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“We’ve got to pause and ask ourselves: How much clean air do we need?”

Lee Lacocca, CEO/Chairman, Chrysler Corporation, 1979-1992



Abstract

The health impact of short-term exposure to air pollution has been the focus of

much recent research, the majority of which is based on time-series studies. A

time-series study uses health, pollution and meteorological data from an extended

urban area. Aggregate level data is used to describe the health of the population

living with the region, this is typically a daily count of the number of mortality

or morbidity events. Air pollution data is obtained from a number of fixed site

monitors located throughout the study region. These monitors measure back-

ground pollution levels at a number of time intervals throughout the day and a

daily average is typically calculated for each site. A number of pollutants are

measured including, carbon monoxide (CO); nitrogen dioxide (NO2); particulate

matter (PM2.5 and PM10), and; sulphur dioxide (SO2). These fixed site monitors

also measure a number of meteorological covariates such as temperature, humidity

and solar radiation. In this thesis I have presented extensions to the current meth-

ods which are used to estimate the association between air pollution exposure and

the risks to human health. The comparisons of the efficacy of my approaches to

those which are adopted by the majority of researchers, highlights some of the de-

ficiencies of the standard approaches to modelling such data. The work presented

here is centered around three specific themes, all of which focus on the air pollu-

tion component of the model. The first and second theme relate to what is used

as a spatially representative measure of air pollution and allowing for uncertainty

in what is an inherently unknown quantity, when estimating the associated health

risks, respectively. For example the majority of air pollution and health studies

only consider the health effects of a single pollutant rather than that of overall

air quality. In addition to this, the single pollutant estimate is taken as the aver-

age concentration level across the network of monitors. This is unlikely to be the

average concentration across the study region due to the likely non random place-

ment of the monitoring network. To address these issues I proposed two methods



for estimating a spatially representative measure of pollution. Both methods are

based on hierarchical Bayesian methods, as this allows for the correct propagation

of uncertainty, the first of which uses geostatistical methods and the second is a

simple regression model which includes a time-varying coefficient for covariates

which are fixed in space. I compared the two approaches in terms of their pre-

dictive accuracy using cross validation. The third theme considers the shape of

the estimated concentration-response function between air pollution and health.

Currently used modelling techniques make no constraints on such a function and

can therefore produce unrealistic results, such as decreasing risks to health at high

concentrations. I therefore proposed a model which imposes three constraints on

the concentration-response function in order to produce a more sensible shaped

curve and therefore eliminate such misinterpretations. The efficacy of this ap-

proach was assessed via a simulation study. All of the methods presented in this

thesis are illustrated using data from the Greater London area.
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Chapter 1

Introduction

Short-term exposure to air pollution can cause and aggravate a number of respira-

tory conditions, including asthma, bronchitis and chronic obstructive pulmonary

disease (COPD). This association between air pollution exposure and the risks to

human health has been a public health concern for over 700 years. King Edward I

of England outlawed the burning of coal and made it punishable by death in 1306,

when petitioned to do so by a large group of affluent people and the clergy. The

King’s decision may also have been influenced by his mother, Queen Eleanor, who

became unwell as a result of the coal fumes rising up to the castle from the town

below. Approximately 250 years later the air quality in England once again grew

noticeably worse and Queen Elizabeth was also forced to ban the burning of coal.

Despite this early recognition of the health risks associated with poor air quality

it has only become a global topic in the last 80 years. This has primarily been due

to the exceptionally high air pollution episodes in the Meuse Valley in 1930 (Fir-

ket (1936)), in Donora, Pennsylvania in 1948 (Ciocco and Thompson (1961)) and

during the London smog of December 1952 (Ministry of Public Health (1954)).

These episodes were caused by a combination of industrial pollution sources and

adverse weather conditions, and resulted in a large number of premature deaths

among the surrounding populations. For example, as highlighted in Figure 1.1,

1



Chapter 1. Introduction 2

the London smog was associated with a significant rise in the number of respira-

tory deaths in December 1952 when compared with the number of deaths in the

surrounding period. It has even been suggested that the number of deaths during

the smog, and in the subsequent two months was in fact closer to 12,000 (Bell

and Davies (2001)). Despite pollution levels being considerably lower in the last

20 years than those witnessed in the episodes described above, the relationship

between air pollution and morbidity or mortality continues to be an active area

of research. Evidence from such studies has helped shape environmental legisla-

tion, which regulates the sources of pollution and sets target limits for ambient

(outdoor) concentrations. In the UK such legislation includes the Clean Air Act

in 1993 and the UK Air Quality Strategy in 2007, with the latter, for example,

stipulating that particulate matter (PM10) must not exceed 40µgm−3 as an annual

mean.

The majority of air pollution and health studies examine the effects of short-term

(acute) exposure over a few days, rather than long-term (chronic) exposure over

a number of years. To estimate the health risks of chronic exposure a cohort

study is typically used. For example Dockery et al. (1993) examined the output

of a cohort study in which over 8000 adults in six U.S. cities (HSCS, Harvard Six

Cities Study) were followed for a period of 14-16 years. Other examples of cohort

studies include the American Cancer Study (Pope III et al. (1995) and Pope III

et al. (2002)) which collected data on approximately 1.2 million adults in 1982,

and the Millenium Cohort Study (Violato et al. (2009)) in the U.K. which sampled

nearly 19,000 babies born in England and Wales between 2000 and 2002. Cohort

studies are not frequently used due to the scale of the sampling and the associ-

ated costs. Therefore, the majority of studies examine the relationship between

acute exposure and mortality or morbidity. These studies can be broadly classi-

fied into three categories: case-crossover studies (Neas et al. (1999) and Ma et al.

(2011)), panel studies (Sarnat et al. (2012)), and time-series studies (Alessandrini
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Figure 1.1: Concentrations of smoke, sulphur dioxide (SO2), and daily
respiratory deaths for the period surrounding the London smog of 1952

(www.ems.psu.edu).

et al. (2011) and Dominici et al. (2006)). Both case-crossover and panel studies

use data at an individual level allowing an exposure-response relationship to be

estimated. However, being able to specifically classify a mortality or morbidity

event as pollution related is rare, and a large number of individuals would be re-

quired in order to produce conclusive results. Therefore, the majority of research

on the health implications of air pollution is based on time-series studies. Such

studies use aggregate level mortality or morbidity data, which describe the health

of the population living within a geographical region rather than that of specific

individuals. This type of data is routinely available, making this type of study
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inexpensive and straightforward to implement. Another advantage of time-series

analysis is that it is unlikely to be affected by individual level risk factors such as

age and smoking habits, as these are likely to be constant over the study period. A

disadvantage is that only group level associations between air pollution exposure

and health can be estimated, which is a much weaker type of analysis than an

individual exposure-response relationship (see for example Wakefield and Salway

(2001)). This thesis will focus on time-series studies, but for a more general review

of air pollution and health studies see (Pope III and Dockery (2006) and Dominici

et al. (2003)).

A time-series study is based on health, pollution and meteorological data from

an extended urban area such as a city. The health data comprise daily counts

of mortality or morbidity outcomes for the population living within the study re-

gion. A number of health classifications have been used in such studies, including

general categories such as total non-accidental mortality (Kan et al. (2007)), and

illness specific subclasses such as respiratory mortality and hospital admissions

due to asthma (Sarnat et al. (2012)). Data which contributes to air pollution

are obtained from a number of fixed-site monitors, located throughout the study

region. These monitors measure background pollution levels throughout the day

and a daily average is typically calculated at each site. A number of pollutants

are typically measured including, carbon monoxide (CO); nitrogen dioxide (NO2);

particulate matter (PM10 and PM2.5), and; sulphur dioxide (SO2). Finally, mete-

orological covariates such as temperature, humidity and solar radiation, are also

routinely measured by fixed-site monitors.

Schwartz and Marcus (1990) were one of the first to carry out a time-series study

of the health risks of air pollution. They used a normal linear model to analyse

data from the Greater London area. However, the mortality or morbidity data
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are daily counts and often include small numbers, therefore Poisson regression

techniques such as generalized linear (GLM, McCullagh and Nelder (1989)) or ad-

ditive (GAM, Hastie and Tibshirani (1990)) models are more appropriate. These

models regress the daily counts of mortality or morbidity events against air pol-

lution concentrations and a vector of explanatory covariates. These covariates are

included to remove the effects of confounding which are introduced through under-

lying trends, seasonal patterns and overdispersion. Typically included variables

are measures of meteorological conditions, influenza epidemic indicators and day

of the week indicators. Air pollution studies often analyse data from a number

of cities (see for example Schwartz (1991) and Spix et al. (1993)), using a variety

of statistical approaches. This variation in statistical methodology may be partly

responsible for the considerable heterogeneity observed in the pollution-health as-

sociations which have been estimated. A number of researchers have attempted to

reduce this heterogeneity by implementing large multi-city studies, including Air

Pollution and Health: A European Approach (APHEA, see for example Samoli

et al. (2009)), and the National Morbidity, Mortality and Air Pollution Study

(NMMAPS, see for example Huang et al. (2005)) in the USA. These studies ease

the comparison between multiple cities by using standard modelling approaches.

In this thesis I extend the current methods used to estimate the association be-

tween air pollution exposure and the risks to human health, and compare their

efficacy against those adopted by the majority of researchers. These developments

provide evidence of deficiencies with the standard approaches to modelling such

data. The work presented in this thesis is centered around three related themes,

which focus on the air pollution component of the regression model. The first and

second themes relate to the measure of ambient air pollution which is included in

the model. The majority of studies typically estimate the short term health effects

of exposure to a single pollutant. I compare this approach to the health effects of

overall air quality which is the quantity that the population are actually exposed
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to. The second theme is to allow for uncertainty in the pollution estimate and

compare the effect this has on the estimated health risks of overall air pollution.

The third theme considers the shape of the estimated concentration-response func-

tion between air pollution and health. The modelling techniques currently utilised

make no constraints on such a function and as a result can produce unrealistic

results. For example the estimated function may exhibit decreases in the risks

to health at high concentrations. In this thesis I propose a model which imposes

three constraints on the concentration-response function in order to produce a

more sensible shaped curve and therefore eliminate such misinterpretations. The

work in each of these themes has been carried out using Bayesian techniques.

The remainder of this thesis has been arranged into six chapters, the first of which

reviews and critiques the statistical methodology typically used in current air pol-

lution and health studies. Chapter 3 discusses some of the statistical issues which

arise in air pollution and health studies. Chapter 4 defines a spatially representa-

tive measure of a single pollutant, on a single day, which can be estimated using

Bayesian geostatistical methods. This is then repeated for several pollutants which

are then combined to give a single measure of overall air quality. This process is

repeated for each day of the study period, and the health risks of this overall

measure are then estimated and compared to that of the standard approach. By

drawing a random sample from the posterior distribution of predictions of overall

air quality for each day, it is possible to incorporate the uncertainty about the

true pollution levels for that day into the health model. Chapter 5 considers an

alternative approach for estimating such a spatially representative measure of air

pollution, by utilising a regression model for the data in space and time simul-

taneously. This model is made more flexible by the inclusion of a time-varying

coefficient which will allow the effects of covariates which are fixed in space but

believed to vary over time. Again the associated health risks for such a measure

are estimated and compared to that of the standard approach. I compare the



Chapter 1. Introduction 7

efficacy of this approach to that of the geostatistical model used in the previous

section using the method of cross validation, a tool for determining the predictive

accuracy of a model. Chapter 6 considers which constraints are necessary in order

to produce a sensible concentration-response function between air pollution and

health. A constrained model is built using I-splines and is compared to the stan-

dard approach of using B-splines and that of another constrained method which

was proposed by Roberts (2004). The remainder of this introduction describes the

individual chapters in more detail.

Chapter 2 reviews the statistical methods which are used in current air pollution

and health studies and also in this thesis. Both frequentist and Bayesian analysis

are outlined, including a review of the estimation techniques; maximum likeli-

hood and Markov chain Monte Carlo simulation. Although this thesis uses only

Bayesian analysis a review of frequentist approaches has been included, as this

is predominantly the analysis method used in the majority of air pollution and

health studies. I have included a review of geostatistics, time-varying coefficient

models and regression splines, as background knowledge for the methods used in

Chapters 4, 5 and 6 respectively. This chapter also includes a review of model

selection criteria.

In Chapter 3 I discuss some of the statistical issues which arise in air pollution

and health studies. This includes a discussion of the type of data typically used in

such studies. Particular attention is given to the air pollution data including what

is typically included as a spatially representative measure of air quality and how

this measure enters the model. This particular aspect of air pollution and health

studies forms the basis of all the work presented in this thesis. Both measured and

unmeasured covariates are discussed. This chapter concludes with a discussion of

the problems of overdispersion and mortality displacement.
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Chapter 4 considers that most studies typically only assess the health risks of

a single pollutant rather than that of overall air quality. In addition, these sin-

gle pollutant levels are estimated by averaging measurements across a network of

monitors and this simplistic method of estimation has a number of deficiencies.

Firstly, it is unlikely to be the average concentration across the region under study,

due to the likely non-random placement of the monitoring network. Secondly, the

desired pollution measure is inherently an unknown quantity, and hence the un-

certainty in any estimate should be allowed for when estimating its health risks. I

address these issues, and propose both a spatially representative measure of overall

air quality, and a corresponding health model that allows for the uncertainty in

the pollution estimate. My approach is based on a hierarchical Bayesian model

because it allows for the correct propagation of uncertainty, and uses geostatistical

methods to estimate a spatially representative measure of pollution. The methods

are illustrated by assessing the health impacts of overall air quality in Greater

London between 2001 and 2003.

Chapter 5 considers that some of the more complex methods for building a spa-

tially representative measure of air pollution, including that proposed in the previ-

ous chapter, can be computationally expensive as separate Bayesian geostatistical

models are fitted for each day of the study. Another approach would be to model

air pollution over time and space simultaneously using regression analysis. I have

proposed such a model and also included a time-varying coefficient, which will

allow the effects of spatial covariates to evolve over time, thus increasing the flex-

ibility of the model. A hierarchical Bayesian model is also proposed here to allow

for the correct propagation of the uncertainty in the pollution estimate. These

methods are illustrated by assessing the health impacts of overall air quality in

Greater London for the period 2001 to 2003.
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Chapter 6 considers how the assumption of linearity between air pollution expo-

sure and risks to health can be relaxed and yet impose constraints on the shape of

the estimated concentration-response function (CRF) so as to produce feasible re-

sults. I therefore propose a Bayesian hierarchical model for estimating constrained

concentration-response functions, which is based on monotonic integrated splines.

These splines produce non-decreasing CRFs, due to the associated regression pa-

rameters being constrained to be non-negative, which I ensure by modelling the

latter with a ‘slab and spike’ prior. I assess the efficacy of my approach via a

simulation study, after which I apply the proposed model to a study of ozone con-

centrations and respiratory disease in Greater London between 2000 and 2005.

Chapter 7 discusses the main results from this thesis and assess its contribution

to the wider literature. The limitations of the work are discussed, with possible

extensions and future work outlined.



Chapter 2

Statistical Methods Review

The adverse health risks associated with ambient air pollution are typically esti-

mated from daily ecological (population level) data using Poisson log-linear mod-

els. A number of studies have also used additive models (see for example Ballester

et al. (2002) and Andersen et al. (2008)), however, as the work presented here

is based on linear techniques additive models will not be discussed in any great

detail. Typically, the data used in air pollution and health studies comprises a

daily count of mortality or morbidity events from the population living within

the study region; ambient air pollution concentrations, which have been measured

at a number of fixed site locations, and; meteorological covariates, all of which

are routinely collected for other purposes. Due to the ecological nature of these

data there are a number of statistical challenges which need to be addressed in

order to produce an appropriate model. It is important that we build appropriate

models, not just for statistical reasons but also for their use in accountability re-

search (Health Effects Institute (2003)). For example, the health risks associated

with air pollution are typically quite small and their estimation can often prove

difficult, so use of a statistically realistic model is therefore vital. As a result of

this it has become increasingly popular for researchers to use statistical modelling

techniques which are more complex and require more computational power. It is

10
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therefore necessary for a choice to be made about the trade-off between using a

simple model, which will require less computational effort and can be more easily

interpreted, and using complex models, which require much more computational

effort but will be more flexible and make less unrealistic assumptions about the

data.

The remainder of this chapter is presented as follows. Sections 2.1 and 2.2 discuss

both the frequentist and Bayesian frameworks respectively for use with generalised

linear models. The frequentist approach is the inferential framework which is most

frequently used in air pollution and health studies (see for example Verhoeff et al.

(1996) and Goldberg et al. (2001)), however, as data structures and the models

we wish to fit have become increasingly more complex, the Bayesian approach has

become increasingly popular. As such this is the inferential method used in this

thesis. This leads onto a discussion of some of the more advanced techniques which

can be employed in air pollution and health studies, including geostatistical models

(Section 2.3), time-varying coefficient models (Section 2.4) and regression splines

(Section 2.5), each of which has been used in Chapters 4, 5 and 6 respectively.

This chapter concludes with a discussion of the methods used in model selection,

assessment and prediction (Section 2.6).

2.1 Frequentist Methods

The inferential framework used in the majority of air pollution and health studies

is the frequentist approach (see for example Verhoeff et al. (1996), Goldberg et al.

(2001) and Hong et al. (1999)). In the following section I describe the set up of a

generalised linear model, and parameter estimation under this framework.
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2.1.1 The Exponential Family

The frequentist approach is based on a vector of observations y = (y1, . . . , yn)n×1

which are assumed to come from a family of distributions f , indexed by unknown

parameters θ = (θ1, . . . , θp)p×1. Such a family of distributions is the exponential

family, which shares many of the properties of the Normal distribution and includes

the Poisson, binomial, Normal and gamma distributions. A distribution, for a

single observation yt, is said to belong to the exponential family if it can be written

in the form

f(Yt|θ) = exp

[

ytθ − b(θ)

a(φ)
+ c(yt, θ)

]

, (2.1)

where a univariate θ is called the canonical parameter and represents the location

and φ is the dispersion parameter and represents the scale. The inclusion of the

dispersion parameter is useful for considering data which are overdispersed, a topic

which is discussed in Section 3.4. The mean and variance of the exponential family

can be given by

E(y) = µ = b′(θ) Var(y) = b′′(θ)a(φ).

The mean is a function of θ only, while the variance is a product of the location

and the scale. The variance function, b′′(θ), describes how the variance relates

to the mean. The mean-variance relationship specified by a distribution may be

too restrictive for some real life data sets. In this case it is possible to specify

just the mean-variance relationship as opposed to a formal distribution. This is a

method known as quasi-likelihood, and will be discussed further in Section 3.4. A

generalised linear model is as it sounds a generalisation of a linear model, where

yt can come from any exponential family distribution. A further specification of

generalised linear models is the link function g(·). This function describes how the
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mean response, E(Yt) = µt, is linked to the covariates through the linear predictor,

ηt = g(µt). A generalised linear model can therefore be given by

Yt ∼ f(Yt|µt, φ) for t = 1, . . . , n,

g(µt) = XT
t θ (2.2)

where XT
t = (x1, . . . ,xp)n×p is a matrix of covariates and θ are the associated

regression coefficients. For air pollution and health studies a log link is typically

used as the health data are assumed to have arisen from a Poisson distribution.

Therefore, we can re-write (2.2) as

Yt ∼ Poisson(µt) for t = 1, . . . , n,

ln(µt) = XT
t θ, (2.3)

where the covariate matrix XT
t will include a measure of air pollution. This will

be discussed further in Section 3.2.

2.1.2 Maximum Likelihood Estimation

A point estimate is the value of θ which is most supported by the observed data,

y, and is most commonly estimated using maximum likelihood equations. In the

case of a generalised linear model this is equivalent to an iterative least squares

procedure (Nelder and Wedderburn (1972)). Alternative methods include least

squares and the method of moments (Dobson and Barnett (2008)).
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The maximum likelihood estimator of θ is the value θ̂ which maximises the like-

lihood function. The likelihood function, L(θ|y), is algebraically the same as the

joint probability density function f(y|θ) but the change in notation reflects a shift

in emphasis to the parameters θ, with fixed y. This change in notation is necessary

as it is typically y which is observed. If y is a vector of independent observations

then the likelihood can be expressed as L(θ|y) =
∏n

t=1 f(yt|θ), the product of the

probability density or mass functions for each yt. Thus the maximum likelihood

estimate θ̂ satisfies

L(θ̂|y) ≥ L(θ|y) for all θ ∈ Ω,

where Ω denotes the set of all possible values of the parameter vector θ and is

known as the parameter space. Equivalently, θ̂ is the value which maximises the

log-likelihood function l(θ|y) = logL(θ|y), which is often easier to work with

than the likelihood function. The estimator θ̂ is obtained by differentiating the

log-likelihood function with respect to each element θj of θ and solving the simul-

taneous equations

l′(θ|y) =
∂l(θ|y)

∂θj
= 0 for all j = 1, . . . , p.

To check that the solutions do in fact correspond to a maxima of l(θ|y), the matrix

of second derivatives, evaluated at θ = θ̂, can be examined to verify that they are

negative definite. The p × 1 vector of first derivatives, l′(θ|y), is called the score

function, while l′(θ|y) = 0 is known as the score equation. Maximum likelihood

estimates are most commonly computed using iterative re-weighted least squares

(Charnes et al. (1976)). The formula for which is given by

θ(m) = (XTΛ(θ(m−1))X)−1XTΛ(θ(m−1))υ(θ(m−1)), (2.4)
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where m is the number of iterations and Λ(θ(m−1)) is an n × n diagonal matrix

with the elements

λtt(θ
(m−1)) =

1

Var(yt(θ
(m−1)))

(

∂µt(θ
(m−1))

∂ηt(θ
(m−1))

)2

and υ(θ(m−1)) has the elements

υt(θ
(m−1)) =

p
∑

j=1

xt,jθ
(m−1)
j + (yt(θ

(m−1)) − µt(θ
(m−1)))

(

∂ηt(θ
(m−1))

∂µt(θ
(m−1))

)

.

Given some initial values θ(0), (2.4) is used to create new estimates of θ until

convergence is reached. This method is the same as that for a linear model and

ordinary least squares, the only difference here is that (2.4) has to be solved iter-

atively due to the dependence of Λ(θ) and υ(θ) on θ.

2.1.3 Confidence Intervals

Both confidence intervals and hypothesis tests are frequently used in the model

building and inferential stages of air pollution and health studies. For example,

hypothesis tests are used to inform model choice decisions, such as determining a

suitable set of covariates which can adequately describe the mortality or morbidity

data. Inference is more concerned with the parameter estimate, and in the case

of air pollution and health studies it is the air pollution estimate which is of most

interest as this describes the relationship. Typically, this estimate is presented as

a single value with an associated confidence interval.
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A confidence interval for the parameters θ is a range of plausible values, which

can be used for judging the size of the effect of the predictor. This range of values

can be given by the estimator θ̂, plus or minus some value ε, i.e. θ̂± ε. The value

ε depends on the estimated standard error of the estimator θ̂ and the distribution

of θ. Confidence intervals are based on the idea of repeated sampling, where it is

possible to generate an infinite number of hypothetical data sets under the like-

lihood framework. Each of these data sets can be used to construct a confidence

interval for θ, a percentage of which should contain the true value of θ. For ex-

ample, for a 95% confidence interval 95% of the intervals should contain the true

value θ.

2.2 Bayesian Methods

Bayesian analysis is also based on the data y and a vector of parameters θ, where

uncertainty in θ is described by the data through f(y|θ) and a prior distribution

f(θ). The aim of Bayesian analysis is to learn about θ and this can be achieved

by determining its posterior distribution conditional on the observed data y. This

distribution is given by Bayes’ theorem

f(θ|y) =
f(θ,y)

f(y)
=
f(y|θ)f(θ)

f(y)
. (2.5)

The posterior distribution of θ, is therefore a function of the likelihood, f(y|θ),

and the prior, f(θ). This prior distribution is how we represent our uncertainty

about θ before y has been observed. The denominator, f(y), is the marginal dis-

tribution of the data. When θ is discrete the marginal distribution can be given by
∑

θ
f(θ)f(y|θ) and when θ is continuous it can be calculated as

∫

θ
f(θ)f(y|θ)dθ.

If θ is multivariate, then f(y) is based on multidimensional integrals, and these can
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be analytically intractable and computationally expensive to estimate. Equation

(2.5) can therefore be simplified to give the unnormalised posterior distribution

f(θ|y) ∝ f(y|θ)f(θ), (2.6)

which is the product of the likelihood function and the prior distribution. Under

Bayesian methodology the parameter θ is a random variable and the data y are

fixed i.e. the value of θ is dependent on y.

2.2.1 The Prior Distribution

Equation (2.6) shows that the posterior estimate of θ depends on a combination

of the data, via the likelihood, and the prior distribution. This prior distribution

represents the information we know about θ before any data are observed. For

example we may be prior ignorant and know nothing about θ or we may have some

prior knowledge which is based on previous studies of a similar data set. The prior

is typically represented by a standard probability distribution, which depends on a

vector of hyperparameters that may or may not be known. The prior distribution

can therefore be chosen to be either informative or noninformative.

There are two schools of thought for the selection of informative prior distribu-

tions (Gelman et al. (2004)). The first is that the prior distribution represents a

population of possible values from which the parameter θ has been drawn. The

second is the notion that we must express both our knowledge and our uncertainty

about θ as its value could be thought of as a random realisation from the prior

distribution. The prior distribution should in theory include all possible values of

θ, but the distribution does not need to be concentrated around the true value,
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because often the information about θ which is contained in the data will out-

weigh any reasonable prior probability specification. Conversely, noninformative

prior distributions (also known as vague, flat or diffuse priors) are selected such

that they will have little effect on the posterior distribution. The justification for

using such a prior is that we wish to let the data set speak for itself, and there-

fore all inferences which are made about the data will be unaffected by external

information. Within the scope of noninformative priors it is possible to specify

an improper prior, where the density does not integrate to 1 or any other positive

finite value.

If the posterior distribution follows the same parametric form as the prior distribu-

tion, then this is known as conjugacy. This means that the posterior distribution

follows a known parametric form, making computations simpler and results easier

to understand. A nonconjugate prior means that computations are more complex,

however this does not mean that any new concepts have to be formed. In many

instances it may not be possible to achieve a conjugate prior distribution.

2.2.2 Inference

In Bayesian analysis, as in the likelihood approach, it is also possible to produce

point estimates and credible intervals. Typically, the posterior mean or median

are taken as approximate point estimates, while a 95% credible interval is given as

the lower 2.5% and upper 97.5% posterior quantiles. Such a credible interval, A,

therefore satisfies P (θ ∈ A|y) = 95%. A Bayesian credible interval has a different

interpretation to that of a confidence interval, in that the probability of θ lying in

A is 95%.
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The methods used to calculate the posterior distribution will depend on which

type of prior has been specified. The simplest case is that of a conjugate prior. In

this instance the posterior distribution can be obtained analytically as it is from

a standard family of distributions. However, this is not usually the case, and the

posterior distribution therefore needs to be estimated. This is typically done using

simulation techniques which involve generating a number of samples from f(θ|y).

The most commonly used inferential method is that of Markov chain Monte Carlo

(MCMC) simulation, a technique which is capable of simulating draws from com-

plex distributions. A brief review of this simulation technique is outlined below.

For a more detailed review please refer to Gelman et al. (2004).

Markov chain Monte Carlo is a combination of two methods. Monte Carlo in-

tegration is a numerical method for approximating a continuous distribution by

discrete samples. It is useful when a continuous distribution is too complex to

integrate, but can readily be sampled. Markov chain sampling is a method for

drawing samples from a target distribution, regardless of the complexity of the

distribution. This is done by breaking down the sampling into a number of steps

where each new step is only conditional on the previous one. Given an initial

starting value this therefore builds up a chain of samples, which is continued until

the chain converges to the target distribution. An assessment of convergence can

be carried out using the criteria proposed by Gelman and Rubin (1992). The ini-

tial period of non-convergence is known as the burn-in period and this is typically

removed from the set of samples for the purposes of inference. An algorithm for

creating a Markov chain for a target distribution is

1. Choose an initial value θ(0), and ensure it is within the support of the dis-

tribution of f(·), so that f(θ(0)|y) > 0.

2. Create a new sample using θ(1) ∼ f(θ(1)|θ(0),y), where f(θ(1)|θ(0),y) is the

transitional distribution.
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3. Step 2 is then repeated m times, increasing both indices by 1 each time.

The sampling at step 2 is random, and there are many possible values for θ(m). An

actual value is randomly sampled using pseudo-random numbers, meaning that it

is possible to obtain many different Markov chains for the same problem, each of

which should be an equally good approximation to the target distribution. There

are a number of different sampling algorithms which can be used for step 2. The

two most popular are the Metropolis-Hastings and Gibbs sampler which have been

briefly outlined below.

The method of Metropolis-Hastings is to randomly propose a new value, θ∗, which

can either be accepted or rejected according to a specified criterion. If this pro-

posed value is accepted then it becomes the next value in the chain θ(m+1) = θ∗.

If it is rejected then the previous value is retained, θ(m+1) = θ(m), and another

value proposed. A new value can be created by adding a random variable to the

current value θ∗ = θ(m) +Q. If we wish to propose new values which are close to

the current value then Q could be drawn from a Normal distribution with a small

variance. Or if we wish all proposals within one unit of the current value to be

equally likely then Q could be drawn from uniform distribution U [−1, 1]. There-

fore, the probability distribution of Q, whether it be the Normal or the Uniform,

is called the proposal density. The acceptance criterion can be given by

θ(m+1) =







θ∗, if U < r;

θ(m), otherwise,

where U is randomly drawn from a uniform U(0, 1) and r is the acceptance prob-

ability, which is given by
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r = min

{

f(θ∗|y) Q(θ(m)|θ∗)

f(θ(m)|y) Q(θ∗|θ(m))
, 1

}

,

If the proposal distribution is symmetric i.e. Q(θ(m)|θ∗) = Q(θ∗|θ(m)), then r can

be simplified to

r = min

{

f(θ∗|y)

f(θ(m)|y)
, 1

}

,

which contains the likelihood ratio.

