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Summary 

 
The aim of this work was to develop a propofol (PPF) based Total Intravenous Anaesthesia (TIVA) 

technique to be used in dogs by veterinary surgeons in practice. As PPF is a poor analgesic agent, 

this work also looked into the development of a co-infusion scheme for the potent alpha2-

adrenoceptor agonist medetomidine (MED) and its active enantiomer dexmedetomidine (DEX). 

The study was divided into 4 phases. 

 

In phase one, canine PPF pharmacokinetic (PK) parameters, derived from previous studies reported 

in the literature, were incorporated to a Target Controlled Infusion (TCI) system. This approach, 

comprising computer software incorporated into a syringe driver, which will deliver PPF to a 

predicted blood concentration, is widely used in humans. The performance of the system was 

investigated in 6 greyhounds and 10 mixed-breed dogs undergoing routine dental work by 

comparing predicted with measured PPF concentrations in venous blood samples obtained during 

and following TCI PPF anaesthesia. The optimal induction target was 3 μgml-1, and an adequate 

depth and a satisfactory quality of anaesthesia were achieved with mean maintenance targets of 

between 3.4 and 4.5 μgml-1 of PPF. The performance of the TCI system was considered clinically 

acceptable as the Median Prediction Error (MDPE%), a measure of bias, and the Median Absolute 

Performance Error (MADPE%), a measure of the accuracy, were -12.47 and 28.47 respectively, in 

the greyhounds and 1.56 and 24.79 respectively, in the mixed-breed dogs. The system was easy to 

use and the quality of anaesthesia was judged to be adequate for dental work.  

 

Phase 2 illustrated the inhibitory effect of MED and DEX on PPF metabolism at the level of the 

cytochrome P450 in rat and canine hepatic tissue and highlighted, therefore, the possible effect on 

the metabolism dependant performance of the TCI system.  

 

Before designing an infusion scheme for MED and studying its possible effect on PPF PK in vivo 

(phase 4), the purpose of phase 3 was to characterise cardiovascular and respiratory effects of MED 

administered IV to dogs anaesthetised with a TCI of PPF, and to assess its suitability for use in a 

TIVA regime.  Eighty dogs, ASA 1 or 2, aged 0.5 to 8 years, were randomly allocated into 8 

groups of 10 dogs according to the dose of MED administered (Groups 1-8: 0 (saline, 0.9%, 1 ml), 

0.01, 0.03, 0.1, 0.3, 1, 3, 10 μgkg-1 MED, respectively). Following premedication, anaesthesia was 

induced with a PPF target blood concentration of 3 μgml-1 and maintained with a target 

concentration of 3.5 μgml-1. Cardiovascular and respiratory parameters were recorded for 15 min 

post induction and before saline (group 1) or MED (groups 2-8) was injected slowly over 1 min. 

Medetomidine induced a dose-dependent reduction in heart rate (HR) and increase in systolic 

arterial blood pressure (ABP). At the time of maximum observed effect (2 min post MED 
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injection), the ED50 for ABP and HR were 2.05 and 0.187 μgkg-1 respectively, while the ED95 

(doses of MED inducing 95% of the maximum effect) values were estimated to be 18.1 μgkg-1 and 

3.1 μgkg-1, respectively. The no effect doses for MED were 0.01 μgkg-1 for HR, and 0.1 μgkg-1 for 

ABP. Minimal respiratory effects were observed in all groups except the group receiving 10 μgkg-1 

of MED where, by the end of the recording period (20 min post MED injection), 8 of 9 

spontaneously breathing dogs became apnoeic after MED administration. 

 

Phase 4 was designed to develop and assess a stepped infusion scheme for MED and DEX in the 

TCI PPF anesthetised dog using MED PK parameters from O. Vainio (V1 = 470 mlkg-1, K12 = 

0.0954, K21 = 0.0438, K10 = 0.0489); to observe the possible PK and PD (pharmacodynamic) 

interactions between PPF and the 2 alpha2-adrenoceptor agonists during co-infusion; to determine 

the minimum blood PPF infusion target (MIT) necessary to prevent purposeful movement during 

supramaximal noxious stimulation (tetanic twitch for 5 sec at the level of the 4th and 5th coccygeal 

vertebrae) with and without a co-infusion of MED or DEX and to confirm the DEX minimum 

analgesic blood concentration of 0.85 ngml-1. Six female beagle dogs, 7.3 (± 2.3) years old, were 

anaesthetised on 4 occasions, following a randomised cross over design: PPF TCI with either co-

stepped infusion of saline (PS), MED (blood target of 1.7 ngml-1, PM), low DEX (blood target of 

0.85 ngml-1, PLD) or high DEX (blood target of 1.7 ngml-1, PHD). The co-infusion was started 25 

min after the start of anaesthesia (instrumentation period), while the MIT determination was 

conducted 15 min after the last step of the co-infusion. Venous blood samples were taken at 

specific times for determination of the PPF, MED and DEX plasma concentrations. 

The performance of the TCI system for PPF in the dog was only clinically acceptable in the PS and 

PLD treatments with MDPE% values of 18.85 and 25.94 respectively, and MDAPE% values of 

18.85 and 35.80 respectively. In this study the use of DEX 0.85 ngml-1 had a similar PPF sparing 

effect to the equivalent MED blood concentration of 1.7 ngml-1, but with less effects on ABP, as 

well as on the performance of the TCI for PPF in the dog. Therefore, it could be concluded that 

DEX was more advantageous than MED given by infusion in PPF anaesthetised dogs. The study 

also confirmed the validity of the PK of MED from the previous study. The study redefined 

specific PK parameters for DEX, although the MED PK parameters could also be used. The study 

indicated that DEX blood concentrations as low as 0.85 ngml-1 decreased the measured PPF blood 

concentrations necessary to maintain anaesthesia during noxious stimulation by about 38%.   

However, although this study supported the suitability of the co-infusion of DEX during PPF 

anaesthesia in the dog, and the analgesic/sedative effects of DEX were present at the lowest blood 

concentrations with well maintained respiratory parameters, the CV effects were marked with a 

decrease in HR and CO and an increase in systolic and mean ABP. Further studies are therefore 

necessary to establish if a lower blood concentration of DEX will provide analgesia while 

preserving the CV system.  
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ABBREVIATIONS 

 
ABP  Arterial Blood Pressure 

CO  Cardiac Output 

CRI  Constant Rate Infusion 

CV  Cardiovascular 

CYP  Cytochrome P450 

DEX  Dexmedetomidine 

ECG  Electrocardiogram 

ED  Effect Dose 

HR  Heart Rate 

IC  Inhibition Concentration 

IM   Intra Muscular 

IV  Intra Venous 

IPPV  Intermittent Positive Pressure Ventilation 

h  hour 

LEV  Levomedetomidine 

kg  kilogram 

MED  Medetomidine 

µg  microgram 

µl  microlitre 

µM  micromolar 

mg   milligram 

ml  millilitre 

mM  micromolar 

min  minute(s) 

MIT  Minimum Infusion Target 

ng  nanogram 

PD  Pharmacodynamic 

PK   Pharmacokinetic 

PPF  Propofol 

RR  Respiratory Rate 

sec  second(s) 

TCI  Target Controlled Infusion 

TIVA  Total Intravenous Anaesthesia 
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In the last decade, medical anaesthesia has seen the rapid growth of new techniques to provide total 

intravenous anaesthesia (TIVA) (Mirakhur and Morgan, 1998), resulting in the development of  

target controlled infusion (TCI) systems for anaesthesia with the hypnotic agent propofol (PPF) 

(Milne and Kenny, 1998a).  In veterinary anaesthesia  PPF is frequently used to induce anaesthesia 

in dogs, but its use as a maintenance agent is relatively uncommon, partly because of the lack of a 

‘user friendly’ technique for infusion of the drug (Morgan, 1983). 

 

The overall aim of this project was to develop and evaluate a technique for TIVA in dogs which 

would be suitable for use in veterinary practice. This involved the development of a system for the 

administration of the hypnotic, PPF, by TCI and the evaluation of the alpha2-adrenoceptor agonists 

medetomidine (MED) and dexmedetomidine (DEX) as analgesic supplements.  

 

To examine a possible source of pharmacokinetic (PK) interaction between these agents,  isolated 

hepatic microsomal preparations were used to study the metabolism of PPF alone and in the 

presence of  MED and DEX since these have been shown to have some potential inhibitory effect 

on the hepatic metabolism of other agents such as ketamine. 

 

In view of the potential of some alpha2-adrenoceptor agonists to produce significant haemodynamic 

effects, preliminary studies were undertaken to evaluate the dose relationship of these effects in 

order to inform the selection of suitable doses of alpha2-adrenoceptor agonists for the subsequent 

clinical study. 

 

Finally, a clinical study investigated the performance of infusions of MED and DEX in beagle dogs 

anaesthetised with PPF TCI. Meanwhile the effect of these infusions on the performance of the TCI 

system for PPF in the dog was assessed. In addition, the effects of these infusion schemes on 

cardiovascular (CV) variables were quantified in addition to their analgesic properties.  

  

The first part of this introduction provides background information on TIVA and the development 

of infusion techniques as well as the concept, evaluation and use of TCI systems in humans and 

animals.  This is followed by more detailed descriptions of PPF, MED and DEX, their 

pharmacokinetics, pharmacodynamics and possible PK/pharmacodynamic (PD) interactions.  

 

 

1.1 Anaesthesia 

The term anaesthesia is derived from the Greek anaisthaesia, meaning insensibility. Anaesthesia 

results in depression of the activity of nervous tissue locally, regionally, or within the central 

nervous system. General anaesthesia consists of loss of consciousness in addition to loss of 
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sensation. Ideally, general anaesthesia is made up of three components, namely unconsciousness, 

analgesia and muscle relaxation (Muir and Hubbel 1995). The anaesthetic state is induced by 

anaesthetic agents administered by injection or by inhalation. 

 

 

1.2 The History of Intravenous Anaesthesia 

Sir Christopher Wren performed the first recorded intravenous (IV) injection in a living animal at 

Oxford in 1656. He injected a variety of substances, including opium, into the circulation of dogs 

using a quill and a pig’s bladder (Glass et al., 1991). Two centuries later, in 1853, following the 

development of the needle and syringe, Alexander Wood injected opiates (morphine) intravenously 

to patients (Glass et al., 1991; Miller, 1994), but  it was not until 21 years later, in 1874, that the 

first attempt to use IV agents to provide anaesthesia was recorded. Pierre-Cyprien Ore 

anaesthetised patients using chloral hydrate, but this technique was rapidly abandoned in humans 

because of low safety margin (Glass et al., 1991).  Interestingly, the use of chloral hydrate for 

anaesthesia of horses continued up to the late 1980s, more than one century later (Hall and Clarke, 

1991a). 

 

Meanwhile, W.F. Clarke and J.Y. Simpson were developing the use of the volatile anaesthetic 

agents diethyl ether (1842) and chloroform (1847) and these dominated the field for the first half of 

the twentieth century, being superseded by the fluorinated hydrocarbon halothane (1957), followed 

by methoxyflurane (1960) and then isoflurane in the 1970s (Steffey, 1995; Smith and White, 

1998a).  

 

The discovery of the barbiturates, such as thiopentone sodium (1934), heralded a new era in IV 

anaesthesia. However, when these drugs were used as sole agents in man, the high doses required 

for reflex suppression resulted in disastrous outcomes for patients, earning IV anaesthesia the 

reputation of being an “ideal method of euthanasia” (Halford, 1943). Although thiopentone was 

used as a sole agent in veterinary practice for rather longer than in humans, its small volume of 

distribution and long elimination half-life of several hours leads to accumulation within the body 

and renders  it unsuitable for TIVA, for all but the shortest of surgical procedures (Morgan, 1983; 

Smith and White, 1998b) However, its rapid onset of action, of around 30 seconds, makes it a very 

useful drug to induce anaesthesia prior to maintenance with a volatile agent and it is still used for 

this purpose in veterinary anaesthesia (Muir et al., 2007) . 

 

The concept of balanced anaesthesia was first developed in 1926 by Crile of Ohio who introduced 

the use of premedication before anaesthesia (Van Hemelrijck and Kissin, 1997). In 1952, Gray and 

Rees introduced a new concept which divided anaesthesia into three components, the so-called 
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‘Triad of Anaesthesia’, analgesia, muscle relaxation and hypnosis, each of which was achieved by 

use of a different drug.  In 1957, Woodbridge added the abolition of autonomic reflexes to the triad, 

which became the tetrad of anaesthesia (Van Hemelrijck and Kissin, 1997). Although these new 

concepts helped in the development of IV anaesthesia, progress was still slow in this domain. 

Amongst the delaying factors were the lack of agents with adequate PK/PD profiles and the lack of 

delivery systems.    

 

However, a major driving force pushing the development of TIVA was an awareness of the 

possible adverse effects to the health of theatre personnel  resulting from chronic exposure to traces 

of gaseous or volatile anaesthetic agents (Morgan, 1983) and so, from the beginning of the 1970s 

onwards,  rapid progress in new technologies and software led to a quick expansion of infusion 

techniques and tools.  The syringe and an IV line gave way to the PK model-driven pump through 

gravity-driven devices and positive displacement pumps (volumetric) (Egan, 1996). In parallel, 

new agents were discovered with more appropriate PK/PD properties for IV anaesthesia, such as 

ketamine (1963), alphaxolone/alphadolone (1972), and etomidate (1972). However, none of these 

proved to be entirely satisfactory.  Ketamine offered the advantage of being non-cumulative and 

analgesic, but its undesirable side-effects, in particular unpleasant dreams and hallucinations, 

precluded its wider use in adults, although it enjoyed limited popularity in children.  Similarly, the 

steroid combination alphaxolone and alphadolone (Althesin; Saffan) does not have a cumulative 

effect when repeated doses are administered and recovery is rapid (Child et al., 1971), but it could 

produce severe anaphylactic reactions in some patients and this resulted in its withdrawal from the 

human market (Stock, 1973; Morgan, 1983; Sear, 1987; Hall and Clarke, 1991a).  The imidazole 

derivative etomidate became the hypnotic drug of choice for critical cases in humans because of its 

haemodynamic stability, minimal respiratory depression and cerebral protective effects (Morgan, 

1983; Aitkenhead, 1996) and in addition, its PK profile with a short elimination half-life and rapid 

clearance, made it ideal for administration by repeated doses and continuous infusion (Davis and 

Cook, 1986). However, it caused a significant and prolonged inhibition of the stress response 

following infusion (Davis and Cook, 1986; Aitkenhead, 1996). This precluded its use as a 

maintenance agent.  Propofol was introduced into clinical practice in 1986 and has been described 

as being the most suitable drug currently available for TIVA (White, 1988). It has many of the 

properties of the ideal IV agent, namely rapid onset of action, short duration of clinical effect, high 

clearance, minimal tendency for accumulation, and minimal side-effects (Morgan, 1983; Miller, 

1994).  

 

The discovery of PPF, along with a greater understanding of its PK properties, the improvement of 

infusion methods and the progress in computer technology led to the introduction of modern IV 

infusion techniques, which became established as part of routine anaesthetic practice in man in the 

1990s (Padfield, 2000a).  
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1.3 Techniques used to administer TIVA 

Two techniques are used to maintain anaesthesia with an IV agent, namely multiple bolus 

injections or continuous infusion (Smith and White, 1998a). Administering the agent by multiple 

bolus injections has  the advantage of being very simple, but results in the administration of a large 

total drug dose and slow recovery (Miller, 1994; Smith and White, 1998c; Padfield 2000b). In 

addition, the quality of the anaesthesia tends to be very poor as the drug plasma level is inconsistent 

(Smith and White, 1998c). By eliminating the peaks and troughs in plasma concentration which 

occur with the multiple bolus technique, continuous infusion results in a better quality of 

anaesthesia and a decrease in the total drug dose delivered (Gepts, 1998). Infusions can be 

controlled manually or by a computer, but in either case an infusion pump is required.  

 

1.3.1 Anaesthetic Infusion Systems 

The most common and the easiest technique to use is the constant rate infusion (CRI) or rate-

controlled infusion (Smith and White, 1998c). Unfortunately, with such a system, the plane of 

anaesthesia is very difficult to control and with time, drug plasma level and side-effects increase 

(Smith and White, 1998c). As an alternative to keeping the rate of infusion constant, the concept of 

keeping the blood/plasma drug concentration (target) constant has led to the development of 

infusion schemes such as the stepped infusion scheme (Kruger-Thiemer, 1968; Wagner, 1974; 

Miller, 1994). With  a stepped infusion a fast initial infusion is administered to fill the volume of 

distribution of the central compartment, followed by a maintenance infusion which will be 

determined by the desired target or central compartment drug concentration  and the drug’s rate of 

clearance (Wagner, 1974). This system, which has been described in humans for PPF and other 

agents, is usually simplified to a minimum number of steps to make it more practical 

Unfortunately, like the CRI system, the stepped infusion system is very rigid and difficult to adapt 

to the clinical situation (Gepts, 1998; Smith and White, 1998c). 

In 1968, Kruger-Thiemer described an infusion scheme known as BET for Bolus (loading dose), 

Elimination (steady state rate of infusion according to drug’s elimination) and Transfer 

(exponentially decreasing rate to match the redistribution of drug from the central compartment to 

peripheral sites) (Kruger-Thiemer, 1968). Thirteen years later, Schwilden (1981) demonstrated the 

clinical application of the BET infusion scheme, interfacing a microcomputer to an infusion pump. 

The first drugs to be administered by this system were etomidate and alfentanil in 1983 (Schuttler 

et al., 1983). The development of new pumps, computer systems and infusion rate control 

algorithms to enable the anaesthetist to vary the target plasma drug concentration followed (Alvis 

et al., 1985). In 1988, Schuttler and colleagues described the first TCI system (Schuttler et al., 
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1988). Eight years later, in 1996, ICI (now AstraZeneca) in a collaboration with Kenny and co-

workers at the Glasgow Royal Infirmary launched the first commercial TCI system for use with 

PPF in humans (Milne and Kenny, 1998b; Glen, 2003). This system was developed with a Graseby 

3400 syringe driver with a custom built external computer backbar which controls the syringe 

driver and became a fully integrated system with the computer software incorporated into the 

syringe pump.   The associated software for the administration of PPF in humans (Diprifusor; 

Zeneca Ltd) consists of a PK model, a set of specific PK variables for PPF and infusion control 

algorithms. 

 

1.3.2 The Concept of Target Controlled Infusion 

The fundamental principles and development of the TCI (Diprifusor) system were  described by 

Gray and Kenny (1998) and Glen (2003). A TCI system consists of a syringe driver coupled with a 

computer, which is programmed with the PK parameters of the specified drug in a particular 

species.  In contrast to a conventional pump where drug is administered at a fixed rate, in a TCI 

system, the computer pump control algorithm calculates the infusion rate that is necessary to 

achieve a blood target concentration. Thereafter, the computer controls the pump to maintain the 

target concentration. If the target is kept constant, the infusion rate will decrease over time to match 

the cumulative characteristic of the agent (Egan, 2003). At any point the anaesthetist can choose to 

modify the target. An increase in target concentration will result in injection of a calculated bolus 

dose, followed by an exponentially decreasing infusion rate that will be higher than the original 

infusion rate. Following a decrease in target concentration the infusion will cease until the new 

target, as predicted by the computer, is reached. Thereafter, an exponentially decreasing infusion 

rate will resume, at a lower rate than previously (Egan, 2003).  Although the system is dependent 

on very complex mathematical models, its principle remains that of the BET method, described by 

Kruger-Thiemer in 1968 (Egan, 2003). 

 

1.3.3 Evaluation of Target Controlled Infusion Systems 

The accuracy of a TCI system is dependent upon the PK variables that have been used to 

programme the device. Consequently, the system must be validated before general use in clinical 

practice. In summary, during infusion using a TCI system, blood samples are taken at determined 

set points and the target concentrations are noted. Thereafter, using mathematical formulae, the 

predicted and actual blood concentration values for these time points are compared. From these 

calculations the bias and the accuracy of the system are determined. In human studies, it has been 

proposed that the performance of a TCI system can be considered clinically acceptable when the 

bias is not greater than +/- 10-20% and when the accuracy is between 20 to 40% (Schuttler et al., 

1988; Glass et al., 1991).  
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1.3.4 Use of Target Controlled Infusions    

In humans, TCI has been used mainly for induction and maintenance of anaesthesia. More recently, 

such systems have also been used to provide either conscious sedation or peri- and post-operative 

analgesia (Barvais et al., 1996; Oei-Lim et al., 1998; Milne and Kenny, 1998a; Milne and Kenny, 

1998b). Although PPF is used extensively in TCI systems, studies designed to demonstrate its 

analgesic properties have been inconclusive (Langley and Heel, 1988; Borgeat et al., 1994; Zacny 

et al., 1996; Cheng et al., 2008). Consequently, the use of PPF as the sole agent for TIVA in 

humans has proved unsatisfactory for major procedures because the doses required to eliminate 

responses to surgery induce CV and respiratory depression (Smith et al., 1994a). As a result potent 

opioids such as fentanyl, alfentanil or remifentanil are commonly co-infused with PPF to improve 

reflex suppression (Smith and White, 1998d). However, a feature of this combination is the 

necessity to control ventilation because of the respiratory depression caused by these drugs. 

 

 

1.4 TIVA in veterinary medicine 

Following the introduction of PPF to veterinary practice in the 1980s, interest in TIVA in domestic 

species was rekindled. Nolan and Hall (1985) and Waterman  (1988) showed the possible use of 

PPF in horses and sheep respectively as a part of a TIVA technique while PK studies came later on 

for  horses (Nolan et al., 1996) and sheep (Mather et al., 1989; Correia et al., 1996). Although 

different publications can be found in the literature regarding these species and others, it is in dogs 

that we will find the main PD and PK studies, leading to increased use of PPF for TIVA techniques 

and leading to the possible development of PPF computer-driven infusion. In 1984, Glen and 

Hunter published the first report on the use of PPF in the dog (Glen and Hunter, 1984). They 

compared the effect on histamine release of a single dose of the old formulation in Cremophor EL 

with a single dose IV of the lipid emulsion formulation that became the marketed preparation. 

Thereafter, other PD studies of PPF used for TIVA were published, such as Hall and Chambers 

(1987), Goodchild and Serrao (1989), Robertson et al. (1992), Thurmon et al. (1994), Muir and 

Gadawski (1998), and Murrell et al. (2005) to cite a few.  In parallel, PK studies were conducted in 

dogs undergoing surgery (Nolan and Reid, 1993), in dogs comparing different breeds (Zoran et al., 

1993; Court et al., 1999; Hay Kraus et al., 2000) and in the elderly canine patient (Reid and Nolan, 

1996) or looking at drug interaction (Perry et al., 1991; Nolan et al., 1993; Reid and Nolan, 1993; 

Hall et al., 1994; Mandsager et al., 1995). All these studies and the development of computers and 

their association with infusion devices led eventually to computer-driven delivery of IV 

anaesthesia.  
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Computer driven PPF infusion has been used in dogs. In 2001, the anaesthesia group in Glasgow 

developed and assessed the performance of a TCI system for PPF in the dog (see chapter 2) (Beths 

et al., 2001). In 2004, a team from South-Africa used a TCI like system to anaesthetise four dogs 

with PPF while undergoing neurosurgery. In that study, they used a computer programmed using 

“Stelpump” software and attached to a syringe driver (Joubert et al., 2004). That study did not 

assess the PK parameters used to programme the system. These parameters were assessed the same 

year by a team from China who infused PPF through the same TCI system as Joubert, but in 

enflurane anaesthetised dogs (Luo et al., 2004).  In 2005, Musk and colleagues, including the 

author, studied the optimal target to induce dogs premedicated with acepromazine and morphine, 

using the TCI system developed by Beths and others in 2001 (see chapter 2). 

 

Others have used computer driven infusion in other species with drugs other than PPF: in cats with 

alfentanil and in horses with alfentanil and detomidine (Daunt et al., 1993; Pascoe et al., 1993; 

Ilkiw et al., 1997). Unfortunately, these systems do not seem to have left the experimental milieu. 

 

1.4.1 Alternatives to co-infusions of opioids with propofol. 

Opioid infusions are a common feature of specialist veterinary anaesthetic practice, but in general 

veterinary practice, where it is routine for anaesthesia to be monitored by nursing staff, controlled 

ventilation is rarely employed other than when it is mandatory for the surgical procedure e.g. 

thoracotomy.  Since the purpose of this work was to develop a TIVA technique for the dog, which 

would be practical to use in general veterinary practice, finding an alternative analgesic which 

could be administered while maintaining spontaneous ventilation, was fundamental to the success 

of the project.  

 

Potential alternatives to the use of opioids as an adjuvant to PPF anaesthesia include ketamine, a 

dissociative anaesthetic agent that has few respiratory effects. However, the author and colleagues 

showed that although ketamine had anaesthetic sparing effects and CV stability in spontaneously 

breathing dogs anaesthetised with halothane, hypertension and tachycardia were commonly 

observed side-effects (Beths et al., 2000a).  These CV side effects were unacceptably severe when 

ketamine infusions were co-administered with PPF infusion. Consequently, the search for a drug 

which would be PPF sparing when co-administered, while preserving spontaneous respiration, lead 

to the investigation of the alpha2-adrenoceptor agonists,  MED and its active enantiomer DEX.  
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1.5 Propofol 

Propofol (2, 6, di-isopropylphenol) is a short acting, rapidly metabolized IV anaesthetic, which is 

insoluble in water, but highly lipid soluble. Initially, PPF was formulated with Cremophor EL 

(1977), but pain on injection and complement-mediated adverse reactions to the Cremophor 

necessitated a radical change in its formulation (Glen and Hunter, 1984). Since 1986, it has been 

marketed as a 1% emulsion containing 10% Soya bean oil, 2.25% glycerol, and 1.2% egg lecithin.  

Although this resolved the problems linked to the complement-mediated reactions, pain on 

injection is still a common side effect reported in humans (McCulloch and Lees, 1985; Kanto, 

1988; Mirakhur, 1988; Scott et al., 1988; Mangar and Holak, 1992). 

 

Propofol has a molecular weight of 178 and a pKa of 11. Since it is a preservative-free product with 

a neutral pH value, it will support bacterial growth and endotoxin production (Berry et al., 1993; 

Quinn et al., 1993; Sosis and Braverman, 1993; Sosis et al., 1995; Aydin et al., 2002; Joubert et al., 

2005; Strachan et al., 2008) and consequently aseptic conditions must be observed during its 

handling (Lorenz et al., 2002). 

 

Propofol is licensed in dogs and cats, but its use has also been reported in other species, either as an 

induction agent or for TIVA (Nolan and Hall, 1985; Mama et al., 1995; Correia et al., 1996; Duke 

et al., 1997; Schumacher et al., 1997; Machin and Caulkett, 1998; Bennett, 1998; Bennett et al., 

1998; Matthews et al., 1999; Bettschart-Wolfensberger et al., 2001a, 2001b; Hawkins et al., 2003;  

Bettschart-Wolfensberger et al., 2005; Oku et al., 2005; Umar et al., 2006, 2007). 

 

1.5.1 Metabolism of propofol 

Metabolism of drugs usually include biotransformation (phase I), which converts fat-soluble 

(lipophilic) compounds into water-soluble (hydrophilic) compounds. These undergo conjugation 

(phase II) before being excreted by the bile (high molecular weight) or in the urine (low molecular 

weight) (Chang and Kam, 1999). 

 

Propofol metabolism occurs mainly in the liver and results in the formation of inactive metabolites 

excreted in the urine (Simons et al., 1991a; Veroli et al., 1992; Dawidowicz et al., 2000). In 

humans, the major pathway is a direct glucuronidation resulting in the formation of a glucuronic 

acid conjugate of PPF which accounts for 53-73% of the total metabolites (Benet et al., 1996). 

Other metabolites are glucuronide and sulphate conjugates of quinol that arise from the 

transformation of PPF by the Cytochrome P450 enzymes (CYP) oxidative system.  
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CYP isoenzymes are principally located in the endoplasmic reticulum of the hepatocyte and are 

mainly responsible for biotransformation (oxidation, reduction, hydrolysis and hydration reactions), 

which prepares the drug for conjugation. The CYPs are iron-containing proteins (haemoproteins) 

which exhibit a spectral absorbance maximum at 450 nm when reduced and complexed with 

carbon monoxide. The general reaction catalysed by the CYPs can be written as follows:  

 

NADPH + H+ + O2 + RH ⎯⎯⎯⎯⎯CYT P 450 ⎯⎯⎯⎯> NADP+ + H2O + ROH 

RH = oxidisable drug substrate; ROH = hydroxylated metabolite. 

 

The CYP isoenzymes are a superfamily whose classification and nomenclature have been derived 

from gene cloning and sequencing (Chang and Kam, 1999). The superfamily is divided into 

families which are themselves divided into sub-families, depending on the percentage of their 

genome the CYPs have in common. The enzyme families are described by an Arabic number, the 

subfamilies by a capital letter and a final Arabic number denotes individual enzymes. In the dog, 

only a few CYPs have been screened and identified so far, including CYP 1A1, 1A2, 2B11, 2C21, 

2C41, 2D15, 3A12, 3A26 (The International Centre for Genetic Engineering and Biotechnology, 

www.icgeb.trieste.it/, 2001). In dogs CYP2B11 has been recognised as being responsible for the 

formation of inactive sulphate and glucuronide conjugates and also for the breed differences seen in 

PPF metabolism  (Court et al., 1999; Hay Kraus et al., 2000).  

 

1.5.2 Pharmacokinetics of propofol 

Several groups have reported PK  data for PPF in the dog  with  the model used to describe its PK 

being either biphasic or triphasic, depending on the design of the study (Cockshott et al., 1992; 

Nolan and Reid, 1993; Reid and Nolan, 1993; Zoran et al., 1993; Hall et al., 1994; Mandsager et 

al., 1995).  

 

The clinical success of PPF is partly attributable to its unique PK profile, particularly its 

redistribution and rapid metabolic clearance. After a single bolus injection, the plasma level of PPF 

decreases rapidly as a result of its redistribution from the blood and highly vascularised tissues to 

less well and very poorly vascularised tissues, such as muscle and fat respectively (Short and 

Bufalari, 1999). Its clearance is very rapid and exceeds hepatic blood flow, suggesting an 

extrahepatic site of metabolism. This hypothesis was corroborated when metabolites of PPF were 

detected during the anhepatic phase of orthotopic liver transplantation in man (Veroli et al., 1992). 

The origin of this extrahepatic metabolism is still to be determined, but the lung and kidney have 

been suggested (Kanto and Gepts, 1989; Veroli et al., 1992; Matot et al., 1993; Correia, 1994; Le 

Guellec et al., 1995; Raoof et al., 1996; Kuipers et al. 1999; Dawidowicz et al., 2000; Takizawa et 

al., 2004a; Murayama et al., 2005). Recent studies confirm the importance of the role of the 

http://www.icgeb.trieste.it/�
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kidneys in the extrahepatic PPF clearance while the lungs do not seem to be very much involved 

(He et al., 2000; Hiraoka et al., 2005; Takizawa et al., 2005a, 2005b; Al-Jahdari et al., 2006; Chen 

et al., 2006).  

 

Although PPF has a relatively prolonged elimination half-life in man and in the dog (Reid and 

Nolan, 1993; Zoran et al., 1993; Smith and White, 1998b), anaesthetised patients experience a short 

recovery time. Similarly, prolonged infusion of PPF has been shown to have very little effect on the 

recovery time in man (Smith and White, 1998b).  According to Hughes and colleagues (1992), 

elimination half-life is a very poor predictor of recovery times  and context-sensitive half-time, 

which is the measure of the time taken for the drug concentration in the central compartment to fall 

by 50% after continuous infusion, is a more relevant measure. In man, simulation data shows only a 

slight variation in this half-life for PPF infusions of between 0 and 9 hours. The PK of PPF is 

relatively unaffected by the presence of pathology affecting the hepatic (Servin et al., 1990) and 

renal systems (Kirvela et al. 1992; Nathan et al., 1993). 

 

In summary: rapid redistribution, efficient metabolic clearance with a short context sensitive half-

life irrespective of the duration of infusion, in addition to the minimal effects of hepatic and renal 

dysfunction on its PK parameters, make PPF the anaesthetic agent of choice for TIVA. 

 

1.5.3 Pharmacodynamic characteristics of propofol 

The reported CV effects of PPF are a transient decrease in ABP due mainly to a decrease in 

peripheral vascular resistance (Goodchild and Serrao, 1989; Pagel and Warltier, 1993),  decreased 

sympathetic outflow, and myocardial depression (Coetzee  et al., 1989).  This hypotension does not 

usually result in reflex tachycardia, and a decrease in HR is more commonly observed. This is 

believed to result from resetting of the baroreceptor reflex by the agent (Cummings et al., 1984; 

Ebert et al., 1992a; Sellgren et al., 1994). Although cardiac arrhythmias have been reported with 

the use of PPF in man, this is not a common finding in the dog (Watkins et al., 1987; Smith  et al., 

1993; Quandt et al., 1998). 

 

Respiratory depression and apnoea are the most common adverse effects associated with IV 

administration of PPF (Morgan and Legge, 1989; Ilkiw et al., 1992; Watney and Pablo, 1992; Muir 

and Gadawski, 1998; Quandt et al., 1998). However, in animals this may be minimised by injecting 

slowly to effect (Watkins et al., 1987; Weaver and Raptopoulos, 1990; Quandt et al., 1998). 

 

The chemoreceptors responsible for central respiratory inhibition have been reported to be in the 

dorsomedial and ventromedial medulla (Yang et al., 1997). In 2001, Nieuwenhuijs and colleagues 

confirmed that low (sedative) doses of PPF resulted in depression of the ventilatory response which 



Thierry Beths, 2008  Chapter 1, 30 

  

was attributable to a central (medulla) rather than a peripheral (carotid bodies) effect.  However,  

high doses of PPF have been shown to depress carotid body function in cats and rabbits (Ponte and 

Sadler, 1989) indicating that, whereas with low dose PPF the respiratory depression is mostly 

centrally mediated, at high doses, the carotid bodies are also involved. 

 

Although induction and recovery from PPF have been described as being smooth and excitement 

free in animals (Hall and Chambers, 1987; Watkins et al., 1987; Morgan and Legge, 1989; Weaver 

and Raptopoulos, 1990), some adverse effects have been reported: signs of pain at injection (less 

commonly reported in animals than in man),  vomiting during recovery, excitation, paddling, 

muscle twitching, and opisthotonos (Davies, 1991; Cullen and Reynoldson, 1993; Smith, et al., 

1993; Smedile et al., 1996). However, the use of a pre-anaesthetic tranquillizer, sedative, or opioid 

decreases the incidence of these reactions.  

 

 

1.6 Alpha2-adrenoceptor agonists 

1.6.1 Medetomidine 

Medetomidine ((4-[2,3 dimethylphenyl] ethyl)-H-imidazole), first described in 1986, is a racemate 

composed of two stereoisomers: the D-stereoisomer (DEX) and L-stereoisomer (LEV) (Savola et 

al., 1986), of which the former is the active component (Vickery et al., 1988; Savola, 1989; 

MacDonald and Virtanen, 1991; Schmeling et al., 1991).  

 

Medetomidine has selective alpha2-adrenoceptor agonist activity and an α2/α1 ratio of 

approximately 1600/1. The molecular formula of MED is C13H16N2 with a molecular weight of 

236.7 and a pKa of 7.1 (Datasheet, Abbott Laboratories, 2001). Medetomidine was introduced to 

veterinary medicine in the late 1980s, and in common with other alpha2-adrenoceptor agonists, has 

been used for its sedative and analgesic properties in small animals as well as in rodents and 

wildlife (Moens, 2000). Similarly, MED infusions have been described in other species. In cats, 

Ansah and colleagues (2000) looked at the analgesic, sedative and some CV effects of increasing 3-

step infusions of MED and DEX. They showed that although analgesia was dose dependent, this 

was not the case with sedation. They observed that increasing doses of the alpha2-adrenoceptor 

agonist increased sedation but only to a given point. Thereafter, any increase in the plasma 

concentration resulted in a decrease of the level of sedation.  In their equine study, Bettschart-

Wolfenberger and colleagues (1999) looked at the PK parameters of MED while sedating ponies 

with a CRI. Thereafter, they developed an infusion scheme for MED which they used during PPF 

anaesthesia in ponies (Bettschart-Wolfensberger et al., 2001a, 2001b, 2005). This combination 

provided very good anaesthesia and recovery in most of the animals studied. However some 
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animals experienced hypoxaemic episodes which were treated accordingly (Bettschart-

Wolfensberger et al., 2001a).  Similarly, MED has been used as an adjunct to general anaesthesia 

in dogs (Beths et al., 2000b). These workers described the use of 1 μgkg-1 MED during halothane 

anaesthesia in dogs and reported a marked anaesthetic sparing effect, with typical CV effects 

following the first injection and CV stability thereafter. In 2007, a study reported the sparing effect 

of 2 MED infusions (0.5 and 1 µgkg-1 h-1) on desflurane concentration in anaesthetised dogs 

(Gomez-Villamandos et al., 2008).  

1.6.1.1 Metabolism of medetomidine 

The primary route of biotransformation of MED in the rat is hydroxylation of the methyl substituent 

at position 3 of the aromatic ring (Salonen and Eloranta, 1990). This reaction is thought to be 

catalysed by more than one CYP isoform and results in the formation of hydroxymedetomidine. In 

the dog, similar biotransformation occurs with both DEX and LEV, but the formation rate and 

relative amount of products formed differ. In vitro, kinetics of glucuronidation in dog liver 

microsomes show enantioselectivity, with LEV being faster (8 fold) than DEX (Kaivosaari et al., 

2002). In vivo, DEX forms a large number of products while LEV gives a much “cleaner” profile 

(Salonen, personal communication, 2001). Although hydroxylation is the main pathway, some direct 

conjugation has also been observed (Salonen, personal communication, 2001). No enantiomer 

interconversion during the metabolism has been shown in dogs or any other species (Salonen, 

personal communication, 2001).  
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1.6.1.2 Pharmacokinetics of medetomidine 

Medetomidine is a weak organic base that is 85% protein bound. Following intramuscular (IM) injection 

in the dog, absorption is rapid (t1/2d of 3.2 min) and it is rapidly distributed to well vascularised tissues 

such as the brain, the lungs, the kidney, and the liver; the heart being an exception (Salonen, 1989; 

Salonen, 1991). Following IV injection of MED, Salonen and Kuusela showed that the PK were 

characterised by rapid redistribution and clearance (Salonen, 1989; Kuusela et al., 2000).  

 

The elimination of MED depends mainly on biotransformation since only traces of unchanged drug are 

found in faeces and urine of dogs, cats or rats (Salonen, 1989; Salonen and Eloranta, 1990).  

1.6.1.3 Pharmacodynamic characteristics of medetomidine 

The sedative effects of the alpha2-adrenoceptor agonists are  principally derived from their ability 

to decrease the firing of the locus coereleus, an important modulator of vigilance, sited in the pons 

in  the lower brain stem (Aghajanian and VanderMaelen, 1982). It is commonly accepted that the 

administration of an alpha2-adrenoceptor agonist results in a biphasic haemodynamic response 

(Hall and Clarke, 1991b; Pypendop and Verstegen, 1998; Ebert et al., 2000; Talke et al., 2003), the 

initial phase corresponding to an increase in blood pressure and vascular resistance (Guimaraes and 

Moura, 2001). Although the duration of action is dependent on the alpha2-adrenoceptor agonist 

used and its plasma concentration, this phase is usually of short duration and is followed by a 

relaxation of the vascular beds leading to normo- or hypotension (phase 2) (Hall and Clarke, 1991b; 

Pypendop and Verstegen, 1998).  In common with all other alpha2-adrenoceptor agonists, the 

administration of MED is followed by bradycardia and a decrease in cardiac output (Hall and 

Clarke, 1991b). Stimulation of both central and peripheral alpha2-adrenoceptors is  responsible for 

these CV changes (Hayashi and Maze, 1993; Kamibayashi and Maze, 2000) and there is no 

evidence of a direct action on the heart muscle (Flacke et al., 1992; Day and Muir, 1993; de Morais 

and Muir, 1995; Khan et al., 1999; Murrell and Hellebrekers, 2005). The duration of the 

bradycardia is dose dependent, but maximal effects in the conscious dog are obtained with doses as 

low as 5 μgkg-1 (Pypendop and Verstegen, 1998).   

 

In anaesthetised dogs, antidysrhythmic properties have been described for MED and DEX. In 

halothane anaesthetised dogs with epinephrine-induced arrhythmias, Hayashi and colleagues (1991) 

reported that DEX, but not LEV possessed antidysrhythmic properties and suggested that this effect 

was mediated through stimulation of central alpha2-adrenoceptors.  However, two years later, 

Lemke and colleagues (1993a, b) demonstrated that MED (15 μgkg-1 given IM) had neither 

arrhythmogenic nor antidysrhythmic effects on halothane or isoflurane/epinephrine dysrhythmias in 

dogs.  
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Kamibayashi and colleagues (1995a) reported a role for the vagus nerve in mediating the 

antidysrhythmic effects of DEX on halothane/epinephrine dysrhythmias in dogs. They proposed the 

nucleus tractus solitarius and the dorsal motor nucleus (nuclei rich in alpha2-adrenoceptors) as the 

main target for the alpha2-adrenoceptor agonist in its antidysrhythmic role.  In another study, 

Kamibayashi and colleagues (1995b) reported that targeting of imidazoline receptors in the central 

nervous system was responsible for mediating the antidysrhythmic actions of DEX in dogs. 

 

The analgesia observed with the alpha2-adrenoceptor agonists is mediated both spinally and 

centrally (Guo et al., 1996; Zhang et al., 1998a, b; Smith and Elliott, 2001; Molina and Herrero, 

2006). Although it has been shown that the alpha2-adrenoceptor agonists produce analgesia spinally 

(Maze and Tranquilli, 1991; Asano et al., 2000), doubt has been cast on the existence of direct 

central mediation of analgesia by this class of drug (Murkin, 1991; Sabbe et al., 1994; Mansikka et 

al., 2004).  According to several studies, supraspinal analgesia could be related simply to the 

sedative effects of the alpha2-adrenoceptor agonists (Buerkle and Yaksh, 1998; Khan et al., 1999; 

Ansah et al., 2000; Xu et al., 2000b).  

 

The analgesic effects of MED have been demonstrated in various species. For example in conscious 

cats, MED infusion decreases the response to ear pinch, tail clamp and skin clamp in a dose 

dependent manner (Ansah et al., 2000). In the same way, in conscious sheep, increasing doses of 

MED IV reduced the pain response to a pin pressing against the anterior surface of the metacarpus 

with gradually increasing force (Muge et al., 1994). 

 

Similarly, in the conscious dog, several studies have demonstrated the dose dependent analgesic 

properties of MED injected IV or IM using different kind of noxious stimuli such as toe pinching, 

electrical stimulation or tail clamping (Raiha et al., 1989; Vainio et al., 1989; Kuusela et al., 2000; 

Kuo and Keegan, 2004).  However, the comparison of analgesic duration between studies is 

difficult, since they often differ in terms of dose, injection site and the noxious stimulus used as a 

test for analgesic effect. In two studies in dogs using toe pinching and IV injection, the analgesia 

lasted between 75 and 90 min after a single dose of 20 μgkg-1 (Kuo and Keegan, 2004) while a 40 

μgkg-1 dose showed some effect up to 90 minutes (Kuusela et al., 2000).  

 

Medetomidine, like the other alpha2-adrenoceptor agonists, has a relatively mild depressant effect 

on ventilation. In dogs, a decrease in respiratory rate is relatively common, with occasional 

irregular breathing. Although cyanosis has been reported in up to 33% of dogs sedated with MED, 

this is thought to be due to the decrease in cardiac output (CO), which slows down the blood flow 

through the tissues, leading to increased oxygen extraction (Bergstrom, 1988; Clarke and England, 

1989; Vainio, 1990). The cyanosis is therefore considered to result from venous desaturation 

(England and Clarke, 1989; Sap and Hellebrekers, 1993) and alteration in arterial blood gas 
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parameters is minimal (Vainio and Palmu, 1989; England and Clarke, 1989; Venugopalan et al., 

1994; Cullen, 1996). 

 

1.6.2 Dexmedetomidine 

Dexmedetomidine has the same chemical characteristics as MED. Because of its appealing 

characteristics of sedation, anxiolysis, analgesia, haemodynamic stability and minimal respiratory 

depression, its use in medical anaesthetic practice as an adjunct to general anaesthesia is increasing 

(Aho et al., 1992a; Peden and Prys-Roberts, 1992; Talke et al., 1997; Hall et al., 2000; Venn et al., 

2002; Paris and Tonner, 2005; Tanskanen et al., 2006). Although it is not yet commercially 

available for use in veterinary medicine in every country, some studies have been undertaken to 

compare  the CV, respiratory, sedative and analgesic effects of DEX with MED and LEV, in the 

dog and cat (Ansah et al., 1998; Kuusela et al., 2000, 2001a). In 2001, Kuusela concluded that the 

use of DEX alone may have some CV benefits over administration of the racemic mixture (Kuusela 

et al., 2001a). 

1.6.2.1 Pharmacokinetics of dexmedetomidine 

In the blood, DEX is approximately 97% protein bound (Karol and Maze, 2000). Kuusela et al. 

(2000) reported the pharmacokinetics of DEX in the dog and found there to be no difference 

between the PK parameters of MED and DEX in this species. In common with MED, DEX is 

highly lipophilic and is rapidly distributed to tissues with a distribution half-life (t1/2α) of about 4 

minutes. It is characterised by a short elimination phase with a mean elimination half-life (t1/2) of 

approximately one hour (Kuusela et al., 2000). 

 

In humans, DEX is thought to be eliminated almost exclusively by metabolism, as no unchanged 

DEX has been detected in the urine of male patients (Karol and Maze, 2000; Venn et al., 2002). In 

human patients with severe renal impairment, the PK profile of DEX was unchanged when 

compared with a control group (De Wolf et al., 2001). As the elimination of MED in the dog is also 

mainly by metabolism (Salonen, 1989), it is likely that the same holds are true for DEX in the dog, 

although evidence to support this has not yet been published 

1.6.2.2 Pharmacodynamic characteristics of dexmedetomidine 

Kuusela and colleagues (2000) compared the clinical effects of MED and DEX in dogs and 

reported little difference in their CV effects. Like MED, DEX has no direct effect on the 

myocardium (Flacke et al., 1992). Similarly, equipotent IV doses of DEX and MED have minimal 

effects on ventilation in dogs (Kuusela et al., 2000).  Following IV injection of 10 μgkg-1 of DEX in 

dogs, a decrease in pH (7.3) was recorded, with no significant change from baseline  in PaCO2 or 

PaO2  (Kuusela et al., 2000,  2001a,  2001b).  
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The analgesic effects of DEX and MED have been compared in dogs (Kuusela et al., 2000, 

2001b)and cats (Ansah et al., 2000) with no difference in the level of analgesia being detected, 

although in the study of Kuusela (2001b), a slight increase in length of action was noted with 

equipotent doses of DEX compared with MED. 

 

 

1.7 Drug interactions 

Combinations of intravenously administered drugs may result in drug-drug interactions, which can 

be synergistic, antagonistic or additive (Benet et al., 1996). These interactions can be explained by 

three mechanisms, namely, physicochemical, PK and PD. Physicochemical interactions usually 

occur when two incompatible drugs are mixed together (i.e. pH difference).   

