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Abstract

This dissertation considers the problems associated with using reconfigurable logic within a proces-
sor to accelerate applications from the context of a general purpose workstation, where this scarce
resource will need to be shared by the operating system fairly and securely between a dynamic set of
competing applications with no prior knowledge of their resource usage requirements.

A solution for these problems is proposed in the Proteus System, which describes a suitable set
of operating system mechanisms, with appropriate hardware support, to allow the FPL resource to
be virtualised and managed suitably without applications having to be aware of how the resource is
allocated. We also describe a suitable programming model that would allow applications to be built
with traditional techniques incorporating custom instructions.

We demonstrate the practicability of this system by simulating an ARM processor extended with
a suitably structured FPL resource, upon which we run multiple applications that make use of one or
more blocks of FPL, all of which are managed by a custom operating system kernel. We demonstrate
that applications maintain a performance gain despite having to share the FPL resource between other
applications.

This dissertation concludes that it is possible for an operating system to manage a reconfigurable
processor within the context of a workstation environment, provided suitable hardware support, with-
out negating the benefit of having the FPL resource, even during times of high load. It also concludes
that the integration of custom hardware associated with applications into the system is manageable
within existing programming techniques.
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Chapter 1

Introduction

There has been recent research and commercial interest in bringing together Field Programmable
Logic (FPL) and microprocessors on a single device. FPL provides a flexible hardware system that can
be tailored at run–time to implement custom circuits, essentially providing the designer with a form of
changeable hardware. Although FPL provides a flexible hardware layer, for many applications it does
not remove the need for software; software is better for defining larger algorithms and control flow that
would otherwise not fit in the FPL. In addition it has been demonstrated that although a pure hardware
solution is faster than software, optimised software which may run almost as fast can be produced
in less time [Shand 1997]. It would seem then that a hybrid approach would allow for the best of
both worlds: fast development of most of the application, with the core calculations being enhanced
in hardware. Because of the attractiveness of the hybrid option, both the research community and
industry have began investigating ways of combining FPL and one or more processors on a single
chip, providing the system designer with the flexibility to divide their application between software
and custom hardware as appropriate.

Despite the uptake in the embedded systems domain, the workstation and personal computer mar-
kets have not followed this trend, instead expanding processors with an increasing number of domain
specific instruction set extensions (e.g., MMX instructions on Intel processors for speeding up mul-
timedia applications), and more and bigger caches. However, with more specialised function units
being added to CPUs we begin to see a lower utilisation of the silicon. For example, multimedia
extensions will benefit CAD programs or games, but are not required for databases or spreadsheets.
Furthermore, the new instructions must be solutions to a generalised version of a particular problem,
and may not suit novel approaches to that problem that do not work in the way the hardware vendor
anticipated [Abrash 1996]. Given these problems with domain specific function units, it would appear
to make sense to provide a more flexible solution and allow application designers to provide their own
custom instructions.

The lack of acceptance of the processor hybrids can in part be attributed to the lack of support
in allowing the operating system to manage the FPL resource in current solutions. On a workstation
the operating system is responsible for dynamically sharing resources between multiple competing
application on behalf of multiple users. This is unlike an embedded system where typically there is
a single process running and resource allocation is done either statically, or dynamically but with a
known usage pattern.

The problem of managing the reconfigurable logic resource on a workstation can be compared
to that of virtual memory management. In virtual memory management the operating system has
to allocate a scarce physical resource between multiple processes with no prior knowledge of the

1



demands that these processes will make on the resource. The demands that processes make on the
resource are not static: the requirements will change throughout the lifetime of the application, and
the operating system needs to be able to expand the allocation during periods of high demand and
may attempt to redistribute the resource during periods of low demand. The operating system needs
to attempt to provide each process with enough of the physical resource to allow it to make progress,
but not at the expense of other processes; in other words, it needs to provide a degree of fairness
when sharing out the resource. Because the operating system has granted multiple processes access
to the same shared resource, it needs to prevent either malicious or accidental accesses by one process
to another process’s allocation. This can only be achieved successfully on conventional systems by
hardware support, but it is the job of the operating system to control that hardware and provide the
correct level of security.

At the same time as the operating system controls the location of custom hardware, the applica-
tions running on the system should be agnostic of the management issues. It is envisaged that the
programmer will have a simple interface to the new resource, whereby the program will register cir-
cuits with the system and then call upon them to be executed as needed, without having to be aware of
whether the circuit is currently loaded and if so where it is loaded. At the application level, the system
should provide all the mechanisms that programmers are familiar with to support a conventional pro-
gramming model; for instance, applications should be able to share circuits, both internally between
instances of a given application and between multiple applications.

1.1 Context

The aim of this work is to demonstrate that a reconfigurable processor can be used in a workstation de-
vice using a conventionally structured operating system, such as a UNIX implementation or Windows
NT (and its descendants). This style of operating system supports the execution of numerous concur-
rent tasks for multiple users. The management of the FPL resource on the processor must integrate
successfully with the existing operating system technologies used in such a system, like pre-emptive
multitasking and virtual memory management. In a workstation environment the operating system is
responsible for managing accesses to resources, and as such it should also be responsible for sharing
access to the FPL resource on the processor. It should ensure fair, secure, and efficient usage of the
inherently limited FPL resource.

In this system it is expected that a small set of running applications will utilise custom hardware
to accelerate key parts of their functionality. The system will also need to support a set of legacy and
new applications that are not accelerated, or indeed do not need specific acceleration. This means
that support for accelerated applications should not have a detrimental impact on the performance of
unaccelerated applications.

Applications designed to run in a workstation environment are built upon a rich set of well un-
derstood mechanisms. This includes compilation of languages to object code and static and dynamic
linking techniques. Applications using the FPL resource should be built using these existing tech-
niques (indeed, it should be feasible for unaccelerated applications to be developed with the same
tools), allowing existing programming practices to be applied.

The aim of this work is to find a way in which the FPL resource can be integrated into the system
without having to dramatically alter any part of the system, be it the hardware model, the operating
system, or the programming model.
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1.2 Thesis Statement

I assert that it is possible to integrate a suitably structured reconfigurable processor into a general
purpose workstation environment, such that the reconfigurable logic resource on the processor can be
managed by the operating system, and shared fairly and securely between multiple processes without
a priori information of the processes’ behaviour, without negating the performance benefit provided
by the extra resource, or adversely affecting the performance of those processes which do not utilise
the new resource.

I will demonstrate the validity of this assertion by providing: a suitable processor architecture, that
meets the requirements to allow the operating system to manage the reconfigurable logic resource; an
augmented operating system kernel that manages the additional resource; and a programming model
that allows applications built in a traditional manner to utilise the new resource. I will demonstrate a
small operating system running on a simulated processor design as an example of the approach.

1.3 Contribution

The contributions of this dissertation are:

• Demonstration of a basic operating system with Custom Instruction Scheduler (CIS) that allows
applications to register custom instructions with the operating system, and have the operating
system manage the the loading and execution of the custom instructions transparently to appli-
cations.

• Demonstration of a suitable programming model to support the use and management of custom
instructions and their namespace in imperative languages, and support for such a system using
traditional compilation and linkage techniques (including both static and dynamic linkage).

• Provision of a richer model of custom instructions than previously used in the literature, and
demonstrate the benefit of the model from the perspective of managing custom instructions, in
both the programming environment and the operating system.

• Demonstration of a suitable architecture layout to allow the FPL resource on a reconfigurable
processor to be virtualised by the operating system, hiding absolute circuit location from the
applications, and allowing the FPL resource to be managed both fairly and securely.

• Investigation of support for switching between hardware and software implementations of cus-
tom instructions in a way that is transparent to the invoking process. Theoretically such a
feature can be used by the operating system to reduce circuit swapping when the FPL resource
is overloaded.

• Initial investigation into the run time performance of an operating system managed processor
hybrid. Comparison is made between applications with and without custom instructions, with
and without operating system management, and with and without software alternatives to cus-
tom hardware.

The aim of the work described here is to attempt a first look at how such a system can be cre-
ated. No claim is made that this is an optimal solution to the problems of managing a reconfigurable
processor, rather that this is a sufficient solution such that the aims set out in the thesis statement are
achieved.
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1.4 Outline

The outline of the dissertation is as follows. Chapter 2 introduces the relevant technologies and related
work that serves as a background to the work that follows. Based on the context and the existing body
of work, a set of requirements for a system that supports a reconfigurable processor in a workstation
environment is drawn up in Chapter 3.

Chapter 4 discusses a processor architecture that meets the requirements set out in the previous
chapter. It goes on to describe an initial instantiation which is modelled in a simulator, and then
demonstrates that the architecture to provide a basic performance increase for a bespoke set of appli-
cations.

Chapter 5 discusses the management by an operating system of the reconfigurable processor out-
lined in Chapter 4. It examines how applications register their custom hardware for management, and
how the operating system shares the FPL resource on the processor. This chapter also demonstrates
that the management techniques do not negate the performance benefit of the additional resource.

Chapter 6 considers the issues that arise when building an application with custom hardware, for
underlying system proposed in the previous two chapters, using traditional compilation and linkage
mechanisms. The chapter discusses how the use of custom hardware can be mapped from the pro-
gramming language down to the calls used to register and invoke the custom hardware, which will
work with both statically and dynamically linked software.

Finally, the dissertation concludes with Chapters 7 and 8, which discuss further research that could
be done to follow up the work here and summarise the dissertation respectively.

1.5 Related Publications

The initial concept for this work was published in [Dales 1999]. Chapters 4 and 5 contain material on
the basic architecture and performance which appeared in [Dales 2001] and [Dales 2003].
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Chapter 2

Background and Related Work

This chapter introduces the relevant technology and background material to provide context for the
work covered in the rest of the dissertation. The chapter is split into three broad categories: required
knowledge, related work, and then analysis of the related work based on the context.

The first two sections provide a brief introduction to the fields of FPL and operating systems
respectively, covering the basic concepts pertinent to the work that follows. Section 2.1 explains how
FPL devices work, looking specifically at Field Programmable Gate Arrays (FPGAs) and the Xilinx
Virtex range of FPGAs which will be used as the context for the FPL discussion in the remainder of the
document. Section 2.2 provides a brief look at resource management in a workstation class operating
system, focusing on processor and memory resources. Readers experienced with either topic should
feel free to skip these sections.

Following the introductory sections is an overview of previous research and commercial activity in
the field of reconfigurable processors and resource management issues as related to FPL. Section 2.3
covers research activities in combining microprocessors and FPL, and Section 2.4 covers commercial
hybrid device offerings available today, while Sections 2.5 and 2.6 discuss the management of FPL
real estate and security considerations respectively.

The chapter is concluded in Section 2.7 with an analysis and discussion of the various architecture
and management options, and how they apply to the workstation environment context. This paves the
way for the requirements analysis in the following chapter.

2.1 Field Programmable Logic

A Field Programmable Logic (FPL) device is a type of Integrated Circuit (IC) used to provide run-time
or load-time tailorable hardware. At an abstract level, FPL devices contain a two dimensional array of
cells that can be configured to behave like different types of logic gates that can be attached to a matrix
of wires running through the device which connect the cells to form a circuit. The information used to
configure these devices is held in RAM, allowing the circuit represented on the device to be changed
simply by reprogramming the contents of the RAM. Such a device has numerous applications: it can
be used as a prototype IC, used on a PCB before the final Application Specific Integrated Circuit
(ASIC) design has been finalised; it can be used in applications where the designer may want the
system to be upgraded at a later date whilst it is in the field; and it can provide the system with
a flexible hardware resource that can be programmed to carry out different tasks at different times
where multiple ASICs would otherwise have to be employed. Additionally, although FPL devices
are typically more expensive than an ASIC for large volume applications, for smaller volumes FPL
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Figure 2.1: Overview of Xilinx Virtex architecture (left) and CLB layout (right)

devices make a suitable ASIC replacement as they do not have the high initial costs associated with
IC fabrication.

The most popular FPL device today is a Field Programmable Gate Array (FPGA). Early FPGAs
were limited to just a small array of cells and wiring resources, along with a set of special cells around
the edge of the array which could be used to connect to device pins for I/O. Modern FPGAs expand
on this, not only by providing many more cells and wiring resources, so that a modern FPGA can
handle a circuit size of millions of gates, but also add extra features such as blocks of RAM, better
clock control, dedicated multipliers, and so on. To help demonstrate what an modern FPGA looks like
we will examine the Xilinx Virtex range of FPGAs [Xilinx 1999]. Though the Virtex has since been
superseded by the Virtex-II, it is still a contemporary architecture in use today and is used throughout
the rest of this document as the basis for FPL comparisons.

2.1.1 FPGA Overview

An overview of a Virtex device can be seen in the left part of Figure 2.1. Most of the FPGA is made
up of the configurable cells, referred to as Configuration Logic Blocks (CLBs) in Xilinx nomeclature.
These cells are the basic unit out of which circuits are constructed on an FPL device. The contents
of the cells and how they simulate the basic logic will vary between manufacturer and architecture.
The contents of a Virtex CLB is shown on the right of Figure 2.1. Each CLB consists of four Look
Up Tables (LUTs), each with four inputs and one output, which are used to simulate combinatorial
logic. The LUTs are programmed by loading values into Static RAM (SRAM) on the FPGA, and by
changing the contents of the SRAM the LUT can represent different combinatorial functions. Note
that a design does not need to use all the inputs to each LUT or all the LUTs in a given CLB, what is
used simply depends on what inputs are considered active and connected to the wiring resources. As
well as mimicking combinatorial logic, the LUTs in Virtex CLBs can be used as small memories or
shift registers, providing one form of storage within the array. In addition to the LUTs, each Virtex
CLB contains four registers which may be used to build sequential logic circuits. On modern FPGAs
a high register density is important to allow designs to be efficiently pipelined for higher clock speeds.
The carry and control unit is used for routing signals within the CLB and also handling special wires
that connect CLBs within the same column to build fast carry chains. The Virtex range consists of
nine devices, with varying CLB array sizes. The smallest device, the XCV50, consists of 384 CLBs
whilst the largest device, the XCV1000, has up to 6144 CLBs.

Alongside the array of CLBs are the Block RAMs (BRAMs). These are large blocks of memory
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designed to save the user from either having to use large numbers of CLBs for memory or having to
go off chip for storage. Again, the amount of BRAM on a device varies, going from 4 Kbytes on the
XCV50 to 32 Kbytes on the XCV1000. On the outer edge of the device are the special cells used to
connect to the package pins on the device, referred to as I/O Blocks (IOBs). IOBs can be configure to
operate as either input, output, or bidirectional. Each IOB is connected to a specific device pin, which
can cause problems when routing (the term for working out how to wire up a set of CLBs) a circuit
design, as it may prove difficult to get a wire to that specific location. To aid this, the Virtex uses an
extra set of wiring resources called the VersaRing to make it possible to connect to an IOB that is not
directly next to the CLB point at which the signal leaves the CLB array.

Not shown explicitly in diagram are the wiring resources used to connect between cells and other
parts of the device. Typically each cell in an FPGA can connect to a hierarchy of wires, with wires that
lead to the next cell in each direction, wires that span a local block of cells (e.g., a four by four block),
and wires that will span the entire chip. All wires will run in either a horizontal or vertical direction
across the chip. Cells will connect to wires using either tri–state drivers or multiplexors controlled by
bits in SRAM. By altering the path of signals through the various wires using the connection points,
cells can be connected together to form larger circuits. In addition to the wires used to connect cells
together, there are a small number of global signals distributed to each cell on the array. These global
wires are typically used to distribute clocking and reset signals. The Virtex uses a multiplexor based
set of connections to connect to the various wire lengths on the chip.

2.1.2 Configuration

Programming a FPL device consists of loading the appropriate bits into the RAM that controls the
behaviour of the various device parts. How and when this loading can take place again varies between
manufacturer and architecture. The type of programming allowed has a large effect on how the device
can be used: some devices can be configured only on power up, whereas some devices can have
individual cells configured whilst the rest of the device continues to execute.

The most basic form of programming allowed is aconfigurable device, where the contents of the
RAM are loaded when the chip is initialised. An example of such an FPL device is the Triscend A7,
described in Section 2.4.2. To reprogram this device the entire chip has to be reset and reinitialised.
This limits the application of such a device, especially if there are parts other than just an FPL array
on the same IC.

The next stage up is areconfigurable device, where the contents of the RAM can be loaded at run-
time rather than just at startup. In addition such a chip may also allow the user to store the contents
of the configuration RAM, which can be useful for extracting state from a circuit loaded on the array
for debugging. An example of such a devices are the Xilinx XC4000 and Spartan ranges [Xilinx
1999]. In such a device the entire configuration RAM is reprogrammed at once, so when the device
is reprogrammed any old configuration information is lost. Reprogramming an FPGA is a relatively
slow operation, typically of the order of milliseconds: reprogramming the largest Spartan device at
the highest speed (serialized data read in at 8 MHz) takes 41.3 ms. While the Xilinx Virtex supports
a faster 8 bit at 60 MHz interface, this is still slow in comparison to modern memory bus speeds.
One solution to the problem of slow reconfiguration speeds used by some devices is to have multiple
planes of RAM on the device, each representing a different circuit configuration. The FIPSOC device
discussed in Section 2.4.2 is such a device, which uses three configuration planes. Switching between
configurations held in different RAM planes is a very low cost operation, typically taking only one
or two clock cycles. In addition to the low switching costs, it is also possible to modify all but the
currently active plane whilst a circuit is running.
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One problem with such devices is that the entire array has to be programmed at once, even if
the circuit being loaded only uses a subset of the available resources. The final device programming
style is referred to aspartial reconfigurationor dynamic reconfiguration, which allows much greater
control. There are two approaches to partial reconfiguration:fine grainpartial reconfiguration and
course grainpartial reconfiguration. Devices that support fine grain partial reconfiguration, such as
the Xilinx XC6200 [Xilinx 1996], allow configuration at a CLB or wiring connection resolution. This
means that only the components that are needed within a circuit are configured. This both reduces the
amount of data that needs to be stored for a circuit configuration and the time it takes to reconfigure the
device. Course grain devices can be programmed on a scale smaller than the entire device, but above
the level of individual components. An example of this is the Virtex device, which can be configured
on a column by column basis [Xilinx 2000]. The is less space and time efficient when it comes to
configuration, but simplifies the programming interface on the device.

2.2 OS Resource Management

This section serves as a brief introduction the operating system concepts used throughout the rest of
the dissertation. For a further understanding of the concepts discussed here the reader is referred to
an operating systems text, such as [Silberschatz et al. 1998]. For this discussion, as in the rest of the
dissertation, we assume a multiuser, multitasking style operating system using multiple private address
spaces for processes, such as a UNIX implementation or Microsoft Windows NT and its descendants.

2.2.1 Process Scheduling

A modern workstation runs multiple processes for multiple users, all of which must share the proces-
sors available on that machine (typically one or two in a modern workstation). In a modern work-
station there may be hundreds of processes running at once, so the processors must be shared using
some form of Time Division Multiplexing (TDM). What happens is that periodically the operating
system will perform acontext switch, swapping the currently active process on a processor for another
process. This way, with suitably frequent switches, all processes appear to be making progress despite
only one being able to utilise a given processor at any one time.

The execution state of a thread of execution within a process is held by the operating system within
a Process Control Block (PCB). For each thread a PCB contains a copy of the processor state (register
contents, status flags, etc.) from when that process was last removed from the processor, such that the
data can be placed back on the processor, or dispatched, and execution resumed as if the process had
not been interrupted. The PCB also contains meta information used by the operating system to manage
the process, such as a reference to its page table (discussed in Section 2.2.2), and a unique identifier for
that process, the Process ID (PID). In multithreaded applications, each thread will have an associated
Thread Control Block (TCB), which is similar to a PCB, in that it contains the active state for that
thread, but contains less meta data. Global state, such as the page table for the process, is held in
another globally used record. Depending on the operating system being used, either the operating
system (kernel level threading) or the process itself (process level threading) will be responsible for
managing the individual threads within the process. For the most part, this distinction is not relevant
to this work, and we ignore the concept of multiple process threads, except where explicitly relevant.

The style of processor scheduler used depends on the style of workload the system is designed
to run. For instance, if the user is running a set of interactive tasks then tasks will get frequent short
bursts on the processor to provide suitable responsiveness. However, swapping between processes
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is not a zero cost operation: it takes time to context switch between processes, during which the
system gets no useful work done on the processor in question. In addition it can causes caches to be
flushed, which also causes a temporary performance degradation. Thus on a system running batch
applications, where user responsiveness is less important, applications will get longer less frequent
runs on the processor, reducing the amount of time lost on context switches. The amount of time
a process gets on a processor is referred to as thescheduling quantum, and is typically fixed for all
processes on a system, and is typically measured in milliseconds. The batch scheduler in Linux has a
quantum period of 10 ms and NetBSD and Windows NT use 100 ms.

Processes are not always able to continue executing, for example they could be blocked waiting
on I/O, during which there is no point in having this process be in control of the processor, or they
could have requested to be made inactive for a period. The processes in an operating system are
moved between a series of states that control where they are in relation to the processors, which is
shown in Figure 2.2. Processes start in the start state when they are created and initialised, after which
they are added to the set of runnable applications. Runnable processes are those that are able to make
use of a processor, and it is from this set that the operating system will choose the next process to
schedule onto the processor on a context switch. Running processes are those that currently occupy a
processor, and there can never be more running processes than there are CPUs in the system (though
there may be less). Processes stop running for three possible reasons. Firstly, the process runs for
the entire quanta and the operating system hands control of the processor to another process, so the
current process is put back in the runnable set ready to be run again at a later date. Secondly, the
process terminates (either intentionally or through an unrecoverable error) in which case it is halted
and destroyed. Finally, the process may either request an I/O interaction which causes is to block until
the interaction is completed or request to be suspended temporarily. In either case the process is put in
the blocked state until either the I/O interaction requested resolves or the suspend time period expires,
after which it is made runnable again.

Selecting a process to run from the set of processes marked runnable is an important task and is
handled by aprocess scheduling algorithm. Again, there are different types of scheduling algorithm
that work better for different classes of workload. A scheduling algorithm needs to attempt to ensure
fairness in the system; it has to ensure that all processes get some time on the processors so that
they may make forward progress. The most basic algorithm is around robinscheduler, where the
set of runnable processes are held in a First In/First Out (FIFO) queue, ensuring that each process
gets executed in turn. Round robin scheduling works well in a batch processing system, but in an
interactive environment we may wish to make processes that were blocked on I/O a higher priority
when rescheduling, so that they may respond more quickly to user requests. Such processes may
be inserted into the head of the round robin queue, or a set of FIFO queues can be used, with each
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representing a different priority and queues of higher priority being emptied first. However, these
systems have potential problems such as starvation, where a low priority process never gets access to
the processor as there are always other processes running at a higher priority.

2.2.2 Memory Management

When a system interleaves the execution of set of processes, it must ensure that they do not interfere
with each others’ data held in memory. If each application has hard coded into it a range of memory
addresses to use, then without any form of protection or management applications are likely to attempt
to utilise the same areas of memory, with most likely undesirable consequences. Trying to ensure
that all possible applications never attempt to access the same piece of memory is unfeasible, so a
technique is needed to allow multiple processes to exist in memory simultaneously.

An early technique was to give each application a contiguous stretch of memory as needed, with
applications using relative offsets for calculating addresses or using a base address register in hardware
to provide the correct offset for internal addresses. If there were more applications than could fit in
memory, thenswappingwas used. Whilst some applications are held in main memory, those that do
not fit are held on backing store. For processes to execute their memory image must be in physical
memory, so there are essentially two sets of runnable processes under this scheme: those that can be
ran from memory currently and those that need to be moved from backing store to physical memory
first. The operating system will periodically swap processes between backing store and physical
memory to ensure that all processes can make progress. The drawback with swapping is that it works
at a large level of granularity, requiring entire processes’ memory images to be moved on a regular
basis, which became more expensive as address spaces grew.

The basic system used on most modern workstation operating systems isvirtual memory man-
agement. Each process is provided with a private virtual memory space in which to work, to which
no other process has direct access. The size of the virtual memory space is not necessarily bound by
physical properties, but rather by the physical memory size in conjunction of the amount of backing
store available. The actual addressable amount is typically much greater (e.g., 4 Gbytes for a 32 bit
system); applications can address any part of the address range, so long as the total used amount does
not exceed the amount of virtual memory available. Because the address space is private, no processes
can access another process’s memory. This virtual address space is referred to as a virtual memory,
and addresses to locations within virtual memory are referred to as virtual memory addresses. To be
useful, virtual memory needs to be backed up by physical memory so that processes may interact with
it, but generally it is not possible for all virtual address spaces to be mapped into physical memory at
once. To solve this each process’s virtual address space is kept on disk1 and parts are mapped to phys-
ical memory as they are needed. The operating system feeds the mapping from valid virtual address
to physical address into address translation hardware held on the processor. When the current process
issues a read or write request using a virtual address, the address translation hardware will either con-
vert the address into a physical address before putting the address on the memory’s address bus, or
alert the operating system that it could not achieve the mapping, so that the operating system can load
the part of the virtual address space needed into physical memory and update the mappings. If the
physical memory is currently full, then the operating system will unload one or more virtual memory
regions from physical memory and remove those addresses from the address translation hardware,
freeing up room for the new mapping to be loaded. At any given point various regions from different

1Only the modified parts need actually be stored, the rest can be assumed to be undefined and as such needs no backing
store until it is modified.
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processes’ virtual memories may be loaded into physical memory, but because the address transla-
tion hardware controls what regions of physical memory a process can access, there is no danger of
processes accessing each other’s data.

If virtual memory was mapped on an individual location by location basis, then the number of
access faults caused when a process tries to access an address that has not been mapped yet would be
unacceptable. Most of a process’s run time would be spent in the operating system resolving requests.
Thus larger regions are mapped at once, reducing the number of faults that occur, with the trade off
of possibly loading in data that will not be needed. There are two principle types of region used
for loading sections of virtual memory into physical memory: paging, as used in most unices and
Windows NT, and segmentation, as used in IBM’s OS/2.

2.2.2.1 Paging

Paged virtual memory [Belady 1966] divides both the physical memory and virtual memory spaces
into a series of fixed sized contiguous blocks called pages. When a process accesses a location within
a virtual memory page, that entire page is transferred into a free physical memory page. An example
of a pair of address spaces mapped into physical memory can be seen in Figure 2.3. The size of pages
is always made to be a power of two (typically 4 Kbytes) to simplify the address translation hardware.
This enables the physical address to be broken down into a page number (the most significant set of
bits) and an offset within that page (the least significant bits), thus in the address translation hardware
the most significant bits are simply replaced with the physical page number with the low order bits
remaining unmodified. For each process the operating system must store apage table, which contains
information about each page a process owns, noting access permissions, whether it is currently loaded,
whether it has been modified, and so on. This table is created in a format understood by the processor,
so that it can resolve page mappings when a process generates an address. However, accessing the
page table is slow; the processor must read data from main memory each time an address translation
is required. Instead a cache of recently used page address translations is kept on the processor in a
Translation Lookaside Buffer (TLB). The TLB is a small lookup table that, given a page number, will
return either a physical page number, or trap, causing the processor to examine the page table and
load the correct entry into the TLB. Note that page table is specific to an individual application, so the
processor needs to be pointed to the correct page table on each context switch. Obviously the TLB
contents are also process specific, so must either be flushed on each context switch, or tagged with the
PID of the process to which they belong. If tagging is used then look ups are done using a PID and
virtual address tuple, which forms a system unique address space.

Given the number of processes running on a modern system, it is probable that more virtual
pages will be required by the currently active set of tasks than there are physical pages. This means
that the operating system will eventually have to evict some pages held in physical memory back to
backing store in order to have space for new ones. There are numerous different algorithms used for
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choosing which pages to select, referred to aspage replacement algorithms. Classic page replacement
algorithms include FIFO selection, random selection, Least Frequently Used (LFU), where the page
that has been used the least number of times is evicted, Least Recently Used (LRU), where the page
furthest away in history in evicted, second chance, where pages are examined in a cycle and pages
unaccessed since the last time round are evicted, to name but a few. The operating system may choose
to select any available page for eviction, or restrict itself to the set of pages belonging to the currently
faulting process (to protect other processes from one with greedy memory access behaviour). To
aid the operating system, the processor may maintain usage statistics (kept in the page table) to help
the operating system implement history based algorithms like LRU and LFU. In a similar vein, the
processor may also provide information on whether the page has been modified or not, as unmodified
pages will not need saving to backing store before eviction.

2.2.2.2 Segmentation

Rather than using fixed sized blocks that bear no conceptual relevance to the process as is done in
paging, segmentation uses logical blocks — segments — from within the program: procedures, data
objects, and so on [Lister 1975]. When a particular segment is needed, the entire segment is moved
into physical memory. Rather than using flat virtual addressing that is used in paging, a program
generates addresses comprising segment ID and offset pairs. The address will then be translated
in hardware by referring to a table that contains a list of valid segment IDs, their base address in
physical memory, and a length field against which the offset value is compared to protect against
running off the end of a segment. As before, when physical memory has insufficient space to accept
new segments, the operating system has to find a way to free up physical memory, which it could do
by moving segments in and out of memory similar to how pages are moved. However, this is a more
complicated operation due to the variable length of segments; allocating arbitrary stretches of memory
is a more complicated problem than managing the fixed size pages described earlier. For this reason,
segmentation tends to be implemented on top of paging.

2.2.2.3 VMM and Swapping

Although by and large most modern operating systems rely on paging for virtual memory manage-
ment, some systems implement a two level system that uses both paging and swapping (both BSD
4.4 [McKusick et al. 1996] and Windows 2000 [Solomon & Russinovich 2000] use this). By default
the operating system will use paging to share physical memory between the processes on the system,
but when the memory system is under heavy load, the operating system may spend a large amount
of time moving pages in and out of memory. To reduce contention, the operating system will then
decide to swap one or more processes out to backing store in order to reduce the level of contention
for physical memory. After a certain time frame the operating system will then swap those processes
back in and move others out so that all applications are able to make some progress.

2.3 Research into Microprocessor/FPL Hyrbrids

Having given the necessary background material needed to understand the work that follows, the next
set of sections cover the existing body of work in reconfigurable processors and FPL management.

The idea of combining microprocessors and FPL is not new, and a body of research exists in this
field already, which is reviewed here in terms of the general approach taken. This section simply
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describes the existing work; discussion of the relative merits of the different approaches will be done
in Section 2.7. The existing body of work can be described as belonging to three broad categories:

1. Loosely Coupled FPGA and CPU Systems

2. Tightly Coupled FPGA and CPU Systems

3. CPU on an FPGA Systems

2.3.1 Loosely Coupled FPGA and CPU Systems

The easiest way to take advantage of FPL from a microprocessor is to use a separate module connected
over a bus (e.g., a PCI card) with an FPGA mounted on it. Numerous projects have used this ap-
proach to accelerate particular applications such as PostScript rendering [Singh et al. 1997, MacVicar
et al. 1999] and graphics processing using PhotoShop filters [Ludwig et al. 1999]. Each of these
projects used Xilinx FPGAs and memory mounted on PCI cards plugged in to a workstation to handle
the respective processing algorithm. These cards come ready to use with device drivers, allowing
programmers ready access to the new resource.

Whilst the simple nature of the interconnection makes this an easy option from a construction
perspective, the solution does suffer from communication latency problems. Because the data being
processed resides in main memory, and must be moved to and from the expansion card, any accel-
eration must amortise this communication overhead. In [Ludwig et al. 1999] some filters performed
better in software than on the FPGA for this reason.

Currently, there is no access management controlled by the operating system, as this would require
more fundamental support in the lower levels of the operating system. Under the proposed systems
described above it is assumed that the card is dedicated to a single task over a long period, and no
attempt is made to protect the contents of the FPGA. Given the communication problems described
above, any attempt at fine grain context switching on the card would be likely to lead to unacceptable
performance problems.