The Gibbs sampler, also known as alternating conditional sampling, is a special

case of Metropolis-Hastings. Assume that the parameter vector θ can be parti-

tioned into a number of blocks, θ = (θT1 , . . . , θ
T
B). The density for a single block,

conditional on the data y and all remaining blocks, can be written in closed form,

for example f(θi|y, θ1, . . . , θi−1, θi+1, . . . , θB). The Gibbs sampler cycles through

each block of θ drawing new values from the conditional distribution. There are

therefore B steps at each iteration. After a number of iterations the samples from

the Gibbs sampler can be regarded as a sample from the joint posterior distribution

of θ.

2.3 Spatial Data and Geostatistics

Over the last 20 years there has been as increase in the amount of spatial and

spatio-temporal data which has become available for use in statistical models

(Sherman (2011)). This has ultimately lead to an increase in the number of mod-

elling techniques which are available for such data.
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Spatial observations are typically geographically referenced by a pair of coordi-

nates, such as the longitude and latitude measurements of the location. Both

Cressie (1993) and Sherman (2011) define a general spatial model as the obser-

vations z(s) at spatial locations s = (s1, . . . sq), where s is allowed to vary over

the index set A ⊂ R
d so as to generate the multivariate random field (or random

process)

{z(s) : s ∈ A},

where A is the domain in which observations are taken and d is the dimension of

the domain. The term spatial data can include lattice data, point process data and

geostatistical data, each of which is differentiated from the other by its treatment

of the subset A of R
d, the Euclidean d-dimensional state space. A full review of

all three types of data can be found in Cressie (1993). Spatio-temporal data are

observations which exist in both space and time. This is therefore an extension of

the notation for spatial data and can be denoted by

{z(s, t) : s ∈ A, t ∈ [0,∞)},

where z(s, t) denotes a spatio-temporal random process that is observed at n space-

time coordinates, ((s1:q, t1), . . . , (s1:q, tn)), where t is an index of time. Air pollution

data are spatio-temporal in nature as they are measured at a number of fixed

site locations on a daily basis. However, on a single day these data are only

spatial in nature and can therefore be described as geostatistical. The remainder

of this section therefore discusses geostatistical data and its associated modelling

framework. This will provide background information for the methods used in

Chapter 4. For a detailed review of this topic see Diggle and Ribeiro Jr (2007).
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2.3.1 Geostatistics

In its simplest form a geostatistical data set consists of observations z(s) =

(z(s1), . . . , z(sq)), where s = (s1, . . . , sq) are the set of spatial locations and z(sj)

is the response associated with the location sj . One of the characteristics of geo-

statistical data is that in principle the response is defined throughout a continuous

study region. The recorded concentration levels of air pollution on any given day

can therefore be described as geostatistical data, where the locations s, of the

monitoring stations, are assumed to be stochastically independent of the process

which generates the air pollution data. Each observation z(sj) is a realisation of

a random variable Z(sj), the distribution of which is dependent on the value at

location sj of an underlying spatially continuous stochastic process P (sj). This

signal process, P (s), is what represents the true pollution level surface as a func-

tion of the location s, and this is what we are most interested in, however it is not

directly observable. Geostatistical data have their own form of statistical inference

known as geostatistics and a brief description has been given in the section below.

For a more detailed explanation see Diggle and Ribeiro Jr (2007).

This particular type of analysis was originally developed for the purpose of spatial

prediction within the mining industry (see for example Matheron (1963)). Today

the methods of geostatistics are used in a number of applications including marine

biology (see for example Paramo and Saint-Paul (2012)), geosciences (see for ex-

ample Patinha et al. (2012) and Pringle et al. (2008)) and environmental research

(see for example Barca et al. (2008)). The objectives of geostatistical analysis

are estimation and prediction, where estimation refers to the inference about the

parameters of the model and prediction refers to the realisations of the unobserved

signal process.
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The simplest model which can be built using geostatistical data is a stationary

and isotropic Gaussian model. The signal process P (s) is Gaussian if the joint

distribution of (P (s1), . . . , P (sq)) is multivariate Gaussian for any j = 1, . . . , q

and set of locations s. This process is also stationary and isotropic if the mean,

E(P (sj)), and variance, Var(P (sj)), are the same for all locations sj and the

correlation between P (sj) and P (sj+h) depends only on u = ||sj − sj+h||, where

u is the Euclidean distance between the two locations. The correlation function,

denoted by ρ(u), must be positive definite, so as to ensure that for any set of

locations sj and real constants aj, the linear combination
∑q

j=1 ajP (sj) will have

a non-negative variance. This property of the correlation function is typically

satisfied by using one of a class of standard parametric models for ρ(u). The

Matérn (Matérn (1960)) family of correlation functions is the most commonly

used as its theoretical correlation structure decreases as the distance u increases

and the degree of smoothness it imposes in the underlying spatial process can be

adjusted. The Matérn family of correlation functions is therefore a two parameter

family and is given by

ρ(u) =
1

2κ−1Γ(κ)
(u/ψ)κKκ(u/ψ),

where Kκ(·) denotes a Bessel function of order κ > 0, this is the shape parameter

which determines the smoothness of the underlying process P (s) and ψ > 0 is a

scale parameter of distance.

It is possible to specify a non stationary process by allowing the mean response

E(P (sj)) = µ(s) to vary by location, therefore allowing for a spatial trend. The

spatial trend can be modelled directly as a function of s, for example through

a polynomial regression model. However, Diggle et al. (2010) suggests that a

more insightful and interesting view is to model the spatial trend using spatially
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referenced covariates, as this would aim to explain, rather than describe, spatial

variation in the response variable. The mean response can therefore be given by

µ(s) = β0 + d(s)β1, where d(s) is a property of the locations s and β1 is the

associated coefficient. A Gaussian model with a linear specification for the spatial

trend can therefore be given by

Z ∼ N(Dβ, σ2R(ψ) + ǫ2I), (2.7)

where D is an q×p matrix of covariates and β is the vector of associated regression

coefficients. The measurement error variance, ǫ2, also known as the nugget effect, is

the conditional variance of each measured value Z(sj) given the underlying signal

value P (sj), while the spatially structured correlation is given by R(ψ). Hence

the i, jth element of R(ψ) is corr(P (si), P (sj)) = ρ(||si − sj ||). Finally, σ2 is the

variance of the signal process i.e. σ2 = Var(P (sj))

2.3.1.1 Parameter Estimation and Spatial Prediction

From a non-Bayesian perspective parameter estimation and spatial prediction are

treated as two separate events. A disadvantage of this is that it ignores the uncer-

tainty in the parameter estimates when making predictions, which may lead to an

overly optimistic assessment of the predictive accuracy. To avoid this, Bayesian

techniques can be used which unify the estimation and prediction into a single

procedure. However, to explain Bayesian prediction we must first discuss the es-

timation of the parameters, β, σ2, ψ and ǫ2 from (2.7).

Parameter Estimation
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Firstly, it should be noted that whenever possible the prior distributions are spec-

ified to allow for explicit expression of the corresponding posteriors. If this is not

possible then discretised priors are used to ease the resulting computations. As

a stepping stone if we initially consider the case where there is no nugget effect,

ǫ2 = 0, and all other parameters in the correlation function have known values. For

fixed ψ, the priors for β and σ2 can be specified as Gaussian and Scaled-Inverse-χ2

distributions respectively

f(β|σ2, ψ) ∼ N(mβ , σ
2Vβ) and f(σ2|ψ) ∼ χ2

ScI(nσ, S
2
σ).

The probability density function for a χ2
ScI(nσ, S

2
σ) can be given by

π(σ2) ∝ σ2−(nσ/2+1)

exp(−nσS
2
σ/(2σ

2)), σ2 > 0.

The conjugate prior family for (β, σ2) is therefore the Gaussian-Scaled-Inverse-

χ2 (f(β, σ2|ψ) ∼ Nχ2
ScI(mβ, Vβ, nσ, S

2
σ)). This prior can be combined with the

log-likelihood function of (2.7), which is given by

l(β, ǫ2 = 0, σ2, ψ) = −0.5{n log(2π) + log{|σ2R(ψ) + ǫ2I|}

+(z −Dβ)T (σ2R(ψ) + ǫ2I)−1(z −Dβ)},

to obtain the posterior distribution of the parameters

f(β, σ2|z, ψ) ∼ Nχ2
ScI(β̃, Vβ̃, nσ + n, S2) (2.8)

where β̃ = Vβ̃(V
−1
β mβ +D′R−1z), Vβ̃ = (V −1

β +D′R−1D)−1 and
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S2 =
nσS

2
σ +m′

βV
−1
β mβ + z′R−1z − β̃ ′V −1

β̃
β̃

nσ + n
. (2.9)

To relate the assumption that ψ is known, a prior distribution must be specified

for ψ. A discrete, as opposed to a continuous, prior is specified for ψ, so as to ease

the computational burden, as otherwise we would need to invert the q×q variance

matrix at each simulation. This is obtained by discretising the distribution of ψ

into equal width intervals. The exact specification of this interval is discussed in

Chapter 4 when the geostatistical model is applied. The posterior distribution for

the parameters of (2.7) can be given by

f(β, σ2, ψ|z) = f(β, σ2|z, ψ)f(ψ|z)

where the posterior of f(β, σ2|z, ψ) is given by (2.8) and

p(ψ|z) ∝ f(ψ)|Vβ̃|
1/2|R|−1/2(S2)−(n+nσ)/2, (2.10)

where Vβ̃ and S2 have been specified previously.

Samples are simulated from this posterior by using (2.10) to compute the posterior

probabilities p(ψ|z), for the elements in the discrete sample of ψ. A value of ψ is

then simulated from f(ψ|z) and used to obtain a simulation from the distribution

f(β, σ2|z, ψ). This is repeated many times to give a simulated sample of the pa-

rameters (β, σ2, ψ) from their joint posterior distribution.

Finally, lets consider the case of a positive nugget variance, ǫ > 0. In this instance

a discrete joint prior is specified for ψ and ν2, where ν2 = ǫ2/σ2. This means

replacing the variance in equation (2.7) with V = R(ψ)+ ν2I. The form of Monte
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Carlo inference used in this type of analysis is direct simulation, replicated in-

dependently, rather than MCMC methods (which were described in Section 2.2),

thus avoiding any issues with regards to convergence.

Spatial Prediction

Spatial prediction is the use of the available data to predict the unobservable,

signal process P (s). This is typically done using ordinary kriging which treats the

mean as unknown, but assumes that the covariance parameters are known. A set

of locations must be specified as the prediction locations. This is often done by

partitioning the continuous study region into a discrete grid of prediction locations

s∗ = (s∗1, . . . , s
∗
N). Again, let us first consider the case for when ψ is fixed and the

conjugate prior family for (β, σ2), the Gaussian-Scaled-Inverse-χ2, is used, and the

resulting posterior distributions for these parameters are given by (2.8) and (2.9)

respectively. The Bayesian predictive distribution of the signal process at this set

of prediction locations, P ∗(s∗) = (P ∗(s∗1), . . . , P
∗(s∗N)), is therefore computed by

evaluating the integral

f(P ∗(s∗)|z) =

∫

σ2

∫

β
f(P ∗(s∗)|z,β, σ2)f(β, σ2|z)dβdσ2, (2.11)

where f(P ∗(s∗)|z,β, σ2) is a multivariate Gaussian density with mean

E(P ∗(s∗)|z,β, σ2) = D∗β + r′V −1(z −Dβ),

where V = R(ψ)+ν2I, D∗ is the matrix of covariates corresponding to the predic-

tion locations and r is a vector with the elements rj = ρ(||s−sj ||) for j = 1, . . . , q.

The prediction variance is given by
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Var(P ∗(s∗)|z,β, σ2) = σ2(1 − r′V −1r).

Integration of (2.11) yields a multivariate t-distribution defined by

f(P ∗(s∗)|z) ∼ tnσ+n(µ
∗, S2Σ∗)

E(P ∗(s∗)|z) = µ∗

Var(P ∗(s∗)|z) =
nσ + n

nσ + n− 2
S2Σ∗, (2.12)

where

µ∗ = (D∗ − r′V −1D)Vβ̃V
−1
β mβ

+[r′V −1 + (D∗ − r′V −1D)Vβ̃D
′V −1]z

Σ∗ = V 0 − r′V −1r + (D∗ − r′V −1D)(V −1
β + V −1

β̃
)−1(D∗ − r′V −1D)′.

This can be extended to the case of a single correlation parameter ψ, the posterior

distribution for which is given by (2.10).

The predictive distribution for the value P ∗(s∗j) of the signal process at an arbitrary

location s∗j is given by

f(P ∗(s∗)|z) =

∫

ψ

∫

σ2

∫

β
f(P ∗(s∗),β, σ2, ψ|z)dβdσ2dψ

Because a discrete prior is specified for ψ the moments of this predictive distribu-

tion can be calculated analytically. Thus, for each value of ψ the moments of the

multivariate t-distribution (2.12) are computed and their sum weight calculated.
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These weights are given by the probabilities p(ψ|z).

To sample from the predictive distribution of P ∗(s∗) we first compute the posterior

probabilities p(ψ|z) and then simulate values of ψ from the posterior f(ψ|z). Using

each sampled value of ψ, a value for (β, σ2) can be simulated for f(β, σ2|ψ, z) fol-

lowed by a value of P ∗(s∗) from the conditional distribution f(P ∗(s∗)|β, σ2, ψ, z).

This gives a value P ∗ which is an observation from the required predictive distri-

bution f(P ∗(s∗)|z). If ǫ > 0 then the process is the same as described but instead

a joint prior is specified for f(ψ|ν2), where ν2 = ǫ2/σ2.

2.4 Varying-Coefficient Models

Varying coefficient models as described by Hastie and Tibshirani (1993) are a

class of generalized linear models in which the coefficients are allowed to vary as

smooth functions of other variables. Such models are linear in the regressors, but

their coefficients are allowed to change smoothly with the value of other variables,

known as ‘effect modifiers’. For example suppose we have the response variable y,

which comes from an exponential family distribution, and we also have p covariates

xTt and ϕT
t , for t = 1, . . . , n, then a varying-coefficient model can be given by

yt ∼ f(yt|µt) for t = 1, . . . , n,

g(µt) = h0 + xt,1h1(ϕt,1) + . . .+ xt,php(ϕt,p).

This model says that ϕt,1, . . . , ϕt,p change the coefficients of the xt,1, . . . , xt,p through

the unspecified functions h1(·), . . . , hp(·). There are a number of general models

which take this form, many of which are already familiar to us. For example if
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hj(ϕt,j) = hj then this is a generalised linear model, the details of which have

already been given. If xj,t = 1 and hj(ϕt,j) is an unspecified function in ϕt,j then

the varying coefficient model is reduced to a generalised additive model.

2.4.1 Time-Varying Coefficient Models

In addition to the more general cases specified above, if ϕt,j = t then this is a

time-varying coefficient model, where the effect modifier is time. A time-varying

coefficient model can therefore be given by

g(µt) = h0 + xt,1h1(t) + . . .+ xt,php(t),

hj(t) = fj(t; γj). (2.13)

The effect of covariate xt,j on day t is represented by hj(t), and the evolution over

time is modeled by a function fj with parameter vector γj . There are a number

of forms which the function fj can take, three of which have been outlined below

and have been used in an air pollution and health context.

1. hj(t) = γ0 + γ1 sin(2πt/365) + γ2 cos(2πt/365), for a smooth seasonal time-

varying effect of xt,j (Peng et al. (2005)).

2. hj(t) ∼ N(θj(t − 1), γ2), for a time-varying effect of xt,j modeled as a first-

order random walk (Chiogna and Gaetan (2002)).

3. hj(t) = fj(t; γ), where fj is an arbitrary smooth function that estimates a

smooth time-varying effect of xt,j (Lee and Shaddick (2007)).

The seasonal parametric form adopted by Peng et al. (2005) is overly restrictive as

it does not allow for any non-seasonal variation. The use of a first order random



Chapter 2. Statistical Methods Review 32

walk (Chiogna and Gaetan (2002)) allows for a more realistic model as the shape

of the time-varying relationship is not predetermined. It is also possible to use a

second-order random walk to represent the time-varying effect of xt,j . However,

a disadvantage of the random walk is that it may not evolve smoothly over time,

meaning that the underlying shape may be hidden by unwanted noise. The use of a

smooth function, such as that used by Lee and Shaddick (2007) is an improvement

on the first two approaches because the estimate will change smoothly over time

without having a predetermined temporal shape.

2.4.2 Estimation

Varying coefficient models are too general for most estimation methods as no

restrictions are imposed on the coefficient functions hj(ϕt,j). If the model reduces

to the simplified forms described in the previous section then estimation using

Bayesian or likelihood methods is straightforward to implement. If hj(ϕt,j) =

f(ϕt,j)
TΦ then hj(ϕt,j) are additive in known parametric functions f(ϕt,j) and

unknown parameters Φ. In this case estimation is straightforward to implement

as the model can be reduced to a generalised linear model. If hj(ϕt,j) are smooth

non-parametric functions estimation can be based on the penalised least squares

criterion as proposed by Hastie and Tibshirani (1993).

2.5 Regression Splines

Within a generalised linear model framework a linear relationship is forced be-

tween each covariate and g(µt). The size of this relationship is represented by the

corresponding coefficient for each covariate. However, it may be that this relation-

ship would be better described by non-linear terms. A less restrictive approach

is therefore necessary and a possible solution is to replace the term Xt,jθj with a
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smooth function, the shape of which can be determined by the data. This tra-

ditionally falls under the remit of nonparametric techniques, which can be used

in conjunction with generalised additive models. In this setting the shape of the

functional relationship is not predetermined and is instead allowed to adjust to

capture features of the data. A full review of such methods can be found in Rup-

pert et al. (2005). However, it is also possible to include smooth functions within a

generalised linear model, using parametric techniques known as regression splines.

Regression splines are less flexible than their nonparametric counterparts, however

their parametric nature makes their implementation within a Bayesian framework

straightforward.

2.5.1 Building Regression Splines

A regression spline is a piecewise polynomial function f(x), of order k, which is

defined on the interval [xmin, xmax]. The interval domain is divided into d intervals

by d + 1 points, thus xmin = τ1 < . . . < τd+1 = xmax. Within any subinterval

[τj , τj+1), a polynomial regression spline Sj , of order k (or degree k − 1), can be

drawn. At joining points the adjacent polynomials are required to match with a

specified degree of smoothness, this is defined as the equality of their derivatives,

dm−1Sj
dxm−1

=
dm−1Sj+1

dxm−1
for m = 1, . . . νj ,

which are evaluated at (τj) if m > 1. The order of the continuity, νj , is the degree

k − 1 of the polynomial. Therefore, adjacent polynomials have matching deriva-

tives up to order k−2. For example, if k = 3 then the spline is piecewise quadratic

and has matching first derivatives (i.e. m = 1). The mesh of points which divides

the interval domain (xmin, xmax) into a number of subintervals and the continu-

ity conditions, νj , can be incorporated into a knot sequence, ξ = {ξ1, . . . , ξπ+k}

(Ramsay (1988)). The value π can be thought of as the number of free parameters
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which specify the spline function and encompasses the number of subintervals d,

and the continuity characteristic νj . We can therefore rewrite this as π = d + νj .

Ramsay (1988) specified the knot sequence through three properties

1. ξ1 ≤ . . . ≤ ξπ+k.

2. For all i there is some j such that ξi = τj.

3. The continuity characteristics are determined by

(a) ξ1 = . . . = ξk = xmin and xmax = ξπ+1 = . . . = ξπ+k;

(b) ξi < ξi+k for all i;

(c) if ξi = τj and ξi−1 < τj then ξl = . . . = ξi+k−νj−1.

The knot sequence ξ is therefore derived from the mesh of points which divides

the interval (xmin, xmax), by placing the number of knots at a boundary value, τj ,

according to the order of continuity at that boundary.

For simplicity the interval domain can be divided into equally spaced subintervals,

thus allowing the knots to be equally spaced. However, this is not necessary and

knot placement can be chosen by a visual inspection of the data. The choice of the

number of knots (subintervals) to include can be made via an automatic knot se-

lection method. Such methods use model selection criteria such as cross-validation

and Mallows’s Cp. However, these methods require a comparison of all possible

models, so if there are K candidate knots then there are 2K possible models. Re-

cent literature has proposed several approaches which circumvent the need to fit

all possible models, a review of these methods is given by Wand (2000). Alterna-

tively, an excessive number of knots can be fitted and their influence constrained

through an additional penalty term.
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Figure 2.1: B-spline bases of degrees (a) one, (b) two, and (c) three. The
position of the knots are indicated by the solid diamonds (taken from Wand

(2000)).

2.5.2 Basis Functions

The widespread application of splines required the development of a suitable set

of basis splines, Mj(·|k, ξ), j = 1, . . . , π such that any piecewise polynomial or

spline f(x) of order k, and associated with knot sequence ξ, could be represented

as the linear combination f(x) =
∑π

j=1Mj(x|k, ξ)θj . Two of the most commonly

used set of basis functions in air pollution and health studies, are B-splines (Eilers

and Marx (1996)) and natural cubic splines (Kyung et al. (2011)). B-splines are
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Figure 2.2: Natural cubic spline basis for the same set of knots used in Figure
2.1 (taken from Wand (2000)).

equivalent to the truncated power bases of the same degree, but they do not suffer

from a lack of orthogonality. A truncated power basis of degree k can be given by

f(x) = θ0 + θ1x+ . . . , θkxk +

π
∑

j=1

bj(x− κj)
k
+, (2.14)

where 1, x, . . . , xk, (x − κ1)
k
+, . . . , (x − κπ)

k
+ are the linear spline basis functions

with knots at κ1, . . . , κπ. If XB is the X-matrix corresponding to the B-spline

basis of the same degree and same knot locations as (2.14) then

XB = XTLp,

where XT is the equivalent truncated power basis and Lp is a square invertible
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matrix. An example of B-spline basis functions are presented in Figure 2.1. Al-

ternatively, natural cubic splines are constrained to be linear in their tails beyond

the boundary knots through the constraint that the first and second derivatives

equal zero at these knots. This precludes any erratic behaviour beyond the end

points. They are therefore a modification of cubic splines. An example of natural

cubic spline basis functions is given in Figure 2.2.

2.6 Model Selection, Assessment and Prediction

The availability of numerous modelling techniques and methods means that there

may be a number of candidate models, all of which provide a good description of

the data y, and yet differ in a number of ways. For example, candidate models

may differ by the covariate risk factors which are included and the form in which

they enter the model. If a Bayesian analysis is being implemented then models

may differ with regard to the choice of plausible prior distributions. It is also pos-

sible for a model to differ by the specified probability distribution for y or the link

function g(·). These possible differences in the model may change the substantive

conclusions drawn from the analysis. There are a number of tools which can assist

in the model selection and assessment process and a summary of such methods

is given below. However, it should be noted that while such techniques can be

extremely useful, they should not be used alone and instead in conjunction with

personal judgement and experience.

In some studies the main purpose may not be the estimation of the model pa-

rameters for the purposes of inference. In some cases models may be built for

the purposes of prediction. For example, it may be desirable to make forecasts

about future events such as stocks and shares, or the weather. It is also possible to

build models for the purposes of making predictions about spatial locations. In the
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study of air pollution, models are often built for the purposes of spatial prediction,

a topic which I cover myself in Chapters 4 and 5. I have therefore also included a

small section which covers how you can assess the predictive capabilities of such

model.

2.6.1 Model Selection

Model selection tools are used to make a choice between a number of candidate

models. In their simplest form these models vary only by the covariates included

and can therefore be said to be nested. Alternatively, models may differ by more

complex entities, such as those mentioned earlier. A review of some model selec-

tion procedures is given below, and where possible a Bayesian alternative has also

been given.

2.6.1.1 Measures of Model Fit

Before describing some of the methods for model comparison we must define the

deviance (Nelder and Wedderburn (1972). The deviance, also known as the log-

likelihood (ratio) statistic (Dobson and Barnett (2008)), is the difference between

the candidate model and the saturated model. The saturated model has the same

distribution and link function as the candidate, but it has the maximum number

of covariates. Such a model therefore assigns all the variation in y to the fitted

component of the model. The deviance can therefore be given by

Dev(y) = −2[log(f(y|θ̂)) − log(f(y|θ̂s))], (2.15)
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where θ̂ denotes the fitted values of the parameters in the candidate model and θ̂s

denotes the fitted values of the parameters in the saturated model. A set of candi-

date models can therefore be compared by calculating their respective deviances.

The model with the smaller deviance is suggested as the better fit to the data.

An alternative model selection criteria is Akaike’s Information Criterion (AIC,

Akaike (1974)). AIC is similar to the deviance, however it includes a penalty term

which penalizes models with an excessive numbers of parameters. AIC can be

given by

AIC = 2p− 2 log(f(y|θ̂)).

A similar criteria is Bayesian Information Criterion (BIC, Schwarz (1978)), which

is also based on the likelihood function. BIC can be given by

BIC = p log(n) − 2 log(f(y|θ̂)),

where n is the number of data points. Other such criteria include Mallow’s Cp

and the PRESS criterion. However, only AIC and BIC have been expressed here,

as these are the criteria used in Chapters 4 to 6.

If a Bayesian analysis has been implemented then an alternative criterion is the

Deviance Information Criterion (DIC, Spiegelhalter et al. (2002)). The Bayesian

deviance for a candidate model is given by DevB(y) = −2 log(f(θ|y)). However,

as this does not give a single value the posterior median or mean will have to

be used as a point estimate. Therefore, the deviance, DevB(y), will have to be

estimated. This can be done by either using the posterior mean of θ and there-

fore setting DevB(y) = Dev ¯θ(y), or by averaging the deviance over the posterior
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distribution of θ, to give DevAV (y) = E[Dev(y)|y].

The posterior mean, θ̄, provides a better fit to the data than the average over the

posterior distribution, hence Dev ¯θ(y) is always smaller than DevAV (y). Therefore,

the effective number of parameters in a Bayesian model can be represented by

pB = DevAV (y) − Dev ¯θ(y), which is the difference between the fit of the average

model and the fit of the model which arises from using the parameters posterior

mean. The deviance information criterion can therefore be given by

DIC = Dev ¯θ(y) + 2pB,

in which the first term measures the adequacy of the model and the second imposes

a penalty for an excessive number of parameters. The model with the lowest DIC

is suggested as the better fitting model.

2.6.2 Model Assessment

The adequacy of a model as a description of the data can be assessed via a number

of methods, some of which have been detailed below. The ability of a model to

adequately describe the variation in the data, y, can be described by how much of

the variation it assigns to the fitted model and how much it assigns to the residual

component, known as the unexplained variation. Models which perform better

should therefore have a smaller residual component than their rivals. I therefore

begin this section with a discussion of the residuals of a model.
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2.6.2.1 Standardised Residuals

The residuals, which represent the difference between the data y and the the fitted

model, can be used to assess a model’s adequacy at describing the data. In the

Gaussian case the residuals are given as rt = (yt− µ̂t), where µ̂t is the fitted value.

However, for generalised linear models, the variance of the response is not always

constant, therefore the Pearson residuals (also know as the standardised residuals)

can be given by

rt =
yt − µ̂t
√

Var(yt)
for t = 1, . . . , n. (2.16)

When plotted they should resemble independent random fluctuations, which con-

tain no correlation or structure. If this is the case then the model is said to be

a good description of the relationship between the response and the explanatory

variables. The Pearson residuals can be plotted against explanatory variables, or

potential explanatory variables to determine if the model adequately describes the

effect or possible effect of that variable. An inadequate description will be dis-

played by some systematic pattern. A comparison of these residuals to the fitted

values will assist in the detection of a non constant variance. The residuals can

also be used to check for the presence of unmodelled time series correlation in y,

through the autocorrelation and partial autocorrelation function of the residuals

(for details see Wand (2000)).

Under the likelihood approach the residuals are based on the maximum likelihood

estimate θ̂, whereas for a Bayesian analysis the posterior mean, median or mode is

typically used. The Bayesian residual distribution can also be used to summarise

rt, and is given by
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f(rt|y) =

∫

θ
f(rt|θ|y)f(θ|y)dθ,

which averages over the posterior uncertainty in θ removing the need for a specific

estimate. Further details of Bayesian residuals are given by Gelman et al. (2004).

2.6.2.2 Measuring Model Adequacy

The adequacy of a fitted model can be assessed using Pearson’s chi-squared test,

which is often referred to as a goodness-of-fit measure. This test measures the

distance between y and the fitted value from the model and is given by

T =
n
∑

t=1

(yt − µ̂t)
2

Var(µ̂t)
∼ χ2

n−p.

If the model is adequate then the test statistic has an approximate χ2
n−p distri-

bution, where p is the effective number of parameters in the model and n is the

number of observations.

The deviance (2.15), can also be used to assess the adequacy of a single model. If

the model is an adequate description of the data then

Dev(y) ∼ χ2
n−p.

The approximation improves asymptotically as the number of data points in-

creases, and a large deviance (typically values which occur less than 5% of the

time under a χ2
n−p distribution) suggest that the model is not an adequate de-

scription of the data. The deviance of a model can be reduced by adding more
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covariates to the model, regardless of whether or not the covariates are causally

related to y.

