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Figure 1: Simple representation of soluble and physical components of ECM 

surrounding and interacting with a cell. 20 

Figure 2: Mesenchymal stem cells from bone marrow stained with rhodamine-

conjugated phalloidin for actin (red),mouse anti-vinculin (green) and DAPI for the 

nuclei (blue). This figure highlights the dispersion and positioning of focal 

adhesions within a cell adhered on unstructured glass coverslips. Image courtesy of 

Jemma Roberts, Centre for Cell Engineering, University of Glasgow. Scale = 100µm.

 23 

Figure 3: Phase contract image of a collagen fibre extracted from bovine tendon. 

Repeating structural pattern can be seen along its length (arrows). Image courtesy 

of Dr Shuying Cheng of the Biomedical Engineering division, University of Glasgow. 

Scale = 100µm. 25 

Figure 4: Basic operational principle of an atomic force microscope depicting the 

sharp scanning tip and laser spot reflection. Diagram from ‘Atomic Force 

Microscopy’ by Cheryl R. Blanchard (Blanchard 1996) 39 

Figure 5: Contact mode ‘vertical deflection’ AFM image of a 3T3 cell body. The 

vertical deflection channel highlights edges within a sample because it uses the 

correction signal used by the feedback mechanism to adjust the height.  Actin stress 

fibres (arrows) can be seen stretching across the cell. 44 

Figure 6: Typical contact mode and tapping mode cantilevers. Left image shows a v-

shaped contact mode cantilever made of silicon nitride (Si3N4). Right image shows a 

rectangular tapping mode cantilever made of silicon. Note; tapping mode can be 

performed with v-shaped cantilevers so long as the resonance frequency is 

sufficiently high, likewise many contact mode cantilevers can be rectangular in 

shape. Traditionally, v-shaped cantilevers are thought to have better lateral stability 

than rectangular cantilevers; however this has been shown not to be the case for 

certain geometries as explained in this paper by Sader in 2003: (Sader 2003). Image 

from ‘Atomic Force Microscopy’ by Peter Eaton and Paul West (Peter Eaton 2010).

 45 
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Figure 7: Force potential diagram showing the operational regions of each of the 

three main imaging modes. Figure inspired by JPK User Manual (2008). 47 

Figure 8: The gridded square in the centre of the image is an example of a force 

map. It is a visual representation of the Young's modulus values obtained from each 

point measured on the cell in the optical image on which it is overlayed. By 

overlaying the two images this way it is possible to observe the regions of varying 

stiffness across a cell. Resolution depends on how many points are included in the 

force map grid – this example shows a grid of 50 x 50µm containing 441 force 

indentation measurements, one in the centre of each square. It is possible to 

increase this to 1000 measurements; giving increased spatial resolution to the force 

map. However, in the image above it is still possible to identify a relatively stiff area 

near the top right hand corner of the force map, represented by the lighter colour 

squares, (white arrow) which in this case corresponds to the nuclear region. At least 

two lines of increased stiffness are also apparent, we hypothesise these correlate to 

underlying filamentous actin structures (black arrows). In this example the cell 

measured was a mature mouse osteoblast courtesy of You-Ying Chau of the MRC 

Human Genetics Unit, University of Edinburgh, Western General Hospital.  Scale 

bar represents 20µm. 49 

Figure 9: Example of a force-indentation curve performed with a sharp MLCT tip on 

glass in air. Note, this curve has been corrected for cantilever bending; this means 

the actual indentation depth has been calculated by taking the difference between 

the vertical piezo movement and the vertical deflection of the cantilever in units of 

length (Neumann 2011). Following this calculation the x-axis is renamed ‘tip-sample 

separation’ to highlight this change. The figure highlights characteristic features of 

measurements in air on glass such as the 'jump-to-contact' region where the tip is 

overpowered by the capillary force of the fluid layer and the vertical repulsive 

contact region caused by the inability of the tip to indent the glass substrate. Also of 

note is the overlapping of the approach and retract baseline traces. Measurements 

in liquid tend to result in a gap between the baseline traces due to the viscosity of 

the liquid. Hysteresis is less prevalent with measurements in air also. The vertical 

grey bar represents the portion of the approach baseline that has been used to 

determine zero force and level the curve. 51 
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Figure 10: Shows an example of a force-indentation curve performed on a live MG63 

cell nucleus in a liquid environment at 37°C. Evidence that this curve was performed 

in liquid can be seen by the increased levels of hysteresis in the baseline portions; 

the primary cause is thermal fluctuations in the measurement medium which are 

more prevalent in liquid than in air. Note also that the approach and retract traces 

do not return to the same ‘0 force’ deflection point, this is due to the viscosity of the 

liquid inducing hydrodynamic drag on the cantilever hence why it is not seen in 

Figure 8. Note the repulsive contact portion of the curve is sloping rather than 

vertical pertaining to the fact that the tip is able to indent the sample in this 

instance, also not seen in Figure 8. 53 

Figure 11: (A) Schematic diagram showing indentation of a soft substrate by an AFM 

by subtracting the cantilever deflection (d) from the pizeo-displacement; discussed 

in Figure 8, (W. Richard Bowen 2009). 55 

Figure 12: Basic stages of photolithography and etching to produce silicon master 

moulds for use in soft lithography techniques. Photoresist used was S1800 series® 

(Shipley). Silicon wafers from. 64 

Figure 13: A Illustrates the process of attaching a microsphere to a tipless AFM 

cantilever. 1) A suitable microsphere is selected. 2) The cantilever is carefully 

lowered on to the glue. 3) Returning to the selected microsphere, the cantilever is 

brought in to repulsive. 4) The cantilever is moved to confirm attachment. Dotted 

white circle indicates original microsphere position in each image. B Finished 

spherical 4.8µm diameter probe seen from below (1) and from side (2).  Scale = 

50µm in ‘a’ and 10µm in ‘b’. 73 

Figure 14: JPK BioCell™ temperature controlled stage for live cell measurements.

 74 

Figure 15: Brightfield image overlayed on to AFM scan region with locations of force-

indentation curves represented by yellow dots, shown here situated on the nucleus 

of a 3T3 cell. 76 
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Figure 16: Indentation measurements performed with sharp pyramidal indenters 

(left column) and spherical 4.8µm silica bead indenters (right column) in the 

presence of trypan blue. Performing this type of dye exclusion assay with trypan 

blue will allow the identification of cells with compromised membranes as these will 

allow the dye to pass into them. Cells with intact functioning membranes will not 

permit the dye to enter. Should the AFM indenter breach the cell membrane the cell 

would appear blue when observing with a microscope – as can be seen in the 

bottom row of images this colour change is not obvious when captured with a ccd 

camera. In this experiment the cells were indented using forces far beyond what is 

typically used during normal elasticity measurements, even so it was not possible to 

puncture the membranes with either indenter and cells had to be scraped from the 

surface in order to achieve a positive result (white arrows). The black arrows point 

to the cell which was indented at each force. Scale bars  79 

Figure 17: Effect of indentation depth on cell elasticity calculation. Values of 

elasticity were recorded at 20nm increments starting with initial contact between 

the tip and the sample (0.0 on x-axis). Figure shows the tendency of the values to 

increase as the curve penetrates deeper. Very shallow curves (<50nm) tend to 

underestimate elasticity. In this example, the plateau region of reliable elasticity 

values is present between ~300nm and 600nm deep and the final indentation depth 

is 1.2µm. 81 

C: This graph again shows relatively constant elasticity values present from the 

initial stages of indentation (~4nm) until approximately 500nm deep where the 

values begin to increase as seen in graphs A, B and Figure 16. 83 

Figure 19: Schematic highlighting areas of cell depicted by TEM images. Shows 

approximate distance between nuclear membrane and plasma membrane above and 

below cell. Note it was not possible to determine the exact lateral position of the 

transverse section imaged. Cell shown is an MG63 cell situated within a 40µm 

PDMS pit. Scale = 1µm. 86 

Figure 20: Influence of indentation speed on cell elastic modulus. A) The elastic 

modulus of three single cells measured at difference speeds. The three cells are 

randomly chosen to illustrate cell heterogeneity. The data were fitted with Hertz’s 
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model adapted for a spherical indenter. B) Average elastic modules of 25 cells 

measured at different speeds. The speeds range 1µm/sec to 25µm/sec. Error bars 

show 1 standard deviation from the mean value. 87 

Figure 21: Line plot of recorded cell height over the course of 5 sequential 

indentation measurements on 10 MG63 cells. The table lists the height at which the 

probe first contacts the cell. Values given in µm. The line plot shows the 

relationship between indentation number and contact point height. 89 

Figure 22: Identification of a fit range from a force – indentation curve (processed to 

show tip-sample separation as discussed in Figure 9). The red line is the approach 

curve, the vertical dashed line denotes the contact point of the approach curve and 

the green line indicates the fit of Hertz’s model. The blue shaded region highlights 

the area selected by the user to be considered for the elasticity calculation – in this 

instance the first ~300nm has been chosen for analysis.  Shown is an example of a 

good fit of the Hertz model to the tip-sample separation curve as selected by eye, 

with an RMS value of ~30pN. 91 

Figure 23: Shown is a typical example of when the Hertz model fails to accurately fit 

the indentation curve.  Areas identified by eye as being too ill-fitting to analyse are 

highlighted A, B and C.  Section ‘A’ shows an obviously inaccurate contact point 

location and little correlation between the initial ~500nm of the red indentation 

curve and the green fit of the model. This is not acceptable as the first 500nm of 

each indentation are used to extract the Young’s modulus value for that 

measurement. Sections ‘B’ and ‘C’ fail to fit the measurement due to the change in 

angle of the indentation curve, highlighted by the arrow. This type of angle change, 

or ‘two-stage’ shape, seen in the repulsive contact portion of the curve resulted in a 

poor fit and the measurement was discarded. Here, the RMS value was 148pN.

 92 

Figure 24: Analysis software comparison. This figure shows the returned values of 

elasticity for a population of 3T3 cells given by each of the three programs tested.  

The ROB software returned significantly different values (p < 0.01) to those of the 

JPK or CAM programs, showing the average elasticity of the population to be 5.79 

kPa ± 2.24. The JPK and CAM programs returned average elasticity values of 2.07 
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kPa ± 1.37 and 2.03 kPa ± 0.86 respectively; there was no significant difference 

between these values. Error bars show 1 standard deviation from the mean. 95 

Figure 25: Graph compares elasticity results from 3T3 cells cultured on N3, RGD, 

Mannose and uncoated glass surfaces after indentation with either a sharp 

pyramidal MLCT tip (grey bars) or a spherical silica microsphere (black bars). Ten 

cells were measured on each substrate (5 x sharp and 5 x sphere). Errors bars show 1 

standard deviation from the mean value. 97 

Figure 26: a) An optical image of a silica microsphere (diameter 5µm) glued to the 

end of a tipless cantilever using UV curable glue. b) An optical image of the 

cantilever (with microsphere attached) positioned over a 3T3 cell nucleus attached 

to an uncoated glass coverslip. Scale = 10µm. 105 

Figure 27: A contact mode AFM image of a live 3T3 cell showing the indentation 

area. Superimposed on the image are three white dots representing the locations of 

the glass force-distance curves used to calculate cell height by the custom built 

software and five yellow dots representing the pattern of indentations performed on 

the cell nucleus. The dots are not to scale. The centre indentation is always carried 

out first as it is selected first on the AFM software. 106 

Figure 28: Influence of common adhesive molecules, Fn and PLL, on cell elastic 

properties. A) Elastic modulus and B) cell height of 3T3 cells cultured on Fn, PLL 

and uncoated glass overnight and after 3 days. Note cells were isolated after 

overnight culture and were still sub-confluent after 3 days culture. For elastic 

modulus, significant differences were found for any pair of the three populations 

(p<0.02) after overnight culture; however, there is no significant difference between 

them after 3 days culture. In the case of cell height, significant difference was 

observed only between cells cultured overnight on Fn coated and those on PLL 

coated substrates.  Error bars show 1 standard deviation from the mean value.