2.3.2 Tightly Coupled FPGA and CPU Systems

Moving on from having separate ICs for the processor and FPL, the next level of integration is to move
the FPL onto the same chip as the processor. This reduces the communication overhead, bringing the
reconfigurable device closer to the controlling processor and allows the FPL to take advantage of the
traditional memory hierarchy.

2.3.2.1 PRISC

The Programmable Instruction Set Computing (PRISC) architecture was the first to propose linking
a processor with FPL on a single chip [Razdan & Smith 1994]. The aim was to move away from
application specific programmable logic architectures, and produce something that could be used to
enhance different types of application. PRISC proposed augmenting a standard Reduced Instruction
Set Computing (RISC) processor with multiple Programmable Function Units (PFUs), which connect
to the processor’s register file along with the conventional function units. The contents of these PFUs
are generated by an extra compilation stage, which looks for code sequences that it can convert into
PFU instructions, thus hiding the PFUs from the programmer. The amount of work placed in a PFU
is quite small, limited to 15 levels of logic in order to meet the processor’s timing requirements. The
compiler typically generates up to 200 PFU configurations per application.
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Each PFU consists of a LUT and wiring matrix, and does not use the IOBs or registers found
in a conventional FPGA fabric. Because PRISC extends a RISC architecture, the aim was that all
instructions should complete in a single cycle, so state in the array was not required. The lack of state
in the PFUs removes the requirement for fabric state needing to be preserved on a process context
switch. The SRAM which controls both the LUT contents and routing layout is memory mapped to the
processor’s address space, which means that no new instructions are required to load instructions into
the PFU; conventional memory transfer instructions are used to load instructions. The only change
the authors made to the instruction set was the addition of an execute PFU operation. This instruction
simply takes a logical PFU identifier, and two input register indices and a result register index. In the
initial PRISC test system there is only room for a single PFU, and with this is associated an ID register
holding the logical identifier of the currently loaded instruction. If an execute PFU instruction occurs
and the PFU identifier in the opcode does not match the contents of the ID register then a processor
exception occurs. The operating system can then respond to this by finding the correct instruction and
loading it into the PFU.

2.3.2.2 OneChip

The OneChip architecture was first proposed in 1996, since when there have been a number of varia-
tions. Here we describe the original implementation and the most recent implementation.

The original OneChip [Wittig & Chow 1996] design takes a more extensive approach to combining
FPL with a processor than the PRISC authors. At an abstract layer, the OneChip authors propose a
similar system to PRISC, with a RISC (in their case MIPS-II) processor core connected to a group of
custom circuits loaded in reconfigurable logic. However, the actual implementation is substantially
different. On a OneChip processor design the RISC core is surrounded by the FPL array, which can
be used both for new data processing instructions and, using IOBs provided in the array, new I/O
instructions (for example, the authors demonstrate using a UART on the FPL with two instructions
as the interface). The FPL is not rigidly divided up into different instructions, rather a particular
configuration of the FPL may divide up the FPL as it sees fit. In addition to including IOBs, the
FPL array also includes registers, allowing for more complex, and therefore larger, instructions to be
implemented (such as the aforementioned UART example). The FPL is a single context system, but
multiple configurations can be stored in the on-chip SRAM bank for fast access.

One of the advantages of the first generation OneChip over PRISC for embedded systems is that
the system can be used as a reconfigurable System on Chip (SoC) device, thanks to the IOBs. It
is likely that such as system would benefit greatly from a partially reconfigurable FPL array, as it
is unlikely that custom instructions that touch IOBs, thus interfacing with dedicated hardware in the
outside world, will change between applications (other than freeing up space around the IOBs to make
room for data processing instructions).

The third generation OneChip [Carrillo & Chow 2001] is a more complex design, featuring multi-
ple FPGA link blocks as part of a superscalar RISC processor with out of order execution. As before
the system can hold multiple configurations on chip, each being associated with a particular FPGA
block. As there is only a finite amount of space for configurations on the processor, the architec-
ture provides support for managing which configuration data is held on the processor, using a LRU
algorithm to move configurations off the processor when there is no free space to load a new config-
uration. Unfortunately, the authors had not had time to measure the performance of this algorithm
against other possible management algorithms. To enable management of the new instructions in the
pipelined processor instructions must be specified with a fixed issue latency, describing the number of
cycles the processor must wait before a result is ready.
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Despite the more complex architecture, the new OneChip design is still designed with running
just a single application in mind. Instructions are associated with a system global identifier which
the application can then use to invoke their instructions as they are required. This means that should
another process need to use the reconfigurable resource it must either be guaranteed to use a separate
identifier space for registering instructions, or the operating system in charge must unload all the
currently stored configurations on a context switch.

2.3.2.3 CoMPARE

The CoMPARE architecture also describes a RISC processor connected to a single array of FPL [Sawitzki
et al. 1998]. Rather than containing just an ALU, it uses what the authors call a Reconfigurable Pro-
cessing Unit (RPU). The RPU contains both a conventional ALU and an array of FPL, referred to
as the Configurable Array Unit (CAU). Inside the RPU, the ALU and CAU may be connected to run
either in parallel or in sequence, and unlike most function units, the RPU takes four operands and re-
turns two results, as a way of increasing the data bandwidth of the system. Despite using a prototype
with just an 8 bit data width, the authors demonstrate a two to four times performance increase over a
32 bit MIPS R2000. However, CoMPARE uses a single FPL array, which is dedicated to a particular
circuit, unlike PRISC and OneChip, which support multiple instantiated circuits simultaneously. As
with PRISC, the array is stateless, removing the need for its contents to be preserved over a context
switch.

2.3.2.4 Garp

Another RISC based hybrid is the Garp architecture [Hauser & Wawrzynek 1997]. Garp ties a 32 bit
MIPS-II core to a reconfigurable array. The array consists of a custom fabric which the authors claim
is better suited to the type of operations used in a hybrid device than a conventional FPGA fabric would
be. The array has been designed to provide access to the CPU’s data bus, providing circuits with full
access to the CPU’s memory hierarchy. Additionally, rather than configuring the array to processes
bits, the array works in terms of two bit pairs, reducing the amount of configuration data required by
working on the assumption that most processor bound tasks work on data sizes greater than one bit in
granularity. Custom instructions loaded into the reconfigurable array may run for a number of cycles,
as determined by an instruction operand, and the array can run concurrently with the conventional
ALU. The reconfigurable fabric on the Garp architecture does include a small amount of state (the
authors kept the amount small to help reduce the context overheads), and uses configuration caching
to help reduce circuit switching times.

2.3.2.5 Chimaera

Chimaera [Ye et al. 2000] is a pipeline optimised reconfigurable processor architecture. Chimaera
adds a reconfigurable unit to the processor containing a large FPL array, which is allocated on a one
dimensional basis between multiple circuits. The FPL array is associated with its own register file and
is managed by an Execution Control Unit (ECU) and Configuration Control and Cache Unit (CCCU).
Programs are built from software and a collection of custom hardware instructions. Each custom
hardware instruction has an ID associated with it, which is then used to invoke the instruction. The
ECU is responsible for decoding attempts to invoke instructions and interacts with the CCCU, which
does the programming of the reconfigurable array. At any given time multiple custom instructions may
be loaded into the FPL array, and the CCCU also stores a small number of recently used configurations
for fast reload.
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2.3.2.6 SHARC DSP Hybrid

[Graham & Nelson 1999] describes a hybrid architecture based on a Digital Signal Processing (DSP)
processor, with the aim of producing a high-performance system for embedded applications. The
authors have designed a processor that extends a SHARC DSP processor with a configurable array
in a similar manner to the Garp architecture. As is common with embedded systems architectures,
the SHARC contains on chip SRAM (512 Kbytes in this case) to which the FPL array has direct
access, as well as providing the FPL access to the ALU’s register file. Another similarity with the
Garp architecture is the ability to run the conventional ALU in parallel with the reconfigurable array.
No support is provided in this architecture for sharing the array or speeding up circuit switches, but
given that the device is aimed at embedded systems this restriction is understandable.

2.3.2.7 Miscellaneous Tightly Coupled Hybrids

All the above architectures have been based on fairly simple conventional processor designs, which
could be suited to a workstation environment. Other styles of architecture do exist, though these are
not aimed at being used in a typical workstation; we include these examples here for completeness.

The Raw Architecture [Waingold et al. 1997] is a less conventional architecture, aimed at max-
imising parallelism inside the processor. A Raw processor consists of numerous parallel execution
units, each with a simple ALU and a small area of FPL. This architecture is aimed at DSP/filtering
applications where it is easy to map from the low-level parallelisation to the problem’s requirements
(typically systolic in nature).

Similarly, the Xputer class of devices represents a novel architecture that utilises FPL in its core
[Hartenstein et al. 1989, Hartenstein et al. 1991]. The Xputer device attempts to provide the paral-
lelism required for systolic applications (e.g., DSP applications) below the instruction level. Unlike
traditional computers, the Xputer is not control driven, but data driven, thus they have no traditional
instruction stream. The work on an Xputer is carried out in the reconfigurable ALU (r–ALU). Pro-
grams on an Xputer load large instructions into the r–ALU, thus remove much of the need for control
flow. This architecture is again designed for applications which can take advantage of the benefits of
systolic arrangement.

2.3.3 CPU on FPGA Systems

The extreme approach to removing communications problems between the processor and the FPL is to
implement a processor on top of an FPGA. This work can take two approaches: implement a standard
processor core next to the reconfigurable parts, or implement a completely reconfigurable processor
where the core or the CPU itself will change.

The Dynamic Instruction Set Computer (DISC) is an example of a completely changeable pro-
cessor [Wirthlin & Hutchings 1995]. Rather than implement an entire CPU, the DISC can actually
be viewed as a formalised technique for scheduling circuits on a FPGA device which supports par-
tial reconfiguration. The DISC borrows certain elements from a traditional CPU: it has a notion of
instructions, and it uses a data, address, and control bus. However there are no inbuilt operations be-
sides memory accessing and branching; everything else is loaded into the reconfigurable array. DISC
allocates instructions on the array by allocating them space on a one dimensional basis. This can be
seen in Figure 2.4, which shows two tasks allocated on an FPL array. The array has the address, data,
and control buses running the entire length of the array along the axis of allocation, to which circuits
can attach themselves as necessary. Each instruction has coded into it an opcode to which it should re-
spond. The instruction dispatch unit on DISC places the opcode of the instruction it wishes to invoke
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Figure 2.4: Banded FPL allocation using control buses

on the control bus, and circuits observe this at all times and respond as necessary. To overcome the
limited space on the FPGA used to implement DISC, the authors designed DISC to allow it to swap
circuits on an off the array. However, given the limited space, it is expected that circuits will actually
reside on the array for a long enough period to amortise the reconfiguration costs.

A CPU based approach is described in [Gilson 1994] and [Gilson 1997]. These describe a RISC
processor and Reconfigurable Instruction Execution Unit (RIEU) implemented entirely on an FPGA.
It is implied that, similar to the CoMPARE architecture, only a single circuit can be present in the
processor space at any one time. The system cannot operate on its own, as it relies on a host processor
to carry out the reconfiguration of the FPGA. Again, this kind of arrangement does not lend itself well
to the frequent reconfiguration we may encounter with heavy loads. The Nano processor [Wirthlin
et al. 1994], which implements a RISC core on an FPGA, leaving the rest of the fabric for custom
logic, is only designed to be configured once for a given application.

A different approach to constructing a flexible processor on an FPGA is proposed in [Donlin
1998]. The Flexible Micro RISC (URISC) architecture is based on a processor core with just a single
move instruction built on a dynamically reconfigurable FPGA. To process data, custom processing
elements are moved onto the datapath, so that when data moves through the processor it passes through
the processing element before being returned to memory.

Although suited to many applications, this type of architecture does not lend itself well to a work-
station style environment. Even with a reconfigurable function unit, most software will still make
heavy use of normal CPU functions such as integer maths, address calculation and branching. There
is no advantage of placing this functionality onto a reconfigurable array; it will just suffer space ex-
plosion and slow down.

2.4 Existing Hybrid Systems

In the last three years, the concept of a hybrid processor/FPL system has been taken up by numerous
companies, notably by both the major FPGA vendors, Xilinx and Altera. This section outlines the
current offerings in the field. In particular we provide a detailed case study of one, the Xilinx Virtex-II
Pro, in order to highlight some of the detailed problems faced when implementing designs on such a
system.

Each of the commercial hybrid offerings offer a tight coupling in terms of Section 2.3, either being
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Figure 2.5: Overview of PowerPC 405 core

essentially part processor and part FPGA, or having the FPL as a functional unit of the processor. All
of the offerings are aimed at embedded systems, using either microcontrollers or embedded versions
of microprocessors. Additionally, not all the parts are reconfigurable; the Triscend A7 and Infineon
20xx are configurable, the custom logic part being fixed at design time.

2.4.1 Xilinx Virtex II Pro

The Virtex-II Pro architecture [Xilinx 2002] is Xilinx’s hybrid FPGA and processor range, which was
developed with IBM and released in early 2002. Virtex-II Pro devices are an extension of the Virtex-II
FPGA architecture (which itself is an extension of the Virtex range described in Section 2.1.1) which
contain fast I/O ports and between zero and four embedded processor blocks. These processor blocks
sit within the CLB array, allowing custom cores to be instantiated in the CLB array and connected to
the processor blocks.

2.4.1.1 The Processor Blocks

Each processor block in a Virtex-II Pro device contains a PowerPC 405 core. The 405 is a 32 bit
implementation of the PowerPC architecture [Motorola 1997] developed by IBM, aimed at embedded
systems, a general overview of which can be seen in Figure 2.5. PowerPC is a RISC based Instruction
Set Architecture (ISA) which supports a set of different 32 and 64 bit implementations, designed to
scale from embedded devices, like the 405, to large servers, like the IBM POWER4. The 405 cores
embedded in the Virtex-II Pro can run at a clock speed of 300 MHz.

At the core of the 405 is a 32 bit integer ALU and a 32 entry general purpose register file, shown
in the CPU section of Figure 2.5. In addition, there are eleven special purpose registers used for
purposes like the program counter, link register (used to store the return address during a function
call), status bits, and so on. The CPU section of the core also contains the fetch and decode logic,
which is used to retrieve instructions from memory and work out how to process them. The MMU
section contains a set of TLBs for use in virtual memory management (as discussed in Section 2.2.2).
Once addresses generated by the CPU have passed through the MMU section, they are passed to the
cache units, the Instruction Cache Unit (ICU) and the Data Cache Unit (DCU). The cache units are
used to manage memory interactions between the 405 core and the rest of the system. There are two
memory interfaces that the units access, which are mapped into different parts of the memory address
space. The main access method is over the Processor Local Bus (PLB), to which other devices such
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as memory controllers and peripherals are connected, or alternatively to small amounts of On-Chip
Memory (OCM), which provide small high speed memories (the speed depends on the size of the
OCM, but small enough memories can be accessed in a single clock cycle). The cache units divide
the 4 Gbyte address space into 32 contiguous 128 Mbyte regions, over which the cache can be active
or inactive. Reading regions that have the cache enabled results in the 405 doing a burst transfer of
256 bits to fill a cache line at a time, whilst unmapped regions are accessed one 32 bit word at a time.
The caches themselves each consist of a 16 Kbyte 2-way set associative cache, and do not support any
cache line locking abilities.

2.4.1.2 Processor Block Interface

The Virtex-II Pro uses the IBM CoreConnect architecture to connect custom IP cores to each processor
block, as shown in Figure 2.6. The processor blocks are connected to a high speed bus called the
Processor Local Bus (PLB). The PLB runs at processor speed and is used by the processor block and a
small number of system cores. The PLB should not be used for peripherals, so as to reduce contention
on this main system bus. Instead, peripherals and other devices, such as memory interfaces, should
be connected to the On-chip Peripheral Bus (OPB), which is connected to the PLB over a bridge. The
OPB is a 32 bit bus which runs at a slower clock speed than the PLB, which on the Virtex-II Pro is
100 MHz. Accesses to both of these buses are controlled by arbitrator devices which allow devices
on the bus to be given a priority when contention arises. Cores attached to the PLB and OPB use a
memory mapped interface to interact with the processor. Each core is designed to respond to a certain
set of addresses, and when the core sees its addresses on the address bus it should respond by reading
or writing data to or from the data bus and setting the appropriate bus control signals. Conceptually,
the programmer writing software for processor blocks does not explicitly access devices, but instead
reads and writes from memory.

Both the PLB and OPB are used for data transfers between parts of the system; control signalling
is handled through a separate bus interface, the Device Control Register (DCR) bus. As shown in
Figure 2.6, the DCR bus is driven directly by the processor using a special group of instructions,
and can be attached to a register interface on each core. These registers are then read and written as
appropriate to control the core. However on the Virtex-II Pro a separate DCR bus is typically used for
controlling cores. An OPB to DCR bus bridge is attached to the OPB and then that interface is used
for controlling cores. This DCR bus is then memory mapped rather than being controlled using the
PowerPC’s DCR instructions.
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2.4.1.3 Interaction Between Software and Hardware

Although the memory mapped interface described above provides each device with an abstract in-
terface similar to that of a memory device, a schism arises because peripherals have fundamentally
different behaviour of which the programmer must be aware. The cache units in the processor blocks
are designed to interact with devices that exhibit the properties of a memory system: reading and
writing depends on order and not timeliness, burst transfers happen to sequential addresses, and so
on. Unfortunately these assumptions do not hold true for many devices, and as such the programmer
must code device interactions carefully to prevent the cache units causing undesirable behaviour.

Most modern processors will not necessarily issue memory interactions when they occur in the
instruction stream; they may delay them until a more appropriate time, and may even rearrange the
order in which the interactions occur. When communicating with a device rather than a memory this is
typically an undesirable property. For example, a programmer sending a device on/off command will
want it to be honoured immediately, but the memory system could delay these signals for a short time,
so the programmer needs to explicitly force these memory interactions to occur. On the PowerPC this
is easy to achieve using theeieio (Enforced In–order Execution of I/O) instruction, but it is down to
the programmer to remember to include this instruction after device interactions.

To enable the processor core to use burst transfers to interact with a device, which may be nec-
essary to obtain higher system throughput, the transfers to and from the device must go through the
DCU. As described in Section 2.4.1.1, using the DCU allows the processor to transfer 256 bit cache
lines in a single burst, rather than using individual 32 bit transfers. A mismatch occurs here because
a device like a FIFO will have a single address mapped to the input or output on its interface, but the
DCU expects to be accessing sequential memory addresses, starting from a cache line aligned address.
Thus, when a burst transfer occurs, even though the start address may be correct, subsequent addresses
will be incorrect, and could potentially cause other undesired interactions to occur. This means that
the designer of the core must be aware of this and map any interface that wants to take advantage of
burst transfers to an entire cache line worth of addresses.

From the software side, the programmer must ensure that they build up a cache line in the DCU
atomically. To do this they must use multiple register instructions, which read or write multiple
registers in an atomic instruction, which is the only way to guarantee that a cache line is filled or
drained atomically. If the programmer does not do this, then there is no way to guarantee that the cache
line will stay in the cache until the processor has done reading or writing it. A further complication is
that when building a new cache line for writing, the DCU first reads the current contents of memory
into the cache. It does this as the DCU does not know how much of the cache line will be modified by
the software and needs to ensure that the entire cache line contains valid data for when it is eventually
flushed. This can be undesirable when accessing a device, as unwanted reads form a device may have
side effects. Thus the programmer must remember to explicitly blank the cache line, filling it with
zeros, each time a new line is generated.

Overall, none of the above problems are insurmountable, but they all add to a series of subtle
problems that system designers need to constantly remember when accessing devices.

2.4.2 Other Commercial Hybrids

The Triscend A7 [Triscend 2000] is an ARM based Configurable System on a Chip (CSoC) device2.
The A7 consists of a 32 bit ARM7TDMI core (described in Section 4.2.1) running at 60 MHz con-
nected over a Configurable System Interconnect (CSI) bus to an FPL array, referred to as the Config-

2Triscend also do a smaller 8 bit CSoC device, the E5, based on the 8051 Microcontroller.
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urable System Logic (CSL) Matrix, which is equivalent to up to forty thousand gates. The A7 also
contains typical embedded system processor parts: it has 16 Kbytes of on–chip SRAM, two UARTs,
an interrupt controller, and a set of timer resources. The CSL Matrix has two interfaces to the rest of
the system. Internally, registers in the CSL Matrix can be memory mapped to appear on the CSI bus.
The processor core can then read and write these memory mapped registers to utilise the custom logic.
The CSL Matrix also has an external interface to device pins, allowing it to be used as a form of glue
logic between the processor and external devices. The A7 is a configurable device: the configuration
bitstream for the CSL Matrix is read from memory on reset, so it is not possible to change the contents
of the FPL at run-time.

The Altera Excalibur device [Altera 2001] is similar to the Triscend device, but on a larger scale.
Excalibur uses an ARM922T core, running at 200 MHz, and has an array based on Altera’s APEX
20KE FPGA range, capable of supporting designs of up to one million gates. Similar to the A7,
the Excalibur has on-chip memory and embedded system peripherals. The processor, memory, and
peripherals are placed on a stripe along one side of the chip, with the rest of the device being given
over to the FPL. The FPL array has a internal bus interface, conceptually similar to the CoreConnect
architecture used in the Virtex-II Pro, whereby custom logic is memory mapped into the processor’s
address space, and an external interface allowing custom logic access to device pins. Similar to the
A7, the act of reconfiguring the FPL array also causes the processor to be put into reset state.

The mixed signal (i.e., both digital and analogue electronics) SoC part FIPSOC, provided by Sidsa,
has a reconfigurable array connected to a microprocessor [Faura et al. 1997, Sidsa 2000]. The FIPSOC
architecture consists of an 8 bit 8051 microcontroller, a single digital FPL array, a single analog cell
array, some on-chip memory, and I/O peripherals. The digital FPL array is a LUT based architecture
that uses both a multicontext fabric and supports partial reconfiguration. The array consists of Digital
Macro Cells (DMCs), which contain several LUTs and registers and some internal wiring resources.
The output of each DMC is memory mapped into the microcontroller’s address space, enabling it to
read any DMC output. The microcontroller’s address and data buses can also be connected to the wire
matrix in the FPL, enabling cores in the FPL to have memory mapped interfaces.

All the above approaches use a bus/memory map system to connect the processor to the FPL;
an alternative approach to integrating the FPL can be seen in the Infineon 20xx [Infineon 2000]. In
the Infineon 20xx is a DSP processor, which has an upgradable instruction set, similar to the PRISC
architecture. In addition to the normal execution unit, the 20xx has space for 4 “PowerPlug” modules,
which are custom instructions built at design time to suit a particular problem. Because the compiler
needs to understand where the instructions are at all times, the contents fo each “PowerPlug” module
is fixed at design time.

2.5 FPL Management

Despite the increasing size of FPGA devices, allowing greater amounts of logic to be realised on the
array, there is still a need for a way to manage the FPGA’s contents. There are two main reasons for
this. The first reason is that a given problem may require more hardware than can fit onto the array
at once, so the problem is partitioned into a group of circuits which are swapped on and off the array
as demand dictates, a notion which is often referred to asvirtual hardware. The second reason is that
the FPGA may be shared between a set of tasks, each of which has its own circuit(s). The area of FPL
management is now becoming a hot topic in the FPL resource community.

A way of managing an FPGA connected to a host computer is to allow the array to be virtually
divided up between a number of circuits, so that multiple applications can reside on the FPGA simul-
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taneously, typically relying on partial reconfiguration. One technique for this is using the Swappable
Logic Unit (SLU) model described in [Brebner 1996]. Here the FPGA is treated as either asea of
acceleratorswhereby the resource is used to instantiate multiple independent SLUs, or as aparallel
harnessin which SLUs cooperate on a single problem and communicate with each other. Under the
sea of accelerators model, applications register their SLUs with an operating system, make requests
for SLUs to be instantiated, and requests for them to be executed. On registering an SLU the system
becomes aware of the size and I/O requirements of an SLU and also the raw data required to later in-
stantiate it on the array. When asked to instantiate an SLU, the system will attempt to find the minimal
free space required for the SLU on the FPGA, removing existing SLUs using an LRU policy if neces-
sary. Finally, on execution, the system maps the application’s input(s) to the SLU’s input register(s),
and then similarly returns any output(s). A similar technique is proposed specifically for an XC6200
based expansion card in [Burns et al. 1997].

Configuration Cachingis a technique used in processor/FPL hybrids when the FPL resource can
contain multiple circuits of which only one can be active at a given time. The inactive instructions on
the array are considered as cached, ready to be used. There are numerous policies that can be used, and
the type of policy that can be used depends of the type of reconfiguration model the FPL supports. The
configuration caching problem also differs from either processor cache management, or virtual mem-
ory management (which is more analogous), as the configuration bitstream size will vary from circuit
to circuit, adding a further layer of complexity. A comparison of configuration caching techniques
for different FPL models is given in [Hauck et al. 2000]. The authors divide the caching algorithms
into three classes: run time algorithms, which use recent history information (e.g., LRU); complete
prediction algorithms, which base the scheduling on the order of loads to get optimal scheduling; and
general off-line algorithms, which use profiling information to estimate usage. To reduce the schedul-
ing complexity, the authors apply a one dimensional allocation model. The authors propose suitable
policies for each FPL model, which compared to not using configuration caching show a performance
benefit. They also show that despite the additional hardware costs, both multicontext and partially
reconfigurable devices out perform a single context device (based on estimated resources for the same
die area).

Although the complete prediction and general off-line algorithms used in the above studies are
useful for a constricted environment like an embedded system (and at that only a small subset thereof),
in a more complex environment such as a workstation environment, where there is no way to gather
the information required for such techniques, the only option is to use run time algorithms. [Sudhir
et al. 2001] extends the work in [Hauck et al. 2000] by examining a variety of run time caching policies
and applying them to the partially reconfigurable FPL models. Their most successful algorithm is a
history-based algorithm which with suitable hardware support stores information about the order in
which custom instructions occur. What makes this interesting is that it uses more detailing hardware
gathering support than is used in the analogous virtual memory system, which uses very limited
hardware support for usage statistics.

The above techniques have been developed under the assumption that there is a controlling entity,
such as a microcontroller or microprocessor, attached the the FPL device. In such an arrangement the
placement of circuits is left to the controlling entity. The alternative though is to place some logic on
the FPL device itself to make it self controlling. Circuits could then be simply presented to the device
and it would place them without any other form of intervention. In [Brebner & Diessel 2001] such
an arrangement is explored using an FPGA. Dynamically fitting two dimensional cores of differing
arbitrary sizes into a two dimensional array is a computational difficult task, demonstrated to be NP-
complete, and to do so with minimal delay is NP-hard [Diessel 1998]. Because of this the work
concentrates on one dimensional placement, which works well on architectures such as DISC and the
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Xilinx Virtex, which are all configured in columns. The concept is to divide the FPGA into three
regions perpendicular to the axis of allocation. The biggest area is used for SLUs to be loaded into for
running, which is bordered by an area dedicated to buses used for communicating between SLUs. The
final region is dedicated to logic used to manage the placement of SLUs as they arrive. In this work it
is assumed that tasks will leave the array when completed, and tasks are run to completion, with other
tasks being blocked until there is sufficient free space to support them. Thus the two main tasks that
the management layer needs to handle are allocation of space for SLUs and compaction of the array.
To achieve these tasks, the management layer keeps a one dimensional bitmap of allocated columns,
which it uses to find free spaces in a first fit fashion for incoming SLUs. The management hardware
generates a series of ones the same length as the number of columns needed for an arriving SLU and
slides that alongside the bitmap until it finds enough free space. This operation can be carried out
whilst other SLUs are running, so locating free space is a zero cost process from the point of view
of existing tasks, but there is a latency while the match occurs, which is directly proportional to the
width the of the device. Compacting the array is tricker; if the system is to avoid moving circuits off
the array and reloading them then the FPGA architecture needs to support the ability to shift circuits
along the array, which currently no architecture supports. However, with such a feature, SLUs could
be compacted to make room for new SLUs as the array becomes fragmented during use.

In a virtual memory system, paging memory is pure overhead; the application whose pages are
being loaded can make no progress whilst this operation is happening. Similarly in a processor hybrid
system an application does no useful work whilst blocked on a custom circuit loading. The load
time then becomes an important design consideration; if adding more functionality to a circuit will
increase its load time, then the extra load time may negate the performance benefit of using the custom
hardware. Although careful scheduling can attempt to reduce this problem, there will always be some
startup cost where the circuit is brought in for the first time. One technique that could be used to hide
this load is prefetching, a technique used in other fields of computing to ensure that data is loaded
before it is needed, so the application does not need to wait for it to be loaded when it needs it. This
technique assumes that it is possible to load the data either in parallel with other work or at a suitable
idle period, but if successful can hide loading latency. Prefetching is not as simple as it may seem, as
finding a suitable point to prefetch data, especially for large amounts of data, such that the data is not
fetched unnecessarily, is difficult. If the data is prefetched ahead of branches then the prefetch may
turn out to be unnecessary, or worse, remove data from memory that will be needed later. Thus, the
algorithm used for prefetching needs to be carefully considered.

[Hauck 1998] describes prefetching for a single context reconfigurable array attached to a RISC
processor running a single task. The basic idea is that in addition to instructions that execute custom
instructions, there are instructions for prefetching instructions onto the array. These are inserted by
the compiler at what it predicts to be a suitable point. Using the SPEC 2000 benchmarks, the authors
first present an optimal prefetching run implemented by hand, which give an upper bound for the
possible performance gains of an application when using prefetching. The upper bound does show
significant benefits, with the applications reducing the time wasted waiting for circuits by on average
88.6%. Whilst the optimal upper bound is promising, real world examples are unlikely to achieve this.
However, using the output of a static code analysis tool to insert the prefetch operations, essentially
making the insertion of prefetch instructions part of the tool chain, they get an average reduction of
delay of 51.9%, still a substantial saving.
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2.6 Security

Security is an area of FPL design that has typically been neglected. Being flexible devices, FPGAs
are susceptible to a number of attacks, ranging from the conceptual issues (loading a circuit that
is functionally malicious) to physical issues (misconfiguring a device to cause electrical damage).
Given the ubiquity of FPGAs today this issue will need to be considered seriously in future. For a
reconfigurable processor hybrid in a workstation environment this issues is of great import. Unlike
the embedded systems environment in which FPGAs traditional are found, reconfigurable processors
will be more susceptible to attack from malicious programs like viruses.

[Hadžiǵ et al. 1999] provides a detailed overview of the potential attacks that FPL based devices
are susceptible to. The range of possible attacks can be considered as falling into three categories:
Malicious Electrical Level Threat (MELT), Signal Alteration Logic Threat (SALT), and Higher Ab-
straction Level Threat (HALT). The first level, MELT, refers to attempts made to induce electrical
conflicts either inside the device or at the external pins. In Section 2.1 we described how CLBs can
be connected to wires using tri–state buffers. If a device was configured such that one CLB output a
high signal on a wire at the same time another CLB drives the wire low, a short circuit can be created.
Short circuits in an FPL device will draw a large current through that part of the device, possibly caus-
ing physical damage to the device if undetected. Misconfiguring IOBs, which typically use higher
voltages, can similarly cause such damage.

The second and third classes of threat work at the functional level. SALT attacks reconfigure the
device to produce meaningless output, which will either cause the rest of the system to produce incor-
rect results, or may induce unpredictable behaviour in other parts of the system. More maliciously,
HALT attacks reconfigure the device to produce legal output that is designed to cause damage to other
parts of the system.

A workstation with a reconfigurable processor must be prepared to deal with all three classes of
threat. On a current day workstation the amount of trouble a virus or malicious user can cause ranges
from simple annoyance to possible data loss. However, with a reconfigurable processor, a virus or
“hacker” could potentially damage the processor with a MELT attack. Similarly, without proper
security measures in place it is possible that processes may maliciously or accidentally reconfigure
other processes’ circuits, leading to undesirable consequences. A process may also attempt to access
another process’s configuration data to get access to circuit designs it should not have access to in a
multiuser environment.

