj6gv Lava Flow, ca. 200 m SW of Hämar, 
Su6uroy, Faeroe Islands. The chisel markings alternate from smooth to rough portions over a distance of 
ca. 8-10 cm. This alternation is considered to indicate the direction in which the column joint surface 
propagated. These chisel structures represent a cycle of stress build-up and stress-release, which also 
produce the fractures that define the columns. The compass is ca. 1016 cm. 
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3.3 Interlava Lithologies 

3.3.1 Occurrence 

Individual lava flows within the LBF are most easily distinguished by the presence of 

tuffaceous (sometimes) reddened sedimentary rocks and palaeosols with which they are 

interbedded. These deposits are often laterally continuous (>5 km) and are typically 2-4 m 

thick, although sequences up to 10 m do occur. Parra et al. (1987) noted that the palaeosols 

in the Hov, Oravik and Nes profiles have a limited lateral extent of only a few metres. 

Interlava lithologies become more prevalent and represent 15% of the rocks in the upper 

sections of the LBF (Hald & Waagstein 1984). Interlava sedimentary units within the LBF 

cover a range of lithologies, from lutites (claystones, argillites (weakly metamorphosed 

claystones)), through arenites, rudites (volcaniclastic breccias and conglomerates), and 

coals (Rasmussen & Noe-Nygaard 1970b). Rasmussen & Noe-Nygaard (1970b) recorded 

thirteen localities with small amounts of coal. 

New interlava units from the upper part of the LBF were studied in the field and 

petrographically in order to determine their environment of deposition and provenance. A 

tuffaceous claystone was studied from inbetween two lava flows that crops out along a 

roadside cutting, ca. 500 mE of the southern entrance to the tunnel at Liöarhagi, Suöuroy. 

A sedimentary sequence was investigated E of Froöba, Suöuroy which consists of two 

intercalated sedimentary units separated by the Külugjögv Lava Flow and overlain by the 

Skarvatangi Lava Flow. A sedimentary unit of a similar stratigraphic position to the 

previous locality was examined from underneath the Hvalbiareiöi Lava Flow, Hvalbiareiöi, 

1.5 km SW of Hvalba, Suöuroy. 

3.3.2 Lithology & Petrography 

3.3.2.1 Liöarhagi Section 

At Libarhagi, a ca. 1.2 m thick greyish red (5R 4/2) to blackish red (5R 2/2) tuffaceous 

claystone is observed inbetween two lava flows. This claystone has sharp upper and lower 

contacts with the overlying and underlying lava flows. It has been brecciated into angular 

pebbles averaging ca. 1 cm across that form a jigsaw fit texture, cemented together by 

calcite. The brecciation has most likely formed as a result of compaction from the load of 

the overlying lava flow(s) and not from an interaction between the claystone and the 

overlying flow. This is supported by the sharp contact observed between the claystone and 
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the overlying lava flow. The claystone has a faint, thickly laminated appearance and in thin 

section, it is generally too fine-grained and too opaque to recognise any identifiable 

components. The only identifiable grains are rare (<1 vol. %), extremely small (<0.2 mm), 

rounded, orange grains, which are near isotropic; these are palagonitised basaltic glass 
(Fig. 3.16). This tuffaceous claystone is most likely an argillite analogous to those 

described by Parra et al. (1987). 

3.3.2.2 Külugjögv Section 

An idealised stratigraphic log through the Külugjögv sedimentary sequence can be seen in 

Figure 3.17. A poorly sorted volcaniclastic breccia is in a steep angular contact relationship 

with the underlying fan-shaped section of the Külugjögv Lava Flow and juxtaposed against 

a basaltic sill, which makes it impossible to determine the breccia's true geometry. The 

volcaniclastic breccia is ca. 10 m thick and consists of sub-angular clasts of vesicular and 

non-vesicular basalt, which have a maximum size of ca. 10 cm (Fig. 3.18). The breccia is 

predominantly grey, poorly sorted, and matrix supported. However, the upper ca. 30 cm of 

the breccia is red and shaly in texture and contains rare clasts of basalt. The unit has sub- 

parallel hydrothermal veins running down through it from the overlying lava flow. 

Overlying the breccia is the ca. 20 m thick Kiilugjögv Lava Flow, which is in turn overlain 
by a sedimentary sequence ca. 6-7 m thick. 

This sedimentary sequence infills the rubbly flow top of the Külugjbgv Lava Flow. Two 

distinct units are evident within the sedimentary sequence (Fig. 3.1 la & c). The basal unit 
is a poorly sorted volcaniclastic conglomerate ca. 4-5 m thick (Figs. 3.19 & 3.20), which 

contains various basalt clasts that show a range in the degree of weathering they have 

undergone. Approximately 5 vol. % of the large basalt clasts are amygdaloidal in nature. 
The clasts are predominantly well rounded and have low to high sphericities and long axes 

of the low sphericity clasts are aligned parallel to bedding (Fig. 3.19f). This tentative 

palaeoflow indicator suggests that transport was either to the ESE or the WNW. The 

largest low sphericity clast observed is ca. 12 x 4.5 cm. The unit contains small angular 
light olive (l 0Y 5/4) clasts, which in thin section contain deformed amygdales; these clasts 

are interpreted here as chloritised basalts (Figs. 3.19e & 3.20e, f). There are ca. 1-2 vol. % 

reddened bole clasts (Figs. 3.19b); the largest observed is ca. 60 x 20 cm, which contains 

pre-existing fragments of basalt. There are also 1-2 vol. % of clasts of brownish mudstone 
(Fig. 3.19c). The remainder of the unit consists of a very dusty red (I OR 2/2) matrix, which 
in thin section contains ca. 1 vol. % palagonitised orange basaltic glassy material <1 mm in 

size. The upper surface has a sharp contact and is overlain by a very dusky red (I OR 2/2) to 
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(a) 

i it mm 

(b) 
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Fig. 3.16. Photomicrographs of a volcaniclastic claystone that crops out inbetween two lava flows, ca. 500 

mE of the southern entrance to the tunnel at Lidarhagi, Suöuroy, Faeroe Islands. Both photomicrographs 
are under plane-polarised light. (a) & (b) The claystone is generally too fine-grained and too opaque to 
recognise any identifiable components. The only identifiable grains are rare (<1 vol. %), extremely small 
(<0.2 mm), rounded, orange grains, which are near isotropic; these are palagonitised basaltic glass (BG). 
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Fig. 3.18. Views of the volcaniclastic breccia that crops out below the fan-shaped section of the Külugjögv 
Lava Flow, ca. 700 mE of Froöba, Suöuroy, Faeroe Islands. The volcaniclastic breccia is ca. 10 m thick and 
consists of sub-angular clasts of vesicular and non-vesicular basalt, which have a maximum size of ca. 10 
cm. The breccia is predominantly grey, poorly sorted, and matrix supported. However, the upper ca. 30 cm 
of the breccia is red and shaly in texture and contains rare clasts of basalt. The unit has sub-parallel 
hydrothermal veins running down through it from the overlying lava flow. 
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Fig. 3.19. Views of the volcaniclastic conglomerate from the fluviatile sedimentary sequence overlying the 
Külugjbgv Lava Flow, ca. 1 km E of Froöba, Suburoy, Faeroe Islands. (a) The conglomerate is poorly 
sorted and contains various clasts of basalt (B) which range in size and sphericity, here a large sub- 
rounded, high sphericity basalt clast is observed. (b) The conglomerate also contains rare (1-2 vol. %) 
mudstone/bole clasts (VM). (c) The basalt clasts show a range in the degree of weathering they have 
undergone. The yellowish clasts are chloritised basalts (CB). The photograph also illustrates a 
volcaniclastic mudstone clast. (d) A typical view of the conglomerate showing the range in the degree of 
weathering of the basalt clasts. (e) A close up of some of the basalt clasts. Some of the less altered basalt 
clasts exhibit rims of altered chloritised basalt. The clasts are set in a volcaniclastic mud to sand grade 
matrix. (f) A low sphericity basalt clast that is well rounded and aligned to the planar upper surface, 
suggesting flow in a water-borne environment. The compass is ca. 10 x6 em. 
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Fig. 3.20. Photomicrographs of the volcaniclastic conglomerate from the fluviatile sedimentary sequence 
overlying the Külugjögv Lava Flow, ca. 1 km E of FroOba, Suöuroy, Faeroe Islands. All of the 
photomicrographs are under plane-polarised light. (a) Clasts of basaltic glass, basalt and chloritised 
basalt within a matrix of volcaniclastic mudstone containing grains of orange palagonitised basaltic glass. 
(b) Volcaniclastic mudstone matrix containing grains of orange, transparent palagonitised basaltic glass. 
(c) Palagonitised basaltic glass within altered volcaniclastic mudstone matrix. (d) Angular equigranular 
basalt clast. (e) & (f) Fractured amygdales within altered chloritised basalt. 
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a greyish brown (5YR 3/2) volcaniclastic siltstone devoid of any significant clasts apart 
from some fine sand grade basaltic material (Fig. 3.21). The volcaniclastic siltstone is 

thickly laminated to very thinly bedded over its 2m thickness. The contact between the 

volcaniclastic siltstone and the overlying Skarvatangi Lava Flow is planar and sharp, but in 

places the siltstone appears to have been injected into the base of the lava flow, especially 

where the blocky peperites occur in the Skarvatangi Lava Flow (see Section 3.2.5). 

3.3.2.3 HvalbiareiÖi Section 

The Hvalbiareiöi Section occurs below the 2°d lava flow from the top of the LBF. As such, 
it occupies a similar stratigraphic position to that of the sedimentary sequence below the 

Skarvatangi Lava Flow, located 12 km to the SE (Fig. 3.1). The Hvalbiareiöi Section 

comprises a blackish red (5R 2/2), ca. 1.5 m thick volcaniclastic conglomerate that fines 

upwards into a volcaniclastic siltstone (Fig. 3.22) and infills the rubbly flow top of the 

underlying lava flow. The conglomerate occupies the lower ca. 0.5 m of the unit and is 

dominated by amygdaloidal basalt clasts. The clasts are predominantly sub-rounded and 
the maximum clast size observed is 30 x 18 cm, with an average size is ca. 20 x 15 cm. 
The volcaniclastic siltstone is blocky, appears shaly, and is thickly laminated. In thin 

section, the siltstone is poorly sorted and contains clasts of sub-rounded opaque material 

with an average size fine to medium sand, mostly chloritised and palagonitised basaltic 

glass (Fig. 3.23). The siltstone also contains lithic fragments of pre-existing volcaniclastic 

siltstone. The matrix to the siltstone is reddish and near isotropic palagonitised basaltic 

glass. 

3.3.3 Provenance 

All of the interlava units within the LBF contain intraformational clasts, that is, all the 

clasts were derived from three main sources within the LBF depositional area: (i) lava 

flows, (ii) primary volcanic material i. e. unconsolidated ash or tuffs, and (iii) pre-existing 
sedimentary units and palaeosols. The phenoclasts in many of the sedimentary rocks are 
dominated by fragments eroded from lava flows, although the range in composition and 
varying degrees of weathering of the phenoclasts suggests that the fragments were eroded 
from different lava flows at different stages in their weathering history. The fine-grained 

matrices to the majority of the sedimentary rocks consist of material eroded from primary 
Pyroclastic and epiclastic sedimentary rocks made up of tuffaceous material. 
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Fig. 3.21. Photomicrographs of the volcaniclastic siltstone from the fluviatile sedimentary sequence 
overlying the Külugjbgv Lava Flow, ca. 1 km E of Frobba, Suburoy, Faeroe Islands. Both 
photomicrographs are under plane-polarised light and contain rare, rounded sand grade clasts set in the 
siltstone matrix. (a) A well rounded clast of palagonitised basaltic glass. (b) Palagonitised basaltic glass 
and siltstone clasts. 
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Fig. 3.22. View of the volcaniclastic sedimentary sequence below the HvalbiareiÖi Lava Flow, HvalbiareiOi 
Bay, 1.5 km SW of Hvalba, Su6uroy, Faeroe Islands. The sequence is ca. 1.5 m thick and fines upwards 
from a volcaniclastic conglomerate to a volcaniclastic siltstone. The conglomerate predominantly contains 
sub-rounded amygdaloidal basalt clasts set in a siltstone matrix. The maximum clast size observed is 30 x 
18 cm, but the average size is ca. 20 x 15 cm. The siltstone is blackish red, shaly and thickly laminated. The 
compass is cm 10 x6 cm. 
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Fig- 3.23. Photomicrographs, under plane-polarised light, of the volcaniclastic siltstone from the 
ý'olcaniclastic sedimentary sequence below the Hvalbiareidi Lava Flow, Hvalbiareidi Bay, 1.5 km SW of 
Hvalba, SuOuroy, Faeroe Islands. Both photomicrographs are under plane-polarised light. (a) & (b) The 
siltstone is dominated by reddish and near isotropic material, most probably palagonitised basaltic glass. 
The siltstone contains rounded sand grade clasts of least altered basaltic glass (BG) and chloritic glass 
(CC). 
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3.3.4 Environment of Deposition 

The interlava lithologies preserved within the LBF were deposited in a terrestrial 

environment under warm and humid conditions and do not show any evidence for a marine 

influence. The occurrence of palaeosols within the LBF supports an alluvial setting (cf. 

Retallack 1981; 1988; 1997; 2001). The lack of pyroclastic textures (glass shards, welding, 

angular grains, etc. ) within the interlava lithologies suggests that they formed by epiclastic 

processes (cf. Fisher & Schmincke 1984; Cas & Wright 1987; McPhie et al. 1993). 

Channel structures with reliefs of up to 20 m, e. g. E of Froöba, Suouroy, suggests 

relatively high energy systems were achieved where there was an abundance of surface 

water sourced primarily from rainfall draining off elevated parts of the volcanic land 

surface (cf. Collinson 1996; Tucker 1996a). Units from the LBF display a range in clast 

types indicating a heterogeneous source, which is a common feature of epiclastic 

sandstones within a volcanic setting (Fisher & Schmincke 1984; Cas & Wright 1987; 

McPhie et al. 1993). The alignment of clasts in the Skarvatangi deposits suggests that the 

flow direction within the fluvial channel was either to the ESE or the WNW. The 

sedimentary units are commonly thickly laminated to thinly bedded and contain rounded 

clasts, the latter typical of deposition within a fluvial environment (cf. Collinson 1996; 

Tucker 1996a). 

The volcaniclastic mudstones preserved within the LBF and the occurrence of coal 

indicates the formation of lakes and swamps on the contemporaneous lava surface. This is 

supported by the swamp and floodplain palynofloral assemblage contained within the coals 

(Ellis et al. 2002). Parra et al. (1987) have shown that many of the lutites within the LBF 

have formed from the argillisation of tuffaceous material in lacustrine environments and as 

a result of hydrothermal processes. The preservation of coal suggests that the surrounding 

land surface was heavily vegetated. 

3.4 Location of Vents 

The eruption sites for the LBF Javas are not observed on the Faeroe Islands, but are 

assumed to have taken the form of NW-SE trending fissures (Rasmussen & Noe-Nygaard 

1970b). However, a possible vent from the LBF is identified at Stapin, Suouroy and is 

more appropriately described in Section 5.3.1. The strong parallel trend of the inter-island 

fjords and the similar trending outcrop of the Volcaniclastic Sandstone Formation reinforce 

a NW-SE trending fissure model. Rasmussen & Noe-Nygaard (1970b) suggested that the 
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fissures were situated to the west of the Faeroe Islands. However, Waagstein (1988) 

suggested that the LBF was erupted locally because of the overlapping geochemical 

profiles (e. g. Y/Zr ratios) observed within the lavas (Hald & Waagstein 1984). As a result 

of these findings, Hald & Waagstein (1984) and Waagstein (1988) concluded that the LBF 

consisted of small flow groups that originated from a number of independent volcanic 

systems. Larsen et al. (1999) geochemically and stratigraphically correlated the LBF to the 

Nansen Fjord Formation, East Greenland. These data suggest that the two formations 

formed a pre-break-up succession above a thinning lithosphere in the NE Atlantic, with the 

subsequent line of opening to the west of the Faeroe Islands (Larsen et al. 1999). The 

drilling of a road tunnel between the islands of Vägar and Su&uroy in 2002 only 

encountered a small number of dykes rather than a eruption dyke swarm (B. R. Bell pers. 

comm. ), suggesting that the Fjords do not contain the eruption sites for the LBF (cf. 

Swanson et al. 1975). Therefore, it seems most likely that the lava flows were erupted to 

the west of the Faeroe Islands as Larsen et al. (1999) postulated. 

3.5 Synthesis 

The lavas and intercalated sedimentary accumulations of the Lower Basalt Formation 

(LBF) preserve evidence consistent with eruption and deposition, respectively, within a 

terrestrial environment (Fig. 3.24). The lavas are typically rubbly-topped, sheet-like bodies 

with significant lateral extents (>9 km) and no features associated with subaqueous 

eruption, for example the development of pillows or the formation of substantial 
hyaloclastite breccias (Fisher & Schmincke 1984; Cas & Wright 1987; McPhie et al. 
1993), have been observed. However, volcaniclastic rocks have been recovered from a 
depth of 2,550 to 3,565 m from the Lopra-1 & IA wells (Ellis et al. 2002), possibly 

representing a hyaloclastite sequence. The laterally extensive tabular-classic facies 

architecture observed throughout the LBF is typical of large volume eruptions common 

within Continental Flood Basalt (CFB) provinces (Cas & Wright 1987; Walker 1993; 

Jerram 2002). 

The LBF lava flows have characteristics consistent with having been emplaced rapidly as 

a'a flows rather than inflated pahoehoe flows (cf. Shaw & Swanson 1970a; b; Rowland & 

Walker 1990; Reidel & Tolan 1992; Hon et al. 1994; Self et al. 1996; Cashman & 

Kauahikaua 1997; Self et al. 1997; Keszthelyi & Self 1998; Reidel 1998; Self et al. 1998; 

Thordarson & Self 1998). The vesicle distribution patterns within the LBF lava flows are 

characterised by vesicle-rich upper crusts and vesicle-poor cores and basal crusts, 
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associated with post-emplacement bubble rise of slowly solidifying ponded, rapidly 

emplaced a'a flows (Aubele et al. 1988; Sahagian et al. 1989; Rowland & Walker 1990; 

Reidel & Tolan 1992; Walker 1993; Cashman & Kauahikaua 1997; Keszthelyi & Self 

1998; Reidel 1998), which contrasts with inflated pahoehoe flows consisting of horizontal 

vesicle sheets, vesicle cylinders and pipe vesicles (Rowland & Walker 1990; Hon et al. 
1994; Self et al. 1996; Cashman & Kauahikaua 1997; Self et al. 1997; Self et al. 1998). 

The rubbly flow tops of the LBF lavas are also characteristic of rapidly emplaced a'a flows 

(Reidel & Tolan 1992; Keszthelyi & Self 1998; Reidel 1998), compared to inflated 

pahoehoe flows that have smooth surfaces (Rowland & Walker 1990; Hon et al. 1994). 

This, coupled with the lack of features (lava tubes, ropy surfaces, tumuli, lava inflation 

clefts, lava-rise pits) and vesicle distribution patterns associated with inflated pahoehoe 
lava flows of Hawaii (Greeley 1987; Walker 1987; 1989; Rowland & Walker 1990; 

Walker 1991; Wilmoth & Walker 1993; Hon et al. 1994; Peterson et al. 1994; Kauahikaua 

et al. 1998; Keszthelyi & Self 1998; Self et al. 1998; Anderson et al. 1999; Crown & 

Baloga 1999), from the Columbia River Basalt Group (Self et al. 1996; Self et al. 1997; 

Keszthelyi & Self 1998; Self et al. 1998; Thordarson & Self 1998; Walker et al. 1999) and 

other volcanic settings (Kent et al. 1998; Calvari & Pinkerton 1999; Jerram et al. 1999; 

Jerram et al. 2000; Duraiswami et al. 2001), indicates that the LBF lava flows were most 
likely emplaced rapidly as a'a flows over periods of days to weeks. 

Flow thicknesses range from a few metres up to several tens of metres and the majority of 

the flows have reddened tops or boles (palaeosols) formed as a consequence of subaerial 

weathering within a temperate to warm climate with significant (seasonal) rainfall (cf. 

Retallack 1981; 1988; 1997; Duchaufour 1998; Retallack 2001). Here, iron oxides are the 

main cause of the red colouration (Collinson 1996; Duchaufour 1998; Retallack 2001). The 

warm climate has accelerated the weathering process due to the positive correlations 
between temperature and oxidation and hydration rates of the primary lava minerals 
(Collinson 1996; Duchaufour 1998; Retallack 2001). Furthermore, the presence of organic 

material, common within the terrestrial environment, will have enhanced the formation of 

reducing pore waters, which will have accelerated mineral breakdown (Berner & Cochran 

1998). Once these low temperature iron compounds have formed, they will be relatively 
inert and will not be further modified by chemical weathering processes (Duchaufour 

1998; Retallack 2001). However, physical weathering may take place and such materials 
may be eroded and incorporated into the associated sedimentary units. 

Where weathering profiles are preserved, the calculations of Nahon (1991) infer that ca. 1 

111m of degraded basalt will be produced in less than 70 years. Fluctuation of the water 
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table and increasing rainfall will further accelerate the weathering process (Nahon 1991; 

Duchaufour 1998; Retallack 2001). The thickest bole is some 2m thick, suggesting a 
hiatus in the volcanic activity of up to 140 kyrs. Flows lacking oxidised tops point towards 

relatively rapid sequential eruptions, although not necessarily from the same vent or 
fissure. According to Ellis et al. (2002) the LBF was erupted within ca. 3 myrs and 

assuming an average flow thickness of ca. 20 m throughout the ca. 3.5 km thick subaerial 

sequence of lava flows (exposed and drilled), suggests that the ca. 175 flows were erupted 

sequentially no more than every ca. 17 kyrs. If hiatuses in the volcanic activity did last for 

as long as 140 kyrs it suggests that the lava flows were erupted at considerably shorter 
intervals. For example, if there were just 20 m of bole in the sequence, hiatuses would have 

lasted in the order of ca. 1.4 myrs, suggesting that the 174 (one flow deducted due to the 

presence of bole) lava flows were erupted no more than every ca. 9 kyrs. However, to give 

a full assessment of the rates would involve logging the LBF to give each flow thickness, 

(to confirm the amount of flows), as well as the thickness of the boles present. Secondly, 

these data would need to be bracketed by high resolution (thousands of years) 

geochronological data, which is presently unattainable. Therefore, the use of the above 

calculations, involving the development of boles, help to further constrain relative 

timescales in the CFBs. 

Joint development is commonly of the prismatic type, especially within the lower part of 

the exposed sequence, although most of the flows at the top of the LBF preserve classic 

columnar jointing, typical of the regular cooling of ponded flows (Spry 1962; Walker 

1970; Long & Wood 1986; Jerram 2002). The formation of prismatic joints has been 

interpreted by Jerram (2002) as evidence for a relatively dry environment during 

volcanism. Conversely, the development of columnar joints and multi-tiered flows in the 

upper part of the LBF is evidence for the eruption of lavas into a wet subaerial 

environment (cf. Saemundsson 1970; Lyle 2000; Jerram 2002). This is supported, in part, 
by the presence of fluviatile, lacustrine and swamp facies strata found below the columnar 
jointed flows. Parra et al. (1987) have demonstrated that many of the clay-rich beds 

observed throughout the LBF have formed by the argillisation of tuffaceous sandstones in 

lacustrine environments or by argillisation of basalt lavas by meteoric waters. These data 

imply that there was sufficient rainfall and abundant surface water on the contemporaneous 
volcanic land surface. The climate during the eruption of the uppermost interval of the 
LBF was humid and warm temperate, which also implies high rainfall and seasonal lakes 
(Parra et al. 1987; Lund 1989). 
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The presence of pillow-like lobes and brecciated (hyaloclastite and blocky peperite) 
pockets at the base of some of the lava flows are indicative of the flows advancing into 

standing water (cf. Lyle 2000; Carr & Jones 2001). The hyaloclastite pockets at the base of 
the Hvalbiarei6i Lava Flow contain little or no sediment, suggesting that the lava flowed 
into water alone rather than a water-rich sediment (cf. Kokelaar 1982; Busby-Spera & 

White 1987; McPhie et al. 1993; Skilling et al. 2002). Conversely, the blocky peperite 
pockets at the base of the Skarvatangi Lava Flow contain abundant sediment, indicating 

that the lava flowed into a water-rich sediment (cf. Kokelaar 1982; Busby-Spera & White 
1987; Skilling et al. 2002). The brecciation of the lava flow only occurs in small pockets 

rather than along the entire length of the flow, suggesting that either the pools and water- 

rich sediments occurred as small localised features, or, that the lava flow had cooled 

sufficiently in places to produce a glassy boundary layer to insulate the inner part of the 
lava (cf. Pichler 1965), or a superheated layer of water vapour insulated the lava (cf. 

Williams & McBirney 1979; Kokelaar 1982). 

The damming of pre-existing river channels by lava flows, displacing river systems, is 

preserved east of Frobba, Suburoy, where the fan-shaped section of Külugjögv Lava Flow 

has infilled a small channel. The displaced water from such lava dams, together with high 

levels of rainfall can lead to the textural quenching of the upper sections of lava flows (cf. 

Lyle & Preston 1998; Lyle 2000). Textural quenching, in the form of curvi-columnar 

columns is preserved in the entablature tier of the lava flow at Hov. Such textural 

quenching is interpreted as the result of water ingress through cooling surfaces along 

master joints (cf. Saemundsson 1970; Long & Wood 1986), which modifies the internal 

isotherms of the cooling lava flow (cf. Lyle & Preston 1998). 

The interbedded volcaniclastic sandstones and siltstones, claystones and coals, are 

characteristic of fluvial, deltaic and lacustrine environments and there is no evidence of a 
marine influence (e. g. Collinson 1996; Tucker 1996a). The sedimentary units comprise 
both fine-grained, often laterally extensive (>5 km), deposits and coarser, channel-like 
units, all of which were deposited in an alluvial environment. The lithologies range from 

tuffaceous mudstones to volcaniclastic conglomerates/breccias and coals. The tuffaceous 

mudstones are extremely clay-rich, containing palagonitised basaltic glass grains less than 
200 µm in size. The sandstones and conglomerates/breccias are poorly sorted and clast 
supported. The clasts are all intraformational, with no evidence of any external sources. 
The clasts display a high degree of rounding and are commonly aligned parallel to 
bedding. The clasts are dominated by basalt, derived from lavas at various stages of surface 
oxidation, indicating numerous exposed flows within the contemporaneous lava surface. 
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The units also contain clasts of pre-existing volcaniclastic mudstones, typical of an 
evolving sedimentary sequence in a volcanic setting, where epiclastic volcanic units 
progress from mudstones to sandstones with time (cf. Nakayama & Yoshikawa 1997). The 

sandstones, conglomerates and breccias also contain a significant proportion of reworked 
palagonitised glassy material. The preservation of thin coals from 13 localities (Rasmussen 
& Noe-Nygaard 1970b) indicates that the surrounding volcanic land surface was vegetated, 
thus aiding the surface weathering of the volcanic lithologies (cf. Berner & Cochran 1998). 

The increase in abundance of interlava lithologies and the development of coal-forming 

swamps in the upper section of the LBF is a consequence of a gradual waning of the 

volcanic activity, thus allowing time for erosion and associated sediment transportation and 
deposition to take place (cf. Cas & Wright 1987; Smith 1991; McPhie et al. 1993; 
Collinson 1996). Rates of basin subsidence must been high enough to allow the 

accumulation of the deposits, otherwise there would not have been enough accommodation 

space available to allow the build up of the deposits (cf. Smith 1991). It seems apparent 
from the range of lava clast lithologies in the volcaniclastic sandstones, that as soon as a 
lava flow had solidified it was being actively eroded. The scale of erosion is evident along 
the Vägseibi cliff profile and from the channel infilled by the Külugjögv Lava Flow, which 
indicates relief of up to 30 m. The rate of erosion is determined by the climate (Collinson 

1996) and, as discussed above, there are clear indications that there was abundant surface 

water and high levels of rainfall to sustain a high rate of erosion. Conversely, the lower 

section of the LBF is generally lacking in interlava lithologies, which is typical of a drier 

climate (Collinson 1996) and this is supported by the abundance of prismatically jointed 
flows (cf. Jerram 2002, see above). 
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4 Coal-bearing Formation 

Sections from the Coal-bearing Formation (CBF) have been described in detail by 
Rasmussen & Noe-Nygaard (1969; 1970b) and have been thoroughly examined for 

palynofloral assemblages (Lund 1983; 1989). Whilst the distribution and lithologies of the 
CBF and the relationship of this formation to the LBF are discussed, this chapter 
concentrates on the ironstone deposits found within the CBF. These units have not been 

previously reported in the literature and two principal localities are considered in detail. 
The ironstones are described in terms of petrography, crystallography and geochemistry in 

order to aid in the understanding of the environments of deposition of the formation. The 

second half of the chapter focuses on the sandstone and conglomerate beds overlying the 

coal seams, also rocks which have not been previously described in the literature. Again, 

these beds are examined to interpret the environments of deposition of the CBF. 

4.1 Distribution 

After the Lower Basalt Formation (LBF) was emplaced a period followed in which erosion 

cut down to at least the top of the second highest flow, and the continuing quiescence 

allowed the Coal-bearing Formation (CBF) to be deposited. The CBF crops out on the 
islands of Tindhölmur, Vägar and SuÖuroy, where the coals have been mined. It forms a 
sub-horizontal sequence, which is always found overlying the LBF. On Vägar the CBF 

crops out in the north-western part of the island (Fig. 4.1). At Alkuklettur, just north of 
Dour, it rises from sea level and follows the topography northwest to Baröiö to reach a 
height of 300 m where it then drops to sea level at Vikar, to the east. 

The CBF covers an area of 23 km2 on Su6uroy and it is only on this island that the 
formation contains any substantial amount of coal (Fig. 4.2). The formation is usually only 
accessible and exposed in completeness in mine workings, which except for one on the 

east side of Rokhagi valley are now all closed. On Suöuroy the CBF has been subdivided 
into four separate coalfields: (i) Grimsfjall, (ii) Northern, (iii) Southern, and (iv) 
Kolheyggjur-Hovstügva (Rasmussen & Noe-Nygaard 1970b). The Grimsfjall coalfield (ca. 
1.5 km2) follows the topography from Kolaratangi to the south around Grimsfjall and then 
northeastwards to Hvalba at a height between 0 and 50 m above sea level. The northern 
coalfield (ca. 19 km2) starts from Ulingatangi, east of Frobba, at sea level and follows the 
topography along the mountainside to the west, north of Trongisvägur, where it reaches a 
height of 250 m eventually reaching sea level again at Tjornunes, east of Nes in the north 
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Fig. 4.1. Geological map of western Vägar, Tindhölmur, and Gäshölmur, Faeroe Islands. After Rasmussen 
& Noe-Nygaard (1969; 1970a; b). 
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of the island. The southern coalfield (ca. 2.6 km2) crops out at a height between 300 and 
350 m around the mountainsides of Gluggarnir (569 m) and Oyrnafjall (443 m). The 
Kolheyggjur-Hovstügva coalfield (0.25 km2) crops out between 300 and 400 m above sea 
level around the mountains of the same names with spot heights of 415 m and 400 m, 
respectively. For a complete description of the CBF from the mine workings the reader is 

referred to Rasmussen & Noe-Nygaard (1970b) who described 41 profiles from the island 

of Suöuroy. 

4.2 Lithologies 

The contact between the LBF and the CBF is hummocky, reflecting the erosion of the LBF 

top surface. The CBF has an average thickness of ca. 10 m and there are usually two coal 
seams (maximum thickness ca. 1.8 m) between claystones and shales interpreted to be 

partly of lacustrine in origin (Lund 1989). A typical sequence through the CBF is given in 
Figure 4.3. In at least two localities previously unreported ironstone beds have replaced the 

underclay. Elsewhere basaltic sandstones and conglomerates replace, or overlie, the roof 
clay. The macerals within the coals are believed to be partly allochthonous (Rasmussen & 
Noe-Nygaard 1970b). Rasmussen & Noe-Nygaard (1970b) state that there are two types of 
coal: bright (vitrain) and dull (durain). The dull coals usually occur in the lower seam and 
in much larger amounts than the bright coals and they contain up to ca. 20 vol. % ash 
whereas the bright coals have <5 vol. % (Rasmussen & Noe-Nygaard 1970b). 

Lund (1989) suggested that the non-marine microflora found in the coals implied a late 
Palaeocene age for the CBF, which was deposited in a humid, warm temperate climate. 
Jolley (1997), however, re-examined the work of Lund (1983; 1989) and placed the CBF in 

the earliest Ypresian (ca. 57 Ma). Parra et al. (1987) showed that some of the claystones 
associated with the CBF have been formed by the argillisation of volcanic tuffs in an 
alkaline lacustrine environment. Sabine (1971) suggested that the volcanic material did not 
have to be a tuff in the strictest sense but could have been a tuffaceous sediment before 

argillisation took place. 
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Fig. 4.3. Stratigraphic logs through two sequences of the Coal-bearing Formation in the vicinity of the 
Rokhagi Mine, Suliuroy, Faeroe Islands. (a) After Rasmussen & Noe-Nygaard (1969; 1970b). (b) After 
Lund (1989). 
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4.3 Ironstone Beds 

4.3.1 Occurrence 

Previously unreported ironstone beds, containing siderite (FeCO3) spherules have been 

recorded from two localities within the CBF on the island of Suouroy. The first locality 

(61°32'54"N, 6°44'44"W) is 300 m north of Ulingatangi, ca. 1.2 km east of Frooba and 

consists of a complete sequence through the CBF (Fig. 4.4 & 4.5). The sequence is ca. 14 

m thick and overlies the hummocky surface of the LBF. A thin, ca. 0.8 m thick 

volcaniclastic conglomerate, Unit 1, represents the basal unit. This is overlain by Unit 2, an 

altered volcaniclastic sandstone, which contains sporadic siderite spherules. Unit 3, a ca. 
4.5 m thick clay ironstone, overlies the volcaniclastic sandstone. Overlying the clay 
ironstone is Unit 4, a volcaniclastic mudstone containing clay ironstone nodules. Unit 5, a 

thin, ca. 0.7 m thick discontinuous coal bed overlies Unit 4 and the coal is overlain by Unit 

6, an organic-rich mudstone, ca. 3.5 m thick, containing coal streaks. This CBF sequence is 

overlain by a ca. 3m thick sequence from the Volcaniclastic Sandstone Formation (VSF), 

consisting of highly altered tuffaceous sandstones and palagonitised tuffs that contain 

numerous carbonised wood fragments. The whole sequence is overlain by compound lava 

flows from the Middle Basalt Formation (MBF). 

The second occurrence of ironstone (sample SUF. 8.2) is thought to be from the mine 

workings on the east side of Rokhagi valley, ca. 3.5 km SE of Hvalba (61°34'29"N, 

6°54'50"W) (Fig. 4.6). Unfortunately, it has only been identified in mine waste and its 

relationship to the sequence is therefore unclear. A partial profile through the CBF from 

this mine obtained from Lund (1989), comprises: underclay (>13 cm); lower coal seam 
(ca. 140 cm), dark shale (ca. 25 cm), upper coal seam (ca. 28 cm) and roof clay (>19 cm) 
but does not mention ironstone (Fig. 4.3). However, the coarse sand-grade ironstone is 

assumed to have come from the basal section of the sequence, comparable to the 

Ulingatangi Section. 

4.3.2 Petrography 

4.3.2.1 Ulingatangi Section 

Unit 1 is a medium bluish grey (5B 5/1) poorly sorted granule-grade volcaniclastic 

conglomerate, which is ca. 0.8 m thick (Fig. 4.7). The conglomerate is matrix supported 

and consists of sub-rounded basalt clasts. The average clast size of the conglomerate is ca. 
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Fig. 4.5. Stratigraphic log of the Ulingatangi Section, ca. 300 mN of Ulingatangi, ca. 1.2 km E of Frobba, 
Suöuroy, Faeroe Islands. 
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(a) 

Rokhagi 
Mine 

I - 

(b) 

Fig. 4.6. (a) View of the Rokhagi mine, Suöuroy, Faeroe Islands. The mine is identified by its distinctive 
black mine waste, from where sample SUF. 8.2 was collected. (b) View of the top of the mine waste at 
Rokhagi mine. Other disused mines can be identified by their brown mine waste. The track way marks the 
level of the Coal-bearing Formation (CBF). Underneath the mines are lava flows of the Lower Basalt 
Formation (LBF). The mountainside above the mines are made up of compound lava flows of the Middle 
Basalt Formation (MBF). 
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Fig. 4.7. View of Unit 1, Granule-grade conglomerate, from the base of the Ulingatangi Section, ca. 300 mN 
of Ulingatangi, ca. 1.2 km E of Fro6ba, SuÖuroy, Faeroe Islands. The hammer head is ca. 16 cm wide. 
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0.3 x 0.3 cm with maximum sizes of 5x2 cm. The long axes of the clasts are commonly 

aligned parallel to the upper bedding plane. 

Unit 2 is a brownish black (5YR 2/1) mottled coarse sand-grade volcaniclastic sandstone, 

which is ca. 3m thick. The sandstone is blocky and thinly to thickly laminated. It reacts 

sluggishly with 10% hydrochloric (HCl) acid, although a series of fractures develop. In 

thin section, the sandstone comprises near opaque clasts, average size ca. 1 mm, with the 

slightest hint of dark red in plane-polarised light, suggesting enrichment in iron, and 

probably consisting of iron oxide or oxyhydrate (Fig. 4.8). Some of the clasts consist of 
highly altered glassy basalt, with a maximum size of ca. 4 mm and some of these contain 
lath-shaped crystals <100 µm in size that have been pseudomorphed by a yellowish brown 

mineral, these are most likely remnants of plagioclase feldspar crystals. The presence of 

pseudomorphed plagioclase feldspar laths and the highly altered nature of the groundmass 

suggests that the sandstone formed from the intense alteration of basaltic material. The 

lamination may indicate a basaltic volcaniclastic deposit. 

Fractures between clasts have been filled by yellowish brown siderite (Fig. 4.8) and it is 

this cement that reacts with the HCl acid. Also within the fractures are rare colourless 

siderite spherules with an average grain size of ca. 200 pm (rarely ca. 2.0 mm) (Figs. 4.8 

& 4.9). These are commonly enclosed within the siderite cement, suggesting that growth 

took place in situ before the cementation event. The siderite cement enclosing the 

spherules is commonly in optical continuity with them. The spherules usually contain 

occluded fragments of broken basaltic material, indicating in situ mode of formation. Some 

of the larger spherules exhibit concentric zones with distinct and separate phases of siderite 

growth. This zonation is discussed in detail in Section 4.3.3.2. 

Unit 3 is a massive, dense, light olive grey (5Y 6/1) clay ironstone (sample SUF. 1.2) 

containing 30-40 vol. % siderite spherules. The ironstone is ca. 4.5 m thick and the basal 

1.5 in contains discoidal coal fragments with a maximum size of ca. 15 x2 cm (Fig. 4.10). 

In thin section, the ironstone consists of a clay-rich matrix that has been significantly 

compacted around larger grains (Figs. 4.11a-b). Irregular, sometimes cuspate to platy, 
lithic fragments occur throughout the unit. These fragments are <1 mm in size and consist 

of palagonitised and chloritised basaltic glass. The siderite spherules have a maximum 

grain size of ca. 1 mm and exhibit the following morphologies: perfect spherules (10 

vol. %) (Figs. 4.1lc-d), bow-ties (50 vol. %) (Figs. 4. l le-h), fan-shapes (40 vol. %), and 

numerous irregular sub-rectangular grains. Under the scanning electron microscope (SEM) 

trigonal siderite crystals are observed (Fig. 4.12a). The crystallography of the spherules is 
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Fig. 4.8. Photomicrograph, under plane-polarised light, of Unit 2, volcaniclastic sandstone, Ulingatangi 
Section, SuBuroy, Faeroe Islands. Showing opaque iron oxide/oayhydrate clasts and clasts of glassy basalt. 
The fractures have been filled by brownish-yellow siderite cement and siderite spherules. 
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Fig. 4.9. Photomicrographs of a large siderite spherule from Unit 2, volcaniclastic sandstone, Ulingatangi 
Section, ca. 300 m north of Ulingatangi, ca. 1.2 km east of Frodba, Suburoy, Faeroe Islands. The siderite 
spherule exhibits concentric zones of growth. See Section 43.3 for a detailed description. 
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Fig. 4.10. Views of the basal 1.5 m of Unit 3, clay ironstone, Ulingatangi Section, ca. 300 mN of Ulingatangi, 
ca. 1.2 km E of FroOba, Suöuroy, Faeroe Islands. This basal section contains numerous black coal 
fragments. The hammer is ca. 40 cm long. 
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Fig. 4.11. Photomicrographs of sample SUF. 1.2, Unit 3, clay ironstone, Ulingatangi Section, ca. 300 m 
north of Ulingatangi, ca. 1.2 km east of Frobba, Suöuroy, Faeroe Islands. (a) Siderite spherules in a clayey 
matrix, bow-tie right of centre, perfect spherule bottom left, and a palagonite clast top centre of view. (b) 
Same view as in (a) under cross-polarised light. Notice the Maltese Cross extinction patterns. (c) A perfect 
spherule consisting of a cryptocrystalline centre surrounded by individual siderite crystals. (d) Same view 
as in (c) under cross-polarised light, which shows that the crystals are orientated parallel to the c-axis. (e) A 
bow-tie shaped siderite spherule which has formed from split crystal growth. (f) Same view as in (e) in 
cross-polarised light. (g) A bow-tie shaped siderite spherule that has continued to grow to a stage of almost 
forming a sphere. (h) Same view as in (g) under cross-polarised light. For further details on crystal 
formation see Section 4.3.3. 
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Fig. 4.12. SEM photomicrographs of sample SUF. 1.2, Unit 3, clay ironstone, Ulingatangi Section, ca 300 m 
north of Ulingatangi, ca. 1.2 km east of Frobba, Suburoy, Faeroe Islands. (a) Small trigonal siderite 
crystals cumulating to form a Christmas tree pattern structure. Notice the trigonal siderite crystals 
growing on the periphery of siderite spherules in the top left of the picture. This suggests the trigonal 
crystals grew at a very late stage. (b) The central siderite spherule has shattered as a result of compaction, 
suggesting that the spherules grew before compaction and therefore did not grow during burial. 
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discussed in Section 4.3.3. Where a spherule-to-spherule contact is observed the smaller of 

the two spherules is commonly shattered into small irregular pieces, suggesting that the 

spherules formed before compaction (Fig. 4.12b). 

Unit 4 is a thin, ca. 1.5 in thick brownish black (5YR 2/1) volcaniclastic mudstone. The 

mudstone contains light olive grey (5Y 6/1) nodules with well-developed spheroidal 

weathering (Fig. 4.13). The nodules are elliptical in shape and have a higher density than 

the mudstone host. The nodules are all aligned parallel to the bedding plane and range in 

size from 8x2 cm up to 25 x9 cm and they are commonly thinly laminated. The nodules 

contain iron stained spherical aggregates up to 7 mm in diameter within a clayey-matrix 

(Fig. 4.14). In thin section, these aggregates consist of irregular, sub-rectangular crystals of 

siderite <200 pm in size, with rare, ca. 5-10 vol. %, bow-tie bundles of siderite crystals 

with an average grain size of ca. 2 mm. These commonly have a brown oxidised rim of 

either goethite or haematite. Sharp boundaries between the aggregates and the clay-rich 

matrix define the spherical shape. The nodularity and difference in grain size between the 

spherical aggregates and the clay-rich matrix may be the result of bioturbation (cf. Tucker 

1996a). The matrix has been significantly compacted around the aggregates; that must 

have formed early for them to have kept their spherical shape. 

Unit 5 is a thin, ca. 0.7 m thick discontinuous coal seam, which is overlain by Unit 6, a ca. 

3.5 m thick dark grey (N3) organic-rich mudstone containing numerous coal streaks 

aligned parallel to bedding. 

4.3.2.2 Rokhagi Section 

The coarse sand-grade ironstone bed from the Rokhagi Section is found as small broken up 

samples in the mine waste. It is not observed in situ and its stratigraphic position is 

unknown. No occurrence of ironstone is mentioned in the descriptions of the CBF 

sequence from within the Rokhagi mine (Rasmussen & Noe-Nygaard 1970b; Lund 1989). 

The sample SUF. 8.2 is olive grey (5Y 4/1) with slight orange (iron) staining in hand 

specimen. The sample contains small coal bands, ca. 1-2 mm thick and is friable, liberating 

spherical grains <1 mm in size. In thin section, the sample is dominated (ca. 90 vol. %) by 

siderite spherules (Figs. 4.15a-b) that are closely packed together and have a yellowish 

brown oxidised rim, most likely goethite or haematite. The spherules have an average grain 

size of ca. 0.5 mm but can reach a maximum of ca. 1.0 mm. The sample contains a range 

of morphologies: perfect spherules (Figs. 4.16a-b), bow-ties (Figs. 4.16c-d), fan-shapes, 

and irregular sub-rectangular grains. The crystals in the sample are generally broken, 
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Fig. 4.13. View of Unit 4, clay ironstone nodules contained within the volcaniclastic mudstone overlying 
Unit 3, the clay ironstone. Ulingatangi Section, ca. 300 mN of Ulingatangi, ca. 1.2 km E of Fro6ba, Suöuroy, 
Faeroe Islands. Notice the apparent conchoidal fracture around some of the nodules. The white card is ca. 
16 x6 cm. 
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Fig. 4.14. Photomicrographs of bioturbation tubes (BT) from within ironstone nodules from Unit 4, 
volcaniclastic mudstone, Ulingatangi Section, ca. 300 m north of Ulingatangi, ca. 1.2 km east of Frooba, 
Suburoy, Faeroe Islands. All of the photomicrographs are under plane-polarised light. The sharp contact 
between the tubes, filled with broken pieces of siderite spherules, and compaction of the clayey matrix 
around the tubes suggests that they formed prior to compaction. 
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Fig. 4.15. Photomicrographs of sample SUF. 8.2, ironstone, Rokhagi Section, ca. 3.5 km SE of Hvalba, 
Suburoy, Faeroe Islands. (a) Siderite spherules that are clast supported; as a result of compaction some of 
the spherules have shattered. Notice the weakly developed yellowish siderite cement. (b) Same view as (a) 
under cross-polarised light. Notice the Maltese Cross extinction patterns. (c) The left hand side of the 
photomicrograph contains a clast of organic material that has been replaced by microcrystalline siderite. 
The right hand side of the photomicrograph contains a brownish clayey clast. (d) Same view as in (c) but in 
cross-polarised light. Notice the high birefringence and serpentine structure of the clayey clast, possibly 
berthierine or chamosite. (e) Cellular structure can be observed within a woody fragment, which has been 
replaced by siderite. (f) Same view as in (e) under cross-polarised light. (g) Pseudomorphed clast of organic 
material by microcrystalline siderite in the bottom right of the photomicrograph. Notice the zoning to the 
siderite spherule in the centre of the view. (h) Same view as in (g) under cross-polarised light. 

Chapter 4 Coal-bearing Formation Page 97 



Simon R. Passey 

(a) 

(c) 

io. zs mm i 

0.25 MM 

(b) 

(d) 

U4 mm 

V. L 

Fig. 4.16. Photomicrographs of siderite spherules from sample SUF. 8.2, ironstone, Rokhagi Section, ca. 3.5 
km SE of Hvalba, Suburoy, Faeroe Islands. (a) Perfect siderite spherule showing no internal segmentation. 
(b) Same view as in (a) under cross-polarised light. Notice the Maltese Cross extinction pattern. (c) Bow-tie 

shaped siderite spherule, which has grown unevenly. (d) Same view as in (c) under cross-polarised light. 
Notice the Maltese Cross extinction pattern. 
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probably as a result of compaction (Figs. 4.17a-b). The crystallography of the spherules is 

discussed in detail in Section 4.3.3. 

The sample contains ca. 5-10 vol. % of plant remains with the cellular structure preserved, 
having been replaced by microcrystalline siderite (Figs. 4.15c-h). The largest observed 

plant material is a tabular fragment that measures ca. 6x1 mm. Charcoal (burnt wood) (cf. 

Retallack 2001) is also observed as occluded fragments within siderite under the SEM 

(Fig. 4.17c). Borings into the sides of siderite spherules are observed under the SEM and 

are filled with tiny fragments of siderite (Fig. 4.17d). The sample contains rare (5-10 

vol. %) clasts that are made up of clay minerals displaying distinctive serpentine-like 

structures under cross-polarised light, possibly berthierine or chamosite (Figs. 4.15c-d). 

The sample does not contain a clayey matrix like sample SUF. 1.2, Unit 3, Ulingatangi 

Section, but has a weakly developed siderite cement. 

4.3.3 Crystallography 

4.3.3.1 Morphologies 

The siderite spherules are colourless-yellowish in plane-polarised light and exhibit 
birefringences on the Michel Levy chart in the order of 0.240. As all the spherules exhibit 

the highest birefringence possible it suggests that crystals forming the spherules have 

grown parallel to the c-axis (optic axis) (cf. Spencer 1925; Deans 1934; Hounslow 2001), 

whether it be numerous fibrous crystals or a single crystal (see Section 4.3.3.3). Under 

crossed polars a characteristic black Maltese Cross is observed. For grains over 0.5 mm, 

three main morphologies share these basic characteristics: perfect spherules, bow-ties and 
fan-shapes. 

The perfect spherules show no segmentation and appear to be uniform in structure, 

compared to the spherules made up of distinctive fan-shaped segments. The black Maltese 

Cross observed under crossed polars within the perfect spherules commonly originates 
from the centre of the spherule, but off-centre exceptions do occur. The centres of the 

perfect spherules appear to be cryptocrystalline in structure, and have fibrous crystals 

radiating around the centre; spherules with this type of structure are known as 

sphaerosiderite or spherulitic siderite (Figs 4.18a-b). 

The simplest bow-tie morphology observed is made up of two fans, commonly truncated at 

their bases, growing away from each other. However, a variation to this is observed; at 
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Fig. 4.17. SEM photomicrographs of sample SUF. 8.2, ironstone, Rokhagi Section, ca. 3.5 km SE of Hvalba, 
Suöuroy, Faeroe Islands. (a) As a result of compaction a smaller siderite spherule has shattered, suggesting 
growth before burial. (b) A lithic clast that has been compacted around siderite spherules. (c) The red 
circle is highlighting an occluded charcoal fragment in siderite. (d) A boring into the side of a siderite 
spherule. 
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Fig. 4.18. Siderite spherule morphologies from the ironstone deposits of the Coal-bearing Formation. (a) A 
perfect siderite spherule from sample SUF. 8.2, ironstone, Rokhagi Section, ca. 3.5 km SE of Hvalba, 
Suöuroy, Faeroe Islands. The photomicrograph is under cross-polarised light. (b) A line drawing of a 
perfect spherule in (a). The spherule has a cryptocrystalline centre surrounded by radiating, fibrous 
siderite crystals indicated by the arrows. This perfect spherule is a sphaerosiderite. (c) Bow-tie siderite 
spherule from sample SUF. 1.2, Unit 3, clay ironstone, Ulingatangi Section, ca. 300 m north of Ulingatangi, 
ca. 1.2 km east of Frobba, Suöuroy, Faeroe Islands. The photomicrograph is under plane-polarised light. 
(d) A line drawing of the bow-tie siderite spherule in (c). The spherule shows spiralling growth to the right, 
which is symmetrical about an inverted mirror plane. This siderite spherule is a single crystal that has 
grown by the split crystal method. See Section 4.3.3.3 for further details. 
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some stage as the fan grows away from the centre of the bow-tie it begins to spiral to one 
side. The striking observation about this process is that it appears to be symmetrical about 

an inverted mirror plane running between the two fans (Figs. 4.18c-d). The spiralling can 
occur on either the left or right hand sides of the fans. Sometimes the spiralling results in 

the formation of what appears to be a perfect spherule, but individual fan-shaped segments 
can be identified within them, suggesting they grew from bow-tie morphologies. These 
bow-tie shaped spherules are very similar to the crystal structures observed by Minoura et 
al. (1991) for rhodochrosite (MnCO3) microspheres from red shales in central Japan. 

An irregular, sub-rectangular morphology is observed for grain sizes <0.5 mm, which can 
be either early fan development or broken fragments from earlier formed spherules. The 

trigonal siderite crystals in sample SUF. 1.2, Unit 3, Ulingatangi Section, are only observed 
under the SEM (Fig. 4.12a). These perfect trigonal crystals have an average size of ca. 10- 

15 µm and occur in overlapping clusters to form a Christmas tree style pattern usually 100- 
150 pm wide. The trigonal crystals are also observed growing onto the edges of pre- 
existing spherules, suggesting that the trigonal crystals formed at a late stage. 

4.3.3.2 Concentric Zonation 

Within Unit 2, a volcaniclastic sandstone, Ulingatangi Section, concentric zones are 
observed surrounding a large 2 mm siderite spherule (Fig. 4.19). Surrounding the original 
spherule is a relatively thin and dark red to black rim containing occluded fragments of 
iron oxide. This rim is characteristic of oxidised siderite, possibly goethite or haematite. A 

thin zone of siderite (<0.05 mm) has syntaxially overgrown this layer of oxidised siderite. 
This very thin zone of siderite has an even thinner and poorly developed rim of oxidised 
siderite. A second concentric zone ca. 0.10-0.15 mm wide has syntaxially overgrown the 

previous thin zone of siderite. The rim to this second zone has not been oxidised but has a 
distinctive saw-tooth contact with a third and final concentric zone, ca. 0.10-0.15 mm 
Wide. Each saw-tooth defines a segment within the outer concentric zone. This third, and 
outer, zone of siderite has an oxidised rim. Again, this third concentric zone is in optical 
continuity with the previous zones and the original spherule. 

4.3.3.3 Crystal Formation 

There are three ways to produce spherules: (i) overgrowth of crystals on an extraneous 
body (i. e. ooid) (Fig. 4.20a), (ii) growth of crystals from a cryptocrystalline centre (Fig. 
4.20b), and (iii) split crystal growth (Fig. 4.20c) (Grigor'ev 1965). The spherules produced 
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Fig. 4.19. Concentric zoning to a siderite spherule from Unit 2, volcaniclastic sandstone, Ulingatangi 
Section, ca. 300 mN of Ulingatangi, ca. 1.2 km E of Frobba, Suburoy, Faeroe Islands. (a) Photomicrograph 
under plane polarised light that shows the location of (b) & (c). (b) Plane-polarised light photomicrograph 
of three siderite growth zones. (c) Line drawing of (b). The drawing picks out 6 different zones. Three 
zones represent periods of oxidation. The diagram also identifies three zones of different siderite growth 
mechanisms. See Section 4.3.3.3 for further details. 
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Fig. 4.20. Modes of spherule formation after Grigor'ev (1965). (a) Growth of numerous crystallites on an 
extraneous body. The crystals eventually become orientated parallel to the c-axis and grow in this 
direction forming a radiating extinction pattern. (b) Growth from the accumulation of crystallites. 
Crystals on the periphery of the cryptocrystalline centre become orientated parallel to the c-axis and grow 
in this direction forming a radiating extinction pattern. This mode of formation is compared to a spherule 
from sample SUF. 8.2, ironstone, Rokhagi Section, ca. 3.5 km SE of Hvalba, Suöuroy, Faeroe Islands. (c) 
Growth by the split crystal mechanism. The schematic drawings of Grigor'ev (1965) show various stages 
in the formation of a spherule through splitting of a single crystal. This is compared to three split crystals 
from sample SUF 1.2, Unit 3, clay ironstone, Ulingatangi Section, ca. 300 mN of Ulingatangi, ca. 1.2 km E 
of FroOba, SuOuroy, Faeroe Islands. The degree of splitting increases from left to right. The first 
photomicrograph shows a typical bow-tie morphology, which progresses through a spiralling bow-tie to a 
spherule made up of segments of a split crystal. 
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in the first two modes of formation are made up of numerous, commonly fibrous, crystals, 

whereas split crystal growth produces a spherule from a single crystal. No extraneous 
bodies have been observed in the centres of the siderite spherules in the samples studied 

and therefore the first mode of formation can fairly confidently be ruled out. 

The perfect spherules (sphaerosiderites) exhibit no segmentation, but show radiating 

crystals around a cryptocrystalline centre (Fig. 4.20b). Cryptocrystalline centres are 

nucleation points where accumulations of differently orientated crystallites begin to grow. 
Once a cryptocrystalline centre has been established, the crystals on the periphery that are 

orientated with their elongation parallel to the radius of the cryptocrystalline centre are 

able to grow freely, because the other crystals will subsequently contact either one another 

or the freely growing crystals (Grigor'ev 1965). The high birefringences observed for the 

radiating crystals supports growth along the c-axis (optic axis) parallel to the radius. The 

fibrous crystals indicate fast growth in exceedingly supersaturated conditions (cf. 

Kantorowicz 1990). 

The last mode of formation for spherule growth is through the split crystal process (Fig. 

4.20c). A key diagnostic feature of split crystal growth is the presence of characteristic 

bow-tie shaped crystals (Grigor'ev 1965). The process goes through a number of stages 
before it forms a spherule. The bow-tie shapes and various stages to the formation of 

spherules are observed in Units 2&3, Ulingatangi Section and sample SUF. 8.2, Rokhagi 

Section. The process is still not fully understood but absorption of impurities or organic 

matter may cause the expansion or contraction of crystal planes, or thermal strains, which 

result in the crystal splitting (Grigor'ev 1965). Verrecchia et al. (1995) have shown that 
bow-tie shaped morphologies can be made up of numerous acicular radiating crystals, 
however, these were produced in a system precipitating calcite through cyanobacterial 

activity. Thus, the bow-tie morphologies observed in Units 2&3 and sample SUF 8.2, 

even though they do not consist of radiating crystals, may have been formed by biological 

factors, this has tentatively been suggested for the formation of siderite spherules from the 

Upper Carboniferous, England, by Hounslow (2001). Petrun (1958) suggested that split 

crystal formation in calcite crystals was caused by isomorphic impurities of manganese, 

with crystals containing 4-12 wt. % MnCO3. This could be a possible reason for the split 

crystal growth observed in the present siderite spherules, as they contain 1-13 wt. % 

MnCO3 (see Section 4.3.4). Fernandez-Diaz et al. (1996) have shown that under high 

values of supersaturation calcite crystals will form spheres and at lower values dumbbell- 

like forms are observed. Therefore, the bow-tie shaped and associated siderite spherule 
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morphologies may have formed under supersaturated conditions analogous with those 

described by Fernandez-Diaz et al. (1996). 

Concentric zonation is a common feature associated with the formation of spherules. It is 

the result either of a change in the concentration of the pore fluid, or in the precipitating 

conditions, or is due to a mechanical agent (Grigor'ev 1965). Once conditions become 

favourable again, growth continues on the periphery of the spherule and this can occur in 

two ways (Fig. 4.21). The first involves the formation of new crystallites on the surface of 

the spherule. These crystallites will grow in the same way as crystallites around a 

cryptocrystalline centre, that is to say that the preferred growth orientation will be 

perpendicular to the surface of the spherule. The second method involves the formation of 

new embryonic split crystals on the surface of the spherule. If this occurs then the 

boundary between the original spherule and the new concentric zone will exhibit a saw- 

tooth appearance (Grigor'ev 1965). Therefore, each segment defined by the saw-tooth 

texture is a new spherule. The concentric zones observed in Unit 2, Ulingatangi Section, 

exhibit both types of growth. 

It has been demonstrated that two modes of formation exist for the formation of siderite 

spherules. The primary mode of formation is by the process of split crystal growth. This is 

supported by the range of bow-tie morphologies observed as well as the saw-tooth 

concentric growth zones. The majority of siderite spherules are, therefore, not made up of 

groups of fibrous crystals but of subunits of a single crystal. However, the perfect 

spherules (sphaerosiderites) are made up of fibrous crystals radiating round a 

cryptocrystalline centre. Both modes of formation occur under supersaturated conditions. 

4.3.4 Mineral Chemistry 

Electron probe micro-analysis techniques have been used to confirm the compositions of 

the siderite spherules. All mineral analyses were determined on a Cameca SX50 electron 

probe micro-analyser in the Division of Earth Sciences, University of Glasgow, utilizing 

wavelength-dispersal techniques. Standard operating conditions were a 20 kV accelerating 

voltage, a 10 nA beam current, and an integrated counting time of 20 seconds per element. 

The beam diameter was in the region of 10 µm. Standards comprised well-characterised 

natural silicates and pure metals. ZAF and dead-time corrections were applied. 

Two perfect spherules (sphaerosiderites) were picked from each sample, SUF. 1.2 (Unit 3, 

Ulingatangi Section) and SUF. 8.2 (Rokhagi Section), which did not contain any or very 
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Fig. 4.21. Formation of concentric zoning in a siderite spherule from Unit 2, volcaniclastic sandstone, 
Ulingatangi Section, ca. 300 mN of Ulingatangi, ca. 1.2 km E of Fro6ba, Suburoy, Faeroe Islands. The line 
drawing is of three concentric growth zones onto the periphery of an already formed spherule. See Figure 
4.19 for the photomicrograph of the siderite spherule. The two-headed red arrows identify the growth 
zones. The zones usually consist of a siderite overgrowth and an oxidised rim, apart from zone 2 which has 

no oxidised rim. Zones 1 and 3 are compared to the diagrams of Grigor'ev (1965) for the formation of 
concentric zoning in spherulites. Zone 1 represents the formation of new crystallites of normal crystals on 
the surface of the original spherule. Zone 3 represents the formation of new embryonic spherules on the 
surface of the previous growth zone, which grow through the split crystal growth mechanism. 
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few occluded matrix fragments. Analyses were obtained along traverses across the 

spherules. Sample SUF. 1.2 contains the spherules 1.2a and 1.2b, which were 519 µm and 

459 pm wide and had 50 and 40 analyses taken across the diameters of the spherules, 

respectively (Fig 4.22a-b). Sample SUF. 8.2 contains spherules 8.2a and 8.2b, which were 

651 pm and 598 pm wide, respectively; each had 50 analyses taken across the diameters of 

the spherules (Fig. 4.22c-d). Average compositions for the spherules from samples 

SUF. 1.2 and SUF. 8.2 can be seen in Table 4.1 (see Appendix A for the all the siderite 

spherule analyses). Both samples are generally quite pure, containing 90-94 wt. % FeCO3. 

Average composition of 
spherules in sample 
SUF. 1.2 (weight %) 

Average composition of 
spherules in sample 
SUF. 8.2 (weight 

Fe 43.22 45.54 
Mn 2.46 0.30 
Mg 0.05 0.02 
Ca 1.19 1.09 
Zn 0.04 0.03 
Si 0.14 0.17 

CO3 51.67 51.71 

Total 98.77 98.85 

Table 4.1. Average compositions of siderite spherules from samples SUF. 1.2 and SUF. 8.2. 

Both spherules 1.2a and 1.2b show a substitution of Fe 2+ for Mn2+ and Ca2+ (Figs. 4.23 & 

4.24). The centres of the spherules see the greatest abundance of Mn and Ca and 

conversely the lowest amounts of Fe. From the centres to the rims of the spherules Fe sees 

an increase of ca. 6.6-9.5 wt. %, whereas Mn shows a decrease of ca. 4.1-6.4 wt. %, where 

the amount of Mn in the rims of the spherules is negligible. Ca also shows a decrease from 

the centres to the rims from ca. 1.8-2.0 wt. % to amounts that are negligible. Mg 

concentrations are very constant across the spherules with amounts varying on average by 

only 0.07 wt. %. This chemical zonation observed within the perfect spherules of sample 

SUF. 1.2 can be quite clearly seen in the elemental maps of spherule 1.2c (Fig. 4.25). 