 108 

Figure 29: Fluorescence images of actin structures for cells cultured of 3T3 cells 

cultured on Fn, PLL and uncoated glass overnight and after 3 days. Scale = 50µm.

 110 
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Figure 30: Immunofluorescence and DIC images of cell produced fibronectin 

(denoted as cell-Fn) and fibronectin from either Fn-coated surface or medium 

(denoted as bovine-Fn) on Fn, PLL and uncoated glass. The cell-Fn was detected by 

FITC labelling and the bovine-Fn by Cy5 labelling. (A) After 1 day culture. Two 

distinct phenomena were observed for cells cultured on Fn coated glass, which are 

presented in Fn-coated (I) and (II). The white arrow in the Fn-coated row indicates 

the cell-Fn left on the substrate after cell migration, since no cell is present in the 

DIC image. (B) After 3 days culture. Weak bovine-Fn was found on the three 

substrates. This is mainly due to unspecific binding of primary antibodies to cellular 

proteins, as shown by the control where only secondary antibodies were used and 

 114 

Figure 31: Influence of microtopography on cell elastic properties. A) Elastic 

modulus and B) cell height of 3T3 cells cultured on microgrooves and flat PDMS 

substrate respectively overnight (single cells) and after 3 days (sub-confluent cell 

layer). Cells cultured on grooves are statistically stiffer than those on the flat surface 

after overnight culture (p<0.05) and after 3 days culture (p<0.05). Error bars show 1 

standard deviation from the mean value. 116 

Figure 32: Optical and Fluorescence images of cells on microgrooved and flat PDMS 

substrates. after different culture periods. (A) fluorescence image (actin) of cells 

cultured on flat PDMS. (B) Phase contrast images (left) and fluorescence images of 

 118 

Figure 33: Shows elasticity values of MG63 cells after 1 & 3 days culture on 

unstructured, grooved and pitted PDMS substrates. Significant differences (p < 0.02) 

were found between the elasticity values of those cells fully confined by pits (In pits) 

and those on all other topographies. There were no significant differences found 

between cells on other topographies or between 1 & 3 day culture time points. Error 

bars show 1 standard deviation from the mean value. 127 

Figure 34: Immunofluorescence and DIC images of phosphorylated runx2 

transcription factor on unstructured, grooved and pitted PDMS substrates after 1 

day culture. The runx2 was detected using FITC. The images show an absence of 
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fluorescence from the nuclei of all cells except those confined by pit geometry. Scale 

bar = 50µm. 128 

Table 1: Shows the mean pixel values of cell nuclei (N), cytoplasm (C) and 

background (B). Nuclear and cytoplasmic values (minus background) were divided 

to give the difference, <1 = nucleus is darker than surrounding cell, >1 = nucleus is 

brighter than surrounding cell. 129 

Figure 35: Shows the elasticity values recorded from cells confined by (IN) and in 

contact with (ON) pits after overnight culture with culture medium containing 

blebbistatin. The previous significant difference between the two groups has 

disappeared. Reference line shows elasticity values of cells defined by pits after 1 day 

culture without blebbistatin. Error bars show 1 standard deviation from the mean 

value. 130 

Figure 36: Immunofluorescence and DIC images of phospho-runx2 location in MG63 

cells cultured overnight in the presence of blebbistatin. The lack of fluorescence in 

the nuclei of the cells indicates the absence of phosphorylated runx2. Scale bar = 

50µm. 131 

Figure 37: Immunofluorescence images showing phosphorylated myosin II (green) 

and filamentous actin (red) in MG63 cells cultured overnight on unstructured, 

grooved and pitted PDMS substrates. Co-localisation of the two proteins appears 

yellow. With the exception of cells ‘in’ pits, p-myosin appears to localise at one edge 

of a cell. Cells ‘in’ pits show a more general clustering of p-myosin around the 

nucleus and is noticeably absent from cell edges in the examples shown above. Scale 

bar = 40µm. 133 
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This thesis will describes how microfabrication techniques can be combined with 

Atomic Force Microscopy (AFM) to investigate the potential for cellular elasticity to 

be used as an indicator of cell behaviour and responses to chemical and 

topographical surface modifications. To this end, a robust and reliable AFM 

protocol has been developed to take in to account the many changeable parameters 

encountered when performing live cell indentation measurements. Complimented 

with traditional molecular biological methods, such as immunofluorescence 

staining and confocal microscopy, the biomechanical properties and functions of 

cells have been investigated to see how they respond to simple chemical and 

topographical cues.  

Simple surface topographies have frequently been exploited to learn more about cell 

behaviour and subsequent function however the mechanisms by which the cells 

senses the surrounding cues and interprets them accordingly has remained 

somewhat unknown. It is the hypothesis of the work presented here that the 

arrangement of the internal cytoskeleton as influenced by external factors in 

responsible for the transmission of tensile strength to the cytoplasm and on to the 

nuclear membrane. This in turn has the potential to alter transcription within the 

nucleus ultimately affecting over all cell function.  
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Specific objectives targeted during this body of work are detailed here. In the 

beginning there were few set goals and so quickly defining a structure to work by 

and a set of questions to answer was essential to encourage focussed experimental 

design. A broader description of objectives and the outline for this thesis can be 

found in section 1.8 Outline of thesis.   

To establish the ability to measure cellular elasticity using the NanoWizard II 

atomic force microscope, our first objective was to demonstrate a robust and 

reliable methodology for indentation; investigating parameters such as indentation 

speed, force and depth as well as applying the most suitable mathematical model to 

the data to extract the results. 

Secondly, it is well known that surface coating and topographical features influence 

cell morphology and that this could be reflected in cell mechanics. To investigate 

possible difference between the two mechanisms, we aimed to quantify cellular 

elasticity values under the two conditions. 

Our next goal was to investigate further the role of topography in cellular elasticity 

values. By incorporating traditional cell biology techniques we wished to show that 

cell behaviour could be affected by topography alone and that the atomic force 

microscope could provide vital early stage, label free data on how cells react. 

Finally, we aimed to show the mechanisms by which topography could induce 

behavioural changes in cells involved the positioning and orientation of tensile 

filaments of the cytoskeleton; as they relate the external topographical environment 

of the cell to the nuclear membrane, thus resulting in transcriptional changes.  
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 Some common cell adhesion molecules can transiently affect cellular 

elasticity over a period of at least 24 hours. After this the cell secreted ECM 

will mask the initial surface coating effects and return elasticity to initial 

levels.   

 Fibronectin can increase elasticity values as recorded by the AFM whereas 

Poly-L-lysine has no effect.  

 Topographically induced differences in cellular elasticity can be more stable, 

remaining for at least 3 days.  

 Specifically, cells residing in 40µm diameter pits will often be softer than 

those on grooves or unstructured surfaces.   

 Topography can influence a cell’s behaviour by impacting upon transcription 

of specific proteins, for example RUNX2. In this way, topography plays a role 

in complex processes such as differentiation.  

 The mechanism by which topography influences cell behaviour is at some 

stage tension dependant.  

 The AFM is a suitable instrument to reliably and quantitatively measure cell 

elasticity values as early stage indicators of behaviour and function.  
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1.1 Abstract 

This chapter will explain the background theory and experimentation upon which 

this work is based, beginning with an overview of the extracellular matrix (ECM) 

and its relevance to challenges faced by researchers today, paying particular 

attention to work on cell differentiation and tissue homeostasis. From this it will 

highlight the advantages to recreating ECM features via microfabrication techniques 

and the unique experiments that can be performed. Various aspects of atomic force 

microscopy will be detailed with particular emphasis on cell elasticity as a 

quantifiable marker of cell state. Lastly, the motives and outline of the thesis will be 

described in section 1.8 Objectives and outline of thesis. 

1.2 The extracellular matrix in vivo 

To researchers endeavouring to uncover the molecular mechanisms governing 

tissue differentiation and development, the extracellular matrix is as essential 

consideration. Evolving alongside undifferentiated cells as they gradually progress 

through each stage of development in to fully functioning organs and tissues, the 

extracellular matrix fulfils a ‘cement like’ role in the binding together of the various 

cell types that co-exist and communicate as our bodies reach functional maturity.  

While it may be obvious to turn to the contents of a cell to provide the missing links 

in the development of functioning tissues it would be foolish not to consider the 

extracellular matrix macromolecules when trying to understand these processes. As 

our knowledge of the variety of biochemical and structural cues resident in the ECM 

grows it has become an essential component for researchers looking to fill in the 

gaps in development and differentiation biology (Owen, Aronow et al. 1990; Watt, 

Kubler et al. 1993; Watt 1993; Geiger, Bershadsky et al. 2001).  

The arrival of what could recognisably be called ECM happened very early on in 

evolutionary terms with the introduction of multicellularity (Karl A. Piez 1984) in 

sponges in particular. Then, in its most basic incarnation, it would be difficult to 

assign it a function other than the technical term for cell secreted proteins. Its main 

function as we understand it today is support (Wayne M. Becker 1996), both in plant 
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and animal tissue. Just as it appeared early on the evolutionary tree it appears early 

on in embryogenesis too – at the gastrulation stage where the first distinctions 

between endoderm and ectoderm are made. Its adaptability is such that in both 

motile and non-motile organisms the ECM has evolved to be indispensable. For 

plants the ECM is considered to be the cell wall – rigid and in-keeping with the 

stationary lifestyle of the majority of plants. In animals however, the necessity to 

move in order to avoid predation and in turn catch food dictates that the ECM has 

to be capable of flexibility, of deformability, and so although functionally similar to 

the cell wall of plants the ECM of animals is in stark contrast to the rigidity found in 

plants.  

The ECM of animals can be very cell type specific, influencing the formation of 

basement membranes in glands and in tissues such as teeth and bone it becomes 

calcified to form the bulk of their mass (Yizhi Meng 2009). Collagen is the most 

abundant component of animal ECM, found in tendons, bone, cartilage and the 

dermal matrix, though other proteins such as elastin, fibronectin and proteoglycans 

are present in significant amounts. Combined in vivo they can influence aspects of 

development, differentiation, division and migration through a variety of secreted 

soluble and physical cues. Figure 1 represents the soluble and physical components 

of the ECM surrounding a mammalian cell.  