2.6.2.3 Posterior Predictive Checking

Posterior predictive checking (Rubin (1984)) is a Bayesian tool for checking the

adequacy of a model. If the model is a good fit to the data then replicated data

generated under that model should look similar to the observed data, i.e. the

observed data should look plausible under the posterior predictive distribution.

To check the fit of the model to the data we therefore draw simulated values from

the posterior predictive distribution of replicated data and compare these samples

to the observed data. The posterior predictive distribution is therefore given by

f(yrep|y) =

∫

f(yrep|θ,y)dθ

where yrep denotes the replicated data which could have been observed. The

posterior predictive distribution can be approximated by simulation, sampling θ

from its posterior distribution and yrep from f(y|θ) given the sampled values of θ.

Any discrepancies between the model and the data can be measured by defining a

test statistic, T (y, θ), which is a scalar summary of the parameters and the data.

The lack of fit to the data with respect to the posterior predictive distribution can

be measured by the posterior predictive p-value

p-value = P (T (yrep, θ) ≥ T (y, θ)|y),

which measures the probability that the test statistic from the replicated data

could be more extreme than the observed data. The posterior predictive distri-

bution can be calculated using simulation. If there are Π simulations from the
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posterior density of θ, then we draw one yrep from the predictive distribution

for each simulated θ, this gives Π draws from the joint posterior distribution,

f(yrep, θ|y). The posterior predictive check is the comparison between the re-

alised test quantities T (y, θ), and the predictive test quantities T (yrep,j, θ). The

estimated p-value is just the proportion of these simulations for which the test

quantity equals or exceeds its realised value, T (yrep,j, θ) ≥ T (y, θ).

2.6.2.4 Sensitivity Analysis

Sensitivity analysis can be used to examine the robustness of a statistical model.

Such analysis involves applying a set of candidate models to the data y, each of

which differs by a single aspect. For example if a Bayesian analysis is being used

then each model may specify a different prior for the variable of interest. If the

fitted model is impervious to such small changes in the model specification, then

the candidate models can all be considered equal. However, should this not be

the case and considerably different results are produced by each of the possible

models, then we may wish to communicate this sensitivity, think more carefully

about the specifics of our model, or collect more data (Gelman et al. (2004)).

2.6.3 Model Prediction

Statistical models are often used for the purposes of prediction. Therefore there

exists a number of tools for assessing a model’s predictive capabilities, including

cross-validation, prediction bias, and the median absolute deviation. These meth-

ods are a form of model assessment, such as those described previously, however,

they shall be discussed here solely for the purposes of assessing the predictive ca-

pabilities of a model. Prediction has been used in this thesis in both Chapters 4
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and 5. In each case it has been used in a spatial-temporal context, therefore, the

expressions given here are suitably annotated for such use.

Cross-validation is a class of methods which can be used for model evaluation.

The basis of this method is to split the data into two disjoint sets, a training set

and a validation or testing set. A model is applied to the training data set and the

resulting parameter estimates are used to predict the validation data set. The true

validation data can then be compared to the predicted data. This is sometimes

known as the predicted residual sum of squares (PRESS, Wand (2000)) and is

given by

CV =

n
∑

t=1

q
∑

j=1

(yt,j − ŷt,j)
2,

where yt,j are the true observations on day t = 1, . . . , n and location j = 1, . . . , q

and ŷt,j are the predicted observations for the same time period and set of lo-

cations, that are obtained using a model which does not include yt,j . Different

partitions of data can also be used, for example leave-one out cross-validation ex-

cludes a single observation from the data set for which the model is to be fitted.

This is then repeated for every observation of the data set. A less intensive method

is to partition the data into a number of subsets each of which can be excluded

from the model in turn.

The prediction bias measures the overall bias in the predictions from the model

and can be given by

Prediction Bias = Mediant,j{ŷ
−j
t,j − yt,j}. (2.17)
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A similar measure is the median absolute deviation, which can be calculated in-

stead of the root mean square prediction error. This is given by

MAD = Mediant,j{|ŷ
−j
t,j − yt,j |}, (2.18)

and measures the average amount of error between the observed data and the

predicted data.



Chapter 3

Air Pollution and Health Studies

In the previous chapter a review of generalised linear models was given along

with an outline for both the likelihood and Bayesian approaches to parameter

estimation and inference. In this chapter I focus specifically on air pollution and

health studies and begin with a discussion of the type of data which are typically

used in such studies (3.1). The air pollution variable is discussed in greater detail

in Section 3.2 as this forms the focus for the work in this thesis. This includes a

discussion of what is typically included as a measure of air pollution and how it

is included in the model. Other potential covariates are described in Section 3.3

and the issues of overdispersion and mortality displacement conclude this chapter

(Sections 3.4 and 3.5 respectively).

3.1 Data Description

Air pollution and health studies are based on ecological (population level) data

which relate to a geographical region R, for n consecutive days. This region is

usually an extended urban area, and the analyses presented in Chapters 4, 5 and

6 are based on data from Greater London for varying time periods. These data

47
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comprise population based measures of mortality or morbidity outcomes, ambient

air pollution concentrations and other covariates, all of which are described below.

3.1.1 Health Data

The health data typically comprise daily counts of the total numbers of mortality

or morbidity outcomes from the population living within the geographical region

R. These data are denoted here by y = (y1, . . . , yn)n×1, where yt represents the

number of mortality or morbidity events that occur on day t. This type of data is

collected by medical facilities and can be used for the purposes of research with the

permission of the National Health Service (NHS). However, due to laws concerning

data protection these data are not available at an individual level. An example

of this type of data is given in Figure 3.1(a), which displays the daily number of

deaths due to respiratory illness, for the over 65 years population of Greater Lon-

don. The figure shows a strong seasonal component, with the majority of deaths

occurring during the colder winter months.

All morbidity and mortality events are classified using the International Classifi-

cation of Diseases and Related Health Problems (ICD). This is the international

standard diagnostic classification and it is used to classify diseases and other health

problems. This information is recorded on many types of health and vital records

including death certificates and health records. Data in existing air pollution

and health studies, and also that which are used in this thesis, have been classi-

fied using the ICD. The 10th revision (ICD-10) was endorsed by the 43rd World

Health Assembly in May 1990 and came into use in the World Health Organisa-

tion (WHO) States in 1994. The current ICD originates from the International

List of Causes of Death, which was developed in the 1850s. The current revision

covers the period 2000 to the current day. Further information about the WHO



Chapter 3. Air Pollution and Health Studies 49

10
20

30
40

50

(a)

Date

N
um

be
r 

of
 d

ea
th

s

1st Jan 2001 1st Jan 2002 1st Jan 2003 31st Dec 2003

0
5

10
15

20
25

30

(b)

Date

A
ve

ra
ge

 te
m

pe
ra

tu
re

1st Jan 2001 1st Jan 2002 1st Jan 2003 31st Dec 2003

0 5 10 15 20 25 30

10
20

30
40

50

(c)

Average temperature

N
um

be
r 

of
 d

ea
th

s

Figure 3.1: (a) Daily counts of the number of respiratory related mortalities
from the population of over 65s living in Greater London for the period 2001
to 2003, (b) daily average temperature for the same region and period, and
(c) the relationship between the daily average temperature and the number
of respiratory related deaths, where the shaped of the relationship has been

highlighted by the red line.
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and ICD-10 can be found at www.who.int.

There are a number of ICD classifications that have been used to categorise mortal-

ity or morbidity outcomes in air pollution and health studies. The most commonly

used is that of total non-accidental causes (A00 - R99). However, cause specific

classes of disease of the respiratory (J00-J99, see for example Chen et al. (2010))

or cardiovascular (I00-I99, see for example Zhou et al. (2011)) system may be

preferable, because they are more likely to be related to the possible effects of air

pollution. However, this reduced number of mortality events may result in inaccu-

rate estimation of the health risks of air pollution. A number of studies have also

considered classification by age group and/or gender (see for example Ma et al.

(2011), Andersen et al. (2008) and Parikh (2011)).

3.1.2 Air Pollution Data

Air pollution is a complex mixture of gases, dust, fumes and odours in amounts

which could be harmful to human health or other ecosystems. Pollutants which

can contribute to air pollution can be either primary pollutants, meaning that

they directly pollute the air, for example carbon monoxide from car exhausts and

sulphur dioxide from the combustion of coal, or secondary pollutants which are

primary pollutants which undergo a chemical reaction in the atmosphere, for ex-

ample ozone and smog.

Many of these contributing pollutants are routinely measured by a network of q

fixed site monitors within the study region, R. Each monitor typically measures

continuously throughout the day and a daily average is then calculated at each lo-

cation. Thus for a given pollutant i there is an n× q matrix of observations, Wi =

(w1,i, . . . ,wn,i), which relate to the n days of the study, with q observations for
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Figure 3.2: Location and type of the pollution monitors in Greater London
(•, roadside locations; ◦, background locations): (a) CO, (b) NO2, (c) O3, and

(d) PM10.
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each day. The observations for day t are denoted by wt,i = (wt,i(s1), . . . , wt,i(sq)),

where (s1, . . . , sq) are the spatial co-ordinates of the monitoring sites. These sites

are often placed at different local environments which can be classified as either

roadside or background. Commonly measured pollutants include carbon monox-

ide (CO), nitrogen dioxide (NO2), ozone (O3), particulate matter measured at

different metrics (PM2.5 and PM10, which consists of particles that are less than

2.5µgm3 and 10µgm3 in diameter) and sulphur dioxide (SO2). The locations of the

Greater London monitoring sites for the four pollutants CO, NO2, O3 and PM10

are displayed in Figure 3.2 for the time period 2001 to 2003. Each of the sites

shown has been classified as either at a roadside (•) or background (◦) environ-

ment. Although an association between the concentration levels of each of these

pollutants and mortality (or morbidity) has already been established, the majority

of studies focus primarily on the health effects of particulate matter (for example

Laden et al. (2000) and Lin et al. (2002)) or ozone (see for example Sheffield et al.

(2011)). As a result ozone is the main pollutant examined in Chapter 6, however

all the pollutants previously mentioned, other than PM2.5 and SO2, are considered

in chapters 4 and 5. I did not consider PM2.5 as this pollutant is not routinely

measured by most of the monitoring stations and those which do often produce

very sparse data, with numerous days having missing values. SO2 is not consid-

ered as this pollutant is not consistently measured, for example on some days it

is recorded as having increased by 10 times the previous day’s value and it is also

often recorded as a negative value.

As highlighted by the above examples the data collected from air quality monitor-

ing networks may include a number of days for which no data was recorded. This

missing data is most likely the result of a fault occurring with the equipment and

is therefore an aspect of the data which cannot be controlled for by the researcher.

Regardless of the cause a decision has to be made about how to deal with the miss-

ing data, a number of techniques for which are readily available. For example if
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the data is missing completely at random then it is possible to completely remove

those days from the study without biasing your results Gelman and Hill (2007).

This is sometimes referred to as listwise deletion or as complete case analysis. If

the computer language R (R Development Core Team (2011)) is being used then

this is the automatic treatment of missing data for regression, and many other,

models. Alternatively, it is possible to impute the missing data using single or

multiple imputation techniques. A review of multiple imputation methods which

has been used in epidemiologic settings is given by Klebanoff and Cole (2008).

The data from the Greater London area which was used in this thesis suffers from

missing data. However, as I had no reason to assume that the days with missing

values did not occur completely at random I decided to remove these days from my

analysis. In both Chapters 5 and 6 I only include monitoring sites which recorded

data for at least 75% of the duration of the study, so as to preclude the exclusion of

a large number of days for which there was missing data. In Chapter 4 it was not

necessary to exclude the data from any monitoring site as each day was analysed

independently of all other days.

While the majority of studies include the actual concentration levels of a single pol-

lutant, a number have considered using standardised indices. Often referred to as

an air quality index, they aim to express the concentration of individual pollutants

on a common scale, where health risks occur at a value that is common to all pol-

lutants (Shooter and Brimblecombe (2009)). The most notable advantage of the

use of pollutant indices is that they are better understood by the general public as

they provide a normalised number or a descriptor word such as ‘low’, ‘moderate’ or

‘high’, as used by the Air Quality in Scotland website www.scottishairquality.co.uk.

Zujić et al. (2009) suggest that the use of pollution indices may also have a num-

ber of other potential advantages including comparability between pollutants, the

characterisation of monitoring sites and the inclusion of population exposure. A

common index for all pollutants would allow the comparison of pollutant levels in
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other regions, and the CITEAIR project (Van den Elshout and Leger (2006)) has

proposed such a single common index which is aimed at facilitating the comparison

of the air quality of European cities. They suggest that an index of an individual

pollutant which has been measured at a certain monitoring site could be useful

for defining the primary pollutants in that area and also characterising the site

in terms of the pollution sources, for example traffic, industrial or background.

Ruggieri and Plaia (2012) also note the increasing desire to use pollutant indices

as they allow complex data to summarised by a single number.

For inclusion in model (2.3) a single representative measure of air pollution, ω =

(ω1, . . . , ωn), is required for each day of the study. This allows (2.3) to be rewritten

as

Yt ∼ Poisson(µt) for t = 1, . . . , n,

ln(µt) = XT
t θ + ωt−ια. (3.1)

The representative value of air pollution is typically lagged by ι days and α is the

associated regression coefficient. The measure of pollution which is included in

such a model should represent the average level across the study region R. Both

lags and construction of a representative measure of air pollution are discussed

further in Section 3.2.

3.1.3 Other Covariates

A time series study of air pollution and human health regresses the health data

against a measure of air pollution concentrations, ω = (ω1, . . . , ωn) and a ma-

trix of p covariates X = (xT1 , . . . ,x
T
n )n×p, where xTt = (xt1, . . . , xtp)p×1 denotes
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the realisations for day t. These covariates model external risk factors, which

typically induce long-term trends, seasonal variation and overdispersion into the

daily health series, all of which are discussed in Sections 3.3 and 3.4 in detail.

By not adequately removing the influence of these covariate factors we could be

introducing bias (confounding) into the estimated pollution-mortality association.

Typical covariates used in such studies include measures of meteorology, such as

temperature, humidity, wind speed and the number of hours of sunshine, and ar-

tificial variables such as functions of calendar time ({1, 2, . . . , n}), existence of an

influenza epidemic and indicator variables for ‘day of the week’. These covariates

are described in greater detail in Section 3.3, and are used in Chapters 4 to 6.

3.2 Examining Air Pollution

As mentioned previously, a number of pollutants which are known to contribute

to air pollution are routinely measured by a network of fixed site monitors. These

monitors are placed in both rural and urban areas and typically record the daily

average concentration of several pollutants. Typically, most studies estimate the

health effects of a single pollutant. In this case a decision must be made as to which

pollutant should be included. Further to this, the pollution data are measured at

point-level and are therefore spatially misaligned with the health data, which are

measured at an areal-level. A similarly representative measure of pollution must

therefore be created at the areal-level. A final consideration is what form the

pollution-health relationship should take and if a lag should be included. Each of

these issues is discussed in detail below.
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3.2.1 Representing Air Quality

3.2.1.1 Selecting a Pollutant

For simplicity, the majority of epidemiological studies estimate the short-term

health effects of exposure to a single pollutant. However, this requires a choice

about which pollutant to include. Positive associations have been found between

mortality (or morbidity) and a number of the pollutants which are routinely mea-

sured, including carbon monoxide (Tao et al. (2011)); nitrogen dioxide (Zmirou

et al. (1998)); ozone (Verhoeff et al. (1996)), and; particulate matter (Laden et al.

(2000)). The most commonly included pollutant is particulate matter. This is

measured as a number of metrics including PM10, which are particles less than

10µgm3 in diameter and PM2.5, which are particles less than 2.5µgm3 in diameter.

The coarse particles, PM10, are a result of the output from factories and farms,

whereas the finer particles, PM2.5, are a result of exhaust fumes, burning of natu-

ral materials (typically farm waste) and the processing of heavy metals. The finer

particles are smaller and lighter and are therefore thought to be more dangerous

to human health as they are able to travel further into the lungs. Terzano et al.

(2010) suggests that more emphasis should also be placed on ultrafine particles and

non-particles (UFPs and PM0.1 which are the fraction of ambient particulates with

an aerodynamic diameter smaller than 0.1µgm3), as these are the most abundant

particulate pollutants in urban and industrial areas. However, such small metrics

are not measured in the UK as the network is primarily for monitoring purposes

and there is currently no safe level guidelines for these particular metrics.

Rather than estimate the health effects of only a single pollutant it is possible

to simultaneously include multiple pollutants (see for example Yu et al. (2000)

and Hong et al. (1999)). However, as the concentrations of individual pollutants
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are likely to be highly correlated, this may lead to problems of collinearity. The

presence of collinearity can lead to estimators which have large variances, are over-

estimated and are very sensitive to the addition or deletion of a few observations

(Lipfert (1993)). It is possible to detect collinearity by calculating the variance

inflation factor (VIFj = 1/(1−R2
(j)), where R2

(j) is the coefficient of determination

obtained from regressing the jth explanatory variable against all other explanatory

variables) for each explanatory variable (Dobson and Barnett (2008)). A variance

inflation factor greater than one signals correlation between the variables, and

increasing values equal increasing correlation. There are a number of methods

which can be used to account for collinearity including variable selection, princi-

pal components analysis and ridge regression. A review of these methods is given

by Pitard and Viel (1997) who also propose three alternative methods.

Pitard and Viel (1997) suggest that the effect of a single pollutant may be en-

hanced by the joint presence of another pollutant. Therefore, an alternative to

the inclusion of multiple pollutants is to summarise the measurements of numerous

pollutants into a single value. Such a value could be considered a representative

measure of overall air quality, and is typically known as an aggregate air quality

indicator or index (AQI, see for example Bruno and Cocchi (2002)). These indices

are calculated on a daily basis and refer to either a fixed location, say a single mon-

itoring site, or an entire region. Lee et al. (2011) outline some of the statistical

issues which affect both the interpretability and validity of air quality indicators,

including the choice of which pollutants to include, how to combine the pollution

concentrations and, if an index is being calculated for a region as opposed to a

single location, the order of aggregation. To combine the concentration levels of a

number of pollutants into a single air quality indicator will require each pollutant

to be transformed onto a common scale. If this is not done then the pollutant with

the largest temporal variation will dominate the index. Air quality indicators may

also suffer from ambiguity and eclipsicity (Ott (1978)). Ambiguity occurs when
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the overall index suggests a dangerously high concentration level but the pollutant

specific sub-indices do not. Eclipsicity is the converse, and occurs when the overall

index suggests safe concentrations but the sub-indices suggest otherwise.

3.2.1.2 Measuring Pollution

In Section 3.1.2 I described how a number of pollutants are measured by a network

of fixed site monitors which are placed at both roadside and background environ-

ments. These data are thus measured at point-level and are therefore spatially

misaligned with the health data which are measured at an areal-level. Gelfand

et al. (2001) termed this a change of support problem as the variable with which

we wish to make inferences about at an areal-level has only been observed at a

point-level. If only a single pollutant is being considered then the majority of stud-

ies (see for example Katsouyanni et al. (1996) and Samet et al. (2000)) overcome

this problem by calculating the average concentrations across the study region

ŵt,i =
1

q

q
∑

j=1

wt,i(sj), (3.2)

which is the average value from the q monitoring sites. In (3.1) ωt is therefore

replaced with ŵt,i. However, as the location of the pollution monitors may not have

been chosen at random or by using some form of statistical design principles, this is

therefore unlikely to be a suitable or spatially accurate representative measure. It

has also been suggested by Loperfido and Guttorp (2008) that pollution monitors

may actually be placed by a method of preferential sampling and are therefore

deliberately located at sites with high pollution concentrations. This could result

in pollution being overestimated, which in turn may bias the corresponding health

effects. There are a number of methods which can be used in order to obtain a more

spatially representative measure. For example, Shaddick and Wakefield (2002)
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consider a multi-pollutant data set for which they propose the use of a dynamic

linear modelling framework, so as to exploit the dependency of the pollutants

on each other and in time and space. Gelfand et al. (2001) proposes the use of

Bayesian kriging, a geostatistical technique of interpolation. Other interpolation

methods include bicubic splines, ordinary kriging and universal kriging (see for

example Jerrett et al. (2005)), and hierarchical space-time models (Cocchi et al.

(2007)).

3.2.2 The Pollution-health Relationship

The majority of studies estimate a linear relationship, such as that given by (3.1),

between health and their chosen measure of air pollution (see for example Schwartz

(1991)). This is usually done for simplicity as it allows the relationship to be

summarised by a single regression coefficient, α. To make such a value more

meaningful and comparable it is often presented on the relative risk scale. This

can be calculated as

Relative Risk =
Expected deaths if pollution increased byB

Expected deaths given current pollution
= exp(Bα), (3.3)

where B is some measure of an increase in pollution. The standard deviation is

often used as the measure of increase, as pollution could realistically increase by

this value on any given day. A relative risk greater than 1 implies an increase

in the expected number of deaths. However, more recent studies have attempted

to relax this constraint and allow any associations to depend on the underlying

pollution level. This type of relationship is known as a ‘concentration-response’

relationship. The linear relationship in (3.1) is therefore replaced by a function

f(·) to give
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Yt ∼ Poisson(µt) for t = 1, . . . , n,

ln(µt) = XT
t θ + f(ωt−ι). (3.4)

The shape and smoothness of this function is allowed to be estimated from the

data. Regression splines, such as B-splines or natural cubic splines, are typically

used to do this, either of which can be represented by

f(ωt−ι) =

qB
∑

j=1

Bj(ωt−ι|3)αj. (3.5)

Here Bj(ωt−ι|3) is a cubic B-spline basis function, while α = (α1, . . . αqB) are the

associated regression parameters. Regression splines and the associated choices

about the degree of smoothness of the estimated curved have previously been dis-

cussed in Section 2.5. An early use of such methodology by Schwartz (1994) found

that the positive association between adverse health risks and pollution rose with

increasing pollution levels.

The choice of whether to force a linear relationship or to allow a more flexible

concentration-response relationship may depend on the aim of the study. In epi-

demiological studies a linear relationship may be estimated if the primary interest

is the overall size of the relationship (for example Lin et al. (2002) and Mar et al.

(2000)) or comparability with existing studies. In some instances it may be of

more interest to estimate a concentration-response function to examine the exis-

tence of threshold levels of air pollution. For example, Daniels et al. (2004), Bell

et al. (2006) and Baccini et al. (2011) have all investigated the existence of levels

of air pollution below which there are no adverse health effects. Baccini et al.

(2011) also commented on the importance of determining the existence of such
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threshold levels for the purposes of regulatory bodies such as the World Health

Organisation and the European Union both of whom set ‘safe’ levels for a number

of pollutants. Similarly, the Clean Air Act and the Air Quality Strategy both set

such levels which are specific to the UK.

While the estimation of concentration-response relationships allows for a more flex-

ible relationship, and the examination of possible threshold levels, the estimated

curve may exhibit undesirable features. For example a number of studies support

the view that air pollution cannot be beneficial to human health, and therefore we

should not see decreasing health risks associated with increasing concentrations.

This has led some studies to propose the use of monotonicity constraints on the

estimated concentration-response function. For example Roberts (2004) proposes

to constrain the estimated function to be a nondecreasing function of air pollution,

and thus ‘biologically plausible’, by modelling the pollution health relationship as

a piecewise linear function with one or two change points. In addition to this

it is often found that the estimated function is negative (has a relative risk less

than one) for very low concentrations of pollution. Murray and Nelson (2000) and

Smith et al. (2000) suggest that these negative values are spurious and difficult

to interpret while Vedal et al. (2003) found that even very low concentrations are

associated with increased risks to health. The idea of constraining the pollution

health relationship to be monotonic and therefore estimate realistic curves is one

of the central themes of this thesis and will be discussed further in chapter 6.

3.2.3 Lag

As mentioned at the beginning of this section the measure of pollution is typically

lagged by a number of days, ι. This is because previous studies (for example Do-

minici et al. (2000)) have shown that the health impact of air pollution is unlikely
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to be immediate. There are however, a number of studies which report the ad-

verse health risks of pollution on the same day as the exposure (see for example

Moolgavkar et al. (1995). Those who believe that the relationship is not contem-

poraneous instead look for an association in the following days, and often report

their findings for a number of lags (see for example Zhou et al. (2011) and Mallone

et al. (2011)). No single lag between exposure and response has been consistently

used, although Dominici et al. (2000) has suggested that anywhere between zero

and five days is appropriate. This inconsistency in the choice of ι can make com-

parisons between regions difficult. As an alternative some studies have considered

the associations between multi-day moving averages (see for example Kelsall et al.

(1999), Katsouyanni et al. (1996) and Hong et al. (1999)). This is advantageous as

it has been suggested that the health effects of exposure may be seen over several

of the subsequent days. Zanobetti et al. (2000) suggest that most studies found

multi-day averages to be better predictors of mortality than a single days exposure.

It is also possible to include multiple lags in the model. A drawback to this is

that consecutive lags are likely to suffer from collinearity due to the stochastic

dependency of consecutive measurements. However, the sum of the individual co-

efficients will be an unbiased estimate of the overall effect of increasing pollution.

A solution therefore, is the use of a distributed lag model (DLM) which was first

proposed by Almon (1965) and was described by Pope III and Schwartz (1996) for

use in epidemiological studies. Distributed lag models include all lags from zero

to a specified maximum (for example Samoli et al. (2009) use up to 21 lags), and

then remove the effects of collinearity by constraining the shape of the associated

coefficients to fit a polynomial or spline function (Zanobetti et al. (2000)).

In this thesis I have chosen to consider only a simplistic single day lag. This was

done to facilitate the comparison of the results within specific chapters and also
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within the wider literature. However, despite the fact that a number of studies

do use a single lag day it does lead to the choice of which lag to use. This is a

some what arbitrary choice and in this thesis a lag of one day was chosen as this

particular lag has been shown to produce significant results for two of the more

commonly investigated pollutants namely, PM10 and 03 (see for example Diaz et al.

(2012) and Yang et al. (2012) respectively), both of which are considered in this

thesis.

3.3 Covariate Specification

In addition to air pollution, the mortality (or morbidity) outcomes will also depend

on a number of covariate risk factors. Such variables are said to be a source

of confounding within the model. In time series studies, potential confounding

factors which are of primary concern are those which vary on a similar time scale

as the air pollution or health data. These sources of potential confounding can be

classified into two broad categories: measured or unmeasured, both of which are

discussed in detail below. To determine if the effect of confounding factors has

been adequately accounted for, the standardised residuals (given by (2.16)) can

be examined, where the presence of inherent patterns, or short term correlation,

would suggest that there are other possible covariate risk factors which should be

included in the model.

3.3.1 Measured Confounders

Important measured confounders are typically sources of meteorological data such

as temperature, dew point temperature and solar radiation. Such data are read-

ily available as they are routinely measured by the fixed site monitors which also

record the daily concentrations of the various pollutants. Such data are freely
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available from a number of sites including the British Atmospheric Data centre

and the London Air website. More abundant meteorological data can also be pur-

chased from the Meteorological (Met) office which is the UK’s National Weather

Service. The three extreme incidents of air pollution and the associated health

risks described in Chapter 1, including the London smog of 1952 (Ministry of Pub-

lic Health (1954)), have highlighted the detrimental role that weather can play in

the collection of air borne particles in the atmosphere. Ambient temperature is the

most commonly included covariate in air pollution and health studies. The effect

of temperature on mortality is a significant public health issue (Ye et al. (2012)).

For example, both heat wave episodes (see for example Cerutti et al. (2006)) and

Semenza et al. (1999)) and extreme cold (see for example Huynen et al. (2001)

and Kysely et al. (2009)) have been shown to have significant health impacts. As

extreme cold spells and wind chill are more common in the United Kingdom and

in particular Scotland, there have also been a number of studies which have inves-

tigated these effects in association with mortality (see for example Carder et al.

(2005)) and also the role of the interaction of cold weather and pollution (see for

example Carder et al. (2008)).

Ambient air temperature, like the pollution data, is measured at a number of

fixed site locations and therefore must also be transformed from a point-level to

an areal-level measurement. This is typically done by calculating the average level

across the network of monitors within the study region. An example of such a

daily measure of temperature is given in Figure 3.1(b) for the region of Greater

London, for the period 2001 to 2003. This figure shows that average temperature

peaks in late summer and is at its lowest during the winter months. The effect

of temperature on health can vary significantly from region to region (Wilmhurst

(1994)). For example, some studies have reported a ‘U’ or ‘V’ shaped relationship

(Huynen et al. (2001)) where the maximum mortality occurring at each end of the

temperature scale. An example of such a relationship is shown in Figure 3.1(c),
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which shows that the number of deaths are slightly higher when the average tem-

perature is at its lowest or highest. Others have reported a more linear or reverse

‘J’ shape relationship (Curriero et al. (2002)), where mortality increases with de-

creasing temperature. It has therefore become increasingly popular to include a

smooth function of temperature into the regression model rather than a linear

effect. This is typically done (see for example Dominici et al. (2000)) using regres-

sion splines such as the B-splines or natural cubic splines as described in Section

2.5. A further issue is the choice of lag period between temperature exposure and

its effect on mortality. As with air pollution data it is also possible to employ such

methods as multi-day moving averages of temperature and distributed lag models.

In addition to a measure of ambient temperature, some studies also include cat-

egorical variables such as indicator functions, to represent irregular events such

as public holidays (Schwartz (2001)), influenza epidemics (see for example Peters

et al. (2000)) or day of the week effects (see for example Kelsall et al. (1999)).