The authors of [Haďziǵ et al. 1999] offer some general courses of action that may be taken to pre-
vent FPL devices from attacks. A form of configuration data analysis could be used to try and prevent
MELT attacks. Before being loaded into the configuration RAM, a circuit could be analysed for short
circuits and other potentially damaging conflicts, although this could potentially slow down config-
uration loading times considerably. Basic techniques such as using checksums to ensure bitstreams
have not been modified could also be used. Another option is to not allow applications to submit cir-
cuits in such a low level format as configuration bitstreams. Instead, circuits would be provided using
an higher level description which the system would then perform safety checks on before compiling
down to a bitstream, equivalent to how a Java Virtual Machine performs safety checks on byte code
before JIT compiling it.

On the device itself it is possible to provide some basic security against short circuits. Many
FPGAs provide a current level register, the contents of which is compared with the current current
being drawn through the system, which will then generate a signal that can be read by the rest of
the system. This signal can then be used to either reset the device or shut it down before the device
overheats and is damaged. To prevent short circuits within the device, it is possible to remove tri-state
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drivers as a technique from connecting CLBs to wires, and instead use multiplexors. This makes
designing the device more complex and potentially can reduce clock speeds, but makes it impossible
for more than one CLB to drive a wire. The Xilinx Virtex uses such techniques, and some initial work
at Xilinx has shown that the only way to damage a Virtex device by misprogramming it is by using
IOBs.

2.7 Architecture Evaluation

Having laid out the relevant related work, this section looks at the applicability of the existing recon-
figurable processor architectures to our given domain, the general purpose workstation environment.
The aim is to see if any existing architecture makes a good candidate for being managed in such a
system. If no ideal architecture can be found then the section should help describe which features do
and do not work in the given domain in order to drive the specification of a new processor architecture
that is suitable.

2.7.1 Overall Approach

Firstly, the simplest approach detailed was using a separate FPL device connected to the processor over
a bus. This solution lacks cohesion, and has been demonstrated to suffer from considerable latency
issues [Ludwig et al. 1999]. Another drawback of this architecture is that the programmer will need
to consider synchronization and concurrency issues; it would be easier for programmers to manage
application interactions with custom hardware in such a system were it more tightly integrated.

At the other extreme is building an entire CPU on an FPGA, but this solution is seen to be in-
efficient for a general purpose computing device. Although certain applications may benefit from a
completely customizable datapath, most applications will not. It is unlikely that in the near future
software will be built entirely of custom instructions, and indeed based on the limited amount of FPL
that will be available for custom instructions, it is intended that smaller applications running on the
machine should not use custom instructions. For example, on a UNIX system many tens of daemon
processes run in the background. If every one of these required the use of custom logic then we do not
believe the system could reasonably cope. Additionally, the need for traditional instructions to deal
with operations such as integer math, boolean logic, address calculation, and branching will still exist
in most applications. Putting the logic for these instructions onto the FPL will increase their space
and time requirements needlessly.

The more balanced approach would seem to be combining the FPL and processor core on a single
IC. The integrated solution significantly reduces the communication latency in the system. Compared
to the option of building the entire system on the FPGA, this solution allows dedicated hardware to
be used for the traditional part of the processor core and FPL to be used just for the custom hardware
that applications need. Numerous projects have shown that, at least when dedicated to specific ap-
plications, this approach provides a workable solution that is not too hard to program for, and at the
same time provides reasonable performance benefits.

2.7.2 FPL and Processor Integration Style

Most existing commercial solutions that combine FPL and processor on a single device use a memory
mapped interface between the programmer and the FPL, where custom hardware cores are attached to
a bus and then respond to memory reads and writes. This solution assumes a clear division between the
hardware world and the software world. For software to talk to custom hardware it will need to move
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off the processor and across one or more buses. This in itself adds latency to operations involving
custom hardware. Even just using load/store instructions to interface with the logic is slower than a
traditional invocation of an instruction in a traditional function unit. In addition to this, as discussed
in Section 2.4.1.3, the processor’s memory interface needs to be manipulated by the programmer to
stop interference from the cache unit(s). In a workstation system where the programmer cannot halt
interrupts then this interface is unmanageable if the device wants to make use of burst transfers.

There are additional design time problems with the memory mapped interface approach. It is the
role of the custom hardware core to respond to the correct address range, and this must be built into
the core at compile time. However it is important that no two cores have overlapping address ranges.
In an embedded system this is fairly easy to ensure, assuming there is a central architect on the project
who can manage that. On a general purpose workstation this is impossible to manage, equivalent to all
applications existing in a single address space using position dependent code. A solution could be to
have the operating system insert address ranges into the custom hardware each time it is loaded onto
the FPL and adjust the application’s virtual to physical memory mappings as appropriate. Although
workable, this is not a easy solution, and we would prefer to have a simpler system that does not
require modifying the custom cores at run time.

In addition, the FPGA style architectures would require a suitable custom hardware core place-
ment algorithm to be devised. Dynamically fitting two dimensional cores of differing arbitrary sizes
into a two dimensional array is a computational difficult task. If the operating system were required
to place and route circuits on the array with each context switch then the system would be unusable.
In addition, the operating system not only has to find space for the circuits, but also ensure that they
are attached to the appropriate buses, which may impact other circuits and possibly be unrouteable
without tearing up the array and replacing and rerouteing everything. It is possible to simplify this
matter though by applying some notional ordering to the array, but at a obvious loss of flexibility.
A system such as that described in [Brebner & Diessel 2001] could be used: the system buses run
along the length of one side of the array and the array is then allocated in strips on the perpendicular
axis. This removes the bus routeing problem and turns the two dimensional scheduling problem into
a one dimensional problem, which reduces the complexity of the placement problem from being NP-
complete toO(n). This solution is made slighly more problematic on an architecture like the Virtex-II
Pro, where the processor block is surrounded by the FPL array rather than being off to one side like it
is in the Altera Excalibur range of devices.

The model used by PRISC, CoMPARE, GARP, and the Shark DSP is more suited to providing a
custom instruction set, as they both integrate the FPL onto the processor’s datapath. In these architec-
tures the FPL is placed directly on the processor core’s datapath. Using a piece of custom hardware
is then similar to invoking any other instruction in the system. The interface between the processor
and the FPL is fixed, accepting values off the internal buses and returning a result similarly. This
interface is less flexible than the memory mapped interfaces. Under the memory mapped interfaces
custom cores may use an arbitrary range of addresses (so long as the total range of addresses fit within
the system’s address space) and may use both single word transfers and multiple word burst transfers.
However, the benefits of moving the logic into the datapath are reduced latency on instruction invoca-
tion and returning the result and not having to interfere with the memory management unit every time
a custom instruction is used. A loss of bandwidth due to not having burst transfers could be countered
in two ways. The first way is to simply allocate a wider register file for use with the reconfigurable
unit, just as is done for SIMD units in many processors. The Motorola MPC7400 PowerPC proces-
sors use a 32 bit wide register file for the conventional integer unit, but use a 128 bit wide register
file to supply their AltiVec SIMD unit [Motorola 1999]. The other alternative is to use more than
the conventional two inputs for a function unit, as seen in the CoMPARE architecture, which can be
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configured to use either two or four inputs into its configurable unit, the CAU.
The main concern with the approaches suggested in the research literature is that they make it

hard to share the array between multiple applications. Work such as CoMPARE, GARP, and the
SHARK DSP Hybrid only allow for a single custom instruction to be loaded onto the processor at
once. This leads to both internal and external contention. By internal contention we mean that single
application may wish to use multiple custom instructions within a loop which can not be combined in
a single instruction (e.g. decrypting some audio data and then filtering it), so the application will be
forced to keep swapping circuits on and off the array. If there are other applications that use custom
instructions then we will get external contention. With a round robin process scheduler (ignoring
processes blocking for data), it is guaranteed that the moment more than one process uses a custom
instruction, all processes will need to reload circuits after a context switch. Given the size of modern
FPGA devices, it seems reasonable that multiple pieces of custom logic should be allowed to reside
on the array at once.

In work like OneChip, Chimaera, and DISC, a single array is used, but multiple circuits may be
loaded onto the array at once. On OneChip however this is a static configuration, so it reduces the
problem of internal contention (but does not remove it as it does not allow arbitrary arrangement of
cores) but does not help with external contention. DISC uses a partially reconfigurable array to allow
multiple instructions to be moved on and off the array whilst other instructions remain unmodified.
DISC treats the array in a one dimensional fashion with address, data, and control buses running along
the plane of allocation. Instructions are loaded into free spaces on the array, with other instructions
being unloaded to make room if necessary. The RFU in Chimaera is similar in general layout to DISC,
though with more complex management support (regarding configuration caching) and integration
into a larger processor model. The setup used in both DISC and Chimaera solves the problem of
internal contention, as an application may move multiple circuits on and off the array independently.
However, like the circuits used on the commercial memory mapped architectures, custom hardware
cores in both have a static ID associated with them. In DISC, on the first cycle of an instruction
the control logic places the instruction opcode on the control bus and if a core sees its own opcode
on the bus then it responds by setting an acknowledge signal on the control bus high. In Chimaera
the ECU uses the ID to invoke circuits loaded on the FPL. Because it is unfeasible to assume that
no application may use the same opcodes for custom hardware, the operating system would need to
clear any instructions from the array on a context switch in these systems. The other issue about such
an architecture is that of fragmentation. As circuits are moved on and off the array the array will
most likely become fragmented, with strips of CLBs that are too small to be useful. Defragmenting an
array without suitable hardware support would require taking circuits off the array and reloading them,
which will be a time consuming operation. A possible hardware solution to this problem is discussed
in [Brebner & Diessel 2001], where the SRAM behind the fabric supports shifting configuration data
along the array, but no current fabric supports such a method.

The solution used by the PRISC architecture successfully eliminates internal contention. PRISC
uses an array of multiple independent FPL blocks called PFUs, each of which can be reconfigured
without affecting any other blocks. To tackle external contention the PRISC architecture associates
a register with each PFU which contains the numeric ID of the instruction in question. Software
instructions refer to this ID when attempting to execute a circuit in a PFU; if there is a match then
the circuit executes appropriately, otherwise an exception occurs which allows the operating system
to rectify the situation. Through careful use of these IDs it is possible to ensure that circuits from
multiple applications can reside on the processor. It is unreasonable to assume that applications will
have distinct ID ranges, so the operating system will need to clear the index registers on a context
switch and then reload the indexes appropriate for that application as faults occur.
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The PRISC design seems the most suited to working with multiple circuits for multiple applica-
tions, but it is not without its drawbacks. PFUs on the PRISC can only last for a single cycle, as the
fabric does not contain any state. This drastically limits the complexity of circuits that can used and
the depth of logic they can use, being limited to that which will fit in a single clock tick. The ID
register arrangement forces a static linking between the assigned ID and the circuit. Dividing up the
array statically into fixed sized blocks will lead to wastage of FPL as not all circuits will fill each PFU.
The sum of the unused spaces in the PFUs could potentially be sufficient for another circuit, but can
not be used due to the static boundaries. Similarly circuits cannot exceed the size of an PFU, although
given the limits of not having state it would be possible to determine an upper bound for the size of
circuit that could fit in a PFU given the time constraints.

2.8 Summary

This chapter has presented the background material necessary for understanding work in the rest of
the dissertation, and provided an examination of the existing work in the field, looking at current state
of the art in reconfigurable processors and FPL management issues.

From looking at the reconfigurable processor work, it can be seen that no existing architecture
is ideal for management by an operating system in the unpredictable and dynamic workstation envi-
ronment. This means that before examining the core issues of this dissertation, the operating system
management and programming support, proper hardware support for conventional management tech-
niques will need to be addressed.

In the FPL management literature, there has been no work so far to address the issues of managing
an FPL system for a workstation environment. Although some work has looked at how FPL could be
shared between applications, no work has examined in details the effect of frequent context switching
with unpredictable workloads on the overall system performance. This is something that will be
addressed in this work.

However, the existing body of work in the field provides a good basis on which to build. The
next chapter will build on what has been discussed in this chapter and outline the requirements for a
workstation system build on a reconfigurable processor.
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Chapter 3

Requirements and High–Level Design

The previous chapter discussed the existing body of work in this field; this chapter moves onto out-
line what the requirements for managing a reconfigurable processor in a general purpose workstation
environment. The main aim of this project is to investigate how an operating system can manage the
reconfigurable resource on a processor, given the dynamic workload and the need to share out the
limited resource in a fair and secure manner. At the same time the aim is to do so without requiring
significant alterations to how either the operating system or applications are structured. As outlined in
the previous chapter however, no existing architecture is perfectly suited to the type of environment
specified, so before examining the operating system and programming language issues, this work will
also consider what makes a suitable architecture for the target environment.

The aim of this chapter is to provide an initial set of requirement analysis and high-level design
decisions, laying the ground for the detailed design discussion in the following three chapters. The
structure of the discussion in this chapter will focus on how the custom hardware used by applications
moves through the overall system from application development and the associated programming
model, through the operating system management layers, and down to the actual hardware upon which
it will execute.

3.1 General Approach

The motivation for this work was to allow applications to use application specific custom instructions
as opposed to providing general purpose domain instructions, such as Intel’s MMX and Motorola’s
AltiVec. As such, the model outlined by PRISC makes a suitable starting point for this work. The
PRISC’s fixed division of the FPL into identically sized blocks, PFUs, makes the FPL easier to allo-
cate than a single large shared block of FPL allocated on either a 1D or 2D basis, and the ID registers
allow applications to be decoupled from the location of their circuits. However, as outlined in the
evaluation section of the previous chapter (Section 2.7), the PRISC architecture lacks certain interest-
ing properties. The PRISC FPL blocks do not support stateful sequential logic, which would allow
for more complex circuits, and lacks an ideal dispatch mechanism, as it does not support the notion of
processes.

Another aspect of the approach taken from PRISC, GARP, Compare, and Chimaera is the lack
of IOBs in the FPL fabric. In the context of a workstation system, applications will be expected
to use the traditional memory hierarchy to move data about, so the FPL will only be connected to
the conventional processor datapath, and will not directly use device pins. This aids significantly
in making the system secure. It prevents IOBs being misconfigured to cause damage to either the
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processor or connected devices.
The fixed divisions between the blocks of FPL will simplify management of the array; as this is an

initial exploration of the management issues in the workstation context it is felt that this simplification
makes a good starting point. However, it is hoped that the parts of the system that do not directly
relate to the placement of logic in the FPL blocks, such as the programming model, can be designed
as to support other arrangements.

An important point to address at this early stage is how many PFUs are anticipated. From an
availability perspective, the more PFUs available the better, but there is only a finite amount of silicon
available, so more PFUs means smaller PFUs, which means less complex circuits can be used. To
address this, a small number of applications were selected for acceleration in order to determine what
size of circuits they would require to instantiate (the test applications are described in Section 4.3.2).
The core parts of their respective algorithms were replaced with bits custom hardware, the sizes of
which were used to determine the size of the PFUs.

For this experiment, a model based on a simple ARM 7 core (described in detail in Section 4.2.1)
connected to FPL blocks based on the Xilinx Virtex fabric was assumed. The applications used a
mixture of single and multiple cycle custom instructions, which were built and synthesised for a
Xilinx Virtex device. The custom instructions developed were between 100 and 500 CLBs in size,
ranging from simple Single Instruction/Multiple Data (SIMD) arithmetic to encryption convolution
and a complete graphics filter. Based on these example circuits, assuming that 600 CLBs represents a
reasonable upper bound of custom instruction size, then the number of PFUs a processor might have
can be estimated. Based on the die size for the largest Xilinx Virtex part, and subtracting the die area
of an ARM 7 core, and then dividing the numbers of CLBs left by 600, a rough estimate for how
many PFUs can be used is achieved. The estimate is very rough, but as this work is concerned with
the management of the PFUs rather than the detailed design of such a processor, this is considered
sufficient. By subtracting the die size of an ARM720T core, it is estimated there would be roughly
6000 CLBs to divide between PFUs, which provides ten PFUs on our hybrid. As already stated, this
figure is only a guide, but it allows us to put the rest of this work in context knowing that there are
only a relatively small number of PFUs available.

Of course, this value should increase over time as device density increases. The top end device
of the current Xilinx flagship FPGA range, the Virtex-II, has just under quadruple the logic density
of the top end Virtex device. Giving the option of either larger or more PFUs. Despite the possibility
that in the near future devices may have several tens of PFUs, in relation to the number of applications
an general purpose workstation does, this is unlikely to mean that the resource will not be saturated.
What is likely to happen, as with other resources such as memory, disk space, and network bandwidth,
applications will expand to utilise the resource to the point of saturation.

3.2 Application-Level Requirements

In order to aid application developers in making use of the FPL resource in such a system, the interface
between applications and the custom hardware should be as simple as possible. The aim is for the
use of custom hardware to be integrated into a modern software design flow without requiring any
radical changes to that flow. Just as programmers today generally do not need to be concerned with
the hardware details of Out of Order (OoO) and superscalar execution models on modern processors,
the same should be true of mechanisms used to utilise custom instructions.

There are two main routes by which custom instructions can be utilised in a program. The first
route is for the programmer to provide a custom instruction description and explicitly invoke that
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hardware when needed. The compiler and linker then have to translate the inclusion of the custom
instruction and the specific invocations into the correct operating system and hardware calls. The cus-
tom instruction description may have been provided in house as part of the application development,
or might be from a third party library of custom instructions (c.f. cores provided by FPGA vendors).
The other route is for the compiler to analyse the source code for a program and generate the hard-
ware to go in the the PFUs. This work will focus on the first route, as this is the route that was used to
develop the example applications in Section 4.3.2, and having the compiler generate instructions will
require the same linking mechanisms just not the techniques for specifying custom instructions at the
program language level. The actual generation of the hardware for custom instructions is considered
outwith the range of this body of work.

3.2.1 Instruction Interface

To simplify the hardware model (see Section 3.4 below), custom instructions are syntactically similar
to other traditional instructions in the system; they take one or two operands and return a single result,
which is the interface used in PRISC and Chimaera. Although the actual interface at the hardware
level will be more complicated, this is as complex as the software developer needs to understand. The
advantage of the simple interface is that it does not require substantial changes to the conventional
processor datapath, and will be simple to program; for example, it avoids the synchronisation issues
with a memory mapped bus interface as discussed in Section 2.4.1.3. The obvious drawback to this
solution is that the interface may potentially be a bottleneck in the system, with the units being limited
by the amount of data they can receive. However, this approach has been used successfully in several
existing architectures, and initial experiments will determine whether it is indeed is a bottleneck.

3.2.2 Software Alternative

Although it is hoped that circuit swaps will not degrade performance given sensible management
techniques, the number of FPL blocks available on a processor in the short term future is unlikely
to be great, if these blocks are to be sufficiently large to house circuits of the size anticipated. It
is entirely possible that under heavy load the demands made of the FPL resource will significantly
outstrip supply, and the system may end up thrashing, causing the system to spend a large amount of
time loading and saving configuration bitstreams. Bitstreams have the potential to be several tens of
thousands of bytes long, and may need to be brought in from disk to contiguous physical pages before
the actual loading can take place to ensure a continuous configuration stream during configuration.

Thus, it may prove useful for applications to be able to fall back on a software based alternative
to their custom instruction; although slower, issuing to this would relieve the contention on the FPL
resource. The decision to use either the hardware implementation or the software alternative would be
taken by the operating system at invocation time. If the FPL resource was considered to be overloaded
then subsequent invocations of unloaded instructions that have software alternatives defined would
be issued to software until such time as the operating system decided to promote the instruction in
question to hardware. This could potentially increase system throughput by eliminating the overhead
of circuit swapping. Having the alternative would not necessarily be a requirement of the system:
for some applications, such as real-time applications, it may not make sense to fall back to a slower
alternative, but this option may have benefits for less time critical applications, so is worth exploring.
Real-time applications could, however, benefit from specifying a software function that was called if
the operating system could not load the application’s instruction immediately, so as to take corrective
action for possible missed deadlines.
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Because the operating system should not be involved in the invocation of each custom instruction,
the hardware layer will need to support the dispatching to both hardware and software, and it must do
so such that the operation is hidden from the application.

3.2.3 Namespace Management

An important part of constructing a software system is managing objects, where an object is defined to
be anything to which a program may wish to hold a reference: functions, blocks of data, files, devices,
etc. To be able to work with objects, applications use various names within a set of namespaces to be
able to locate and use the objects [Saltzer 1978].

Existing work that extends software with custom hardware treats custom instructions as simply the
bits representing the hardware configuration bitstream, which are moved around explicitly. However,
in this work custom instructions are treated as named entities, similar to functions and variables, that
contain the hardware definition, software definition, state, and meta data. Thus, a custom instruction
becomes more than just a bitstream: it is now a package containing all the various parts that constitute
a custom instruction.

Although it is not the intention of this work to investigate the application layer in detail, it is
assumed that the compiler and language should support the notion of custom instructions; they should
provide the facilities for generating a custom instruction and for associating names with them. These
names can be used to invoke the instructions from within the language and for duplicating and sharing
instructions. For instance, it should be possible to associate a single name with different instructions
during the lifetime of an application — one might have a filter instruction which maps to different
filters during execution depending on the effect the user wants at that time. This distinction between
names and actual custom instructions is important, as it has a great impact on the linkage mechanisms
used to resolve names to custom instructions.

In addition, the ability to use traditional static and dynamic linkage methods used to build ap-
plications in a workstation environment should be ensured. For example, not only will the system
provide shared libraries of code, but it may also provide libraries of code and custom instructions or
just libraries of custom instructions.

At the machine instruction level, custom instruction invocation will use an opcode for identifi-
cation, rather than the symbolic name used at the programming language level. The linker will be
responsible for translating symbolic names to these opcodes, which are referred to as Circuit IDs
(CIDs). CIDs will be a unique name for each point of instruction usage with a process, and will need
to be mapped to custom instructions when the application registers its custom instructions with the
operating system. These CIDs will be used by the process to invoke custom instructions at run time,
and it is the role of the lower layers to ensure that these invocations are mapped successfully.

3.3 Operating System Requirements

An important role of an operating system in a workstation environment is to allow multiple processes
to share access to physical resources in the computer in a fair and secure manner. As described
in Section 2.2, this is typically achieved by virtualising each resource; each process is told it has
complete access to the resource, and then the operating system multiplexes access to the physical
resource, with assistance from the hardware. The operating system creates a virtual machine for each
process in which each process believes it has access to all the resources and is not aware of other
processes. During execution, the operating system must map a dynamic set of virtual machines onto
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the physical machine without prior knowledge of the demands each virtual machine will make; the
best an operating system can do is attempt to make a guess as to upcoming requirements based on
past performance.

The operating system will spatially and/or temporally divide each resource at a suitable granular-
ity. The aim of the operating system is to multiplex access such that there is enough to share between
the competing applications, yet ensure that each application gets a large enough share so that it can
make a reasonable amount of progress (the definition of the term reasonable is both application and
user specific). For example, the CPU scheduler will typically give each process a small time slice on
the processor (of the order of ten to a hundred milliseconds), before removing it and putting the next
one on. This slice is sufficiently small that many processes can appear to make progress over a short
time frame, but long enough that each process can make a reasonable amount of progress before it
must release the processor.

In the system proposed in this work, the operating system should be responsible for managing
access by processes to the limited FPL resource, and just like other resources the FPL resource should
be virtualised.

3.3.1 Name Mapping

Although typically not responsible for carrying out the translation, the operating system is responsible
for maintaining a mapping applications’ virtual names for resources to the underlying resource. For
example, the operating system must maintain page tables for virtual memory that contain mappings
of virtual memory addresses onto the physical memory address used to reference the memory, if the
page is loaded. This information is used by the operating system to program the processor’s address
translation hardware.

In the system proposed here, the operating system needs to maintain a set of mappings for the
CIDs used by each process, keeping a reference to the hardware configuration bitstream and software
implementation for each instruction, noting also that circuits may be shared, so multiple CIDs may
map onto a single instruction. It will also need to note to which implementation a CID should be dis-
patched to, and if it is dispatching to hardware what PFU it is currently loaded into. This information
can then be used to program the hardware appropriately to carry out the translations at run time (see
Section 3.4.1).

3.3.2 Scheduling

Given the prediction that in the near future processors will support only a relatively small number of
PFUs, it is highly probable that there will be times when the total active demand for PFUs exceeds
the number available. This will result in points where the operating system will either have to block a
requesting process until PFUs become free, run the requested custom instruction in software, or swap
circuits in and out of PFUs during execution, essentially using time division multiplexing on top of
the space division multiplexing that the PFUs provide. This means that, if state is allowed in custom
instructions, the processor must support a technique for storing and restoring that state as circuits are
moved off and back onto the processor.

The problem with selecting circuits for moving on and off the processor is deciding which is the
best circuit to evict. This is similar to the problem in virtual memory management when deciding
which page should be evicted, and the configuration caching work described in Section 2.5. Ideally
the hardware should provide useful information about the usage of the PFUs, to allow the operating
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system to make an informed decision about which circuit to evict. The information provided should
be sufficient to allow a range of different eviction policies to be used.

3.4 Hardware Level Requirements

This work is interested in the hardware aspects related to managing the FPL resource, rather than the
low level details such as how the FPL fabric is constructed. As a result, questions such as what type
of FPL fabric is best suited for the type of applications that will be used in the given environment are
not considered. The work is limited to just the parts of the hardware construction which affect how
the operating system and user applications interact with the FPL. This work focuses of the dispatching
of custom instructions, how the instructions interact with the rest of processor, and how the software
drives the FPL. However, the work cannot be completely agnostic to the fabric design, but where it
does touch on fabric design is is only as it has a direct consequence on the management issues.

One of the constraints of the workstation environment is that the processor must be able to guaran-
tee that the operating system can regain control of the hardware at any point within a short timeframe.
Being able to guarantee control to the operating system is a requirement for supporting a pre-emptive
multitasking environment, and having short interrupt latencies is a requirement for supporting inter-
active or soft real-time applications. The changes made to the processor to integrate reconfigurable
logic should not have an impact on either of these attributes. Configuring an FPL array can take a rel-
atively long time compared to the normal maximum delay for an interrupt (for example on the ARM
the maximum delay is twenty CPU cycles, which is a lot less time than it takes to configure a FPL
device), and must therefore be interruptible. Because custom instructions may run for many cycles,
they must either have a maximum duration or themselves be interruptible.

Most modern workstation operating systems use multiple private virtual memory spaces for pro-
cesses. This means that the bitstream for a custom instruction, when held in application memory, can
not be guaranteed to be either paged in or, once paged in, held contiguously in memory. Either the
hardware or the operating system will need to cope with this artefact, as one would typically assume
a contiguous block of bytes for the bitstream.

3.4.1 Dispatch Mechanism

The dispatch mechanism is responsible for mapping user invocation requests for custom instructions
to the actual instantiated instruction, similar to the ID registers in the PRISC system. In the system
proposed, the dispatch mechanism needs to be able to translate each custom instruction invocation
made by applications into one of the following: an invocation on hardware loaded into a PFU, a call
to the software alternative specified by the applications, or a call to the operating system to request
that it resolve the unbound request. Correspondingly, the hardware will need to handle the namespace
mapping from the process-specific CID in the invoking instruction to the correct hardware loaded in
a PFU, the software function that is being used as an alternative, or provide a trap to the operating
system if no correct mapping information is present.

The dispatch system needs to be flexible enough to cope not only with one to one mappings, but
also with many to one mappings. If a custom instruction does not use any state (for example, the
SIMD arithmetic instructions developed during the initial demonstrators), then there is no reason why
multiple system names for custom instructions cannot map onto a single instance.
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3.5 Device Programming

As was described in Section 2.1.2, there are numerous ways of programming an FPL device. Obvi-
ously, because it is unacceptable to reset the processor between loading circuits, a reconfigurable array
is desired, rather than the configurable array used in devices like the Triscend A7. A limited form of
partial reconfiguration can be advantageous in this context. With a set of reconfigurable PFUs, if we
wished to off-load a circuit without losing any state contained within, then we would have to store
the bitstream for the entire circuit. However, the configuration bits used to set the routing and LUT
contents will not change, only the state held in the registers needs to be preserved.

Thus, it makes sense to separate the configuration data into two parts, or two contexts, one for the
static configuration and one for the stateful configuration. This means that only the stateful part of
the configuration data needs to be saved and reloaded. This separation also makes it easier to share
configuration bitstreams, by having a distinct section for the parts that are the same for all and for
the parts that are specific to a particular application. This can save memory in an operating system
that uses multiple private virtual address spaces, as it reduces the number of pages that need to be
duplicated due to modification between address spaces.

3.6 Security

There are two angles from which security concerns need to be cosidered: FPL related security issues,
and ensuring the new processor operations for FPL interaction have the correct privileges. The FPL
security issues were outlined in Section 2.6; MELT attacks which attempt to cause physical damage
pose an obvious threat in the context of a processor, where the processor can be damaged accidentally
or maliciously. However, this is of less concern to this work, which is more about the management
and control aspects.It is assumed that the fabric designers will work with this in mind, taking steps
such as using multiplexor-based routing. The base fabric assumed for this work is the Xilinx Virtex
that uses multiplexor based routing, which prevents such attacks on the fabric. Of more concern are
the SALT and HALT attacks, which are semantic attacks, such as reconfiguring another application’s
instructions without it knowing or accessing data held in another PFU. Whilst there is little the system
can do about such attacks on the functional output of custom hardware, there are control signals
attached to custom hardware which it will use to indicate status information (such as completion) to
the processor, and this could potentially cause problems. A circuit that never signals its completion
could potentially lock up the processor, preventing the operating system from regaining control.

The other aspect to consider is deciding which operations can be carried out by user applications
and which operations should be carried out only by the operating system. Microprocessors typically
operate in at least two modes: user mode, in which applications run, and supervisor mode, in which
the operating system runs. The majority of instructions can be executed in either mode: no harm
can be done to the system with conventional data processing instructions or load/store instructions,
for instance. However, operations like enabling and disabling interrupts, modifying virtual memory
maps, and so on, should not be possible from user mode; only the operating system should be allowed
to perform such tasks. Similar precautions must be made for instructions that interact with the FPL
resource. User applications should be able to use their own custom instructions, but not be able
to invoke or modify other applications’ instructions. As the custom instruction software interface
is designed, the privilege level of each new instruction, and the consequence of this, needs to be
considered.
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3.7 Summary

The concept of namespace management can be seen as a unifying theme used to tie together all the
various stages. At each layer, the way in which custom instructions are handled changes, along with
the style of name used to refer to them. However, the overall aim of the system as a whole can be seen
as trying to map the programmer’s name for a custom instruction at the point of usage in the source
code down to an invocation of a specific custom instruction instance. A summary of the various names
used can be seen in Table 3.1.

Layer Name Referred Objects

Programming language
Symbolic bitstream name Circuit bitstream
Symbolic function name Software Implementation

Linked process image CID
Circuit bitstream address
Software function address

Operating system PID/CID
Shared circuit bitstream address
Software function address

Hardware translation PID/CID
PFU index
Software function address

Table 3.1: Summary of custom instruction names

Custom instructions are more than just a bitstream to load onto the PFU, although this is by and
large the overall aim of the system. Custom instructions are entities consisting of a circuit bitstream,
circuit state information, a software alternative, and relevant meta information. These appear as named
entities to the programmer, associated with human readable symbolic names. During compilation and
linkage, these symbolic names are converted into process unique machine readable CIDs. These
CIDs are registed with the operating system in conjunction with a specific custom instruction, and
can then be used as opcodes in instructions used by the process to invoke their custom instructions.
However, this namespace is not system unique, so the operating system needs to combine the CID
with the relevant PID to form a system unique name, which can be used at invocation time to map to
the correct instantiation. The hardware layer will have been programmed by the operating system to
dispatch this system-unique name to a PFU or a software alternative.