 

Figure 1: Simple representation of soluble and physical components of ECM surrounding 

and interacting with a cell. 
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Although the ECM can influence all these processes it is specific to the region in 

which it resides. This is because the cells themselves are responsible for the 

production of their ECM and thus the function it fulfils. The equilibrium that exists 

in the animal body, the homeostasis of organs and systems is in part due to the 

delicate balance of ECM components. Maintaining this balance is essential to the 

wellbeing and healthy function of the tissues and therefore the overall organism. 

Diseases can arise when the balance is upset and so attempts at controlling cell 

behaviour reported in this project can been viewed as ways of restoring homeostasis 

to the region or indeed preventing an imbalance in the first instance (Celeste M. 

Nelson 2006; Xu, Boudreau et al. 2009).  

The uniqueness of an organ or tissue is the sum of its component cells, although 

performing different functions and secreting different proteins they all arise from 

the same genome. There is no mistaking a kidney for bone – the cells and cell 

produced ECM are completely different for each and the final products remain 

distinct for the duration of the life of the host. Interesting then, that tissue function 

remains constant throughout life yet the cells forming it are constantly changing, 

experiencing different stages of their life cycles, denaturing and dividing. The fact is, 

equilibrium at the cellular level is what keeps tissue and organ function constant 

(Pellettieri and Alvarado 2007).  

In reality, tissue is able to maintain function by being somewhat responsive to 

changes in the surrounding ECM. It is important that the tissue is robust enough 

that every small perturbation of the cells within does not inflict significant changes 

to function but pliable and responsive enough that it can adapt to changing roles as 

time passes. For example, the external forces inflicted upon bone by physical activity 

serve to strengthen it resulting in beneficial changes to the tissue (French, 

Fulkerson et al. 2000). The effect can be increased with increased weight bearing, 

but under normal circumstances the bone does not break or change role, it adapts 

(Mueller and Maluf 2002).  

For the ECM to have any influence over tissue in vivo it must efficiently 

communicate with the cells within; this can be both active and passive. While the 

ECM must contain the required protein components for certain cellular functions to 
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be possible, other processes are as a result of the passive influence of topographies 

present within the ECM; this behaviour is initiated by the cells themselves. For 

effective communication between ECM and cell the cell should be adhered and fully 

integrated in to the network of extracellular fibres, proteins and neighbouring cells. 

The ability of cells to successfully adhere themselves to the ECM is essential to 

processes such as wound healing and migration as mentioned earlier. Cell adhesion 

in the ECM requires various proteins and subcellular systems to interact in specific 

ways. Primary among these are the plasma membrane and cytoskeleton of the cell. 

The membrane acts as a semi-permeable bilayer with the job of maintaining 

disequilibrium amongst the hydrogen, potassium, sodium and calcium ions, tightly 

regulating passage in to or out of the cell. Embedded in the membrane are various 

receptors pertaining to a wide variety of cellular processes however it is estimated 

that between 25-50% play a role in adhesion (Neil Barclay 1999). The activation of a 

cell surface receptor by its ligand typically leads to the propagation of a biological 

signal through the membrane and the cytoplasm, in this way communication 

between the ECM and the cell is possible (Marquez, Elson et al. 2010).  

Within the cytoplasm lies another essential system for effective communication 

between the ECM and the cell – the cytoskeleton. The cytoskeleton confers 

strength, shape and internal organisation to the cell. It enables the cell to migrate 

and supports the plasma membrane against external forces. It also rearranges the 

internal cell organelles during development and plays a crucial role during mitosis – 

first by pulling apart the chromosomes to the poles and then by dividing the cell in 

two. It is composed of three major classes of filaments, microfilaments (filamentous 

actin), microtubules (tubulin) and intermediate filaments such as vimentin. 

Between them they enable the internal transport of materials from place to place 

within the cell, particularly important for cell secretion and internalisation of 

vesicles. It also plays a crucial role in linking the cell membrane to the nucleus 

which enables changes in morphology to be communicated to the nucleus 

(Maniotis, Chen et al. 1997; Maniotis, Valyi-Nagy et al. 2005; Spencer, Xu et al. 2010).  

Joining the cytoskeleton and plasma membrane of the cell to the ECM is a major 

family of cell surface receptors – the integrins. Integrins are transmembrane 

proteins and can function as bi-directional linkers. At the cytoplasm end the 
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integrin can organise filamentous components of the cytoskeleton, regulating 

assembly and disassembly of signalling complexes. At the ECM end it interfaces 

with neighbouring cells or macromolecules of the matrix (Humphries, Byron et al. 

2006). In this way the integrin family are able to mediate many of the interactions 

between the cell and the ECM and connect the cytoskeleton to the matrix outside 

the cell.  

One such adhesive contact formed between the cell and the ECM is a focal adhesion 

complex. Focal adhesions (FAs) are formed of multiple proteins including integrins, 

vinculin and several other cytoplasmic proteins including kinases. They form very 

close adhesions to the ECM or the surrounding substrate and serve as anchorage 

points for stress bearing filaments of the cytoskeleton such as actin, thus, they can 

be found widely dispersed throughout the cell (Figure 2) (Shemesh, Verkhovsky et 

al. 2009). By organizing filaments of the cytoskeleton on the cytoplasmic side and 

binding to the ECM outside the cell they are a major physical connection between 

the interior of the cell and the ECM. Through FAs the effects of ECM signalling are 

communicated to the cell. They exist in many cell types including fibroblasts, 

endothelial and epithelial cells and function as biochemical signalling hubs as well 

as mechanical anchorages (Chen, Alonso et al. 2003).  

 

Figure 2: Mesenchymal stem cells from bone marrow stained with rhodamine-conjugated 

phalloidin for actin (red),mouse anti-vinculin (green) and DAPI for the nuclei (blue). This 

figure highlights the dispersion and positioning of focal adhesions within a cell adhered on 

unstructured glass coverslips. Image courtesy of Jemma Roberts, Centre for Cell 

Engineering, University of Glasgow. Scale = 100µm.  
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By acting as mechanical linkages the FAs are transmitting tensile stress from the 

cytoskeleton across the plasma membrane to the ECM. FAs increasingly form where 

free unbound integrins cluster. They can be transient complexes used as anchorage 

during cell migration or more permanent fixtures as seen when particularly 

stationary cells are cultured in vitro on hard substrates (Burridge, Fath et al. 1988).  

FA complexes are also major determinants of cell shape. Evidence suggests that 

without vital FA component proteins such as vinculin and focal adhesion kinase 

(FAK) cells are unable to spread normally (Ezzell, Goldmann et al. 1997; Owen, 

Ruest et al. 1999). There is also evidence of a relationship between cell shape and 

the level of tension within the cytoskeleton (Chen, Alonso et al. 2003; Tan, Tien et 

al. 2003). It is therefore hypothesised that cell morphology can influence the 

position and formation of FA complexes feeding information back to the nucleus via 

mechanotransduction pathways (Huang, Kamm et al. 2004). During this project we 

have shown that topographical features can passively influence cell morphology and 

in some cases this leads to transcriptional changes within the cell. The molecular 

mechanisms by which these physical signals are transported and transformed, 

resulting in phenotypical change, is not discussed in this thesis. However, by 

inferring how the force is transmitted through the cell and observing change we are 

able to speculate as to the molecular mechanisms at work.  

1.3 Engineering extracellular matrix in vitro 

In order to successfully recreate extracellular matrix features through the 

exploitation of micro and nano fabrication technology, consideration must be given 

to incorporate the appropriate size scales. This can include features relevant to 

whole cells and subcellular components such as focal adhesions, described 

previously. When we consider that the average animal cell is in the region of ~10-100 

µm in size, individual proteins organized in to focal adhesions are on the order 10s 

of nanometres in length e.g. fibronectin has been shown to be a long thin molecule 

of roughly 120nm (Erickson, Carrell et al. 1981) and focal adhesions themselves are 

only around a micron (Zhao, Li et al. 2009), it becomes clear that manipulation and 

visualization of these components will require specialized microscopy techniques 

and highly controlled fabrication processes. However, even the successful 
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fabrication of microenvironments incorporating such features cannot mimic the 

ever changing heterogeneity of the extracellular environment in vivo. To this end, 

much time and expertise has been devoted to the development of 

‘bionanotechnology’ by researchers in fields as diverse as physics, engineering, 

biochemistry, genetics and molecular and cellular biology.  

Such work on recreating ECM features in vitro appears particularly relevant when 

the ECM is looked at closely. What at first appears to be a mess of random fibres 

and features actually incorporates regular patters and structures in to the matrix. 

These features are present at both the micro and nano scales on components such 

as collagen fibres (Revenko, Sommer et al. 1994) (Figure 3) and in the general pits, 

troughs and pores created by the interactions within the ECM. Evidence that cells 

are exposed to and influenced by physical features is not new, research performed 

by A. Curtis, P. Clark, M. Varde, C. Wilkinson and P. Connolly beginning in the 

1960’s demonstrated that patterned substrates could influence much more than just 

cell morphology. It was demonstrated that cell movement could be both inhibited 

or encouraged by topography, even directed, and that topography had a role to play 

in the efficiency of other cues acting upon the cells as well (Curtis and Varde 1964; 

Clark, Connolly et al. 1990; Curtis and Wilkinson 1998). Knowing exactly which 

features elicit which behaviours and how to exert a greater influence over them 

continues to be a challenge for the researchers of today.  

 

Figure 3: Phase contract image of a collagen fibre extracted from bovine tendon. Repeating 

structural pattern can be seen along its length (arrows). Image courtesy of Dr Shuying 

Cheng of the Biomedical Engineering division, University of Glasgow. Scale = 100µm. 
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Due to continuing advances in the micro and nano fabrication field, researchers can 

now routinely create precise topographies and geometries for cells to interact with. 

This technology necessitates a systematic approach to elucidating the complex 

mechanisms and behaviours observed in vivo, involving many other techniques at 

various stages of development and experimentation such as confocal microscopy, 

scanning electron microscopy and atomic force microscopy. What follows is a brief 

introduction to some common methods used to engineer extracellular matrix.  

1.3.1 Micropatterning  

Micropatterning of a surface can be achieved by photolithography, described in 

more details in section 2.3.1 Silicon master fabrication. When using 

photolithography it is advisable to commit to designs with features no smaller than 

2µm as this is close to the limit of what is reliably obtainable with this method, 

though ultimately the main limitations on feature size achievable with 

photolithography are dependent on the diffraction limit and wavelength of light 

used to expose the substrate. Here, we have used UV exposure which theoretically 

limits our feature size to 1µm though feature sizes of 50nm have been achieved 

using deep UV light exposure (Lin 1975).  Electron beam lithography should be 

considered for designs incorporating dimensions significantly smaller than this. The 

photolithography process is based on the behaviour of photoresists (light sensitive 

polymers) that can be spun on substrates such as silicon wafers or glass slides. 

When exposed to UV irradiation these photoresists can become cross-linked or 

break up – depending on whether the photoresist is negative or positive 

respectively. The patterns are produced by passing the light through pre-patterned 

masks thus dictating which regions of the photopolymer are exposed to the light 

and which are protected. Once this is complete, specialised developer solutions are 

used to wash away un-polymerised sections of photoresist leaving the pattern 

behind. In the work presented here, the remaining photoresist layer serves to 

protect the underlying substrate from dry etching processes used to create 

topographical relief on the surface.  