Spherules 8.2a and 8.2b both show a substitution of Fe 2+ for Mn2+ and Ca2+ (Figs. 4.26 & 

4.27), but it is not as marked as that observed in the spherules from sample SUF. 1.2. The 

centres of the spherules have the greatest abundance of Ca and conversely the lowest 

amounts of Fe. From the centres to the rims of the spherules there is an increase of ca. 2.7- 

3.0 wt. % Fe, whereas Ca shows a decrease of ca. 1.7-1.9 wt. %. Mn concentrations are high 

towards the centre of the spherules with ca. 0.5 wt. %; this then decreases towards the rim 

to negligible amounts before it increases at the rims to ca. 0.75 wt. %. Mg is constant across 

the spherules with amounts varying on average by only 0.07 wt. %. 
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Fig. 4.22. SEM photomicrographs of four siderite spherules that were geochemically analysed along 
traverses, highlighted by the red lines. (a) & (b) Siderite spherules from sample SUF. 1.2, Unit 3, clay 
ironstone, Ulingatangi Section, ca. 300 mN of Ulingatangi, ca. 1.2 km E of Froöba, Su6uroy, Faeroe 
Islands. (c) & (d) Siderite spherules from sample SUF. 8.2, ironstone, Rokhagi Section, ca. 3.5 km SE of 
Hvalba, Suöuroy, Faeroe Islands. The results from the analyses can be seen in Figures 4.23,4.24,4.26. and 
4.27. 
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Fig. 4.23. Mineral chemistry data for the siderite spherule SUF. 1.2a, Unit 3, clay ironstone, Ulingatangi 
Section, ca. 300 mN of Ulingatangi, ca. 1.2 km E of Froöba, Su6uroy, Faeroe Islands. 50 spot analyses were 
taken across the 519 µm wide spherule; there were four erroneous results. (a) & (b) The graphs show that 
the centre of the spherule sees the greatest abundance of Mn and Ca and conversely the lowest amounts of 
Fe. From the centre to the rim of the spherule Fe sees an increase of ca. 9.5 wt. %, whereas Mn shows a 
decrease of ca. 6.4 wt. %, where the amount of Mn in the rim of the spherule is negligible. Ca also shows a 
decrease from the centre to the rim in the order of ca. 2.0 wt. %. Mg and Zn concentrations are very 
constant across the spherule with amounts varying by only 0.08 and 0.12 wt. %, respectively. 
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Fig. 4.24. Mineral chemistry data for the siderite spherule SUF. 1.2b, Unit 3, clay ironstone, Ulingatangi 
Section, ca. 300 mN of Ulingatangi, ca. 1.2 km E of Frobba, Suöuroy, Faeroe Islands. 40 spot analyses were 
taken across 459 µm wide spherule. (a) & (b) The graphs show that the centre of the spherule sees the 
greatest abundance of Mn and Ca and conversely the lowest amounts of Fe. From the centre to the rim of 
the spherule Fe sees an increase of ca. 6.6 wt. %, whereas Mn shows a decrease of ca. 4.1 wt. %, where the 
amount of Mn in the rim of the spherule is negligible. Ca also shows a decrease from the centre to the rim in 
the order of ca. 1.8 wt. %. Mg and Zn concentrations are very constant across the spherule with amounts 
varying by only 0.07 and 0.09 wt. %, respectively. 
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Fig. 4.25. Elemental maps of a siderite spherule SUE 1.2c from Unit 3, clay ironstone, Ulingatangi Section, 
ca. 300 mN of Ulingatangi, ca. 1.2 km E of Froöba, SuOuroy, Faeroe Islands. Areas of highest 

concentration of a particular element display the brightest colours. The elemental maps compare very well 
to the mineral compositions of the siderite spherules (see Figs. 4.23 & 4.24). (a) Elemental map for silicon 
(Si). Silicon is used to define the shape of the spherule, which appears black, due to the lack of silicon in the 
spherule. Silicon is concentrated within the clayey matrix of the rock. (b) Elemental map for calcium (Ca). 
Calcium appears to be diffuse throughout the spherule apart from the rim regions, which show a marked 
depletion. (c) Elemental map for manganese (Mn). The core of the spherule shows enrichment in 
manganese and depletion at the rim. (d) Elemental map for iron (Fe). The core of the spherule shows 
depletion in iron compared to the rim. 

Chapter 4 Coal-bearing Formation Page 112 
hhh- 



Simon R. Passey 

(a) 
50 

45 

40 

35 

30 

25 

3 
20 

15 

10 

5 

0 

Analysis Number (651 Nm wide) 

(b) 
2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

Analysis Number (651 pm wide) 

-. - Mg 
f Ca 

Mn 

- Fe 

+ Mg 
-- Ca 

-ä- Mn 
NE Zn 

Fig. 4.26. Mineral chemistry data for the siderite spherule SUF. 8.2a, ironstone, Rokhagi Section, ca. 3.5 
km SE of Hvalba, SuOuroy, Faeroe Islands. 50 spot analyses were taken across the 651 µm wide spherule. 
(a) & (b) The graphs show that the centre of the spherule has the greatest abundance of Ca and conversely 
the lowest amounts of Fe. From the centre to the rim of the spherule there is an increase of ca. 3.0 wt. % Fe, 
whereas Ca shows a decrease of ca. 1.7 wt. %. Mn concentrations are high towards the centre of the 
spherule with ca. 0.5 wt. %; this then decreases towards the rim to negligible amounts before it increases at 
the rims to ca. 0.75 wt. %. Mg and Zn concentrations are fairly constant across the spherule with amounts 
varying by only 0.04 and 0.11 wt. %, respectively. 
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Fig. 4.27. Mineral chemistry data for the siderite spherule SUF. 8.2b, ironstone, Rokhagi Section, ca. 3.5 
km SE of Hvalba, Suburoy, Faeroe Islands. 50 spot analyses were taken across the 598 µm wide spherule. 
(a) & (b) The graphs show that the centre of the spherule has the greatest abundance of Ca and conversely 
the lowest amounts of Fe. From the centre to the rim of the spherule there is an increase of ca. 2.7 wt. % Fe, 

whereas Ca shows a decrease of ca. 1.9 wt. %. Mn concentrations are high towards the centre of the 
spherule with ca. 0.4 wt. %; this then decreases towards the rim to negligible amounts before it increases at 
the rims to ca. 0.75 wt. %. Mg and Zn concentrations are fairly constant across the spherule with amounts 
varying by only 0.1 and 0.08 wt. %, respectively. 
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From the chemical analyses obtained from the samples SUF. 1.2 and SUF. 8.2 two trends 

are observed. Firstly, the mineral chemistries obtained from the two samples are replicated 

from spherule to spherule within each sample, suggesting that the spherules were 

precipitated under homogeneous conditions. Secondly, the two samples were precipitated 
from two different fluid compositions, as the substitution patterns for the two sets of 

spherules differ greatly, sample SUF. 1.2 having on average 2 wt. % more Mn and 2 wt. % 

less Fe than sample SUF. 8.2. 

4.3.5 Environment of Deposition 

Siderite spherules are commonly found within non-marine organic-rich environments 

(Collinson 1996; Tucker 1996a). Minor occurrences of siderite spherulites have been 

documented in palaeosols from the USA (Leckie et al. 1989; Ludvigson et al. 1998), bog- 

ores of Belgium (Stoops 1983; Landuydt 1990) and fluviatile sandstones and mudstones 

from eastern Australia (Baker et al. 1995). The most widespread occurrences, however, are 

within underclays (palaeosols) associated with coal measures such as in the coalfields of 

Yorkshire, England; South Wales; Zambia and India (Spencer 1925; Deans 1934; Tucker 

1996a). 

The ironstone beds in the study vary from olive grey (5Y 4/1) to light olive grey (5Y 6/1) 

indicating reducing conditions (Retallack 1997; 2001). The colouration is the result of the 

ferrous iron (Fe 2) in the siderite, which is naturally drab, but the presence of organic 

matter can also increase the greyness of the rock (Retallack 1994). Siderite precipitates in a 

reducing environment with negative Eh values and pH values between 6 and 10 

(Krauskopf 1979). The purity of the spherules (90-94 wt. % FeCO3) and small abundances 

of MgCO3 (<0.2 wt. %) suggest that they formed in a freshwater environment (cf. Mozley 

1989). 

Retallack (2001) suggested that siderite spherules are more commonly formed in an 

intermediate redox (near-neutral Eh) environment. Intermediate redox environments can 

be partly or periodically waterlogged compared to reducing environments that are 

continually waterlogged (Baas-Becking et al. 1960). Berner (1981) suggested that a 

sediment goes through four phases during diagenesis, with increasing reduction: i) oxic, ii) 

post-oxic iii) sulphidic and iv) methanic. The post-oxic to methanic phases are all under 

anoxic conditions. Siderite is known to precipitate in the post-oxic and methanic phases, 

whereas sulphides are precipitated in the sulphidic phase (Berner 1981). The lack of any 

sulphide minerals, particularly pyrite (FeS2), suggests that the environments never reached 
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extreme reduction, i. e. continually waterlogged. However, as dissolved sulphate (SO4) is 

extremely low in freshwater pore fluids sulphides are less common in non-marine 

environments (Berner 1981). Moore (1992) suggested that in a non-marine environment 

the sulphidic phase is of little importance and a sediment in a non-marine environment may 

reach extreme reduction without precipitating pyrite in the process. Therefore, the lack of 

any sulphide minerals cannot be used as an indicator of the degree of reduction in non- 

marine settings, and consequently the siderite may have been precipitated in an 

environment that was continually waterlogged i. e. one of extreme reduction. 

Lund (1989) showed that the coal seams from the CBF were deposited in a eutrophic to 

mesotrophic lacustrine environment, which was surrounded by swamps. Over time the 

lacustrine environment changed to more oligotrophic conditions (Lund 1989). Eutrophic 

lakes are characterised by an abundance of dissolved plant nutrients and by a seasonal 

deficiency of oxygen in the hypolimnion (lowermost layer of the water column in a lake). 

The greyness of the beds, the association with overlying coal seams, the reducing 

waterlogged environment, and the close proximity of swamp environments suggests that 

the ironstone beds most likely represent palaeosols known as gleysols (cf. Mack et al. 

1993; Retallack 2001). 

Gleization (or gleying) is the soil forming process that produces distinctive grey gley soil 

beds (Retallack 2001). Gleization can also account for the presence of siderite spherules 

and spherulites, which suggest growth under supersaturated conditions at very fast rates 

(see Section 4.3.3.3). Gleization occurs in a post-oxic non-sulphidic waterlogged 

environment (Retallack 2001). Organic decomposition by aerobic micro-organisms 

consumes all the dissolved oxygen, but not enough to bring about sulphate (SO4) reduction 

to produce hydrogen sulphide (H2S), consequently, no sulphide minerals are precipitated 

(Berner 1981). Continued decomposition of the organic matter under anaerobic conditions 

takes place by nitrate, manganese and iron reduction, whereby ferric iron (Fe3), in the 

form of ferric hydroxides, is reduced to produce ferrous iron (Fe 2+) (Berner 1981). Ferric 

iron reduction and the lack of 02 and H2S may lead to supersaturated levels of bicarbonate 

(HCO3), Fe 2+ and Mn2+ in the pore fluids (Berner 1981; Kantorowicz 1990). These are 

favourable conditions to precipitate siderite (FeCO3) and rhodochrosite (MnCO3) (Berner 

1981). These two minerals produce a complete series from Fe-rich to Mn-rich end- 

members (Chang 1996). The mineral chemistries obtained for the siderite spherules in 

samples SUF. 1.2 and SUF. 8.2 (see Section 4.3.4) show a marked substitution of Fe 2+ for 

Mn2, supporting the model of supersaturated levels of Fe2+ and Mn2+ in the pore fluids. 

The concentration of Fe2+ in the pore fluids must have substantially exceeded the 
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concentration of Mn2+ because siderite spherules were precipitated rather than 

rhodochrosite. Ferric iron reduction is a much slower process than manganese reduction 

and as a consequence Mn 2+ concentrations are higher in the cores of the siderite spherules 
before ferric iron reduction became dominant. 

An accumulation of organic matter built up on the lake bottom rapidly became anoxic. 
Under anaerobic decomposition the organic matter was transformed into peat, which 

ultimately formed the coal overlying the ironstone beds. The lack of oxygen in the 

environment also prohibited the activity of animals and plants, and consequently the 

ironstone beds show little evidence of bioturbation or rootlets. There absence is a common 

feature associated with gleysols (Retallack 2001). 

4.3.5.1 Ulingatangi Section 

The basal volcaniclastic conglomerate (Unit 1) at Ulingatangi consists of aligned elliptical 

clasts, which suggest transport in a fluvial system (cf. Collinson 1996; Tucker 1996a). The 

conglomerate is overlain by Unit 2, a brownish black (5YR 2/1) volcaniclastic sandstone. 

The brownish black colour is due to the presence of ferric iron oxyhydrates (ferrihydrite 

and goethite) and ferric iron oxides (haematite) that indicates oxidising conditions 

(Retallack 2001). Rocks containing iron oxyhydrates and oxides are commonly termed 

ferruginous. The presence of the clay ironstone above and siderite spherules in the 

volcaniclastic sandstone tentatively suggests that the sandstone underwent soil-forming 

processes (cf. Retallack 2001). Ferruginous soils are typical of well-drained environments 

(Baas-Becking et al. 1960). However, the ferruginous sandstone contains sporadic siderite 

spherules and abundant siderite cement, which indicate a reducing environment. This 

suggests that the environment underwent alternating waterlogged (reducing) and well- 

drained (oxidising) periods. Periodically waterlogged palaeosols have been termed semi- 

gleysols by Besly & Fielding (1989). 

The sporadic siderite spherules are only observed within fractures in the semi-gleysol, 

which has subsequently been cemented together by disseminated siderite, suggesting that 

the porosity was restricted to the fractures. One of the siderite spherules in the semi-gleysol 

exhibits concentric zonation implying four episodes of growth. The initial formation of the 

spherule was under reducing conditions, and was followed by a period in an oxidising 

environment whereby an oxidised rim was formed. This pattern of alternating reducing and 

oxidising conditions is repeated for a further three cycles; there are four cycles in total. 
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This pattern of zoning supports an environment that was periodically waterlogged and 

records a water table that fluctuated at least four times. 

The volcaniclastic sandstone is overlain by Unit 3, the clay ironstone (gleysol), which was 

clearly formed under waterlogged, reducing conditions as described in Section 4.3.5. The 

clay ironstone is overlain by Unit 4, a brownish black (5YR 2/1) mudstone. The mudstone 

appears to have undergone alternating waterlogged (reducing) and well-drained (oxidising) 

periods akin to Unit 2, the volcaniclastic sandstone (semi-gleysol) underneath the clay 

ironstone. This is supported by the presence of ironstone nodules contained within the iron 

oxyhydrate and oxide rich mudstone. The clayey matrix in the ironstone nodules was most 

likely more organic-rich than the host mudstone, and thus an ideal site for the precipitation 

of siderite spherules. The abundant borings observed in the ironstone nodules suggests that 

the environment was oxygenated after the siderite spherules were precipitated, supporting a 

model for a periodically waterlogged environment. The mudstone (semi-gleysol) is 

overlain by a coal seam and an organic-rich mudstone that formed in a lacustrine 

environment (Lund 1983; 1989). 

The Ulingatangi Section begins with the deposition of a fluvial conglomerate; this was 

followed by the deposition of a volcaniclastic sandstone. The sandstone was periodically 

waterlogged and in it siderite was precipitated as spherules or cement. From the zonation 

in one of the siderite spherules it can be demonstrated that it experienced at least four water 

table fluctuations. The sandstone became permanently waterlogged and a lake developed 

on the surface into which a clay unit was deposited. This clay unit was permanently 

waterlogged and consequently a reducing environment ensued into which siderite 

spherules were precipitated. The top of the clay unit underwent water table fluctuations and 

consequently saw the development of ironstone nodules during waterlogged periods. 

Eventually a subsequent lake developed on the surface of the claystone and plant materials 

accumulated leading to the formation of the coal seam and the organic-rich mudstone. The 

alternation between well-drained and waterlogged conditions most probably represents dry 

and wet seasons. The section may represent an alluvial floodplain environment (cf. 

Collinson 1996) or marginal areas of a lacustrine system (cf. Talbot & Allen 1996). The 

environment saw the formation of small seasonal lakes above actively forming gley soils. 

4.3.5.2 Rokhagi Section 

The coarse sand-grade ironstone from the Rokhagi Section was produced under a post-oxic 

reducing waterlogged environment, although it formed slightly differently from the clay 
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ironstone in the Ulingatangi Section. The Rokhagi ironstone has evidence of bioturbation 

and has little or no clay matrix. Bioturbation suggests that after the siderite spherules were 

precipitated the environment became oxygenated. This is supported by the oxidised rims, 

most likely goethite, of the spherules. The lack of a clay-matrix in the sample suggests that 

the siderite spherules either coalesced to form distinct, more resistant nodules within 

ironstone beds (cf. Kantorowicz 1990) or were precipitated directly from the hypolimnion. 

These scenarios are difficult to distinguish because the sample is from mine waste and not 

observed in situ. 

Kantorowicz (1990) has demonstrated that the bicarbonate in siderite spherules from clay 

ironstones have 513C compositions that indicate mixing of freshwater bicarbonate and 

bicarbonate formed in a post-oxic ferric iron reduction environment, whereas the 

bicarbonate in siderite spherules from nodules have 813C compositions that indicate 

freshwater bicarbonate alone. If sample SUF. 8.2 represent nodules then the siderite 

spherules might, therefore, contain carbonate from only a freshwater source. 

The presence of alternating small coal bands within the ironstone suggests periods of 

organic accumulation and periods of no accumulation. This may represent dry and wet 

seasons, a view supported by the presence of charcoal - burnt wood remains of forest fires 

- occluded within siderite spherules. Forest fires occur during dry seasons and the charcoal 

produced can then be transported and deposited within lacustrine or swamp environments. 

Alternations of wet and dry seasons are common features of many swamp environments 

(Retallack 2001). 

The Rokhagi sample represents an ironstone that formed in an environment that had very 

low sedimentation rates but accumulated organic matter. This type of setting could be the 

basin plain of a lacustrine system (cf. Talbot & Allen 1996). In this setting the siderite 

spherules were precipitated directly from the anoxic hypolimnion, through the anaerobic 

decomposition of the organic matter. 

4.4 Conglomerate and Sandstone Beds 

4.4.1 Occurrence 

Rasmussen & Noe-Nygaard (1970b) recorded seven sequences from the CBF that contain 

conglomeratic deposits. Six of these are on the island of Suburoy (Figs. 4.2 & 4.28) and the 

remaining sequence is found on the island of Vägar (Fig. 4.1). The sequence on Vägar lies 
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Fig. 4.28. Stratigraphic logs for the six conglomerate-bearing sections from the Coal-bearing Formation 
on Su6uroy, Faeroe Islands. (a) & (b) are two sections from the west side of Grimsfjall. (c) & (d) are two 
sections from Undir Bergsleiti, SE of Heygsmdli. (e) A section from a disused mine N of the Rokhagi mine. 
(f) A section from the NE side of Mot, NE of Gluggarnir. See Figure 4.2 for the locations of these sections. 
Adapted after Rasmussen & Noe-Nygaard (1969; 1970b). 
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to the west of Hjallabolsflesjar and contains a fluviatile conglomerate 2-3 in in thickness 

(Rasmussen & Noe-Nygaard 1970b). The conglomerates on Suöuroy are found in the 

southern, northern and Grimsfjall coalfields. The sequence through the CBF on the north 

east side of Mot, NE of Gluggarnir, in the southern coalfield, contains 50 cm of 

conglomerate (Rasmussen & Noe-Nygaard 1970b). The northern coalfield contains three 

sequences with conglomeratic deposits. The first sequence is just north of the Rokhagi 

mine and contains at least 135 cm of conglomerate (Rasmussen & Noe-Nygaard 1970b). 

To the west of this locality two sequences are encountered at Undir Bergsleiti, SE of 

Heygsmüli; the first contains at least 50 cm of conglomerate and the second 280 cm of 

conglomerate (Rasmussen & Noe-Nygaard 1970b). From the Grimsfjall coalfield two 

sequences have been described from the western side of the mountain. The first and 

smaller sequence contains at least 50 cm of conglomerate (Rasmussen & Noe-Nygaard 

1970b). The second sequence contains 4m of fine to very coarse sandstone, with the basal 

50 cm containing coal lenses (Rasmussen & Noe-Nygaard 1970b). Apart from the partially 

accessible Grimsfjall Section all other exposures are in disused mine workings or 

inaccessible cliff sections. Therefore, the Grimsfjall Section is the only sequence that can 

be studied in the field in relative safety. 

The thicker of the two sections on the western side of Grfmsfjall is observed on a near 

vertical cliff section, on the western side of an inaccessible gully. The section is ca. 9-14 m 

thick and lies between the LBF and MBF and has been intruded by a sill (Fig. 4.29). The 

following measurements and descriptions were obtained by the use of binoculars. 

Overlying the prismatic jointed lavas of the LBF appears to be a ca. 4-6 m thick greyish- 

red volcaniclastic unit from the CBF. This is overlain by ca. 1-2 m thick greenish-black 

sandstone. At this point a doleritic sill with pronounced columnar jointing, ca. 6-8 m thick, 

disrupts the sequence. Overlying the sill is the greenish-black sandstone, ca. 4-6 m thick. 

At the top of the sequence are compound lavas of the MBF. According to Rasmussen & 

Noe-Nygaard (1970b), the CBF here, is only 4.65 m thick, but as they do not describe the 

sequence in any detail it appears that what they believed to be the top of the LBF was in 

fact the top of the sill. If this is correct then their sequence fits closely to the measurements 

of the sequence given above. 
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Fig. 4.29. View of the inaccessible cliff face at G rimsfjall, Suouroy, Faeroe Islands. The section comprises a 
ca. 9-14 m thick sedimentary sequence from the Coal-bearing Formation (CBF) inbetween the Lower & 
Middle basalt formations. The sequence is disrupted by a ca. 6-8 m thick columnar jointed doleritic sill. 
The bottom half of the CBF is represented by a ca. 4-6 m thick volcaniclastic breccia overlain by a ca. 1-2 m 
thick olive grey volcaniclastic sandstone. The sequence above the doleritic sill is represented by a ca. 6-8 m 
thick olive grey volcaniclastic sandstone. 
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Fig. 4.30. View of a thinly to medium bedded (6-15 cm) olive grey basaltic sandstone from the accessible 
eastern side of the Grimsfjall Section, Suöuroy, Faeroe Islands. The contacts between beds are commonly 
sharp and planar and the sandstone is mainly fine to medium grained, although some of the beds contain 
coarse sand to granule grade clasts (0.5-5.0 mm). The lens cap is ca. 6 cm in diameter. 
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4.4.2 Petrography 

4.4.2.1 Grimsfjall Section 

Approximately 3-4 m of the sandstone unit that crops out above the sill on the western side 

of the gully also crops out on the accessible eastern side. The sandstone is olive grey (5Y 

3/2) and is thinly to medium bedded (6-15 cm) (Fig. 4.30). The contacts between beds are 

commonly sharp and planar (Figs. 4.30 & 4.32f). The unit is mainly a fine to medium 

grained basaltic sandstone (Figs. 4.31 & 4.32). Some of the beds contain coarse sand to 

granule grade clasts (0.5-5.0 mm) (Figs. 4.33 & 4.34). The fine to medium grained 

sandstone is poorly to moderately well sorted and elongate clasts are aligned parallel to 

bedding. The sandstone is clast supported and there is virtually no matrix or cement. 

The sandstone is dominated by ca. 0.5 mm clasts of palagonitised basaltic glass (ca. 60-65 

vol. %) (Fig. 4.31). Palagonite is formed from the hydration (palagonitisation) of basaltic 

glass, commonly sideromelane but also tachylite. Secondary minerals can be produced as 

the result of palagonitisation; these may include: various clays, zeolites, opal, carbonate, 

and Fe-Mn oxides or carbonates (Hay & Iijima 1968; Fisher & Schmincke 1984). 

However, on the whole no secondary minerals, apart from clays, have been observed 

within the sandstone. The palagonitised clasts are commonly a dirty green-yellow in plane 

polarised light and isotropic to weakly birefringent in crossed polars. Rare phenocrysts of 

plagioclase feldspar and rarer phenocrysts of pyroxene are observed within the usually 

highly vesiculated palagonitised glass (Fig. 4.31 f). The degree of palagonitisation of the 

sandstone is extremely varied, from orange translucent palagonite platy shards to various 

clays, comprising smectite and chlorite. Primary textures and clast margins have become 

obscured due to the hydration process, which is a common feature associated with 

palagonitisation (Hay & Iijima 1968; Fisher & Schmincke 1984; Cas & Wright 1987). 

However, the orange translucent palagonitised platy shards are more easily identified by 

their higher refractive index (1.600-1.700 on the Michel Levy chart), as they have 

undergone a smaller degree of palagonitisation and closer to their original composition of 

fresh basaltic glass (Fig. 4.31d). The usually sharp edges to these platy shards have been to 

some extent rounded. 

Prominent speckled murky grey clasts (ca. 20 vol. %) that contain opaque iron oxides and 

are weakly birefringent in crossed polars are also present within the sandstones. The clasts 

are sub-rounded and have an average clast size of ca. 0.25 mm and rarely contain laths of 

plagioclase feldspar. The clasts are most probably the eroded remnant of weathered basalt 
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Fig. 4.31. Photomicrographs of a fine to medium grained basaltic sandstone, Grimsfjall Section, Suöuroy, 
Faeroe Islands. All photomicrographs are under plane-polarised light. (a) to (e) General views showing 
that the sandstone is dominated by dirty green-yellow palagonitised basaltic glass clasts. The scale of 
palagonitisation throughout the sandstone is extremely varied, from orange translucent glass to various 
clays. (d) An orange translucent palagonitised glass clast, which is easily identified by its higher refractive 
index because it has undergone a smaller degree of palagonitisation and closer to its original composition. 
(f) Some of the palagonitised glass clasts contain phenocrysts of plagioclase feldspar. (g) & (h) The 
sandstone also contains basalt clasts, derived from lava flows, these views show a typical trachytic clast. 
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Fig. 4.32. Photomicrographs of the fine to medium grained basaltic sandstone, Grimsfjall Section, 
Suöuroy, Faeroe Islands. All of the photomicrographs are under plane-polarised light except for (d), 

which is under cross-polarised light. (a) & (b) The sandstone contains prominent organic material. Notice 
the well preserved cellular structure of the organic material in (b). (c) & (d) A clayey clast that has a 
distinctive serpentine-like structure, this is most likely berthierine or chamosite. (e) Vesiculated, opaque 
basaltic glass, most likely scoria. (f) A planar boundary between the fine to medium grained basaltic 

sandstone (bottom half of view) and the coarse sand to granule grade layer (top half of view). 
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Fig. 4.33. Photomicrographs of the coarse sand to granule grade basaltic sandstone, Grimsfjall Section, 
Suöuroy, Faeroe Islands. All of the photomicrographs are under plane-polarised light except for (d), 

which is under cross-polarised light. (a) & (b) General views of the basaltic sandstone, which is similar to 
the fine to medium grained basaltic sandstone seen in Figs. 4.31 & 4.32, but contains more basalt clasts. (c) 
& (d) Some of the palagonitised basaltic glass clasts contain cumulates of clinopyroxene. (e) Some of the 
palagonitised glass clasts contain phenocrysts of plagioclase feldspar. 
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Fig. 4.34. Photomicrographs of the coarse sand to granule grade basaltic sandstone, Grimsfjall Section, 
SuOuroy, Faeroe Islands. All of the photomicrographs are under plane-polarised light. (a) to (d) Medium 

crystalline equigranular basalt clasts that contain laths of plagioclase feldspar (ca. 0.1-0.2 mm), oxides (ca. 
0.1 mm) and clinopyroxene. (e) Finely crystalline equigranular basalt clast that contains laths of 
plagioclase feldspar (ca. 0.1 mm), oxides (ca. 0.02-0.03 mm) and clinopyroxene. (f) Very finely crystalline 
basalt clast that contains laths of plagioclase feldspar (ca. 0.05 mm) set in an intergranular texture of 
clinopyroxene and oxides. (g) Trachytic basalt clast that contains laths of plagioclase feldspar (ca. 0.1 mm) 
that are aligned in an intergranular texture consisting of clinopyroxene and oxides. 
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lava, referred to here as `stony' basalt. Other basalt clasts totalling ca. 10 vol. % are also 

observed. These can be split into two categories, (i) equigranular basalt, and (ii) trachytic 

basalt (Fig. 4.31 g-h). The equigranular basalt clasts have an average grain size of ca. 0.5 

mm and are sub-rounded. The clasts contain plagioclase feldspar (ca. 0.1 mm), iron oxides 
(0.02-0.03 mm) and pyroxene crystals. The trachytic basalt clasts have an average grain 

size of ca. 0.5 mm and are sub-rounded. As the trachytic name implies, the plagioclase 
feldspars (ca. 0.1 mm) in the clast are aligned in an intergranular groundmass. 

Vesiculated, opaque basaltic glass (ca. 2 vol. %) is also observed within the sandstones 

(Fig. 4.32e). These clasts contain rare phenocrysts of plagioclase feldspar and pyroxene. 

The clasts (ca. 0.25-0.75 mm) are sub-rounded and have been partially altered. The 

vesicles are unfilled but are sometimes lined with palagonite. The remaining identifiable 

clasts in the sandstone are made up of organic material (ca. 3 vol. %) (Fig. 4.32a-b) and 

rare well-rounded serpentine-like structured clayey clasts (ca. 2 vol. %) (Fig. 4.32c-d). The 

organic material ranges from opaque coal to cellular structured woody material. Clast sizes 

range from 3x2 mm to 6x1 mm. The long axes of the organic clasts are aligned parallel 

to bedding. 

The coarser beds containing the coarse sand to granule grade clasts (0.5-5.0 mm) consist of 

the same materials noted above but have a higher percentage of basalt (Fig. 4.33). The 

coarser beds have ca. 55 vol. % palagonitised basaltic glass clasts, ca. 10 vol. % `stony' 

basalt, ca. <5 vol. % opaque basaltic glass, and ca. 35 vol. % basalt clasts. The same 

sedimentary textures that exist in the fine to medium grained beds are repeated, the only 
difference being the influx of basalt clasts. These are all sub-rounded to rounded and range 
in size from 0.5 to 5.0 mm (average ca. 1-2 mm) and can be subdivided into the following 

categories: (i) medium crystalline equigranular basalt, (ii) finely crystalline equigranular 

basalt, (iii) very finely crystalline basalt, and (iv) trachytic basalt clasts (Fig. 4.34). The 

medium crystalline equigranular basalt clasts (ca. 15 vol. %) contain laths of plagioclase 
feldspar (ca. 0.1-0.2 nun), oxides (ca. 0.1 mm) and clinopyroxene (Fig. 4.34a-d). The 

finely crystalline equigranular basalt lava clasts (ca. 10 vol. %) contain laths of plagioclase 
feldspar (ca. 0.1 mm), oxides (ca. 0.02-0.03 mm) and clinopyroxene (Fig. 4.34e). The very 

finely crystalline basalt clasts, which are light grey to colourless contain laths of 

plagioclase feldspar that are ca. 0.05 mm in size and are set in an intergranular groundmass 

consisting of clinopyroxene and oxides (Fig. 4.34f). The trachytic basalt clasts contain 

laths of plagioclase feldspar (ca. 0.1 mm) that are aligned in an intergranular groundmass 

consisting of clinopyroxene and oxides (Fig. 4.34g). 
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4.4.3 Provenance 

The conglomerates and sandstones all contain intraformational clasts derived from within 

the depositional area. The sandstone described from Grimsfjall is mainly composed of 

volcanic materials, the majority of which are reworked palagonitised basaltic glass derived 

from unconsolidated ash deposits. The remaining volcanic materials display a range of 
basalt textures most likely derived from the erosion of exposed lava flows of the LBF. Five 

different clast categories have been identified, suggesting that at least 5 different lava flows 

were eroded. The presence of organic material within the deposits indicates that the 

surrounding land surface was vegetated. 

4.4.4 Environment of Deposition 

The sandstones and conglomerates appear to be fluvial in origin as they are heterogeneous, 

intraformational, clast-supported, immature lithic arenites that consist of sub-rounded 

clasts (cf. Collinson 1996; Tucker 1996b). The presence of plant material within the 

deposits supports the premise that the coals are partly allochthonous (plant materials 

transported to the site of formation) in origin. The sandstone described at Grimsfjall has 

alternating beds that are basalt lava clast-poor and -rich suggesting either fluctuating 

erosion rates or water flow energy levels. This alternation may reflect seasonal variations, 
i. e. wet and dry, during drier climates water flow energy levels are lower only transporting 

ash and minor basalt clasts compared to wetter climates that see a marked increase in water 
flow energy levels as a result of higher surface runoff (cf. Collinson 1996). The higher 

levels of surface runoff maybe directly related to higher amounts of rainfall (cf. Collinson 

1996), as a consequence, channels may flood, increasing water flow energy levels which is 

able to transport a larger amount of basalt clasts than during drier periods. 

4.5 Synthesis 

The Coal-bearing Formation (CBF) is exposed on the islands of Tindhölmur, Vägar and 

Suöuroy and preserves lithologies that were deposited in a humid, warm temperate 

terrestrial environment (Lund 1983; 1989; Jolley 1997) (Fig. 4.35). The CBF has an 

average thickness of ca. 10 m and commonly contains two coal seams interbedded with 

claystones and shales. In at least two localities the basal claystone (under clay) has been 

replaced by previously unreported ironstone deposits and in seven localities the upper 
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claystone (roof clay) has been replaced or is overlain by fluvial sandstones and 

conglomerates. 

The ironstone deposits are located in the Ulingatangi and Rokhagi sections on Su6uroy, ca. 
4 km apart. The Ulingatangi Section consists of a ca. 4.5 m thick clay ironstone, which 

contrasts with the ironstone collected and analysed from the mine waste at Rokhagi in 

having a clay matrix. The ironstone deposits are characterised by siderite spherules formed 

by two processes: i) growth of crystals from a cryptocrystalline centre; and, ii) split crystal 

growth. Both processes need to occur under supersaturated conditions of bicarbonate, Fe2+ 

and Mn2+ (cf. Berner 1981; Kantorowicz 1990; Fernandez-Diaz et al. 1996). The siderite 

spherules that formed by crystals growing radially from a cryptocrystalline centre are 

referred to as sphaerosiderites. Siderite spherules formed by split crystal growth display a 

range of morphologies from fans to bow-ties to segmented spheres, all diagnostic of this 

method of crystal formation. The siderite crystals in the analysed samples contain between 

1 and 13 wt. % MnCO3 and it has been demonstrated elsewhere (Petrun 1958; Minoura et 

al. 1991) that spilt crystal growth occurs in carbonate crystals that contain between 4 and 
12 wt. % MnCO3. 

The siderite spherules are extremely pure (90-94 wt. % FeCO3) and contain small 

concentrations of MgCO3 (<0.2 wt. %), suggesting that they formed in a freshwater 

environment (cf. Mozley 1989). However, the spherules from Ulingatangi differ from 

those from Rokhagi in containing on average 2 wt. % more Mn and 2 wt. % less Fe. The 

siderite spherules show a substitution of Fee+, Mn2+ and Ca2+ across the samples analysed, 

although the Ulingatangi spherules show a greater degree of substitution than the Rokhagi 

spherules. These differences suggest that the siderite spherules in the two ironstone 

deposits formed under different conditions, and this is supported by the lack of clay matrix 
in the Rokhagi ironstone. 

The Ulingatangi and Rokhagi ironstones occur below coal seams, indicating that they are 

palaeosols (Tucker 1996a; Retallack 2001) and, coupled with the greyness of the beds and 

the lack of bioturbation, implies that they are gleysols (Mack et al. 1993; Retallack 2001). 

Gleysols occur/form in non-marine, organic-rich environments under reducing conditions 
(Mack et al. 1993; Retallack 2001). Reducing conditions are commonly achieved in 

waterlogged environments (i. e. lakes, swamps) involving an abundance of decaying 

organic matter; consequently, this is why the gleysols are generally associated with coal 

seams (Mack et al. 1993; Retallack 2001). Lund (1983; 1989) and Parra et al. (1987) have 

shown that the claystones in the CBF were deposited within a lacustrine environment, thus 
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it follows that the gleysols formed within a lacustrine system. The lack of clay matrix in 

the Rokhagi ironstone implies that sedimentation rates were extremely low and may 

represent the basin plain of the lacustrine system (cf. Talbot & Allen 1996). If this is 

correct, it suggests that the spherules were precipitated directly from an anoxic 
hypolimnion. This compares to the Ulingatangi Section, which preserves reddened 
lithologies containing ferric oxyhydrates and iron oxides formed during periods of 

oxidisation, thus indicating a well-drained environment. Concentric zonation of siderite 

spherules at Ulingatangi record a cycle of at least four reducing and oxidising periods, i. e. 

waterlogged and well-drained environments. This suggests that the Ulingatangi Section 

formed at the margin of a lacustrine system that underwent seasonal variations i. e. 
fluctuating water levels within the lake. 

The abundance of organic material within the ironstones and the occurrence of coal 
indicate that the surrounding land surface was heavily vegetated. The occurrence of plant 

remains in the fluvial conglomerates and sandstones in the upper section of the CBF, West 

Suduroy, support the premise that the coal macerals are partly allochthonous and that the 

lake environment was at least 10 km across. The sandstone at Grimsfjall (Fig. 4.2) is thinly 

to medium bedded, alternating from fine- to medium-grained sandstones to coarse sand- to 

granule-grade sandstones. This alternation between dominant grain-sizes implies 

fluctuating water flow (energy) levels, most likely reflecting an increase in surface water 

run-off (cf. Collinson 1996). The sandstones are clast supported, poorly sorted and are 

composed primarily of palagonitised basaltic glass derived from the reworking of 

unconsolidated ash deposits, suggesting that volcanism was occurring distally to the Faeroe 

Islands. They also consist of varying amounts of basalt clasts, derived from the erosion of 

numerous Lower Basalt Formation (LBF) lava flows. The range in basalt textures implies 

that numerous lava flows were being eroded at the same time. 
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5 Volcaniclastic Sandstone Formation 

The Volcaniclastic Sandstone Formation (VSF) was referred to as the Tuff-Agglomerate 

Zone by Rasmussen & Noe-Nygaard (1970b) and has been renamed here because of 

subsequent refinements in terminology (see Section 2.2 for further explanation) and 

advances in our understanding of processes that occur in volcanic settings. Previously, the 

formation has not been described in great detail in the literature and this chapter examines 

the volcaniclastic lithologies from three significant traverses on Suburoy. The rocks are 
initially described using the lithological classification scheme outlined in Section 2.2, 

before genetic interpretations and environments of deposition are presented. 

5.1 Distribution 

The VSF crops out on the islands of Vagar, Tindhölmur and SuÖuroy in a NW-SE trending 

corridor approximately parallel to the dominant fjord elongation (Figs. 1.3 & 5.1-insert). 

The VSF overlies the Coal-bearing Formation (CBF) as seen at Ulingatangi, ca. 1.2 km 

east of Frooba, Suburoy (Fig. 4.4). The maximum thickness of the VSF is difficult to 

estimate as numerous doleritic sills have intruded the formation and the top of the 

formation is sometimes transitional with Javas of the Middle Basalt Formation (MBF). The 

VSF on Vägar extends from Bour, northwestwards to Bar6ib, and then eastwards towards 

Vikar (Fig. 4.1). Along this section the VSF has an exposed thickness of ca. 6m 

(Rasmussen & Noe-Nygaard 1970b). The best exposures of the VSF occur on the island of 
Su6uroy (Fig. 5.1) in three main traverses. From east to west, they are as follows: the 

H6sagar6sä-Hvannagjogv Traverse, the Hvannhagi-L6nin Traverse, and the Rey6ibarmur- 

Hvalba Traverse. Minor occurrences occur along the coastline from Myrkagjögv 

westwards towards Flekksä and at Ulingatangi, ca. 1.2 km E of Froöba. 

5.2 Hüsagar8sa-Hvannagjögv Traverse 

The Hüsagarösä-Hvannagjögv Traverse, Suouroy, is ca. 5.5 km long (Fig. 5.1) and the 

VSF has a maximum exposed thickness of ca. 30 m. The VSF is poorly exposed along the 

majority of the traverse, but good exposures are observed between the streams of 
SvalbarÖaä and Myllä (sometimes known by its waterfall's name, Bläfossur) (Fig. 5.2). 

Another partial exposure is observed in the stream section of Hvannagjögv. 
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5.2.1 SvalbarÖaa-Myllä Traverse 

5.2.1.1 Overview of Traverse 

The traverse is ca. 760 m long and extends from the east fork of the Svalbar6aä stream in 

the east, to the Myllä stream in the west, ca. 500 mN of Trongisvägur (Fig. 5.2). The 

traverse consists of the VSF beneath lava flow units of the MBF. There are three stream 

exposures (sections A-C) where the contact between the VSF and MBF is observed. The 

contact is at a height of 185 m in the Myllä stream (Section A) and 160 m in the west 

(Section B) and east (Section C) forks of the Svalbaröaä stream, giving a dip of ca. 1.5° in 

an eastwards direction. The VSF consists of a mixture of volcaniclastic (epiclastic) lutites- 

rudites and tuffs. The description of lithologies (units 1-9) shall be in stratigraphic order 

according to the correlation between the three exposures in Figure 5.3. The VSF has a 

sharp, sometimes-undulating contact, with ca. 2m thick basalt flow units of the MBF (Fig. 

5.4). 

5.2.1.2 Lithology & Petrography 

The base of the VSF is not observed in the three sections due to poor exposure, but the 

basal rock, Unit 1, is observed in sections B&C and is ca. 7-8 m thick. Unit 1 is a light 

olive grey (5Y 5/2) to moderate yellowish brown (IOYR 5/4) massive coarse tuff. This tuff 

is fragment supported and poorly sorted, but is extremely homogeneous in fragment type. 

It has an average grain size of medium to coarse sand and is made up of reddish to greyish 

black palagonitised basaltic glass fragments (Fig. 5.5). The margins of the fragments are 

diffuse due to the hydration process, but they appear to be angular. The larger fragments 

contain serpentinised euhedral to subhedral crystals of olivine up to 2 mm in size. 

Unit 2 is a ca. 7m thick brownish volcaniclastic conglomerate that is very thickly bedded 

(ca. 1m thick beds). This conglomerate is poorly sorted, matrix supported and has a clast 

size that ranges from medium sand up to cobble grade. The majority of this sand grade 

material is made up of sub-rounded palagonitised basaltic glass clasts. The conglomerate 

also contains 10-30 vol. % sub-angular to sub-rounded, very large pebbles to cobble grade 

(4 x2 cm to 30 x3 cm), dark basalt clasts. It also contains 10 vol. % of sub-angular to sub- 

rounded clasts of the underlying greyish coarse tuff, which have an average size of very 

large pebbles (6 x4 cm) and are characterised by needle-shaped, blackish-green, 

serpentinised olivine crystals 2-4 mm long. The lava and tuff clasts decrease in size to 
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Fig. 5.3. Graphic logs of the Volcaniclastic Sandstone Formation (VSF) below the Middle Basalt 
Formation (MBF) lavas, Svalbaröaä-Myllä Traverse, ca. 500 mN of Trongisvägur, Suöuroy, Faeroe 
Islands. 
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Fig. 5.5. Photomicrographs of Unit 1, coarse tuff, from the base of sections B&C, Svalbaröaä-Myllä 
Traverse, ca. 500 mN of Trongisvägur, Suöuroy, Faeroe Islands. All of the photomicrographs are under 
plane-polarised light. (a) The tuff is fairly homogeneous in fragment type, which consists of highly altered 
(palagonitised) basaltic glass fragments. As a consequence of palagonitisation the fragment boundaries 
have been obscured. Serpentinised euhedral and subhedral needle shaped crystals of olivine occur in 
larger glass fragments (OL). (b) Fragment boundaries although obscured by palagonitisation sometimes 
display angular edges. The photomicrograph also shows that there is little or no matrix to the unit. (c) 
Glass fragments displaying diffused boundaries due to palagonitisation. (d) Some of the larger basaltic 

glassy fragments contain serpentinised greenish needle-shaped olivine crystals (OL). (e) The centre of the 
photomicrograph contains a basaltic glass fragment that has cuspate margins, which are the remnants of 
former bubble walls (BW). 
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small pebbles (2-8 mm) towards the top of the unit, suggesting that the conglomerate fines 

upwards. 

Unit 3 is a ca. 70 cm thick greyish red (I OR 4/2) volcaniclastic siltstone sequence with 
interbedded volcaniclastic sandstones that is medium to thickly laminated (0.5-3 cm). In 

thin section, the siltstone layers are moderately sorted, clast supported, with an average 

clast size of very coarse silt (Fig. 5.6). It is composed of 90 vol. % sub-angular to sub- 

rounded opaque to orange palagonitised basaltic glass clasts. The remaining 10 vol. % is 

made up of tuffaceous lithic clasts. The sandstone layers range from very coarse sand to 

granule grade clasts, which are similar to the clasts described from the siltstone layers. 

However, the sandstones also contain large sub-rounded, amygdaloidal basaltic glass 

clasts, which reach a maximum size of 2 mm. Large sub-rounded tuffaceous clasts, which 

reach a maximum size of ca. 3 mm also occur. These clasts are greenish in plane-polarised 
light and contain laths of plagioclase feldspar. The sandstone layers also contain rare (<5 

vol. %) angular small pebble grade basalt clasts. The clasts in the coarser layers are 

commonly aligned parallel to bedding, which is especially apparent for the elongated 

clasts. 

Unit 4 is a ca. 3-5 m thick brownish volcaniclastic conglomerate that is thickly to very 

thickly bedded. This conglomerate is poorly sorted, matrix supported, and ranges in clast 

size from medium sand to boulder grade. It contains ca. 10 vol. % of basalt clasts that are 

commonly amygdaloidal. These clasts are sub-angular to sub-rounded and have a 

maximum clast size of 45 x 20 cm. The conglomerate also contains ca. 10 vol. % of sub- 

rounded greyish tuff clasts, similar to the coarse grey tuff described from the base of the 

section (Unit 1). These clasts are characterised by needle shaped dark green altered 
(serpentinised) olivine crystals ca. 2-4 mm long and have a maximum size of 45 x 13 cm, 

with elongated clasts frequently aligned parallel to bedding. Less than 5 vol. % of the 

conglomerate contains sub-angular reddened tuffaceous mudstone clasts, which have a 

maximum size of 10 x6 cm, but usually have sizes of 4x2 cm. Some of the beds are 
densely populated with large clasts while others are sparsely populated. The majority of the 

sand grain material is made up of palagonitised basaltic glass material. 

Unit 5 is an olive grey (5Y 3/2) to blackish red (5R 2/2) thickly to very thickly laminated 

volcaniclastic sandstone (Fig. 5.7). This sandstone is 0.4-1.2 m thick and, in the upper 45 

cm, thin (<1 cm) mudstone lamina occur. It is poorly to moderately sorted, matrix 

supported and an average clast size of very fine to fine sand (Fig. 5.8). The sandstone 

contains rare (<5 vol. %) sub-angular to sub-rounded clasts of basalt, which have a 
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Fig. 5.6. Thin section photograph and photomicrographs from the interbedded volcaniclastic siltstones 
and sandstones (Unit 3), from sections B&C, Svalbaröaä-Myllä Traverse, ca. 500 mN of Trongisvägur, 
SuOuroy, Faeroe Islands. (a) Thin section photograph showing the medium to thick lamina (0.5-3 cm) of 
the unit. (b) to (d) Photomicrographs of siltstone lamina under plane-polarised light. The siltstone lamina 
are poorly sorted and are dominated by palagonitised basaltic glass fragments. 
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Fig. 5.7. Photographs of Unit 5, volcaniclastic sandstone, from Section B, Svalbaröaä-Myllä Traverse, ca. 
500 mN of Trongisvägur, Sut uroy, Faeroe Islands. The sandstone is thickly to very thickly laminated. (a) 
& (b) Field photographs of the volcaniclastic sandstone, which is ca. 1.2 to thick. The compass is ca. 10 x6 
cm. (c) & (d) Hand specimen and thin section photographs of the layering within the sandstone. (e) 
Diffusely layered thin section from the sandstone, which is coarser grained than the layers in (c) & (d). 
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Fig. 5.8. Photomicrographs of Unit 5, volcaniclastic sandstone from Section B, Svalbarbaä-Myllä 
Traverse, ca. 500 mN of Trongisvägur, Suouroy, Faeroe Islands. All of the photomicrographs are in plane- 
polarised light. (a) The sandstone contains ca. 90 vol. % basaltic glass clasts at various stages of 
palagonitisation. (b) A large vesiculated near opaque basaltic glass Glast, most likely scoria. The clast 
contains devitrification spherulites (DS) and the occasional plagioclase feldspar lath. (c) Various sub- 
angular to sub-rounded basaltic glass clasts at various stages of palagonitisation. (d) A `stony' basalt lava 
clast is enclosed in the yellow circle. The lava clast is equigranular and consists of plagioclase feldspar 
laths, cinopyroaenes and oxides. (e) The top left of the photomicrograph consists of a tuffaceous clast 
made up basaltic glassy clasts. The centre of the photomicrograph consists of a flattened orange 
vesiculated basaltic glass clast. The clast also contains an altered subhedral olivine crystal (OL). (f) The 
colourless clast is equigranular basalt lava consisting of plagioclase feldspar laths, clinopyroaene and 
oxides. (g) & (h) Views of thin mudstone layers interbedded within the sandstone. 
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maximum size of 4x1.5 cm, and an average of ca. 0.5 x 0.5 cm. In thin section, the basalt 

clasts are commonly equigranular, consisting of plagioclase feldspar laths, clinopyroxene 

and oxides. The sandstone also contains (<5 vol. %) sub-angular to sub-rounded brownish- 

green tuffaceous clasts, which have an average size of small pebbles. These tuffaceous 

clasts usually contain highly vesiculated opaque glassy clasts, with crystals of altered 

plagioclase feldspar. The sandstone also contains ca. 45 vol. % of sub-angular to sub- 

rounded near opaque basaltic glass clasts. The largest of these clasts are usually highly 

vesiculated and contain phenocrysts of plagioclase feldspar. The remaining 45 vol. % of the 

sandstone consists of altered greyish, brownish and greenish palagonitised basaltic glass 

clasts, which are near isotropic in cross-polarised light. The clast edges of these clasts are 

somewhat obscured due to the hydration process, but they appear to be sub-angular to sub- 

rounded. Vesiculation is a common feature of the larger palagonitised glass clasts. 

Unit 6 is a 3-4 m thick volcaniclastic conglomerate, which is poorly sorted, matrix 

supported and consists of clasts ranging in size from medium grained sand up to boulder 

grade clasts. The base of the conglomerate contains ca. 10 vol. % angular to sub-rounded 

reddened volcaniclastic mudstone and coal clasts, which range in size from 3x1 cm up to 

60 x 30 cm and are sometimes elongated and aligned parallel to bedding. The reddened 

volcaniclastic mudstone and coal clasts decrease in abundance up the unit. The 

conglomerate also contains sub-rounded, sometimes elongated, greyish coarse tuff clasts 
(ca. 10 vol. %), which contain distinctive 2-4 mm long, needle-shaped serpentinised olivine 

crystals. These clasts are sometimes aligned parallel to bedding and have a maximum size 

of 10 x4 cm. The conglomerate also contains sub-angular to sub-rounded basalt clasts, 

which increase in abundance up the unit, although the conglomerate contains no more than 
10 vol. %. These clasts range in size from 5x4 cm up to 45 x 30 cm, with an average clast 

size of ca. 7x5 cm. The sand grade material is composed of palagonitised basaltic glass 

clasts. 

Unit 7 is a 1-4 m thick yellowish grey (5Y 7/2) to greenish grey (5GY 6/1) coarse tuff, 

which is massive in appearance and compositionally very homogeneous. This tuff is 

moderately sorted and is dominated by sub-angular to sub-rounded clasts of near opaque 

palagonitised basaltic glass fragments, with an average fragment size of very fine to fine 

sand, although fragments up to 3 mm do occur (Fig. 5.9). The fragments show a range in 

colouration in plane-polarised light, which is the result of palagonitisation; and as a 

consequence fragment margins are obscured. Some of the fragments contain phenocrysts 

of plagioclase feldspar and the largest fragments contain euhedral to subhedral 

serpentinised greenish crystals of olivine, which are a very distinctive feature in hand 
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Fig. 5.9. Photomicrographs of Unit 7, coarse tuff, from sections B&C, Svalbaröaä-Myllä Traverse, ca. 500 
mN of Trongisvägur, Suduroy, Faeroe Islands. All of the photomicrographs are under plane-polarised 
light. (a) to (h) The tuff is dominated by palagonitised basaltic glass fragments with an average grain size of 
very fine to fine sand. The largest glass fragments contain euhedral to subhedral serpentinised greenish 
crystals of olivine (OL). Rare sub-angular highly vesiculated opaque glassy fragments (scoria) also occur, 
as seen in (d). 
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specimen. Rare, sub-angular, highly vesiculated opaque basaltic glass fragments also occur 

and are interpreted here as basaltic scoria. The tuff also contains less than 2 vol. % of 

cognate angular basalt fragments that range in size from 2x1.5 cm up to 15 x 10 cm and 
less than 2 vol. % of (accidental) reddened mudstone clasts, with a maximum size of 2x1.5 

cm. 

Unit 8 is a 0.5-2.4 m thick dark greenish grey (5GY 4/1) volcaniclastic conglomerate, 

which is poorly sorted, fairly homogeneous and has an average clast size 2x1.5 cm 
(pebble grade) (Fig. 5.10). The dominant clast type is sub-angular to sub-rounded 

palagonitised near opaque basaltic glass (40-50 vol. %), which have a maximum size of 9x 

3 cm and commonly contain phenocrysts of plagioclase feldspar as well as abundant 

vesicles, which are infilled with the altered glassy matrix material. Less than 5 vol. % of the 

conglomerate consists of sub-rounded reddened tuffaceous mudstone lithologies, which 
have a maximum size of 7x4 cm. The matrix to the conglomerate is a brownish-green 

highly palagonitised basaltic glass material. This glassy material is so extremely altered 
that the hydration process has completely destroyed clast margins and that small (ca. 0.25 

mm) brownish-green devitrification spherulites have developed throughout the matrix. 

Unit 9 is a 0.7-1 m thick moderate reddish brown (I OR 4/6) volcaniclastic sandstone. This 

sandstone is poorly sorted, matrix supported and has a maximum clast size of 1.5 x1 cm 
(medium pebble grade) (Fig. 5.11). It contains ca. 15 vol. % angular to sub-angular yellow- 

red palagonitised glass clasts that have an average grain size of fine sand. These clasts are 

commonly vesiculated and display cuspate margins, and larger clasts contain laths of 

plagioclase feldspar. The sandstone contains less than 5 vol. % of sub-rounded greyish 
basalt clasts, referred to here as `stony' basalt. These stony basalts are very finely 

crystalline and contain obvious laths of plagioclase feldspar and oxides. The sandstone also 

contains sub-angular to sub-rounded near opaque basaltic glass clasts (ca. 35 vol. %), 

which have an average clast size of medium sand and larger clasts are highly vesiculated. 
The remaining 35 vol. % of the sandstone is made up of sub-angular to sub-rounded 

creamish to brownish palagonitised basaltic glass clasts, which are near isotropic in cross- 

polarised light and have an average clast size of very coarse silt. 

5.2.1.3 Provenance 

All of the volcaniclastic units observed within the SvalbarÖaä-Myllä Traverse contain 

clasts derived from within the depositional catchment area. The sedimentary units contain 

clasts that are dominantly from the reworking of basaltic ash and lapilli grade deposits, 
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Fig. 5.10. Thin section photograph and photomicrographs of the Unit 8, volcaniclastic conglomerate, from 
Section B, Svalbarbaä-Myllä Traverse, ca. 500 mN of Trongisvägur, Suöuroy, Faeroe Islands. (a) Thin 
section showing the colour variation of the conglomerate, reflecting different stages of clast alteration. 
Basaltic glassy clasts are more evident looking at the thin section with the naked eye than under the 
microscope. All the photomicrographs are under plane-polarised light. (b) & (c) Opaque basaltic glassy 
clasts are evident, these clasts commonly contain tiny laths of plagioclase feldspar. The clasts are set in a 
brownish-green highly palagonitised basaltic glass matrix. (c) The top left of the photomicrograph 
contains highly vesiculated basaltic scoria. The vesicles have been infilled by the altered matrix. (d) The 
highly altered brownish-green glassy matrix has begun to devitrify and contains abundant devitrification 
spherulites, which take the form of small (ca. 0.25 mm) brownish-green ovals. 
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Fig. 5.11. Thin section photograph and photomicrographs of Unit 9, volcaniclastic sandstone, from Section 
B, Svalbarbaä-Myllä Traverse, ca. 500 in N of Trongisvägur, SuOuroy, Faeroe Islands. All of the 
photomicrographs are under plane-polarised light. (a) The moderate reddish brown sandstone is poorly 
sorted and is heterogeneous in clast type. (b) A large highly vesiculated opaque basaltic glass clast, most 
likely scoria, which contains tiny laths of plagioclase feldspar. (c) The sandstone is dominated by various 
basaltic glass clasts displaying a range of colours from orange to opaque, a consequence of 
palagonitisation. There is little or no matrix in the pore spaces. (d) The edge of a relatively fresh orange 
basaltic glass clast, which is highly vesiculated and contains abundant laths of plagioclase feldspar. A 
fracture in the glass clast has been infilled by finer basaltic glassy material. (e) & (f) The clast boundaries 
although obscured by the process of palagonitisation appear fairly angular. The pore spaces contain very 
little or no matrix material. The basaltic glassy clasts display a range in colouration, suggesting various 
stages of palagonitisation. 
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most likely derived from pyroclastic air-fall events. This is supported by the abundance of 

palagonitised basaltic glass clasts and the occurrence of highly vesiculated near opaque 

reworked basaltic scoria. The variation in palagonitisation of the glassy clasts suggests that 

numerous ash and lapilli deposits were being eroded contemporaneously. The units 

commonly contain clasts from the basal tuff unit, which shows that erosion was occurring 
locally, soon after the deposition of the units. Basalt clasts, most likely derived from LBF 

lava flows, are also contained within the sedimentary units. The lava clasts range in 

composition and stages of surface oxidisation, suggesting that numerous exposed flows 

were being eroded, transported and deposited. 

5.2.1.4 Environment of Deposition 

The volcaniclastic lithologies encountered within the Svalbaröaä-Mylld Traverse were 
deposited in a terrestrial environment with no evidence indicating a marine influence. 

Units 1 and 7 are extremely homogenous and are dominated by angular palagonitised 
basaltic glass fragments indicating that they are tuff beds (cf. Fisher & Schmincke 1984; 

Cas & Wright 1987; McPhie et al. 1993). The poorly to moderately sorted nature of the 

tuffs suggests that they have not been transported in a water-borne environment (cf. Fisher 

& Schmincke 1984; Cas & Wright 1987; McPhie et al. 1993); therefore, they were most 
likely deposited as subaerial air-fall tuffs. The remainder of the units within the 
Svalbar6ad-Myllä Traverse consist of volcaniclastic mudstones through to conglomerates 

that have tabular geometries and are interbedded with pyroclastic lithologies. These 

volcaniclastic units are matrix supported, have a high degree of heterogeneity in clast 
types, a high degree of clast rounding and an alignment of elongated clasts parallel to 
bedding. These data suggest that the clasts were most likely transported and deposited from 

a lahar event (cf. Smith 1991; Smith & Lowe 1991). If correct, this suggests that the 

conglomerates most likely represent debris flow deposits and the sandstones represent 
hyperconcentrated flow deposits (cf. Pierson & Scott 1985; Smith 1986; 1991; Bahk & 

Chough 1996; Coussot & Meunier 1996; Sohn et al. 1999; Lirer et al. 2001). 

5.2.2 Hvannaglogv Section 

5.2.2.1 Overview of Section 

The Hvannagjögv Section crops out ca. 2.2 km west of the Mylld stream section (Fig. 5.1). 

The section is ca. 7.5 m thick, consisting of interbedded brecciated MBF Javas and 

volcaniclastic rock units (Fig. 5.12). At approximately 200 m above sea level the lavas are 
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Fig. 5.12. Graphic log of the transitional zone between the Volcaniclastic Sandstone Formation (VSF) and 
the Middle Basalt Formation (MBF) lavas, Hvannagjögv Section, ca. 2.5 km WNW of Trongisvägur, 
SuÖuroy, Faeroe Islands. 
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not brecciated and exhibit compound structures consistent with belonging to the MBF (see 

Chapter 6). 

5.2.2.2 Lithology & Petrology 

The base of the section is poorly exposed but is represented by a minimum of 1m of basalt 

from the MBF. The greyish blue lava is finely crystalline and contains abundant 

amygdales, infilled with zeolites and calcite. The upper surface has been eroded and 

prominent v-shaped incisions, ca. 2-3 cm deep are observed. These incisions are mantled 
by a ca. 1 cm thick greenish layer from the overlying Unit 1, a ca. 1m thick pale reddish 
brown (1OR 5/4) tuffaceous sandstone (Fig. 5.13). The lower 20 cm of the sandstone is 

medium to thickly laminated but the remainder is medium bedded (10 cm thick beds). The 

sandstone is poorly sorted, ranges in clast size from very coarse silt up to very coarse sand 

and is dominated by sub-angular to sub-rounded reddish to creamy orange highly 

palagonitised basaltic glass clasts (ca. 60 vol. %) (Figs. 5.13d-f). Some of the clasts exhibit 

cuspate margins and the largest orange clasts contain altered euhedral to subhedral crystals 

of olivine, which are ca. 1-2 mm long. The sandstone also contains ca. 35 vol. % near 

opaque basaltic glass clasts that are sub-angular to sub-rounded, the largest of which are 
typically vesiculated and contain altered euhedral to subhedral crystals of olivine, which 
have a maximum size of 2 mm. The remaining 5 vol. % of the unit consists of sub-rounded 

clasts of equigranular basalt, which contain laths of plagioclase feldspar, clinopyroxene 

and oxides. 

Overlying the tuffaceous sandstone is a 2.5 m thick compound basalt flow. Individual flow 

units have an average thickness of ca. 60 cm. The basal ca. 60 cm is represented by a 
jigsaw fit breccia, comprising angular fragments of the lava flow. The breccia has a matrix 
derived from the underlying sandstone, wrapping around the lava fragments. This breccia 

is a blocky peperite similar to those described by Rawlings et al. (1999) and Doyle (2000). 