Although there is a lot more to the work that follows, this path, of converting from symbolic
custom instruction names down to the invocation of a instruction instance, is a guide. The next three
chapters will follow this path from the bottom up, starting at the hardware level and working up
through the operating system to the compilation and linkage model.
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Chapter 4

The Proteus Architecture

From the work reviewed in Chapter 2 and the requirements laid down in Chapter 3, we find that
no single architecture supports all the facilities needed to sufficiently manage the FPL resource on
a reconfigurable processor hybrid in a workstation environment. The aim of this chapter, then, is to
describe a suitable architecture that provides all the facilities we feel are necessary for supporting
management, before we go on to look at the actual management issues in the next chapter. Here
we introduce the Proteus Architecture1, which describes a possible way of integrating reconfigurable
logic into a microprocessor core such that the new resource can be easily shared dynamically between
multiple processes under the management of a suitable operating system. We do not aim to provide
a fully detailed description of a reconfigurable processor architecture here, but to just concentrate on
the issues relevant to managing the FPL resource in our given context.

This chapter is split into three main sections. The first part of the chapter introduces the gen-
eral Proteus Architecture, which describes what we view as a suitable structure for a reconfigurable
processor for use in a workstation environment. The Proteus Architecture itself is not a specific im-
plementation, rather a set of mechanisms that could potentially be applied to many CPU architectures.
The Proteus architecture defines the basic interface between the FPL and the rest of the processor,
how instructions are moved on and off the processor, how the security issues are approached and so
on, at a general level. The second part of the chapter describes an actual simulated implementation
of the Proteus Architecture based on the ARM7 RISC processor from ARM Ltd. This section details
the hardware changes required, such as how the FPL resource was integrated with the ARM datapath,
and what new instructions were required to control the new resource and the associated management
hardware, providing a concrete example of the principles of the Proteus Architecture. Although the
ARM is a simple processor design, lacking many features found in modern high-end microprocessors
(such as superscalar execution units, out of order execution, and so on), using it as the basis for an
initial prototype simplifies the job of interfacing the processor core and the FPL, allowing the work
to concentrate on the resource management aspects of the integration problem. In the final section of
the chapter we explain the simulation environment used to model the ProteanARM and describe the
results of getting a set of basic applications to run on the raw architecture without operating system
support.

1Proteus: A sea god, the son of Oceanus and Tethys, fabled to assume various shapes. O.E.D. Second Edition.
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4.1 The Proteus Architecture

As discussed in the previous two chapters, no existing reconfigurable processor architecture meets
all the requirements we believe necessary for providing support for operating system management.
The Proteus Architecture is an attempt to provide a view of an architecture suitable for use in the
dynamic environment of a workstation managed by an operating system. The aim is not to provide
a full architecture description, but to explore the parts of the reconfigurable processor concept where
changes are both needed and preferable to make the processor suitable for our target domain.

In this section we give a high level description of the major features and general layout of a
reconfigurable processor suitable for use in a workstation environment. In the next section we will
provide an example implementation to provide a concrete example of the concepts discussed here.

4.1.1 General Approach

The concept behind the Proteus Architecture is providing applications with the facility to load custom
instructions onto the processor, similar to the the PRISC architecture. Applications will have at their
disposal the traditional set of instructions expected from a processor, such as integer and floating point
instructions, branch instructions, and so on, but additionally will be able to extend the instruction set
at run time to include custom instructions of their own specification. In essence, applications have a
virtual instruction set. Instructions are loaded onto the processor as they are needed and later taken
off again to make room for other instructions.

Modern microprocessors used in desktop and workstation machines are organised into sets of
functional units for different types of work. For example, the IBM PowerPC 750 [IBM 1999] has six
execution units: two integer units, a floating point unit, a branch processing unit, a load/store unit,
and a system register unit. The data processing units, the integer units and the floating point unit are
associated with a register file for each data type: a 32 entry 32 bit register file is linked to the integer
units and a 32 entry 64 bit register file is linked to the floating point unit. In addition to execution
units being a useful logical arrangement of the processor, such arrangement also helps the processor
to be superscalar: the 750 can execute two instructions in different function units each cycle. Each
unit in the processor can only execute a single instruction at the time, so many processors double up
commonly used function units, as seen by the two integer units on the 750.

The Proteus architecture extends the processor with another execution unit containing the recon-
figurable logic. This execution will contain a series of PFUs that can have their contents loaded at
run time. It is feasible that an implementation of a Protean processor may use multiple execution
units for the PFUs in order to have multiple PFUs executing at once, but we do not consider that here.
Associated with the new execution is a register file, whose size and data width is not tied to any other
register files. Having a separate register file makes logical sense, as the reconfigurable execution unit
is not tied to any existing data type, and the size can be altered independently of other register files
should the execution unit require, for example, more bandwidth. The alternative would be to link
the reconfigurable execution unit to an existing register file. However, this leads to the question of
which one; the reconfigurable execution unit is data type agnostic, and could potentially process all
of the commonly found data types on the processor. The benefit of linking it to an existing register
file would be that it could then be well placed to process the most commonly manipulated data type,
which would typically be the integer register file. However, this would also require that the register file
used be wide enough to support all the data types a user may wish to process, and in most workstation
processors this is either the floating point unit or SIMD unit. It is thus simpler to simply allocate a
new register file for this data-type agnostic unit.
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Figure 4.1: Overview of the Proteus Architecture

There is a draw back to hosting data in a new register file however. Because it is expected that
applications will use a mixture of traditional and custom instructions within an algorithm, there is
potential for data to need to be moved repeatedly between register files as it is processed by the
two instruction types. Worse still, a programmer may attempt to avoid this by duplicating existing
instructions in PFUs to avoid excessive data movement. In the initial sample applications, described
in Section 4.3, this was not found to be a significant problem. Most of the new instructions developed
worked on data units not understood by the microprocessor: the custom instruction used by the Alpha
Blending example used pixel formatted data, the audio echo processing used SIMD techniques to
process audio data four samples at a time. Indeed, this highlights a possible use for the reconfigurable
execution unit to provide operations for non-native data types. The applications that did require data
to move back and forth did so very rarely, and the process did not significantly add to the compute
time for the algorithm.

To conclusively decide which option was best is beyond the man power of the project, and does
not significantly impact on the management aspects of the system in which this work is interested. The
only side effect of having an extra register file is that it will need to be preserved and restored across
context switches, which is not seen as a significant overhead. Given how few registers the prototype
platform (the ARM) has and the fact that there was no clear direction from the initial limited selection
of test applications, we opted for a separate register file.

Given this arrangement of a new execution unit with its own register file, the general overview of
a Protean processor can be seen in Figure 4.1. Very little of the processor datapath has been altered,
with only a single execution unit being added.

4.1.2 The FPL Fabric

Although the focus of this work is the management of the reconfigurable resource in a hybrid processor
architecture, the work cannot be agnostic to the low-level details of the reconfigurable fabric. The
construction of the fabric has important consequences on the type of functionality a custom instruction
is capable of, on the management costs of moving circuits about the system, and on system security.
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Our starting position for this discussion is to consider the type of fabric used in an FPGA like that
described in Section 2.1.1, and from there decide what features we do and do not require.

Each PFU will essentially be a small FPGA, but with a fixed I/O pattern where the data and
control lines enter and exit the array. The FPL will be directly connected to the processor’s datapath,
reading and writing data to and from the normal operand buses for the execution unit. This means
the I/O requirements on a PFU are much simpler than those of an FPGA. PFUs will have no need
to interface with external pins of the processor since the reconfigurable processor’s I/O interface is
no different from that of a typical processor. Data to be processed by the PFUs will be moved over
the existing data buses. This means that PFUs do not need the IOBs found in a traditional FPGA
fabric. This significantly reduces the possibilities for the processor to be physically damaged through
misconfiguration, as IOBs present a large opportunity to cause electrical damage to an FPL device.
Having a fixed I/O pattern also removes the need for the additional layers of routing placed around
the edge of the array on FPGAs (the VersaRing as it is referred to on Xilinx devices).

The other avenue for attacking a reconfigurable processor physically is to misconfigure the FPL
array itself, connecting multiple drivers to a single wire. The way round this is to use multiplexor
based routing, which prevents multiple drivers being connected to a line, but this increases the routing
complexity at the silicon level and decreases the maximum speed at which a device can be clocked.
However, security is such an important concern on a workstation system that this option must be taken.

As stated in the previous chapter, the FPL fabric should support stateful elements like registers,
unlike the PRISC and CoMPARE architectures, whose’ fabrics are stateless. Without registers appli-
cations will not be able to use sequential logic in circuits and combinatorial logic circuits will only
be of a limited logic depth, as the number of CLBs that can be traversed in a single clock cycle on
modern high speed devices is quite low. The drawback of having state in the array is that it needs
to be preserved and restored when circuits are swapped in and out of PFUs, adding to the manage-
ment overheads of using the FPL resource. Without any attempt at optimisation, this will mean that
the operating system will need to store circuit bitstreams back out of PFUs before replacing them as
the circuits may contain state which will need to be recorded so that the instruction can be correctly
restored later. This will significantly increase the circuit switch overheads; for example, in the proto-
type architecture discussed in Section 4.2 the PFU bitstreams are 54 Kbytes long, a not insignificant
amount.

The alternative to moving the entire bitstream off the processor is for the fabric to support partial
storage of the array configuration, such that state can be extracted from the array without having to
store the entire set of configuration data. There are two ways this could be implemented: as separate
configuration planes, or as a partial configuration. As discussed in Section 2.1.2, some FPL devices
support having multiple banks of memory to store alternative configurations. Using a similar abstrac-
tion, separate planes could be used to configure the stateless and stateful elements on the array. Each
instruction would come as two bitstreams, one containing the stateful elements and one containing
the dynamic elements. The operating system would then only need to save the stateful bitstream from
the PFU in order to be able to restore the circuit correctly later; there is no reason for the processor
to offer the facility to store the static part of the bitstream, as the operating system must already have
access to this information in order to load the circuit. The second option is to support partial config-
urations. If the FPL supports either fine-grain or course-grain partial reconfiguration then only parts
of the array that refer to state need to be stored and restored, reducing the amount of data that needs
to be moved off and on the processor. This partial description could then either be patched into the
original bitstream in memory, so that just one configuration pass needs to happen upon reloading, or
reloading may become a two stage process, where the original bitstream is loaded and then the partial
configuration applied. Either of these techniques is sufficient to support reducing the management
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costs of moving circuits on and off the array. The separation of static and dynamic parts of configu-
ration bitstreams is also a requirement of allowing flexible sharing of custom instructions, which will
be discussed in Chapter 5.

Modern FPGAs support three types of state within the array: registers in CLBs, LUTs used as
small RAMs and shift registers in CLBs, and larger BRAMs that sit alongside the CLBs. We obviously
want to reduce the amount of state on the array as much as possible to reduce the circuit switching
overheads as much as possible, but we need enough state that we can produce interesting and useful
circuits. We also need to consider the overall usage model. The circuits in the array are meant
to behave like custom instructions, accelerating software, rather than being autonomous hardware
units. Under our model, application state should reside in either the processor register files or in main
memory, and only pass through the reconfigurable logic when it is being manipulated. Given this,
we feel it is practical to not use the large RAM blocks in our FPL. Using them would dramatically
increasea the amount of state that needs to be transferred and storing application state in them breaks XXX
the model we expect applications to use.

4.1.3 PFU Interface

The integration between the PFUs and the processor’s datapath is conceptually the same as for any
other execution unit. The instructions conceptually behave like any other other once they have been
loaded with a configuration. For example, in a load/store RISC architecture the data supplied to the
PFUs will come from the register file and the result will be written back to the register file. The
PFUs will be connected to two input buses and a single output bus, the widths of which will be the
same as the register file associated. The main difference between a PFU and any other instruction
is that a PFU accepts a bitstream. However, we envisage that the configuration data will not move
over the conventional data-processing buses inside the processor core, but rather move through a
different channel between the memory interface and the FPL configuration SRAM (see discussion in
Section 4.1.6.1).

Additional control signals are needed to manage the execution of the circuit loaded into a PFU.
Firstly there will be the traditional clock and reset signals used to control the state of the circuit loaded
into the PFU. Each PFU’s clock will only be active when that PFU is being executed. The reset signal
will reset all logic elements within the PFU, and can be used as a way for the operating system to
reset any state in a circuit before letting another process use it. It is useful to provide an indicator to
circuits of when the first cycle of an invocation is, to allow the circuit to carry out any initialisation it
may have to do. A one bit input signal is provided for such purposes, going high on the first cycle of
an instruction an low on subsequent cycles. On the other side, the circuit will be expected to drive a
signal high to indicate completion, at which point the processor should record the output of the circuit
on that cycle and store it as indicated in the invoking instruction. A summary of the PFU interface can
be seen in Figure 4.2.

4.1.4 The Dispatch Mechanism

The dispatch mechanism is the part of the processor that is responsible for mapping an application’s
request for a circuit using the associated CID to the appropriate custom instruction, i.e., dispatching the
custom hardware or the nominated software alternative, or if no suitable mapping occurs notifying the
operating system. The PRISC mechanism using ID registers associated with each PFU is sufficient
for basic operation, but needs reprogramming on every process switch, does not support mapping

aget figures
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Figure 4.2: Basic PFU Interface

multiple opcodes to a single circuit, and does not support the software alternative mapping. Thus, for
the Proteus Architecture we require a more complex dispatch mechanism. The dispatch mechanism in
the Proteus Architecture should allow the operating system to virtualise the FPL resource, providing
a level of indirection between applications and the PFUs they wish to use. This both decouples
applications from the location in which their instructions are loaded and also allows the operating
system to control which circuits the applications can access.

In our system, an application instruction will contain a CID as the opcode to the custom instruc-
tion it will want to use. Previously the application will have registered the custom instruction with
the operating system using that CID, and we assume the operating system has a way of understanding
when instructions are shared (see Section 5.2.3). The operating system then has all the information
it needs to dispatch an application’s attempt to invoke a custom instruction to the correct hardware
or software routine. Theoretically, the application could use a system call to invoke the custom in-
struction without any hardware support, but this would increase the latency on an instruction dispatch
significantly, and the aim of providing the reconfigurable execution unit is to speed up execution as
much as possible. In this section we describe the hardware support used to allow the application to
quickly execute custom instructions independently of their current load status and PFU location.

4.1.4.1 Namespace Issues

The first problem that needs to be addressed is that of external contention. CIDs are only application
unique and a given CID may be used in different applications to refer to different custom instructions.
In PRISC this problem was removed by flushing the mapping hardware on a context switch so it was
not possible for an incorrect mapping to be accessed. As applications try to issue instructions after
a context switch, the access attempts will fault and the operating system will reload the mappings as
needed. This mechanism also gives potential for applications to share circuits externally; applications
A and B may use the same circuit with different names, and the forced reprogramming of the ID
registers is sufficient to allow this. The ID register mechanism does not directly support internal
sharing of circuits, as it is not possible to hold two names for a single circuit in the ID registers. If
an application does this then the operating system will have to fault between invocations using the
different names to update the ID register. Although this mechanism works, we would rather avoid
the additional faulting penalty that occurs after a context switch. Under this system, even if just one
application is using custom instructions it will suffer access faults after a context switch.

The alternative we propose is to combine the application unique CID with the system unique PID
to form a system-wide unique ID tuple for each custom instruction reference. Modern microprocessors
already store the PID of the currently active process in a register, so the information needed to make
a reference, the CID and the PID, will be available on the processor at the time the reference is being
translated. It is an important distinction to make that an ID tuple in our system is not a uniquename
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for a custom instruction, but rather a uniquereferenceto the custom instruction. As such there is no
single global name for a custom instruction, but only a collection of references to a custom instruction.

4.1.4.2 General Behaviour

Given the namespace requirements, we now consider how the dispatch hardware will be used. Mul-
tiple references to a single custom instruction means that the dispatch hardware has to be more com-
plicated than the one to one mapping used in the PRISC system. Theoretically it is possible for the
entire ID tuple space to point to a single custom instruction, which the dispatch system will have to
cope with. The ID tuple space is likely to be quite large; in our prototype system we have an 8 bit PID
register on the processor and allow 7 bits for the CID in the instruction format, which gives a global
ID tuple space of 32768 entries. However, it is unlikely that this space to be fully assigned at any
given time: not all PIDs will be in use, and of those that are only a subset will make use of custom
instructions, and those that do are unlikely to utilise the entire possible range of CIDs. Of those CIDs
that are assigned in a process only a small number are likely to be active at any one time, similar to
the way an application linked with a library of code only uses a small subset of the library typically.
As such, it does not make sense to attempt to provide hardware large enough to cope with all possible
mappings at once, rather we want to take advantage of statistical multiplexing. Given that there will
not be enough space to hold all the possible mappings, below are enumerated the possible responses
to the invocation of a custom instruction:

• The instruction is already loaded into hardware, and an ID tuple mapping exists in the dispatch
hardware. Instruction is decoded to run in hardware.

• The instruction is to be run in software, and an ID tuple mapping exists in the dispatch hardware.
Instruction is decoded to run in software.

• The instruction is loaded into hardware, but no ID tuple mapping exists in the dispatch hardware.
Exception called to the operating system.

• The instruction is not loaded in hardware and no ID tuple mapping exists in the dispatch hard-
ware. Exception called to the operating system.

Given that the dispatch hardware will need to hold two types of reference, the dispatch mechanism
is split into two halves: dispatch to hardware and dispatch to software. The difference in size of the
respective references (3 or 4 bits for a PFU reference and up to 64 bits for an address reference)
means it makes sense to use two tables rather than one to save on wasting hardware when storing PFU
references. It is assumed that the operating system will not place the same reference in both halves,
but should such a case arise then preference is given to the hardware dispatch.

To provide the statistical multiplexing we propose a similar arrangement to a TLB, as discussed
in Section 2.2.2 with respect to virtual memory management. In our system, we use two TLBs,
one to translate ID tuples to PFU references and one to translate ID tuples to addresses for software
dispatch. The size of each of these tables will be implementation defined. When an instruction enters
the decode stages of the processor’s pipeline, the ID tuple information will be fed into both of the
TLBs in parallel. If there is a match in the first TLB, giving a PFU reference, then the instruction
will be decoded to execute using that particular PFU. If there is no match in the first TLB, then the
result of the second TLB will be used if there is one. If the second TLB returned an address then the
processor will start a branch to the software routine at that address using a special branch mechanism,
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Figure 4.3: The two-stage dispatch mechanism

which is discussed in Section 4.1.5. If neither TLB returns a match then the instruction will decode
as an exception, either using an existing exception type if one is appropriate or using a new exception
specifically for this type of event; either way an exception will occur and alert the operating system to
what has occurred. Figure 4.3 shows a logical summary of this mechanism (the actual implementation
would run the TLBs in parallel).

This mechanism is clearly more extensive and flexible than that provided by the PRISC system.
The combining of PIDs with CIDs to for a globally unique name removes the need for flushing the
mapping hardware on a context switch. It also meets our requirement of allowing multiple names to
be used for a specific circuit both internally and externally. In addition, no previous work has provided
the facility to dynamically determine at run time whether a custom instruction gets invoked as a circuit
in FPL or as a software routine, so in that respect this mechanism is unique.

4.1.5 Software Dispatch

The programmer’s view of the software dispatch mechanism is that they have to provide a software
function similar to a conventional procedure that has the same interface as the hardware instruction
— that is, two word-sized inputs and a single word-sized output. This function is then called by
the processor as an alternative to the custom hardware when a process attempts to execute a custom
instruction. To provide this functionality, the system needs an appropriate branching mechanism in
the processor control logic and the compiler needs to be able to understand the concept of a software
alternative.

The overview of a software dispatch is as follows: the custom instruction invocation will cause
the processor to branch to the start of the software alternative routine, which will then need to get
the parameters of the original instruction, process the parameters, then store the result appropriately,
before returning execution to the point after the original execution. From this overview we see two
obvious problems: locating the parameters to the original invocation instruction, and storing suit-
able information so that the process can return to the correct point of execution after the routine has
completed.

First, we consider the problem of locating the original instruction’s arguments. The software
function needs to be able to work out where the data to be processed is held and where to store
the result of the function once processing has been completed. This information will be held in
the calling instruction, but once we have branched this information is no longer readily available
and must be regained. The instruction will have contained either actual data (immediate operands)
or an indirection to the data to be used (either a register index on a RISC processor or a register
index or memory location on a CISC processor). The simplest solution to this problem is to find
the instruction that caused the processor to branch and then decode it manually. The address of the
instruction following the custom instruction invocation must be stored in order for the function to

44



return successfully (see discussion on the branch mechanism below), so by subtracting the length
of one instruction from this address we can get the instruction that we are interested in and decode
it. This is the mechanism used for floating point emulation on systems such as the ARM. When an
ARM binary runs on a processor without floating point hardware, and attempts to execute floating
point instructions, an invalid instruction trap occurs. The operating system then finds the faulting
instruction, works out what it was trying to do, and then decodes it and runs the floating point function
in software. Code to do this can be found in ARM versions of Linux and NetBSD.

The drawback to this approach is that it is very slow. Locating the instruction, separating out the
operands, understanding them, and then getting the data that they refer to will take tens to hundreds
of cycles (depending on the complexity of the instruction format for that architecture and the type
of operands it supports). Given the very nature of what we are trying to do — accelerate a piece
of software with custom instructions — we are adding overhead to what is already a time sensitive
operation. We would like to avoid this overhead as much as possible by making the processor do part
of the work. At the point when the processor decodes the custom instruction to software it can store
the operands to special purpose registers, and provide an access mechanism to allow the software
alternative to read the operands. This will remove the need for the software to find the instruction
and extract the operands. However, the software instruction will still need to interpret these values
and turn them into data that can be used for processing. Instead, we want the processor to take care
of all of the problems with getting the data. The processor should support a set of extra user-mode
instructions, one for each operand that an instruction could use, which allow direct access to the data
represented by those operands and to the storage location for the result.

This is best illustrated by an example. If we have a RISC load/store architecture where the in-
struction format to issue a custom instruction contains three operands: one being the index of the
destination register in the register file associated with the PFUs, and the other two representing source
operands which can be either be indexes into the reconfigurable unit’s register file or immediate val-
ues. The reconfigurable unit in the processor will contain three special-purpose registers used to assist
in recording these values for later recall. While the processor datapath is carrying out the branching
operation, the special purpose registers will be filled with the operands that would have been used for
the instruction. One will be filled with the index of the destination register, while the other two will
be filled with with either the immediate value contained in the instruction or the value stored in the
specified register. Once execution has begun in the software function, it can request the values that the
operands referred to using an instruction similar to a normal register transfer from the reconfigurable
execution unit’s register file, only requesting an operand index rather than a register index. To write
back the result, the function will use an instruction similar to that used when writing to a register in the
reconfigurable unit’s register file. The control logic of the processor will be responsible for ensuring
that the correct type of data accesses occur when these instructions are issued, reading and writing
either register files or main memory as necessary.

This mechanism then abstracts over the difficulty of using the original instruction operands in
software. In addition to the user mode instructions for access the special purpose registers, other in-
structions will be required to allow the special purpose registers to be preserved over either a process
or thread switch. It is important to note that the contents of these registers will be lost if the handler
for a custom instruction itself calls a custom instruction which is dispatched to software (a likely oc-
currence given that one instruction has already faulted, indicating the system is overloaded). Although
the first software fallback routine will most likely have already read its source operands, it is unlikely
to have attempted to store its result, and will not be able to do so correctly after the second routine
is invoked. Although it could be part of the Application Binary Interface (ABI) to preserve these
registers guarding against such an occurrence, the practice of calling custom instructions from within
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a software fallback should be seen as bad. If execution is within a fallback then the reconfigurable
unit is currently overloaded and any subsequent attempt to use a custom instruction has a high risk of
failing.

Next we consider the actual branch mechanism itself. On the surface it looks like a similar problem
to a conventional procedure call, but it is subtly different due to the unpredictable nature of whether
the hardware or software will be used.

First we need to understand how a conventional procedure call works. There are two parts to a
procedure call: the operations performed in hardware to move execution to the new procedure and
ensure that the subroutine can return, and the operations performed in software to ensure that the
caller sets up parameters correctly and the callee does not overwrite data precious to the caller. At
the hardware level, the process will issue a branch and link instruction which will be supplied with
an address to which to jump. This instruction will move execution to the specified address and move
the address after current address, i.e., the address of the instruction that should be executed upon
completion of the subroutine, into a special register called the link register (on the ARM a general
purpose register is nominated as the link register and on the PowerPC a separate register is used for
the link register; either technique is fine so long as the special purpose branch instructions know
where to find the link register). Once a subroutine is completed it then calls an instruction to move the
contents of the link register to the program counter, allowing it to resume execution at the point after
the initial call to the subroutine.

At the software level, compilers follow an ABI, which defines a set of conventions for register
use, stack use, and so on during the execution of a program. Part of this definition concerns procedure
calls, where there are two important points: how to pass parameters and receive results, and who is
responsible for ensuring that register contents are preserved across a procedure call. Nothing actually
enforces the ABI in hardware, it is merely a convention so that various parts of the software know
where to find information they need. Parameter passing is typically done by assigning a range of
registers to hold the parameters, assuming the number of parameters to a function is sufficiently small
to fit in that range (say four values in the ARM procedure call standard); any additional parameters
are placed on the stack. The same register range is used to store the return value of a procedure call.
In addition to setting up the parameter list, when a procedure call occurs, the caller will have scratch
values in registers that it will not want to lose, and either the caller or the callee will have to ensure
that after the procedure call these values haven’t been modified. One option is to have the caller back
up and store all the registers around a procedure call, but this is inefficient as not all subroutines will
overwrite all the registers. The other extreme is for the callee to preserve all the registers it will need,
but again for small subroutines this will require them to create a stack frame which they otherwise
would not need to if a few spare registers where available to them. Instead what happens in practice
is that the caller will ensure that some of the registers are either preserved or no longer needed so
that small subroutines will have enough space to work with without needing a stack frame, and the
callee will then preserver registers above and beyond this that it might need. Exactly where the cut of
point is is down to design decisions and profiling done by the ABI designers. However the callermust
preserve the link register, as the contents of the link register will be overwritten during the branch to
the subroutine.

The problem with the software dispatch system is that the callee did not expect to be making
a procedure call (which is what a software dispatch is, in essence), so the conventions for making
the procedure call will not have been observed. In particular the callee will not have preserved any
registers, most importantly though it will not have preserved the link register, unless it has already
done so in the act of calling a procedure already. This means that either the software dispatch routine
cannot modify the link register, which would have been the obvious place to put the return address, or
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the ABI needs modifying to preserve the link register when custom instructions are used. If we do not
allow the software dispatch routine to modify the link register then we will need to define another link
register specifically for the software dispatch routine and additional instructions for using it. In this
case we feel it is simpler to extend the ABI to state that all procedures using custom instructions must
pessimistically preserve the link register upon starting, and use that preserved value when finishing.
To decide what is the best approach actually requires a large body of code to be tested under each
option, but there is insufficient time for such testing to occur in this project, so instead we picked what
we felt was the most efficient option. All procedure calls bar leaf procedures will preserve the link
register upon entry already, so only those leaf procedures that use custom instructions will need to do
the extra work of storing the link register.

4.1.6 Long Instruction Support

For a processor to be practical for a workstation environment, the processor needs to guarantee that
the operating system can regain control of the overall system at any time and that interrupts can be
serviced within a short timeframe of occurring, in order to preserve an interactive environment. To
help maintain this, instructions on processors need to be designed to either be interruptible, else if
they are atomic, run for an amount of time that will not cause an excessive interrupt latency. For
example, the ARM Architecture Reference Manual specifies a maximum bound for instructions since
all instructions are atomic. This means that operations involving PFUs must not violate this set of
rules.

4.1.6.1 Reconfiguration

Reconfiguring the processor’s PFUs will require a comparatively large amount of data to have to be
moved onto the processor (when compared to other “large” transfers like cache lines). Halting the
processor during the transfer of such a large amount of data would have a negative impact on interrupt
latencies. For example, the longest instruction on an ARM core is a load multiple instruction that loads
all sixteen general purpose registers, taking eighteen clock cycles and moving 64 bytes of data (which
on an ARM750 will require a maximum of three cache lines to be read). Transferring several tens of
kilobytes in a similar fashion is not acceptable; the processor has to be willing to respond to interrupts
from sources like timers, input devices, and disk to provide the user with a suitably responsive system.

Another restriction on loading circuits in a workstation environment is that transferring bitstream
data needs to work with the memory model of a workstation environment. The bitstream used by a
process will be held in a virtual memory image that may not be currently in physical memory and
when loaded into physical memory may not be held contiguously. This means that either the loading
and storing mechanism needs to be able to cope with virtual memory arrangements, i.e., cope with
noncontiguous physical pages and the possibility of page faults, or that the operating system must
be responsible for ensuring that the bitstream is held entirely in contiguous physical memory. As
discussed in Section 5.2.2, when an operating system receives a system call, it typically copies the
parameters to the call into operating system memory. In addition, a proportion, if not all, of operating
system memory is unpaged. Thus, providing the operating system set aside a large enough contiguous
stretch of memory, all custom instruction bitstreams could be held in contiguous physical pages,
should the hardware require that. The alternative is to allow the addresses for the address required for
the bitstream to go through the normal memory translation hardware. If this technique is used, the
operating system will either need to page in the entire bitstream array or the loading mechanism on
the processor will need to be able to handle potential page faults.
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There are two possible techniques that can be used for loading the bitstream onto the processor,
and at the management level we are agnostic to which is used, just so long as the technique used is
implemented in such a way that it can be interrupted and restarted. One technique is for the SRAM
behind the FPGA to be memory mapped, which is how the Xilinx XC6200 was configured. Config-
uring a PFU is then simply a case of doing a memory copy, and no special instructions are required
to carry out the configuration. Because memory copying will be done using existing parts of the pro-
cessor’s instruction set, this is inherently interruptible, and, if interrupts are handled correctly by the
operating system, restartable. Carrying out a memory copy in this fashion will also work well with the
virtual memory model of the operating system, as it is not doing anything with the memory system
that could not already be done. Because instruction loading may be interrupted, there is a possibility
that a partially configured PFU may be invoked. If the architecture has been securely designed then
this should not cause any physical damage, but may cause bad results to enter an application. How-
ever, it should be the operating system’s role to ensure that this can never happen by managing what
is in the dispatch hardware. This virtualisation gives the operating system a way of preventing PFUs
being accessed without its explicit permission.

The alternative technique used to configure FPL devices is to use a serialised data stream. The
SRAM behind the FPL either acts like a large shift register, as in the Xilinx XC4000 range, or a
series of smaller shift registers, as is the case for the Xilinx Virtex range. If the FPL exports such
an interface then the processor needs to load data onto the processor in a stream from memory. This
operation is logically similar to the memory copy instructions found on CISC ISAs such as the Intel
IA-32 instruction set [Intel Corporation 1998]. Such mechanisms need to be interruptible to allow
the operating system to both regain control of the processor within a short response time and handle
page faults. The only difference is that instead of copying the data to a section of memory, the data is
simply being moved onto the processor. The design of the circuit load instruction is such that when it
is interrupted the program counter will not have been moved on, and the bitstream address value used
is incremented during execution, so simply reissuing the instruction will cause the load to continue
from the point of interruption.

A problem with simply streaming data from memory into a shifted FPL device is the difference
in speed at which data can be transferred from main memory to the processor and at which a serially
configured FPL device can accept data. The Xilinx Virtex device can handle a maximum configuration
throughput of 8 bits at 8 MHz, where as processor bus speeds are much higher and much wider. This
means that the a reconfigurable processor is unlikely to be able to process the incoming bitstream at the
rate at which data is transferred from main memory. One option is for the load bitstream instruction
to request data at a slower rate. This will potentially waste cycles however. The only reason other
instruction cannot be issued during configuration is that the process ties up the memory buses. Thus,
an alternative solution is to load the bitstream at full speed into a special bitstream cache, which can
then be drained whilst the processor runs other instructions, so long as no attempt is made to either
issue another load instruction or execute the PFU being reconfigured. This means that whilst we
cannot speed up the actual loading process, other work may usefully be done by either the operating
system or other processes whilst configuration completes. The load instruction would consume the
processor core until such time as the entire bitstream was loaded into the bitstream cache, then it
would appear to complete. However, the PFU will not have been configured yet — the PFU will still
be draining the contents of the cache. It is unlikely that an attempt to access the PFU being loaded
will occur, as the operating system will be aware that it is still being loaded and not attempt to load
another instruction into it, and applications should not be able to invoke it as the operating system
should not allow any TLB entries to point to it. Once the cache has been drained and the PFU is ready
for invocation an interrupt will be raised to alert the operating system to the fact, allowing it to load
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the dispatch hardware with the relevant entries and to unblock the application that had caused the load
to occur in the first place.