Micropatterning is not only suitable for producing physical relief on substrates, it 

can also be used in a similar fashion to deposit patterns of proteins and chemicals to 
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mimic interactions experienced by cells in vivo when bound to the ECM. In a 

technique called ‘microcontact printing’, a form of soft lithography, a PDMS stamp 

is produced by curing the polymer against a master mould produced by the process 

detailed above. The stamp is then coated or ‘inked’ by dipping it in a solution of 

thiols which have the ability to soak in to the bulk PDMS. The adsorption of the 

thiols in to the PDMS in effect creates an ink reservoir meaning the stamp can be 

used multiple times. Upon the application of pressure, the stamp will transfer the 

pattern of thiol molecules to the surface in preparation for the application of 

proteins or chemicals which can bind to the thiol pattern. In this way control over 

the position and composition of adhesive regions is achieved. Note that the pressure 

required for pattern transfer can result in the lateral spreading of the solutions and 

in effect change the dimensions of the patterned area. This technique, originally 

developed by George Whiteside’s group, has proved popular due to conventional 

photolithography techniques requiring access to expensive and highly specialised 

equipment; which is not easily accessible to most institutions on a regular basis. 

There are also substantial costs associated with microfabrication technology and so 

the simple but effective use of so called ‘soft lithography’ has help supplement 

conventional fabrication methods (Whitesides, Ostuni et al. 2001). 

1.3.2 Nanopatterning  

Photolithography and microcontact printing are excellent techniques for creating 

surface features on the micron scale however when feature sizes below ~2µm are 

desired another method has to be considered. This is usually electron beam 

lithography or e-beam for short. E-beam uses a focussed beam of electrons to write 

patters on to sensitive resists. Using electrons helps defeat the diffraction limit of 

light which governs the resolution achievable by photolithography, this means 

features <10nm in size can be achieved by commercial e-beam machines (Vieu, 

Carcenac et al. 2000). The writing process however is very slow and subject to drift. 

This often results in alignment errors, or stitching errors, which can cause miss 

matches between adjacent patterns. Small temperature variations are partly 

responsible for the introduction of alignment errors, other sources include the 

intrinsic positional drift of the beam writing tool itself and the natural limitations of 

the sensitive resist used (Macintyre and Thoms 2006). Even with such limitations 
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this method is still often preferable to alternative techniques such as lithography; 

especially as great efforts are undertaken by those in the field to counteract 

limitations such as stitching errors and writing times. Much of this type of 

optimisation work is carried out at the University of Glasgow’s James Watt 

Nanofabrication Centre (JWNC), where substantial reductions in stitching errors 

and writing times have been reported by counteracting sample tilt (Thoms and 

Macintyre 2007) and increasing the efficiency with which the pattern is written 

(Gadegaard, Thoms et al. 2003). In particular, improvements to writing efficiency 

described in ‘Arrays of nano-dots for cellular engineering’ by N. Gadegaard and S. 

Thoms et al have allowed larger areas to be patterned (>1cm2) at reduced costs. This 

opens up E-beam technology to fields of biology such as implantation research 

where larger areas need to be patterned effectively if the performance of the 

material is to be assessed appropriately (Gadegaard, Thoms et al. 2003). However, 

equipment is also very expensive and requires expert technical assistance to operate 

and maintain. This results in the technique being available to relatively small 

numbers of researchers on a regular basis.  

A way around some of these limiting factors has been developed recently. The 

technique is known as nanoimprint lithography (NIL) and is “a parallel patterning 

method in which a surface pattern of a stamp is replicated into a material coated on a 

hard substrate by mechanical contact” (Schift 2008). Similar in design to the 

micropatterning soft lithography technique described previously in that it can be 

high throughput and uses pressure to transfer material from a polymer stamp to the 

substrate. It is also based on the transfer of nanoscale features present on a mould 

to a layer of impressionable polymer, in this case resist spun on a hard substrate. 

This transfer is achieved through mechanical pressure and the result is a copy of the 

original pattern on the mould. It is this copy that acts as the stamp for further 

applications. However, because it creates patterns based on mechanical contact 

rather than the photons and electrons of more traditional lithographic techniques, 

it has the potential to achieve resolutions to beat the barriers of light diffraction and 

beam scattering (Guo 2007). It also greatly reduces the costs associated with e-

beam, opening up access and furthering research in to cell responses to nano scale 

features. Using these techniques it becomes possible to write or imprint patterns of 
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proteins on a variety of surfaces to study not only cell behaviour on the micro scale 

but on nanopatterned arrays of relevant proteins.  

1.4 Elasticity as characteristic marker for interrogation of living cells 

Today researchers have established the link between cell function and structure. 

The structure of a cell contributes to its overall elasticity and is the product of more 

than one level of organisation. A cell’s elastic quality is its ability to recover its shape 

following deformation due to external pressure. Cellular mechanics cannot simply 

be described as elastic behaviour however; other forces such as flow contribute in 

response to mechanical deformation. Combining the elastic and viscous behaviour 

of a cell is describing its viscoelastic response, influenced not only by the 

cytoskeleton but by the granular nature and flow-like behaviour of the cytoplasm 

(González-Cruz, Fonseca et al. 2012). With the appropriate mathematical models 

additional data can be extracted from cell deformation measurements, such as 

force-spectroscopy (described in section 1.6), to provide more details on cellular 

mechanical properties. For example, by keeping the cell under constant strain the 

instantaneous moduli can be identified by measuring the initial resistance to 

deformation; the relaxation moduli can be identified as the stiffness of the cell once 

the strain has reached equilibrium (Darling, Zauscher et al. 2007). Instantaneous 

and relaxed moduli of cells following indentation can be used as biomarkers to 

characterise and distinguish between various cell types (González-Cruz, Fonseca et 

al. 2012; Xinyu Liu 2012) however this thesis will focus on the elastic response to 

mechanical deformation.  

Mechanical deformation of cells in vivo can arise from a variety of sources, it can 

take the form of fluid sheer in the lumen of arteries and veins or weight bearing in 

bone. Cell’s also experience internal pressures in vivo which have been shown to act 

through the cytoskeleton and influence the mechanical properties of the cell as well; 

these in turn can also alter behaviour (Chan E 1997). It follows that measuring 

cellular elasticity is one way of probing the relationship that exists between 

structure and function in order to elucidate some of the intervening stages.  

The elasticity of a living cell is the product of the components of the cytoskeleton 

and the organelles within. Little evidence exists to show that microtubules influence 
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elasticity directly, and intermediate filaments have been shown to wield but limited 

influence (Wang and Stamenović 2000); the major contributor to cellular elasticity 

is the actin network (Haga, Sasaki et al. 2000). Actin filaments within cells are 

comprised of polymerised chains of actin monomer. The process of actin 

polymerisation is dynamic and contributes to a variety of cellular processes, namely 

motility (Luca Cardamone 2011). Motility of cells involves the constant 

polymerisation and de-polymerisation of actin filaments to advance thin sheet-like 

formations known as lamellipodia and more focused finger-like projections known 

as filopodia (Sam Walcott 2010). In order for polymerisation to occur, the cell must 

have an abundance of globular actin monomers known as G-actin to form the 

filaments (Munter, Enninga et al. 2006), as well as an array of supporting proteins 

that can initiate new filaments, cap existing ones and control filament turnover 

(Kuhn and Pollard 2005). The polarised nature of the assembling filaments allows 

distinction to be made between the advancing end and the origin in the cell body, 

evidence suggests these are anchored to the outer nuclear membrane via specialised 

actin binding proteins such as nesprin (Munter, Enninga et al. 2006).  

The mechanical behaviour of the nucleus has been shown to contribute to cellular 

elasticity also, with studies reporting that it can be between 3 and 10 times stiffer 

than the surrounding cytoplasm and almost twice as viscous (Guilak, Tedrow et al. 

2000; Caille, Thoumine et al. 2002). Mechanically, the nucleus can be divided in to 

two parts – the inner core of bulk nucleoplasm consisting of chromatin and nucleoli 

and the outer nuclear envelope of lamins and membrane. It is possible to separate 

these two components of the nucleus by inducing swelling of the nuclear 

membranes and lamina, pulling them from the inner nucleoplasm – this enables 

researchers to study the contribution of the membrane independently of the inner 

bulk nucleoplasm. Results from this type of study by Kris Dahl et al using 

micropipette aspiration show that, swollen or un-swollen, the elastic modulus of the 

nucleus is unaffected by the nucleoplasm. This suggests that the overriding 

mechanical component of the nucleus is the envelope, which has been shown to 

have an average elastic modulus of 25 mN/m, much stiffer and more resilient than 

the plasma membrane of cells (Kris Noel Dahl 2004). Furthermore, deformation of 

the nucleus in response to shear flow, compression, stretching has been shown to 
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alter the packaging of DNA within (Maniotis, Chen et al. 1997) which in turn has an 

impact of gene transcription, this altering the behaviour of the cell (Gimbrone, 

Resnick et al. 1997).  

This study, however, will deal more with the properties of the cytoskeleton. 

Responsible for the transport of intracellular components such as vesicles, it plays 

an important role in morphological changes of the cell during movement (Fletcher 

and Mullins 2010).  In light of the fact that the cytoskeleton of a cell is constantly 

adapting and involved in feedback loops with the surrounding matrix and 

microenvironment it can be an excellent indicator of cell state (Marenzana, Wilson-

Jones et al. 2006). Recording elasticity values gives us an insight in to the health of 

the cell, it can tell us about the suitability of the microenvironment and help us 

engineer more effective substrates or culture more representative cell populations 

(Florian Rehfeldt 2007). The homeostasis of our tissues and organs relies in part on 

maintaining appropriate cellular elasticity and so it can be used as a diagnostic for 

disease as well (van Poll, Parekkadan et al. 2008).   

Researchers have been able to use elasticity as a distinguishing factor when 

investigating cancerous cell lines (Faria, Ma et al. 2008), ageing (Lieber, Aubry et al. 

2004) and wound healing (Wagh, Roan et al. 2008). It has also helped add to the 

body of information available on processes such as mechanotransduction (Charras 

and Horton 2002; Zahn, Louban et al. 2011), migration (Schulze, Müller et al. 2009) 

and cell division (Houchmandzadeh and Dimitrov 1999). A variety of methods have 

been developed to measure cell elasticity over the years, some of which are detailed 

in section 1.5 Methods for measuring elasticity. Most bring the advantage of not 

having to stain, coat or label the cells beforehand and so elasticity can be measured 

with minimal pre-treatment (Dufrêne 2002; Kumar and Weaver 2009). The non-

invasive aspect of elasticity measurements coupled with the ability of most methods 

to carry out measurements under physiologically relevant conditions has led to 

elasticity becoming vital to many of the areas of research listed above (A-Hassan, 

Heinz et al. 1998; Allison, Mortensen et al. 2010).  
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1.5 Methods for measuring elasticity 

Several methods exist today for characterising cell elasticity of which the AFM is 

one. Others include micropipette aspiration, optical tweezers, magnetic bead 

microrheometry and most recently scanning ion-conductance microscopy (SICM). 