3.3.2 Unmeasured Confounders

In addition to measured covariates a number of other unknown or unmeasured fac-

tors affect the daily mortality series. These factors produce seasonal and long-term

trends in the mortality data. Peng et al. (2006) suggest that the most important

unmeasured or not readily available confounders are influenza and respiratory in-

fections, where respiratory infections occur from late autumn to early spring and

influenza epidemics occur in the same interval but with highly variable timing.

The net effect of a respiratory virus is to increase overall mortality, which would

explain the typically higher mortality rates which occur during the winter pe-

riod and hence produce a confounding relationship with air pollution which also

has a strong seasonal pattern. These effects are incorporated in the model using
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smooth functions of time. Early examples include the use of sine and cosine terms

at different frequencies (see for example Schwartz (1993) and Spix et al. (1993)).

However, these methods are very restrictive and assume that all peaks and troughs

will occur at the same time point each period. A less restrictive approach was sug-

gested by Schwartz (1994) who used semiparametric models which incorporated a

smooth function of time, in particular LOESS smoothers, as a method for adjust-

ing for seasonal and long-term trends. Alternatively, smoothing splines, penalized

splines and parametric splines have also been used (see for example Dominici et al.

(2002) and Touloumi et al. (2004)). While both parametric and nonparametric

functions have their own advantages and disadvantages it is easier to implement

parametric functions within a Bayesian setting. In this thesis we shall therefore

only use parametric techniques such as those described in Section 2.5. The use of

smooth functions of time will naturally account for potential confounding factors

which vary smoothly with time. However, as we do not know the precise nature

of the seasonal and long-term trends we cannot be sure of how much smoothness

to allow for. It is critical that this decision is made with caution as it will de-

termine the amount of residual temporal variation in the mortality data that is

available to estimate the air pollution effect. Over smoothing the mortality data

can leave temporal cycles in the residuals, which can produce confounding bias.

Conversely under smoothing the series can remove too much temporal variability

and potentially weaken the true pollution effect. Further to this Peng et al. (2006)

also suggest that daily mortality may also be affected by population trends in sur-

vival, including increases or decreases in the availability of medical care, changes

in population size and trends in the occurrence of major diseases. However, no

methods have been offered for including such covariates.



Chapter 3. Air Pollution and Health Studies 67

3.4 Overdispersion

Overdispersion is the presence of more variability than is allowed for by the mean-

variance relationship. In air pollution and health studies it can occur when not

all the risk factors are included in the regression model and the residual variation

can therefore not be adequately described by the Poisson distribution assumption

which implies Var(yt) = E(yt). It may also be due to a lack of independence

between the observations (Dobson and Barnett (2008)). Conversely, underdisper-

sion occurs when there is less variation than expected. Although the existence

of overdispersion has no effect on the estimated regression coefficients, the stan-

dard errors, hypotheses tests, and confidence intervals may be incorrect if it is

not appropriately dealt with (Cox (1983)). The existence of overdispersion can

be determined by examining the standardised residuals. Alternatively, Dean and

Lawless (1989) propose the use of a hypothesis test, T = 1/2
∑n

t=1{(yt− µ̂t)
2−yt}

where µ̂t is the fitted value, and is a generalisation of the test proposed by Collings

and Margolin (1985), where large positive values of T indicate overdispersion and

large negative values indicate underdispersion. Lambert and Roeder (1995) pro-

pose convexity ‘C’ plots which can detect the presence of overdispersion in gener-

alised linear models, and relative variance curves and tests which can help identify

the nature of the overdispersion.

There are a number of methods for dealing with overdispersion, however only a

brief review will be given here. Quasi-likelihood methods (Wedderburn (1974)) re-

lax the mean-variance relationship by allowing the variance to be inflated by some

constant φ, so that Var(yt) = φE(yt). The value φ is known as the overdispersion

parameter and can be estimated by φ̂ = 1
n−p

∑n
t=1

(yt−µ̂t)2

Var(µ̂t)
. This assumption can be

relaxed further by allowing the variance multiplier to depend on covariates (Efron

(1986)). These are known as Extended quasi-likelihood methods and double ex-

ponential families. Alternatively, the source of overdispersion can be represented



Chapter 3. Air Pollution and Health Studies 68

explicitly using a binomial or Poisson model with random effects (see for example

Breslow (1990)). Random effects may represent inter subject variability, errors in

variables or unmeasured covariate risk factors.

The respiratory data for Greater London which is used in this thesis in Chapters

4, 5 and 6 is overdispersed. As discussed there are a number of methods which

could be employed to account for this and a number of studies are devoted to the

discussion of this topic within air pollution and health studies. However, as the

main focus of the work presented in this thesis is related to the examination of the

air pollution element of air pollution and health studies I simply use the Poisson

distribution to represent the data.

3.5 Mortality Displacement

Mortality displacement, also known as the harvesting effect, is the name used to

describe a short-term forward shift in the rate of mortality in a given population.

This is the viewpoint that the mortality or morbidity events associated with an

exposure, are only occurring in individuals who were already in a poor state of

health. The effect of the exposure has therefore only advanced their death or

hospital admission from one day to a slightly earlier day. Therefore, this view-

point assumes that there is a subset of the population who have a relatively short

expected future lifetime, irrespective of any exposure. However, the premise of

the susceptible subset is that the increase in deaths during and immediately af-

ter exposure will be counterbalanced by a deficit in the number of deaths a few

days later. An example of this hypothetical pattern is given in Figure 3.3. The

therefore finite size of the subset of at risk individuals creates the possibility of

finding a negative association with pollution at some lags. However, the subset
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Figure 3.3: The hypothetical lag structure corresponding to the mortality
displacement effect. Taken from Zanobetti et al. (2000))

may be replenished by individuals whose frailties are exasperated by the expo-

sure. For example Peters et al. (2000) and Gold et al. (2000) both show a positive

association between particulate air pollution and increased hospitalisations and

heart variability respectively. If such a phenomenon is thought to be true then

this could have substantial implications for the association between public health

and air pollution. Zanobetti et al. (2001) suggest that if the deaths are occurring

only in those who would have died in a few days anyway, then the significance of

the exposure on public health will actually be small. However, those studies which

have investigated the effect of mortality displacement have found that accounting

for such a phenomenon increases if not doubles the associated risk. A brief review

of such methods is given below.

Zeger et al. (1999), Schwartz (2000) and Dominici et al. (2003) proposed models

which allowed for the decomposition of the pollution-health relationship into dis-

tinct time scales of both long and short periods. However, as described by Roberts
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and Switzer (2004), these methods rely on the assumption that mortality displace-

ment alone will create an association between pollution and mortality only at short

time scales. Thus, if associations were found at shorter time periods than longer

ones then this would provide evidence of mortality displacement. Alternatively,

Murray and Nelson (2000) estimated the size of the at-risk population and made

this a condition of the total observed daily mortality and therefore any resulting

associations. Zanobetti et al. (2000) proposed an approach which explicitly tests

the assumption that the correlation between air pollution and mortality must be-

come negative after a lag of several days, that is to say that the pool of at-risk

individuals will not be increased by an exposure despite evidence of this (see for

example Peters et al. (2000) and Gold et al. (2000)). This approach simultane-

ously estimates the association of air pollution at multiple lags using a distributed

lag model (such as those described in the Section 3.2.3). This approach has been

utilised by many studies including Zanobetti et al. (2001) who extend the meth-

ods to a multicity approach and Roberts and Switzer (2004) who investigate the

performance and limitations of distributed lag models used in this context.



Chapter 4

Estimating Overall Air Quality

using Geostatistical Methods

The majority of air pollution and health studies only consider the health risks of

a single pollutant rather than that of overall air quality. In addition, these single

pollutant levels are estimated by averaging the measured concentrations across a

network of monitors. This simplistic estimate has a number of deficiencies, firstly,

it is unlikely to be the average concentration across the region under study. This is

likely due to the non-random placement of the monitoring network, which places

monitors at locations with high concentrations. The monitor average is therefore

likely to overestimate the true spatial average. Secondly, the desired pollution

measure is inherently an unknown quantity, because it is the average concentra-

tion across a spatially continuous study region, while we only have data relating

to a small number of point locations. Hence the uncertainty in any estimate of

the true spatial average should be allowed for when estimating its health effects.

In this chapter I address these issues, and propose both a spatially representative

measure of overall air quality, and a corresponding health model that allows for

the uncertainty in the pollution estimate. My approach is based on a hierarchical

Bayesian model because it allows for the correct propagation of uncertainty, and

71
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uses geostatistical methods to estimate a spatially representative measure of pollu-

tion. I illustrate my methods by assessing the health impact of overall air quality

in Greater London between 2001 and 2003. I compare my results with that of

the typical approach of using the monitor average. The remainder of this chapter

is presented as follows. In Section 4.1 I discuss the motivation for this work in

greater detail. Section 4.2 describes a spatially representative measure for a sin-

gle pollutant. Section 4.3 describes my proposed modelling approach. In Section

4.4 I describe the Greater London data and apply my proposed approach, while

in Section 4.4.3 I discuss the results. Finally, Section 4.5 provides a concluding

discussion.

4.1 Motivation

The air quality monitoring network measures numerous pollutants, including car-

bon monoxide (CO), nitrogen dioxide (NO2), ozone (O3) and particulate matter

(PM10). For simplicity, most epidemiological studies only estimate the short-term

health effects of exposure to a single pollutant, with the most common being par-

ticulate matter (see for example Laden et al. (2000)) and ozone (see for example

Verhoeff et al. (1996)). However, the air we breathe, and hence are exposed to,

is a complex mixture of numerous pollutants, including but not limited to those

listed above. Therefore, the health effects of overall air quality are of direct public

health interest and a number of studies have tried to quantify such effects. For

example, Hong et al. (1999) considered a combined index of the pollutants, PM10,

NO2, SO2 and CO, for inclusion in their health model. Alternatively, Yu et al.

(2000) consider the use of a multipollutant model.

A second problem encountered when conducting such a study is the available data,

which includes population level mortality counts relating to a study region such
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as Greater London, and point-level measures of individual pollutants, from within

that region. This spatial misalignment between the point-level pollution data and

the areal-level mortality counts, which can be thought of as a change of support

problem (Gelfand et al. (2001)), is rectified by creating a representative areal-

level measure of pollution. As mentioned previously, this is typically the average

concentration across the monitoring network. However, the monitor average is un-

likely to be a spatially representative measure of pollution across the urban area

under study, because the locations of the pollution monitors are unlikely to have

been chosen at random or using statistical design principles. Indeed, Loperfido

and Guttorp (2008) suggest that pollution monitors are purposely placed at sites

with high pollution concentrations, a phenomenon known as preferential sampling.

This phenomenon may also affect the local environment in which the monitors are

located, such as next to a main road or in a park. The choice of local environment

is likely to have a large effect on the readings from a monitor, because one of the

major contributors of CO, NO2 and PM10 concentrations is traffic emissions. Fig-

ure 4.1(a - d) displays the locations of some of the pollution monitors in Greater

London, which are heavily concentrated in the highly polluted city center with

less dense coverage in the more rural suburbs. Such a monitor selection process is

likely to result in the spatially representative pollution summary being overesti-

mated, which in turn is likely to bias the corresponding health effects. Further to

this, the monitors are located at both roadside and background local environments.

Roadside monitors are likely to record particularly high concentration levels which

are unlikely to be a true reflection of what is experienced by the majority of people.

A further issue with the majority of existing research in this field is that the

areal-level pollution estimate is assumed to be a known quantity, despite the true

spatially representative measure of pollution being a random variable. As a result,

the inherent uncertainty in its value should be acknowledged when estimating its

health effects. To not account for this uncertainty may result in the conclusion of
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significant health risks of pollution when in fact there is not. Therefore, my aim

is to: (i) produce a spatially representative measure of overall air quality; and (ii)

incorporate it into a health model, taking proper account of the uncertainty in the

estimate. I propose a hierarchical Bayesian approach for achieving this, which is

implemented in three stages. In the first stage, spatially representative estimates

of individual pollutants are developed using geostatistical methods, which include

associated measures of uncertainty via their posterior predictive distributions. In

stage two, an overall index of air quality is generated, by aggregating the pollutant

specific posterior distributions. Finally, in stage three the corresponding health

effects are estimated.

4.2 Background

Considering a single pollutant i, the standard approach for estimating a represen-

tative areal level measure of pollution is the monitor average, which is given by

(3.2). Using this monitor average, the health risks of pollutant i are estimated

using the Poisson log-linear model (3.4) which is repeated here for completeness

Yt ∼ Poisson(µt) for t = 1, . . . , n (4.1)

ln(µt) = XT
t β + f(ω̂t−ι,i).

The calculation of the monitor average also does not take into account the popula-

tion density across the study region, and as a result, if the monitors are located in

areas of low population density, then the monitor average may not directly relate

to where a sizeable proportion of the population live. Instead, I believe that the

appropriate exposure measure is the daily average level of that pollutant to which

the population are exposed. For pollutant i and day t this is given by
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ωt,i =

∫

s∈R
D(s)wt,i(s)ds. (4.2)

Here D(s) is the population density at location s within the study region, and

wt,i(s) is the daily average concentration of pollutant i at location s. To ensure

the areal-level exposure, wt,i, is on the appropriate scale, the population density

is scaled so that

∫

s∈R
D(s)ds = 1.

However, equation (4.2) is computationally impractical to calculate, as it is not

possible to measure pollution at infinitely many points across the study region.

Therefore, I approximate it by

ωt,i ≈

N
∑

j=1

D(s∗j )wt,i(s
∗
j ), (4.3)

where s∗ = (s∗1, . . . s
∗
N ) form a regular grid covering the study region. Again, to

preserve scale
∑N

j=1D(s∗j) = 1. An example of such a regular grid is given in

Figure 4.1(e) for the study region of Greater London, and contains 399 points

each of which is separated by 2 kilometres.

4.3 Methods

I propose a three stage approach for estimating the overall effects of air quality on

our health, which addresses the limitations of the standard approach outlined in

the previous section. The first stage describes the estimation of (4.3) for a single

pollutant, the second combines these spatially representative values into an overall

index of air quality, while the third estimates its effects on health.
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4.3.1 Pollution Model (single pollutant)

The approach I propose is similar to that suggested by Lee and Shaddick (2010)

and Peng and Bell (2010), who use a spatial-temporal model for quantifying spa-

tial misalignment error. However, unlike my approach both of these studies only

consider a single pollutant, and also do not incorporate population density when

estimating their spatially representative measure of air pollution. The other main

difference is that I propose estimating the approximation of ωt,i given by equation

(4.3) separately for each day, rather than applying a single spatio-temporal model

for all days of the study. The advantage of my approach is that it allows for the

spatial pattern in the pollution levels to change over time.

Therefore, I propose estimating the spatial pattern in the daily pollution data using

a Bayesian geostatistical model which is implemented using the geoR (Ribeiro Jr.

and Diggle (2001)) add on package for the statistical programme R (R Develop-

ment Core Team (2011)). This package estimates the model parameters using

direct simulation rather than Markov chain Monte Carlo (MCMC) methods. As

discussed in Section 2.3.1.1, this is because the prior distributions are specified

specifically to allow for explicit expression of the corresponding posterior distri-

butions. This means that there is no need to remove a burn-in period as each

sample is generated independently. For a generic pollutant and day (remove sub-

scripts (t, i) for simplicity), denote the vector of observed pollution concentrations

by w = (w(s1), . . . , w(sq)), where s = (s1, . . . , sq) are the locations of the q moni-

toring sites. I then model these data as
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ln(w) ∼ N(Xβ, σ2V (ψ, ν2)),

β ∼ N(µβ ,Σβ),

f(σ2) ∝ 1/σ2,

ψ ∼ Discrete Uniform(a1, . . . , aψ),

ν2 ∼ Discrete Uniform(b1, . . . , bν), (4.4)

where the log scale (as suggested by Ott (1978)) is used because pollution concen-

trations are non-negative and often skewed to the right. The spatial trend in the

pollution data is represented by Xβ, where X is an q × p matrix of covariates,

and β is a p × 1 vector of associated regression parameters. These parameters

are assigned a weakly informative multivariate Gaussian prior, with mean µβ be-

ing a vector of zeros, and a large variance and a diagonal correlation matrix, i.e.

Σβ = σ2
βI, where I is an identity matrix.

The spatial correlation structure of the data is represented by σ2V (ψ, ν2) =

σ2(R(ψ) + ν2I), which combines spatially structured correlation (via R(ψ)) with

measurement error (via ν2I = ǫ2/σ2 ). The overall spatial variance parameter σ2

is typically assigned a conjugate inverse-gamma prior distribution, but this has

been shown to be informative for small values of σ2 (Gelman (2006)). Therefore,

it is now more common to use a functional flat prior on the log scale (Diggle and

Ribeiro Jr (2007)), that is f(log(σ)) ∝ 1, which is equivalent to f(σ2) ∝ 1/σ2.

The spatial correlation matrix is denoted by R(ψ), and is modeled by the Matern

class of functions with smoothness parameter k = 1.5, which is chosen because

the correlation function is mean-square differentiable. The parameter ψ repre-

sents the range of spatial correlation, that is the minimum distance at which no
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correlation exists. This parameter is given a discrete prior distribution for com-

putational efficiency, so that the q × q variance matrix V (ψ, ν2) does not have to

be inverted at each iteration of the simulation algorithm. A set of 51 possible

values are used for this discrete prior spanning a wide range of values (from 0 to

2 times the maximum distance between the monitor sites), allowing both smooth

and rough spatial correlation structures. I specify a uniform prior on this discrete

set, because a-priori I have no strong beliefs about the spatial range. Finally, ν2 is

the noise-to-signal ratio, and is also assigned a discrete uniform prior distribution

for the same reasons as described for ψ.

Using direct simulation, J samples, Θ(j) = (β(j), σ2(j)
, ψ(j), ν2(j)

), for j = 1, . . . , J

are generated from the joint posterior distribution corresponding to (4.4). For de-

tails of how this is done see Chapter 2, Section 2.3.1.1 about geostatistical methods.

Conditional on each set of samples Θ(j), Bayesian Kriging is used to predict the

(logged) pollution surface at a set of prediction locations, s∗ = (s∗1, . . . s
∗
N), which

form a regular lattice of points over the study region R. These predictions are

denoted by (P ∗(s∗1)
(j), . . . , P ∗(s∗N)(j)), and are then exponentiated to the correct

scale and weighted by the associated population densities (D(s∗1), . . . , D(s∗N)), to

obtain a sample from the posterior predictive distribution of (4.3). This process

is repeated for the J samples Θ(j), thus producing J posterior predictive samples

{ω
(1)
t,i , . . . , ω

(J)
t,i }, for pollutant i = 1, . . . , F and day t = 1, . . . , n, which allows me

to quantify the uncertainty in my estimate.

4.3.2 Aggregation Model

Air pollution is a complex mixture of numerous pollutants, and it is more realistic

to estimate the health effects of overall air quality (which humans are exposed to),

rather than those relating to a single pollutant. The Bayesian geostatistical model
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described above is applied separately to F individual pollutants, providing that

each one is measured at enough locations to make a geostatistical analysis feasible.

For example, PM2.5 is not included here as it is only measured at 6 sites within

Greater London and this is too few for a Geostatistical analysis. Thus, for each

day t of the study, the first stage model produces J samples from the posterior

predictive distribution of (4.3), {ω
(1)
t,i , . . . , ω

(J)
t,i } for each of the F pollutants. These

F pollutant-specific posterior predictive distributions thus need to be combined,

to create a posterior predictive distribution for overall air quality on day t. This

can be achieved by creating an aggregate Air Quality Indicator (AQI, Bruno and

Cocchi (2002) and Lee et al. (2011)), which is a synthetic index of overall air

quality. Once the AQI is created its effects on health can be assessed, using a health

model similar to (4.1). However, the size of these health effects are driven by the

temporal variation in the pollution metric (AQI in this case), and simply averaging

the pollutant specific posterior predictive distributions means that the pollutant

with the largest amount of temporal variation will dominate the AQI. Therefore,

in constructing the AQI the values of the individual pollutants are transformed

onto a common scale, so that one pollutant does not dominate the index. This is

achieved by applying a simple linear re-scaling to the J estimates of (4.3) for each

pollutant. From these standardized values, samples from the posterior distribution

of the AQI on day t, f(AQIt|wt,1, . . . ,wt,F ), can be constructed as

AQI
(j)
t =

1

F

F
∑

i=1

ω
(j)
t,i − µi

σi
for j = 1, . . . , J, (4.5)

where µi and σi are the pollutant specific mean and standard deviations used

in the re-scaling. Thus, for each day t the AQI is summarised by J samples

{AQI
(1)
t , . . . ,AQI

(J)
t } from the posterior predictive distribution f(AQIt|wt,1, . . . ,wt,f),

which is used as a spatially representative measure of overall air pollution for the

study region on that day.
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4.3.3 Health Model

Model (4.1) is not appropriate here for estimating the health effects of overall air

pollution, because it would treat the AQI as a fixed known quantity, whereas one of

the motivations of this work is to acknowledge the inherent uncertainty in its value.

This is achieved using a Bayesian approach to inference, where the AQI is treated

as an unknown quantity with an informative prior distribution. This informative

prior is the posterior predictive distribution f(AQIt|wt,1, . . . ,wt,F ) from stage 2,

the aggregation model, and allows the uncertainty in the AQI to be fed through

into the health model. The health model I propose is given by

Yt ∼ Poisson(µt) for t = 1, . . . , n,

ln(µt) = XT
t β + AQItα,

βj ∼ N(0, 10) for j = 1, . . . , m,

α ∼ N(0, 10),

AQIt ∼ f(AQIt|wt,1, . . . ,wt,F ). (4.6)

The regression parameters (β1, . . . , βm, α) are assigned diffuse Gaussian priors,

with a mean of zero and a variance of 10. In this stage the model inference is con-

ducted using MCMC methods, because a direct simulation approach is not possi-

ble. The parameters are updated in three batches, namely, β = (β1, . . . , βm), α and

{AQIt}
n
t=1. Both the covariate regression parameters β and the pollution-health

relationship α are updated via Metropolis steps, using random walk proposal dis-

tributions. In contrast, the AQI on day t is updated by randomly selecting one

of the J samples {AQI
(1)
t , . . . ,AQI

(J)
t } from f(AQIt|wt,1, . . . ,wt,F ), its posterior

predictive distribution, thus correctly incorporating the uncertainty in its value.
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The vector β is updated using a random walk proposal distribution. The full

conditional of β is the product of n Poisson observations and a Gaussian prior

f(β|Y, α) ∝
n
∏

t=1

Poisson(Yt|β, α) ×N(β|0, 10).

This results in a non-standard distribution for the full conditional as the Gaussian

prior is not conjugate to the Poisson data. Therefore, the acceptance probability

of updating β(j) to β∗ is given by

r = min

{

f(β∗|Y, α(j))

f(β(j)|Y, α(j))
, 1

}

.

The full conditional of α is also the product of n Poisson observations and a

Gaussian prior, and is therefore updated in a similar manner to that of β.

4.4 Application - Greater London

In this section I illustrate my three stage approach, by presenting a case study

investigating the short-term effects of air pollution on respiratory related deaths

in Greater London, England, for the period 2001 to 2003.

4.4.1 Data

The data used in this study relate to the area of Greater London (roughly the

area within the orbital M25 motorway), and comprise daily measurements of air

pollution, population health (for the over 65s), and meteorology, for the 3 year

period spanning 2001 to 2003.
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Figure 4.1: Location and type of the pollution monitors in Greater London,
for which the percentage of missing data for the period 2001 to 2003 is no more
than 25% (•, roadside locations; ◦, background locations): (a) CO, (b) NO2,

(c) O3, (d) PM10, and (e) the prediction locations.
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4.4.1.1 Pollution Data

The air pollution data come from both the London Air Quality Network (LAQN)

and the National Network (AURN), and can be downloaded from the London Air

Quality web site (www.londonair.org.uk). The pollutants I consider in this study

are CO, NO2, O3 and PM10, which are highlighted as important by the UK Air

Quality Strategy. Other pollutants such as ammonia, benzene, butadiene, lead

and PM2.5 are also highlighted by the strategy, but as they are not measured at

enough locations during the duration of the study to make a geostatistical analysis

feasible, they are not considered here. As mentioned in Section 3.1.2 air pollution

data can often include a large amount of missing data. A number of the sites in

Greater London which measure the four pollutants included in this study do in-

clude a number of days for which no concentration levels were recorded However,

it is not necessary to exclude such sites from the analysis as the geostatistical

model given by (4.4) is applied separately to each day of the study. Therefore, a

site which records data on only a few days can still be included. The four pollu-

tants are summarized in Figure 4.1 and Table 4.1, which respectively display the

locations of the monitoring sites and summary statistics. The figure and table

show that NO2 is measured at the largest number of sites across the city (127

sites), which consequently provides good spatial coverage of Greater London. In

contrast, CO is monitored at the fewest locations (34 sites), and does not cover

the study region particularly well. For all the pollutants the monitoring locations

appear to be clustered in the middle of the region, rather than being placed at

random or positioned on a regular grid. Between approximately 53% and 60% of

the monitors for CO, NO2 and PM10 are located at roadside environments, where

concentrations levels are likely to be considerably higher. However, only approxi-

mately 31% of the monitors for O3 are placed at the roadside.
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Table 4.1: Summary of the pollution data, including the mean and both the
temporal and spatial standard deviation.

Pollutant

CO NO2 O3 PM10

Units mg m−3 µgm−3 µgm−3 µgm−3

Monitors 34 127 42 107
% Roadside 59.813 52.941 30.952 57.480
Mean over all observations 0.687 49.282 39.173 24.989
Temporal std. deviation 0.283 14.677 18.595 10.131
Spatial std. deviation 0.463 20.026 10.330 8.383
Spatial CoV 0.674 0.406 0.294 0.335

Table 4.1 displays the average amount of spatial variation in each pollutants con-

centrations over the three-year study period, which is represented as a coefficient

of variation (CoV, spatial standard deviation divided by the mean). The amount

of spatial variation is smallest for O3 (CoV = 0.294), which is likely to be because

unlike the other pollutants, its concentration is not driven by local traffic sources.

Conversely, it is largest for CO (CoV = 0.674), the source of which is almost

entirely traffic related. As previously described, the pollution data are unevenly

distributed in space, and may not be representative of the pollution levels across

the entire region. However, modelled estimates of yearly average CO, NO2 and

PM10 concentrations are available at 1 kilometer intervals across London. As these

estimates form a regular grid over the study region they can be used to assess how

spatially representative the data are from the monitoring sites. These data can

be downloaded from the web site of the Department for Environment, Food and

Rural Affairs (DEFRA), and are displayed in Figure 4.2. Unfortunately, similar

data are not available for O3. For each of the three pollutants you can see that the

highest concentrations occur in the city center and decrease as you move further

out. The exception is London Heathrow airport, which is situated in the west of

London, where concentrations are also very high.
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Figure 4.2: Maps of the 1 kilometre modelled estimates of the yearly average
concentration for (a) CO, (b) NO2 and (c) PM10, in 2001.

4.4.1.2 Health Data

The disease data I consider in this study are daily counts of the total numbers of

respiratory mortalities from the population living in Greater London aged 65 years

and over. These data were obtained from the National Health Service (NHS),

and are presented in Figure 4.3(a). From this you can see that the number of

respiratory deaths for this period exhibit a pronounced seasonal pattern, with the

largest numbers of deaths occurring during the colder winter months. As a result,

an important covariate in the health model will be temperature, and data on

daily mean temperature across London are available for each day of the study and

are presented in Figure 4.3(b). This shows that temperature follows a seasonal

pattern with peaks of around 25◦C during the summer months and lows of 0◦C in

the winter period.
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Figure 4.3: (a) Daily counts of the number of respiratory related mortalities
from the population of over 65s living in Greater London for the period 2001
to 2003, (b) daily average temperature for the same region and period, and
(c) the relationship between the daily average temperature and the number
of respiratory related deaths, where the shaped of the relationship has been

highlighted by the red line.
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Figure 4.4: Map of the 1 kilometre population count of the over 65s living in
Greater London at the time of 2001 census.

4.4.1.3 Population Data

In 2001 a census was taken, the data from which are freely available from the Of-

fice for National Statistics (www.neighbourhood.statistics.gov.uk). For the area of

Greater London data are available for Middle Layer Super Output Areas (MSOAs).

These are small areas within London within which there is a minimum of 5,000

residents and 2,000 households. These areas also fit within the boundaries of local

authorities. For each of the MSOA areas the number of over 65s residing at the

time of the census is available. However, these areas do not correspond to the 1

kilometre equally spaced grid of locations for which the modelled concentrations

data was available. Therefore, the population at each 1 kilometre location was

taken as that of the nearest MSOA area, as measured by their Euclidean distance.