 

1.7.1 Pharmacokinetic interaction 

Although PK interactions can take place during the different PK phases of absorption, distribution, 

elimination or biotransformation, the effects resulting from the interactions during 

biotransformation are generally more pronounced (Benet et al., 1996). Drug metabolism occurs 

mainly in the liver and can be studied in vitro as well as in vivo. In vitro studies on PK interaction 

are preferable as they are time- and cost-effective with minimal risk attached. They offer the 

opportunity to investigate specific biotransformation pathways under strictly controlled conditions 

and to investigate the ability of a drug to inhibit the metabolism of other drugs.  For these reasons in 

vitro studies form part of the screening processes used by pharmaceutical companies in the 

selection of new drugs (Gibson and Skett, 1994a; Lin and Lu, 1998; Venkatakrishnan et al., 2003).  

 

For in vitro studies, liver preparations are required which are either physiological preparations 

(whole perfused liver), biochemical preparations (sub-cellular fractions) or a compromise between 

the two (liver slices, cubes or cells) (Venkatakrishnan et al., 2003). 

Sub-cellular fractions offer the advantage of being easy to produce with a high reproducibility 

(Gibson and Skett, 1994b). Unfortunately, their in vivo relevance is not as good as a perfused liver. 

The sub-cellular fraction consists mainly of microsomes containing the CYP enzymes which are 

involved in phase 1 metabolism and which are most commonly responsible for metabolism-based 

interactions (Benet et al., 1996). Propofol, as well as MED and its enantiomers are potential CYP 

inhibitors through different mechanisms (Gepts et al., 1988; Kharasch et al., 1991; Pelkonen et al., 

1991; Janicki et al., 1992; Kharasch et al., 1992; Baker et al., 1993; Chen et al., 1995a, 1995b; 

Rodrigues and Roberts, 1997; McKillop et al., 1998; Miller and Park, 1999; Naoya et al., 1999; 
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Gemayel et al., 2001; Lejus et al., 2002; Inomata et al., 2003; Yang et al., 2003; Osaka et al., 2006; 

Yamazaki et al., 2006; Lennquist et al. 2008).   

 

1.7.2 Pharmacodynamic interactions  

Pharmacodynamic interactions result in modification of the response of the body to drugs due to 

alteration of the receptor sensitivity of one drug by another, or by the production of additive or 

inhibitory effects, due to actions at different sites in an organ, or by different mechanisms. 

1.7.2.1 Propofol-medetomidine 

The combination of MED premedication and PPF induction either with or without PPF 

maintenance has been used in species other than the dog, including goat, cat, ostrich, rabbit and 

horses (Ko et al., 1992; Langan et al., 2000; Akkerdaas et al., 2001; Amarpal et al., 2002; 

Bettschart-Wolfensberger et al., 2005). 

 

In the dog, when used as part of the premedication with or without anticholinergic drugs, MED 

decreases the induction and maintenance doses of PPF (Manners, 1990; Davies, 1991; Vainio, 

1991; Cullen and Reynoldson, 1993; Sap and Hellebrekers, 1993; Hall et al., 1994; Thurmon et al., 

1994, 1995; Bufalari et al., 1996, 1997; Hellebrekers et al., 1998; Bufalari et al., 1998; Scabell et 

al., 1999; Redondo et al., 1999; Kuusela et al., 2001a; Vaisanen et al., 2002; Ko et al., 2006). 

Bradycardia is a common feature, but the effect on  blood pressure is more ambiguous with an 

increase in some individuals (Vainio, 1991; Thurmon et al., 1994; Hellebrekers and Sap, 1993; 

Bufalari et al., 1996) and a decrease in others (Ko et al., 2006).  Although the PD changes are 

significant, the PK effects of the alpha2-adrenoceptor agonist on PPF during infusion are not (Hall 

et al., 1994). 

1.7.2.2 Propofol-dexmedetomidine 

TIVA regimes comprising  PPF and DEX have been described in humans (Dutta et al., 2001; 

Larson and Talke, 2001; Peden et al., 2001). Although no unwanted side effects were reported in 

the first two of these studies, Peden et al. (2001) reported important adverse effects including sinus 

arrest and 24 hours duration of post-operative dizziness, possibly due to a high infusion rate. The 

use of DEX as a premedicant followed by PPF for induction and maintenance of anaesthesia has 

been described in dogs (Proctor et al., 1992; Kuusela et al., 2001a, 2003) and apart from some 

bradycardia, no adverse effects were reported. 
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1.8 Purpose of this Study 

The aim of this study was to develop a TIVA technique for the dog, based on co-infusion of MED 

or DEX with TCI PPF, which would have minimal effects on the CV and respiratory systems, thus 

providing a practical scheme for use in veterinary practice. 

 

The development of the PPF TCI system is described  in chapter 2. Furthermore the suitability of 

the suitability of the PK parameters used to programme the TCI system is assessed in the context of 

acceptable clinical performance. 

 

Chapter 3 examines the possible interaction at the level of the hepatic CYP enzyme between PPF 

and MED or its enantiomers in vitro. Both MED and DEX are potential inhibitors of hepatic 

microsomal oxidative metabolism and might therefore modify the PK parameters of PFF; a factor 

which may influence the accuracy of the model evaluated in chapter 2.  

 

Significant CV effects of the alpha2-adrenoceptor agonists have been demonstrated and while much 

information exists about these effects in conscious dogs, there is no data reporting the CV effects in 

dogs anaesthetised with PPF.  Since the aim of the study was to devise an infusion system for MED 

or DEX which would provide adequate analgesia to supplement PPF infusion in dogs, while 

keeping the CV effects to a minimum, a dose response study to determine optimal infusion rates is 

described in chapter 4. 

 

Chapter 5 looks at the design of infusion schemes for MED and DEX, in the light of the results of 

chapters 3 and 4, using the PK software PK-SIM.  Thereafter the predictive performance of these 

infusion schemes is tested in beagle dogs anaesthetised with TCI PPF. In addition the effects of 

these infusion schemes on CV variables are quantified as are their analgesic effects. The possible 

influence on the performance of the PPF TCI system resulting from the co-infusion with MED or 

DEX is also evaluated.   

  

TIVA is still a developing field. Advances in technology render infusion devices more precise, 

more sophisticated and safer. New infusion models are developed incorporating not only PK 

parameters but also PD information. The industry is developing new drugs and modifying others to 

respond better to the needs of TIVA and become closer to the “ideal” agent with short onset of 

action, short context sensitive half-life undisturbed by the length of infusion, quick recovery, no 

cumulation and with no or little PD effect. The effect of these developments and the impact of the 

studies described in this thesis on the future of TIVA in the dog are developed in chapter 6. 
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 CHAPTER 2: 

 

DEVELOPMENT OF A TARGET CONTROLLED INFUSION 

SYSTEM FOR PROPOFOL IN THE DOG. 
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2.1 Introduction 

The general concept of target controlled infusion (TCI) has been described in Section 1.3.2.  With 

this mode of administration the amount of drug delivered by an infusion pump to achieve a desired 

target blood concentration of drug is dependent on the pharmacokinetic (PK) parameters of the drug 

incorporated in the pump software.  Acceptable performance of such systems can be expected only 

if the PK parameters in the pump provide a good description of the distribution and elimination of a 

particular drug in the species to be studied. 

 

The development of a TCI  system for propofol (PPF) in the dog required the modification of a 

system originally designed for the administration of PPF to human patients (White and Kenny, 

1990; Glen 1998; Gray and Kenny, 1998). This consisted of three distinct phases: the selection of  

appropriate PK parameters for the  dog to programme the infusion control software;  determination 

of suitable targets for induction and maintenance of anaesthesia in the dog; and  evaluation of the 

performance of the system (Glass et al., 1991; Varvel et al., 1992; Coetzee et al., 1995; Vuyk et al., 

1995; Glen, 1998).  

 

2.1.1 Determination of pharmacokinetic parameters 

Different methods have been described to determine PK parameters for use in computerised 

infusion system such as the TCI system (Vuyk et al., 1995). Some groups have used PK parameters 

derived from a population having the same characteristics as those patients for which the system is 

being developed (Coetzee et al., 1995; Vuyk et al., 1995; Schuttler and Ihmsen, 2000). 

Alternatively a population-based PK parameter set has been used which allows adjustments of the 

PK data to accommodate the characteristics of individual patients (Maitre et al., 1987; Oei-Lim et 

al., 1998; Slepchenko et al., 2003). A more recent method consist in using computer simulation to 

compare predicted blood concentration of the drug with actual blood concentrations in patients and 

to redefine more precisely  the PK parameter set that will be used thereafter in the TCI system 

(Vuyk et al., 1995; Wietasch et al., 2006). Glen (1997, personal communication) used computer 

simulation (PK-SIM; Specialised Data Systems, Jenkintown, PA, USA) to determine the PK 

parameter set used to programme the TCI system used in this study. A review of reported PK 

parameters for PPF in the dog, derived from bolus and/or infusion studies, had demonstrated that 

there was wide variation between individual studies (Cockshott et al., 1992; Nolan and Reid, 1993; 

Nolan et al., 1993; Reid and Nolan, 1993; Zoran et al., 1993; Hall et al., 1994; Mandsager et al., 

1995). Nolan and Reid (1993) used a standardised administration scheme of PPF of 4 mgkg-1 for 

induction of anaesthesia followed by an infusion of 0.4 mgkg-1min-1 for 60 min to maintain 

anaesthesia in association with 67% nitrous oxide in six beagle dogs undergoing body surface 

surgery, and reported the blood PPF concentration. Glen used this administration scheme for PPF 
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and PK variables from selected published studies as a basis for computer simulation. Thereafter, he 

compared the predicted blood concentrations with the actual blood concentrations obtained by 

Nolan and Reid. None of the published PK models provided an accurate prediction of the measured 

profile. Parameters derived from the studies described by Nolan et al. (1993) and Reid and Nolan 

(1993) underpredicted the measured profile while those of the study by Cockshott and colleagues 

(1992) underpredicted the early part of the measured profile but over- predicted the later part. The 

slope of the predicted ‘Cockshott’ profile indicated greater accumulation of PPF than was evident 

from the measured profile, suggesting the actual rate of elimination of PPF was greater than that 

predicted by the model. Thereafter, an iterative approach was used whereby empirical adjustments 

were made firstly to k10 (elimination clearance) to alter the slope of the predicted profile, and then 

to V1 (central compartment) to alter the “gain” of the model.   

 

At each step computer simulation was used to monitor the impact of each change before a final 

model was defined. The final model parameters were incorporated in the prototype TCI system 

evaluated in this study. 

 

2.1.2 Optimisation of blood propofol targets  

In humans, blood levels of PPF required for induction and maintenance of anaesthesia are variable, 

depending on adjuvant therapy, patient health status and the severity of the surgical procedure for 

which the patient is anaesthetised (Dixon et al., 1990; Shafer, 1993).   

 

Struys et al. (1998) showed a significant reduction in the induction target of PPF required when 

patients were premedicated with diazepam, and Chaudhri and colleagues (1992) reported that 90% 

of patients premedicated with temazepan, another benzodiazepine, could be intubated at a blood 

PPF concentration of 5 μgml-1. A similar PPF sparing effect has been demonstrated when opioids 

are used for premedication. Kazama et al. (1998) showed that the PPF blood concentration required 

to allow intubation in 50% (Cp50) of healthy patients was 19.6 μgml-1, but this was decreased by 

34.7 and 46.7% when  fentanyl  (blood concentration of 1 and 3  ngml-1, respectively) was included 

in the anaesthetic protocol.  

 

Studies in dogs have shown that a variety of drugs and drug combinations used for premedication 

have a sparing effect on PPF used by bolus injection to induce anaesthesia, to a greater or lesser 

degree (Geel, 1991; Bufalari et al., 1996; Stegmann and Bester, 2001; Sano et al., 2003; Gomez-

Villamandos et al., 2005, 2006; Braun et al., 2007). Similarly, Bufalari and colleagues (1998) used 

a variety of drugs for premedication prior to administering a constant rate infusion PPF of 0.11 

mgkg-1sec-1 to dogs and showed that depending on the premedication used, the amount of PPF used 

for induction of anaesthesia varied between 2.2 and 6.6 mgkg-1. 
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Struys et al. (1998) demonstrated that the amount of PPF required to induce hypnosis in humans 

decreased with age. Age has also been shown to influence the induction dose of PPF in the dog. 

Reid and Nolan (1996) described the PK profile of PPF given as a bolus to induce anaesthesia in 

geriatric dogs and concluded that elderly patients need a lower induction dose than younger 

animals. 

  

In humans, to maintain anaesthesia and prevent reaction to skin incision in 50% of patients, targets 

of 4.2 to 15.2 μgml-1 have been reported, with this variation being dependent on whether or not an 

analgesic adjuvant was used (Davidson et al., 1993; Taylor et al., 1993; Smith et al., 1994b; 

Andrews et al., 1997; Kazama et al., 1997; Schnider et al., 1998). Several studies in animals have 

also demonstrated the effect of an analgesic adjuvant on the PPF blood levels necessary for reflex 

suppression in a variety of surgical procedures. Correia et al. (1996) demonstrated that PPF blood 

concentrations ranging between 2.98 and 7.1 μgml-1 abolished reaction to skin incision in sheep 

infused with PPF and premedicated with acepromazine and papaveretum. In dogs, also 

premedicated with acepromazine and papaveretum undergoing similar surgery, Nolan and Reid 

(1993) showed that blood PPF concentrations between 3.5 and 5.8 μgml-1 were necessary to 

suppress the response to surgery. Similarly ketamine has been shown to reduce the infusion rate of 

PPF required to maintain anaesthesia in sheep undergoing superficial skin surgery (Correia et al. 

1996), ponies undergoing castration (Flaherty et al., 1997) and cats subjected to a variety of 

noxious stimuli (Ilkiw et al., 2003). 

  

In humans, inter-individual PK and pharmacodynamic (PD) variation is a well-recognised factor 

influencing the range of PPF blood concentrations necessary to induce and maintain anaesthesia 

(Spelina et al., 1986; Schuttler et al., 1988; Shafer et al. 1988; Chaudhri et al., 1992; Struys et al., 

1998; Schuttler and Ihmsen, 2000; Kazama et al., 2000,  2001).  Inter-individual variations for PPF 

have also been demonstrated in a study of beagle dogs  anaesthetised with a zero rate infusion of 

PPF (Nolan and Reid, 1993). The authors observed a wide variation in the PPF blood concentration 

between the dogs. In addition, in this species, inter-breed differences have also been reported 

(Robertson et al., 1992; Zoran et al., 1993; Court et al., 1999; Hay Kraus et al., 2000).  Greyhounds  

required more PPF for induction and all the recovery stages were delayed in this breed compared 

with mixed-breed dogs (Robertson et al., 1992). Heart rate (HR) and body temperature also varied 

between the groups. In another study in greyhounds and mixed-breed dogs, Zoran and colleagues 

(1993) showed that PK parameters such as volume of distribution and clearance were significantly 

different between the two groups. They also found slower recovery times in the greyhound group 

and reported higher PPF blood concentrations at extubation than in the mixed-breed group.  
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However, clinical practice in human patients has demonstrated that despite inter-individual 

variability in PK and PD, anaesthesia can be achieved effectively and safely with a TCI system, as 

the titration to a desired depth of anaesthesia is simple to achieve with such systems (Struys et al., 

1997; Russell, 1998; Li et al., 2005). 

 

2.1.3 Evaluation of the performance of the TCI system  

Evaluation of the predictive performance of a TCI system is carried out by comparing the PPF 

concentrations predicted by the system with the measured PPF concentrations either in venous or 

arterial blood samples taken at various time points during anaesthesia, over a range of target 

concentrations, according to the methodology described by Varvel and colleagues (1992). This 

approach  has subsequently been used by many authors (Coetzee et al., 1995; Vuyk et al., 1995; 

Short et al., 1996; Glen, 1998; Oei-Lim et al., 1998; Swinhoe et al., 1998; Varvel, 2002; 

Slepchenko et al., 2003; Li et al., 2005; Ko et al., 2007; White et al., 2008). This methodology is 

based on the calculation of the percentage prediction error (PE) as the difference between measured 

and predicted values expressed as a percentage of the predicted value. Using values of PE% derived 

at each measurement point, a number of indices of performance in an individual subject are 

calculated.  The median prediction error (MDPE%), provides a measure of bias to indicate whether 

measured concentrations are systematically above or below targeted values. The median absolute 

prediction error (MDAPE%)  measures inaccuracy and gives information on the typical size of the 

difference between measured and targeted concentrations. 

 

Two other indices are wobble and divergence, both of which reflect time related changes. Wobble 

measures the total intra-individual variability in performance error, and divergence describes any 

systematic time-related changes in measured concentrations away from or towards the targeted 

concentration. A positive value indicates a widening of the gap between the predicted and measured 

concentrations over time, while a negative value indicates that the measured concentrations 

converge on the predicted values. 

 

Although no reference values are reported for divergence or wobble, it has been suggested that the 

performance of a TCI system is clinically acceptable if the bias (MDPE%) is not greater than ±10-

20% and the inaccuracy (MDAPE%) falls between 15% and 40%  (Glass et al., 1991; Swinhoe et 

al., 1998; Egan, 2003; Li et al., 2005).  
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2.1.4 Goal of the study  

To determine canine PPF PK parameters to use to program the TCI system and to furthermore 

assess the suitability of these in the context of acceptable clinical performance. 

2.2 Materials and methods 

 

2.2.1 Animals 

This study was approved by the Clinical Research Sub-Committee of the Faculty of Veterinary 

Medicine of the University of Glasgow. Sixteen dogs, ten mixed-breeds (dogs 1-10) and six 

greyhounds (dogs 11-16) attending the Glasgow Small Animal Hospital for routine dental work 

were included in the study. They were ASA 1 and owner consent was obtained for inclusion in the 

study. 

 

2.2.2 TCI Equipment 

The infusion system consisted of a custom-built external computer containing TCI software linked 

via a serial port to a Graseby 3400 infusion pump (White and Kenny, 1990).  

 
Based on the work of Glen (1997, personal communication), the following PK parameters for PPF 

in the dog were incorporated in the TCI control software: 

 V1 = 780 mlkg-1 

 k10 = 0.07 min-1 

 k12 = 0.0365 min-1 

 k21 = 0.0312 min-1 

 k13 = 0.0049 min-1 

 k31 = 0.0011 min-1 
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2.2.3 Anaesthetic protocol 

Dogs were premedicated with acepromazine (ACP; Cvet) 0.03-0.05 mgkg-1 and methadone 

(Martindale Pharmaceuticals, Essex, UK) 0.1 mgkg-1 or pethidine (Martindale Pharmaceuticals, 

Essex, UK) 2 mgkg-1, injected together intra-muscularly, 30 to 40 min before induction of 

anaesthesia.  Anaesthesia was induced with PPF (Rapinovet; Schering-Plough Ltd, Hertfordshire, 

UK), given through a cannula (Biovalve, Vygon, Cirencester, UK) preplaced in a cephalic vein, 

using the prototype computer-driven TCI system described. In order to programme the system for 

each individual, the dog’s weight, age and a target blood PPF concentration were entered prior the 

start of the procedure.  

 

Initially induction targets were set at 8 and 15 μg ml-1 for dogs 1 and 2, respectively. Targets of 12 

μg ml-1 and 6 μg ml-1 respectively were set for dogs 3 and 4. Thereafter the induction target 

concentration was set at 3 µgml-1 for all remaining dogs with the exception of three dogs, one 

mixed-breed and two greyhounds, which had initial target concentrations of 2 - 2.5 µgml-1 (Table 

2.4). The end point of induction of anaesthesia was defined as when the animal assumed lateral 

recumbency and tolerated intubation of the trachea with no tongue movement or resistance. If this 

end point was not reached within 3 min, the target concentration was increased by a further 1 μg 

ml-1 (dogs 5 and 8) and by 0.5 µgml-1 (dogs 10, 11, 13 and 15) at 2 min intervals until induction of 

anaesthesia was complete. 

 

The target concentration was maintained initially as that at which intubation was achieved, and was 

altered in increments of 0.5 to 1 μg ml-1 as necessary to maintain a satisfactory depth of anaesthesia.   

Depth of anaesthesia was assessed subjectively by recording the dog’s response to palpebral 

stimulation, eye position, pulse rate, arterial blood pressure (ABP) and respiratory rate (RR). 

Criteria indicating inadequate anaesthesia were sudden tachycardia >10% resting HR, sudden 

tachypnoea > 20% resting RR, increase in systolic ABP to more than 15 mmHg above baseline, 

somatic responses such as swallowing, evidence of a palpebral reflex or somatic movement. Signs 

indicative of excessive depth of anaesthesia were a mean ABP of less than 60 mmHg, a HR lower 

than 30 bpm and apnoea for more than 30 sec. 

 

The ECG (Kontron Micromon 7141, Kontron Instruments Ltd, England) was monitored 

continuously and the pulse and RR were recorded every 5 min.  Indirect ABP (Dinamap; Critikon 

1846 SX, Critikon Inc, Tampa, Fl, USA) with an appropriate cuff placed over the pedal artery was 

monitored in all patients and recorded every 5 min. Dogs breathed an O2/N2O (1:2) mixture 

throughout anaesthesia, delivered via an appropriate non-rebreathing system at fresh gas flows of 

150 to 400 mlkg-1min-1, depending on the system used.   In the event of apnoea occurring during 
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maintenance of anaesthesia, dogs were ventilated at 12 breaths min-1 until spontaneous respiration 

resumed.   Nitrous oxide was switched off 5-10 min before the end of the procedure and the PPF 

infusion was terminated at the end of the procedure.   Time of extubation was taken as the interval 

from the end of infusion of PPF to that point when stimulation of the tongue or pharynx elicited a 

swallowing reflex. 

 

For each individual animal, infusion time, total volume of PPF infused and the number of target 

adjustments made during the infusion were noted and the infusion rate calculated.  The dose of PPF 

at induction was calculated using computer simulation (PK-SIM, Specialised Data Systems, 

Jenkintown, PA, USA) using the target input profile up to the point of successful endotracheal 

intubation. Total infusion rate was derived from the total amount of PPF infused, body weight and 

the total duration of infusion. Maintenance infusion rate was derived using the difference between 

the total amount infused and the amount required at induction for the time period going from the 

start to the end of the infusion. 

 

2.2.4 Blood sampling 

Blood samples (1.5-2 ml) for PPF analysis, were collected from a cephalic cannula into fluoride 

oxalate tubes (Sarstedt). Samples were taken before anaesthesia, at the point of induction, then 2, 5, 

7 min after induction, at 20 min intervals throughout anaesthesia, at the end of the infusion period, 

2, 5, 7 min later, and at the time of extubation.   Additional blood samples were taken 2, 5 and 7 

min after any alteration in the target concentration.    

 

2.2.5 Blood propofol analysis 

The analyses were performed by Dr A.M. Monteiro from the Institute of Comparative Medicine of 

the University of Glasgow.  

 

A stock solution of PPF (100 μgml-1) was prepared from pure compound (Tocris Cookson Inc., 

Bristol, UK) using methanol (HPLC grade, Rathburn Chemicals Ltd, Walkerburn, Scotland) as the 

solvent, and this was used for all subsequent dilutions. A stock solution of Thymol, the internal 

standard (100 μgml-1), was also prepared in methanol from pure compound, and was further diluted 

to two working solutions of 1 and 5 μgml-1.  The HPLC mobile phase consisted of a mixture of 

methanol, water and trifluoroacetic acid (TFA) in a 70:30:0.1 (volume:volume:volume) ratio, 

respectively. Propofol external standard was prepared from the stock in distilled water. Tetram 

methylamonium hydroxide (TMAH) 7.5% solution in propan-2-ol (Rathburn Chemicals Ltd, 

Walkerburn, Scotland) was prepared prior to use. Phosphate buffer (0.1M) was prepared in distilled 

water from sodium dihydrogen orthophosphate (BDH Chemical Ltd, Poole, England).   
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The samples were stored at 4 oC until PPF was analysed, within three weeks of collection, by high 

performance liquid chromatography (HPLC) using fluorescence detection as described by Plummer 

(1987). Propofol was extracted from blood following a method described by Plummer in 1987 

(Plummer 1987). Spiked samples were used to assess the percentage recovery of PPF from blank 

blood samples for each assay and to construct a calibration curve, by reference to external 

standards.  The external standard consisted of PPF 2 μgml-1 in distilled water. Spiked samples, 

prepared with 0.5 ml blank blood in Tris buffer and PPF or methanol, contained concentrations of 

PPF from 0, 0.1, 0.5, 1, 5, 10 μgml-1 (S1-S6).  

 

From the other samples, 0.5 ml was pipetted into appropriate tubes. Samples and spikes were then 

treated identically. In spikes S1-S3, 50 µl of Thymol (1 μgml-1) was added while 50 µl of Thymol 

(5 μgml-1) was added in S4-S6 and the other samples. Thereafter, 0.5 ml phosphate buffer (0.1 M) 

and 6 ml cyclohexane were added. The tubes were then mixed for 15-20 min on a slow rotary 

mixer. Four ml of the cyclohexane were removed from each tube, and placed in fresh tubes 

containing 50 µl of TMAH (7.5%). The cyclohexane was then evaporated to dryness under a stream 

of nitrogen in a dri-block (Techne, Cambridge, UK) at room T˚. Spikes S1-S3 were reconstituted in 

50 and 200 µl of methanol and distilled water respectively.  Spikes S4-S6 and samples were 

resuspended in 100 µl of methanol and 400 µl of distilled water. Chromatography was carried out 

using a Shimadzu HPLC system (Shimadzu Corporation Analytical Instruments Division, Kyoto, 

Japan). The samples were chromatographed on Nemesis column C18 (Phenomenex, Cheshire, UK) 

connected to a variable wavelength fluorescence spectrophotometer (Shimadzu Corporation 

Analytical Instruments Division, Kyoto, Japan). The excitation wavelength of the detector was set 

at 276 nm and the emission wavelength fixed at 310 nm. The results were integrated on a PC 

(Reeve Analytical L2700, Glasgow, Scotland). One external standard was injected after the 

injection of two spikes or samples. The injection volume was 20 µl and the analysis time was about 

12 min. The chromatography was always started and finished with the injection of an external 

standard. 

 

The peak heights resulting from the injection of external standard solutions was used as a reference 

to calculate the recovery of PPF from the spikes. The recoveries were then used to obtain a 

calibration curve, from which the concentration of the samples was obtained. The limit of 

quantification was 10 ngml-1.  Each sample was analysed in duplicate.  

The mean recovery was 90.2%, (± 9.17) with a coefficient of variation of 10.09%. 
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2.2.6 Data handling 

The target and predicted concentrations were noted at each sampling time point.   Data were logged 

by the TCI system and an additional written record kept. The data from each animal were 

downloaded onto a Microsoft Excel 97 spreadsheet. For each blood sample, the percentage error 

(PE%) of the predicted concentration of PPF in the blood was calculated as follows, PE% = 

{(measured concentration – predicted concentration) / predicted concentration} * 100 (Varvel et al., 

1992). For each animal, the median prediction error (MDPE%), a measure of bias, and the median 

absolute prediction error (MDAPE%) a measure of inaccuracy were calculated as follows: MDPE% 

= median{PEij, j=1,…,Ni}, where Ni  is the number of PE values obtained for the ith subject; 

MDAPE% = {/PE/ij, j=1,,   Ni}, where Ni is the number of /PE/ values obtained for the ith subject 

(Varvel et al., 1992; Coetzee et al., 1995).  Group median MDPE% and MDAPE% values were 

calculated from the values obtained in individual animals to describe the overall performance of the 

TCI System (Varvel et al., 1992; Coetzee et al., 1995).  

 

For each individual, divergence was calculated as the slope of the linear regression equation of /PE/ 

against time (Varvel et al., 1992; Coetzee et al., 1995; Swinhoe et al., 1998).Wobble was calculated 

as follows for each subject: in the ith patient., wobblei = median {/PEij – MDPEi/, j = 1,…, Ni} 

(Varvel et al., 1992; Coetzee et al., 1995). Divergence and wobble for the population were 

estimated using the median value for the whole population (n = 16) (Varvel et al., 1992; Coetzee et 

al., 1995).  

 

2.2.7 Statistical analysis  

Student t-test was performed to compare the two groups of dogs, mixed-breed and greyhound, for 

the age, weight, infusion time, volume of PPF, average infusion rate, number of adjustments, 

extubation time, predicted and actual PPF blood concentration at extubation time, induction target 

and predicted PPF blood concentration at intubation. A p value < 0.05 was considered as a 

significant difference. Mean results are presented ± 1 standard deviation. A Kruskall Wallis test 

was used to compare the 2 groups of dogs mixed-breed and greyhound, for the MDPE% and 

MAPE%.  

 

 

2.3 Results 

The 16 dogs (10 mixed-breeds and 6 greyhounds) comprised 4 males (3 mixed-breeds and 1 

greyhound) and 12 females (7 mixed-breeds and 5 greyhounds). The mixed-breeds were between 

2.5 and 10 years old (mean, 7.2 ± 2.4) and the greyhounds between 7 and 12 years old (mean, 8.30 
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± 1.9). They weighed between 9 and 38 kg (mean, 21.1 ± 9.4) and between 27.5 and 30 kg (mean, 

28.8 ± 0.9) respectively (Table 2.1). Although no significant difference was observed between the 2 

groups for the age (p > 0.05) the mean weight in the greyhound group was greater (p < 0.05). 

 

No significant differences were reported for the intubation and extubation times (Table 2.2). 

Although no significant difference is shown between the groups for the infusion time and the total 

amount of PPF (Tables 2.2 and 2.3, respectively), mean maintenance and total infusion rate (Table 

2.3) were significantly lower in greyhounds (p = 0.03).   

 

Although the dose at induction for dogs 1, 2 and 3 was about 2 to 5 times the dose used for the 

other mixed-breed dogs, no significant difference was observed between this group and the 

greyhounds for this parameter (Table 2.3).   
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Mixed-breed Age (year) Weight (kg) 

1 4 9 

2 9 21 

3 9 27.5 

4 9 15 

5 7 14 

6 7 31 

7 7 13.5 

8 2.5 14.5 

9 10 38 

10 7.5 27 

Means 7.2 21.1a 

SD 2.4 9.4 

   

Greyhound   

11 12 27.5 

12 7 28 

13 7 29 

14 8.5 29 

15 8 30 

16 7 29 

Means 8.3 28.8a 

SD 1.9 0.9 

   

Total   

Means 7.6 23.9 

SD 2.2 8.3 

 

Table 2.1 

Age and weight of mixed-breed and greyhound dogs, undergoing dental surgery, anaesthetised with 

a target controlled infusion system of propofol. 

a = significant difference between mixed breed and greyhound dogs (p = 0.03). 
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Mixed-breed 
Induction time 

(min) 

Infusion time 

 (min) 

Extubation time 

(min) 

1 7 33 nr 

2 3 33 10 

3 2 27 6 

4 2 31 5 

5 4 57 10 

6 1 51 12 

7 3 49 7 

8 5 38 7 

9 2 35 9 

10 5 41 13 

Means 3.4 39.5 8.8 

SD 1.8 9.8 2.7 

Greyhound    

11 4 44 8 

12 2 70 11 

13 4 75 2 

14 3 37 15 

15 5 39 7 

16 3 36 6 

Means 3.5 50.2 8.2 

SD 1.0 17.6 4.5 

Total    

Means 3.5 43.5 8.5 

SD 1.5 13.8 3.4 

 

Table 2.2 

Induction, infusion and extubation time (min) in mixed breed dogs and greyhounds undergoing 

dental surgery and anaesthetised using a target controlled infusion system for propofol. 

nr = not recorded 

 



Thierry Beths, 2008  Chapter 2, 52 

 

 

 

Mixed-breed 

Dose of PPF  

at induction  

(mgkg-1) 

Maintenance 

infusion rate  

(mgkg-1min-1) 

Total infusion 

rate 

(mgkg-1min-1) 

Volume of 

PPF 

(ml) 

1 14.4 nr nr nr 

2 14.8 nr nr nr 

3 10.5 nr nr nr 

4 5.5 0.25 0.41 19 

5 4.1 0.31 0.36 28.5 

6 2.5 0.27 0.31 49 

7 3 0.26 0.30 20 

8 3.8 0.3 0.36 20 

9 2.8 0.22 0.29 38 

10 3.4 0.28 0.33 36 

Means 6.5 0.27a 0.34a 30.1 

SD 4.9 0.03 0.04 11.4 

Greyhound     

11 2.7 0.24 0.28 33.5 

12 2.3 0.19 0.22 43 

13 3.7 0.21 0.25 55 

14 3 0.28 0.34 36 

15 4 0.24 0.31 36 

16 3 0.19 0.26 27 

Means 3.1 0.22a 0.28a 38.4 

SD 0.6 0.03 0.04 9.6 

Total     

Means 5.2 0.25 0.31 33.9 

SD 4.1 0.04 0.05 11.1 

 

Table 2.3 

The amount of propofol (PPF) needed for induction (mgkg-1), the maintenance infusion rate  

(mgkg-1min-1), the total infusion rate (mgkg-1min-1) and the total volume of PPF (ml) in greyhounds 

and mixed-breed dogs undergoing dental surgery and anaesthetised using a target controlled 

infusion system for PPF. 

a = significant difference between mixed breed and greyhound dogs (p = 0.03). 

nr = not recorded 
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2.3.1 Optimisation of blood propofol targets 

Induction, intubation and average maintenance target values as well as the number of target 

adjustments made with the TCI during the anaesthesia are reported in Table 2.4. A target 

concentration of 8 μg ml-1 of PPF did not produce conditions satisfactory for intubation in dog 1. At 

6 min, the target concentration was increased to 12 µgml-1 at which point endotracheal intubation 

was successful. Thereafter the target was set at 6 µgml-1 and altered according to clinical 

requirement between 6 and 8 μg ml-1. Recovery was smooth and uneventful. 

 

For dog 2 the target concentration was set initially at 15 µgml-1 in order to hasten the onset of 

anaesthesia. However, immediately following the initial bolus of PPF, although induction of 

anaesthesia was smooth and rapid, apnoea occurred. Following endotracheal intubation the target 

concentration was decreased to 5 μg ml-1 and intermittent positive pressure ventilation (IPPV) was 

carried out until spontaneous breathing resumed after 9 min. Cardiovascular (CV) parameters were 

well maintained throughout. Thereafter the target concentration was set at 5 μg ml-1 for 

maintenance of anaesthesia and recovery was smooth. 
 

For dogs 3 and 4, in which initial targets were 12 and 6 μg ml-1 respectively, apart from apnoea (for 

10 and 17 min, respectively), induction of anaesthesia was satisfactory.    

 

In the remaining dogs, only 1 mixed-breed dog and 2 greyhounds had an initial target concentration 

lower than 3 μgml-1. Endotracheal intubation in 2 of these 3 animals was unsuccessful by 3 min and 

the target concentration was increased by 1 increment to 2.5-3 μg ml-1, after which intubation was 

carried out easily.   Apart from dogs 1-4 and dog 13, post induction apnoea was not a feature.   

Time to induction varied from 1 to 7 min (mean 3.5 ± 1.8). With target concentrations of 3 µgml-1, 

although induction was slow, excitation was never observed and dogs drifted to sleep in a calm 

controlled manner. Compared with dogs 1-4, dogs 5-16 were maintained on lower predicted target 

concentrations throughout the procedure (range 2.5-4.9 μg ml-1) while the measured blood 

concentration ranged from 1.5 to 6.8 µgml-1.   Amongst the 9 dogs which had an induction target of 

3 μgml-1 (dog 5-9 and 13-16), only 2 had more than 1 target adjustment during the maintenance of 

anaesthesia, and 4 did not need one at all. Although some muscle twitching occurred in 2 of 6 

mixed-breed dogs and 3 of 6 greyhounds, the depth of anaesthesia, although light, was considered 

satisfactory for the dental procedure. Alteration in depth of anaesthesia was easily achieved when 

necessary by increasing or decreasing the target concentration in increments of 0.5 µgml-1.   

Increments of 1.0 μg ml-1 (dogs 6 and 7), when used to increase the target concentration, were 

associated with transient apnoea (10 min for dog 6 and 3 min for dog 7).  It was noted that targets in 

excess of 6.5 μg ml-1 were associated with occasional muscle twitching and apnoea following the 
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small bolus of PPF which followed an increase in target concentration. The mean maintenance 

target concentration was significantly lower in greyhounds (p = 0.01).  

 

2.3.2 Evaluation of the performance of the TCI system  

The measured and the predicted blood PPF concentrations for each dog are reported in Appendix 1 

and 2 together with PE% values. Measured and predicted blood PPF concentrations at extubation 

time are shown in Table 2.5.  

 

The group median values for MDPE% and MDAPE% were 1.56% and 24.79% respectively for the 

mixed-breed  dogs, –12.47% and 28.47% for the greyhounds  and –3.05% and 27.15% for both 

groups combined (Table 2.6).  No statistical difference (P � 0.664)  was found between the 2 

groups for the MDPE% and MDAPE%. The group median values for wobble and divergence were 

14.42% and 5.7% h-1 for the mixed-breed dogs, 11.2% and 20.7%h-1 respectively for the 

greyhounds and 11.68% and 11.4% h-1 for both groups combined. 

 

Examples of results obtained from individual dogs showing the best, the median and worst 

performance (based on ranked MDAPE% values) are shown in Figures 2.1, 2.2 and 2.3.  
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Mixed-breed 

Induction 

target 

(μgml-1) 

Intubation 

target 

(μgml-1) 

Average maintenance 

target 

 (μgml-1) 

Number  

of 

adjustments 

1 8 12* 6 6 

2 15 5 5 1 

3 12 6 6 1 

4 6 6 5 2 

5 3 4 4 4 

6 3 3 4 1 

7 3 3 4 1 

8 3 4 4 0 

9 3 3 3 0 

10 2.5 3 4 3 

Means 5.9 4.9 4.5a 1.9 

SD 4.5 2.8 1 1.9 

Greyhound     

11 2 2.5 3.5 3 

12 2.5 2.5 3 1 

13 3 3.5 3.5 0 

14 3 3 4 3 

15 3 3.5 3.5 0 

16 3 3 3 1 

Means 2.8 3 3.4a 1.3 

SD 0.4 0.5 0.4 1.4 

Total     

Means 4.7 4.2 4.1 1.7 

SD 3.8 2.4 1 1.7 

 

Table 2.4 

Initial induction target (μgml-1), intubation target, average maintenance target (μgml-1) and number 

of adjustments in greyhounds and mixed breed dogs undergoing dental surgery and anaesthetised 

using a target controlled infusion system for propofol. 

 * dog 1 had its target increased from 8 to 12 μgml-1 at 6 min. 

a = significant difference between mixed breed and greyhound dogs (p = 0.01)  
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Mixed-breed 

Measured  blood 

concentration at 

extubation (µgml-1) 

Predicted blood 

concentration at 

extubation (µgml-1) 

1 nr nr 

2 2.8 2.4 

3 2.2 2.7 

4 2.1 2.1 

5 2.1 2.4 

6 1.9 1.9 

7 2.2 2.2 

8 2.2 2.2 

9 1.2 1.7 

10 2.6 2.6 

Means 2.1 2.2 

SD 0.5 0.3 

Greyhound   

11 1.3 1.9 

12 1.5 1.5 

13 1.5 2.8 

14 2.3 1.4 

15 1.5 1.5 

16 1.8 1.6 

Means 1.6 1.8 

SD 0.4 0.5 

Total   

Means 1.9 2.1 

SD 0.5 0.5 

 

Table 2.5 

Measured and predicted propofol (PPF) blood concentration (µgml-1) at time of extubation in dogs 

anaesthetised with a PPF target controlled infusion system and undergoing dental surgery. 

nr = not recorded 
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Mixed-breed  MDPE% MDAPE% 

1 -32.5 32.5 

2 13.67 16.07 

3 -19.92 19.92 

4 -21.5 22.5 

5 5.5 16.5 

6 48.06 48.06 

7 -16.57 27.08 

8 38.81 38.81 

9 -2.38 60.83 

10 17.42 17.42 

Median 1.56 24.79 

Range -32.5 – 48.06 19.92 – 60.83 

Greyhound MDPE% MDAPE% 

11 -29.72 29.72 

12 -21.23 21.23 

13 -31.71 31.71 

14 62.25 62.25 

15 -3.71 12.00 

16 19.67 27.22 

Median -12.47 28.47 

Range -31.71 – 62.25 12.00 – 62.25 

Total   

Median -3.05 27.15 

Range -32.5 – 62.25 12.00 – 62.25 

 

Table 2.6 

MDPE% (bias) and MDAPE% (inaccuracy) values for each individual, each group and for the 

whole group.  
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Figure 2. 1 

Comparison between measured and predicted propofol blood concentrations in a dog (15) 

anaesthetised with a propofol target controlled infusion system and undergoing dental surgery, 

showing the best fit based on ranked MDAPE% (accuracy) values.  
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Figure 2.2 

Comparison between measured and predicted propofol blood concentrations in a dog (16) 

anaesthetised with a propofol target controlled infusion system and undergoing dental surgery, 

showing the median fit based on ranked MDAPE% (accuracy) values. 
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Figure 2.3 

Comparison between measured and predicted propofol blood concentrations in a dog (14) 

anaesthetised with a propofol target controlled infusion system and undergoing dental surgery, 

showing the worst fit based on ranked MDAPE% (accuracy) values. 
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2.4 Discussion 

2.4.1 Propofol target concentrations for induction 

Targets of between 4 and 14 µgml-1 have been reported as being necessary for induction of 

anaesthesia with PPF using a target controlled infusion system in humans (Doyle et al., 1993; 

Russell et al., 1995; Short. et al., 1996). However, the dose of PPF required to induce anaesthesia in 

healthy, unpremedicated dogs by bolus injection is greater (5.95 mgkg-1) (Watkins et al., 1987) than 

that reported in healthy unpremedicated human patients (2 mgkg-1) (Rolly et al., 1980). Although 

these induction doses looked different, using the PK-SIM simulator software (PK-SIM; Specialised 

Data Systems, Jenkintown, PA, USA), and the appropriate PK parameters, it was noticed that the 

plasma concentrations predicted from these induction doses were very similar: 8.7 (man) and 7.7 

(dog) µgml-1 (see appendix 3 and 4).  For that reason and also to minimise the chance of the dogs 

becoming anxious and struggling should induction of anaesthesia be prolonged, it was decided to 

use a target of 8 µgml-1 for the first dog. This produced an unacceptably prolonged induction time 

and only after the target was increased by 50% was intubation successful. Thereafter it was 

necessary to alter the infusion rate six times in order to maintain a satisfactory plane of anaesthesia 

for a dental procedure which could be classified as a very mild surgical procedure. Although this 

may have been attributed to inexperience with the use of the technique, retrospectively it might also 

have resulted from the light sedation observed in this dog after premedication. Moreover, the target 

concentration during the procedure could not be reduced below 6 μgml-1 which also suggests that 

poor sedation could have contributed to the unsatisfactory anaesthetic conditions produced in this 

dog.  

 

Based on the unacceptably slow induction in the first dog, the induction target for the second dog 

was set at 15 µgml-1 and although this was followed by very rapid induction of anaesthesia, 

prolonged apnoea occurred. This was not surprising since apnoea has been recorded as the 

commonest side effect of induction of anaesthesia with PPF given by intravenous bolus in dogs and 

cats (Morgan and Legge, 1989). Targets were subsequently decreased progressively in order to find 

a target which would allow intubation of the trachea, without causing apnoea, and a target of 3 

µgml-1, used initially in dog 5, seemed to satisfy these criteria.  Dogs 5–9 received this target for 

induction of anaesthesia and the quality of induction was very good. However an attempt to 

decrease the target further, to 2.5 µgml-1 in dog 10, proved unsatisfactory in that intubation could 

not be performed until the target concentration was increased to 3 µgml-1.  

 

It was decided to include a group of greyhound dogs in this study and to reduce the target 

concentration to 2 μg ml-1 in the first instance to take account of the findings of Robertson et al. 

(1992) and Zoran et al. (1993) who reported that all recovery phases following infusion and single 
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bolus injection of PPF, respectively, were delayed in greyhounds compared with mixed-breed dogs.  

However, the first dog to receive a target of 2 μg ml-1 required an increase to 2.5 μg ml-1 before 

intubation could be performed successfully and accordingly subsequent targets were increased.  

Four of the six greyhound dogs received targets of 3 μg ml-1 and the quality of induction and 

intubation were remarkably consistent with those of the mixed-breed dogs, which suggested that 3 

μg ml-1 was the optimum initial concentration for both mixed-breed dogs and greyhounds. 

 

More recently, using the same TCI system for PPF as in this study, Musk and colleagues compared 

four induction targets (2.5, 3, 3.5 and 4 µgml-1) in 80 dogs premedicated with acepromazine and 

morphine (Musk et al., 2005). Although clinically, the two higher targets had a 100% success for 

intubation at 3 min, compared with 80 and 65% for the 3 and 2.5 µgml-1 groups respectively, there 

was no statistical difference between the groups. In the 2 higher target groups, they also observed 

an increase in the incidence (35 and 45%, respectively) and duration of apnoea (10 and 40% 

respectively of apnoeic dogs in group at 5 min) as well as a decrease in ABP (post-induction). From 

the results of the present study and those from Musk and colleagues, it seems that a target of 3 

µgml-1 is optimal in dogs premedicated with acepromazine (0.03-0.05 mgkg-1) and an opioid. 

 

2.4.2 Induction doses 

The induction dose of PPF was not significantly different between the two groups (p = 0.06) 

although there was a tendency towards lower doses in greyhounds. As the first four dogs received a 

higher dose than any other dogs, and the anaesthetist was unfamiliar with the TCI system, the 

analysis was repeated with the exclusion of these dogs from the results. This resulted in a mean 

induction dose (± SD) of 3.3 (± 0.6) mgkg-1 for the mixed-breed dogs and a p value between the 2 

groups of 0.717. The mean for the induction dose for the two groups together was then 3.2 (± 0.6) 

instead of 5.5 (± 4.1) mgkg-1.  

 

In studies where the PPF induction followed a premedication similar to the one used in this study 

(acepromazine and an opioid), a dose between 3.3 and 4 mgkg-1 of PPF is necessary to induce 

anaesthesia in less than one min (Bufalari et al., 1998; Lerche et al., 2000). These infusion doses 

are very similar to the one described in this study (with the first four cases excluded). The TCI 

system, although it did not decrease the induction dose of PPF, with a longer induction time of 3.4 

(± 1.6) min, decreased the incidence of apnoea: 1/12 in the actual study (5/16 with first four dogs) 

compared with 4/6 and 6/15 in the studies of Bufalari and Lerche, respectively (Bufalari et al., 

1998; Lerche et al., 2000). Although the decrease in the incidence and duration of apnoea with 

slower injection speed of PPF has also been shown in man (Peacock et al., 1990; Stokes and 

Hutton, 1991; Passot et al., 2002), a study in dogs by Murison (2001) receiving 4 mgkg-1 of PPF 
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over 4 and 30 sec showed different results: longer injection time increased the incidence as well as 

the duration of post-intubation apnoea.  

 

Struys et al. (1998) demonstrated that the amount of PPF required to induce hypnosis in humans 

decreased with age and this has also been shown to be the case in the dog.  Reid and Nolan (1996) 

described the PK profile of PPF given as a bolus to induce anaesthesia in non-premedicated 

geriatric dogs and concluded that these should receive an induction dose of 5 mgkg-1 which is less 

than the manufacturer’s recommended dose of 6.5 mgkg-1 (Datasheet: Propofol; Abbott Animal 

Health). These authors defined geriatric dogs as those over eight years, and on that basis six of the 

sixteen dogs used in this study could be classed as such.  