The compound lava flow has a sharp upper contact and is overlain by Unit 2, a ca. 1m 

thick olive grey (5Y 3/2) tuffaceous sandstone that is medium to thickly laminated. This 

sandstone is poorly sorted and the clast size ranges from very fine to very coarse sand, with 

an average size of fine sand. It contains 90 vol. % opaque to brownish to greenish orange 

sub-angular to sub-rounded palagonitised basaltic clasts (Fig. 5.14). The largest clasts are 
highly vesiculated and commonly contain euhedral to subhedral crystals of serpentinised 

olivine. Some of the clasts exhibit cuspate margins and the margins of the finer clasts are 

obscured due to the hydration process. The remaining 10 vol. % of the unit is made up of 
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Fig. 5.13. Field views, thin section photograph and photomicrographs of Unit 1, tuffaceous sandstone from 
the base of the Hvannagjögv Section, ca. 2.5 km WNW of Trongisvägur, Suburoy, Faeroe Islands. (a) & (b) 
The upper surface of the basalt lava flow has been eroded producing prominent v-shaped incisions. The 
incisions are mantled by a ca. 1 cm thick greenish layer from the overlying 1m thick pale reddish brown 
tuffaceous sandstone. (c) The lower 20 cm of the tuffaceous sandstone is medium to thickly laminated and 
is dominated (60 vol. %) by reddish to creamy orange highly palagonitised basaltic glass clasts. All of the 
photomicrographs are under plane-polarised light. (d) The sandstone also contains ca. 35 vol. % near 
opaque basaltic glass clasts interpreted here as basaltic scoria. The largest of these clasts are commonly 
highly vesiculated and contain phenocrysts of highly altered olivine crystals. (e) The sandstone is made up 
of ca. 5 vol. % sub-rounded clasts of equigranular basalt lava. The lava is made up of laths of plagioclase 
feldspar, clinopyroxene and oxides, rare phenocrysts of plagioclase feldspar also occur. (f) The basaltic 

glass clasts are highly palagonitised, obscuring clast boundaries but occasionally angular edges are 
observed. 
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Fig. 5.14. Thin section photograph and photomicrographs of Unit 2, tuffaceous sandstone, from the 
Hvannagjögv Section, ca. 2.5 km WNW of Trongisvägur, Suburoy, Faeroe Islands. (a) The olive grey 
tuffaceous sandstone is poorly sorted and medium to thickly laminated. All of the photomicrographs are 
under plane-polarised light. (b) The sandstone is made up of palagonitised basaltic glass clasts. The degree 
of palagonitisation varies from one glass clast to another and is reflected in the colouration of the clasts 
from orange to opaque. Where clast boundaries have not been obscured due to the alteration process they 
are sometimes angular and cuspate, representing former bubble walls. (c) The largest of the basaltic glass 
clasts are commonly highly vesiculated and have cuspate margins, the remains of former bubble walls. 
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sub-rounded clasts of equigranular basalt, which contain laths of plagioclase feldspar, 

clinopyroxene and oxides. 

Overlying the tuffaceous sandstone is a ca. 1m thick blocky peperite similar to the one 
described above. Unit 3 is a ca. 40 cm thick volcaniclastic sandstone that is medium to 

thickly bedded, poorly sorted, clast supported and has an average clast size of fine to 

medium sand. This conglomerate contains ca. 20 vol. % sub-rounded reddened tuffaceous 

mudstone clasts with a maximum size of 5x3 cm. The remaining 80 vol. % is composed of 

palagonitised basaltic glass clasts. The sandstone is overlain by a ca. 1.6 m thick blocky 

peperite. The peperite is made up of jigsaw fit basalt fragments, which have a maximum 

size of 50 x 25 cm. A fine to medium grained matrix akin to the underlying unit is 

observed wrapping around the basalt blocks. Basalt flow units of the MBF overlie the 
blocky peperite and no other volcaniclastic units are observed, suggesting that this is the 

base of the MBF. 

5.2.2.3 Provenance 

All of the volcaniclastic lithologies within the Hvannagj6gv Section contain 
intraformational clasts. The units are dominated by reworked basaltic ash and lapilli grade 

material, and the variation in surface oxidation states of the clasts suggests that numerous 

ash and lapilli deposits were being eroded at the same time. Basalt clasts, derived from 

LBF lava flows also show a range in composition and surface oxidation states suggesting 

that they were eroded from numerous exposed lava flows. 

5.2.2.4 Environment of Deposition 

The volcaniclastic rocks within the Hvannagjögv Section have a high degree of 
heterogeneity, which suggests that they were formed by epiclastic processes (cf. Fisher & 

Schmincke 1984; Cas & Wright 1987; McPhie et al. 1993). As the lava flow units are 

extremely brecciated (blocky peperites) it suggests that the sedimentary units were water- 

rich at the time of eruption (cf. Skilling et al. 2002, and references therein). The general 
lack of rounding suggests that the clasts have only been transported to a limited extent. It is 

unclear whether the units were deposited within a fluvial or lacustrine environment. The 

mantling of the basal lava flow is a common feature associated with the deposition of tuff 

units (cf. Fisher & Schmincke 1984; Cas & Wright 1987; McPhie et al. 1993). Therefore, 

the basal tuffaceous sandstone may have been deposited originally as a tuff bed, which has 

subsequently been reworked, but preserving the basal tuff-like characteristics. 
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5.2.3 Summary 

The Hüsagarösä to Hvannagj6gv Traverse records episodes of pyroclastic and epiclastic 
deposition. Two units of olivine-phyric vitric basaltic tuffs were deposited within the VSF. 

These tuffs are extremely homogeneous, massive in appearance, poorly sorted, have glass 

shards and they mantle the topography, tentatively suggesting that they may even have 

been deposited by aeolian processes as subaerial air-fall tuffs rather than in a subaqueous 

environment. The volcaniclastic conglomerates through to mudstones within the traverse 

are interbedded with pyroclastic lithologies, which implies that they were formed 

contemporaneously with volcanism. The tabular geometries, matrix supported fabric and 

heterogeneous clast compositions, of the units suggests that they represent volcaniclastic 

debris and hyperconcentrated flow deposits formed during a lahar event (cf. Smith & Lowe 

1991, and others). The top of the VSF in the west at Hvannagj6gv is transitional with MBF 

lava flow units, which have generally been brecciated as a consequence of water-saturated 

volcaniclastic units. The absence of flow units in the VSF along the Svalbaröaä-Myllä 

Traverse implies that the MBF flows were erupted to the west of Myllä. 

5.3 Hvannhagi-Lönin Traverse 

The Hvannhagi to Lönin Traverse is located in the bays ca. 2.5 km N of Tvoroyri, Suöuroy 

(Fig. 5.2). The traverse is ca. 2.5 km long by ca. 150 m high and consists of a sequence 

between lava flows of the Lower Basalt Formation (LBF) and the MBF (Fig. 5.15). 

Doleritic sills have extensively disrupted the VSF in this traverse. The sills occupy the 

entire base of the cliffs in Lönin Bay. The VSF has a maximum exposed thickness of ca. 
30 m in the east of the traverse at Dysjarnar and dips to the ENE. An extensive outcrop of 

agglomerate occupies the wave cut platform S of Stapin. 

5.3.1 Vents 

A mass of agglomerate crops out on the wave cut platform S of Stapin, which has a domed 

and annular shape (Fig. 5.16). The outcrop has an exposed thickness of ca. 10 m and 

extends for ca. 150 mS of Stapin, but is only ca. 2m thick on its southern margin. A thin 

sedimentary sequence, comprising a ca. 0.5 m thick shale and a ca. 0.2 m thick coal overlie 

the southern margin of the agglomerate (Fig. 5.17a-b) and ca. 1.8 m thick shaly unit 

overlies the northern margin (Fig. 5.17c-d). Doleritic dykes and sills have intruded the 

northern and southern margins of the agglomerate (see Section 5.3.2) (Fig. 5.17). The 
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Fig. 5.16. Views of the agglomerate that crops out on the wave cut platform S of Stapin, Hvannhagi-L6nin 
Traverse, ca. 2.5 km N of Tvoroyri, Suouroy, Faeroe Islands. (a) The exposure is domed and annular in 
shape. The agglomerate has an exposed thickness of ca. 10 m and has a horizontal extent of ca. 150 m. (b) 
The agglomerate is thinly bedded. Some of the bedding planes have been highlighted by red lines. The 
hammer is ca. 40 cm long. 
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Fig. 5.17. Views of the agglomerate S of Stapin, Hvannhagi-Lönin Traverse, ca. 2.5 km N of Tveroyri, 
SuOuroy, Faeroe Islands. (a) & (b) The southern extent ofthe agglomerate is ca. 2m thick and is overlain by 
a ca. 0.5 m thick shale and a ca. 0.2 m thick coal from the Coal-bearing Formation (CBF). Overlying the 
coal is a doleritic sill, which contains large rafts of the underlying coal and shale. (c) & (d) The northern 
margin of the agglomerate is overlain by shale from the CBF, which has been intruded by a doleritic sill 
that displays lobate margins. The hammer is ca. 40 cm long. 
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agglomerate is thinly bedded and poorly sorted (Fig. 5.16b), and is made up of nearly 100 

vol. % basaltic fragments with lobate margins, ranging in size from coarse ash grade to 

blocks and bombs with a maximum size of ca. 70 cm (Fig. 5.18). The average dimensions 

of the fragments are of the order of ca. 10 cm. Rare occurrences of fusiform, ribbon and 

cow-dung bombs are observed within the exposure (Fig. 5.18e). Some of the cow-dung 

bombs exhibit vesicle-poor cores but highly vesicular rims (Fig. 5.180. The agglomerate 

has no matrix and what little cement is present is zeolitic in composition. In thin section, 

the agglomerate is extremely poorly sorted, clast supported and consists of various sub- 

rounded basaltic fragments (Fig. 5.19). Some of the fragments are glassy, near opaque, and 

contain tiny infrequent laths of plagioclase feldspar. These fragments have irregular shaped 

amygdales of zeolite group minerals. Other basaltic fragments are aphyric, finely 

crystalline, displaying an intergranular texture and are composed of laths of plagioclase 

feldspar, subhedral crystals of clinopyroxene and oxides. 

The lobate margins and sinuous shapes of the bombs are indicative that the fragments acted 

plastically at the time of deposition and therefore are true pyroclasts (cf. MacDonald 1967; 

1972; Schmid 1981; Fisher & Schmincke 1984). The presence of fusiform, ribbon and 

cow-dung bombs supports this interpretation and these bombs are characteristic of primary 

pyroclastic deposits (MacDonald 1967; 1972; Fisher & Schmincke 1984). Cow-dung 

bombs are formed from masses of very fluid lava that have not been projected to any great 

height to allow solidification and therefore have remained fluidal on impact suggesting that 

they have landed in close proximity to the vent (cf. MacDonald 1972). These data suggest 

that the unit can be qualified as an agglomerate in the true lithological definition of the 

term (Schmid 1981). The presence of the agglomerate, the annular shape of the outcrop 

and presence of bedding suggests that the unit was deposited near a vent, named here as 

the Stapin Vent. 

According to D. W. Jolley (pers. comm. ) the shale and coal overlying the agglomerate is 

biostratigraphically similar to those deposited in the CBF and unrelated to coals deposited 

in the LBF. This suggests that the vent was active prior to the deposition of the CBF and is 

either associated with the LBF volcanism or small localised vents of early CBF age and not 

with the VSF. If the vent was associated with the VSF, the shale and coal deposits would 

most likely have been destroyed by the development of the vent and consequently would 

not be mantling the agglomerate. 
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Fig. 5.18. Views of the agglomerate S of Stapin, Hvannhagi-L6nin Traverse, ca. 2.5 km N of l'v oroyri, 
Suöuroy, Faeroe Islands. (a) to (d) The agglomerate is composed entirely of basaltic fragments of a 
pyroclastic origin. The agglomerate is poorly sorted and ranges in size from coarse ash up to blocks and 
bombs with a maximum size of ca. 70 cm. The pyroclasts commonly have lobate margins and fusiform, 

ribbon and cow-dung bombs occur. (e) A large cow-dung bomb, which has formed when ejected lava has 

remained fluidal on impact, suggesting that the material was not projected to any great height to allow 
solidification. (f) A pyroclastic bomb that displays a vesicle poor core and a highly vesicular rim, typical of 
pyroclastic bombs. The compass is ca. 1016 cm, the lens cap is ca. 6 cm across and the hammer is ca. 40 cm 
long. 
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Fig. 5.19. Hand specimen photographs and photomicrographs of the agglomerate S of Stapin, Hvannhagi- 
Lbnin Traverse, ca. 2.5 km N of Tvoroyri, Suöuroy, Faeroe Islands. (a) & (b) Individual pyroclastic 
fragments are hard to identify in hand specimen but obvious fragments have been highlighted in yellow. 
All of the photomicrographs are under plane-polarised light. (c) to (f) The agglomerate is extremely poorly 
sorted, clast supported and consists of various sub-rounded basaltic fragments. Some of the basaltic 
fragments display a range of glassy textures and variations in colour from orange to near opaque. The 

glassy fragments contain tiny laths of plagioclase feldspar and some contain irregular shaped amygdales 
of zeolitic group minerals. Other basaltic fragments are aphyric and finely crystalline displaying an 
intergranular texture. These fragments are composed of laths of plagioclase feldspar, subhedral crystals of 
clinopyroxene and oxides. The agglomerate has a small proportion of zeolitic cement. 
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5.3.2 Sills 

Doleritic sills have intruded and disrupted the CBF and VSF along the entire length of the 

Hvannhagi Lönin Traverse. The sills are medium to finely crystalline and consist of laths 

of plagioclase feldspar ca. 0.1 mm long and clinopyroxene ca. 0.25 mm in size (Fig. 5.20). 

The sills are equigranular and contain ca. 5 vol. % vesicles/amygdales, suggesting that they 

were intruded at a shallow depth. The doleritic sills are extremely well exposed in Lenin 

Bay and consist of columns orientated in various directions. Large rafts/xenoliths are 

observed within the sills west of Todnes. One such raft, observed in Lönin Bay, is ca. 12- 

16 m high by 14-18 m wide and exhibits bedding and channel structures (Fig. 5.21). The 

raft appears to be made up of gravel grade clasts of basaltic material and may represent a 

volcaniclastic debris flow (cf. Fisher 1971; Fisher & Schmincke 1984; Smith 1986; Cas & 

Wright 1987; Smith & Lowe 1991; McPhie et al. 1993; Yarnold 1993; Coussot & Meunier 

1996; Sohn et al. 1999; Kessler & Bedard 2000; Lirer et al. 2001). 

Another large raft is located north of Stapin and measures ca. 20 m by ca. 8m (Fig. 5.22). 

The lower 5m of the raft consists of thinly to thickly bedded greenish to greyish tuffaceous 

sandstones ranging in clast size from fine to medium sand. In thin section, the sandstone is 

poorly sorted and comprises of sub-rounded orange palagonitised basaltic glass clasts (ca. 

55 vol. %). Some of these clasts are highly vesicular and some contain phenocrysts of 

plagioclase feldspar. The sandstone also contains near opaque sub-rounded basaltic glass 

clasts (ca. 35 vol. %). Greyish basalt fragments, commonly sub-rounded and containing 
laths of plagioclase feldspar, account for ca. 10 vol. % of the sandstone. Overlying the 

tuffaceous sandstone is a 2.9 m thick tuffaceous breccia. This breccia is poorly sorted, clast 

supported, with a clast size that ranges from 1x1 cm to 10 x6 cm, and is made up of sub- 

angular to sub-rounded clasts of vesicular basalt. The clasts are contained within a matrix 

of medium sand palagonitised glassy material. 

5.3.3 Dysjarnar Traverse 

5.3.3.1 Overview of Traverse 

This traverse is ca. 1 km long and extends from the inaccessible Ribbingamüli point 

westwards to the landslip at Dysjarnar, ca. 2 km N of Tveroyri, Suöuroy (Fig. 5.2). The 

traverse consists of three stream exposures (sections I-III), which are located within a 400 

m stretch of the traverse (Figs. 5.23 & 5.24). In this traverse the contact between the VSF 

and MBF goes from a height of 110 m in Section Ito 85 m in Section III, a dip of ca. 4° to 

Chapter 5 Volcaniclastic Sandstone Formation Page 162 



Simon R. Passey 

(a) 

iI 

(b) 

F 1mm i 
f-ý 

Fig. 5.20. Photomicrographs of the doleritic sills intruding the northern margin of the agglomerate S of 
Stapin, Hvannhagi-Lönin Traverse, ca 2.5 km N of Tveroyri, SuÖuroy, Faeroe Islands. The sills are finely 
crystalline, equigranular and contain ca. 5 vol. % vesicles/amygdales, suggesting that they were intruded 
at a shallow level. The sills contain laths of plagioclase feldspar (ca. 0.1 mm long), clinopyroxenes (ca. 0.25 
mm) and oxides. (a) Photomicrograph under plane-polarised light. (b) Same view as in (a) but under cross- 
polarised light. 

Fig. 5.21. ` of the large raft contained within doleritic sills at L6nin Bay, ca. 2.5 km N of Trongisvägur, 
Suöuroy, Faeroe Islands. The raft is ca. 12-16 m high by 14-18 in wide. The raft is composed of poorly 
sorted sandstones and conglomerates which exhibit possible bedding and channel structures, suggesting 
that the raft was once a deposit from a lahar. 
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Fig. 5.22. View and photomicrographs of a large raft contained within doleritic sills N of Stapin, 
Hvannhagi-LÖnin Traverse, ca. 2.5 km N of Tvoroyri, SuOuroy, Faeroe Islands. (a) The raft is ca. 20 m long 
by 8m wide and the lower 5m consists of thinly to thickly bedded greenish to greyish tuffaceous 
sandstones. Overlying the sandstones is a ca. 3m thick tuffaceous breccia. All of the photomicrographs are 
under plane-polarised light. (b) The sandstones are poorly sorted and consist of orange to opaque 
palagonitised basaltic glass fragments. Some of the orange palagonitised fragments are highly 
amygdaloidal and contain phenocrysts of plagioclase feldspar (PL). (c) Near opaque basaltic glass 
fragments are highly amygdaloidal and most likely represent basaltic scoria. Some of the glass fragments 
contain phenocrysts of plagioclase feldspar and serpentinised olivine crystals. 
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the ENE. The base of the traverse is composed of doleritic sills that have invaded and 
disrupted the VSF. The greatest observed thickness of the VSF is ca. 26 m in Section II; 

this is a minimum thickness due to the intrusion of the sills. In this traverse, the VSF 

consists of a mixture of volcaniclastic (epiclastic) lutites-arenites and tuffs. The description 

of lithologies (units 1-6) will be presented in stratigraphic order according to the 

correlation between the three exposures given in Figure 5.25. The VSF has a sharp, 

sometimes-undulating, upper contact with 2m thick basalt flow units of the MBF. 

5.3.3.2 Lithology & Petrography 

Doleritic sills are observed at the base of sections I and II. The sills are greyish and 

sometimes contain xenoliths of tuffaceous material several tens of centimetres across. The 

contact between the sills and the overlying VSF is sharp and undulating. Overlying the sill 
in Section II, and also occurring at the base of Section III, is Unit 2, a ca. 12 m thick tuff 

bed. This tuff bed is thickly to very thickly bedded except for the lower 30 cm, which is 

thinly bedded. The lower 4m is light olive grey (5Y 6/1) whereas the upper 8m is 

reddened as a result of surface oxidisation. This tuff is poorly sorted, fragment supported, 

does not contain any matrix or cement, and has an average grain size of medium sand 

(coarse ash) (Fig. 5.26). The tuff is dominated (>85 vol. %) by angular to sub-rounded near 

opaque basaltic glass fragments, which contain abundant amygdales. Some of the larger 

fragments contain 1-2 mm long serpentinised euhedral and skeletal crystals of olivine. The 

tuff contains 10 vol. % angular basalt fragments with an average size of ca. 6 cm (lapilli) 

but a maximum fragment size of ca. 25 cm is noted. The tuff also contains sub-rounded to 

rounded lithic fragments of basalt (5 vol. %), which commonly contain serpentinised 

euhedral olivine phenocrysts set in a groundmass of very finely crystalline plagioclase 
feldspar laths and clinopyroxene. 

Unit 3 only crops out in Section II and is a ca. 5.5 m thick sequence of interbedded 

tuffaceous sandstones and volcaniclastic mudstones. Unit 3 is not observed in sections I 

and III, suggesting that it is a localised unit. However, due to the disruption of sills in 

Section I it is impossible to be certain whether the Unit 3 continues to the west. The 

sandstone beds range in thickness from 8 cm up to 2 m, with an average thickness of ca. 50 

cm (Fig. 5.27). The mudstone beds range in thickness from 1 cm up to 13 cm, with an 

average thickness of ca. 6 cm. The greenish black (5G 2/1) sandstone beds are poorly 

sorted and consist of sub-angular to sub-rounded highly palagonitised basaltic glass clasts 

(Figs. 5.28a-b). Due to the highly altered nature of the sandstone, clast margins have been 

obscured, although the unit appears to have an average clast size of medium sand, with 
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Fig. 5.25. Graphic logs of the Volcaniclastic Sandstone Formation (VSF) inbetween doleritic sills and 
Middle Basalt Formation (MBF) laves, Dysjarnar Traverse, p art of the larger Hvannhagi-LÖnin 
Traverse, ca. 2 km N of Tvoroyri, SuOuroy, Faeroe Islands. 
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Fig. 5.26. Photomicrographs of Unit 2, coarse tuff, from sections II & IIl, Dysjarnar Traverse, ca. 2 km N of 
Tveroyri, Suburoy, Faeroe Islands. All of the photomicrographs are under plane-polarised light. The tuff 
is poorly sorted, clast supported, with fragments having a maximum size of ca. 25 cm and an average size of 
coarse ash. (a) An opaque highly vesiculated basaltic glass fragment, most likely scoria. (b) to (d) The tuff 
is dominated by near opaque basaltic glass fragments. The largest of these fragments contain 
serpentinised euhedral and skeletal crystals of olivine. (e) The tuff contains less than 5 vol. % sub-rounded 
to rounded lithic fragments of basalt lava. The fragment is very finely crystalline and contains phenocrysts 
of serpentinised olivine set in a groundmass of plagioclase feldspar and clinopyroxene. 
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Fig. 5.27. Graphic log and views of the interbedded volcaniclastic sandstones and mudstones from Unit 3, 
Section II, Dysjarnar Traverse, ca. 2 km N of Tvoroyri, SuOuroy, Faeroe Islands. (a) Graphic log showing 
the alternation between the thicker sandstone beds and the thinner mudstones. (b) & (c) Photographs 

showing the in situ occurrence of the sandstone (S) and mudstone (M) beds. The sandstone beds range in 

thickness from 8 cm up to 2 m, with an average thickness of ca. 50 cm. The mudstone beds range in 

thickness from 1 cm up to 13 cm, with an average thickness of ca. 6 cm. The hammer is ca. 40 cm long. 
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Fig. 5.28. Photomicrographs of Unit 3, interbedded volcaniclastic sandstones and mudstones, Section II, 
Dysjarnar Traverse, ca. 2 km N of Tvoroyri, SuÖuroy, Faeroe Islands. (a) Photomicrograph of a 
volcaniclastic sandstone under plane-polarised light. The sandstone consists of highly altered basaltic 

glass clasts that have partially devitrified and have an average clast size of medium sand. The largest clasts 
commonly contain relatively fresh euhedral or skeletal crystals of olivine. (b) Same view as in (a) but under 
cross-polarised light. (c) Photomicrograph of a volcaniclastic mudstone under plane-polarised light. The 

mudstone has an average grain size of coarse silt. The mudstone appears to be made up of near opaque and 
orange-reddish basaltic palagonitised glass clasts. 
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clasts up to 2 mm in size. The basaltic glass clasts are either near opaque or murky brown 

and have partially devitrified. Some of the clasts contain laths of plagioclase feldspar ca. 

0.25 mm long and the largest clasts contain relatively fresh euhedral or skeletal crystals of 

olivine. The sandstones also contain sub-rounded reddish clasts of volcaniclastic mudstone. 

The unit is classified here as a tuffaceous sandstone because of the highly altered nature of 

the unit, which makes it difficult to tell whether the clasts have a pyroclastic or epiclastic 

mode of origin, although they are most likely epiclastic in origin. The very dusky red (I OR 

2/2) mudstones are moderately sorted, clast supported, and consists of sub-rounded near 

opaque to reddish-orange palagonitised basaltic glass clasts, with an average clast size of 

coarse silt (Fig. 5.28c). The mudstones have a distinctive conchoidal fracture. 

Unit 4 is a ca. 4m thick dusky red (5R 3/4) sequence of interbedded volcaniclastic 

conglomerates and sandstones, which are thickly bedded (20-50 cm) (Fig. 5.29). Unit 4 

does not occur in Section III and a doleritic sill truncates the base of the sequence in 

Section I. Some of the conglomerates contain as much as 25 vol. % cobble grade sub- 

rounded to sub-angular clasts averaging 7x2 cm, with maximum clast sizes reaching 22 x 

17 cm and elongated clasts are commonly aligned parallel to bedding. These clasts consist 

of coal, reddened mudstone, and basalt. The matrix of the conglomerates is composed of 

sand grade palagonitised basaltic glass material. The sandstone beds are thickly laminated 

with alternating reddish to creamy lamina, the majority of which fine upwards. The 

sandstones are poorly sorted, matrix supported, and have an average clast size of fine to 

medium sand (Fig. 5.30). The sandstones contain 40 vol. % of sub-rounded to angular near 

opaque basaltic glass clasts and the largest of these commonly exhibit cuspate edges and 

are highly vesiculated. Some of these clasts contain yellowish serpentinised euhedral 

olivine crystals. Very finely crystalline, sub-rounded, equigranular basalt accounts for ca. 
10 vol. % of the clasts in the sandstones. The sandstones also contain rounded lithic clasts, 

which are predominantly reddish volcaniclastic mudstones and sandstones (ca. 10 vol. %). 

The remaining 40 vol. % of the sandstones are made up of dirty brownish to orange sub- 

rounded palagonitised basaltic glass clasts which forms the matrix of the unit. 

Unit 5 is a very pale orange (1OYR 8/2) welded tuff, which ranges in thickness from ca. 2 

m in Section Ito ca. 4m in Section III. This tuff is poorly sorted and is characterised by its 

elongated dark brown flattened basaltic fiamme-like fragments (Fig. 5.31). These flamme 

define a planar foliation or eutaxitic texture. Typical sizes of the flamme are 15 x5 cm, 10 

x2 cm, and 25 x8 cm. The welded tuff also contains <10 vol. % angular fragments of coal, 

reddened mudstone, and basalt ranging in size from 0.5 cm to 10 cm. In thin section, the 

tuff is composed of >90 vol. % orange cuspate glass shards sintered together, with an 
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Fig. 5.29. Views of Unit 4, interbedded volcaniclastic conglomerates and sandstones, from sections I and II, 
Dysjarnar Traverse, ca. 2 km N of Tvoroyri, Suburoy, Faeroe Islands. (a) A conglomerate bed which is 
overlain by a sandstone bed. The beds are thickly bedded, ranging in thickness from 20 cm up to 50 cm. (b) 
The conglomerate beds are matrix supported and commonly contain as much as 25 vol. % cobble grade 
sub-rounded to sub-angular clasts. The clasts have an average size of 7x2 cm, with maximum clast sizes 
reaching 22 x 17 cm. The cobble grade clasts consist of coal, reddened mudstones, and basalt lava. 
Elongated clasts are commonly aligned parallel to bedding. (c) & (d) The sandstone beds are thickly 
laminated with alternating reddish and creamy lamina. The majority of the sandstone beds grade 
normally upwards. The hammer is ca. 40 cm long and the compass is ca. 10 x6 cm. 
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Fig. 5.30. Photomicrographs of the volcaniclastic sandstone beds from Unit 4, sections 1 and III, Dysjarnar 
Traverse, ca. 2 km N of Tvoroyri, Suburoy, Faeroe Islands. All of the photomicrographs are under plane- 
polarised light. (a) & (b) The sandstone beds are poorly sorted, matrix supported and have an average 
grain size of fine to medium sand. The sandstones are dominated by sub-rounded to angular near opaque 
and orange palagonitised basaltic glass clasts. The largest of the near opaque clasts are highly vesiculated, 
suggesting that they are scoria. The variability in colouration of the altered glass clasts suggests that they 
were derived from numerous sources. The sandstones also contain sub-rounded basalt clasts as well as 
clasts ofvolcaniclastic sandstone and mudstone. (c) Some of the basaltic scoria clasts contain serpentinised 
yellowish euhedral olivine crystals. 
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Fig. 531. Views of Unit 5, partially welded tuff, Dysjarnar Traverse, ca. 2 km N of Tvoroyri, SuOuroy, 
Faeroe Islands. The tuff is very pale orange and is characterised by elongated dark brown flattened 
basaltic flamme-like fragments. These flamme define a planar foliation or eutaxitic texture. Typical sizes 
of the flamme are 15 x5 cm, 10 x2 cm, and 25 x8 cm. The welded tuff also contains angular fragments of 
coal, reddened mudstones, and basalt ranging in size from 0.5 to 10 cm. The hammer is ca. 40 cm long and 
the compass is ca. 10 x6 cm. 
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average size of medium sand, although shards up to 1 mm are noted (Fig. 5.32). These 

large shards usually contain yellowish serpentinised euhedral to subhedral olivine crystals. 

The shards are highly vesiculated and commonly contain laths of plagioclase feldspar 0.1 

mm long. The flamme are morphologically similar to the rest of the tuff except that the 

glass shards are dark brown-near opaque rather than orange. The boundaries between the 

orange `host' tuff and the opaque flamme are sharp and lobate. The lack of mixing between 

the two types of glass suggests that the flamme had formed a cooled crust and behaved 

plastically at the time of formation. The differences in colouration (opaqueness) between 

the `host' tuff and the flamme may be the consequence of different cooling rates. 

Unit 6 is a greyish red (1OR 4/2) thickly to very thickly bedded volcaniclastic 

conglomerate, which is ca. 1.6 m thick in Section I and ca. 9m thick in Section III. This 

conglomerate contains ca. 15 vol. % of granule to pebble grade clasts. These consist of 

angular basalt clasts, which range in size between 1 and 10 cm and sub-rounded coal and 

reddened tuffaceous sandstone/mudstone clasts, which range in size from 1 to 20 cm. The 

coal and tuffaceous clasts occur in the lower parts of the conglomerate beds and appear to 

fine upwards. In thin section, the conglomerate is poorly sorted, generally matrix supported 

and has an average matrix grain size of fine to medium sand (Fig. 5.33). It contains ca. 60 

vol. % sub-rounded, near opaque basaltic glass clasts and the largest clasts commonly 

contain abundant amygdales. The conglomerate also contains ca. 20 vol. % sub-rounded 

dirty yellow to orange palagonitised basaltic glass clasts, which are commonly vesiculated, 

and some contain laths of plagioclase feldspar. The remaining ca. 20 vol. % of the 

conglomerate is made up of sub-rounded clasts of basalt. These clasts are commonly 

greyish, very finely crystalline, consisting of rare phenocrysts of plagioclase feldspar in a 

groundmass of plagioclase feldspar, clinopyroxene and oxides. The top ca. 25 cm of the 

uppermost conglomerate bed has been reddened due to oxidation. 

5.3.3.3 Provenance 

The VSF lithologies within the Dysjarnar Traverse preserve fragments/clasts from 

pyroclastic and epiclastic processes. The pyroclastic lithologies all contain palagonitised 

basaltic glass fragments, most probably derived from a proximal vent, although a source 

from further a field cannot be totally be ruled out. The epiclastic lithologies are composed 

of reworked ash and lapilli grade clasts and the range in surface oxidation states of these 

clasts indicate that numerous pyroclastic fall deposits may have been eroded at the same 

time. The abundance of reworked glass clasts containing olivine phenocrysts tentatively 

implies that the basal olivine-phyric vitric tuff was eroded when it was still an 
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Fig. 5.32. Hand specimen photograph and photomicrographs of Unit 5, partially welded tuff, Dysjarnar 
Traverse, ca. 2 km N of Tvoroyri, Suöuroy, Faeroe Islands. (a) Dark brown flamme contained within a very 
pale orange vitric tuff. The tiny (ca. 1 mm) black angular crystals observed throughout the vitric tuff are 
serpentinised olivine crystals. All of the photomicrographs are under plane-polarised light. (b) The tuff is 
very poorly sorted and clast supported and is composed of >90 vol. % orange palagonitised basaltic 
cuspate glass shards. The largest glass shards contain yellowish serpentinised euhedral to subhedral 
olivine crystals. The shards are usually highly vesiculated and commonly contain laths of plagioclase 
feldspar. (c) The flamme are morphologically similar to the main orange tuff `host' except that the glass 
shards are dark brown-near opaque. (d) & (e) The contact between the orange `host' tuff and the flamme is 
sharp and lobate. The lack of mixing between the two types of glass suggests that the flamme had formed a 
cooled crust and behaved plastically at the time of formation. (f) The flamme contain opaque basaltic glass 
shards, which commonly contain laths of plagioclase feldspar. (g) The tuff also contains rare reddened 
angular lithic fragments of volcaniclastic mudstone. 
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Fig. 5.33. Photomicrographs of Unit 6, volcaniclastic conglomerate, from sections I and III, Dysjarnar 
Traverse, ca. 2 km N of Tvoroyri, SuOuroy, Faeroe Islands. All of the photomicrographs are under plane- 
polarised light. (a) & (b) The conglomerate is dominated by sub-rounded near opaque basaltic glass clasts 
and the largest are usually amygdaloidal, filled with zeolitic group minerals, these clasts are most likely 

scoria. The conglomerate also contains ca. 20 vol. % orange palagonitised basaltic clasts. (c) An orange 
basaltic glass clast that is vesiculated and contains laths of plagioclase feldspar. The clast has cuspate 
margins, the remains of former bubble walls. 
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unconsolidated deposit. The coarser volcaniclastic deposits have a greater abundance of 
basalt clasts and the range in surface oxidation states of these clasts suggests that numerous 

exposed lava flows were being eroded at the same time. Some of the volcaniclastic 
lithologies contain clasts of coal and volcaniclastic mudstone, most likely derived from the 

erosion of the CBF. 

5.3.3.4 Environment of Deposition 

The Dysjarnar Traverse contains lithologies that were deposited in a subaerial 

environment. The intercalation of pyroclastic and epiclastic lithologies indicates that the 

two processes were occurring simultaneously. The pyroclastic lithologies occur as tuff 

beds, one of which is characteristically welded, containing flamme in a eutaxitic texture. 

The tuffs are extremely homogenous, composed entirely of palagonitised basaltic glass, 

usually containing euhedral phenocrysts of serpentinised olivine. The development of a 

eutaxitic texture and preservation of the initial porosity of the deposit is consistent with the 

tuff being only partially welded (Cas & Wright 1987), which has implications on 

controlling factors such as distance from vent, accumulation rate and temperature (Cas & 

Wright 1987). Welded tuffs are usually formed where accumulation rates of pyroclastic 

fallout are high enough to prevent convective and radiative cooling, which during burial 

allows the fragments to cool slowly by conduction because they are insulated, this allows 

the fragments to behave plastically after burial and promotes the development of flamme 

(Healey 1963; Schmincke 1967; Sparks & Wright 1979; Suthren & Fumes 1980; Wright 

1980; Wolff & Wright 1981; Cas & Wright 1987; Calderone et at. 1990; Freundt & 

Schmincke 1995). High accumulation rates occur in close proximity to vents, therefore, as 

distance increases the accumulation rate decreases and consequently the degree of welding 

diminishes (Cas & Wright 1987). Consequently, it seems most likely that the partially 

welded tuff in the Dysjarnar Traverse was formed proximal to the vent, although the exact 

distance is undeterminable. 

The epiclastic lithologies within the Dysjarnar Traverse range from volcaniclastic 

mudstones through to conglomerates. The deposits are commonly bedded, heterogeneous 

and poorly sorted, suggesting they were formed by epiclastic processes (cf. Collinson 

1996; Talbot & Allen 1996; Tucker 1996a; b). Unit 3, a sequence of interbedded 

sandstones and mudstones, forms a localised unit within Section II. This alternation of 

sandstone and mudstone beds implies fluctuating water flow energies (cf. Collinson 1996; 

Talbot & Allen 1996; Tucker 1996a; b). The sharp-based nature and thicknesses less than 2 

m of the sandstone beds coupled with the interbedding of mudstones indicates that the 
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sequence most likely formed from catastrophic overbank flows on floodplains (cf. Steel & 

Aasheim 1978; Collinson 1996). This suggests that there was a fluvial channel in close 

proximity to the deposits and that this channel underwent periods of increased stream flow, 

most likely the result of increased rainfall (cf. Steel & Aasheim 1978; Collinson 1996). 

The alternation of sandstone and mudstone beds implies a recurring pattern of flooding 

episodes most likely reflecting seasonal variations (cf. Collinson 1996; Tucker 1996a; b). 

The remaining volcaniclastic lithologies have tabular geometries and a lateral extent of at 

least 400 m. This coupled with the rocks being generally matrix supported, poorly sorted 

and having planar laminations/bedding structures suggests that they may represent deposits 

from a lahar event (cf. Smith 1991; Smith & Lowe 1991). If this is correct, the 

volcaniclastic rocks were formed by a combination of volcaniclastic debris and 

hyperconcentrated flow processes (cf. Janda et al. 1981; Pierson & Scott 1985; Lowe et al. 

1986; Naranjo et al. 1986; Smith 1986; Rodolfo 1989; Smith & Lowe 1991; Coussot & 

Meunier 1996; Sohn et al. 1999; Kessler & Bedard 2000; Lavigne et al. 2000; Lirer et al. 

2001). The conglomerates most likely represent the volcaniclastic debris flow end of the 

spectrum (cf. Pierson & Scott 1985; Smith 1986; Smith & Lowe 1991; Bahk & Chough 

1996; Coussot & Meunier 1996; Sohn et al. 1999; Lirer et al. 2001) and the sandstones 

represent the hyperconcentrated flows (cf. Pierson & Scott 1985; Smith 1986; Smith & 

Lowe 1991; Bahk & Chough 1996; Coussot & Meunier 1996; Sohn et al. 1999; Lirer et al. 

2001; Kataoka & Nakajo 2002). The occurrence of these volcaniclastic debris and 

hyperconcentrated flow deposits imply that sedimentation rates were high, most likely due 

to an increase in pyroclastic debris, suggesting that these deposits were rapidly emplaced 

during syn-eruption period(s) (cf. Smith 1987b; 1988; Smith & Fritz 1989; Smith 1991; 

Smith & Lowe 1991; Bahk & Chough 1996). To sustain the lahar(s) abundant surface 

water was required implying that there was heavy rainfall at the time of the sedimentary 

event (cf. Smith & Lowe 1991). 

5.3.4 Summary 

The Hvannhagi Lönin Traverse preserves a sequence, from the upper section of the LBF, 

through the CBF and VSF to the MBF. The base of the sequence consists of an 

agglomerate deposit formed in close proximity to the Stapin Vent, believed to be of LBF 

age. The vent is mantled by a thin veneer of shales and coals of the CBF. Numerous 

doleritic sills have disrupted the CBF and VSF and the true thicknesses of the formations 

in this area cannot be determined. The VSF is at least 26 m thick in the Dysjarnar Traverse 

and preserves lithologies of pyroclastic and epiclastic origins that were deposited within a 
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terrestrial environment. The occurrence of a partially welded tuff implies the close 

proximity of a vent to allow low to moderately high accumulations of pyroclastic fallout to 

enable the development of a welding fabric. The volcaniclastic lithologies within the 

traverse record periods of high water discharge, leading to the formation of floodplain and 

lahar deposits. The volcaniclastic lithologies record an inter-eruption phase consisting of 

floodplain deposits reflecting fluctuating water flow energies and a low abundance of 

volcanic debris. The cyclic nature of the floodplain deposits implies wet and relatively dry 

periods, i. e. seasonal variations. This abruptly changes to a syn-eruption phase that sees a 

marked influx of coarse volcanic debris deposited as sheet-like bodies during lahar events, 

i. e. major floods. 

5.4 ReyOibarmur-Hvalba Traverse 

The traverse is ca. 1.8 km long and extends from Reyöibarmur cliff section in the east to 

the harbour at Hvalba in the west (Fig. 5.1). The traverse dips towards the ENE at a few 

degrees. Approximately 1.4 km of the traverse east from Hvalba is disrupted by doleritic 

sills that commonly have apophyses extending into the overlying VSF. The VSF is 

overlain by, and sometimes transitional with, lava flow units of the MBF (Rasmussen & 

Noe-Nygaard 1970b). The base of the MBF occurs at a height of 70 m above sea level in 

this traverse. Good exposure of the VSF occurs at the Reyöibarmur cliff section. 

5.4.1 Reydibarmur Section 

5.4.1.1 Overview of Section 

The Reyöibarmur cliff section occurs between 1.4 and 1.8 km NE of Hvalba, Suburoy (Fig. 

5.34). The section is ca. 40 m thick and dips to the ENE. The base of the section consists 

of a greenish-grey peperite sequence overlain by reddish lapillistones and tuffs. The west 

of the section is juxtaposed against a doleritic sill(s). 

5.4.1.2 Lithology & Petrography 

The base of the section consists of a ca. 9m thick greenish-grey conglomerate-breccia 

composed of a mixture of basalt and sediment and having features consistent with having 

formed as a peperite (cf. Brooks et al. 1982; Kokelaar 1982; Walker & Francis 1986; 

Busby-Spera & White 1987; Cas & Wright 1987; McPhie 1993; McPhie et al. 1993; 

Hanson & Hargrove 1999; Rawlings et al. 1999; Doyle 2000; White et al. 2000; Cas et al. 
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2001; McClintock & White 2002; Skilling et al. 2002; Squire & McPhie 2002). The 

contact between the doleritic sill(s) and the peperite sequence is not observed due to steep 

inaccessible, vegetated cliffs. However, moving eastwards away from the coherent sill 

domain, the peperite sequence goes from being a close-packed blocky to a dispersed 

blocky-fluidal peperite. The close-packed blocky breccia is at least several metres thick 

and consists of dominantly fragment supported, hence the term close-packed, angular 

basaltic fragments, which have a maximum size of ca. 16 cm and an average size of ca. 4 

cm (Fig. 5.35). The blocky fragments do not form a jigsaw-fit pattern and are randomly 

orientated and are set in a matrix of more highly comminuted basalt. 

The close-packed blocky peperite is transitional with the dispersed blocky-fluidal peperite. 

The dispersed blocky-fluidal peperite is poorly sorted and has a maximum fragment size of 

a few metres. This peperite consists of a mixture of basaltic and sedimentary fragments, 

which are not fragment supported and hence the use of the term dispersed. The basalt 

fragments have blocky, platy and fluidal shapes (cf. Skilling et al. 2002) (Fig. 5.36a-c) and 

have a maximum size of 1.0 x 0.5 m and an average size of lapilli. The fragments range 

from massive to vesicular-/amygdaloidal-rich basalt. A few fluidal fragments are zoned, 

having a highly vesiculated rim and vesicle-poor core (Fig. 5.36a). The sedimentary 

fragments consist of coal and volcaniclastic claystone fragments. The claystone fragments 

are harder to identify because of their basaltic composition, which makes them resemble 

basaltic fragments on first appearance. However, one such volcaniclastic claystone 

fragment (ca. 40 x 40 cm) is identified by its alternating green/grey layers, interpreted here 

to represent original bedding (Fig. 5.36d). The coal fragments are found within a3 in thick 

section of the dispersed blocky-fluidal peperite (Figs. 5.37 & 5.38). The coal fragments 

have a maximum size of 2.5 x 0.7 in and range from reddish-brown shaly material to black 

vitreous coal. The fragments are usually tabular in shape, commonly flat-lying and are 

aligned parallel to each other, most likely representing the original bedding orientation. 

Four tabular coal fragments form what appears to be a ca. 9 in long near-horizontal, 

discontinuous coal seam, but with ca. 2.5 in of missing coal. The margins to the coal 

fragments appear to be invaded by dykes of basalt. In addition, `dykes' of coal invade the 

matrix of comminuted basalt, coal and volcaniclastic claystone (Fig. 5.37e-h). Other shaly- 

coal fragments have the appearance of having been stretched and deformed; one such 

fragment forms a sinuous shape ca. 1 in long, with the upper corner hinged around a fluidal 

basaltic fragment (Fig. 5.38d). 

Overlying the dispersed blocky-fluidal peperite are light brown (5YR 5/6) lapillistones and 

tuffs with a thickness of at least 20-30 m (Fig. 5.39). The lapillistones and tuffs are poorly 
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Fig. 5.35. Views of the close-packed blocky peperite from the Reyöibarmur cliff section, ca. 1.6 km NE of 
Hvalba, Su6uroy, Faeroe Islands. The blocky peperite consists of basaltic fragments, which have a 
maximum size of ca. 16 cm and an average of ca. 4 cm. The blocky fragments do not form a jigsaw-fit 

pattern and are set in a matrix of more highly comminuted basalt. The hammer is ca. 40 cm long and the 

pens are ca. 16 cm in length. 
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Fig. 5.36. Views of the dispersed blocky-fluidal peperite from the Reybibarmur cliff section, ca. 1.6 km NE 

of Hvalba, Suburoy, Faeroe Islands. (a) Basaltic fragments within the peperite, which have blocky, platy 
and fluidal shapes. One of the fluidal fragments (highlighted in yellow) has a highly vesiculated rim and a 
vesicle poor core. The peperite also contains a reddened volcaniclastic mudstone clast (VM). (b) A platy 
basaltic fragment. (c) A highly vesiculated fluidal basaltic fragment. (d) A volcaniclastic claystone 
fragment (highlighted in yellow) that is ca. 40 x 40 cm. The fragment is identified as a claystone because of 
the alternating green/grey layers, representing original bedding. The compass is ca. 10 x6 cm. 
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Fig. 537. Views of the dispersed blocky-fluidal peperite from the Reybibarmur cliff section, ca. 1.6 km NE 
of Hvalba, Suöuroy, Faeroe Islands. (a) to (e) Coal fragments are found within the lower 3m of the 
dispersed peperite. The fragments have a maximum size of 2.5 x 0.7 m and range from reddish-brown 
shaly material to black coal. The coal fragments are tabular in shape and are commonly aligned parallel to 
each other, possibly representing the original bedding orientation. (f) to (h) Dykes of fluidal basalt 
invading the coal fragments and `dykes' of coal invading the comminuted basalt, coal and claystone 
matrix. The hammer is ca. 40 cm long, the pens are ca. 16 cm long, the compass is ca. 10 x6 cm and the lens 
cap is ca. 6 cm across. 
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Fig. 5.38. Views of the dispersed blocky-fluidal peperite from the Reybibarmur cliff section, ca. 1.6 km NE 
of Hvalba, Suöuroy, Faeroe Islands. (a) to (c) The dispersed peperite contains blocky, platy and fluidal 
basaltic fragments as well as sedimentary fragments (e. g. coal). (d) An irregular shaped shaly-coal 
fragment, which is ca. 1m long. The hammer is ca. 40 cm long and the compass is ca. 10 x6 cm. 
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Fig. 5.39. Views of reddened lapillistones and tuffs from the Reyöibarmur cliff section, ca. 1.6 km NE of 
Hvalba, Suöuroy, Faeroe Islands. (a) The lapillistones and tuffs are poorly exposed and are between 20 and 
30 m thick. (b) The lapillistones and tuffs form thin to medium beds (4-15 cm) that are normally graded 
and have a maximum fragment size of 12 x 10 cm. The lens cap is ca. 6 cm across. 
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Fig. 5.40. Photomicrographs of a tuff from the Reybibarmur cliff section, ca. 1.6 km NE of Hvalba, 
Suöuroy, Faeroe Islands. Both photomicrographs are under plane-polarised light. (a) The tuffs are 
extremely homogeneous containing angular orange near isotropic palagonitised basaltic glass shards. 
Larger fragments are amygdaloidal and sometimes contain greenish euhedral-subhedral needle shaped 
serpentinised olivine crystals (OL). (b) The smaller glassy shards have cuspate margins, the remains of 
bubble walls. 
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exposed due to the steep vegetated cliffs. Where these units are exposed they consist of 

poorly sorted thin to medium beds (4-15 cm), which are normally graded and have a 

maximum fragment size of 12 x 10 cm. In thin section, the lapillistones and tuffs are 

extremely homogeneous, containing angular orange near isotropic palagonitised basaltic 

glass fragments (Fig. 5.40). The largest fragments are commonly highly vesiculated and 

the smaller angular fragments have cuspate margins. Rare (ca. 5 vol. %) glass fragments 

containing greenish euhedral-subhedral needle shaped altered olivine crystals are dispersed 

throughout the unit. 

5.4.1.3 Mode of Formation of the Peperite Sequence 

The peperite sequence at the base of the section has features consistent with having formed 

by the intrusion of magma (a sill) into wet poorly consolidated sediments (cf. Brooks et al. 

1982; Kokelaar 1982; Walker & Francis 1986; Busby-Spera & White 1987; Cas & Wright 

1987; McPhie 1993; McPhie et al. 1993; Hanson & Hargrove 1999; Rawlings et al. 1999; 

Doyle 2000; White et al. 2000; Cas et al. 2001; McClintock & White 2002; Skilling et al. 

2002; Squire & McPhie 2002). The presence of coal and volcaniclastic claystone 

fragments within the peperite suggests that the host sedimentary unit belongs to the CBF. 

The peperite has formed by the disintegration or fragmentation of the invading sill to form 

juvenile fragments and their mingling with the CBF host. The presence of vesiculated 

juvenile fragments of basalt, the majority of which are found in the dispersed peperite, a 

common feature of the Permian peperites of Kiama, Australia (Doyle 2000), suggests that 

the magma (sill) was intruded at a shallow depth (cf. Skilling et al. 2002). The transition 

from a close-packed blocky peperite to a dispersed blocky-fluidal peperite away from the 

sill domain is noted from the peperites of the Middle Jurassic Tuttle Lake Formation in the 

northern Sierra Nevada, California (Hanson & Wilson 1993). 

Initially the magma (ca. 1200°C, low viscosity) from the sill(s) invaded the CBF host 

producing fluidal juvenile basalt fragments under a ductile fragmentation regime (cf. 

Wohletz 1983; Busby-Spera & White 1987; Rawlings et al. 1999; Donaire et al. 2002; 

Skilling et al. 2002; Squire & McPhie 2002; Wohletz 2002). To maintain the high 

temperatures of the invading magma, the prevention of direct contact with the pore fluids 

is essential. This requires the formation of stable insulating vapour films at the magma-host 

sediment interface (Kokelaar 1982). Vapour films are produced above a certain critical 

temperature, where film boiling occurred along the contact surfaces of the invading magma 

(Mills 1984). These insulating vapour films will prevent direct magma-pore fluid contact 

and promote ductile behaviour of the intruding magma. 
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As the insulated magma invaded the CBF host it eventually came into contact with coal 

seams. The coal is thermally unstable and would have reacted differently to the magma 
than the volcaniclastic claystones. Rapid heating of the coal by the magma would have 

promoted devolatilisation and dewatering which would have contributed to the thermal 

metamorphism and rank elevation of coal compared to coal elsewhere in the CBF (cf. 

McClintock & White 2002). As the coal was heated above temperatures of ca. 300°C (cf. 

Stach et al. 1975) it progressively devolatilised, resulting in a softening of the coal whilst 

maintaining a high viscosity (cf. Lumsden 1967; Nomura et al. 1999). A decrease in the 

volatile content and/or higher heating rates led to the coal having a lower viscosity (cf. 

Stach et al. 1975). The permeability of the coal was dependant upon the level of stress 

exerted upon it, the higher the stress the higher the permeability, which in turn hinders 

devolatilisation (cf. Thomas 1992). Therefore, the coal underwent rapid and/or prolonged 
heating, with accompanying devolatilisation, under relatively low stresses, which resulted 
in the coal behaving plastically (cf. McClintock & White 2002). Consequently, this process 
has led to the mutual injection of fluidal basalt into the coal fragments and vice versa, as 
seen in the dispersed peperite at Reybibarmur. 

The blocky fragments have formed as a result of brittle fragmentation (cf. Skilling et at 
2002, and references therein). This type of fragmentation is generated by a combination of 

quenching, mechanical stresses, and by hydromagmatic explosions, where insulating 

vapour films did not develop and consequently allowed the rapid transfer of magmatic heat 

to the pore fluid (cf. Kokelaar 1982). The vapour films will not develop where the magma 
has cooled sufficiently below the critical temperature (Mills 1984). Quenching commonly 
involves the in situ brittle fragmentation as a consequence of thermal stresses induced by 

cooling contraction (Kokelaar 1986). Quench fragmentation is associated with jigsaw fit 

blocky peperites (Skilling et at 2002, and references therein). Mechanical stresses lead to 
brittle fragmentation of more viscous parts of an intrusion in response to the injection of 
fresh magma (Kokelaar 1986). Hydromagmatic explosions occur where magma engulfs 

pore fluid-sediment mixtures, which results in the magma fragmenting and being dispersed 

by the rapidly expanding super-heated pore fluid (cf. Kokelaar 1986). This process is 

known as `bulk interaction steam explosion' by Kokelaar (1986) or `clast blocking' by 

Busby-Spera & White (1987). 

The mixture of juvenile basalt fragment shapes (blocky, platy and fluidal) in the dispersed 

peperite is also a common feature associated with peperites (Brooks et at 1982; Kokelaar 

1982; Busby-Spera & White 1987; McPhie 1993; Hanson & Hargrove 1999; Doyle 2000; 

Skilling et al. 2002; Squire & McPhie 2002). As the blocky fragments form at lower 
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temperatures it suggests that they formed after the fluidal fragments (cf. Squire & McPhie 

2002). The presence of blocky fragments in the dispersed peperite may be the consequence 

of the propagation of cooler lobes, which fragmented in a brittle fashion. Hydromagmatic 

explosions may also have produced and distributed the blocky fragments; this may have 

been aided by the devolatilisation of the coal fragments (cf. Kokelaar 1986; Busby-Spera 

& White 1987; Hanson & Hargrove 1999; Squire & McPhie 2002). 

The lack of a jigsaw fit texture in the close-packed blocky peperite suggests that the 

fragments were not formed by quenching but by mechanical stresses or hydromagmatic 

explosions (cf. Squire & McPhie 2002). The blocky fragments in the close-packed peperite 

may have formed by the later brecciation of previously formed ductile fragments. It is 

unlikely that one process led to the formation of the close-packed blocky peperite, but 

more likely a combination of the processes. 

5.4.1.4 Provenance 

The Reybibarmur Section consists predominantly of coal and volcaniclastic claystone 

fragments derived from the CBF. The compact basalt fragments are presumed to be from 

the brecciation of the sill located to the west of the section rather than from the brecciation 

of lava flows. The tuffs and lapillistones overlying the peperite sequence consist of angular 

palagonitised basaltic glass fragments inferred to be derived from a localised vent due to 

the coarseness of the deposits. 

5.4.1.5 Environment of Deposition 

The ReyÖibarmur Section consists of pyroclastic rocks formed by different processes. The 

peperite sequence is the result of magma, in the form of a sill, invading an unlithified 

sequence from the CBF. The range of brecciation textures observed within the peperite 

suggests that the sill was intruded at shallow depths into water-saturated coal seams and 

claystones. The peperites are overlain by pyroclastic fallout deposits that have not been 

invaded by the sill(s), indicating that the peperite formation, i. e. the intrusion of the sill(s), 

took place before the deposition of the lapillistones and tuffs. The pyroclastic fallout 

deposits have been deposited in a subaerial environment and have been unaffected by the 

process of water. This is supported by the lack of sideromelane and quench-type textures 

(Fisher & Schmincke 1984; Cas & Wright 1987; McPhie et al. 1993). 
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5.5 Synthesis 

The Volcaniclastic Sandstone Formation comprises both pyroclastic and epiclastic 
lithologies that were deposited in a terrestrial environment (Fig. 5.41). Three traverses 

were investigated in detail on Suburoy and six pyroclastic and sedimentary sequences were 
identified. Figure 5.42 is a correlation of the idealised sections from the Reyöibarmur 

Section, the Svalbaröaä-Myllä Traverse, and the Dysjarnar Traverse. At the base of all 

three is Unit 1, a sequence of pyroclastic fall deposits consisting of tuffs and lapillistones, 

dominated by olivine-phyric, palagonitised basaltic glass. These deposits were 

subsequently reworked by fluvial systems and also occur as clasts within the overlying 

units of the VSF. 

Units 2,4, and 6, overlying the tuffs and lapillistones of Unit 1, range from mudstones 

through to polylithic conglomerates and are predominantly composed of rounded ash and 
lapilli clasts. The conglomerates also contain clasts of coal, volcaniclastic mudstone and 
basalt. These lithologies are interpreted as having been deposited as laterally extensive 

sheets from lahar events (cf. Smith 1991; Smith & Lowe 1991). The development of planar 

laminations, the degree of rounding of the clasts, the poorly sorted and matrix supported 

nature of the deposits suggest that they were deposited from a combination of 

volcaniclastic debris and hyperconcentrated flow processes (cf. Janda et al. 1981; Pierson 

& Scott 1985; Lowe et al. 1986; Naranjo et al. 1986; Smith 1986; Rodolfo 1989; Smith & 

Lowe 1991; Coussot & Meunier 1996; Sohn et al. 1999; Kessler & Bedard 2000; Lavigne 

et al. 2000; Lirer et al. 2001). The abundance of coarse volcanic debris within these 

deposits suggests that deposition occurred during syn-eruption periods when pyroclastic 

activity was rapidly adding debris to the surrounding land surface (cf. Smith 1987a; b; 

1988; Smith & Fritz 1989; Smith 1991; Bahk & Chough 1996). If, the bulking of the 

volcanic debris and the destabilisation of the land surface, by the destruction of vegetation 
during volcanic activity, was coupled with high rainfall/surface water then mobilisation of 

the debris would have resulted in high aggradation rates producing turbulent flood surges 
(sheet floods) through volcaniclastic debris and hyperconcentrated flow processes (cf. 

Smith 1986; 1987a; b; 1988; Smith & Fritz 1989; Smith 1991; Smith & Lowe 1991; 

Haughton 1993; Bahk & Chough 1996; Nakayama & Yoshikawa 1997). 

Unit 3 consists of sharp-based sandstones and mudstones. The sandstone beds have 

thicknesses of less than 2m and are intercalated with mudstones, which are features 

commonly associated with floodplain deposits (cf. Steel & Aasheim 1978; Collinson 1996) 
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and were most likely formed by catastrophic overbank flows during periods of high water 
discharge (cf. Steel & Aasheim 1978; Collinson 1996). The alternating nature of the 

sandstones and mudstones indicates that the flooding events occurred periodically, most 
likely associated with increased seasonal rainfall (cf. Collinson 1996). The lack of 

abundant coarse volcanic debris within these floodplain deposits suggests that they were 
formed during inter-eruption periods under `normal' alluvial processes (cf. Smith 1991; 

Bahk & Chough 1996) or, more likely they represent the initial stages of a lahar event 
(Smith & Lowe 1991). 

The occurrence of Unit 5, olivine-phyric vitric tuffs, within the sequence implies that 

sedimentation and volcanic activity were contemporaneous. The correlation between the 

partially welded tuffs in the Dysjarnar Traverse with the non-welded tuffs in the 

Svalbaröaä-Mylla Traverse (Fig. 5.42), if correct, has implications for the direction of the 

source vent(s). As the degree of welding in tuffs is dependant on the accumulation rate, 

with a higher rate of accumulation typically resulting in a greater degree of welding (Cas & 

Wright 1987), then the deposit in the Dysjarnar Traverse is interpreted as being proximal 

relative to that of the SvalbarÖaa-Myllä Traverse. Consequently, this suggests that the vent 

was located in an easterly direction from the Dysjarnar Traverse. 

The interfmgering of MBF flow units at the top of the HvannagjGgv Section suggests that 

the lavas were flowing from west to east, and that the volcaniclastic lithologies were water- 

saturated at the time of eruption, producing blocky peperites. 

The base of the Reyöibarmur Section consists of a peperite sequence, which formed in 

`host' strata belonging to the Coal-bearing Formation (CBF). The pyroclastic fall deposits 

overlying the peperite sequence have not been disrupted by the intruding magma, implying 

that the peperite development occurred prior to the deposition of these fall deposits. Within 

the main outcrop of the peperite there is a progression of lithologies away from the sill that 

caused the brecciation. Close to the sill is a close-packed blocky variety, whereas further 

away the peperite is of the dispersed, block-fluidal type. Such a progression is identified 

within peperites from the Middle Jurassic Tuttle Lake Formation, northern Sierra Nevada, 

California (Hanson & Hargrove 1999) and other peperite domains (Skilling et al. 2002, 

and references therein). The close-packed blocky peperite is characterised by abundant 
fragment-supported, angular basalt fragments contained within a matrix of more highly 

comminuted basalt. The dispersed blocky-fluidal peperite is characterised by blocky, platy, 
fluidal-shaped basalt fragments and angular fragments from the CBF (coal and 

Chapter 5 Volcaniclastic Sandstone Formation Page 195 



Simon R. Passey 

volcaniclastic claystone), which are supported by a matrix of highly comminuted basalt 

and sediment. 

Initially, the sill invaded the CBF `host' under a ductile fragmentation regime, producing 
fluidal fragments which were achieved by the development of insulating vapour films (cf. 

Kokelaar 1982; Wohletz 1983; Mills 1984; Busby-Spera & White 1987; Rawlings et al. 
1999; Donaire et al. 2002; Skilling et al. 2002; Squire & McPhie 2002; Wohletz 2002). 

When the insulated apophyses of the sill came in contact with the coal within the CBF 

`host', the coal acted plastically because it rapidly devolatised due to it being thermally 

unstable (cf. Lumsden 1967; Stach et al. 1975; Thomas 1992; Nomura et al. 1999; 

McClintock & White 2002). This led to the mutual injection of fluidal basalt into the coal 

and vice versa, similar to the coal peperites observed at Coombs Hills, Antarctica 

(McClintock & White 2002). 

Once the sill had cooled sufficiently, vapour films were unable to further develop, leading 

to the brittle fragmentation of newly emerging sill apophyses, thus producing angular 
basalt fragments. The lack of jigsaw fit blocky peperites implies that the brittle 

fragmentation did not form through quenching (cf. Skilling et al. 2002, and references 

therein), and therefore more likely occurred through the process of bulk interaction steam 

explosions (also known as clast blocking) and mechanical stresses (cf. Kokelaar 1986; 

Busby-Spera & White 1987). The bulk interaction steam explosion process required the 

engulfing of water-saturated `host' sediment, which would have rapidly devolatised, 

causing the fragmentation of the engulfing magma and dispersing the resulting angular 

fragments throughout the `host' sediment (cf. Kokelaar 1982; 1986; Busby-Spera & White 

1987). This process may have been enhanced by the devolatilisation of the coal fragments 

(cf. Kokelaar 1986; Busby-Spera & White 1987; Hanson & Wilson 1993; Squire & 

McPhie 2002). 
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6 Middle Basalt Formation 

In this chapter, the facies architectures are described and interpreted for the lava flows of 

the Middle Basalt Formation (MBF) and environments of eruption are proposed. As with 

the Lower and Upper basalt formations previous work has concentrated on the petrology 

and geochemistry of the lavas and little attention has been given to the interlava 

lithologies. Five new sections containing volcaniclastic lithologies are described and 
interpreted and environments of deposition are presented. The interaction between the lava 

flows and the volcaniclastics is also examined. The lithologies of an accessible ̀ vent' 

locality of Rasmussen & Noe-Nygaard (1969; 1970b) is re-evaluated using current 

volcaniclastic classification schemes and this work shows that the `vent' is better described 

as a volcaniclastic conglomerate of epiclastic origin. 