The number of over 65s estimated to be residing at each equally spaced 1 kilome-

tre location is presented as a spatial map in Figure 4.4. This figure shows that



Chapter 4. Overall Air Quality - Geostatistical Methods 88

510 520 530 540 550 560

0.
5

2.
0

(a)

Easting

C
O

160 170 180 190

0.
5

2.
0

(b)

Northing

C
O

520 540 560 580

50
20

0

(c)

Easting

N
O

2

140 150 160 170 180 190

50
20

0

(d)

Northing

N
O

2

510 520 530 540 550 560

20
40

(e)

Easting

O
3

160 170 180 190
20

40

(f)

Northing

O
3

510 520 530 540 550 560 570

20
60

(g)

Easting

P
M

10

150 160 170 180 190

20
60

(h)

Northing

P
M

10

Figure 4.5: Average concentration, for the period 2001 to 2003, recorded at
each monitoring site against the associated easting and northing coordinates for

CO (a and b), NO2 (c and d), O3 (e and f), and PM10 (g and h).

with the exception of a few areas the population of over 65s is smallest in central

London and increases as you move further away.
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4.4.2 Statistical Modelling

4.4.2.1 Pollution Modelling

I implemented the Bayesian geostatistical model given by (4.4) separately for each

of the 1095 days of the study and each of the four pollutants, yielding 4380 sepa-

rate geostatistical analyses. In all cases the pollution data were modelled on the

log scale, as they are non-negative and exhibit right skew. I began by assessing

whether the data exhibit a polynomial trend in space, but no evidence for this

was found for any of the four pollutants. This was done by plotting the average

concentration, over all days, for each monitor against the easting and northing

coordinates of the location of the monitor, for each of the four pollutants (Figure

4.5). The other covariates I considered were a binary indicator variable for moni-

tor site type (i.e. next to a main road or at a background environment), and the

1 kilometer modelled pollution estimates, although the latter were not available

for modelling O3. The modelled pollution estimates were included to adjust for

any potential preferential sampling of the pollution monitors, and in each case

the closest modelled estimate to each monitor was used. The priors I used in

each model were those described in Section 4.3.1, and include diffuse (variance

10) Gaussian priors for the regression parameters β, an improper reciprocal prior

for the variance σ2, and discrete uniform priors for the spatial range ψ and the

noise-to-signal ratio ν2. Discrete priors were assigned to (ψ, ν2) for computational

efficiency as described in Section 4.3.1 and 2.3.1.1, and 51 possible values were

used in each case which covered the likely range of the parameter space.

Inference for each model was implemented by direct simulation, using the geoR

(Ribeiro Jr. and Diggle (2001)) add on package for the statistical programme R
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(R Development Core Team (2011)). As this uses direct simulation rather than

MCMC methods, the posterior samples Θ(j), for j = 1, . . . , J were not correlated

and did not require a burn-in period. Inference was therefore based on J =1,000 in-

dependent samples from the joint posterior distribution of each model. For a small

number of models J =5,000 samples were generated, but as the results remained

largely unchanged 1,000 samples were deemed to be sufficient. For each model, the

(logged) concentrations of pollution were predicted on a regular grid at 2km inter-

vals across Greater London, which is shown in Figure 4.1(e) and corresponds to

399 sites in total. Despite the modelled concentration estimates being available at

every 1 kilometre location it was not possible to predict at such a fine scale. This

is due to length of time it would have taken computationally to predict at such a

vast number of sites (1604). All prediction locations are considered as background

rather than roadside sites, because they are likely to be more representative of

the pollution concentrations to which the population are exposed. For each of the

1,000 samples the predictions were exponentiated, weighted by population density

and subsequently averaged, thus giving 1,000 samples from the posterior predic-

tive distribution of (4.3). Finally, to create the posterior predictive distribution

for the air quality indicator, the 1,000 posterior predictive samples from (4.3) for

the four pollutants were combined using (4.5).

4.4.2.2 Health Modelling

My statistical modelling approach for choosing the covariates in the health model

(4.6) are informed by overall measures of model adequacy, such as the Bayesian

information criterion (BIC), as well as diagnostic plots of the residuals. In addi-

tion to a measure of pollution, the covariates in the health model include mean

daily temperature and a smooth function of time, both of which were included to



Chapter 4. Overall Air Quality - Geostatistical Methods 91

capture the prominent seasonal pattern in the daily mortality series seen in Fig-

ure 4.3(a). I began the modelling process by assessing the effects of temperature,

which have previously been highlighted by Dominici et al. (2002) and Carder et al.

(2008). I specified a quadratic relationship between temperature and respiratory

related deaths, as a slight “U-shaped” relationship can be observed between the

two variables (Figure 4.3(c)). Similar relationships have been observed in previous

studies, and occur because increased levels of mortality occur when the tempera-

ture is either very cold or very hot.

I then represented the remainder of the prominent seasonal pattern in the mortality

data by a natural cubic spline of time (day of the study), an approach which

is common in existing studies. A range of values for the smoothing parameter

(the number of knots) were considered, and the most appropriate was chosen by

comparing plots of the residuals against time, as well as their autocorrelation

and partial autocorrelation functions. As a result seven degrees-of-freedom per

year were chosen, because it is the smallest value (hence the simplest model)

that corresponds to residuals with little or no trend or short-term correlation.

As the autocorrelation and partial autocorrelation functions of the residuals and

the residuals themselves, from this model exhibit minimal trend or correlation,

as shown in Figure 4.6(a - c), my assumption of independence between the daily

disease counts appears to be valid. Finally, I added a measure of air pollution

to the model at a lag of one day. Despite the fact that previous studies (see for

example Dominici et al. (2000), Zhu et al. (2003) and Lee and Shaddick (2008))

have shown that exposure to air pollution is unlikely to result in health effects on

the same day, it is unlikely that each of the individual pollutants and the measure

of overall air quality should each be included at the same lag. This is therefore,
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done to ease computation and make comparisons more simple.

4.4.3 Results

4.4.3.1 Pollution Model Results

The main results of interest from the geostatistical modelling are the posterior

predictive distributions of (4.3) for each of 1095 days and four pollutants, as well

as the corresponding distributions for the amalgamated air quality indicator given

by (4.5). Summaries of these distributions are presented in Figure 4.7 for a sam-

ple month of July 2001, because the corresponding plot with all 1095 days looked

overly cluttered. Each posterior predictive distribution is summarized by its pos-

terior median (black dots) and a 95% credible intervals (vertical lines), while for

comparison purposes the black line represents the monitor average given by (3.2).

In addition to this, a temporal summary, in terms of the mean and standard devi-

ation, of the posterior predictive distribution is given in Table 4.2, for each of the

four individual pollutants, CO, NO2, O3 and PM10 and the AQI.

The figure shows that for the month of July, 2001, the monitor average of CO

is considerably higher than the posterior median of (4.3), which is likely to be

because the latter adjusts for preferential sampling and is based on predictions at

background locations. The posterior predictive median is also lower for NO2 and

PM10 all be it to a lesser extent. This smaller difference may be because NO2 and

PM10 are produced by many sources other than vehicle exhausts, unlike CO. For

example the largest contributor to PM10 is industrial processes such as construc-

tion, mining and quarrying (National Atmospheric Emissions Inventory (NAEI),
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Department for Environemnt, Food and Rural Affairs (2007))). In contrast, there

is very little difference between the two estimates, the monitor average and the

predictive posterior distribution, for O3, in the month of July 2001. This is likely

to be because ozone is not affected by traffic emissions. It is instead formed as a

chemical reaction in the atmosphere. Also the amount of spatial variation is low

(CoV = 0.294, Table 4.1). The figure also shows that the posterior uncertainty

intervals are widest for CO, this may be due to the small number of monitors in

conjunction with the large amount of spatial variation (CoV = 0.674, Table 4.1).

In contrast, the credible intervals for the remaining pollutants are relatively small,

with the exception of when the concentration levels are particularly high, in which

case the intervals tend to be slightly wider. Both in terms of the temporal pattern

in the posterior medians and the width of the credible intervals, the values for the

AQI shown in Figure 4.7(e) are an amalgamation of the four individual pollutants.

Table 4.2: Temporal summary of the population weighted average pollutant
concentrations.

Pollutant

CO NO2 O3 PM10 AQI
Units mg m−3 µg m−3 µg m−3 µg m−3 -
Temporal mean 0.376 36.487 35.337 21.175 < -0.001
Temporal std. deviation 0.239 13.799 19.128 9.360 0.576

As only a single month is presented in Figure 4.7 an overall temporal summary

of the daily posterior predictive distribution is given in Table 4.2. The average

daily mean for each of the four pollutants, CO, NO2, O3 and PM10, is lower than

the observed equivalent values, which were presented in Table 4.1. The largest

difference is that for CO, for which the average daily posterior predictive mean

(0.376) is approximately half that of the observed concentrations (0.687). The
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average daily standard deviations under each modelling method, however, are

comparatively similar.

4.4.3.2 Health Model Results

I estimated the health effects of the four individual pollutants as well as overall air

quality, the latter of which was represented by the air quality indicator given by

(4.5). In each case I applied both the standard modelling approach of including a

single estimate of the monitor average in a simple health model, such as that given

by (4.1), and the Bayesian hierarchical model proposed in this chapter, because it

allows us to observe the differences between the two approaches. All the results

are presented in Table 4.3, which displays the relative risks and associated 95%

uncertainty intervals for the effects of each pollutant on health. Under each mod-

elling approach the relative risks relate to a one standard deviation increase in each

pollutant’s value, as given in Table 4.2. The results suggest that neither NO2, O3

nor PM10 consistently exhibit substantial health effects, when using the monitor

average, as each has a 95% uncertainty interval which includes the null risk of one.

In contrast, the monitor average of both CO and the overall air quality indicator

do exhibit substantial health impacts, as their uncertainty intervals lie entirely

above one. However, for CO as the lower uncertainty interval includes the null

risk of one the health risks of this pollutant may also be considered non-significant.

For example, an increase in overall pollution levels (as measured by the AQI) of

one standard deviation (0.576 units) results in around 2% additional respiratory

mortalities in the population of over 65s. As discussed in Section 3.2.1.1 this is an

example ambiguity as the overall index for air quality suggest significant health

risks, but the individual pollutants do not.
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Table 4.3: Relative risks and 95% uncertainty intervals.

Monitor Average Spatial Average
Pollutant RR 95% CI Pollutant RR 95% CI
CO 1.013 (1.000,1.027) CO 1.009 (0.995,1.025)
NO2 1.012 (0.999,1.026) NO2 1.011 (0.996,1.027)
O3 1.018 (0.999,1.037) O3 1.023 (1.004,1.043)
PM10 1.009 (0.995,1.023) PM10 1.014 (0.999,1.032)
AQI 1.019 (1.005,1.032) AQI 1.022 (1.006,1.043)

The estimated relative risks vary only slightly between the two models, with dif-

ferences of between 0.1% and 0.5% on the relative risk scale. However, the main

differences between the two approaches are the widths of the 95% uncertainty in-

tervals, which are always wider when using the Bayesian hierarchical model. The

difference in the widths of the intervals lies between 0.1% and 1.0% on the relative

risk scale depending on the pollutant, and is likely to be caused by the fact that

the Bayesian model correctly allows for the uncertainty in the spatially represen-

tative pollution variable, where as the standard approach does not. These results

may suggest that the standard approach may lead to an underestimation in the

uncertainty intervals, which in this example means that the significant effect of

CO (left half of Table 4.3) could actually be non-significant (right half of Table

4.3). Similarly, a non-significant effect of O3 could actually be significant.

4.5 Discussion

In this chapter I have presented a statistical approach for constructing a spatially

representative measure of overall air quality and estimating its effects on health,

whilst taking proper account of the uncertainty in the estimate. The proposed ap-

proach is based on a Bayesian hierarchical model, which is implemented in three

stages. The first stage develops spatially representative measures of individual air
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pollutants using geostatistical methods, the second combines these into an index

of overall air quality, while the third estimates its effects on health. I therefore

offer a statistical solution to the dual problems of spatial representativity and in-

corporation of uncertainty in areal-level pollution estimates, which are ignored by

the majority of existing air pollution and health studies. The methods developed

here were motivated by a study of air pollution and health in Greater London,

during the years 2001 to 2003. The choice of London as the study region is due

to it having large numbers of pollution monitors, which total between 34 and 127

during the three-year period for the four pollutants considered here. The existence

of observations at such a large number of spatial locations makes the geostatistical

methods proposed here feasible, and allows the quantification of uncertainty in the

areal-level pollution estimates.

The geostatistical modelling of CO, NO2, O3 and PM10 produced areal-level pollu-

tion estimates that were generally lower than the corresponding monitor averages,

with mean differences of 0.311, 12.795, 3.836, and 3.814 respectively for the four

pollutants across the 1095 days of the study. One of the reasons for this difference

is that the geostatistical models adjusted for the differences in the pollution con-

centrations at roadside and background environments, an aspect which is typically

ignored in the majority of studies. The results of the pollution model are similar to

that of Lee and Shaddick (2010) who also found that for pollutants which were not

affected by localised sources, such as traffic emissions, the creation of a spatially

representative measure was not necessary. The other major difference between the

standard modelling approach and the Bayesian hierarchical model proposed here

concerns their treatment of uncertainty in the areal-level pollution estimate. The

former typically ignores the uncertainty in the monitor average when estimating
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its health effects, while the latter correctly feeds through the variation in the pol-

lutants posterior predictive distribution into the health model. This propagation

of uncertainty through the hierarchical model results in wider uncertainty intervals

compared with the standard modelling approach, which in the London example

resulted in the change in the significance of the health risks of CO and O3. Fi-

nally, only overall air quality, as measured by the air quality indicator (4.5), has

a substantial effect on human health using either modelling approach, with a one

standard deviation increase in its values corresponding to around 2% additional

respiratory mortalities. Much like the results of other studies which investigate

the relationship between health and air pollution the significance of an individual

pollutant is very much reliant on the method used and various other modelling

aspects such as the choice of lag and aggregation methods for overall indices. The

results of this study are therefore similar to numerous other studies some of which

find significant health effect for some pollutants and non significant for others

which were also under consideration.

In this chapter I combined a spatially representative measure of a number of single

pollutants to create a single measure of overall air quality. One of the limitations

of this approach is that this measure of overall air quality is made up of only four

pollutants when in fact a great deal more exist and are measured by monitoring

networks. Further to this each pollutant was treated as if it is independent from

the other three and equal in all respects, such as their detection limits, measure-

ment error, and their spatial heterogeneity. However, this is perhaps not the case

as some of the pollutants may be in each others causal path way and many studies

already suggest that PM10 exhibits more spatial heterogeneity than other pollu-

tants. In addition to this, the simple aggregation method I used to create the air
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quality index is only one possible method. There are many approaches to this

and it may have been more prudent to have attached weights to the individual

pollutants based on their perceived levels of danger to human health. I assessed

the health effects of my spatially representative measures of each of the four pol-

lutants and the overall air quality at a lag of one day. I did this for simplicity so

as to allow for simple comparisons. However, a moving-average over a number of

days may have been more suitable, as each pollutant is likely to have significant

health effects at different lags. Had I used a moving-average over a large enough

time period I should still have been able to compare my results.

In the future, I aim to extend the Bayesian hierarchical model proposed here,

by jointly modelling the individual pollutants using a multivariate geostatistical

model. The use of such a multivariate model would enable me to pool the infor-

mation from the individual pollutants, thus providing more information on which

to base predictions of pollution levels at unmeasured locations. A further refine-

ment in this vein would be to model the pollution data simultaneously over time

and space, perhaps using a non-separable model (for separable models see Lee and

Shaddick (2010)). Finally, as previously discussed this study is ideally suited to

the city of London, because many other cities in the world do not monitor pol-

lution at enough locations to make a geostatistical analysis feasible. Therefore, a

further avenue of research is to develop a simpler approach for estimating a spa-

tially representative areal-level pollution estimate with an appropriate measure of

uncertainty, that does not require pollution to be monitored at a large numbers of

locations. Such a simpler approach is presented in Chapter 5. Diggle et al. (2010)

noted that the presence of preferential sampling can make the geostatistical model

proposed in this chapter unsuitable. This issue could be further investigated in
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the future.
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Chapter 5

Estimating Overall Air Quality

using Bayesian Regression

Analysis

5.1 Introduction

In the previous chapter I proposed a Bayesian geostatistical model for estimating

a spatially representative measure of a single pollutant. Such a model could be

fitted to data about a number of pollutants, and the resulting posterior predictive

distributions can be combined to give a synthetic measure of overall quality on

a single day. This process can then be repeated for a large number of days (say

3 years), and the resulting posterior distributions can be used in a health model.

This model therefore met the aims of both producing a spatially representative

measure of overall air quality and including this representative measure in a health

model which can take proper account of the uncertainty in the pollution estimate.

102



Chapter 5. Overall Air Quality - Bayesian Regression Analysis 103

Unfortunately, this approach is computationally intensive, despite the apparent

advantage of being able to use direct simulation rather than Markov chain Monte

Carlo methods. This is because the model is applied separately to data for each

pollutant and each day, and in the previous chapter this resulted in 4380 sep-

arate geostatistical analyses. Further to this, the geostatistical model can only

be applied when the pollutant under consideration has been measured at enough

locations to make this type of analysis feasible.

In this chapter I propose a computationally simpler approach, which still meets

the aims of producing a spatially representative measure of overall air quality

and incorporating this into a health model, while taking proper account of the

uncertainty in the pollution estimate. To achieve this I propose to model the

concentrations for a single pollutant over space and time simultaneously using

a Bayesian regression model which incorporates available covariate information,

such as measures of meteorology, to describe the spatio-temporal pattern in the

pollution concentrations. This model should produce more precise estimates of

the unknown parameters than in the spatial models, because data from all days

are used in the estimation. However, to increase the flexibility of the model I also

propose the inclusion of a time-varying coefficient, as this will allow any covariates

that are fixed in time to have effects which vary over time. The motivation for

this are the 1 kilometre estimates for the pollutants CO, NO2 and PM10 which are

available for the year 2001, and are freely available from the Department for En-

vironemnt, Food and Rural Affairs (2007). These values are a yearly rather than

daily average and because of day-to-day fluctuations in pollution levels their effects

may vary over time. As in the previous chapter, the regression model is used to

predict the concentrations of an individual pollutant at a number of equally spaced
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locations, which are then multiplied by the local population density before being

combined to give a spatially representative measure of that pollutant for each day

of the study. The resulting posterior predictive distributions for each pollutant

are then aggregated, using (5.7), to give an overall index of air quality, which can

be included in a health model. This summary of overall air quality will also allow

for account to be taken of the inherent uncertainty in the true concentration levels.

The remainder of this chapter is presented as follows. Section 5.2 describes my

proposed modelling approach. In Section 5.3 I assess the necessity of the inclusion

of a time-varying coefficient for the modelled pollution estimates by comparing the

posterior predictive distributions by means of cross validation. I also include the

posterior predictive distribution from the geostatistical model (4.4), from Chapter

4, for comparison. Section 5.4 describes the Greater London data and applies my

proposed approach, the results of which are given in Section 5.4.3. Finally, Section

5.5 provides a concluding discussion.

5.2 Methods

As in Chapter 4, Section 4.3, I propose an approach which can be broken into

three stages. The first stage is to estimate a spatio-temporal surface for each

individual pollutant under consideration, and to use this to produce a spatially

representative measure for that pollutant for each day of the study, by applying

(4.3). The second stage combines these spatially representative values into an

overall index of air quality, while the third estimates the associated health risks.

Both stages two and three are the same as that proposed previously in Chapter 4,

therefore only a brief recap will be given here.
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5.2.1 Pollution Model (single pollutant)

The daily mean concentrations for pollutant i on day t can be denoted wt,i =

(wt,i(s1), . . . , wt,i(sq)), where (s1, . . . , sq) are the spatial coordinates of the moni-

toring sites. Therefore, the concentrations for all days over all sites for a single

pollutant can be given by the (n × q) × 1 vector wi = (w1,i, . . . ,wn,i)(n×q)×1. I

propose to estimate (4.3) by modelling a pollutant over time and space using a

Bayesian regression analysis, which includes a time-varying coefficient for covari-

ates that do not change over time. The resulting posterior distribution for each

regression coefficient can then be used to predict the pollution concentration on a

gird of equally spaced locations, in order to give a spatial surface for that partic-

ular pollutant. The general model proposed for a single pollutant i (where the i

has been dropped for notational simplicity) is given by

ln(wt(sj)) ∼ N(xTt,jβ + Ajδt, σ
2I) for t = 1, . . . , n and j = 1, . . . , q,

βr ∼ U(−∞,∞) for r = 1, . . . , Rβ

δt ∼ N(2δt−1 − δt−2, τ
2) for t = 1, . . . , n, and f(δ−1, δ0) ∝ U(−∞,∞),

f(σ2) ∝ 1/σ2,

f(τ 2) ∝ 1/τ 2, (5.1)

where xt,j is a vector of explanatory variables that vary in time and space and β

are the associated coefficients, which are assigned a non-informative prior. The

variable A = (A1, . . . , Aq), are the modelled concentration estimates, they vary

over space and are constant in time, but their effects are allowed to vary in time

through the coefficient δt, which is assigned a second order random walk prior
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distribution. The initialising steps (δ−1, δ0) are assigned a non-informative prior.

The spatio-temporal variance σ2 and the variance of the second-order random

walk, τ 2, are both assigned functional flat priors. This is because the conjugate

inverse-gamma prior distribution which is typically assigned to variance parame-

ters, has been shown to be informative for small values (Gelman (2006)).

Inference for (5.1) is based on Markov chain Monte Carlo (MCMC) simulation,

where the parameters are updated in four batches, namely: β = (β1, . . . , βRβ
),

δ = (δ−1, . . . , δn), σ
2 and τ 2. The full conditional distribution of the vector β is

given by

f(β|δ, σ2,w) ∝

n
∏

t=1

q
∏

j=1

N(wt(sj)|x
T
t,jβ + Ajδt, σ

2) ×

Rβ
∏

r=1

U(βr| −∞,∞).

This can be written as a multivariate Normal distribution, N(G,H), with location

and covariance given by

G = (w − Aδ)TX(XTX)−1, and

H = σ2(XTX)−1, (5.2)

respectively, where X is the design matrix for all sites and days. It is therefore

possible to sample directly from this distribution via Gibbs sampling.
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Letting δ = (δ−1, δ0, δ1, . . . , δn), Knorr-Held (1999) shows that a Gaussian autore-

gressive prior for a second order random walk, with a time-constant variance, τ 2,

can be given by

f(δ) ∝ N(δ|0, τ 2K−1), (5.3)

a multivariate Normal distribution with a singular precision matrixK. The matrix

K plays the role of a smoothness penalty by imposing that δ follows a second order

random walk and is given by

K =
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In this model the vector δ is updated in blocks, of size 15, δvw = (δv, . . . , δw). This

vector of coefficients has thus been partitioned into two blocks, namely δvw and

δ−(vw), where δ−(vw) contains the remaining elements of δ not contained in δvw.

Using (5.3) I can express δ as
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δ =







δvw

δ−(vw)
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Multivariate Gaussian theory tells us that the conditional distribution δvw|δ−(vw)

is given by

δvw|δ−(vw) ∼ N(µvw|−(vw),Σvw|−(vw)), (5.4)

where

E(δvw|δ−(vw)) = µvw|−(vw) = −K−1
vw,vw Kvw,−(vw) δ−(vw), and

Var(δvw|δ−(vw)) = Σvw|−(vw) = K−1
vw,vw. (5.5)

The full conditional distribution for a block, δvw, of δ is therefore given by

f(δvw|w,β, σ
2, δ−(vw), τ

2) ∝

w
∏

t=v

q
∏

j=1

N(wt(sj)|x
T
t,jβ + Ajδt, σ

2)

×f(δvw|δ−(vw), τ
2),

where the prior distribution f(δvw|δ−(vw)) is given by (5.4) with mean and variance

given by(5.5). The full conditional distribution is therefore the product of Normal

distributions
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f(δvw|w,β, σ
2, δ−(vw), τ

2) ∝ N(wvw|Xvwβ + Avwδ, σ2I)

× f(δvw|δ−(vw))

∝ N(λ,Υ) × N(µvw,Σvw), (5.6)

where wvw, Xvw and Avw are the elements of the data, w, the vector of explanatory

variables, X, and the modelled concentration estimates, A, which correspond to

all locations j = 1, . . . , q but only days t = v, . . . , w, respectively. The mean, λ,

and variance, Υ, are given by

λ = (wvw −Xvwβ)TZvw(ZT
vwZvw)−1, and

Υ = σ2(ZT
vwZvw)−1,

where Zvw is a matrix of size (q × vw)× vw with the modelled concentrations for

each block, Avw, on the diagonal. The equation (5.6) can be expressed as a single

multivariate Normal distribution

f(δvw|β, σ
2, δ−(vw), τ

2) ∝ N(δvw|M, R)

M = (Υ−1 + Σ−1
vw)−1(Υ−1λ+ Σ−1

vwµvw)

R = (Υ−1 + Σ−1
vw)−1,
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where M and R are the corresponding location and covariance. Both σ2 and τ 2

can be updated via a Gibbs sampling step, as their full conditional distributions

have a recognisable form.

A set of J samples Θ(j) = (β(j), δ(j), σ2(j)
, τ 2(j)

), for J = 1, . . . , J are generated

from the joint posterior distribution corresponding to (5.1). Each set of samples

Θ(j) is used to predict the (logged) pollution surface at a set of prediction loca-

tions, s∗ = (s∗1, . . . s
∗
N ), which form a regular lattice of points over the study region

R. These predictions are denoted by (ω(s∗1)
(j), . . . ,ω(s∗N)(j)), and are then expo-

nentiated to the correct scale and weighted by the associated population densities

(D(s∗1), . . . , D(s∗N)), to obtain a sample from the posterior predictive distribution

of (4.3). This process is repeated for the J samples Θ(j), thus producing J posterior

predictive samples {ω
(1)
t,i , . . . , ω

(J)
t,i }, for pollutant i = 1, . . . , F and day t = 1, . . . , n,

which allows me to quantify the uncertainty in my estimate.

5.2.2 Aggregation Model

The aggregation model is the same as that described in Section 4.3.2 and there-

fore only a brief description is given here. The Bayesian regression model given

by (5.1) can be applied separately to F individual pollutants. Thus for each day

of the study t, the first stage model produces J samples from the posterior pre-

dictive distribution of (4.3), {ω
(1)
t,i , . . . , ω

(J)
t,i } for each of the F pollutants. These

F pollutant specific posterior predictive distributions are combined to create a

posterior predictive distribution for overall air quality, an air quality index (AQI).

The J estimates of (4.3) are standardised, as before, to have a mean of zero and
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a standard deviation of one. Therefore, the posterior distribution of the AQI on

day t, f(AQI|wt,1, . . . ,wt,F ), can be constructed as

AQI
(j)
t =

1

F

F
∑

i=1

ω
(j)
t,i − µi

σi
for j = 1, . . . , J, (5.7)

where µi and σi are the pollutant specific mean and standard deviation, as given in

Table 5.5, used in the re-scaling. From (5.7) I obtain J samples {AQI
(1)
t , . . . ,AQI

(J)
t }

from the posterior predictive distribution of the air quality indicator on day t con-

ditional on each set of observed pollution data (wt,1, . . . ,wt,F ).

5.2.3 Health Model

By using a Bayesian approach to inference, I am able to treat the AQI as an

unknown quantity with an informative prior distribution. This informative prior

is the posterior predictive distribution f(AQIt|wt,1, . . . ,wt,F ) from stage 2, the

aggregation model, and allows the variation in the AQI to be fed through into the

health model. The health model is therefore the same as that proposed in Section

4.3.3 and is given by

Yt ∼ Poisson(µt) for t = 1, . . . , n,

ln(µt) = XT
t β + AQItα,

βj ∼ N(0, 10) for j = 1, . . . , m,

α ∼ N(0, 10),

AQIt ∼ f(AQIt|wt,1, . . . ,wt,F ). (5.8)
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The regression parameters (β1, . . . , βp, α) are assigned diffuse Gaussian priors, with

a mean of zero and a variance of 10. Inference is based on MCMC methods, where

the parameters are updated in three batches, namely, β = (β1, . . . , βp), α and

{AQIt}
n
t=1. Both the covariate regression parameters β and the pollution-health

relationship α are updated via Metropolis steps, using random walk proposal dis-

tributions. The AQI on day t is updated by randomly selecting one of the J

samples {AQI
(1)
t , . . . ,AQI

(J)
t } from f(AQIt|wt,1, . . . ,wt,F ), its posterior predictive

distribution, thus correctly allowing for the uncertainty in its value.

5.3 Model Validation

As a preliminary means of assessing the predictive accuracy of (5.1), and also to

provide a means of comparing both the model proposed here and that of (4.4)

from Chapter 4, I used the method of cross validation, which was previously de-

scribed in Section 2.6.2. I applied the method of cross validation to the PM10

data from Greater London for the time period 2001 to 2003. However, only sites

which recorded concentrations for 75% of the time period were included. Both

of these models aim to create a spatially representative measure of pollution by

smoothing over the available data. I thus deliberately choose PM10 for the pur-

poses of cross-validation as these data are known to be spatially heterogeneous

(Peng and Bell (2010)). A model which can therefore capture this aspect of the

data and adequately predict these concentrations should not be over smoothing

any subsequent predictions at new locations. To create a training set of data a

number of sites have to be removed from the original data set. Of the 49 sites

which measured PM10 approximately 60% were located at the roadside (Table 5.2),

therefore, to create a training set which is made up of 90% of the monitoring sites
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(44 sites), 11% (3 sites) and 10% (2 sites) of the roadside and background sites

were removed respectively. The data which relate to the removed sites are used

as the validation data set. The regression model (5.1) proposed in this chapter

and the geostatistical model (4.4), proposed in the previous chapter, were applied

to the training data. The regression model was applied to the data from all days

simultaneously, while the geostatistical model was applied separately for each day.

A regression model with no time-varying coefficient was also applied, to determine

if this added complexity was necessary, in terms of the model’s predictive capa-

bilities. To determine the accuracy of the predictions made by each of the three

models, the median posterior predictive distribution for each of the removed sites

is compared to that locations observed PM10 level. This was done by calculating

the prediction bias (PB, (2.17)) and the median absolute deviation (MAD, (2.18)).