The drawback of this technique is that it can lead to more complex interactions when many pro-
cesses are trying to load multiple instructions at once, as shall be demonstrated in Section 5.2.4.

4.1.6.2 Execution

In both the PRISC and CoMPARE systems, executing custom instructions does not not pose any
timing problems, as they are only allowed to execute for a single cycle. However, in the Proteus
Architecture we require that instructions can run for multiple cycles. This poses a problem, given the
PFU interface described in Section 4.1.3, whereby instructions can execute for an unbounded number
of cycles. This opens up the possibility that instructions may either run for a significant amount of
time, causing an increase in interrupt latency and damaging the responsiveness of the system, or they
may not terminate at all, causing the system to lock up.

The Proteus Architecture must therefore either limit the execution length of custom instructions
such that they do not impede the interrupt response time or they must be made interruptible and reis-
suable. Limiting the length of execution of circuits loaded into PFUs is the easiest option, but could
potentially restrict the complexity of instructions that can be loaded into the PFUs. For instance, the
Alpha Blending example described in Section 4.3.2.2 used as a test example on our ARM based Pro-
tean Architecture exceeds the ARM recommended limit for interrupts. As processor speeds increase,
custom instructions will need to include more stages to be able to meet the timing requirements of the
processor, which means that any limit set in one generation of processor may fail on the next.b Rather XXX
than be limited by a fixed duration, the approach taken should be to make instructions interruptible.

If custom instructions are interruptible then we need to be able to reissue them successfully. Given
that instructions may contain state in them when they are started, it is not sufficient just to restart the
instruction with the same operands: we need to resume the operation from the point at which it was
interrupted. Under the PFU interface this can achieved simply by restarting the instruction without
setting the initialisation signal high on the first cycle. So only the first invocation of an instruction
before completion should cause the initialisation signal to go high, and all other invocations (which
will be a result of the instruction being reissued before completion after being interrupted) will simply
start clocking the instruction again without raising the initialisation signal high. This requires a single
bit of state to be stored with a PFU to specify whether it was completed or not at the point it was
stopped, which can be done by latching the output of the completion signal out of the PFU. If the
instruction had completed when it was stopped then the completion signal will have been latched
high, so a subsequent issue of the PFU will receive a high initialisation signal; if the PFU had not
completed when the instruction was stopped, then the PFU will not receive the initialisation signal on
reissue, and execution will simply resume from the point it was halted.

At the end of a custom instruction invocation, once the instruction has indicated that it has com-
pleted, the results should be latched and the program counter updated. If this takes more than a single
cycle to complete on a given implementation, then this needs to be made uninterruptible, as the pro-
cessor is writing back state and restarting the instruction may have undesirable consequences. Once
source of interrupts that could cause the processor to suspend an executing custom instruction is the
end of scheduling period timer interrupt. This means that the process will now lose control of the
processor, and as such the status information regarding whether the instruction is in flight will need to
be preserved in the current process’s PCB and replaced with that the next process, to ensure that each

bEngage brain at some point
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process’s custom instructions are issued correctly. If the reconfigurable execution unit only allows a
single custom instruction to be issued at once then it is sufficient to have a single status bit for the
entire unit. If, however, multiple PFUs can potentially be in flight at once, then a status bit per PFU is
need.

TODO: what about on CISC architectures when a page fault occurs during an operand write?
TODO: read about ix87 math coprocessors.

4.1.7 Usage Information

It is the aim of the operating system is to make the most efficient use of the PFUs as possible, which
involves trying to reduce the number of times circuits are swapped in and out of the array. To help
the processor in this job we would like it to maintain some information about the usage of the PFUs.
The question is what kind of information should be kept. There are two places to look for a guide as
to what information to keep: virtual memory management literature and FPL resource management
research.

The virtual memory management hardware on a processor is provided with a pointer to the page
table describing the virtual to physical translation mappings for the current process. The page table
is walked any time a virtual address is generated by the processor and not found in the TLB. On
processors such as the Compaq Alpha [Compaq 1999] and Intel Pentium range [Intel Corporation
2001a] the page tables provide space for the processor to record basic usage information about access
to that particular page. Typically they provide a single bit to note that the page has been accessed and
a single bit to note that the page has been modified. These are cleared by the operating system when
the page in question is loaded, and set by the processor on address lookup. This usage information
can then be used by the operating system to determine which pages have been accessed (or more
importantly which have not been accessed, and therefore make likely candidates for eviction) and to
locate which pages need to be saved back to disk before eviction and which can simply be overwritten.
The aim being to reduce the amount of time the operating system spends moving pages in and out.

Most of the research into FPL management focuses on the complex problem of circuit location
inside a large FPL array. However, there has been some work on load ordering and configuration
caching, as described in Section 2.5. Configuration caching is concerned with which circuits to leave
on inactive areas of a large FPL device or in other configuration contexts in multicontext FPL de-
vices [Hauck et al. 2000, Sudhir et al. 2001]. Both these problems are analogous to deciding which
circuits should remain in PFUs on the processor. These research papers use three different classes of
algorithm: offline analysis, for which hardware support is not needed; list based history algorithms
which just use the usage sequence and not detailed calling information; and statistic based algorithms
borrowed from virtual memory management, such as LRU, which could make use of statistics gath-
ered by the hardware on usage. We discuss these in more detail in Section 5.2.4, but here we are only
interested in the last option, which can make use of hardware support.

From this, we can see that to aid the operating system we want to provide hardware support
for virtual memory style page replacement algorithms, where we provide statistics for each PFU
rather than for each page. The hardware layer needs to provide suitable information for the operating
system to implement the commonly used page replacement algorithms found in operating system
literature [Silberschatz et al. 1998], such as Most/Least Recently Used, Most/Least Frequently Used,
and Second Chance. Appropriate algorithms for use in this context are covered in Section 5.2.4.3.

In virtual memory systems, only a single usage bit is kept per page. This is suitably adequate
for paging, where there is a large set of candidates, all of which are unlikely to be used during a
single scheduling period. This means that when an operating system notes the usage information at
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the start and end of each context, it can build up a usage history from these single bits over many
contexts. If every page was likely to be used during the scheduling period then the single usage bit
would not be able to differentiate the usage of different pages. On a context switch, the TLB has to be
flushed, which means that subsequently in a process’s scheduling period all memory access to pages
will require a look up through the page table, at which point the usage bit can be set. Subsequent uses
of that page are not necessarily going to require a page table access, so long as the entry is in the TLB,
so a single bit usage history is all that can be guaranteed to be accurate.

For the PFUs, however, the processor can do better. The reason that page tables are not accessed
(and therefore updated) on every memory access is that the cost of accessing main memory is high.
For a PFU, however, no information needs to be accessed from off the processor. This means that
every single PFU access can have information recorded about it. For recent usage algorithms, such as
the LRU class of algorithms, a register can be associated with each PFU into which the current value
of a monotonically increasing counter (say either the processor’s cycle counter or a logical counter
incremented on each PFU invocation) will be copied when an invocation occurs on that PFU or a PFU
use loaded (this later case is to prevent the just-loaded PFU being evicted based on its old count which
caused it to be selected for eviction before).

For counting algorithms, like most and least frequently used, the processor can provide usage
counters that keep a record of how often a PFU has been used since the last time the counter was
reset. Note that because instructions may potentially be interrupted and restarted, to get a count of the
times an instruction was used the counters must be updated on the last cycle of a custom instruction
rather than at the start. In our test architecture we have implemented both of these solutions so we can
compare the behaviour of the various scheduling policies (Section 5.2.4).

4.2 Initial Implementation

In order to demonstrate that the Proteus Architecture is sufficient to support a workstation class op-
erating system and to test various management policies, we produced a detailed model of an actual
Protean processor on which to test an operating system and applications that use custom instructions.
Although a silicon or FPGA based implementation was outwith the manpower for this project, a suit-
ably detailed software model will be enough for us to demonstrate our claims that the architecture is
sufficient to support.

As our base architecture we have extended an ARM microprocessor core, described in Sec-
tion 4.2.1. Although the concepts of the Proteus Architecture could be applied to a more modern
and powerful processor (e.g., PowerPC, Alpha, or IA-32 architectures), a simple RISC processor like
the ARM makes it much easier to implement a suitable simulation for experimenting upon.

This section describes the details of our implementation, hereafter referred to as the ProteanARM.
In Section 4.2.1 we describe the ARM processor core on which the ProteanARM was based, then
in Section 4.2.2 we give an overview of how the architecture fits together, looking at how the con-
cepts discussed in the previous section were applied to the prototype architecture. Discussion of the
simulator and how the architecture works with some basic test applications follows in Section 4.3.

4.2.1 The ARM7TDMI

The ARM architecture [Furber 1996] was created by the Acorn Computer Group in 1985 for its series
of desktop computers. Later on, ARM Ltd. were separated from Acorn to solely develop the ARM
architecture. Now it is one of the most widely used embedded processor cores on the market.
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Figure 4.4: Datapath for the ARM 7

The ARM 7 architecture is a 32 bit RISC load/store architecture, an overview of which can be seen
in Figure 4.4. The ARM 7 implements version three of the ARM ISA as defined in [ARM 2000], and
uses a simple three stage fetch/decode/execute pipeline. The basic ARM core contains sixteen 32 bit
general purpose registers, all of which are accessible from any operation, but the top register serves
as the program counter. A small number of registers are mirrored in other modes, so that when a
mode switch happens (such as a system call or interrupt occurs) not all registers need to be preserved.
There is also a status register containing the status bits and current mode information. The register file
is connected to a sixteen operation ALU, which contains the basic integer and boolean operations, a
multiply unit, and a barrel shifter. All data processing is done only with register contents, with data
needing to be moved to registers from memory before it can be processed. An unusual feature of the
ARM instruction set is that all instructions are conditionally executed. Each instruction contains a
qualifier that will be tested against the status bits: if true then the instruction is executed, otherwise it
gets treated as a no-op (one of the qualifies is always true, to ensure that such instructions always get
executed).

The ARM architecture uses a simple coprocessor interface to allow both on-chip and off-chip
extensions to the core. An ARM system may have up to sixteen coprocessors, numbered from 0 to
15, although coprocessor 15 is reserved for the system management interface. Coprocessors speak
to the rest of the system by attaching to the data bus and using a set of handshaking signals between
the coprocessor and the main core. Coprocessors operate by observing the same instruction stream as
the main core as it goes across the data bus and reacting appropriately when coprocessor instructions
occur with the correct coprocessor number in them. When this instruction reaches the execute stage
of the pipeline, the coprocessor uses the handshaking signals to let the processor know it is handling
the request, and to let the main core know when it has finished. If no coprocessor acknowledges a
coprocessor instruction then an undefined instruction interrupt is raised so the operating system may
handle the request. The coprocessors all understand the same basic set of instructions, but how a co-
processor reacts to instructions is entirely implementation specific. The basic operations are load/store
data value from/to memory; transfer data value to/from main core register file, and data processing
instructions. How the fields in these instructions are interpreted is up to the coprocessor. For example,
a floating point coprocessor may use the spaces for coprocessor register names as an index into an
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internal register file. However a management based coprocessor, like the system management inter-
face in coprocessor 15, may use the same register name slots to pass the data onto the appropriate
part of the processor (e.g., cache unit, MMU, etc.). Example uses for the coprocessor interface are
the internal floating point unit on the ARM ARM7500FE [ARM 1996] and the Intel XScale [Intel
Corporation 2000] for DSP extensions to the instruction set.

4.2.2 ProteanARM Overview

The ProteanARM is constructed by adding a reconfigurable execution unit to an ARM core as an
internal coprocessor. The new coprocessor contains the PFUs, the associated register file and special
purpose registers, and the dispatch hardware. The idea when designing the ProteanARM was to
change as little of the ARM core as possible and to keep the reconfigurable unit as cohesive as possible.
This was not completely possible, since some changes to the control logic in the ARM core were
required to handle the software dispatch mechanism and the interrupt mechanisms. However, the
changes were designed to be generic (such as the ability to allow a coprocessor to generate a branch
address) and therefore useful to other coprocessors and not just the Protean coprocessor.

The general datapath for the ProteanARM is shown in Figure 4.5. The register file contains sixteen
32 bit entries (this is what the coprocessor interface allows for), and can have its contents loaded from
memory or transferred from the main register file, and vice versa. Additionally, the entire contents of
the register file can be transferred to and from main memory in a single atomic instruction, useful for
storing and restoring process state during a context switch. As explained in Section 4.1.1, we estimate
having ten PFUs available, each of which is connected to two 32 bit input buses and a single 32 bit
output bus, which are in turn connected to the register file. Instructions in ARM coprocessors can
only work with register contents, unlike instructions in the main core which may also use immediate
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operands. Because the reconfigurable unit is in a separate coprocessor, long instructions on the recon-
figurable unit could technically run in parallel with the main ARM core. However this ability is not
exploited in our initial implementation.

For the reconfigurable logic part of the processor we assumed a fabric similar to that found in the
Xilinx Virtex range of devices (see Section 2.1.1), with a suitable modification to allow the contents
of the CLB registers to be saved as well as loaded (this is not possible on the Virtex, but can be done
on other parts). One technical advantage of modelling the fabric on the Xilinx Virtex fabric is that
it uses multiplexor-based routing, which means it is not possible to configure the array with a short
circuit. This removes the physical security concerns regarding misconfiguring the ProteanARM.

Based on the figure of 500 CLBs per PFU, we can make an estimate of the bitstream size re-
quired to configure each PFU. The Virtex fabric bitstream uses a series of frames to configure the
array [Xilinx 2000]. Each column of CLBs is configured with a series of 48 frames which may be
configured independently. Each frame contains 18 bits per CLB, which amounts to 864 bits of config-
uration information per CLB. This gives a total of 432,000 bits per PFU, or 52.7 Kbytes per PFU. This
gives us an upper bound on the amount of information needed to configure a PFU; smaller circuits
may require less configuration information. Also of interest is the size of the bitstream that contains
just the state information for each PFU; this gives the upper bound for the amount of data needed to
be moved off the processor to store process-specific state. There are four registers per CLB and the
data for each one is stored in a separate frame, meaning that for each CLB we need to store 72 bits,
or 36000 bits per PFU (4.4 Kbytes). This gives an upper bound on the amount of information we
need to store on a circuit switch to ensure that the circuit can be successfully reinstated. Although
not an architectural requirement, the bitstreams used to configure the PFUs are divided into two sets
of frames: those containing state and those without. This gives two separate configuration streams,
which can be treated contiguously for loading purposes, and separately for storing purposes.

In addition to just a simple ARM core, we have modelled two on chip peripherals to support
operating system management. The first is an interrupt controller for managing the two types of
interrupt the ARM processor can handle; the second is a set of timers which the operating system
can program to produce interrupts after specific periods. These peripherals are required to support a
preemptive multitasking environment.

The ARM core we selected runs at 40 MHz. This is slow by modern processor standards, but
our interest lies with the management issues, rather than the actual detailed implementation issues of
making the system work at today’s high clock speeds. Given that we assume a Xilinx Virtex device
with a ARM core added, and the Virtex uses a much better silicon process than that associated with
the ARM core we use, in all likelyhood the core could be clocked faster. However, the expertise
required to make an accurate prediction of how the clock speed would increase was not available, so
no attempt was made to persue this. The main aim of the architecture is to explore the basic interface;
the detailed electronics are left for people better educated in such matters.

4.2.3 PFU Interface

The interface to each PFU follows the design laid out in Section 4.1.3. Each PFU has two 32 bit
inputs being fed by the unit’s register file, and a 32 bit result bus that connects back to the register
file. The PFUs also have a start signal entering them that goes high on the first cycle of invocation and
subsequently low, and an output signal which indicates completion.

On the ProteanARM, an extra cycle had to be inserted at the start of a custom instruction dispatch,
in order to allow the status bit to be read and fed into the custom instruction. This cost may seem
negligible, but several of our test applications use custom instructions which complete in a single cy-
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cle. It could be beneficial to have two dispatch instructions: a single cycle dispatch where the custom
instruction is guaranteed to complete in one cycle, and our existing multicycle dispatch instruction.

As stated in Section 4.1.3, the Proteus Architecture has a initialisation line ito a custom instruction
which is high on the first cycle and low on subsequent cycles. On the output side, the circuit drives a
done signal low during execution and high when it is complete. To allow instructions to be restarted
after preemption by an interrupt, we record the done signal in the extra status bit, the value of which
is fed into the initialisation line when the program issues a custom instruction. If this is a first issue of
that instruction, then the status bit will be high from the last completed instruction’s done signal. If the
instruction had been preempted however, then the signal will be low, and the circuit will not receive
the initialisation signal when reissued. Thus custom instructions can be interrupted at any point and
reissued without restarting them.

4.2.3.1 Reconfiguring

In Section 4.1.6.1 we looked at two ways in which PFUs may be configured: memory mapping the
SRAM behind the PFUs or by a sequential loading mechanism. Because the ProteanARM PFUs are
modelled on the Xilinx Virtex FPL, we assume a similar loading mechanism as the Virtex, which uses
a serialised data input, thus go for the latter option.

The top configuration speed of the Virtex device is lower than that of the ARM’s memory bus,
which is both wider and faster than the fastest Virtex configuration interface, so we model an in-
struction FIFO, into which the configuration data for a single PFU can be loaded at the full ARM
memory bandwidth rate, which is then drained at a slower rate as the data is shifted into the configu-
ration SRAM. The processor core is only active in the configuration process whilst the FIFO is being
loaded; the draining of the data into the FPL can be done in parallel with other processor activity, so
long as no attempt is made to either load another configuration bitstream or invoke the PFU being
configured. Should either of these operations be attempted then the coprocessor will not acknowledge
the instruction at run time, which will cause an undefined instruction trap to occur. This mechanism
means that whilst we can not reduce the latency from the start of an instruction being loaded to it
becoming available for use, other work may usefully be done for at least part that time.

When an application requires that an instruction is loaded, and the operating system will begin the
loading operation, the requesting application will be suspended until the loading has completed. To be
able to do this the operating system needs to be made aware of when an instruction has competed. This
is achieved by the coprocessor causing an interrupt to occur through the on chip interrupt controller
to alert the operating system that the loading has completed.

The core and coprocessor work together to carry out the loading of the FIFO. This involves adding
a CISC style load instruction to the RISC processor ARM core. This instruction lasts as many cycles
as it takes to transfer the data to or from the processor over the memory bus. During loading the
instruction may be interrupted to allow the operating system to respond to other interrupts during
loading. The load and store instructions modify the regsiter containing the bitstream address such that
if the instruction is interrupted the instruction can simply be reissued and it will continue from the
point at which it left off.

Storing the contents of an FPL device is more complicated, but handled similarly. Unlike loading,
where a single instruction is sufficient to start the process, we need to fill the FIFO with data from a
PFU and then do the storage routine, which requires two instructions, one to fill the FIFO and another
to transfer the contents of the FIFO to memory, and an interrupt to indicate when the FIFO loading
has completed.
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4.2.4 Dispatch Mechanism

The ProteanARM uses two eight entry TLBs for implementing the conversion from the (PID, CID)
ID tuples to either the PFU number or software pointer. Each ID tuple is 15 bits long: 8 bits come
from the PID (the ARM system coprocessor only allows 8 bits for PIDs) and 7 bits for the CID (as
much space as there is for opcodes in the execute instruction format). These are used at the decode
stage of the pipeline when an instruction for executing a custom instruction is encountered. When an
processor instruction requesting a custom instruction be executed is encountered, the CID from the
instruction and the current PID, which is held in system management coprocessor, are fed into each
TLB. Depending on the results the instruction is decoded in one of three ways: as an execute PFU
instruction, a branch to software alternative, or a unloaded instruction trap.

The first case is very simple. The hardware TLB will return the corresponding PFU number for
a given ID tuple which will be used to indicate which PFU should be used when this instruction is
executed. Once translation has occurred the instruction appears just like a conventional coprocessor
data processing instruction. The more interesting cases are what happens when a match is found in
the software TLB and when no match is found.

As discussed in Section 4.1.5, dispatching to software is a more complex operation due to the need
to preserve the instruction operands and the extra instructions required to retrieve them, and unlike
most other parts of the ProteanARM, to solve this problem we required to modify the behaviour of the
main ARM core slightly. When a match has been found in the software TLB, the instruction needs to
cause the program counter to be stored safely, for the instruction parameters to be preserved for later
use, and for execution to be jumped to the appropriate address. Storing the instruction operands on the
ProteanARM is simplified thanks to the simple load/store nature of the ARM architecture, whereby
all processing is done on data stored in registers, so the Protean coprocessor only needs to note the
two source registers and the result register, which is only 12 bits and can be stored in a single register.
This register can be read from and written to using a register transfer instruction so that it may be
preserved across context switches.

Having preserved the operands in the coprocessor, the rest of the instruction resembles a traditional
ARM branch and link only with the destination address coming from a coprocessor rather than the
main core. Because the operand preserving is part of the coprocessor, the main core never needs to
be aware of it. However the main core’s control logic does need to be modified to handle the actual
branching, as the coprocessor needs to modify the value of the the program counter held in the main
core. The task is complicated slightly as the main core does not know at the decode stage whether
the instruction has been decoded to run in hardware or software, so can not explicitly react to the
instruction be preparing for an address to be generated from the coprocessor. Instead we augment the
coprocessor interface with a signal that causes the main core to start a branch based on the value being
put on the data bus by the coprocessor at that time.

The new control logic takes several cycles to complete once the core has been notified of the
software dispatch. On the first cycle the address to be branched to is latched on the data output of
the coprocessor. On the second cycle this will be moved into the main cores data in register, and on
the third cycle it will reach the address register having moved through the ALU. Now the address
has reached the address register it will take another two cycles to get the pipeline ready to execute
the correct instruction. During these two cycles the old program counter value is moved to the link
register and adjusted to point to the instruction that follows the instruction that caused the software
dispatch. On the next cycle execution will continue from the software function.

As noted, this mechanism has the side effect or destroying the previous value of the link register
unexpectedly; the ARM’s ABI, the ARM Procedure Call Standard (APCS), only requires the link
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Figure 4.6: Data formats for TLB entries

register to be preserved if a procedure contains a procedure call, but here we are making an unexpected
procedure call so the link register may not have been preserved. However for simplicity we simply
augment the APCS to include the prevision that procedures that use custom instructions must preserve
the link register on the stack too. Using the link register means that we do not need to add another
register to the main core and that the return from the software alternative can occur in the same manner
as the return from a standard procedure call. Once the software dispatch routine has been entered, the
software can then make use of three normal register transfer instructions which have a special meaning
in the Protean coprocessor. By setting the appropriate opcode in the core/coprocessor register transfer
instructions the index for the target/destination registers in the coprocessor are taken from the register
storing the operands of the faulting instruction rather than from the transfer instruction’s operands.

When no match is found for a ID tuple in either TLB then the coprocessor handles the instruction
as if it did not recognise the instruction, which causes an undefined instruction trap to occur on the
processor. This causes the operating system to be entered, which can then locate the faulting instruc-
tion and obtain the CID the process was trying to invoke. It can then either rectify the issue and restart
the process from the faulting instruction if the CID was valid, or terminate the process if the CID
was invalid. Programming the dispatch TLBs to include the missing CID is done by writing to two
control registers, one for the PFU dispatch TLB and one for the software dispatch TLB. Each register
supports for opcodes, describing whether an access to the register is to add a TLB entry, remove TLB
entry, lock a TLB entry, or flush the entire TLB. When describing a TLB entry, the operating system
provides data in the formats shown in Figure 4.6: Format A is used when adding a new entry, and
Format B is used for describing existing entries.

4.2.5 ProteanARM Instruction Summary

The new instructions defined for the ProteanARM can be seen in Figure 4.7. These fit into the standard
instruction formats for interfacing with coprocessors on the ARM. This means that the main part of
the core knows how to respond to each instruction essentially for free. However, to achieve this we did
need to use two coprocessor numbers to cover the range of instructions. Given that this was required,
it made sense to separate out the two coprocessors logically, and use one for user level instructions
and the other for system level instructions used only by the operating system. Thus coprocessor 0 is
used by applications when using the reconfigurable unit, and coprocessor 1 is used by the operating
system. This can be seen in the instructions by bits 8 through 11. Only the first three instructions
can be executed by user level processes. This provides another level of security in the system: only
the trusted operating system can manipulate the configuration of the PFUs and the dispatch hardware,
preventing applications accessing each others’ resources without permission.

The execute instruction is simple enough, containing a 7 bit CID and the three operands for the
custom instruction. Similarly the load/store instruction is simple to understand in comparison with the
ARM guidelines, the only interesting part being the L bit, which specifies whether a single register or
the entire contents of the register file is being transfered. The register transfer instruction is used to
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move data between the main register file and the register file in the reconfigurable unit, the direction
being indicated by the L bit. The Op field specifies whether this transfer is between the register file in
the unit, or between the implicit operand registers for use by a software alternative.

The remainder of the operations are used by the operating system for controlling the reconfig-
urable execution unit. The reset instruction resets a specified PFU, returning all registers to their
default value as specified in the configuration (see Section 5.1 for a discussion of how this instruction
may be used). Load/store PFU is used to transfer the bitstream for a circuit and its state onto the pro-
cessor or the state off the processor at the specified memory address. The circuit and software TLB
operation instructions are used to program the respective parts of the dispatch hardware. The final two
instructions allow the operating system access to the usage statistics associated with each PFU.

4.3 Architecture Simulation

In order to develop and test the operating system and management levels in which we are interested
we first developed a basic simulator of the ProteanARM architecture with which to experiment. In this
section we describe the simulator we used to test the ProteanARM, some basic sample applications
designed to run on the simulator, and the basic performance characteristics we observed.

4.3.1 The SWARM Simulator

To test the ProteanARM architecture and allow us to demonstrate the practicability of the operating
system and programming model work, we needed a processor simulator for the ProteanARM archi-
tecture on which to build. The aim of the simulator is to allow us to demonstrate that logically the
ProteanARM can be created, and that the model is sufficient to support operating system manage-
ment. We will want to allow it to detail the changes made to the datapath and the way in which it is
controlled. This it needs to be accurate down to the data flow level, to allow us to see how the various
buses in the system will work, and what control logic changes are required.

When simulating a new processor architecture there are several options available. Firstly a hard-
ware model can be build and then either simulated using hardware simulation software or synthesised
and loaded onto an FPGA [Sawitzki et al. 2001]. However, building such a detailed model requires
considerable effort, and is only of interest if we are trying to prove the specifics about how the FPL
and processor work together, demonstrating that the two worlds can be physically connected together.

Instead a software model was used to model the processor. This technique has been used in
other projects to provide an easy way to test architecture changes and seeing how they affect the
higher layers. An example is SimOS [Rosenblum et al. 1995], which simulates a complete machine
in software. SimOS provides a complete machine implementation of a MIPS based machine and
a Alpha based machine, complete enough to run Silicon Graphics Inc.’s UNIX, IRIX on the MIPS
implementation and Digital UNIX on the Alpha implementation. Because the system is build in
software it is very easy for the authors to alter variables (e.g., cache size/types, TLB sizes, etc.), and
very easy to monitor events within the system (e.g., disk accesses, cache misses, etc.). We want a
similar arrangement, but aimed at the ProteanARM.

To provide a suitable model for our work we created a modular software mode of an ARM7 CPU
code in C++, called SWARM (SoftWare ARM). SWARM is a cycle accurate model of the ARM
7 core, designed at the data-flow level, modelling the transfer of data around the CPU as it moves
between registers, buses, and the various processing elements. SWARM is built in a modular fashion,
allowing people to add new basic blocks to the system, such as different caches, peripheral devices,
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and internal coprocessors. For the purposes of our work we are simply interested in a basic core
with a new internal coprocessor attached to a block of memory, but other groups have added devices
like UARTS and LCD controllers. SWARM is sufficiently complete a implementation of an ARM
processor that microcontroller Linux was ported by another group to run on SWARM. For purposes
of the initial testing no memory management unit has been implemented.

In a real ProteanARM PFUs contain an FPL fabric that is programmed by loading a bitstream
which would have been produced by a hardware compiler tool. A detailed simulation of the PFUs
is unnecessary for the purposes of studying the management of the PFUs themselves; all that we
need to do is ensure that we can simulate the functional behaviour and loading times accurately. The
PFUs are simulated functionally rather than attempting to provide an emulation of the actual fabric
used. Programs destined to run on the simulated are linked with binary objects that are the same size
as the estimates bitstream size for a PFU, but instead contain a software function compiled for the
architecture that the SWARM simulator is compiled for and meta data describing the length of the
software instruction and the amount of data needed to store any state used by the function. SWARM
notes the bitstream being loaded onto the processor and stores the code segment for execution when a
PFU invocation is simulated. Because this is only a functional simulation of the circuit loaded into the
PFU, the actual circuit characteristics such as CLB count and timings have to be acquired by designing
the circuit for a Virtex part using the Xilinx design tools.

Software can easily be developed for the simulator using the GNU c compiler, gcc, built to cross
compile for the ARM in conjunction with a small custom C library and run time. Because we did
not wish to spend time adding I/O devices and storage devices to the emulator, the simulator was
designed to handle a special range of software interrupts (used on the ARM to implement system
calls) as upcalls to the host system, which allows us to provide the facility to access the host file
system for instance.

As with all simulation work, performance becomes a concern for anything beyond the basic tests.
Despite investing time in optimising the performance of the simulator, on a 1 GHz Pentium III a
second of simulated CPU activity can take several hours. This meant that for tests in the operating
system experiments discussed in Chapter 5, which required 50 or more tests to generate a single graph,
the run time became a limiting factor in what work could be practically tested.

4.3.2 Basic Performance

As part of the development of the general architecture we developed a small set of applications to
run on the ProteanARM simulator. The purpose of these was to ensure that the general architecture
worked and to allow us to get a feel for how it performed and developed, the results of which were
used to tune the interface. Here we describe these basic applications and the estimated performance
benefit from running on such an architecture.

In all the cases here the circuits used for custom instructions were developed in structural VHDL
targeting the Xilinx Virtex part. The VHDL was then compiled using Xilinx Foundation software and
then placed and routed using Xilinx Alliance to generate a timing figure and CLB count. The circuits
were designed to run at 40 MHz, the maximum clock speed of the ARM core we selected.

Typically, to test the performance of a new processor design a benchmarking suite such as SPEC [SPEC
2000] is used. Such a benchmark is used to approximate behaviour over a wide range of user tasks.
We did not follow this approach, instead using a limited number of bespoke examples. There are two
reasons for this. Firstly, without implementing a compiler, taking large applications and accelerating
them with custom instructions without a working knowledge of the algorithms used is a hard problem.
To manually accelerate programs requires knowing where the program spends most of its time, and
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then understanding how the algorithm works at an abstract level so that the best approach to acceler-
ation can be selected. Thus implementing SPEC this early on in the project was deemed an unuseful
application of manpower. The second reason is that, while the basic architecture should be demon-
strably faster than an unaccelerated architecture, the focus of this work is on the management issues
rather than the straight line performances. So while it is important to have a set of test applications,
we are more interested in developing the operating system mechanisms rather than an exhaustive set
of test applications.

4.3.2.1 Audio Processing

The first example is an echo filter algorithm taken from an Intel MMX technical note [Intel Corporation
2001b]. The origianl aim was to show that the ProteanARM could support MMX type instructions in
its PFUs. But, thanks to the flexibility of reconfigurable logic, we were also able to perform optimi-
sations not possible in MMX.