6.1 Distribution 

The Middle Basalt Formation (MBF) reaches a maximum stratigraphic thickness of ca. 
1,400 m in the vicinity of Vestmanna, Streymoy (Rasmussen & Noe-Nygaard 1970b; 

Waagstein 1988). The MBF crops out on all the islands except Mykines, N61soy, Svinoy, 

and Fugloy (Figs. 1.3,6.1 & 6.2). To the west and south of the archipelago, the MBF 

overlies the Coal-bearing Formation (CBF) and locally the Volcaniclastic Sandstone 

Formation (VSF), which it is sometimes transitional with. In the eastern part of the 

archipelago, the base of the MBF is not exposed. Waagstein (1988) showed that the MBF 

lavas dip towards the E and NE with an inclination between 2.2 and 3.9°. 

6.2 Lava Flows 

6.2.1 Petrology & Geochemistry 

Petrologically, the lower ca. 450 m of the MBF is composed of olivine-phyric flows which 

progress up sequence to aphyric flows (Figs. 6.3a-d) (Waagstein & Hald 1984; Waagstein 

1988; Larsen et al. 1999). The upper ca. 960 m of the MBF is dominated by plagioclase- 

phyric flows (Figs. 6.3e-h) (Waagstein & Hald 1984; Waagstein 1988; Larsen et al. 1999). 

Plagioclase feldspar phenocrysts can reach ca. 1 cm in size (Rasmussen & Noe-Nygaard 

1970b). The progression from the lower 450 m to the upper 960 m lava flows is 

transitional. 
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Irregular Intrusive Bodies and Sills 
0 km 10 

Upper Basalt Formation 

Middle Basalt Formation 
Fig. 6.2. Geological map of the NE Faeroe Islands. After Rasmussen & Noe-Nygaard (1969; 1970a; b). 
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Fig. 6.3. Photomicrographs of Middle Basalt Formation lava flow units from a disused quarry at Selgjögv, 

ca. 3.5 km NW of Hvannasund, Vidoy, Faeroe Islands. (a) & (c) A lava flow unit that is an aphyric finely 

crystalline basalt displaying an intergranular texture. The basalt consists of laths of plagioclase feldspar, 

clinopyroxenes, oxides ± olivines. The photomicrographs are under plane polarised light. (b) & (d) The 

same views as in (a) & (c) but under cross-polarised light. (e) & (g) A lava flow unit that is a plagiocalse- 

phyric basalt. Phenocrysts of plagioclase feldspar have a maximum length of ca. 2 mm set in a finely- 

medium crystalline groundmass consisting of plagioclase feldspar laths, clinopyroxenes, oxides t olivines. 

The photomicrographs are under plane polarised light. (f) & (h) The same views as in (e) & (g) but under 

cross-polarised light. 
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The MBF has a relatively high Ti02/FeOT ratio compared to the Lower Basalt Formation 

(LBF) but the FeOT/MgO ratio increases from low to high, making the MBF transitional 

from the high-Ti olivine tholeiite field to a high-Ti tholeiite field (Fig. 6.4) (Waagstein 

1988; Larsen et al. 1999). Larsen et al. (1999) have shown that the Mg # value for the 

MBF decreases up section from a value between 58 and 80 at the base, to a value between 

45 and 55 at the top (Fig. 6.5). There is a slight increase up section in wt. % FeOT from 9- 

13% at the base to 12-15% at the top (Fig. 6.5b) (Larsen et al. 1999). The MBF flows have 

a LREE-enriched signature which suggests they were derived by partial melting of deep 

mantle blobs or of the subcontinental lithosphere during upwelling of the asthenosphere 

(Bollingberg et al. 1975; Gariepy et al. 1983; Saunders et al. 1997). 

Hald & Waagstein (1983) recognised two high silicic basalt lavas, the Klaksvik (occurs on 

Kalsoy, Kunoy and Borboy) and the Sneis-14 (Sneis, Streymoy) lava flows, ca. 80 m from 

the top of the MBF. These flows are classified as basaltic andesites and have an average 54 

wt. % Si02, ca. 6 wt. % higher than the main sequence of MBF lavas (Hald & Waagstein 

1983). The flows also have anomalously high 87Sr/86Sr ratios and with the high wt. % Si02, 

suggest that continental basement rocks or sediments contaminated the parental magmas 

(Hald & Waagstein 1983). 

6.2.2 Flow Thicknesses 

The MBF is dominated by typically 20 m thick compound lava flows made up of thinner 

flow units, which range from <0.5 m up to 2m in thickness (Fig. 6.6). Within the 

Vestmanna-1 drill hole on Streymoy (Fig. 6.1), the MBF flow units range in thickness 

from 4 cm up to 14 m, with an average of ca. 2.2 m (Waagstein & Hald 1984). Waagstein 

& Hald (1984) recognised 70% of the MBF flow units in Vestmanna-1 as pahoehoe and 

the remainder as a'a. The average thickness of the pahoehoe flow units is ca. 1.8 m 

compared to the a'a flows with an average flow thickness of ca. 3.2 m (Waagstein & Hald 

1984). These data are comparable to the ca. 35 m thick compound lava flows composed of 

1-5 m thick flow units within the Snake River Plain, Idaho (Greeley 1977; 1982). In the 

upper section of the MBF, flow units reach a maximum thickness of ca. 10 m and are more 

akin to tabular-classic lava flows. 

6.2.3 Morphology 

The MBF lava flows, or lava fields, are compound in structure and commonly form very 
flat shield areas having slope angles less than 0.5° (Noe-Nygaard 1968). Noe-Nygaard 
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Fig. 6.4. TiOJFeOT vs. FeOT/MgO diagram for basalt lavas from the Faeroe Plateau Lava Group, Faeroe 

Islands (FeOT = total iron recalculated as FeO). The oblique full line and the vertical stippled line mark the 

proposed boundaries between high-Ti olivine tholeiites, high-Ti tholeiites, low-Ti olivine tholeiites, and 
low-Ti tholelites. LBF = Lower Basalt Formation, MBF = Middle Basalt Formation, UBF = Upper Basalt 
Formation. After Waagstein (1988). 
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Fig. 6.6. Views of Middle Basalt Formation lava flow units. (a) Quarry Face at Selgjögv, ca. 3.5 km NW of 
Hvannasund, Vi6oy, Faeroe Islands. The quarry face is ca. 22 m high and is made up of Middle Basalt 
Formation lava flow units each ca. 2m thick. (b) A 414 m high cliff face, east side of Litla Dimun, Faeroe 
Islands. The cliff face consists of a compound lava flow from the Middle Basalt Formation, which is 
overlain by tabular lava flows from the Upper Basalt Formation. (c) A close up view of (b). Red lines 
highlight the ca. 2m thick lava flow units that make up the compound lava flow. 
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(1968) termed these flat shield areas as scutulum type and showed that they commonly 

have diameters of ca. 15 km and volumes of less than 7 km3. The scutulum type of shield 

area has been renamed as low shields by Greeley (1977; 1982). The compound lava flows 

of the MBF are akin to subaerial compound pahoehoe lava fields on Hawai' i, but the MBF 

lava flows are ca. 4 times thicker. The MBF lava fields are pahoehoe in character and they 

exhibit a number of regional- to small-scale features that support this. These features 

include lava tubes, surface features and internal structures; these features are described in 

detail in the subsequent sections. The lava fields have planar tops, which are highlighted by 

reddened flow tops and by rare volcaniclastic interlava lithologies. 

6.2.4 Lava Tubes 

Infilled lava tubes are evident throughout the MBF, ranging in size from master tubes to 

smaller distributary tubes (cf. Rowland & Walker 1990). The master tubes form prominent, 

stand-alone features, which have resisted weathering, compared to the flow fields within 

which they formed. The largest master lava tube observed forms a ca. 100 m long by ca. 

10-20 m wide spit of land off the NW coastline of Sandoy, known as Hvalsryggur (Figs. 

6.1 & 6.7). This gives a cross-sectional area of ca. 160 m2 and an estimated volume of ca. 

15,700 m3. The tube outline is also observed on Trollhovdi Island, to the NW, extending 

the length of the tube by ca. 140 m. 

Other lava tubes that have resisted erosion are seen on the coastal section at Rituvik, 

Eysturoy (Fig. 6.1) and along the coastline at Sundsmunnin, ca. 800 mS of Vioarei6i, 

Viooy (Fig. 6.2). The RituviIk lava tube is found sitting on top on the MBF lavas, which 

appear to have been thermally altered (Fig. 6.8). The lava tube forms a ca. 15-20 m long 

sinuous elliptical cylinder ca. 1.1 m high and ca. 3.2 m wide, giving a cross-sectional area 

of ca. 2.8 m2 and volumes between ca. 41 and 55 m3 for the exposed length. The 

Sundsmunnin lava tube is ca. 3m high and ca. 5m wide, with a cross-sectional area of 12 

m2, and is found within a volcaniclastic conglomerate (Figs. 6.9a-b). The jointing within 

the lava tube appears to be concentrically zoned, originating from a point within the top 

left of the tube. 

A master lava tube observed in its original state, i. e. within a MBF lava flow field, is 

located along the coastline at Froobiarbotnur, ca. 3 km NE of Tveroyri, Suouroy (Fig. 

6.9c). The lava tube is ca. 5m high and ca. 9m wide, with a cross-sectional area of ca. 35 

m2. The lava tube is highlighted by its darker colour compared to the planar lava flow units 

surrounding it. Apophyses of lava are observed extending out of the top of the lava tube. 
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Fig. 6.7. Views of the lava tube forming Hvalsryggur spit, NW coastline of Sandoy. The lava tube ca. 100 m 
long by ca. 10-20 m wide. The tube outline is observed on Trellhevdi Island, to the NW, extending the 
length of the tube by ca. 140 m. The tube outline gives a cross-sectional area of ca. 160 m2. 
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Fig. 6.9. Views of lava tubes from the Middle Basalt Formation. (a) & (b) Sundsmunnin lava tube, ca. 800 

mS of Viöareiöi, Viboy, Faeroe Islands. The lava tube is ca. 3m high and ca. 5m wide, giving a cross- 
sectional area of ca. 12 m'. The fracturing within the tube appears to be concentrically zoned, originating 
from a point in the top left of the tube. (c) A lava tube in the cliff section at Froöbiarbotnur, ca. 3 km NE of 
Tvoroyri, Suöuroy, Faeroe Islands. The lava tube is ca. 5m high and ca. 9 wide, a cross-sectional area of ca. 
35 m'. (d) A possible master lava tube at Kallur, ca. 1 km NW of Trollanes, Kalsoy, Faeroe Islands. (e) A 
distributary lava tube at Viöareiöi, Viboy. The lava tube has a cross-sectional area of ca. 0.14 m2. The 
compass is ca. 10 x6 cm. 
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Another possible master lava tube is observed at Kallur, ca. 1 km NW of Trollanes, Kalsoy 

(Figs. 6.2 & 6.9d). 

A distributary lava tube with a cross-sectional area ca. 0.14 m2, akin to those described by 

Rowland & Walker (1990) is observed within a lava flow field at Vioareioi, Viooy (Figs. 

6.2 & 6.9e). The lava tube is lobate in shape and is similar in form to pillow lava. The tube 

is located within pahoehoe lava flow units. The overlying flow unit exhibits pipe 

amygdales off the base of the flow, which are aligned perpendicular to the curved contact 

with the lava tube. 

6.2.5 Surface Features 

The commonest surface feature observed throughout the MBF is rope structures or surface 

wrinkles. Ropy lava is observed at a number of localities, although the best-preserved 

examples are found at Vioareioi, Viooy (Fig. 6.2) and in the area of Marragjögv, Vägar 

(Fig. 6.1). At ViÖareioi, Viooy, lava ropes are observed on the upper and lower surfaces of 

the flow units. Large-scale convex ropes are observed covering an area ca. 3x2m (Fig. 

6.10a). The convex nature of the ropy lava in this area tentatively suggests a flow direction 

to the WNW. Within the same coastal area, small-scale ropy lava is observed on the upper 

surface of a flow front in an area ca. 40 x 40 cm (Figs. 6.10b-c). Each rope is ca. 1-3 cm 

thick and has the appearance of twisted bread sticks, producing a braided pattern. The 

ropes also have an anastomosing character. In the area of Marragjögv, Vägar the ropy lava 

is preserved on the upper surfaces of lava tongues ca. 30 x 30 cm. The convex nature of the 

ropy lava in this area suggests a tentative flow direction to the NE. 

6.2.6 Internal Structure 

P-type (pipe-bearing) and S-type (spongy) pahoehoe flow units are both observed within 

the MBF, but P-type flow units are dominant. The P-type flow units can be separated into a 

number of separate zones based on amygdale distribution patterns. Figure 6.11 shows a 

typical P-type flow unit from Vioarei6i, Viöoy that can be separated into three zones. The 

flow unit is ca. 1.6 m thick and is separated into basal crust, lava core, and upper crust. The 

basal crust is ca. 10 cm thick and is characterised by pipe amygdales with a maximum 

length of ca. 8 cm that start a few centimetres off the base of the flow unit. The pipe 

amygdales are sometimes curved in the assumed direction of flow. The lava core is a 

compact, massive zone with irregular jointing and lacks vesicle/amygdale cylinders. The 

upper crust is on average ca. 25 cm thick and is dominated by elliptical amygdales that 
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Fig. 6.10. Views of ropy lava from the Middle Basalt Formation (a) Large-scale convex ropes are observed 
covering an area ca. 3x2m at Viöareidi, Viöoy, Faeroe Islands. The convex nature of the ropy lava 
tentatively suggests a flow direction to the WNV1. The hammer is ca. 40 cm long and is aligned in the 
direction of flow. (b) Middle Basalt Formation lava flow units at ViOareiöi, Viöoy, Faeroe Islands. On the 
surface of one of these lava flow units small-scale ropy lava is observed. (c) A close up of the ropy lava 
observed in (b). The ropes have the appearance of twisted bread sticks and are ca. 1-3 cm thick. The ropes 
cover an area of ca. 0.16 m'. The compass is ca. 10 x6 cm. 
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Fig. 6.11. Views of a Middle Basalt Formation P-type pahoehoe lava flow unit at Viöareibi, ViOoy, Faeroe 
Islands. (a) The P-type pahoehoe lava flow unit is ca. 1.6 m thick and is separated into three distinguishable 

zones: basal crust, lava core, and upper crust. The upper crust is ca. 25 cm thick and is dominated by oval 
amygdales with a maximum diameter of ca. 2 cm. The lava core is a compact, massive zone with irregular 
jointing. The basal crust is ca. 10 cm thick and is characterised by containing pipe amygdales. The 
hammer is ca. 40 cm long. (b) A close up of the basal crust. Pipe amygdales reaching a maximum size of ca. 
8 cm are observed. Some of the pipe amygdales are curved in the direction of flow. The presence of the pipe 
amygdales suggests that the flow unit was emplaced on a slope of less than 4°. Using the equation of Hon et 
aL (1994) it is suggested that this flow unit was active for ca. 10 hours. The compass is ca. 10 x6 cm. 
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have a maximum diameter of ca. 2 cm. The amygdales contain zeolites and calcite. A 

similar zonal pattern is observed for flow units encountered in the Vestmanna-1 drill hole. 

Waagstein & Hald (1984) showed that the average flow unit in Vestmanna-1 is ca. 2.2 m 

thick and is separated into basal crust (0.19 m), compact lava core (0.88 m) and upper crust 
(1.17 m). 

The amygdale distribution patterns observed in the P-type flow units described above are 

similar to those described for inflating pahoehoe lava flows of Hawai'i (Hon et al. 1994) 

and in the Columbia River Basalt Group (Self et al. 1996; Self et al. 1997). According to 

the work of Hon et al. (1994), the boundary between the lava core and the upper crust 

marks the end of the injection of fresh lava into the lobe and when the lobe interior became 

stagnant. An estimate of the amount of time a lava lobe was fed by fresh lava can be 

obtained by working out the time taken to form the upper crust. In Hawai' i, the time taken 

to form the upper crust conforms to the empirical equation: 

t=164.8C2 

where t is the time in hours, 164.8 is an empirically determined constant, and C is the 

upper crust thickness in metres (Hon et al. 1994). Time differences (i. e. cooling rates) 

between the Faeroese MBF flow units and Hawaiian lavas are expected due to differences 

in rainfall and thermal properties (heat capacity, diffusivity, and latent heat of 

crystallisation). Assuming that the above equation applies to the flow units of the MBF as 

well as those in Hawaii, the flow unit at Viöareidi, Vidoy would have been active for ca. 
10.3 hours and the average flow unit in the Vestmanna-1 drill hole would have been active 
for ca. 9.4 days. 

6.3 Interlava Lithologies 

6.3.1 Occurrence 

Volcaniclastic rocks are insignificant and seldom seen in the lower section of the MBF, but 

become commoner in the upper section. The volcaniclastic rocks in the upper section are 

usually several metres in thickness and consist of tuffaceous and volcaniclastic (epiclastic) 

sandstones. A number of volcaniclastic sandstone lithologies shall be described 

collectively due to their poor exposure and similar characteristics. There are a number of 

localities that have very good exposures or interesting lithologies and shall be described in 
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the subsequent sections. These localities are: (i) Klivarnar Section, on the SE side of 
Leynavatn, ca. 1.5 km NE of Leynar, Streymoy (Fig. 6.1) (ii) IErgisä Section, ca. 2.5 km N 

of Leynar, Streymoy (Fig. 6.1); (iii) i Bugum Section, ca. 2 km ESE of Hösvik, Streymoy 

(Fig. 6.1); (iv) Eißi Section, ca. 300 mE of Ei6i, Eysturoy (Fig. 6.1); and (v) Viöarei6i 

Section, Viöoy (Fig. 6.2). 

6.3.2 Lithology & Petrography 

6.3.2.1 Volcaniclastic Sandstones 

A number of volcaniclastic sandstones have limited exposures and similar characteristics 

and shall be described collectively for simplicity. The volcaniclastic sandstones observed 
inbetween MBF lava flow units range from being pale reddish brown (1OR 5/4) to 

moderate reddish brown (I OR 4/6). The sandstones have an average thickness of ca. 1 m, 

although they can range from 50 cm up to 1.5 m (Fig. 6.12). They commonly have sharp 
lower and upper contacts and tabular geometries. The sandstones are poorly to moderately 

sorted and are dominated by angular to sub-rounded opaque to orange to greenish yellow 

palagonitised basaltic glass clasts (Fig. 6.13). The clast edges have been obscured due to 

the hydration process. Some of the sandstones contain minor amounts of basalt, derived 

from lava flows, which range in texture from equigranular to plagioclase-phyric. 

6.3.2.2 Klivarnar Section 

The Klivarnar Section consists of a channel infilled by a moderate reddish brown (I OR 4/6) 

volcaniclastic sandstone (Fig. 6.14). This sandstone overlies a ca. 1.2 m thick plagioclase- 

phyric basalt lava flow unit with a hummocky upper surface. The thickness of the 

sandstone ranges from ca. 1m in the centre of the channel to ca. 0.6 m at the margins and 

it eventually tapers out away from the channel. This sandstone is poorly sorted, clast 

supported and is dominated by sub-angular to sub-rounded opaque to orange palagonitised 

basaltic glass clasts (Fig. 6.15). Vesiculated and non-vesiculated varieties of glassy clasts 

occur. Minor amounts of basalt clasts, usually equigranular, although plagioclase-phyric 

varieties do occur, are contained within the sandstone. The overlying lava flow has curved 

lower and upper surfaces a consequence of the lava flow infilling the top of the channel. 

The base of the lava flow is brecciated producing a blocky peperite along the length of the 

channel structure. 
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Fig. 6.12. Views of a ca. 1m thick pale reddish brown volcaniclastic sandstone at Hvilingagarsteinur, ca. 
1.6 km SW of Slwttaratindur and ca. 300 m NE of Eibisvatn, Eysturoy, Faeroe Islands. The unit is thinly to 
medium bedded and is found inbetween two compound lava flows of the Middle Basalt Formation. The 
hammer is ca. 40 cm long. 
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Fig. 6.13. Photomicrographs of a range ofvolcaniclastic sandstones from the Middle Basalt Formation. All 
of the photomicrographs are under plane-polarised light. The sandstones are poorly to moderately sorted 
and are dominated by angular to sub-rounded opaque to orange to greenish yellow palagonitised basaltic 
glass clasts. The clast edges have been obscured due to the hydration process. Some of the sandstones 
contain minor amounts of basalt, derived from lava flows, which range in texture from equigranular to 
plagioclase-phyric. (a) & (b) Volcaniclastic sandstone from Störabrugv, ca. 3.2 km SE of Oyragjögv, 
Vägar, Faeroe Islands. (c) & (d) Volcaniclastic sandstone from Eibi roadside cutting, ca. 300 mE of Eiöi, 
Eysturoy, Faeroe Islands. (e) & (f) Volcaniclastic sandstone from the disused quarry and culvert, ca. 600 m 
N of Svinäir, Eysturoy, Faeroe Islands. 

Chapter 6 Middle Basalt Formation Page 215 



Simon R. Passey 

'F' 
.4ý 

Fig. 6.14. Views of a moderate reddish brown volcaniclastic sandstone infilling a low-lying channel at 
Klivarnar, SE side of Leynavatn, ca. 1 km NNE of Leynar, Streymoy, Faeroe Islands. The sandstone is ca. 1 
m thick in the centre of the channel and ca. 0.6 m thick at the margins. The channel is highlighted by red 
lines. The tuff is located inbetween two compound lava flows of the Middle Basalt Formation, which have 
infilled the channel. The hammer is ca. 40 cm long. 

, imm I mm 
Fig. 6.15. Photomicrographs of the volcaniclastic sandstone from the Middle Basalt Formation at 
Klivarnar, SE side of Leynavatn, ca. 1 km NNE of Leynar, Streymoy, Faeroe Islands. Both 
photomicrographs are under plane-polarised light. The sandstone is poorly sorted, clast supported and is 
dominated by sub-angular to sub-rounded opaque to orange palagonitised basaltic glass clasts. 
Vesiculated and non-vesiculated varieties of glassy clasts occur. Minor amounts of basalt clasts, usually 
equigranular, although plagioclase-phyric varieties do occur, are contained within the sandstone. 
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6.3.2.3 AErgisä Section 

The iErgisä Section consists of a ca. 20 m thick sequence straddling the 100 m contour 

(Figs. 6.16 & 6.17). The section is dominated by <1 m thick pahoehoe lava flow units, as 

well as four volcaniclastic deposits. Unit 1 is a ca. 40 cm thick greyish olive (10Y 4/2) 

volcaniclastic sandstone and has sharp upper and lower contacts with the lava flow units. 

This sandstone is poorly sorted and has an average grain size of very fine sand. Angular to 

sub-rounded opaque to greenish brown palagonitised basaltic glass clasts account for ca. 

90 vol. % of the sandstone. The remaining ca. 10 vol. % of the sandstone is made up of 

basalt clasts with an average size of 100 µm. Two thin lava flow units overlie the 

sandstone. 

Unit 2 is a ca. 80 cm thick greyish olive (1OY 4/2) volcaniclastic sandstone (Fig. 6.18). 

This sandstone is made up of the same clasts in the same proportions as Unit 1. The only 

difference is that Unit 2 is moderately sorted. Unit 3 is a ca. 95 cm thick greyish red (5R 

4/2) volcaniclastic sandstone (Fig. 6.18). This sandstone is moderately sorted, matrix 

supported and is dominated by blackish red palagonitised basaltic glass clasts. These clasts 

are angular to sub-rounded and have an average grain size of fine to medium sand. Some 

of the clasts contain plagioclase feldspar crystals. The clasts are fresher than those 

observed in the previous two units. Unit 3 has a sharp contact and is overlain by a ca. 12 m 

thick sequence of thin pahoehoe lava flow units. 

Unit 4 is a ca. 80 cm thick greyish red (5R 4/2) volcaniclastic sandstone. This sandstone is 

poorly to moderately sorted and is dominated by palagonitised basaltic glass clasts, ranging 
from near opaque to dirty yellow-brown. The clasts have and average size of very fine 

sand. The fresher glass clasts are angular and commonly exhibit cuspate margins. Some of 

the clasts contain phenocrysts of plagioclase feldspar. 

6.3.2.4 1 Bugum Section 

The i Bugum Section consists of a ca. 1.5 m thick light olive grey (5Y 5/2) volcaniclastic 

sandstone inbetween two amygdaloidal lava flow units (Fig. 6.19a). The basal contact is 

hummocky, with the lower ca. 1m of the sandstone being very thinly to thinly bedded. At 

approximately 1 to 1.2 m from the base of the sandstone, black carbonaceous material is 

preserved, which is the fossil remains of leaves and they form thin elongate bands up to 4.5 

cm long (Fig. 6.19b). This sandstone is poorly to moderately sorted, on the whole matrix 

supported and comprises ca. 70 vol. % creamy-orange, angular to sub-rounded, 
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Fig. 6.16. View of a ca. 20 m thick sequence consisting of four volcaniclastic sandstones inbetween Middle 
Basalt Formation pahoehoe lava flow units, Argisä stream section, ca. 2.5 km N of Leynar, Streymoy, 
Faeroe Islands. 
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Fig. 6.17. A graphic log for a ca. 20 m thick section of the Middle Basalt Formation straddling the 100 m 
contour at i1 rgisi stream section, ca. 2.5 km N of Leynar, Streymoy, Faeroe Islands. The two lowermost 
volcaniclastic sandstones (units 1& 2) are greyish olive and more highly altered than the two upper greyish 
red volcaniclastic sandstones (units 3& 4). The sandstones are interbedded with pahoehoe lava flow units. 
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Unit 2: Greyish Otive 
Volcaniclastic Sandstone 

Fig. 6.18. Views of units 2&3, volcaniclastic sandstones, interbedded with pahoehoe lava flow units of the 
Middle Basalt Formation, iErgisä stream section, ca. 2.5 km N of Leynar, Streymoy, Faeroe Islands. Unit 2 
is a ca. 80 cm thick greyish olive volcaniclastic sandstone. This sandstone has a sharp contact with, and is 
overlain by Unit 3, a ca 95 cm thick greyish red volcaniclastic sandstone. The difference in colouration is a 
consequence of alteration of the glass clasts in the sandstones. The hammer is ca. 40 cm long. 
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Fig. 6.19. Views and photomicrographs of the i Bugum roadside cutting, ca. 2 km ESE of Hösvlk, 
Streymoy, Faeroe Islands. (a) A ca. 1.5 m thick light olive grey volcaniclastic sandstone. (b) A leaf imprint 
ca. 4.5 cm long, found on a bedding surface ca. I to 1.2 m from the base of the sandstone. All of the 
photomicrographs are under plane-polarised light. (c) & (d) Angular to sub-rounded creamy-orange 
palagonitised basaltic glass clasts. The clasts have an average size of fine sand, are typically vesiculated 
and have cuspate margins. (e) & (f) Photomicrographs that show highly vesiculated glass clasts. The near 
opaque palagonitised basaltic glass clasts are most likely reworked scoria. (g) & (h) Photomicrographs 
that contain sub-rounded basalt Glasts (BC) that are equigranular and consist of plagioclase feldspar laths, 

clinopyroxenes and oxides. These basalt clasts account for less than 10 vol. % of the sandstone and are most 
likely derived from lava flows. 
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palagonitised basaltic glass clasts (Figs. 6.19c-d). The clasts have an average size of fine 

sand, are typically vesiculated and have cuspate margins. This sandstone also contains ca. 

20 vol. % of opaque palagonitised basaltic glass clasts that are sub-rounded to sub-angular 

(Figs. 6.19e-f). Some of these clasts contain laths of plagioclase feldspar, whereas others 

are highly vesiculated, most likely reworked scoria. Sub-rounded to sub-angular basalt 

clasts, consisting of laths of plagioclase feldspar, clinopyroxenes and oxides account for 

<10 vol. % of the sandstone (Figs. 6.19g-h). The opaque glass clasts and the basalt clasts 

have an average size of medium sand but fragments can reach sizes of 2-3 mm. The upper 

50-60 cm of the sandstone consists of lensoids of similar material as the main unit and 

have average dimensions of 20 x9 cm and 14 x6 cm. These lensoids form extremely crude 

lensoidal bedding. 

6.3.2.5 EiÖi Section 

The Eioi Section consists of a ca. 1m thick sequence of volcaniclastic strata inbetween 

two distinctly amygdaloidal lava flow units (Fig. 6.20). The basal flow has a minimum 

thickness of ca. 1.8 m. The upper surface is sharp and planar and is overlain by Unit 1, 

which is a dusky yellow (5Y 6/4) tuffaceous sandstone. This sandstone is ca. 50 cm thick 

and is thinly bedded (2-3 cm) (Fig. 6.20c). There are distinctly darker coarser layers, which 

dominate the lower 20 cm of the sandstone. These coarser layers have an average clast size 

of very coarse sand, although clasts reach a maximum of ca. 3 mm (i. e. granule grade). 

These layers are dominated by highly palagonitised basaltic glass clasts, which range from 

near opaque to yellow-green in plane-polarised light. A variety of sub-rounded basalt clasts 

also occur within these layers. The finer layers have an average clast size of very fine sand 

(Figs. 6.21a-d) and are made up of highly palagonitised basaltic glass clasts similar to the 

glass clasts observed in the coarser layers. The finer layers also contain angular fragments 

of plagioclase feldspar crystals but are lacking in basalt clasts. Both the coarse and fine 

layers are clast supported and moderately sorted. The tuffaceous sandstone infills fissures 

within the underlying amygdaloidal lava flow unit, to a depth of ca. 25 cm (Fig. 6.20b). 

Unit 1 appears to grade upwards into Unit 2, a ca. 48 cm thick moderate reddish brown 

(1OR 4/6) volcaniclastic sandstone (Figs. 6.21e-h). This sandstone is thinly bedded (2-3 

cm), grain supported and poorly to moderately sorted. The layers of fine-grained material 

have an average grain size of very fine sand whereas the coarser layers have an average 

grain size of coarse to very coarse sand. Both coarse and fine layers are compositional 

similar in that they are dominated by angular to sub-rounded orange to opaque 

palagonitised basaltic glass clasts at various stages of alteration. The clasts are vesicular to 
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Fig. 6.20. Views and thin section photograph of the volcaniclastic sequence from the Eiöi roadside cutting, 
ca. 300 mE of Eicri, Eysturoy, Faeroe Islands. (a) A ca. 1m thick interlava unit inbetween Middle Basalt 
Formation flow units. (b) The basal dusky yellow tuffaceous sandstone (Unit 1) infills fissures within the 
underlying amygdaloidal flow unit to a depth of ca. 25 cm. (c) Unit 1, tuffaceous sandstone, is distinctly 
thinly bedded (2-3 cm). (d) The tuffaceous sandstone is overlain by Unit 2, a ca. 48 cm moderate reddish 
brown volcaniclastic sandstone. The hammer is ca. 40 cm long. 
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Fig. 6.21. Photomicrographs from the EiOi roadside cutting, ca. 300 mE of Eibi, Eysturoy, Faeroe Islands. 
All of the photomicrographs are under plane-polarised light. (a) to (d) Photomicrographs of Unit 1, a ca. 50 
cm thick dusky yellow tuffaceous sandstone. The sandstone has an average clast size of very fine sand and 
is dominated by highly palagonitised basaltic glass clasts. Unit I also contains plagioclase feldspar crystal 
fragments. (e) to (h) Photomicrographs of Unit 2, a ca. 48 cm thick moderate reddish brown volcaniclastic 
sandstone. The sandstone has an average clast size of very fine sand and is dominated by angular to sub- 
rounded orange to opaque palagonitised basaltic glass clasts. These glass clasts sometimes exhibit shard- 
type textures including cuspate margins. 
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non-vesicular and sometimes contain phenocrysts of plagioclase feldspar. Some of the 

clasts exhibit typical shard type features, including cuspate edges. Some of the vesicles 

appear flattened and sheared. The upper contact of Unit 2 is sharp and planar and is 

overlain by a ca. 60 cm thick amygdaloidal basalt lava flow unit. 

6.3.2.6 V16arei6i Section 

The Vi6areiÖi Section consists of a low-lying channel, at least 20 m deep, comprising at 
least three sedimentary sequences separated by thin basalt lava flow units (Figs. 6.22 & 

6.23). Similar lithologies to those at Viöarei6i crop out ca. 1.5 km due east along the 

opposite coastline, suggesting they are part of the same lithofacies. The infilling of the 

channel by the lava flow units can quite clearly be observed to the north of the Vi6arei8i 

Section, where the flow units are near horizontal away from the channel but at the margin 

they are mantling the slope at angles between 20 and 30° (Fig. 6.24). At the base of the 

channel the lava flow units have interacted with the sedimentary rocks (Fig. 6.25). The 

lava flows have apophyses that extend into the sedimentary rocks. Some of these 

apophyses have brecciated, forming apparently isolated masses of lava and areas of blocky 

peperite. One apophysis of lava is observed splitting a sedimentary sequence in to two, 

causing the bifurcation of the strata. As a consequence, some of the exposures appear to 

contain two individual sedimentary sequences separated by a flow unit(s), however, 

moving laterally away from the exposure the sedimentary sequences combine to form a 

single sequence. Therefore, the three sedimentary packages described below are actually 

one continuous sequence, ca. 1.2 m thick, intruded by lava flow units. 

All of the sedimentary sequences are made up of pale yellowish brown (1OYR 6/2) 

volcaniclastic units, mudstones through to conglomerates (Fig. 6.26). The sedimentary 

rocks are all poorly lithified and friable. The lower sedimentary package consists of two 

units. Unit la is a ca. 24 cm thick volcaniclastic conglomerate that is moderately sorted 

and has an average grain size of small to medium pebbles (6-10 mm), which are rounded to 

angular. The pebbles are composed of various basalt lithologies set in a matrix of very 

coarse sand of similar composition to the basalt clasts. Unit lb is a ca. 9 cm thick 

volcaniclastic mudstone, which is thickly laminated. This mudstone is overlain by ca. 3m 

thick sequence of four basalt lava flow units. 

Overlying the flow units is Unit 2a, a ca. 20 cm thick volcaniclastic sandstone that is 

poorly sorted and on the whole clast supported (Figs. 6.27a-c). This sandstone is thickly to 

very thickly laminated and has an average clast size of medium sand, although granule 
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Unit 2f: Volcaniclastic Mudstone 
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Basalt Lava Flow Unit 

Upper Sedimentary Unit 3: Volcaniclaatic Mudatone I Package 

Basalt Lava Flow Units 

Unit 2e: Voicaniclastic Sandstone 
Unit 2c: Volcaniciastic Sandstone 
Unit 2b: Volcaniclastic Conglomerate Middle Sedimentary 

Package 
Unit 2a: Volcaniclastic Sandstone 

Basalt Lava Flow Units 

Unit Ib: Volcaniclastic Mudstone Lower Sedimentary 
Unit la: Voicaniclastic Conglomerate Package 

Basalt Lava Flow Unit 

Fig. 6.23. Graphic log for the coastal section at Vidareiöi, ViOoy, Faeroe Islands. Three Sedimentary 
packages are observed inbetween Middle Basalt Formation lava flow units. See text for a detailed 
discussion. 
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Fig. 6.25. Views of lava-sediment relationships at Vibareidi, Viooy, Faeroe Islands. (a) & (b) Apophyses of 
lava have invaded the volcaniclastic strata. (c) & (d) Lava that has invaded the volcaniclastic strata has 
brecciated, forming a poorly developed blocky peperite. (e) An apophysis of lava is observed splitting a 
sedimentary sequence in to two, causing the bifurcation of the strata. (f) A single volcaniclastic sequence 
has been invaded by a lava flow unit and an arm of the sequence is observed `riding up' over the invading 
flow. The white card is ca. 16 x6 cm, the pen is ca. 14 cm in length and the hammer is ca. 40 cm long. 
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Fig. 6.26. Views of the volcaniclastic strata from the coastal section at Vio areiöi, Vidoy, Faeroe Islands. (a) 
Volcaniclastic conglomerate (Unit 1a) that has an average clast size of small to medium pebbles. The 
majority of the pebbles have a high degree of rounding. (b) Thickly laminated volcaniclastic mudstone 
(Unit 1b). (c) & (d) Volcaniclastic strata from the ca. 60 cm thick middle sedimentary package. A 
volcaniclastic conglomerate (Unit 2d) can be seen in the middle part of the photographs. The conglomerate 
has an average clast size of large pebbles (20-25 mm), but pebbles can reach a maximum size of 80 mm. The 
conglomerate is overlain by a ca. 6 cm thick medium grained volcaniclastic sandstone (Unit 2e), which in 
turn is overlain by a ca. 3 cm thick medium to thickly laminated volcaniclastic mudstone (Unit 2f). The 
mudstone is overlain by a pahoehoe lava flow unit. (e) & (f) Volcaniclastic mudstone (Unit 3) ca. 27 cm 
thick from the upper sedimentary package, which is very thickly laminated and contains thin layers of 
sandstone and conglomerate. Lobes from the overlying lava flow unit have nosed into the mudstone and 
have deformed the laminations. The white card is ca. 16 x6 cm, the compass is ca. 10 x6 cm and the pen is 
ca. 14 cm long. 
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Fig. 6.27. Photomicrographs of Unit 2a, volcaniclastic sandstone with interbedded siltstone layers, of the 
middle sedimentary package, Vibareiöi Section, Viboy, Faeroe Islands. All of the photomicrographs are 
under plane-polarised light. (a) to (c) The sandstone is composed of angular plagioclase feldspar crystals 
(PL), as well as minor amounts of sub-rounded clasts of near opaque to orange palagonitised basaltic glass. 
Occasionally, sub-rounded to rounded clasts of various basalt (B) lithologies occur. These clasts are either 
glassy with distinct phenocrysts of plagioclase feldspar, or equigranular comprising plagioclase feldspar 
laths, clinopyroxenes and oxides. (d) to (f) Thin volcaniclastic siltstone layers inbetween the coarser 
sandstone layers. (g) & (h) Coarse siltstone layers are moderately well sorted and are made up of angular 
plagioclase feldspar crystals, with minor palagonitised basaltic glass clasts. 
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grade (1-3 mm) clasts occur. In thin section, the sandstone is composed of angular 

plagioclase feldspar crystals, as well as minor amounts of sub-rounded clasts of near 

opaque to orange palagonitised basaltic glass. Occasionally, sub-rounded to rounded clasts 

of various basalt lithologies occur. These clasts are either glassy with distinct phenocrysts 

of plagioclase feldspar, or equigranular comprising plagioclase feldspar laths, 

clinopyroxenes and oxides. The sandstone is interbedded with layers of volcaniclastic 

mudstones, ranging from claystones/very fine siltstones to coarse siltstones (Figs. 6.27d-h). 

The coarse siltstone layers are moderately well sorted and are made up of angular 

plagioclase feldspar crystals, with minor palagonitised basaltic glass clasts. No basalt clasts 

are observed in the siltstone layers. The mudstone layers are discontinuous and exhibit 

crude flaser bedding. 

Unit 2b a ca. 20 cm thick volcaniclastic conglomerate, which has an average clast size of 

medium pebbles (10-15 mm) and a maximum of ca. 30 mm. The pebbles are sub-rounded 

to sub-angular and are dominated by basalt clasts with some of them containing 

amygdales. The clasts range in crystal size from finely to medium crystalline and display a 

range of textures from equigranular to plagioclase-phyric. Other pebble lithologies include 

reddish tuffaceous sandstone and bole. The conglomerate is poorly sorted and has a matrix 

consisting of very coarse sand of the same composition to the pebble sized clasts. 

Unit 2c is a ca. 2 cm thick very coarse volcaniclastic sandstone, which in turn is overlain 

by Unit 2d, a ca. 8 cm volcaniclastic conglomerate (Figs. 6.26c-d). This conglomerate is 

poorly sorted, appears to fine upwards and has a maximum clast size of 80 mm, although 

the average size is of large pebbles (20-25 mm). The pebbles are dominated by sub- 

rounded to rounded amygdaloidal to non-amygdaloidal basalt clasts. The conglomerate is 

overlain by Unit 2e, a ca. 6 cm thick, thickly laminated, volcaniclastic sandstone. This 

sandstone has an average clast size of medium sand, although occasionally small to 

medium pebbles occur. The clasts are dominated by sub-rounded basalt. Overlying the 

sandstone is Unit 2f, a ca. 3 cm thick volcaniclastic mudstone that is medium to thickly 

laminated. 

This middle sedimentary package is overlain by ca. 1.2 m thick sequence of compound 

lava flow units. Overlying these flow units is Unit 3, a ca. 27 cm thick volcaniclastic 

siltstone (Figs. 6.26e-f). This siltstone is very thickly laminated with two or three layers 

made up of very coarse sandstone and conglomerate (Fig. 6.28). The siltstone is well 

sorted, has an average clast size of very coarse silt and is dominated by angular plagioclase 

feldspar grains. The siltstone also contains near opaque palagonitised basaltic glass clasts. 
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Fig. 6.28. Photomicrographs of Unit 3, volcaniclastic siltstone with thin interbedded sandstone layers. of 
the upper sedimentary package, Vi6arei6i Section, Viboy, Faeroe Islands. All of the photomicrographs are 
under plane-polarised light. (a) The base of the photomicrograph consists of a layer of volcaniclastic 
sandstone overlain by a volcaniclastic siltstone with an average clast size of coarse silt. (b) to (e) 
Volcaniclastic sandstone layer containing angular, colourless, plagioclase feldspar (PL) fragments and 
near opaque to orange palagonitised basaltic glass (G) clasts. The sandstone layers also contain minor 
amounts of basalt (B) clasts. 
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The very coarse sandstone and conglomerate layers are compositionally similar to the 

siltstone but contain a higher proportion of basalt lithoclasts and the conglomerate layers 

have a maximum grain size of ca. 13 mm (medium pebbles). 

6.3.3 Provenance 

The interlava lithologies within the MBF are dominated by palagonitised basaltic glass 

clasts derived from the reworking of ash deposits. The varying degree of alteration of the 

glass clasts implies that numerous ash deposits were being eroded at the same time. The 

textural immaturity of the clasts, e. g. the small degree of rounding, indicates that the clasts 

were derived locally. The abundance of plagioclase feldspar fragments contained within 

the volcaniclastic lithologies, particularly from the Vibareibi Section, suggests that they 

were either liberated from basalt lava flows, which would have required very pervasive 

erosion, or more likely, they were derived from crystal (plagioclase-phyric) ash deposits. 

The occurrence of basalt clasts, principally the plagioclase-phyric varieties, indicates that 

they were derived from the erosion of MBF lava flow units. The clast lithologies preserved 

within the interlava lithologies and the lack of external clasts/grains, e. g. quartz, is 

consistent with the clasts having been derived from within the depositional area and 

therefore, they are all intraformational. 

6.3.4 Environment of Deposition 

The general lack of pyroclastic textures within the interlava lithologies is a consequence of 

the reworking of unconsolidated ash deposits under epiclastic processes (cf. Fisher & 

Schmincke 1984; Cas & Wright 1987; McPhie et al. 1993). However, the small degree of 

rounding implies that the clasts have only been transported to a limited extent. Channel 

structures, bedding and rounding of clasts is common within the interlava lithologies, this 

suggests transportation and deposition in fluvial environments (cf. Collinson 1996; Tucker 

1996a). The channels are relatively small ranging from 5 to 20 m deep, e. g. at Klivarnar, 

Streymoy, suggesting relatively low to moderate energy levels. Normal grading within 

some of the sedimentary sequences, particularly at Vi6areiöi, Vi6oy, suggests waning 

water flow energy levels, possibly associated with (seasonal) flooding events. The general 

lack of brecciation of lava flows in contact with the sedimentary lithologies suggests that 

the sedimentary rocks were water-poor at the time of lava emplacement, if the sedimentary 

rocks were water-rich hyaloclastite and blocky peperite pockets would be expected (cf. 

Jerram et al. 2000; Skilling et al. 2002). Minor occurrences of blocky peperites are 
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recorded at the Klivarnar and Viöareioi sections suggesting that some of the volcaniclastic 
lithologies were locally wet at the time of lava emplacement. 

6.4 `Vent' Lithologies associated with the MBF 

Rasmussen & Noe-Nygaard (1970b) identified what they interpreted as ten vents 
distributed throughout the MBF. Many of these ̀ vent' localities have been interpreted as 

vents solely on the basis of the presence of `agglomerate'. As outlined in Section 2.2 the 

term agglomerate has been misused in the past and many of the agglomerates are actually 

volcaniclastic conglomerates of epiclastic origin. It is therefore important to re-evaluated 

the so called `vent' localities to see if they are actually composed of agglomerate 
lithologies or if they have formed from epiclastic processes. Some of the `vent' localities 

were only observed from the sea and access to these localities is hazardous and therefore 

was not attempted. The `vent' locality on the eastside of Viöoy, between Gj6gvin Stbra and 
GjSgvin Litla, is associated with the UBF and is described in Section 7.5. One `vent' 

locality from the MBF that was accessed is at Sundsmunnin, ca. 800 m SW of ViÖareiöi, 

Viboy. 

The outcrop is ca. 50 m across and ca. 30 m high (Fig. 6.29), with irregular vertical 

contacts with near horizontal MBF lava flow units (Fig. 6.29a). The lava flow units have 

an average thickness of ca. 70 cm. The unit also surrounds the lava tube described in 

Section 6.2.4 (Fig. 6.29b). The outcrop comprises a poorly sorted reddened volcaniclastic 

conglomerate, which appears to be crudely layered (Fig. 6.29e). This conglomerate 

consists of sub-angular to sub-rounded clasts up to 10s of ems in diameter (Figs. 6.29c-d). 

The conglomerate contains blackish grey amygdaloidal and non-amygdaloidal basalt clasts 

as well as reddish tuffaceous sandstone and bole clasts. The conglomerate is matrix 

supported by reddened sand to pebble grade material of similar composition to the clasts 

described above. The conglomerate is overlain by near horizontal lava flow units (Fig. 

6.29f). A thin vertical dyke intrudes the conglomerate at the unit's southern end (Fig. 

6.29f). The lack of any volcanic bombs (e. g. shaped or breadcrust types), high degree of 
heterogeneity of clast types and the rounding of the clasts suggest that the unit is a 

volcaniclastic conglomerate of epiclastic origin (cf. Fisher & Schmincke 1984; Cas & 

Wright 1987; McPhie et al. 1993). 

If the locality was the site of a vent not only would the lava flow units have been destroyed 

but also the lava tube. However, the lava tube is intact and surrounded by the volcaniclastic 

conglomerate. As outlined in Section 6.2.4 the lava tubes observed throughout the MBF 
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Fig. 6.29. Views of the volcaniclastic conglomerate at Sundsmunnin, ca. 800 m SW of Vidareidi, Vidoy, 

Faeroe Islands. The conglomerate occupies an area ca. 50 m across and ca. 30 m high. The photographs are 

arranged in order from north to south. (a) Near horizontal Middle Basalt Formation (MBF) lava flow 

units are juxtaposed against the volcaniclastic conglomerate. (b) The volcaniclastic conglomerate 

surrounds a prominent lava tube. (c) & (d) The volcaniclastic conglomerate is poorly sorted and is made 

up of sub-angular to sub-rounded clasts up to 10s of ems in diameter. The larger clasts are blackish grey 
basalt and reddish tuffaceous sandstones/boles. The penknife is ca. 8 cm long. (e) Crude bedding within the 

volcaniclastic conglomerate. (f) The southern extent of the conglomerate is juxtaposed against MBF lava 

flow units. The conglomerate is overlain by near horizontal lava flow units and is intruded by a dyke. 

Chapter 6 Middle Basalt Formation 

P -4 

Page 236 

real ` ._. 111 



Simon R. Passey 

are stand-alone features that have resisted erosion and this would seem to be the case for 

the lava tube at Sundsmunnin. The lava flow units surrounding the lava tube have been 

eroded to form a large channel, the lava tube has resisted erosion and the channel has been 

infilled by volcaniclastic conglomerate, which has encased the lava tube. 

6.5 Synthesis 

The Middle Basalt Formation (MBF) is dominated by up to 20 m thick compound lava 

flows that were erupted into a terrestrial environment (Fig. 6.30). The lavas are made up of 

numerous thinner flow units (lobes) that range in thickness from <0.5 to 2 m. These data 

are comparable to the ca. 35 m thick compound lava flows composed of 1-5 m thick flow 

units within the Snake River Plain, Idaho (Greeley 1976; 1977; 1982). The MBF 

compound lava flow fields form low shields of the scutulum type (Noe-Nygaard 1968; 

Greeley 1982) with slopes of less than 0.5°, diameters of ca. 15 km and volumes of less 

than 7 km3 (Noe-Nygaard 1968), which are akin to the compound pahoehoe lava flows 

erupted under subaerial conditions on Hawai'i (Wentworth & Macdonald 1953; Hon et al. 

1994). The MBF lava flow units are 10 times thinner than those of the Lower Basalt 

Formation (LBF), but form lava flow fields of comparable thicknesses, suggesting that the 

MBF flow units were erupted with similar volumes but at lower effusion rates than those 

of the LBF lava flows (cf. Greeley 1982; Reidel & Tolan 1992; Self et al. 1996; Reidel 

1998; Thordarson & Self 1998; Jerram 2002). The MBF lava flows have a number of 

regional- (e. g. lava tubes) to small-scale (e. g. ropes and vesicle distribution patterns) 

features consistent with having been erupted as inflating pahoehoe lavas flows (cf. Hon et 

al. 1994; Self et al. 1996; Self et al. 1997; Self et al. 1998; Thordarson & Self 1998). 

Lava tubes form stand-alone features that have resisted erosion and range in size from 

master to smaller distributary tubes (cf. Rowland & Walker 1990). The master tubes have 

cross-sectional areas that range between 3 and 160 m2. The distributary lava tubes, for 

example those preserved at Vibareioi, Viooy, have cross-sectional areas of 0.14 m2, akin to 

those described by Rowland & Walker (1990). The lava tubes indicate that the lava flows 

were emplaced through lava tube networks, where master tubes represent areas of the 

network proximal to the vent, whereas sections distal to the vent are represented by 

distributary tubes, as depicted in Figure 6.31. Lava tube networks can be extremely 

efficient in transporting lava great distances from the source of the eruption (c£ Walker 

1970; 1973; Atkinson et al. 1975; Greeley 1982; 1987; Hon et al. 1994; Kauahikaua et al. 

1998; Stephenson et al. 1998). The upper surfaces of many MBF lava lobes display ropy 
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Fig. 6.31. Lava tubes identified from the Middle Basalt Formation compared to the idealised sections of a 

lava tube network of Rowland & Walker (1990). (a) A master lava tube identified at Sundsmunnin, ca. 800 

mS of Viöareiöi, Viioy, Faeroe Islands. Master tubes deliver lava to the distal parts of flows away from the 

vent. (b) A small distributary lava tube identified at Vibareiöi, Vidoy, Faeroe Islands. (c) A flow front 

where lava emerges as several small single flow units as seen at Vi6areiöi, Vi6oy, Faeroe Islands. 
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structures indicative of being emplaced as pahoehoe lava flows (cf. Wentworth & 

Macdonald 1953; Fink & Fletcher 1978; Cas & Wright 1987; McPhie et al. 1993; Crown 

& Baloga 1999). 

P-type (pipe-bearing) pahoehoe flow units are dominant throughout the MBF, although S. 

type (spongy) pahoehoe flow units also occur. The P-type pahoehoe flow units have the 

classic amygdale distribution patterns associated with such units (cf. Wilmoth & Walker 

1993) and can be separated into a basal crust, lava core and upper crust. The basal crust is 

characterised by pipe amygdales that begin a few centimetres from the base of the flow and 
have lengths of up to 8 cm. As the pipe amygdales commence a few centimetres from the 

base of the flow unit, this suggests that they formed by gas bubbles rising through the lava 

at a relatively late stage, rather than steam rising through the lava as the unit passed over a 

wet substrate (cf. Walker 1987). The presence of pipe amygdales also indicates that the 

flow units were emplaced on slopes of less than 4° (cf. Walker 1987). The lava core is 

compact and massive with irregular jointing and the upper crust is dominated by elliptical 

amygdales up to 2 cm in diameter. The amygdale distribution patterns observed within the 

MBF flow units are akin to those described for inflating lava flows from Hawaii i (Hon et 

al. 1994; Cashman & Kauahikaua 1997) and in the Columbia River Basalt Group (Self et 

al. 1996; Self et al. 1997). 

Applying the empirical equation of Hon et al. (1994) and using the upper crust thicknesses 

of the P-type flow units, it is estimated that the MBF pahoehoe flow units were emplaced 

as inflating bodies over a period of 10 hours to 9 days. If the average compound lava flow 

is ca. 20 in thick and is made up of approximately 10 flow units, then a typical compound 
lava flow would take from 5 to 85 days to form. This assumes that the eruption of the flow 

units was continuous and does not take into consideration other external factors e. g. effects 

of rainfall and thermal properties. Assuming similar low discharge and low volumetric 

flow rates akin to the pahoehoe lavas of Hawaii (Rowland & Walker 1990; Hon et al. 
1994), it is postulated that a flow front of an MBF lava would have taken a few months to 

just over a year to advance ca. 10 km away from a fissure vent with flow front velocities in 

the order of 1-10 m h"1(cf. Kent et al. 1998). 

The upper section of the MBF sees the introduction of tabular-classic facies architecture 
lava flows. These flows are ca. 10 m thick rubbly-topped sheet-like bodies and may, in 

fact, belong to the lower section of the Upper Basalt Formation (UBF). The tabular-classic 

flows are most likely milling the topographic lows produced by the low shields. The 

sheet-like flows appear to form laterally continuous bodies, but are actually confined 
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within extremely low-lying basins/small depressions. Gradually, the flows infilled the 

topography, leading to the more laterally continuous flows of the UBF. The drowning of a 
lava topography by younger flows is also noted from excellently preserved examples in the 

Snake River Plain, Idaho (Greeley 1976; 1977; 1982). 

The relatively rare interlava lithologies within the MBF generally have limited lateral 

extent and are commonly confined to channel-like structures. The lithologies are 

predominantly volcaniclastic sandstones, although mudstones and conglomerates also 

occur. The units are generally bedded and clasts have a degree of rounding suggesting 

transportation and deposition within a fluvial environment (cf. Collinson 1996; Tucker 

1996a). Normal grading of some of the fluvial deposits indicates cycles of waning water 

flow energy, most likely formed during seasonal flooding episodes. The siltstones, 

sandstones and conglomerates are poorly sorted and clast to matrix supported. The clasts 

are intraformational, with no evidence of any external sources. The units are dominated by 

an abundance of reworked ash grade material, now extremely palagonitised. Rare coarser 
deposits, particularly at Vi6arei6i, Vi6oy, record an influx of basalt lithoclasts, derived 

from lava flows, as well as clasts of volcaniclastic mudstone. The basalt clasts show a 

variation in the degree of surface oxidation, indicating that numerous exposed flows were 

being eroded within the contemporaneous lava field. The preservation of plant material 

within the sandstones from the i Bugum Section indicates that the surrounding land surface 

was vegetated, thus aiding the surface weathering of the volcanic lithologies (cf. Berner & 

Cochran 1998). 

The lack of interlava lithologies in the lower section of the MBF suggests that the eruption 

of the compound lavas was fairly continuous. Waning volcanic activity in the upper section 

of the MBF allowed time for the development of fluvial environments within which the 

volcaniclastic sandstones and conglomerates were deposited (Cas & Wright 1987; Smith 

1991; McPhie et al. 1993; Reading 1996). The overall lack of basalt clasts within the 

majority of the fluvial deposits suggests that erosion rates were low or that there was a 

change in the volcanic style, where pyroclastic debris could have blanketed the land 

surface and restricted erosion of the flows, otherwise there would be an abundance of lava 

clasts similar to the amount observed in the LBF. As the rate of erosion is in part 

determined by climate (Collinson 1996), it is suggested here that there was a deficiency in 

surface water and low levels of rainfall to aid the high rates of erosion inferred for the 

LBF. 
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Furthermore, the general lack of brecciation of the basal crust of the flow units suggests 

that the land surface was relatively dry at the time of emplacement. If the land surface had 

pools and/or water-saturated deposits at the time of eruption, hyaloclastite and blocky 

peperite pockets would have be expected at the base of the flow units, similar to those 

observed in the LBF and in other lava provinces (Jerram et al. 2000; Carr & Jones 2001; 

Jerram & Stollhofen 2002). 

Sedimentary structures within the volcaniclastic mudstones, sandstones and conglomerates 

at Viöareiöi, ViÖoy have not been destroyed or significantly modified by the overlying and 
invasive flow units, which suggests that the magma was emplaced relatively passively (cf. 

Jerram et al. 2000; Jerram & Stollhofen 2002). This may indicate why the volcaniclastic 

rocks are apparently poorly lithified at Viöareiöi, Viöoy, as the flow units have protected 

them, just as the aeolian sands have been preserved in Namibia, Brazil and South 

Greenland by passively emplaced flow units (Clemmensen 1988; Jerram et al. 2000; 

Jerram & Stollhofen 2002; Scherer 2002). 
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7 Upper Basalt Formation 

This chapter, through the description of the facies architecture of the lava flows of the 

Upper Basalt Formation (UBF), proposes the environments of eruption throughout this 

formation. As with the other basalt formations, previous work has focused on the petrology 

and geochemistry of the lavas and the interlava lithologies have received little 

consideration. Here, seven sections containing volcaniclastic lithologies are described and 
interpreted to understand their modes and environments of deposition. The volcaniclastic 
lithologies from the Sneis Section are given special attention because they occur at the 

boundary between the Middle and Upper basalt formations. Lastly, a so-called `vent' 

locality is re-examined using current classification schemes to determine whether it is 

pyroclastic or epiclastic in origin. 

7.1 Distribution 

The Upper Basalt Formation (UBF) has a preserved stratigraphic thickness of ca. 900 m, as 

an unknown thickness has been eroded from the top of the formation. The amount of 

missing strata has been estimated from zeolite studies to be of the order of a few hundred 

metres (Waagstein 1988; Ellis et al. 2002). The UBF crops out on all of the islands except 
Suburoy, Vägar, Tindhölmur and Mykines (Figs. 1.3,7.1 & 7.2). The UBF does not occur 

on northern Streymoy and is sporadic in the NW of Eysturoy. The UBF is always found 

overlying the Middle Basalt Formation (MBF) and the lavas dip between the NE and SE 

with an inclination of between 1.7 and 2.9° (Waagstein 1988). 

7.2 Lava Flows 

7.2.1 Petrology & Geochemistry 

The base of the UBF is represented by a plagioclase-phyric flow sequence, ca. 300 m 

thick, in the central Faeroe Islands situated around Sandoy (Waagstein 1988). However, in 

the NE of the archipelago the base of the UBF is represented by near-aphyric to olivine- 

phyric flows (Kollafjordur Member), which are overlain by the dominant plagioclase- 

phyric flows (Waagstein 1988). The plagioclase-phyric flows in the NE of the Faeroe 

Islands are overlain by near-aphyric (Fig. 7.3) to olivine-phyric flows (Viöoy Member), 

which have an aggregate thickness of ca. 500-600 m (Waagstein 1988). 
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Fig. 7.1. Geological map of the central Faeroe Islands. After Rasmussen & Noe-Nygaard (1969; 1970a; b). 
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Fig. 7.2. Geological map of the NE Faeroe Islands. After Rasmussen & Noe-Nygaard (1969; 1970a; b). 
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Fig. 73. Photomicrographs of a lava flow from the ViÖoy Member, Upper Basalt Formation, N side of 
Malinsfjall, ca. 1.5 km S of Vibareiöi, ViBoy, Faeroe Islands. An aphyric lava flow unit that is finely to 
medium crystalline basalt displaying an intergranular texture. The basalt contains anhedral to subhedral, 
relatively fresh crystals of olivine (OL). The lava also contains laths of plagioclase feldspar, clinopyroxene 
and oxides. 
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The Kollafj, rdur and Viboy members of the UBF have a low Ti02/FeOT ratio compared to 

the Lower Basalt Formation (LBF) and the MBF, but the FeOT/MgO ratio ranges between 

0.6 and 2, making the Kollafjardur and Viooy members transitional from the low-Ti 

olivine tholeiite field to the low-Ti tholeiite field (Fig. 7.4) (Waagstein 1988; Larsen et al. 

1999). The combination of these two low ratios and depletion in Ti, P, K and other 

incompatible elements make the Kollafjordur and Viooy members MORB-like (Mid- 

Ocean Ridge Basalt) (Waagstein 1988; Larsen et al. 1999). Larsen et al. (1999) showed 

that the Kollafjordur and Viöoy members have a Mg #, in the range 50-73, and shows a 

slight decreasing trend up section (Fig. 7.5). This is mirrored by a slight increase up section 

in FeOT, with values in the range 9-12 wt. % (Fig. 7.5b) (Larsen et al. 1999). 

The main plagioclase-phyric sequence of the UBF has a higher Ti02/FeOT ratio than the 

LBF and has a FeOT/MgO ratio similar to the plagioclase-phyric sequence of the MBF, 

causing the plagioclase-phyric main sequence of the UBF occupy the high-Ti tholeiite field 

(Fig. 7.5) (Waagstein 1988; Larsen et al. 1999). Larsen et al. (1999) have shown that the 

plagioclase-phyric sequence of the UBF has a Mg # in the range 42-54 and FeOT in the 

range 10-15 wt. % (Fig. 7.5). The UBF contains both LREE-enriched and LREE-depleted 

flows, suggesting that the lavas are derived from a combination of partial melts of oceanic 

asthenosphere and partial melting of deep mantle blobs or of the subcontinental lithosphere 

during upwelling of the asthenosphere (Bollingberg et al. 1975; Gariepy et al. 1983; Hald 

& Waagstein 1983; Saunders et al. 1997). 

The Villingadalsfjall-6 Lava Flow occurs ca. 75 m above the base of the UBF on northern 

Viooy and is recognised as a high silicic basalt lava by Hald & Waagstein (1983). The 

flow has a 52.55 wt. % Si02 content, ca. 5 wt. % higher than the main lavas of the UBF. 

The flow also has an anomalously high 87Sr/86Sr ratio, which according to Hald & 

Waagstein (1983) imply that the parental magma was contaminated by continental 

basement rocks or sediments. 

7.2.2 Morphology 

The UBF lava flows are morphologically similar to the lava flows of the Lower Basalt 

Formation (LBF). The UBF flows are laterally extensive, with sheet-like geometries, and 

are commonly massive with vesicular and rubbly top zones (Fig. 7.6). The lavas are 

frequently separated by minor reddened volcaniclastic lithologies and, together with the 

reddened flow tops, this highlights the planar upper surfaces to the flows. This layer cake 

appearance and associated terraced terrain is characteristic of tabular-classic facies lava 
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Fig. 7.4. TiOJFeOT vs. FeOT/MgO diagram for basalt lavas from the Faeroe Plateau Lava Group, Faeroe 

Islands (FeOT = total iron recalculated as FeO). The oblique full line and the vertical stippled line mark the 
proposed boundaries between high-Ti olivine tholeiites, high-Ti tholeiites, low-Ti olivine tholeütes, and 
low-Ti tholeiites. LBF = Lower Basalt Formation, MBF = Middle Basalt Formation, UBF = Upper Basalt 
Formation. After Waagstein (1988). 
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Fig. 7.6. Views of Upper Basalt Formation lava flows. The lava flows are laterally extensive, with sheet-like 

geometries, and are commonly massive with vesicular and rubbly top zones. (a) & (b) Western side of 

Malinsfjall (750 m), ca. 1 km S of Viöareiöi, Viöoy, Faeroe Islands. (c) Southern side of K6vingafjall (830 

m), ca. 2 km N of Kunoy, Kunoy, Faeroe Islands. (d) Mountain wall E of Litlidalur, ca. 1.5 km NE of Kunoy, 

Kunoy, Faeroe Islands. (e) The Kirkja Lava Flow, ca. 50 mE of Kirkja harbour, Fugloy, Faeroe Islands. 