What follows is a concise but informative introduction to each method and then a 

more focused passage on using AFM for cell mechanical studies.  

1.5.1 Micropipette Aspiration 

This technique has been around since the 1950’s making it one of the oldest 

techniques for characterising cellular mechanics. Zoologists Mitchison and Swann 

were using it in 1954 to elucidate the nature of the membranes of various sea urchin 

eggs while developing their theory of cell division, (Mitchison and Swann 1954). 

Their technique was modified in 1964 by Rand and Burton, (Rand and Burton 1964) 

and applied to erythrocytes with considerable success. It can be used on cell types 

ranging from the very soft to the very stiff; neutrophils (Derganc, Bo~i et al. 2000), 

erythrocytes (Artmann, Sung et al. 1997) and outer hair cells (Sit, Spector et al. 1997) 

have all been mechanically characterised this way. The micropipette aspiration 

technique as it is today is remarkably similar to that employed by Mitchison and 

Swann nearly 60 years ago however it’s use is declining somewhat due to the 

advantages offered by more modern methods. The method is essentially simple; a 

small diameter glass micropipette is filled with fluid, water usually, and connected 

to a moveable reservoir of the same fluid. The micropipette is then carefully 

positioned via the use of an attached micromanipulator so that it contacts the 

membrane of the cell of interest and no more. Upon applying known values of 

negative hydrostatic pressure to the volume inside the reservoir by the use of a 

micrometre screw, small portions of cell membrane can be sucked up in to the 

lumen of the glass micropipette and the movement of the edge can be tracked 

manually with a cursor imposed on the video screen. In the review ‘Micropipette 

aspiration of living cells’ by Robert M. Hochmuth it is claimed an accuracy of +/- 25 

nm can be achieved using monochromatic light (Hochmuth 2000). A plot of the 

deformation of the cell membrane against the negative hydrostatic pressure is then 

taken. This ‘pressure-deformation’ graph essentially gives values for the elasticity of 

the cell membrane. The technique has been used successfully on living cells to study 
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their mechanical behaviour and, as will all methods of characterising cell 

mechanics, is subject to a variety of mathematical interpretations of the data 

gathered. The minimum suction force the micropipette is capable of is determined 

by the minimum distance the water reservoir can be moved down controllably. In 

theory this is around 2.5µm but in practice this is unachievable due to 

uncontrollable fluctuations in the system and, of course, evaporation. A more 

realistic minimum force is around 0.1-0.2pN/µm2 and the reported maximum 

suction force achievable was 96nN/µm2, (Hochmuth 2000), limited by the vapour 

pressure of water at room temperature.  

1.5.2 Optical Tweezers  

The first set of optical tweezers in the form we recognize them today were used in 

1986 by Arthur Ashkin (A. Ashkin 1986) – the inventor and considered by many to 

be the father of the technique. Having previously documented optically induced 

gradients inflicting forces on micrometre sized particles as early as 1970 (Ashkin 

1970) the method wasn’t to be used successfully until the late 1980’s in the field of 

molecular biology when E.coli bacterium and virions of the tobacco mosaic virus 

were optically trapped. While the technique has been used to great success in other 

fields, namely physics (Galajda 2002), in the years since it has proved valuable in the 

mechanical characterisation of the cell cytoskeleton and viscoelasticity 

measurements (Icard-Arcizet, Cardoso et al. 2008). Optical tweezers today can be 

used to subject biological systems, cells & motors, to precisely calibrated forces and 

measure the local viscoelasticity as well as the force generated by the systems 

themselves (Moffitt, Chemla et al. 2008). The technique is made possible by the fact 

that light, specifically photons carry momentum and a consequence of this is that 

any surface exposed to light has a force exerted on it. Of course, normally this force 

is too miniscule to register any effect and for this reason can be neglected, but when 

the light is particularly intense and impacting upon a small enough particle, forces 

as great as 300pN and as weak as 0.1pN can be exerted. Focusing this intense light 

through a good quality microscope objective lens and directing it on to small 

particles, ranging from <1µm to ~10µm usually, can literally trap them in a ‘well’ of 

photons with the balance of scattering and gradient forces keeping the bead stable. 

Trapping is made possible because of the momentum change experienced by the 
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photons as they are refracted by a transparent dielectric object – a bead in this 

example. This results in an equal but opposite momentum force which acts upon 

the bead; it is this force that can be divided in to ‘scattering’ and ‘gradient’ 

components. Scattering forces act in the direction of light propagation while 

gradient forces act to push the bead toward the focus point of the laser. Using this 

technique to investigate cellular viscoelasticity requires some modifications to the 

trapped beads; usually coating them in adhesive proteins such as fibronectin or 

specific receptors targeted toward the cell type of interest. In this way, the 

polystyrene or glass beads can bind to the cell and their movement observed 

microscopically as the optical trap is moved laterally away from the cell-bead 

binding site.  The force exerted on the bead to pull it from binding can be calculated 

if certain aspects of the trapping ‘well’ are known and the local elasticity of the cell 

can be worked out using the recorded displacement of the bead i.e. the force is 

proportional to the distance the bead moves out of the trap.  

 Optical tweezers for biological applications often use high power infra-red 

(IR) lasers to minimize heating of the specimen while manipulating and to give high 

trapping stiffness. IR lasers are preferred for biological specimens because biological 

material is largely transparent to light of IR wavelengths and so this minimises 

absorption throughout the sample. However, some heat is still transmitted to the 

sample meaning ideal physiological conditions cannot be maintained. The 

manipulation is carried out through a complex series of mirrors and lenses coupled 

to acousto/electro-optical devices usually controlled by computer. In addition to 

polystyrene and glass beads, optical tweezers can also trap biological organelles 

themselves. Virions, whole cells, bacteria, mitochondria and chains of DNA have all 

been trapped using optical tweezers (Ashkin and Dziedzic 1987; Wang, Yin et al. 

1997; Tang, Yao et al. 2007). 

1.5.3 Magnetic Bead Microrheometry  

Also known as magnetic tweezers this technique is often mentioned alongside 

optical tweezers as both involve the accurate manipulation of beads to inflict force 

upon the biological system of interest. As with optical tweezers, the beads used in 

magnetic bead microrheometry are usually coated in common bio adhesive proteins 
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such as fibronectin and in some cases functionalised ligands to specific cell surface 

receptors e.g. EGF. The beads used in this technique are typically around 5µm in 

diameter and need to be made of ferromagnetic materials. Once they are bound to 

the cell via the surface coated proteins they can be either twisted or simply 

displaced by the application of a magnetic field. Displacing the bead is defined as 

‘magnetic bead rheometry’ but a magnetic field can also be used to impose a 

twisting motion on it; this is known as ‘magnetic twisting cytometry’ whereby a 

perpendicular ‘twisting’ magnetic field is momentarily applied to the beads to align 

then accordingly. As this field is turned off and the beads rotate back to their 

previous alignment; a magnetometer records the change in the magnetic field. This 

technique will not be discussed further in this chapter. Magnetic bead rheometry is 

a versatile tool which has been used in single molecule unfolding experiments and 

rheology studies, as well as the characterisation of force regulated processes in living 

cells (Kollmannsberger and Fabry 2007). Another interesting feature of the 

technique is the ability to map the field of strain, or deformation, inflicted upon a 

cell. That is, to visualize the surface area over which the movement of the 

paramagnetic bead is having an effect. This is done by the addition of non-magnetic 

probe beads coupled to the cell surface via integrins. When the magnetic field is 

applied to the cell they are not directly affected, however, the pull on the cell 

surface causes the bound probe beads to be displaced as well. Mapping the direction 

and distance the probe beads move in relation to the magnetic bead can effectively 

map the strain field sensed by the cell. This method has recently been used on 

umbilical vein endothelial cells resulting in data suggesting anisotropic structuring 

of the actin cytoskeleton (Feneberg, Aepfelbacher et al. 2004).    

 The forces available with magnetic bead rheometry are relatively large, in the 

region of 100-10,000pN (Bausch, Ziemann et al. 1998). In order to calibrate the force 

acting on the magnetic bead and thus reliably measure local viscoelasticity; the 

speed of displacement of the bead in a solution of known viscosity is measured 

optically in real time. Applying Stoke’s law to the relationship between magnetic 

field and the speed of movement through the viscous solution yields force curves, 

able to be interpreted by the Hertz model (amongst others), and Young’s modulus 

extracted(Bausch, Ziemann et al. 1998).  
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1.5.4 Scanning Ion-conductance Microscopy (SICM)  

Perhaps the newest member of the Scanning Probe Microscope (SPM) family, the 

scanning ion-conductance microscope (SICM) sets itself apart by being designed 

specifically for soft biological imaging in electrolytic solutions. In existence since 

1989, the microscope was initially used to image membrane filters with ion currents 

flowing through the pores (Hansma, Drake et al. 1989) but has since been 

successfully adapted for the study of living cells (Korchev, Raval et al. 2000). It 

involves raster scanning of a glass micropipette filled with an electrolytic solution 

over the surface of the sample bathed in an oppositely charged electrolytic solution. 

The micropipette never comes in to contact with the sample (unless directed to do 

so by the user) because it is kept at a constant distance perpendicularly above by 

careful monitoring of the ion current flowing from the pipette mouth. As the 

micropipette approaches the sample surface the ion current decreases as there is 

less space for ions to flow, this current is passed through an amplifier along with the 

current measured by a reference electrode placed outside the pipette in the sample 

solution. Differences in the current detected by the reference electrode and that 

passing through the tip are used to apply corresponding voltages to a Z-piezo drive 

controlling the scanner height. In this way, a feedback loop is created, keeping the 

tip a constant distance from the sample as it scans, allowing for accurate 

topographical information. It is conceivable that due to the techniques similarities 

to Scanning Electrochemical Microscopy (SECM) that the feedback mechanism 

would be sensitive to permeable regions of samples and thermal drift (Shigeru 

Amemiya 2008; Kim, Shen et al. 2012), however no literature could be identified 

addressing this issue yet.    

 SICM for cell viscoelasticity studies are at a very early stage. The technique is 

applicable however and perhaps the reason for the lack of published material at the 

moment is due to the fact that a SICM set-up has only been commercially available 

for a relatively short period of time. A good example of SICM for the mechanical 

stimulation of live cells was published in 2007 by D. Sanchez et al (Sánchez, Anand 

et al. 2007) who used the technique to indent dorsal root ganglion (DRG) cells of 

rats and humans and simultaneously observe calcium fluctuations. Two types of 

indentation are available using SICM; contact, where the glass micropipette is 
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directly indented into the cell with the feedback control switched off, (similar to 

AFM and the older ‘cell poking’ methods) and non-contact, when as the tip is 

lowered toward the sample a jet of fluid is expelled which indents the surface. 

Positive pressure applied via the shaft of the micropipette forces a jet of fluid out 

from the tip; this force appears to be controllable however no mention of 

controlling mechanisms were discussed in the literature. In this example the non-

contact method was able to exert pressures of up to 40kPa on the DRG membrane 

(Sánchez, Anand et al. 2007) but similar work on the elastic modulus of cells has 

exerted between 0.1 – 150kPa of pressure on cells (Sanchez, Johnson et al. 2008). 