This method was carried out a total of 5 times, to assess the variability of the re-

sults to the 10% of sites removed. The five validation (red) and training (black)

data sets are given in Figure 5.1. The choice of creating five scenarios of test and

validation data is a somewhat arbitrary one, however, the use of cross-validation

to assess the predictive accuracy and facilitate the comparison of models is only

meant as a small preliminary method in order to get a feel for which model, if

either, outperforms the other.

5.3.1 Results

I assessed the predictive accuracy of both the regression model (5.1) and the geosta-

tistical model (4.4). The results for each of the 5 validation data sets are presented

in Table 5.1, which displays the prediction bias and median absolute deviation,

both of which are given relative to the observed concentrations of PM10, which
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Figure 5.1: Locations of the training (black) and validation (red) PM10 mon-
itoring sites within Greater London, used in each of the 5 (a - e) test cases (•,

roadside locations; ◦, background locations).
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have a mean value of 24.783 (Table 5.2). In addition, an overall average across

the five validation data sets has been given for each model and each summary.

To determine if the inclusion of a time-varying coefficient improves the predictive

capabilities of the model, I have also applied the cross validation to a Bayesian

regression model which does not include a time-varying coefficient.

Table 5.1: The PB and MAD scores, relative to observed PM10, for the re-
gression model (5.1), without and with a time-varying coefficient, and the geo-

statistical model, presented in Chapter 4.

Regression Model

Scenario Non time-varying model Time-varying model Geostatistical model
PB MAD PB MAD PB MAD

1 2.786 7.019 2.773 7.021 -1.062 3.266
2 2.332 6.329 2.339 6.344 -0.651 2.677
3 -2.294 7.316 -2.381 7.367 -6.468 6.626
4 1.700 6.402 1.680 6.365 -1.499 3.219
5 1.738 6.587 1.714 6.562 -1.456 4.134

Average 1.252 6.731 1.225 6.732 -2.227 3.984

Under each regression model, both without and with a time-varying coefficient,

the differences between the median absolute deviation for each set of validation

data is small, having a range of approximately 1µgm−3 in each case. The predic-

tion bias, however, does change between sets and in particular is negative (-2.294

and -2.381) for test set three, compared to the positive, and hence over prediction,

for all the other test data sets. This may be due to the three roadside mon-

itors which were removed being all located within the center of London where

PM10 levels will be particularly high (Figure 5.1(c)), hence the models are under

predicting these sites based on the remaining data. Between the two regression

models there is very little difference in the prediction bias and median absolute

deviation results for each validation data set. This suggest that the time-varying
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coefficient is having little effect on the predictive capabilities of the model. Under

the geostatistical model both the prediction bias and median absolute deviation

are different for test set 3, compared to the other test sets. However, under this

approach this has resulted in a larger negative prediction bias compared to the al-

ready negative results of the other test sets and a larger median absolute deviation.

Over the 5 test cases the geostatistical model has outperformed both the regression

models in terms of the average amount of error between the observed concentra-

tions and the predictions as measured by the average median absolute deviation,

which is approximately one and a half times smaller than the same result for each

regression model. In terms of the overall bias in the predictions the geostatistical

model consistently under estimates the true concentrations levels and therefore

has a overall average prediction bias of -2.227. This is compared to the regression

models which overestimate the true concentrations, except in the case of validation

data set 3, and therefore the overall average prediction bias is positive at 1.252

for the model with no time-varying coefficient and 1.225 for the model with such

a coefficient.

The results of the model validation suggests that overall the geostatistical model,

proposed in Chapter 4, is outperforming the simple regression model, both without

and with a time-varying coefficient, which was proposed here as an alternative

method. Excluding the results from validation data set 3, the absolute overall

prediction bias under each regression model is larger (2.139 and 2.127), than that

of the geostatistical model (-1.167). In addition to this, the predictions from the

regression model appear to be very sensitive as to which monitor observations are

included in the model. If sites which record very high concentrations are included
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then the model tends to over predict the true concentrations. This bias in the

pollution estimate could result in a bias in the associated health risks. While the

results do suggest that the geostatistical model is more favourable, it should be

noted that both the prediction bias and the median absolute deviation under both

models are comparatively small compared to the average PM10 concentrations for

the same time period.

5.4 Application - Greater London

5.4.1 Description of Data

The methods developed in this chapter use the air pollution and health data for

the city of Greater London, England, for the period 2001 to 2003. This is the

same data set which was previously described in Section (4.4).

5.4.1.1 Pollution Data

The pollution concentrations used in this chapter are the same as those which were

described in Section 4.4.1.1 previously. However, as there were large amounts of

missing data for each pollutant (Table 4.1) only sites which had at least 75% of the

data were included in the analysis in this chapter, as opposed to that in Chapter

4 which included all sites. Thus allowing days with missing data to be excluded

from the analysis without eliminating the majority of the data. Thus for each of

the four pollutants the number of sites were reduced to give 25 sites for CO, 67 for

NO2, 23 for O3 and 49 for PM10. The four pollutants are summarised in Figure

5.2 and Table 5.2, which respectively display the locations of the monitoring sites
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Figure 5.2: Location and type of the pollution monitors in Greater London
(•, roadside locations; ◦, background locations): (a) CO, (b) NO2, (c) O3, (d)

PM10, and (e) the prediction locations.
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and summary statistics. The figure and table show that NO2 is still measured at

the largest number of sites across the city (67 sites) and therefore provides the

best spatial coverage of Greater London. In contrast O3 and CO are monitored

at the fewest sites, 23 and 25 respectively, and therefore do not cover the study

region particularly well. Between approximately 54% and 60% of the monitors for

CO, NO2 and PM10 are located at roadside environments, where concentration

levels are likely to be considerably higher. However, only approximately 32% of

the monitors for O3 are placed at the roadside.

The amount of spatial variation in each pollutant’s concentrations over the three-

year study period, which is represented as a coefficient of variation (CoV, spatial

standard deviation divided by the mean) are displayed in Table 5.2. The amount

of spatial variation is smallest for O3 (CoV = 0.287), which is likely to be because

unlike the other pollutants, its concentration is not driven driven by local traffic

sources. Conversely, it is largest for CO (CoV = 0.612), the source of which is

almost entirely traffic related.

As described in Section 4.4.1.1, the modelled yearly average concentrations of CO,

NO2 and PM10 are available at 1 kilometer intervals across London. These data

are displayed in Figure 4.2 where it can be seen that the highest concentrations

occur in the city centre and decrease as you move further out. The exception is

London Heathrow airport, which is situated in the west of London, where con-

centrations are also very high. These modelled concentrations form the covariate

which is fixed in time but I wish its effect to be variable in time. Again there is

no such data available for O3, which means that only a regression model without
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a time-varying coefficient is possible for this pollutant.

Table 5.2: Summary of the pollution data, including the temporal mean and
both the temporal and spatial standard deviation.

Pollutant

CO NO2 O3 PM10

Units mg m−3 µg m−3 µg m−3 µg m−3

Monitors 25 67 23 49
% Roadside 54.167 56.250 31.818 60.417
Mean of all observations 0.647 48.119 35.569 24.783
Temporal std. deviation 0.260 14.546 18.826 10.079
Spatial std. deviation 0.396 18.752 10.191 8.393
Spatial CoV 0.612 0.390 0.287 0.339

In addition to these pollution data, daily average concentration levels for O3, NO2

and PM10 have been measured at two rural locations, namely Harwell in Oxford-

shire and Rochester in Kent, outside of Greater London. Unfortunately, CO is not

measured by either of these sites, and there are no other sites which are compara-

tively close, the concentrations from which could have been used instead. Despite

the considerable distance between these two sites (approximately 123 kilometres)

the concentrations for each of the pollutants are highly correlated (0.74, 0.53 and

0.77 respectively). This suggests that the temporal patterns in each pollutant

across London could be partially explained by these rural concentrations, which

could be seen to represent the underlying background level (as opposed to localised

peaks) of pollution across the city. These sites are situated to the west and east

of Greater London respectively and the daily average of these two locations can

be included as a covariate in (5.1) as they should provide a good measure of the

background concentration which will be common to all of Greater London each

day. The mean and standard deviation across both sites and all days are displayed

in Table 5.3, while Figure 5.3 displays both the rural concentrations (red) and the



Chapter 5. Overall Air Quality - Bayesian Regression Analysis 121

observed monitor average (black) for each of the three pollutants for each day of

the three year study period. The rural concentrations follow the same temporal

patterns as the observed concentrations and with the exception of O3 are lower

than the observed concentrations. As mentioned previously ozone is not affected

by traffic emissions but is instead formed as part of a reaction in the atmosphere,

the trigger for which is sunlight. It is therefore not unexpected that ozone con-

centrations would be slightly higher outside the city where sunlight is not blocked

by tall buildings.

5.4.1.2 Meteorological data

The London Air Quality Network (LAQN) records data about a number of meteo-

rological variables, including barometric pressure, relative humidity, solar radiation

and temperature. As mentioned previously temperature is known to play a role

in the collection of air borne particles, such as pollutants, in the atmosphere. A

number of other meteorological variables also play a prominent part. For example

the creation of ozone in the atmosphere is triggered by sunlight, which suggests

that solar radiation may explain the observed concentrations of this pollutant.

The meteorological variables, summarised in Table 5.3, can therefore be included

in (5.1) as possible explanatory variables. Temperature is recorded at the largest

number of sites (16), and over the 3 year period of the study the average tempera-

ture was 12.876◦C. Barometric pressure measures the force exerted onto ourselves

and the objects around us by the weight of the air above. The average value of

1011.356mBar is fairly typically of what is seen in the UK on a day to day ba-

sis. The amount of water vapor in the air is measured by the relative humidity,

which for the UK is typically between 50 and 85%, the average value for the study
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Figure 5.3: The daily average rural (red) and observed concentrations (black)
for (a) NO2, (b) O3 and (c) PM10.



Chapter 5. Overall Air Quality - Bayesian Regression Analysis 123

Table 5.3: Summary of the daily rural pollution concentrations and the me-
teorological data, available for Greater London in the period 2001 to 2003.

Data Units Monitors Mean Std. Deviation

Rural NO2 concentrations µgm−3 2 18.837 10.813

Rural O3 concentrations µgm−3 2 51.799 20.279
Rural PM10 concentrations µgm−3 2 20.245 9.405

Barometric pressure mBar 5 1011.356 10.354
Relative humidity % 2 75.026 8.770
Solar radiation W/m2 3 100.180 73.119
Temperature ◦C 16 12.876 5.580

period of 75.026% is therefore standard. Finally, solar radiation is the total fre-

quency spectrum of electromagnetic radiation produced by the sun. In the North

of Britain this is typically around 85 W/m2, however, in the South the amount of

solar radiation is often seen to be as high as 110 W/m2. Therefore, the average

solar radiation in Greater London of 100.180 W/m2, for the period 2001 to 2003,

is typical as Greater London is situated in the South of the UK.

5.4.2 Statistical Modelling

5.4.2.1 Pollution Modelling

For each of the four pollutants, CO, NO2, O3 and PM10, a linear model was used to

determine which covariates should be included in (5.1). The daily measurements of

meteorology and the average rural concentrations, summarised in Table 5.3, were

considered along with indicator variables for day of the week or weekend and a

smooth function of time. Initially, I examined the relationship between each of the

possible covariates (via pairwise comparison plots) and determined which, if any,

were highly correlated. I then fitted a model which included all covariates which
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were not highly correlated. If any pair of covariates appeared to be particularly

correlated then I included just one of the variables initially. I refined my covariate

selection by excluding any variable which did not have a significant p-value. In the

case of highly correlated variables I considered each in turn, if they all had signif-

icant p-values then I only included the one which most reduced the models AIC. I

also decided to include a natural cubic spline of time, as several of the pollutants,

NO2 in particular, exhibited a clear temporal pattern. For each pollutant I chose

the number of knots to be included by considering the autocorrelation function

of the residuals and also which value corresponded to the lowest AIC. For each

pollutant the number of knots considered ranged between 3 and 6 per year. The

yearly average modelled concentrations were also included, however the effect of

these yearly estimates were allowed to vary over time, via the second order ran-

dom walk which was proposed for their associated coefficient. No such values are

available for ozone therefore this pollutant can only be modelled as a regression

model which does not include a time-varying coefficient. All pollution concentra-

tions, namely the original pollution data, the rural concentrations and the yearly

average estimates were modelled on the log scale, as they are non-negative and

exhibit right skew.

The priors used in each regression model were those described in Section 5.2, and

include an improper prior (U(−∞,∞)) for the coefficients of the non time-varying

variables and an improper reciprocal prior for the variances σ2 and τ 2 i.e. 1/σ2 and

1/τ 2 respectively. The coefficients of the time-varying covariates were assigned a

second-order random walk, as this will allow for a reasonably smooth function over

time. The starting values (δ0, δ1) were also assigned improper priors (U(−∞,∞)).
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Inference for (5.1) was implemented using MCMC methods and in particular Gibbs

sampling. Inference was based on J = 20, 000 samples from the joint posterior

distribution of the model, less a period of 5,000 samples which were removed for

burn-in. For each pollutant the logged concentrations of pollution were predicted

on a regular grid at 2 kilometre intervals across Greater London, corresponding

to 399 sites in total. All prediction locations are considered background rather

than roadside locations, because they are likely to be more representative of the

pollution concentrations to which the population are exposed. For each of the

15, 000 samples the predictions were exponentiated, weighted by the population

density and subsequently averaged, thus giving 15, 000 samples from the posterior

predictive distribution of (4.3). Finally, to create the posterior predictive distri-

bution for the air quality indicator, the 15, 000 posterior predictive samples from

(4.3) for each pollutant were combined using (5.7).

5.4.2.2 Health Modelling

The health model proposed in this chapter is the same as that which was proposed

in Chapter 4, therefore only a brief description will be given here. In addition to the

measure of pollution, the covariates in the health model also include the mean daily

temperature and smooth function of time, both of which were included to capture

the prominent seasonal pattern in the daily mortality series which was seen in

Figure 4.3(a). A quadratic relationship was specified for the relationship between

temperature and respiratory related deaths, as a slight “U” shaped relationship can

be observed between the two variables (4.3(c)). The remainder of the prominent

seasonal pattern in the mortality data is represented by a natural cubic spline of

time (day of the study), with seven degrees-of-freedom per year. Finally, I added a

measure of air pollution to the model at a lag of one day, because previous studies,
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such as those by Dominici et al. (2000), Zhu et al. (2003) and Lee and Shaddick

(2008), have shown that exposure to air pollution is unlikely to result in health

effects on the same day.

5.4.3 Results

5.4.3.1 Pollution Model Results

The main results of interest from the regression model, both with and without the

inclusion of a time-varying coefficient, are the posterior predictive distributions of

(4.3) for the individual pollutants on each of the 1095 days of the study, as well

as the corresponding distributions for the aggregation of the concentration levels

as given by (5.7). For a sample month of July, a summary of these distributions is

presented in Figures 5.4 and 5.7, for the model without and with a time-varying

coefficient respectively. A corresponding plot for all 1095 days is not included as

it looked overly cluttered. Each posterior predictive distribution is summarised

by its posterior median (black dots) and a 95% credible intervals (vertical lines),

while for the purposes of comparison the monitor average, as given by (3.2), has

also been included as the solid black line. In addition to this, a temporal summary

of the posterior predictive distributions, in terms of the mean and standard devi-

ation, are given in Tables 5.4 and 5.5, for each of the four pollutants, CO, NO2,

O3, and PM10 and the AQI.

Regression Model with no time-varying coefficient
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Figure 5.4: Posterior medians (•) and 95% credible intervals ( | ) from the
regression model without a time-varying coefficient and the monitor average for
the individual pollutants (a) CO, (b) NO2, (c) O3, (d) PM10 and (e) the air

quality indicator (AQI).
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Firstly, to ensure that the Markov chain Monte Carlo simulations had converged

diagnostic plots of the coefficients were examined. As there are too many coeffi-

cients to show for each pollutant the resulting plots for just the variance parameter,

σ2, is shown for each of the four pollutants, CO, NO2, O3 and PM10 (Figure 5.5).

From this plot we can see that the variance parameter has converged.

Figure 5.4 shows that for the month of July, 2001, the monitor average of CO

is considerably higher than the posterior median of (4.3), which is likely to be

because the latter adjusts for preferential sampling and is based on predictions

at background locations. The posterior medians for NO2 and PM10, are very

similar to the monitor average with the exception of when the concentrations are

particularly high (approximately 25µg m−3 and 50µg m−3 respectively), in which

case the posterior median is visibly less than the monitor average. This may again

be because predictions are based at background locations where concentrations

are likely to be lower. For O3 the posterior median and monitor average are very

similar with the posterior being marginally higher for the month of July, 2001. This

is likely to be because ozone is not affected by traffic emissions. The uncertainty

intervals for all of the pollutants are very small. These small uncertainty intervals

are likely to be due to a small variance, σ2, and regression coefficients, β, that

exhibit very little posterior uncertainty. For each of the four pollutants CO, NO2,

O3 and PM10 the variance, σ2, is small at only 0.346, 0.113, 0.202 and 0.098

respectively for each pollutant. There is also little variability in the estimates of

the regression coefficients, as the largest inter quartile range, over all coefficients for

each pollutant, is 0.007. This lack of posterior uncertainty is likely to be because

all the available data is used in each model. Both in terms of the temporal pattern

in the posterior medians and the width of the credible intervals, the values for the
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Figure 5.5: The results of the 20,000 MCMC simulations for the variance
parameter σ

2, less the burn-in period, proposed by the regression model without
a time-varying coefficient.
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AQI shown in Figure 5.4(e) are an amalgamation of the four individual pollutants.

Table 5.4: Summary of the posterior predictive distributions found when im-
plementing the regression model with no time-varying coefficient.

Pollutant

CO NO2 O3 PM10 AQI
Units mg m−3 µg m−3 µg m−3 µg m−3 -
Temporal mean 0.444 44.094 37.940 21.539 0.111
Temporal std. deviation 0.128 13.292 20.004 7.980 0.514

As only a single month is presented in Figure 5.4 an overall summary of the daily

posterior predictive distributions are given in Table 5.4. For CO, NO2 and PM10

the average daily mean and standard deviation from the posterior predictive dis-

tributions are lower than that of the observed data (Table 5.2). However, the

equivalent values for ozone are higher than the observed data.

Regression Model with Time-varying Coefficient

Firstly, to ensure that the Markov chain Monte Carlo simulations had converged

diagnostic plots of the coefficients were examined. As there are too many coeffi-

cients to show for each pollutant the resulting plots for just the variance parameter,

σ2, is shown for each of the three pollutants, CO, NO2, and PM10 (Figure 5.5).

From this plot we can see that the variance parameter has converged.

The pollution model results for the regression model which included a time-varying

coefficient for the modelled pollution estimates are similar to those found under

the same model which did no include a time-varying coefficient. The results are

displayed in Figure 5.7 and Table 5.5. The monitor average of CO is considerably

higher than the posterior median of (4.3), for the month of July 2001. This is also
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true for NO2 and PM10 although to a lesser extent. The 95% credible intervals

are largest for CO, although they are comparatively small for all three individual

pollutants. As in the case of the regression model with no varying coefficient,

the lack of uncertainty intervals may be explained by small estimates of the vari-

ance, σ2, and/or estimates of β which do not vary very much. As this model

also includes a time-varying coefficient, represented by δ, the small uncertainty

intervals may also be due to this coefficient being equal to zero or not varying.

For each of the three pollutants, CO, NO2 and PM10, the median (and associated

95% uncertainty interval) for δ, after excluding a burn-in period of 5000 samples,

are 0.259 (0.225, 0.300), 0.019 (0.016, 0.022) and 0.046 (0.037, 0.053) respectively.

For both NO2 and PM10, δ is therefore very close to zero. For each pollutant

the range of possible values for δ is very small, this would suggest that it was

not necessary to include a time-varying coefficient. Both in terms of the tem-

poral pattern in the posterior medians and the width of the credible intervals,

the values for the AQI shown in Figure 5.7(e) are an amalgamation of the four

individual pollutants. These results may suggest that concentrations of each pol-

lutant, including the AQI, are not varying greatly from day-to-day, and that the

resulting posterior predictive distributions are overly smooth. If this is the case

then associated health risks, which are estimated in Section 5.4.3.2, may be biased.

Table 5.5: Summary of the posterior predictive distributions found when
implementing the regression model with a time-varying coefficient.

Pollutant

CO NO2 PM10 AQI
Units mg m−3 µg m−3 µg m−3 µg m−3 -
Temporal mean 0.444 38.9112 21.541 -0.0007
Temporal std. deviation 0.128 11.672 7.999 0.700
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An overall summary of the daily posterior predictive distributions for the three

individual pollutants, CO, NO2 and PM10, and the AQI, are given in Table 5.5.

The average daily mean and standard deviation of the posterior predictive distri-

bution is less than that of the observed concentrations for each pollutant. This is

likely to be because the posterior predictive distributions are based on predictions

at background locations and each of CO, NO2 and PM10 are driven in part by

traffic emissions.

5.4.3.2 Health Model Results

I estimated the health effects of the four individual pollutants as well as overall air

quality, the latter of which was represented by the air quality indicator given by

(5.7). In each case I applied the standard modelling approach, which is to include a

single representative value of air pollution given by the monitor average in a health

model such as (4.1), and the Bayesian hierarchical model proposed in this chapter.

This will allow me to observe the differences between the two approaches. The

results are presented in Table 5.6, which displays the relative risks and associated

95% uncertainty intervals for the effects of each pollutant on health. The relative

risks, in each case, relate to an increase of one temporal standard deviation of the

posterior predictive distribution (as given in Table 5.5) in each pollutants values.

The results suggest that only overall air quality, as measured by the monitor aver-

age air quality index, has substantial health risks, as the 95% uncertainty interval

is entirely positive. Each of the individual pollutants does not exhibit substantial

health risks on their own as their associated 95% uncertainty intervals do contain

the null risk of one.
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Table 5.6: Relative risks and 95% uncertainty intervals.

Regression Model
Monitor Average No Varying Coeff. Varying Coeff.

Pollutant RR 95% CI RR 95% CI RR 95% CI
CO 1.007 (1.000,1.014) 0.994 (0.973,1.020) 0.993 (0.967,1.019)
NO2 1.010 (0.999,1.022) 0.981 (0.970,0.994) 0.998 (0.986,1.010)
O3 1.019 (0.999,1.038) 1.009 (0.989,1.028) - -
PM10 1.008 (0.996,1.019) 0.994 (0.980,1.008) 0.990 (0.975,1.004)
AQI 1.020 (1.005,1.034) 0.970 (0.947,1.000) 0.974 (0.956,1.001)

There is very little difference between the estimated relative risks found using each

of the regression models, both with and without a time-varying coefficient. How-

ever, compared to those found using the standard approach they are considerably

smaller, by between 0.1 and 0.5% under the model with no time-varying coeffi-

cient and 0.12 and 0.64% under the model with such a coefficient. These lower

estimated risks are accompanied by lower uncertainty intervals all of which either

contain the null risk of one or are entirely below one. Therefore, under the pro-

posed model, either without or with the adjustment of a time-varying coefficient,

the results suggest that there is no substantial health risk for any of the individual

pollutants or overall air quality. The widths of the 95% uncertainty intervals, are

always wider when using the Bayesian hierarchical approach, with the exception

of ozone which remains the same. The difference in the widths of the intervals lies

between 0.1 and 0.33% for the regression model with out a time-varying coefficient

and 0.01 and 0.38% for the regression model with. These difference in the widths

of the uncertainty intervals is likely to be because the Bayesian model correctly

allows for uncertainty in the spatially representative pollution variable, where as

the standard approach does not. These results may suggest that the standard ap-

proach may lead to an underestimation in the uncertainty intervals, which in this

example means that the significant effect of overall air quality (AQI) (left third of
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Table 5.6) could actually be non-significant (centre and right thirds of Table 5.6).

5.5 Discussion

In this chapter I have presented a statistical approach for constructing a spa-

tially representative measure of overall air quality and estimating its effects on

health, whilst taking proper account of the uncertainty in the estimate. The pro-

posed approach is to model the concentrations for a single pollutant over space

and time simultaneously using a Bayesian regression model which incorporates

available covariate information, such as measures of meteorology, to describe the

spatio-temporal pattern in the pollution concentrations. This approach is compu-

tationally simpler than that which was proposed in Chapter 4, for also meeting

such aims. The model proposed in this chapter should also be able to produce

more precise estimates of the unknown parameters because data from all days are

used in the estimation. To increase the flexibility of the model I also included a

time-varying coefficient, as this will allow the effects of any covariate which is fixed

in time to vary over time. The motivation for the inclusion of such a coefficient

are the 1 kilometre estimates for the pollutants CO, NO2 and PM10, which are

available for the year 2001.

A preliminary assessment of the predictive accuracy of both the geostatistical

model proposed in Chapter 4 and the regression model proposed here, both with-

out and with the inclusion of a time-varying coefficient, are compared via the

method of cross-validation. A total of 5 test cases (scenarios) were constructed,

each of which was made up of a training data set which contained 90% (44 sets)

of the total number of sites (49 sites) and a validation data set which was made
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up of the remaining 10% of the sites. The results, which are displayed as the

prediction bias and the median absolute deviation for each test case, suggest that

the simple regression model tends to over predict the true concentration value.

Conversely, the geostatistical model tends to show bias towards under predicting

the true concentrations. Over the 4 scenarios (excluding scenario 3 which pro-

duced noticeably different results) for the cross-validation, the absolute overall

prediction bias and median absolute deviation were larger under each of the re-

gression models compared to the equivalent results under that of the geostatistical

model. In scenario 3, three roadside sites all of which were located in the centre

of London were randomly removed. This resulted in both regression models under

predicting the true concentrations. This would suggest that the simple regression

model is highly sensitive to which monitoring site data is included in the model.

When data are not independent the method of cross-validation can be problematic

as leaving out an observation will not remove all the associated information due

to the correlations with the other observations, a problem frequently seen in the

use of cross-validation in time series studies. Given that the concentrations of

neighboring sites are undoubtedly going to be highly correlated this method may

have been a poor choice even for the purposes of obtaining a simple comparison

of two modelling approaches. Further to this, I only considered the results from 5

scenarios. This small number of test cases may not have yielded reliable results,

for example the results of scenario 3 may in fact be what should be expected from

the proposed models.

The regression modelling of CO, NO2 and PM10 produced areal-level pollution

estimates that were generally lower than the corresponding monitor average. One
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of the reasons for this difference is that the regression model adjusted for the dif-

ferences in the pollution concentrations at roadside and background environments,

an aspect which is typically ignored in the majority of studies. However, the same

areal-level pollution estimates for O3 were generally higher than the correspond-

ing monitor average. This may be because ozone is not attributable to traffic

emissions and is instead produced by the collision of oxygen and oxides in the

atmosphere. The other main difference between the standard modelling approach

and the Bayesian regression model proposed here concerns the treatment of un-

certainty in the areal-level pollution estimate. The standard modelling approach

typically ignores the uncertainty in the monitor average when estimating its health

effects, while the approach proposed here correctly feeds through the variation in

the pollutants posterior predictive distribution into the health model. This prop-

agation of uncertainty through the hierarchical model results in wider uncertainty

intervals compared with the standard approach, which in the London example re-

sulted in the change in the significance of the health risks of the AQI. Under the

approach proposed in this chapter none of the individual pollutants or the measure

of overall air quality has a substantial effect on human health. The conclusion that

the individual pollutants and overall air quality do not pose and any significant

risks to health under the proposed model is somewhat unusual. In the current

literature there are many studies which investigate the health risks of numerous

individual pollutants and while they may not all produce significant results many

do. For example particulate matter is consistently found to be detrimental to hu-

man health (see for example Laden et al. (2000) and Diaz et al. (2012)). However,

as expressed in Chapter 4 these results are contingent on many modelling decisions

including the choice of lag and aggregation methods. As discussed previously the

some of the modelling choices made in this thesis, including the decision to ignore
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overdispersion, may not have been prudent and may have affected the outcome of

the proposed modelling methods.

The Bayesian regression model was proposed as an alternative to the computa-

tionally expensive geostatistical method proposed in the previous chapter. This

method also met the aims of producing a spatially representative measure of over-

all air quality which can be incorporated into a health model while taking proper

account of the uncertainty in the estimate. The results of the cross-validation

suggest this model is being outperformed by the geostatistical model and that it

is very sensitive to the data which are included. To fully assess the abilities of this

model a simulation study could be carried out. These results and also those from

the pollution modelling which was applied to all four pollutants suggested that the

inclusion of a time-varying coefficient was not worth while. This added complexity

made no difference to the predictive capabilities of the model and the resulting

estimates of δ were small and did not vary very much over the time period.



Chapter 6

Estimating Constrained

Concentration-Response

Functions

6.1 Introduction

As discussed previously in Section 3.2.2, the majority of studies estimate a linear

Concentration-Response Function (CRF) between ambient air pollution levels and

a health outcome (for example Dominici et al. (2000) and Carder et al. (2008)).

This is because the resulting CRF can be summarized by a single regression coeffi-

cient. However, a number of studies have relaxed this constraint, which has allowed

them to examine whether the CRF exhibits any non-linear behavior (see for exam-

ple Schwartz (2001) and Dominici et al. (2002)). The majority of such non-linear

concentration-response functions have been modelled using cubic splines, which

restrict the estimated curves to be smooth (three times differentiable), but do not

140
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enforce any constraints on their shape. This lack of shape constraints has resulted

in unfeasible CRFs being estimated, such as those that exhibit decreasing health

effects as the ambient concentrations increase. Examples of this phenomenon in-

clude Figure 6.6 panel (b) in this chapter and Figure 3 in Schwartz et al. (2001),

both of which exhibit non-monotonic behaviour.