The flow is ca. 8m thick. 
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flows (Jerram 2002), more commonly known as simple lavas (Walker 1973), which are 

common within subaerial Continental Flood Basalt (CFB) provinces (Cas & Wright 1987, 

and references therein). These tabular lavas flows are sometimes transitionally interbedded 

with compound lava flows of the Middle Basalt Formation (MBF) at the base of the UBF. 

Flow edges are difficult to observe due to the abundance of vegetation cover throughout 

the UBF, but Rasmussen & Noe-Nygaard (1970b) noted that some lava flows terminate by 

gradually thinning out, whereas plagioclase-phyric flows terminate in a more abrupt 

fashion. A possible flow termination is observed in the mountainside between Sundsskaro 

and Enni above the harbour of Hvannasund, ViÖoy (Fig. 7.7). At this locality it appears 

that two tabular flows are overlapping one another and terminating. On the western side of 

Klakkur, ca. 2 km NW of Klaksvik, Borooy a large tabular lava flow is interpreted as 

riding up and forming an inverted v-shape (Fig. 7.8), which may be the result of the lava 

flowing over a palaeo-high. 

7.2.3 Flow Thicknesses 

The UBF lava flows have an average thickness in the range 8-11 m (Rasmussen & Noe- 

Nygaard 1970b), half the average flow thickness for similar type flows from the LBF. The 

Kirkja Lava Flow on Fugloy is ca. 8m thick (Figs. 7.2 & 7.9). However, a lava flow along 

the harbour wall in Torshavn, Streymoy reaches a thickness of ca. 30 m (Walker & 

Davidson 1936), most likely representing a ponded flow. The lava flows within the UBF 

appear to decrease in thickness up section. The average flow thickness for the UBF lava 

flows is slightly less than those observed for CFBs in the Columbia River Basalt Group 

(CRBG) (Waters 1961), Deccan Traps (Choubey 1973; Subbarao & Sukheswala 1981) and 

eastern Iceland (Walker 1963), but the thick flows found at Torshavn are comparable to 

those observed in these settings. 

7.2.4 Reddened Tops and Environment of Eruption 

As with the LBF tabular lava flows, the UBF flows also display distinctive reddened tops, 

a consequence of contemporaneous subaerial chemical weathering of lava flow surfaces, 

common throughout CFB provinces (e. g. Wilkins et al. 1994; Widdowson et al. 1997). 

However, these reddened tops are not as prevalent or as well developed throughout the 

UBF as they are in the LBF and consequently soil profiles are similarly lacking. This may 

be linked to the abundance of volcaniclastic units separating the lava flows and restricting 
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Fig. 7.8. On the western side of Klakkur (413 m), ca. 2 km NW of Klaksvik, Boröoy, Faeroe Islands a large 
tabular lava flow is observed riding up and forming an inverted v-shape. This may be the result of the lava 
flowing over a palaeo-high. 
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the process of subaerial chemical weathering on the upper surfaces of the lava flows or that 

the eruption frequency was higher restricting the time available for subaerial weathering 

7.2.5 Development of Prismatic and Columnar Jointing 

Columnar jointing is absent throughout the UBF, although poorly developed or 

prismatically jointed lava flows are common. However, compared to the prismatically 

jointed lava flows of the LBF they are not as well developed. The jointing in the Kirkja 

Lava Flow on Fugloy is a typical example of prismatic jointing within the UBF (Fig. 7.9). 

The joints within the Kirkja flow are very indistinct and from some viewpoints appear to 

be absent. Another feature associated with the prismatically jointed lava flows of the LBF 

but are absent from the UBF are hyaloclastite and blocky peperite pockets at the base of 

the flows. The absence of columnar jointing, hyaloclastite and blocky peperite pockets 

suggests that the lava flows were erupted onto a dry land surface (cf. Saemundsson 1970; 

Busby-Spera & White 1987; Lyle 2000; Campbell et al. 2001; Jerram 2002; Skilling et al. 

2002). 

A form of lava flow identified by Rasmussen & Noe-Nygaard (1970b) as an agglutinate 

forms a distinctive feature throughout the UBF. These lava flows are relatively thin, 

typically no more than 8m thick, and commonly overlie volcaniclastic lithologies. One 

such lava flow occurs ca. 200 m SE of Hälgafelli summit, ca. 420-430 m above sea level, 

ca. 1 km SW of Klaksvik, BorÖoy (Figs. 7.2 & 7.10). The lava flow is ca. 8m thick and 

overlies a ca. 4.7 m thick volcaniclastic sequence of sandstones and mudstones (see 

Section 7.4.2.3). The lava flow is pale grey and densely vesiculated. The surface of the 

flow is jagged and bumpy having the appearance of a breccia (Fig. 7.10). In thin section, 

the lava flow consists of phenocryst glomerocrysts (ca. 5 vol. %) set in a very finely 

crystalline groundmass made up of plagioclase feldspar, clinopyroxene and oxides (Fig. 

7.11). The glomerocrysts consist of laths of plagioclase feldspar with a maximum size of 

ca. 3 mm and altered subhedral crystals of olivine with a maximum size of ca. 1 mm. The 

basalt lava flow does not appear to be brecciated in thin section suggesting that the lava has 

been welded together. As much as 25 vol. % of the lava flow is vesiculated. The vesicles 

are lined by secondary minerals such as zeolites and calcite but are not filled. 

7.2.6 Internal Structure 

Apart from the agglutinated lava flows that are highly vesiculated (see Section 7.2.5) the 

tabular lava flows of the UBF are massive, with a uniform and disperse vesicular pattern. 
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A. 

Fig. 7.10. Views of an agglutinated lava flow that occurs ca. 200 m SE of Hälgafelli summit, ca. 420-430 m 
above sea level, ca. 1 km SW of Klaksvik, Borboy, Faeroe Islands. The lava flow is ca. 8m thick and overlies 
a ca. 4.7 m thick volcaniclastic sequence of sandstones and mudstones. The lava flow is pale grey and 
densely vesiculated. The surface of the flow is jagged and bumpy having the appearance of a breccia. The 
hammer is ca. 40 cm long and the lens cap is ca. 6 cm across. 
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Fig. 7.11. Photomicrographs of the agglutinated lava flow ca. 200 m SE of Hälgafelli summit, ca. 420-430 m 
above sea level, ca. 1 km SW of Klaksvik, Borboy, Faeroe Islands. The lava flow consists of phenocryst 
glomerocyrsts (ca. 5 vol. %) set in a very finely crystalline groundmass made up of plagioclase feldspar, 

clinopyroxene and oxides (a) Phenocryst glomerocyrsts consist of laths of plagioclase feldspar with a 
maximum size of ca. 3 mm and serpentinised subhedral crystals of olivine with a maximum size of ca. I 
mm. View under plane-polarised light. (b) Same view as in (a) under cross-polarised light. (c) & (d) Very 
finely crystalline groundmass made up of plagioclase feldspar, clinopyroxene and oxides. Both views 
under plane-polarised light. 
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The tabular lava flows have densely populated vesicular and rubbly flow tops that are 

generally 1-2 m thick. As with the LBF lava flows, pipe vesicles are rare or absent from 

the base of the tabular lava flows of the UBF. There is also a lack of vesicles within the 

lower and middle sections of the tabular lava flows from the UBF. Horizontal vesicle 

sheets and vertical vesicle cylinders are similarly lacking from the UBF lava flows. 

7.2.7 Fossil Trees 

The presence of empty cylindrical structures at the base of several tabular lava flows is 

interpreted to represent the moulds of fossil trees. One such tree mould is found at the base 

of a flow in a road side cutting, ca. 900 m NW of Sundshälsur, ca. 5 km NW of Torshavn, 

Streymoy (Figs. 7.1 & 7.12). The lava flow has a minimum exposed thickness of ca. 3m 

and overlies ca. 1.2 m thick sequence of cross-laminated fluviatile sandstones and 

siltstones (Ellis et al. 2002). The base of the lava flow is hummocky and uneven. The tree 

mould has a diameter of ca. 30 cm and extends into the lava flow for ca. 76 cm. The mould 

is lined with carbonaceous material. The tree mould trends N-S, suggesting that the lava 

flowed in either direction. According to Ellis et al. (2002) another tree mould can be seen 

at Kirkja, Fugloy. 

7.3 Sneis Section 

7.3.1 Summary of Section 

The Sneis Section crops out on the prominent plateau region, ca. 60-100 m below the 

summit of Sneis (747 m), ca. 6 km ENE of Vestmanna, Streymoy (Fig. 7.1). The western 

side of Sneis is the most accessible route to the plateau region and consequently field 

observations are based on this side of the mountain. The section is composed of 

volcaniclastic rocks disrupted by doleritic sills at the boundary between the MBF and UBF 

and forms a distinctive and informative sequence. 

7.3.2 Lithology & Petrography 

Middle Basalt Formation plagioclase-phyric basalt lava flows of a compound nature crop 

out on the western side of Sneis. Overlying the MBF lava flows towards the top of the 

slope leading to the plateau region is Unit 1, a prominent ca. 2m thick interval of scree 

composed of moderate reddish brown (1 OR 4/6) volcaniclastic sandstone. This sandstone is 
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Fig. 7.12. Views of a tree mould at the base of a tabular lava flow from the Upper Basalt Formation that 
occurs in a road side cutting, ca. 900 m NW of Sundshälsur, ca. 5 km NW of Torshavn, Streymoy, Faeroe 
Islands. The tree mould has a diameter of ca. 30 cm and extends into the lava flow for ca. 76 cm. The mould 
is lined with carbonaceous material. The tree mould trends N-S, suggesting that the lava flowed in either 
direction. The lava flow overlies ca. 1.2 m thick sequence of cross-laminated fluviatile sandstones and 
siltstones. The hammer is ca. 40 cm long. 
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poorly sorted, has an average clast size of fine sand and is matrix supported (Fig. 7.13). 

Angular to sub-rounded, near opaque to orange palagonitised basaltic glass clasts (>95 

vol. %) dominate the sandstone. High proportions of these clasts are highly vesiculated or 

exhibit cuspate margins. Clasts that contain large phenocrysts of plagioclase feldspar, 

account for no more than 10 vol. % of the sandstone. Unit 1 is overlain by a doleritic sill 
(see Section 7.3.5), which disrupts the sequence. 

Unit 2 is a dusky red (5R 3/4) to greyish red (1OR 4/2) volcaniclastic conglomerate that 

crops out on the plateau region around Sneis (Fig. 7.14). This conglomerate is poorly 

sorted and clast size ranges from <1 mm up to 26 cm, with an average clast size of ca. 6 

cm (very coarse pebble grade). The clasts are sub-rounded to angular and the conglomerate 

is on the whole matrix supported (Fig. 7.15). Some of the clasts are comprised of laths of 

plagioclase feldspar, averaging 63-125 µm in length, contained within a very finely to 

finely crystalline groundmass of plagioclase feldspar, clinopyroxene and oxides. Other 

clasts consist of phenocrysts of plagioclase feldspar, averaging 63-125 µm in length, in an 

opaque glassy groundmass. Both clast types have highly irregular edges, ranging from u- 

shaped protrusions to very angular v-shaped incisions. Euhedral to subhedral crystals of 

serpentinised olivine occur in a small proportion of the clasts (<10 vol. %). The olivine 

crystals, with or without plagioclase feldspar, generally form a glomerophyric texture 

within the clasts. Some of the clasts appear to be cemented together by a brownish green 

zeolitic cement. The upper section of the volcaniclastic conglomerate is thickly laminated 

(ca. 1-3 cm) and is moderate reddish brown (1OR 4/6) due to the presence of abundant 

angular near opaque to orange palagonitised basaltic glass clasts (Fig. 7.16), which do not 

occur in the lower section of the conglomerate. These glassy clasts range in size from <63 

up to 500 pm and are commonly vesiculated and display cuspate margins. 

Unit 3 is a dark yellowish orange (1OYR 6/6) volcaniclastic sandstone. This poorly sorted 

and clast supported sandstone is obscured by scree but has a minimum thickness of ca. 2m 

(Fig. 7.17). It is dominated by very angular to sub-rounded highly palagonitised near 

opaque to brownish to creamy yellow basaltic glass (>95 vol. %), which ranges in size from 

very fine to fine sand (63 to 250 gm). Some of the clasts are vesiculated and display 

cuspate margins. The sandstone also contains sub-rounded clasts of equigranular basalt 

consisting of laths of plagioclase feldspar, clinopyroxene and oxides (Figs. 7.17a & c). 

These clasts account for ca. 5 vol. % of the sandstone and have a maximum size of ca. 0.5 

mm. The sandstone has very little zeolitic cement. Overlying Unit 3 is a tabular lava flow 

ca. 6-10 m thick from the UBF. 
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Fig. 7.13. Photomicrographs of Unit 1, a moderate reddish brown volcaniclastic sandstone that crops out 
ca. 800 m NW from the summit of Sneis (747 m), ca. 6 km ENE of Vestmanna, Streymoy, Faeroe Islands. 
All of the photomicrographs are under plane-polarised light. (a) to (c) The sandstone is poorly sorted, has 

an average clast size of fine sand and is matrix supported. Angular to sub-rounded, near opaque to orange 
palagonitised basaltic glass clasts (>95 vol. %) dominate the sandstone. High proportions of these clasts are 
highly vesiculated or exhibit cuspate margins. Clasts that contain large phenocrysts of plagioclase 
feldspar (PL), account for no more than 10 vol. % of the sandstone. 
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Fig. 7.14. Views of ( nit 2, volcanic last ic conglomerate, that crops out on the plateau region, ca. 60-100 m 
below the summit of Sneis (747 m), ca. 6 km ENE of Vestmanna, Streymoy, Faeroe Islands. (a) to (d) The 
conglomerate is poorly sorted and clast size ranges from <1 mm up to 26 cm, with an average clast size of 
ca. 6 cm (very coarse pebble grade). The clasts are sub-rounded to angular and the conglomerate is on the 
whole matrix supported. The clasts are composed of various forms of basalt. (e) & (f) The upper section of 
the volcaniclastic conglomerate is thickly laminated (ca. 1-3 cm) and is moderate reddish brown due to the 
presence of abundant angular near opaque to orange palagonitised basaltic glass clasts, which do not 
occur in the lower section of the conglomerate. The white card is ca. 16 x6 cm and the lens cap is ca. 6 cm 
across. 
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Fig. 7.15. Photomicrographs of Unit 2, volcaniclastic conglomerate, that crops out on the plateau region, 
ca. 60-100 m below the summit of Sneis (747 m), ca. 61 cm ENE of Vestmanna, Streymoy, Faeroe Islands. All 
of the photomicrographs are under plane-polarised light. (a) to (d) The basalt clasts are sub-rounded to 
angular and the conglomerate is on the whole matrix supported. Clasts have highly irregular edges, 
ranging from u-shaped protrusions to very angular v-shaped incisions. (e) Some of the clasts are 
comprised of laths of plagioclase feldspar, averaging 63-125 pm in length, contained within a very finely to 
finely crystalline groundmass of plagioclase feldspar, clinopyroxene and oxides (C I). Other clasts consist 
of phenocrysts of plagioclase feldspar, averaging 63-125 µm in length, in an opaque glassy groundmass 
(C2). (f) Some of the clasts appear to be cemented together by a brownish green zeolitic cement. 
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Fig. 7.16. Photomicrographs of the upper section of Unit 2, volcaniclastic conglomerate, that crops out on 
the plateau region, ca. 60-100 m below the summit of Sneis (747 m), ca. 6 km ENE of Vestmanna, Streymoy, 
Faeroe Islands. All of the photomicrographs are under plane-polarised light. (a) & (b) The large irregular 
shaped basalt clasts (C) are set in a matrix of angular near opaque to orange palagonitised basaltic glass 
clasts. (c) to (e) These near opaque to orange palagonitised glassy clasts range in size from <63 up to 500 µm 
and are commonly vesiculated and display cuspate margins, the remains of former bubble walls. 
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Fig. 7.17. Photomicrographs of Unit 3, a dark yellowish orange volcaniclastic sandstone, that crops out ca. 
400 m NW from the summit of Sneis (747 m), ca. 6 km ENE of Vestmanna, Streymoy, Faeroe Islands. All of 
the photomicrographs are under plane-polarised light. (a) to (d) The sandstone is dominated by very 
angular to sub-rounded highly palagonitised near opaque to brownish to creamy yellow basaltic glass (>95 

vol. %), which ranges in size from very fine to fine sand (63 to 250 µm). The sandstone also contains sub- 
rounded clasts of equigranular basalt (B) consisting of laths of plagioclase feldspar, clinopyroxene and 
oxides. These clasts account for ca. 5 vol. % of the sandstone and have a maximum size of ca. 0.5 mm. The 

sandstone has very little zeolitic cement. 
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7.3.3 Provenance 

All of the volcaniclastic rocks from the Sneis Section consist of clasts derived from sources 

within the depositional area. A common clast type observed in all three of the 

volcaniclastic rocks is palagonitised basaltic glass, which were derived from the reworking 

of unconsolidated ash deposits. The phenoclasts from the volcaniclastic conglomerate are 

all compositionally similar and contain phenocrysts of plagioclase feldspar of comparable 

sizes, suggesting that were initially derived from the same magma chamber but underwent 
different cooling rates, resulting in the textures preserved. These phenoclasts were 

subsequently erupted and deposited on the surrounding volcanic edifice from where they 

were eroded, transported and deposited. The lack of clast type variation in the 

conglomerate reflects the homogeneity of the source volcanic edifice (cf. McPhie et al. 
1993). The occurrence of basalt clasts, most likely derived from lava flows, in Unit 3 and 

their range in surface oxidation states suggests that they were derived from numerous 

exposed flows on the contemporaneous lava surface. 

7.3.4 Environment of Deposition 

The Sneis Section consists of volcaniclastic rocks that were deposited in a terrestrial 

environment. The lack of pyroclastic textures, such as glass shards and welding, and the 

preservation of bedding, poor sorting and rounding of clasts indicates that the rocks were 
formed by epiclastic processes (cf. Fisher & Schmincke 1984; Cas & Wright 1987; McPhie 

et al. 1993). Partial rounding of the clasts suggests that transportation was limited and this 

is supported by the preservation of u-shaped protrusions on the phenoclasts from the 

volcaniclastic conglomerate, if these clasts had been transported for any significant period 

of time these u-shaped protrusions would have been worn down or broken off. The 

conglomerate is poorly sorted, non-graded, matrix supported, and has a tabular geometry, 

which indicates that the rock was transported and deposited as a type of epiclastic mass 

flow (cf. Cas & Wright 1987; Smith & Lowe 1991; McPhie et al. 1993). The lack of 

megablocks, greater than 10 m in size, and fracturing of clasts suggests that the 

conglomerate is a volcaniclastic debris flow (cf. Yarnold 1993). The inclusion of basaltic 

glass fragments in the upper section of the volcaniclastic conglomerate implies that an 

eruption had begun before the debris flow became stagnant and according to Smith (1991) 

volcaniclastic debris flows are commonly deposited during syn-eruption periods. 
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7.3.5 Intrusive Lithologies 

The volcaniclastic lithologies between the MBF and the UBF on Sneis have has been 

disrupted by a dark grey (N3) finely crystalline basaltic sill (Figs. 7.18 & 7.19). The sill 

exhibits a foliation in hand specimen, due to the alignment of plagioclase feldspar in the 

groundmass. The orientation of this foliation indicates locally the direction in which the sill 

was travelling. Where the foliation is in a vertical orientation it suggests that this part of 

the sill represents a vertical conduit flowing towards the surface. Where the sill is in 

contact with the volcaniclastic conglomerate the foliation is commonly in a horizontal 

orientation, suggesting that the sill spread laterally into the poorly lithified volcaniclastic 

conglomerate. The sill is equigranular and consists of laths of plagioclase feldspar, 

subhedral crystals of clinopyroxene and olivine, and angular oxides (Fig. 7.19). 

7.4 Interlava Lithologies 

7.4.1 Occurrence 

The interlava lithologies observed in the UBF consist primarily of volcaniclastic lutites to 

rudites. Volcaniclastic sandstones are by far the most common interlava lithology. A 

number of localities are described below giving an overall picture of the volcaniclastic 

rocks observed throughout the UBF. From east to west the localities described are as 
follows: (i) Kirkja Section, ca. 50 mE of the Kirkja harbour, Fugloy (Fig. 7.2); (ii) 

Gjögvin Störa Section, ca. 100-150 m above sea level, ca. 5 km SE of Viöareiöi, Viöoy 

(Fig. 7.2); (iii) Hälgafelli Section, ca. 400-430 m above sea level, ca. 200 m SE from the 

summit of Hälgafelli, ca. 1 km SW of Klaksvlk, Borooy (Fig. 7.2); (iv) Kunoy Section, ca. 
500-780 m above sea level, ca. 800 mS from the summit of Middagsfjall, ca. 1.5 km NE 

of Kunoy, Kunoy (Fig. 7.2); (v) Litlavatn Section, a roadside cutting between Sandur and 

Skälavik, ca. 400 mN of Litlavatn, Sandoy (Fig. 7.1); and (vi) Argir Section, a roadside 

cutting, ca. 600 mE of Itröttavollur, ca. 1 km W of Argir, Streymoy (Fig. 7.1). 

7.4.2 Lithology & Petrography 

7.4.2.1 Kirkja Section 

The Kirkja Section consists of a sequence of two volcaniclastic sandstones inbetween 

tabular lava flows of the UBF (Fig. 7.20). The basal lava flow is a plagioclase-phyric basalt 
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Fig. 7.18. View of the finely crystalline basaltic sill that crops out on the plateau region, ca. 60-100 m below 
the summit of Sneis (747 m), ca. 6 km ENE of Vestmanna, Streymoy, Faeroe Islands. The sill has intruded a 
poorly lithified volcaniclastic conglomerate. 

(a) 

o 

(b) 

i 0.5 mm 

Fig. 7.19. Photomicrographs of the finely crystalline basaltic sill that crops out on the plateau region, ca. 
60-100 m below the summit of Sneis (747 m), ca. 6 km ENE of Vestmanna, Streymoy, Faeroe Islands. (a) 
The sill is equigranular and consists of laths of plagioclase feldspar, subhedral crystals of clinopyroxene 
and olivine (OL), and angular oxides. The photomicrograph is under plane-polarised light. (b) Same as in 
(a) but under cross-polarised light. 
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Fig. 7.20. Views of the Kirkja Section, ca. 50 mE of the Kirkja harbour, Fugloy, Faeroe Islands. (a) The 
Kirkja section consists of a ca. Im thick sequence of volcaniclastic sandstones inbetween two tabular lava 
flows of the Upper Basalt Formation. (b) The basal lava flow is a plagioclase-phyric basalt. The 
phenocrysts of plagioclase feldspar reach a maximum size of ca 6 mm. The compass is ca. 10 x6 cm. (c) & 
(d) The Kirkja Section consists of three volcaniclastic sandstone units: 1,2, and 3. Unit 1 is a ca. 20 cm 
thick, Unit 2 is a ca. 23 cm thick and Unit 3 is a ca. 25 cm thick. The hammer is ca. 40 cm long. 

Chapter 7 Upper Basalt Formation Page 268 

(d)\ 

I- 



Simon R. Passey 

(Fig. 7.20b), with phenocrysts of plagioclase feldspar reaching a maximum size of ca. 6 

mm. The upper ca. 8 cm of the lava is mauve coloured and vesicle rich. Overlying the lava 

is Unit 1, a ca. 20 cm thick moderate reddish brown (1OR 5/4) volcaniclastic sandstone 

(Fig. 7.20). This sandstone is poorly sorted, matrix supported, with an average clast size of 

very fine to fine sand and a maximum size of 500 µm (Fig. 7.21). It is dominated by 

angular to sub-rounded palagonitised opaque to orange basaltic glass clasts. Some of the 

clasts exhibit shard textures and cuspate margins. The opaque clasts are usually vesiculated 

and contain laths of plagioclase feldspar. Plagioclase-bearing clasts account for less than 5 

vol. % of the sandstone. The finer grained clasts have edges that are obscured due to the 

hydration process. Less than 5 vol. % of the sandstone is made up of sub-angular to sub- 

rounded clasts of equigranular basalt, which consist of laths of plagioclase feldspar, 

clinopyroxene and oxides. 

Unit 2 is a ca. 23 cm thick pale reddish brown (1OR 5/4) volcaniclastic sandstone (Fig. 

7.20). This sandstone is poorly sorted, clast supported, with an average clast size of very 

fine sand and a maximum size of 300 µm (Fig. 7.22). It is dominated by angular to sub- 

rounded palagonitised opaque to greenish brown to pale yellow basaltic glass clasts. The 

larger pale yellow glass clasts commonly exhibit cuspate margins. The finer greenish 

brown glassy clasts have obscured edges due to the hydration process. The sandstone 

contains <5 vol. % of zeolitic cement. 

Unit 3 is a ca. 25 cm thick, thickly laminated (ca. 10-20 mm), pale reddish brown (l OR 

5/4) to pale yellowish brown (1OYR 6/2) volcaniclastic sandstone (Fig. 7.20). This 

sandstone is poorly sorted, clast supported, with an average clast size of medium sand and 

a maximum size of 0.8 mm (Fig. 7.23). It is composed entirely of angular to sub-rounded 

palagonitised opaque to reddish brown to pale orange basaltic glass clasts. The pale orange 

glass clasts exhibit shard textures as well as cuspate margins. The finer grained reddish 

brown clasts are palagonitised to such an extent that edges have been obscured. The 

sandstone is overlain by an 8 in thick tabular lava flow (Fig. 7.20), the lower ca. 40 cm of 

which displays vesicles with a maximum size of ca. 6 cm. The lava flow is in turn overlain 

by another ca. 1m thick volcaniclastic sequence. Unfortunately, the exposure is 

inaccessible and unable to be examined. 

7.4.2.2 Gjögvin Störa Section 

The Gjögvin Störa Section consists of a sequence through the UBF above the first tabular 

lava flow of the UBF (Fig. 7.24). The good exposure at Gjögvin Störa is a consequence of 
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Fig. 7.21. Photomicrograph of Unit 1, volcaniclastic sandstone, Kirkja Section, ca. 50 mE of the Kirkja 
harbour, Fugloy, Faeroe Islands. The photomicrograph is under plane-polarised light. The sandstone is 
poorly sorted, matrix supported, with an average clast size of very fine to fine sand and a maximum size of 
500 µm. It is dominated by angular to sub-rounded palagonitised opaque to orange basaltic glass clasts. 
Some of the clasts exhibit shard textures and cuspate margins. The opaque clasts are usually vesiculated 
and contain laths of plagioclase feldspar (PL). Plagioclase-bearing clasts account for less than 5 vol. % of 
the sandstone. The finer grained clasts have edges that are obscured due to the hydration process. Less 
than 5 vol. % of the sandstone is made up of sub-angular to sub-rounded clasts of equigranular basalt, 
which consist of laths of plagioclase feldspar, clinopyroxene and oxides. 
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Fig. 7.22. Photomicrographs of Unit 2, volcaniclastic sandstone, Kirkja Section, ca. 50 in E of the Kirkja 
harbour, Fugloy, Faeroe Islands. Both photomicrographs are under plane-polarised light. (a) The 

sandstone is poorly sorted, clast supported, with an average clast size ofvery fine sand and a maximum size 
of 300 µm. (b) The sandstone is dominated by angular to sub-rounded palagonitised opaque to greenish 
brown to pale yellow basaltic glass clasts. The finer greenish brown glassy clasts have obscured edges due 
to the hydration process. The sandstone contains <5 vol. % ofzeolitic cement. 
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Fig. 7.23. Photomicrographs of Unit 3, volcaniclastic sandstone, Kirkja Section, ca. 50 in E of the Kirkja 
harbour, Fugloy, Faeroe Islands. Both photomicrographs are under plane-polarised light. (a) The 

sandstone is poorly sorted, clast supported, with an average clast size of medium sand and a maximum size 
of 0.8 mm. (b) The sandstone is composed entirely of angular to sub-rounded palagonitised opaque to 
reddish brown to pale orange basaltic glass clasts. The finer grained reddish brown clasts are 
palagonitised to such an extent that edges have been obscured. 
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Fig. 7.24. Views of the Gjögvin Störa Section, ca. 100-150 m above sea level, ca. 5 km SE of Viilareiöi, Viöoy, 
Faeroe Islands. The section consists of a ca. 7-10 m thick volcaniclastic conglomerate overlain by a ca. 10 m 
thick basaltic lava flow from the Upper Basalt Formation. The lava flow is overlain by a ca. 0.6-2 m thick 
volcaniclastic sandstone. The good exposure at Gjögvin Störa is a consequence of the presence of a basaltic 
dyke that trends E-W. The dyke is ca. 3m wide and is exposed in the gully wall over a height of ca. 80 m. 

Fig. 7.25. View of the volcaniclastic conglomerate from the G j6gvin Störa Section, ca. 100-150 in above sea 
level, ca. 5 km SE of VibareiOi, Viöoy, Faeroe Islands. The conglomerate is poorly sorted, matrix 
supported, with an average clast size of coarse pebbles (ca. 2.5 x3 cm) and a maximum size of ca. 15 x 12 
cm. The penknife is ca. 8 cm in length. 
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the presence of a basaltic dyke that trends E-W. The dyke is ca. 3m wide and is exposed in 

the gully wall over a height of ca. 80 m. The basal ca. 30 m thick lava flow is overlain by 

ca. 7-10 m thick moderate yellowish brown (10YR 5/4) volcaniclastic conglomerate. The 

contact between the lava and the conglomerate is not exposed. The conglomerate crops out 

for a distance of ca. 500 m to the N of this locality, before it is lost due to poor exposure. 

The conglomerate is poorly sorted, matrix supported, with an average clast size of coarse 

pebbles (ca. 2.5 x3 cm) and a maximum size of ca. 15 x 12 cm (Fig. 7.25). The clasts are 

primarily sub-rounded, although angular ones do occur. In thin section, the conglomerate is 

homogenous in clast type, being dominated by plagioclase-phyric basalt clasts (Fig. 7.26). 

The clasts are comprised of phenocrysts of plagioclase feldspar, averaging ca. 100-200 µm 

in length and having a maximum length of ca. 1 cm, and are contained within an opaque 

glassy groundmass. Occasionally, anhedral crystals of clinopyroxene are observed and are 

less than 200 . tm in size. Some of the clasts contain amoeboidal-shaped amygdales infilled 

by zeolites. The volcaniclastic conglomerate is overlain by a ca. 10 m thick lava now with 

poorly developed prismatic jointing at its base. The middle and upper sections of the lava 

flow appear brecciated and agglutinated. 

The lava flow is overlain by a moderate reddish brown (l OR 4/6) volcaniclastic sandstone. 

This sandstone has a thickness between ca. 0.6 and 2m and can be traced for at least 600 

mS of Gjögvin Störa. It is poorly sorted, clast supported, with an average clast size of very 
fine to fine sand and a maximum size of 500 µm (Fig. 7.27). The sandstone is wholly 

composed of angular to sub-rounded palagonitised opaque and orange basaltic glass clasts. 

Some of the clasts exhibit shard textures, vesicles and cuspate margins. Phenocrysts of 

plagioclase feldspar are observed in a small proportion of the clasts (<5 vol. %). The pore 

space of the sandstone has been partially infilled by zeolitic material. The sandstone is 

overlain by a ca. 10 m thick tabular lava flow, which displays a brecciated base. 

7.4.2.3 Hälgafelli Section 

The Hälgafelli Section consists of a ca. 4.7 m thick sequence of volcaniclastic siltstones 

and sandstones (Figs. 7.28 & 7.29). The section crops out ca. 6m above a tabular lava flow 

of the UBF. Unit 1 consists of a moderate yellowish brown (10YR 5/4) highly altered 

volcaniclastic sandstone. This sandstone has a minimum thickness of ca. 1.8 m, is poorly 

sorted and clast supported (Fig. 7.30). The average clast size of the sandstone is medium to 

coarse sand, although clasts up to 3 mm occur. Approximately 20 vol. % of the sandstone 

consists of sub-rounded opaque basaltic glass clasts, characterised by an abundance of 

vesicles infilled by zeolitic material. The remainder of the sandstone consists of sub- 
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Fig. 7.26. Photomicrographs of the volcaniclastic conglomerate, Gjögvin St6ra Section, ca. 100-150 m 
above sea level, ca. 5 km SE of Vibareibi, Viöoy, Faeroe Islands. All of the photomicrographs are under 
plane-polarised light. (a) to (c) The conglomerate is poorly sorted, matrix supported, with an average clast 
size of coarse pebbles (ca. 2.5 x3 cm) and a maximum size of ca 15 x 12 cm. The clasts are primarily sub- 
rounded, although angular ones do occur. (d) Some of the clasts have irregular edges, ranging from u- 
shaped protrusions to v-shaped incisions. Clast type is very homogenous, being dominated by plagioclase- 
phyric basalt clasts. The clasts are comprised of phenocrysts of plagioclase feldspar, averaging ca. 100-200 

µm in length and having a maximum length of ca. 1 cm, and are contained within an opaque glassy 
groundmass. 
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Fig. 7.27. Photomicrographs of the volcaniclastic sandstone, Gj6gvin St6ra Section, ca. 100-150 m above 
sea level, ca. 5 km SE of Vibareibi, Viöoy, Faeroe Islands. All of the photomicrographs are under plane- 
polarised light. (a) & (b) The sandstone is poorly sorted, clast supported, with an average clast size of very 
flue to fine sand and a maximum size of 500 µm. The sandstone is wholly composed of angular to sub- 
rounded palagonitised opaque and orange basaltic glass clasts. 
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Fig. 7.28. Views of the Hälgafelli Section, ca. 400-430 m above sea level, ca. 200 m SE from the summit of 
Hälgafelli, ca. 1 km SW of Klaksvik, Boröoy, Faeroe Islands. (a) & (b) The section is ca. 4.7 m thick and 
consists of a sequence of volcaniclastic siltstones and sandstones below an agglutinated lava flow. (c) to (e) 
The sequence can be subdivided into 4 units: unit 1 is a ca. 1.8 m thick volcaniclastic sandstone, unit 2 is a 
ca. 1.6 m thick volcaniclastic siltstone, unit 3 is a ca. 30 cm thick volcanielastic sandstone, and unit 4 is a ca. 
Im thick volcaniclastic mudstone. The white card is ca. 16 x6 cm and the hammer is ca. 40 cm long. 
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Fig. 7.29. A graphic log for a ca. 20 m thick Hälgafelli Section through the Upper Basalt Formation (Li BF), 

ca. 400-430 m above sea level, ca. 200 m SE from the summit of Hälgafelli, ca. I km SW of Klaksvik, 
Boröoy, Faeroe Islands. 
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Fig. 7.30. Photomicrographs of Unit 1, volcaniclastic sandstone, Hälgafelli Section, ca. 400-430 m above 
sea level, ca. 200 in SE from the summit of Hälgafelli, ca. 1 km SW of Klaksvik, Bordoy, Faeroe Islands. 
Both of the photomicrographs are under plane-polarised light. (a) & (b) The sandstone is poorly sorted 
and clast supported. The average clast size of the sandstone is medium to coarse sand, although clasts up to 
3 mm occur. Approximately 20 vol. % of the sandstone consists of sub-rounded opaque basaltic glass clasts, 
characterised by an abundance of vesicles infilled by zeolitic material (OG). The remainder of the 
sandstone consists of sub-rounded highly palagonitised yellowish brown clasts of basaltic glass. The edges 
to these clasts are highly diffuse due to the hydration process. 
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Fig. 7.31. Photomicrographs of Unit 2, volcaniclastic siltstone, Hälgafelli Section, ca. 400-430 m above sea 
level, ca. 200 m SE from the summit of Hälgafelli, ca. 1 km SW of Klaksvik, Boröoy, Faeroe Islands. Both 

photomicrographs are under plane-polarised light. (a) The siltstone is moderately sorted, clast supported, 
with an average clast size of very coarse silt and a maximum size of very fine sand. The siltstone is 

composed of angular to sub-rounded opaque and yellowish brown highly palagonitised basaltic glass 
clasts. (b) The clast edges are commonly obscured due to the hydration process. 
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rounded highly palagonitised yellowish brown clasts of basaltic glass. The edges to these 

clasts are highly diffuse due to the hydration process and sometimes contain vesicles 

infilled by zeolitic material. 

Unit 2 is a ca. 1.6 m thick pale yellowish brown (1OYR 6/2) volcaniclastic siltstone with a 

very distinctive conchoidal fracture. This siltstone is moderately sorted, clast supported, 

with an average clast size of very coarse silt and a maximum size of very fine sand (Fig. 

7.31). In thin section, the siltstone is composed of angular to sub-rounded opaque and 

yellowish brown highly palagonitised basaltic glass clasts. The clast edges are commonly 

obscured due to the hydration process. 

Unit 3 is a ca. 30 cm thick dark yellowish orange (IOYR 6/6) volcaniclastic sandstone, 

which is exposed as an easily identifiable band within the exposure. This sandstone is 

poorly sorted, matrix supported, with an average clast size of medium to coarse sand and a 

maximum size of 1.5 mm (Fig. 7.32). In thin section, the sandstone is dominated by 

angular to sub-rounded opaque to greenish brown palagonitised basaltic glass clasts. The 

clasts commonly contain highly altered `broken' phenocrysts of plagioclase feldspar, 

which have a maximum size of ca. 1 mm. Some of the least altered clasts contain vesicles 

and exhibit cuspate margins. The sandstone contains sub-rounded clasts of equigranular 

basalt that have a maximum size of ca. 1 mm (<5 vol. %) and are composed of laths of 

plagioclase feldspar, clinopyroxene and oxides. 

Unit 4 is a ca. 1m thick volcaniclastic mudstone, which is only identified from scree 

chippings. The basal ca. 60 cm of the mudstone is pale yellowish brown (10YR 6/2) and 

the upper ca. 40 cm is moderate reddish brown (1 OR 4/6). This mudstone is overlain by an 

agglutinated lava flow that is ca. 8m thick and is discussed in Section 7.2.5. Overlying the 

agglutinated lava flow is Unit 5, a ca. 1m thick greyish orange (10YR 7/4) volcaniclastic 

siltstone. This siltstone is poorly sorted, clast supported, with an average clast size of very 

coarse silt and a maximum size of ca. 250 µm (Fig. 7.33). The siltstone consists of angular 

to sub-rounded clasts of opaque to red to pale cream palagonitised basaltic glass. The 

majority of the clasts exhibit cuspate margins and the largest ones contain vesicles. The 

siltstone is overlain by a tabular lava flow from the UBF. 

7.4.2.4 Kunoy Section 

The Kunoy Section consists of 5 separate volcaniclastic sandstones inbetween tabular lava 

flows over a thickness of ca. 300 m (Fig. 7.34). Unit 1 crops out ca. 500 m above sea level 
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Fig. 7.32. Photomicrographs of Unit 3, volcaniclastic sandstone, Hälgafelli Section, ca. 400-430 m above 
sea level, ca. 200 m SE from the summit of Hälgafelli, ca. 1 km SW of Klaksvik, Bor6oy, Faeroe Islands. All 
of the photomicrographs are under plane-polarised light. (a) The sandstone is poorly sorted, matrix 
supported, with an average clast size of medium to coarse sand and a maximum size of 1.5 mm. The 
sandstone is dominated by angular to sub-rounded opaque to greenish brown palagonitised basaltic glass 
clasts. The clasts commonly contain highly altered 'broken' phenocrysts of plagioclase feldspar (PL), 
which have a maximum size of ca. 1 mm. (b) Some of the least altered glassy clasts (CC) contain vesicles 
and exhibit cuspate margins. (c) The sandstone contains sub-rounded clasts of equigranular basalt (B) 
that have a maximum size of ca. 1 mm (<5 vol. %) and are composed of laths of plagioclase feldspar, 
clinopyroxene and oxides. 
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Fig. 7.33. Photomicrographs of Unit 5, volcaniclastic siltstone, Hälgafelli Section, ca. 400-430 m above sea 
level, ca. 200 in SE from the summit of Hälgafelli, ca. I km SW of Klaksvik, Boröoy, Faeroe Islands. Both 
photomicrographs are under plane-polarised light. (a) & (b) The siltstone is poorly sorted, clast 
supported, with an average clast size of very coarse silt and a maximum size of ca. 250 µm. The siltstone 
consists of angular to sub-rounded clasts of opaque to pale cream (PC) palagonitised basaltic glass. Clast 
edges are obscured due to the palagonitisation process. 
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Fig. 7.34. View of the Kunoy Section, ca. 500-780 m above sea level, ca. 800 mS from the summit of 
Middagsfjall, ca. 1.5 km NE of Kunoy, Kunoy, Faeroe Islands. The Kunoy Section consists of 5 separate 
volcaniclastic sandstones inbetween tabular lava flows over a thickness of ca. 300 m. 
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Fig. 7.35. Photomicrographs of Unit 1, volcaniclastic sandstone, Kunoy Section, ca. 500 m above sea level, 
ca. 800 mS from the summit of Middagsfjall, ca. 1.5 km NE of Kunoy, Kunoy, Faeroe Islands. Both 
photomicrographs are under plane-polarised light. (a) The sandstone is poorly sorted and clast supported. 
It has an average clast size of very fine sand and a maximum size of 400 µm. (b) The sandstone is wholly 
composed of sub-angular to sub-rounded palagonitised opaque to orange basaltic glass clasts. 

Chapter 7 Upper Basalt Formation Page 282 



Simon R. Passey 

and is a ca. 1m thick moderate reddish brown (1OR 6/6) volcaniclastic sandstone. This 

sandstone is thinly to medium laminated (1-10 mm), poorly sorted and clast supported 
(Fig. 7.35). It has an average clast size of very fine sand and a maximum size of 400 µm. 
The sandstone is wholly composed of sub-angular to sub-rounded palagonitised opaque to 

orange basaltic glass clasts. The clasts do not contain any vesicles or display cuspate 

margins. 

Unit 2 crops out ca. 520 m above sea level and is a ca. 20-30 cm thick moderate reddish 
brown (I OR 6/6) volcaniclastic sandstone inbetween two tabular lava flows. This sandstone 
is poorly sorted, clast supported, with an average clast size of medium sand and a 

maximum size of 400 µm (Fig. 7.36). It is dominated by angular to sub-rounded 

palagonitised opaque to orange basaltic glass clasts. Some of the clasts are highly 

vesiculated and display cuspate margins. A small proportion (<2 vol. %) of the clasts 

contain highly altered laths of plagioclase feldspar, with a maximum size of 300 µm. The 

sandstone has ca. 10 vol. % zeolitic cement. 

Unit 3 crops out ca. 600 m above sea level and is a ca. 2m thick moderate reddish brown 

(10R 6/6) volcaniclastic sandstone inbetween two tabular lava flows. This sandstone is 

poorly sorted, clast supported, with an average clast size of fine to medium sand and a 

maximum size of 0.6 mm (Fig. 7.37). It is dominated by sub-angular to rounded 

palagonitised opaque to reddish brown to pale orange basaltic glass clasts. A small 

proportion (<2 vol. %) of the clasts contain altered laths of plagioclase feldspar. Some of 

the clasts contain vesicles and display cuspate margins. The finer reddish brown clasts 
have obscured margins due to the hydration process. 

Unit 4 crops out ca. 730 m above sea level and is a ca. 1-2 m thick moderate reddish 
brown (I OR 6/6) volcaniclastic sandstone inbetween two tabular lava flows. This sandstone 

is poorly sorted, clast supported, with an average clast size of medium sand and a 

maximum size of 1 mm (Fig. 7.38). It is comprised entirely of angular to sub-rounded 

palagonitised opaque to orange basaltic glass clasts. Some of the clasts (ca. 5 vol%) are 

vesiculated, which are usually infilled with zeolitic material. The finer grained more 

altered clasts have obscured edges due to the hydration process. Approximately 20 vol. % 

of the sandstone consists of `broken' laths of altered plagioclase feldspar, with an average 

size of ca. 0.5 mm. 

Unit 5 crops out ca. 780 m above sea level and is a ca. 1m thick moderate reddish brown 

(10R 6/6) volcaniclastic sandstone inbetween two tabular lava flows. This sandstone is 
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Fig. 7.36. Photomicrographs of Unit 2, volcaniclastic sandstone, Kunoy Section, ca. 520 m above sea level, 
ca. 800 mS from the summit of Middagsfjall, ca. 1.5 km NE of Kunoy, Kunoy, Faeroe Islands. Both 
photomicrographs are under plane-polarised light. (a) The sandstone is poorly sorted, clast supported, 
with an average clast size of medium sand and a maximum size of 400 µm. (B) The sandstone is dominated 
by angular to sub-rounded palagonitised opaque to orange basaltic glass clasts. 

(a) 

iI mm 

(b) 

Fig. 7.37. Photomicrographs of Unit 3, volcaniclastic sandstone, Kunoy Section, ca. 600 m above sea level, 
ca. 800 mS from the summit of Middagsfjall, ca. 1.5 km NE of Kunoy, Kunoy, Faeroe Islands. Both 
photomicrographs are under plane-polarised light. (a) The sandstone is poorly sorted, clast supported, 
with an average clast size of fine to medium sand and a maximum size of 0.6 mm. (b) It is dominated by sub- 
angular to rounded palagonitised opaque to reddish brown to pale orange basaltic glass clasts. The finer 

reddish brown clasts have obscured margins due to the hydration process. 
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Fig. 7.38. Photomicrographs of Unit 4, volcaniclastic sandstone, Kunoy Section, ca. 730 m above sea level, 

ca. 800 mS from the summit of Middagsfjall, ca. 1.5 km NE of Kunoy, Kunoy, Faeroe Islands. All of the 
photomicrographs are under plane-polarised light. (a) & (b) The sandstone is poorly sorted, clast 
supported, with an average clast size of medium sand and a maximum size of 1 mm. Approximately 20 
vol. % of the sandstone consists of'broken' laths of altered plagioclase feldspar (PL), with an average size 
of ca. 0.5 mm. (c) & (d) The sandstone is comprised entirely of angular to sub-rounded palagonitised 
opaque to orange basaltic glass clasts. The finer grained more altered clasts have obscured edges due to the 
hydration process. 

i1 

Fig. 7.39. Photomicrograph of Unit 5, volcaniclastic sandstone, Kunoy Section, ca. 780 m above sea level, 

ca. 800 mS from the summit of Middagsfjall, ca. 1.5 km NE of Kunoy, Kunoy, Faeroe Islands. The 

photomicrographs is under plane-polarised light. The sandstone is poorly sorted, clast supported, with an 
average clast size of medium sand and a maximum size of 0.5 mm. The sandstone is dominated by near 
sub-angular to sub-rounded opaque palagonitised basaltic glass clasts. The edges to the clasts are highly 

obscured due to the hydration process. Approximately 20-30 vol. % of the sandstone consists of altered 
laths of plagioclase feldspar (PL), which have an average size of 0.4 mm. 
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poorly sorted, clast supported, with an average clast size of medium sand and a maximum 

size of 0.5 mm (Fig. 7.39). The sandstone is dominated by near sub-angular to sub-rounded 

opaque palagonitised basaltic glass clasts. The edges to the clasts are highly obscured due 

to the hydration process. Approximately 20-30 vol. % of the sandstone consists of altered 
laths of plagioclase feldspar, which have an average size of 0.4 mm. The sandstone 

contains <2 vol. % of sub-angular to sub-rounded clasts of equigranular basalt, which have 

an average size of ca. 0.4 mm and contain altered laths of plagioclase feldspar, 

clinopyroxene and oxides. 

7.4.2.5 Litlavatn Section 

The Litlavatn Section consists of a ca. 1m thick sequence of volcaniclastic rocks 
inbetween two tabular lava flows (Fig. 7.40). The basal lava flow has an exposed thickness 

of ca. 1.2 m and is characterised by abundant amygdales. Overlying the lava flow, with a 

sharp contact, is Unit 1, a ca. 30 cm thick pale reddish brown (10R 5/4) volcaniclastic 

sandstone with a distinctive conchoidal fracture. This sandstone is poorly sorted, matrix 

supported, with an average clast size of very fine sand and a maximum size of 400 µm 
(Fig. 7.41). It is composed entirely of angular to sub-rounded palagonitised opaque to 

brownish basaltic glass clasts, with edges that are extremely diffuse due to the hydration 

process. 

Unit 2 is a ca. 19 cm thick pale reddish brown (1 OR 5/4) volcaniclastic sandstone, which is 

thickly laminated and faintly cross-bedded with a flow direction to the WNW (ca. 3000). In 

thin section, the sandstone contains two layers separated by a sharp contact, the lower 

layer, Unit 2a and the upper layer, Unit 2b (Fig. 7.42a). In thin section, Unit 2a is poorly 

sorted, clast supported, with an average clast size of fine to medium sand and a maximum 

size of 1 mm (Figs. 7.42b & c). It is composed entirely of angular to sub-rounded 

palagonitised opaque to brownish orange to orange basaltic glass clasts. Some of the clasts 

contain vesicles as well as having cuspate margins. The finer grained clasts have edges that 

are obscured due to the hydration process. Lithic clasts from Unit 2a have been 

incorporated into the lower 1 cm of the overlying Unit 2b. 

The upper sandstone layer, Unit 2b, is poorly sorted, clast supported, with an average clast 

size of fine sand and a maximum size of 300 pm (Figs. 7.42d & e). It is composed entirely 

of angular to sub-rounded palagonitised opaque to brownish orange to pale yellow basaltic 

glass clasts. A small proportion (<5 vol. %) of the clasts contain vesicles and have cuspate 

margins. Some of the clasts (<5 vol. %) contain altered phenocrysts of plagioclase feldspar, 
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Fig. 7.41. Photomicrographs of Unit 1, volcaniclastic sandstone, Litlavatn Section, roadside cutting 
between Sandur and Skilavik, ca. 400 mN of Litlavatn, Sandoy, Faeroe Islands. Both photomicrographs 
are under plane-polarised light. (a) & (b) The sandstone is poorly sorted, matrix supported, with an 
average clast size of very fine sand and a maximum size of 400 µm. It is composed entirely of angular to 
sub-rounded palagonitised opaque to brownish basaltic glass clasts, with edges that are extremely diffuse 
due to the hydration process. 
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Fig. 7.42. Thin section photography and photomicrographs of Unit 2, volcaniclastic sandstone, Litlavatn 
Section, roadside cutting between Sandur and Skälavik, ca. 400 mN of Litlavatn, Sandoy, Faeroe Islands. 
All of the photomicrographs are under plane-polarised light. (a) The sandstone is thickly laminated and 
the thin section slide can be separated into two layers (units 2a & 2b) by a sharp contact. Lithic clasts 
(yellow circle) from Unit 2a have been incorporated into the lower 1 cm of the overlying Unit 2b. (b) & (c) 
Photomicrographs of Unit 2a. The sandstone is poorly sorted, clast supported, with an average clast size of 
fine to medium sand and a maximum size of 1 mm. It is composed entirely of angular to sub-rounded 
palagonitised opaque to brownish orange to orange basaltic glass clasts. The finer grained clasts have 
edges that are obscured due to the hydration process. (d) & (e) Photomicrographs of unit 2b. The 
sandstone is poorly sorted, clast supported, with an average clast size of fine sand and a maximum size of 
300 µm. It is composed entirely of angular to sub-rounded palagonitised opaque to brownish orange to 
pale yellow basaltic glass clasts. Some of the clasts (<5 vol. %) contain altered phenocrysts of plagioclase 
feldspar (PL), which have an average size of 100-200 µm. Finer grained clasts have edges that have been 
obscured due to the hydration process. 
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which have an average size of 100-200 gm. Finer grained clasts have edges that have been 

obscured due to the hydration process. 

Unit 3 is a ca. 38 cm thick pale reddish brown (1OR 5/4) volcaniclastic sandstone. This 

sandstone is poorly sorted, clast supported, with an average clast size of medium sand and 

a maximum size of 500 µm. It is dominated by angular to sub-rounded palagonitised 

opaque basaltic glass clasts. The clasts are commonly vesiculated as well as having cuspate 

margins. The sandstone contains <5 vol. % sub-rounded to rounded clasts of equigranular 
basalt. These clasts consist of plagioclase feldspar, clinopyroxene and oxides. The 

sandstone has a hummocky upper contact and is overlain by a basalt lava flow with an 

exposed thickness of ca. 2 m. The basal ca. 10 cm of the lava flow is amygdaloidal. 

7.4.2.6 Argir Section 

The Argir Section consists of a sequence of volcaniclastic rocks that has a minimum 

thickness of ca. 3.3 m (Fig. 7.43). Unit 1 is a moderate yellowish brown (IOYR 5/4) highly 

altered volcaniclastic sandstone with a minimum thickness of ca. 20 cm. This sandstone is 

poorly sorted, clast supported, with an average clast size of fine to medium sand and a 

maximum size of 2 mm. It is composed of extremely palagonitised basaltic glass clasts, the 

edges of which have been obscured due to the hydration process. Sub-rounded, very coarse 

sand clasts generally occur as highly vesiculated opaque basaltic glass. 

Unit 2 is a ca. 1.15 m thick pale yellowish brown (1OYR 6/2) volcaniclastic sandstone, 

which has very distinct lenses occurring throughout. This sandstone is poorly sorted, clast 

supported and has an average clast size of very fine to fine sand. It is composed of sub- 

angular to sub-rounded highly palagonitised opaque to greenish yellow basaltic glass 

clasts, the edges of which have been obscured due to the hydration process. Sub-rounded 

basalt clasts, no more than 0.5 mm in size, account for <5 vol. % of the sandstone. 

Unit 3 is a ca. 35 cm thick highly altered moderate yellowish brown (1OYR 5/4) 

volcaniclastic siltstone, which has a distinctive conchoidal fracture. This siltstone is poorly 

sorted, clast supported and is dominated by angular to sub-rounded opaque to greenish 

yellow to orange palagonitised basaltic glass clasts. Clast margins are obscured due to the 

palagonitisation process. 

Unit 4 is a ca. 1.6 m thick moderate reddish brown (1OR 4/6) cross-bedded volcaniclastic 

sandstone. This sandstone is poorly sorted, clast supported and has an average clast size of 

Chapter 7 Upper Basalt Formation Page 290 



Simon R. Passet' 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0 

UBF Lava Flow 

Unit 4: Volcaniclastic Sandstone 

Unit 3: Volcaniclastic Siltstone 

Unit 2: Volcaniclastic Sandstone 

Unit 1: Volcaniclastic Sandstone 

Fig. 7.43. Graphic log for the ca. 6.3 m thick sequence through the Upper Basalt Formation (UBF) at the 
Argir roadside cutting, ca. 600 mE of Itröttavellur, ca. 1 km W of Argir, Streymoy, Faeroe Islands. 
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coarse sand (ca. 0.5 mm), although clasts up to 5 nun do occur (Fig. 7.44). It is composed 

of very angular to sub-rounded opaque to orange palagonitised basaltic glass clasts. 
Vesicular (ca. 40 vol. %) and non-vesicular clasts occur and some contain phenocrysts of 

plagioclase feldspar. Sub-rounded to rounded lithic clasts of volcaniclastic mudstone 

account for no more than 2 vol. % of the sandstone. These lithic clasts are extremely 
homogenous, well sorted and consist of orange palagonitised basaltic glass clasts. The 

sandstone also contains rare (<2 vol. %) Ethic clasts of equigranular basalt, consisting of 
laths of plagioclase feldspar, clinopyroxene and oxides. Pore space and vesicles have been 

infilled by zeolitic cement throughout the sandstone. The sequence is overlain by a UBF 

tabular lava flow with a minimum thickness of ca. 3 m, which has an amygdaloidal rich 

base. 

7.4.3 Provenance 

All of the volcaniclastic lithologies within the UBF contain intraformational clasts derived 

from sources within the UBF depositional area. All of the interlava rocks preserved within 

the UBF contain reworked material from ash through to agglomerate grade deposits. The 

range in surface oxidation states of these reworked pyroclastic materials indicates that 

numerous deposits were being eroded contemporaneously. The volcaniclastic rocks also 

contain eroded clasts of basalt derived from lava flows. The range in surface oxidation 

states of the lava clasts suggests that numerous flows were exposed at the surface at the 

time of active erosion. 

7.4.4 Environment of Deposition 

The general lack of pyroclastic textures (glass shards, welding, angular grains, etc. ) within 

the interlava lithologies indicates that they were formed by epiclastic processes (cf. Fisher 

& Schmincke 1984; Cas & Wright 1987; McPhie et al. 1993). Evidence of cross-bedding, 

laminations and rounding of clasts in the rocks suggests that they were transported and 

deposited within a fluvial environment (cf. Collinson 1996; Tucker 1996a). The siltstones 

of the Hälgafelli Section implies that the sequence most likely represents an interchannel 

lake deposit (cf. Collinson 1996; Talbot & Allen 1996). The volcaniclastic conglomerate 

that crops out at Gj6gvin St6ra is composed of a homogenous clast type, is non-graded, 

poorly sorted, matrix supported and has a tabular geometry consistent with having been 

formed as a volcaniclastic debris flow (cf. Cas & Wright 1987; Smith 1991; Smith & Lowe 

1991; McPhie et al. 1993; Yarnold 1993). Smith (1991) has demonstrated that 
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Fig. 7.44. Photomicrographs of Unit 4, volcaniclastic sandstone, Argir roadside cutting, ca. 600 mE of 
Itröttavollur, ca. 1 km W of Argir, Streymoy, Faeroe Islands. All of the photomicrographs are under plane- 
polarised light. (a) The sandstone is poorly sorted, Glast supported and has an average clast size of coarse 
sand (ca. 0.5 mm), although clasts up to 5 mm do occur. (b) The sandstone is composed of very angular to 
sub-rounded opaque to orange palagonitised basaltic glass clasts. (c) & (d) Vesicular (ca. 40 vol. %) and 
non-vesicular clasts occur and some contain phenocrysts of plagioclase feldspar (PL). (e) Sub-rounded to 
rounded lithic clasts of volcaniclastic mudstone (LC) account for no more than 2 vol. % of the sandstone. 
These lithic clasts are extremely homogenous, well sorted and consist of orange palagonitised basaltic glass 
clasts. (f) The sandstone also contains rare (<2 vol. %) lithic clasts of equigranular basalt (B), consisting of 
laths of plagioclase feldspar, clinopyroxene and oxides. 
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volcaniclastic debris flows are commonly formed under syn-eruption conditions compared 

to fluvial deposits that are formed during hiatuses (inter-eruption) in volcanic activity. 

7.5 `Vent' Lithologies associated with the UBF 

Evidence of so-called `vent' lithologies are extremely rare throughout the UBF. However, 

a coastal section at Hüsio millum Gjäir, ca. 250 mS of Gjögvin Störa, W side of Via v% 

ca. 5 km SE of Viöareiöi, Viöoy consists of an associated ̀vent' lithology (Figs. 7.2,7.45 

& 7.46). The southern extent of the section is represented by near horizontal flow units of 

the MBF, which are truncated by a vertical contact with a breccia unit (Figs. 7.45a & b). 

The breccia exposure reaches a height of ca. 20 m above sea level and extends northwards 

along the coast for ca. 75 m. Rasmussen & Noe Nygaard (1970b) noted from the sea that 

the northern contact, which is also vertical, occurs a further ca. 70 m along the coast, 

making the lateral extent of the breccia ca. 145 m wide. 

The breccia is very poorly sorted and on the whole is fragment supported (Figs. 7.46a-d). 

However, areas of reddish very coarse sandstone devoid of large fragments do occur in 

small pockets (Fig. 7.46e). These finer grained areas are composed of angular reddish 

basaltic glass fragments. The larger angular fragments within the breccia are dominated by 

either vesicular/amygdaloidal compact or plagioclase-phyric basalts, which have an 

average size of small to large cobbles, although megablocks several metres across do 

occur. 

Basaltic dykes transect and taper out within the breccia. The ends of the dykes that taper 

out are highly brecciated, forming blocky peperites of angular fragments that are composed 

of compact basalt. Amoeboidal apophyses from the dykes are observed splitting pre- 

existing basalt fragments apart (Fig. 7.460. These apophyses can be as thin as ca. 2 cm and 

they commonly exhibit chilled margins that are composed of black glass. 

The sharp vertical contacts at the extremities of the breccia exposure suggest that they have 

formed by explosive rather than erosive processes and the abundance of angular lava 

fragments from the MBF within the breccia supports this. The amoeboid apophyses 

observed splitting pre-existing basalt fragments apart indicates that the brecciation was the 

direct result of the basaltic dykes intruding the sequence. The extent of brecciation implies 

a multiphase process, involving numerous injections of magma. The highly vesicular 

nature of the dykes and their blocky fragments suggests that the brecciation occurred at 

shallow levels. The pockets of reddish volcaniclastic sandstone indicate that the MBF 
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Fig. 7.45. Views of the pyroclastic breccia at üusio mulum tJJaIr, ca. hw u. a U' . wgvu awi u, v. Mwu UN 

Viövik, ca. 5 km SE of Viöareiöi, Viöoy, Faeroe Islands. (a) & (b) The southern extent of the section is 

represented by near horizontal flow units of the Middle Basalt Formation (MBF), which are truncated by 

a vertical contact with a breccia unit. Basaltic dykes transect and taper out within the breccia. (c) & (d) The 

breccia exposure reaches a height of ca. 20 in. 
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Fig. 7.46. Views of the pyroclastic breccia from the coastal section at Hüsi6 millum Gjäir, ca. 250 mS of 
Gj6gvin St6ra, W side of ViOvIk, ca. 5 km SE of Viöareiöi, Viöoy, Faeroe Islands. (a) to (d) The breccia is 
very poorly sorted and on the whole is fragment supported. The larger angular fragments within the 
breccia are dominated by either vesicular/amygdaloidal compact or plagioclase-phyric basalts, which 
have an average size of small to large cobbles, although megablocks several metres across do occur. (e) 
Areas of reddish very coarse sandstone devoid of large fragments occur in small pockets. These very 
coarse sandstone areas are composed of angular reddish basaltic glass fragments. (f) An Amoeboidal 
apophysis from the basaltic dyke is observed splitting a pre-existing basalt fragment apart. These 
apophyses can be as thin as ca. 2 cm and they commonly exhibit chilled margins that are composed of black 
glass. The white card is ca. 16 x6 cm. 
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sequence, before brecciation, contained not only basalt lava flows but also volcaniclastic 
lithologies. The lack of exposure makes it difficult to ascertain whether the dykes intruded 

the UBF lavas or were the feeders for the first lava flow of the UBF, which is only ten's of 

metres above the breccia. 

7.6 Synthesis 

Similar to the lavas of the Lower Basalt Formation (LBF), the Upper Basalt Formation 

(UBF) flows are typically rubbly-topped sheet-like bodies with significant lateral extents 
(>6 km) that were emplaced into a subaerial environment (Fig. 7.47). Flow edges are 

preserved within the UBF, unlike the LBF, suggesting that they are not as laterally 

extensive. The tabular-classic facies architecture observed throughout the UBF is typical of 
large volume eruptions common within CFB provinces (Cas & Wright 1987; Walker 1993; 

Jerram 2002). However, the average flow thickness for the UBF is 8-11 m, half that of the 

LBF Javas, implying that the UBF eruptions were not as voluminous as those of the LBF 

(cf. Walker 1970; 1973). 