The algorithm processes a WAVE-format audio file, which uses 8 bits per sample at an 8 kHz
sampling rate. The samples are stored as unsigned values, but must be normalised to be between -128
and 127 for processing. This is done by xoring each sample with8016. To adde echos of delayd to
samples we look back in the file’s history and add attenuated values. The attenuation factor,G, is
greater the further back in time we go. This is expressed as follows:

s′[n] = s[n] +
∑

1≤i≤e

(Gi × s[n− i× d])

The aim of the implementation is to use SIMD techniques to work on four octets per instruction.
The key operations of the MMX example are a SIMD signed add, a variable SIMD arithmetic shift left,
and an xor operation to normalise the samples. We improve on this by building the normalisation into
the add and shift instructions, by partially evaluating the xor with constant operation into the circuits’
inputs and outputs where necessary. This level of customisation was only possible with reconfigurable
logic. Had this not been possible then we would have been forced to either use the xor instruction in
the main ALU, which would have meant moving data back and forth between the main ARM core
and the reconfigurable execution unit, or to use a PFU to provide a xor function in the reconfigurable
execution unit, which would have been a waste of a PFU, as it would have only occupied a small
fraction of the PFU, especially if we partially evaluated the constant into the circuit.

In the completed example, the shift instruction required 75 CLBs and the adder instruction 20
CLBs. Both take less than a single cycle to complete at 40 MHz, but could easily be pipelined to
run faster given how little of our predicted PFU size they use. Using the new instructions reduces
processing a single sample from 570 cycles (in optimised C code) to 98 cycles.

4.3.2.2 Alpha Blending

Alpha blending is the process of superimposing images that contain a level of transparency (their
alpha value). Images are made up using 32 bits per pixel, an octet for each of the Red, Green, Blue,
and Alpha channels (referred to as RGBA format). Without the alpha channel, summing images fits
nicely into the SIMD add with saturation instructions found in MMX. But summing RGBA is more
complex. The equation for summing the alpha channel is different to that for summing the colour
channels, and summing the colour channels depends on the result of summing the alpha channel. The
equations for the alpha and colour addition can be seen below, withf andb referring to the front and
back images:
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An =
Af ×Ab

255
Cn =

((255−Af )× Cf ) + (Af×Cb×(255−Ab)
255 )

255−An

The aim of this example is to experiment with a circuit that adds two pixels in a single instruction,
fitting nicely into the 32 bit datapath of the ProteanARM. The alpha blending circuit is both larger
and more complicated than the circuits used in the previous example. It implements a number of
Booth’s multipliers and naive dividers, requiring the circuit to include state and take multiple cycles
to complete.

The alpha blending instruction uses 436 CLBs and takes 27 cycles to generate a result at 40 MHz,
substantially less than the corresponding 377 cycles required by software. This circuit only just made
the timing requirements at 40 MHz, so would require pipelining to be implemented for a higher clock
speed. We feel that this represents a reasonable level of circuit complexity for what would go into a
PFU, unlike the audio echo instructions are very basic combinatorial instructions. As such we feel that
the CLB count provided by this provides an indicator of how large we expect PFUs to be. However,
this is obviously just an estimate, and many more applications would have to be developed to get a
more accurate feel for the PFU size.

4.3.2.3 Twofish Encryption

The next example implements the core part of the Twofish encryption algorithm [Schneier et al. 1998],
which is used in programs such as Secure Shell [Ylonen et al. 2000]. Twofish is a block based secret
key encryption scheme. It works on 128 bit blocks of data and uses either a 128, 192, or 256 bit
key. Encrypting and decrypting in Twofish uses a similar algorithm, simply with the order of the
stages involved reversed. For the purposes of this discussion we refer to encryption throughout, but
everything we discuss applies to both the encryption and decryption processes. There are two stages
to using Twofish: key scheduling, which sets up a session for processing data, and encryption which is
when the actual data processing occurs. Spending more time on the key scheduling means less time is
spent at the encrypt stage and vice versa. The four standard implementations as outlined in [Schneier
et al. 1998] were implemented in C and measure without acceleration first. The four implementations
are referred to by the amount of key processing they do, with zero doing the minimal key processing
and full essentially turning encryption into a series of LUT accesses. The following table, Table 4.1,
shows the number of clock cycles for each stage for each of the key lengths.

Keying Option Clocks to Key Clocks to Encrypt
128 192 256 128 192 256

Full 46461 56736 67603 2330 2330 2330
Partial 38772 49047 59914 3868 3868 3868
Minimal 30578 40853 51720 4353 4353 4353
Zero 7757 9840 12003 5436 6652 7932

Table 4.1: Twofish performance with different key lengths and op-
tions

The encryption and decryption paths are very similar, and at their core have a manipulation func-
tion, referred to as theh function, that takes in 32 bits of the data to be encrypted,X, and modifies it
to produce another 32 bit value,Z. A diagram of theh box can be seen in Figure 4.8. The data value
enters theh function, and is processed through a series ofq boxes, which are static 8 bit permutation
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Figure 4.8: Twofish h function

boxes, and is XORed withL values, which are derived from the session key. The path through theh
function is dependant of the key length, with a shorter path being taken for a shorter key (represented
by the switches in the diagram). Because theq boxes are static, and the data values match the data
width of the processor bus, theh function makes an obvious choice for a custom instruction, but for
the key dependantL values, which total as the same number of bits as the session key. There is no
way to fit this L value across the datapath for a single invocation of theh box. For instance if we have
a 128 bit key, then we need to pass in 160 bits per invocation, but we only have 64 bits available on the
ProteanARM. A possible solution would be to write a circuit that takes theL value in over consecutive
cycles. This would require the circuit to be invoked three times (twice to read in the 128 bit L value,
and once more for the 32 bit data value). The circuit would then only produce a meaningful result
every third invocation. Whilst this solution is workable2, we waste two cycles every invocation to get
around the bandwidth limitation of the processor. Obviously we could expand the datapath width to
128 bits, but then other key sizes would still require several load cycles.

A possible solution for a certain class of applications like this one is to usepartial evaluation.
Partial evaluation is similar to constant folding in software compliation [Aho et al. 1986], whereby
expressions whose value is known to be constant at compile time are collapsed and replaced with that
constant, only applied to hardware. The flexibility of reconfigurable logic allows us to decide before
loading a circuit that one of its inputs is constant and fold that into the circuit before loading it, the
aim to be to improve the runtime performance of the circuit [Susanto & Melham 2000]. Although
the authors in [Susanto & Melham 2000] found that it provided little benefit for runtime performance,
partial evaluation can be applied to the PFU bandwidth problem. In the Twofish algorithm, theL
value used in theh function is constant for a session, which means that for all PFU invocations for that
session, of the 160 bits needed (assuming our 128 bit key size), only 32 bits (the data being encrypted)
change between invocations and the other 128 bits (the key) remain constant. Thus, in the key setup
stage, theL value can be partially evaluated into the circuit, reducing the input requirements to just the
32 bits of data to be processed, at the additional cost of having to write theL value into the bitstream
before loading. Typically generating hardware bitstreams is a slow process due to the placement and
routing process which can potentially take many hours, which would be an unacceptable cost for most
applications (like secure shell). However, in this case only a fixed sized constant is being modified in
the bitstream, so there is no need to modify the layout of the circuit. Indeed, because just a constant
is being modified in the bitstream, this particular application would require very little modification to

2This solution would not work with the programming model developed in Chapter 5 however, as we do not allow state
to persist between invocations (see Section 5.1).
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the bitstream, and thus the process would be computationally inexpensive.
This technique of course requires that the processor vendor either makes public the bitstream

format, or provides tools for generating new bitstreams in such a fashion. Some FPGA vendors do not
like to reveal the exact bitstream format for their devices, and some hardware compilers may attempt
partial evaluation on the base circuit when it is first compiled as part of other optimisations [James-
Roxby & Guccione 2001]. Xilinx, who do not publish the bitstream format for their FPGA ranges do
produce a suitable tool, developer for generating run time paramertizable cores, called JBits [Guccione
& Levi 1998]. JBits takes a compiled hardware description and turns it into an intermeditate format,
which can then be parameterized before finally being turned into a bitstream. Because JBits works
over already placed and routed hardware descriptions this process is very quick compare to traditional
hardware compilation techniques.

Assuming that the Twofish core is partially evaluated, then we can successfully implement the
core function of Twofish in a two cycle PFU circuit (two cycles were required to meet the timing
requirements) taking 143 CLBs.

Processor Keying Option Clocks to Key Clocks to Encrypt
ARM7M Full 46461 2330
ARM7M Zero 7757 5436
ProteanARM Zero 9265 816
Table 4.2: Twofish performance with different key lengths and op-
tions

The number of cycles taken to do the key setup is currently misleading, as it doesn’t include the
circuit configuration overhead, however, we do not envisage the partial evaluation process in this case
to require more than a series of stores of theL value in the appropriate places in the bitstream, and
thus should add significantly to the 9265 cycles quoted for the setup time. At worst it will require 128
individual words to be read, modified by a single bit, and written back to memory.

4.3.2.4 Intercal

In the examples discussed so far, all the applications use custom instructions to speed up a specific
part of an algorithm, but this is not the only model for custom instruction usage. One alternative is
for the programmer to use a domain specific language which has custom operators designed to suit
that particular application. Those operators that are not natively supported by the processor could be
implemented as custom instructions.

Intercal [Woods et al. 1996] is a language designed in 1972 for the purpose of being obfuscated
and confusing to use. Despite it not being particularly useful, Intercal does make an easy to modify
example of a language which uses non-native operators. Intercal uses five operators, none of which
are supported on any real processor. In this example we modified the compiler to output code that
would use custom instructions rather than function calls to software implementations of the operators.

The five Intercal operators are unary AND, unary OR, unary XOR, mingle, and select. The first
three operators take in a single 32 bit or 16 bit value and generate each bitn in the result by applying
the appropriate logical operation to bitsn andn+1 in the operand. The fourth operator, mingle, takes
two 16 bit valuesa andb and generates a 32 bit result with the two numbers interleaved, such that the
result isa0b0a1b1a2b2.... Finally, select takes two 32 bit valuesa andb and returns a result that is the
logical OR of the two values with all the ones moved to the least significant places. Although this is
not the most obvious set of operators it is sufficient to carry out computation.
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Figure 4.9: Performance of core algorithms for test applications for both accelerated and unaccelerated
implementations

Using Intercal we were interested in the behaviour on the processor when using a compiled In-
tercal program. This example will have a much denser set of instruction invocations and rely more
heavily on the reconfigurable execution unit. The five Intercal instructions could be implemented as
four single cycle instructions and one sixteen cycles instructions (the circuits for this example where
not implemented, just designed given the focus of this test was not raw performance monitoring). The
Intercal compiler was then altered to emit custom instruction invocations in place of function calls
to the software implementation of the library. Based on the experience of hand compiling a small
intercal program, a register allocation policy was also decided.

The register allocation policy is interesting. In most the previous examples the register file asso-
ciated with the reconfigurable execution unit was predictably under used; applications just pulled in
the input to the registers as needed and saved them back out, in effect treating the register file as a
small buffer before feeding data into the PFU(s) they used. However, the Intercal example uses the
reconfigurable unit more heavily, but still did not begin to stretch the limits of the register file, typi-
cally using less than half the available registers. As a result the compiler was modified further to do
two passes of the source code, working out the maximum register usage and the most frequently used
constant operands in the first pass. It then use the most frequently used constants in the registers that
would not be used.

Discuss performance estimate for prime numbers.

4.3.2.5 Discussion

All the basic applications shown above proved relatively easy to implement and provided a basic
performance gain. A summary of the benefit for each algorithm can be seen in Figure 4.9 which shows
the unaccelerated and accelerated cycle counts for processing one unit of data for the given algorithm.
Furthermore, the accelerated value is broken down by the number of cycles spent in software and the
number of cycles spent in hardware. In all cases, for our given test platform, we can see a significant
reduction in the core algorithm speed for each of the test applications, with a large amount of work in
each case being moved from software to hardware.
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TODO: Discuss reconfiguration overheads.

4.3.3 Memory Interaction

A side benefit of moving part of an algorithm onto the processor is that it reduces the number of mem-
ory interactions required whilst the algorithm runs as less instructions are required and less temporary
storage locations are required (obviously there is a high cost associated with moving custom instruc-
tion on and off the process, but here we consider just the execution costs). This is especially true of
certain applications that have poor locality properties. The Twofish encryption algorithm described
in Section 4.3.2.3 suffers noticeably from this problem. When developing the various software based
implementations, in an attempt to increase the performance of the algorithm functions have been in-
lined and loops unrolled. This meant that by the time one block had been processed the code for the
algorithm was no longer in the instruction cache. Secondly the algorithm uses large look up tables
which it accesses in a hard to predict fashion (this is part of encryption after all), so these tables exhibit
poor locality of data and do not remain in the cache for long.

We ran the four standard implementations of the Twofish code, each of which exhibits a different
level of key pre-processing, from no pre-processing, to full pre-processing. The pre-processing in-
volves taking the session key and pre-processing it into LUTs. To examine the memory behaviour of
this application we tested each implementation at encoding and decoding ten blocks of data with a 128
bit key. We used the SWARM simulator with the default 8 KByte 4-way set associative cache. The
results can be seen in Figure 4.10, with green dots representing a cache miss and red dots representing
a cache hit.

In the graphs the ten encrypts and the ten decrypts can be clearly seen as the lower and upper set
of slanting lines in the lower half of each graph. The line of addresses hit close to the x axis just before
the first encrypt round is the key setup processes.

From this we can see that both the minimal and partial optimisations suffer from very poor cache
performance, with the performance of the full keying implementation suffering too. The main cause
of this is that operations that were previously done on word units mainly on the processor have been
turned into many more byte wise memory accesses. In addition, in order to reduce the cycle count,
the techniques of loop unrolling and function inlining are likely to have some contribution too.

The first point to take from this data is that concentrating on cycle counts alone is not a good
metric for how well a algorithm performs; we also need to examine what type of cycles the algorithm
is using. But more importantly, the use of LUTs to speed up algorithms is not necessarily a silver
bullet to reduce the number of cycles an algorithm takes. Thus, for certain cases it is possible that
using custom instructions to generate data could out perform a LUT based solution, despite the custom
instruction having to do more calculating at data processing time. To show this the memory trace for
a zero keying implementation using custom instructions can be seen in Figure 4.11. Although the key
setup time is misleading (the cost for generating and loading the bitstream is not shown), the time for
processing blocks is notably less than it is in all the LUT implementations, due to the better memory
behaviour.

This characteristic obviously only applies to a limited class of applications; for example, the alpha
blending and audio processing examples do not suffer this for of performance penalty. However, it is
an interesting side effect of moving work onto the processor not noted in any of the previous research
literature.
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Figure 4.10: Memory traces for the Twofish implementations left to right, top to bottom, a) zero, b)
minimal, c) partial, and d) full

Figure 4.11: Memory trace for the protean Twofish implementation with zero keying
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4.4 Summary

In this chapter we have layed out a basic architecture style that is practicable for supporting loading
custom instructions for applications in a workstation style environment. It provides a machanism for
loading multiple custom instructions on the processor at once, and to allow the operating system to
virtualise the reconfigurable resource. The architecture also provides support for allowing instructions
to be dynamically dispatched to either hardware of software without the application needing to be
aware, and supports usage statistics for aid the operating system in selecting PFUs for eviction. Based
on the architecture proposed we presented a basic implementation based on an ARM core, called the
ProteanARM, which provides an incite into some of the partical problems in implementing such a
system.

Having devised the basic architecture, we can now move on to examining the operating system
issues in managing such a processor.

68



Chapter 5

Operating System Management

Having described the Proteus Architecture and a base implementation, the ProteanARM, in the pre-
vious chapter, this chapter and the next describe an operating system kernel and programming model
that demonstrate that applications and application developers can easily take advantage of the recon-
figurable resource.

Before examining the operating system aspects of managing a reconfigurable processor, this chap-
ter starts with a look at what constitutes a custom instruction. Existing literature assumes a custom
instruction to be just the series of bits that describe the configuration data for a block of FPL; we
consider a custom instruction to be a much richer entity consisting of many parts, to which we ap-
ply principles from the field of programming languages. Having defined what we consider a custom
instruction to be, we then look at how this entity is managed both in the operating system and in
programming models.

The second section of this chapter examines the operating system interface and facilities used to
manage the FPL resource on the processor. This focuses mainly on the Custom Instruction Scheduler
(CIS) which is used to decide when and where to load custom instructions as they are used by user
level processes. We introduce a small kernel that was developed containing a CIS, called POrSCHE
(Proteus Operating System and Configurable Hardware Environment). POrSCHE is a simple pre-
emptive multitasking kernel that has been extended to manage a reconfigurable execution unit using a
variety of scheduling algorithms. Although the work here is discussed mainly in the context of the the
ProteanARM, which has been designed to support operating system management, the basic principles
should be applied to other architectures.

Throughout this chapter and the next we will have a need to describe data structures used both by
user processes and the operating system. To simplify the description we have opted to use C structure
syntax when doing so, using the C99 standard types [ISO/IEC 1999]. Unless specified explicitly, the
size of types is as default for the platform of implementation (e.g., an integer would be 32 bits long
on an ARM based implementation and 64 bits long on an Alpha based implementation).

5.1 Custom Instruction Definition

Previous work in building reconfigurable processors has focussed on the details of the hardware,
with little or no attention being paid to the programming model that is used to construct applications
to run upon them. The conventional wisdom is that applications will work in terms of configuration
bitstreams, which are just large blocks of binary data, accessed though a pointer. As part of integration
within the wider system, we consider a much richer approach to custom instructions.
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Static
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Figure 5.1: Layout of a custom instruction

Already we have detailed in the previous chapter how a process will need to manage two config-
uration bitstreams — the stateful and stateless bitstreams — and a software implementation for each
custom instruction it uses. We conceptually treat a custom instruction to be a cohesive entity consist-
ing of these parts, along with any additional meta data required by the programming model and the
operating system (which we introduce as needed throughout this and the next chapter). This cohesive
entity can then be named and used throughout the system without the need for all the constituent parts
to be referenced individually.

When in memory this entity could be presented as a contiguous monolithic block of data, but
this is not very flexible. For example, this does not allow a circuit to be have multiple instances
within a process space without complete duplication, which would lead to needless duplication of the
static parts of the custom instruction. Instead, we follow the notion of building a custom instruction
as a record of references to the individual parts, turning custom instructions into objects similar to
the closures described in [Saltzer 1978]. A diagram of this arrangement can be seen in Figure 5.1.
A custom instruction will be used through a reference to a structure containing references to the
constituent parts and any useful meta data. This structure will exist once for each instance of a custom
instruction used. When there are multiple instances of an instruction within a process space each
instance will use the same state bitstream and software instance, but will point to a private copy of
the initial stateful bitstream data (see Section 6.7). The programmer can then use this single reference
to utilise the custom instruction in the program code. Logically, the programmer will see a custom
instructions as something that can be instantiated, supplied with data and generates a result based on
that data. The actual mechanisms behind this the programmer does not care about. All the operations
the programmer wishes to apply to a custom instruction need to be done as a whole, rather than as a
collection of parts. This is discussed further in Chapter 6.

The structure of the custom instruction can be seen in Listing 5.1. The bitstreams are simply
references to areas of memory containing the appropriate configuration bitstream, and the software
implementation is handled by a function pointer. The meta data used is not specified yet, and will be
explored in the remainder of the chapter. It is assumed that the programming tool chain will support
a technique for generating custom instructions as a whole, and allowing the programmer to associate
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t ypede f word t s o f t c i r c u i t t ( word t a , word t b ) ;
t ypede f s t r u c t CITAG
{

cons t a d d r t s t a t i c c i r c u i t b i t s t r e a m ;
a d d r t d y n a m i c c i r c u i t b i t s t r e a m ;
s o f t c i r c u i t t ∗ s o f t w a r e i m p l e m e n t a t i o n ;
/ / meta da ta goes here

} c u s t o m i n s t r u c t i o n t ;

Listing 5.1: Custom Instruction definition

one or more symbolic names with it.
It is worth considering the role of state within a custom instruction at this point. Although how

state behaves in a custom instruction could be considered part of the programming model, it has
important consequences on how the operating system manages the custom instructions, so is worth
discussing here.

The first consideration is the fact that we expect custom instructions to possibly move between
hardware and software during the lifetime of an application. This behaviour limits the use of state
within a custom instruction, because it is unlikely for there to be an easy way to transfer any state
between the two implementations when the operating system decides to move between implementa-
tions. The means two things for the behaviour of the system. Firstly, a custom instruction can not
be moved from hardware to software whilst the hardware implementation is in use (though the re-
verse is possible, as the software can complete regardless of the state of the hardware, as the software
never becomes unavailable), and secondly custom instructions can not rely on state existing between
invocations, as the operating system may move the instruction without the application being aware.
Custom instructions should be designed to work like real instructions: they should no require any
reloading between contiguous invocations, but they should not behave differently if a resetting does
occur between invocations.

The next consideration is where the default or reset state comes from. There are two possible
ways of specifying the initial state of a circuit: by setting the contents of the register in the bitstream
as would be done for reloading the state after a context switch, or (as done in Xilinx devices) by an
extra bit in the configuration information that specifies an extra input to the register that specifies its
value on reset. The advantage of the specifying the register contents in the bitstream as opposed to
by the default reset value is that designers can create a one shot initialisation that never occurs again.
However, in our system, where each instruction invocation should be the same as the last, this is less
useful. Using this technique would require reloading of state from memory to reset a circuit, a many
cycle cost against the single cycle cost of simply applying the reset signal. Thus we specify that
custom instruction designers may only use the initialise by reset value for custom instructions in order
to reduce the amount of data that must be moved to reset a circuit.

5.2 Operating System Support

Having described the basic hardware layer that we believe to be sufficient to support a workstation
style operating system and applications, we now look at the operating system. The role of the operat-
ing system is to manage the FPL resource and share it between the applications. As already stated, we
want this resource to virtualised, so applications do not need to be concerned with when and where
their custom instructions are loaded, only that after registering a custom instruction and a CID with
the operating system it can subsequently use the CID as an opcode in an execute instruction until such
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time as it either decides to unregister the instruction or the process terminates.
The work described here has been implemented by extending in a kernel created as a demonstra-

tion platform, called POrSCHE (Proteus Operating System and Configurable Hardware Environment).
There is no reason that the work developed here could not be applied to an existing operating system,
but generating a very simple clean kernel made it easier to concentrate on developing the new parts
rather than worrying about how to integrate it with a more complex operating system. In this section
we have assumed a monolithic style kernel, with the FPL management systems rolled into the kernel.
We do not see any reason why the FPL management subsystem has to be in the kernel: it could just
have well been implemented in a privileged server on a microkernel system. The only real require-
ment is that the management entity needs to be run in system mode so it can use the management
instructions on the reconfigurable execution unit.

This section starts with an overview of the POrSCHE kernel in Section 5.2.1, then goes on to look
at the system call interface provided to applications and how the operating system manages sharing
of custom instructions in Sections 5.2.2 and 5.2.3 respectively. The issues around scheduling custom
instructions are discussed in Section??, and then a demonstration of the effects of scheduling are
provided in Section 5.2.5.

5.2.1 POrSCHE Overview

POrSCHE is a very simple operating system kernel implemented simply as a platform for testing on
the ProteanARM. POrSCHE was first developed without support for the reconfigurable unit, and as
such is a full kernel runnable on basic platforms. It has been successfully ran on an ARM Simulation
model, a DEC StrongARM based network computer reference platform, the Triscend A7 development
board, and a Xilinx Virtex-II Pro simulation model using an embedded systems reference design.

POrSCHE is a pre-emptive multitasking operating system, which uses a simple single level round
robin scheduler, and supports all the process states described in Figure 2.2. There is just one priority
level for all processes, with both the runnable process set and blocked process set being implemented
as simple queues. The running set in our system can only ever hold a single member, as we only
consider a single processor system. If there are no runnable processes then a system idle task is
scheduled to run until such time as the runnable queue becomes non empty.

POrSCHE lacks any virtual memory management, with all processes running in a single shared
address space, due to the processor simulator model used to develop the ProteanARM lacking any
virtual memory management facilities. This is reflected in the use of address in a process’s memory
used by the operating system.

A minimal set of system calls have been provided for basic job control. For intraprocess job
control yield, sleep, and halt are provided, and for interprocess control spawn and terminate. Each
platform implementation of POrSCHE supports a basic set of output routines to allow processes to
output progress messages. The total code size for POrSCHE, including the generic kernel, platform
support code, basic C library (portions of which were taken from NetBSD’s C library), test applica-
tions, and custom instruction related extensions, comes to 37.5 kilolines of code (include white space
and comments). The core kernel functions only account for 2.5 kilolines of that.

5.2.2 System Call Interface

System calls represent the interface between user processes and the operating system. In a protean
system, just as in other such systems providing user processes with reconfigurable logic, the interface
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for managing the FPL resource is quite simple. The user processes will want to register and unreg-
ister circuits, and to execute their circuits. This interface is proposed in the RAGE system [Burns
et al. 1997], an FPL middleware system, between applications and their virtual hardware management
system (equivalent to our Custom Instruction Scheduler, discussed in Section 5.2.4). In a protean sys-
tem however, applications are allowed to directly invoke their custom instructions without needed to
interact with the operating system. This reduces the interaction between processes and the operating
system to the registering and unregistering of custom instructions. The interface to these two system
calls will look like:

i n t r e g i s t e r c u s t o m i n s t r u c t i o n (i n t CID , c u s t o m i n s t r u c t i o n t ∗ i n s t ) ;
vo id u n r e g i s t e r c u s t o m i n s t r u c t i o n (i n t CID ) ;

When registering a new custom instruction, the operating system will first check whether that
CID is already assigned or not, and if the CID is used it should fail and return an error. If the CID is
available for use, then the operating system can register the custom instruction, updating the internal
data structures used by the operating system for managing custom instructions. If the operating system
was to perform any security checks on the configuration bitstream, as discussed in [Hadžiǵ et al. 1999],
then these would also be done now.

Typically, when a process calls a system call, the operating system will copy the parameters passed
to it to operating system memory. This is so as to ensure that the data provided is always available
to the operating system (should the effect of the system call last beyond the life time of the pro-
cess) and to ensure that application does not change the parameters before the operating system has
finished processing the data. This is trivial for basic parameter types, but we need to note that a
custom instruction is a reference to a larger structure, and simply noting the reference does not pre-
vent the process registering the circuit from modifying the custom instruction’s data later. This is
considered unfeasible for a protean system. For instance, the operating system may have carried
out security checks on the bitstream, so later modification of the bitstream before invocation may
circumvent those checks. Similarly, if an instruction is being shared between multiple applications
modifications of a bitstream without the operating system’s permission may lead to inconsistencies
in operation. The behaviour when faced with data structures containing references depends on the
operating system in question. Systems based on BSD 4.4 copy all referenced data into operating sys-
tem memory [McKusick et al. 1996], whilst Windows 2000 does not [Solomon & Russinovich 2000],
instead locking the memory in the user process for the duration of the call.

The simple solution to this is for the operating system to copy the sensitive parts of the custom
instruction, the configuration bitstreams, into operating system memory. This is what is done in
the RAGE system [Burns et al. 1997]. Once in operating system memory they will be safe from
modification by the owning process (the user can attempt to modify their own instruction, but it will
have no effect on the instruction once it had been registered) and this also enables the operating system
to ensure that circuits are always in memory for loading and unloaded, protecting against page faults
during custom instruction transfer. In the ProteanARM system we have assumed that the hardware
can support page faults during configuration, but on other platforms that do not provide for such a
circumstance, this option allows the operating system ensure that configuration is not interrupted.
The drawback of this technique is that copying the bitstream into operating system memory adds
significantly to the cost of registering a custom instruction. In the programming model developed in
Section?? the run time environment registers all instructions when an application starts up to ensure
that CIDs are always ready. Under this model instructions that may not be used are registered, which
if the process is linked with a library of circuits could lead to a potentially high startup cost.
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The alternative is to mark the memory areas in which the bitstreams are used as read only. Most
virtual memory systems allow memory to be marked read only on a page by page basis, which gives
a 4 Kbyte granularity on most modern operating systems. The respective sizes for both the static
and dynamic configuration bitstreams are larger than a page size, 48.2 Kbytes and 4.4 Kbytes, and
could have their storage requirements rounded up to the nearest page, allowing the operating system
to simply lock those pages when an instruction is registered to prevent unauthorised modification. The
advantage of this technique is that it does not significantly add to the registering costs of an instruction,
at the expense of slightly increasing the size of a custom instruction.

Because the simulation model of the ProteanARM does not include an Memory Management
Unit (MMU), we have assumed the later model. It use useful to note however that the former model
is useful for architectures that would not tolerate page faults occurring during reconfiguration.

5.2.3 Sharing Support

Given the desire to avoid frequent context switching of circuits due to the time lost in moving circuits
on and off the processor, there is an obvious benefit if the operating system can identify multiple
instances of the same custom instruction being used, and allow them to share a single loaded instance
on the processor. For instance, it is possible that applications on a system hosted on a reconfigurable
processor will use libraries of circuits. Although in an ideal world each circuit would be tuned to
a particular application, some software vendors may not be able to afford to develop such circuits.
Instead they may use prebuilt libraries of circuits1 will be supplied for such application developers to
use, such as a library of multimedia type instructions. Just as shared libraries of code are only loaded
once into memory (see Section 6.1.3), we would like circuit libraries to only be loaded once onto the
processor if possible.

Because circuits may be potentially shared, this implies that circuits registered with the operating
system will not change during that time. For example, problems would occur if a process registers a
circuit which is then shared with another process, and then either process tried to modify the custom
instruction in some way (perhaps partially evaluating the bitstream such as was done in the Twofish
example in Section 4.3.2.3 or changing the software alternative function). Either one process would
end up with its instruction not being modified when subsequently invoked, or it would be modified
when not expected. This leads to the requirement discussed in Section 5.2.2 that circuits registered
with the operating system can not be modified by the application whilst registered. This means that
if an applications wishes to modify its custom instruction (for example, partially evaluating constants
into the circuit) then the applications must first unregister its instance before modifying it. When
reloading the circuit it should then be detected as a different circuit and not shared as before.

A custom instruction consists of many parts, and we are not interested in sharing all of them.
Indeed, it can be though of that we are not sharing custom instructions at all, but merely the hardware
implementation of custom instructions. The aim of sharing is to optimise on use of circuits already
in PFUs, so there is no need to share the software alternative in a custom instruction. It is entirely
reasonable that two custom instructions use the same bitstream but different software alternatives (for
example, on may be a real time application which will not want to run a software alternative but take
corrective action, and one may be prepared to run a slower implementation and this have a software
implementation that does the calculation), but for the purposes of sharing these two instructions should
be considered equal. Circuits that are stateful obviously do not want the content of the stateful part of
the bitstream sharing between instances, so the stateful bitstream is not share between applications;

1Current FPGA vendors go to a lot of effort to provide useful blocks of logic (cores) that users can simply plug together,
ranging from basic maths functions to entire Ethernet devices.

74



this must still be swapped when another application goes to use the custom instruction. This still rep-
resents a significant reduction in the amount of data transfered around the system; on the ProteanARM
this reduces the amount transferred by 91%.

The operating system needs a way of identifying custom instructions that share the same static
configuration bitstream. At the point at which an application registers a custom instruction the op-
erating system is simply presented with the custom instruction bundle and the CID the application
wishes to associate with that custom instruction; from this the operating system then needs to decide
if the new instruction matches any other loaded into the system. The simplest method is to do a brute
force bitwise comparison of the static bitstream in the newly registered custom instruction with all the
others currently registered with the system. However this will quickly become costly as circuits are
registered with the operating system, although we imagine that most instructions will fail early on in
the comparison. We would like a way to help the operating system identify likely matches, so as to
reduce the number of direct comparisons required.