Therefore, in this chapter I propose a model for estimating constrained concentration-

response functions between air pollution and human health, where the constraints

are defined in Section 6.2.2. The remainder of this chapter is presented as follows.

Section 6.2 discusses the modelling approaches commonly used in short-term air

pollution and health studies, and provides a brief review of existing solutions for

dealing with the problem of non-monotonicity of the CRF. Section 6.3 presents my

proposed modelling solution, while Section 6.4 assesses its efficacy via simulation.

Section 6.5 presents a study of ozone concentrations and respiratory ill health in

Greater London, while Section 6.6 presents a concluding discussion.

6.2 Background and Motivation

There is no evidence to suggest that air pollution is beneficial to human health

therefore it is unlikely that non-monotonic curves accurately represent the true

concentration-response function between the pollutant and the health outcome of

interest. I am not suggesting that all pollutants are harmful to health at all con-

centrations, merely that they should not be salutogenic. Instead, I believe that

any such non-monotonicity is likely to be an artefact of the data set being anal-

ysed, and could possibly be due to a number of factors. The first possibility is the

mortality displacement hypothesis, which was described previously in Section 3.5,
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and states that after a few days of high pollution concentrations, the subset of

individuals susceptible to air pollution will be depleted. Therefore, there will be

fewer health events occurring in the following few days, as the number of suscepti-

ble individuals has been reduced. Thus, if pollution concentrations are even higher

on these subsequent days, then a non-monotonic relationship may be estimated.

Secondly, non-monotonicity could be induced by the presence of an unmeasured

confounder (Section 3.3.2), the lack of data on which, means that it cannot be

included in the regression model. A third factor could be the uneven distribution

of the pollution data, which means that non-monotonic behaviour could be esti-

mated by chance due to the small amounts of data in certain pollution ranges.

6.2.1 Air Pollution and Health Studies

As discussed previously the health risks associated with short-term exposure to

air pollution are typically estimated from daily ecological data, using generalised

linear models such as that specified by (3.1). The daily health data are assumed

to be independent despite the study having a time series design, because after

the time trend has been modelled, little temporal correlation typically remains

in the residuals. Typically, the regression parameters β and α are estimated by

maximum likelihood, using the iteratively re-weighted least squares algorithm de-

scribed in Section 2.1.

In Section 3.2.2 I discussed the function f(·) which represents the concentration-

response function between air pollution and health. Typically, this relationship

is assumed to be linear because it allows the relationship to be summarised by a
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single regression coefficient, which is often expressed as a relative risk (3.3). A

number of studies have attempted to relax this assumption, and allow the shape

of f(·) to be estimated from the data. Such potentially non-linear concentration-

response functions are typically modelled by a natural or penalized cubic spline.

However, the only constraint implied by this approach is smoothness (the fitted

curve is three times differentiable), and in the next section I propose a model for

additionally constraining the CRF so that it does not exhibit an unfeasible shape.

6.2.2 Constrained Concentration-Response Functions

Following the work of Shaddick et al. (2008), I believe that the CRF f(·) should

satisfy the following three properties.

P1 - f(·) must be non-decreasing (that is if a < b then g(a) ≤ g(b)), because

increasing pollution concentrations should not result in less severe risks to

health.

P2 - f(·) must be continuous and smooth (three times differentiable), because a

small change in the ambient concentrations should not cause a step change

in the risks to health.

P3 - f(0) = 0, because if there is no air pollution present then no excess risks to

health should be observed.

These properties, taken together, enforce the concentration-response function to

be non-negative and non-decreasing, meaning that pollution cannot be beneficial

to human health. These same criteria should also apply to any uncertainty in-

tervals, as this represents the range of likely values for the true curve. Note that
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I have used ≤ rather than < in P1, because I appreciate that a threshold level

may exist, above which, no further health risks are felt. In fact, Shaddick et al.

(2008) also suggest that f(·) should be bounded from above, which would force

it to exhibit such a threshold level. However, I do not introduce such an upper

bound for f(·), as relatively low levels of pollution are observed in the majority

of cities worldwide, an upper limit on the health effects may not be observable

from the available data (i.e. the threshold level may be larger than the observable

pollution concentrations).

The problem of non-monotonicity in air pollution and health CRFs has been ad-

dressed in numerous ways in the literature, depending on the ambient concentra-

tions at which the non-monotonicity exists. If the non-monotonicity is exhibited

at the highest pollution levels (as in Samoli et al. (2005) Figure 1) it may have

occurred by chance, due to there being only a small number of days with such

high concentrations. In this case some authors have attempted to remove the high

concentrations from the pollution time series, either by removing observations

from individual monitoring sites (Daniels et al. (2000) and Bell et al. (2006)), or

by removing entire days from the study (Zanobetti et al. (2000)). However, this

approach is unappealing, because data are removed simply because they don’t pro-

duce ‘acceptable’ results, whilst the investigator is required to make a somewhat

ad hoc choice about how much data to remove.

In contrast, relatively few researchers have proposed a statistical solution to this

problem, with one of the first being proposed by Roberts (2004). In his paper,

the concentration-response function is represented by a piecewise linear function

constrained to be non-decreasing, with either one or two change-points. Roberts
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(2004) suggests that a piecewise linear function with one change point could yield

important information about the effect of air pollution on mortality, for example

the ability to detect threshold levels above and below which ambient pollution

is shown to have no effect. Let ω = (ω1, . . . , ωn) be a time-series of pollution

concentrations, α = (α1, . . . , αq) be a vector of regression parameters and θ =

(θ1, . . . , θr) a vector of change points. Then a piecewise linear relationship between

pollution and health with one change-point can be given by

f(ωt) =











α1ωt, if ωt < θ;

α1θ + α2(ωt − θ), if ωt ≥ θ.
(6.1)

Similarly, a piecewise linear function with two change points can be given by

f(ωt) =























α1ωt, if ωt < θ;

α1θ1 + α2(ωt − θ2), if θ1 ≤ ωt ≤ θ2.

α1θ1 + α2(θ2 − θ1) + α3(ωt − θ2), if ωt > θ2.

(6.2)

The advantage of this approach is its simplicity, although this comes at the cost

of the estimated relationship not being smooth (violating P2 above), as it will

exhibit sharp changes at the change-points. Another disadvantage of this method

is that it requires the user to make an ad hoc choice about what values θ should

take. More recently, Leitenstorfer and Tutz (2007) proposed an approach utilizing

the monotonicity restriction for B-spline coefficients and likelihood based boosting

(see for example Bühlmann and Yu (2003)) within a generalized additive model

framework, although their model does not adhere to P3 (i.e. f(0) = 0). As a

result, in their application SO2 appears to have a beneficial effect on health for

concentrations below 25 microns. Therefore, in the next section I propose an



Chapter 6. Estimating Constrained Concentration-Response Functions 146

alternative statistical solution to this problem, that improves upon the existing

approaches by producing concentration-response functions which adhere to the

three properties outlined above.

6.3 Methods

In this section I outline my approach for estimating constrained concentration-

response functions between air pollution and health, that meet the properties P1

to P3 outlined in the previous section.

6.3.1 Modelling the Concentration-Response Function f(·)

I model the concentration-response function using monotone splines known as In-

tegrated or I-splines (Ramsay (1988)). This provides a set of spline basis functions

(as described in Section 2.5) which, when combined with non-negative values of

the coefficients yields a monotone spline. Splines also provide a fully paramet-

ric representation of f(·), and make the properties P1 to P3 straightforward to

implement. In common with (3.5), f(·) is represented by

f(ωt−ι) =

qI
∑

j=1

Ij(ωt−ι|3)αj, (6.3)

a linear combination of basis functions of cubic order, where qI determines the

smoothness of the estimated curve. The cubic I-spline basis functions Ij(ωt−ι|3)

are monotonic, and Figure 6.1(d), displays their shape.
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Figure 6.1: A set of five M-spline basis functions of order (a) 1, (b) 2 and (c)
3, and (d) a set of five I-spline basis functions of cubic (3) order.
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I-spline basis functions are constructed by integrating non-negative M-spline basis

functions of the same order, which are themselves built recursively from those of a

lower order. In common with B-splines, both I and M splines are based on a knot

sequence ξ = (ξ1, . . . , ξqI+k), where k is the order of the basis functions required

(k = 3 is used here). Considering a generic covariate z, first order M-spline basis

functions are given by

Mj(z|1) =











1
ξj+1−ξj

if ξj ≤ z < ξj+1

0 otherwise
,

a normalised rectangle that integrates to one. An example of the shape of such

basis functions is given in Figure 6.1(a). Higher order M-spline basis functions are

built recursively as

Mj(z|r) =
r [(z − ξj)Mj(z|r − 1) + (ξj+r − z)Mj+1(z|r − 1)]

(r − 1)(ξj+k − ξj)
for r > 1,

and are also non-negative and integrate to one. An example of M-spline bases

functions of order 2 and 3 are given respectively in Figures 6.1(b) and 6.1(c).

Finally, I-spline basis functions are constructed by integration as

Ij(z|r) =

∫ z

0

Mj(u|r)du,

where u is the dummy integration variable. A more detailed description of their

construction, as well as their properties is given by Ramsay (1988).
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I use cubic order basis functions in this paper as they meet the smoothness prop-

erty P2, while from Figure 6.1(d) and (6.3) it is clear that f(0) = 0, which meets

P3. Finally, as the I-spline basis functions are monotonic, f(·) is non-decreasing

(meeting P1) as long as αj ≥ 0 for all j, which is enforced via the prior specifi-

cation in our Bayesian hierarchical model described below. The use of I-splines

allows f(·) to take on both convex and concave shapes, depending on the values of

(α1, . . . , αqI ). If αqI = 0 then f(·) will level off and approach a threshold value as

zt−ι reaches its maximum, while if αqI > 0, f(·) will increase up to the maximum

concentration observed in the data set. Finally, if each αj equals zero, then no

relationship is observed between air pollution and health at any concentration.

6.3.2 Bayesian Model and Estimation

The model proposed here represents f(·) with an I-spline of order 3, which meets

properties P1 to P3 as long as αj ≥ 0 for all j. This constraint is achieved by

modelling each αj with a ‘slab and spike’ prior (O’Hara and Sillanpää (2009)),

which has a point mass at zero (the spike), and a continuous distribution on the

positive real line (the slab). Specifically, αj is represented as αj = θjνj , where θj is

the ‘slab’, and has a diffuse half normal prior distribution on the positive real line.

The ‘spike’ part of the prior is represented by νj, which is modelled as a Bernoulli

indicator variable that determines whether αj = 0 or αj > 0. The full Bayesian

hierarchical model is given by
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Yt ∼ Poisson(µt) for t = 1, . . . , n,

ln(µt) = XT
t β +

qI
∑

j=1

Ij(ωt−ι|3)θjνj ,

βi ∼ N(0, 10) for i = 1, . . . , p,

θj ∼ N(0, 10)I[θj>0]
,

νj ∼ Bern(φj) for j = 1, . . . , qI ,

φj ∼ Beta(a, b). (6.4)

In the above equation I[θj > 0] denotes an indicator function, that equals one

when θj is positive and is zero otherwise. I specify a half normal prior for θj

with a mean of zero, as this represents my prior belief that small values of θj are

more likely than larger ones (due to existing studies such as Lee and Shaddick

(2008)). However, a relatively diffuse prior is specified for each θj (variance of 10),

so that the data play the dominant role in determining its posterior distribution.

Diffuse priors are also specified for the remaining regression coefficients βi, for the

same reasons as above. Finally, the prior probability that νj = 1 is represented

by φj , which is assigned a conjugate beta prior distribution. In this paper we

set a = b = 1 (a uniform prior), so we show no preference for zero or positive

values for each αj . Inference for this model is based on Markov chain Monte Carlo

(MCMC) simulation, where the parameters are updated in four batches, namely:

β = (β1, . . . , βp), θ = (θ1, . . . , θqI ), ν = (ν1, . . . , νqI ) and φ = (φ1, . . . , φqI ).

The vector β is updated in blocks via a Metropolis step, using a random walk

proposal distribution with a diagonal variance matrix. The full conditional of β
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(given below) is the product of n Poisson observations and a Gaussian prior.

f(β|y, θ, ν) ∝

n
∏

t=1

Poisson(Yt|β, νj , θj) ×

p
∏

i=1

N(βi|0, 10)

The Gaussian prior is not conjugate to the Poisson data, which results in a non-

standard full conditional distribution. The acceptance probability of updating β(j)

to β∗ is given by

r = min

{

1,
f(β∗|y, θ(j), ν(j))

f(β(j)|y, θ(j), ν(j))

}

.

The full conditional of νj (given below) is the product of n Poisson distributions, a

Bernoulli prior and a Beta prior, however we assigned the parameters of the beta

distribution as a = b = 1 to give us a uniform prior.

f(ν|y,β, θ, φ) ∝
n
∏

t=1

Poisson(Yt|β, θj , φj) × Bern(φj)

The probability of νj = 1 can therefore be given by

P1 = exp

{

n
∑

t=1

(Yt(X
T
t β +

qI
∑

j=1

Ij(ωt−ι|3)θjνj)) − exp(XT
t β +

qI
∑

j=1

Ij(ωt−ι|3)θjνj))

}

+ exp {νj log φj + (1 − νj) log(1 − φj)} ,

where Ij are the basis functions of the I-spline and αj = θj as νj = 1. A similar

expression for the probability of νj = 0 can be given by replacing νj with zero in

the above expression. These probabilities have to be standardized so that they
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sum to one.

The most difficult set of parameters to update is θ, and the full conditional dis-

tribution of θj is given by

f(θj |νj ,β,y) ∝
n
∏

t=1

Poisson(Yt|β, νj, θj) ×

qI
∏

j=1

N(θj |0, 10)I[θj>0]
.

When νj = 1, θj is updated by a Metropolis-Hastings step, using a random walk

proposal distribution. The acceptance probability of updating θ(j) to θ∗ is given

by

rθ = min

{

f(θ∗|y,β, νj = 1)

f(θ(j)|y,β, νj = 1)
, 1

}

The sampling difficulty arises when νj = 0, because the above full conditional dis-

tribution simplifies to a half normal prior, as the data likelihood no longer depends

on θj . Therefore, as this prior is relatively diffuse (variance of 10), excessively large

values could be generated for θj . This in turn would stop νj being estimated as

one in the next iteration of the MCMC algorithm, as the current value of θj would

be too big to be a plausible value under the data likelihood. This would cause

the Markov chain to become stuck. I rectify this problem by updating θj via a

Metropolis-Hastings step, where the proposal distribution only proposes small val-

ues of θj . Note, that values of θj generated in this way do not influence the fitted

CRF, as the corresponding νj values in this situation are always zero.
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As each νj is binary, they are straightforward to update singularly using Gibbs

sampling. The prior probability parameters φj can also be Gibbs sampled, as their

individual full conditionals are beta distributions.

6.4 Simulation Study

In this section I present a simulation study, that assesses the accuracy with which

some of the models described in this paper can estimate concentration-response

functions. Specifically, we compare the estimation performance of the following

four models: (a) a linear model; (b) the B-spline model given by (3.5); (c) the

I-spline model proposed in Section 6.3; and (d) the constrained piecewise linear

model with one change-point proposed by Roberts (2004) (6.1). The first part

of this section describes the study design and data generation, while the second

summarises the results.

6.4.1 Study Design and Data Generation

Two hundred sets of health data are generated under each of 4 different scenarios,

which only differ in the shapes assumed for the concentration-response function

f(·). The functions considered here are displayed in Figure 6.2 and summarised

below, and represent shapes that are likely to be seen in real data.

• Scenario 1 - A linear CRF, f(ωt) = ωtα, where α is chosen so that the

relative risk for a one standard deviation increase in pollution is 1.02, which

is similar to that reported by existing studies.
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Figure 6.2: The true CRFs for the four scenarios: (1) a linear CRF (solid
black line), (2) a constant CRF (solid gray line), (3) a convex CRF (dashed

line), and (d) a concave CRF (dotted line).

• Scenario 2 - A constant CRF of f(ωt) = 0, which represents the situation

where air pollution has no effect on health.

• Scenario 3 - A non-linear convex relationship, which is similar to the one

estimated for the real data in Section 6.5.

• Scenario 4 - A non-linear concave relationship exhibiting a threshold level,

above which no further effects of air pollution are felt.

Each set of simulated health data is generated from model (3.4) for a period of

1,460 days (4 years), and is based on the covariates and air pollution data used

in the London study presented in Section 6.5. The air pollution data comprise

daily mean ozone concentrations, while the covariates include daily mean temper-

ature and a non-linear time trend. The latter is represented by a natural cubic
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spline with ten degrees of freedom per year, while the former is assumed to have a

non-linear effect on health (modelled by a natural cubic spline with 3 degrees-of-

freedom). The corresponding regression parameters for the temperature covariate

and the non-linear time trend are those estimated from the London analysis in

Section 6.5.

To ensure the results from the two spline based models are not affected by the

number of basis functions selected (i.e. the values of qB and qI), they are imple-

mented with between 1 and 3 interior knots, which corresponds to qB = 2, 3, 4 and

qI = 4, 5, 6. In the next section, the value of (qB, qI) that produces the best set

of results for each model and scenario are presented. Inference for the Bayesian

I-spline model is based on forty thousand MCMC samples, twenty thousand of

which are discarded as burn-in. Finally, the linear change-point model was im-

plemented as suggested in Roberts (2004), where the location of the change-point

was chosen by Akaike’s Information Criterion (AIC).

6.4.2 Results

For each scenario I measure the performance of each model by comparing the true

pollution-health relationship f(·), with the corresponding estimates, {f̂i(·)}
200
i=1,

from the 200 simulated data sets. The true and estimated curves are compared

at ten different pollution concentrations (0, 10, 20, . . . , 80, 90), using the following

two metrics.

1. Median bias - MB(ωj) = Mediani=1,...,200

{

f̂i(ωj)
}

− f(ωj).

2. Median absolute deviation - MAD(ωj) = Mediani=1,...,200

{

|f̂i(ωj) − f(ωj)|
}

.
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Table 6.1: Summary of the simulation study. The table displays the bias,
median absolute deviation and the percentage of estimated CRFs that are bio-

logically plausible, for each model and scenario.

Metric Scenario
Model

Linear B-spline I-spline Piecewise
1 -0.028 0.049 0.063 -0.728

Bias 2 0.171 0.229 0.032 0.000
3 1.613 0.061 0.078 0.000
4 -8.651 -2.575 -0.159 -8.689
1 1.277 1.925 2.035 1.772

Median absolute 2 1.355 1.858 0.032 0.000
Deviation 3 2.888 2.259 0.676 0.839

4 7.451 2.899 3.273 7.496
1 99% 68.5% 100% 100%

% Biologically 2 54.5% 14.5% 100% 100%
Plausible 3 100% 16% 100% 100%

4 100% 19% 100% 100%

I use median measures of bias and absolute error because the constraints imposed

on the I-spline model cause the distribution of {f̂i(ωj)}
200
i=1 to be skewed. The

results of the study are displayed in Figures 6.3, 6.4 and Table 6.1, the first two

of which display the bias (MB, Figure 6.3) and median absolute deviation (MAD,

Figure 6.4) at each pollution concentration for each model and scenario. In each

case the bias and MAD are presented as a percentage of the value of the true

CRF f(·). The four rows of each figure relate to the four scenarios (row 1 displays

scenario 1 and so on), while each column displays the results from one of the mod-

els. Finally, Table 6.1 summarises the results from each panel of the figures into a

single quantity, namely the median of the bias and MAD across the ten pollution

concentrations.
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The Figures and Table show that when the true CRF is linear (scenario 1) all four

models perform relatively well, with biases generally less than 1% and MAD values

less than 2.5%. The linear model performs the best in this scenario as would be

expected, while the remaining three models produce fairly similar results. When

air pollution has no effect on health (scenario 2) all models again perform rela-

tively well, with biases and MAD values being less than 1% and 2% respectively.

However, in this scenario the I-spline and piecewise linear models outperform the

other two, which is most likely due to the constraints imposed by these models,

that restrict the set of CRFs that can be estimated. In scenarios 3 and 4 the

linear model performs badly as expected, because by design it cannot estimate

non-linear CRFs. In contrast, the I-spline and B-spline models exhibit much bet-

ter performance, as they are designed to capture non-linear shapes. However, in

comparison, the I-spline model generally outperforms the B-spline model, having

biases and MAD values that are either much smaller or only slightly larger. Fi-

nally, the estimates from the B-spline model come at a price, as between 31.5%

and 85.5% of the estimated CRFs are not biologically plausible. This phenomenon

occurs even in the absence of unmeasured confounding, as the covariates used to

generate the health data were included when fitting the model.

6.5 Application - Greater London

I illustrate my methods by presenting a study investigating the effects of ozone

levels on respiratory mortality in Greater London, between 2000 and 2005. It was

possible to use a larger period of data for the analysis in this chapter, compared
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Figure 6.3: Percentage bias for each model and scenario at concentrations
ranging between 0 and 90 microns. The four rows depict the results from the

four scenarios.



Chapter 6. Estimating Constrained Concentration-Response Functions 159

0
2

4
6

8

Linear

Pollution

M
A

D

0 40 80
0

2
4

6
8

B−spline 1 knot

Pollution

M
A

D
0 40 80

0
2

4
6

8

I−spline 3 knots

Pollution

M
A

D

0 40 80

0
2

4
6

8

Piecewise

Pollution

M
A

D

0 40 80

0
2

4
6

8

Linear

Pollution

M
A

D

0 40 80

0
2

4
6

8

B−spline 1 knot

Pollution

M
A

D

0 40 80
0

2
4

6
8

I−spline 1 knot

Pollution

M
A

D

0 40 80

0
2

4
6

8

Piecewise

Pollution

M
A

D

0 40 80

0
2

4
6

8

Linear

Pollution

M
A

D

0 40 80

0
2

4
6

8

B−spline 2 knots

Pollution

M
A

D

0 40 80

0
2

4
6

8

I−spline 2 knots

Pollution

M
A

D

0 40 80

0
2

4
6

8

Piecewise

Pollution

M
A

D

0 40 80

0
2

4
6

8

Linear

Pollution

M
A

D

0 40 80

0
2

4
6

8

B−spline 3 knots

Pollution

M
A

D

0 40 80

0
2

4
6

8

I−spline 1 knot

Pollution

M
A

D

0 40 80

0
2

4
6

8

Piecewise

Pollution

M
A

D

0 40 80

Figure 6.4: Percentage median absolute deviation for each model and scenario
at concentrations ranging between 0 and 90 microns. The four rows depict the

results from the four scenarios.



Chapter 6. Estimating Constrained Concentration-Response Functions 160

with that of the previous two, as the methods proposed here are not as compu-

tationally intensive and we will not be compared with work in another chapter of

this thesis.

6.5.1 Data

The study region is the city of Greater London, in England, and the data consist

of daily measurements of population health, air pollution and meteorology for the

6 year period between 2000 and 2005. The health data are daily counts of the total

numbers of respiratory mortalities from the population living in the study region,

and exhibit a pronounced yearly cycle, with most deaths occurring in the winter

months, as can be seen from Figure 6.5(a). Daily mean ozone concentrations

were measured at 42 locations across the city, however, 4 of these sites were not

included in this analysis as they did not record ozone concentrations for at least

75% of the duration of the study. The average concentration from the remaining

38 sites was computed to give a representative measure for each day. If any days

still resulted in missing values, after the average was calculated, then these days

were removed from the study to provide a complete case analysis. These data also

exhibit a pronounced yearly cycle, with the highest concentrations occurring in the

summer months (Figure 6.5(b)). Finally, daily mean temperature measured at 16

locations across the city were also obtained, because temperature is known to be

an important confounder in existing air pollution and health studies. In common

with the ozone data, the values at the 16 locations were averaged to produce a

single representative value for each day. As expected these data show a produced

seasonal pattern, which can be seen from Figure 6.5(c).
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Figure 6.5: Daily counts of (a) respiratory deaths, (b) pollution concentrations
and (c) average temperature in Greater London for the period 2000 to 2005.



Chapter 6. Estimating Constrained Concentration-Response Functions 162

6.5.2 Statistical Modelling

My statistical modelling approach is informed by overall measures of model ad-

equacy, such as AIC, as well as diagnostic plots of the residuals. I first assessed

the confounding effects of temperature, which have previously been highlighted by

Dominici et al. (2002) and Carder et al. (2008). The majority of studies observe a

‘U-shaped’ relationship between temperature and health on the same day, because

increased levels of mortality are observed in very cold and very hot conditions. To

assess if this is the case with my data, I compared models with linear and non-

linear temperature effects, as it was not obvious which should be used from Figure

6.5(d). The non-linear temperature effects were modelled by a natural cubic spline

with a small number of degrees of freedom. A non-linear effect of temperature with

three degrees of freedom is used in this study, because it produced a model with

the lowest AIC. I then assessed the usefulness of including a ‘day of the week’

effect in the model, but as it did not reduce the AIC it was not considered further.

The inclusion of a non-linear temperature effect in the model still leaves a promi-

nent seasonal pattern in the residuals, which I represent by a natural cubic spline

of time (day of the study). A range of degrees of freedom for this seasonal trend

were considered, and the most appropriate value was chosen by comparing plots of

the residuals against time, as well as their autocorrelation and partial autocorre-

lation functions. As a result, ten degrees of freedom per year were chosen, as this

is the smallest value that corresponds to residuals with no trend or short-term

correlation. As the autocorrelation and partial autocorrelation functions of the

residuals from this model exhibit minimal correlation, the assumption of indepen-

dence between the daily health data appears to be valid.
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Finally, daily mean ozone concentrations were added to the model at a lag of one

day, because previous studies (see for example Dominici et al. (2000), Zhu et al.

(2003), and Lee and Shaddick (2008)) have shown that exposure to air pollution is

unlikely to result in health effects on the same day. Four different concentration-

response functions f(·) were applied to the data, which include: (a) a linear model;

(b) the B-spline model given by (3.5); (c) the I-spline model proposed in Section 3;

and (d) the constrained piecewise linear model with one change-point described in

Roberts (2004) (6.1). The optimal levels of smoothness for the two spline models

were chosen by AIC and DIC respectively, which resulted in qB = 4 and qI = 4.

The location of the change-point for the piecewise linear model was also chosen

by AIC, which resulted in a value of 70 µgm−3. Finally, we note, that the AIC

from the 3 non-Bayesian models are; (a) linear = 12,944, (b) B-spline = 12,914,

and (c) piecewise linear = 12,912, which suggests that a linear relationship is not

appropriate for these data.

6.5.3 Results

The estimated concentration-response functions are displayed in Figure 6.6, where

panel (a) displays the estimate from the linear model, panel (b) shows the non-

linear B-spline model, panel (c) presents the estimate from the I-spline model,

while panel (d) relates to the piecewise linear model. In all cases the estimates

(posterior median for the Bayesian I-spline model) are presented as solid lines,

while the dashed lines are 95% uncertainty intervals. All the fitted curves and un-

certainty intervals are presented as relative risks, relative to the minimum ozone

concentration observed during the study period. If f(·) is restricted to be linear,
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increasing ozone concentrations by 20µgm−3 is estimated to result in 2.2% addi-

tional respiratory deaths, with a 95% confidence interval ranging between 0.8%

and 3.5%.

Relaxing this linear restriction without enforcing any shape constraints results in

the concentration-response function shown in panel (b) of Figure 6.6, which ex-

hibits a significantly non-linear shape (a straight line will not fit within the 95%

confidence interval). However, the estimated curve is also unrealistic under the

definition outlined in Section 2.2, because it suggests that ozone is beneficial to

health (as the relative risk is less than one) at concentrations below 60 µgm−3.

Furthermore, the curve decreases at both 0µgm−3 and 35µgm−3, suggesting that

increasing ozone at these concentrations reduces the corresponding health risks.

The concentration-response function estimated from the Bayesian I-spline model

is shown in panel (c), and exhibits a similar overall shape to the estimate from

the B-spline model. However, it does not contain the undesirable features of the

latter estimate described above, and instead exhibits a smooth convex shape. The

fitted curve suggests that no health effects are observed below 20µgm−3, while the

lower part of the 95% credible interval only becomes greater than one at 50µgm−3.

Finally, the constrained piecewise linear model proposed by Roberts (2004) is dis-

played in panel (d), and exhibits the same overall shape as that observed for the

other spline models. However, by design, the curve has a non-smooth change of

trajectory at 70µgm−3, which is unlikely to be realistic.

Finally, I conduct a small sensitivity analysis for the Bayesian I-spline model,

by changing the number of basis functions qI and the prior variance for each

θj . Increasing qI from 4 to 7 has almost no effect on the estimated curve in
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Figure 6.6 panel (c), because the properties P1 to P3 themselves induce a level of

smoothing. The only small effect of increasing qI is that the point at which the

fitted curve becomes greater than zero increases slightly, although the differences

are not large. The impact of changing the variance of the half-normal prior for

θj is also negligible, as varying the value between 1 and 10 has no effect on the

estimated curve.

6.6 Discussion

In this chapter I have proposed a statistical approach for estimating constrained

concentration-response functions between air pollution and health, which are con-

strained to be smooth, non-decreasing, and exhibit no effect in the absence of

pollution. My approach is implemented in a Bayesian setting, and models the

concentration-response function by a monotonic integrated spline. Almost all stud-

ies that estimate (potentially) non-linear CRFs do not enforce any constraints on

their shape, which can result in unrealistic curves being estimated. Such curves

are unlikely to represent the true concentration-response function, and are instead

an artefact of the data set being analysed. My approach thus offers a statisti-

cal solution to this problem, by combining informative prior knowledge about the

likely shape of the concentration-response function, to the information contained

in the data.