The UBF lava flows, like those of the LBF, have features congruent with having been 

emplaced rapidly as a'a flows, rather than inflated pahoehoe flows (cf. Shaw & Swanson 

1970a; b; Rowland & Walker 1990; Reidel & Tolan 1992; Hon et al. 1994; Self et al. 
1996; Cashman & Kauahikaua 1997; Self et al. 1997; Keszthelyi & Self 1998; Reidel 

1998; Self et al. 1998; Thordarson & Self 1998). This is supported by the rubbly flow tops 

and the vesicle distribution patterns within the UBF lava flows, which are characterised by 

vesicle-rich upper crusts and vesicle-poor cores and basal crusts, commonly associated 

with post-emplacement bubble rise of slowly solidifying ponded, rapidly emplaced a'a 
flows (cf. Aubele et al. 1988; Sahagian et al. 1989; Rowland & Walker 1990; Reidel & 

Tolan 1992; Walker 1993; Cashman & Kauahikaua 1997; Keszthelyi & Self 1998; Reidel 

1998). 

Columnar jointed flows are absent from the UBF, although indistinct prismatic jointing is 

relatively common. The occurrence of prismatically jointed flows indicates that they were 

emplaced into a relatively dry environment (cf. Jerram 2002). However, the presence of 

highly vesiculated agglutinated lava flows, composed of olivine and plagioclase feldspar 

glomerocrysts set within a very finely to glassy groundmass, implies that some flows were 

erupted into a relatively wet environment. This is supported by the overall brecciated 

appearance of such lava flows and the association with underlying fluvial volcaniclastic 
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strata. These data collectively suggest the presence of surface water on the 

contemporaneous lava surface. 

Volcaniclastic debris flows up to 10 in thick occur in the basal section of the UBF and are 
laterally continuous with tabular geometries. They are poorly sorted, non-graded and have 

homogeneous clast populations. Two very similar debris flows crop out at Sneis, Streymoy 

and at Gjögvin Störa, Vi6oy and in both the dominant clast lithology is basalt composed of 

phenocrysts of plagioclase feldspar within a glassy to finely crystalline groundmass. The 

clasts are typically angular and irregularly-shaped (u-shaped protrusions and v-shaped 

incisions), suggestive that transportation was very limited and/or extremely rapid. The two 

debris flows are genetically similar and occur at the same stratigraphic level, although they 

are ca. 34 km apart. It is possible that they may be part of the same flow, as there are many 

well documented examples which have been determined as having travelled >100 km in a 

relatively short period of time (Janda et al. 1981; Lowe et al. 1986; Naranjo et al. 1986; 

Rodolfo 1989; Smith & Lowe 1991). If the two exposures belong to the same 

volcaniclastic debris flow it suggests that the first tabular lava flow of the UBF was 

erupted to the east of Sneis because it is found below the debris flow at Gjögvin St6ra and 

not below the debris flow at Sneis. Volcaniclastic debris flows are initiated when the 

bulking of loose debris on the volcanic edifice is mobilised by water runoff (Smith & 

Lowe 1991), most likely sourced from heavy rainfall. Smith (1991) has demonstrated that 

volcaniclastic debris flows are usually formed during eruptions, due to the influx of loose 

pyroclastic debris and the destabilisation of the volcanic land surface by the devastation of 

the local vegetation. 

The other sedimentary units within the UBF, excluding the volcaniclastic debris flows 

discussed above, are volcaniclastic siltstones and sandstones, all of which were deposited 

in a terrestrial environment. These units are poorly sorted, clast to matrix supported and 

dominated by (variably) palagonitised basaltic glass clasts. Some of the clasts still preserve 

textures indicative of a pyroclastic mode of formation but have subsequently been 

reworked and partially rounded. These pyroclastic textures include cuspate margins 

interpreted to be the remains of bubble walls. Some of the opaque glass clasts are highly 

vesiculated, suggesting that they are reworked basaltic scoria. Some of the lithologies 

contain small proportions of various types of crystalline basalt, derived from (older) lava 

flows. The range of surface oxidation of the glass and lava clasts suggests that numerous 

lava flows and ash deposits were being contemporaneously eroded. The rounding of the 

clasts, together with the development of evidence of laminations and cross-bedding, 

indicates that the volcaniclastic lithologies were deposited in a fluvial environment (cf. 
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Collinson 1996; Tucker 1996a). Smith (1991) has demonstrated that finer-grained fluvial 

deposits in a volcanic setting are commonly formed during hiatuses in the volcanic 

activity, due in part to the lack of loose debris which has already been removed during syn- 

eruption periods by debris flows and the stabilising of the volcanic land surface by 

vegetation. Evidence for the establishment of vegetation on the volcanic land surface is 

preserved at the bases of lava flows in the UBF in the form of tree moulds, for example, at 
Sundshälsur, Streymoy. Vegetation was destroyed by the eruption of the flows and 

consequently, led to the destabilisation of the land surface providing loose debris for 

transportation. 

The general lack of palaeosols preserved within the UBF, compared to the LBF, suggests 

that the eruption frequency was higher in the UBF, which reduced the amount of time 

available for subaerial chemical weathering. These higher eruption frequencies also 
hindered the development of fluvial systems, restricting the amount of erosion on the 

contemporaneous land surface. This is reflected in the overall lack of basalt lava clasts 

within the volcaniclastic lithologies of the UBF compared to the dominance of lava clasts 

in the LBF volcaniclastic strata. Where fluvial strata are recorded within the UBF they are 

commonly associated with plant debris and fossil trees, suggesting that hiatuses in the 

volcanic activity were prolonged. 
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8 Faeroe-Shetland Basin 

The first half of this chapter is a brief summary of the volcanic lithologies reported in the 

literature, which are encountered within the Faeroe-Shetland Basin. This includes lavas, 

pyroclastic rocks, sills and central complexes. The second half of the chapter describes the 

lithologies from the volcanic interval within Well 21414-1. Data available for the study 

consisted of the well log, sidewall core samples and ditch cuttings. Unfortunately, no 

seismic lines of the Faeroe-Shetland Basin were available for consultation. A geochemical 

analysis of the igneous material extracted from the ditch cuttings is correlated to the 

volcanic succession of the Faeroe Islands. Lastly, environments of eruption and deposition 

for the volcanic interval are proposed for the well and how these relate to the Faeroe 

Plateau Lava Group of the Faeroe Islands are described. 

8.1 Distribution of Volcanic Rocks in the FSB 

The Faeroe-Shetland Basin (FSB) is located to the SE of the Faeroe Islands and NW of the 

Shetland Islands and has an overall NE-SW trend. The FSB and a number of sub-basins are 

confined to the NE by the Erlend and North Shetland Platforms, to the SE by the Shetland 

Spine Fault, to the W by the Westray Ridge and to the NW by the Corona. Ridge (Fig. 8.1) 

(Dean : eta!. 1999). Prominent features associated with the Palaeogene interval of the FSB 

include the Faeroe-Shetland Escarpment to the N and the Wyville-Thomson Ridge to the S 

(Fig. 8.2). The Wyville-'Thomson Ridge marks the transition from the FSB into the North 

Rockall Trough. A generalised sedimentary sequence for the Palaeogene west of Shetland 

area is presented in Figure 8.3. The Palaeogene in this area is subdivided into three 

sedimentary groups: Shetland, Faeroe, and Moray. Each of these groups can be subdivided 

into formations (Knox et al. 1997). 

Both extrusive and intrusive igneous rocks occur throughout the FSB (Andersen 1988; 

Fitch et al. 1988; Gibb & Kanaris-Sotiriou 1988; Morton et al. 1988; Stoker et al. 1988; 

Hinz et al. 1993; Kanaris-Sotiriou et al. 1993; Ritchie & Hitchen 1996; Levell & 

Thompson 1999; Naylor et al. 1999; Ritchie et al 1999; Planke 2001; Ellis et al. 2002; 

Jolley & Bell 2002a). Lavas from the Faeroe Plateau Lava Group (FPLG) dominate the 

area to the NW of the FSB extending back to the Faeroe Islands. There are also localised 

Javas associated with The Erlend Volcanic Centre (Mitchell & Euwe 1988; Kanaris-Sotiriou 

et al, 1993; Ritchie & Hitchen 1996; Naylor et ai. 1999; Jolley & Bell 2002b). Tuffs are 

present within the FSB; in particular the well-documented Balder Formation and the less 
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Fig. 8.1. Principle tectonic element map of the Faeroe-Shetland and surrounding basins, NE Atlantic. 
After Dean et a! (1999). 
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Faeroe-Shetland Escarpment 

Limit of Early Tertiary Lavas 

Limit of Faeroe-Shetland Sill Complex 

Well 

100 km 

Fig. 8.2. Location map of the main igneous features of the Faeroe-Shetland Basin, NE Atlantic, with key 

wells. After Naylor etaL (1999). 
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understood Kettla Member (Knox et al. 1997; Naylor et al. 1999). Intrusive rocks within 

the FSB consist of the Faeroe-Shetland Sill Complex (Ridd 1983; Mudge & Rashid 1987; 

Gibb & Kanaris-Sotiriou 1988; Hitchen & Ritchie 1993; Naylor et al. 1999; Ritchie et al. 

1999), as well as a number of central complexes. These central complexes from NE to SW 

are as follows: Brendan, Eriend & West Erlend, Judd, South Westray, Suduroy, Faeroe 

Bank, and the Faeroe Channel Knoll, with more extending into the Rockall Trough to the 

SW (Hitchen & Ritchie 1987; 1993; Ritchie & Hitchen 1996; Naylor et al. 1999; Ritchie et 

al. 1999) (Fig. 8.2). 

8.2 Volcanic Facies in the FSB 

8.2.1 Extrusive Igneous Rocks 

8.2.1.1 Lavas 

The Faeroe Plateau Lava Group (FPLG) is known, from seismic data and core from Well 

205/9-1, to extend into the FSB (Fig. 8.2). The FPLG, as seen in Well 205/9-1, occurs 

within the Flett Formation inbetween the Colsay Sandstone and Hildasay Sandstone 

members (early Eocene) (Knox et al. 1997). The FPLG within the FSB is believed to be 

similar to the sequence observed on the Faeroe Islands, that is to say it can be subdivided 

into the Lower, Middle and Upper basalt formations as described in chapters 3 to 7. 

However, the precise distribution of the lavas is in question, in particular, the question as to 

which formation extends the furthest to the SE (Ritchie et al. 1999). 

Smythe (1983) suggested on the basis of a seismic-based interpretation that the Lower 

Basalt Formation (LBF) extended furthest to the SE and went on to postulate that the 

Faeroe-Shetland Escarpment (FSE) represented the point where the subaerial lavas of the 

Middle Basalt Formation (MBF) froze against a palaeoshoreline to produce hyaloclastite 

deposits (Fig. 8.4a). However, Ritchie et al. (1999), after examining Well 205/9-1, 

suggested the MBF and the Upper Basalt Formation (UBF) extended furthest into the basin 

and that they draped over the LBF (Fig. 8.4b). It was proposed that these represent `lava 

deltas' which formed at palaeoshorelines and, as a result, the lavas underwent auto- 

brecciation. Ritchie et al. (1999) went on to suggest that the FSE in fact represents the 

margin of the LBF lavas. However, Naylor et al. (1999) suggest that the lavas in Well 

205/9-1 are time equivalent to the top of the LBF or the base of the MBF and Ellis et al. 

(2002) suggest that they correlate to the LBF which were most likely erupted locally. More 
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Fig. 8.4. Schematic correlation of the onshore and offshore Faeroe Plateau Lava Group after (a) Smythe 
(1983) and (b) Ritchie et aL (1999). Naylor et aL (1999) and Ellis et aL (2002) suggest that the lavas in Well 
205/9-1 correlate to the Lower Basalt Formation, thus, suggesting that the correlation by Ritchie et aA 
(1999) may be incorrect. 
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detailed examination of the geochemical and age data is required to precisely correlate the 
lavas encountered in Well 205/9-1 to the lavas of the FPLG. 

The Erlend lavas are associated with the Erlend and West Erlend Volcanic Centres (Fig. 

8.2), The only basalt samples obtained were drilled around the Erlend Volcanic Centre and 

a maximum thickness of 825 m was recorded (Knox et al. 1997). They are primarily quartz 

and olivine tholeiitic basalts of MORB-type (Ridd 1983; Kanaris-Sotiriou et al. 1993). The 

reversed magnetic signature of the Erlend Volcanic Centre and the fact that the Balder 

Formation onlaps the Erlend Javas suggests a minimum age of ca. 57-55 Ma (Ritchie et al. 
1999; Jolley & Bell 2002b). 

8.2.1.2 Tuffaceous Units 

The Kettla Member is primarily a tuffaceous siltstone, which grades into a silty tuffite and 

occurs as two units, separated by a thin mudstone in wells 214/27-2 and 206/2-1 A (Knox et 

al. 1997). Due to a -lack of core material, no petrological descriptions have been 

undertaken. The distribution of the Kettla Member within the FSB is in question. Knox et 

aL (1997) have suggested that it may relate to a thin tuff unit within Well 205/9-1 at 
broadly comparable levels, but cannot be assigned with any certainty. It has also been 

suggested that the Kettla Member relates to the Balmoral Tuffite (Andrew Tuff or Glamis 

Member) of the Central North Sea (Knox et al. 1997). The biomarker of 
P. pyrophorum/P. bulltforne from underlying mudstones dates the Kettla Member to the 

Selandian (late Palaeocene (ca. 58.9-58.2 Ma)) (Knox et al. 1997). 

The Balder Formation is characterised by grey, variably silty and carbonaceous mudstones 

with abundant layers of green-grey to grey-green tuff (Knox et al. 1997). The Balder 

Formation is found in all of the Palaeogene sections, but is absent around the Erlend 

Volcanic Centre and ranges in thickness from 50 to 150 m (Knox et aL 1997). The Balder 

Formation is encountered in Well 205/9-1 and is the same as the Balder Formation 

encountered in the North Sea Basin (Knox et al. 1997). The Balder Formation has been 

dated to the early Eocene and can quite clearly be identified on seismic sections (Knox et 

al. 1997). 
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8.2.2 intrusive Igneous Rocks 

8.2.2.. 1 Sill Complexes 

The Faeroe-Shetland Sill Complex extends from the Wyville-Thomson Ridge in the SW to 

the Voring Basin in the NE (Fig. 8.2). The complex is 750 km long by 100 km wide 
(Ritchie et aL 1999) and covers an area of 40,000 km2 (Naylor et a!. 1999). The sills within 

the complex are tholeiitic olivine dolerites with a T-MQRB type composition. They are 

geochemically similar to that of the UBF of the FPLG. The complex has been intruded into 

strata of predominantly Cretaceous age (Naylor et a!. 1999). Dating of the complex has 

produced a wide spectrum of ages ranging from ca. 82 to 48 Ma, but a consensus supports 

an age between ca, 55-53 Ma (Ritchie et al, 1999). 

8.2.2 .2 Central Complexes 

A number of the central complexes within the FSB have only been recognised by 

geophysical studies. These complexes include: Brendan, Judd, South Westray, Suduroy, 

Faeroe Bank, and Faeroe Channel Knoll (Fig. 8.2). As a result they are poorly understood, 

but all are recognised as being Palaeogene in age (B. R Bell pers. comm. ). Drilling has 

proved the presence of the Erlend Volcanic Centre, which consists of intrusive rocks that 

are silicic rhyolites and dacites (Naylor et al. 1999), which are reversely magnetised 

(Rumph et al 1993). 

8,3 Well 214/4-1 

Well 214/4-1 (61°57'54"N, 002°14'01"W) is located ca. 237 km E of Torshavn, Faeroe 

islands and ca. 210 km NNW of Lerwick, Shetland Islands in the Faeroe-Shetland Basin 

(FSB) (Figs. 1.2 & 8.2). The well was drilled by Mobil (now part of Exxonlvlobil) between 

the 10 April and 14 July 1999 and reached a total depth of ca. 14,700 f} (ca. 4,480 m). The 

well drilled through a volcanic interval ca, 1,920 # (ca. 585 m) thick from the depth of ca. 
12,780 ft (ca. 3,895 m) to the base of the well (Fig. 8.5). Fifty-one sidewall cores were 

recovered from the volcanic interval during runs 3a and 3b. 
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Fig. 8.5. Wireline log for the upper section of the volcanic interval in Well 214/4-1, Faeroe-Shetland Basin. 
Unit 1 is extremely homogenous and extends to the base of the well. The orange circles represent recovered 
sidewall cores. 
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8.3.1 Volcanic interval 

8,3.1 .1 Petrography 

The basal ca. 1,480 ft (ca 451 m) of Well 214/4-1 is represented by, Unit 1, a hyaloclastite 

sequence. The sequence is extremely homogeneous and has a constant gamma ray 

recording between 30 and 45 API units (pig, 8.5), All 36 sidewall cores recovered from the 

hyaloclastite sequence are hypocrystalline containing 10-30 vol. % crystals set in a glassy 

groundmass (Fig. 8.6). The samples contain laths of plagioclase feldspar ranging in size 
from <0.5 mm up to 4 mm, but averaging 1-2 mm and account for 10-25 vol. % of the 

hyaloclastites. In some of the samples the cores of the plagioclase feldspar laths are 

-extremely altered to sericite. The hyaloclastites also contain altered anhedral crystals of 

clinopyroxene, which account for no more than 5 vol. % of the rock. The glassy 

groundmass ranges from being relatively fresh (near opaque) to extremely palagonitised 

(murky brown). At a depth of ca. 13,880 ft (ca. 4,231 m) a sidewall core was collected 

from a vein, composed of 100 vol. % calcite, running through the hyaloclastite sequence. 

The hyaloclastite sequence is overlain by Unit 2, a ca. 50 ft (ca. 15 m) thick sedimentary 

sequence. The overall thickness of the unit is based primarily on the gamma ray response, 

which lies between 45 and 75 API units (Fig. 8.5). A sidewall core of siltstone was 

recovered from a depth of ca. 13,212 ft (ca. 4,027 m). This siltstone is moderately sorted 

and appears to be crudely laminated (Fig. 8.7). It consists of <15 vol %/o sub-angular to sub- 

rounded grains of quartz, which have an average grain size of very coarse silt, but a 

maximum size of 100 µm. The siltstone also contains <2 vol. °% angular grains of alkali 
feldspar, with a maximum size of 100 pm, and displaying characteristic twinning (Figs. 

8.7c & d). Irregular shaped laths of plagioclase feldspar no more than 50 pm long account 

for <1 voL% of the siltstone. The grains are contained within a brownish orange clayey to 

silty matrix. 

The sedimentary sequence is overlain by Unit 3, a ca. 170 ft (ca 52 m) thick sequence of 

doleritic/basaitic lava. The sequence has a gamma ray response between 15 and 60 API 

units with at least three spikes recording higher levels of response (Fig. 8.5). These spikes 

may represent interlava lithologies. Consequently, the sequence may contain four lava 

flows separated by three interlava lithologies. The lava(s) is equigranular and has an 

average crystal size 300-500 pm (medium crystalline) (Fig. 8.8). It consists of ca. 50 vol. % 

randomly arranged laths of plagioclase feldspar, which have a maximum size of 1 mm 

together with ca. 40 vol. % anhedral crystals of clinopyroxene, which have a maximum size 
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Fig. 8.6. Photomicrographs of Unit 1, hyaloclastite sequence, from Well 214/4-1, Faeroe-Shetland Basin. 
All of the photomicrographs are under plane-polarised light. The hyaloclastites are hypocrystalline 
containing 10-30 vol. % crystals set in a glassy groundmass. The samples contain laths of plagioclase 
feldspar (PL) ranging in size from <0.5 mm up to 4 mm, but averaging 1-2 mm and account for 10-25 vol. % 

of the hyaloclastites. In some of the samples the cores of the plagioclase feldspar laths are extremely altered 
to sericite. The hyaloclastites also contain altered anhedral crystals of clinopyroxene, which account for no 
more than 5 voL% of the rock. The glassy groundmass ranges from being relatively fresh (near opaque) to 
extremely palagonitised (murky brown). Sidewall cores from depths of (a) ca. 13,400 ft (ca. 4,084 m), (b) 
ca. 13,500 ft (ca. 4,115 m), (c) & (d) ca. 13,550 ft (ca. 4,130 m), (e) CO.. 13,780 ft (ca. 4,200 m) and (f) ca. 14,240 
ft (ca. 4,340 m). 
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Fig. 8.7. Photomicrographs of Unit 2, siltstone, from a depth of ca. 13,212 ft (ca. 4,027 m) in Well 214/4-1, 
Faeroe-Shetland Basin. Photomicrographs are under plane-polarised light except for (d), which is under 
cross-polarised light. (a) & (b) The siltstone is moderately sorted and appears to be crudely laminated. It 
consists of <15 vol. % sub-angular to sub-rounded grains of quartz, which have an average grain size of 
very coarse silt and a maximum size of 100 µm. The grains are contained within a brownish orange clayey 
to silty matrix. (c) & (d) The siltstone also contains <2 vol. % angular grains of alkali feldspar (AF), with a 
maximum size of 100 µm, and displaying characteristic twinning. 
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Imm 
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-i 
Fig. 8.8. Photomicrographs of Unit 3, doleritic/basaltic lava, from a depth of ca. 13,150 ft (ca. 4,008 m) in 
Well 214/4-1, Faeroe-Shetaland Basin. (a) Photomicrograph under plane-polarised light. The lava is 

equigranular and has an average crystal size 300-500 µm (medium crystalline). It consists of ca. 50 vol. % 
randomly arranged laths of plagioclase feldspar, which have a maximum size of 1 mm together with ca. 40 
vol. % anhedral crystals of clinopyroxene, which have a maximum size of 300 µm. Irregular shaped oxides 
with a maximum size of ca. 500 µm, together with poorly preserved (serpentinised) olivine 
microphenocrysts, represent the remaining ca. 10 vol. % of the lava. (b) Same view as in (a) but under 
cross-polarised light. 
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of 300 }im. Irregular shaped oxides with a maximum size of ca. 500 µm, together with 

poorly preserved (serpentinised) olivine microphenocrysts, represent the remaining ca. 10 

voi% of the lava 

Unit 4 is a ca. 120 ft (ca. 37 m) thick sedimentary sequence. The overall thickness of the 

sequence is based primarily on the gamma ray response, which lies between 75 and 135 

API units (Fig. 8.5). The erratic nature of the gamma ray response suggests that the 

sequence is made up of intercalated mudstones and sandstones. At a depth of ca. 12,979 ft 

(ca. 3,956 m) a sidewall core of a brownish orange siltstone (Unit 4a) was recovered (Fig. 

8,5), The siltstone is very thinly laminated and moderately sorted (Fig. 8.9). It consists of 

opaque grains <100 µ_rn in size that appear to have been flattened and stretched to a length 

of 1 mm parallel to the lamination. These black grains may be carbonaceous material set 

within a clayey to silty matrix. 

At a depth of ca. 12,941 ft (ca. 3,944 m) material from Unit 4b was recovered, a sidewall 

core of a poorly sorted lithic greywacke (Fig. 8.5). The sandstone Contains as much as 30 

vol. % sub-angular to sub-rounded Glasts of doleritic lava, which have a maximum size of 

ca. 2 mm (Fig. 8.10). Approximately 20 voLO/o of the sandstone is made up of sub-rounded 

clasts of brownish orange siltstone, which range in size from 1 to 5 mm. The lithic Glasts 

are contained within a matrix comprising ca. 10 voL%/o angular to sub-rounded grains of 

quartz with an average size of very fine sand, although grains with a maximum size of 300 

gm have been recorded. The remaining 40 vol. % of the matrix is made up of brownish 

clayey to silty material. 

At -a depth of ca. 12,933 ft (ca. 3,942 m) material from Unit 4c was recovered, a sidewall 

core of a quartz wacke (Fig. 8.5). The sandstone is poorly sorted, matrix supported and 

contains as much as 40 vol °/a angular to sub-rounded quartz grains, which range in size 

from 100 to 500 µm, which have an average grain size of fine sand (Fig. 8.11). The wacke 

also contains <1 voL%la altered angular plagioclase feldspar crystals, which have an average 

size of very fine sand. The remaining ca. 60 vol. % of the sandstone is made up of a 

brownish orange clayey to silty quartz-rich matrix. 

At a depth of ca. 12,916 ft (ca. 3,937 m) material from Unit 4d was recovered, a sidewall 

core of a lithic greywacke (Fig. 8.5). The sandstone is poorly sorted, on the whole matrix 

supported, and consists of ca. 30 vol. % sub-angular to sub-rounded clasts of doleritic lava, 

which range in size from i to 5 mm (Fig. 8.12). The sandstone also contains ca. 10 vol. % 

lithic clasts of siltstone, which range in size from i to 5 mm. The greywacke also contains 
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Fig. 8.9. Photomicrographs of Unit 4a, siltstone, from a depth of ca. 12,97911 (ca. 3,956 m) in Well 214/4-1, 
Faeroe-Shetland Basin. Both photomicrographs are under plane-polarised light. (a) & (b) The siltstone is 
very thinly laminated and moderately sorted. It consists of opaque grains <100 µm in size that appear to 
have been flattened and stretched to a length of 1 mm parallel to the lamination. These black grains may be 
carbonaceous material set within a clayey to silty matrix. 
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Fig. 8.10. Photomicrographs of Unit 4b, lithie greywacke, from a depth of ca. 12,941 ft (ca. 3,944 m) in Well 
214/4-1, Faeroe-Shetland Basin. Both photomicrographs are under plane-polarised light. (a) & (b) The 
sandstone contains as much as 30 voL% sub-angular to sub-rounded clasts of doleritic lava (DL), which 
have a maximum size of ca. 2 mm. Approximately 20 vol. % of the sandstone is made up of sub-rounded 
clasts of brownish orange siltstone (ST), which range in size from 1 to 5 mm. The lithic clasts are contained 
within a matrix comprising ca. 10 vol. % angular to sub-rounded grains of quartz with an average size of 
very fine sand, although grains with a maximum size of 300 µm have been recorded. The remaining 40 
vol. % of the matrix is made up of brownish clayey to silty material. 
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Fig. 8.11. Photomicrographs of Unit 4c, quartz wacke, from a depth of ca. 12,933 ft (ca. 3,942 m) in Well 
214/4-1, Faeroe-Shetland Basin. Both photomicrographs are under plane-polarised light. (a) & (b) The 
sandstone is poorly sorted, matrix supported and contains as much as 40 vol. % angular to sub-rounded 
quartz grains, which range in size from 100 to 500 µm with have an average grain size of fine sand. The 
wacke also contains <1 vol. % altered angular plagioclase feldspar crystals, which have an average size of 
very fine sand. The remaining ca. 60 vol. % of the sandstone is made up of a brownish orange clayey to silty 
quartz-rich matrix. 

(a) 

F1mi 

(b) 

u-j 

Fig. 8.12. Photomicrographs of Unit 4d, lithic greywacke, from a depth of ca. 12,916 ft (ca. 3,937 m) in Well 
214/4-1, Faeroe-Shetland Basin. Both photomicrographs are under plane-polarised light. (a) & (b) The 
sandstone is poorly sorted, on the whole matrix supported, and consists of ca. 30 vol. % sub-angular to sub- 
rounded clasts of doleritic lava (DL), which range in size from 1 to 5 mm. The sandstone also contains ca. 10 
vol. % lithic clasts of siltstone (ST), which range in size from 1 to 5 mm. The greywacke also contains ca 20 

vol. % sub-angular to sub-rounded grains of quartz (Q) with an average size of fine sand and a maximum 
size of 500 µm. The remaining 40 vol. % of the greywacke is composed of a greyish clayey to silty quartz- 
rich matrix. 
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ca. 20 vol. % sub-angular to sub-rounded grains of quartz with an average size of fine sand 

and a maximum size of 500 gm. The remaining 40 vol. % of the greywacke is composed of 

a greyish clayey to silty quartz-rich matrix. 

Unit 4e is a lithic greywacke recovered at a depth of ca. 12,880 ft (ca. 3,926 m) (Fig. 8.5). 

This sandstone is poorly sorted, clast supported and consists of as much as 50 vol. % sub- 

angular to sub-rounded clasts of doleritic lava, which have an average size of 2 mm (Fig. 

8.13). Some of these clasts are highly altered. Plagioclase feldspar and clinopyroxene 

crystals have been liberated from some of the clasts and incorporated into the matrix. The 

greywacke also contains ca. 30 vol. % sub-angular to sub-rounded clasts of brownish 

siltstone. The siltstone clasts range in size of 0.3 to 4 mm. The lithic clasts are contained 

within a greenish grey clayey to silty quartz-rich matrix. 

Unit 5 is a ca. 80 ft (ca. 24 m) thick sedimentary sequence. The overall thickness of the 

sequence and the distinction from the underlying unit is established from the gamma ray 

log, which is constant throughout the unit, ranging between 30 and 45 API units (Fig. 8.5). 

At a depth of ca. 12,830 ft (ca. 3,911 m) material from Unit 5a was recovered, a sidewall 

core of a lithic greywacke (Fig. 8.5). This sandstone is poorly sorted and contains ca. 30 

vol. % sub-angular to sub-rounded doleritic lava clasts, which range in size from 1 to 4 mm 

(Fig. 8.14). The sandstone also contains ca. 30 vol. % brownish clasts of siltstone. The 

siltstone clasts are sub-angular to sub-rounded and range in size from 0.2 to 2 mm. The 

lithic clasts are contained within ca. 40 vol. % brownish clayey to silty matrix. 

At a depth of ca. 12,802 ft (ca. 3,902 m) material from Unit 5b, a sidewall core of a lithic 

greywacke was recovered (Fig. 8.5). The sandstone is poorly sorted and contains ca. 10 

vol. % sub-angular to sub-rounded equigranular doleritic lava clasts, which range in size 

from 1 to 5 mm (Fig. 8.15). The sandstone also contains ca. 10 vol. % lithic clasts of 

siltstone and what appears to be opaque claystone. The clasts are sub-angular to sub- 

rounded and range in size from 0.2 to 1 mm. The sandstone also contains as much as 10 

vol. % sub-angular to sub-rounded grains of quartz, with an average size of fine sand. The 

remaining ca. 70 vol. % of the sandstone consists of a brownish grey quartz-rich silty 

matrix. 

Unit 6 is a sedimentary sequence with a minimum thickness of ca. 20 ft (ca. 6 m). The 

gamma ray response ranges between 60 and 120 API units (Fig. 8.5). At a depth of ca. 

12,793 ft (ca. 3,899 m) material from Unit 6a was recovered, a sidewall core of a quartz 

wacke (Fig. 8.5). The sandstone is poorly sorted, matrix supported and contains <5 vol. % 
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Fig. 8.13. Photomicrographs of Unit 4e, lithic greywacke, from a depth of ca. 12,880 ft (ca. 3,926 m) in Well 
214/4-1, Faeroe-Shetland Basin. All of the photomicrographs are under plane-polarised light. (A) to (c) 
The sandstone is poorly sorted, clast supported and consists of as much as 50 vol. % sub-angular to sub- 
rounded clasts of doleritic lava (DL), which have an average size of 2 mm. Some of these clasts are highly 

altered. Plagioclase feldspar and clinopyroxene crystals have been liberated from some of the clasts and 
incorporated into the matrix. The greywacke also contains ca. 30 vol. % sub-angular to sub-rounded clasts 
of brownish siltstone (ST), which range in size of 0.3 to 4 mm. The lithic clasts are contained within a 
greenish grey clayey to silty quartz-rich matrix. 
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Fig. 8.14. Photomicrographs of Unit 5a, lithic greywacke, from a depth of ca. 12,830 ft (ca. 3,911 m) in Well 
214/4-1, Faeroe-Shetland Basin. Both photomicrographs are under plane-polarised light. (a) & (b) The 
sandstone is poorly sorted and contains ca. 30% sub-angular to sub-rounded doleritic lava clasts (DL), 
which range in size from 1 to 4 mm. The sandstone also contains ca. 30 vol. % brownish Glasts of siltstone 
(ST). The siltstone Glasts are sub-angular to sub-rounded and range in size from 0.2 to 2 mm. The lithic 
clasts are contained within ca. 40 vol. % brownish clayey to silty matrix. 

(a) 

imm 

(b) 

iI mm 

(c) 

Fig. 8.15. Photomicrographs of Unit 5b, lithic greywacke, from a depth of ca. 12,802 ft (ca. 3,902 m) in Well 
214/4-1, Faeroe-Shetland Basin. All of the photomicrographs are under plane-polarised light. (a) to (c) 
The sandstone is poorly sorted and contains ca. 10 vol. % sub-angular to sub-rounded equigranular 
doleritic lava clasts (DL), which range in size from 1 to 5. The sandstone also contains ca. 10 vol. % lithic 
clasts of siltstone (ST) and what appears to be opaque claystone (OC). The clasts are sub-angular to sub- 
rounded and range in size from 0.2 to 1 mm. The sandstone also contains as much as 10 vol. % sub-angular 
to sub-rounded grains of quartz (Q), with an average size of fine sand. The remaining ca. 70 vol. % of the 
sandstone consists of a brownish grey quartz-rich silty matrix. 
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lithic clasts of doleritic lava, which are sub-angular to sub-rounded with a maximum size 

of 3 mm (Fig. 8.16). The wacke also contains <2 vol. % sub-angular grains of plagioclase 
feldspar with an average size of fine sand. Needles of epidote crystals, with a maximum 

size of ca. 1 mm, account for less than 1 vol. % of the sandstone. The sandstone is 

dominated by ca. 60 vol. % sub-angular to sub-rounded quartz grains, which have an 

average size of medium sand and a maximum size of 1 mm. The remaining ca. 32 vol. % of 

the sandstone is made up of a greyish clayey to silty quartz-rich matrix. 

At a depth of ca. 12,787 ft (ca. 3,897 m) material from Unit 6b was recovered, a sidewall 

core of a quartz wacke (Fig. 8.5). This sandstone is poorly sorted, matrix supported and 

contains ca. 65 vol. % sub-angular to sub-rounded grains of quartz with an average grain 

size of fine sand and a maximum size of 500 µm (Fig. 8.17). It also contains <3 vol. % sub- 

angular grains of plagioclase feldspar that have a maximum grain size of 300 Jim. The 

wacke also contains <2 vol. % sub-angular to sub-rounded needle-shaped epidote crystals 

with an average grain size of fine sand. The remaining ca. 30 vol. % of the sandstone is 

made up of a greyish clayey to silty quartz-rich matrix. 

8.3.1.2 Geochemistry of the Hyaloclastites & Lavas 

A geochemical profile was undertaken between a depth of 13,030 ft (3,972 m) and 14,270 

ft (4,349 m), through units 1 to 3. Igneous grains were identified and extracted from ditch 

cutting samples from known depths. The igneous grains from each ditch cutting sample 

were powdered and weighed. If the powdered sample weighed less than 1g it was 

combined with an adjacent sample(s) to obtain a minimum weight of 1g so that it was 

possible to undertake a major elemental analysis. The same procedure was followed to 

obtain a minimum of 8g for trace elemental analysis (Table 8.1). 22 major and 7 trace 

elemental analyses were obtained by X-ray fluorescence spectroscopy (XRF) at the 

Department of Geology, Geophysics and Environmental Geoscience, Grant Institute, 

University of Edinburgh, Scotland. There were three major and one trace elemental 

analyses that were erroneous. 

The samples are extremely homogeneous over a thickness of 1,240 ft (378 m) ranging 

between 47.24 to 48.44 wt. % Si02 a difference of only 1.2 wt. % (Table 8.2). The only 

consistent variation observed between the samples is accentuated in the Harker and Fenner 

diagrams (Figs. 8.18 & 8.19), where the highest combined sample (13,030 & 13,050 & 

13,090 ft) has a noticeably higher concentration of MgO and lower concentrations of FeOT, 

Ti02, and P205. However, these differences are extremely minor, differing from the other 
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Fig. 8.16. Photomicrographs of Unit 6a, quartz wacke, from a depth of ca. 12,793 ft (ca. 3,899 m) in Well 
214/4-1, Faeroe-Shetland Basin. Both photomicrographs are under plane-polarised light. (a) & (b) The 
sandstone is poorly sorted, matrix supported and contains <5 vol. % lithic clasts of doleritic lava (DL) 
which are sub-angular to sub-rounded with a maximum size of 3 mm. The wacke also contains <2 vol. % 
sub-angular grains of plagioclase feldspar with an average size of fine sand. Needles of epidote (E) crystals, 
with a maximum size of ca. 1 mm, account for less than I vol. % of the sandstone. The sandstone is 
dominated by ca. 60 vol. % sub-angular to sub-rounded quartz (Q) grains, which have an average size of 
medium sand and a maximum size of 1 mm. The remaining ca. 32 vol. % of the sandstone is made up of a 
greyish clayey to silty quartz-rich matrix. 

(a) 

1mm 

(b) 

1 
V-1 

Fig. 8.17. Photomicrographs of Unit 6b, quartz wacke, from a depth of ca. 12,787 ft (ca. 3,897 m) in Well 
214/4-1, Faeroe-Shetland Basin. Both photomicrographs are under plane-polarised light. (A) & (b) The 

sandstone is poorly sorted, matrix supported and contains ca. 65 vol. % sub-angular to sub-rounded grains 
of quartz (Q) with an average grain size of fine sand and a maximum size of 500 µm. It also contains <3 
vol. % sub-angular grains of plagioclase feldspar (PL) that have a maximum grain size of 300 µm. The 

remaining ca. 30 vol. % of the sandstone is made up of a greyish clayey to silty quartz-rich matrix. 
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G l Depth Weight 
CC y 

$., y 0, 
CC y 

Combined 
W i h 

by 

°' 6. 5o 
0 

0 >, ogy eo (ft) (P) co >F 
0 F" ß 

e g ts 0 -M 

¢ (g) 
u ß°j 

13,030 0.084 
13,050 0.249 1.346 YES 
13,090 1.013 
13,100 0.670 

1 . 622 YES 
13,110 0.952 
13,120 3.705 YES 
13,130 4.844 8.868 YES YES 
13,140 4.024 
13,150 2.676 
13,160 3.410 YES 

9'128 (-1 
128 =8 

YES YES ) . 13,170 3.042 
13,180 6.250 YES 11.521 (-2 

N 13,190 5.271 YES = 9.521) YES YES 

13,200 10.886 YES YES 
210 13 4.008 YES 
, 

13,220 2.279 YES 

13,230 3.949 YES 
13,240 3.237 YES 

11.991 (-3 
=8 991) YES YES 

. 13,260 4.805 YES 
13,270 8.119 YES YES 
13,280 3.981 
13,290 4.878 YES 9.535 (-1 

300 13 351 0 = 8.535) YES YES 
, . co 13,350 0.325 

13,400 0.782 1 15 . 4 YES 
13,440 0.372 
13,520 0.462 
13,600 0.408 

^' 13,700 0.056 1.452 YES 
13,820 0.215 
13,900 0.311 
14,000 0.464 
14,100 0.259 1 404 . YES 
14,200 0.343 
14,270 0.338 

Total Analyses 12 2 10 5 

Table 8.1. Weights of powdered igneous material extracted from ditch cutting samples from known 
depths in Well 214/4-1, Faeroe-Shetland Basin. Samples with weights over 1g were analysed for major 
elements and samples with weights over 8g were analysed for trace elements. If the powdered sample 
weighed less than 1g it was combined with an adjacent sample(s) to obtain a minimum weight of 1g so 
that it was possible to undertake a major elemental analysis. The same procedure was followed to 
obtain a minimum of 8g for trace elemental analysis. 
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Fig. 8.18. Harker variation diagrams for the igneous-bearing ditch cutting samples analysed from Well 
214/4-1, Faeroe-Shetland Basin. The samples are extremely homogeneous over a thickness of 1,240 ft (378 
m) ranging between 47.24 to 48.44 wt. % SiO2 a difference of only 1.2 wt. %. The only consistent variation 
observed in the diagrams is the highest combined sample (13,030 & 13,050 & 13,090 ft) having a noticeably 
higher concentration of MgO and lower concentrations of FeOT, TiO� and P2O, than the over samples. 
However, these differences are extremely minor, differing from the other samples by less than 0.3 wt. %. 
The analyses have been recalculated with a fixed oxidation ratio of Fe2OjFeO = 0.15. FeO' = total iron 
calculated as FeO (see Appendix B). 
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samples by less than 0.3 wt. %. The Ti02 content within the samples analysed vary 
between 2.14 and 2.51 wt. %. The Mg # ranges between 50.67 and 51.86, a difference of 
1.19; this however excludes the highest sample, which has a Mg # of 53.87 (see Appendix 

B on how the Mg # is calculated). All of the samples plot within the basalt field of the Cox 

et al. (1979) and Le Bas et al. (1986) nomenclature diagrams (Figs. 8.20 & 8.21) and they 

plot between the basalt and ferro-basalt sections of the tholeiitic field of the AFM diagram 

(Fig. 8.22). From the CIPW calculations it can be seen that the samples are all hypersthene 

normative basalts (Table 8.3). 

8.3.1.3 Correlation with the Faeroe Islands 

As outlined in Section 1.3, the Faeroe Plateau Lava Group (FPLG) on the Faeroe Islands 

have been separated into three formations: Lower, Middle, and Upper. The three 

formations have quite separate geochemical characteristics, which are highlighted in the 

diagrams of Waagstein (1988) and Larsen et al. (1999) (Figs. 1.6 & 1.7). Larsen et al. 
(1999), with the aid of a large geochemical dataset, were able to correlate the FPLG on the 

Faeroe Islands to the Nansen Fjord volcanic succession, East Greenland, ca. 1,000 km 

apart. The basaltic samples encountered within Well 214/4-1 have been plotted on the 

diagrams of Waagstein (1988) and Larsen et al. (1999) in an attempt to correlate them with 

the FPLG on the Faeroe Islands and in turn the Nansen Fjord volcanic succession. 

The samples from Well 214/4-1 plot within the low-Ti tholeiite field on the TiO2/FeOT vs. 
FeOT/MgO diagram of Waagstein (1988) (Fig. 8.23). The samples plot close together 

except for the highest combined sample (13,030 & 13,050 & 13,090 ft), due to the sample 
having a slightly higher MgO content. The samples also plot within the Lower Basalt 

Formation (LBF) field of the TiO2/FeOT vs. FeOT/MgO diagram (Fig. 8.24). The samples 

plot below the dividing line on the TiO2/FeOT V. Mg # diagram of Larsen et al. (1999) 

(Fig. 8.25). Again, the samples plot close to one another except for the highest combined 

sample (13,030 & 13,050 & 13,090 ft), due to the sample having a slightly higher MgO 

content. As with the diagram of Waagstein (1988), the samples plot within the LBF field 

on the TiO2/FeOT V. Mg # diagram (Fig. 8.26). Therefore, it seems apparent that the 

basaltic samples from Well 214/4-1 are geochemically similar to the LBF from the Faeroe 

Islands (including Lopra-1). From the trans-Atlantic correlation made by Larsen et al. 

(1999) it follows that the basaltic samples from Well 214/4-1 can also be correlated to the 

East Greenland Nansen Fjord Formation (Fig. 8.27). However, the samples may correlate 

geochemically but they do not correlate texturally. The basal ca. 1,480 ft (ca. 451 m) of 

Well 214/4-1 are represented by hyaloclastites whereas only minor hyaloclastite deposits 
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FeOT 

Na20+K20 MgO 
Fig. 8.22. The AFM diagram with the igneous-bearing ditch cutting samples from Well 214/4-1, Faeroe- 
Shetland Basin, plotting within the tholeiitic field. The analyses have been recalculated with a fixed 
oxidation ratio of Fe, OJFeO = 0.15. FeOT= total iron calculated as FeO (see Appendix B). 
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Fig. 8.23. TiOjFeOT vs. FeOT/MgO diagrams with the igneous-bearing ditch cutting samples from Well 
214/4-1, Faeroe-Shetland Basin, plotted with the low-Ti tholeiite field. The oblique full line and the vertical 
stippled line mark the boundaries between high-Ti olivine tholeiites, high-Ti tholeiites, low-Ti olivine 
tholeiites, and low-Ti tholeiites. The analyses have been recalculated with a fixed oxidation ratio of 
Fe3O, /FeO = 0.15. FeOT= total iron calculated as FeO (see Appendix B). Divisions after Waagstein (1988). 
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Fig. 8.24. TiOJFeOT vs. FeOT/MgO diagram for the basalt lavas from the Faeroe Plateau Lava Group on 
the Faeroe Islands and the igneous-bearing ditch cutting samples from Well 214/4-1, Faeroe-Shetland 
Basin. The oblique full line and the vertical stippled line mark the boundaries between high-Ti olivine 
tholeiites, high-Ti tholeiites, low-Ti olivine tholeütes, and low-Ti tholeiites. LBF = Lower Basalt 
Formation, MBF = Middle Basalt Formation, UBF = Upper Basalt Formation. The analyses have been 

recalculated with a fixed oxidation ratio of Fe2O, /FeO = 0.15. FeOT = total iron calculated as FeO (see 
Appendix B). The ditch cutting samples from Well 214/4-1 plot within the LBF field. Well 214/4-1 data 

added to the modified diagram of Waagstein (1988). 
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line after Larsen etaL (1999). 
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Fig. 8.27. TiO2/FeOT vs. Mg # diagram for the basalt lavas of the Nansen Fjord & Milne Land formations in 

the Nansen Fjord area, E Greenland and the igneous-bearing ditch cutting samples from Well 214/4-1, 
Faeroe-Shetland Basin. The division line separates low-Ti and high-Ti basalts. The analyses have been 

recalculated with a fixed oxidation ratio of Fe2OJFeO = 0.15. Mg #= atomic I OOMg/(Mg + Fe2), and FeOT = 
total iron calculated as FeO (see Appendix B). The ditch cutting samples from Well 214/4-1 plot within the 
Nansen Fjord Formation field. Well 214/4-1 data added to the modified diagram of Larsen et a/. (1999). 
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are recorded from the base of the Nansen Fjord Formation, East Greenland (Larsen et al. 
1999). To date, no hyaloclastite deposits have been recognised from the ca. 4.5 km thick 

pile of the LBF on the Faeroe Islands, including Lopra-1 & IA. This can be explained by 

the type of environment into which the lavas flowed, that is, the lavas may have been 

erupted into a subaerial environment and flowed into a substantial water body (i. e. the FSB 

at that time) (see Section 8.4 for detailed discussion). The volcaniclastic greywackes 

overlying the doleritic lava (Unit 3) in Well 214/4-1 are most likely time equivalent to 

either the Coal-Bearing Formation (CBF) or the Volcaniclastic Sandstone Formation 

(VSF) from the Faeroe Islands. 

8.4 Synthesis 

The volcanic interval (ca. 1,920 ft (ca. 585 m)) recovered from Well 214/4-1, Faeroe- 

Shetland Basin, records an evolving environment of deposition from a subaqueous to 

subaerial setting. The basal ca. 1,480 ft (ca. 451 m) of the well is composed of an 
homogeneous hyaloclastite sequence. The hyaloclastites are hypocrystalline, containing 
laths of plagioclase feldspar (ca. 10-25 vol. %) and clinopyroxenes (ca. 5 vol. '/o). The 

glassy groundmass ranges from being near opaque to murky brown, reflecting various 

stages of palagonitisation. Hyaloclastites are formed by the non-explosive fracturing of 

quenched lavas and intrusions (McPhie et al. 1993, and references therein) and occurs in a 

number of different settings, for example, lava erupted subglacially (e. g. Fumes et al. 
1980), subaerially erupted lava that flows into water (e. g. Moore et al. 1973; Pedersen et 

al. 1998), lava erupted subaqueously (e. g. Kano et al. 1991) and magma intruded into 

unconsolidated, wet sediment (e. g. Busby-Spera & White 1987; Doyle 2000; Skilling et al. 
2002, and references therein). 

Approximately 50 ft (ca. 15 m) above the hyaloclastite sequence a ca. 170 ft (ca. 52 m) 

thick sequence of doleritic/basaltic lava occurs. The sequence consists of 4 lava flows 

separated by interlava lithologies. The lavas are all holocrystalline, containing plagioclase 

feldspar (ca. 50 vol. %), clinopyroxene (ca. 40 vol. %), serpentinised olivine (ca. 5 vol. %), 

and oxides (ca. 5 vol. %). The holocrystalline nature of the dolerites/basalts and the 

occurrence of interbedded clastic lithologies support the premise that these represent 

subaerial lava flows rather than intrusive bodies (Cas & Wright 1987; McPhie et al. 1993). 

The lava flows are geochemically identical to the hyaloclastites (see below), suggesting 

that they were erupted from the same magma chamber and possibly under the same 
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conditions. Therefore, the hyaloclastites most likely represent subaerially erupted lava that 

flowed into water. 

The geochemistry of the hyaloclastite and lava sequences is extremely homogeneous 

throughout the 1,240 ft (ca. 378 m) analysed profile. The geochemical data plotted on the 

variation diagrams of Waagstein (1988) and Larsen et al. (1999) correlate the hyaloclastite 

and lava sequences from Well 214/4-1 to the Lower Basalt Formation (LBF) of the Faeroe 

Islands (including Lopra-1 & IA) and the East Greenland Nansen Fjord Formation. The 

LBF is represented by a ca. 4.5 km thick sequence of subaerial lavas ca. 240 km to the W 

of Well 214/4-1. It is unclear whether the hyaloclastites and lavas in Well 214/4-1 and the 

LBF of the Faeroe Islands were erupted from the same fissure or whether the volcanic 

rocks in Well 214/4-1 were erupted locally from a vent with a similar melting source 

region as the LBF. However, it seems apparent that the hyaloclastites and lavas were 

erupted to the W or NW of Well 214/4-1 and flowed in an easterly to south-easterly 

direction. This is tentatively supported by the foreset-bedded hyaloclastites at the Faeroe- 

Shetland Escarpment (FSE) which prograde to the SE (Smythe 1983; Naylor et al. 1999; 

Ritchie et al. 1999). 

The FSE is less than 50 km to the NW of Well 214/4-1 and, therefore, it seems likely that 

the hyaloclastites and lavas in Well 214/4-1 are linked the lava delta that formed at the FSE 

(Naylor et al. 1999). Lava deltas are characterised by foreset-bedding produced by the 

progradation of subaerial lavas that flowed from land into water and are analogous to 

alluvial Gilbert-type deltas (Jones & Nelson 1970; Moore et al. 1973; Porebski & 

Gradzinski 1990; Pedersen et al. 1998; Planke et al. 2000). As the subaerial lavas now into 

water they are rapidly cooled due to quenching, which results in the brecciation of the lava 

to produce hypocrystalline fragments i. e. hyaloclastites (cf. Jones & Nelson 1970; Moore 

et al. 1973; Porebski & Gradzinski 1990; Pedersen et al. 1998; Planke et al. 2000). 

Subsequent eruptions of subaerial lavas continually add new hyaloclastites to the front of 

the advancing delta and the boundaries between the hyaloclastites produce the foreset- 

bedding (Jones & Nelson 1970; Moore et al. 1973; Porebski & Gradzinski 1990; Pedersen 

et al. 1998; Planke et al. 2000). The continued progradation of the lava delta advances the 

shoreline further into the basin, whilst adding new subaerial terrain to the landmass behind 

(Jones & Nelson 1970; Moore et al. 1973; Porebski & Gradzinski 1990; Pedersen et al. 

1998; Planke et al. 2000) (Fig. 8.28). 

Therefore, the hyaloclastites and lavas within Well 214/4-1 represent a section through a 

lava-fed Gilbert-type delta that advanced from the palaeoshoreline to the NW. The 
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presence of subaerial lavas overlying the hyaloclastites in Well 214/4-1 suggests that a 

terrestrial environment was established between Well 214/4-1 and at least the Faeroe- 

Shetland Escarpment (FSE), possibly even all the way to the Faeroe Islands. This implies 

that that after the lava delta in the vicinity of Well 214/4-1 had formed subsidence and/or 

sea level rise ensued forming a new palaeoshoreline (cf. Jones & Nelson 1970) in the 

vicinity of the FSE, resulting in the formation of a second lava delta (Fig. 8.29). 

Unfortunately, the base of the hyaloclastites was not reached in Well 214/4-1, although the 

drilled section does suggest water depths of at least 1,920 ft (ca. 451 m). This compares to 

water depths of several hundred metres for the lava delta in the vicinity of the FSE (Naylor 

et al. 1999). The lack of Middle and Upper basalt formations in Well 214/4-1 implies that 

they were not erupted in the area or flowed the distances achieved by the LBF. The lack of 

Middle and Upper basalt formations in the well also tentatively suggests that the FSE is 

composed entirely of subaqueous hyaloclastites and subaerial lavas of the LBF. 

Overlying the subaerial lava flows in Well 214/4-1 are sedimentary strata ranging from 

siltstones to lithic greywackes to quartz wackes. The lithic clasts contained within the 

wackes are dominated (5-50 vol. %) by doleritic/basaltic lava comparable to the 

doleritic/basaltic lava flow sequence comprising Unit 3 within the well. Similarly, the 

siltstone lithic clasts (10-30 vol. %) are similar in composition and texture to Unit 4a that 

crops out directly above the lava flow sequence. The remainder of the wackes consist of 

quartz phenoclasts ± minor amounts of plagioclase and alkali feldspar set within a quartz- 

rich clayey to silty matrix. The lava and siltstone lithic clasts generally only occur in units 

4 and 5 that have a combined thickness of ca. 200 ft (ca. 61 m) directly above the lava 

flow sequence. Unit 6 is dominated by quartz grains and contains less than 5 vol. % lithic 

clasts. The lava clasts are derived from the erosion of the subaerial lava flows, either 
locally or to the W and the siltstone lithic clasts were most probably eroded locally. As it 

has been established that basaltic lavas constitute an important part of the Palaeogene strata 

to the W of Well 214/4-1, it is unlikely that the quartz grains were sourced from this 

direction. Therefore, it seems most likely that the quartz grains were eroded from basement 

highs to the E. 

The dominance of quartz within the lithologies suggests that the wackes were deposited 

within a marine environment, because a terrestrial environment on the subaerial lava flows 

would generally be intraformational, dominated by volcaniclastic sandstones with no 

quartz (cf. Collinson 1996; Tucker 1996a; b). Therefore, it seems likely that after the 

subaerial lava flows had been erupted, basin subsidence ensued, possibly related to the 

deflation of the proto-Icelandic plume (Saunders et al. 1997), resulting in sea level rises 
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encroaching to the NW. Ellis et al. (2002) have demonstrated that sea levels encroached as 
far as the Faeroe Islands (ca. 240 km to the NW) by the time the Upper Basalt Formation 

was erupted. As sea level rose, erosion of the subaerial lavas was restricted, resulting in 

less lithic (lava) clasts being incorporated into the overlying deposits. This continued until 

no lava clasts were reaching the deep sections of the basin, resulting in the deposition of 

quartz-dominated deposits i. e. Unit 6 ca. 200 ft (ca. 61 m) above the lava flow sequence in 

Well 214/4-1. 
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9 Synthesis 

The aim of this thesis has been to re-examine the Faeroe Plateau Lava Group (FPLG) on 

the Faeroe Islands and within the Faeroe-Shetland Basin, in terms of environment of 

eruption and deposition of the lava flows and interlava lithologies, respectively, through 

the evolution of the lava field. The FPLG consists of five formations exposed on the 

Faeroe Islands (ca. 3 km thick) which, in chronological order, are as follows: the Lower 

Basalt Formation (LBF) (Chapter 3); the Coal-bearing Formation (CBF) (Chapter 4); the 
Volcaniclastic Sandstone Formation (VSF) (Chapter 5); the Middle Basalt Formation 

(MBF) (Chapter 6); and, the Upper Basalt Formation (UBF) (Chapter 7). Chapter 8 

describes the offshore extension of the LBF within Well 214/4-1 of the Faeroe-Shetland 

Basin. 

The aim of Section 9.1, below, is to compare and contrast the various lava-dominated 

formations (LBF, MBF & UBF) of the FPLG with lava fields from other volcanic 

provinces in an attempt to understand their mode of emplacement and environment of 

eruption. The interlava lithologies from the FPLG are compared and contrasted in Section 

9.2 to understand their environment of deposition and how they were affected by the 

volcanism. Section 9.3 brings together the findings in sections 9.1 and 9.2 to present a 

coherent model for the evolving lava field of the FPLG. 

9.1 Lava Flows 

9.1.1 Facies Architecture and Environment of Eruption 

The Faeroe Plateau Lava Group (FPLG) has a recorded thickness of ca. 6.5 km from the 

exposed and drilled sections of the Faeroe Islands. The FPLG, based on field (Figs. 1.3, 

1.4,1.5,3.6 & 7.6) and geochemical data (Figs. 1.6 & 1.7), has been separated into three 

(basalt) formations: Lower (LBF), Middle (MBF), and Upper (UBF). The LBF & UBF 

have a tabular-classic facies architecture, which contrasts with the MBF, which has a 

compound-braided facies architecture (see below). The LBF in the Faeroe-Shetland Basin 

is represented by both subaerial facies flows and submarine hyaloclastite deposits. 
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9.1.1.1 Tabular-Classic Facies Architecture 

The LBF (Chapter 3) & UBF (Chapter 7) are dominated by subaerially erupted 

prismatically jointed lava flows that have rubbly and vesicular flow tops. They are laterally 

extensive, with sheet-like geometries, and the LBF flows have average thicknesses of ca. 
25 m (max. ca. 70 m) (Figs. 3.6 & 3.8), which contrasts with those of the UBF that have 

average thicknesses of 8-11 in (max. ca. 30 m) (Fig. 7.9), most likely a consequence of 

reduced voluminous eruptions. These characteristics are comparable to the 60 m thick 

(max. ) Tsuhasis Member lava flows, Awahab Formation, Parana-Etendeka Flood Basalt 

Province, which have rubbly vesicle-rich flow tops and massive basal/core regions (Jerram 

et at 1999). These Tsuhasis Member lava flows have been identified as having a tabular- 

classic facies architecture (Jerram et at 1999; Jerram 2002), similar to that reported here 

for the lavas of the LBF and the UBF. Tabular-classic facies lava flows, characterised by 

massive core/basal regions and rubbly vesicular rich flow tops with laterally extensive 

sheet-like geometries, have also been identified in other Continental Flood Basalt 

provinces, including the Teepee Butte Member, Grande Ronde Basalt Formation, 

Columbia River Basalt Group (CRBG) (Reidel & Tolan 1992). 

The tabular-classic facies basalt flows of the Teepee Butte Member and the Yakima Basalt 

Subgroup, CRBG, are predominantly aphyric and a lack of coarse crystallisation over 
distances of tens to hundreds of kilometres implies that they were rapidly emplaced, from 

high effusion rate (>0.6 km3/hr/linear km of fissure, with fissure widths >3 m) eruptions 

(cf. Shaw & Swanson 1970a; b; Swanson et al. 1975; Reidel & Tolan 1992). 

Consequently, it is proposed here that the voluminous aphyric basalt flows of the LBF & 

UBF were similarly erupted at high effusion rates, travelled extremely rapidly, and were 

emplaced over periods of days to weeks. This is supported by the general downward 

decrease in vesicle size, which is consistent with them having formed during post- 

emplacement bubble rise (cf. Aubele et al. 1988; Sahagian et al. 1989; Cashman & 

Kauahikaua 1997) and is characteristic of other rapidly emplaced lava flows, e. g. Alae lava 

lake, Hawaii (Peck 1978; Cashman & Kauahikaua 1997). 

However, observations of emplacement mechanisms of lavas on Hawai' i (Hon et al. 1994) 

have led to the identification of the inflation (endogenous) process (Hon et al. 1994), 

which has resulted in the re-evaluation of the emplacement mechanisms of Continental 

Flood Basalts (CFBs), particularly those of the Columbia River Basalt Group (CRBG) 

(Self et al. 1996; Self et al. 1997; Thordarson & Self 1998). As a result, some tabular- 

classic facies flows have been reinterpreted as forming part of extremely large-scale 
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compound-braided facies that were emplaced slowly through the inflation process e. g. the 

Roza Member, CRBG (Self et al. 1996; Self et al. 1997; Thordarson & Self 1998). 

However, features characteristic of the inflation process are absent from the LBF & UBF 

flows, but are observed throughout the MBF (see Section 9.1.1.2). This may be directly 

related to effusion rate, where the LBF & UBF were erupted with high effusion rates, 

whereas the MBF flows, with similar volumes, were erupted at lower effusion rates (cf. 

Walker 1970; Self et al. 1997; Self et al. 1998; Jerram 2002, and others). 

The jointing patterns (prismatic and columnar) preserved within the tabular-classic facies 

lava flows are directly related to the environment into which the flows were erupted 

(Jerram 2002). Prismatically and poorly jointed lava flows are dominant within the lower 

ca. 800 in of the exposed LBF (Fig. 3.9) and throughout the ca. 900 in of the UBF (Fig. 

7.9), which implies that they were erupted into a relatively dry environment (cf. Jerram 

2002). This is supported by the commonness of prismatic joints and the general lack of 

columnar joints within, for example, the lava flows of the Awahab Formation, Paranä- 

Etendeka Flood Basalt Province, which were emplaced in an aeolian, arid, subaerial 

environment (Jerram et al. 1999; Jerram et al. 2000; Jerram 2002; Jerram & Stollhofen 

2002). The aeolian character of this environment implies that there was an overall lack of 

surface water available to ingress through the cooling surfaces of the lava flows, thus 

preventing the modification of the internal isotherms, and permitting the development of 

regular columns (Jerram et al. 1999). 

Lyle (2000) demonstrated that columnar jointed lava flows from a number of provinces, 

including: the Palaeogene Antrim and Mull lava fields of Northern Ireland and Scotland, 

respectively; the Miocene CRBG; and the Quaternary lavas of southern Iceland; are 

commonly associated with features suggesting that these flows were emplaced within wet 

subaerial environments. These associated features are outlined in Section 2.1.2.3 and are 

observed in close association with the well-developed columnar jointed lavas of the upper 

100 m of the exposed LBF. Columnar jointed flows (e. g. Külugjögv Lava Flow (Figs. 3.13 

& 3.14) commonly overlie fluviatile or lacustrine strata, suggesting that significant 

quantities of surface water were available and capable of ingress through cooling surfaces, 

and were thus able to disturb the internal isotherms. An example of extreme isothermal 

modification is preserved at Hov (Fig. 3.12), where a multi-tiered lava flow has an 

entablature dominated by curvi-columnar columns, characteristic of water ingress through 

the upper surface of the flow (cf. Saemundsson 1970). This ingress of water implies either 

high rainfall or surface water sourced from the damming of pre-existing river channels (cf. 

Saemundsson 1970; Lyle 2000). Evidence for the damming of a river channel is preserved 
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to the E of Frooba, Suouroy, where the KülugjGgv Lava Flow has infilled a channel ca. 20 

m deep (Fig. 3.13). Some of the lava flows (e. g. the Hvalbiareiöi and Skarvatangi lava 

flows) also have basal pillows, hyaloclastites and blocky peperites, all indicative of lava 

flowing into/over water saturated sediments or pools of water, respectively (cf. Lyle 2000; 

Skilling et al. 2002). 

The lack of columnar jointed lava flows in the UBF suggests that there was a general 

absence of surface water available to ingress through the cooling surfaces. However, a 

number of ca. 8m thick agglutinated lava flows, which have the appearance of breccia in 

outcrop, have been observed overlying fluviatile and lacustrine strata e. g. the Halgafelli 

Section, Boröoy (Fig. 7.10). The agglutinated nature of these flows and the association 

with the underlying sedimentary strata implies that there were localised bodies of water 
(i. e. lakes) into which the lavas flowed, resulting in their quenching and brecciation (cf. 

Skilling et al. 2002, and references therein). 