 

Amongst these 6 dogs, one dog (Dog 11) had an induction target of less than 3 μg ml-1 and two 

dogs (Dogs 9 and 14) had targets set at 3 μg ml-1.  Dog 11 required an increase in target to allow 

intubation and a target of 3 μg ml-1 produced optimum intubating conditions and a good quality 

induction in Dogs 9 and 14.  It is interesting to note that the remaining three geriatric dogs (Dogs 2, 

3 and 4) received the highest induction targets, namely 15, 12 and 6 μg ml-1 respectively, which 

represented an increase in target by factors of five times, four times and double, respectively, over 

that recommended as a result of this study.  Apart from apnoea, the quality of induction in these 

dogs was good and CV parameters (HR and mean ABP) were well maintained, thus demonstrating 

the safety of the TCI system. This would tend to suggest that, while as a general rule, it is safer to 

reduce the target concentration for induction of anaesthesia in healthy geriatric dogs, this might not 

be necessary in some cases where the dogs are healthy. However the numbers on which these 

statements are based were small. 

 

2.4.3 Propofol target concentrations for maintenance 

When mean values obtained in the two groups of dogs were compared, the average target 

concentration used for maintenance was lower in the greyhound group and this was reflected in 

lower total and maintenance infusion rates in this group. 

 

The overall mean maintenance target of 4.1 ± 1 μgml-1 is similar to values seen in humans 

(Davidson et al., 1993; Taylor et al., 1993), although dogs require more PPF for induction and 

maintenance of anaesthesia (Watkins et al., 1987). Although PK differences are most likely to be 

responsible for the greater dose requirement in dogs, the effect of the premedication should also be 

considered. The use of an opioid analgesic in combination with a sedative/tranquillizer for 

premedication is common to both medical and veterinary clinical practice, but the choice of 

sedative component differs. Benzodiazepines which are frequently used in humans, can cause 

excitement in some animals (Hall and Clarke, 1991b) and as a consequence are used less frequently 
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than the phenothiazine tranquilliser acepromazine which has a more predictable sedative effect.  

The combination of acepromazine and either methadone or pethidine could be expected to have 

produced a moderately profound sedative effect.  If these dogs had been premedicated with a 

combination of a benzodiazepine and methadone or pethidine, which would have produced less 

sedative effect, then the required target may have been higher. This would be consistent with 

clinical experience in humans (Chaudhri et al., 1992; Kazama et al., 1998; Olmos et al., 2000) and 

animals (Geel, 1991; Bufalari et al., 1998) which has shown that the type of premedication used has 

a strong influence on the amount of PPF required for induction and maintenance of anaesthesia. 

 

The dogs in this study were all categorised as American Society of Anesthesiologists (ASA) Class 1 

and further work will be required to define appropriate PPF target settings in dogs with significant 

systemic disease. However, since the end of this study, the TCI system developed in this chapter is 

used frequently in the clinic (Flaherty, personal communication, 2007) for “routine” but also for 

more demanding cases such as porto-systemic shunt (Musk and Flaherty, 2007).  

 

The inexperience of the anaesthetist with the system resulted in the use of higher induction and 

maintenance targets in the first four cases. This has also been observed in human patients, where 

inexperienced anaesthetists (Russell et al., 1995; Russell, 1998), although they found the system 

easy to use compared to a manual technique, tended to use higher targets to induce and or maintain 

anaesthesia.  

 

The TCI system was found to be easy to use in dogs, principally because of the similarity of use 

between this equipment and a vaporiser, allowing the depth of anaesthesia to be changed rapidly. 

Any increase in surgical stimulation will require an increase of the depth of anaesthesia (an increase 

of the target concentration) and/or an increase in the amount of analgesia provided. In this study, 

the dental procedure was associated with minimal painful stimulus and consequently where it was 

considered necessary to increase the depth of anaesthesia this was achieved by increasing the target 

concentration. However increasing the target in increments of 1.0 μg ml-1 and/or increasing the 

target to 6.5 μg ml-1 or more was associated with apnoea. Consequently it was decided to limit 

increases in target to 0.5 μg ml-1 increments and to try to keep maintenance targets below 6 μg ml-1 

when spontaneous breathing was desirable.  

 

2.4.4 Maintenance infusion rate 

The average maintenance infusion rate of 0.25 mgkg-1min-1 with TCI was somewhat less than the 

rate of 0.4 mgkg-1min-1 found by Nolan and Reid (1993) when using a manual infusion system of 

PPF to anaesthetise a group of beagle dogs. They used a zero order infusion compared with a 

decreasing order infusion which would normally be used in clinical practice; however the extra PPF 
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required would be offset by the fact that their dogs might have been less heavily premedicated than 

the dogs in the present study. Surgical stimulus was skin incision, compared with dental surgery in 

the present study, and the depth of anaesthesia was similar in both studies. TCI in the dog being 

more economical in terms of PPF consumption than manual infusion is in contrast to findings in 

humans, where some early studies have demonstrated a higher consumption of PPF with the target 

controlled system (Russell et al., 1995; Struys et al., 1997; Servin, 1998).  In these studies, the 

flexibility of the TCI system appears to have encouraged the use of deeper anaesthesia in the TCI 

group, despite the fact that the patients were anaesthetised for procedures where minimal surgical 

stimulus was required. In these studies, TCI system was a new technique for the investigators which 

might have contributed for a lack of titration downwards as they would have done with manual 

infusions, mainly towards the end of the procedure (Servin, 1998). More recently, a study in man 

comparing target versus manually controlled PPF infusion with experienced anaesthetists still 

showed a higher PPF usage in the TCI group (Breslin et al., 2004), while in inexperienced 

anaesthetists, no difference was found in the amount administered and blood concentrations of PPF 

(Rehberg et al. 2007). 

 

2.4.5 Side effects 

A number of adverse effects have been described for PPF in humans (Scott et al. 1988; Bevan, 

1993; Nathanson et al., 1996; van den Berg et al., 2001) and dogs (Davies, 1991; Smith et al., 

1993; Smedile et al. 1996). These include signs of pain at injection, vomiting during recovery, 

excitation, paddling, muscle twitching, and opisthotonos. The incidence of side-effects (apnoea not 

included) with conventional administration of PPF in dogs varies between studies from 7.5% up to 

20% (Hall and Chambers, 1987; Morgan and Legge, 1989; Davies, 1991; Smith et al., 1993; Zoran 

et al., 1993; Quandt et al., 1998; Tsai et al. 2007). In this study only four dogs (dog 1, 5, 7 and 13) 

showed some paddling and/or muscle twitching for a short period of time during anaesthetic 

induction and maintenance or recovery from anaesthesia. No other adverse effects were observed in 

these dogs. Although this still compares well with the literature, the incidence is high (25%). 

Although different explanations have been proposed regarding the origin of these movements 

(Saravanakumar et al., 2005), it is known that they do not originate from the cortex (Borgeat et al., 

1991). A systematic review of seizure-like activity with PPF in man revealed a predominance of 

these phenomena during induction, recovery or delayed after anaesthesia (Walder et al. 2002). 

These authors related this observation to 2 issues: PPF plasma concentration is stable during 

maintenance which implies that the seizure-like activity phenomena tend to occur during changes of 

blood and brain tissue levels of PPF; during maintenance, the level of consciousness is also stable, 

resulting in less cerebral excitation that may serve as a promoter for seizure. An interesting 

observation is that in the actual study, the muscle movements were observed at time when the target 

PPF  plasma concentration was changed, either during the induction and maintenance of 
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anaesthesia (dog 13)  or at the end of the procedure and during the recovery period (dogs 1, 5, 7 and 

13).  

2.4.6 Extubation time 

The different PK observed between greyhounds and other breeds (Robertson et al., 1992; Zoran et 

al., 1993; Hay-Kraus et al., 2000) might explain why,  in the present study, greyhounds received a 

lower infusion rate (0.28 mlkg-1min-1) than the mixed-breed dogs (0.34 mlkg-1min-1) since the PPF 

target was altered in accordance with clinical requirement. The mean measured blood concentration 

of PPF at extubation was also lower in greyhounds than in mixed-breed dogs. However, the 

extubation times in the two groups were not significantly different. These results are different from 

the studies from Robertson and colleagues (1992) and Zoran and colleagues (1993) where the 

greyhounds had a delayed recovery times compared with the mixed-breed dogs. In the present 

study, the PPF target was titrated depending on the patient’s reaction. As a result, the greyhounds 

received less PPF than the mixed-breed dogs for a similar infusion time and a similar surgical 

stimulation. In the studies of Robertson et al. (1992) and Zoran et al. (1993) the greyhounds and the 

mixed-breed dogs received the same infusion protocol for PPF.  Thus the delayed recovery 

observed in greyhounds by these authors may have resulted from relative overdosage.  

The mean measured PPF concentration at extubation for the two groups combined in the present 

study was 1.94 (± 0.5) μg ml-1 and is similar to the value of 2.3 μg ml-1 reported by Reid and Nolan 

(1993) in beagles given a manual infusion.  

 

2.4.7 Evaluation of the performance of the TCI system 

Variation of measured concentrations of PPF in blood compared with the target concentration is 

inevitable during TCI and this is illustrated in Figures 2.1 to 2.3 which demonstrate this in the best, 

the average and the worst case. The principal source of this error is likely to be related to 

differences between the PK parameters used to programme the system and the elimination and 

clearance of PPF in individual animals.  In addition, PK variability relating to haemodynamic 

changes occurring during anaesthesia as a result of the use of adjunctive drugs (Swinhoe et al., 

1998) may have contributed. In order to evaluate the predictive performance of computer-controlled 

infusion pumps Varvel et al. (1992) described the use of two performance indices, MDPE%, a 

measure of bias, and the MDAPE%, a measure of inaccuracy. A negative bias indicates that 

measured values are lower than predicted by the TCI system and a positive bias is associated with 

measured values greater than predicted.  The tendency in the group as a whole was for  negative 

bias (MDPE -3.05%) with a greater  figure in the greyhound group (MDPE -12.47%) and a small 

positive bias  in the mixed-breed dogs (MDPE 1.56%) as a consequence of a range of values that 

demonstrated positive or negative bias in an equal number individual animals.  
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The rationale for splitting the dogs into a mixed-breed group and a greyhound group was that lower 

values for total body clearance of PPF have been described in greyhounds compared with mixed-

breed dogs (Zoran et al., 1993), and this could affect the performance of the TCI system in this 

breed. With a reduction in PPF clearance, an increase in positive bias might be expected.  In fact 

there was a trend towards a greater degree of negative bias in the greyhound group although this 

was statistically insignificant and the accuracy (MDAPE%) for all dogs and for each group taken 

separately was similar.  

The results obtained in the two groups of dogs depend on the choice of the parameters used to 

programme the TCI system. But for V1 (central compartment) and k10 (elimination rate constant), 

the parameters are the same as those described in beagles (Cockshott et al., 1992). Caution in 

interpreting possible differences between Greyhounds and mixed-bred dogs is also required in view 

of the smaller number of animals studied and the fact that this was not a randomised comparative 

study.  

 

In human studies, it has been proposed that the performance of a TCI system can be considered 

clinically acceptable when the bias (MDPE%) is not greater than +/-10-20% and when the accuracy 

(MDAPE%) is between 20 to 40% (Schuttler et al., 1988). The median values obtained in our two 

groups together or taken separately fall within these ranges. Furthermore, this study showed, with 

the relatively small degree of wobble and divergence observed in the two groups, that the bias and 

inaccuracy remained fairly constant with time. We conclude that the PK model selected for TCI 

infusion of PPF in dogs was clinically acceptable in both mixed-breed dogs and greyhounds. 

However, while an evaluation of predictive performance is important when comparing different 

systems, measurement of bias and accuracy are of little clinical value when individual PK variation 

between animals is likely to be a feature. Accordingly there will always be the necessity to titrate 

the target concentration of PPF to effect in each individual dog. 
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2.5 Conclusions 

The objectives of this study were, firstly, to devise an optimum target concentration regime for 

induction and maintenance of anaesthesia and, secondly, to assess the predictive performance of the 

prototype system by comparing the PPF concentrations predicted by the system with the measured 

PPF concentrations in venous blood samples taken at various time points during anaesthesia. An 

initial PPF target setting of 3 µgml-1 proved an optimum starting point for induction of anaesthesia 

and maintenance was achieved with target concentrations in the range of 3-6 µgml-1. The system 

proved acceptable in terms of predictive performance and once it was obvious that lower targets for 

induction of anaesthesia in the dog were adequate to produce a stable plane of anaesthesia and 

avoid prolonged apnoea, the anaesthetist quickly became familiar and confident with the technique. 

The anaesthetist can alter the depth of anaesthesia rapidly and effectively with no apparent adverse 

effects on the CV or respiratory systems. 

 

The total number of dogs studied with TCI is small and further studies will be required to look in 

more detail at the influence of breed, age, physical condition, premedication and supplementary 

analgesic agents on the target PPF concentrations required for particular diagnostic and surgical 

procedures. 
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3.1 Introduction 

During propofol (PPF) based total intravenous anaesthesia (TIVA), other drugs are commonly co-

infused in order to produce satisfactory surgical conditions. Combinations of intravenously 

administered drugs may result in drug-drug interactions (see chapter 1). Briefly, pharmacokinetic 

(PK) interactions mostly take place at the level of biotransformation, in the liver (Benet et al., 

1996). To study these possible interactions, either in vitro or in vivo studies can be undertaken. 

Because of risk, cost and time efficiency as well as offering the advantage of investigating the 

ability of a drug to inhibit the metabolism of other drugs, in vitro studies are preferred 

(Venkatakrishnan et al., 2003). They require the use of a liver preparation amongst which, sub-

cellular fractions, consisting in the main of cytochrome P450 (CYP) microsomal enzymes, offer the 

advantage of being easy to produce with a high reproducibility (Gibson and Skett, 1994a).  

 

Microsomal preparations have been used to demonstrate that PPF can be a CYP inhibitor in man as 

well as in animals (Gepts et al., 1988; Janicki et al., 1992; Baker et al., 1993; Correia, 1994; Chen 

et al., 1995a, 1995b; McKillop et al., 1998; Miller and Park, 1999; Naoya et al., 1999; Gemayel et 

al., 2001; Lejus et al., 2002; Inomata et al., 2003; Yang et al., 2003; Osaka et al., 2006). It has also 

been demonstrated that the metabolism of PPF can be either enhanced by some drugs such as 

ketamine (Chan et al., 2006) or inhibited by agents such as fentanyl, ketoprofen, enalapril, 

oxazepam and chloramphenicol in man (Le Guellec et al., 1995) and 1-amynopyrine (Correia, 

1994) or PPF itself  (Yamazaki et al., 2006) in rats.  

 

Medetomidine (MED)  and its enantiomers dexmedetomidine (DEX) and levomedetomidine (LEV) 

are imidazole derivatives and have been reported as highly potent CYP inhibitors during in vitro 

and in vivo studies in man with alfentanil (Kharasch et al., 1991) and ketamine (Kharasch et al., 

1992) metabolism as well as in rats with different substances (Pelkonen et al., 1991) and more 

recently in fish  (Lennquist et al., 2008). In human tissues, the highly inhibitory effects of MED 

and its enantiomers have been demonstrated on a specific CYP, CYP2D6 (Rodrigues and Roberts, 

1997).  

In microsomal preparations from rats, Correia (1994) reported the inhibitory effect PPF and 

amiopirine had on each other illustrating either true competitive inhibition or feedback inhibition. 

Medetomidine and its enantiomers are both potential CYP inhibitors. To the author’s knowledge, 

no studies have yet described the interaction between PPF and the racemate MED or its 

enantiomers, DEX and LEV, in any species.  The potential effect of these alpha2-adrenoceptor 

agonists on the metabolism and PK profile of PPF is of particular relevance since the predictive 

performance of the target controlled infusion (TCI) system for PPF is dependent on the accuracy of 

the PK parameters used to programme the infusion pump. Consequently, it was considered relevant 
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and timely to study the potential for metabolic interaction between MED and PPF, which might 

influence their administration when used for TIVA in vivo. 

3.1.1 Goal of the study  

To study in vitro the possible inhibitory effect of MED and its enantiomers on canine and rat 

hepatic cytochrome P450. 

3.2 Materials and Methods 

 

3.2.1 Animals 

Ten healthy adult male Wistar rats, weighing about 400-450 grams, were used for the preparation 

of hepatic microsomes. Canine hepatic microsomes were prepared from eight healthy beagles (four 

males and four females), aged 1-3 years and weighing around 20 kg, which had been euthanized 

using lethal injection (pentobarbitone sodium). These rats and dogs were not killed for the purpose 

of this study, but were control animals from other ongoing investigations.  

 

3.2.2 Isolation of hepatic microsomes 

3.2.2.1 Rats 

Following the methods described by Rutten et al. (1987) and Correia (1994) for the isolation of the 

microsomes, the rats were killed by cervical dislocation. After opening of the body cavity, the 

portal vein was catheterised and ice-cold normal saline was infused. Thereafter, the liver was 

removed, detached from the abdominal cavity and set free from any remaining connective tissue. 

Livers were weighed, sliced and then homogenised in a volume of KCl 1.15% equivalent to 3 times 

their weight in a Potter-Elvehjem glass Teflon homogeniser (6 complete passes with the pestle). 

The liver homogenate was then centrifuged at 9000g for 20 min (Beckman J2-21 Centrifuge). The 

floating fat layer was removed using a Pasteur pipette. The supernatant was decanted in Beckman 

Ultra-Clear tubes (California, USA). Following centrifugation at 10,500g for 75 min (Beckman L8-

70M Ultracentrifuge), the supernatant (cytosolic fraction) was then discarded and the precipitate 

(microsomal pellets) was resuspended using 15 ml of Tris Buffer (0.1 M; pH 7.4) containing 

glycerol 20% (v:v), using an Ultra-turrax (Janke and Kunkel GmbH and Co, Germany). The 

suspension was divided in aliquots of 1 ml and stored at -70˚C until the incubation assays were 

performed. 
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3.2.2.2 Dogs  

A piece of the liver was removed (about 300 grams), washed in ice-cold saline and treated as 

described for the rats. As the dogs were not euthanized on site, the preparation of the canine hepatic 

samples was delayed by one hour, the time necessary for the transportation of the liver slices. 

During that time, the samples were stored in dry ice.   

 

All chemicals were purchased from Sigma-Aldrich Company Ltd, Poole, Dorset, England, unless 

stated otherwise. Potassium Chloride (KCl) 1.15% was made in distilled water. A 0.1 M Tris 

Buffer solution in glycerol 20% (v:v) with a pH of 7.4 was prepared from a mixture of Trizma® 

Base and Trizma® Hydrochloride. 

 

All the instruments (tubes, homogeniser, chopping knife, and the centrifuge rotors) and solutions 

used for the preparation of the microsomes were stored in melting ice (0˚C) for about 30 min before 

use. 

3.2.2.3 Protein content 

The protein content of the microsome preparations was determined using the Coomassie Blue 

protein assay reagent calibration curve, calculated before each essay using BSA (Bovine Serum 

Albumin). Using this curve, the protein content of diluted (x 5000) microsomal suspensions was 

determined and the result corrected according to the dilution factor, in order to calculate the protein 

concentration in the original samples. Each measurement was performed in duplicate. 

The mean (± SD) protein concentrations in the rat and canine hepatic microsomal preparations were 

18.88 (± 1.55) and 17.89 (± 4.88) mgml-1, respectively. 

3.2.3 Propofol study 

3.2.3.1 Incubation mixture 

 All solutions and ingredients were stored at 4 ˚C. 

 

Cytochrome activation is dependent on the presence of NADPH (nicotinamide adenine 

dinucleotide phosphate) throughout the whole incubation period (Gibson and Skett, 1994b).  

NADPH was obtained by mixing NADP+ (1 mM), β-Nicotinamide (0.5 M), Isocitrate 

Dehydrogenase (0.2 units ml-1), Mg Cl (0.15M) and Trisodium isocitrate (15m M), made up to a 

volume of 20 ml by adding Tris Buffer (0.1 M; pH 7.4) containing glycerol 20% (v:v). This 

incubation mixture was prepared before each assay except for the addition of NADP+ which was 

added immediately before the start of the incubation, to avoid early breakdown and disappearance 

of the freshly generated NADPH. Each assay used 1 ml of solution.  
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Inactivated microsomes were also prepared by heating (70-100 ˚C) the microsomal samples for 10 

min (Correia, 1994). 

3.2.3.2 Time course pilot study 

A pilot study was undertaken to evaluate the time course of PPF degradation by hepatic 

microsomes from the rat and the dog, using microsome samples from six animals of each species.  

 

Propofol degradation was investigated using six incubation times (0, 5, 10, 15, 30 and 45 min) and 

four different doses of PPF (2.5, 5, 7.5 and 10 μgml-1) in each microsomal preparation.  

Microsomes were diluted to a working protein concentration of 0.5 mgml-1 (Guitton et al., 1998).  

For each dose of PPF and each animal, seven tubes in duplicate were prepared. These consisted of 

one tube with PPF and inactive microsomes and six tubes with PPF and active microsomes (6 

incubation times). The tube with the inactive microsomes was incubated for 45 min. to assess any 

extra microsomal drug degradation and drug stability. 

  

All the tubes consisted of PPF in methanol (volume between 100 and 200 μl), co-factor solution 

microsomes (1 ml), made up to a final volume of 1.5 ml with Tris buffer. After an incubation 

period of 2 min, activated or inactivated microsomes (0.5 ml) were added (final incubation volume 

2 ml). Incubations were performed aerobically at 37˚C in a shaking water bath (Grant Instruments 

Ltd, Cambridge) with a shaking speed of 120 cycles min-1. Enzyme activity was stopped by putting 

the samples in iced water for 5 min. Thereafter the mixtures were transferred to 10 ml reagent free 

plastic tubes (Sarstedt Ltd, Leicester, UK) and stored a -20˚C until drug analysis was performed, 

usually within one week of incubation.  

3.2.3.3 Study of the effect of medetomidine and its enantiomers on 

propofol metabolism in rat and dog microsomes.  

Standard solutions (1000 μgml-1) of MED, DEX and LEV (Orion Corporation, Orion PHARMA 

ANIMAL HEALTH, Turku, Finland) were prepared in distilled water and stored at 4˚C. For this 

study, a concentration of PPF of 2.5 μgml-1 was used. This study was performed in rat microsomal 

preparations (n = 6) and dog microsomal preparations (n = 6). 

 

In the rat for MED, DEX and LEV and in the dog for MED, ten samples in duplicate were studied 

(PPF and inactivated cytochrome, PPF and active cytochrome with 0, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 

3 and 10 μM of either MED, DEX or LEV). In the dog, for DEX and LEV, an additional sample 

was added: 0.001 μM. The preparation and the incubation methods were the same as described for 

the pilot study. The incubation time was 15 min. The volume of MED, DEX and LEV added to the 

tubes varied between 50 and 140 μl.  
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3.2.3.4 Propofol analysis. 

Propofol was analysed by high performance liquid chromatography (HPLC) with fluorescence 

detection as described in Chapter 2 (2.2.5).  

The mean (± SD) percentage recovery of PPF from microsome standards (0.5-10 μgml-1) was 90.14 

± 8.3% with a coefficient of variation of 9.17%. 

 

Extraction of PPF from spikes and samples 

Propofol was extracted from microsomes following the method described by Plummer (1987) (See 

2.2.5).  

3.2.4 Medetomidine, dex- and levomedetomidine analysis 

The MED, DEX and LEV stock solutions were analysed regularly to ensure the stability of the 

solutions. This was done using high performance liquid chromatography (HPLC) with UV 

detection according to the method described by Őrn et al. (1990).  

 

Chromatography was carried out using a Shimadzu HPLC system (Shimadzu Corporation 

Analytical Instruments Division, Kyoto, Japan). The samples were chromatographed on a chiral 

AGP column (Chrom Tech, Sweden) connected to a UV spectrophotometer (Shimadzu Corporation 

Analytical Instruments Division, Kyoto, Japan). The excitation wavelength of the detector was set 

at 220 nm. The mobile phase consisted in a mixture of a phosphate buffer (0.03 M, pH 5.1) and 

Acetonitrile (AcCN, 100%) at a ratio of 0.9/0.1. The results were integrated on a PC (Reeve 

Analytical L2700, Glasgow, Scotland).  

 

3.2.5 Statistical analyses 

IC50 (the concentration of MED, DEX or LEV inducing 50% of the maximum inhibition) and ICMax 

(the concentration of MED, DEX or LEV inducing maximum inhibition) were calculated for PPF 

metabolism fitting a curve to the data using a logistical equation (Origin 6.1; Microcal Software, 

Inc., Northampton, USA.):             

     Y =       A1-A2      +A2              

Where  x0 is the centre            1 + (X / X0)p 

p is the power     

 A1 is the initial Y value 

 A2 is the final Y value 

 The Y value at X0 is half way between the two limiting values A1 and A2: 

 Y(X0) = (A1 + A2)/2 
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 Statistical analysis consisted in repeated measures ANOVA (General Linear Model) for dose effect 

in each group as well as to compare IC50 values between MED, DEX and LEV in each species. 

Differences were considered significant when p < 0.05. One way ANOVA was used for 

comparison of IC50 values between MED, DEX and LEV between species. 

3.3 Results 

 

3.3.1 Pilot study:  Effect of propofol concentration on rat and canine 

hepatic microsomal activity 

Metabolism of PPF was rapid and was faster in the dog than in the rat. In rats, 17, 26, 19 and 32% 

of PPF (10, 7.5, 5 and 2.5 μgml-1, respectively) was broken down after 15 min incubation. In dogs, 

21, 28, 26 and 63% of PPF (10, 7.5, 5 and 2.5 μgml-1, respectively) was eliminated after 15 min 

incubation. For both species, the speed of metabolism was inversely proportional to the initial PPF 

concentration (Figures 3.1 and 3.2) and the 2.5 µgml-1 was selected as the working PPF 

concentration for the dose effect study. Fifteen min incubation time was chosen for the dose-

response study (see 3.3.2) as by that time a fair amount (20 – 77%) of the PPF (2.5 µgml-1) had 

already disappeared.  
 

3.3.2 Effect of medetomidine, dex- and levomedetomidine on rat and 

canine hepatic microsomal activity  

The addition of MED, DEX or LEV to PPF (incubated) with rat and canine hepatic microsomes 

resulted in a dose-dependent inhibition of PPF metabolism (Figures 3.3 to 3.6). Propofol working 

solution was 2.5 µgml-1 and the incubation time 15 min.  

 

In rat and dog hepatic microsomes, doses as low as 0.023, 0.07 and 0.023 μgml-1 of MED, DEX 

and LEV, respectively, induced a significant inhibition (p < 0.05) of PPF degradation. The IC50 

(50% of the maximum inhibitory concentration) for MED and its enantiomers in the two species 

are shown in Table 3.1. 

 

In rat hepatic microsomes, the only significant difference in the IC50 occurred with DEX which was 

higher than LEV (p = 0.029). The difference between MED and DEX almost reached significance 

(p = 0.067).  In dog hepatic microsomes, the IC50 was significantly higher with DEX than with 

MED and LEV (p ≤ 0.002). No significant difference was observed (p > 0.05) in the IC50 values, 

when comparing MED, DEX and LEV between the two species,  
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Figure 3.1 

Degradation of propofol (PPF) concentrations (10, 7.5, 5 and 2.5 μgml-1) over time in rat hepatic 

microsomes. At each time point, the mean value of two propofol determinations was calculated. 

Each point is the mean (± SD) PPF concentration from microsomes of 6 rats. 
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Figure 3.2 

Degradation of propofol (PPF) concentrations (10, 7.5, 5 and 2.5 μgml-1) over time in dog hepatic 

microsomes. At each time point, the mean value of two PPF determinations was calculated. Each 

point is the mean (± SD) PPF concentration from microsomes of 6 dogs. 
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Figure 3.3 

The effect of medetomidine (μgml-1) on propofol (PPF) (2.5 μgml-1) metabolism in rat (n = 6) 

hepatic microsomes over an incubation period of 15 min. IC50 = 0.072 (± 0.017) µgml-1. Each point 

is the mean (± SD) PPF concentration from microsomes of 6 rats. 

IC50 = concentration of drug necessary to inhibit PPF metabolism by 50% (as predicted by the 

equation, using Origin 6.1; Microcal Software, Inc., Northampton, USA). 

a = significant difference from the control sample (p ≤ 0.0006). 
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Figure 3.4 

The effect of dexmedetomidine (DEX) and levomedetomidine (LEV) (μgml-1) on propofol (PPF) 

(2.5 μgml-1) metabolism in rat (n = 6) hepatic microsomes over an incubation period of 15 min. 

DEX and LEV IC50 = 0.11 (± 0.016) and 0.05 (± 0.013) µgml-1, respectively. Each point is the 

mean (± SD) PPF concentration from microsomes of 6 rats. 

IC50 = concentration of drug necessary to inhibit PPF metabolism by 50% (as predicted by the 

equation, using Origin 6.1; Microcal Software, Inc., Northampton, USA). 

a = significant difference from the control sample for DEX (p ≤ 0.0036). 

b = significant difference from the control sample for LEV (p ≤ 0.0001). 
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Figure 3.5 

The effect of medetomidine (μgml-1) on propofol (PPF) (2.5 μgml-1) metabolism in dog (n = 6) 

hepatic microsomes over an incubation period of 15 min. IC50 = 0.04 (± 0.001) µgml-1. Each point 

is the mean (± SD) PPF concentration from microsomes of 6 dogs 

IC50 = concentration of drug necessary to inhibit PPF metabolism by 50% (as predicted by the 

equation, using Origin 6.1; Microcal Software, Inc., Northampton, USA). 

a = significant difference from the control sample (p ≤ 0.002). 
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Figure 3.6 

The effect of dexmedetomidine (DEX) and levomedetomidine (LEV) (μgml-1) on propofol (PPF) 

(2.5 μgml-1) metabolism in dog (n = 6) hepatic microsomes over an incubation period of 15 min. 

DEX and LEV IC50 = 0.1 (± 0.005) and 0.03 (± 0.002) µgml-1, respectively. Each point is the mean 

(± SD) PPF concentration from microsomes of 6 dogs. 

IC50 = concentration of drug necessary to inhibit PPF metabolism by 50% (as predicted by the 

equation, using Origin 6.1; Microcal Software, Inc., Northampton, USA). 

a = significant difference from the control sample for DEX (p ≤ 0.0001). 

b = significant difference from the control sample for LEV (p ≤ 0.0001). 
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  MED DEX LEV 

Rat hepatic 

microsomes 
IC50 

0.072 µgml-1 
(0.3 μM) 

0.11 µgml-1 
(0.5 μM) 

0.05a µgml-1 
(0.21 μM) 

Dog hepatic 

microsomes 
IC50 

0.04b µgml-1 
(0.17 μM) 

0.1 µgml-1 
(0.41 μM) 

0.03b µgml-1

(0.13 μM) 

 

Table 3.1 

Comparison of IC50 for medetomidine (MED) and enantiomers (µgml-1 (and µM)) on propofol 

(PPF) (2.5 µgml-1) metabolism in rat (n = 6) and dog (n = 6) hepatic microsomes. 

IC50 = concentration of drug necessary to inhibit PPF metabolism by 50% (as predicted by the 

equation, using Origin 6.1; Microcal Software, Inc., Northampton, USA). 

a = significant difference in rat hepatic microsomes from DEX (p = 0.029). 

b = significant difference in dog hepatic microsomes from DEX (p ≤ 0.002). 

DEX = dexmedetomidine 

LEV = levomedetomidine 
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3.4 Discussion 

In the dog and man, PPF is metabolised principally by glucuronidation but also in part through 

CYP dependent phase 1 biotransformation (Guitton et al., 1998; Court et al., 1999); hence the 

choice of microsomal preparations for this study.  Microsomal preparations are simple to produce 

and maintain their quality for up to one year if stored at –80˚C (Court, personal communication, 

2002) and in this study the prepared microsomes were stored at –80˚C and used within six months. 

However, the initial quality of the enzymes can be affected by several factors, including  the 

presence of underlying illness in the donor and the cause of death,  as well as the time between 

harvesting and freezing (Venkatakrishnan et al., 2003).  

Both rat and dog hepatic microsomes used in this study were from healthy control animals being 

used in another study, and were killed either by neck dislocation (rats) or with a single injection of 

pentobarbitone in case of the dogs. Although hepatic CYP microsomal enzymes have been induced 

by the chronic exposition to pentobarbital in humans (von Bahr et al., 1998) and in dogs (Kawalek 

et al., 2003), it is unlikely that a single injection of the pentobarbitone administered just before 

death would have any effect on the CYP of the dog hepatic microsomes used in this study. 

However, because the dogs were not killed on site, there was an inevitable delay between 

harvesting the dog liver samples and freezing the microsomal preparation, but this was kept to a 

minimum and the liver samples transported in dry ice to limit post-mortem change.  

 

In the pilot study, PPF concentrations of 2.5, 5, 7.5 and 10 µgml-1 were investigated as they reflect 

a range of blood PPF concentrations that could be expected during the clinical use of a PPF-based 

TIVA technique. This was considered important because the use of supratherapeutic drug 

concentrations may produce drug interactions in vitro which would not rise in vivo (Chen et al., 

1995b).  

 

The degradation of PPF was faster when the lowest concentration of drug (2.5 μgml-1) was used, 

compared with those that were higher.  It is possible that the lower concentration allowed a better 

contact with CYP enzymes and consequently faster degradation.  Alternatively, since PPF itself has 

been shown to inhibit CYP, the higher concentrations of PPF might have decreased the enzymatic 

activity. In 1994, Correia showed the inhibitory effect of increasing concentrations of PPF (5-100 

µgml-1) on the rat hepatic microsomal enzymatic system responsible for the N-demethylation of 

amiopyrine.  Other studies  reported the inhibitory effects on the CYP for different substrates by 

PPF concentrations of 1-100 μgml-1, 10-50 µgml-1, 1-400 μgml-1 in rats, hamsters and humans 

respectively (Baker et al., 1993; Chen et al., 1995b; McKillop et al., 1998; Inomata et al., 2003; 

Osaka et al., 2006). More specifically it has been demonstrated that, in humans, the IC50 for PPF 

inhibition in vitro of CYP1A2, CYP2C9, CYP2D6 and CYP3A4 is 7.1, 8.75, 38 and 2.75 μgml-1, 

respectively (McKillop et al., 1998; Yang et al., 2003) and of these CYP1A2 at least has been 
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identified as being present in the dog (The International Centre for Genetic Engineering and 

Biotechnology, www.icgeb.trieste.it/, 2001). Propofol concentrations of 5-10 μgml-1 used in this 

study fall within the ranges that have been shown to cause CYP inhibition in other species which 

lends weight to the hypothesis that CYP inhibition by PPF may have caused the decrease in 

degradation of PPF seen at these higher concentrations. Yamazaki and colleagues (2006) reported 

the inhibitory effect of PPF on its own metabolism in rat, through an action on CYP 2C11 liver 

microsomes.  

  

Accordingly, PPF, 2.5 μgml-1 seemed the most appropriate concentration to use in the investigation 

of possible interaction between PPF and MED, DEX and LEV. This is slightly lower than the range 

of PPF blood concentrations that has been reported as necessary to induce and maintain anaesthesia 

in the dog, namely 3.31 to 13.79 µgml-1 (Simons et al., 1991a; Nolan and Reid, 1993; Hall et al., 

1994; Mandsager et al., 1995). However, the concentration of PPF required to maintain anaesthesia 

depends on a variety of factors including the choice of drugs used for premedication (see Chapter 

2). In Chapter 2, the PPF blood target concentration required to maintain anaesthesia during dental 

when the dogs were premedicated with a mixture of acepromazine and methadone or pethidine was 

around 4 µgml-1 (4.2 µgml-1 actual PPF blood concentration).  However, MED premedication 

causes more sedation than acepromazine/methadone or acepromazine/pethidine and has been 

shown to decrease PPF induction and maintenance doses by  50 to 75%  (Cullen and Reynoldson, 

1993). Consequently, a PPF concentration of 2.5 µgml-1 was considered to be a reasonable estimate 

of what might be required in dogs undergoing mild to moderate surgery when anaesthesia was 

maintained with  a TIVA technique combining  PPF and either MED or DEX infusions.  

 

Unfortunately, no information exists regarding the correlation between PPF plasma concentration 

and the concentration at the site of the enzyme system, namely the liver. In rats, it has been shown 

that the hepatic concentration was up to four times greater than the plasma concentration for the 

first 15 min after bolus injection and equal thereafter (Simons et al., 1991b). Although it could be 

argued that PPF, which is 98% bound to plasma protein, might be less concentrated in the liver, 

Servin and colleagues (1988) showed that the extent of protein binding was unlikely to influence 

the metabolism of a drug with high hepatic extraction such as PPF. 

 

Although the speed of PPF metabolism can vary between species and even between breeds 

(Correia, 1994; Court et al., 2001), in this study, with the exception of when the initial PPF 

concentration was 2.5 µgml-1,  the amount of PPF metabolised at 15 min (Figures 3.1 and 3.2) 

seems to be the same in rat and in dog hepatic microsomes.  However, with an initial concentration 

of 2.5 µgml-1, more PPF was metabolised in dog (63%) than in rat (32%) hepatic microsomes at 15 

min. Since the purpose of this work was to investigate infusion schemes in the dog, an incubation 

time of 15 min was chosen because a substantial percentage of the PPF was metabolised by that 

http://www.icgeb.trieste.it/�
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time when the concentration was 2.5 µgml-1. Other studies have used similar incubation times: 10 

min in dog and human tissues (Court et al., 1999; Hay Kraus et al., 2000; Court et al., 2001) and 15 

min in rat and sheep tissues (Correia, 1994).  

 

To estimate the speed of enzymatic reaction, the simplistic enzyme kinetic model of Michaelis-

Menten can be used (Venkatakrishnan et al., 2003). This model is characterised by a hyperbolic 

concentration (substrate)-velocity (rate of transformation) function. However the present study was 

not designed to estimate Vmax (the velocity) and Km (the Michaelis-Menten constant) and 

therefore a difference in the speed of metabolism for PPF between the two species could not be 

confirmed. Studies in humans have shown a great variability between liver samples from different 

individuals and speed of PPF degradation (Guitton et al., 1998; Court et al., 2001). In dogs, two 

studies have looked at Vmax and Km and found some variability between breeds, within a breed, 

and between sexes (Court et al., 1999; Hay Kraus et al., 2000). These results, for both humans and 

dogs, might explain why in this study, the amount of PPF degraded by the rat hepatic microsomes 

was less than that  found in the study published by Correia (1994). In this study hepatic 

microsomes from Wistar rats were used and Correia (1994) mentioned that the microsomal system 

from these rats seemed slower in the degradation of PPF than hepatic microsomes from Sprague 

Dawley rats.  Other explanations for the observed difference might come from different conditions 

during harvesting and preparation of the liver extracts as well as during the metabolism studies, 

although the protocols were very similar.  

 

Imidazole derivatives are known to be inhibitors of microsomal oxidative drug metabolism 

(Wilkinson et al., 1974) and in this regard  are often described as potent and non-selective 

inhibitors of CYPs (Testa and Jenner, 1981). They have been shown to inhibit a number of CYP 

families, including CYP1A, 2A, 2B, 2C and 3A, which confirm their non-selectivity (Kharasch et 

al., 1991; Pelkonen et al., 1991; Rodrigues and Roberts, 1997). The mechanism for their inhibitory 

effects is believed to be a direct and reversible interaction with the ferricytochrome heme, an 

important constituent of the CYP enzyme system (Wilkinson et al., 1974; Kharasch et al., 1992; 

Rodrigues and Roberts, 1997). Of all imidazole derivatives, those that are N-substituted are 

considered to be the most potent inhibitors of CYPs (Kharasch et al., 1991), with IC50 values in the 

submicromolar range. The present study confirms the work of Karrash et al. (1991) in that DEX 

and LEV are highly potent inhibitors of PPF metabolism, despite the fact that they are not N-

substituated imidazole but only 4(5)-substituted imidazoles.   

 

There was a significant difference (p < 0.05) in the IC50 values of DEX and LEV in rat and in dog 

hepatic microsomes; a difference which was noted in earlier studies in humans and  rats (Pelkonen 

et al., 1991; Kharasch et al., 1991, 1992). This difference in inhibition between chiral imidazoles is 



Thierry Beths, 2008  Chapter 3, 86 

 

not uncommon, for example, inhibition of adrenal steroidogenesis occurs only with the d-isomer of 

etomidate  (Kharasch et al., 1992). 

 

Nevertheless, it is important clinically that although both DEX and LEV have been shown to be 

inhibitors of CYPs, only DEX has analgesic and sedative efficacy. Accordingly, LEV has no place 

in the overall aim of this project, which was to develop a system for the administration of the 

hypnotic PPF, by TCI, with co-infusion of an analgesic supplement, either the alpha2-adrenoceptor 

agonist MED or its enantiomer DEX.  

 

In the dog, the plasma concentrations of MED and DEX required for analgesia are believed to be 

around 2-9 ngml-1 and 0.7 ngml-1, respectively (Salonen, 1991; Kuusela et al., 2000; Granholm, 

personal communication, 2003). In this study, the IC50 for MED and DEX in dogs was 0.04 μgml-1 

(40 ngml-1) and 0.1 μgml-1 (100 ngml-1), respectively. These concentrations are about 4 to 20 

(MED) and 143 (DEX) times higher that their reported minimum analgesic plasma concentrations, 

and therefore it is likely that neither MED nor DEX will have an inhibitory effect on PPF 

metabolism when they are co-infused with PPF at a rate derived to achieve analgesia.  Moreover, as 

MED and DEX are 85% protein bound in the plasma, their hepatic concentration might not be as 

high as their analgesic plasma concentration. In a study looking at the effect of DEX on amiopyrine 

in rats, Pelkonen and colleagues (1991) showed that although the alpha2-adrenoceptor agonist had a 

high inhibitor potency in vitro (IC50 = 5.2 μM), doses up to 100 μgkg-1 in vivo, corresponding to an 

intrahepatic concentration of  more than 5 μM, had no significant inhibitory effect. 

 

This notwithstanding, if  DEX and or MED were to be present in vivo in sufficient concentrations 

to affect the metabolism of PPF through inhibition of the hepatic CYP enzyme system, the fact that 

this is not the sole metabolic pathway for PPF might minimize its impact.  Direct glucuronidation 

might compensate for any decrease in hepatic CYP efficacy, as might extrahepatic metabolism, 

such as that demonstrated during the anhepatic phase of liver transplantation in human (Veroli et 

al., 1992).  

 

In conclusion, this study demonstrated that in vitro PPF metabolism was impaired, dependent on 

dosage, by MED and its enantiomers DEX and LEV. However in vitro studies are acknowledged as 

valuable qualitative but not quantitative predictors of in vivo interactions.  Accordingly, on the 

basis of the results presented, it is not possible to make quantitative predictions regarding the 

possible effect of MED and DEX on PPF metabolism in vivo and subsequently on the performance 

of the PPF TCI system. However, the lower therapeutic potency of MED and the fact that it appears 

to have a greater potential for drug interaction, support the further clinical development of DEX in 

preference to the racemate as an adjunct to PPF TCI. 
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DOSE RESPONSE STUDY OF THE CARDIO-RESPIRATORY 

EFFECTS OF MEDETOMIDINE IN DOGS ANAESTHETISED 

WITH A TARGET CONTROLLED INFUSION OF PROPOFOL. 
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4.1 Introduction 

Medetomidine (MED), an alpha2-adrenoceptor agonist, has been on the shelves of small animal 

practices for more than 15 years. It is mainly used in dogs for its sedative, anxiolytic and 

anaesthetic-sparing effects. However, this drug, like other drugs of its class, induces significant 

cardiovascular (CV) side effects, mainly hypertension, bradycardia, cardiac arrhythmias and 

decreased cardiac output (CO) (Hall and Clarke, 1991b).  

 

4.1.1 Cardiovascular effects of Medetomidine  

4.1.1.1 Arterial Blood pressure (ABP) 

The effect of the alpha2-adrenoceptor agonists on arterial blood pressure (ABP) is variable. In 

humans, clonidine was first used as an antihypertensive agent (Kamibayashi and Maze, 2000). 

Dexmedetomidine (DEX), the active enantiomer of MED introduced in 1999 in the US (Nelson et 

al., 2003), is used perioperatively and in the ICU setting because of its anxiolytic, analgesic and 

anaesthetic sparing properties. Although it is also used for its sympatholytic and haemodynamic 

stabilising effects (Paris and Tonner, 2005; Mukhtar et al., 2006), studies have presented diverse 

results concerning its effect on ABP : both hyper- and hypotension have been described (Bloor et 

al., 1992; Talke et al., 1995; Dutta et al., 2000; Venn et al., 2003). 

 

In dogs, similar results have been reported with the use of MED. Its effect on ABP is usually 

described as biphasic (Hall and Clarke, 1991b; Pypendop and Verstegen, 1998; Talke, 2000). First, 

an increase of ABP is observed, followed by a progressive diminution, leading to a return to pre-

injection values or even a reduction below baseline values. The first phase is considered to be a 

consequence of the stimulation of postsynaptic alpha2-adrenoceptors present in the smooth muscle 

of the vascular bed (peripheral effect), while the second phase occurs following activation of 

alpha2-adrenoceptors located on presynaptic terminals of the postganglionic nerve fibres 

innervating vascular smooth muscle (peripheral effect) and an increase in vagal activity (central 

effect) (Guimaraes and Moura, 2001). However, in clinical cases, the two phases are not so well 

defined, and the effect of MED on ABP is mixed with evidence suggesting that with increasing 

plasma concentration of MED, peripheral effects predominate, leading to increased ABP 

(MacDonald and Virtanen, 1991).  

 

Pypendop and Verstegen (1998) carried out a dose response study (range 1–20 μgkg-1) for MED 

given intravenously (IV) to conscious beagles. They reported that at doses of 2 μgkg-1 and lower, 

increase in the ABP was not observed, but instead a decrease from the baseline, which was not 

considered as hypotension (mean ABP < 60 mmHg) by the authors. Increasing doses up to 20 
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μgkg-1 resulted in a significant increase in ABP but they failed to determine a maximum effect. 

They concluded that small doses of MED might have more of a central effect resulting in a 

decrease in heart rate (HR) and ABP without the peripherally mediated hypertensive phase 1. 

Similar results were found in awake man with decreasing plasma concentration of DEX (Ebert et 

al., 2000). In a more recent study using different plasma concentrations of DEX (0.075 to 0.6 ngml-

1) in awake and anesthetised patients, Talke et al. (2003) eliminated the sympatholytic effect by 

either sympathetic denervation (awake patient) of one hand through brachial plexus blockade or by 

attenuation of the sympathetic nervous system activity using general anaesthesia. They also looked 

at the local (finger) blood flow. In both cases (awake vs. anaesthetised patients), they observed 

vasoconstriction in the finger, but in anesthetised patients, the general haemodynamic effect 

resulted in increase in systemic ABP while in the awake but arm denervated patient, the systemic 

ABP was decreased.  They concluded their observations were consistent with the known effects of 

the alpha2-adrenoceptor agonists: centrally mediated decrease in ABP and peripherally mediated 

vasoconstriction.   

Studies in different species looking at the alpha2-adrenoceptor subtypes (A, B and C) attribute the 

centrally induced sympatholytic effect to the alpha2A-adrenoceptor (MacMillan et al., 1996; Altman 

et al., 1999; Schwartz et al., 1999) and the peripheral vasopressor effect mainly to the alpha2B-

adrenoceptor (Link et al., 1996; Hein et al., 1999; Kable et al., 2000; Paris et al., 2003).  

Unfortunately, the repartition in the body and related effect of these receptor subtypes is not that 

clearly defined and 2A subtypes have also been found on the wall of the canine external carotid 

mediating vasoconstriction (Willems et al., 2001) whereas 2B subtypes are believed to be 

responsible for centrally mediated hypertensive effects (Gavras et al., 2001a, b). 

4.1.1.2 Heart rate 

Bradycardia is a common CV effect of alpha2-adrenoceptor agonists that has been observed in 

different species; human (Maze and Tranquilli, 1991; Hall et al., 2000), horse (Freeman and 

England, 2000), sheep (Talke et al., 2000a), cat and dog (Cullen, 1996). 