The simulation study shows that if the true CRF is linear, then a linear model

is the best model to use. However, it performs very poorly when the true CRF

is non-linear, and as the shape of the latter is not known in advance, using a

non-linear model may be more appropriate. Overall, the I-spline model performs
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Figure 6.6: Relative risk curves and associated 95% confidence (credible)
intervals for: (a) a linear relationship; (b) the B-spline model; (c) the Bayesian

I-spline model; and (d) the piecewise linear model.
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consistently well across all scenarios, which is not the case for either the B-spline

or piecewise linear models, which exhibit poor results in at least one scenario. In

addition, CRFs estimated from the piecewise linear model have the unattractive

feature of exhibiting sharp change points, which are unlikely to be real effects. Fur-

thermore, the B-spline model regularly produces non-biologically plausible CRFs

even in the absence of unmeasured confounding, a facet not shared by the I-spline

model proposed here.

The concentration-response function estimated for the Greater London data in Sec-

tion 6.5 is convex, exhibiting no health effects for concentrations up to 50 microns,

after which substantial increasing effects are observed. This compares with the

current UK ozone standard of 100 microns (not to be exceeded more than 10 times

a year), suggesting that ozone concentrations below this standard are harmful to

human health. This is also inline with current literature where significant health

risks of ozone have bene found (see for example Verhoeff et al. (1996) and Yang

et al. (2012)). The increasing nature of the curve after 50 microns suggests that if

there is an upper threshold level in ozone concentrations, above which no further

health risks are observed, then it is larger than the concentrations observed in

this study. Bell et al. (2006) found evidence to suggest threshold levels for ozone

presented at very low concentrations suggesting that methods proposed in this

chapter produce results which may not be consistent with the current literature.

The estimated CRF from the B-spline model appears to exhibit random fluctua-

tions around a relative risk of one for ozone concentrations below 50 microns, an

unattractive property which is not shared by the Bayesian I-spline model proposed

here. There may be many possible reasons for this unattractive behaviour, and

it may act as a signal to the researcher that further investigation into the data
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and model may be required. However, if the reason for the random fluctuations

cannot be identified, then one is still left with a non-monotonic curve, which is

highly unlikely to represent the true relationship between air pollution and health.

In the future, I aim to re-analyse data from multi-city studies such as NMMAPS

and APHEA using my approach, which would allow a comparison of my results

with what has previously been found. This would then allow me to estimate

regional and national concentration-response functions over multiple cities, using

meta-analytic methods similar to those employed by Dominici et al. (2002).



Chapter 7

Conclusion

Short-term exposure to air pollution has been associated with cases of both res-

piratory mortality and morbidity. It has been shown to cause and aggravate a

number of respiratory conditions, including asthma, bronchitis and chronic ob-

structive pulmonary disease (COPD). This association between air pollution ex-

posure and risks to human health has been a public health concern for over 700

years. However, it has only become a global topic in the last 80 years primarily due

to the extreme air pollution episodes in the Meuse Valley in 1930 (Firket (1936)),

in Donora, pennsylvania in 1948 (Ciocco and Thompson (1961)) and the London

smog of December 1952 (Ministry of Public Health (1954)), all of which were as-

sociated with a rise in the number of premature deaths. In recent years pollution

levels have dropped considerably, and yet the relationship between air pollution

and human health continues to be an active area of research. The results of such

research has helped shaped environmental legislation, which regulates the major

sources of pollution and sets target levels for ambient air pollution. In the UK

such legislation includes the Clean Air Act (1993) and UK Air Quality Strategy

169
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(2007).

The majority of air pollution and health research is based on time series studies,

as opposed to case-crossover or panel studies, as this type of data is routinely

available. Time series studies use aggregate level mortality or morbidity data,

which describes the health of the population living within a geographical region.

An advantage of this type of study is that it is inexpensive and straightforward to

implement and it is also unlikely to be affected by individual level risk factors such

as age and smoking habits. A disadvantage is that only a group level associations

between air pollution exposure and the risks to health can be estimated. This is

thus a much weaker type of analysis, than an individual level study, where cause

and effects can be assessed.

The mortality or morbidity data used in air pollution and health studies are typ-

ically daily counts which often include very small numbers, therefore Poisson re-

gression techniques such as generalised linear or additive models are the most

appropriate. In this thesis I have proposed methods which extend those currently

used in the majority of air pollution and health studies, and I compare their efficacy

against those adopted by the majority of researchers. These developments provide

evidence of deficiencies with the standard modelling approaches. The work which

I have presented in this thesis has been centered around three related themes, with

a particular focus on the air pollution component of the regression model. The

first and second themes related to the measure of ambient air pollution which is

included in the model. The short term health effects of exposure are typically

estimated for a single pollutant. I compare this approach to the health effects of

overall air quality which is the quantity that the population are actually exposed
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to. The second theme, which is closely related to the first, is to allow for uncer-

tainty in the pollution estimate and compare the effect this has on the estimated

health effects of overall air pollution. The third and final theme considers the

shape of the estimated concentration-response relationship between air pollution

and the risks to human health. The modelling techniques currently utilised make

no constraints on such a function and as a result can produce unrealistic results.

7.1 Key Theme - Estimating a spatially repre-

sentative measure of overall air quality

Numerous pollutants are measured by the air quality network, including car-

bon monoxide (CO), nitrogen dioxide (NO2), ozone (O3) and particulate matter

(PM10). The majority of epidemiological studies estimate the short-term health

effects of exposure to a single pollutant, for simplicity. However, the air we breathe

and hence are exposed to is a complex mixture of numerous pollutants, including

those previously mentioned. Therefore, the health effects of overall air quality are

of direct public interest. Further to this, the data which are available for air pollu-

tion and health studies includes population level mortality counts which relate to a

study region and point-level measures of these individual pollutants, from within

the study region. This spatial misalignment between point-level pollution data

and the areal-level mortality counts, often termed a change of support problem, is

rectified by creating a representative areal-level measure of pollution. Typically,

this is taken to be the average concentration across the monitoring network. How-

ever, this monitor average is unlikely to be a spatially representative measure of

pollution across the urban area under study, because the locations of the pollution
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monitors are unlikely to have been chosen at random or using statistical design

principles. Monitors are typically placed at sites with high pollution concentra-

tions, a phenomenon known as preferential sampling. This is because the monitor

network is primarily used for regulatory purposes. The local environment in which

the monitors are placed, such as next to a main road or in a park, may also be

affected by this phenomenon. Local environment is likely to have a large effect on

the readings from a monitor, this is because one of the main contributors of CO,

NO2 and PM10 concentrations is traffic emissions. The location of the monitors

within a study region is therefore likely to result in the spatially representative

pollution summary being overestimated, which in turn is likely to bias the corre-

sponding health effects. Further to this, the monitors are located at both roadside

and background local environments. Roadside monitors are likely to record par-

ticularly high concentration levels which are unlikely to be a true representative

of what is experienced by the majority of people, who do not spend their time

outside next to main roads.

The calculation of the monitor average does not, therefore, give a true spatial

representation of a pollutants concentrations. Further to this it also does not take

into account the population density across the study region, if the monitors are

therefore located in areas of low population density, then the monitor average may

not directly relate to where a sizeable proportion of the population live. For exam-

ple from Figures 4.1 and 4.4 we saw that the majority of the air pollution monitors

are located in the center of Greater London compared to the majority of the pop-

ulation aged 65 years and above, who live in the suburbs. I therefore, believe that

the appropriate exposure measure is the daily average level of that pollutant to
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which the population are exposed. I proposed two different approaches for esti-

mating such a spatially representative measure of a single pollutant. In Chapter 4

I used Bayesian geostatistical methods to model the concentrations of CO, NO2,

O3 and PM10, separately for each day, all of which were recorded by the mon-

itoring network of Greater London for the period 2001 to 2003. This produced

areal-level estimates that were generally lower than the corresponding monitor

averages. One of the reasons for this difference is that the geostatistical model

adjusted for the difference in the pollution concentrations at roadside and back-

ground environments. The posterior predictive distributions for each individual

pollutant were also combined to give a measure of overall air quality. Inference

for the Bayesian geostatistical model is based on direct simulation rather than

Markov chain Monte Carlo methods. This is because the prior distributions of the

parameters are specified specifically to allow for explicit expression of the corre-

sponding posterior distributions. This means that there is no need to remove a

burn-in period as each sample is generated independently. However, a drawback

to the geostatistical model is that it has to be applied to each day of the study

separately for each pollutant. In Chapter 4 this resulted in the application of 4380

(4 pollutants and 1095 days) separate geostatistical analyses. This approach is

therefore computationally expensive. Further to this, a geostatistical model can

only be applied when the pollutant under consideration has been measured at

enough locations to make this type of analysis feasible.

In Chapter 5 I proposed an alternative and simpler approach, which still meets

the aim of producing a spatially representative areal-level estimate of pollution.

This approach models the concentrations for a single pollutant over space and

time simultaneously using a Bayesian regression model. This model incorporated
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available covariate information, such as measures of meteorology, to describe the

spatio-temporal pattern in the pollution concentrations. To increase the flexibil-

ity of this model I also proposed the inclusion of a time-varying coefficient, as

this would allow the effects of any covariates which only vary in space to vary

over time. This model was also applied to concentrations of CO, NO2, O3 and

PM10, which were all recorded by the monitoring network in Greater London for

the period 2001 to 2003. With the exception of O3, the areal-level estimates were

generally lower than the corresponding monitor average. This could be because

the proposed model, like the geostatistical model, adjusted for the difference in the

pollution concentrations at roadside and background environments. The slightly

higher results for the areal-level estimate of O3 may be due to the fact that ozone

is not driven by traffic emissions and is instead formed as a chemical reaction in

the atmosphere. To create an index of overall air quality the predictive posterior

distributions for each individual pollutant were combined.

In Chapter 5 I assessed the predictive accuracy of both the geostatistical and the

regression model using the method of cross-validation. The results suggested that

the simpler regression model, proposed in Chapter 5, may over predict the true

concentration levels of a pollutant, despite the fact that this model is able to utilise

all of the available data. Conversely, the geostatistical model, proposed in Chapter

4, under predicts the true concentration levels. However, the geostatistical model

under predicts by less than the regression model over predicts. The results of the

cross-validation also suggest that the simple regression model is very sensitive to

which monitoring sites are included in the model. When three sites which were

located in the centre of London were removed this resulted in the regression model

under predicting the true concentrations. These results suggest that the proposed



Chapter 7. Conclusion 175

regression model is not as good as the geostatistical model proposed in Chapter 4.

7.1.1 Related Theme - Allowing for uncertainty when es-

timating the health risks of air pollution

A further issue with the majority of existing research is that the areal-level pol-

lution estimate, such as the monitor average, is assumed to be a known quantity.

This is despite the true spatially representative measure of pollution being a ran-

dom variable. As a result, the inherent uncertainty in its value should be acknowl-

edged when estimating its health effects. To not account for this uncertainty may

result in the conclusion of significant health risks of pollution when in fact there

is not. Therefore, in addition to producing a spatially representative measure of

overall air quality which can be incorporated into a health model I also took ac-

count of the uncertainty in this estimate of pollution. In both Chapters 4 and 5 I

did this by applying a Bayesian approach to the modelling of a single pollutant.

This meant that for each individual pollutant I achieved a posterior predictive dis-

tribution for each day of the study. I therefore, had a number of estimates which

could be included in a health model. Therefore, I proposed a Bayesian health

model so that the posterior predictive distribution of the spatially representative

pollution measure could be fed through the health model. In both chapters the

main result of interest is the difference in the widths of the uncertainty intervals

between the standard modelling approach and the proposed approach, with the

latter being wider because the uncertainty in the pollution estimate was incorpo-

rated. In both chapters the difference in the width of the uncertainty intervals

resulted in a change in the significance of some of the pollutants. These results
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suggest that not accounting for the uncertainty in the estimated value of air pollu-

tion can indeed result in the conclusion of significant health risks when there may

in fact not be any.

7.2 Key Theme - Constraining the relationship

between air pollution and health

For simplicity, the majority of studies estimate a linear Concentration-Response

Function (CRF) between ambient air pollution levels and a health outcome, as it

allows them to summarise the pollution health relationship by a single regression

coefficient. There are a number of studies however, which have tried to relax this

constraint using cubic splines, which restrict the estimated curves to be smooth,

but do not enforce any constraints on their shape. This lack of shape constraints

has resulted in infeasible CRFs being estimated, such as those that exhibit decreas-

ing health effects as the ambient concentrations increase. In Chapter 6 I therefore

proposed a model for estimating constrained concentration response functions be-

tween air pollution and human health.

I constrained the function between air pollution and health to be smooth, non-

decreasing, and exhibit no effect in the absence of pollution, using monotone splines

known as Integrated or I-splines. This provided a set of spline basis functions

which, when combined with non-negative values of the coefficients yields a mono-

tone spline. The use of a spline also provided a fully parametric representation of

the relationship between air pollution and health and made the three constraints

mentioned previously straightforward to implement. I applied a simulation study
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to assess the performance of my proposed approach and found that if the true

CRF is linear, then a linear model is indeed the best approach. However, if this is

not the case then a non-linear model is more appropriate. I considered three non-

linear models which were the single change point piecewise linear model proposed

by Roberts (2004), a B-spline model and the I-splines proposed by myself. The

I-spline model performed consistently well across all the proposed scenarios unlike

the B-spline and piecewise linear models. In addition to this the piecewise linear

model had the unattractive feature of exhibiting sharp change points, which are

unlikely to be real effects. The B-spline model also regularly produced infeasible

CRFs.

I applied my proposed model to the data from Greater London for the time period

2000 to 2005. The estimated concentration response function applies to the health

risks associated with ozone concentrations, which were presented on the relative

risk scale. The result of the Bayesian I-spline model was a smooth convex shaped

curve which exhibited none of the undesirable features of the other approaches,

such as sharp change points or suggestions of air pollution being beneficial to hu-

man health. As this method uses spline basis functions, the number of knots for

which must be chosen by either the user or some selection algorithm, I also con-

ducted a small sensitivity analysis. I found that increasing the number of knots

from 4 to 7 had almost no effect on the resulting CRF except to change slightly

the point at which the fitted curve becomes greater than zero.
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7.2.1 Limitations

In this thesis I have attempted to extend the current methodology used to estimate

the association between air pollution exposure and the risks to human health. I

have compared the efficacy of my proposed approaches with those adopted by the

majority of researchers and found evidence of deficiencies with the standard ap-

proach. However, the methods that I have proposed are only a possible solution

to some of the problems which exist in the current literature. Many new methods

are being explored and developed every day, many of which will undoubtedly su-

persede or find flaws with the those which I have proposed.

The methods proposed in both Chapters 4 and 5 combine a spatially representa-

tive measure of a number of single pollutants to create a single measure of overall

air quality. One of the limitations of this approach is that this measure of overall

air quality is made up of only four pollutants when in fact a great deal more exist

and are measured by monitoring networks. Further to this each pollutant was

treated as if it is independent from the other three. However, this is perhaps not

the case as some of the pollutants may be in each others causal path way. Perhaps

more thought should also be given to which pollutants should be included in such

measures. It is perhaps not necessary to include as many pollutants as possible,

particularly if some of those pollutants are by products of each other. In addition,

the simple average aggregation method I used to create the air quality index is

only one possible method. There are many other possible approaches to this and it

may have been more prudent to have attached weights to the individual pollutants

based on their perceived levels of danger to human health. Alternatively, these

weights could be random and determined by the data, as an additional level in the
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Bayesian health model. A further piece of work could be to combine the positive

aspects of both the geostatistical model proposed in Chapter 4 and the regression

model proposed in Chapter 5 to create a non-separable spatio-temporal model.

Another possibility is to consider the use of multivariate geostatistics which would

allow the user to pool the data from multiple pollutants (for example see Amir

et al. (2011) and Degan et al. (2006)), thus allowing for a borrowing of strength

across pollutants when making the spatial predictions.

As the models proposed in Chapters 4 and 5 are both presented as possible solu-

tions to the problem of estimating a spatially representative measure of overall air

quality I attempted to compare the predictive accuracy of each approach via the

method of cross validation. This was not meant as a conclusive assessment of the

predictive accuracy of each model but more as an informal means of comparing

each model. However, the use of the method of cross-validation was perhaps a

poor choice as the issue of this technique in the presence of highly correlated data

has been well documented. Further to this, had this method been suitable the ar-

bitrary choice of constructing only five scenario cases may not have been suitable.

Had more scenario cases of test and validation data been created it could have

been found that the results of scenario 3 were what should have been expected

and those of the remaining scenarios were exceptional cases.

In Chapter 6 I only estimated the health effects of a single pollutant. While

this pollutant is frequently investigated by other studies, due to its known health

risks, it is still only a single pollutant and does not represent the air we breathe.

Further to this, I only included the monitor average, which is known to not be a
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truly representative measure of the amount of ozone the population are exposed to.

In this thesis I used data relating to the area of Greater London which I found, like

many real life data sets, to be overdispersed. However, regardless of this I chose

to ignore this aspect of the data and instead model the respiratory mortality as if

they had arisen from a Poisson distribution, which assumes a specific mean vari-

ance relationship (equal mean and variance). While the model parameters may

have been unaffected by this, any associated uncertainty interval may be afflicted

by bias. This could mean that the conclusions drawn about the methods proposed

in each of Chapters 4, 5 and 6 could be incorrect. In the future I would like to

compare the results of the proposed methods in Chapters 4 to 6 with those which

would have been found had I accounted for overdispersion via one of the suitable

methods which were discussed in Section 3.4. A further limitation of the work

presented in this thesis is the use of a single lag which was arbitrarily chosen.

This overly simplistic method was used to facilitate the comparison of the results

presented in Chapters 4 and 5. However, a moving-average over a number of days

may have been more suitable, as each pollutant is likely to have significant health

effects at a number of different lags. Had I used a moving-average over a large

enough time period I should still have been able to compare my results for each

pollutant and overall air quality. Alternatively, a distributed lag model could have

been used, again over a large enough time period to facilitate the comparison of

the results. This would have meant including the lags for several consecutive days

in the model and constraining the shape of the associated coefficients.

In the future I would like to perform a simulation study in order to better compare

the two models proposed in Chapters 4 and 5. Ultimately however, I would like to
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combine the motivations which were presented in all three chapters, and therefore

include a spatially representative measure of overall air quality in a model which

is constrained to give realistically shaped concentration-response functions.
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H. Anderson (1996). Short term effects of air pollution on health: A European

approach using epidemiologic time series data: The APHEA protocol. Journal

of Epidemiology and Community Health 50, S12 – S18.

Kelsall, J., S. Zeger, and J. Samet (1999). Frequency domain log-linear models; Air

pollution and mortality. Journal of the Royal Statistical Society, Series C 48,

331 – 344.



Bibliography 190

Klebanoff, M. and S. Cole (2008). Use of multiple imputation in the epidemiologic

literature. American Journal or Epidemiology 168, 355 – 357.

Knorr-Held, L. (1999). Conditional prior proposals in dynamic models. Scandina-

vian Journal of Statistics 26, 129 – 144.

Kysely, J., L. Pokorna, J. Kyncl, and B. Kriz (2009). Excess cardiovascular mor-

tality associated with cold spells in the Czech Republic. BMC Public Health 9,

Article No. 19.

Kyung, P., H. Chul, and K. Ho (2011). Effect of changes on mortality associated

with air pollution in Seoul, Korea. Journal of Epidemiology and Community

Health 65, 368 – 375.

Laden, F., L. Neas, D. Dockery, and J. Schwartz (2000). Association of fine

particulate matter from different sources with daily mortality in six US cities.

Environmental Health Perspectives 108, 941 – 947.

Lambert, D. and K. Roeder (1995). Overdispersion diagnostics for generalized

linear models. Journal of the American Statistical Association 90, 1225 – 1236.

Lee, D., C. Ferguson, and E. Marian Scott (2011). Constructing representative air

quality indicators with measures of uncertainty. Journal of the Royal Statistical

Society, Series A 174, 109 – 126.

Lee, D. and G. Shaddick (2007). Time-varying coefficient models for the analysis

of air pollution and health outcome data. Biometrics 63, 1253 – 1261.

Lee, D. and G. Shaddick (2008). Modelling the effects of air pollution on health

using Bayesian dynamic generalised linear models. Environmetrics 19, 785–804.



Bibliography 191

Lee, D. and G. Shaddick (2010). Spatial modeling of air pollution in studies of its

short term health effects. Biometrics 66, 1238 – 1246.

Leitenstorfer, J. and G. Tutz (2007). Generalized monotonic regression based on

B-splines with an application to air pollution data. Biostatistics 8, 654 – 673.

Lin, M., Y. Chen, R. Burnett, P. Villeneuve, and D. Krewski (2002). The influence

of ambient coarse particulate matter on asthma hospitalization in children: Case

crossover and time-series analysis. Environemntal Health Perspectives 110, 575

– 581.

Lipfert, F. (1993). A critical review of studies of the association between demands

for hospital services and air pollution. Environemntal Health Perspective 101,

229 – 268.

Loperfido, N. and P. Guttorp (2008). Network bias in air quality monitoring

design. Environmetrics 19, 661 – 671.

Ma, Y., R. Chen, G. Pan, X. Xu, W. Song, B. Chen, and H. Kan (2011). Fine

particulate air pollution and daily mortality in Shenyang, China. Science of

Total Environment 409, 2473 – 2477.

Mallone, S., M. Stafoggia, A. Faustini, G. Gobbi, A. Marconi, and F. Forastiere

(2011). Saharan dust and associations between particulate matter and daily

mortality in Rome, Italy. Environmnetal Health Perspectives 119, 1409 – 1414.

Mar, T., G. Norris, J. Koenig, and T. Larson (2000). Associations between air

pollution and mortality in Phoenix, 1995 - 1997. Environmental Health Perspec-

tives 108, 347 – 353.



Bibliography 192

Matérn, B. (1960). Spatial variation. stochastoc models and their application to

some problems in forest surveys and other sampling investigations. Meddelanden

fran Statens Skogsforskningsinstitut 49, 144.

Matheron, G. (1963). Principles of geostatistics. Economic Geology 58, 1246 –

1266.

McCullagh, P. and J. Nelder (1989). Generalised Linear Models (2nd ed.). Chap-

man and Hall/CRC Press, London.

Ministry of Public Health (1954). Mortality and morbidity during the London

smog of December 1952. H.M. Stationary Office.

Moolgavkar, S., E. Luebeck, T. Hall, and E. Anderson (1995). Air pollution and

daily mortality in Philadelphia. Epidemiology 6, 476 – 484.

Murray, C. and C. Nelson (2000). State-space modeling of the relationship be-

tween air quality and mortality. Journal of the Air and Waste Management

Association 50, 1075 – 1080.

Neas, L., J. Schwartz, and D. Dockery (1999). A case-crossover analysis of air

pollution and mortality in Philadelphia. Environmental Health Perspectives 107,

629 – 631.

Nelder, J. and R. Wedderburn (1972). Generalized linear models. Journal of the

Royal Statistical Society, Series A 135, 370 – 384.

O’Hara, R. and M. Sillanpää (2009). A review of bayesian variable selection

methods: What, how and which. Bayesian Analysis 4, 85 – 118.

Ott, W. (1978). Environmental indices: Theory and Practice. Ann Arbor Science

Publishers: Ann Arbor.



Bibliography 193

Paramo, J. and U. Saint-Paul (2012). Spatial structure of the Caribbean lobster

(Metanephrops binghami) in the Colombian Caribbean Sea. Helgoland Marine

Research 66, 25 – 31.

Parikh, J. (2011). Hardships and health impacts on women due to traditional

cooking fuels: A case study of Himachal Pradesh, India. Energy Policy 39, 7587

– 7594.

Patinha, C., A. Reis, C. Dias, A. Cachada, R. Adão, H. Martins, E. Ferreira da

Silva, and A. Sousa (2012). Lead availability in soils from Portugal’s Centre

Region with special reference to bioaccessibility. Environmental Geochemistry

and Health 34, 213 – 227.

Peng, R. and M. Bell (2010). Spatial misalignment in time series studies of air

pollution and health data. Biostatistics 11, 720 – 740.

Peng, R., F. Dominici, and T. Louis (2006). Model choice in time series studies

of air pollution and mortality. Journal of the Royal Statistical Society, Series

A 169, 179 – 203.

Peng, R., F. Dominici, R. Pastor-Barriuso, S. Zeger, and J. Samet (2005). Seasonal

analyses of air pollution and mortality in 100 US cities. American Journal of

Epidemiology 161, 585 – 594.

Peters, A., E. Liu, R. Verrier, J. Schwartz, D. Gold, M. Mittleman, J. Baliff, A. Oh,

G. Allen, K. Monahan, and D. Dockery (2000). Air pollution and incidence of

cardiac arrhythmia. Epidemiology 11, 11 – 17.

Peters, A., J. Skorkovsky, F. Kotesovec, J. Brynda, C. Spix, H. Wichmann, and

J. Heinrich (2000). Associations between mortality and air pollution in Central

Europe. Environmental Health Perspectives 108, 283 – 287.



Bibliography 194

Pitard, A. and J. Viel (1997). Some methods to address collinearity among pollu-

tants in epidemiological time series. Statistics in Medicine 16, 527 – 544.

Pope III, C., R. Burnett, M. Thun, E. Callee, D. Krewski, K. Ito, and G. Thurston

(2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine

particulate air pollution. Journal of the American Medical Association 287, 1132

– 1141.

Pope III, C. and D. Dockery (2006). Health effects of fine particulate air pollution:

Lines that connect. Journal of the Air and Waste Management Association 56,

709 – 742.

Pope III, C. and J. Schwartz (1996). Time series for the analysis of pulmonary

health data. American Journal of Respiratory and Critical Care Medicine 154,

S229 – S233.

Pope III, C., M. Thun, M. Namboodiri, D. Dockery, J. Evans, F. Speizer, and

C. Heath (1995). Particulate air pollution as a predictor of mortality in a

prospective study of U.S. adults. American Journal of Respiratory and Critical

care Medicine 151, 669 – 674.

Pringle, M., B. Marchant, and R. Lark (2008). Analysis of two variants of a

spatially distributed crop model, using wavelet transforms and geostatistics.

Agricultural Systems 98, 135 – 146.

R Development Core Team (2011). R: A Language and Environment for Statistical

Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN

3-900051-07-0.

Ramsay, J. (1988). Monotone regression splines in action. Statistical Science 3,

425 – 461.



Bibliography 195

Ribeiro Jr., P. and P. Diggle (2001). geoR: a package for geostatistical analysis.

R-NEWS 1 (2), 15–18.

Roberts, S. (2004). Biologically plausible particulate air pollution mortality con-

centration response functions. Environmental Health Perspectives 112, 309 –

313.

Roberts, S. and P. Switzer (2004). Mortality displacement and distributed lag

models. Inhalation Toxicology 16, 879 – 888.

Rubin, D. (1984). Bayesianly justifiable and relevant frequency calculations for

the applied statistician. The Annals of Statistics 12, 1151 – 1172.

Ruggieri, M. and A. Plaia (2012). An aggregate AQI: Comparing different stan-

dardizations and introducing a variability index. Science of the Total Environ-

ment 420, 263 – 272.

Ruppert, D., M. Wand, and R. Carroll (2005). Semiparametric Regression (2nd

ed.). Cambridge University Press.

Samet, J., S. Zeger, F. Dominici, F. Curriero, I. Coursac, D. Dockery, J. Schwartz,

and A. Zanobetti (2000). The National Morbidity, Mortality, and Air Pollution

study. Part II: Morbidity and mortality from air pollution in the United States.

Health Effects Institute Project Report 94 96-97, 5 – 47.

Samoli, E., A. Analitis, G. Touloumi, J. Schwartz, H. Anderson, J. Sun-

yer, L. Bisanti, D. Zmirou, J. Vonk, J. Pekkanen, P. Goodman, A. Paldy,

C. Schindler, and K. Katsouyanni (2005). Estimating the exposure response

relationships between particulate matter and mortality within the APHEA mul-

ticity project. Environmental Health Perspectives 113, 88 – 95.



Bibliography 196

Samoli, E., A. Zanbetti, J. Schwartz, R. Atkinson, A. LeTertre, C. Schindler,

L. Perez, E. Cadum, J. Pekkanen, A. Paldy, G. Touloumi, and K. Katsouyanni

(2009). The temporal pattern of mortality reponses to ambient ozone in the

APHEA project. Journal of Epidmiology and Community Health 63, 960 – 966.

Sarnat, S., A. Raysoni, W. Li, F. Holguin, B. Johnson, S. Flores Luevano, J. Gar-

cia, and J. Sarnat (2012). Air pollution and acute respiratory response in a

panel of asthmatic children along the U.S. - Mexico border. Environmental

Health perspectives 120, 437 – 444.

Schwartz, J. (1991). Particulate air pollution and daily mortality in Detroit. En-

vironemntal Research 56, 204 – 213.

Schwartz, J. (1993). Air pollution and daily mortality in Birmingham, Alabama.

American Journal of Epidemiology 137, 1136 – 1147.

Schwartz, J. (1994). Nonparametric smoothing in the analysis of air pollution and

respiratory illness. The Canadian Journal of Statistics 22, 471 – 487.

Schwartz, J. (2000). Harvesting and long-term exposure effects in the relationship

between air pollution and mortality. American Journal of Epidemiology 151,

440 – 448.

Schwartz, J. (2001). Is there harvesting in the association of airborne particles

with daily deaths and hospital admissions? Epidemiology 12, 55 – 61.

Schwartz, J., F. Ballester, M. Saez, S. Pérez-Hoyos, J. Bellido, K. Cambra, F. Ar-
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