Using this method little or no damage to the sample is observed and no debris 

becomes attached to the tip, which could influence measurements. Although in this 

instance the SICM was not used to investigate cell viscoelasticity directly, the ability 

of the tool to carry out such experiments is there. As the system becomes more 

widely used in labs one expects to see a rise in published viscoelasticity values got 

from SICM.  

 

1.6 AFM operational principle 

The field of scanning probe microscopy owes a lot to the work of Gerd Binnig. In 

1983 along with Heinrich Rohrer he first described the scanning tunnelling 

microscope (STM) (Binnig and Rohrer 1983), an instrument able to resolve surface 

structure to an atomic level by monitoring the current of electrons passing between 

a scanning conductive tip passing over a conductive sample. The STM would go on 

to provide some of the most detailed images of biological samples seen at the time 

such as DNA (Lindsay SM 1989) and viruses (A Mantovani J. G 1990) however the 

requirement for a conductive sample meant that the results were not always an 

accurate representation of the biological state. With this in mind and following 

along similar core principles, Binnig, Quate and Gerber invented the Atomic Force 

Microscope (AFM) in 1986 (Binnig, Quate et al. 1986). The AFM was primarily 

envisaged as a tool for measuring incredibly small forces acting upon particles but 

soon found a home amongst biologists excited by the ability of the microscope to 
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generate high resolution images of fixed and living cells (Braet, Rotsch et al. 1998; Le 

Grimellec, Lesniewska et al. 1998).  

The key difference between the STM and the AFM is the use of a cantilever as a 

force sensing mechanism by which images are constructed, instead of the variations 

in tunnelling-current used in the STM system. The cantilever has a sharpened tip 

positioned at its end which is raster scanned across the sample in a similar fashion 

to the STM (Figure 4). As the interaction forces between the tip and the sample 

surface are highly distance dependant the cantilever is deflected according to the 

topography of the sample. These deflections are kept within a certain set margin 

recorded by a laser spot reflected off the back of the cantilever on to the middle of a 

quadrant photodetector. The voltage required to change the height of the piezo 

stack to keep the laser spot within the margins is used to construct an image of the 

surface. In this way, because the relationship between height and voltage is well 

defined, images of the surface can be constructed point by point and line by line. If 

the tip were not scanned at a constant height over the sample surface, however, 

then cantilever deflections would result in variations to the level of force applied 

between the tip and the sample. This is not advisable for most applications and so 

the AFM employs a feedback loop mechanism that endeavours to keep tip-sample 

forces equal. It works by monitoring the voltage related to the deflection of the 

cantilever on the surface and adjusts the z-piezo accordingly to maintain the 

setpoint deflection prescribed by the user. This method raises the scan height when 

an increase in z is detected and lowers it when the opposite is true. In this way the 

AFM is able to quickly react to changes in surface topography, maintaining a 

constant force therefore limiting sample damage and preserving tip sharpness for 

longer.  

The first AFMs were designed to image in contact mode as described above but it 

soon became apparent that the lateral forces inflicted upon some of the softest 

biological samples were having a detrimental effect on image quality. Often fixing 

techniques had to be employed to maintain sample integrity and adhesion to the 

surface throughout the imaging process. To combat this, new imaging modes were 

added to the AFM’s capabilities, Intermittent Contact Mode (aka Tapping Mode) 
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and Non-Contact mode. These techniques are described in more detail in section 

1.6.1 AFM imaging.  

 

 

 

Figure 4: Basic operational principle of an atomic force microscope depicting the sharp 

scanning tip and laser spot reflection. Diagram from ‘Atomic Force Microscopy’ by Cheryl R. 

Blanchard (Blanchard 1996) 

Using AFM to image biological samples has some advantages over conventional 

optical microscopy techniques. High resolution imaging of biological structures 

such as the F-actin cytoskeleton require no fixing, staining or labelling of any kind 

therefore minimal interference with the sample is an advantage. AFM images are 

also accurate three dimensional representations of real space and as such, height 

information is contained within every image. Crucially the AFM is able to work with 

biological samples under physiologically relevant conditions. Molecules and cells 

can be kept at appropriate temperatures in nutrient buffers, even at recommended 

CO2 concentrations, and can be kept alive during measurements.  
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The imaging mechanism of an AFM does not easily lend itself to speed however. 

Generally speaking when image accuracy is to be increased acquisition time has to 

be increased correspondingly. High resolution images (1024 x 1024 pixels) can often 

take in the region of 15-20 minutes to complete and in that time there is every 

possibility that the sample has moved of its own accord, changed mechanical 

properties due to interaction with the tip (live cell e.g. (Charras, Lehenkari et al. 

2001)) or the tip sharpness has become compromised with the accumulation of 

debris from the sample solution. This can have a detrimental effect on image 

resolution as the sharpness of the AFM tip is the primary determinant of the 

maximum resolution achievable.  For this reason it has been difficult for the AFM to 

record biological phenomena in action as the process is typically faster than the 

AFM can competently image. However, efforts are being made in the field to 

increase scan speed dramatically by incorporating high-speed scanners, fast 

electronics, fast amplitude detectors and smaller cantilevers (Ando, Uchihashi et al. 

2008). Through these enhancements fast-scanning AFM has recently been shown 

capable of recording molecular events such as actin-myosin walking (Kodera, 

Yamamoto et al. 2010) and DNA-enzyme reactions (Yokokawa, Yoshimura et al. 

2006) at 25Hz. It is as yet only possible to utilize fast scanning AFM on specific 

samples with only slight variations in z such as artificial membranes, so for the 

moment live cells appear a step too far for the technique.  

Another limitation of the AFM is its relatively small scan range. Normally the user is 

restricted to 100µm in x and y and a maximum z of around 15µm. Comparing this to 

the electron microscope which has a field of view in the millimetre range the 

limitation is apparent. Also, unlike its optical counterparts, the AFM is strictly 

limited to imaging the sample surface and unable to provide topographic 

information on what lies beneath. In spite of these limitations the AFM has a wide 

variety of functions at its disposal and can rightly be called the most versatile 

member of the scanning probe microscopy family. Its ability to provide information 

on several aspects of a sample simultaneously makes it an attractive tool for 

researchers. 

Techniques that can measure more than one aspect of a sample or biological system 

at the same time are of great interest to biologists in particular. The ability of the 
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AFM to simultaneously generate high resolution images of living cells and reveal 

biomechanical properties make it an important addition to any biologist’s toolbox. 

However, atomic force microscopy does not operate in a similar fashion to 

traditional microscopes. The sample is not imaged optically but rather ‘felt’ as the 

microscopic probe is raster scanned over the surface. Due to this, the resolution of 

an AFM is not limited by the wavelength of light but instead by the geometry of the 

probe tip and the forces acting between it and the sample surface. This brings the 

range of resolutions of the AFM from light microscopy territory (>200nm) in to 

electron microscope territory (<10nm). Naturally this appeals to biologists looking 

to achieve EM scale resolutions under more physiologically relevant conditions 

common to light microscopy, but the AFM is best able to achieve ‘atomic’ resolution 

under highly controlled circumstances. On flat mica substrates at low temperatures 

and under high vacuum conditions the AFM can achieve its full potential in terms of 

resolution (Seo and Jhe 2008), however these conditions do not lend themselves to 

living biological samples. While it is possible to resolve most biopolymers to sub-

molecular resolution under in vivo-like conditions (Victor J. Morris 2010), it remains 

a challenge to achieve similar results with live cells.  

It is the range of available operational modes that set it apart from other microscopy 

techniques, presenting not only the capability to image at high resolution under 

biologically relevant conditions but also the ability to directly measure protein-

protein interactions mechanically and investigate the locations and distribution of 

binding sites as well as measuring stiffness (Dufrene, Evans et al. 2011). Today, the 

AFM has come a long way from simple contact mode imaging and now the range of 

samples that can be measured and the types of data that can be generated is such 

that the AFM has found a home in many fields of research. So versatile in fact, that a 

paper by Friedbacher et al in 1999 attempted to list all the known terms used to 

describe operational AFM modes and identified over 20 (Gernot Friedbacher 1999). 

In this chapter we will focus on one of those techniques, force spectroscopy, and in 

particular its application to live cell elasticity measurements, but first an 

introduction to imaging using AFM.  
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1.6.1 AFM imaging  

Fundamentally the AFM depicts the surface topography of a sample when it images, 

accurately representing heights and distances but not penetrating through the 

sample as one would expect when using light microscopy. This means colours and 

shadings are artificially added to give a more user friendly interpretation of the 

sample. As mentioned previously, the resolution of an AFM image has a lot to do 

with the geometry of the cantilever tip, generally the sharper the tip the higher the 

resolution achievable as it will be able to resolve smaller and smaller topographical 

variations in the sample as it is raster scanned across. Early AFMs adopted a static 

probe, scanning stage approach to imaging which lead to complications when the 

AFM was mounted on an optical microscope; most notably that it is not possible to 

focus on something that is continually strafing the field of view. Modern AFMs have 

gotten around this early technical problem by employing a scanning AFM head atop 

a static microscope stage, meaning the user can maintain focus on the sample whilst 

imaging and watch for any changes. This enables the simultaneous recording of 

optical images, including fluorescence, together with topographical information 

(Shaw, Epand et al. 2006). Imaging with AFM can be divided in to two main sub-

types; those in which the static deflection of the cantilever is measured and those 

which measure changes in the oscillation of the cantilever. Standard contact mode 

AFM is an example of the former and was the original method of imaging offered by 

early AFMs. 

1.6.1.1 Contact Mode 

Contact mode operates in the repulsive contact region of tip-sample interactions 

(Figure 7) here, the tip remains in constant contact with the sample surface as it is 

scanned back and forth across it, typically exerting forces on the order of 10-30nN 

on the sample (Allison, Mortensen et al. 2010). Forces of this magnitude are not 

thought to damage the cell however they are sufficient to ‘feel’ the underlying 

tensile structures of the cell as the plasma membrane is folded around these due to 

the force of the tip. In Figure 5 it is possible to see the actin stress fibres of a 3T3 cell. 

Here, the deflection of the cantilever acts as a feedback signal for the AFM to adjust 

its scanning level and results in the tip closely following the topography of the 

surface. Contact mode cantilevers are often made of silicon nitride (Figure 6). This 
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makes them extremely flexible and soft enough to image live cells. Although this 

mode stabilises the vertical force exhibited by the cantilever over the sample, it also 

subjects it to high lateral forces which are capable of displacing or even tearing 

delicate biological samples such as cells and biopolymers. It can also suffer from the 

effects of capillary forces when carried out in air. Capillary forces come about due to 

the presence of a thin layer of liquid found coating all surfaces in air; this layer is 

referred to as the ‘fluid layer’ and consists of condensed water vapour and other 

atmospheric contaminants, usually several nanometers thick (though this will vary 

with atmospheric conditions)(Putman 1994; C.B. Prater 2004). Under ambient 

conditions the absorbed water molecules form a thin layer on the sample surface 

and when a tip is brought close to this fluid layer it forms a meniscus – this 

meniscus causes an attractive force between the tip and the sample known as the 

capillary force. For these reasons some prefer to image biological material in tapping 

mode (aka intermittent contact mode) where the tip is intermittently in contact 

with the surface as it oscillates near its resonance frequency. The amplitude of the 

oscillations on the cantilever are typically greater than 20nm and commonly 

between 100-200nm in free air and are able to pull the cantilever out of contact and 

out of the influence of the fluid layer with each oscillation if the restorative force of 

the oscillation is greater than that of the fluid layer (Constant A. J. Putman 1994). 