9.1.1.2 Compound-Braided Facies Architecture 

The ca. 1.4 km thick MBF consists of lava flow units that range in thickness from <0.5 to 2 

m, and which have smooth, sometimes ropy, surfaces, suggesting that they are pahoehoe 

lavas (cf. Wentworth & Macdonald 1953; MacDonald 1967; Fink & Fletcher 1978; 

Basaltic Volcanism Study Project 1981; Cas & Wright 1987; Walker 1989; Rowland & 

Walker 1990; McPhie et al. 1993; Walker 1993; Wilmoth & Walker 1993; Self et al. 1998; 

Crown & Baloga 1999) (Fig. 6.10). Two different types of pahoehoe lava have been 

recognised in the MBF based on their amygdale distribution patterns: S-type (spongy) and 
P-type (pipe-bearing) (cf. Wilmoth & Walker 1993). Some of the flow units are highly 

amygdaloidal throughout their thickness, suggesting that they are spongy or S-type 

pahoehoe flows (cf. Walker 1989; Wilmoth & Walker 1993). The majority, however, can 

be separated into a basal crust, a lava core and an upper crust, which are characteristic of 

P-type flows (cf. Wilmoth & Walker 1993) (Fig. 6.11). The basal crust generally consists 

of pipe amygdales that have a maximum length of 8 cm, and which are sometimes curved 

in the direction of flow. They commonly occur at least 2 cm off the base of the lava, 

suggesting that they formed from late-stage bubble rise rather than from steam originating 

from the heating of surface water, rising through the lava (cf. Walker 1987). The presence 

of the pipes also suggests that the lava flow units were emplaced on slopes of <4° (cf. 

Walker 1987). The lava core is typically massive and compact, with irregular jointing, and 

the upper crust is dominated by elliptical amygdales up to 2 cm in diameter. 
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The flow units form compound lava flows (i. e. compound-braided facies architecture) with 

average thicknesses of ca. 20 m, which are identified from poorly developed reddened 
flow tops or sparse interlava lithologies. The compound nature and the dominance of P- 

type pahoehoe of the MBF is comparable to the 5m thick flow units of Hawai' i that 

formed from the inflation (endogenous) process (Fig. 2.6) (Hon et al. 1994; Cashman & 

Kauahikaua 1997). The Hawaiian flow units were erupted at low effusion rates as 20-30 

cm thick pahoehoe lavas that thickened to ca. 1m in 1-2 hours and to 4m after 14 days 

(Hon et al. 1994). Based on these observations, Hon et al. (1994) proposed an empirical 

equation to estimate the time that each flow unit was active. Applying this equation by 

using the upper crust thickness of the MBF P-type flows, it is estimated that they were 

active over a period of 10 hours (1.6 m thick flow) to 9 days (2.2 m thick flow), similar to 

the durations determined by Hon et al. (1994) described above. However, this assumes that 

the MBF Javas were emplaced under the same conditions (for example, temperature) as the 

Hawaiian flows, and does not take into consideration other external factors, such as the 

effects of rainfall. If the MBF flow units were erupted continuously to form a compound 

lava flow ca. 20 m thick it follows that the lava flow was emplaced over a period of 5 to 85 

days. Pahoehoe formation on Hawaii is associated with low discharge rates resulting in 

low volumetric flow rates with flow-front velocities of the order of 1-10 m h'1 (cf. 

Rowland & Walker 1990; Hon et al. 1994). Assuming similar velocities for the MBF, it 

would have taken a few months to just over a year for a flow-front to advance ca. 10 km 

from a fissure vent (cf. Kent et al. 1998). 

Another feature associated with the development of inflating pahoehoe lavas on Hawai' i is 

the formation of lava tubes through the coalescence of pahoehoe lobes (Hon et al. 1994; 

Kauahikaua et al. 1998). The lava tubes decrease in size, from master tubes through 

distributary tubes to flow fronts, away from the source fissure/vent (Fig. 6.31) (Rowland & 

Walker 1990). Master tubes, ranging in cross-sectional area from 3 to 160 m2, occur 

throughout the MBF (Figs. 6.7,6.8 & 6.9) and smaller distributary tubes with cross- 

sectional areas of <0.15 m2 also occur, particularly at Vibareiöi, Viöoy (Fig. 6.9e). The 

presence of the lava tubes in the MBF supports the premise that the associated pahoehoe 

lavas were emplaced through the inflation process (cf. Hon et al. 1994) and also implies 

that lava tube networks were able to transport magma significant distances away from the 

source vents (cf. Atkinson et al. 1975; Greeley 1982; 1987; Hon et al. 1994; Peterson et al. 

1994; Cashman et al. 1998; Kauahikaua et al. 1998; Stephenson et al. 1998). 

The MBF compound lava flows form edifices ca. 70 m high, 15 km across with slopes of 

<0.50 and volumes of <7 km3 (Noe-Nygaard 1968). This type of structure is known as a 
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low shield of the scutulum type (Noe-Nygaard 1968; Greeley 1982). Greeley (1976; 1977; 

1982) compared the MBF lava flows and associated low shields to those of the Snake 

River Plain, Idaho, and proposed a new style of volcanism referred to as Basaltic Plains 

Volcanism (Fig. 2.8). This style of volcanic activity has combined features from 

Continental Flood Basalt provinces (e. g. high volume flows, rift fissures, planar surfaces) 

and Hawaiian volcanism (e. g. compound pahoehoe lavas, low shields, lava tubes) (Greeley 

1976; 1977; 1982). The MBF and Snake River Plain sequences are extremely similar in 

style and share many characteristic features. First, both provinces are dominated by large 

volume compound pahoehoe lava flows. The compound flows of the MBF average ca. 20 

m in thickness, similar to those of the Hell's Half Acre and Wapi fields, Snake River 

Plains, which have flows with average thicknesses of ca. 35 m (Greeley 1982). These thick 

compound flows are composed of flow units averaging between 1 and 5 in (Greeley 1982), 

which compares closely to the average thickness of 2m within the MBF. Second, lava 

tubes are extremely common in both provinces, implying that they played a major role in 

transporting lava large distances (see above). A third feature observed is the drowning of 

the lava topography by tabular-classic facies lava flows. In Idaho, the low shields are 

partially buried by the King's Bowl Flow, with flow thicknesses of ca. 4m (Greeley 1982), 

whereas in the Faeroe Islands the top surfaces of the low shields of the MBF are covered 

by, or interdigitate with, the basal ca. 10 m thick tabular-classic UBF flows. 

A similar relationship of compound-braided facies lavas overlain by tabular-classic facies 

flows is observed in the Huab Basin, Parana-Etendeka Flood Basalt Province, Namibia 

(Jerram et al. 1999; Jerram et al. 2000; Jerram & Stollhofen 2002). Here, compound flows 

of the Tafelkop Inter-dune Member, Awahab Formation, are composed of olivine-phyric 

pahoehoe lobes up to a few metres thick and are overlain by the thicker tabular-classic 

Tsuhasis Member flows (Jerram et al. 1999; Jerram et al. 2000; Jerram & Stollhofen 2002, 

see above). The Tafelkop Inter-dune Member compound flows were emplaced passively 

by the inflation process (Jerram et al. 1999; Jerram et al. 2000; Jerram & Stollhofen 2002), 

akin to those of Hawaii and the MBF. Aeolian ergs contained within the Tafelkop flows 

preserve dune structures that have not been modified or destroyed by the overlying lava 

flows, suggesting that the lavas were emplaced passively (Jerram et al. 1999; Jerram et al. 

2000; Jerram & Stollhofen 2002). This observation supports the hypothesis that the 

pahoehoe flows were emplaced over months to years by the inflation process (Jerram et al. 

1999; Jerram et al. 2000; Jerram & Stollhofen 2002). At Vibareiöi, Viöoy, fluviatile 

sedimentary rocks are preserved inbetween pahoehoe flow units of the MBF and the 

bedform structures (e. g. planar laminations) in the sedimentary strata have not been 

significantly modified or destroyed (Fig. 6.25), suggesting that the lavas were emplaced 
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passively, similar to the Tafelkop Inter-dune Member flows. The preservation of 

sedimentary strata by lava flows is also recorded in the Serra Geral Formation, Paranä- 

Etendeka Flood Basalt Province, Brazil (Scherer 2002) and in the Mussartüt Member, 

Eriksford Formation, South Greenland (Clemmensen 1988). 

Other pahoehoe flow units of similar thickness to those of the MBF, the Snake River Plains 

and the Tafelkop Inter-dune Member, have been identified from the British Tertiary 

Igneous Province. The base of the Tertiary sequence consists of 2-5 m thick pahoehoe 

sheets of simple character (Williamson & Bell 1994; Kent et al. 1998), which were 

emplaced by the inflation process (Kent et al. 1998). Associated with these pahoehoe flows 

is a much larger, 16-30 m thick, pahoehoe unit, which has features suggestive of 

emplacement through the inflation process (Kent et al. 1998). The occurrence of large (ca. 

30 m thick) inflated pahoehoe units inbetween thinner (0.3 to 3m thick) units is also 

observed in the CRBG (Self et al. 1996; Self et al. 1997; Self et al. 1998; Thordarson & 

Self 1998). The present study has not observed any large, >5 m thick, inflated pahoehoe 
lava flows in the MBF. 

9.1.1.3 Hyaloclastite Facies Architecture 

The volcanic interval, which is geochemically equivalent to the LBF on the Faeroe Islands 

(see Section 8.3.1.3) in Well 214/4-1, Faeroe-Shetland Basin, consists of hypocrystalline 

basalt fragments forming a ca. 450 m thick hyaloclastite sequence, which is overlain by 

subaerial lava flows with a combined thickness of ca. 50 m. The hyaloclastites were 
formed from the quenching of subaerial lava in water (cf. Cas & Wright 1987; McPhie et 

al. 1993). Seismic data collected from the area around the Faeroe-Shetland Escarpment are 

characterised by dipping reflectors interpreted as prograding foresets within hyaloclastite 

sequences (Naylor et al. 1999; Ritchie et al. 1999; Planke et al. 2000). The occurrence of 

foreset bedded hyaloclastites in the Faeroe-Shetland Basin, at least ca. 450 m thick in Well 

214/4-1, are similar to the onshore examples of Disko and Nuussuaq, West Greenland 

(Pedersen et at 1998). Here, hyaloclastite breccias consist of 450 m high, 0.5-2 m thick 

foresets that laterally grade into and are overlain by subaerial lava flows (Pedersen et at 

1998). 

Hyaloclastites that grade laterally into, and are commonly overlain by, subaerial lavas have 

been interpreted to represent the locations of palaeoshorelines, whereby lava flows have 

travelled from a (dry) land surface into water (Jones & Nelson 1970; Moore et al. 1973; 

Porebski & Gradzinski 1990; Pedersen et al. 1998; Planke et al. 2000; Carr & Jones 2001). 
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The prograding foresets of the hyaloclastite sequences are similar to Gilbert-type deltas of 

sedimentary environments and, consequently, have been referred to as lava-fed Gilbert- 

type deltas by Porebski & Gradzinski (1990). Consequently, the hyaloclastite sequence and 

overlying subaerial lava flows in Well 214/4-1 most likely represent a lava delta formed in 

close proximity to a palaeoshoreline and the angularity of the foresets suggests that the 

lava delta was prograding from a westerly direction (cf. Porebski & Gradzinski 1990; 

Pedersen et al. 1998; Planke et al. 2000). The thickness of hyaloclastite sequences is 

directly related to water depth (cf. Jones & Nelson 1970; Pedersen et al. 1998); therefore, 

in the vicinity of Well 214/4-1 the basin was at least 450 m deep during hyaloclastite 

deposition. 

9.2 Interlava Lithologies 

9.2.1 Environment of Deposition 

The interlava lithologies investigated in this study from the FPLG on the Faeroe Islands 

were deposited onto a terrestrial terrain during hiatuses in the eruption of the basalt lava 

flows. The interlava lithologies are dominated by epiclastic facies composed of 

intraformational clasts derived from the reworking of poorly consolidated tephra and the 

erosion of pre-existing lava flows and volcaniclastic rocks. The study of other continental 

volcanic terrains and the effect of volcanism on fluvial systems has led to the recognition 

of two facies sequences: inter- and syn-eruption facies (Smith 1987a; 1988; Smith & Fritz 

1989; Runkel 1990; Smith 1991; Cole & Ridgway 1993; Haughton 1993; Bahk & Chough 

1996). Inter-eruption facies (Section 9.2.1.1) are characterised by `normal' terrestrial 

environments (i. e. fluvial, lacustrine, etc. ) whereas syn-eruption facies (Section 9.2.1.2) are 

unique to volcanic terrains and are dominated by high-sediment-load flood to mass-flow 

deposits that are different to those formed in non-volcanic settings (Smith 1987a; 1988; 

Smith & Fritz 1989; Runkel 1990; Smith 1991; Cole & Ridgway 1993; Haughton 1993; 

Bahk & Chough 1996). Both facies types have been recognised throughout the FPLG on 

the Faeroe Islands, although the inter-eruption facies are by far the most dominant. For 

completeness, tuff beds and peperites, which only occur in minor amounts, shall be 

discussed collectively with the syn-eruption facies (Section 9.2.1.2). 

9.2.1.1 Inter-Eruption Facies 

The inter-eruption facies of the FPLG are dominated by fluviatile, lacustrine, swamp and 

palaeosol environments (and associated lithologies) that were formed during hiatuses 
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between eruptions of the basalt lava flows. Hiatuses in the volcanic activity allowed time 

for the chemical and physical weathering of the volcanic land surface. However, 

subsidence rates had to be high enough to allow for the accumulation of the detritus (cf. 

Smith 1987a; Smith & Fritz 1989; Runkel 1990; Smith 1991; Cole & Ridgway 1993; 

Haughton 1993; Bahk & Chough 1996). The ca. 10 m thick Coal-bearing Formation (CBF) 

was deposited during a significant hiatus, whereby the time between eruptions (i. e. 
between the LBF and MBF) was prolonged, thus allowing extensive weathering/erosion of 

the volcanic terrain and a subsidence rate which was high enough to allow the deposition 

of the uncommonly thick CBF inter-eruption sequence. 

The fluviatile sequences, each no more than 2m thick, are contained within channel-type 

structures throughout the FPLG and consist of poorly sorted, clast- to matrix-supported 

volcaniclastic sandstones, although conglomerates also occur. Channel-type structures 

range from deep (ca. 20 m) relatively narrow channels (e. g. Külugj6gv Section (Fig. 3.13)) 

to broad channels no more than 2m deep (e. g. Klivarnar Section (Fig. 6.14)). The majority 

of the sandstones are composed of reworked tephra, predominantly coarse ash but also 
lapilli grade. The tephra exhibits a range of colours, textures and grain sizes, implying that 

the clasts were derived from numerous poorly consolidated tuff and lapillistone beds, 

which supports the premise that they represent epiclastic strata (cf. Cas & Wright 1987; 

McPhie et al. 1993). The sandstones also contain variable amounts of lithic clasts derived 

from pre-existing epiclastic sandstones, mudstones as well as tuffs and basalt lava flows. 

The degree of rounding of the clasts within the sandstones ranges from angular to sub- 

rounded, implying that they have only undergone minor transportation. Such lava clast 
dominated volcaniclastic sandstones are well represented in the upper section of the LBF 

and within the CBF. These basalt clasts have typically undergone a high degree of 

reworking and are commonly aligned parallel to bedding, indicating localised river flow 

directions (e. g. Külugjögv Section (Fig. 3.19)). The occurrence of lensoidal bedding in the 

i Bugum Section (MBF) tentatively suggests that the fluvial system consisted of braided 

streams (cf. Bahk & Chough 1996). Mudstone lithologies associated with the fluviatile 

systems most likely represent interchannel environments consisting of swamps and small 

lakes as well as possibly recording episodes of flooding (cf. Smith 1991; Cole & Ridgway 

1993; Haughton 1993; Bahk & Chough 1996; Collinson 1996). 

Coals are not preserved in the MBF & UBF, although plant material has been recovered 

from the i Buguni Section implying that the surrounding land surface was vegetated at the 

time. This is supported by the presence of tree moulds within the bases of some of the UBF 

lava flows that are commonly located overlying fluviatile strata. The occurrence of the 
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plant material, particularly the tree moulds (Fig. 7.12), suggests that the hiatuses in 

volcanism were prolonged, even though the associated thin fluvial deposits imply 

relatively short hiatuses. This observation may be explained by low subsidence rates that 

prevented the accumulation of detritus (cf. Smith 1987a; Smith & Fritz 1989; Smith 1991; 

Haughton 1993; Bahk & Chough 1996). 

The in situ subaerial chemical weathering of the volcanic terrain, under a temperate to 

warm climate with seasonal rainfall (Parra et al. 1987; Lund 1989), led to the formation of 

palaeosols, which are particularly well preserved in the upper section of the LBF and 

within the CBF. These palaeosols were predominantly derived from the weathering of 

basalt lava flows (e. g. Parra et al. 1987), but also from volcaniclastic rocks (tuffs or 

epiclastic sandstones) (e. g. Sabine 1971). The palaeosols within the upper section of the 

LBF are reddened boles (or ferruginous palaeosols) and are composed of ferric iron 

oxyhydrates (ferrihydrite and goethite) and ferric iron oxides (haematite) and were most 
likely formed in a well-drained environment (cf. Baas-Becking et al. 1960; Retallack 1997; 

Duchaufour 1998; Retallack 2001). Applying the calculations of Nahon (1991), it is 

suggested that a2m thick bole (derived from the weathering of basalt) from the LBF 

would have formed within a hiatus of at least 140 kyrs. 

The palaeosols of the CBF are dominated by grey gleysols that formed under waterlogged 

conditions (cf. Baas-Becking et al. 1960; Besly & Fielding 1989; Retallack 1994; 1997; 

Duchaufour 1998; Retallack 2001) and are characterised by an abundance of organic 

material and siderite spherules no more than 2 mm in diameter. The presence of the 

organic material implies the surrounding land surface was heavily vegetated. The 

accumulation and subsequent decomposition of the organic material and associated 

manganese and iron reduction led to supersaturated levels of bicarbonate, Fe 2+ and Mn 2+ in 

the pore fluids, which were favourable conditions to precipitate the siderite spherules (cf. 

Berner 1981). The high levels of Fe and Mn were most likely derived directly from water 

percolating through the surrounding LBF lava flows. The reducing waterlogged land 

surface and the accumulation of organic material also resulted in the formation of mineable 

coal seams within the CBF; minor amounts of coal are also preserved within the upper 

section of LBF, for example on Mykines and Suöuroy. Rasmussen & Noe-Nygaard 

(1970b) and Lund (1983; 1989) suggested that the coals were formed in a lacustrine setting 

because, in part, the plant macerals from the coals are partly allochthonous in origin. The 

occurrence of a semi-gleysol in the Ulingatangi Section of the CBF implies that the 

palaeosol underwent fluctuating water table levels (cf. Besly & Fielding 1989) at least four 

times, most likely reflecting seasonal variations. 
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9.2.1.2 Syn-Eruption Fades 

The syn-eruption facies of the FPLG on the Faeroe Islands were deposited by processes 

ranging from (volcaniclastic) debris flows to hyperconcentrated flows, together with tuffs 

and peperites. Mass flow deposits form the bulk of the Volcaniclastic Sandstone Formation 

(VSF) and occur with laterally extensive tuff beds. A debris flow has also been recognised 
from the base of the UBF in localities up to 34 km apart, and which is interpreted as being 

a single depositional unit. Peperites are commonly found within the basal crusts of lava 

flows (sections 9.1.1.1 & 9.1.1.2) and a major peperite sequence is preserved in the 

Reyöibarmur Section, Suburoy, where a shallow sill has invaded the CBF. 

The mass flows of the VSF range from mudstones through to conglomerates, are no more 

than a few metres thick, and extend over distances of up to a few kilometres. These flows 

have tabular geometries and are dominated by reworked ash and lapilli Glasts. The coarse 

deposits are poorly sorted and matrix-supported and contain phenoclasts of coal, 

volcaniclastic mudstone and basalt. They commonly exhibit a planar lamination and clasts 
have a high degree of rounding, suggesting that they formed by a combination of 

volcaniclastic debris and hyperconcentrated flow processes (cf. Janda et al. 1981; Pierson 

& Scott 1985; Lowe et al. 1986; Naranjo et al. 1986; Smith 1986; Rodolfo 1989; Smith & 

Lowe 1991; Coussot & Meunier 1996; Sohn et al. 1999; Kessler & Bedard 2000; Lavigne 

et al. 2000; Lirer et al. 2001). The lack of channel-shaped margins and cross-bedding 

suggests that deposition occurred on volcaniclastic aprons where streams were not 

established (cf. Palmer & Walton 1990; Smith 1991; Bahk & Chough 1996; Nakayama & 

Yoshikawa 1997). The debris and hyperconcentrated flows were most likely initiated in 

response to an increase in tephra added to the surrounding land surface from renewed 

eruptions, which was accompanied by high rainfall resulting in high aggradation rates 

producing turbulent flood surges (sheet floods) (cf. Smith 1986; 1987a; b; 1988; Smith & 

Fritz 1989; Smith 1991; Smith & Lowe 1991; Haughton 1993; Bahk & Chough 1996; 

Nakayama & Yoshikawa 1997). This interpretation is supported by an association with tuff 

beds, together with the incorporation of clasts derived from these units within the mass 

flow deposits (cf. Smith 1991; Haughton 1993; Bahk & Chough 1996; Nakayama & 

Yoshikawa 1997). The olivine-phyric vitric tuff beds of the VSF show little compositional 

variation, both vertically and laterally. These beds have thicknesses of greater than 4m and 

have tabular geometries. Welded tuffs towards the top of this sequence are characterised by 

flamme and are interbedded with mass flow deposits, thus supporting the premise that 

sedimentation and volcanic activity were contemporaneous. 
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The debris flow at the base of the UBF has a tabular geometry and is at least 10 m thick. It 

is a conglomerate that is characterised by being poorly sorted, non-graded and having an 
homogenous clast population (Figs. 7.14,7.15,7.24 & 7.25). The clasts are dominated by 

plagioclase-phyric glassy to finely crystalline basalts, which are typically angular with 
irregular-shaped edges. The absence of any megablocks greater than 10 m in size, together 

with a lack of fracturing of clasts, suggests that this conglomerate is the product of a 

volcaniclastic debris flow (cf. Yarnold 1993). The irregular-shaped clast edges suggest that 

the debris flow travelled either a relatively short distance, or very rapidly. As with the mass 
flows of the VSF, the debris flow of the UBF was formed when a substantial amount of 

volcanic debris was deposited on the surrounding land surface, with high rainfall 

mobilising the debris to produce sheet floods, possibly covering substantial distances. 

There are many documented examples where debris flows have travelled distances greater 

than 100 km (e. g. Janda et al. 1981; Lowe et al. 1986; Naranjo et al. 1986; Rodolfo 1989; 

Smith & Lowe 1991). The incorporation of ash into the top of the debris flow at Sneis 

implies that an eruption had begun before the mass flow had frozen, suggesting that the 

flow was contemporaneous with volcanism. 

The peperite sequence at the base of the VSF records an episode when sills invaded and 

mingled with strata from the CBF. The vesicularity of the sills implies that they were 

emplaced at a relatively shallow level, most likely representing a conduit for a vent, which 

may have erupted the tuffs of the VSF. As the sill propagated through the CBF strata, 

vapour-insulated apophyses initially produced a dispersed blocky-fluidal peperite under a 

ductile fragmentation regime (cf. Kokelaar 1982; Wohletz 1983; Mills 1984; Busby-Spera 

& White 1987; Rawlings et al. 1999; Donaire et al. 2002; Skilling et al. 2002; Squire & 

McPhie 2002; Wohletz 2002). When these early-stage apophyses came into contact with 

the thermally unstable coal, it led to the mutual injection of sill into coal and vice versa (cf. 

Lumsden 1967; Stach et al. 1975; Thomas 1992; Nomura et al. 1999; McClintock & White 

2002). As the sills cooled they could no longer develop vapour films and consequently 

they entered the brittle fragmentation regime, leading to the formation of a close-packed 

blocky peperite. The lack of jigsaw-fit clasts within this peperite suggests that it was 

formed by bulk interaction steam explosions and mechanical stresses, rather than through 

quenching (cf. Kokelaar 1986; Busby-Spera & White 1987). For a more detailed 

discussion of the peperite-forming process see Section 5.4.1.3. 
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9.3 Evolution of the Faeroe Plateau Lava Group 

The Faeroe Plateau Lava Group (FPLG) began with the eruption of a pre-break-up 

succession in the Palaeocene (C27R-C25R (ca. 60.56-57.5 Ma)) (Waagstein 1988; Ritchie 

et al. 1999; Ellis et al. 2002) and consists of the Lower Basalt Formation (LBF) on the 

Faeroe Islands and the Nansen Fjord Formation, East Greenland (Larsen et al. 1999). The 

LBF has a recorded stratigraphic thickness of ca. 4.5 km in the vicinity of the Faeroe 

Islands and is entirely composed of subaerial lava flows exhibiting a tabular-classic facies 

architecture. However, to the east of the Faeroe Islands, moving into the Faeroe-Shetland 

Basin, the LBF consists of (marine) hyaloclastite sequences overlain by subaerial lava 

flows (e. g. Well 214/4-1). In comparison with exposed examples of hyaloclastite 

sequences (for example, Disko and Nuussuaq, West Greenland (Pedersen et al. 1998)) it 

seems likely that the LBF lava flows travelled in an easterly direction from the Faeroe 

Islands, a distance of at least 240 km. In doing so, they flowed from a subaerial 

environment into a substantial body of water at least 450 m deep (i. e. the Faeroe-Shetland 

Basin at that time). The presence of the subaerial lava flows overlying the hyaloclastites 

indicates that sea level fell and/or uplift occurred and that a terrestrial environment was 

established to the west, possibly all the way back to the Faeroe Islands. 

The identification of the Faeroe-Shetland Escarpment as a hyaloclastite sequence (Ritchie 

et al. 1999) <50 km to the NW of Well 214/4-1 implies that sea level rose and/or 

subsidence occurred, resulting in the palaeoshoreline moving to the WNW. Thus, the 

number of hyaloclastite deltas, which developed within the Faeroe-Shetland Basin, appears 

to have been under-estimated, and it seems likely that the sea was steadily encroaching to 

the W/NW (i. e. towards the Faeroe Islands) throughout the period of the volcanism (Fig. 

9.1). 

The LBF subaerial lavas of the Faeroe Islands were erupted at high effusion rates and 

travelled rapidly over large distances into a relatively dry environment under a warm and 

temperate climate (Parrs et al. 1987; Lund 1989). The lavas were most likely erupted from 

fissures to the W of the Faeroe Islands (Rasmussen & Noe-Nygaard 1970b; Larsen et al. 

1999), but point sources may have played a significant role in adding tephra to the 

developing land surface (cf. Swanson et al. 1975). A point source vent is identified at 

Stapin, Suöuroy and consists of basaltic agglomerate subsequently overlain by coals from 

the CBF. 

Chapter 9 Synthesis Page 353 



Simon R. Passey 

it 
mýdl d ý8u 

v 0" P W 
Lý 10 

0 
tim ea , 

ýý$W 
aQ+ j 

oa -" a NJ 19,0 ý 

W "` a°ý oß. 9 

is p 4p a 
ar 

7 Q° uýy 7 

'a 
ýN 

aQ° 
"a ý 

>% CV 

13 
06 

4a 

" 

0_ 

VpC 

a0m0 
mö cý' 4 .1ö3 . 

�W6" 
1- 0 co A *- 

ä 3ö0 

cc 

ü 

, Z, go M 

ao 
ao 

-Z a a .0 'k 

U -Z J= o` 
Cs- E ä. 9+; ". " d 

U) ooa 
ä, 

,ý " AM 'c 

m 

z is IL of an vöpooooö 10 s 
c .0= 

10 - CD wM LL. o ý° ooý,; LawvcU. LL. U. 
ý.. a 

400 ß 
, 
r- 

omßm co H(ýL o J2 
3OTp LL 

I' 
co mm co oÖb 

a yW =ý> >mmmpmCm 
E 
0r äyß I0äooo 
VäwD TE JJU. LpQg 

ýoG 

DOME iI°, 
u 

W mý 

r V- o "; cc C e? men 
0) 

ää 

w3l co wS 

Chapter 9 Synthesis Page 354 



Simon R. Passey 

The general lack of erosional surfaces and sedimentary strata within the lowest ca. 800 m 

of lavas of the LBF implies that either the land mass was relatively stable (i. e. no 

subsidence/uplift) and the climate was relatively dry or, more likely, that the eruption 
frequency was extremely high, which prevented erosion and sedimentation (cf. Smith 

1988; Smith & Fritz 1989; Smith 1991; Smith et al. 2002, and others). The presence of 

prismatic joints within the lavas supports the premise that the volcanic terrain was 

relatively dry at the time of emplacement (cf. Jerram 2002). However, volcanism began to 

wane in the upper section of the LBF and, during hiatuses, terrestrial environments were 

established (Fig. 9.2a). Chemical weathering of the basalt lava flows resulted in the 

formation of reddened boles no more than 2m thick, suggesting that hiatuses in the 

volcanism could have lasted for periods of up to 140 kyrs (cf. Nahon 1991). The 

development of fluvial systems led to the erosion of the lava flows and channels were 
incised into the lava field. Some of the channels were subsequently dammed by later lava 

flows displacing river water and possibly forming ephemeral lakes (cf. Lyle & Preston 

1998; Lyle 2000). This displaced surface water led to the formation of well-developed 

columns in some of the lava flows (e. g. Külugjögv Lava Flow) and curvi-columns in 

entablatures of multi-tiered flows (e. g. Hov, Suburoy). A vegetated landscape emerged and 

swamp environments developed which led to the formation of minor coal seams. This 

swamp environment was the precursor to the Coal-bearing Formation (CBF) once the LBF 

volcanism had ceased. 

The ca. 10 m thick CBF on Suöuroy was deposited at the Palaeocene-Eocene (ca. 57 Ma) 

boundary (Lund 1989; Jolley 1997) and is dominated by a lake environment at least 10 km 

across (Fig. 9.2b). The margin of the lake is characterised by the Ulingatangi Section, 

consisting of palaeosols formed under well-drained through to waterlogged conditions. The 

periodically waterlogged palaeosols (semi-gleysols) record water-level fluctuations that 

occurred at least four times, most likely representing seasonal variations (cf. Besly & 

Fielding 1989). The lake centre was located in the vicinity of the Rokhagi Section, which 

consists of an ironstone bed composed almost entirely of siderite spherules precipitated 

directly from the hypolimnion. This contrasts to the Ulingatangi clay ironstone bed where 

the siderite spherules were precipitated from pore fluids within the palaeosols. Such an 

interpretation is supported by the presence of two thick coal seams (ca. 1.7 m thick) at 

Rokhagi and only a thin discontinuous coal seam (<0.7 m) at Ulingatangi. To the west of 

the lake (i. e. W Suöuroy), fluviatile sandstones and conglomerates overlie the coal seams. 

These strata contain sub-rounded clasts of basalt, derived from the surrounding LBF lava 

flows, and are dominated by reworked ash grade volcanic material. The location of these 

fluvial systems in relation to the lake indicates that the streams were flowing from west to 
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east and were also transporting plant material into the lacustrine environment. This model 
tentatively implies that there was high ground to the west of Suöuroy. 

Volcanism on the Faeroe Islands recommenced penecontemporaneously with the initial 

stages of the opening of the NE Atlantic and is marked by the localised eruption of a >8 m 
thick sequence of olivine-phyric tuffs at the base of the Volcaniclastic Sandstone 

Formation (VSF) (Fig. 9.3a). This interpretation of small, restricted eruptions is supported 
by the presence of shallow sills at Reybibarmur, which invaded the CBF and most likely 

represent conduit(s) for a VSF-age vent. 

The significant temporal increase in the relative proportion of pyroclastic debris to the land 

surface swamped the existing fluvial system and, possibly in combination with heavy 

rainfall, resulted in sheet floods (lahar events) covering the land surface as tabular debris 

and hyperconcentrated flow deposits (cf. Smith 1991; Haughton 1993; Bahk & Chough 

1996, and others). In order that these deposits could accumulate, the subsidence rate must 
have approximately matched the sedimentation rate (cf. Smith 1991; Haughton 1993; Bahk 

& Chough 1996, and others). Therefore, active subsidence was most likely occurring in the 

corridor between SuOuroy and MykinesNV gar, where the CBF and VSF crop out. These 

mass flow deposits are interbedded with olivine-phyric tuff beds, supporting the premise 

that the deposits represent a syn-eruption facies (cf. Smith 1991). 

The Middle Basalt (MBF) and the Upper Basalt (UBF) formations represent a syn-break- 

up succession, along with the Milne Land Formation of East Greenland (Larsen et al. 
1999), which were emplaced during the earliest Ypresian (Waagstein 1988; Larsen et al. 
1999; Ritchie et al. 1999). The MBF lava flows were subaerially erupted through low 

shield volcanoes that were locally situated around the Faeroe Islands (Fig. 9.3b). These 

shields are of the scutulum type and have diameters of ca. 15 km and heights no more than 

100 in (Noe-Nygaard 1968). The MBF lava flows were erupted at lower effusion rates than 

the LBF and UBF, which resulted in a compound-braided facies architecture (cf. Walker 

1970; Hon et al. 1994; Self et al. 1997; Self et al. 1998). The MBF is ca. 1.4 km thick and 
is composed of lava flows that are ca. 20 in thick, which in turn are made up of thinner 

flow units ca. 2 in thick. These flows were emplaced on slopes of <4° through an inflation 

(endogenous) process over many months to years (cf. Hon et al. 1994; Self et al. 1996) and 

were also transported through very efficient lava tube networks. The MBF is very similar 

to the Basaltic Plains Volcanism of the Snake River Plains, Idaho, identified by Greeley 

(1976; 1977; 1982). Hiatuses between eruptions are represented by fluvial system 

sandstones comprising reworked ash grade clasts and containing plant material, implying 
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that the surrounding land surface was vegetated. However, no coal seams have been 

observed in the MBF, suggesting that the hiatuses were not as long as those in the upper 

section of the LBF. Vents from the MBF have not been recognised and those interpreted to 

be vents by Rasmussen & Noe-Nygaard (1970b) generally represent large debris flow 

deposits (e. g. Sundsmunnin, Viboy). 

The boundary between the MBF and UBF is not represented by a major hiatus comparable 

to the CBF, although a debris flow does occur at the boundary at Sneis, Streymoy. 

However, this sedimentary unit has been correlated to the debris flow that crops out at 
Gjögvin Störa, Viöoy, which occurs above the first tabular flow of the UBF. This 

tentatively suggests that the UBF vents were located east of the Faeroe Islands, or at least 

towards the eastern side of the archipelago. However, the vents for the UBF have not been 

recognised, except for a minor gas streaming vent in the vicinity of Gjögvin Störa, Viöoy, 

where dykes have brecciated the upper section of the MBF and may have been a feeder for 

the UBF in this area. 

The UBF lava flows were erupted subaerially and have a tabular-classic facies architecture 

similar to the LBF, implying that they, too, were erupted at high effusion rates. The flows 

infill topographic lows inbetween the low shields of the MBF and have poorly-developed 

columns, suggesting that they were emplaced in a relatively dry environment (Fig. 9.3c). 

Tree moulds contained within the basal sections of a number of flows suggest that the 

hiatuses between eruptions were periods of significant vegetation. Interlava lithologies 

consist of fluvial facies sandstones, predominantly composed of reworked ash grade 

material. Ellis et al. (2002) have demonstrated that the interlava lithologies from Nblsoy 

and Sandoy were deposited in an estuarine and marginal marine setting, suggesting that 

subsidence had finally enabled the sea to encroach as far as the Faeroe Islands by the end 

of C24R. 

The UBF had an initial thickness of >1 km, but subsequent erosion has removed a few 

hundred metres to leave the exposed thickness in the order of 900 m (Rasmussen & Noe- 

Nygaard 1970b; Waagstein 1988; Ellis et al. 2002). Late-stage emplacement of dykes and 

sills (for example, the Streymoy, Eysturoy and Fugloy-SvInoy sills) (Hald & Waagstein 

1991) represent the fmal phase of growth of the FPLG. 
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Future Work 

The thesis has applied the concept of facies architecture to the lava flows of the Faeroe 

Plateau Lava Group and has demonstrated that the architecture is related, in part, to the rate 

of effusion and the environment of eruption. However, a detailed study linking the 

compositions of the lavas to the architectures observed would aid in understanding the 

volcanic processes involved in their formation. 

The change between the Middle and Upper basalt formations is not a sharp transition and 

the lava flows of the two formations are interbedded and detailed mapping of this boundary 

would help to understand the evolution from one style of volcanism to another. It may also 
help determine the direction in which the lavas travelled and in doing so, identify the area 

where the vent systems should be located. Also, mapping of the MBF-UBF boundary 

would further constrain the mass flow (volcaniclastic conglomerate) that has been 

identified from two localities, ca. 34 km apart, and may help determine the direction in 

which the flow travelled. 

The identification of siderite spherules from ironstone beds of the Coal-bearing Formation 

have helped in understanding the evolution of the lake environment in which they formed. 

An investigation into their isotopic compositions can further confine their modes of 
formation and their lateral (catena) variations. 

The thesis has demonstrated that geochemically analysing igneous material from ditch 

cuttings from offshore wells can help to correlate facies across a region. Therefore, igneous 

material from past and future wells can be geochemically analysed, not only to correlate 
facies, but also help date associated interlava lithologies. 

The facies architectures of the lava flows and their interactions with volcaniclastic 

lithologies observed on the Faeroe Islands can help constrain environments of eruption and 
deposition in other Continental Flood Basalt provinces. 

Future Work Page 360 



Simon R. Passey 

References 

ABRAHAMSEN, N., SCHOENHARTING, G. & HEINESEN, M. 1984. Palaeomagnetism of the 
Vestmanna core and magnetic age and evolution of the Faeroe Islands. In: 
BERTHELSEN, 0., NOE-NYGAARD, A. & RASMUSSEN, J. (eds) The Deep Drilling 
Project 1980-1981 in the Faeroe Islands. Foroya Fr68skaparfelag, Torshavn, 93- 
108. 

ANDERSEN, M. S. 1988. Late Cretaceous and early Tertiary extension and volcanism 
around the Faeroe Islands. In: MORTON, A. C. & PARSON, L. M. (eds) Early Tertiary 
Volcanism and the Opening of the NE Atlantic. Geological Society, London. 
Special Publications, 39,115-122. 

ANDERSON, S. W., STOFAN, E. R., SMREKAR, S. E., GUEST, J. E. & WOOD, B. 1999. Pulsed 
inflation of pahoehoe lava flows: implications for flood basalt emplacement. Earth 
and Planetary Science Letters, 168,7-18. 

ATKiNSON, A., GRIFFIN, T. J. & STEPHENSON, P. J. 1975. A major lava tube system from 
Undara Volcano, North Queensland. Bulletin Volcanologique, 39,266-293. 

AUBELE, J. C., CRUMPLER, L. S. & ELSTON, W. 1988. Vesicle zonation and vertical 
structure of basalt flows. Journal of Volcanology and Geothermal Research, 35, 
349-374. 

BAAs-BECxnvG, L. G. M., KAPLAN, I. R. & MOORE, D. 1960. Limits of the natural 
environment in terms of pH and oxidation-reduction potentials. Journal of Geology, 
68,243-284. 

BARK, J. J. & CHOUGH, S. K. 1996. An interplay of syn- and intereruption depositional 
processes: the lower part of the Jangki Group (Miocene), SE Korea. Sedimentology, 
43,421-438. 

BAKER, J. C., KASSAN, J. & HAMILTON, P. J. 1995. Early diagenetic siderite as an indicator 
of depositional environment in the Triassic Rewan Group, southern Bowen Basin, 
eastern Australia. Sedimentology, 43,77-88. 

BASALTIC VOLCANISM STUDY PROJECT. 1981. Basaltic Volcanism on the Terrestrial 
Planets. Pergamon Press, New York. 

BELL, B. R., WILLIAMSON, I. T., HEAD, F. E. & JOLLEY, D. W. 1996. On the origin of a 
reddened interflow bed within the Palaeocene lava field of north Skye. Scottish 
Journal of Geology, 32,117-126. 

BERNER, R. A. 1981. New geochemical classification of sedimentary environments. 
Journal of Sedimentary Petrology, 51,359-365. 

BERNER, R. A. & COC tN, M. F. 1998. Plant-induced weathering of Hawaiian basalts. 
Journal of Sedimentary Research, 68,723 -726. 

BESLY, B. M. & COLLJNSON, J. D. 1991. Volcanic and tectonic controls of lacustrine and 
alluvial sedimentation in the Stephanian coal-bearing sequence of the Malpäs-Sort 
Basin, Catalonian Pyrenees. Sedimentology, 38,3-26. 

References Page 361 



Simon R. Passey 

BESLY, B. M. & FIELDiNG, C. R. 1989. Palaeosols in Westphalian coal-bearing and red-bed 
sequences, central and northern England. Palaeogeography, Palaeoclimatology, 
Palaeoecology, 70,303-330. 

BOLLINGBERG, H., BROOKS, C. K. & NOE-NYGAARD, A. 1975. Trace element variations in 
Faeroese basalts and their possible relationships to ocean floor spreading history. 
Bulletin of the Geological Society of Denmark, 24,55-60. 

BOTT, M. H. P., SUNDERLAND, J., SMITH, P. J., CASTEN, U. & SAXOV, S. 1974. Evidence for 
continental crust beneath the Faeroe Islands. Nature, 248,202-204. 

BOTT, M. H. P. & WATTS, A. B. 1971. Deep structure of the continental margin adjacent to 
the British Isles. In: DELANY, F. M. (ed. ) ICSU/SCOR Symposium on East Atlantic 
Continental Margins 1970. Institute of Geological Sciences Report, 70/14,89-109. 

BROOKS, C. K. 1976. The Fe203/FeO ratio of basalt analyses: an appeal for a standardized 
procedure. Bulletin of the Geological Society of Denmark, 25,117-120. 

BROOKS, E. R., WOOD, M. M. & GARBUTF, P. L. 1982. Origin and metamorphism of 
peperite and associated rocks in the Devonian Elwell Formation, northern Sierra 
Nevada, California. Geological Society ofAmerica Bulletin, 93,1208-1231. 

BROOKS, J. & GLENNIE, K. W. (eds). 1987. Petroleum Geology of North West Europe: 
Proceedings of the 3rd Conference. Graham & Trotman, London, 2. 

BUSBY-SPERA, C. J. & WHITE, J. D. L. 1987. Variation in peperite textures associated with 
differing host-sediment properties. Bulletin of Volcanology, 49,765-776. 

CALDERONE, G. M., GRONVOLD, K. & OSKARSSON, N. 1990. The welded air-fall tuff layer 
at Krafla, northern Iceland: a composite eruption triggered by injection of basaltic 
magma. Journal of Volcanology and Geothermal Research, 44,303-314. 

CALvAR', S. & PINKERTON, H. 1999. Lava tube morphology on Etna and evidence for lava 
flow emplacement mechanisms. Journal of Volcanology and Geothermal Research, 
90,263-280. 

CALVARI, S., TANNER, L. H. & GROPPELLI, G. 1998. Debris-avalanche deposits of the Milo 
Lahar sequence and the opening of the Velle del Bove on Etna volcano (Italy). 
Journal of Volcanology and Geothermal Research, 87,193-209. 

CAMPBELL, L. M., CONAGHAN, P. J. & FLOOD, R. H. 2001. Flow-field and palaeogeographic 
reconstruction of volcanic activity in the Permian Gerringong Volcanic Complex, 
southern Sydney Basin, Australia. Australian Journal of Earth Sciences, 48,357- 
375. 

CARR, P. F. & JoNES, B. G. 2001. The influence of palaeoenvironment and lava flux on the 
emplacement of submarine, near-shore Late Permian basalt lavas, Sydney Basin 
(Australia). Journal of Volcanology and Geothermal Research, 112,247-266. 

CAS, PLAY., EDGAR, C., ALLEN, RL., BULL, S., CLIFFORD, B. A., GIORDANO, G. & 
WRIGHT, J. V. 2001. Influence of magmatism and tectonics on sedimentation in an 
extensional lake basin: the Upper Devonian Bunga Beds, Boyd Volcanic Complex, 

south-eastern Australia. In: WHI E, J. D. L. & RIGGS, N. R. (eds) Volcaniclastic 

References Page 362 



Simon R. Passey 
Sedimentation in Lacustrine Settings. Special Publication of the International 
Association of Sedimentologists, 30,83-108. 

CAS, R. A. F. & WRIGHT, J. V. 1987. Volcanic Successions: Modern and Ancient. Allen & 
Unwin, London. 

CASHMAN, K., PINKERTON, H. & STEPHENSON, J. 1998. Introduction to special section: 
long lava flows. Journal of Geophysical Research, 103(B 11), 27281-27289. 

CASHMAN, K. V. & KAUAHIKAuA, J. P. 1997. Reevaluation of vesicle distributions in 
basaltic lava flows. Geology, 25,419-422. 

CASHMAN, K. V., THoRNBER, C. & KAUAHIKAUA, J. P. 1999. Cooling and crystallization of 
lava in open channels, and the transition of pahoehoe lava to 'a'a. Bulletin of 
Volcanology, 61,306-323. 

CHAMBERS, L. M. & FITTON, J. G. 2000. Geochemical transitions in the ancestral Iceland 
plume: evidence from the Isle of Mull Tertiary volcano, Scotland. Journal of the 
Geological Society, London, 157,261-263. 

CHANG, L. L. Y. 1996. Siderite. In: CHANG, L. L. Y., HOWIE, R. A. & ZUSSMAN, J. (eds) Non- 
Silicates: Sulphates, Carbonates, Phosphates, Halides: Rock-Forming Minerals. 
2nd Edition. The Geological Society, London, 5B, 163-177. 

CHOUBEY, V. D. 1973. Long-distance correlation of Deccan basalt flows, central India. 
Geological Society of America Bulletin, 84,2785-2790. 

CLEMMENSEN, L. B. 1988. Aeolian morphology preserved by lava cover, the Precambrian 
Mussartüt Member, Eriksford Formation, South Greenland. Bulletin of the 
Geological Society ofDenmark, 37,105-116. 

COLE, R. B. & RIDGWAY, K. D. 1993. The influence of volcanism on fluvial deposition 
systems in a Cenozoic strike-slip basin, Denali Fault System, Yukon Territory, 
Canada. Journal of Sedimentary Petrology, 63,152-166. 

COLLINSON, J. D. 1996. Alluvial Sediments. In: READING, H. G. (ed. ) Sedimentary 
Environments: Processes, Facies and Stratigraphy. 3rd Edition. Blackwell Science, 
Oxford, 37-82. 

COUSSOT, P. & MEUMER, M. 1996. Recognition, classification and mechanical description 
of debris flows. Earth-Science Reviews, 40,209-227. 

Cox, K. G., BELL, J. D. & PANKHURST, R. J. 1979. The Interpretation of Igneous Rocks. 
Allen & Unwin, London. 

CROWN, D. A. & BALOGA, S. M. 1999. Pahoehoe toe dimensions, morphology, and 
branching relationships at Mauna Ulu, Kilauea Volcano, Hawaii. Bulletin of 
Volcanology, 61,288-305. 

DEAN, K., McLAChLtN, K. & CHAMBERS, A. 1999. Rifting and the development of the 
Faeroe-Shetland Basin. In: FLEET, A. J. & BOLDY, S. A. R. (eds) Petroleum Geology 
of Northwest Europe: Proceedings of the 5th Conference. Geological Society, 
London, 1,533-544. 

References Page 363 



Simon R. Passey 

Dis, T. 1934. The spherulitic ironstones of West Yorkshire. Geological Magazine, 71, 
49-65. 

DEGRAFF, J. M. & AYDIN, A. 1987. Surface morphology of columnar joints and its 
significance to mechanics and direction of joint growth. Geological Society of 
America Bulletin, 99,605-617. 

DONAIRE, T., SAEZ, R. & PASCUAL, E. 2002. Rhyolitic globular peperites from the 
Aznalcöllar mining district (Iberian Pyrite Belt, Spain): physical and chemical 
controls. Journal of Volcanology and Geothermal Research, 114,119-128. 

DOYLE, M. G. 2000. Clast shape and textural associations in peperite as a guide to 
hydromagnmatic interactions: Upper Permian basaltic and basaltic andesite 
examples from Kiama, Australia. Australian Journal of Earth Sciences, 47,167- 
177. 

DRAGONI, M., Piomw, A. & TALLARICO, A. 1995. A model for the formation of the lava 
tubes by roofing over a channel. Journal of Geophysical Research, 100035), 8435- 
8447. 

DucHAUFOUR, P. 1998 (1997). Handbook of Pedology: Soils, Vegetation, Environment. 
Trans: SAS, V. A. K. (ed. ). A. A. Balkema, Rotterdam. 

DURAisWAM, R. A., BoNDRE, N. R., DOLE, G., P DNis, V. M. & KALE, V. S. 2001. Tumuli 
and associated features from the western Deccan Volcanic Province, India. Bulletin 
of Volcanology, 63,435-442. 

EAsTON, F. M. & JOHNS, G. W. 1986. Volcanology and mineral exploration: the application 
of physical volcanology and facies studies. Ontario Geological Survey 
Miscellaneous Paper, 129,2-40. 

ELLIS, D., BELL, B. R., JOLLEY, D. W. & O'CALLAGHAN, M. 2002. The stratigraphy, 
environment of eruption and age of the Faeroes Lava Group, NE Atlantic Ocean. 
In: JOLLEY, D. W. & BELL, B. R. (eds) The North Atlantic Igneous Province: 
Stratigraphy, Tectonic, Volcanic and Magmatic Processes. Geological Society, 
London. Special Publications, 197,253-269. 

ERNST, R. E. & BUCHAN, K. L. 2001. Large mafic magmatic events through time and links 
to mantle-plume heads. In: ERNST, R. E. & BUCHAN, K. L. (eds) Mantle Plumes: 
Their Identification Through Time. Geological Society of America, Special Paper, 
352,483-575. 

FERNANDEZ-DfAz, L., PumIs, A., P TO, M. & PUTNIS, C. V. 1996. The role of 
magnesium in the crystallization of calcite and aragonite in a porous medium. 
Journal of Sedimentary Research, 66,482-491. 

F NY,, J. H. & FLETCHER, R. C. 1978. Ropy pahoehoe: surface folding of a viscous fluid. 
Journal of Volcanology and Geothermal Research, 4,151-170. 

FIsHER, R. V. 1961. Proposed classification of volcaniclastic sediments and rocks. 
Geological Society ofAmerica Bulletin, 72,1409-1414. 

FISHER, R. V. 1966. Rocks composed of volcanic fragments and their classification. Earth- 
Science Reviews, 1,287-298. 

References Page 364 



Simon R. Passey 

FISHER, R. V. 1971. Features of coarse-grained, high-concentration fluids and their 
deposits. Journal of Sedimentary Petrology, 41,916-927. 

FISHER, R. V. & SCHMINCKE, H. -U. 1984. Pyroclastic Rocks. Springer-Verlag, Berlin. 

FISHER, R. V. & SMITH, G. A. 1991. Volcanism, tectonics and sedimentation. In: FISHER, 
R. V. & SMITH, G. A. (eds) Sedimentation in Volcanic Settings. SEPM (Society for 
Sedimentary Geology) Special Publication, Tulsa, Oklahoma, 45,1-5. 

FITCH, F. J., HEARD, G. L. & MILLER, J. A. 1988. Basaltic magmatism of late Cretaceous 
and Palaeogene age recorded in wells NNE of the Shetlands. In: MORTON, A. C. & 
PARSON, L. M. (eds) Early Tertiary Volcanism and the Opening of the NE Atlantic. 
Geological Society, London. Special Publications, 39,253-262. 

FLEET, A. J. & BOLDY, S. A. R. (eds). 1999. Petroleum Geology of Northwest Europe: 
Proceedings of the 5th Conference. Geological Society, London, 1. 

FREuNDT, A. & SCHMLNCKE, H. -U. 1995. Eruption and emplacement of a basaltic welded 
ignimbrite during caldera formation on Grand Canaria. Bulletin of Volcanology, 56, 
640-659. 

FuRNES, H., FR DLEIFSSON, I. B. & ATKINS, F. B. 1980. Subglacial volcanics - on the 
formation of acid hyaloclastites. Journal of Volcanology and Geothermal Research, 
8,95-110. 

GARIEPY, C., LUDDEN, J. & BROOKS, C. 1983. Isotopic and trace element constraints on 
the genesis of the Faeroe lava pile. Earth and Planetary Science Letters, 63,257- 
272. 

GIB% F. G. F. & KANARIS-SOTIR[ou, R. 1988. The geochemistry and origin of the Faeroe. 
Shetland sill complex. In: MORTON, A. C. & PARSON, L. M. (eds) Early Tertiary 
Volcanism and the Opening of the NE Atlantic. Geological Society, London. 
Special Publications, 39,241-252. 

GILLESPIE, M. R. & STYLES, M. T. 1999. Classification of Igneous Rocks. BGS Rock 
Classification Scheme Research Report RR 99-06.2nd Edition. British Geological 
Survey, Nottingham, 1. 

GREELEY, R. 1976. Modes of emplacement of basaltic terrains and an analysis of mare 
volcanism in the Orientale Basin. Geochimica et Cosmochimica Acta, Supplement, 
7,2747-2759. 

GREELEY, R. 1977. Basaltic 'plains' volcanism. In: GREELEY, R. & KING, J. S. (eds) 
Volcanism of the Eastern Snake River Plain, Idaho: A Comparative Planetary 
Geology Guidebook. NASA, CR-154621,23-44. 

GREELEY, R. 1982. The Snake River Plain, Idaho: Representative of a new category of 
volcanism. Journal of Geophysical Research, 87(B4), 2705-2712. 

GREELEY, R. 1987. The role of lava tubes in Hawaiian volcanoes. In: DECKER, R. W., 
WRIGHT, T. L. & STAUFFER, P. H. (eds) Volcanism in Hawaii. United States 
Geological Survey Professional Paper, 1350,1589-1602. 

References Page 365 



Simon R. Passey 

GRIGOR'EV, D. P. 1965 (1961). Ontogeny of Minerals. Trans: BRENNER, Y. (ed. ). IPST 
Ltd., Jerusalem, Israel. 

HALD, N. & WAAGSTEIN, R. 1983. Silicic basalts from the Faeroe Islands: evidence of 
crustal contamination. In: Bo'rg', M. H. P., SAxov, S., TALWANI, M. & THIEDE, J. 
(eds) Structure and Development of the Greenland-Scotland Ridge. Plenum Press, 
New York, 343-349. 

HALD, N. & WAAGSTEIN, R. 1984. Lithology and chemistry of a 2-km sequence of Lower 
Tertiary tholeiitic lavas drilled on Suöuroy, Faeroe Islands (Lopra-1). In: 
BERTHELSEN, 0., NOE-NYGAARD, A. & RASMUSSEN, J. (eds) The Deep Drilling 
Project 1980-1981 in the Faeroe Islands. Foroya Frööskaparfelag, Torshavn, 15- 
38. 

HALD, N. & WAAGSTEIN, R 1991. The dykes and sills of the early Tertiary Faeroe Island 
basalt plateau. Transactions of the Royal Society of Edinburgh: Earth Sciences, 82, 
373-388. 

HANsoN, R. E. & HARGROVE, U. S. 1999. Processes of magma/wet sediment interaction in a 
large-scale Jurassic andesitic peperite complex, northern Sierra Nevada, California. 
Bulletin of Volcanology, 60,610-626. 

HANSON, R. E. & WILSON, T. J. 1993. Large-scale rhyolitic peperites (Jurassic, southern 
Chile). Journal of Volcanology and Geothermal Research, 54,247-264. 

HAUGHTON, P. D. W. 1993. Simultaneous dispersal of volcaniclastic and non-volcanic 
sediment in fluvial basins: examples from the Lower Old Red Sandstone, east- 
central Scotland. In: MARIO, M. & PUIGDEFABREGAS, C. (eds) Alluvial 
Sedimentation. Special Publication of the International Association of 
Sedimentologists, 17,451-471. 

HAY, R. L. & Iii, A. 1968. Nature and origin of palagonite tuffs of the Honolulu group 
on Oahu, Hawaii. In. COATS, R, R., HAY, R. L. & ANDERSON, C. A. (eds) Studies in 
Volcanology (Howell Williams Volume). Geological Society of America Memoir, 
116,331-376. 

HEALEY, J. 1963. Welded pyroclastic rock at Tongariro. New Zealand Journal of Geology 
and Geophysics, 6,712-714. 

Him, K., ELDHOLM, 0., BLOCK, M. & SKOGSEID, J. 1993. Evolution of North Atlantic 
volcanic continental margins. In: PARKER, J. R. (ed. ) Petroleum Geology of 
Northwest Europe: Proceedings of the 4th Conference. Geological Society, 
London, 2,901-913. 

HITCHEN, K. & R[TCI-E, J. D. 1987. Geological review of the West of Shetland area. In. 
BROOKS, J. & GLENNIE, K. W. (eds) Petroleum Geology of North West Europe: 
Proceedings of the 3rd Conference. Graham & Trotman, London, 2,737-749. 

Hrrcx, K. & RrrCHiE, J. D. 1993. New K-Ar ages, and a provisional chronology, for the 
offshore part of the British Tertiary Igneous Province. Scottish Journal of Geology, 
29,73-85. 

References Page 366 



Simon R. Passey 

HOLM, P. M., HALD, N. & WAAGsTEnv, R. 2001. Geochemical and Pb-Sr-Nd isotopic 
evidence for separate hot depleted and Iceland plume mantle sources for the 
Paleogene basalts of the Faroe Islands. Chemical Geology, 178,95-125. 

HoN, K., GANSECKI, C. & KAUAxiKAUA, J. 2003. The transition from `a`ä to pihoehoe 
crust on flows emplaced during the Pu'u '0'6-KÜpaianaha eruption. In: HELIKER, 
C. C., SwANSON, D. A. & TAKAHASHI, T. J. (eds) The Pu ̀ u `Ö O-Küpaianaha 
Eruption of Kilauea Volcano, Hawai `i: The First 20 Years. United States 
Geological Survey Professional Paper, 1676,89-103. 

HoN, K., KAUAHIKAUA, J., DENLINGER, R. & MACKAY, K. 1994. Emplacement and 
inflation of pahoehoe sheet flows: observations and measurements of active lava 
flows on Kilauea Volcano, Hawaii. Geological Society of America Bulletin, 106, 
351-370. 

HouNsiow, M. W. 2001. The crystallographic fabric and texture of siderite in concretions: 
implications for siderite nucleation and growth processes. Sedimentology, 48,553- 
557. 

JAMEs, A. V. G. 1920. Factors producing columnar structure in lavas and its occurrence near 
Melbourne, Australia. Journal of Geology, 28,458-469. 

JANDA, R. D., ScoTr, K. M., NOLAN, K. M. & MARTINSON, H. A. 1981. Lahar movement, 
effects, and deposits. In: LIPMAN, P. W. & MULLINEAUX, D. R. (eds) The 1980 
Eruptions of Mount St. Helens, Washington. United States Geological Survey 
Professional Paper, 1250,461-478. 

JENSEN, A. 1978. Compositional variations of the pyroxenes from three flows of the Faeroe 
Islands basalts. Bulletin of the Geological Society of Denmark, 27(Special Issue), 
63-78. 

JENSEN, A. 1979. Mineralogical and geochemical variations across three basaltic lava 
flows from the Faeroe Islands. Bulletin of the Geological Society of Denmark, 28, 
95-114. 

JENSEN, A. 1982. The distribution of Cu across three basaltic lava flows from the Faeroe 
Islands. Bulletin of the Geological Society of Denmark, 31,1-10. 

JENSEN, A. 1985. Cupriferous pseudobrookite in a Tertiary basalt from the Faeroe Islands. 
Bulletin of the Geological Society of Denmark, 34,87-95. 

JERRAM, D. A. 2002. The volcanology and facies architecture of flood basalts. In. MENZIES, 
M. A., KLEMPERER, S. L., EBINGER, C. J. & BAKER, J. (eds) Volcanic Ried Margins. 
Geological Society of America, Special Paper, 362,119-132. 

JERRAM, D. A., MOUNTNEY, N. P., HOLZFÖRSTER, F. & STOLLHOFEN, H. 1999. Internal 
stratigraphic relationships in the Etendeka Group in the Huab Basin, NW Namibia: 
Understanding the onset of flood volcanism. Journal of Geodynamics, 28,393-418. 

JERRAM, D. A., MOUNTNEY, N. P., HOWELL, J. A., LONG, D. & STOLLHOFEN, H. 2000. 

Death of a sand sea: an active aeolian erg systematically buried by the Etendeka 
flood basalts of NW Namibia. Journal of the Geological Society, London, 157,513- 
516. 

References Page 367 



Simon R. Passey 

JERRAM, D. A. & STOLLHOFEN, H. 2002. Lava/sediment interaction in desert settings; are 
all peperite-like textures the result of magma-water interaction? Journal of 
Volcanology and Geothermal Research, 114,231-249. 

JOLLEY, D. W. 1997. Palaeosurface palynofloras of the Skye lava field and the age of the 
British Tertiary volcanic province. In: WIDDOWSON, M. (ed. ) Palaeosurfaces: 
Recognition, Reconstruction and Palaeoenvironmental Interpretation. Geological 
Society, London. Special Publications, 120,67-94. 

JOLLEY, D. W. & BELL, B. R. 2002a. The evolution of the North Atlantic Igneous Province 
and the opening of the NE Atlantic rift. In: JOLLEY, D. W. & BELL, B. R. (eds) The 
North Atlantic Igneous Province: Stratigraphy, Tectonic, Volcanic and Magmatic 
Processes. Geological Society, London. Special Publications, 197,1-13. 

JOLLEY, D. W. & BELL, B. R. 2002b. Genesis and age of the Erlend volcano, NE Atlantic 
Margin. In: JOLLEY, D. W. & BELL, B. R. (eds) The North Atlantic Igneous 
Province: Stratigraphy, Tectonic, Volcanic and Magmatic Processes. Geological 
Society, London. Special Publications, 197,95-109. 

JoNEs, J. G. 1968. Pillow lava and pahoehoe. Journal of Geology, 76,485-488. 

JONES, J. G. & NELSON, P. H. H. 1970. The flow of basalt lava from air into water - its 
structural expression and stratigraphic significance. Geological Magazine, 107,13- 
19. 

KANARIS-SOT OU, R., MORTON, A. C. & TAnAR, P. N. 1993. Palaeogene peraluminous 
magmatism, crustal melting and continental break-up: the Erlend complex, Faeroe- 
Shetland Basin, NE Atlantic. Journal of the Geological Society, London, 150,903- 
914. 

KANO, K., TAKEucHI, K., YAMAMOTO, T. & HosIIIZU u, H. 1991. Subaqueous rhyolite 
block lavas in the Miocene Ushikiri Formation, Shimane Peninsula, SW Japan. 
Journal of Volcanology and Geothermal Research, 46,241-253. 

KANToROwicz, J. D. 1990. Lateral and vertical variations in pedogenesis and other early 
diagenetic phenomena, Middle Jurassic Ravenscar Group, Yorkshire. Proceedings 
of the Yorkshire Geological Society, 48,61-74. 

KATAOKA, K. & NAKmo, T. 2002. Volcaniclastic resedimentation in distal fluvial basins 
induced by large-volume explosive volcanism: the Ebisutoge-Fukuda tephra, Plio- 
Pleistocene boundary, central Japan. Sedimentology, 49,319-334. 

KAUAHIKAUA, J., CASHMAN, K. V., MATTOX, T. N., HELIKER, C. C., HON, K. A., MANGAN, 
M. T. & THORNBER, C. R. 1998. Observations on basaltic lava streams in tubes from 
Kilauea Volcano, island of Hawaii. Journal of Geophysical Research, 103(811), 
27303-27323. 