One way to do this is to associate some form of name with the configuration data as part of the
custom instruction bundle. This can then be used as a first stage comparison: instructions with the
same name may possibly be the same. Because we can not guarantee that the names associated with
a bitstream in a custom instruction are unique or can be trusted, it still requires a bitwise comparison
to occur once a match on the name has been based, but with a suitably sparse namespace, this will
reduce the number of bitwise comparisons that are required. Although a human readable names for
custom instruction bitstreams could be used, we propose using a digesting function, such as the MD5
message digesting algorithm [Rivest 1992]. This gives a short name (128 bits in the case of MD5)
with a very small probability of name clashes occurring (the authors conjecture that the difficulty of
coming up with two messages having the same message digest is on the order of264 operations). This
digest can be computed at compile time, requiring no additional runtime overhead.

A possible further optimisation is to only do the comparison when the process first attempts to
invoke a custom instruction. If large libraries of prebuilt custom instructions are being used, then
the process may register many instruction that it has no intention of using (this is an artefact of the
programming model suggested in Chapter 6). Thus it may be preferable to lazily test for duplicate
circuits being used. This would avoid potentially expensive process initialisation costs and remove
unnecessary circuit comparisons, but at the expense of potentially adding significantly to the latency
of a custom instruction on its first issue.

5.2.4 The Custom Instruction Scheduler

Having developed POrSCHE as a basic kernel for a general purpose processor, we then extended it
to support a Custom Instruction Scheduler (CIS) to manage the reconfigurable execution unit on the
ProteanARM. In this section we look at how the basic CIS is structured.

The CIS is an individual component of the operating system (although in the POrSCHE imple-
mentation we have integrated it within a monolithic kernel). The CIS is responsible for maintaining
all the information regarding what applications have registered custom instructions, what instructions
are loaded, and so on. The only explicit interaction with the rest of the system is the requirement to
tell the process ID of the current process, the ability to move the current process to the blocked set of
applications, and at a later time request the moving of processes from being blocked to runnable.
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t ypede f s t r u c t CRTAG
{

s t r u c t CRTAG∗ nex t ; / / Used f o r b u i l d i n g l i n k e d l i s t
s t r u c t CRTAG∗ prev ;

u i n t 3 2 t c i d ; / / CID a s s o c i a t e d w i th
c u s t o m i n s t r u c t i o n t ∗ i n s t r u c t i o n ; / / p o i n t e r t o custom i n s t r u c t i o n

/ / i n f o r m a t i o n i n p r o c e s s .

b i t s t r e a m i n f o t ∗ s h a r e d b i t s t r e a m ;
s t r u c t CRTAG∗ s h a r e l i s t ; / / Used t o l i s t o t h e r i n s t a n c e s

/ / u s i n g same b i t s t r e a m

s t r u c t PCBTAG∗ owner ; / / R e f e r e n c e back t o owning proc
} c i r e c o r d t ;

Listing 5.2: Custom instruction record

5.2.4.1 CIS Data Structures

In POrSCHE, the CIS maintains a list of registered custom instructions for each processes, which
is linked to the PCB for that processes. The list contains a node for each instruction registered, the
structure of which is shown in Listing 5.2. The first two entries are there to form a doubly linked list,
which is referenced from the PCB. The next two entries record the information passed in the register
system call which created the node. The custom instruction record is actually duplicated in operating
system memory to prevent the application from modifying it after registration has completed. The
next two entries are used for circuit sharing. Finally a link is held to the owning processes PBC
structure, which is useful when carrying out operations on the circuit.

The shared bitstream structure is used to record information about the individual configuration
bitstreams for each unique configuration loaded in the system. The contents of this record shown in
Listing 5.3. Each time an application registers a custom instruction, the operating system examine a
global list of bitstreaminfo t structures comparing the MD5 digest associated with each instruction with
instructions in the list. If a match is found, and the subsequent bitwise comparison is a success then
the new instruction record associated with the process will reference the existing bitstream record,
otherwise a new bitstream record is created and added to the global list. Currently a sequential search
is used to look for digest matches, but a faster approach, such as storing digests in a trie, could be
used.

The bitstreaminfo t structure is used to manage information about circuit bitstreams. Firstly it notes
whether that circuit is currently loaded onto the processor, being loaded onto the processor, or is
currently not on the processor; this information is used when deciding what action to take when an
invocation faults. If the instruction is loaded then the RFU location is noted. This information is
held here rather than in the custom instruction record above so that instances can be shared between
multiple processes.

To allow the operating system to easily manage PFU selection and eviction, the CIS maintains an
Inverted Circuit Table (ICT), similar to the Inverted Page Table (IPT) used in some virtual memory
management systems [Silberschatz et al. 1998]. The ICT contains an entry for each physical PFU
with a reference to the custom instruction record that relates to the circuit currently loaded into that
PFU and the process that was last using it.
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enum LOAD STATE {LS NOTLOADED , LS LOADING , LS LOADED} ;

t ypede f s t r u c t BITAG
{

s t r u c t BITAG ∗ pNext ; / / used f o r b u i l d i n g l i n k e d l i s t
s t r u c t BITAG ∗ pPrev ;

enum LOAD STATE l o a d s t a t e ; / / i n d i c a t e s s t a t u s o f b i t s t r e a m
i n t r f u ; / / where loaded on p r o c e s s o r
u i n t 3 2 t nS ize ; / / s i z e o f s t a t i c b i t s t r e a m

a d d r t b i t s t r e a m ; / / p o i n t e r t o s t a t i c c o n f i g u r a t i o n da ta
u i n t 3 2 t d i g e s t [ 4 ] ; / / MD5 d i g e s t o f c o n f i g da ta

i n t r e f c o u n t ; / / r e f e r e n c e coun t
s t r u c t CRTAG∗ u s e r l i s t ; / / l i s t o f u s i n g c i r e c o r d t s

} b i t s t r e a m i n f o t ;

Listing 5.3: Circuit bitstream record

5.2.4.2 CIS Operation

The initial CIS implementation uses a demand loading system for loading custom instructions. The
first time a process attempts to invoke a custom instruction the dispatch hardware will cause an ex-
ception to be raised in the operating system, which will be handled by the CIS. Although the idea of
pre-fetching custom instructions has been examined for this domain [Hauck 1998], we do not consider
that here. This section outlines the operating of the Custom Instruction Scheduler (CIS), which has
then been implemented in POrSCHE. Here we are concerned with the mechanism of how custom in-
structions are scheduled on the processor, rather than policy decisions which follow in Section 5.2.4.3.

Figure 5.2 outlines the possible responses taken by the CIS as the result of receiving a custom
instruction fault. The first action taken by the CIS is to look for a matching CID in the process’s
list of custom instruction records. If no match is found then the process has attempted to execute an
unknown custom instruction, and as a result is terminated (this error is similar to an illegal memory
access). If a match is found then the CIS checks to see if the instruction is already loaded into a PFU,
either for the current process or another process.

If the circuit is not loaded into a PFU then the CIS attempts to find an empty PFU into which it
can load the custom instruction. If there is a free PFU on the processor then the custom instruction is
load and the hardware dispatch TLB updated, after which the process can be reissued at the faulting
instruction and execution can continue using the new custom instruction. If there is no free PFU, the
CIS has to make a policy decision on how to handle the fault. The CIS may either choose to evict
a circuit from a PFU based on an eviction policy, or it may defer the instruction to run in software.
If an eviction policy is used, the policy will nominate a PFU for eviction. The CIS will then remove
mappings to this PFU from the hardware dispatch TLB, and if necessary store any configuration state
back to the last process to use that circuit if it was preempted whilst in execution. Once this is done
the CIS can continue as if the PFU in question was free when it first looked. If a software alternative is
used then the the CIS loads the appropriate mapping into the software dispatch hardware and reissues
the process at the faulting instruction. Before reissuing the process, the CIS will add the process’s
custom instruction record to the end of a FIFO recording which custom instructions are currently
running in software. When a PFU becomes available at a later time the CIS will consult this queue to
see if it can promote any custom instructions from running in software to running in hardware.

If the circuit is loaded into a PFU, then the CIS will check what state it is in before allowing
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Figure 5.2: Control flow in response to a custom instruction fault

the current process to use it. If the instruction is marked as stateless, then the CIS can add a new
TLB entry for the PFU and reissue the application from the point at which it faulted. If the circuit is
stateful, then the CIS checks to see who was last to use it. If it was the current process, then the fault
must be the result of the original hardware dispatch TLB entry being displaced, and this can simply
be replaced and the process resumed. If not then the CIS checks with the PCB for the application
last using it to see if the state needs preserved or not. If there was no active state in the circuit then
the circuit is either reset or has the current process’s state loaded over it, depending on whether this
application was preempted whilst using this circuit last time. Once the circuit has the correct state in
it, the CIS can update the hardware dispatch TLB and reissue the process. If the circuit was stateful
then the CIS must unload the previous mapping for that PFU held in the dispatch TLB, as in future
the PFU may hold incorrect state, and the CIS must prevent other instance users from accessing or
modifying this state.

As discussed in Section 4.1.6.1 reconfiguration may either occur in a single long operation which
occupies the entire system for its duration, or all or part of the configuration can be done independent
of the main processor core, and the processor may do other useful work whilst configuration occurs.
This later case requires the CIS to be more complicated and interact with the process scheduler, and
this is what has been implemented on the ProteanARM and supported in POrSCHE. When the CIS
finds a free PFU into which to load the custom instruction in question, it starts the loading process and
then removes the current process from the set of runnable processes and adds it to the set of blocked
applications. Other applications can then be scheduled to run, allowing the system to make progress
whilst the PFU is being programmed. It is impossible for any application to attempt to invoke the
PFU being loaded as the application that had requested it is blocked and the dispatch hardware will
not have been programmed correctly yet, so other applications that may want it will be caught be the
operating system and similarly blocked. Once the operating system receives the interrupt indicating
that loading has completed all the processes that were blocked on that instruction loading are moved
back into the set of runnable applications. If another application attempts to load a custom instruction
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whilst the processor is still busy loading an instruction from the FIFO, then the process is also blocked
until the completion interrupt is received by the operating system here.

The operating system may wish to attempt to ensure that blocked requests to load instructions are
rescheduled in order in order to prevent starvation, which could potentially occur on some processes
if there is a large number of circuit swaps occurring.

5.2.4.3 Circuit Eviction Policies

In Section 4.1.7 we discussed the hardware support that could be provided to assist the operating
system in selecting circuits in PFUs for eviction. The existing research literature in managing FPL
devices has focussed on three techniques for deciding which circuits to evict when space ran out: off
line based algorithms, load sequence based algorithms, and history based techniques similar to page
replacement policies used in virtual memory management. The first technique is not suited to the more
dynamic workstation environment; it is simply not possible to do a static analysis of the load order
of instructions in such a dynamic environment. The run time algorithms can both be applied to the
workstation environment, but the load sequence analysis is unlike to prove suitable. Load sequence
analysis looks at the load order of circuits onto the FPL and attempts to predict what circuits will be
needed next based on recent history. For this to work, the ordering of circuit invocations needs to
have some form of pattern to it; however in a workstation environment with many applications using
circuits according to different algorithms, the ordering is unlikely to follow a set pattern. However,
such an algorithm may be useful if the operating system observes a working set policy, whereby
applications are allocated a set of PFUs and must reuse just these for their instructions.

Given the obvious parallels between PFU replacement and page replacement, using standard page
replacement policies for managing circuits provides the most obvious route. However, as noted
in [Hauck et al. 2000] there are important differences. The main difference is that page sizes are
constant, where as bitstream sizes may vary substantially; this could mean that if one bitstream is 10
Kbytes and another 100 KBytes, it potentially makes sense to preserve the later bitstream in some
situations, even though the former may be used more often. For our work, we have assumed that
all bitstream sizes have to fully configure each PFU. We do this as we have no idea how much of a
PFU would need configured in reality, and so assume a worse case scenario; if we can demonstrate
a performance benefit in this case then smaller bitstreams would provide less management overhead,
and the results would be even better.

A basic set of policies has been implemented in the CIS, based on recent history information. We
have round robin and random eviction policies, which make no use of usage history provided by the
processor, most recently used and least recently used, which use the logic counter support hardware,
and most frequently used and least frequently used, which make use of the invocation counters. In
addition to this we have an implementation that does no evictions at all, and instead uses software
dispatch.

5.2.5 Scheduling Evaluation

The aim of this section is to get a feel for how the system performs when managed by an operating
system. In Section 4.3 we saw how some basic applications benefitted from using custom instructions,
and the aim in this section is to see if they still achieve that benefit despite facing competition for the
FPL resource from other applications. This section also will provide us with a feel for what the
overheads are like for various loads, and how the different custom instructions scheduling policies
behave, with particular interest being paid to the software dispatch mechanism.
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Figure 5.3: Test run results for Alpha Blending and Twofish encryption

Note that these tests are not attempts to demonstrate how the system would perform under a
realistic workstation workload; orchestrating such a test is outwith the manpower of this project. The
aim of these experiments is to observe the effect management overheads of sharing the FPL resource
have on overall system performance.

5.2.5.1 Basic Management

The first test is to observer how performance of the system behaves as the FPL requirement exceeds
demand. The aim of this test is to vary the FPL requirement from below the number of available
PFUs to over the number, and see how the system performs. This test will then be repeated for a
number of eviction policies and and with two different scheduling quanta values. The two values used
are chosen in an attempt to approximate a batch scheduling load and an interactive scheduling load.
For this we use a 10 ms scheduling quanta to represent batch scheduling (which is the value used by
Linux for batch scheduling) and a shorter 1 ms value to represent a more interactive environment.
This interactive value would obviously depend greatly on the actual load on the system, and as such
the 1 ms value can only serve as a guide; real tests with real loads would need to be carried out in
order to get a more detailed evaluation.

The first experiment tests the performance of the ProteanARM under load using just the recon-
figurable execution unit without the software dispatch facility. For each test application eight runs
were performed with increasing numbers of concurrent applications. The experiments were repeated
with two different values of the process scheduling quantum and with two different circuit scheduling
policies. The circuit scheduling policies used are LRU and random. As a performance metric we
measure the number of cycles required for all processes in a run to complete.

Figure 5.3 shows the results of the two tests for applications using just one instruction. In all cases
the the increase in completion time is linear with the number of concurrent processes until PFU con-
tention occurs (that is greater than four instances for these two tests). Once contention occurs circuit
switch overheads reduce the overall performance. At a 10 ms quantum value the extra overhead has
only a small effect of completion times, however at the 1 ms quantum value the increased number of
switches causes a larger performance reduction. In this case the LRU policy generally performs worse
than the random placement policy as it interacts badly with the round robin scheduling policy, which
means typically applications lose their circuits after a context switch. Despite this, both applications
perform an order of magnitude better than the unaccelerated version. It is clear from the LRU 1 ms
curve however that although all applications make suitable progress, the bad interaction between the
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Figure 5.4: Test run results for audio echo test

process scheduler and the circuit scheduler can degrade overall performance significantly.
The results for the audio echo test however are much worse, as shown in Figure 5.4. In this case

the graph only shows the results of LRU scheduling. Although initially the graph follows the same
trend as the first two applications, only with contention starting after two instances due to each in-
stance using two instructions, quickly the performance of the system collapses, with the results for
the 5th run at 1 ms and 6th run at 10 ms going off the scale2. The bad performance for these runs
is due to the scheduling interactions caused by the load FIFO. The audio echo algorithm uses two
custom instructions in a tight loop, invoking them in sequence once per iteration. When a process
reaches the first invocation on the first iteration, it is blocked whilst the instruction load happens. The
other instances then attempt to run, but also block because they can not load other custom instructions.
Eventually the load FIFO is drained and the applications blocked on the load are released back into
the run queue. Assuming the idle task has not been activated, i.e., not all applications have blocked
waiting to load, then whatever process is running is about to attempt to execute the custom instruction,
so this too will start a new load and then block. When we eventually get back round to the first app
to try loading an instruction, it will invoke it and then immediately block as it can not load the second
instruction it needs. This is then repeated for the second instruction. Because there are more instruc-
tions needed than PFUs, each instruction gets displaced between invocations from the processor, so
the end result is that for a large number of simultaneous processes using multiple instructions in a tight
loop, each instruction only gets used once before having to be reloaded, so the system essentially stops
making progress due to the number of circuit loads that are required. If we take this to the extreme,
then it is possible to envisage a situation whereby applications never make any progress because their
instructions are unloaded before the have even been used.

This behaviour was found to also, on a rare basis, for the other two sets of application, but is hard
to reliably duplicate. Essentially the problem is due to a race condition and even a small change in the
timing of the system can affect whether the problem occurs or not. This problem only occurs because
other processes are allowed to potentially use the FPL resource before an invoking application has. If
the system was blocked fully until a PFU was full programmed, then this situation would not occur.
The delayed loading system has significantly increased the complexity of behaviour regarding the
FPL resource.

We can approximate the situation where processes are not interrupted during loading while still
letting other applications run during instruction loads by adjusting the scheduling policy slightly such

2The final value was not recorded due to the simulation taking too long to complete. The first four runs at 1 ms took
roughly one hour, and the fifth run had not completed after six days.
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Figure 5.5: Test run results for audio echo with modified scheduling policy

that when an instruction load has completed (i.e., drained from the load FIFO), the task that requested
the new instruction is immediately rescheduled. This means that in this case the application will
invoke its instruction, then fault on the next load, be rescheduled once the second load has occurred,
and then run for a complete The results for running this new policy with the audio echo application
can be seen in Figure 5.5. Now each application will get two short periods on the processor whilst it
loads its instructions, then an entire scheduling period to use these instructions, after which they will
be swapped out as other processes try to use the PFUs, and the process will repeat itself.

This policy works well for the given test, and certainly prevents the resource starvation evident in
the unmodified scheduler, but this basic policy leads to unfair scheduling for applications that are able
to make loads, whilst other processes will tend to get less CPU time, specifically processes without
custom instructions, which may be continuously deferred whilst the system is overloaded with a set of
accelerated applications. What is needed during these times is an alternative way of handling overload
of the reconfigurable execution unit.

5.2.5.2 Software Dispatch

The obvious alternative swapping circuits once all PFUs are full is to for applications to use software
alternatives. This will reduce the number of circuit switches required, allowing the overall system to
spend less time doing meta work, at the cost of slowing down the applications trying to use custom
instructions. To discover how the software dispatch system compares with using circuit swapping we
compared the round robing circuit scheduling runs from above with the use of software dispatch. As
for the tests in the previous section the time taken for various sets of concurrent applications are taken
for 1 ms and 10 ms scheduling quanta. The end results can be seen in Figure 5.6.

In these tests the runs all show contention being reached at the same point as before, after which we
can see the divergence as the different ways of handling the resource contention are used. In both cases
the software dispatch does not perform significantly worse that the hardware accelerated versions, and
all tests complete significantly faster than the unaccelerated implementations as before. In both tests
the circuit swapping versions run faster that the software dispatch tests, but a the shorted switching
periods we see the alpha blending perform worse in hardware, as the cost of switching circuits does
not provide an advantage. From these basic results we can infer that for batch systems which use long
scheduling periods that circuit switching is better, but for times when the number of circuit switching
increases (say in an interactive system) the software dispatch alternative is useful. Note that the results
here reply on the fact that those processes that are dispatched to software eventually have their custom
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Figure 5.6: Software dispatch test results for a) Alpha Blending and b) Twofish encryption

instructions promoted to run in hardware. Otherwise the performance with be closer to that of the
unaccelerated applications.

These results show that dispatching to software alternative implementations for custom instruc-
tions is a viable technique for handling contention, but does not perform as well as switching circuits
at anything above the shortest of scheduling quanta periods. What is needed is a technique to allow
the operating system to mix the two methods depending on the current load. We explore this in the
next section.

5.2.6 Run Time Statistics Monitoring

Although we find that generally context switching circuits during a heavy load itself does not hamper
system performance dramatically, certain usage patterns can lead to significant reduction in progress
with the amount of usage a processes gets from a custom instruction being low before it is evicted
and requires reloading. This is demonstrated in Section 5.2.5.1 where we see examples of bad process
scheduler and circuit scheduler interactions, particularly the audio echo example. At such moments
the operating system needs to step in and take corrective action otherwise applications using the
reconfigurable execution unit will make no significant progress. There are two obvious causes of
action open to the operating system in this set of circumstances: it may elect to force applications to
use software alternatives for custom instructions, or it may invoke a swapper, to temporarily remove
one or more processes that use custom instructions from the runnable queue to remove the contention.
For this work we will examine the former option, and disable the priority scheduling mechanism used
to enable the audio echo processes to not overload the system: the idea is that we use the software
dispatch system instead to resolve the issue.

To be able to take corrective action the operating system needs to be aware of when the reconfig-
urable unit is overloaded. We do this in a similar fashion to how the operating system detects when
the virtual memory system is overloaded, by using information about the recent history of operating
system events. In 4.4 BSD the operating system gathers statistics on various system events, such as
page and disk activity, context switches, etc. This information is used by the operating system for ac-
tivities such as calculating a process’s priority, invoking the swapper, etc. In order to attempt to detect
when the reconfigurable unit is overloaded such that applications are not making progress, a statistics
gathering engine was added to POrSCHE. The question is what statistics can be used to provide an
indication of when the system is overloaded. It is also important to note that there is a trade off to be
made between frequency of sampling, the overhead of the sampling, the accuracy, and responsiveness.
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From observing the behaviour of the previous overload examples we noted that there is a dramatic
increase in the number of context switches during contention, the number of loads go up, both suc-
cessful attempts and failed attempts. The problem with detection is that simply noting a lot of loads
does not mean that the system is overloaded. It is okay for an application to have to load its circuits
on each run at the CPU, so long as it does get an entire quanta of usage.

To observe the behaviour of these values we ran a set of tests where we ran from one to six
concurrent instances of the audio echo application, one to twelve concurrent instances of the alpha
blending process (which gives an equal number of custom instructions in use at the top load) and one
to six concurrent instances of an application without an application to give a set of control values.
Each new process instance occurred at a 150 ms interval. The tests were run with a 10 ms scheduling
quanta and a 5, 10, 20, and 50 ms statistics gathering period. The first two set of tests were then
repeated using a 1 ms scheduling quanta. The results for the context switch and failed load counts,
along with the number of processes running and how many PFUs are currently utilised can be seen in
Figures 5.7 and 5.8. Note that the process count includes the supervisor task that was responsible for
launching the test applications eacho 150 ms.

These graphs show several things. Firstly we can see how the number of context switches and
failed loads does indeed increase as the FPL resource becomes more congested, particularly with the
smaller scheduling quanta. From the control run it is also obvious that this is directly related to the
PFU usage. We can also see that for the sorter scheduling periods the results are quite noisy, indicating
that a longer stats period is more suitable.

Based on this, we demonstrate the ability to reduce contention on the FPL using failed loads
as a metric using a statistics period of 50 ms. This is merely to server as a demonstration of the
ability to respond to overload, and is not intended as a concrete rule as to an ideal cut off point.
The workloads we present are artificial, and more extensive work with more diverse workloads is
required for a working value to be selected. Obviously context switches is a poor indicator, as it
merely reflects that applications are blocking on resource usage, rather than indicating to what they
are related. Monitoring failed loads, as opposed to other possible indicators like the average number
of processes blocked on a load is very cheap to implement. The number of failed loads is linked to
the average scheduling period used, so the point at which the CIS alters the scheduling policy needs
to vary inversely with the average scheduling period length.

For our tests we used a value of 75 over the scheduling period in ms as the cut off. When the
number of failed loads in the previous statistics gathering period exceed this value, the CIS will start
dispatching custom instruction loads to software. The results for this can be seen in Figure 5.9. Here
the change in policy can be seen by the drop in failed loads as the cut off limit is reached, indicating
that all custom instruction requests are now being satisfied. On the next sampling period the reduced
number of failed loads will be noted and the CIS will return to the original circuit eviction based policy.
This can be seen by how the failed load count increases again as new processes are spawned. As
processes using hardware instructions unregister their custom instructions, those running in software
will be promoted to run in hardware.

While this approach successfully prevents the system from suffering overload during periods of
high contention, it has the drawback that for long lived applications it can lead to a situation where
some processes will remain using hardware and some remain using software, leading to unfairness.
Thus the CIS needs to use a third level of policy modification. After a suitable period, perhaps in the
order of seconds, the CIS should attempt to rectify the unbalance. One possible solution would be to
use another scheduling policy to swap circuits from hardware to software, say following a round robin
queue of processes using custom instructions. Those currently using hardware would be put to the
back of the queue, and those at the front of the queue promoted from software to hardware. Another
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Figure 5.7: Initial statistics output for varying sampling periods with 10 ms scheduling quanta
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Figure 5.8: Initial statistics output for varying sampling periods with 1 ms scheduling quanta
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Figure 5.9: Modified statistics output for 50 ms sampling periods
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solution would be to use a jubilee system [Black 1994]. Every jubilee all custom instructions would
be unallocated and then processes would compete as before for access to the PFUs.

5.3 Summary

In this chapter we have presented that it is possible to utilise and use custom instructions on a recon-
figurable processor within the confines of a workstation environment.

In the first section we outlined a rich custom instruction mechanism that goes beyond the tradi-
tional notion of a custom instruction as just a single configuration bitstream. We provide a richer data
structure that supports the ability to treat stateless and stateful parts differently, include a software al-
ternative implementation, and encapsulate any necessary metadata, while providing a single point of
reference for the application developer. In the next chapter we will demonstrate how a programming
model could support this model of a custom instruction.

In the remaining part of the chapter we outlined a model for how a traditionally structured oper-
ating system could manage a reconfigurable processor based on the Proteus Architecture. We have
shown how the applications can register a custom instruction with a process specific CID and then use
that CID in machine code instructions to invoke the custom instruction, without being aware of where
the custom instruction resides, thanks to the operating systems management. This has been reinforced
by practically demonstrating the system working in the POrCSHE system by running the test applica-
tions introduced in Section 4.3. When there are less active custom instructions the operating system
safely allocates them to individual PFUs without the applications having to made aware that they are
sharing the FPL resource, thanks to the virtualisation.

The initial experiments described in this chapter have provided an interesting insight into the be-
haviour of such a system during times of contention. For the general case, the cost of repeatedly
loading circuits after a process has been switched out is not that prohibitive, even for short schedul-
ing periods. Even using the software dispatch mechanism to handle contention still lead to results
which competed well the unaccelerated applications. The software dispatch mechanism essentially
unaccelerates applications while there are no PFUs available, so as long as some applications are run-
ning in hardware, we would expect the overall system performance to better. The software dispatch
mechanism will however be slightly slower than had the routine been written in software: the code
for entering the software routine will be less efficient than a traditional procedure call and prevents
optimisations such as inlining to have occurred at compile time. However, the performance would
be significantly worse did the processor not assist with decoding the the faulting instruction, saving
several tens to hundreds of instructions per invocation. The instruction for the ProteanARM is quite
simple, only allowing operands to come from the reconfigurable unit’s register file, which would be
trivial to decode, compared to an architecture that let operands come from multiple sources, increasing
the costs where there no hardware support significantly.

However, the experiments also revealed problems with the system due to the introduction of the
circuit load FIFO. Although this system allows the processor to run software during the relatively
low configuration speed — which would be even more important on processors with faster clock
speeds than the 40 MHz the ProteanARM is simulated at — it dramatically increased the complexity
of the system’s behaviour. This would lead to the situation whereby an application would lose the
use of a PFU before it had managed to get significant use from the circuit, leading to a collapse in
performance of the system. We outlined several solutions to this problem. The most obvious solution
is not to switch to another process during a circuit load, but this essentially negates the use of the FIFO
in the first place. Instead the operating system could guarantee that the process that runs afterwards
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will immediately give up the processor once the load has done. Another option not covered above is
to let processes that do not use custom instructions to run between the process faulting on a load and
it regaining the processor. This would allow other processes to get a useful amount of the processor
and still prevent other processes using the reconfigurable unit, which is the cause of the problem.

However, the above suggestions ignore other scheduling criteria the operating system may have
to meet, so we also investigated a higher level custom instruction scheduler that watched for the
reconfigurable unit becoming overloaded and then switch the policy used when a custom instruction
can find no free room from one that evicts circuits to one that used the less efficient, but workable,
software dispatch. To do this the operating system was extended to monitor statistics regarding the
reconfigurable unit and periodically use this data to switch between the eviction path or the software
dispatch path. We demonstrated this working for our prototype system using the number of failed
loads in proportion to the average scheduling period.

The overall result is that we have successfully demonstrated a way for an operating system to man-
age a reconfigurable unit, fairly and securely, without applications having to be aware the underlying
management.
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Chapter 6

Application Development Support

Although we know from the previous chapter that it is possible to manage a reconfigurable processor
with an operating system sharing the FPL resource between multiple competing processes, this is
not the whole store. To demonstrate the overall system to be practicable, we need to be able to
demonstrate that applications can be designed using traditional development techniques for the given
domain. Although we are agnostic to how custom instructions are created, either by hand by the
programmer, as part of a library of custom instructions, or generated by the compiler, all techniques
require a programming model that sets rules for how programs are built ready for execution and details
the sequence of interactions between the program and the rest of the system. The aim of this section is
to describe such a model. We do not claim that this model is the best model, rather that it is sufficient
to demonstrate that the system architecture we propose is complete. We feel that there are more
advanced models that could be developed and this is in itself an avenue for further research. For the
purposes of this discussion we shall assume that the programmer is responsible for utilising custom
instructions; cases where the compiler generates the custom instructions are simply a subset of this
case in terms of managing custom instructions.

The simplest way to consider the programming model is to again think about namespace manage-
ment, considering how custom instructions will be treated as they go from the programming language
level to the system calls to register the custom instruction and the actual instructions used to invoke
them. At the highest level, the programmer should be able to refer to custom instructions using a
symbolic name, just as they do for other objects in a program such as procedures and variables. By
the time the application has been fully built these must be translated into process unique CIDs used in
system calls and invocation instructions. In between these two levels are various intermediate stages
as the program is turned from source to a final executable image in memory, which is the roll of the
build system: the compiler, the linker, and the run-time environment. There are numerous possible
policies for managing how the namespace is managed at the various levels, of which here we will
discuss one, and outline other possibilities in Section 7.

Before discussing the programming model, this chapter starts with a short overview of the process
of building a program text from source code and libraries. This overview is not meant to be com-
prehensive, but lays out the basic mechanisms that the proposed programming model will work with.
Following the overview we lay out the requirements for the programming model, and then go on to
discuss a suitable model to meet those demands.
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Figure 6.1: Overview of traditional compile and link flow

6.1 Overiew Of Program Construction

The process required to take source files into a program that can be loaded into the system is divided
up into several stages. Figure 6.1 shows the stages typically used in a Unix based system, such as
producing a.out format binaries for BSD [McKusick et al. 1996] or Executable and Linking Format
(ELF) binaries for Linux. The two most important parts arecompilation, which turn the source code
files into binaryobject filescontaining machine code and data, andlinking which join together the
object files, along with any libraries, into an application image. Libraries can be build either by
making a collection of object files (done byarchiving the files on a Unix system) or by constructing
a dynamic library (a task also carried out by the linker). This is the system we will assume for the
purpose of this work. Although other systems, such as Windows, use slightly different techniques, the
main flow is the same1.

Although the main focus of compiling and linking is to turn the source code into a set of machine
code instructions, these two tools are responsible for mapping the objects used by the programmer as
they move from being symbolic references down to memory addresses. In the next four sections we
examine the role of each stage, paying particular attention to the namespace management issues, as
this is the issue that will need address with respect to custom instructions.