 

Medetomidine induced-bradycardia results from stimulation of both central and peripheral alpha2-

adrenoceptors (Kamibayashi and Maze, 2000). The mechanism of this action is not fully 

understood but is likely to be multifactorial, including inhibition of sympathetic tone by inhibition 

of noradrenaline release within the central nervous system (CNS); enhanced vagal response due to 

peripheral vasoconstriction; increase in the release of acetylcholine from the para-sympathetic 

nerves in the heart (MacDonald and Virtanen, 1991). There is no evidence to date of a direct action 

on the heart muscle (Flacke, et al., 1992; Day and Muir, 1993; de Morais and Muir, 1995; Khan et 

al., 1999), although prejunctional alpha2-adrenoceptors might be present in the human heart 

(Brodde et al., 2001). 
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Pypendop and Verstegen (1998) reported that the intensity and duration of bradycardia was dose-

dependent in conscious beagles. Maximum effect on the HR was observed with a dose as low as 5 

µgkg-1 of MED administered IV. Higher doses resulted in increase of duration of the bradycardia 

effects rather than in increase of intensity. 

 

In human, as well in veterinary medicine, the alpha2-adrenoceptor agonists are known for their 

potential arrhythmogenic effects ( Moens, 2000; Talke, 2000). In humans, DEX has been reported 

as producing in some cases sinus pauses and even sinus arrest (Scheinin et al., 1998 ;Talke et al., 

2000b). In dogs, Vainio (1989) reported the appearance of second degree atrioventricular (A-V) 

block after IV and IM injection of 10 to 180 μgkg-1of MED. These lasted for up to 20 min in some 

cases.  The incidence in IV and IM groups was not reported. Other groups have reported similar 

dysrhythmias as well as sinus pauses and A-V block of the 1st and 2nd degree (Vainio, 1990; Ewing 

et al., 1993; Thurmon et al., 1994; Tyner et al., 1997; Kuusela et al., 2001a).  

 

Medetomidine is a racemate composed of DEX and levomedetomidine (LEV).  

Levomedetomidine, the inactive enantiomer of MED, did not induce dysrhythmias in a study in 

dogs (Kuusela et al., 2000). This was confirmed  later in a study of the sedative, analgesic and CV 

effects of LEV alone and in combination with DEX in dogs (Kuusela et al., 2001b).  

 

The incidence of dysrhythmias seems to be also dose-dependent for MED and its active enantiomer 

(Kuusela et al., 2001a) while the method of injection (IV or IM) seems to have little effect (Tyner 

et al., 1997). 

 

4.1.2 Respiratory effects of medetomidine 

Alpha2-adrenoceptor agonists such as clonidine or more recently DEX have minimal effects on 

ventilation in humans (Khan et al., 1999), but hypercapnoea is frequently observed (Bailey et al., 

1991; Ooi et al., 1991; Belleville et al., 1992).  

  

In dogs, many studies have reported some degree of respiratory depression following clinically 

used doses of MED (Clarke and England, 1989; Vainio and Palmu, 1989; Vainio, 1990; Pettifer 

and Dyson, 1993; Hammond and England, 1994; Venugopalan et al., 1994; Cullen, 1996; 

Paddleford and Harvey, 1999). Cullen and Reynoldson (1993) reported a significant increase in 

arterial carbon dioxide tension (PaCO2) from 38.5 to a maximum of 41.8 mmHg after 20 min in 

dogs given MED 30 μgkg-1 IM. They also reported a decrease in respiratory rate (RR) (from 23 to 

13 breaths min-1 at 30 min), as well as a decrease in arterial oxygen tension (PaO2) from 118.4 to a 

minimum of 97.9 mmHg. Such changes  have also been observed by other authors (England and 

Clarke, 1989; Vainio, 1990; Pettifer and Dyson, 1993; Venugopalan et al., 1994).   
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Nguyen and colleagues (1992) demonstrated that DEX, 1 μgkg-1 IV decreased minute ventilation in 

conscious dogs by 22%, while higher doses (10, 20 and 100 μgkg-1) increased minute ventilation, 

which doubled with a dose of 100 μgkg-1. 

 

The mechanism behind the respiratory depression observed after administration of an alpha2-

adrenoceptor agonist is still not totally understood,  but could result from activation of alpha2-

adrenoceptors in brainstem sites associated with cardio-respiratory control, such as the pre-

inspiratory neurons of the rostral ventrolateral medulla (O'Halloran et al., 2001). 

 

Cyanosis in dogs after administration of MED has also been described by some authors (Clarke and 

England, 1989; England and Clarke, 1989; Sap and Hellebrekers, 1993). This sign of oxygen (O2) 

desaturation of blood in the venous beds was thought to result from the reduced CO increasing the 

contact time between the blood and peripheral tissues, increasing the total amount of O2 being 

extracted (England and Clarke, 1989; Sap and Hellebrekers, 1993). The effect of DEX on the 

hypoxic drive is negligible even at doses as high as 100 µgkg-1 (Nguyen et al., 1992).  

 

4.1.3 Perioperative use of medetomidine 

The perioperative use of DEX infusion has been described in humans (Talke et al., 1995; Jalonen et 

al., 1997; Talke et al., 2000b; Paris and Tonner, 2005), in cats (Ansah et al., 2000) and in dogs 

(Pascoe et al., 2006; Lin et al., 2008; Uilenreef et al., 2008). Although the perioperative use of 

MED has been best described in horses (Bettschart-Wolfensberger et al., 2001a, 2001b, 2002), only 

two reports have been published regarding its use in dogs. Gomez-Villamandos and colleagues 

(2008) determined the effect of MED infusion (0, 0.5 and 1 µgkg-1h-1) on desflurane requirement to 

maintain anaesthesia in MED premedicated dogs (2 µkg-1, IV). Although no difference between the 

three groups was observed on the CV and respiratory parameters recorded during the minimum 

desflurane determination, the HR and RR decreased significantly after premedication with MED 

while a non-significant increase in the systolic, mean and diastolic ABPs were observed. In an 

earlier study, Beths and colleagues  (2000b) described the halothane-sparing effect of repeated 

(every 20 min) IV doses of MED (1 μgkg-1) in dogs undergoing orthopaedic surgery. Bradycardia 

and increased ABP without hypertension (systolic ABP > 150 mmHg) were observed after the first 

injection. Subsequent boluses did not produce additive effects on the CV system, although 

reduction in the inspired concentration of halothane (range from 0.9 to 1.4%) was observed. 
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4.1.4 Cardiovascular effects of propofol 

In most species, propofol (PPF) decreases ABP while having no effect, or a negative effect, on the 

HR. This effect is believed to be mediated by resetting the baroreflex response to a lower HR 

despite the fall in ABP (Ebert et al., 1992b; Sellgren et al., 1994). However, more recently, it was 

reported that low doses of PPF in rabbits had no effect on the baroreflex response (Xu et al., 2000). 

4.1.4.1 Arterial blood pressure 

Arterial hypotension is a common side effect of PPF injection and has been described in different 

species such as rabbit (Xu et al., 2000) and cat (Andress et al., 1995; Pereira et al., 2004). 

  

Robertson et al. (1992) reported that after induction of anaesthesia with PPF (4 and 3.2 mgkg-1, 

respectively) in greyhounds and non-greyhound dogs sedated with acepromazine and atropine, a 

non-significant increase in mean ABP was observed in the greyhounds for the first 45 min during 

maintenance of anaesthesia (PPF, 0.4 mgkg-1min-1). In the non-greyhound dogs, a significant 

decrease in mean ABP was observed (from 90.2 to a maximum of 76.7 mmHg) at 30 min. In a 

pharmacokinetic (PK) study, Nolan and Reid (1993) induced (4 mgkg-1) and maintained (0.4 mg 

kg-1min-1) anaesthesia with PPF for 60 min in seven beagles premedicated with acepromazine and 

papaveretum. Systolic ABP decreased slightly from 130 to 112-121 mmHg during the 60-min 

period. A decrease in systolic ABP was also reported after induction of anaesthesia with PPF (4 

mgkg-1) in 15 dogs premedicated with acepromazine and pethidine (Lerche et al., 2000).  

 

Dose-dependent direct myocardial depression and a decrease in preload due to venous dilation 

resulting in a decrease in CO are the most accepted explanations for the hypotensive effects of PPF 

(Cook and Housmans, 1994; Wallerstedt and Bodelsson, 1997; Ririe et al., 2001; Klockgether-

Radke et al., 2004). In contrast to animal investigation using in vitro studies, an in vivo study in 

humans refutes the direct action of PPF on peripheral blood vessels as the cause of decreased ABP 

(Robinson et al., 1997). In the same study, another hypothesis was proposed, that the hypotension 

would result, in part, from the inhibition of peripheral sympathetic vasoconstrictor activity.  

4.1.4.2 Heart rate 

The action of PPF on HR is variable. In humans, for example, the use of PPF either has minimal 

effects or induces bradycardia (Tramer et al., 1997; Williams et al., 1999; Kleinsasser et al., 2000;  

Olmos et al., 2000; Kanaya et al., 2003). In pigs, intravenous injection of 2.5 and 5 mgkg-1 of PPF 

in Cremophor EL (2% propofol in 16% Cremophor and 8.66% of Ethyl alcohol) resulted in 

significant tachycardia (Glen, 1980), while in rabbits, PPF (2.5, 5 and 10 mgkg-1, IV) had no effect 

on the HR, but injection of 20 mgkg-1 resulted in a  significant decrease (Xu, et al., 2000). In cats, 
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different effects were again described, but a decrease in HR is more commonly reported  (Brearly 

et al., 1988; Andress et al., 1995; Pereira et al., 2004). 

  

Nolan and Reid (1993) reported no significant effect on the HR in dogs premedicated with 

acepromazine and papaveretum and induced with PPF 4 mgkg-1 followed by an infusion of 0.4 

mgkg-1min-1. In their study with greyhounds and non-greyhound dogs anaesthetised with PPF after 

ACP and atropine premedication, Robertson and colleagues (1992) observed no effect on the HR in 

the non-greyhound group while a significant decrease was observed in the greyhounds. Decrease of 

HR has also been described in other studies in dogs (Brussel et al., 1989; Lerche et al., 2000;  

Whitwam et al., 2000). 

4.1.4.3 Respiratory effects 

In humans, respiratory depression after injection of PPF is a well described side effect. Goodman et 

al. (1987) studied the ventilatory effects of PPF in 14 healthy patients and observed a decrease in 

the breathing rate, increase in end-tidal CO2 and a decrease in the ventilatory response to CO2. This 

was after bolus induction, but ventilatory depression has also been observed during manual or TCI-

driven infusions (Russell et al., 1995; Taylor and Kenny, 1998). 

 

During a study on the anaesthetic activity of ICI 35868 (PPF in Cremophor EL), Glen (1980) 

observed dose-dependent respiratory depression in mice, rats, rabbits, pigs and cats. These effects 

were also described using the emulsion formulation of PPF in cats (Brearly et al., 1988), horses 

(Flaherty et al., 1997) and in dogs (Robertson et al., 1992; Ilkiw et al., 1992; Muir and Gadawski, 

1998; Quandt et al., 1998). 

 

The effect of PPF on observed respiratory function is not fully understood. Two different sites of 

action of the drug are usually proposed;  peripheral sites (peripheric chemoreceptors of the carotid 

bodies) and central sites (central chemoreceptors located in the medulla) (Teppema et al., 1997; 

Yang et al., 1997; Nieuwenhuijs et al., 2001).  

 

4.1.5 Propofol and medetomidine premedication (cf section 4.1.3) 

Different groups have studied the CV effects of the combination of MED and PPF in dogs. Vainio 

(1991) reported on a study in ten beagles, premedicated with 40 μgkg-1 of MED IM. Anaesthesia 

was induced with PPF 4 mgkg-1 (IV) and maintained with PPF infusion (0.15 mgkg-1min-1). An 

increase in the mean ABP after induction of anaesthesia was observed, which lasted about 15 min. 

Thereafter the ABP decreased to values below pre-PPF. Meanwhile, HR increased at induction and 

remained above pre-PPF values throughout the study period. In another study (Thurmon et al., 

1994), six beagles were premedicated with MED (30 μgkg-1) and atropine (0.044 mgkg-1) IM. 
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Anaesthesia was induced 10 min later with 2 mgkg-1 of PPF (IV) and maintained with an infusion 

of PPF (0.165 mgkg-1min-1). Arterial blood pressure increased after induction of anaesthesia for 10 

min, before decreasing slightly, but stayed at values higher than baseline. Heart rate decreased after 

induction with a maximum at 5 min then rose again to values above baseline for most of the 

infusion period.  Although there were some differences, the main trends in these two studies are an 

increase in the ABP observed at induction followed by a decrease after 10-15 min and a HR staying 

above pre-propofol baseline. Atropine administration was the main difference between these 2 

studies and resulted in a HR twice higher and systolic arterial ABP around 150 mmHg for the 

whole study period for the Thurmon et al.’s study.  

In another study on 20 dogs undergoing ovario-hysterectomy, Hellebrekers and Sap (1997) used 

MED 40 µgkg-1 (IM) for premedication, PPF (2 mgkg-1 IV) for induction and repeated PPF boluses 

(mean of 0.06 mgkg-1min-1 IV) for maintenance. They reported an increase in HR and ABP. The 

values were back to baseline by 70 min.  More recently, Seliskar and colleagues (2007) induced 

and maintained anaesthesia with PPF in medetomidine (40µgkg-1, IM) premedicated dogs with 

PPF. An increase of HR and mean ABP from baseline values was also observed. While the ABP 

stayed high throughout the procedure, the HR when back to baseline values.  

 

When PPF induction in MED premedicated dogs is not followed by PPF anaesthesia, the CV 

effects are different. Without atropine, Cullen and Reynoldson (1993) observed after MED 30 

µgkg-1 (IM) and PPF 3 mgkg-1 (IV), an increase in mean ABP, which was higher than baseline for 

the whole period of the recordings (60 min).  Regarding the HR, it increased briefly after induction 

then went below baseline values during the recordings. When compared with Vainio’s (1991) 

studies, PPF infusion causes a decrease in ABP while keeping the HR above baseline in the MED 

premedicated dogs. In a more recent study, dogs were administered MED 1 µgkg-1 IV 45 sec before 

induction with PPF (3.7 mgkg-1 IV). The HR decreased while no change in the ABP was observed 

at 1 min post intubation up to 5 min followed by a decrease below baseline lasting till the end of 

the recording period (17 min) (Ko et al., 2006). With atropine (0.02 mgkg-1) added to MED (10 

μgkg-1, IM), Bufalari et al. (1996) observed after PPF 2.2 mgkg-1 IV higher ABP than baseline for 

the whole period of the recordings (60 min), as in the Thurmon et al. study (1994) where atropine 

was also used. Similarly, the HR stayed slightly above baseline for the whole procedure.  

 

In summary, in the 4 studies where atropine was not used in the premedication, induction with PPF 

resulted in an increase in HR and ABP (Vainio, 1991; Cullen and Reynoldson, 1993; Hellebrekers 

and Sap, 1997, Seliskar et al. 2007). When the induction was then followed by PPF for 

maintenance (Vainio, 1991; Hellebrekers and Sap, 1997, Seliskar et al. 2007), the values for these 

2 parameters tended to slowly return to values above (Hellebrekers and Sap, 1997) or equal to 

(Vainio, 1991) or while the HR slowly returned to values above baseline, mean ABP stayed 

elevated (Seliskar et al. 2007). In their study, Seliskar and colleagues administered 20 min after 
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induction a second dose of MED (20 µgkg-1, IM) which might have influenced the effect observed 

on the mean ABP.  In the Cullen and Reynoldson (1993) study, where induction was not followed 

by an infusion of PPF, the ABP stayed elevated while the HR was below baseline values. The 

addition of atropine in the premedication (Thurmon et al., 1994; Bufalari et al., 1996) resulted in an 

increase in HR and ABP followed by a decrease but with values above baseline during most of the 

recording period (30-60 min). In the study from Ko and colleagues (2006), the results are different 

from Vainio (1991), Cullen and Reynoldson (1993) and Hellebrekers and Sap (1997) as the authors 

were using a low dose of DEX (1 µgkg-1) which might have resulted in centrally mediated 

sympatholytic effect resulting in decrease HR and systemic ABP (Pypendop and Verstegen, 1998). 

Thereafter, these effects might have been exacerbated by the addition of PPF.    

 

The same studies but one (Hellebrekers and Sap, 1997) have also reported on the respiratory effects 

of PPF induction and/or maintenance on MED premedicated dogs. But for 2 studies (Ko et al. 

2006; Seliskar et al., 2007) they all reported a decrease in the breathing rate associated with an 

increase in the PaCO2 from 36 up to a maximum of 45.8 mmHg after 60 min (Vainio, 1991); from 

37.3 up to a maximum of 44.6 mmHg after 3 min (Cullen and Reynoldson, 1993); from 41.6 up to 

a maximum of 53.5 mmHg after 40 min (Thurmon et al., 1994); from 30 up to a maximum of  35 

mmHg after 10 and 15 min (Bufalari et al., 1996). Although Ko and colleagues (2006) reported a 

decrease in breathing rate, they observed no significant changes in the Et CO2 values. Post-

induction apnoea was only reported in one of these studies (Cullen and Reynoldson, 1993). In their 

study, Seliskar and colleagues (2007) did not report changes in respiratory rate (RR), PaCO2 nor 

PaO2 (dogs were breathing 100% O2) from baseline.  

 

4.1.6 Goal of the study  

Medetomidine induces significant dose-dependent CV effects in dogs (Pypendop and Verstegen, 

1998) including bradycardia and hypertension. Respiratory depression has also been observed in 

different species, ranging from a slight decrease in minute ventilation to cyanosis. Apnoea with 

DEX has been described in humans, but not yet in the dog. In the development of an infusion 

scheme for MED as an adjunct to PPF anaesthesia, it was considered appropriate to determine if an 

infusion regime could be defined which would cause only minimal effects on the CV system, while 

reducing the amount of PPF required to maintain anaesthesia. The study described in this chapter 

was designed to identify the CV dose-response curve for IV doses of MED in dogs anaesthetised 

with TCI PPF, in order to define the no–effect dose and a dosing range which would induce 

minimal effects on HR and ABP. 
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4.2 Materials and methods 

This study was approved by the Clinical Research Sub-Committee of the Faculty of Veterinary 

Medicine of the University of Glasgow and owner consent for inclusion in the study was acquired. 

Eighty dogs (46 males and 34 females) attending the Small Animal Hospital for diagnostic and/or 

surgical procedures were included in the study. Only dogs classified as ASA 1 or 2 and aged 

between 0.5 and 9 years were included in this study. The operator was unaware of the treatment 

and was handed a syringe containing MED at a concentration of 0, 1, 10, 100 or 1000 µgml-1 with a 

maximum injection volume of 2 ml. The dilutions were made every day using NaCl 0.9%.  

 

Sixty dogs were randomly divided into six groups of ten dogs each: group 1, 2, 3, 4, 5, and 6 

receiving respectively 0, 0.01, 0.03, 0.1, 0.3, and 1 μgkg-1 of MED (IV). Subsequently, 20 

additional dogs were included and were randomly divided into two groups of ten receiving 3 (group 

7) and 10 μgkg-1 (group 8) of MED (IV). Dogs were randomly allocated to a group using Excel 

software (Microsoft Office 2000). The random numbers were normally distributed. All dogs were 

premedicated 20 min to 1 h before induction of anaesthesia with acepromazine (ACP, Novartis 

Animal Health UK Ltd; Herts, UK) 0.02-0.03 mgkg-1 and methadone (Martindale Pharmaceuticals, 

Essex, UK) 0.2 mgkg-1 injected IM.  

 

Anaesthesia was induced and maintained with PPF administered with a TCI system (see chapter 2).  

The induction target concentration was 3 μg ml-1. If after 3 min endotracheal intubation was not 

possible, the target was increased by 0.5 μg ml-1. One min later, if intubation was still not possible, 

the target was again increased by 0.5 μg ml-1 and so on every 1 min until successful endotracheal 

intubation. The anaesthesia maintenance target concentration was set at 3.5 μg ml-1 and stayed 

unchanged till the end of the study. The dogs were allowed to breathe a mixture of O2/N2O 

(1/3:2/3) through an appropriate non-rebreathing system.  

 

ECG (bpm) (Kontron Micromon 7141, Kontron Instruments Ltd, England),  indirect ABP (mmHg) 

(Dinamap; Critikon 1846 SX, Critikon Inc, Tampa, FL, USA) with an appropriate cuff placed over 

the pedal artery (first six groups) and with an Ultrasonic Doppler flow detector (last two groups) 

(811B Parks Medical Electronics, Aloha, Oregon, USA), oxygen saturation (SpO2) (Nellcor N20; 

Nellcor Puritan Bennett Inc, CA, USA), oesophageal temperature (T °C) (Libra Medical ET 402; 

Libra Medical Ltd, Berks, England) and end-tidal CO2 (Et CO2) levels (mmHg) (Nellcor NPB 70) 

were monitored in all dogs. Data for HR, ABP, RR, Et CO2 and SpO2 were recorded every 5 min. 

Body temperature lower than 36°C resulted in removal of the patient from the study.  
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Twenty to 30 min after induction of anaesthesia, when the HR, ABP and Et CO2 had been stable for 

at least 15 min, 1 ml of saline 0.9% (Group 1) or MED (0.01, 0.03, 0.1, 03, 1, 3 or 10 μgkg-1; 

groups 2 to 8) was injected IV over 1 min, and the CV and respiratory parameters recorded 2, 5, 10, 

15 and, 20 min later. In the event of apnoea (no breathing for more than 30 sec), IPPV was 

instigated at 6 breaths min-1. The dogs were kept warm using blankets. At the end of the trial, the 

infusion of PPF was stopped and anaesthesia continued with either halothane or isoflurane. 

 

4.2.1 Data Analysis 

ANOVA for time and treatment (dose) effects was carried out for the ABP, HR, Et CO2 and RR 

data, using a General Linear model (Minitab 13). One-way ANOVA was also used to compare the 

groups for body weight and age distribution. Difference were considered significant when p < 0.05. 

 

The ED50 (the dose of MED inducing 50% of the maximum effect) and ED95 (the dose of MED 

inducing 95% of the maximum effect) were calculated for HR and ABP, fitting a curve to the data 

using a logistical equation (Origin 6.1; Microcal Software, Inc., Northampton, USA.):  

 

     Y = A1 – A2      + A2 

                1 + (X / X0)p 

Where  x0 is the centre 

p is the power 

 A1 is the initial Y value 

 A2 is the final Y value 

 The Y value at X0 is half way between the two limiting values A1 and A2: 

 Y(X0) = (A1 + A2)/2 

 

To determine the effect of MED on the HR at the time of maximum effect (2 min), the difference in 

HR at that time (2 min) and at time 0 were calculated for each dog. The mean value of these 

differences from 10 dogs was then obtained for each group and used with the logistical equation to 

make the dose response curve. An identical method was used to determine the effect of MED on 

the ABP at the time of maximum effect, 2 min.  
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4.3 Results  

The 80 dogs comprised 46 males and 34 females, weighing between 7 and 45 kg (27.3 ± 9) and 

aged between 0.5 and 8 years old (3.7 ± 2.6). The eight groups were similar (p > 0.05) in age and 

weight. All the dogs were intubated in less than 3 min after starting the infusion of PPF. No dogs 

were removed from the study for hypothermia (T < 36°C). 

 

No significant (p > 0.05) effect of MED treatment on HR was observed with doses equal to and 

below 0.01 μgkg-1 (group 2) (Figure 4.1). At 2 min, the HR in groups 3 to 8 (0.03, 0.1, 0.3, 1, 3 and 

10 µgkg-1) decreased significantly from baseline. In all these groups, the HR stayed clinically for 

some (groups 0.03, 0.1, 0.3 and 10 µgkg-1) and significantly for others (groups 1 and 3 µgkg-1) 

lower than baseline up to the end of the recording period (20 min).  First and second degree AV 

blocks were observed in one dog in groups 0.03, 0.1 and 0.3 μgkg-1 and in two dogs in groups 3 

and 10 μgkg-1. 

No significant (p > 0.05) effect of MED treatment on ABP was observed with doses equal to and 

below 0.1 μgkg-1 (group 4) (Figure 4.2). At 2 min, the ABP in groups 5 to 8 (0.3, 1, 3 and 10 µgkg-

1) increased significantly from baseline. By the time 10 min, the ABP was back to baseline values 

for groups 0.3 and 1 µgkg-1 and did not change up to the end of the recording period. Although the 

values for the ABP for groups 3 and 10 µgkg-1 decreased constantly from time 2 min, they did not 

reached baseline by the end of the recording period.     

The Dinamap monitoring system failed to provide readings 2 min after injection in one dog from 

group 1 μgkg-1 and in all the dogs from group 3 and 10 μgkg-1 after MED injection. The data 

regarding the ABP for the last two groups (3 and 10 μgkg-1) were therefore obtained with the 

Doppler system. 

 

At the time of maximum observed effect (2 min post MED injection), the values for the ED50 and 

the ED95 were respectively 0.187 and 3.1 μgkg-1 for the HR and 2.05 and 18.1 μgkg-1 for the ABP 

(Figures 4.3 and 4.4).  
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Figure 4.1 

Mean (± SD) heart rate (bpm) for 8 groups (1 to 8) of 10 dogs given medetomidine (MED) (control 

group (CG), 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 µgkg-1, respectively)) from the time of MED bolus 

injection (time 0) to the last recording time (time 20 min).   

a = significant difference in groups 0.03, 0.1, 0.3, 1, 3 and 10 µgkg-1 from baseline (p < 0.0128).  

b = significant difference in group 0.3, 1 and 3 µgkg-1 from baseline (p < 0.0408). 

c = significant difference in group 1 and 3 µgkg-1 from baseline (p < 0.0337).  

d = significant difference in group 1 and 10 µgkg-1 from time 2 min (p ≤ 0.0043). 

e = significant difference in group 0.3, 1, 3 and 10 µgkg-1 from time 2 min (p ≤ 0.029). 
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Figure 4.2 

Mean (± SD) systolic arterial blood pressure (mmHg) for 8 groups (1 to 8) of 10 dogs given 

medetomidine (MED) (control group (CG), 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 µgkg-1, respectively)) 

from the time of MED bolus injection (time 0) to the last recording time (time 20 min).   

a = significant difference in groups 0.3, 1, 3 and 10 µgkg-1 from baseline (p ≤ 0.0356).  

b = significant difference in group 1, 3 and 10 µgkg-1 from baseline (p ≤ 0.0015). 

c = significant difference in group 3 and 10 µgkg-1 from baseline (p ≤ 0.0001).  

d = significant difference in group 1 µgkg-1 from time 2 min (p ≤ 0.0003). 

e = significant difference in group 1 and 10 µgkg-1 from time 2 and 5 min (p ≤ 0.0336). 

f = significant difference in group 1, 3 and 10 µgkg-1 from time 2 and 5 min (p < 0.0088). 
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Figure 4.3 

Dose response curve for the heart rate (HR) (bpm). Each point corresponds to one group (control 

group (CG) to 8) of dogs (n = 10) and is the mean value of change in HR taken at 2 min post 

medetomidine (MED) IV injection (0, 0,01, 0.03, 0.1, 0.3, 1, 3 and 10 μgkg-1, respectively). ED50-

ED95 is the dose of MED that induces 50 and 95% respectively of the maximum effect on the HR 

(as predicted by the equation, using Origin 6.1, Origin Lab Corporation, Massachusetts, USA, 

2000). 
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Figure 4.4 

Dose response curve for the systolic arterial blood pressure (ABP) (mmHg). Each point 

corresponds to one group (control group (CG) to 8) of dogs (n = 10) and is the mean change in 

systolic ABP taken at 2 min post medetomidine (MED) IV injection (0, 0,01, 0.03, 0.1, 0.3, 1, 3 

and 10 μgkg-1, respectively). ED50-ED95 is the dose of MED that induces 50 and 95% respectively 

of the maximum effect on the systolic ABP (as predicted by the equation, using Origin 6.1, Origin 

Lab Corporation, Massachusetts, USA, 2000). 
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Amongst the 80 dogs, 18 were apnoeic after induction (2, 1, 1, 3, 3, 5, 2 and 1 dogs from groups 1 

to 8, respectively). One dog from groups 0.3 μgkg-1 and 1 μgkg-1, which were not apnoeic at 

induction, became apnoeic before time 0 (MED injection), bringing the number of dogs requiring 

assisted ventilation at time 0 to 20 (2, 1, 1, 3, 4, 6, 2, 1 dogs from groups 1 to 8, respectively).   

Amongst the spontaneously-breathing patients (60/80) at time 0, apnoea as a result of MED 

injection was observed in one dog in groups 0.3, 1 and 3 μgkg-1. The resulting apnoea lasted less 

than 10 min. Five of the nine spontaneously breathing dogs (one being already apnoeic) from group 

8 given 10 μgkg-1 became apnoeic after MED injection and did not breathe spontaneously for the 

duration of the trial. In the same group, between time 5 and 15 min, three spontaneously-breathing 

dogs became apnoeic, bringing the number of apnoeic patients in that group to nine. At the end of 

the study, the number of apnoeic dogs in the groups 0 to 3 μgkg-1 was 12 (1, 0, 1, 2, 1, 5 and 2, 

respectively). In the group that received the highest dose of MED (10 μgkg-1), nine dogs were still 

apnoeic at the end of the study (Table 4.1). 

 

 

 

 Groups of dogs (n = 10 per group) 

Medetomidine (µgkg-1) 0 0.01 0.03 0.1 0.3 1 3 10 

Total 

Apnoeic dogs at time 0  2 1 1 3 4 6 2 1 20 

Number of dogs becoming 

apnoeic after MED injection 
0 0 0 0 1 1 1 8 11 

Number of dogs apnoeic at 

the end of the study 
1 0 1 2 1 5 2 9 21 

 

Table 4.1 

Number of apnoeic dogs in the 8 groups (control group (CG) to 8) of 10 dogs at time 0, after the 

injection of saline (CG) or medetomidine (MED) (0.01, 0.03, 0.1, 0.3, 1, 3 and 10 µgkg-1) and at 

the end of the study (20 min).  
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Figure 4.5 reports the changes in respiratory rate (RR) observed in the spontaneously breathing 

dogs (60/80) from the 8 groups from time 0 to the end of the recording period. At 2 min, a non 

significant (p > 0.05) drop in RR from baseline was observed in group 1 µgkg-1. By 15 min, the rate 

was back to baseline. Although group 3 µgkg-1 had a RR below baseline from 2 min up to the end 

of the recording period, it was only significant at 5, 10 and 15 min. In the last group (10 µgkg-1), at 

2 min, a significant decrease in RR was recorded and stayed significantly lower than baseline up to 

the end of the recording period.   

From the 8 groups of 10 breathing and non-breathing dogs, a non-significant (p > 0.05) decrease in 

Et CO2 was observed in groups 1 and 10 µgkg-1 at 2 min post MED injection (Figure 4.6). It was 

followed by an increase above baseline which was maintained for the all recording period. In group 

3 µgkg-1, the drop in Et CO2 recorded at 2 min was significant and was followed by an increase 

above baseline for the rest of the recording time. Due to a technical incident, capnography was not 

available for 14 dogs from groups 0.01, 0.03, 0.1, 0.3 and 1 µgkg-1 (2, 2, 3, 5 and 2 dogs, 

respectively).  Eight of these 14 dogs were spontaneously breathing at time 0: 1 in group 0.01, 2 in 

groups 0.03 and 0.1, and 3 in group 0.3 µgkg-1).  

SpO2 stayed over 97% for all patients. 
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Figure 4.5 

Mean (± SD) respiratory rate (bpm) for 8 groups (control group (CG) to 8) of 10 dogs given 

medetomidine (MED) (CG, 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 µgkg-1, respectively) from the time of 

MED bolus injection (time 0) to the last recording time (time 20 min).   

a = significant difference in groups 3 µgkg-1 from baseline (p ≤ 0.0426).  

b = significant difference in group 10 µgkg-1 from baseline (p ≤ 0.0002). 
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Figure 4.6 

Mean (± SD) end tidal CO2 (Et CO2) (mmHg) for 8 groups (control group (CG) 1 to 8) of 10 dogs 

given medetomidine (MED) (CG, 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 µgkg-1, respectively) from the 

time of MED bolus injection (time 0) to the last recording time (time 20 min).   

a = significant difference in groups 3 µgkg-1 from baseline (p ≤ 0.0192).  

b = significant difference in group 1 µgkg-1 from time 2 min (p ≤ 0.0129). 

c = significant difference in group 3 µgkg-1 from time 2 min (p ≤ 0.0002).  

d = significant difference in group 3 µgkg-1 from time 5 min (p ≤ 0.0111). 

e = significant difference in group 10 µgkg-1 from time 2 min (p ≤ 0.0155). 
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4.4 Discussion 

In this study, a significant increase in the ABP was observed in dogs receiving MED 0.3 μgkg-1 or 

more (group 5, 6, 7 and 8). During the 20 min observation period, the ABP returned to pre-injection 

values for groups 5 and 6 (0.3 and 1 μgkg-1) while the ABP stayed significantly higher in groups 7 

and 8 (3 and 10 μgkg-1). Neither hypotension (systolic ABP < 80 mmHg) nor ABP below baseline 

was ever observed. Previously, Pypendop and Verstegen (1998) observed an increase in ABP after 

injecting IV a dose of MED of 1, 5 10 and 20 µgkg-1 in conscious dogs. In the same study, although 

no increased in ABP was observed in the group receiving MED 2 µgkg-1, in this group as well as in 

all the others, the ABP started to decrease, reaching levels below baseline.  

Pypendop and Verstegen (1998) also concluded that low doses of MED (2 µgkg-1 and below) 

would have predominantly central effects and would therefore result in decreased ABP. In the 

study reported here, even doses as low as 0.01 µgkg-1 did not result in a decrease in the ABP. Only 

increases were observed in this study with doses of 0.3 µgkg-1 and greater. In the study reported 

here, an observation time of 20 min was possibly too short to record ABP below baseline. Although 

Pypendop and Verstegen (1998) showed  that the “decrease in ABP” phase was already apparent in 

all the groups after 10 min observation period. 

The importance of the integrity of the sympathetic nervous system for expression of the centrally 

induced sympatholytic effect of the alpha2-adrenoceptor agonists has been demonstrated in humans 

suffering from high cervical, complete, spinal cord injury where the administration of clonidine 

(per os or IV) did not result in decrease ABP (Reid et al., 1977; Kooner et al., 1991; Young et al., 

2006). Similarly general anaesthesia in dogs (this study) created a state with decreased sympathetic 

tone resulting in an apparent lack of centrally induced sympatholytic effect. Therefore, only the 

peripheral vasopressor effect of MED is observed. In animals, autonomic denervation enhances the 

vasopressor response to the use of an alpha2-adrenoceptor agonist (Schmeling et al., 1991). The 

effect of anaesthesia vs. consciousness on the centrally induced sympatholytic effect of alpha2-

adrenoceptor agonists such as DEX has been previously demonstrated in studies in man (Talke et 

al., 1999; Talke et al., 2003) as well as in dogs (Flacke et al., 1990; Flacke et al., 1993).  

 

In their study, Pypendop and Verstegen (1998) only reported the changes in the mean ABP but 

indicated that the systolic ABP followed a similar pattern. A similarity in the degree of increase 

from baseline between systolic and mean ABP was also reported later in a study in dogs with DEX 

(Kuusela et al., 2001). Therefore, we can consider that in the Pypendop and Verstegen study, as the 

mean ABP, the systolic ABP must have increased by up to 27% (20 µgkg-1 group). The magnitude 

of increase in the systolic ABP in this study was similar, up to 36% (10 µgkg-1 group), although the 

doses of MED used here was 2 times less.   

Pypendop and Verstegen (1998) used a group of beagles aged between 1 and 4 years while the 

actual study used a group of mixed breed dogs aged between 0.5 and 9 years (mean of 3.7 ± 2.6).  
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The baseline in systolic ABP of each group in the actual study was similar to the one reported by 

Nolan and Reid (1993) in beagles (8-9 months old) under similar circumstances. Although it is 

possible that the magnitude of the response in ABP to the injection of MED might be influenced by 

the breed, the groups (beagles vs. mixed-breed) seem to be similar in terms of baseline systolic 

ABP values.  

Vickery and Maze (1989) reported no significant effect on ABP of MED (1, 3 and 10 µgkg-1) 

injected into the right atrium in halothane-anaesthetised dogs, but the alpha2-adrenoceptor agonist 

was injected over a 15 min period compared to 1 min and less in this study and Pypendop and 

Verstegen’s (1998), respectively. The speed of injection being similar between the 2 studies (actual 

and Pypendop and Verstegen), it seems less likely to be responsible for the difference observed in 

the ABP as it has been previously described in humans with DEX (Talke et al., 1999).  One can 

speculate that if the speed of injection might have an effect, a difference in drug concentration 

could as well. Pypendop and Verstegen (1998) did not mention the concentration of MED used. In 

the actual study, dogs from groups 7 and mainly 8 (3 and 10 µgkg-1) were more likely to receive the 

commercial concentration of MED (1000 µgml-1) as the max volume of injection could not be 

higher than 2 ml. Thus in the Pypendop and Verstegen study, the concentration could only be equal 

or lower than the one used in group 10 µgml-1 from this study. This observation combined with a 

higher speed of injection (Pypendop and Verstegen 1998) does not make the speed of injection nor 

the MED concentration the likely causes for the observed difference in the trends in ABP between 

the 2 studies.    

Propofol is contained in an intralipid solution. It has been shown that intralipid solution has some 

indirect positive effects on the pressor activity of phenylephrine, a pure alpha1 agonist (Haastrup et 

al., 1998). Medetomidine shows some alpha1 activity (alpha2/apha1 = 1620) (Virtanen et al., 1988; 

Bryant and Clarke, 1996). Dexmedetomidine has an alpha2/1 ratio of 1620, LEV has only a ratio of 

23 (Kuusela et al., 2001b). Both enantiomers and mainly LEV might have some alpha1 effects. 

These effects might have been enhanced by the intralipid solution during PPF infusion, blunting the 

centrally induced vascular effect of MED.  

In a study in enflurane-anaesthetised dogs (Flacke et al., 1993), an increase in ABP was also 

observed even after IV DEX doses as low as 0.25 µgkg-1 (equivalent to about 0.5 µgkg-1 of MED), 

which rules out the intralipid solution as the principal cause of the difference in results between this 

study and Pypendop and Verstegen study (1998). 

Nitrous oxide was also used in this work and it has some sympatho-mediated CV effects (Steffey, 

1999; Talke et al., 2000c). The possible effects of this gas (at the concentration used in this study) 

on the CV system include an increase in HR as well as in CO and in mean ABP (Clutton, 1999) and 

therefore it could also have participated in blunting the hypotensive phase of MED injection.  

Finally, in a study on autonomically denervated chloralose anesthetised dogs, Flacke and 

colleagues (1990) speculated that the exaggerated and sustained increase in ABP observed after 

DEX administration was due to the absence of a concomitant, centrally mediated, decrease in 
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sympathetic vasoconstrictor tone. Different studies in mice have compared the effect of DEX in 

normal vs. alpha2A- adrenoceptor depleted animal. They all reported a lack of hypotensive phase 

after DEX injection while the observed and sustained hypertensive phase was of higher intensity 

than in the normal mice (MacMillan et al., 1996; Altman et al., 1999; Tan et al., 2002). Therefore 

the difference observed in the magnitude of increase in ABP between the Pypendop and Verstegen 

study and this study probably resulted from the anaesthesia induced decrease of sympathetic tone 

leading to an apparent lack of the centrally mediated sympatholytic effect of MED, thus unmasking 

the peripheral vasopressor effect. 

 

The effect of MED on ABP in this study was dose-dependent, as previously indicated in conscious 

dogs. Pypendop and Verstegen (1998) reported a “near” maximum effect for the ABP with the 

highest dose (20 μgkg-1), which was confirmed in this study in PPF anaesthetised dogs, with a near 

maximum effect (ED95) estimated as 18 µgkg-1. This result was an estimation, calculated using a 

programme software Origin 6.1 (Origin Lab Corporation, Massachusetts, USA, 2000),  as the use 

of doses in excess of 10 μgkg-1 is not considered appropriate in clinical cases (Murrell and 

Hellebrekers, 2005). Although it is an extrapolation, the ED95 obtained is more representative of the 

canine population, as mixed breed dogs were used instead of a specific breed. The results reported 

in this study can also be compared with those from Pypendop and Verstegen’ study, as the groups 

of dogs in this study were comparable to a group of anaesthetised beagles in terms of baseline 

values for ABP (Reid and Nolan, 1993) (see above).  The reliability and generalisation of the 

results is likely to be greater, since more groups of dogs (8 vs. 5) and twice as many dogs per group 

(10 vs. 5) were used. In this study, client owned dogs could be used only once and therefore no 

crossover design was possible which would have given more strength to the results (Myles and 

Gin, 2004). Equally, the instrumentation used in the Pypendop and Verstegen study (1998) did not 

allow such a crossover design either.  

 

While direct arterial catheterisation may have improved the accuracy of the results obtained in this 

study, this was not considered justifiable in ASA 1 and 2 elective surgical patients. Moreover, 

several studies have shown good correlation between indirect and direct ABP monitoring in 

anaesthetised dogs (Sawyer et al., 1991; Gains et al., 1995; McMurphy et al., 2006). These studies 

concluded that while the oscillometric techniques tend to underestimate the diastolic pressure and 

overestimate (Sawyer et al., 1991; Gains et al., 1995) or underestimate (McMurphy et al., 2006) 

the systolic ABP, they seem to adequately demonstrate changing trends in the ABP. Even so the 

difference for the systolic ABP tends to increase during hypertension when compared to direct 

reading (McMurphy et al., 2006). Similar results were described previously by Bodey and Michell, 

(1996), but in conscious dogs). It may be argued that peripheral vasoconstriction due to MED may 

render indirect methods of ABP measurement inaccurate (Kittleson and Olivier, 1983). The lack of 

readings for ABP from the oscillometric system in the dogs dosed with 3 and 10 µgkg-1 (groups 7 
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and 8) could effectively have resulted from peripheral vasoconstriction or from the sudden decrease 

in HR and appearance of A-V blocks as these systems have been shown to be unreliable during 

episodes of arrhythmia (Vater, 1996). Although some episodes of 1st degree A-V blocks appeared 

in some dogs of groups 5 and 6, it did not seem to interfere with the readings of the Dinamap. The 

use of a Doppler system in the last 2 groups to measure the systolic ABP allowed this problem to 

be overcome. Doppler methods in dogs tend to have a low bias with good precision to reading of 

the systolic ABP mainly during hypertension (Chalifoux et al., 1985; Stepein and Rapoport, 1999; 

Haberman et al., 2006). With non-invasive methods, it is usually accepted that in the conscious dog 

the mean of series of 3 to 10 readings much improve the precision of the measurements. This 

method increases the measurement time up to 6 min (3 readings from 30 up to 120 sec per 

readings) (Bodey and Michell, 1996; Stepien and Rapoport, 1999; Haberman, et al. 2006). As the 

ABP was changing rapidly in the first 2 min in the dogs in this study, this would have increased the 

risk of variability and inaccurate measurement. Although the recording of one reading might 

equally have added variability to the data, in a study in anaesthetised dogs it was shown that for the 

systolic ABP, a single indirect measurement (oscillometric) was a good estimate of the ABP (Gains 

et al., 1995). The same observation was reported with the Doppler system in conscious cats (Jepson 

et al., 2005).  

 

In this study, the effect of MED on the HR was dose-dependent and confirmed the results of the 

study of Pypendop and Verstegen (1998).  Although a maximum effect was achieved with similar 

doses (between 3 and 10 μgkg-1 and about 5 μgkg-1 for the actual study and the Pypendop and 

Verstegen study, respectively), the magnitudes were different, with 50% changes in this study 

while the Pypendop and Verstegen study the decrease of the HR was about 62%. Looking at the 

graph for the HR from their study, it appears that a 66% effect on the HR (ED66) was obtained with 

doses of 1 and 2 μgkg –1. The lack of lower doses of MED does not allow us to extrapolate an ED50
 

from those data. An interesting observation is that an estimate of the ED66 in this study would be 

around a dose of 0.6 µgkg-1.  It seems therefore that, in PPF-anaesthetised dogs, the effect of the 

alpha2-adrenoceptor agonist on the HR is not as pronounced but appeared sooner by comparison 

with the conscious patients. 

  

The HR in PPF-anaesthetised patients slows down (Godet et al., 2001; Pereira et al., 2004), 

probably due to a decrease in sympathetic outflow (Ebert et al., 1992b) as well as a decrease in 

baroreceptor sensitivity (Godet et al., 2001; Sato et al., 2005).  As for the ABP (see above), the 

decrease in sympathetic tone resulting from general anaesthesia will unmask peripheral effect from 

MED injection (Talke et al., 2003). Therefore, the effect on the HR is likely to be dependent on 

ABP or systemic vascular resistance (SVR) and baroreflex activity. As baroreceptor sensitivity is 

decreased by PPF (Ebert et al., 1992b; Sellgren et al., 1994) changes in HR due to an increase in 

SVR will probably be attenuated, resulting in a decrease in magnitude in the change in HR.  In 
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studies on alpha2-adrenergic receptor subtype, it has been shown that in transgenic mice missing 

the alpha2A-adrenoceptor responsible for the centrally mediated sympatholytic effect, the observed 

bradycardia was of lower intensity than in normal subjects (MacMillan et al., 1996; Altman et al., 

1999; Tan et al., 2002). In this study, it has been proposed for the ABP that general anaesthesia, by 

decreasing the sympathetic tone, caused an attenuation if not an elimination of the centrally 

mediated response. Consequently, a decreased sensitivity of the baroreflex, in addition to a lack of 

sympatholytic activity, is likely to have resulted in a bradycardia of lower magnitude compared 

with the conscious dog. 

 

An effect on the HR was observed with a dose as low as 0.03 μgkg-1, while at that dose no effect on 

the ABP was detected. A similar observation was made by Pypendop and Verstegen (1998), but 

with doses of 1 and 2 µgkg-1. In a study in conscious rats using DEX IV, Bol and colleagues (1997) 

arrived at the conclusion that on the basis of the plasma concentration, the HR-decreasing and mean 

ABP-increasing effects of the alpha2-adrenoceptor agonist could be separated, the decrease in HR 

being the most sensitive, followed by the increase in ABP.  

A possible explanation for this difference in sensitivity could be a direct effect of the alpha2-

adrenoceptor agonist on the myocardium, but it has been shown that in the isolated canine heart the 

decrease in cardiac function observed after the use of DEX is not due to a direct action on the 

myocardium (Flacke et al,. 1992; Day and Muir, 1993; de Morais and Muir, 1995; Khan et al., 

1999; Murrell and Hellebrekers, 2005). 

In isoflurane anaesthetised cats, a dose of 20 μgkg-1 of MED given IV resulted in no effect on the 

ABP while the HR was significantly reduced (Lamont et al., 2001). As Lamont and colleagues 

observed a significant increase in SVR, they attributed the decrease in HR to a baroreceptor-

mediated response to an increase in SVR, as well as decreased central nervous system sympathetic 

outflow. In this study, it was hypothesised that the decrease in HR resulted from a stimulation of 

baroreceptors due to increases in SVR. It is therefore proposed that this increase in SVR resulted in 

a decrease in stroke volume and therefore CO. As the ABP is the product of the CO and the SVR, it 

is possible that with low doses of MED, the decrease in CO and the increase in SVR compensate 

each other and therefore no alteration in ABP is observed.  