. NT, R. W., THOMSON, B. A., SKELHORN, R. R., KERB, A. C., Notttty, M. J. & WALSH, J. N. 
1998. Emplacement of Hebridean Tertiary flood basalts: evidence from an inflated 
pahoehoe lava flow on Mull, Scotland. Journal of the Geological Society, London, 
155,599-607. 

References Page 368 



Simon R. Passey 

KERR, A. C. 1999. The geochemical stratigraphy, field relations and temporal variation of 
the Mull-Morvern Tertiary lava succession, NW Scotland. Transactions of the 
Royal Society of Edinburgh: Earth Sciences, 86,37-47. 

KESSLER, L. G. & B$DARD, J. H. 2000. Epiclastic volcanic debrites-evidence of flow 
transformations between avalanche and debris flow processes, Middle Ordovician, 
Baie Verte Peninsula, Newfoundland, Canada. Precambrian Research, 101,135- 
161. 

KESZTHELYI, L. 1995. A preliminary thermal budget for lava tubes on the Earth and 
planets. Journal of Geophysical Research, 100(B 10), 20411-20420. 

KESZTHELYI, L. & SELF, S. 1998. Some physical requirements for the emplacement of long 
basaltic lava flows. Journal of Geophysical Research, 103(B 11), 27447-27464. 

KIORBOE, L. & PETERSEN, S. A. 1995. Seismic investigation of the Faeroe basalts and their 
substratum. In: SCRUTTON, R. A., STOKER, M. S., SHIMMIELD, G. B. & TUDHOPE, 
A. W. (eds) The Tectonics, Sedimentation and Palaeoceanography of the North 
Atlantic Region. Geological Society, London. Special Publications, 90,111-122. 

KNox, RW. O'B., HOLLOWAY, S., KIRBY, G. A. & BAILEY, H. E. 1997. Stratigraphic 
Nomenclature of the UK North West Margin. 2. Early Paleogene Lithostratigraphy 
and Sequence Stratigraphy. British Geological Survey, Nottingham. 

KoKEiAAR, B. P. 1982. Fluidization of wet sediments during the emplacement and cooling 
of various igneous bodies. Journal of the Geological Society, London, 139,21-33. 

KoKEiAAR, B. P. 1986. Magma-water interactions in subaqueous and emergent basaltic 
volcanism. Bulletin of Volcanology, 48,275-289. 

KOUL, S. L. & CHADDERTON, L. T. 1980. Fission track dating of zeolites of Faeroe Islands. 
Mineralogical Journal, 10,192-195. 

KouL, S. L., CHADDERTON, L. T. & BROOKS, C. K. 1983. East Greenland and the Faeroe 
Islands: a fission track study. Matematisk-Fysiske Meddelelser Kongelige Danske 
Videnskabernes Selskab, 40(13), 1-37. 

KRAUSKOPF, K. B. 1979. Introduction to Geochemistry. McGraw-Hill, New York. 

LANDUYDT, C. J. 1990. Micromorphology of iron minerals from bog ores of the Belgian 
Campine area. In. DOUGLAS, L. A. (ed. ) Soil Micromorphology: A Basic and 
Applied Science, Developments in Soil Science. Elsevier, Amsterdam, 19,289-294. 

LARSEN, L. M., WAAGSTEIN, R, PEDERSEN, A. K. & STOREY, M. 1999. Trans-Atlantic 
correlation of the Palaeogene volcanic successions in the Faeroe Islands and East 
Greenland. Journal of the Geological Society, London, 156,1081-1095. 

LAVIGNE, F., THOURET, J. C., VOIGHT, B., SUWA, H. & SUMARYONO, A. 2000. Lahars at 
Merapi volcano, Central Java: an overview. Journal of Volcanology and 
Geothermal Research, 100,423-456. 

LE BAS, M. J., LE MMT1 ' R. W., STRECKEISEN, A. & ZANEUIN, B. 1986. A chemical 
classification of volcanic rocks based on the total alkali silica diagram. Journal of 
Petrology, 27,745-750. 

References Page 369 



Simon R. Passey 

LECH, D., Fox, C. & TARNOCAI, C. 1989. Multiple paleosols of the late Albian Boulder 
Creek Formation, British Columbia, Canada. Sedimentology, 36,307-323. 

LEVELL, B. & THOMPsON, M. 1999. Atlantic margin: Faeroe-Shetland. Introduction and 
review. In: FLEET, A. J. & BOLDY, S. A. R. (eds) Petroleum Geology of Northwest 
Europe: Proceedings of the 5th Conference. Geological Society, London, 1,531- 
532. 

LIPMAN, P. W. & BANKS, N. G. 1987. Aa flow dynamics, Mauna Loa, 1984. In: DECKER, 
RW., WRIGHT, T. L. & STAUFFER, P. H. (eds) Volcanism in Hawaii. United States 
Geological Survey Professional Paper, 1350,1527-1567. 

LIRER, L., VINCI, A., ALBERICO, I., GIFUNI, T., BELLUCCI, F., PETROSINO, P. & TINTERRI, 

R. 2001. Occurrence of inter-eruption debris flow and hyperconcentrated flood- 
flow deposits on Vesuvio volcano, Italy. Sedimentary Geology, 139,151-167. 

LONG, P. E. & WOOD, B. J. 1986. Structures, textures and cooling histories of Columbia 
River basalt flows. Geological Society ofAmerica Bulletin, 97,1144-1155. 

LeVLIE, R. 1975. The oxidation state of some Tertiary rocks from the Faeroe Islands and 
its implication for palaeomagnetism. Geophysical Journal of the Royal 
Astronomical Society, 40,55-65. 

LovuE, R. 1976. Post-baking alteration and partial remagnetization in five baked tuff 
layers from the Faeroe Islands. Geophysical Journal of the Royal Astronomical 
Society, 45,219-229. 

L0vuE, R. & KVINGEDAL, M. 1975. A palaeomagnetic discordance between a lava 
sequence and an associated interbasaltic horizon from the Faeroe Islands. 
Geophysical Journal of the Royal Astronomical Society, 40,45-54. 

LÖWE, D. R., WILLIAMS, S. N., LEIGH, H., CONNOR, C. B., GEMMELL, J. B. & STOIBER, R. E. 
1986. Lahars initiated by the 13 November 1985 eruption of Nevado del Ruiz, 
Colombia. Nature, 324,51-53. 

LUDVIGSON, GA., GONZALEZ, L. A., METZGER, R. A., WITZKE, B. J., BRENNER, R. L., 
MURK LO, A. P. & WHITE, T. S. 1998. Meteoric sphaerosiderite lines and their use 
for paleohydrology and paleoclimatology. Geology, 26,1039-1042. 

LUMSDEN, G. I. 1967. Intrusive coal at Douglas in Scotland. Scottish Journal of Geology, 3, 
235-241. 

LUND, J. 1983. Biostratigraphy of interbasaltic coals from the Faeroe Islands. In: BOTT, 
M. H. P., SAxov, S., TALWANT, M. & THIEDE, J. (eds) Structure and Development of 
the Greenland-Scotland Ridge. Plenum Press, New York, 417-423. 

LUND, J. 1989. A late Paleocene non-marine microflora from the interbasaltic coals of the 
Faeroe Islands, North Atlantic. Bulletin of the Geological Society of Denmark, 37, 
181-203. 

LYLE, P. 2000. The eruption environment of multi-tiered columnar basalt lava flows. 
Journal of the Geological Society, London, 157,715-722. 

References Page 370 



Simon R. Passey 

LYLE, P. & PRESTON, J. 1998. The influence of eruptive conditions on joint development in 
the Causeway Tholeiite Member of the Tertiary Antrim Lava Group, Northern 
Ireland. Irish Journal of Earth Sciences, 16,19-32. 

MACDONALD, G. A. 1967. Forms and structures of extrusive basaltic rocks. In: HESS, H. H. 
& POLDERVAART, A. (eds) The Poldervaart Treatise on Rocks of Basaltic 
Composition. Interscience, New York, 1,1-61. 

MACDONALD, G. A. 1972. Volcanoes. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 

MACK, G. H., Jas, W. C. & MONGER, H. C. 1993. Classification of paleosols. Geological 
Society ofAmerica Bulletin, 105,129-136. 

MATHISEN, M. E. & MCPHERSON, J. G. 1991. Volcaniclastic deposits: implications for 
hydrocarbon exploration. In. FISHER, R. V. & SMITH, G. A. (eds) Sedimentation in 
Volcanic Settings. SEPM (Society for Sedimentary Geology) Special Publication, 
Tulsa, Oklahoma, 45. 

MCCLINTOCK, M. K. & WHITE, J. D. L. 2002. Granulation of weak rock as a precursor to 
peperite formation: coal peperite, Coombs Hills, Antarctica. Journal of 
Volcanology and Geothermal Research, 114,205-217. 

McPHiE, J. 1993. The Tennant Creek Porphyry revisited: A synsedimentary sill with 
peperite margins, Early Proterozoic, Northern Territory. Australian Journal of 
Earth Sciences, 40,545-558. 

MCPHIE, J., DOYLE, M. & ALLEN, R. 1993. Volcanic Textures: A Guide to the 
Interpretation of Textures in Volcanic Rocks. Centre for Ore Deposit and 
Exploration Studies, University of Tasmania, Hobart, Tasmania, Australia. 

MILLS, A. A. 1984. Pillow lavas and the Leidenfrost effect. Journal of the Geological 
Society, London, 141,183-186. 

MiNouRA, K., NAKAYA, S. & TAKEMURA, A. 1991. Origin of manganese carbonates in 
Jurassic red shale, central Japan. Sedimentology, 38,137-152. 

MITCHELL, J. G. & EUWE, M. G. 1988. A model of single-stage concomitant potassium. 
argon exchange in acidic lavas from the Erlend Volcanic Complex, north of 
Shetland Islands. Chemical Geology (Isotope Geoscience Section), 72,95-109. 

MooRE, J. G. 1975. Mechanism of formation of pillow lava. American Journal of Science, 
63,269-277. 

MOORE, J. G., PHILLIPS, R. L., GRIGG, R. W., PETERSON, D. W. & SWANSON, D. A. 1973. 
Flow of lava into the sea, 1969-71, Kilauea volcano, Hawaii. Geological Society of 
America Bulletin, 84,537-546. 

MOORE, S. E., FERRELL, RE., JR. & AHARON, P. 1992. Diagenetic siderite and other 
ferroan carbonates in a modem subsiding marsh sequence. Journal of Sedimentary 
Petrology, 62,357-366. 

MORTON, A. C., EVANS, D., EARL, AND, R., KING, C. & RITCHIE, D. K. 1988. Volcanic ash 
in a cored borehole W of the Shetland Islands: evidence for Selandian (late 
Palaeocene) volcanism in the Faeroes region. In: MORTON, A. C. & PARSON, L. M. 

References Page 371 



Simon R. Passey 
(eds) Early Tertiary Volcanism and the Opening of the NE Atlantic. Geological 
Society, London. Special Publications, 39,263-269. 

M0zLEY, P. S. 1989. Relation between depositional environment and the elemental 
composition of early diagenetic siderite. Geology, 17,704-706. 

MUDGE, D. C. & RASHID, B. 1987. The geology of the Faeroe Basin area. In: BROOKS, J. & 
GLENNIE, K. W. (eds) Petroleum Geology of North West Europe: Proceedings of 
the 3rd Conference. Graham & Trotman, London, 2,751-763. 

NAHON, D. B. 1991. Introduction to the Petrology of Soils and Chemical Weathering. John 
Wiley & Sons, Inc., New York. 

NAKAYAMA, K. & Yost ºWA, S. 1997. Depositional processes of primary to reworked 
volcaniclastics on an alluvial plain; an example from the Lower Pliocene Ohta 
tephra bed of the Tokai Group, central Japan. Sedimentary Geology, 107,211-229. 

NARANJO, J. L., SIGURDssoN, H., CAREY, S. N. & FRITZ, W. J. 1986. Eruption of Nevado del 
Ruiz volcano, Colombia, on 13 November 1985: tephra fall and lahars. Science, 
233,941-963. 

NAYLOR, P. H., BELL, B. R., JOLLEY, D. W., DURNALL, P. & FREDSTED, R. 1999. 
Palaeogene magmatism in the Faeroe-Shetland Basin: Influences on uplift and 
sedimentation. In: FLEET, A. J. & BOLDY, S. A. R. (eds) Petroleum Geology of 
Northwest Europe: Proceedings of the 5th Conference. Geological Society, 
London, 1,545-558. 

NOE-NYGAARD, A. 1968. On extrusion forms in plateau basalts: Shield volcanoes of 
"scutulum" type. Visindafelag tslendinga, Anniversary Volume, 10-13. 

NOE-NYGAARD, A. 1974. Cenozoic to recent volcanism in and around the North Atlantic 
Basin. In: NAIRN, A. E. M. & STEHI, U, F. G. (eds) The Ocean Basins and Margins: 
The North Atlantic. Plenum Press, New York, 2,391-443. 

NomuRA, S., KATO, K., KoMAKI, I., FuJioKA, Y., SAITO, K. & YAMAOKA, I. 1999. 
Viscoelastic properties of coal in the thermoplastic phase. Fuel, 78,1583-1589. 

ORTON, G. J. 1996. Volcanic Environments. In: READING, H. G. (ed. ) Sedimentary 
Environments: Processes, Facies and Stratigraphy. 3rd Edition. Blackwell Science, 
Oxford, 485-567. 

PALMER, B. A. & WALTON, A. W. 1990. Accumulation of volcaniclastic aprons in the 
Mount Dutton formation (Oligocene-Miocene) Marysvale volcanic field, Utah. 
Geological Society of America Bulletin, 102,734-748. 

PARKER, J. R. (ed. ) 1993. Petroleum Geology of Northwest Europe: Proceedings of the 4th 
Conference. Geological Society, London, 2. 

PAS, M., DELMONT, P., DuMON, J. C., FERRAGNE, A. & PoNs, J. C. 1987. Mineralogy 
and origin of Tertiary interbasaltic clays from the Faeroe Islands, northeastern 
Atlantic. Clay Minerals, 22,63-82. 

PECK, D. L. 1978. Cooling and Vesiculation of Alae lava lake, Hawaii. United States 
Geological Survey Professional Paper, 935-B. 

References Page 372 



Simon R. Passey 

PEDERSEN, G. K., LARsEN, L. M., PEDERSEN, A. K. & HJORM ER, B. F. 1998. The syn- 
volcanic Naajaat lake, Paleocene of West Greenland. Palaeogeography, 
Palaeoclimatology, Palaeoecology, 140,271-287. 

PETERSON, D. W., HoLCOMB, R. T., TILLING, R. I. & CHRISTIANSEN, R. L. 1994. 
Development of lava tubes in the light of observations at Mauna Ulu, Kilauea 
Volcano, Hawaii. Bulletin of Volcanology, 56,343-360. 

PETERSON, D. W. & SwANsm, D. A. 1974. Observed formation of lava tubes during 1970- 
71 at Kilauea Volcano, Hawaii. Studies in Speleology, 2,209-222. 

PETRUN, V. F. 1958.0 mozaichnom stroenii kristallov kal'tsita (mosaic structure of calcite 
crystals). Trudy Krivorozhskogo Gornorudnogo Instituta, Seriya Geologli i 
Mineralogii, 2,33-43. 

PICHLER, H. 1965. Acid hyaloclastites. Bulletin Volcanologique, 28,293-310. 

PIExsoN, T. C. & Scorr, K. M. 1985. Downstream dilution of a lahar: transition from 
debris flow to hyperconcentrated streamflow. Water Resources Research, 21,1511- 
1524. 

PLANKE, S. 2001. Seismic volcanostratigraphy of Paleogene basalt complexes in the NE 
Atlantic. Conference: Paleogene Stratigraphy, Tectonics and Petroleum Geology of 
North West Europe, The Geological Society, Burlington House, London. 

pLANKE, S., SymoNDs, P. A., ALVESTAD, E. & SKOGSEID, J. 2000. Seismic 
volcanostrigraphy of large-scale basaltic extrusive complexes on rifled margins. 
Journal of Geophysical Research, 105(B8), 19335-1935 1. 

POLACCI, M., CASHMAN, K. V. & KAUAHIKAUA, J. P. 1999. Textural characterization of the 
pahoehoe-'a'a transition in Hawaiian basalt. Bulletin of Volcanology, 60,595-609. 

POREBSKJ, S. J. & GRADZINsm, R 1990. Lava-fed Gilbert-type delta in the Polonez Cove 
Formation (Lower Oligocene), King George Island, West Antarctica. In: COLELLA, 
A. & PRioR, D. (eds) Coarse-Grained Deltas. Special Publication of the 
International Association of Sedimentologists, 10,335-351. 

RAsMussEN, J. & NOE-NYGAARD, A. 1969. Beskrivelse til geologisk kort over Fceroerne. 
Danmarks Geologiske Undersogelse, Kobenhavn, 1. 

RASMUSSEN, J. & NOE-NYGAARD, A. 1970a. Geological Map of the Faeroe Islands: Pre- 
Quaternary. Danmarks Geologiske Undersogelse, Kobenhavn. Scale 1: 200 000. 

RASMussEN, J. & NOE-NYGAARD, A. 1970b (1969). Geology of the Faeroe Islands. Trans: 
HENDERSON, G. (ed. ). Danmarks Geologiske Undersogelse, Kobenhavn, 1. 

RAsMussEN, J. & NOE NYGAAiD, A. 1990. The Origin of the Faeroe Islands: In Text, 
Pictures and on Maps. Danmarks Geologiske Undersogelse, Kobenhavn. 

RAWLINGS, D. J., WATKEYS, M. K. & SWEENEY, R. J. 1999. Peperitic upper margin of an 
invasive flow, Karoo flood basalt province, northern Lebombo. South African 
Journal of Geology, 102,377-383. 

References Page 373 



Simon R. Passey 

READIIVG, H. G. (ed. ) 1996. Sedimentary Environments: Processes, Facies and 
Stratigraphy. 3rd Edition. Blackwell Science, Oxford. 

REIDEL, S. P. 1998. Emplacement of Columbia River flood basalt. Journal of Geophysical 
Research, 103(B 11), 27393-27410. 

REIDEL, S. P. & TOLAN, T. L. 1992. Eruption and emplacement of flood basalt: an example 
from the large-volume Teepee Butte Member, Columbia River Basalt Group. 
Geological Society of America Bulletin, 104,1650-1671. 

RETALLACK, G. J. 1981. Fossil soils: indicators of ancient terrestrial environments. In: 
NmLAS, K. J. (ed. ) Paleobotany, Paleoecology, and Evolution. Praeger Publishers, 
New York, 1,55-102. 

RETALLAcK, G. J. 1988. Field recognition of paleosols. In: REINHARDT, J. & SIGLEO, W. R. 
(eds) Paleosols and Weathering Through Geologic Time: Techniques and 
Applications. Geological Society of America, Special Paper, 216,1-20. 

RETALLACK, G. J. 1994. A pedotype approach to latest Cretaceous and earliest Tertiary 
paleosols in eastern Montana. Geological Society of America Bulletin, 106,1377- 
1397. 

RETALLACK, G. J. 1997. A Colour Guide to Paleosols. John Wiley & Sons Ltd., Chichester. 

RETALLACK, G. J. 2001. Soils of the Past: An Introduction to Paleopedology. 2nd Edition. 
Blackwell Science Ltd., Oxford. 

R. EUBI, 0. & HERNANDEZ, J. 2000. Volcanic debris avalanche deposits of the upper 
Maronne valley (Cantal Volcano, France): evidence for contrasted formation and 
transport mechanisms. Journal of Volcanology and Geothermal Research, 102, 
271-286. 

RicHARDSON, K. R., Wem, R. S., ENGLAND, R. W. & FRUEHN, J. 1999. Crustal structure 
east of the Faeroe Islands: Mapping sub-basalt sediments using wide-angle seismic 
data. Petroleum Geoscience, 5,161-172. 

RIDD, M. F. 1983. Aspects of the Tertiary geology of the Faeroe-Shetland Channel. In: 
Bon, M. H. P., SAxov, S., TALWANI, M. & THIEDE, J. (eds) Structure and 
Development of the Greenland-Scotland Ridge. Plenum Press, New York, 91-108. 

RusAGER, P., RnsAGER, J., ABRAHAMSEN, N. & WAAGSTEIN, R. 2002a. New 
paleomagnetic pole and magnetostratigraphy of Faroe Islands flood volcanics, 
North Atlantic Igneous Province. Earth and Planetary Science Letters, 201,261- 
276. 

RIISAGER, P., RIISAGER, J., ABRAHAMSEN, N. & WAAGSTEIN, R. 2002b. Thellier 

palaeointensity experiments on Faroes flood basalts: technical aspects and 
geomagnetic implications. Physics of the Earth and Planetary Interiors, 131,91- 
100. 

RJTCm, J. D., GATLffF, R. W. & RICHARDS, P. C. 1999. Early Tertiary magmatism in the 
offshore NW UK margin and surrounds. In: FLEET, A. J. & BOLDY, S. A. R. (eds) 
Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference. 
Geological Society, London, 1,573-584. 

References Page 374 



Simon R. Passey 

RiTC , 
J. D. & HITCHEN, K. 1996. Early Paleogene offshore igneous activity to the 

northwest of the UK and its relationship to the North Atlantic Igneous Province. In: 
KNOx, R. WA'B., CORFIELD, R. M. & DUNAWAY, R. E. (eds) Correlation of the 
Early Paleogene in Northwest Europe. Geological Society, London. Special 
Publications, 101,63-78. 

ROBERTS, D. G. 1975. Marine geology of the Rockall Plateau and Trough. Philosophical 
Transactions of the Royal Society of London, A278,447-509. 

ROBERTS, D. G., Bohr, M. H. P. & URUSKI, C. 1983. Structure and origin of the Wyville- 
Thomson Ridge. In: BOTT, M. H. P., SAxov, S., TALWANI, M. & THIEDE, J. (eds) 
Structure and Development of the Greenland-Scotland Ridge. Plenum Press, New 
York, 133-158. 

ROCK-COLOR CHART COMMITTEE. 1995. Rock-Color Chart. The Geological Society of 
America, Boulder, Colorado. 

RonoLo, K. S. 1989. Origin and early evolution of lahar channel at Mabinit, Mayon 
Volcano, Philippines. Geological Society of America Bulletin, 101,414-426. 

RowLAND, S. K. & WALKER, G. P. L. 1990. Pahoehoe and as in Hawaii: volumetric flow 
rate controls the lava structure. Bulletin of Volcanology, 52,615-628. 

RUMPH, B., REAVES, C. M., ORANGE, V. G. & ROBINSON, D. L. 1993. Structuring and 
transfer zones in the Faeroe Basin. In. PARKER, J. R. (ed. ) Petroleum Geology of 
Northwest Europe: Proceedings of the 4th Conference. Geological Society, 
London, 2,999-1009. 

RUNKEL, A. C. 1990. Lateral and temporal changes in volcanogenic sedimentation; analysis 
of two Eocene sedimentary aprons, Big Band region, Texas. Journal of 
Sedimentary Petrology, 60,747-760. 

RYAN, M. P. & SAMMIS, C. G. 1978. Cyclic fracture mechanisms in cooling basalts. 
Geological Society of America Bulletin, 89,1295-1308. 

SABINE, P. A. 1971. Bentonitic beidellite-mudstone from the Faeroe Islands. Clay Minerals, 
9,97-106. 

SAMuNDssoN, K. 1970. Interglacial lava flows in the lowlands of southern Iceland and 
the problem of two-tiered columnar jointing. Jokull, 20,62-77. 

SA MA , D. L., ANDERSON, A. T. & WARD, B. 1989. Bubble coalescence in basalt flows: 
comparison of a numerical model with natural examples. Bulletin of Volcanology, 
52,49-56. 

SAKIMOTO, S. E. H. & ZUBER, M. T. 1998. Flow and convective cooling in lava tubes. 
Journal of Geophysical Research, 103(B 11), 27465-27487. 

SAULADERS, A. D., F1TTOrr, J. G., KERB, A. C., Noiu y, M. J. & KENT, R. W. 1997. The North 
Atlantic Igneous Province. In: MAHONEY, J. J. & COFFIN, M. L. (eds) Large Igneous 
Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American 
Geophysical Union, Washington, Geophysical Monographs, 100,45-93. 

References Page 375 



Simon R. Passey 

SCHELLMANN, W. 1986. A new definition of laterite. Geological Survey of India Memoir, 
120,1-7. 

SCHERER, C. M. S. 2002. Preservation of aeolian genetic units by lava flows in the Lower 
Cretaceous of the Parana Basin, southern Brazil. Sedimentology, 49,97-116. 

ScHMID, R. 1981. Descriptive nomenclature and classification of pyroclastic deposits and 
fragments: recommendations of the IUGS Subcommission on the Systematics of 
Igneous Rocks. Geology, 9,41-43. 

Sc nvcKE, H. -U. 1967. Fused tuff and peperites in south-central Washington. Geological 
Society ofAmerica Bulletin, 78,319-330. 

ScHNEiDER, J. -L. & FISHER, R. V. 1998. Transport and emplacement mechanisms of large 
volcanic debris avalanches: evidence from the northwest sector of Cantal Volcano 
(France). Journal of Volcanology and Geothermal Research, 83,141-165. 

SELF, S., KESZTHELn, L. & THORDARSON, T. 1998. The importance of pahoehoe. Annual 
Review of Earth and Planetary Sciences, 26,81-110. 

SELF, S., THORDARSON, T. & KESZTHELYI, L. 1997. Emplacement of continental flood 
basalt lava flows. In: MAHONEY, J. J. & COFFIN, M. L. (eds) Large Igneous 
Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American 
Geophysical Union, Washington, Geophysical Monographs, 100,381-410. 

SELF, S., THORDARSON, T., KESZTBELYI, L., WALKER, G. P. L., HON, K., MURPHHY, M. T., 
LONG, P. & FINNEMoRE, S. 1996. A new model for the emplacement of Columbia 
River basalts as large, inflated pahoehoe lava flow fields. Geophysical Research 
Letters, 23,2689-2692. 

SH ARMA, P. V. 1994. Late Palaeocene geomagnetic polarity transition in the Vestmanna 
core of the Lower Basalt sequence on the Faeroe Islands. Memoirs of the 
Geological Society of India, 29,117-135. 

SHAW, H. R. & SwANSON, D. A. 1970a. Eruption and flow rates of flood basalts. In: 
GILMOUR, E. H. & STRADLING, D. (eds) Proceedings of the Second Columbia River 
Basalt Symposium. Eastern Washington State College Press, Cheney, 271-299. 

SiAw, H. R. & SwANSON, D. A. 1970b. Speculations on the fluid mechanical history of 
Yakima basalt flows. In: GILMOUR, E. H. & STRADLING, D. (eds) Proceedings of 
the Second Columbia River Basalt Symposium. Eastern Washington State College 
Press, Cheney, 330. 

SINTON, C. W., HITCHEN, K. & DUNCAN, R. A. 1998.40Ar-39Ar geochronology of silicic 
and basic volcanic rocks on the margins of the North Atlantic. Geological 
Magazine, 135,161-170. 

SKILLING, I. P., WHrTE, J. D. L. & MCPHIE, J. 2002. Peperite: a review of magma-sediment 
mingling. Journal of Volcanology and Geothermal Research, 114,1-17. 

SMITH, G. A. 1986. Coarse-grained nonmarine volcaniclastic sediment: terminology and 
depositional process. Geological Society ofAmerica Bulletin, 97,1-10. 

References Page 376 



Simon R. Passey 

SMiT, G. A. 1987a. The influence of explosive volcanism on fluvial sedimentation: the 
Deschutes Formation (Neogene) in central Oregon. Journal of Sedimentary 
Petrology, 57,613-629. 

Smim, G. A. 1987b. Sedimentology of volcanism-induced aggradation in fluvial basins: 
examples from the Pacific Northwest, USA. In: ETHRIDGE, F. G., FLORES, R. M. & 
HARVEY, M. D. (eds) Recent Developments in Fluvial Sedimentology. Special 
Publication of the Society of Economic Palaeontologists and Mineralogists, Tulsa, 
Oklahoma, 39,217-228. 

SMITH, G. A. 1988. Neogene synvolcanic and syntectonic sedimentation in central 
Washington. Geological Society ofAmerica Bulletin, 100,1479-1492. 

SMITH, G. A. 1991. Facies sequences and geometries in continental volcaniclastic 
sequences. In: FISHER, R. V. & SMITH, G. A. (eds) Sedimentation in Volcanic 
Settings. SEPM (Society for Sedimentary Geology) Special Publication, Tulsa, 
Oklahoma, 45,109-121. 

SMUT, G. A. & FRITZ, W. J. 1989. Volcanic influences on terrestrial sedimentation. 
Geology, 17,375-376. 

S 'x, G. A. & LowE, D. R. 1991. Lahars: volcano-hydrologic events and deposition in the 
debris flow - hyperconcentrated flow continuum. In: FISHER, R. V. & SMITH, G. A. 
(eds) Sedimentation in Volcanic Settings. SEPM (Society for Sedimentary 
Geology) Special Publication, Tulsa, Oklahoma, 45,59-87. 

SMITh, GA., MOORE, J. D. & MCINTOSH, W. C. 2002. Assessing roles of volcanism and 
basin subsidence in causing Oligocene-lower Miocene sedimentation in the 
Northern Rio Grande rift, New Mexico, U. S. A. Journal of Sedimentary Research, 
72,836-848. 

SMYTHE, D. K. 1983. Faeroe-Shetland Escarpment and continental margin north of the 
Faeroes. In: BOTT, M. H. P., SAxov, S., TALWANI, M. & THIEDE, J. (eds) Structure 
and Development of the Greenland-Scotland Ridge. Plenum Press, New York, 109- 
119. 

SoHN, Y. K., RHEE, C. W. & Kim, B. C. 1999. Debris flow and hyperconcentrated flood- 
flow deposits in an alluvial fan, northwestern part of the Cretaceous Yongdong 
Basin, Central Korea. Journal of Geology, 107,111-132. 

SPAS, RS. J. & WRIGHT, J. V. 1979. Welded air-fall tuffs. In. CHAPIN, C. E. & ELSTON, 
W. E. (eds) Ash Flow Tuffs. Geological Society of America, Special Paper, 180, 
155-166. 

SPENCER, E. 1925. On some occurrences of spherulitic siderite and other carbonates in 
sediments. Quarterly Journal of the Geological Society, London, 81,667-705. 

SPRY, A. 1962. The origin of columnar jointing, particularly in basalt flows. Journal of the 
Geological Society ofAustralia, 8,191-216. 

SQUIRE, RJ. & MCPHIE, 12002. Characteristics and origin of peperite involving coarse. 
grained host sediment. Journal of Volcanology and Geothermal Research, 114,45- 
61. 

References Page 377 



Simon R. Passey 

STACH, E., MACKOWSKY, M. T. H., TEICHMÜLLER, M., TAYLOR, G. H., CHANDRA, D. & 
TEICHMÜLLER, R. 1975. Stach's Textbook of Coal Petrology. Gebuder Borntraeger, 
Berlin. 

STEEL, R. J. & AASHEIM, S. M. 1978. Alluvial sand deposition in a rapidly subsiding basin 
(Devonian, Norway). In. MIALL, A. D. (ed. ) Fluvial Sedimentology. Memoir of the 
Canadian Society of Petroleum Geologists, Calgary, 5,385-412. 

STEPHENSON, P. J., BURCH-JOHNSTON, A. T., STANTON, D. & WEHITEHEAD, P. W. 1998. 
Three long lava flows in north Queensland. Journal of Geophysical Research, 
103(B11), 27359-27370. 

STOKER, M. S., HrrCHEN, K. & GRAHAM, C. C. 1993. Cretaceous and Tertiary igneous 
rocks. The Geology of the Hebrides and West Shetland Shelves, and Adjacent 
Deep-water Areas: United Kingdom Offshore Regional Report. HMSO, London, 2, 
68-79. 

STOKER, M. S., MORTON, A. C., EVANS, D., HUGHES, M. J., HARLAND, R. & GRAHAM, D. K. 
1988. Early Tertiary basalts and tuffaceous sandstones from the Hebrides Shelf and 
Wyville-Thomson Ridge, NE Atlantic. In: MORTON, A. C. & PARSON, L. M. (eds) 
Early Tertiary Volcanism and the Opening of the NE Atlantic. Geological Society, 
London. Special Publications, 39,271-282. 

STOOPS, G. 1983. SEM and light microscopic observations of minerals in bog-ores of the 
Belgian Campine. Geoderma, 30,179-186. 

SUBBARAO, K. V. & SUKHESwALA, R. N. (eds). 1981. Deccan volcanism and related basalt 
provinces in other parts of the world. Geological Society of India Memoir, 3. 

SEEN, R. J. 1985. Facies analysis of volcaniclastic sediments: a review. In: 
BRENCHLEY, P. & WILLIAMS, B. P. J. (eds) Sedimentology: Recent Advances and 
Applied Aspects. Geological Society, London. Special Publications, 18,123-146. 

SunmEN, R. J. & FuRNES, H. 1980. Origin of some bedded welded tuffs. Bulletin 
Volcanologique, 43,61-71. 

SwANSON, D. A. 1967. Yakima basalt of the Tieton River area, south central Washington. 
Geological Society of America Bulletin, 78,1077-1110. 

SwANsoN, DA., WRIGHT, T. L. & HELZ, R. T. 1975. Linear vent systems and estimated 
rates of magma production and eruption for the Yakima basalt on the Columbia 
Plateau. American Journal of Science, 275,877-905. 

TALBOT, M. R. & ALLEN, P. A. 1996. Lakes. In: READING, H. G. (ed. ) Sedimentary 
Environments: Processes, Facies and Stratigraphy. 3rd Edition. Blackwell Science, 
Oxford, 83-124. 

TARING, D. H. 1970. Palaeomagnetic results from the Faeroe Islands. In: RUNcoRN, S. K. 
(ed. ) Palaeogeophysics. Academic Press, London, 193-208. 

TEGNER, C., DUNCAN, R. A., BERNSTEIN, S., BROOKS, C. K., BIRD, D. K. & STOREY, M. 
1998.40Ar-39Ar geochronology of Tertiary mafic intrusions along the East 
Greenland rifted margin: relation to flood basalts and the Iceland hotspot track. 
Earth and Planetary Science Letters, 156,75-88. 

References Page 378 



Simon R. Passey 

THoMAs, L. 1992. Handbook of Practical Coal Geology. John Wiley, Chichester. 

TxoRDARsoN, T. & SELF, S. 1998. The Rosa Member, Columbia River Basalt Group: a 
gigantic pahoehoe lava flow field formed by endogenous processes? Journal of 
Geophysical Research, 103(B 11), 27411-27445. 

ToMKEIEFF, S. I. 1940. The basalt lavas of the Giant's Causeway district of Northern 
Ireland. Bulletin Volcanologique, 6,89-146. 

TucxER, M. E. 1996a. Sedimentary Petrology: An Introduction to the origin of 
Sedimentary Rocks. 2nd Edition. Blackwell Science, Oxford. 

Tuc1Ex, M. E. 1996b. Sedimentary Rocks in the Field. 2nd Edition. John Wiley & Sons 
Ltd., Chichester. 

TURNER, J. D. & ScRuTrox, R. A. 1993. Subsidence patterns in western margin basins: 
evidence from the Faeroe-Shetland Basin. In: PARKER, J. R. (ed. ) Petroleum 
Geology of Northwest Europe: Proceedings of the 4th Conference. Geological 
Society, London, 2,975-983. 

VERRECCHIA, E. P., FRErFET, P., VERRECCHIA, K. E. & DumoNT, J. -L. 1995. Spherulites in 
calcrete laminar crusts: Biogenetic CaCO3 precipitation as a major contributor to 
crust formation. Journal of Sedimentary Research, A65,690-700. 

WAAGSTEIN, R. 1977. The Geology of the Faeroe Plateau. PhD Thesis. University of 
Copenhagen. 

WAAGSTEIN, R. 1988. Structure, composition and age of the Faeroe basalt plateau. In: 
MORTON, A. C. & PARSON, L. M. (eds) Early Tertiary Volcanism and the Opening 
of the NE Atlantic. Geological Society, London. Special Publications, 39,225-238. 

WAAGSTEiN, R., GUISE, P. & REX, D. 2001. Potassium-argon and argon-argon whole-rock 
dating of the Palaeocene lower basalt formation of the Faeroe Islands. Conference: 
Paleogene Stratigraphy, Tectonics and Petroleum Geology of North West Europe, 
The Geological Society, Burlington House, London. 

WAAGsTETN, it, GuisE, P. & REX, D. 2002. K/Ar and 39Art°Ar whole-rock dating of 
zeolite facies metamorphosed flood basalts: the upper Paleocene basalts of the 
Faroe Islands, NE Atlantic. In: JOLLEY, D. W. & BELL, B. R. (eds) The North 
Atlantic Igneous Province: Stratigraphy, Tectonic, Volcanic and Magmatic 
Processes. Geological Society, London. Special Publications, 197,219-252. 

WAAGSTEiN, R& HALD, N. 1984. Structure and petrography of a 660 m lava sequence 
from the Vestmanna-1 drill hole, lower and middle basalt series, Faeroe Islands. In: 
BERTHELSEN, 0., NOE-NYGAARD, A. & RASMUSSEN, J. (eds) The Deep Drilling 
Project 1980-1981 in the Faeroe Islands. Foroya Fr66skaparfelag, T6rshavn, 39- 
70. 

WAAGSTEIN, R., HALD, N., JORGENSEN, 0., NIELSEN, P. H., NOE-NYGAARD, A., 
RASMUSSEN, J. & SCHÖNHARTING, G. 1984. Deep drilling on the Faeroe Islands. 
Bulletin of the Geological Society of Denmark, 32,133-138. 

References Page 379 



Simon R. Passey 

WALKER, B. H. & FRANCIS, E. H. 1986. High-level emplacement of an olivine-dolerite sill 
into Namurian sediments near Cardenden, Fife. Transactions of the Royal Society 
of Edinburgh: Earth Sciences, 77,295-307. 

WALKER, F. & DAVIDSON, C. F. 1936. A contribution to the geology of the Faeroes. 
Transactions of the Royal Society of Edinburgh, 58,869-897. 

WALKER, G. P. L. 1963. The Breiddalur central volcano, Eastern Iceland. Quarterly Journal 
of the Geological Society, London, 119,29-63. 

WALKER, G. P. L. 1970. Compound and simple lava flows and flood basalts. Bulletin 
Volcanologique, 35,579-590. 

WALKER, G. P. L. 1973. Lengths of lava flows. Philosophical Transactions of the Royal 
Society of London, 274,107-118. 

WALKER, G. P. L. 1987. Pipe vesicles in Hawaiian basaltic lavas: their origin and potential 
as paleoslope indicators. Geology, 15,84-87. 

WALKER, G. P. L. 1989. Spongy pahoehoe in Hawaii: a study of vesicle-distribution 
patterns in basalt and their significance. Bulletin of Volcanology, 51,199-209. 

WALKER, G. P. L. 1991. Structure and origin by injection of lava under surface crust, of 
tumuli, "lava rises", "lava-rise pits", and "lava-inflation clefts" in Hawaii. Bulletin 
of volcanology, 53,546-558. 

WALKER, G. P. L. 1993. Basaltic-volcano systems. In: PRICHARD, H. M., ALABASTER, T., 
HARRts, N. B. W. & NEARY, C. R. (eds) Magmatic Processes and Plate Tectonics. 
Geological Society, London. Special Publications, 76,3-38. 

WALKER, G. P. L., CANON-TAPIA, E. & HERRERO-BERVERA, E. 1999. Origin of vesicle 
layering and double imbrication by endogenous growth in the Birkett basalt flow 
(Columbia river plateau). Journal of Volcanology and Geothermal Research, 88, 
15-28. 

WATERS, A. C. 1961. Stratigraphic and lithologic variations in the Columbia River basalt. 
American Journal of Science, 259,583.611. 

WENTwoRTH, C. K. 1922. A scale of grade and class terms for clastic sediments. Journal of 
Geology, 30,377-392. 

WENrwoRTH, C. K. & MACDONALD, G. A. 1953. Structures and forms of basaltic rocks in 
Hawaii. United States Geological Survey Bulletin, 994,1-98. 

WI-UTE, J. D. L., MCP HM, J. & SKILLING, I. 2000. Peperite: a useful genetic term. Bulletin of 
Volcanology, 62,65-66. 

WHITE, R. S., SMALLWOOD, J. R., FLIEDNER, M. M., BOSLAUGH, B., MARESH, J. & FRUEHHN, 
J. 2003. Imaging and regional distribution of basalt flows in the Faeroe-Shetland 
Basin. Geophysical Prospecting, 51,215-231. 

WIDDOWSON, M., WALSH, J. N. & SUBBARAO, K. V. 1997. The geochemistry of Indian bole 
horizons: palaeoenvironments implications of Deccan intravolcanic palaeosurfaces. 
In: WIDDOWSON, M. (ed. ) Palaeosurfaces: Recognition, Reconstruction and 

References Page 380 



Simon R. Passet' 
Palaeoenvironmental Interpretation. Geological Society, London. Special 
Publications, 120,269-281. 

WILKiNS, A., SuBBARAO, K. V., INGRAM, G. & WALSH, J. N. 1994. Weathering regimes 
within the Deccan basalts. In: SUBBARAO, K. V. (ed. ) Volcanism. Wiley Eastern, 
217-231. 

WILLIAMS, H. & McBIRNEY, A. R. 1979. Volcanology. Freeman, Cooper & Co., San 
Francisco. 

WILLIAMSON, I. T. & BELL, B. R. 1994. The Palaeocene lava field of the west-central Skye, 
Scotland: stratigraphy, palaeogeography and structure. Transactions of the Royal 
Society of Edinburgh: Earth Sciences, 85,39-75. 

WiLmoTH, F. A. & WALKER, G. P. L. 1993. P-type and S-type pahoehoe: a study of vesicle 
distribution patterns in Hawaiian lava flows. Journal of Volcanology and 
Geothermal Research, 55,129-142. 

WOHLETZ, K. H. 1983. Mechanisms of hydrovolcanic pyroclast formation: grain size 
scanning electron microscopy and experimental results. Journal of Volcanology 
and Geothermal Research, 17,31-63. 

WOHLETZ, K. H. 2002. Water/magma interaction: some theory and experiments on pcperitc 
formation. Journal of Volcanology and Geothermal Research, 114,19-35. 

WOLFF, J. A. & WRIGHT, J. V. 1981. Rheomorphism of welded tuffs. Journal of 
Volcanology and Geothermal Research, 10,13-34. 

WooD, D. A. 1979. Dynamic partial melting: its application to the petrogeneses of basalts 
erupted in Iceland, the Faeroe Islands, the Isle of Skye (Scotland) and the Troodos 
Massif (Cyprus). Geochimica et Cosmochimica Acta, 43,1031-1046. 

WRIGHT, J. V. 1980. Stratigraphy and geology of the welded air-fall tuffs of Pantclicria, 
Italy. Geologische Rundschau, 69,263-291. 

YARNOLD, J. C. 1993. Rock-avalanche characteristics in dry climates and the effect of now 
into lakes: insights from mid-Tertiary sedimentary breccias near Artillery Peak, 
Arizona. Geological Society of America Bulletin, 105,345-360. 

References Page 381 



Simon R. Passey 

Appendix A: Chemical Compositions of Siderite 
Spherules 

SUF. 1.2a & SUF. 1.2b, clay ironstone, Ulingatangl Section, 
SuÖuroy, Faeroe Islands 

AND 

SUF. 8.2a & SUF. 8.2b, ironstone, Rokhagi Section, SuÖuroy, 
Faeroe Islands 
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A. 1 Chemical Compositions Expressed as Oxides 
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A. 2 Chemical Compositions Expressed as Elements 
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A. 3 Chemical Compositions Expressed as Carbonates 
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Appendix B: Geochemical Calculations 

To determine total iron (FeOT) ferric iron (Fe203) needs to be converted to ferrous iron 
(FeO); this is done in the following equation: 

FeO = Fe2O3 x 0.89981 

Therefore: 

FeO'"= FeO + (Fe2O3 x O. 89981) 

For calculating Mg # FeOT needs to be adjusted using the fixed oxidation ratio of 0.15 
(Brooks 1976); this is expressed as follows: 

Fe203 
= 0.15 

FeO 

To obtain adjusted iron a conversion factor (CF) needs to be obtained by using the 
following equation: 

FeOT 
_ FeO 

CF 

Therefore: 

FeOT 
_ CF 

FeO 

FeO+(Fe203 x0.89981) 
= CF 

FeO 

FeO 
+ 

Fe2O3 x 0.89981 
= CF 

FeO FeO 

1+ 
FFe03 

x0.89981 =CF ((- 
) 

1+(0.15x0.89981)=CF 
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1+0.1349715=CF 

1.1349715 = CF 

FeOT 
1.135 _ Adjusted FeO 

The adjusted FeO using the conversion factor of 1.135 is used to obtain atomic Mg # in the 
following equation: 

Mg#=100x 
Mg 

Mg+Fe2 

Where: 

MgO Mg __ 40.32 

Fee = 
Adjusted FeO 

71.85 

This gives the following equation: 

Mg0 
40.32 

Mg#= 
MgO 

+ 
FeOT/1.135 

40.32 71.85 

This can be simplified using the following equations: 

Mg0 

Mg#- 
40.32 

(MgO' M+FeO) 
x1 40.32 1.135 71.85 

Mg0 
40.32 

Mg #= 
Mgo FeOT 
40.32) 81.55 
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MgO 

x 40.32 
Mg #= 

40.32 
r (40.32 

x 40.32 + 
81 

ýs 
x 40.32 

40.32xMg0 

Mg #= 
40.32 

40.32 x MgO 
+ 

40.32 x Fe0r 
40.32 81.55 

Mg #= 
MgO 

MgO + (0.4944 x FeOT ) 

Even though this equation manipulates oxide values, the Mg # is givcn as an atomic value. 

This equation is used in Larsen et al. (1999) (L. M. Larsen pers. comm. ). 
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Appendix C: Sample List 

C. 1 Lower Basalt Formation 

Sample # Lithology Location Geology 
Disused quarry, ca. 1 km SW Uppermost lava flow 

SUF. 7.1 Aphyric Basalt of Hvalba, Suöuroy, Faeroe 
of the LBF Islands 

1 9 SUF 
Volcaniclastic Coastal section, ca. 1 km E of 

Interlava sequence 
. . Conglomerate Frobba Su6uro Faeroe inbetween the 

, y, 
2 9 SUF 

Volcaniclastic Islands Külugjogv and 
. . Siltstone Skarvatangi lava flows 

Roadside cutting, ca. 500 mE Interlava lithology 
SUF. 10.1 Argillite of the southern entrance to the 

road tunnel at Lioarhagi, inbetwccn two tabular 

Suouro , Faeroe Islands l ava flows of the LBF 

Volcaniclastic 
Coastal section, Hvalbiareibi Interlava sequence 

SUF. 11.1 Siltstone Bay, ca. 1.5 km SW of Hvalba, below the Hvalbiarciöi 
Suouro , Faeroe Islands Lava Flow 

C. 2 Coal-bearing Formation 

Sample # Lithology Location Geology 
Unit 2: 

SUF. 1.1 Volcaniclastic 
Sandstone 

Unit 3: Clay 
SUF. 1.2 Ironstone Ulingatangi Section, ca. 300 Interlava se uenc i 1 2 f li q e 

1 3 SUF 
Unit 6: Organic- , ca. ngatang mNo U . inbetween the LBF and . . rich Mudstone km E of Fro6ba, Suburoy, MBF 

Devitrified Faeroe Islands 
SUF. 1.4 Basaltic Tuff 

Clay Ironstone 
SUF. 1.5 Concretion from 

Unit 6 
Fine to Medium 

SUF. 6.1 grained Basaltic 
Sandstone 

Fine to Medium Grimsfjall Section, ca. 1.5 km Interlava sequence 
SUF. 6.2 Grained Basaltic W of Hvalba, Su6uroy, inbetween the LI3F and Sandstone Faeroe Islands MBF 

Coarse Sand to 
Granule Grade 

SUF. 6.3 Basaltic 
Sandstone 

Rokhagi mine, E side of 
Rokhagi valley, ca. 3.5 km Collected from the mine SUF. 8.2 Ironstone SE of Hvalba, Su6uroy, waste 

Faeroe Islands 
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C. 3 Volcaniclastic Sandstone Formation 

Sample # Lithology Location Geology 
Coastal section N of Stapin, 

2.1 SUF Tuffaceous Hvannhagi-L6nin Traverse, ca. Raft contained within 
. Sandstone 2.5 km N of Tvoroyri, Suouroy, doleritic sills 

Faeroe Islands 
SUF. 3.1 Dolerite Wave cut platform S of Stapin, Sill 

Hvannhagi-L6nin Traverse, ca. Stapin Vent sequence 
SUF. 3.2 Agglomerate 2.5 km N of Tv, royri, Suöuroy, from the uppermost 

Faeroe Islands section of the LI3F 
Unit 6: 

SUF. 4.1 Volcaniclastic 
Conglomerate 

ti S III D ec on , ysjarnar Traverse, Unit 5: 
Olivine- ca. 200 mE of Dysjamar, Volcaniclastic sequence 

SUF. 4.2 
p 

Hvannhagi-L6nin Traverse, ca. inbetween doleritic sills 
Welded Tuff 2.5 km N of Tvr royri, Suöuroy, and the MBF 

F I l d 
Unit 2: aeroe s an s 

SUF. 4.3 Olivine- 
h is Tuff 
Unit 4: 

SUF. 5.1 Volcaniclastic 
Sandstone 

SUF. 5.2 
Unit 3: 

Volcaniclastic 
Section II, Dysjarnar Traverse, 

Mudstone ca. 360 mE of Dysjarnar, Volcaniclastic sequence 
H h i L6 i T Unit 3: vann ag - n n raverse, ca. inbetween doleritic sills 

5 3 SUF Volcaniclastic 
2.5 km N of Tv, royri, Suöuroy, and the MBF 

. . Sandstone 
Faeroe Islands 

Unit 2: 
SUF. 5.4 Olivine- 

h is Tuff 
SUF. 12.1 Shale Wave cut platform S of Stapin, 

H h i L6 i T Sedimentary sequence vann ag - n n raverse, ca. 
SUF. 12.2 Coal 2.5 km N of Tv, royri, Suöuroy, overlying the Stapin 

Faeroe Islands Vent 

Unit 9: 
SUF. 13.1 Volcaniclastic 

Sandstone 
Unit 8: 

SUF. 13.2 Volcaniclastic Section B, Svalbar6aä-Myllä Volcaniclastic sequence Conglomerate Traverse, ca. 500 mN of i b i n etween doleritic sills SUF. 13.3 Unit 7: Trong svägur, Suöuroy, Faeroe 
d th MB e an F Olivine- Islands 

SUF. 13.4 
phyric Tuff 

Unit 5: 
SUF. 13.5 Volcaniclastic 

Sandstone 
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Sample # Litholo Location Geology 
Unit 3: 

Interbedded 
SUF. 13.6 Volcaniclastic Section B, Svalbaroaä-Mylla 

Volcaniclastic sequence Siltstones and Traverse, ca. 500 mN of inbetween doleritic sills Sandstones Trongisvägur Suöuroy Faeroe , , d Unit 1: Islands an the MBF 

SUF. 13.7 Olivine- 
h is Tuff 
Unit 7: 

SUF. 14.1 Olivine- Section C, Svalbar6aä-Myllä 
Volcaniclastic sequence phyric Tuff Traverse, ca. 500 mN of i b d l n etween o eritic sills Unit 1: Trongisvägur, Suburoy, Faeroe 

and the MBF 
SUF. 14.2 Olivine- Islands 

phyric Tuff 

Olivine- 
Rey6ibarmur Section, ca. 1.6 km Volcaniclastic sequence 

SUF. 16.1 
phyric Tuff 

NE of Hvalba, Suöuroy, Faeroe inbetwecn a pepcritc 
Islands sequence and the MDF 

Unit 2: 
SUF. 18.1 Tuffaceous Hvannagj6gv Section, ca. 2.5 Volcaniclastic sequence Sandstone km WNW of Tron isvä ur i t l t d i h M© g g , n erca a e w t F Unit 1: Su6uroy, Faeroe Islands lava flows 
SUF. 18.2 Tuffaceous 

Sandstone 

C. 4 Middle Basalt Formation 

Sam le # Litholo Location Geology 
Unit 1: 

EYF. 1.1 Volcaniclastic Eioi Section, roadside cutting, Interlava sequence Sandstone 
sturo ca 300 mE of EiÖi E inbetween MBF l . , y y, ava Unit 2: Faeroe Islands flow units EYF. 1.2 Volcaniclastic 

Sandstone 
Roadside cutting at 

Volcaniclastic 
Hvilingarsteinur, ca. 1.6 km SW Interlava sequence 

2 3 EYF of Slxttaratindur and ca. 300 m inbetween MBF lava 
. . Sandstone NE of Eiöisvatn, Eysturoy, flow units 

Faeroe Islands 

2 3 EYF 
Volcaniclastic Disused quarry, ca. 600 mN of 

Interlava sequence 
inbetween MBF lava 

. . Sandstone Svinäir, Eysturoy, Faeroe Islands flow units 
Unit 1: 

STF. 2.1 Volcaniclastic 
Sandstone 

Unit 2: fErgisa Section, ca. 2.5 km N of 20 m section through 
STF. 2.2 Volcaniclastic Leynar, Streymoy, Faeroe 

the MIF 
Sandstone Islands 

Unit 3: 
STF. 2.3 Volcaniclastic 

Sandstone 
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Sample # Lithology Location Geology 

Unit 4: )Ergisä Section, ca. 2.5 km N of 20 m section through STF. 2.4 Volcaniclastic Leynar, Streymoy, Faeroe 
the MBF Sandstone Islands 

Volcaniclastic 

STF. 3.1 
Sandstone 
with leaf 

f Bugum Section, roadside Interlava sequence 
cutting, ca. 2 km ESE of Hösvik, inbetween MBF lava imprint Stre mo Faeroe Island fl i Volcaniclastic y y, s ow un ts 

STF. 3.2 Sandstone 
Klivarnar Section, roadside Interlava sequence eq ue 

1 STF 
Volcaniclastic cutting, SE side of Leynavatn, inbetween MBF lava .. Sandstone ca. 1 km NNE of Leynar, flow units Stre o, Faeroe Islands 

Volcaniclastic 
Cliff exposure, Störabrugv, 17 Interlava sequence 

VAF. 1.2 Sandstone 
km SE of Oyragjögv, Vägar, inbetween MBF lava 

Faeroe Islands flow units 
Unit 2a: 

VIF. 1.1 Volcaniclastic Middle sedimentary Sandstone 
ack i b t p age n e ween 

2 VIF 1 
Unit 2b: 

Volcaniclastic 
Viöareiöi Section, coastal MBF lava flow units 

. . Conglomerate exposure, Viooy, Faeroe Islands 

Unit 3: Upper sedimentary 
VIF. 1.3 Volcaniclastic package inbetween 

Siltstone MBF lava flow units 

VIF. 5.1 
Aphyric 
Basalt 

Disused quarry at Selgjögv, ca. Middle Basalt 
5 km NW of Hvannasund 3 Fo ti l fl 

Plagioclase- . , rma on ava ow 
VIF. 5.2 h is Basalt pyr 

ViÖoy, Faeroe Islands units 

C. 5 Upper Basalt Formation 

Sam le # Lithology Location Geology 
Unit 1: 

BOF. 1.1 Volcaniclastic Interlava sequence 
Sandstone inbetween tabular and 

Unit 3: agglutinated lava flows 
BOF. 1.2 Volcaniclastic of the UBF 

Sandstone Hälgafelli Section, ca. 200 m SE 
BOF. 1.3 Basalt of Hälgafelli, ca. 420-430 above Agglutinated lava flow 

sea level, ca. 1 km SW of Interlava sequence Unit 5: Klaksvik, Boröoy, Faeroe inbetween agglutinated 
BOF. 1.4 Volcaniclastic Islands and tabular lava flows 

Siltstone of the UBF 
Interlava sequence Unit 2: inbetween tabular and BOF. 1.5 Volcaniclastic agglutinated lava flows 

Siltstone of the UBF 
Unit 1: Kirkja Section, ca. 50 mE of Interlava sequence 

FUF. 1.1 Volcaniclastic Kirkja harbour, Fugloy, Faeroe inbetween two tabular 
Sandstone Islands lava flows of the UHF 
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Sample # Lithology Location Geology 
Unit 2: 

FUF. 1.2 Volcaniclastic Kirkja Section, ca. 50 mE of Interlava sequence Sandstone Fugloy Kirkja harbour Faeroe inbetween two tabular , , Unit 3: Islands lava flows of the UBF 
FUF. 1.3 Volcaniclastic 

Sandstone 

Unit 1: Kunoy Section, ca. 500 m above Interlava lithology 
KUF. 1.1 Volcaniclastic sea level, ca. 800 in S of 

Middagsfjall, ca. 1.5 km NE of 
inbetween two tabular 

Sandstone Kuno , Kuno , Faeroe Islands 
lava flows of the UDF 

Unit 2: Kunoy Section, ca. 520 m above Interlava lithology 
KUF. 1.2 Volcaniclastic sea level, ca. 800 in S of 

Middagsfjall ca. 1.5 km NE of 
inbetween two tabular 

Sandstone , 
Kunoy, Kuno , Faeroe Islands lava flows of the UBF 

Unit 3: 
Kunoy Section, ca. 600 in above Interlava lithology 

KUF. 1.3 Volcaniclastic sea level, ca. 800 in S of 
Middagsfjall, ca. 1.5 km NE of 

inbetween two tabular 
Sandstone Kuno , Kuno , Faeroe Islands lava flows of the UDF 

Unit 4: 
Kunoy Section, ca. 730 m above Interim lithology 

KUF. 1.4 Volcaniclastic sea level, ca. 800 in S of 
Middagsfjall, ca. 1.5 km NE of 

inbetween two tabular 
Sandstone Kunoy, Kuno , Faeroe Islands lava flows of the UBF 

Unit 5: 
Kunoy Section, ca. 780 in above Interlava lithology 

KUF. 1.5 Volcaniclastic sea level, ca. 800 mS of 
Middagsfjall ca. 1.5 km NE of 

between two tabular 
Sandstone , 

Kuno , Kuno , Faeroe Islands 
lava flows of the UBF 

Unit 1: 
SAF. 1.1 Volcaniclastic 

Sandstone Litlavatn Section, roadside 
Unit 2: cutting between Sandur and Interlava sequence 

SAF. 1.2 Volcaniclastic Skälavik, ca. 400 mN of inbetween two tabular 
Sandstone Lftlavatn, Sandoy, Faeroe lava flows of the UDF 

Unit 3: Islands 

SAF. 1.3 Volcaniclastic 
Sandstone 

1.1 STF Basalt Sneis Section, plateau region ca. Sill 
. Unit 2: 60-100 in below Sneis, ca. 6 km 

STF. 1.5 Volcaniclastic ENE of Vestmanna, Streymoy, 
Conglomerate Faeroe Islands 

Sneis Section, ca. 800 in NW of Unit 1: Sneis, ca. 6 km ENE of Sedimentary sequence 
STF. 1.6 Volcaniclastic Vestmanna, Streymoy, Faeroe inbetween the MBF and 

Sandstone Islands UBF. 
Sneis Section, ca. 400 in NW of 

Unit 3: Sneis, ca. 6 km ENE of 
STF. 1.7 Volcaniclastic Vestmanna, Streymoy, Faeroe 

Sandstone Islands 
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Sample # Lithology Location Geology 
Unit 2: 

STF. 1.9 Volcaniclastic Sneis Section, plateau region ca. Conglomerate 60-100 m bel w Snei 6k Sedimentary sequence o s, ca. m Unit 2: ENE of Vestmanna, Streymoy, inbetween the MBF and 
11 STE 1 Reddened Faeroe Islands UBF. 

. Volcaniclastic 
Conglomerate 

Unit 2: 
STF. 6.1 Volcaniclastic 

Sandstone 
Unit 3: 

STF. 6.2 Volcaniclastic Argir Section, ca. 600 mE of Interlava sequence Siltstone Itrötta ll 1k W f i b v, ur, ca. m o n etween two tabular 
STF. 6.3 

Unit 4: 
Volcaniclastic 

Argir, Streymoy, Faeroe Islands lava flows of the UBF 
Sandstone 

Unit 1: 
STF. 6.4 Volcaniclastic 

Sandstone 
Volcaniclastic Gjbgvin Störa Section, ca. 100- 

VIF. 2.1 Sandstone 150 m above sea level ca 5 km 25 m section through 
, . l th i Volcaniclastic SE of Viöareioi, Vi6oy, Faeroe e ower sect on of the 

VIF. 2.2 Conglomerate Islands UBF 

Aphyric 
N side of Malinsfjall, ca. 1.5 km Upper Basalt Formation 

VIF. 3.5 Basalt 
S of Vi6arei6i, Viöoy, Faeroe 

tabular lava flow Islands 
Hüsiö millum Gjäir, ca. 250 mS Gas streaming vent 

Pyroclastic of Gjögvin Störa, W side of juxtaposed against the VIF. 4.1 Breccia ViÖvik, ca. 5 km SE of uppermost MBF lava 
Vibareiöi, Vino , Faeroe Islands flow units 

C. 6 Faeroe-Shetland Basin 

Well 214/4-1 
61°57'54"N 002°14'01"W 

Run # 
Sidewall 
Core # 

Depth in ft (m) Lithology 

13 12,787 (3,897) Unit 6b: Quartz Wacke 
12 12,793 (3,899) Unit 6a: Quartz Wacke 
11 12,802 (3,902) Unit 5b: Lithic Gre acke 
9 12,830 (3,911) Unit 5a: Lithic Greywacke 

3a 7 12,880 (3,926) Unit 4e: Lithic Greywacke 
5 12,916 (3,937) Unit 4d: Lithic Greywacke 
4 12,933 (3,942) Unit 4c: Quartz Wacke 
3 12,941 (3,944) Unit 4b: Lithic Greywacke 
1 12,979 (3,956) Unit 4a: Siltstone 

44 13,212 (4,027) Unit 2: Siltstone 
42 13,280 (4,048) 

3b 41 13,320 4,060 Unit 1: H aloclastit 40 13,360 4,072 L-ý y e 

39 13,400 4,084 
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Well 214/4-1 
61° 57' 54" N, 002° 14' 01" W 

Run # 
Sidewall 
Core # 

Depth in ft (m) Lithology 

38 13,430 (4,093) 
37 13,460 (4,103) 
36 13,500 4,115 
35 13,550 (4,130) 
34 13,580 (4,139) 
33 13,600 (4,145) 
32 13,630 (4,154) 
31 13,660 4,164 

aloclastite Unit 1: H 
30 13,680 4,170 y 

29 13,700 (4,176) 
28 13,720 4,182 
27 13,740 (4,188) 
25 13,780 (4,200) 
23 13,820 (4,212) 
22 13,840 (4,218) 
21 13,860 (4,225) 

Run 3b 20 13,880 (4,231) Calcite Vein 
19 13,890 (4,234) 
18 13,900 (4,237) 
17 13,920 (4,243) 
16 13,940 (4,249) 
15 13,960 (4,255) 
14 13,980 (4,261) 
13 14,000 (4,267) 
12 14,020 (4,273) Unit 1: 11yaloclastitc 
11 14,040 (4,279) 
7 14,120 (4,304) 
6 14,140 (4,310) 
5 14,160 (4,316) 
4 14,180 (4,322) 
3 14,200 4,328 1- 
1 14,240 4,340 

1 

GLASGOW 
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