Another way of negating the effects of the fluid layer is to image in liquid.  
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Figure 5: Contact mode ‘vertical deflection’ AFM image of a 3T3 cell body. The vertical 

deflection channel highlights edges within a sample because it uses the correction signal 

used by the feedback mechanism to adjust the height.  Actin stress fibres (arrows) can be 

seen stretching across the cell.  

As shown in Figure 5 the scan range of the AFM (100µm x 100µm max) is large 

enough to encompass the majority of a cell body and so can be used to gain an 

overview of the whole cell before the deciding upon the locations for further 

investigation.  

1.6.1.2 Tapping mode 

This operational gets round the problems associated with contact mode by greatly 

reducing the time the tip is in contact with the sample and the force of the tip-

sample interaction. This is achieved by oscillating the cantilever at or near its 

resonant frequency using a piezoelectric drive located inside tip mount (or head). 

The oscillating cantilever is then lowered near to the sample and surface is detected 

by the subsequent dampening of the oscillation amplitude as the tip ‘taps’ into the 

repulsive region close to the sample surface with each oscillation cycle (usually 

between 50,000 and 500,000 cycles per second). In this way, the tip is only in 
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contact with the sample for a fraction of a microsecond in each cycle and therefore 

lateral dragging forces are greatly reduced. Tapping mode also prolongs the lifetime 

of the tip as blunting can be reduced and is kinder to loosely adhered or fragile 

samples, imparting a typical tip-sample force of around 2nN with each ‘tap’ 

(Constant A. J. Putman 1994). Due to the nature of the technique, tapping mode 

cantilevers must be significantly stiffer than contact mode cantilevers to allow such 

high frequency oscillations with the power to overcome the adhesive fluid layer 

mentioned previously (Figure 6); they are usually in the range of 2N/m to 50N/m. 

Like contact mode, tapping mode takes place in the repulsive contact region of the 

force potential curve (Figure 7) and therefore although lateral forces acting upon the 

sample are greatly reduced, the sample is still subject to compression forces which 

can impact upon the behaviour of the specimen.  

 

Figure 6: Typical contact mode and tapping mode cantilevers. Left image shows a v-shaped 

contact mode cantilever made of silicon nitride (Si3N4). Right image shows a rectangular 

tapping mode cantilever made of silicon. Note; tapping mode can be performed with v-

shaped cantilevers so long as the resonance frequency is sufficiently high, likewise many 

contact mode cantilevers can be rectangular in shape. Traditionally, v-shaped cantilevers 

are thought to have better lateral stability than rectangular cantilevers; however this has 

been shown not to be the case for certain geometries as explained in this paper by Sader in 

2003: (Sader 2003). Image from ‘Atomic Force Microscopy’ by Peter Eaton and Paul West 

(Peter Eaton 2010).  
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1.6.1.3 Non-contact mode 

Non-contact mode imaging also uses changes in the oscillation of the cantilever to 

produce an image, however rather than detecting reduced oscillation amplitudes 

due to contact with the sample it uses the changes in the attractive van der Waals 

forces that pull on the tip during approach to the surface to determine surface 

topography. It has many of the benefits of tapping mode in that it greatly reduces 

tip-sample forces while maintaining high resolution and does so without coming in 

to repulsive contact with the sample thus theoretically eliminating the possibility of 

sample damage and preserving tip sharpness. As with other imaging modes that rely 

on monitoring oscillatory changes to detect surface topography, scanning speeds are 

often lower than with contact mode and high frequency cantilevers are needed 

(resonance frequency in the range of 300-400 kHz). This is because non-contact 

mode operates in the attractive region of the tip-sample potential curve (Figure 7) 

and stiff cantilevers enable better control over the influence of the van der Waals 

forces. To achieve optimal image resolution and minimum ‘wear’ on the tip it is 

essential that this type of imaging be performed in air under ambient conditions. In 

this way, the fluid layer can be used to dampen the oscillations of the cantilever 

without the tip ever contacting the surface. These conditions should mean the tip 

will not pick up debris from the sample surface or blunt itself upon contact with the 

surface, both of which will result in alteration of the tip geometry and a reduction in 

image resolution (Ho and West 1996). 
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Figure 7: Force potential diagram showing the operational regions of each of the three main 

imaging modes. Figure inspired by JPK User Manual (2008).  

 

1.6.2 AFM force spectroscopy 

AFM force spectroscopy complements the micro and nanoscale topographical detail 

offered by imaging with the ability to simultaneously measure the elastic properties 

of biological samples also under physiological conditions. In particular, force 

spectroscopy on living cells allows the user to gain vital mechanical information 

from any given location on a cell with high spatial resolution. In the fields of cancer 

and developmental biology today, information on cell mechanical properties is 

proving vital to the greater understanding of mechanisms of metastasis and 

differentiation (Guck, Schinkinger et al. 2005; Kumar and Weaver 2009). 

Fundamental cellular behaviours such as locomotion, division and ageing can also 

manifest themselves as changes in the elasticity of the cytoskeleton and so with the 

aid of the AFM these changes have the potential to become early stage markers for 

important behavioural abnormalities. Biologists now accept that cell many cell 
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functions and behaviours are largely influenced by structure and so force 

spectroscopy has become the primary function of the AFM for many groups. 

Since the cantilever of an AFM is effectively a spring it only seems natural to utilize 

it as a nanoscale indenter. Force spectroscopy mode is just this, the x and y position 

of the cantilever remain static while in the z direction the tip is pushed in to 

repulsive contact with the sample and retracted. Each time one of these extend-

retract cycles is completed a force-distance curve is produced (Figure 9). Although 

there are various types of force spectroscopy, including single-molecule force 

spectroscopy (SMFS), molecular recognition mapping (MRM) and single-cell force 

spectroscopy (SCFS) (Gernot Friedbacher 1999), this chapter will focus only on force 

spectroscopy in perhaps its simplest form. Here we are pushing the cantilever in to 

the samples and extracting the Young’s modulus from the resulting force distance 

curves through application of a mathematical model of fit for each curve. Knowing 

the applied force, tip geometry and spring constant of the cantilever is essential for 

this. Stiffness mapping, or force mapping as it is sometimes referred to, is a 

technique which takes advantage of the high spatial resolution offered by force 

spectroscopy; it involves performing multiple identical force indentation curves 

covering the surface of the sample, in the process building a map based on the 

recorded stiffness values. When performed on living cells this type of force 

spectroscopy can identify stiff regions of the cell corresponding to large actin 

filaments or the nucleus (Figure 8). In this way, alterations in cytoskeletal 

arrangement and strength can be observed over time as changes are induced 

(Rotsch and Radmacher 2000). The resulting stiffness map is a 2D representation of 

stiffness gathered independently of any AFM topographical image; to combine the 

two techniques it is possible to utilise pulsed-force mode (PFM) AFM. 
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Figure 8: The gridded square in the centre of the image is an example of a force map. It is a 

visual representation of the Young's modulus values obtained from each point measured on 

the cell in the optical image on which it is overlayed. By overlaying the two images this way 

it is possible to observe the regions of varying stiffness across a cell. Resolution depends on 

how many points are included in the force map grid – this example shows a grid of 50 x 

50µm containing 441 force indentation measurements, one in the centre of each square. It is 

possible to increase this to 1000 measurements; giving increased spatial resolution to the 

force map. However, in the image above it is still possible to identify a relatively stiff area 

near the top right hand corner of the force map, represented by the lighter colour squares, 

(white arrow) which in this case corresponds to the nuclear region. At least two lines of 

increased stiffness are also apparent, we hypothesise these correlate to underlying 

filamentous actin structures (black arrows). In this example the cell measured was a mature 

mouse osteoblast courtesy of You-Ying Chau of the MRC Human Genetics Unit, University 

of Edinburgh, Western General Hospital.  Scale bar represents 20µm.  
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Pulsed-force mode AFM has been designed to combine the advantages of tapping 

mode and force spectroscopy into one measurement process (Peter Eaton 2010). In 

this operational mode the AFM is able to gather information on topography, 

elasticity, electrostatic forces and adhesion simultaneously while maintaining the 

relatively high scan speeds and low lateral forces of tapping mode. This is achieved 

by performing full force-distance curve cycles while imaging in tapping mode and 

usually requires additional high speed electronics to be integrated in to the 

traditional AFM setup to deal with the huge amount of data generated at high speed 

– the system works at up to several thousand pixels per second (A Rosa-Zeiser 1997). 

This technique has proved useful when the distribution of elastic or adhesive 

regions on surfaces is of interest, such as on the development of racing car tyres 

(Innovations 2001) and on microcontact printed patterns (Okabe, Furugori et al. 

2000).  
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Figure 9: Example of a force-indentation curve performed with a sharp MLCT tip on glass in 

air. Note, this curve has been corrected for cantilever bending; this means the actual 

indentation depth has been calculated by taking the difference between the vertical piezo 

movement and the vertical deflection of the cantilever in units of length (Neumann 2011). 

Following this calculation the x-axis is renamed ‘tip-sample separation’ to highlight this 

change. The figure highlights characteristic features of measurements in air on glass such as 

the 'jump-to-contact' region where the tip is overpowered by the capillary force of the fluid 

layer and the vertical repulsive contact region caused by the inability of the tip to indent the 

glass substrate. Also of note is the overlapping of the approach and retract baseline traces. 

Measurements in liquid tend to result in a gap between the baseline traces due to the 

viscosity of the liquid. Hysteresis is less prevalent with measurements in air also. The 

vertical grey bar represents the portion of the approach baseline that has been used to 

determine zero force and level the curve.  
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The resulting force-distance (f-d) curve from a force spectroscopy measurement can 

tell the user several vital pieces of information pertaining to the nature of the 

sample being indented and the measurement environment. There are essentially 4 

parts to a f-d curve highlighted in Figure 10: 

1. The approach portion of the measurement before the tip has contacted the 

surface. Here, the cantilever is moving toward the surface experiencing only 

thermal fluctuations and viscous forces (if the measurement is taking place in 

liquid). No significant deflections are observed at this stage.  

2. As the tip contacts the surface the cantilever begins to deflect. The cantilever 

is now in repulsive contact with the surface and – in the case of living cells – 

pushing in to them.  

3. Once the deflection is such that the pre-defined force setpoint is reached, the 

AFM stops indenting and begins to reverse the path of the cantilever, 

retracting it from the surface.  

4. Upon retracting from the sample surface it is common to observe adhesion 

between the tip and the sample surface as it tries to pull free. In air this can 

be caused by capillary forces, with live cells this can be specific and non-

specific binding of proteins to the tip.  

The thermal fluctuations alluded to at stage 1 are a fundamental source of noise in 

AFM measurements. These environmental fluctuations constantly provide small 

pulses of force either in air of in liquid – though they are more prevalent in liquid. 