 

It has been shown that DEX has a higher binding potency for the alpha2A adrenoceptors than for the 

alpha2B (Audinot et al., 2002; Lalchandani et al., 2004). Although it is usually accepted that the 

2As subtypes are mainly responsible for the centrally mediated sympatholytic effect and that the 

2Bs are responsible for the peripheral action of the alpha2-adrenoceptor agonists (Link et al., 1996, 

Talke et al. 2003), some studies have reported that alpha2A receptor subtypes were also present in 

the wall of some arteries or veins (MacMillan et al., 1996; Gavras et al., 2001; Willems et al., 

2001). As general anaesthesia decreases the sympathetic tone, it is possible that low doses of DEX 

mainly stimulate the 2A subtypes present on walls of arteries and veins, resulting in a decrease in 
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CO equal in intensity to the SVR so that the ABP remains unchanged. Moreover, as sedation and 

analgesia are centrally mediated by the alpha2A adrenoceptors (Lawhead et al., 1992; Mizobe et al., 

1996; Hunter et al., 1997; Lakhlani et al., 1997; Stone et al., 1997; Zhang et al., 1998; Malmberg et 

al., 2001; Mansikka et al., 2004), it is hypothesised that doses of 0.03 µgkg-1 will induce few CV 

effects while still providing analgesia and a sparing effect on the anaesthetic agent. More studies 

need to be designed to confirm this, as it has been shown in mice that while occupancy of less than 

50% of the alpha2A receptors is required to lower ABP, more than 50% occupancy is needed to 

provide sedation (Tan et al., 2002).  

 

Post-induction apnoea is the most common side effect following PPF administration (Goodman et 

al., 1987; Watkins et al., 1987; Smith et al., 1993).  The incidence and duration of apnoea is 

dependent on the premedication regimen used, the speed of injection of PPF and the dose of PPF 

administered (Langley and Heel, 1988; Smith et al., 1993). In this study, although dogs received 

the same premedication, some appeared to be more profoundly sedated than others. This assertion 

is based on clinical judgement, only, as assessment of the level of sedation was not incorporated 

into the protocol. The more profound sedation observed in these dogs may have counted for the 

greater effect of the PPF induction dose on the respiratory system. When compared with other 

studies of the use of PPF in the dog, the 22.5% incidence of apnoea at induction observed in this 

study was elevated but still within reported ranges (Morgan and Legge, 1989; Cullen and 

Reynoldson, 1993; Smith et al., 1993; Nolan et al., 1993; Quandt et al., 1998; Muir and Gadawski, 

1998; Lerche et al., 2000; Musk et al., 2005). For those dogs where the premedication had a greater 

effect, it is reasonable to think that in the normal clinical environment, lower induction targets 

would have been chosen, resulting probably in a lower incidence of apnoea.  

 

Apnoeic episodes of short duration, separated by irregular breathing, have been described in 

humans with DEX infusion (1 and 2 μgkg-1 over 2 min) (Belleville et al., 1992). This has also been 

described in dogs with the use of MED (IV bolus of 40 μgkg-1) (Clarke and England, 1989; Short, 

1991; Alibhai et al., 1996). On the other hand, extended apnoea in the conscious or anaesthetised 

dog after the use of MED or its active enantiomer DEX has not yet been described. In this study, 

apnoea after MED injection was observed in one dog in groups 5, 6 and 7 (0.3, 1 and 3 μgkg-1). The 

apnoea lasted less than 10 min in these three dogs. In the last group (10 μgkg-1), eight out of the 

nine spontaneously breathing dogs became apnoeic and did not recover spontaneous breathing for 

the time of the study (20 min). These observations show with the addition of a hypnotic agent such 

as PPF, sub-sedative to sedative doses of MED might result in apnoeic episodes similar to the one 

observed with potent opioids (Hughes and Nolan, 1999). These results are in line with a study by 

Nguyen et al. (1992) in the 1.5% isoflurane-anaesthetised dog where they found that an IV 

injection of 20 µgkg-1 of DEX resulted in a significant depression of the hypercapnoeic response. 

Therefore precautions must be taken when combining MED or its active enantiomer with a 



Thierry Beths, 2008  Chapter 4, 113 

 

hypnotic agent such as PPF. This raises questions concerning the additive or synergistic effects the 

two agents might have on ventilation in dogs.   

 

At time 2 min, a significant (group 7) and non-significant (groups 6 and 8) decrease of the Et CO2 

was observed. In these groups, the number of dogs breathing spontaneously was 6, 7 and 5 for 

groups 1, 3 and 10 µgkg-1, respectively. In these dogs the RR decreased from 14 (± 7.4), 32 (± 

15.2) and 22 (± 8.6) to 10 (± 7.1), 24 (± 7.6) and 12 (± 6.5) breaths per min as well as the Et CO2, 

from 39 (± 6.7), 35 (± 5) and 39 (± 3.8) to 35 (± 16.5), 27 (± 4.4) and 32 (± 8.1) mmHg for groups 

1, 3 and 10 µgkg-1, respectively. The values for the Et CO2 were back to baseline values by time 5 

min for groups 1 and 3 µgkg-1 while they were still elevated at the end of the study for group 10 

µgkg-1. Cardiovascular incidents such as decrease of CO or venous air embolism are the usually 

described causes of abrupt decrease in the Et CO2 readings (O'Flaherty, 1994). Other causes such as 

apnoea, endotracheal tube occlusion, cardiac arrest, capnometer disconnection and sampling tube 

occlusion have also been described (O'Flaherty, 1994). The observed decrease in the Et CO2 values 

in this study could be related to the negative effect of the alpha2-adrenoceptor agonist on the CO 

(Bergstrom, 1988; Clarke and England, 1989; Savola, 1989; Vainio, 1990; Zornow et al., 1990; 

Hall and Clarke, 1991b; Bloor, et al. 1992). In a study by Lerche and Muir (2006), MED 5 µgkg-1 

was administered IV to anesthetised dogs (isoflurane or halothane), a situation very similar at this 

study. No decrease in Et CO2 was reported following the injection of the alpha2-adrenoceptor 

agonist. Although the decreased Et CO2 phase might have been present in that study, it is possible 

that the decrease in Et CO2 was missed, as the first reading time post MED injection was 5 min, by 

which time in the study reported here, most the Et CO2 values in the ventilated and non-ventilated 

dogs were back to baseline or higher (Figure 4.6). In another study in conscious dogs receiving 

DEX 1, 3 or 10 µgkg-1 IV, Sabbe et al. (1994) reported no effect on the Et CO2 and RR except with 

the highest dose, which induced a sudden decrease in Et CO2 (non-significant) with a decrease 

(significant) in the RR soon after administration of the alpha2-adrenoceptor agonist. 

In the actual study, by time 10 min, the Et CO2 values were higher than baseline and stayed 

elevated for the whole recording period. Respiratory depression after intravenous administration of 

MED or DEX has been described in animals (Nguyen et al.,  1992; Sabbe et al., 1994; Bol et al., 

1997; Lerche and Muir, 2004; Lerche and Muir, 2006) as well as in humans (Belleville et al., 

1992). It often results in a decrease in the resting breathing rate and a decrease in the response to 

hypercapnoea resulting in an increase in PaCO2 (Nguyen et al., 1992; Belleville et al., 1992; Sabbe 

et al., 1994; Bol et al., 1997; Lerche and Muir, 2004; Lerche and Muir, 2006).  
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4.5 Conclusions 

 

In this study, I have looked at the response to increasing doses of MED in the TCI PPF 

anaesthetised dogs. I determined the ED50 for the HR and the ABP. The different doses of MED 

were administered as an IV bolus over 1 min. Bolus injections result in high initial plasma 

concentration (Schnider et al., 1998). In humans, Ebert et al. (2000) reported that with an infusion 

scheme targeting a plasma concentration similar to the DEX plasma concentration obtained after a 

single IV bolus injection, the CV effects were less pronounced.  They concluded that the difference 

resulted from that, during infusion without a bolus, the plasma concentration rises more slowly and 

allows DEX to equilibrate with the central nervous system. This results in an inhibition of the 

sympathetic system and therefore the perivascular effect action (vasoconstriction) is masked. This 

was also observed in other studies in humans (Talke et al., 2003; Ickeringill et al., 2004). It seems 

therefore that infusion of either MED or its active enantiomer DEX might be more appropriate if 

one wants to minimise or even eliminate CV effects while still producing analgesia and hypnotic 

sparing effect. 

In this study, it has been confirmed that the CV effects such as bradycardia and hypertension 

resulting from administration of MED in TCI PPF anaesthetised dog were dose-dependent. The 

study also demonstrated that doses of MED below or equal to 0.1 µgkg-1 had no or minimum 

effects on the ABP and the HR, respectively. The CV effects appeared at lower doses in TCI PPF 

anaesthetised dogs than in conscious patients. The general anaesthetic agent may therefore amplify 

these CV effects, which may limit the use of MED as an analgesic in PPF anaesthetised dogs.  

However, this information added to pharmacokinetic data of MED in the dog enable further 

investigation of infusion schemes for MED exploiting the analgesic and anaesthetic agent sparing 

effects while minimising the CV consequences. The study also demonstrated that the respiratory 

effects of MED were minimal at low doses which confirmed the drug’s potential suitability as an 

alternative to opioid analgesia. 
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 CHAPTER 5: 

 

PHARMACODYNAMIC AND PHARMACOKINETIC 

PROPERTIES OF MEDETOMIDINE AND 

DEXMEDETOMIDINE INFUSIONS IN DOGS ANAESTHETISED 

WITH  PROPOFOL ADMINISTERED BY TCI. 
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5.1 Introduction 

The inhibitory effect of medetomidine (MED) and its enantiomers on the metabolism of propofol 

(PPF) through the canine hepatic cytochrome P450’s (CYPs) enzymatic system was demonstrated 

in chapter 3 in an in vitro study. However, from that investigation, no conclusion could be drawn 

regarding the possible negative impact of MED on the pharmacokinetics (PK) of PPF in the dog in 

vivo. Before undertaking a study to clarify this possible PK interaction between the alpha2-

adrernoceptor agonists and PPF in vivo, which might be expected to affect the performance of the 

target controlled infusion (TCI) system (developed in chapter 2), a dose response study in dogs 

anesthetised with TCI PPF was carried out. This indicated that cardiovascular (CV) effects 

resulting from administration of MED in TCI PPF anaesthetised dogs were dose-dependent 

(chapter 4). Doses of MED below or equal to 0.1 µgkg-1 injected over one min IV had no or 

minimum effects on the arterial blood pressure (ABP) and the heart rate (HR), respectively. This 

study also demonstrated that the observed CV effects appeared at lower doses in TCI PPF 

anaesthetised dogs than in conscious patients (Pypendop and Verstegen, 1998).  

 

Building on the results of these previous studies, this latest study was designed to develop an 

infusion scheme for dexmedetomidine (DEX) and MED for co-infusion with PPF TCI and to study 

the PK and pharmacodynamic (PD) interactions between these agents and PPF in dogs. In parallel, 

an investigation was conducted to determine the plasma concentration (Cp50 and Cp95) and the 

minimum infusion target (MIT50 and MIT95) of PPF which would abolish the response to a supra-

maximal noxious stimulus in 50 and 95%, respectively of PPF TCI anaesthetised dogs with and 

without co-infusion of DEX and MED.  

 

5.1.1 Propofol and medetomidine/dexmedetomidine 

In dogs (Vainio, 1991; Thurmon et al.,  1994; Bufalari et al., 1996) and less commonly in humans 

(Peden et al., 2001), alpha2-adrenoceptor agonists are administered as part of the premedication. 

Perioperative use of either MED or DEX by infusion has been reported during PPF anaesthesia in 

man (Aantaa et al., 1997; Dutta et al., 2001; Larson and Talke, 2001)  and in horses (Bettschart-

Wolfensberger et al., 2001b, 2005; Umar et al., 2006, 2007). 

 

Medetomidine and DEX infusions have been described in dogs during sevoflurane anaesthesia 

(Gomez-Villamandos et al.,  2008) and isoflurane anaesthesia (Pascoe et al., 2006), respectively. 

To the authors knowledge there appear to be no reported studies on the use of MED during PPF 

anaesthesia, though the use of DEX has been described (Lin et al., 2008).   
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5.1.1.1 Pharmacokinetic studies  

Two PK studies in dogs given a single injection of MED (80 and 40 μgkg-1 IV) produced the same 

value for the elimination half-life (57.6 min) (Salonen, 1989; Kuusela et al., 2000). In these two 

studies, total body clearance was 2 and 1.25 Lkg-1h-1 (33.3 and 20.8 mlkg-1min-1), respectively. For 

PPF, although a wide variation from 54 to 486 min, a majority of studies reported values around 70 

min for the elimination half-life (Cockshott et al., 1992; Nolan and Reid, 1993; Reid and Nolan, 

1993; Zoran et al., 1993; Hall et al., 1994; Mandsager et al., 1995; Reid and Nolan, 1996; Hughes 

and Nolan, 1999). In regard to the clearance,  most of the authors recorded values around 40 (34–

115) mlkg-1min-1 (Cockshott et al., 1992; Nolan and Reid, 1993; Reid and Nolan, 1993; Zoran et 

al., 1993; Hall et al., 1994; Mandsager et al., 1995; Reid and Nolan, 1996, Hughes and Nolan, 

1999). For comparison, the values for the half-life elimination and the clearance used in the TCI 

developed in chapter 2 are 38 min and 54.6 mlkg-1min-1, respectively.  

 

In the present study, a stepped infusion (chapter 1) scheme was developed to target specific MED 

blood concentrations using PK parameters provided by O. Vainio (personal communication, 2001) 

and derived from the study of Kuusela and colleagues (2000). Since the PK of DEX is similar to 

that of MED (Kuusela et al., 2000), the same infusion scheme was used. The accuracy of a stepped 

infusion is dependent on the quality of the PK variables used. One objective of the present study 

was to assess the predictive performance of the stepped infusion scheme incorporating the selected 

PK variables, by comparing the MED or DEX concentrations predicted by computer simulation 

with the measured MED or DEX concentrations in venous blood samples taken at various time 

points during anaesthesia (Glass et al., 1991; Coetzee et al., 1995; Vuyk et al., 1995; Short et al., 

1996; Glen, 1998; Oei-Lim et al., 1998; Swinhoe et al., 1998; Varvel, 2002; Slepchenko et al., 

2003; Li et al., 2005; Ko et al., 2007; White et al., 2008). 

 

In vitro methods for drug interaction are relatively inexpensive, time and risk efficient studies 

(Venkatakrishnan et al., 2003). Unfortunately they do not give an exact picture of the in vivo 

situation. Some methods have been described to allow extrapolation and/or prediction of clinical 

drug interaction on the basis of quantitative in vitro data on CYP inhibition. However, these 

methods are not well established or validated (Venkatakrishnan et al., 2003) and in vivo studies are 

still needed. The effect of MED on PPF PK has been described in vivo in the dog (Hall et al., 

1994). In that study anaesthesia was induced and maintained with PPF in six dogs on two occasions 

with and without MED premedication. The authors concluded that the alpha2-adrenoceptor agonist 

had no significant impact on the PK of PPF. 
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As in chapter 2, the evaluation of the predictive performance of the TCI system for PPF in the dog 

during MED/DEX co-infusion was carried out, according to the methodology described by Varvel 

(1992).  

 

5.1.1.2 Pharmacodynamics 

Several studies have examined the possible PD interactions between MED and PPF, and a more 

detailed description can be found in chapter 4. In summary, all the studies demonstrated a decrease 

in the amount of PPF necessary to induce as well as to maintain anaesthesia (in the studies where 

PPF was used for maintenance) (Vainio, 1991; Cullen and Reynoldson, 1993; Thurmon et al., 

1994; Bufalari et al., 1996). Induction with PPF resulted in an increase in ABP as well as in HR in 

all the studies as well as the one from Seliskar and colleagues (2007). In those studies where either 

atropine (Thurmon et al., 1994; Bufalari et al., 1996) was included in the premedication or where 

induction was not followed by PPF infusion (Cullen and Reynoldson, 1993), the ABP stayed higher 

than the baseline, while the HR decreased below baseline for some (Cullen and Reynoldson, 1993) 

or stayed above for others (Thurmon et al., 1994; Bufalari et al., 1996). Although Vainio (1991) 

reported a return towards baseline values for HR and ABP, the values stayed elevated in the study 

reported by Hellebrekers and Sap (1997).  

The effect on the respiratory rate was variable with a decrease in some studies (Cullen and 

Reynoldson, 1993; Thurmon et al., 1994; Bufalari et al., 1996) and no effect in others (Vainio, 

1991, Seliskar et al., 2007). Although Hellebrekers and Sap (1997) did not report the effect on the 

respiratory rate, they recorded the effect on the PaCO2 and PaO2. All 5 studies, but the one from 

Seliskar and colleagues (2007), showed an increase in PaCO2, and two measured and reported a 

slight decrease in PaO2 (Cullen and Reynoldson, 1993; Hellebrekers and Sap, 1997). Seliskar and 

colleagues (2007) recorded PaCO2 and PaO2 and did not observe any significant changes form 

baseline values.  

 

The study reported by Thurmon et al. (1994) also considered effects on cardiac output (CO) and 

systemic vascular resistance (SVR) and reported that while the CO decreased and SVR increased 

after administration of MED (30 μgkg-1) IM, no difference was observed during PPF infusion 

compared to baseline. The authors concluded that PPF alleviated MED-induced vasoconstriction.  

 

Recently, Lin and colleagues (2008), in 10 PPF induced and anaesthetised mongrels, after an IV 

bolus of 1 µgkg-1, started a 24 hour DEX infusion (1 µgkg-1h-1).  Two hours after the start of the 

infusion, the anaesthesia was stopped. During the anaesthesia, compared with baseline they 

observed a significant decrease in HR, CO and cardiac index and a significant increase in central 

venous pressure as well as systolic and mean ABP and SVR. Respiratory rate, PaO2 and PaCO2 

stayed around baseline over the 2 hour period.   
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5.1.1.3 Analgesia 

5.1.1.3.1 Minimum medetomidine analgesic plasma concentration 

The combination of MED (40 μgkg-1, IM) and PPF anaesthesia (0.06 mgkg-1min-1 after bolus of 2 

mgkg-1) provided acceptable operating conditions for elective ovario-hysterectomy in healthy 

bitches (Hellebrekers and Sap, 1997). Thurmon et al. (1994) used nerve stimulation (10 to 100 mV) 

through two subcutaneous 1 inch 18-gauge needles on either side of the tail (5th and 6th coccygeal 

vertebrae) and tail clamp to assess the degree of analgesia achieved with  the combination of MED 

(30 μgkg –1) and PPF bolus (2 mgkg-1, IV) followed by PPF infusion (0.16 mgkg-1min-1, IV). No 

response to either stimulation voltage was observed during the 60 min of PPF anaesthesia. None of 

these studies measured MED blood concentrations, but it has been reported that the minimum 

blood concentration of MED  necessary to provide analgesia in the conscious dog is between 2 and 

9 ngml-1 (Kuusela et al., 2000) while a review paper on MED reported that the minimum analgesic 

blood concentration in the dog was between 1 and 5 ngml-1 (Salonen, 1991). In a personal 

communication from Orion Pharma it was confirmed to the author from unpublished data that the 

minimum analgesic MED plasma concentration was about 1.7 ngml-1 and that the equivalent figure 

for DEX was 0.85 ngml-1 (Granholm, personal communication, 2001). 

 

5.1.1.3.2 Determination of Minimum Infusion Target (MIT) for propofol  

Minimum alveolar concentration or MAC corresponds to the minimum alveolar concentration of an 

inhalational anaesthetic agent that is required to abolish gross muscular movement in response to a 

supramaximal noxious stimulus in 50% of the population (Eger et al., 1965). A similar approach 

has been used with the intravenous anaesthetic agents and the Cp50 and MIR50 have been defined as 

the plasma concentration and the minimum infusion rate of IV agent necessary to prevent a body 

movement to stimulus in 50% of the patients, respectively (Sear and Prys-Roberts, 1979; Flaishon 

et al., 1997).  

 

TCI systems allow the anaesthetist to maintain a constant target plasma concentration of an IV 

agent, thus allowing equilibration with the effect site resulting in maintenance of a steady-state 

effect site concentration. This provides better conditions for Cp50 determination and maintenance 

than constant rate infusion. Unfortunately, in-line analysis of PPF in blood is not yet available and 

so the anaesthetist cannot use the Cp50 information as a guideline to assess the level of anaesthesia. 

Howeve,r the introduction of a concept such as the minimum infusion target or MIT may be more 

clinically relevant for the anaesthetist using a TCI system to maintain anaesthesia as this system 

provides a prediction of the plasma concentration. Like Cp50 and MIR50, the MIT50 would be 
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defined as follows: the minimum infusion target (predicted) necessary to abolish body movement to 

a painful stimulus in 50% of the population, while the MIT95 would be the target where 95% of the 

population would not respond to a similar stimulus.   Compared with MIT where the computer will 

decrease the infusion rate exponentially over time to compensate for any accumulation of the agent 

infused, MIR does not take account of the PK of the agent used and infusion time and agent 

accumulation will have some influence on the real clinical value of this parameter.  

To determine MIT, similar methods as described for the determination of MAC, MIR or CP50 could 

be used, such as response to skin incision, tail clamping and electrical stimulation (Eger et al., 

1965; Zbinden et al., 1994; Andrews et al., 1997). 

 

5.1.2 Goals of the study 

The objectives of this study were as follows 

• To develop a co-infusion scheme for MED and DEX in dogs anaesthetised with PPF.  

• To assess the PK parameters used to develop the MED and DEX stepped infusion in the 

TCI PPF anaesthetised dog. 

• To determine the PK parameters of DEX in the TCI PPF anaesthetised dog. 

• To assess the performance of the PPF TCI system in the dog during co-administration of 

MED or DEX.  

• To assess the PD effect of MED and DEX infusion in TCI PPF anaesthetised dogs. 

• To determine the effect of an infusion of MED or DEX on the minimum blood PPF target 

necessary to maintain anaesthesia during supra-maximal noxious stimulation.  

 

5.2 Materials and Methods 

5.2.1 Animals 

This study was approved by the Ethics Committee of the Faculty of Veterinary Medicine of the 

University of Liege, Belgium. Six female, beagle dogs, aged between 5 and 8 years were included 

in the study. All dogs had full biochemical and haematological examinations before beginning of 

the study and were classified as ASA 1. 
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5.2.2 Development of a medetomidine/dexmedetomidine infusion 

schemes. 

The following PK parameters for MED in the dog were obtained from O. Vainio (personal 

communication, 2001) and are derived from the study from Kuusela and colleagues (2000). 

 

V1 = 470 mlkg-1 

K12 = 0.0954 

K21 = 0.0438 

K10 = 0.0489 

K31 and k13 = 0 

 

These parameters were used as inputs to a computer simulation using the program PK-SIM  

(Specialised Data Systems, Jenkintown, PA, USA) in order to determine stepped infusion schemes 

for MED and DEX, which would achieve predicted blood target concentrations of 1.7 ngml-1   

(MED and DEX)  and  0.85 ngml-1 (DEX).  These infusion schemes were used in the experimental 

protocol described below (5.2.3). 

 

5.2.3 Experimental design 

The study was conducted over a 7 week period which consisted of 4 treatment weeks and 3 rest 

weeks. Medetomidine and DEX were provided by Orion Pharma (Turku, Finland).  

There were four different treatments:  

PS = PPF TCI with a co-infusion of saline  

PM = PPF TCI with a co-infusion of MED (target concentration 1.7 ngml-1) 

PHD = PPF TCI with a co-infusion of high DEX (target concentration 1.7 ngml-1) 

PLD = PPF TCI with a co-infusion of low DEX (target concentration 0.85 ngml-1) 

 

Each dog was anaesthetised on 4 different occasions following a crossover design (Table 5.1) 

During each test week 2 dogs were anaesthetised per day, on Monday, Tuesday and Wednesday, 

allowing a recovery period between treatments of 12 to 16 days for each dog.   



Thierry Beths, 2008  Chapter 5, 122 

 

The following table described the anaesthesia plan for each dog. 

 

Week 1 Week 2 Week 3 Week 4 

PS5 PS3 PHD3 PHD2 

PHD4 PLD5 PM6 PLD4 

PM2 PLD2 PS4 PM5 

PLD6 PM4 PHD1 PHD6 

PLD3 PLD1 PS2 PM1 

PS1 PS6 PHD5 PM3 

 

Table 5.1 

Allocation of dogs (1-6) to 4 treatments on each of 4 treatment weeks 

PS = Saline treatment; PM = medetomidine treatment; PHD = high dose dexmedetomidine 1.7 ngml-1 

treatment; PLD = low dose dexmedetomidine 0.85 ngml-1 treatment; dogs 1 to 6. 

 

5.2.4 Anaesthetic protocol 

Before each treatment dogs were fasted for 12 h, but water was freely available up to 1 h prior to 

induction of anaesthesia. In addition, a routine pre-anaesthetic clinical examination of CV and 

respiratory systems and hydration status was carried out. Dogs were premedicated with 

acepromazine (ACP, Novartis Animal Health UK Ltd, Herts, UK) 0.03 mgkg-1 and methadone 

(Martindale Pharmaceuticals, Essex, UK) 0.2 mgkg-1 injected together intramuscularly 30 min prior 

to induction. Anaesthesia was induced with PPF, given through a preplaced cannula (Biovalve, 

Vygon, Cirencester, UK ) inserted in the right cephalic vein, using the computer driven TCI system 

described in chapter 2, set to an initial induction target of 3 μg ml-1. The end point of induction was 

considered to be when the animal assumed lateral recumbency and tolerated intubation of the 

trachea with no tongue movement or resistance. If the end point was not reached within 3 min, the 

target concentration was increased by 0.5 μg ml-1 at 2 min intervals until induction was complete. 

After induction of anaesthesia, the dogs were placed in left lateral recumbency on an electric 

heating blanket and the induction target altered in increments of 0.5 µgml-1 as necessary to maintain 

a satisfactory depth of anaesthesia which was assessed subjectively on a clinical basis as described 

in chapter 2. The dogs breathed 100% oxygen throughout anaesthesia, delivered via a non-

rebreathing circuit with an appropriate fresh gas flow rate.  

The left pedal artery was cannulated and connected via a pressure transducer (Edwards 

Lifesciences Pressure Monitoring Set, Edwards Lifesciences LLC, Irvine, USA)  to a Minimon 

7132A amplifier and recorder (Kontron Instruments Ltd, England) for direct ABP monitoring.  The 
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LiDCOTM PLUS (LiDCO Ltd, Cambridge, UK) Flow Regulator (pump) and sensor for CO 

determination by lithium dilution was attached to the same arterial line using the LiDCOTM 

Injectable Kit. Two additional cannulae were placed, one in the right jugular vein for blood 

sampling and the other in the left cephalic vein for the administration of Lactated Ringer’s solution 

at 10 mlkg-1 h-1 and for injection of the LiDCOTM dye (lithium chloride) during CO determination. 

After instrumentation and calibration of the direct ABP and LiDCO monitoring systems, co-

infusion of either saline (PS), MED (PM) or DEX (PHD and PLD) was started (Table 5.2). 

 

The ECG (Kontron Micromon 7141, Kontron Instruments Ltd, England), pulse rate (PR), 

respiratory rate (RR), end-tidal carbon dioxide (Et CO2) (Nellcor NPB 70; Nellcor Puritan Bennett 

Inc, CA, USA), oxygen saturation (SpO2) (Nellcor N20; Nellcor Puritan Bennett Inc, CA, USA) 

and invasive ABP (Kontron Micromon 7141, Kontron Instruments Ltd, England) were monitored 

continuously. Data were recorded every 5 min throughout the period of anaesthesia.  Rectal 

temperature was also recorded every 20-30 min to ensure normothermia. Cardiac output was 

measured using a lithium dilution technique (LiDCOTM PLUS; LiDCO Ltd, Cambridge, UK) 

before the start of the co-infusion and 45 min later, at the time of the last change of the stepped 

infusion of MED or DEX. To measure the CO, a predetermined volume of lithium chloride (0.7-1 

ml) was injected intravenously through the left cephalic vein and the lithium dilution curve was 

then measured by the LiDCOTM computer system. Following the determination of the MIT to 

assess the analgesic effect of MED and DEX infusions, the co-infusion and PPF TCI were 

terminated. Thereafter time to extubation, sternal recumbency and standing were recorded for each 

animal. Time to extubation was recorded as the time from the end of the infusion to the first 

voluntary swallowing reflex; time to sternal corresponded to the time between the cessation of the 

infusions and the time when the dog adopted a sternal position; time to standing was the time 

between the cessation of the infusions and the time when the dog was able to stand without 

assistance.   

 

In addition the following times were recorded for each dog: the instrumentation time which was the 

time between the start of the PPF infusion and the start of the co-infusion; the co-infusion time 

which was the time between the start of the co-infusion and the end of anaesthesia. For each 

individual, the amount of PPF infused during the instrumentation and co-infusion periods was 

recorded. These volumes, body weight and the duration of the various infusion periods were used 

to calculate the infusion rate of PPF during instrumentation, during the period of co-infusion and 

for the whole procedure. Similarly, the total amount of MED and DEX infused per kg body weight 

was recorded for each individual to derive the mean infusion rate of the co-infusion. 

The following were noted for each individual: the number of unsuccessful attempts to intubate after 

3 min and the number of increments of PPF needed to achieve intubation; the incidence and 
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duration of apnoea (absence of breathing for more than 30 sec); and the incidence and duration of 

involuntary movement, twitching or stiffness. 

 

5.2.5 Determination of Minimum Infusion Target (MIT) for propofol 

Fifteen min after the last step-down of the infusion of MED or DEX, or 60 min after the start of the 

saline infusion, electrodes were attached to 2 hypodermic needles (20G) placed subcutaneously at 

the level of the 4th and 5th coccygeal vertebrae. Using a nerve stimulator (Innervator 252, Fisher and 

Paykel Healthcare, Auckland, New Zealand), an electric stimulus (Tetanic twitch, 50Htz, 80mA) 

was applied for 5 sec maximum, or until purposeful movement was noted. If no movement was 

observed at the end of 5 sec, stimulation was stopped and the PPF blood target concentration was 

decreased by 0.4 μg ml-1 and then maintained at that level for 10 min.  The entire procedure was 

repeated after every 10 min equilibration period, until a response to tail stimulation was observed.  

If the animal moved in response to tail stimulation, the PPF blood target concentration was 

increased by 0.2 μg ml-1 and after 5 min stabilisation, the tail was stimulated again. This was 

repeated until no purposeful movement was observed. The PPF blood target concentration was 

noted at each point and the mean value between the concentration at which the dog moved in 

response to the noxious stimulus and the concentration at which the dog stopped moving in reaction 

to the electrical stimulation was calculated to be the MIT for that individual.  

 

Blood samples were taken for measured PPF each time the tail stimulus was applied, for 

comparison with the predicted values. During PPF MIT determination, blood samples for DEX or 

MED were taken when tail stimulation triggered a purposeful movement while PPF target blood 

concentration was being decreased, and when tail stimulation failed to trigger movement while the 

PPF blood target concentration was being increased. The mean of these 2 measured MED and DEX 

blood concentrations was taken to be the concentration at the time of MIT determination. 

 

5.2.6 Blood sampling 

Venous blood samples (1.5-2 ml) for PPF analysis were collected into fluoride oxalate tubes 

(Sarstedt Ltd, Leicester, UK). Samples were taken from all dogs before starting the co-infusion 

(time 0), at 10, 20 and 45 min after the start of the co-infusion and as described above during the 

MIT determination.  

 

Venous blood samples (6 ml) for MED and DEX analysis were collected into serum separating 

tubes or SST (BD Vacutainer, Oxford, UK). Samples were taken at the end of each step of the co-

infusion (5, 15, 30 and 45 min after the start of the co-infusion), just before the rate of infusion was 
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changed. Two samples were also taken during the MIT determination as described above. For the 

PHD treatment, one sample was also taken at 5, 10, 30, 60, 120, 300 and 420 min after the end of 

the co-infusion for the determination of the PK parameters of DEX.   

 

5.2.7 Analyses 

5.2.7.1 Propofol  

After collection, the tubes were stored at -70ºC. At the end of week 2, 3 and 4, they were put into 

dry ice and transported to the Institute of Comparative Medicine, Faculty of Veterinary Medicine, 

University of Glasgow for analysis which was performed over the following 2 weeks by Dr Ana 

Monteiro. The methodology used was described in chapter 2. 

 

5.2.7.2 Medetomidine and Dexmedetomidine  

These analyses were performed by Orion Pharma Ltd (Turku, Finland). Samples were centrifuged 

after collection and the serum decanted into serum tubes (BD, Erembodegem-Aalst, Belgium) for 

storage at -70°C for the duration of the study. Thereafter they were packed in dry ice and 

transported to Orion Pharma Ltd (Turku, Finland) for analysis. Both DEX and LEV were 

determined in dog serum by liquid chromatography tandem mass spectrometry (LC-MS/MS). The 

analytes were extracted from serum samples with an organic solvent. The solvent was then 

evaporated to dryness and the residue redissolved in the LC mobile phase. Separation of the 

enantiomers was achieved in a chiral LC column and detection in an MS/MS system using 

atmospheric ionization and deuterated MED as the internal standard. The lower limit of 

quantification of the assay was 0.01 ngml-1 for each enantiomer. 

For MED, the blood concentrations were reported for each enantiomer DEX and LEV. 

The accuracy was 97.8 ± 8.0% over the calibration range 0.010-25 ngml-1.  

The coefficient of variation was:  6.7% (0.025 ngml-1); 5.4% (0.5 ngml-1); 5.3% (20 ngml-1).  

                                                    

5.2.8 Data Handling  

As described in chapter 2, the target and predicted PPF concentrations were recorded at each 

sampling point and for each blood sample the percentage error (PE%) of the predicted 

concentration of PPF in the blood was calculated. For each animal the median prediction error 

(MDPE%) and the median absolute prediction error (MDAPE%) were calculated and from these 

values the treatment median MDPE% and MDAPE% were calculated to describe the overall 

performance of the TCI system (Varvel et al., 1992; Coetzee et al., 1995). 
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Using the computer simulation programme PK-SIM (Specialised Data Systems, Jenkintown, PA, 

USA), the predicted target concentrations for MED and DEX were determined and recorded at each 

sampling point. As for PPF, the PE% for each blood sample as well as the MDPE% and the 

MDAPE%, for each individual were calculated. Thereafter, the treatment median MDPE% and 

MDAPE% were calculated to describe the overall performance of the derived MED and DEX 

infusion schemes.  

 

5.2.9 Determination of the PK parameters for dexmedetomidine 

Data from the blood samples taken from the PHD treatment were fitted to a 2 compartment model 

using the software WinNonlin Professional 4.1 (Pharsight Corporation, Canada) to determine the 

PK of DEX. This software uses the Hartley’s modification to the Gauss-Newton algorithm with the 

Levenberg –Marquardt modification.  

The following parameters were calculated: V1, K10, K12 and K21. 

 

5.2.10 Statistical analysis 

ANOVA for time and treatment effects was carried out for the systolic, mean and diastolic ABP, 

HR, Et CO2, and RR using a General Linear model (Minitab 13) with Tukey 95% simultaneous 

confidence intervals.  

The same model was used to look at the difference between the treatments for the infusion times 

(instrumentation, co-infusion and total); the amount of PPF infused (instrumentation, co-infusion 

and total); the CO; the PPF infusion rates (instrumentation, co-infusion and total); the different 

recovery times (extubation, sternal and standing times); the MDPE% and MDAPE% for PPF and 

DEX. 

Differences were considered significant when p < 0.05. 

Response to electrical stimulation (movement or not) was analysed using logistical equation 

(Origin 6.1; Microcal Software, Inc., Northampton, USA) to determine the PPF blood 

concentration (Cp) and the minimum infusion target (MIT) that prevented movement in 50% (Cp50 

and MIT50) and 95% (Cp95 and MIT95) of the population.      

     Y =  A1 – A2      + A2 

                1 + (X / X0)p 

Where  x0 is the centre 

p is the power 

 A1 is the initial Y value 

 A2 is the final Y value 

 The Y value at X0 is half way between the two limiting values A1 and A2: 

 Y(X0) = (A1 + A2)/2 
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The y value corresponds to the probability of no body movement in response to the stimulus. For 

each PPF measured blood concentration (Cp50 and Cp95 determination) or predicted target blood 

concentration (MIT50 and MIT95 determination) a probability (y value) was calculated using the 

ratio between the number of dogs having still not reacted up to that specific concentration vs. the 

total number of dogs.  The y (probability for no movement) and x values (blood concentration) 

were then used with the above logistical equation to determine a dose-response curve allowing the 

determination of Cp and MIT values.  

A Kuskall Wallis test was used to compare the 4 treatments MDPE% and MDAPE% values for 

PPF, MED and DEX (p � 0.05).  

 

5.3 Results 

5.3.1 Development of medetomidine and dexmedetomidine infusion 

schemes for co-infusion in dogs anaesthetised with propofol TCI 

Using the computer simulation program PK-SIM, a range of different sequential infusion rates was 

evaluated and adjustments to infusion rate or duration were made until a scheme was devised which 

predicted the achievement of the desired blood concentrations of 1.7 ngml-1 of MED (PM) and 

DEX (PHD) and 0.85 ngml-1 of DEX (PLD). The resultant schemes selected for the study are 

illustrated in Figures 5.1 and 5.2. A summary of the infusion rates for each agent in the different 

treatments can be found in Table 5.2. 

 

 

Time (min) PS PM PLD PHD 

0 2 mlkg-1min-1 0.2 μgkg-1min-1 0.1 μgkg-1min-1 0.2 μgkg-1min-1 

5 2 mlkg-1min-1 0.1 μgkg-1min-1 0.05 μgkg-1min-1 0.1 μgkg-1min-1 

15 2 mlkg-1min-1 0.08 μgkg-1min-1 0.04 μgkg-1min-1 0.08 μgkg-1min-1 

30 2 mlkg-1min-1 0.06 μgkg-1min-1 0.03 μgkg-1min-1 0.06 μgkg-1min-1 

45 2 mlkg-1min-1 0.04 μgkg-1min-1 0.02 μgkg-1min-1 0.04 μgkg-1min-1 

 

Table 5.2 

Summary of the 5 steps of the co-infusion schemes for the PS (saline), PM (medetomidine target 

concentration of 1.7 ngml-1), PLD (dexmedetomidine target concentration of 0.85 ngml-1) and PHD 

(dexmedetomidine target concentration of 1.7 ngml-1) treatments.  
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Figure 5.1 

Five step infusion of medetomidine (MED) or dexmedetomidine (DEX) with a target blood 

concentration of 1.7 ngml-1 (green line) and the predicted plasma concentration of MED or DEX 

(blue line), derived using the pharmacokinetic (PK) simulator PK-SIM and PK parameters of MED 

from O. Vainio (2001).  

 

 

 
 

Figure 5.2 

Five step infusion of dexmedetomidine (DEX) with a target blood concentration of 0.85 ngml-1 

(green line) and the predicted plasma concentration of DEX (blue line), derived using the 

pharmacokinetic (PK) simulator PK-SIM and PK parameters of MED from O. Vainio (2001). 
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5.3.2 Anaesthesia 

Unless stated otherwise, mean values are quoted with their standard deviation in brackets. 

Six female beagle dogs were included in this study. They were 7.3 (± 2.3) years old and weighed 

16.1 (± 2.5) kg.  

 

Instrumentation, co-infusion and total infusion times (min) are reported in Table 5.3.  No 

significant difference between treatments was noted for these different times. For each treatment, 

the mean amount of PPF infused during instrumentation, co-infusion and for the whole procedure 

and the mean infusion rates of PPF are reported in Tables 5.4 and 5.5. There was no difference in 

infusion rate or in the amount of PPF infused between the treatments during the instrumentation 

time period, while a significant increase was observed in the PS treatment by comparison with the 

other 3 treatments during the co-infusion and total time periods. 

 

The mean infusion rates of MED and DEX (PHD) were 0.071 (± 0.002) and 0.065 (± 0.003) µgkg-1 

min-1, respectively. These values correspond to a total amount per dog of MED and DEX of 5.36 

and 5.85 µgkg-1, respectively. The mean infusion rate of DEX in the PLD treatment was 0.036 (± 

0.003) µgkg-1min-1 which is equivalent to a total amount of 2.84 µgkg-1 of DEX per dog.  

 

Endotracheal intubation after 3 min was unsuccessful in 11 occasions. None of these 11 dogs 

needed more than one increment of PPF to achieve intubation and the PPF target concentration at 

this time was 3.5 µgml-1. During the instrumentation period, localised muscle twitching was 

observed in 9 dogs (4 in treatment PS, 2 in treatment PM, 2 in treatment PLD and 1 in treatment 

PHD). Muscle twitching continued in the 4 dogs from treatment PS and 1 from t PM during the co-

infusion. In the 4 remaining dogs, twitching stopped shortly after the start of the co-infusion.  

 

Recovery times are reported for each treatment in Table 5.6. At extubation, there was a significant 

difference between treatments PS and PM. Although extubation time was similar in treatment PHD 

to that of treatment PM, the difference between treatments PS and PHD was not significant (p = 

0.084). For the time to sternal position there were no significant differences between the treatments 

although the times to achieve sternal recumbency were markedly shorter in treatments PS and PLD 

compared with treatments PM and PHD.  Dogs in the PS treatment stood up significantly sooner 

than in the PM and PHD treatments as did the dogs in the PLD treatment in comparison to these in 

the PHD treatment.  
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Treatments Instrumentation (± SD) Co-infusion (± SD) Total (± SD) 

PS 22 (2.1) 86.2 (17.3) 108.2 (17.1) 

PM 26.5 (3) 75.5 (8.2) 102 (8.5) 

PLD 23.3 (2.1) 79 (12.7) 102.3 (13.2) 

PHD 26.5 (4) 90.8 (13.6) 117.3 (13.6) 

The 4 treatments 

combined  
24.4 (3.3) 83.5 (13.8) 107.9 (14) 

 

Table 5.3 

Mean (± SD) infusion times (min) during 4 treatments (Saline (PS), medetomidine (PM), low target 

dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) in 6 dogs separately and 

combined for the time periods instrumentation (time between the start of anaesthesia and the start 

of the co-infusion), co-infusion (time from the start of the co-infusion to the end of the procedure) 

and total (time for the whole procedure). 

 

 

 PS (± SD) PM (± SD) PLD (± SD) PHD (± SD) 

Instrumentation 136 (25) 155 (29) 134 (15) 172 (29) 

Co-infusion 463 (159) 190 (38)a 201 (33)a 192 (64)a 

Total 600 (173) 345 (53)a 355 (41)a 364 (44)a 

 

Table 5.4 

Mean (± SD) amount (mg) of propofol infused during 4 treatments (Saline (PS), medetomidine 

(PM), low target dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) in 6 dogs for 

the time periods instrumentation (time between the start of anaesthesia and the start of the co-

infusion), co-infusion (time from the start of the co-infusion to the end of the procedure) and total 

(time for the whole procedure).  

a = significant difference from treatment PS (p ≤ 0.0003). 
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 PS (± SD) PM (± SD) PLD (± SD) PHD (± SD) 

Instrumentation 0.42 (0.04) 0.4 (0.04) 0.39 (0.08) 0.46 (0.15) 

Co-infusion 0.36 (0.03) 0.17 (0.03)a 0.17 (0.02)a 0.14 (0.04)a 

Total 0.37 (0.04) 0.23 (0.03)a 0.23 (0.03)a 0.21 (0.03)a 

 

Table 5.5 

Mean (±SD) infusion rate (mgkg-1min-1) of propofol during 4 treatments (Saline (PS), 

medetomidine (PM), low target dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) 

in 6 dogs for the time period of instrumentation (time between the start of anaesthesia and the start 

of the co-infusion), co-infusion (time from the start of the co-infusion to the end of the procedure) 

and total (time for the whole procedure).  

a = significant difference from treatment PS (p < 0.0001). 

 

 

 PS (± SD) PM (± SD) PLD (± SD) PHD (± SD) 

Extubation 6.8 (6.7) 20.2 (10.1)a 12.5 (4.5) 18 (8.8) 

Sternal 13.5 (10.9) 22.8 (8.2) 15 (4.3) 23.5 (9.3) 

Standing 22.5 (11.8) 33.7 (7.8)a 23.3 (7.1) 36 (5)b,c 

 

Table 5.6 

Recovery times (min) for the 4 treatments (Saline (PS), medetomidine (PM), low target 

dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) in 6 dogs. Extubation time = 

time between end of anaesthesia and spontaneous swallowing; Sternal time = time between end of 

anaesthesia and the time when the dog adopts sternal position; Standing time = time between the 

end of anaesthesia and the time when the dog is able to stand without help. 

a = significant difference from treatment PS (p = 0.04). 

b = significant difference from treatment PS (p = 0.013). 

c = significant difference from treatment PLD (p = 0.02). 
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5.3.3 Pharmacodynamic study 

5.3.3.1 Heart Rate 

The HR in each treatment is reported in Figure 5.3. There were no significant differences between 

the treatments before the start of the co-infusion. After the start of the co-infusion, decreased HR 

was evident for all three treatments and by 5 min the HR in treatments PM, PLD and PHD was 

significantly reduced in comparison to the rate prior to the co-infusion and to that of treatment PS. 

Thereafter, no significant differences were observed between treatments PM, PLD and PHD over 

time. In the PS treatment, no significant difference was observed over time.   

5.3.3.2 Arterial Blood Pressure 

The trends for the systolic and mean ABP for each treatment are reported in Figures 5.4 and 5.5.  

There were no significant differences in systolic or mean ABP between the four treatments before 

the start of the co-infusion. After the start of the co-infusion, an increase in systolic ABP was 

evident in treatments PM, PLD and PHD and, from 5 to 45 min, the systolic ABP in treatments 

PM, PLD and PHD was significantly increased in comparison to the pressure prior to the co-

infusion and to that of treatment PS. However, there were no significant differences between the 

three treatments. In the PS treatment, there were no significant differences in systolic ABP over 

time until the point of MIT determination. At that point, the systolic ABP was significantly 

increased from that recorded at 5, 15 and 30 min. At the time of MIT determination there was a 

significant difference in systolic ABP between treatments PS and PHD. 

There was a significant increase in the mean ABP compared with baseline values in treatments PM, 

PLD and PHD at all time points and from treatment PS at 5, 15 and 30 min. At 45 min, mean ABP 

in treatments PM and PHD were significantly higher than treatment PS, but at the point of MIT 

determination there were no significant differences in mean ABP between treatments. At the times 

5, 15 and 30 min, the mean ABP in the PLD treatment was significantly lower than that in the PHD 

treatment. At 5 min, there was a significant difference with the MIT determination point in the PLD 

treatment. There were no significant differences over time for the mean ABP in the PS treatment, 

although this did appear to rise at the point of MIT determination.  