6.1.1 Compilation

At compile time a source file is converted from a textual representation into an object file. An object
file contains machine code to carry out the operations described in the source file, data that was
included statically in the source file, and meta data about the file that enables it to be linked with other
object files at link time. When the source code is translated to machine code, the symbolic names for
objects present in the source code will be lost. However, not all the objects referred to by symbols
can be found in the one source file (e.g., references to library code), and similarly other source files
may wish to reference objects defined in this source file by symbolic name. To solve these problems
the compiler generates two sets of information in the meta data section of the object file. The first set
of data contains a list of all the symbolic references within the source file that could not be resolved
and where in the machine code section the references are needed. The second set lists the location of
globally available symbols defined in the source file and their location within the object file. These

1There may be more stages involved depending on the language used as well. For example, C code is ran through a
pre-processing stage first to expand macros. Such language specific stages are not discussed here, as they have no affect of
our work.
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two lists are then used by the linker to resolve references between object files when building the final
program text.

6.1.2 Static Linking

Static linking is used to generate a stand alone executable image, i.e., one which contains all the code
and internal data needed to execute successfully. The linker is presented with a list of object files and
libraries that are used to generate the executable image. A statically linked library is notionally no
different from a single large object file; it contains unlinked code and data and the meta data needed
to link with other object files and libraries. Traditionally on Unix systems static libraries are simply
a collection of individual object files in one large file, which is the task performed by the archiver in
Figure 6.1.

At link time the linker will attempt to join together the set of object files into a single image and
resolve any unbound references using the meta data stored in each file. The linker will first join the
files together so that each object has an absolute address associated with it, after which the linker will
compare the list of unresolved references with the list of globally exported symbols and attempt to
finalise all the references within the program text. For each object file or static library it will look at the
list of unresolved references and if it finds an appropriate symbol in another object file or library the
linker will modify each instruction that relies on that reference so that it points to the correct address
within the image. If not match is found then linking will fail with a suitable warning.

6.1.3 Dynamic Linking

One drawback to static linking is that very common libraries (e.g., the standard C library) will be
duplicated in each process’s executable image. This may lead to the same code being mapped into
physical memory multiple times, wasting memory. One way to tackle this problem is to allow pro-
cesses to share the read only sections of libraries, so only a single instance is required in memory.
To enable this the libraries are no linked at build time, but at either load or run time. This allows the
process to use operating system features to ensure that all processes’ use the same copy of the library
text. This late binding has additional advantages; for instance, it allows libraries to be fixed and all
applications dynamically linked to it can take advantage of the new library without needing recom-
piled. The solutions used to implement shared libraries will depend very much on the structure of
the operating system being used (for example how the memory system works) and the facilities it can
provide to the application. The structure of the solution also depends on whether the dynamic libraries
are loaded when the process first starts up or during the execution as needed. Here we will concentrate
on how dynamic libraries work in Unix [Gingell et al. 1987], which uses a load time mechanism.

Dynamic linking is essentially the same task as static linking, only done at a later time. Ap-
plications and shared libraries are built with unresolved symbol references in them, which must be
resolved at either load time or run time. The shared libraries a process uses need to be mapped into
the process’s address space and then unresolved symbols matched with global symbol names, and
then the appropriate links made in the program to match up the references to the objects. If there
are any unresolved links then the application will exit with an appropriate error message. However,
there are more complications with dynamic linking than static linking when it comes to namespace
management. Unlike static linking where object files and libraries will have a fixed place in the final
application, shared libraries can make no such assumption. Libraries need to support being mapped
into an arbitrary (from the library’s point of view) locations of the address space as it can not know

92



Shared
Memory

Shared
Memory

Program 1
Code

Program 2
Code

Program 2
Data

Program 1
Data

(errno)

...

Library 1
Data Library 2

Data

Library 2
Data

Library 1
Code

Library 1
Code

Library 2
Code

Library 2
Code

Library 1
Data

(printf)

...

PLT

GOT

(errno)

...

(printf)

...

PLT

GOT

Figure 6.2: Shared libraries in a multiple address space operating system

where in an application it will fit in, as different applications are of different sizes and have different
sets of libraries loaded.

The linking process is handled by the Run-Time Environment (RTE) when the process starts.
Shared libraries are loaded into the process’s address space using the operating system’s ability to
memory map file with a copy-on-write facility (this is also how shared libraries are handled in Win-
dows 2000 [Solomon & Russinovich 2000]). This mechanism allows applications to shared the same
copy of a file in memory, with only pages that have been modified having a private copy in a given
process’s address space. This means that the unmodified parts of the library (text and constant data)
are shared between processes, and only parts that are modified (normal data and text modified dur-
ing linking) need be duplicated for each process. Within a shared library all references that can be
resolved at compile time use Position Independent Code (PIC). PIC means that references are done
using relative rather than absolute addresses.

Once the shared libraries used by a give application have been loaded into memory, a link stage has
to occur to bind the unresolved references both in the application and the libraries to the objects they
refer to. Each shared library will contain the appropriate meta data to link symbolic names for objects
with their offset within that module. Using this information then the library could be linked in the
same way that static linking occurs, with the instructions referring symbols being patches to use the
appropriate address. However, this could potentially lead to a lot of the shared libraries’ pages being
modified and therefore duplicated, negating one of the major benefits of shared libraries. The solution
use for this is to send references to between modules through module specific indirection tables: a
Global Offset Table (GOT) for global data, and a Procedure Linkage Table (PLT) for procedure calls,
as shown in Figure 6.2. Each indirection table contains an address of the actual object needed for each
external reference made in that module. This at link time only the GOT and PLT need to be modified
and the majority of the process image is untouched. The GOT needs to be completely resolved at
load time, as there is to easy way to trap data references, but the PLT is actually evaluated lazily, with
procedure references only being resolved when, and more importantlyif, they are needed. At load
time the PLTs are set to refer to a procedure that will complete the linking for that symbol and the
return execution to where it was before the look up was attempted.

The operating system never needs to get involved in dynamic linking, beyond supporting the
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memory mapped file functionality (indeed, this was one of the original design goals for implementing
shared libraries under Unix). The application code does not get involved with the linking, the load
time linking is entirely handled by the process’s RTE. This means that the programmer is agnostic to
what linking will be used to generate the final program. Dynamic libraries are generated using the
static linked, and differ mainly by not having a main entry point defined.

6.1.4 The Run-Time Environment

The RTE consists of the support code that gets linked with an application required to set up the envi-
ronment that the process expects to use. For example, the C RTE, amongst other tasks, is responsible
for setting up the heap ready to be used for malloc/free and opening FILE structures for the three
standard file descriptors. The RTE is the first code that gets executed when a new process is created,
and only once it has finished creating the environment does it call the what the program designated
as the main entry point for their program (the function main in C). Similarly, at the other end of the
program, the RTE is responsible for shutting down the process once the program finishes, releasing
resources and setting the processes return value if necessary. The dynamic linkage mechanisms that
are invoked during run time binding are also part of the RTE.

6.2 Requirements

The aim in this section is to examine how these existing techniques can be extended to include support
for managing custom instructions. The most important issue that has to be dealt with is managing the
namespace for custom instructions as they are translated from human readable symbolic names down
to process specific CIDs. We want to decouple the programmer from the problem of providing specific
CIDs, just as programmers do not allocated specific addresses to variables and procedures. Allocating
CIDs manually will cause a problem with module integration (clashes in the namespace), will place
an extra burden on the programmer, and is likely to lead to program maintenance problems in the long
term. Instead, the job of assigning CIDs should be the job of the linker, which is the only time when
the assertions about the entire CID namespace can be successfully made. The model needs to work
with both static and dynamic linking.

In this system a new type of symbolic reference will be needed to allow programmers to name and
reference custom instructions. The compiler will need to support this new type of naming, and be able
to generate the appropriate meta data when generating object files. The linker will then be charged
with resolving references with custom instructions held in other object files and libraries.

Registering custom instructions with the operating system should be handled by the language’s
RTE. Although technically the programmer could be made responsible for registering and unregis-
tering instructions, this requires the programmer to be completely aware of what custom instructions
they are using, which they may not be if custom instructions are used in a library. It will be the RTE’s
job to ensure the integrity of the CID namespace.

As part of the tool chain we assume the existence of a hardware compiler that will take a Hard-
ware Description Language (HDL) implementation of the custom instruction hardware and output the
resultant bitstream or pair of bitstreams (one static and one stateful) as an object file. This object file
must export a global data symbol for each bitstream part, so that the linker can construct the custom
instruction record successfully at the final link stage. It should also export an interface definition for
use with the software source (e.g., a C header file) so that the user can define a custom instruction
based on this. The compiler should also generate the hash used by the operating system for sharing
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the custom instruction, either as a globally exportable symbol or as a constant in the interface defi-
nition file. If an instruction bitstream is instantiated as part of a custom instruction definition more
than once in either a executable image or a shared library, then at some point before execution each
instance will need to be provided its own copy of the stateful part of the bitstream.

6.3 The Programmer’s View

We start by considering the programmer interface, specifically looking at how the user specifies and
uses custom instructions. Because we are introducing a new type of symbolic reference, we assume
that the language will need to somehow support this. Symbolic names for custom instruction have
different semantics from the symbolic names used for procedures and variables so must be considered
as an addition to the language. For the purposes of this discussion we demonstrate how assembler lan-
guage could be changed to use the new concepts; how individual languages support the new semantics
is left for further research.

As discussed in Section 5.1, from a usage point of view, a custom instruction is seen as an atomic
unit containing the circuit bitstream, the software implementation, and any associated meta data. Gen-
erating these structures with a symbolic name needs be part of the language. The compiler will need
to support both a way for the programmer to specify a custom instruction and understand the special
semantics associated with it. In something as low as assembly it simply requires a new command with
a parameter list consisting of the symbolic name for the custom instruction, the symbolic name(s)
of the circuit bitstream data, a symbolic name for the software alternative (or a null reference) and
then constants for any meta data. Just like other global symbols, a custom instruction should only be
instantiated once with a given symbolic name. When this file gets compiled it will contain a custom
instruction data structure, which should become an externally accessible symbol similar to procedures
and variables, so that it can be referenced from other source files.

To use a custom instruction the programmer should only need to use a symbolic name (and ensure
that the actual instantiation is given in one of the modules at link time). In assembly a programmer
would write:

exec_rfu alpha_blend_inst, cr0, cr1, cr2

The compiler and linker would eventually resolve the symbolic name to a registered CID by run
time.

6.4 Compilation

Several changes need to be made to the compiler to enable users to work with custom instructions. The
main change structurally will be the need to track two types of symbolic reference: those for memory
addresses (as used by global variables and functin calls) and those referring to custom instructions.
We consider these in order of reference.

Firstly, the compiler needs to be altered to understand (though an language construct) that a given
function is intended to be used as a software alternative. This function will then be compiled with the
modified ABI, as discussed in Section 4.1.5. The compiler can also check that the function’s interface
is correct for the given architecture.

The second change is for the compiler to support the creation of custom instructions, as outlined
in the previous section. Where custom instructions are defined, the compiler will add a new custom
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instruction structure in the data section of the object file with references to the various parts being
resolved is held locally (only possible for the software alternative) or at link time. A second exported
symbol table will be created in the object file’s meta data part containing a list of the symbolic names
for custom instructions and an associated pointer to the custom instruction structure within the data
section. At this point instructions have not had CIDs associated with them, as it is only possible to
know what CIDs are valid at the final link stage.

When custom instructions are used within a source file, the compiler does not have enough infor-
mation to generate the actual instruction that is used to invoke the custom instruction, as there is no
way of knowing what CID to use. A prototype instruction can be generated, which will contain all
the correct operands except the CID to be used. The compiler will generate a second list of symbols
needed to link this object file, similar to the list used for global variables and procedure calls refer-
enced but not found in that source file. This second list will contain an entry for each instance of a
custom instruction being used, noting its location with in the machine code and the symbolic name of
the custom instruction. This information will be used at link time to insert the correct CID into the
instruction before execution. Note that even if an custom instruction is defined and used in the same
file the compiler can not resolve the invocation unlike it would do for memory references. This is
because there is no analogous notion with CIDs for relative addressing.

6.5 Static Linking

The static linker in our system needs to be extended in two ways: firstly, once the object files for the
program have been brought together, it will need to be able to assign each custom instruction used a
CID, bind custom instruction invocations to absolute CIDs, and build the appropriate data structures
to allow the RTE to register and unregister them; and secondly, it will be responsible for if necessary
duplicating the stateful part of bitstreams for multiple instances.

This initial task of the static linker will be the same, in that it will coalesce the object files into
a single binary image. The next stage, just as it will bring together the list of unresolved memory
addresses and the globally exported locations, the linker will bring together the lists of custom in-
struction definitions and the unresolved invocations. When brining together the lists of unresolved
symbols in each module, the resultant list is processed so that each unresolved custom instruction
only appears once, to assist later processing. At this stage the linker must ensure that there are no
symbolic name clashes (i.e., no custom instruction has been defined multiple times); if there are then
linking should fail with a warning.

Once this has been done, the linker can then resolve memory references as before. During this
process all the custom instruction records will have their bitstream and software alternative fields
completed. The next stage is associate with each custom instruction a CID and resolve invocation
references. The list of unresolved custom instruction references is traversed sequentially, and for
each entry the symbolic name looked up in the list of custom instruction structures defined in the
application image. If there is a match then this custom instruction is resolved otherwise linking fails
with a warning. To resolve a custom instruction, a CID is first allocated, taking the next unused CID
starting from zero and counting upwards. Once a CID has been allocated all instructions referencing
this custom instruction are modified to use that CID, completing the linking of the application code.
As each instruction is resolved an entry is added to a list inserted into the program’s constant data
section that will be used by the RTE to register and unregister the custom instructions. Each entry
in the list contains the allocated CID and a pointer to the custom instruction structure, and may also
include information like the symbolic name of the custom instruction, which could be useful for
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debugging.

6.6 Dynamic Linking

The static linking mechanism needs expanding in order to support dynamic linking. The problems
faced with dynamic linking in a Protean system are similar to those found in traditional dynamic
linkage, as discussed in Section 6.1.3. When linking both an application using dynamic libraries and
the dynamic libraries themselves there is not enough information known about the CID namespace to
assign CIDs to custom instructions contained in dynamic libraries; this needs to be done at the final
link stage at load time. Here we discuss three possible solutions to the problem. The usefulness of a
given approach will depend greatly on the density of instructions that make use of custom instructions
held in other modules. It is out with the scope of this work to investigate the likely densities of custom
instructions, so we settle for presenting the ideas, and leave investigation as to the suitability of each
technique as further research. To demonstrate the possible range, consider a library that contains an
alpha blend instruction, which will typically be called in a loop for a few discrete locations within a
program, compared to a library of MMX instructions, which will be used more liberally as building
blocks for an algorithm, and thus be used more frequently.

In this work we make one simplifying assumption that differs from that made in traditional shared
library work, such as [Gingell et al. 1987]. Traditional shared libraries use indirection tables for
accessing procedures and global data in other modules in order to reduce the number of modified pages
in a shared library, but here we do not do that: we assume that it is sufficient to modify the instructions
invoking custom instructions in their location. The first concern is that adding an indirection table
will involve at least two branches, which could potentially involve two pipeline flushes, depending
on how the branch prediction logic works. In addition for the case where there was a high density of
instructions used the indirection tables may become a significant proportion of the size of the library.
Finally we assume the main benefit from shared libraries containing custom instructions not to be
the memory saving but the benefit of sharing the custom instructions themselves, which will bring
potential benefits from reduced contention on the reconfigurable execution unit.

6.6.1 Straight Link Approach

The obvious way to handle the dynamic linking is to simply extend the approach used for static link-
ing. Both the application and dynamic libraries are built with the list of unresolved custom instructions
and associated lists of module relative locations where the custom instructions are used, and the list
of custom instructions they export with a symbolic name and relative offset into the module for the
custom instruction structure. At load time once the dynamic libraries have been mapped into the pro-
cess’s address space by the run-time environment, the run-time environment will then carry out the
linking that previously the linker would have done in a static system.

This is obviously a simple approach, but has one main drawback: it resolves all instructions that
require fixing, rather than those that just will be used. One of the advantages of the lazy approached
of resolving PLT entries is that only those procedure calls that get used are resolved. If an application
links against a large library (e.g., a graphics library) that uses another library of custom instructions
(say an MMX style library), but the application only uses a small part of the original library, then a
lot of unnecessary linking may occur.
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t ypede f s t r u c t LTTAG
{

a d d r t i n s t r u c t i o n l o c a t i o n ;
word t p r o t o t y p e ;
c i d t c i d ;
char ∗∗ c u s t o m i n s t r u c t i o n n a m e ;

} CI LINK TABLE ENTRY ;

Listing 6.1: Dynamic link structure

6.6.2 Demand Link Approach

The solution of the problem of unnecessary linking is to have a more lazy approach, whereby pro-
cessor instructions using custom instructions are linked on their first invocation. This means that no
unnecessary linking will occur, and no extra linking will happen at load time delaying the startup of
the process. This technique does not do away with all load time processing though, as the technique
still requires the RTE to assign CIDs (discussed below) and provide the mechanism with a list of cus-
tom instructions (by their symbolic name) and their location within the process’s address space once
all the shared libraries have been mapped. Once these tasks are done however, the process proceeds
as if there were no unresolved custom instructions.

At link time it is useful to have a complete map of the custom instructions in a process, thus the
RTE will build such a list at the start. The link stage that built each module will insert a structure
containing the symbolic name and relative offsets within the module of each custom instruction struc-
ture contained within. At load time the run-time environment will collate these lists into one process
specific list containing the symbolic names and an absolute address within the process’s address space
for each custom instruction. In addition it will assign each instance a CID that is unique to this process
in a similar fashion to that used for static linking, and will set a boolean field to false to indicate that
this instruction has not yet been registered with the operating system.

The linking is done by replacing the processor instructions that use custom instructions in the
modules with branches to a module specific linking procedure. When an unresolved instruction is
reached the process will branch to this link procedure which will then use a module specific table of
meta data to resolve the link and restart execution in the appropriate place. Each entry in the table
consists of the structure shown in Listing 6.1. The first value in the structure contains the module
relative address of the instruction that needs to be resolved. Entries in the table are stored by the
linker that built the module in order of this field. The link procedure called at run time then searches
the table based on this list (the list is ordered so that the procedure may do a binary search rather than
a linear search). The prototype field contains the processor instruction that will replace the branch
instruction in the program text, minus the CID.

What the linker does once it has found the structure relating to this branch depends on the contents
of the CID field. If this is an invalid CID then the link procedure will try to find a matching entry for
the symbolic name pointed to by the custom instruction name field in the global custom instruction
map. If no match is found then the process is terminated with a suitable error message, otherwise
linking occurs. The link procedure first checks the field in the global map to see if this instruction
has been registered before, if not then it will register the custom instruction with the appropriate CID
value and then set the registered field in the map to true, and if the field was already true it will do
nothing more in that respect. Once the link procedure holds a valid registered CID for the instruction
it will insert the CID into the prototype field, which it will then copy into the process image at the
place the fault occurred. At this point linking is complete and execution can be resumed, but first as
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an optimisation the linker will walk through the module’s table containing the instruction resolution
information and insert the CID into each one which uses the same symbolic name, so that next time an
instruction of this type is required in that module the link procedure does not need to search the global
custom instruction map. This done the faulting instruction returns execution to the point at which the
fault occurred.

Whilst this solution removes the problem of time wasted due to unnecessary linking, it signifi-
cantly increases the cost per link: the cost of invoking the link procedure will incur several branches,
a possible string comparison, and a cache flush when the branch instruction is modified.

6.6.3 Block Link Approach

A third solution then is to modify the demand link approach to work on a scale larger than an individual
instruction but smaller than an entire module. TheCI LINK TABLE ENTRYstructure is extended to
include a next field, which is used to generate a circular list of entries referring to the same custom
instruction within a given scope, such as a basic block or a procedure. When an instruction fault
occurs the link procedure not only resolves the faulting instruction, but all the other instructions on
the circular list, reducing the number of times an instruction fault occurs. The circular nature of the
list is needed for block sizes greater than that of a basic block, as we can not typically make statements
about the order in which a block will be processed.

6.7 Run-Time Environment

The role of the RTE, as stated already, is to ensure that the application code runs in a consistent
environment. For the programming model we have defined this means that the RTE must ensure
that the CID space is valid before the programmer’s code is entered. Thus the RTE is responsible
for ensuring that before a custom instruction is used that the instruction has been registered with the
operating system. With static linking this involves traversing the list of custom instructions built by
the linker and registering each one with the operating system, and for dynamic linking providing the
run time binding mechanisms described above.

The RTE is also charged with ensuring that no two custom instruction definitions that refer to the
same bitstream use the same stateful part of the bitstream. Each custom instruction definition that
references a bitstream will need its own copy of the stateful bitstream data, but the only time at which
sufficient information is present is at the final link stage. For a load time dynamic linking system, just
before the RTE registers custom instructions, it will check an additional status bit stored with each
bitstream, which is initially zero. If the status bit is zero then the linker will set the bit to one before
registering the custom instruction with the operating system. If the status bit is already set to one, then
this bitstream is already in use, so a separate copy of the stateful part of the bitstream is needed. The
RTE will duplicate the stateful part of the bitstream within the process’s memory image (which it is
safe to do so as the custom instruction using this originally can not have yet been executed), patch the
memory reference in the custom instruction structure, and then registers the instruction.

It should be noted that the above mechanism is insufficient for run time loading of libraries. It
may be that by the time a library is loaded that a custom instruction may already have been used and
the stateful part of the bitstream has already been modified. In this circumstance it is required that
the stateful part is always duplicated to ensure that there is always an unmodified copy. This could
potentially be expensive in terms of space however, as we expect the times when multiple instances
of one bitstream are used (rather than just using the one copy of an instruction many time) to be
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infrequent.

6.8 Summary

This section has described how custom instructions can be fitted into the traditional Unix style com-
piler and link process, supporting the traditional techniques for statically and dynamically building
processes. A summary of the whole flow can be seen in Figure 6.3. Although we have extended
the programming model to include the notion of a custom instruction and the suitable symbolic rep-
resentation, very little needed to be changed to be supported on our architecture. In particular, no
further modifications to the underlying hardware were needed, suggesting that the current CID based
abstraction is a reasonable one.

Although the manpower was not available to implement a compiler to produce binaries following
the above model, the dynamic linking methods were all tested by modifying the Intercal compiler
discussed in Section 4.3.2.4 to use lazy linking rather than static linking. These successfully demon-
strated the correctness of the lazy linkage methods.
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Chapter 7

Further Work

The Proteus Architecture and Operating System is only intended as a prototype to initially explore
feasibility of the use of FPL technology in a workstation environment.

7.1 Architecture

7.1.1 Segmentation Based Architecture

In order to simply the operating system’s management problems the FPL resource was divided into
a fixed sized set of PFUs. Although allocating circuits into a two dimensional FPL array on an
arbitrary basis is a computationally hard problem, the problem becomes simpler if the two dimensional
allocation problem is simplified to a one dimensional problem with the FPL being allocated on a
single plane, as is done in DISC [Wirthlin & Hutchings 1995] for instance. The operating system
would have a much more difficult problem when scheduling the circuits loaded onto the array as it
would suffer from fragmentation, though solutions to ease this problem have been discussed [Brebner
& Diessel 2001].

7.1.2 Embedded Systems Targeting

Although the aim of this system has been to develop a mechanism that can be used in a general
purpose workstation, the a small version of the device may be useful for embedded systems work.
One of the advantages of virtualising the FPL resource is that it decouples the software invocation
calls and the hardware placement. Currently in embedded systems these two parts are tightly coupled,
and the use of the dispatch mechanism with say only a couple of PFUs could prove a solution to the
coupling problem for embedded systems. The question is whether the fixed partitioning would prove
more problematic at the embedded systems level.

7.1.3 Integration Into a Workstation Modern CPU Core

In this work we have successfully integrated a reconfigurable execution unit into a simple micro-
processor core, but modern microprocessor cores are much more complicated devices. It would be
interesting to implement a simulation of the core in a larger superscalar, out-of-order device as done
for the third generation of OneChip [Carrillo & Chow 2001]. Of particular interest is how the un-
known and unbounded latency of custom instructions would complicate the dispatch and retirement
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of instructions. In addition the much faster clock speed on a modern device would lead to higher
overheads in terms of work that could otherwise be done when managing the FPL devices.

7.2 Operating System

7.2.1 Further Load Testing

The simulated load on our operating system is quite simple, and ignores interactions with other de-
vices. Applications never block for I/O or paging for instance. This has two effects on the results.
Firstly the simulated runs for completion time against number of processes must be considered a worst
case scenario, because all the processes are constantly processing data and can always load their cus-
tom instructions immediately. If applications blocked occasionally waiting for data to process or to
output already processed data, then the demand for PFUs over a microscopic period would be reduced.
Conversely, the latency for loading a custom instruction is artificial, unless the operating system keeps
all circuit descriptions held in physical memory. This is quite possible: BSD 4.4 keeps all such data in
kernel memory whilst they may be used, and the RAGE FPL middleware system [Burns et al. 1997]
kept circuit bitstreams in memory too. However, it would be interesting to see the affect of perfor-
mance in circuit descriptions were held in paged memory.

7.2.2 Integration With Process Scheduler

Because the FPL resource on a process is scarce and can become a bottleneck when a large number of
applications try and use it simultaneously (comparable to the early virtual memory systems that had
little physical memory), the behaviour of the system relies on the Custom Instruction Scheduler and
the process scheduler working in conjunction. In the prototype system we only implemented a simple
single level pre-emptive scheduler, but a real operating system will use a more complicated algorithm,
based on factors such as process priority, other resource usage statistics, etc. [McKusick et al. 1996].
Work needs to be done on examining how to best integrate the scheduling of applications with custom
instructions with such a system.

Similarly, the process scheduler could be made more aware of how the FPL resource is being used.
If a set of processes share custom instructions, then it would make sense to schedule such processes
in sequence, though this could become quite complex if the applications share more than a single
common set of custom instructions.

7.2.3 Advanced Management Interface

The basic register and use model of custom instruction interaction is quite limiting. If the process
could tell when there were more PFUs available for use then it could attempt to parallelize the oper-
ating if suitable (e.g., the alpha blending example could then process multiple pixels in parallel). The
drawback with such a system is that it is hard for the application to dynamically scale its usage in
response to performance. The operating system on the other hand should have the right information
to manage this.

One solution then would be to have the operating system perform the equivalent of a functional
programming style map operator. The process could present a set of input buffers and an output buffer
to the the operating system along with a custom instruction. The operating system would then attempt
to run as many parallel instances as possible without causing PFU contention.
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Another interface expansion would be to allow applications to express grouping of custom in-
structions. For example, the audio echo application would benefit if the operating system was aware
that it needed to use both its custom instructions within a tight loop.

7.3 Programming Model

7.3.1 Compiler Support

There are many ways of generating custom instructions for use with applications, either by hand craft-
ing the custom instructions using knowledge of how the application works, using prebuilt libraries of
custom instructions, or using a compiler. Several projects, such as PRISC and CHIMERA, developed
compilers.

7.3.2 CID Namespace Management

The programming model shown in Chapter 5 is very simple, whereby the CID namespace is constant
throughout the life of an application. There is scope for research here looking at what other models
could be used, and how suitable they are. For instance, it might be useful to support remapping of
CIDs to other instructions at run time, to allow for polymorphic instructions. For example, the appli-
cation could just used a “filter” instruction, which is mapped onto various different filter instructions
throughout the lifetime of the application.

Another drawback is that if the application is linked with a large library of instructions it may
run out of CIDs. For instance, SIMD instruction sets often go into the hundred plus instruction range
(e.g., the Motorola AltiVec instruction set has 160 instructions), but on the ProteanARM there were
only 128 possible CIDs. A more limiting CID static linking mechanism may be needed, or the ability
to recycle CIDs at run time.

7.4 Other Observations

The practicality of this work has been based on the assumption that there is a low density of active
custom instructions per process at any given time. If there are a large number of custom instructions
being used then applications will fault back to software for the majority of the time, which may
prove to be a hindrance as the procedure call mechanism for a software alternative is more time time
consuming than a regular function call, which had it been designed as a software only function would
possibly have been further optimised by the compiled through techniques such as inlining.
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Chapter 8

Conclusion

In this dissertation we have examined the problems associated with using a reconfigurable processor as
part of a system for use in a general purpose workstation environment, considering the support needed
at the hardware, operating system, and application level. Perviously all work with reconfigurable
processors has either focused on embedded systems or just the problems involved in connecting the
FPL to the processor’s datapath. The contribution of this dissertation is to make an initial exploration
of the problems involved in using a reconfigurable processor in this complex environment. A solution
to the problems has been proposed in the form of the Proteus Architecture, the Custom Instruction
Scheduler defined for the POrSCHE kernel, and a new programming model to allow applications to
be developed for this system.

Chapter 2 outlines the relevant background material and previous research in the fields associated.
It starts with an introduction to Field Programmable Logic (FPL)

In Chapter 3 we lay out what we considered to be the requirements of using a reconfigurable pro-
cessor in the environment of a general purpose workstation. Adding a new resource such that it can
be easily utilised and managed requires consideration at the hardware, operating system, and applica-
tion level. Drawing on the existing body of research and development in the field of reconfigurable
processors and FPL management outlined in Chapter 2,

Chapter 4 introduced the Proteus Architecture, a proposal for a general architecture which sup-
ports being managed by an operating system. It also introduced the ProteanARM, and ARM based
prototype implementation of the Proteus Architecture. The architecture model describes adding the
FPL resource as a set of fixed sized blocks, referred to as Programmable Function Units (PFUs), in
their own function unit within the processor. Instructions to invoke circuits loaded in the FPL do not
invoke PFUs directly, but instead go through translation hardware, which allows the operating system
to load circuits in to arbitrary PFUs without needing to alter the software using it. The dispatch mech-
anism also supports the use of software alternatives to circuits, allowing the operating system to move
applications’ custom instructions between hardware and software without their knowing.

This chapter demonstrated that the basic architecture model was sufficient for individual applica-
tions running on the processor to gain a performance benefit. It introduced a set of sample applications
applications from different domains which utilised custom instructions to accelerate their core algo-
rithms. Each applications was demonstrated to benefit from using custom instructions on the bare
ProteanARM prototype without any other applications running.

In Chapter 5 we introduced the concept of a custom instruction being a rich data structure con-
taining may parts, compared to the traditional view of a custom instruction being just a configuration
bitstream. By making a custom instruction richer, we allow the programmer and the operating sys-
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tem to use a single reference to refer to all information about a custom instruction: the stateful and
stateless parts of the bitstream (separated to facilitate faster circuit switching and circuit sharing), the
software implementation, and associated metadata.

After this we provide demonstration of an operating system managing a reconfigurable processor
by taking a basic multitasking kernel and extending it to include management of custom instructions.
The system has demonstrated that it is possible to manage the FPL resource between a set of com-
peting processes without prior knowledge of their usage patterns such that applications still get an
advantage from using the FPL resource, even at times of contention, and that all processes will be
able to make progress. This is achieved through the use of an FPL scheduling system which is called
as requests for FPL blocks are made and a periodic statistic gathering system which is used to direct
allocation policy.

We then described a suitable programming model that would allow applications to be developed to
run on a Protean system in Chapter 6. The aim of this is to demonstrate that programming software for
a system using custom instructions does not require a radical new programming architecture, rather
just an evolution of existing techniques. The model was devised to allow programmers to specify
custom instructions by a symbolic name, just as they already do for functions and variables, and
then for the compile and link stages to translate the symbolic name down to a CID used to invoke
the custom instruction at the machine code level. This is done within the context of the traditional
compile and link mechanism, including support for both static and shared libraries that both use and
provide custom instructions.

Finally, in Chapter 7 we outlined possible interesting avenues for future work that could be pur-
sued based on the work carried out in this research.

The result of this work has been to demonstrate that it is possible to build a FPL resource into a
processor such that it can be managed by an operating system in order to allow multiple applications
to utilise custom instructions without needing to be aware of each other’s behaviour. We have also
shown that this can be done in a secure fashion with suitable hardware support to prevent applications
from interfering with each other or the overall stability of the system.

In addition to successful publication of the research, a measure of the success of this work is shown
in the interest by engineers from ARM in the the dispatch mechanism, which they were interested in
applying to a smaller ProteanARM like device for embedded systems.
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