5.3.3.3 Cardiac output 

Cardiac output measured before the start of the co-infusion was not significantly different between 

the treatments. However, at time 45 min, a significant decrease in the CO was observed in 

treatments PM, PLD and PHD with their baseline as well as with treatment PS (Figure 5.6). 
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Figure 5.3 

Mean (± SD) heart rate (BPM) during 4 treatments (Saline (PS), medetomidine (PM), low target 

dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) in 6 dogs from the start of the 

co-infusion (time 0) to the time of minimum propofol infusion target determination (Stim).  

a = significant difference from treatments PM, PLD and PHD (p < 0.0001).  

b = significant difference in treatments PLD, PM and PHD from baseline value (time 0) (p < 

0.0001). 
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Figure 5.4 

Mean (± SD) systolic arterial blood pressure (mmHg) during 4 treatments (Saline (PS), 

medetomidine (PM), low target dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) 

in 6 dogs from the start of the co-infusion (time 0) to the time of minimum propofol  infusion target 

(MIT) determination (Stim). 

a = significant difference in treatments PM, PLD and PHD from treatment PS (p ≤ 0.019). 

b = significant difference in treatments PM, PLD and PHD from baseline value (time 0) (p < 

0.00001). 

c = significant difference from MIT determination. For time points 5, 15 and 30 min, p = 0.0365, 

0.0063 and 0.0039, respectively. 

d = significant difference between treatment PS and treatment PHD (p = 0.0196). 
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Figure 5.5 

Mean (± SD) mean arterial blood pressure (mmHg) during 4 treatments (Saline (PS), medetomidine 

(PM), low target dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) in 6 dogs from 

the start of the co-infusion (time 0) to the time of minimum propofol infusion target determination 

(Stim). 

a = significant difference in treatments PM, PLD and PHD from treatment PS (p ≤ 0.038). 

b = significant difference in treatments PM, PLD and PHD from baseline value (time 0) (p ≤ 

0.0181). 

c = significant difference (treatments PM and PHD) from treatment PS. P values for treatments PM 

and PHD = 0.0056 and 0.0022, respectively. 

d = significant difference (treatment PLD) from 5 min time point (p = 0.045). 

e = significant difference between treatments PLD and PHD (p ≤ 0.0063). 
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Figure 5.6 

Mean (± SD) cardiac output (Lmin-1) during 4 treatments (Saline (PS), medetomidine (PM), low 

target dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) in 6 dogs at time 0 (start 

of the co-infusion) and at time 45 (last step of the co-infusion).  

a = significant difference from treatment PS (p < 0.0001). 

b = significant difference from baseline value (time 0) (p ≤ 0.004). 
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5.3.3.4 Respiratory variables 

In treatment PHD there were significant differences from the baseline value for RR at all time 

points (Figure 5.7). Although there were no statistically significant differences in RR between the 

treatments at any time points, a significant difference was almost reached at the point of MIT 

determination between treatment PS and the other 3 treatments (p between 0.066 and 0.057). In 

treatment PS, RR at the 5 and 15 min time points was significantly different from that at the time of 

MIT determination. 

 

Et CO2 was not different from baseline values in any treatment. Except at the time of MIT 

determination when there was a significant difference between treatment PLD and treatments PS 

and PHD, there were no significant differences between treatments (Figure 5.8). 

 

5.3.4 Pharmacokinetic  results 

5.3.4.1 Propofol 

Before the start of the co-infusion (time 0), the predicted (Figure 5.9) and measured (Figure 5.10) 

PPF blood concentrations were the same between treatments. At time 45, the predicted and 

measured PPF blood concentrations for the control treatment (PS) were significantly higher from 

those in the other treatments. The predicted PPF blood concentration during MIT determination 

was also significantly higher in the PS treatment than in the other treatments as well as in the 

treatments PM and PLD when compared respectively with treatment PHD.   

 

For the measured PPF blood concentrations during MIT determination, a significant difference was 

observed from treatment PS with the other treatments. 

For the predicted PPF blood concentration, time 45 min was different from baseline in treatments 

PS, PM and PHD while at the time of MIT determination the difference was significant in all the 

treatments. For the measured PPF blood concentration, PLD showed a significant decrease from 

baseline at time of MIT determination while treatment PHD demonstrated a significant decrease 

from baseline at that time as well as time 45. In this last treatment, a significant decrease was also 

observed at time of MIT determination from time 45.   
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Figure 5.7 

Mean (± SD) respiratory rate (Breath per min) during 4 treatments (Saline (PS), medetomidine 

(PM), low target dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) in 6 dogs  

from the start of the co-infusion (time 0) to the time of minimum propofol infusion target (MIT) 

determination (Stim).  

a = significance difference (treatment PHD) (p ≤ 0.0454) from baseline value (time 0). 

b = significance difference (treatment PS) from MIT determination. P value at 5 and 15 min = 

0.0296 and 0.0104, respectively.  
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Figure 5.8 

Mean (± SD) end tidal CO2 (EtCO2) (mmHg) during 4 treatments (Saline (PS), medetomidine 

(PM), low target dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) in 6 dogs from 

the start of the co-infusion (time 0) to time of minimum propofol infusion target determination 

(Stim).  

a = significant difference between treatments PS and PLD (P = 0.0027). 

b = significant difference between treatments PHD and PLD (p = 0.0149).  
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Figure 5.9 

Mean (± SD) predicted propofol blood concentration (µgml-1) during 4 treatments (Saline (PS), 

medetomidine (PM), low target dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) 

in 6 dogs  at time 0 (before the start of the co-infusion), at time 45 (last step of the co-infusion) and 

at the time of minimum propofol infusion target determination (Stim). 

a = significant difference from treatment PS (p < 0.0001).   

b = significant difference from treatment PLD (p = 0.0336). 

c = significant difference from treatment PM (p = 0.0336).  

d = significant difference from baseline value (time 0) (p ≤ 0.0145). 
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Figure 5.10 

Mean (± SD) measured propofol  blood concentration (µgml-1) during  4 treatments (Saline (PS), 

medetomidine (PM), low target dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) 

in 6 dogs at time 0 (before the start of the co-infusion), at time 45 (last step of the co-infusion) and 

at the time of minimum propofol infusion target determination (Stim). 

a = significant difference from treatment PS (p ≤ 0.027).   

b = significant difference from baseline value (time 0) (p ≤ 0.007). 

c = significant difference from time 45 value (p = 0.0187). 
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5.3.4.1.1 Assessment of the performance of the propofol TCI system 

Figure 5.11 illustrates both measured and predicted PPF blood concentrations for each treatment at 

all blood sampling time points. In the 4 treatments the predicted values are lower than the measured 

value which demonstrates an underprediction of the TCI system. This is confirmed in Table 5.7 

with a positive median MDPE% values present in all treatments. By comparison with treatments 

PM and PHD, the distance between the points in treatments PS and PLD  seems to be smaller than 

in the 2 other treatments, which is confirmed in Table 5.7 by lower median MDAPE% values in 

these treatments.   

Although no statistical difference was observed between the treatment groups for MDPE% and 

MDAPE% (p ≥ 0.227), the figures in Table 5.7 suggest that the degree of underprediction was 

much greater in the presence of the alpha2-adrenoceptor agonists, treatment PLD being the least 

affected. 

5.3.4.1.2 Determination of the MIT for propofol 

The minimum predicted and measured PPF concentrations required to abolish the response to a 

noxious stimulation are reported in Table 5.8. Both the minimum predicted and measured PPF 

blood concentrations in treatment PS were different from the other treatments. Treatment PHD 

showed significant differences with treatments PM and PLD for the predicted values.  

 

Figure 5.12 represents the logistic regression used to determine the CP50 and CP95 for the measured 

PPF blood target concentration for the PS, PM, PLD and PHD treatments. Treatment PS needed a 

higher PPF blood concentration to prevent body movement to a stimulus than the other treatments. 

Treatment PHD had the best sparing effect on PPF, followed by treatment PLD then treatment PM. 

The CP50 and CP95 values for the measured PPF blood target concentration are reported Table 5.9 

with the MIT50 and MIT95 values for comparison.  In the 4 treatments, the plasma PPF 

concentrations were higher than the predicted concentrations resulting from an underprediction of 

the TCI system (see Figure 5.11 and Table 5.7). 

For both parameters, Cp and MIT, treatment PS was less efficacious in abolishing body movement 

to electric stimulus that the 3 other treatments. In the DEX treated treatments, less PPF was 

required to provide a no response to a noxious stimulus in treatment PHD than in treatment PLD, 

but the difference was not significant. Of the PM, PLD and PHD treatments, although clinically, 

treatment PM was least effective in reducing the PPF concentrations required to abolish responses 

to a noxious stimulus, the difference was not significant.  
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Figure 5.11 

Comparison between measured and predicted propofol (PPF) blood concentrations (µgml-1) during 

4 treatments (Saline (PS), medetomidine (PM), low target dexmedetomidine (PLD) and high target 

dexmedetomidine (PHD)) in 6 dogs at time 0 (before the start of the co-infusion); at 10 and 20 min 

(during the steps of the co-infusion); at time 45 (last step of the co-infusion); and at the time of 

minimum propofol infusion target (MIT) determination (Stim).  

Each symbol, with the exception of those at the point of MIT determination, corresponds to the 

median (full symbol) and the range (open symbol) predicted (red circle) or measured (black square) 

blood PPF concentration for 6 dogs. At MIT determination, however, each symbol corresponds to 

the median  (full symbol) and the range (open symbol) of the mean for 6 dogs, calculated between 

the PPF blood concentration at the time purposeful movement was observed while decreasing the 

PPF target blood concentration, and at the time when the movement was abolished while increasing 

the PPF target blood concentration. 
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 MDPE% MDAPE% 

Dogs PS PM PLD PHD PS PM PLD PHD 

1 18.50 61.07 23.59 35.25 18.50 61.07 23.59 35.25 

2 19.39 74.38 55.83 98.79 19.39 74.38 55.83 98.79 

3 -6.53 0.02 8.21 35.81 6.53 10.75 11.60 35.81 

4 12.36 29.67 28.28 4.69 15.99 29.67 35.24 10.34 

5 63.87 127.26 94.58 80.88 63.87 127.26 94.58 80.88 

6 26.51 55.53 7.74 109.13 26.51 55.53 36.36 109.13 

Median 18.85 58.30 25.94 58.35 18.85 58.30 35.80 58.35 

 

Table 5.7 

MDPE% (bias) and MDAPE% (accuracy) values for the propofol target controlled infusion system, 

for each individual during each treatment (Saline (PS), medetomidine (PM), low target 

dexmedetomidine (PLD) and high target dexmedetomidine (PHD)).  

a = significant difference from treatment PS (p ≤ 0.0412).  
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 Predicted Measured 

Dogs PS PM PLD PHD PS PM PLD PMD 

1 5.2 2.9 3.2 2.5 5.4 4.6 4.1 3 

2 5.6 1.8 2.7 1.8 6.1 2.9 3.6 3.4 

3 5.1 2.9 2.5 1.8 4.3 3.9 2.9 2.4 

4 5.9 3.3 2.9 2.5 6.2 4.3 3.9 2.8 

5 5.5 2.7 2.4 2.2 8.3 5.9 4.1 3.6 

6 5.85 2.5 2.4 1.7 6.8 3.8 1.3 3.1 

Mean 
(± SD) 

5.5 

 (0.44) 

2.7a 

(0.02) 

2.7a 

(0.02) 

2.1a,b 

(0.02) 

6.2 

(1.35) 

4.2a 

(1.06) 

3.3a 

(1.04) 

3a 

(0.42) 

 

Table 5.8 

The minimum predicted and measured propofol blood concentrations in μgml-1 required to abolish 

purposeful movement to electrical stimulation for each dog and during each treatments (Saline 

(PS), medetomidine (PM), low target dexmedetomidine (PLD) and high target dexmedetomidine 

(PHD)).  

a = significant difference from treatment PS for the minimum predicted (P ≤ 0.001) and measured 

propofol (P ≤ 0.033) blood concentration. 

b = significant difference from treatments PM (p = 0.012) and PLD (p = 0.002). 
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Figure 5.12 

Logistic regression curves for the 4 treatments (Saline (PS), medetomidine (PM), low target 

dexmedetomidine (PLD) and high target dexmedetomidine (PHD)) in 6 dogs  using the probability 

of preventing body movement to electric stimulus vs. measured propofol blood concentration 

(µgml-1). Each dot represents the probability of a patient showing no response to a noxious stimulus 

at a given propofol blood concentration. The coefficient of correlation (R2) is provided for each 

curve. 
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Treatments PS PM PLD PHD 

Cp50 (µgml-1) 6.4 4.4 3.8 3.15 

Cp95 (µgml-1) 8.6 5.8 4.8 3.9 

MIT50 (µgml-1) 5.6 2.9 2.75 2.27 

MIT95 (µgml-1) 6.35 3.65 3.4 3 

 

Table 5.9 

CP50-95 and MIT50-95 (measured and predicted blood propofol concentration where 50% or 95% of 

the population will not respond to a noxious stimulation) were determined using a logistic 

regression (see materials and methods).  Treatments PM (medetomidine), PLD (low target 

dexmedetomidine) and PHD (high target dexmedetomidine) are more effective in reducing 

measured and predicted propofol blood concentration necessary to abolish response to a noxious 

stimulation than treatment PS (saline). 
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5.3.4.2 Medetomidine-Dexmedetomidine 

Although the MDPE%, a measure of the bias, was very similar in the 3 treatments (p = 0.91), the 

PK parameters used to develop the infusions resulted in an overprediction (negative value) in 

treatments PLD and PHD and an underprediction (positive value) in treatment PM (Table 5.10). No 

statistical difference was found between the treatments for the MDAPE% (p = 0.91). Although 

more sampling times were available, MDPE% and MDAPE% for treatment PHD were only 

calculated from the start to the end of the co-infusion to allow a comparison with the other 

treatments. Figure 5.13 represents the levels of DEX and LEV measured in the PM treatment (MED 

blood concentration of 1.7 ngml-1). The MED blood concentration reached at the time of the 

noxious stimulation was 1.52 (± 0.1) ngml-1 with a DEX and LEV blood concentration of 0.92 (± 

0.1) and 0.6 (± 0.1) ngml-1, respectively.  

5.3.4.2.1 Dexmedetomidine (PHD treatment) – Predicted vs. measured blood levels 

Figure 5.14 represents the predicted vs. the actual DEX blood concentrations from the PHD 

treatment for the whole sampling period (from the start of the co-infusion up to 7 h after the end of 

the co-infusion).  The PK parameters underpredicted the DEX blood concentration from time 10 to 

time 45 (last step of the co-infusion). Thereafter, during the last step and the wash out, there was an 

overprediction.  

5.3.4.2.2 Determination of the PK parameters for dexmedetomidine (PHD treatment) 

Table 5.11 shows the values of V1, K10, K12 and K21 for 6 dogs. The results for dog 4 are quite 

different from all the others with a V1 about 2-4 times higher than for the other dogs (V1 = 

1123.56). These parameters, used with the PK-SIM software and the five step infusion scheme to 

simulate a DEX blood target concentration of 1.7 ngml-1, resulted in a significant underprediction 

(Figure 5.15). Since a higher V1 in dog 4 may have increased the V1 for the whole treatment, 

resulting in a dilution effect and therefore an underprediction, it was decided to recalculate the PK 

parameters without dog number 4 and to redo the simulation. This resulted in a decrease of V1 for 

the whole treatment from 514.6 (± 321.9) to 392.8 (± 105.5) mlkg-1 and in a better prediction 

(Figure 5.16). Predicted blood concentrations of DEX (target blood concentration of 1.7 ngml-1) 

using the new PK parameters in the dog, the 5-step infusion scheme used in the study for DEX and 

the PK-SIM software are reported Figure 5.15 (all the dogs) and Figure 5.16 (all the dogs minus 

dog 4).  



Thierry Beths, 2008  Chapter 5, 149 

 

 

 

 MDPE% MDAPE% 

Dogs PM PLD PHD PM PLD PHD 

1 11.18 -3.11 -15.08 11.18 10.58 15.08 

2 16.09 2 4.02 16.09 15.19 8.53 

3 -27.06 -29.56 -6.47 27.06 29.56 12.94 

4 -12.91 -16.34 -27.09 12.91 19.12 27.09 

5 19.63 68.33 49.56 21.31 68.33 49.56 

6 -5.04 -2.80 13.27 12.66 8.54 13.27 

Median 3.07 -2.95 -1.23 14.50 17.15 14.17 

 

Table 5.10 

MDPE% (bias) and MDAPE% (accuracy) values for medetomidine (treatment PM) and for 

dexmedetomidine (treatments PLD (0.85 µgml-1) and PHD (1.7 µgml-1)), for each individual and 

for each treatment for the time period between the start and the end of the co-infusion (83.5 ± 13.8 

min).  
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Figure 5.13 

Measured plasma concentration of dexmedetomidine (DEX) and levomedetomidine (LEV) from 

the PM (medetomidine) treatment (medetomidine plasma concentration target of 1.7 ngml-1) at time 

0 (before the start of the co-infusion); at 5, 15 and 30 min (just before changing the rate of the co-

infusion to the next step); at time 45 (last step of the co-infusion); and at the time of minimum 

propofol (PPF) infusion target (MIT) determination (Stim).  

Each symbol, with the exception of those at the point of MIT determination, corresponds to the 

mean (± SD) measured blood DEX (red point) and LEV (black square) concentration for 6 dogs. At 

MIT determination, however, each symbol corresponds to the mean (± SD) for 6 dogs, calculated 

between the DEX and the LEV blood concentrations at the time purposeful movement was 

observed while decreasing the PPF target blood concentration, and at the time when the movement 

was abolished while increasing the PPF target blood concentration. 
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Figure 5.14 

Predicted vs. measured plasma dexmedetomidine (DEX) concentration (ngml-1) in treatment PHD 

(DEX plasma concentration target of 1.7µgml-1). Each point of the measured blood concentration 

curve is the mean value from the 6 dogs. The pharmacokinetic parameters used to stimulate the 

predicted concentration curve were taken from O. Vainio (2001).   
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 Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 mean St dev 

V1 368.312 440.383 352.682 1123.56 260.070 542.608 514.603 312.899 

K10 0.091 0.057 0.073 0.04 0.077 0.044 0.063 0.021 

K12 0.237 0.068 0.744 0.01 0.046 0.041 0.191 0.283 

K21 0.097 0.040 0.383 0.05 0.017 0.056 0.107 0.137 

 

Table 5.11 

New pharmacokinetic parameters derived for dexmedetomidine during the 5-step infusion up to 

420 min after the end of the co-infusion in 6 target controlled infusion propofol anaesthetised dogs. 

 

 

 

Treatment MDPE % MDAPE % 

PHD (O.Vainio PK) -10 19.47 

PHD (new PK) -1.25 16.25 

 

Table 5.12 

MDPE% (bias) and MDAPE% (accuracy) values for dexmedetomidine calculated from the time of 

the start of the co-infusion until 7 h after the end of the co-infusion. Comparison between the set of 

pharmacokinetic (PK) parameters from O. Vainio and the new PK parameters (without dog 4). 
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Figure 5.15 

Predicted plasma concentration (ngml-1) for dexmedetomidine (DEX) using the 5-step infusion 

scheme used in treatment PHD (DEX plasma concentration target of 1.7µgml-1). The new 

pharmacokinetic parameters derived from the 6 dogs used in this study and achieved a 

concentration of approximately 1.3 ngml-1 at steady-state.   

 

 

 

 
 

Figure 5.16 

Predicted plasma concentration (ngml-1) for dexmedetomidine (DEX) using the 5-step infusion 

scheme used in treatment PHD (DEX plasma concentration target of 1.7µgml-1). The new 

pharmacokinetic parameters derived from the 6 dogs used in this study minus Dog 4, and achieved 

a concentration of approximately 1.5 ngml-1 at steady-state. 
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The curves obtained in Figures 5.15 and 5.16 were thereafter compared with the measured DEX 

blood concentration obtained in this study and the better quality of the prediction using the new set 

of PK parameters was confirmed (Figure 5.17). A similar analysis was conducted comparing the 

new set of PK parameters (without Dog 4) with the set from O. Vainio. This resulted in very 

similar curves, with a better prediction in the wash-out period with the revised set of PK parameters 

(Figure 5.18). This apparent difference was confirmed where the 2 predictions (new set vs. 

O.Vainio PK parameters) were assessed against the actual DEX blood concentrations through 

determination of the MDPE% and MDAPE%  (Table 5.12). Although the accuracy was very 

similar (16.25 and 19.47), the bias was almost abolished with the new set with a slight over-

prediction for both sets of PK parameter. 
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Figure 5.17 

Comparison between the measured dexmedetomidine (DEX) concentration (black square) and the 

predicted DEX concentration (ngml-1)  during the 5-step infusion in dogs,  using either the new 

pharmacokinetic (PK) parameters taken from all 6 dogs (red diamond) or the new PK parameters 

taken from the 6 dogs minus Dog 4 (green triangle).  
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Figure 5.18 

Comparison between the measured dexmedetomidine (DEX) concentration (black square) and the 

predicted DEX concentration (ngml-1) during the 5-step infusion in 6 dogs,  using either the 

pharmacokinetic (PK) parameters taken from O. Vainio (red diamond) or the new PK parameters 

taken from the 6 dogs minus Dog 4 (green triangle).  
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5.4 Discussion 

This study investigated co-infusion of MED or DEX during TCI PPF anaesthesia in dogs. The 

influence of MED and DEX on the predictive performance of PPF administered by TCI (see 

chapter 2), was assessed and the predictive performance of an existing PK model for MED and 

DEX was also evaluated. Although the performance of the PK parameters (from O. Vainio) used to 

develop the infusion scheme in this study for MED and DEX was considered clinically acceptable, 

new PK parameters for DEX were calculated to see if any improvement could be achieved. The 

performance of the TCI system for PPF in the dog revealed a negative impact of the alpha2-

adrenoceptor agonists on the PK of PPF. 

 

Even though it was judged clinically suitable, the combination of either MED or DEX infusion 

during PPF anaesthesia in the dog revealed important CV effects such as decrease in HR and CO 

with increase of the systolic and mean ABP. Low DEX plasma concentrations (PLD), while 

showing a similar effect on the HR and the CO as treatments PM and PHD, had less of an impact 

on the ABP while providing a better sparing effect on PPF requirement than the equivalent MED 

(PM) plasma concentration, with a lower negative impact on the predictive quality of the TCI 

system for PPF. These observations confirmed the more advantageous quality of the active 

enantiomer by comparison with the racemate. 

 

5.4.1 Development of a medetomidine/dexmedetomidine infusion 

scheme 

A DEX blood concentration target of 0.85 ngml-1 was chosen as it corresponds to the minimum 

analgesic blood concentration in the sedated dog (Granholm, personal communication from 

unpublished data, Orion, 2001) necessary to prevent response to thermally evoked skin twitch using 

a probe maintained at approximately 62.5 ± 0.5°C applied to shaved lumbar areas.  As it is usually 

accepted that the activity of DEX is twice that of MED (Ansah et al., 1998; Kuusela et al., 2000, 

2001a), the chosen MED blood concentration target was 1.7 ngml-1. This study confirmed this 

observation as targeting a blood concentration of MED plasma concentration of 1.7 ngml-1 resulted 

in a measured plasma concentration of 0.92 (± 0.1) ngml-1 for DEX. This blood concentration (1.7 

ngml-1) is in the reported ranges of analgesic concentration (1-5 ngml-1) for MED in the dog 

(Salonen, 1991). This target blood concentration was also used in a second DEX treatment (PHD) 

to allow a more precise study of the PK of the alpha2-adrenoceptor agonist in the dog anaesthetised 

with PPF TCI. The minimum analgesic MED plasma concentration from Salonen (1991) is very 

different from that (9.5 ngml-1) reported by Kuusela and colleagues (2000) in MED (40 µgkg-1 IV). 

However, it is difficult to compare the 2 studies as Salonen provided no information about the 
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method used in his study, while Kuusela et al. looked at withdrawal reflex in reaction to toe 

pinching.  

 

With the aim of minimising the CV effects and keeping the alpha2-adrenoceptor agonist blood 

concentration steady, a stepped infusion was developed (Smith and White,  1998a). The choice of 

number of steps and therefore the infusion rates was critical.   

 

In a dose response study in conscious beagles, Pypendop and Verstegen (1998) showed that the CV 

effects of MED were dose-dependent. This was also observed in TCI PPF anaesthetised dogs in 

chapter 4 of this work. It has been shown in humans that a blood concentration of 0.9 ngml-1 of 

DEX can be achieved after a bolus of 1 μgkg-1 IV, but this results in an increase in ABP and a 

decrease in HR (Ebert et al., 2000). When the same target blood concentration was reached over 5 

min using a TCI like system, the observed CV effects were markedly attenuated (Ebert et al., 

2000).  This illustrated that not only is the blood concentration important, but the speed of injection 

is also. Therefore, in theory, the choice of a small number of steps for this study might be expected 

to result in higher initial infusion rates and therefore more CV effects while the choice of more 

steps should result in less CV effect. However, the main disadvantage of a high number of steps is 

the time taken to reach the chosen blood concentration target. 

  

To compromise between speed of infusion and time to reach the MED and DEX blood target 

concentrations, a 5-step infusion was arbitrarily chosen using 0.2 μgkg-1min-1 as the infusion rate 

for the first step for MED. This rate was chosen as it corresponds to an infusion rate described in 

chapter 4 of this work, where the effect on the HR was only 50% of the maximum while the effect 

on ABP was minimal.   The following four steps were modelled using the PK-SIM and the MED 

PK parameters from O. Vainio as they are reported to be similar to those from DEX  (Kuusela et 

al., 2000).  

 

5.4.2 Anaesthesia 

A PPF target of 3 μg ml-1 was used for induction as it was observed in chapter 2 to be a suitable 

blood target concentration to allow endotracheal intubation within 3 min in dogs premedicated with 

acepromazine and an opioid. In chapter 4, the same blood target concentration allowed 

endotracheal intubation in 100% of dogs 3 min after the start of the TCI system. In a more recent 

study, using similar premedication, Musk and colleagues (2005) reported that a PPF blood 

concentration target of 3 µgml-1 allowed tracheal intubation in 3 min in only 80% of the cases, 

compared with 54% (13/24) in this study. They also concluded that a target of 3.5 µgml-1 was more 

appropriate as it allowed endotracheal intubation in 100% of the patients with few side effects such 
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as post induction apnoea. Eleven patients in this study required an increase in target from 3 to 3.5 

μg ml-1 after 3 min. All were then intubated in the next 1 min.  

 

With an induction target of 3 µgml-1, none of the patients from this study suffered from post-

induction apnoea. In chapter 4 and in the Musk study (2005), using the same premedication as in 

this study the same induction target induced post induction apnoea in 22.5% and 30% of the dogs, 

respectively. As in the previous chapter, this frequency of apnoea is very similar to that described 

in the literature (Morgan and Legge, 1989; Cullen and Reynoldson, 1993; Smith et al., 1993; Nolan 

et al., 1993; Muir and Gadawski, 1998; Quandt et al., 1998; Lerche et al., 2000).  

 

Signs of pain at injection, vomiting during recovery, excitation, paddling, muscle twitching, and 

opisthotonos are some of the side effects previously described with the use of PPF in the dog 

(Davies, 1991; Smith et al., 1993; Smedile et al., 1996). In this study some muscle twitching was 

observed in 9 dogs. These signs disappeared soon after the start of the co-infusion in 4 dogs (1 from 

PM, 2 from PLD and 1 from PHD). In 1 dog (PM), the twitching continued, but was very much 

attenuated. Although the origin of these movements is not yet understood, the quality of the 

sedation and the addition of other drugs such as diazepam seem to have some beneficial effects 

(Short and Bufalari, 1999). This is consistent with the results reported here as the addition of MED 

or DEX stopped (4/9) and attenuated (1/9) the signs. In the last 4 dogs, the start of the co-infusion 

had no effect. These dogs belonged to the placebo (PS) treatment and confirm the positive effect of 

the addition of sedative and or muscle relaxant agents such as diazepam or, as in our study, an 

alpha2-adrenoceptor agonist.   

 

In this study, before the start of the noxious stimulation, the co-infusion of DEX or MED allowed a 

decrease of the infusion rate of PPF necessary to maintain the same depth of anaesthesia by about 

50%. The infusion rates of PPF observed in this study (PM, PLD and PHD = 172, 173 and 142 

µgkg-1min-1, respectively) for that time period, are very similar to the rates used in other studies in 

dogs after premedication with MED (150-165 µgkg-1min-1) (Vainio, 1991; Thurmon et al., 1994) or 

DEX (200 µgkg-1min-1) (Kuusela et al., 2003). However, in those studies the dose of alpha2-

adrenoceptor agonist used was 40 and 30 µgkg-1 for MED and 10 µgkg-1 for DEX given IM in the 

premedication versus 5.64 (PM and PHD) and 2.82 µgkg-1 (PLD) only in this study. 

 

Although clinical differences were observed for extubation time when comparing PS and PLD with 

PM and PHD, it was only significant between PS and PM (p < 0.05). When compared with the 

studies of Vainio (1991), Thurmon et al. (1994) and Kuusela et al. (2003), the times for extubation 

in this study (PM, PLD and PHD = 20.2, 12.5 and 18 min, respectively) were much shorter than 

29.3 min (Thurmon et al., 1994) or similar at about 20 min (Vainio, 1991; Kuusela et al., 2003).  

The mean time to standing was reported to be 88.2 and 100 min for Thurmon et al. (1994) and 
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Kuusela et al. (2003), respectively, while in this study it was 23.3, 33.7 and 36 min for the PLD, 

PM and PHD treatments, respectively. When comparing these previous two studies with the present 

work, the PPF infusion rates were very similar, as well as the breed of dogs, although the 

anaesthesia time was longer in this study (107.9 vs. 60 min). Therefore, the difference in the 

recovery times between those two studies and this investigation is more likely to result from the 

total dose of MED or DEX used: 5.64 µgkg-1 (PM and PHD) and 2.82 µgkg-1 (PLD) versus 10 

(Kuusela et al., 2003) and 30 μgkg-1 (Thurmon et al., 1994) of DEX and MED, respectively. 

 

For the sternal and standing times, the clinical difference between PS and PLD was minor 

compared to the two other treatments. Although the target of DEX in the PLD treatment was 

supposedly equivalent to the MED target (PM), there was a clinical difference for the sternal and 

standing times between these two treatments. The observed difference could have resulted from the 

fact that the two targets were not equivalent in effect. Another possible reason for the delayed 

recovery in the PM treatment was an excess of PPF. It is notable that although the prediction for 

PPF was the same between the two treatments at the end of the treatments, the measured 

concentration was 27% higher in the PM treatment (Table 5.8) despite the delivery of a similar 

infusion rate of PPF in these two treatments (Table 5.4). 

 

It has been shown in humans (Takizawa et al., 2004b, 2005c; Takizawa et al., 2006), in sheep 

(Upton et al., 1999; Myburg et al., 2001) and in pigs (Kurita et al., 2002) that CO and PPF blood 

concentrations during constant rate infusion (CRI) or TCI are inversely related. Therefore a 

difference in CO between the PLD and PM treatments could have resulted in a difference in PPF 

concentrations and therefore in the recovery times. However, this cannot be confirmed as CO was 

not measured at later time points. Hepatic cytochrome P450 dependent metabolism of PPF is more 

important in dogs than in humans (Court et al., 1999). Medetomidine and its enantiomers are 

imidazole derivatives and are potential CYP inhibitors (Kharasch et al., 1991; Pelkonen et al., 

1991; Kharasch et al., 1992; Rodrigues and Roberts, 1997; Lennquist et al., 2008). As the negative 

effect of these agents on the hepatic CYP dependent metabolism of PPF has been demonstrated in 

dog and in rat tissues in chapter 3, a further possible explanation for the higher concentration of 

PPF in the PM treatment and therefore the delayed recovery could be that MED, as it contains both 

DEX and LEV, inhibited PPF metabolism to a greater extent than clinically equipotent doses of 

DEX.  

 

5.4.3 Pharmacodynamics 

Bradycardia and an increase in ABP are common side effects of MED (Savola, 1989; Vainio and 

Palmu, 1989). The infusion rate of the first step (0.2 μgkg-1  min-1) was chosen as it corresponded to 

the ED50 for the HR with little effects on the ABP (see chapter 4). In this study, after 5 min of this 
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infusion rate, the HR decreased by about 50% and the systolic ABP increased by about 30%. 

Although the infusion rate was similar to the study in chapter 4, the infusion time was longer in the 

actual one (5 vs. 1 min) and therefore the total dose of MED administered (1 vs. 0.2 µgkg-1). Using 

the computer program PK-sim and the MED PK parameters from O. Vainio, the MED plasma 

concentration reached at 2 min (time of the ED50 determination in chapter 4) in this study and in 

chapter 4 can be determined and corresponded to 0.75 vs. 0.37 ngml-1, respectively, while after 5 

min, these values were 1.55 and 0.25 ngml-1, respectively (appendix 35 and 36). In this study, the 

MED blood concentration was twice and 6 times higher at 2 and 5 min, respectively than that of the 

study in chapter 4. The dose and blood concentration dependent CV effect of DEX and MED have 

already been demonstrated in humans (Ebert et al., 2000) and in dogs (Pypendop and Verstegen, 

1998) and might explain the difference in results between the 2 studies regarding the HR and the 

ABP. The bradycardia observed here was accompanied by an increase in ABP, which is therefore 

believed to result more from the peripherally induced vasoconstriction than being centrally 

mediated (Hall and Clarke, 1991b; Pypendop and Verstegen, 1998). 

 

In conscious humans, a dose response study using a TCI-like system showed that blood 

concentrations between 0.7 and 1.2 ngml-1 of DEX slightly decreased HR and ABP while 

concentrations higher than 1.9 ngml-1 increased ABP and SVR while decreasing HR (Ebert et al., 

2000).  Still in humans, an IV bolus of 1 μgkg-1 of DEX resulted in a decrease in HR and increase 

in ABP, while the blood concentration reached a maximum of only 0.9 ngml-1 (Bloor et al., 1992).  

In this study, the concentration of DEX varied between 0.85 (PLD) and 1.7 ngml-1 (PHD), which is 

very similar to the concentrations used in the 2 studies in man described above.  

 

An infusion of DEX of 0.2 – 0.4 μgkg-1 h-1 (0.003 – 0.006 μgkg-1min-1) in humans in intensive care 

units provided analgesia and sedation, accompanied by slight decreases in HR and ABP (Ickeringill 

et al., 2004). These infusion rates are far smaller than the one used in this study (0.04–0.2 μgkg-1 

min-1), but were done in conscious patients. In a study in anaesthetised humans, DEX blood 

concentrations between 0.075 and 0.6 ngml-1 showed similar CV effects to those reported in this 

study in dogs (Talke et al., 2003). As discussed in chapter 4, general anaesthesia, by reducing the 

sympathetic tone decreases or eliminates the centrally mediated sympatholytic effect of the alpha2-

adrenoceptor agonists, in favour of their peripherally mediated vasopressor effect (Flacke et al., 

1990; Flacke et al., 1993; Talke et al., 1999; Talke et al., 2003) resulting in the CV changes 

observed in this study. In their study in dog anaesthetised with PPF and a co-infusion of DEX (1 

µgkg-1 h-1), Lin and colleagues (2008) stopped the anaesthesia after 2 hours while carrying on a 

DEX CRI for another 22 hours. During that period, the DEX plasma concentration was between 

0.35 and 0.45 ngml-1. Even though, as in this study, they observed an increase in ABP and a 

decrease in HR during the anaesthesia, they did not measure the ABP during the following 22 hours 
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and although the HR stayed low, no conclusion can be taken regarding the possible emergence of a 

centrally mediated sympatholytic effect with PPF disappearance and the regain of consciousness.  

   

During noxious stimulation the HR and the systolic and mean ABP did not change from the values 

recorded before stimulation in the PLD, PM and PHD treatments, while a significant increase was 

observed in the PS treatment. This apparent blunting of the sympathetic response to noxious 

stimulation and haemodynamic stability with alpha2-adrenoceptor agonists has been previously 

reported in humans (Flacke et al., 1987; Aho et al., 1992b; Scheinin et al., 1992; Talke et al., 

2000b), and is used to advantage in humans undergoing CV surgery where stable CV parameters 

are of importance (Mukhtar et al., 2006). 

 

In dogs and in man, a dose dependent decrease in CO is a common feature of the use of an alpha2-

adrenoceptor agonist (Vickery et al., 1988; Bloor et al., 1992; Flacke et al., 1993; Pypendop and 

Verstegen, 1998; Ebert et al., 2000). The effect appears to reach a maximum with doses of MED of 

about 5 μgkg–1 when given IV in conscious dogs (Pypendop and Verstegen, 1998). Using the PK-

Sim software and the PK parameters from O.Vainio for MED, this bolus dose (5µgkg-1) 

corresponds to a blood concentration of 10.6 ngml-1. In this study, a maximum effect on CO might 

already have been reached with a DEX blood concentration of only 0.85 ngml-1 (MED blood 

concentration of 1.7 ngml-1), as no difference in CO was observed between that treatment and the 

PHD treatment. In a study in halothane anaesthetised dogs receiving 1, 3 or 10 µgkg-1 of MED IV 

over 15 min (corresponding to 0.067, 0.2 and 0.67 µgkg-1min-1, respectively), a maximum effect on 

the CO measured 10 min after the infusion was already reach with the 0.2 µgkg-1min-1 dose 

(Vickery and Maze, 19889). As above, using the PK software PK-Sim and the PK parameters from 

O. Vainio, it can be concluded that the MED plasma concentration in that study at the time of CO 

determination corresponded to 1.3 ngml-1 (appendix 37). In chapter 4 it has been hypothesised that 

most of the differences in the CV effects of MED observed between PPF anesthetised and 

conscious dogs resulted from the lack of centrally mediated sympatholytic effect from the alpha2-

adrenoceptor agonist and the predominance of peripherally mediated vasoconstriction in 

anaesthetised patient. Therefore we can speculate that similarly, the effect on the CO observed in 

this study have been enhanced by the lack of sympathetic tone in anesthetised dogs.  

 

In this study, lithium dilution (LiDCO) was used to measure the CO. This recent method has been 

validated in humans (Linton et al., 1997), horses (Linton et al., 2000) and dogs (Mason et al., 

2001). Compared to thermodilution, the LiDCO system is as accurate if not better (Kurita et al., 

1997). This method was also chosen for this study as it only requires the placement of a catheter in 

a superficial vein as well as in a superficial artery instead of a Swan-Ganz catheter in the 

pulmonary artery for the thermodilution technique. Placement of such a catheter is not without risk 

and requires access to fluoroscopy or pressure-wave analysis (Mason et al., 2001). Although the 
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manufacturer of the LiDCO system advises the use of a central venous site for the injection of the 

lithium, Mason et al. (2002) showed that a peripheral site (cephalic vein) is totally acceptable.  

 

5.4.4 Pharmacokinetics 

5.4.4.1 Propofol 

5.4.4.1.1 Assessment of the performance of the propofol TCI system 

In chapter 2 of this work, the performance of the TCI system for PPF was assessed in greyhounds 

and in mixed-breed dogs. The parameters used to programme the TCI system in the dog were 

considered clinically acceptable in both treatments studied (greyhound and mixed-breed). In this 

study, it was observed that these parameters for PPF were equally acceptable in beagle dogs, with 

figures for bias and inaccuracy in the control treatment similar to those found in other breeds 

reported in chapter 2. On the other hand, the predictive performance of the PPF TCI system was 

impaired during the co-administration of MED or DEX, with the greatest degree of underprediction 

occurring in the PM and PHD treatments. 

 

The performance of a TCI system will deteriorate if the distribution or the clearance of the drug 

being delivered differs from the parameters of the average model used to programme the system. 

Drug-drug PK interactions are well recognized (Benet et al., 1996) and occur when one agent alters 

the distribution or clearance of the other (Vuyk 1998). When co-infusing either MED or its active 

enantiomer DEX, the performance and therefore the predictability of the TCI system for PPF in the 

dog decreased and became clinically unacceptable in the PM and PHD treatments, with MDPE% 

and MDAPE% values of 58.3 and 58.35 respectively for both agents. Not only did the accuracy 

decrease, but also the bias started to become very positive (underprediction of the TCI system). In 

the two treatments, the co-infusion of the alpha2-adrenoceptor agonists resulted in a marked 

decrease in CO. As it has been discussed previously, the PPF concentration is influenced by 

changes in CO (Upton et al., 1999; Myburg et al., 2001; Kurita et al., 2002; Takizawa. et al., 2004, 

2005c; Takizawa et al., 2006). Therefore, any infused drug such as the alpha2-adrenoceptor 

agonists which have an effect on the CO has the potential to modify the performance of the TCI 

system for PPF in the dog, as has been proposed for remifentanil in humans (Ludbrook and Upton, 

2003).  

 

Two studies in humans anaesthetised with 1% sevoflurane and a constant target of PPF (2 μg ml-1)  

showed that the PPF concentration decreased while the CO increased after either infusion of 

dopamine (Takizawa et al., 2005c) or injection of atropine (Takizawa et al., 2006),  resulting in an 

over-prediction of the TCI system. In this study, the co-infusion of either MED or DEX resulted in 
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a decrease in CO. This decrease could have resulted in an increase in PPF blood concentration and 

in the underprediction observed. However, as there was no difference in CO between the PM, PHD 

and PLD treatments measured at 45 min, and the PLD treatment performed much better than the 

two other treatments with a MDPE% and MDAPE% of 25.94 and 35.80, respectively,  additional 

factors appear to be involved. The CYP inhibitory effects of MED and its enantiomers (Kharasch et 

al., 1991; Pelkonen et al., 1991; Kharasch et al., 1992; Rodrigues and Roberts, 1997; Lennquist et 

al., 2008), might explain the difference in the performance of the TCI system as it did for the 

difference in recovery times (see last paragraph of 5.4.2). The better performance of the TCI system 

in the PLD treatment compared with the two others may be a consequence of the smaller amount of 

alpha2-adrenoceptor agonist in the blood of the dogs of that treatment, resulting in less CYP 

inhibition of metabolism.  

5.4.4.1.2 Determination of the MIT for propofol 

Since 1963 in a study in dogs by Merkel and Eger, MAC has been used in human as well as in 

veterinary anaesthesia as the most objective indicator of inhalant anaesthetics potency (Koblin et 

al., 1981). In a similar way, anaesthetists have used the Cp50 to compare the intravenous agents’ 

potency (Kenny and Stutcliffe, 1997). As the MAC and the Cp50 correspond to the effective drug 

concentration (ED50) for the inhalants and the IV agents, respectively, they allow a more accurate 

comparison between their relative and adverse effects by providing a better appreciation of 

equipotent doses (Kenny and Stutcliffe, 1997).   Although real time PPF blood concentration 

measurement might be possible in the near future (Hornuss et al., 2007; Takita et al., 2007) it is not 

currently possible and therefore the Cp50 value is of limited practical application in clinical 

anaesthesia (Flaishon et al., 1997). The MIR, developed to be of a more practical interest for the 

clinician, is unfortunately also of little value in the clinical environment, as it depends on the PK of 

the agent and ignores drug accumulation (time dependent measure) making the maintenance of a 

steady-state difficult (Flaishon et al., 1997). Although this is correct for most drugs, one can argue 

that the MIR concept is a very reliable concept for agents with little to no apparent cumulative 

properties such as PPF (Smith and White, 1998b) or, better, remifentanil (Lozito et al., 1994).    

 

Computer controlled infusion systems such as the TCI system for PPF are ideal for Cp50 

determination as they allow the anaesthetist to maintain a steady-state effect site concentration by 

targeting specific PPF blood concentrations (Smith and White, 1994; Andrews et al., 1997). As the 

TCI system provides the anaesthetist with the predicted PPF blood concentration, it seemed that the 

MIT50 would be of a more practical interest in the clinical environment and was therefore also 

determined in this study. Although CP50 values, like MAC, are relatively constant in a given 

population, it is not the same for the MIT50 values, which are derived from predictions of drug 

plasma concentration and are PK dependent. As a result, the MIT50 values determined in this study 
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will only be of interest and relevance to clinicians using a TCI system programmed with the same 

PPF PK parameters as in this study.   

 

It is usually accepted that the anaesthetic dosage required to maintain anaesthesia during moderate 

surgical procedures is estimated to be 95% of the effective dose or ED95 (Sear, 1992). In this study, 

the Cp95 was determined in the 4 treatments of dogs (Cp95 for treatments PS, PM, PLD and PHD 

were 8.6, 5.8, 4.8 and 3.9 µgml-1, respectively) and can therefore be considered as the PPF blood 

concentrations required to maintain anaesthesia in dogs undergoing moderate surgical procedure. It 

can be speculated that more traumatic surgeries will require higher PPF and/or alpha2-adrenoceptor 

agonist blood concentration and/or the addition of other analgesic agents such as opioids. These 

results compare very well with human studies where to maintain anaesthesia and prevent reaction 

to skin incision in 95% of patients, targets of 4 to 27.4 μgml-1 PPF have been reported, with this 

variation being dependent on whether or not an analgesic adjuvant was used (Smith et al., 1994; 

Andrews et al., 1997; Kazama et al., 1997; Handa-Tsuitsui and Kodaka, 2007).      

For the volatile anaesthetics, 1.2-1.4 MAC is used as an approximation of the ED95 or MAC95 

(Steffey, 1999). In this study, the same comment could be made as the Cp95 in the 4 treatments was 

equal to 1.2-1.4 times the corresponding Cp50. In a study in horses where MIR50 for PPF was 

determined after premedication with xylazine by stimulating the oral mucosa with an electric 

current (Oku et al., 2005), 1.2-1.4 MIR50 corresponded to the MIR95 calculated using a linear 

regression. This MIR95 obtained, by analogy with MAC, was considered by the authors as adequate 

for basic infusion rate of PPF required for moderate surgical operation in TIVA of horses. In a 

similar manner, it is proposed that in this study, a target of 1.2-1.4 MIT50 (corresponding to the 

MIT95) would be adequate in providing anaesthesia in the PPF TCI anesthetised dog undergoing a 

surgical procedure of moderate or lower intensity.    

 

In humans, skin incision or electrical currents are used as the noxious stimulation for the 

determination of the MAC or Cp50 value for an inhalant or an IV agent, respectively, (Quasha et al., 

1980, Smith et al., 1994; Zbinden et al., 1994; Andrews et al., 1997; Kazama et al., 1997; Stuart et 

al., 2000). In the dog, in addition to these stimulations, the tail clamp is also an accepted method 

(Eger et al., 1965; Quasha et al., 1980; Weitz et al., 1991; Branson et al., 1993; Thurmon et al., 

1994; Grimm et al., 2000; Valverde et al., 2003).  

 

In a study in man defining the anaesthetic depth in the isoflurane-anesthetised patient using 

multiple noxious simulations (Zbinden et al., 1994), it was shown that different stimuli resulted in 

different MAC values determination. They found that the MAC value determined using a 

supramaximal tetanic stimulation of the muscles of the forearms (50 Hz, 50 mAmp for 10 sec) was 

lower than MAC determined with a skin incision. They also concluded that the disadvantage of the 

skin incision was that it could not be repeated in contrast to electrical stimulations.  In animals, the 
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comparison between electrical stimulation and skin incision gave different results in a comparative 

study in dogs and in rabbits (Valverde et al., 2003). In both species MAC values for halothane 

(dog) and for isoflurane (rabbit) were lower with the skin incision than with tail clamping or 

electrical stimulation (ulnar and tibial area for the forelimb and hind limb respectively; 50 volt, 50 

Hz for 10 msec), which were equipotent. This observation and the advantage of the repeatability 

resulted in the choice in this study of the tetanic twitch 50Htz and 80mA applied for 10 sec on the 

tail at the level of the 5th and 6h coccygeal vertebrae as the supramaximal noxious stimulation for 

the determination of the PPF Cp50.  

 

In a recent study on isoflurane anesthetised dogs, Pascoe et al. (2006) observed the MAC reduction 

effect of two DEX infusion rates, 0.5 and 3 µgkg-1 h-1. The decrease of the MAC value was 18 and 

59%, with DEX blood concentrations of 0.198 and 1.903 ngml-1.  In this study, DEX blood 

concentrations of 0.85 and 1.7 ngml-1 decreased the PPF Cp50 by 41 and 51%, respectively (from 

6.4 to 3.8 and 3.15 µgml-1, respectively). In humans, Aanta et al. (1997) observed very similar 

results with a MAC reduction of isoflurane by about 35% and 50% with DEX target plasma 

concentration of 0.3 and 0.6 ngml-1, respectively.  

 

In 2 studies in dogs receiving IV boluses (Kuusela et al., 2000 and 2001b) of DEX and MED, the 

authors observed that, regarding analgesia, DEX was slightly more potent than equivalent doses of 

MED. This result corroborates that observed in this study, where the Cp50 and Cp95 values in 

treatment PLD were lower than in treatment PM, (3.8 and 4.4, vs. 4.8 and 5.8, respectively). It is 

possible that LEV might interact with DEX in some manner causing antagonism or competition at 

the same receptor site or that LEV might have an action on alpha1-adrenoceptors (Kuusela et al., 

2000).  

 

5.4.4.2 Medetomidine/Dexmedetomidine 

The parameters provided by Outi Vainio and used to design an infusion scheme for MED were 

adequate as the blood target concentrations and the actual blood concentrations were very close. 

This is confirmed by the clinically acceptable MDPE% and the MDAPE% values (3.07 and 14.5, 

respectively) obtained. Moreover these parameters were equally acceptable for the active 

enantiomer as the MDPE% and MDAPE% values for the PLD (-2.95 and 17.5, respectively) and 

PHD (-1.23 and 14.17%, respectively) treatments were also clinically acceptable. This confirmed 

the result of a study in dogs which demonstrated that MED and its active enantiomer had very 

similar pharmacokinetics, LEV had a faster clearance (Kuusela et al., 2000). Although the present 

study was not designed to look at the PK of LEV, Figure 5.13 confirmed that LEV has a different 

PK from DEX. The difference between the 2 enantiomers might have been the result of a higher 

clearance and/or a bigger volume of distribution for LEV as its plasma concentration was lower 
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than DEX in the PMD treatment. In their study Kuusela and colleagues did not look at the PK of 

DEX or LEV when administered simultaneously (MED) and concluded that the difference in PK 

observed between these 2 agents could be caused by a divergent metabolic pathway and by the fact 

that DEX could reduce its own elimination rate via its haemodynamic effects. In the actual study, 

as DEX and LEV were infused simultaneously (MED), the haemodynamic of DEX influenced both 

DEX and LEV PK and, therefore, the difference in PK might have resulted mainly from a different 

metabolic pathway. The results from this study show that PPF had little effect on the 

pharmacokinetics of MED or DEX.  

 

The study undertaken was also designed to calculate the PK parameters of DEX in the PPF 

anaesthetised dog. A simulation of the 5-steps infusion with these new PK parameters for DEX 

(Table 5.10) using the PK-SIM software showed an important underprediction (Figure 5.16). When 

looking at the data used to calculate the DEX parameters, dog 4 showed a very large volume of 

distribution when compared with the other dogs. When repeating the same simulation but with the 

PK parameters of 5 dogs (dog 4 being removed) instead of 6, the prediction obtained was much 

closer to the actual DEX blood concentrations (Figure 5.16). The new PK parameters produced 

similar accuracy for the system as those from O. Vainio, but induced less bias (Table 5.18). 

 

5.5 Conclusion 

 

Previous studies have shown advantages of using DEX instead of the racemate in the dog (Kuusela 

et al., 2000,  2001a,  2001b). In this study the use of DEX 0.85 ngml-1 had a similar PPF sparing 

effect to the equivalent MED blood concentration of 1.7 ngml-1, but with less effects on the ABP, 

as well as on the performance of the TCI for PPF in the dog. Thus DEX is more advantageous than 

MED given by infusion in PPF anaesthetised dogs. 

 

The study also confirmed the validity of the PK of MED from the previous study (O. Vainio, 

personal communication, 2001). The study redefined specific PK parameters for DEX, although the 

MED PK parameters could also be used. The study indicated that DEX blood concentrations as low 

as 0.85 ngml-1 decreased the measured PPF blood concentrations necessary to maintain anaesthesia 

during noxious stimulation by about 41%.   However, although this study supported the suitability 

of the co-infusion of DEX during PPF anaesthesia in the dog, and the analgesic/sedative effects of 

DEX were present at the lowest blood concentrations, the CV effects were marked. Further studies 

are therefore necessary to establish if a lower blood concentration of DEX will provide analgesia 

while preserving the CV system. It was also observed that the PPF sparing effect resulting from co-

infusion of MED or DEX was not accompanied by any benefit in terms of shortening of recovery 

times. 
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In humans, a target controlled infusion (TCI) system developed firstly for propofol (PPF) 

revolutionised TIVA at the end of the eighties, by making it as simple to administer and as rapid to 

titrate as inhalational anaesthesia. This system enabled the anaesthetist to predict and maintain any 

desired target drug plasma concentration. This project sought to investigate the development of 

such a system for PPF in the dog, which would be suitable for use in general practice. Propofol is a 

poor reflex suppressor, and agents such as opioids are commonly used to provide analgesia. Since 

respiratory depression and apnoea are common side-effects of these agents, their use is challenging 

to veterinarians in practice. This study looked at the development of a co-infusion scheme using 

PPF and the alpha2-adrenoceptor agonist medetomidine (MED) and its active enantiomer 

dexmedetomidine (DEX). This class of drug is well known for its analgesic, muscle relaxant and 

anaesthetic agent sparing properties in many domestic species. In the dog few respiratory effects 

have been reported although effects on the CV system can be significant.   

 

The main findings of the study were as follows 

• The PPF TCI system performed well in a group of mixed-breed dogs (10) and greyhounds (6) 

(chapter 2) as well as in a group of beagles (6) (chapter 5). 

• An induction target concentration of 3 µgml-1 appeared to be optimal in dogs premedicated 

with acepromazine and methadone or pethidine, causing little CV and respiratory depression 

(chapters 2, 4 and 5).  

• Ideal maintenance target concentrations varied between  2 and 6 µgml-1, depending on the 

premedication, the level of the noxious stimulation, and the co-infusion of an analgesic agent 

such as MED or DEX (chapters 2 and 5) 

• MED and its enantiomers are cytochrome P450 inhibitors and were found to impair the In vitro 

metabolism of PPF in rat and canine hepatic microsomes in a dose-dependent manner (chapter 

3).   

• The In vitro inhibitory effects of MED and DEX were evident at concentrations higher than the 

minimum effective analgesic plasma concentrations described in the dog for these two agents.  

• The CV effects of MED in the PPF TCI anaesthetised dogs were dose dependent and occurred 

at lower doses than in the awake patient (chapter 4). Bradycardia and an increase in arterial 

blood pressure were the predominant effects. Significant hypotension was not observed, even 

after IV doses of MED as low as 0.001µgkg-1 (chapter 4).   

• The ED50 and ED95 for MED in the PPF TCI anesthetised dog were 0.187 and 3.1 μgkg-1 

respectively for the HR and 2.05 and 18.1 μgkg-1 respectively for the systolic ABP, while MED 

doses below or equal to 0.1 µgkg-1 had no or minimal effects on the ABP and the HR, 

respectively (chapter 4).   

• MED and DEX have very similar PK parameters in PPF TCI anesthetised dogs (chapter 5). 
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• DEX infusion impaired the performance of the TCI system in a concentration dependent 

manner. This impairment of the PPF TCI system was less with DEX infusion than with an 

equivalent MED infusion, confirming the clinical advantage of DEX vs. MED (chapter 5).  

• A plasma concentration of 0.85 ngml-1 of DEX had less effect on the ABP than an equivalent 

MED plasma concentration (1.7 ngml-1), while the effects on the HR and the CO were similar 

(chapter 5). 

• CP50-95 and MIT50-95 (measured and predicted blood PPF concentrations where 50% or 95% of 

the dog population would not respond to a noxious stimulation) were clinically lower during 

DEX infusion targeting a plasma concentration of 0.85 ngml-1 than during infusion of MED 

targeting an equivalent plasma concentration (1.7 ngml-1) (chapter 5).   

• The infusion of DEX to a target plasma concentration of 0.85 ngml-1 during TCI PPF 

anaesthesia in dogs had little effect on the respiratory rate and ventilation, while decreasing the 

HR (± 50%) and increasing ABP (± 15%) (chapter 5).  

• DEX infusion appeared to be more advantageous than an equivalent MED infusion in terms of 

PPF sparing effect and PPF TCI system performance.  

 

Although the pharmacokinetics (PK) for anaesthetic drugs and for PPF in particular have been 

shown to vary between breeds (Sams et al., 1985; Court et al., 1999), the TCI system developed in 

this study was clinically acceptable in greyhounds, beagle dogs and in a group of mixed breed dogs. 

While the PK parameters used to programme the TCI system might represent a wide range of the 

canine population, PK variation exists between patients and groups of patients in the same 

population and between different populations and so the system might not perform well in some 

individual dogs. It has been shown that as long as the actual plasma concentrations are still in the 

therapeutic window, the difference with the predicted values and therefore the lack of performance 

of the system is likely to be of little consequence (Li et al., 2005), and in this event, the TCI system 

is still a valuable tool in terms of TIVA, providing the ability to titrate to effect, to maintain stable 

plasma concentration and to make changes to the plasma concentrations and therefore anaesthetic 

depth, easily (Schuttler and Ihmsen, 2000; Li et al., 2005). The number of dogs in the studies 

assessing the performance of the TCI system (chapter 2 and 5) was small, and therefore some 

caution is needed interpreting the results. More studies with higher number of dogs might be 

necessary to confirm these results, however the data were encouraging.  

 

Although the studies assessing the performance of the TCI system used dogs aged from 2 to 10 

years old, the study was not designed to consider elderly patients. In humans, different studies have 

used TCI systems programmed with general PK parameters. Although the authors agree that as 

long as the anaesthetist titrates to effect and that the PK model incorporates age as a covariate, the 

performance of the system will be clinically acceptable, they advised that specific PK parameters 

for the elderly should be incorporated into the system (Ouattara et al., 2003; Passot et al., 2005; Xu 
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et al., 2005, White et al., 2008). Reid and Nolan (1996) showed that, in geriatric dogs (which they 

defined as > 8 years old) PK parameters for PPF, such as the volume of distribution and the 

elimination half-life, were not different from young dogs, while the clearance was a bit longer 

(Reid and Nolan 1996). Although the TCI system devised here might still perform adequately in 

the elderly, more studies are necessary to confirm this. Similarly, neonates and puppies were not 

considered while programming this TCI system. In humans, the PPF PK parameters of the adult 

were replaced with specific PK parameters for children (Absalom et al., 2003). Therefore, further 

studies in dogs would have to be undertaken to assess the PK parameters for PPF in puppies and 

thereafter to define new PK parameters as appropriate for use in the TCI system. 

 

With knowledge of the PK parameters of DEX in the dog (chapter 5) and the technology of the TCI 

system, more studies could be undertaken to look at the analgesic and/or sedative DEX 

concentrations with minimal CV effects. These results could be used thereafter to optimise the 

PPF-DEX PK/PD relationship.  

 

A negative effect on the performance of the TCI system resulted from the co-infusion of MED or 

DEX with PPF. The predicted PPF blood concentrations were lower than the measured 

concentrations (under-prediction). While a possible PK interaction resulting from a direct inhibitory 

effect of the alpha2-adrenoceptor agonists on the hepatic CYPs was highlighted (chapter 3), the 

study reported another possible origin: the effect of these drugs (alpha2-adrenoceptor agonists) on 

sympathetic drive, altering cardiac output (CO) and hepatic blood flow. This has already been 

illustrated in humans co-infused with PPF and remifentanil (Wietasch et al., 2006). In man, studies 

looking at the effect of opioids such as remifentanil or alfentanil have shown from 17 up to 60% 

underprediction from the computerised infusion system (TCI or similar) when compared with 

measured PPF plasma concentrations (Pavlin et al., 1996; Crankshaw et al., 2002; Hoymork et al., 

2003; Mertens et al., 2004; Wietasch et al., 2006). Although the performance of the PPF TCI is 

affected, these PK changes are believed to be insignificant compared to inter-individual 

pharmacodynamic variability, and by consequence to be of little effect on the clinical performance 

of the TCI system. Therefore, it is considered that such interactions will not interfere with the 

quality of anaesthesia, as the clinician is continuously titrating to effect (Vuyk 1998; Li et al., 

2005). Although this was confirmed in chapter 5 in beagles, where anaesthesia was easy to 

maintain even though the predictions of the TCI system were erroneous in the treatment groups 

(co-infusion of MED and DEX), the small number of dogs used in that study does not allow firm 

conclusions to be made. Further studies are therefore necessary to study these interactions and 

maybe to define a new set of PPF PK parameters for use with DEX infusion.   

 

When considering drug-drug relationships, PK interactions are often minimally variable compared 

to PD interactions. Inter-individual PK variability of a single agent is in the order of 70-80%, while 
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inter-individual PD variability frequently ranges between 300-400% (Vuyk 1998; Lichtenbelt et al., 

2004). More studies are necessary to establish a better knowledge and understanding of the PD 

interaction of PPF and DEX and to develop optimal PPF-DEX infusion regimens using PK/PD 

modelling. In humans, PK/PD modelling of PPF and different opioids has been used to maximize 

the use of both agents (Vuyck 2001).  PK/PD modelling determines the various optimal PPF-opioid 

concentrations associated with intra-operative adequacy of anaesthesia and the most rapid return to 

consciousness thereafter. The optimal PPF concentration changes with the opioid used and the 

length of infusion (Vuyck 2001; Lichtenbelt et al., 2004). Similar studies could be done with DEX 

and PPF using either isobolographic analyses or response surface modelling techniques in order to 

maximize and make the interaction more beneficial for the anaesthetist and for the patient (i.e. 

optimising speed of induction of anaesthesia; increasing haemodynamic stability at induction and 

during maintenance of anaesthesia; decreasing time to awakening; optimising spontaneous 

respiration, minimising the level of post-operative pain) (Vuyck 2001; Minto and Vuyck 2003; 

Lichtenbelt et al., 2004). 

 

Co-infusion of DEX and PPF appeared to provide excellent analgesia with little respiratory 

depression, however, CV effects were observed. The study was not designed to determine an 

infusion scheme for DEX low enough to maintain analgesia with minimal CV effects. On the other 

hand the study determined the minimum PPF target blood concentration necessary to maintain 

anaesthesia during a supra-maximal noxious stimulation and the decrease of this blood 

concentration by up to 35.5% by DEX blood concentration as low as 0.85 ngml-1. 

   

The TCI system for PPF in the dog was developed in the context of anaesthesia; however there is 

more to TCI than anaesthesia. The TCI system can be used to provide sedation as well as analgesia. 

By replacing the PK parameters with those for DEX  or for an opioid such as remifentanil, fentanyl 

or even morphine, a powerful and precise analgesic tool would be made available for use pre, peri 

and postoperatively or in the ICU (Milne and Kenny, 1998a). In fact, any IV agent that can be 

administered by infusion may benefit from the TCI mode of administration: intravenous 

antibacterials, antiarrhythmics, chemotherapeutic agents and inotropes to cite a few (Glen, 2003). 

 

The performance of a TCI system will only be as good as the PK parameters used to programme it. 

While incorporating PK parameters derived from studies conducted in groups of individuals into 

the system is reasonable, work in humans with alfentanil has shown that the gain compared to the 

use of population PK parameters was minimal (Maitre et al., 1987). Egan (2003) in a review on 

target-controlled drug delivery confirmed that programming a TCI system with an individual’s own 

PK does not markedly improve the performance of the TCI. Currently, studies are being carried out 

into ‘in-line’ monitoring devices, which would allow real time measurement of blood PPF 

concentrations (Hornuss et al., 2007; Takita et al., 2007). This would allow the anaesthetist to 
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know the exact PPF plasma concentration in the patient. However, this would not change the 

predictive performance of the machine, unless the system “learns” from the actual blood 

concentration in that specific patient, and adapts the PK accordingly. One could argue that this 

would not really change the quality of the anaesthesia, as the clinician would still titrate and change 

the target to a desired clinical effect.  

 

Knowing the drug blood concentration is not critical. What is important is the effect site 

concentration. In humans, an effect site PK parameter, or ke0, has been incorporated into TCI 

systems to reflect the passage of the drug from the blood to the effect site (Wakeling et al., 1999). 

In 2000, Struys and colleagues compared a TCI system targeting plasma concentration vs. a TCI 

system targeting the effect site concentration. They concluded that targeting the effect site 

compartment resulted in less variability and greater predictability in the time to loss of 

consciousness. They also observed that when targeting the effect site, the onset of drug effect was 

quicker and without adverse haemodynamic consequences. For TCI PPF in the dog, the ke0 (the 

plasma effect site equilibration rate constant) value for anaesthesia could be determined and 

incorporated into the TCI system. This would allow the anaesthetist to know if the effect site 

concentration has been achieved, how long it would take to reach the effect, and also how long it 

would take for the patient to recover. The Ke0 can be determined during an integrated PK/PD study 

(Minto et al., 2003). Unfortunately, with this method, the Ke0 value will be specific for this set of 

PK parameters and will result in poor predictions of the time course of drug effect if one wanted to 

use it with a different set of PK parameters (Gentry et al., 1994; Wakeling et al., 1999). To be able 

to link the Ke0 from an integrated PK/PD study to PK parameters determined in another study, 

Minto and colleagues (2003) introduced the time of maximum effect site concentration (tpeak) 

(Minto et al., 2003). Knowing the tpeak for a specific agent, the investigator can calculate the value 

of Ke0 that accurately predicts tpeak when using the set of parameters of interest. With simulations 

for thiopentone, remifentanil and PPF, Minto and colleagues showed that the Ke0 determined 

through the tpeak method better approximated the time course of drug effect than the simple transfer 

of a Ke0 value from one set of PK parameters to another.  

 

Although the knowledge of the Ke0 will allow the anaesthetist  better control of anaesthesia by 

being able to predict the time course of effect of the drug used,  like any other PK parameter 

calculated from a population, there will still be some inter-individual variability and the anaesthetist 

will still use his/her clinical expertise to titrate to effect. 

 

Better than predicting the effect site concentration, is measuring the effect, namely the depth of 

anaesthesia. Most of the work regarding monitoring the depth of anaesthesia in man has focussed 

on electroencephalographic (EEG) assessment. There are 2 approaches: BIS (Bispectral Index) and 

AEP (Auditory Evoked Potential) monitoring, which are being used with increased frequency in 
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humans (Kreuer et al., 2003; Johansen, 2006; Plourde, 2006), and with some success in dogs 

(Pypendop et al., 1999; Greene et al., 2002, 2003; Carrasco-Jimenez et al., 2004; Joubert, 2004; 

Murell et al.,, 2004). In humans, the combination of the TCI system for PPF and these monitors of 

the depth of anaesthesia results in an anaesthesia technique called ‘closed loop anaesthesia’ or 

CLAN (Kenny and Mantzaridis, 1999). With this technique, the BIS or AEP system measures the 

level of consciousness in the patient and titrates the drug dose to individual requirements through 

the TCI system (Morley et al., 2000; Absalom et al., 2002; Struys et al., 2005a; Liu et al., 2006). 

The advantages of the CLAN technique are: continuous responsive control of anaesthesia which is 

considered to improve the quality of care; dose delivered corresponding to individual requirements, 

which decreases the problems of inter-individual PK and PD differences; removal of the risk of 

under- or overdosing and removal of observer bias (Milne and Kenny, 1998a; Morley et al., 2000; 

Absalom et al., 2002; Struys et al., 2005a).  

 

In parallel to the improvements in technology with regard to PK/PD modelling and anaesthesia 

monitoring, progress has been made in developing the ‘ideal’ IV agent. Several drug companies are 

developing new agents, but others are revisiting “old agents” and making them more TIVA friendly 

(Sneyd, 2004). These attempts at “revamping” are of various kinds: isolation of active enantiomers 

such as for MED and DEX, ketamine and s-ketamine, methadone and l-methadone; replacement of 

an “unsuitable” excipient e.g. cyclodextrine replacing Cremophor EL for solubilising alphaxolone 

(Alfaxan CD), or replacing the intralipid solution used to emulsify PPF; transforming an agent into 

a prodrug to make it more water soluble e.g. PPF phosphate. Detailed information regarding these 

developments have been reported in recent years (Fechner et al., 2003; Calvo et al., 2004; Sneyd, 

2004; Gibiansky et al., 2005; Struys et al., 2005b; Morey et al., 2006; Kim et al., 2007).  

  

Finally, this work shows how the use of a TCI system facilitates TIVA by allowing better control 

of the delivery of the anaesthetic agent. Another advantage of the system is in research where it 

allows the maintenance of steady plasma concentrations to study PD interactions of drugs (Smith 

and White 1994; Andrews et al., 1997; Milne and Kenny 1999; Glen 2003). In humans, research in 

this area has increased with the advent of TCI (Van den Nieuwenhuyzen et al., 2000, Glen 2003). 

Hopefully these advantages will be more widely appreciated in the veterinary setting and TCI 

systems will start being used not only for research, but also in practice to improve anaesthesia and 

critical care for our patients, as well as in cancer therapy and antimicrobial therapy to improve 

treatment outcomes (Glen 2003). 
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Appendix 1: Measured (cm) vs. Predicted (Ccalc) propofol concentration (µgml-1) and PE% in a 

group of 10 propofol TCI anaesthetised mixed breed dogs undergoing dental surgery. 

 

Dog 1 Time (min.) Cm (µgml-1) Ccalc (µgml-1) PE% 
 2.00 0.28 8.00 -96.50 
 5.00 5.63 8.00 -29.63 
 30.50 4.87 7.00 -30.43 
 33.00 4.58 7.00 -34.57 
     

Dog 2 5.00 16.31 11.20 45.63 
 7.00 9.59 8.60 11.51 
 10.00 5.44 6.50 -16.31 
 30.00 7.01 5.00 40.20 
 35.00 4.47 4.30 3.95 
 38.00 3.47 3.50 -0.86 
 43.00 2.78 2.40 15.83 
 55.00 2.50 1.60 56.25 
     

Dog 3 5.00 5.59 8.80 -36.48 
 10.00 5.29 6.00 -11.83 
 15.00 6.49 6.00 8.17 
 23.00 3.26 4.30 -24.19 
 27.00 3.76 4.00 -6.00 
 30.00 2.47 3.20 -22.81 
 33.00 2.24 2.70 -17.04 
 38.00 0.78 1.90 -58.95 
     

Dog 4 2.00 5.04 6.00 -16.00 
 5.00 5.89 6.00 -1.83 
 7.00 5.38 6.00 -10.33 
 10.00 3.05 5.00 -39.00 
 17.00 3.63 3.00 21.00 
 20.00 2.28 3.00 -24.00 
 33.00 1.10 2.60 -57.69 
 36.00 1.48 2.10 -29.52 
 45.00 0.82 1.20 -31.67 
 47.00 0.89 1.10 -19.09 
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Dog 5 Time (min.) Cm (µgml-1) Ccalc (µgml-1) PE% 
 2.50 1.97 3.00 -34.33 
 4.00 4.41 4.00 10.25 
 7.00 4.76 4.00 19.00 
 12.00 4.22 4.00 5.50 
 22.00 4.66 4.00 16.50 
 40.00 4.19 3.60 16.39 
 50.00 5.15 4.90 5.10 
 55.00 5.12 4.70 8.94 
 62.00 1.88 3.30 -43.03 
 67.00 1.50 2.40 -37.50 
 77.00 0.84 1.50 -44.00 
     

Dog 6 1.00 10.00 9.00 11.11 
 3.00 5.77 1.80 220.56 
 6.00 4.80 2.60 84.62 
 8.00 4.70 2.80 67.86 
 15.00 8.41 3.50 140.29 
 18.00 6.14 3.80 61.58 
 20.00 6.62 3.90 69.74 
 40.00 6.06 4.00 51.50 
 53.00 4.43 3.40 30.29 
 56.00 2.99 2.70 10.74 
 58.00 2.62 2.50 4.80 
 63.00 2.29 1.90 20.53 
 70.00 1.90 1.50 26.67 
 71.00 1.88 1.30 44.62 
     

Dog 7 5.00 3.88 2.50 55.20 
 8.00 2.51 2.90 -13.45 
 10.00 2.57 3.20 -19.69 
 13.00 5.03 3.50 43.71 
 16.00 4.58 3.90 17.44 
 18.00 4.17 3.90 6.92 
 37.00 3.67 4.00 -8.25 
 51.00 2.51 3.50 -28.29 
 54.00 1.58 2.60 -39.23 
 56.00 1.37 2.20 -37.73 
 60.00 1.26 1.70 -25.88 
 65.00 1.05 1.50 -30.00 
     

Dog 8 5.00 5.44 3.00 81.33 
 8.00 5.39 3.60 49.72 
 10.00 5.43 3.80 42.89 
 13.00 5.42 3.90 38.97 
 16.00 5.14 4.00 28.50 
 18.00 4.21 4.00 5.25 
 37.00 2.91 3.30 -11.82 
 51.00 2.31 2.60 -11.15 
 54.00 3.05 2.20 38.64 
 56.00 35.47 1.60 2116.88 
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Dog 9 Time (min.) Cm (µgml-1) Ccalc (µgml-1) PE% 
 2.00 5.47 3.00 82.33 
 5.00 5.06 3.00 68.67 
 7.00 4.32 3.00 44.00 
 9.00 5.41 3.00 80.33 
 30.00 6.14 3.00 104.67 
 35.00 1.67 3.00 -44.33 
 38.00 2.21 2.50 -11.60 
 40.00 2.05 2.10 -2.38 
 42.00 0.44 1.90 -76.84 
 44.00 1.18 1.70 -30.59 
 50.00 0.47 1.20 -60.83 
     

Dog 10 6.00 3.10 3.00 3.33 
 9.00 3.26 3.50 -6.86 
 12.00 3.58 4.00 -10.50 
 15.00 3.82 4.00 -4.50 
 18.00 4.12 4.00 3.00 
 38.00 4.83 4.00 20.75 
 41.00 4.78 3.80 25.79 
 43.00 3.64 3.10 17.42 
 46.00 3.33 2.60 28.08 
 49.00 3.24 2.10 54.29 
 54.00 2.64 1.70 55.29 
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Appendix 2: Measured (Cm) vs. Predicted (Ccalc) propofol concentration (µgml-1) and PE% in a 

group of 6 propofol TCI anaesthetised greyhound dogs undergoing dental surgery.  

 

Grey 1 Time (min.) Cm (µgml-1) Ccalc (µgml-1) PE% 
 4.00 1.83 2.50 -26.80 
 6.00 0.56 2.50 -77.60 
 9.00 2.87 2.50 14.80 
 11.00 1.96 3.00 -34.67 
 14.00 1.63 3.00 -45.67 
 17.00 3.22 3.50 -8.00 
 20.00 2.88 3.50 -17.71 
 22.00 2.60 3.50 -25.71 
 25.00 2.71 3.50 -22.57 
 35.00 2.72 3.50 -22.29 
 44.00 1.53 3.50 -56.29 
 49.00 1.46 2.40 -39.17 
 51.00 0.36 2.00 -82.00 
 52.00 1.28 1.90 -32.63 
     

Grey 2 2.00 1.86 2.50 -25.60 
 4.00 1.88 2.50 -24.80 
 9.00 1.88 2.50 -24.80 
 22.00 2.65 2.50 6.00 
 24.00 2.95 3.00 -1.67 
 26.00 1.83 3.00 -39.00 
 29.00 2.49 3.00 -17.00 
 31.00 1.83 3.00 -39.00 
 52.00 1.88 3.00 -37.33 
 70.00 2.11 3.00 -29.67 
 72.00 2.47 3.00 -17.67 
 75.00 1.76 2.10 -16.19 
 77.00 1.78 1.90 -6.32 
 81.00 1.47 1.50 -2.00 
     

Grey 3 4.00 2.19 3.50 -37.43 
 6.00 2.63 3.50 -24.86 
 9.00 2.22 3.50 -36.57 
 11.00 2.63 3.50 -24.86 
 24.00 2.76 3.50 -21.14 
 44.00 2.17 3.50 -38.00 
 64.00 2.62 3.50 -25.14 
 75.00 2.39 3.50 -31.71 
 77.00 1.51 2.80 -46.07 
 80.00 1.11 2.50 -55.60 
 92.00 1.03 1.30 -20.77 
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Grey 4 Time (min.) Cm (µgml-1) Ccalc (µgml-1) PE% 
 3.00 2.13 3.00 -29.00 
 6.00 7.91 3.50 126.00 
 8.00 7.44 4.00 86.00 
 10.00 5.48 4.00 37.00 
 12.00 6.24 4.00 56.00 
 15.00 6.49 4.00 62.25 
 25.00 6.75 4.00 68.75 
 30.00 5.74 3.50 64.00 
 32.00 6.13 3.50 75.14 
 37.00 5.62 3.50 60.57 
 39.00 4.65 3.10 50.00 
 42.00 2.23 2.70 -17.41 
 44.00 3.30 2.30 43.48 
 52.00 2.30 1.40 64.29 
 88.00 1.43 0.50 186.00 
     

Grey 5 7.00 3.35 3.50 -4.29 
 9.00 3.6 3.50 2.86 
 11.00 3.69 3.50 5.43 
 16.00 2.97 3.50 -15.14 
 26.00 3.08 3.50 -12.00 
 36.00 3.37 3.50 -3.71 
 54.00 1.13 1.30 -13.08 
 57.00 1.24 1.10 12.73 
 82.00 0.88 0.60 46.67 
     

Grey 6 3.00 3.03 3.00 1.00 
 5.00 3.14 3.00 4.67 
 7.00 3.59 3.00 19.67 
 10.00 3.93 3.00 31.00 
 22.00 4.29 3.00 43.00 
 29.00 4.12 3.00 37.33 
 31.00 2.63 2.50 5.20 
 34.00 3.21 2.50 28.40 
 36.00 3.37 2.50 34.80 
 38.00 2.74 2.20 24.55 
 40.00 1.31 1.80 -27.22 
 42.00 1.81 1.60 13.13 
 50.00 0.68 1.00 32.00 
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Appendix 3: Predicted propofol plasma concentration after 2 mgkg-1 IV injection bolus using 

human pharmacokinetic parameters (Marsh, Br J Anaesth 67:41, 1991) and the PK-SIM simulator 

software (PK-SIM; Specialised Data Systems, Jenkintown, PA, USA).  

 

 
 

 

Appendix 4: Predicted propofol plasma concentration after 5.95 mgkg-1 IV injection bolus using 

canine pharmacokinetic parameters (see chapter 2) and the PK-SIM simulator software (PK-SIM; 

Specialised Data Systems, Jenkintown, PA, USA). 
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Appendix 5: Time study: Propofol (10, 7.5, 5 and 2.5 µgml-1) degradation by hepatic cytochrome 

P450 over time (min.) in 6 rats.   

 

 Times 
(min) 0 5 10 15 30 45 

Propofol        
10 µgml-1 Rat 1 9.66 8.95 8.31 8.13 6.68 5.56 
 Rat 2 9.75 9.08 8.59 7.77 6.27 5.07 
 Rat 3 9.59 9.15 8.26 8.49 6.91 5.71 
 Rat 4 9.83 9.05 8.72 8.58 7.71 6.57 
 Rat 5 11.86 9.64 8.59 8.46 7.17 6.02 
 Rat 6 10.37 10.10 9.23 9.27 7.59 6.53 
 Mean 

(±SD) 
10.18 
(0.9) 

9.33 
(0.4) 

8.62 
(0.3) 

8.45 
(0.5) 

7.05 
(0.5) 

5.91 
(0.6) 

        
7.5 µgml-1 Rat 1 6.99 5.96 5.22 4.54 3.54 2.79 
 Rat 2 6.87 6.27 5.24 4.59 3.55 2.58 
 Rat 3 7.00 6.34 5.93 5.46 4.00 3.03 
 Rat 4 7.23 6.58 6.32 5.61 4.86 3.58 
 Rat 5 6.94 6.33 5.81 5.31 4.22 3.44 
 Rat 6 7.12 6.55 5.88 5.64 4.22 3.16 
 Mean 

(±SD) 
7.02 
(0.1) 

6.34 
(0.2) 

5.73 
(0.4) 

5.19 
(0.5) 

4.06 
(0.5) 

3.10 
(0.4) 

        
5 µgml-1 Rat 1 5.69 4.60 4.09 4.13 3.58 3.01 
 Rat 2 5.28 4.81 4.73 4.52 3.55 3.12 
 Rat 3 5.55 4.85 4.65 4.51 3.83 3.42 
 Rat 4 5.19 4.72 4.61 4.33 3.83 3.48 
 Rat 5 5.07 4.35 4.29 4.23 3.65 3.38 
 Rat 6 5.65 5.17 4.76 4.65 3.81 3.26 
 Mean 

(±SD) 
5.40 
(0.3) 

4.75 
(0.3) 

4.52 
(0.3) 

4.39 
(0.2) 

3.71 
(0.1) 

3.28 
(0.2) 

        
2.5 µgml-1 Rat 1 2.25 2.01 1.62 1.40 0,89 0.53 
 Rat 2 2.42 2.05 1.72 1.54 1.00 0.58 
 Rat 3 2.61 2.25 2.01 1.69 1.17 0.82 
 Rat 4 1.96 1.84 1.74 1.52 1.11 0.78 
 Rat 5 2.13 1.96 1.81 1.71 1.14 0.77 
 Rat 6 2.33 2.15 1.85 1.51 0.98 0.59 
 Mean 

(±SD) 
2.28 
(0.2) 

2.04 
(0.1) 

1.79 
(0.1) 

1.56 
(0.1) 

1.05 
(0.1) 

0.68 
(0.1) 
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Appendix 6: Time study: Propofol (10, 7.5, 5 and 2.5 µgml-1) degradation by hepatic cytochrome 

P450 over time (min.) in 6 dogs.   

 

 

 

 Times 
(min) 0 5 10 15 30 45 

Propofol        
10 µgml-1 Dog 1 10.17 9.32 8.66 8.09 6.09 4.78 
 Dog 2 10.49 9.54 9.28 8.80 7.16 6.72 
 Dog 3 10.52 9.84 9.24 8.75 7.94 7.14 
 Dog 4 9.47 8.29 8.15 7.67 7.12 6.47 
 Dog 5 10.84 9.69 8.10 7.97 6.85 5.60 
 Dog 6 11.23 8.98 8.68 7.99 6.52 4.42 
 Mean 

(±SD) 
10.45 
(0.6) 

9.28 
(0.6) 

8.69 
(0.5) 

8.21 
(0.5) 

6.95 
(0.6) 

5.85 
(1.1) 

        
7.5 µgml-1 Dog 1 7.57 6.18 5.02 4.53 2.60 1.52 
 Dog 2 7.09 6.50 5.93 5.34 3.67 2.67 
 Dog 3 7.23 6.23 5.71 5.53 4.51 3.37 
 Dog 4 7.19 6.80 6.44 6.28 5.71 4.64 
 Dog 5 6.91 6.14 5.67 4.54 3.18 2.08 
 Dog 6 6.72 5.91 5.26 4.51 2.95 2.20 
 Mean 

(±SD) 
7.12 
(0.3) 

6.29 
(0.3) 

5.67 
(0.5 ) 

5.12 
(0.7) 

3.77 
(1.2 ) 

2.75 
(1.1) 

        
5 µgml-1 Dog 1 5.36 4.36 3.89 3.58 2.56 1.91 
 Dog 2 6.50 5.28 4.95 4.45 3.77 3.04 
 Dog 3 5.14 4.75 4.19 4.01 3.60 2.88 
 Dog 4 5.35 5.09 4.74 4.46 3.76 3.25 
 Dog 5 5.14 4.48 3.99 3.51 2.77 1.43 
 Dog 6 4.88 4.21 3.83 3.75 2.74 2.07 
 Mean 

(±SD) 
5.40 
(0.6) 

4.70 
(0.4) 

4.26 
(0.5) 

3.96 
(0.4) 

3.20 
(0.6) 

2.43 
(0.7) 

        
2.5 µgml-1 Dog 1 2.29 1.45 0.83 0.53 0.13 0.01 
 Dog 2 2.70 1.89 1.42 1.00 0.38 0.10 
 Dog 3 2.42 1.74 1.26 1.09 0.43 0.17 
 Dog 4 2.5 1.81 1.49 1.21 0.65 0.34 
 Dog 5 2.26 1.55 1.01 0.73 0.15 0.02 
 Dog 6 2.26 1.47 1.07 0.75 0.20 0.05 
 Mean 

(±SD) 
2.41 
(0.2) 

1.65 
(0.2) 

1.18 
(0.3) 

0.89 
(0.3) 

0.32 
(0.2) 

0.11 
(0.1) 
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Appendix 7: Propofol (2.5 µgml-1) degradation by rat hepatic cytochrome P450 after an incubation 

time of 15 min.; inhibitory effect of different doses of medetomidine (MED) (ngml-1). 

 

MED 0 0.0007 0.00237 0.007 0.0237 0.07 0.237 0.7 2.37 
Rat 3 1.31 1.38 1.38 1.46 1.60 1.65 2.07 2.21 2.20 
Rat 4 1.53 1.73 1.62 1.71 2.03 2.18 2.45 2.54 2.42 
Rat 5 1.20 1.37 1.60 1.41 1.41 1.44 1.94 2.17 2.26 
Rat 6 1.01 1.26 1.11 1.19 1.40 1.90 2.26 2.45 2.60 
Rat 7 1.56 1.61 1.53 1.67 1.98 2.21 2.40 2.48 2.50 
Rat 8 1.56 1.68 1.66 1.83 2.09 2.25 2.46 2.68 2.68 
Mean 
(±SD) 

1.36 
(0.22) 

1.51 
(0.19) 

1.48 
(0.21) 

1.55 
(0.23) 

1.75 
(0.31) 

1.94 
(0.33) 

2.26 
(0.21) 

2.42 
(0.20) 

2.47 
(0.23) 

 

 

Appendix 8: Propofol (2.5 µgml-1) degradation by rat hepatic cytochrome P450 after an incubation 

time of 15 min.; inhibitory effect of different doses of dexmedetomidine (DEX) (µgml-1). 

 

DEX 0 0.0007 0.00237 0.007 0.0237 0.07 0.237 0.7 2.37 
Rat 3 1.35 1.39 1.33 1.29 1.51 1.90 2.21 2.36 2.34 
Rat 4 1.42 1.53 1.42 1.52 1.75 2.05 2.33 2.57 2.66 
Rat 5 1.30 1.61 1.58 1.64 1.67 1.87 2.22 2.40 2.54 
Rat 6 1.00 1.14 1.03 1.19 1.26 1.54 2.49 2.40 2.59 
Rat 7 1.38 1.49 1.35 1.47 1.51 1.46 2.25 2.69 2.79 
Rat 8 1.52 1.48 1.56 1.58 1.58 1.65 2.31 2.46 2.59 
Mean 
(±SD) 

1.33 
(0.17) 

1.44 
(0.16) 

1.38 
(0.20) 

1.45 
(0.17) 

1.55 
(0.16) 

1.75 
(0.22) 

2.30 
(0.14) 

2.48 
(0.14) 

2.58 
(0.17) 

 

 

Appendix 9: Propofol (2.5 µgml-1) degradation by rat hepatic cytochrome P450 after an incubation 

time of 15 min.; inhibitory effect of different doses of levomedetomidine (LEV) (µgml-1). 

 

LEV 0 0.0007 0.00237 0.007 0.0237 0.07 0.237 0.7 2.37 
Rat 4 1.48 1.67 1.53 1.70 1.98 2.29 2.33 2.76 2.64 
Rat 5 1.69 1.85 1.75 1.89 2.17 2.33 2.41 2.42 2.52 
Rat 6 1.11 1.32 1.19 1.23 1.62 1.97 2.10 2.41 2.42 
Rat 7 1.22 1.56 1.48 1.49 1.84 2.12 2.38 2.50 2.53 
Rat 8 1.52 1.59 1.71 1.86 1.84 2.13 2.40 2.71 2.61 
Rat 9 1.34 1.44 1.50 1.63 1.61 1.85 2.30 2.36 2.37 
Mean 
(±SD) 

1.39 
(0.20) 

1.57 
(0.18) 

1.53 
(0.21) 

1.63 
(0.24) 

1.84 
(0.20) 

2.12 
(0.18) 

2.32 
(0.12) 

2.53 
(0.18) 

2.52 
(0.14) 
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Appendix 10: Propofol (2.5 µgml-1) degradation by canine hepatic cytochrome P450 after an 

incubation time of 15 min.; inhibitory effect of different doses of medetomidine (MED) (µgml-1). 

 

MED 0 0.000236 0.0007 0.00236 0.007 0.0236 0.07 0.236 0.7 
Dog 1 0.93 0.84 0.83 0.81 0.92 1.21 1.62 1.96 1.93 
Dog 2 0.52 0.50 0.51 0.54 0.64 0.91 1.72 2.10 2.04 
Dog 3 0.65 0.64 0.55 0.69 0.77 1.19 1.93 2.22 2.24 
Dog 4 0.97 0.99 0.99 1.08 1.13 1.64 1.95 2.01 2.03 
Dog 5 0.35 0.36 0.39 0.38 0.44 0.72 1.58 2.16 2.23 
Dog 6 0.34 0.41 0.39 0.39 0.45 0.70 1.28 1.74 1.81 
Mean 
(±SD) 

0.63 
(0.27) 

0.62 
(0.25) 

0.61 
(0.25) 

0.65 
(0.27) 

0.72 
(0.27) 

1.06 
(0.36) 

1.68 
(0.25) 

2.03 
(0.17)

2.05 
(0.17)

 

 

Appendix 11: Propofol (2.5 µgml-1) degradation by canine hepatic cytochrome P450 after an 

incubation time of 15 min.; inhibitory effect of different doses of dexmedetomidine (DEX) (µgml-

1). 

 

DEX 0 0.000236 0.0007 0.00236 0.007 0.0.236 0.07 0.236 0.7 2.36 
Dog 1 0.23 0.26 0.24 0.29 0.25 0.45 0.81 1.91 2.25 2.31 
Dog 2 0.58 0.58 0.57 0.56 0.68 0.86 1.33 1.74 1.82 1.87 
Dog 3 0.26 0.31 0.25 0.28 0.32 0.48 0.91 1;81 1.86 2.03 
Dog 4 0.21 0.19 0.19 0.19 0.22 0.36 0.74 1.63 1.85 1.91 
Dog 5 0.15 0.12 0.13 0.15 0.15 0.29 0.66 1.79 2.06 2.25 
Dog 6 0.29 0.30 0.28 0.31 0.34 0.48 0.9 2.04 2.16 2.25 
Mean 
(±SD) 

0.28 
(0.15)

0.29 
(0.16) 

0.28 
(0.15) 

0.30 
(0.14) 

0.33 
(0.19) 

0.49 
(0.20) 

0.89 
(0.24) 

1.82 
(0.14) 

2.00 
(0.18)

2.10 
(0.19)

 

 

Appendix 12: Propofol (2.5 µgml-1) degradation by canine hepatic cytochrome P450 after an 

incubation time of 15 min.; inhibitory effect of different doses of levomedetomidine (LEV) (µgml-

1). 

 

LEV 0 0.000236 0.0007 0.00236 0.007 0.0236 0.07 0.236 0.7 2.36 
Dog 1 0.22 0.24 0.27 0.25 0.27 0.59 1.87 2.14 2.24 2.13 
Dog 4 0.81 0.77 0.86 0.91 1.12 1.91 2.07 2.12 2.18 2.17 
Dog 5 0.27 0.30 0.30 0.35 0.44 1.04 2.04 2.29 2.16 2.15 
Dog 6 0.27 0.22 0.26 0.30 0.43 0.97 2.00 1.92 2.08 2.08 
Dog 7 0.17 0.19 0.20 0.25 0.30 0.55 1.77 2.16 2.10 2.02 
Dog 8 0.32 0.32 0.38 0.41 0.56 0.89 2.08 2.15 2.21 2.28 
Mean 
(±SD) 

0.34 
(0.23)

0.34 
(0.22) 

0.38 
(0.24) 

0.41 
(0.25) 

0.52 
(0.31) 

0.99 
(0.49) 

1.97 
(0.13) 

2.13 
(0.12) 

2.16 
(0.06 

2.14 
(0.09 
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Appendix 13: Age and weight in 8 groups (1 to 8) of 10 TCI propofol anaesthetised dogs given 

saline (Control Group) or MED (0.01, 0.03, 0.1, 0.3, 1, 3 and 10 µgkg-1, respectively).  

 

Control group  

Dog Age (months) Weight (kg) Gender Breed 

1 9 33 NM Chow Chow 

2 26 25 NF Boxer 

3 48 39.5 NM Labrador 

4 81 44 NM Rottweiler 

5 37 18 NF Cocker Spaniel 

6 9 31 NM Retriever cross 

7 56 17 NF Jack Russell Terrier 

8 72 32 NF Huntaway Collie 

9 82 45 M Flat Coated Retriever 

10 18 41 M Bernese Mountain Dog 

 

Group 0.01 µgkg-1 

Dog Age (months) Weight (kg) Gender Breed 

1 9 29 M Golden Retriever 

2 45 33 F Weimaraner 

3 72 39 M Labrador Retriever 

4 8 10.75 F Corgi 

5 72 29 M Old English Sheep Dog 

6 60 27.5 FN German Shorthaired Pointer 

7 8 14 M Lakeland Terrier 

8 10 29 M Golden Retriever 

9 7 27.5 NM Chow Chow 

10 7 30 M Golden Retriever 
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Group 0.03 µgkg-1 

Dog Age (months) Weight (kg) Gender Breed 

1 10 34 F Rottweiler 

2 9 23 F Golden Retriever 

3 22 36 NF Labrador Retriever 

4 36 21.5 MN Spaniel cross 

5 8 16 FN Labrador Retriever 

6 72 27 F Weimaraner 

7 9 33 NM Labrador Retriever 

8 60 21 M Bearded Collie 

9 35 32.5 M Greyhound 

10 61 16 M Welsh Springer Spaniel 

 

 

Group 0.1µgkg-1 

Dog Age (months) Weight (kg) Gender Breed 

1 6 25 F Labrador Retriever 

2 12 29 M Labrador Retriever 

3 96 30 NM Lurcher cross 

4 11 24 F German Shepherd 

5 71 12 M Cavalier King Charles Spaniel 

6 67 21 M Setter cross 

7 40 26 NF Labrador Retriever 

8 96 11 NM West Highland White Terrier 

9 17 29 F Labrador Retriever 

10 84 34 M Rough Collie 
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Group 0.3 µgkg-1 

Dog Age (months) Weight (kg) Gender Breed 

1 10 35 M Rottweiler 

2 9 28 M German Shepherd 

3 13 39 M Rottweiler 

4 51 35 NM Boxer 

5 54 27 NF Rough Collie 

6 60 40 M Doberman 

7 73 28 F Weimaraner 

8 99 39 NM German Shepherd 

9 23 29 NF Labrador Retriever 

10 7 9 F Dachshund 

 

 

Group 1 µgkg-1 

Dog Age (months) Weight (kg) Gender Breed 

1 96 37 M Labrador Retriever 

2 70 7.5 NF Tibetan Spaniel 

3 61 38 F Bernese Mountain Dog 

4 84 15.5 NF Spaniel cross 

5 60 7.5 NF Tibetan Spaniel 

6 12 25 F Dalmatian 

7 86 30 NM Retriever cross 

8 26 39 NM Labrador Retriever 

9 60 22 M Staffordshire Bull Terrier 

10 60 31 NF Golden Retriever 
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Group 3 µgkg-1 

Dog Age (months) Weight (kg) Gender Breed 

1 88 35 M Rough Collie 

2 14 28 M Labrador Retriever 

3 62 38.5 M Weimaraner 

4 16 33.5 NF Labrador Retriever 

5 44 29 NF Poodle 

6 12 18.5 NM Cavalier King Charles Spaniel 

7 96 7 M Miniature Longhaired Dachshund 

8 61 32 M Weimaraner 

9 61 28 NF Boxer 

10 72 17 M Cavalier King Charles Spaniel 

 

 

Group 10 µgkg-1 

Dog Age (months) Weight (kg) Gender Breed 

1 69 26 NM Irish Setter 

2 7 19 M Border Collie 

3 14 18 F Sharpei 

4 36 27 M Labrador Retriever 

5 95 19 M Border Collie 

6 78 22 F Rough Collie 

7 49 44 NF Bullmastiff 

8 103 35 NM Cross Breed 

9 28 17.5 NF Border Collie 

10 10 31 NF Labrador Retriever 
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Appendix 14: Heart rate (beats per min.) in 10 propofol TCI anesthetised dogs from 10 min. before 

up to 20 min. after the injection of either saline (control group) or medetomidine (groups 0.01, 

0.03, 0.1, 0.3, 1, 3 and 10 µgml-1). 

 

Control group 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 
-10 125 96 96 80 140 60 100 129 71 63 
-5 128 92 84 80 132 64 104 116 76 70 
0 115 92 84 80 130 60 104 120 80 70 
2 116 96 80 74 136 60 104 124 76 64 
5 112 92 80 72 132 60 108 120 84 64 

10 112 88 84 72 135 56 104 112 80 63 
15 96 84 76 75 128 64 104 116 76 66 
20 120 84 80 72 125 70 100 108 76 63 

Group 0.01 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 68 80 122 82 81 76 136 78 119 88 
-5 70 72 120 75 81 75 138 72 119 84 
0 68 68 113 72 80 71 138 79 120 92 
2 72 65 116 77 75 71 136 77 122 96 
5 68 64 117 75 79 75 138 84 111 84 

10 72 64 105 77 79 78 135 76 113 92 
15 72 60 104 75 81 84 127 76 108 88 
20 70 66 107 75 83 78 138 78 120 88 

Group 0.03 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 84 78 88 112 98 121 92 65 60 85 
-5 82 76 76 96 98 125 89 61 54 84 
0 80 77 82 96 95 119 89 58 54 84 
2 64 74 68 100 92 113 78 54 54 80 
5 75 76 70 96 99 117 75 54 54 80 

10 80 80 72 96 99 113 88 60 54 80 
15 80 72 68 100 97 114 86 60 56 84 
20 72 73 72 100 96 115 87 60 54 78 

Group 0.1 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 86 93 88 68 157 51 75 118 83 160 
-5 90 93 84 69 146 62 73 122 77 140 
0 84 91 89 65 141 58 79 107 75 140 
2 60 75 84 58 111 60 55 79 49 104 
5 72 80 90 68 120 57 60 91 64 104 

10 76 90 84 70 124 64 62 91 68 104 
15 84 90 80 77 125 59 64 85 72 100 
20 76 91 84 69 127 59 64 85 72 104 
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Group 0.3 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 79 88 96 117 60 84 68 115 60 117 
-5 78 85 100 120 56 92 71 111 63 115 
0 68 82 92 133 60 97 74 107 60 111 
2 51 68 80 80 45 92 41 76 48 95 
5 69 85 92 98 47 96 43 83 49 92 

10 66 84 92 106 53 94 48 92 55 92 
15 72 90 92 112 55 100 48 88 54 92 
20 64 93 100 111 55 100 50 89 57 92 

Group 1 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 82 72 72 73 72 84 112 80 92 103 
-5 84 80 68 72 72 81 96 80 78 113 
0 87 72 63 73 80 98 96 84 84 113 
2 66 44 44 51 44 73 72 52 60 60 
5 75 68 60 57 64 77 76 64 68 75 

10 78 68 62 62 68 76 80 76 68 84 
15 86 80 59 65 64 66 80 68 64 84 
20 91 80 60 68 60 68 84 76 68 88 

Group 3 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 92 86 120 72 130 104 72 108 72 108 
-5 89 100 120 78 120 88 68 116 64 108 
0 89 92 120 78 124 84 68 112 64 100 
2 40 50 48 52 72 60 40 72 42 56 
5 70 60 100 52 84 68 52 72 48 56 

10 76 60 92 58 84 80 60 76 56 80 
15 88 68 92 60 84 100 64 80 62 88 
20 72 72 92 52 84 88 60 88 92 65 

Group 10 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog 8 dog 9 dog10 

-10 104 72 84 60 80 78 104 80 106 100 
-5 92 72 80 54 88 80 93 88 100 93 
0 96 72 80 60 84 76 96 95 92 96 
2 80 40 40 58 38 52 52 60 36 36 
5 80 56 90 44 48 76 72 120 92 52 

10 80 72 84 52 52 80 92 100 72 64 
15 84 71 90 48 60 80 80 100 60 68 
20 87 64 88 52 52 76 81 100 64 84 
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Appendix 15: Systolic arterial blood pressure (mmHg) in 10 propofol TCI anesthetised dogs from 

10 min. before up to 20 min. after the injection of either saline (control group) or medetomidine 

(groups 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 µgml-1). 

 

Control group 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 
-10 93 126 103 98 98 102 104 89 121 109 
-5 94 122 100 101 94 98 113 80 117 111 
0 96 126 99 104 100 104 116 83 100 103 
2 93 124 96 109 96 102 110 94 114 116 
5 97 122 100 105 92 96 113 85 111 107 

10 102 128 104 97 103 99 109 89 107 106 
15 99 123 96 96 87 110 108 83 113 112 
20 102 122 98 100 90 122 110 79 103 108 

Group 0.01 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 98 103 131 110 110 115 158 105 117 91 
-5 100 92 132 107 115 111 147 104 112 97 
0 99 102 132 103 118 121 144 108 119 96 
2 101 97 136 107 120 114 141 107 121 97 
5 106 100 137 116 124 110 141 107 118 97 

10 104 100 128 115 141 108 138 116 121 95 
15 106 84 137 115 130 118 133 105 119 96 
20 103 97 137 115 140 112 146 117 111 101 

Group 0.03 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 106 103 96 127 142 151 103 111 112 97 
-5 104 118 96 127 146 148 99 109 114 100 
0 100 118 92 122 146 155 108 120 106 98 
2 108 117 100 119 158 159 113 118 113 102 
5 98 113 89 124 160 162 110 111 105 101 

10 98 117 92 129 163 165 112 111 103 105 
15 95 109 94 121 160 159 108 78 107 96 
20 95 116 88 127 169 166 109 95 105 103 

Group 0.1 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 110 105 97 91 103 98 112 114 103 121 
-5 109 97 99 92 99 103 117 120 90 116 
0 106 99 100 90 104 105 114 116 89 119 
2 109 103 106 94 108 104 116 110 nr 119 
5 109 101 103 90 99 94 114 110 101 119 

10 109 99 108 94 98 97 110 108 90 119 
15 109 103 105 94 104 80 113 116 90 114 
20 109 106 109 93 97 100 105 108 87 118 
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Group 0.3 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 
-10 109 89 105 112 123 94 140 116 87 100 
-5 103 104 92 113 126 91 142 112 90 117 
0 95 100 96 116 124 99 140 121 83 110 
2 113 122 113 127 131 101 132 127 95 116 
5 111 115 109 116 137 100 134 141 90 97 

10 109 101 101 117 130 100 133 129 83 90 
15 109 104 101 118 122 101 151 123 84 104 
20 102 98 109 113 127 108 143 125 81 103 

Group 1 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 
-10 96 111 118 94 160 92 103 138 110 105 
-5 95 107 112 89 150 87 97 132 106 113 
0 96 104 112 88 158 83 96 132 108 107 
2 113 120 128 112 150 112 135 148 120 118 
5 106 122 118 116 150 108 118 132 112 111 

10 100 114 112 101 142 102 110 136 108 110 
15 99 109 112 90 134 98 93 130 100 103 
20 92 103 110 94 138 97 100 130 106 109 

Group 3 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 
-10 90 88 112 132 106 131 118 138 122 100 
-5 92 86 116 128 108 131 108 148 118 98 
0 90 86 118 128 108 128 118 146 122 99 
2 134 106 180 178 144 148 148 198 121 nr 
5 135 104 178 168 162 151 146 178 133 135 

10 130 98 158 154 142 156 134 170 132 130 
15 132 90 152 153 142 158 128 164 137 119 
20 126 88 156 150 140 156 124 158 127 119 

Group 10 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 
-10 106 103 96 127 142 151 103 111 112 97 
-5 104 118 96 127 146 148 99 109 114 100 
0 100 118 92 122 146 155 108 120 106 98 
2 108 117 100 119 158 159 113 118 113 102 
5 98 113 89 124 160 162 110 111 105 101 

10 98 117 92 129 163 165 112 111 103 105 
15 95 109 94 121 160 159 108 78 107 96 
20 95 116 88 127 169 166 109 95 105 103 

  nr = not recorded 
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Appendix 16: Respiratory rate (breaths per min.) in 10 propofol TCI anesthetised dogs from 10 

min. before up to 20 min. after the injection of either saline (control group) or medetomidine 

(groups 0.01, 0.03, 0.1, 0.3, 1, 3 and 10 µgml-1). 

 

Control group 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 6 4 0 10 30 20 20 10 0 6 
-5 10 5 0 12 45 20 20 10 0 10 
0 8 5 0 8 40 25 19 10 0 8 
2 7 5 0 10 45 25 21 11 0 7 
5 9 5 0 8 45 25 20 11 13 9 

10 8 6 0 8 40 20 22 12 12 8 
15 7 9 0 8 39 23 20 15 12 7 
20 6 10 0 12 36 22 18 13 12 6 

Group 0.01 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 20 10 8 23 11 12 0 10 12 19 
-5 20 10 8 21 5 14 0 10 15 21 
0 17 12 10 18 10 14 0 15 15 20 
2 17 15 8 20 11 13 0 12 15 18 
5 17 12 8 26 8 5 14 20 20 20 

10 17 15 8 22 10 7 15 20 12 20 
15 15 15 8 23 12 14 15 20 15 21 
20 70 66 107 75 83 78 138 78 120 88 

Group 0.03 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 20 22 20 7 50 8 15 10 0 15 
-5 20 13 23 3 52 11 20 12 0 20 
0 20 14 30 3 48 12 20 13 0 15 
2 20 16 13 3 52 11 20 11 0 12 
5 20 13 22 3 50 12 20 9 0 15 

10 20 15 22 6 51 12 20 11 0 15 
15 20 15 22 3 49 12 20 11 0 15 
20 20 13 20 6 48 13 20 11 0 15 

Group 0.1 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 8 38 3 0 12 0 10 5 16 12 
-5 15 42 0 0 23 0 10 9 20 12 
0 10 38 0 0 25 0 10 8 16 10 
2 10 40 0 0 25 0 10 15 12 10 
5 2 37 0 0 25 0 12 11 12 10 

10 20 40 6 0 27 0 15 14 15 10 
15 10 41 10 0 40 0 20 14 10 10 
20 20 39 5 0 56 0 15 10 8 10 
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Group 0.3 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 12 9 8 0 0 0 12 15 2 20 
-5 10 6 6 0 0 0 11 15 8 20 
0 9 6 6 0 0 0 11 15 0 15 
2 8 6 10 0 0 0 10 12 0 15 
5 8 6 7 9 0 0 10 8 6 20 

10 9 6 8 10 0 0 12 10 7 15 
15 10 6 8 10 0 9 15 12 6 18 
20 9 6 12 10 0 5 15 6 0 20 

Group 1 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 0 0 0 16 0 7 0 20 7 60 
-5 0 0 0 15 0 6 0 22 7 50 
0 0 0 0 15 0 10 0 24 7 0 
2 0 0 0 4 0 7 0 20 7 0 
5 0 0 0 7 0 9 0 14 7 0 

10 0 0 0 7 0 8 0 15 7 0 
15 0 0 0 10 0 11 0 12 7 22 
20 0 0 0 12 0 8 0 12 4 30 

Group 3 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 30 0 10 30 30 15 5 40 27 0 
-5 46 0 11 34 24 18 6 33 28 0 
0 58 0 12 37 26 19 7 40 29 0 
2 30 0 15 36 24 23 0 15 23 0 
5 15 0 10 30 19 0 7 18 20 0 

10 14 0 10 0 13 0 8 25 11 0 
15 15 0 9 0 8 12 11 23 13 0 
20 19 0 10 20 13 21 15 20 22 0 

Group 10 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 0 15 10 30 18 14 8 32 6 13 
-5 0 16 12 20 20 18 8 32 8 18 
0 0 18 12 30 27 12 8 34 8 19 
2 0 11 3 0 12 0 0 15 0 21 
5 0 6 6 0 8 0 0 14 0 0 

10 0 5 0 0 5 0 0 18 0 0 
15 0 0 0 0 0 0 0 19 0 0 
20 0 0 0 0 0 0 0 18 0 0 
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Appendix 17: EtCO2 (mmHg) in 10 TCI propofol anesthetised dogs from 10 min. before up to 20 

min. after the injection of either saline (control group) or medetomidine (groups 0.01, 0.03, 0.1, 0.3, 

1, 3 and 10 µgml-1). 

 

Control group 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 43 33 50 46 30 36 30 45 nr 43 
-5 43 32 41 43 35 38 31 43 nr 43 
0 44 32 44 41 32 35 32 42 nr 40 
2 42 32 39 42 36 34 31 41 nr 41 
5 44 33 43 44 32 32 31 41 nr 40 

10 43 33 45 44 35 35 30 42 nr 38 
15 44 30 41 42 32 35 31 39 nr 38 
20 45 35 41 40 32 34 32 41 nr 37 

Group 0.01 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 41 nr 44 37 44 41 nr 49 38 39 
-5 40 nr 42 35 46 40 nr 50 39 34 
0 40 nr 44 34 43 45 nr 44 38 36 
2 39 nr 44 34 42 47 nr 43 37 37 
5 40 nr 44 32 44 44 nr 41 38 38 

10 42 nr 43 32 43 47 nr 41 38 35 
15 41 nr 42 32 43 51 nr 42 38 35 
20 40 nr 45 32 44 44 nr 41 38 37 

Group 0.03 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 38 38 nr 44 34 38 40 53 41 nr 
-5 38 37 nr 45 36 35 37 44 41 nr 
0 38 38 nr 44 37 32 38 56 41 nr 
2 38 38 nr 45 35 33 38 51 42 nr 
5 37 38 nr 45 36 34 38 53 42 nr 

10 37 38 nr 43 35 32 38 49 45 nr 
15 37 37 nr 44 32 32 38 47 45 nr 
20 38 39 nr 41 33 32 38 47 40 nr 

Group 0.1 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 52 42 41 nr 48 50 42 38 nr nr 
-5 51 38 45 nr 44 50 44 40 nr nr 
0 53 37 47 nr 45 49 43 37 nr nr 
2 53 38 45 nr 46 50 38 31 nr nr 
5 55 38 42 nr 46 50 42 35 nr nr 

10 48 34 41 nr 45 50 41 33 nr nr 
15 51 38 40 nr 44 50 39 35 nr nr 
20 47 38 43 nr 40 53 38 34 nr nr 
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Group 0.3 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 38 33 43 nr nr 45 nr nr 47 nr 
-5 37 32 44 nr nr 44 nr nr 52 nr 
0 38 34 45 nr nr 46 nr nr 52 nr 
2 35 37 44 nr nr 45 nr nr 54 nr 
5 35 37 46 nr nr 43 nr nr 44 nr 

10 34 34 44 nr nr 50 nr nr 50 nr 
15 32 32 40 nr nr 49 nr nr 52 nr 
20 31 32 39 nr nr 49 nr nr 50 nr 

Group 1 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 nr 30 40 34 30 41 nr 53 40 nr 
-5 nr 32 32 32 26 41 nr 53 38 nr 
0 nr 32 35 32 27 41 nr 47 35 nr 
2 nr 34 30 11 23 45 nr 47 36 nr 
5 nr 34 36 38 27 45 nr 52 35 nr 

10 nr 35 39 38 30 47 nr 60 40 nr 
15 nr 33 33 32 28 47 nr 58 47 nr 
20 nr 28 35 32 27 46 nr 56 45 nr 

Group 3 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 44 32 47 38 29 38 46 33 35 38 
-5 38 29 47 35 25 37 45 33 35 41 
0 38 35 41 31 26 37 47 33 36 40 
2 34 27 26 26 23 23 30 24 32 36 
5 47 29 39 35 22 37 45 29 35 43 

10 52 37 50 38 26 42 52 36 47 44 
15 51 36 52 41 32 50 53 36 51 47 
20 47 33 52 49 27 44 45 35 49 39 

Group 10 µgml-1 
Time 
(min) dog1 dog2 dog3 dog4 dog5 dog6 dog7 dog8 dog9 dog10 

-10 35 38 41 38 47 37 44 49 50 38 
-5 34 38 33 42 45 38 44 42 46 38 
0 35 38 35 38 42 35 44 43 47 35 
2 38 41 25 23 28 39 39 41 49 26 
5 33 50 30 24 50 45 35 48 50 29 

10 35 56 50 22 58 49 47 53 50 35 
15 33 47 50 53 45 40 48 50 50 30 
20 37 55 41 51 48 38 48 62 48 32 

  nr = not recorded 
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Appendix 18:  Anaesthesia times (min.) before and after the start of a co-infusion of saline (group 

PS), medetomidine plasma target concentration of 1.7 ngml-1 (group PM) and dexmedetomidine 

plasma target concentration of 0.85 (group PLD) and 1.7 ngml-1 (group PHD)  in 6 propofol TCI 

anaesthetised beagles. 

 

 Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 
Group PS        
 Before 20 21 25 20 25 21 
 After 85 77 85 73 77 120 
Group PM        
 Before 30 29 27 22 27 24 
 After 68 86 70 71 72 86 
Group PLD        
 Before 25 23 25 20 25 22 
 After 68 89 100 74 70 73 
Group PHD        
 Before 24 29 24 33 27 22 
 After 77 103 104 72 91 98 
 

 

Appendix 19: Extubation (Ext), Sternal (Ster) and standing (Stan) times (min.) in 4 groups (PS, 

PM, PLD and PHD) of 6 propofol TCI anaesthetised beagles. 

 

 Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 
Group PS        
 Ext 5 20 3 7 2 4 
 Ster 5 21 11 32 6 6 
 Stan 20 34 16 40 14 11 
Group PM        
 Ext 13 15 33 32 19 9 
 Ster 17 20 34 32 20 14 
 Stan 35 35 38 42 33 19 
Group PLD        
 Ext 15 19 9 15 10 7 
 Ster 15 19 12 18 18 8 
 Stan 30 27 16 29 25 13 
Group PHD        
 Ext 5 31 19 12 20 21 
 Ster 18 37 32 12 21 21 
 Stan 34 45 36 30 37 34 
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Appendix 20: Amount of propofol (mg) used before and after the start of a co-infusion of saline 

(PS group), medetomidine plasma target concentration of 1.7 ngml-1 (group PM) and 

dexmedetomidine plasma target concentration of 0.85 (group PLD) and 1.7 ngml-1 (group PHD)  in 

6 propofol TCI anaesthetised beagles. 

 

 Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 
Group PS        
 Before 120 145 110.7 115 170 157 
 After 479 429 305.3 378 422 766 
Group PM        
 Before 203 167.5 128 126.4 147 155 
 After 200 163.5 136 194.6 199 247 
Group PLD        
 Before 160 124.4 142.4 120 124 130.7 
 After 230 248.6 199.6 186 158 186.3 
Group PHD        
 Before 127 181 194 207.7 157 165 
 After 264 220 91 143.3 203 232 
 

 

Appendix 21: Cardiac output (CO)  (l.min-1)) before the start and after the change of the last step of 

a co-infusion of saline (group PS), medetomidine plasma target concentration of 1.7 ngml-1 (group 

PM) and dexmedetomidine plasma target concentration of 0.85 (group PLD) and 1.7 ngml-1 (group 

PHD)  in 6 propofol TCI anaesthetised beagles. 

 

 Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 
Group PS        
 Before 2.48 2.33 2.7 2.14 2.68 3.44 
 After 3.38 2.79 2.93 2.21 3.06 3.25 
Group PM        
 Before 3.1 nr 2.45 2.39 2.33 3.17 
 After 1.65 nr 1.56 1.66 1.75 1.95 
Group PLD        
 Before 2.49 2.19 2.74 2.09 2.43 2.83 
 After 1.74 1.94 1.5 1.38 1.6 1.7 
Group PHD        
 Before 2.52 2.24 3.09 2.68 2.49 3.02 
 After 1.67 1.49 1.26 1.35 1.6 1.74 
nr = not recorded 
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Appendix 22: Heart rate (beats per min.), breathing rate (breaths per min.), systolic and mean 

arterial blood pressure (mmHg), EtCO2 (mmHg) and propofol target concentration (µgml-1) in 6 

TCI propofol anaesthetised beagles with a co-infusion of saline (group PS) recorded at the time of 

the start of the co-infusion (time 0), at times 5, 15, 30 and 45 min., and during the MIT 

determination (Stim + and Stim -). 

 

Dog 1 
Time HR RR SP MP EtCO2 Target 

0 120 38 136 84 17 3 
5 121 35 138 82 18 3 

15 115 32 132 82 16 3.3 
30 135 40 127 80 15 3.5 
45 114 30 150 121 29 5.7 

Stim + 105 38 176 153 30 4.9 
Stim - 176 74 174 157 33 5.3 

Dog 2 
Time HR RR SP MP EtCO2 Target 

0 112 22 101 69 44 4 
5 105 15 99 69 35 4 

15 109 16 100 69 37 4.5 
30 109 25 99 70 38 4.5 
45 108 30 97 68 42 5.5 

Stim + 116 31 102 73 38 5.1 
Stim - 112 25 108 74 38 5.7 

Dog 3 
Time HR RR SP MP EtCO2 Target 

0 80 38 97 66 35 4 
5 81 35 96 65 36 4 

15 77 30 97 67 38 4.5 
30 75 30 103 69 35 4.5 
45 73 30 108 70 37 4.5 

Stim + 79 35 109 70 37 4.5 
Stim - 88 35 115 86 34 5.7 

Dog 4 
Time HR RR SP MP EtCO2 Target 

0 92 25 116 71 40 4 
5 100 30 108 66 42 5 

15 90 18 104 63 44 5 
30 88 20 104 62 47 5.5 
45 83 20 106 62 46 5.5 

Stim + 83 20 107 62 47 5.5 
Stim - 80 25 119 70 38 6.3 
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Dog 5 
Time HR RR SP MP EtCO2 Target 

0 122 13 137 81 41 4.5 
5 127 9 139 80 39 5 

15 117 15 131 74 44 5 
30 112 16 125 70 44 5.3 
45 112 16 122 74 41 6 

Stim + 100 21 133 85 38 5.2 
Stim - 116 60 138 91 43 5.4 

Dog 6 
Time HR RR SP MP EtCO2 Target 

0 101 11 110 78 36 4 
5 104 12 110 77 36 4 

15 102 16 107 72 38 4.3 
30 96 13 108 72 37 4.3 
45 97 16 113 75 34 4.3 

Stim + 97 17 113 75 38 4.3 
Stim - 90 20 150 101 38 7.5 
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Appendix 23: Heart rate (beats per min.), breathing rate (breaths per min.), systolic and mean 

arterial blood pressure (mmHg), EtCO2 (mmHg) and propofol target concentration (µgml-1) in 6 

TCI propofol anaesthetised beagles with a co-infusion of medetomidine target plasma 

concentration of 1.7 ngml-1 (group PM) recorded at the time of the start of the co-infusion (time 0), 

at times 5, 15, 30 and 45 min., and during the MIT determination (Stim + and Stim -). 

 

Dog 1 
Time HR RR SP MP EtCO2 Target 

0 113 18 116 77 37 4 
5 60 20 157 102 32 3.5 

15 67 16 162 107 32 3.3 
30 68 20 165 111 32 3 
45 65 17 165 110 37 3 

Stim + 66 28 164 108 32 2.6 
Stim - 62 27 166 109 31 2.8 

Dog 2 
Time HR RR SP MP EtCO2 Target 

0 103 19 126 78 42 3.5 
5 51 15 150 103 35 3 

15 46 12 147 102 30 3 
30 47 14 150 107 27 2.4 
45 46 13 148 102 29 2.2 

Stim + 43 7 141 94 37 1.4 
Stim - 45 9 141 96 37 1.8 

Dog 3 
Time HR RR SP MP EtCO2 Target 

0 90 35 107 72 38 4 
5 49 30 148 98 38 3.8 

15 45 29 155 107 37 3.5 
30 52 28 154 106 37 3.1 
45 51 27 147 101 37 3 

Stim + 48 25 146 99 36 2.6 
Stim - 46 24 145 98 36 2.8 

Dog 4 
Time HR RR SP MP EtCO2 Target 

0 91 41 137 78 31 4 
5 65 24 161 98 30 4 

15 65 24 163 103 32 3.5 
30 61 20 162 101 30 3 
45 62 29 162 100 37 3 

Stim + 65 25 163 99 37 3 
Stim - 65 33 162 102 35 3.6 
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Dog 5 
Time HR RR SP MP EtCO2 Target 

0 120 18 123 75 38 3.5 
5 52 16 138 89 36 3.5 

15 55 23 150 92 37 3.3 
30 55 15 143 93 38 3 
45 58 15 141 89 39 3 

Stim + 56 20 139 88 36 2.6 
Stim - 55 27 142 90 37 2.8 

Dog 6 
Time HR RR SP MP EtCO2 Target 

0 113 18 123 84 34 3.5 
5 65 15 137 95 32 3.3 

15 65 12 134 96 35 3.3 
30 62 18 134 96 30 3 
45 59 12 132 93 33 3 

Stim + 54 20 130 92 32 2.2 
Stim - 52 16 132 89 31 2.4 
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Appendix 24: Heart rate (beats per min.), breathing rate (breaths per min.), systolic and mean 

arterial blood pressure (mmHg), EtCO2 (mmHg) and propofol target concentration (µgml-1) in 6 

TCI propofol anaesthetised beagles with a co-infusion of dexmedetomidine target plasma 

concentration of 0.85 ngml-1 (group PLD) recorded at the time of the start of the co-infusion (time 

0), at times 5, 15, 30 and 45 min., and during the MIT determination (Stim + and Stim -). 

 

Dog 1 
Time HR RR SP MP EtCO2 Target 

0 119 18 147 82 26 3.5 
5 76 19 160 94 22 3.5 

15 76 21 162 102 31 3.5 
30 75 20 162 101 31 3.3 
45 77 23 159 98 30 3.3 

Stim + 74 20 158 99 29 2.9 
Stim - 75 30 158 100 30 3.1 

Dog 2 
Time HR RR SP MP EtCO2 Target 

0 108 25 106 68 36 3 
5 64 15 132 89 36 3 

15 66 14 142 93 27 3 
30 61 15 141 94 24 3 
45 61 12 138 93 29 3 

Stim + 60 11 139 90 32 2.2 
Stim - 55 12 148 96 32 2.8 

Dog 3 
Time HR RR SP MP EtCO2 Target 

0 89 47 114 89 36 5 
5 51 34 137 91 32 4.5 

15 41 28 150 99 31 4.2 
30 47 17 149 100 11 4 
45 45 21 149 98 37 3.8 

Stim + 37 24 150 97 17 2.2 
Stim - 38 20 159 108 36 2.4 

Dog 4 
Time HR RR SP MP EtCO2 Target 

0 80 20 127 78 41 4 
5 54 21 146 94 41 4 

15 51 20 155 105 40 4 
30 54 27 156 105 41 3.5 
45 51 23 155 101 40 3 

Stim + 51 25 157 102 38 2.6 
Stim - 51 30 159 107 27 2.8 
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Dog 5 
Time HR RR SP MP EtCO2 Target 

0 92 29 122 70 33 3 
5 49 21 133 83 32 3 

15 54 24 136 86 34 2.7 
30 51 26 136 87 37 2.5 
45 53 27 136 87 37 2.5 

Stim + 50 32 138 88 32 2.1 
Stim - 59 35 138 88 32 2.3 

Dog 6 
Time HR RR SP MP EtCO2 Target 

0 104 20 140 88 21 3 
5 63 13 138 81 28 3 

15 60 13 134 80 32 2.5 
30 57 7 129 87 35 2.2 
45 56 11 127 88 32 2.2 

Stim + 60 6 133 97 40 1.8 
Stim - 55 18 130 93 31 2.6 
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Appendix 25: Heart rate (beats per min.), breathing rate (breaths per min.), systolic and mean 

arterial blood pressure (mmHg), EtCO2 (mmHg) and propofol target concentration (µgml-1) in 6 

TCI propofol anaesthetised beagles with a co-infusion of dexmedetomidine target plasma 

concentration of 1.7 ngml-1 (PHD) recorded at the time of the start of the co-infusion (time 0), at 

times 5, 15, 30 and 45 min., and during the MIT determination (Stim + and Stim -). 

 

Dog 1 
Time HR RR SP MP EtCO2 Target 

0 126 32 127 80 33 4 
5 80 16 163 110 36 3.8 

15 78 13 164 111 39 3.8 
30 78 20 166 112 40 3.2 
45 77 25 163 112 35 3 

Stim + 73 20 167 109 35 2.2 
Stim - 70 20 168 111 35 2.4 

Dog 2 
Time HR RR SP MP EtCO2 Target 

0 97 26 98 67 24 4 
5 54 15 156 109 29 3.5 

15 57 18 157 113 29 3.3 
30 57 20 161 115 37 3 
45 58 21 158 114 36 3 

Stim + 53 15 150 102 34 1.4 
Stim - 58 13 151 103 35 1.8 

Dog 3 
Time HR RR SP MP EtCO2 Target 

0 84 40 142 90 37 4.5 
5 44 35 173 113 35 4.3 

15 39 22 173 118 37 3.7 
30 44 20 173 120 32 3.3 
45 38 25 166 110 36 3 

Stim + 40 32 172 105 32 1.4 
Stim - 45 30 178 110 33 1.8 

Dog 4 
Time HR RR SP MP EtCO2 Target 

0 91 40 130 82 35 5.5 
5 55 30 162 107 41 5.5 

15 57 29 163 111 42 4 
30 54 18 164 109 25 3 
45 48 20 158 101 30 2.2 

Stim + 55 26 164 104 39 2.2 
Stim - 51 32 169 113 35 2.8 
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Dog 5 
Time HR RR SP MP EtCO2 Target 

0 111 22 117 74 41 3.5 
5 44 17 136 93 38 3.5 

15 59 14 144 100 44 3.3 
30 59 17 145 101 41 3 
45 62 19 143 99 45 3 

Stim + 52 25 148 97 38 1.8 
Stim - 55 20 151 99 41 2.2 

Dog 6 
Time HR RR SP MP EtCO2 Target 

0 116 17 122 82 34 4 
5 63 13 129 94 34 3.7 

15 68 12 130 97 36 3.5 
30 65 14 128 96 36 3.3 
45 68 13 130 95 40 3 

Stim + 54 15 128 90 37 1.4 
Stim - 52 11 129 91 43 1.6 
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Appendix 26: Measured (cm) vs. Predicted (Ccalc) propofol concentration (µgml-1) and PE% 

values in 6 TCI propofol anaesthetised beagles with a co-infusion of saline (group PS), at times 0 

(start of the co-infusion), 10, 20 and 45 min. and at the time of MIT determination (Stim+ and 

Stim-).  

 

Dog 1 Time (min.) Cm (µgml-1) Ccalc (µgml-1) PE% 
 0.00 4.27 3.00 42.33 
 10.00 3.41 3.00 13.67 
 20.00 4.07 3.30 23.33 
 45.00 7.35 5.70 28.95 
 Stim+ 5.34 4.90 8.98 
 Stim- 5.42 5.30 2.26 

Dog 2     
 0.00 7.99 3.50 128.29 
 10.00 5.46 4.50 21.33 
 20.00 6.29 4.50 39.78 
 45.00 6.46 5.50 17.45 
 Stim+ 5.68 5.10 11.37 
 Stim- 6.56 5.70 15.09 

Dog 3     
 0.00 3.70 4.00 -7.50 
 10.00 3.79 4.00 -5.25 
 20.00 4.64 4.50 3.11 
 45.00 4.25 4.50 -5.56 
 Stim+ 3.68 4.50 -18.22 
 Stim- 4.90 5.70 -14.04 

Dog 4     
 0.00 4.08 5.00 -18.40 
 10.00 6.13 5.00 22.60 
 20.00 5.89 5.00 17.80 
 45.00 6.28 5.50 14.18 
 Stim+ 6.08 5.50 10.55 
 Stim- 6.25 6.30 -0.79 

Dog 5     
 0.00 7.35 4.50 63.33 
 10.00 8.22 5.00 64.40 
 20.00 9.13 5.00 82.60 
 45.00 10.28 6.00 71.33 
 Stim+ 8.35 5.20 60.58 
 Stim- 8.27 5.40 53.15 

Dog 6     
 0.00 4.89 4.00 22.25 
 10.00 5.41 4.00 35.25 
 20.00 5.74 4.30 33.49 
 45.00 5.40 4.30 25.58 
 Stim+ 5.48 4.30 27.44 
 Stim- 8.05 7.50 7.33 
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Appendix 27: Measured (cm) vs. Predicted (Ccalc) propofol concentration (µgml-1) and PE% 

values in 6 TCI propofol anaesthetised beagles with a co-infusion of medetomidine target plasma 

concentration of 1.7 ngml-1 (PM group), at time 0 (start of the co-infusion), 10, 20 and 45 min. and 

at the time of MIT determination (Stim+ and Stim-).  

 

Dog 1 Time (min.) Cm (µgml-1) Ccalc (µgml-1) PE% 
 0.00 5.82 4.00 45.50 
 10.00 5.50 3.50 57.14 
 20.00 4.89 3.30 48.18 
 45.00 5.14 3.00 71.33 
 Stim+ 4.29 2.60 65.00 
 Stim- 4.95 2.80 76.79 

Dog 2     
 0.00 6.17 3.50 76.21 
 10.00 5.57 3.00 85.70 
 20.00 0.78 2.60 -70.04 
 45.00 3.35 2.20 52.38 
 Stim+ 2.73 1.40 95.21 
 Stim- 3.11 1.80 72.55 

Dog 3     
 0.00 3.35 4.00 -16.25 
 10.00 3.48 3.80 -8.42 
 20.00 3.21 3.50 -8.29 
 45.00 3.25 3.00 8.33 
 Stim+ 2.94 2.60 13.08 
 Stim- 4.81 2.80 71.79 

Dog 4     
 0.00 4.68 4.00 17.00 
 10.00 5.18 4.00 29.50 
 20.00 4.64 3.50 32.57 
 45.00 3.89 3.00 29.67 
 Stim+ 3.89 3.00 29.67 
 Stim- 4.76 3.60 32.22 

Dog 5     
 0.00 8.16 3.5 133.14 
 10.00 8.35 3.5 138.57 
 20.00 7.01 3.3 112.42 
 45.00 6.92 3 130.67 
 Stim+ 5.82 2.60 123.85 
 Stim- 6.02 2.80 115.00 

Dog 6     
 0.00 4.72 3.5 34.86 
 10.00 5.12 3.3 55.15 
 20.00 5.04 3.3 52.73 
 45.00 5.19 3 73.00 
 Stim+ 3.43 2.20 55.91 
 Stim- 4.09 2.40 70.42 
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Appendix 28: Measured (cm) vs. Predicted (Ccalc) propofol concentration (µgml-1) and PE% 

values in 6 TCI propofol anaesthetised beagles with a co-infusion of dexmedetomidine target 

plasma concentration of 0.85 ngml-1 (group PLD), at time 0 (start of the co-infusion), 10, 20 and 45 

min. and at the time of MIT determination (Stim+ and Stim-).  

 

Dog 1 Time (min.) Cm (µgml-1) Ccalc (µgml-1) PE% 
 0.00 3.69 3.50 5.43 
 10.00 3.86 3.50 10.29 
 20.00 4.25 3.50 21.43 
 45.00 4.15 3.30 25.76 
 Stim+ 3.79 2.90 30.69 
 Stim- 4.47 3.10 44.19 

Dog 2  5.74   
 0.00 4.84 3.00 91.33 
 10.00 5.11 3.00 61.33 
 20.00 4.51 3.00 70.33 
 45.00 3.12 3.00 50.33 
 Stim+ 4.09 2.20 41.82 
 Stim- 5.74 2.80 46.07 

Dog 3     
 0.00 4.59 5.00 -8.20 
 10.00 4.35 4.50 -3.33 
 20.00 4.26 4.20 1.43 
 45.00 4.37 3.80 15.00 
 Stim+ 2.67 2.20 21.36 
 Stim- 3.06 2.40 27.50 

Dog 4     
 0.00 5.45 4.00 36.25 
 10.00 2.48 4.00 -38.00 
 20.00 4.09 4.00 2.25 
 45.00 3.67 3.00 22.33 
 Stim+ 3.49 2.60 34.23 
 Stim- 4.21 2.80 50.36 

Dog 5     
 0.00 5.32 3.00 77.33 
 10.00 6.07 3.00 102.33 
 20.00 5.26 2.70 94.81 
 45.00 5.04 2.50 101.60 
 Stim+ 3.62 2.10 72.38 
 Stim- 4.47 2.30 94.35 

Dog 6     
 0.00 3.77 3.00 25.54 
 10.00 2.25 2.50 -10.06 
 20.00 3.68 2.50 47.17 
 45.00 3.48 2.20 58.06 
 Stim+ 1.50 1.80 -16.64 
 Stim- 1.17 2.60 -55.01 
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Appendix 29: Measured (cm) vs. Predicted (Ccalc) propofol concentration (µgml-1) and PE% 

values in 6 TCI propofol anaesthetised beagles with a co-infusion of dexmedetomidine target 

plasma concentration of 1.7 ngml-1 (group PHD), at time 0 (start of the co-infusion), 10, 20 and 45 

min. and at the time of MIT determination (Stim+ and Stim-).  

 

Dog 1 Time (min.) Cm (µgml-1) Ccalc (µgml-1) PE% 
 0.00 6.37 4.00 59.25 
 10.00 4.90 3.80 28.95 
 20.00 5.27 3.80 38.68 
 45.00 4.23 3.00 41.00 
 Stim+ 2.90 2.20 31.82 
 Stim- 3.07 2.40 27.92 

Dog 2     
 0.00 7.65 4.00 91.25 
 10.00 7.17 3.50 104.86 
 20.00 6.36 3.30 92.73 
 45.00 5.29 3.00 76.33 
 Stim+ 2.90 1.40 107.14 
 Stim- 3.88 1.80 115.56 

Dog 3     
 0.00 4.75 4.50 5.56 
 10.00 4.89 3.70 32.16 
 20.00 5.16 3.70 39.46 
 45.00 3.35 3.00 11.67 
 Stim+ 2.04 1.40 45.71 
 Stim- 2.75 1.80 52.78 

Dog 4     
 0.00 4.75 5.50 -13.70 
 10.00 4.81 4.50 6.99 
 20.00 4.57 4.00 14.17 
 45.00 2.25 2.20 2.39 
 Stim+ 2.25 2.20 2.27 
 Stim- 3.30 2.80 17.97 

Dog 5     
 0.00 6.42 3.50 83.43 
 10.00 7.14 3.30 116.36 
 20.00 3.38 3.10 9.03 
 45.00 6.12 3.00 104.00 
 Stim+ 3.21 1.80 78.33 
 Stim- 3.90 2.20 77.27 

Dog 6     
 0.00 8.29 4.00 107.25 
 10.00 8.09 3.70 118.65 
 20.00 7.90 3.50 125.71 
 45.00 6.33 3.00 111.00 
 Stim+ 2.85 1.40 103.57 
 Stim- 3.27 1.60 104.38 

 



Thierry Beths, 2008   

 

251

 

Appendix 30: Measured (cm) vs. Predicted (Ccalc) dexmedetomidine target plasma concentration 

of 0.85 ngml-1 (group PLD) in 6 TCI propofol anaesthetised beagles at times 0 (start of the co-

infusion), 5, 10, 15, 30 and 45 min. and at the time of MIT determination (Stim+ and Stim-).  

 

 Cm (ngml-1) 
Time 
(min.) 

Ccalc. 
(ngml-1) Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 

5 0.80 0.38 0.59 0.27 0.72 1.17 0.63 
15 0.90 0.76 0.94 0.55 1.09 1.42 0.87 
30 0.90 0.88 1.00 0.74 0.76 1.66 1.12 
45 0.90 0.86 1.12 0.67 0.71 1.59 0.93 

Stim+ 0.80 1.18 0.65 0.55 0.60 1.42 0.69 
Stim- 0.80 0.84 0.80 0.57 0.66 1.28 0.78 

 

 

Appendix 31: Measured (cm) vs. Predicted (Ccalc) medetomidine target plasma concentration of 

1.7 ngml-1 (group PM) in 6 TCI propofol anaesthetised beagles at times 0 (start of the co-infusion), 

5, 10, 15, 30 and 45 min. and at the time of MIT determination (Stim+ and Stim-).  

 

  Cm (ngml-1) 
Time 
(min.) 

Ccalc. 
(ngml-1) Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 

5 1.60 1.74 1.636 0.83 1.09 2.60 1.40 
15 1.70 1.93 2.024 1.13 1.59 2.46 1.92 
30 1.90 2.21 2.592 1.63 1.90 2.38 2.22 
45 1.80 2.25 2.455 1.65 1.73 2.05 1.72 

Stim+ 1.70 1.72 1.599 1.23 1.37 1.40 1.61 
Stim- 1.70 1.77 1.923 1.25 0.00 1.51 1.42 
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Appendix 32: Measured (cm) vs. Predicted (Ccalc) dexmedetomidine target plasma concentration 

of 1.7 ngml-1 (group PHD) in 6 TCI propofol anaesthetised beagles at times 0 (start of the co-

infusion), 5, 10, 15, 30 and 45 min., at the time of MIT determination (Stim+ and Stim-) and at 

times 5, 20, 60, 120, 300 and 420 min. after the end of anaesthesia. 

 

 Cm (ngml-1) 
Time 
(min.) 

Ccalc. 
(ngml-1) Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 

5 1.60 1.43 1.76 1.20 0.74 2.91 1.51 
15 1.70 1.39 1.78 1.49 1.38 3.02 2.08 
30 1.90 1.64 2.30 2.01 1.34 3.15 2.27 
45 1.80 1.64 1.86 2.21 1.49 2.40 2.18 

Stim+ 1.70 1.42 1.58 1.69 1.28 1.93 1.82 
Stim- 1.7 1.34 1.53 1.47 1.11 1.78 1.77 

0 1.4 0.905 1.19 1.26 0.834 1.09 1.41 
5 1.2 0.797 0.966 1.09 0.689 0.998 1.11 

20 0.9 0.556 0.632 0.658 0.417 0.641 0.691 
60 0.6 0.331 0.498 0.343 0.121 0.516 0.341 

120 0.3 0.135 0.218 0.042 0.023 0.188 0.11 
300 nd nd 0.015 nd nd 0.014 nd 
420 nd nd nd nd nd nd nd 

  nd = not detected 
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Appendix 33: PE% values in 6 TCI propofol anaesthetised beagles from treatments PLD, PM and 

PHD at times 0 (start of the co-infusion) 5, 10, 15, 30 and 45min., and at the time of MIT 

determination (Stim+ and Stim-). For the PHD treatment, the PE% values at times 0, 5, 20, 60, 120, 

300 and 420 min. after the end of anaesthesia are also provided.  

 

 Low Dexmedetomidine (0.85 ngml-1) 

Time 
(min.) Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 

5 -52.50 -25.75 -65.88 -9.75 46.25 -21.13 
15 -15.78 4.00 -39.00 21.11 57.78 -3.22 
30 -1.78 11.00 -18.11 -15.56 84.44 24.44 
45 -4.44 24.44 -25.44 -21.33 76.67 3.33 

Stim+ 47.50 -19.38 -30.88 -24.50 77.50 -13.75 
Stim- 5.37 0.00 -28.25 -17.13 60.00 -2.38 

 Medetomidine (1.7 ngml-1) 
5 9.00 2.25 -48.25 -32.19 62.50 -1231 

15 13.35 19.06 -33.76 -6.65 44.41 13.00 
30 16.42 36.42 -14.32 -0.26 25.21 17.05 
45 25.17 36.39 -8.22 -4.11 14.06 -4.61 

Stim+ 0.88 -5.94 -27.71 -19.18 -17.41 -5.47 
Stim- 3.88 13.12 -26.41 -100.00 -11.06 -16.47 

 High Dexmedetomidine (1.7 ngml-1) 
5 -10.63 10.00 -25.00 -54.06 81.88 -5.63 

15 -18.24 4.71 -12.35 -18.82 77.65 22.35 
30 -13.68 21.05 5.79 -29.47 65.79 19.47 
45 -8.89 3.33 22.78 -17.22 33.33 21.11 

Stim+ -16.47 -7.06 -0.59 -24.71 13.53 7.06 
Stim- -21.18 -10.00 -13.53 -34.71 4.71 4.12 
Stop 

infusion 
      

5 -35.36 -15.00 -10.00 -40.43 -22.14 0.71 
10 -33.58 -19.50 -9.17 -42.58 -16.83 -7.50 
30 -38.22 -29.78 -26.89 -53.67 -28.78 -23.22 
60 -44.83 -17.00 -42.83 -79.83 -14.00 -43.17 

120 -55.00 -27.33 -86.00 -92.33 -37.33 -63.33 
300 nd nd nd nd nd nd 
420 nd nd nd nd nd nd 

       nd = not determined 
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Appendix 34: PE% values in 6 TCI propofol anaesthetised beagles from treatments PHD 

calculated with the new PK parameters (5 dogs). at times 0 (start of the co-infusion) 5, 10, 15, 30 

and 45min., at the time of MIT determination (Stim+ and Stim-) and at times 0, 5, 20, 60, 120, 300 

and 420 min. after the end of anaesthesia. 

 

High Dexmedetomidine (1.7 ngml-1) – New PK parameters (5 dogs) 
Time 
(min.) 

Ccalc 
(ngml-1) Dog 1 Dog 2 Dog 3 Dog 4 Dog 5 Dog 6 

5 1.00 43.00 76.00 20.00 -26.50 191.00 51.00 
15 1.60 -13.13 11.25 -6.88 -13.75 88.75 30.00 
30 2.00 -18.00 15.00 0.50 -33.00 57.50 13.50 
45 2.10 -21.90 -11.43 5.24 -29.05 14.29 3.81 

Stim+ 1.80 -21.11 -12.22 -6.11 -28.89 7.22 1.11 
Stim- 1.7 -21.18 -10.00 -13.53 -34.71 4.71 4.12 
Stop 

infusion 
       

5 1.5 -39.67 -20.67 -16.00 -44.40 -27.33 -6.00 
10 1.3 -38.69 -25.69 -16.15 -47.00 -23.23 -14.62 
30 0.8 -30.50 -21.00 -17.75 -47.88 -19.88 -13.63 
60 0.4 -17.25 24.50 -14.25 -69.75 29.00 -14.75 

120 0.1 35.00 118.00 -58.00 -77.00 88.00 10.00 
300 0 nd nd nd nd nd nd 
420 0 nd nd nd nd nd nd 

nd = not determined 
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Appendix 35: Predicted medetomidine plasma concentration after a 0.2 µgkg-1min-1 IV injection 

over 1 min using canine pharmacokinetic parameters (O. Vainio, personal communication, 2001) 

and the PK-SIM simulator software (PK-SIM; Specialised Data Systems, Jenkintown, PA, USA). 

 

 
 

 

Appendix 36: Predicted medetomidine plasma concentration after a 0.2 µgkg-1min-1 IV injection 

over 5 min using canine pharmacokinetic parameters (O. Vainio, personal communication, 2001) 

and the PK-SIM simulator software (PK-SIM; Specialised Data Systems, Jenkintown, PA, USA). 
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Appendix 37: Predicted medetomidine plasma concentration after a 0.2 µgkg-1min-1 IV injection 

over 15 min using canine pharmacokinetic parameters (O. Vainio, personal communication, 2001) 

and the PK-SIM simulator software (PK-SIM; Specialised Data Systems, Jenkintown, PA, USA).  

Predicted medetomidine plasma concentration 10 min after the end of infusion = 1.3 ngml-1.   
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