This type of movement can be seen observing the diffusion of small particles in 

liquid, known as Brownian motion. The severity of effect of the fluctuations depends 

on the spring constant of the cantilever and the temperature at which the 

measurement is being performed – softer cantilevers are more susceptible (Jaschke 

1995).   

Some of the characteristics of measurements in air on glass are described in Figure 9 

such as capillary force and the linear nature of the repulsive contact potion. 

Measurements in a liquid environment have several unique characteristics of their 

own; these are detailed in Figure 10 and include hysteresis influenced by thermal 
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fluctuations and mismatching of the approach and retract baselines due to viscous 

forces of the liquid. 

 

Figure 10: Shows an example of a force-indentation curve performed on a live MG63 cell 

nucleus in a liquid environment at 37°C. Evidence that this curve was performed in liquid 

can be seen by the increased levels of hysteresis in the baseline portions; the primary cause 

is thermal fluctuations in the measurement medium which are more prevalent in liquid 

than in air. Note also that the approach and retract traces do not return to the same ‘0 force’ 

deflection point, this is due to the viscosity of the liquid inducing hydrodynamic drag on 

the cantilever hence why it is not seen in Figure 9. Note the repulsive contact portion of the 

curve is sloping rather than vertical pertaining to the fact that the tip is able to indent the 

sample in this instance, also not seen in Figure 8.   

 

 

 

 

 



54 
 

1.7 Cell elasticity quantification by AFM 

The Young’s modulus of living cells varies considerably throughout the range of cell 

types and techniques available to measure it. One reason for this is that elasticity 

measurements performed by the AFM are based on Hooke’s law of elasticity 

(Vinckier and Semenza 1998) (Eqn 1). This states that the extension of a spring (in 

this case the cantilever) is directly proportional to the strain applied to it. This is 

appropriate for linearly elastic or ‘Hookean’ materials only and as cells cannot be 

considered linearly elastic, the correct application of the mathematical model of fit 

is essential. For this reason it is important that we standardise the method by which 

we derive the Young’s modulus from the initial force distance curve.  

 

Equation 1: Hooke’s law of elasticity, where ‘F’ is the restorative force exerted by the 

spring, ‘x’ is the size of the displacement and ‘k’ is the spring constant specific to 

each spring.1.7.1 Evaluation of elasticity from indentation measurement 

To evaluate cellular Young’s modulus, a force-indentation curve has to be derived 

from the general force-distance curves, where the deflection of the cantilever is 

plotted as function of Z-stage displacement (z). In an indentation measurement, the 

cantilever movement toward the cell (z) consists of both the indentation of the 

sample (δ) and a cantilever deflection (d, d=F/k) (Figure 11). The indentation 

distance into the sample (δ) can be corrected by subtracting the cantilever 

deflection (d) from the pizeo-displacement, resulting in the force indentation curve 

(also called force-tip-sample separation in the software used).  
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Figure 11: (A) Schematic diagram showing indentation of a soft substrate by an AFM tip and 

cantilever. (B) The indentation distance into the sample ( ) can be corrected by subtracting 

the cantilever deflection (d) from the pizeo-displacement; discussed in Figure 8, (W. 

Richard Bowen 2009).   

To calculate Young’s modulus of cells the Hertz model was applied to interpret the 

force-indentation curve throughout this project. This model is discussed in greater 

detail in the following section 1.7.1 Models for deriving elasticity from force distance 

curves.  
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1.7.1 Models for deriving elasticity from indentation measurements 

To extract a value of elasticity from a force distance curve the data must be fitted 

with a mathematical model designed to calculate the particular parameter of 

interest, which in this case is elasticity or ‘Young’s modulus’. Many such models 

exist but in reality most are modifications on the Hertz model (Eqn 2), which has 

become the most commonly used model of fit for biologists in particular.  

   

 

Equation 2: Where R is the radius of the sphere, F is the indentation force, E is the 

Young’s modulus, is the Poisson’s ratio, and  is indentation depth. The cell was 

assumed to be incompressible and a Poisson’s ratio of 0.5 was used. 

In its basic form, the Hertz model describes contact between two smooth elastic 

glass spheres and demonstrates that the size and shape of the region of contact 

varies with the deformation of the contacting bodies (K. L. Johnson 1971). In this 

original version of the theory, two main assumptions are made: 1) that the indenter 

geometry is parabolic and 2) that the total indentation depth comprises an 

insignificant proportion of the total thickness of the sample. Assumption one is able 

to be met if the maximum depth of the indentation is less than 1/3 the radius of the 

spherical indenter (Mahaffy 2000). Assumption two requires that the maximum 

thickness of the sample be known in order to judge the indentation depth 

accordingly.  

Variations on the model arise when experimental parameters or sample conditions 

do not meet the requirements of the model and call for an extra factor to be taken in 

to consideration, for example; sample thickness, sample-surface adhesion or 

alternative indenter geometry. This is important because the fundamental 

assumptions made by the Hertz model cannot be true for most biological samples 

and certainly not for living cells, however alterations to the model have been 

incorporated to account for various indenter geometries such as cones and four-

sided pyramids (Lin, Dmitriadis et al. 2007). In addition to the assumptions listed 

above, the model also approximates the sample as a homoelastic solid and treats the 

R
E
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indenter as non-deformable with no additional interactions with the sample – such 

as adhesion. Should all these parameter be met, the Young’s modulus (or elasticity 

E) can be calculated accurately using the Hertz model. However when working with 

living cells this is simply not possible therefore it is unavoidable that some degree of 

error be present in each calculation.  

As mentioned above, the Hertz model is the most commonly implemented model 

today and contains the basic principles upon which most other models of elasticity 

are based. Being essentially an elastic model designed for use on soft materials 

(Mahaffy, Park et al. 2004), it can also incorporate viscoelastic contributions also 

and is particularly suited to thicker samples or indeed thicker areas of cells such as 

the nuclear and perinuclear regions, so long as relatively shallow indentations are 

performed (<10% of total sample thickness). However, AFM measurements by their 

very nature become susceptible to the substrate effect as they penetrate deeper in to 

the cell. The substrate effect becomes a pertinent problem when the indentation 

location falls on a particularly thin sample region such as the leading edge 

(lamellipodia) of living cells or especially thin polymer gel samples mounted on stiff 

glass or plastic substrates. It is characterised by the tip of the AFM ‘feeling’ the 

increased stiffness of the substrate through the comparatively soft material of the 

sample and registering the impact in the resulting force indentation curve. Typically 

it leads to artificially increased values of elasticity when the curve is fitted with the 

model. By making indentation depth a negligible proportion of total sample 

thickness it helps to negate the impact of the endogenous error incorporated by the 

model on the elasticity result. The model is therefore not suited to indenting thin 

regions of cells such as lamellipodia (<1000nm) on account of the strong influence 

the underlying stiff substrate can have on the recorded elasticity. For regions such 

as this, the Tu or Chen models (Eqn3; Eqn 4) are more appropriate.  
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Chen model for adhered thin regions of cells 

 

with 

 

Equation 3: An expression of the equation used to convert values obtained by the 

Hertz model in to those of the Chen model. With the Chen model, unlike the Tu 

model, the values  are dependent on the Poisson’s ratio; therefore the ratio of 

 is dependent on the Poisson’s ratio (Mahaffy, Park et al. 2004).  

 

Tu model for non-adhered thin regions of cells 

 

with 

      

Equation 4: This equation shows the relationship between the elastic values 

obtained by the Hertz model and those obtained by the Tu model. Unlike the Chen 

model, the ratio of  is independent of the Poisson’s ratio. The Tu model can 

account for a spherical body (AFM colloidal probe) impacting on a non-adhered 

layer (thin region of cell) and was first solved in 1964 by Tu et al (Tu 1964).  

The Tu (Eqn 4) and Chen (Eqn 3) modifications of the Hertz model are suited to 

indentation experiments where the sample is particularly thin, because these 

models take the boundary effect imposed by stiff substrates in to account and so are 

better able to handle the influence this has on the force indentation curves (Park, 

Koch et al. 2005). Additionally, the height of the sample at the point of indentation 

is of particular importance for proper use of these models, which can also be applied 

to thin polymer films (Dimitriadis, Horkay et al. 2002). Although both modes are 
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better equipped to deal with thin regions each has a particular speciality pertaining 

to sample adhesion. Note that for very thick samples or regions of cells; the Tu and 

Chen models behave similarly to the Hertz model (Mahaffy, Park et al. 2004), it is 

only when significant contributions are made by the hard underlying substrate that 

the values of the Tu and Chen models will deviate from those of the Hertz. Both are 

also able to be extended in order to calculate viscoelastic behaviour of thin regions 

of cells. 

The Chen model is designed to handle measurements performed on well adhered 

samples – or well adhered regions of samples, therefore it assumes a rigid sample-

substrate bond. A well adhered region is described as one which is unable to move 

at the sample-substrate interface, conversely, a region is considered non-adhered if 

the sample is able to slip freely over the substrate. This can be described simply as a 

sphere contacting a layer of known thickness which is being supported by a hard, 

adherent substrate (Mahaffy, Park et al. 2004). The Chen model also has the 

advantage of being able to determine both the elastic constant and the Poisson 

ratio; which in previous measurements was just assumed in order to deduce the 

Young’s modulus.  

The Tu model originated from a problem described in 1962 by Popov which set out 

to address the problem of a spherical indenter contacting a non-adhered layer on a 

stiff substrate (Popov 1962). This problem was solved by Tu et al for substrates 

within a limited thickness range (Tu 1964). Because the Tu model assumes the 

sample is not adhered to the underlying substrate it allows for lateral slip and 

considers it unconstrained. Precisely how much lateral slip can be tolerated by the 

model is not presented in the literature. It assumes boundary conditions analogous 

to two identical spheres indenting a layer double its actual thickness (Margetson 

1970).  

However in the paper ‘Quantitative Analysis of the Viscoelastic Properties of Thin 

Regions of Fibroblasts Using Atomic Force Microscopy’  by R. E. Mahaffy et al 

(Mahaffy, Park et al. 2004) they explain that by utilizing both models it is possible to 

correlate the adhesion of the cell in each specific location with the Young’s 

modulus. This information can prove useful when relating it to cell motility at the 
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leading edge. For a full explanation and complete solution to both models please 

consult the methods papers ‘Impact and contact stress analysis in multilayer media’  

and  ‘ Computation of stresses and displacements in a layered elastic medium’ by 

Chen et al (Chen 1971; Chen and Engel 1972). Throughout this project the Hertz 

model as modified for indenter geometry was used to extract all Young’s modulus 

values. It is the most commonly used and best characterised model meaning the 

limitations are well documented and understood; this makes reducing their 

influence possible by careful consideration of experimental protocol. For more 

detailed discussion of experimental protocol see Chapter Three.   Also, due to the 

location of measurements performed in this thesis being on the nuclear region, the 

cell is thick enough here for the Hertz model to adequately describe the 

experimental data (Kuznetsova, Starodubtseva et al. 2007; Lee YJ 2011).   

1.8 Outline of thesis  

This thesis aims to investigate the elasticity of living cells as a potential label free 

indicator of cellular responses to their microenvironment. To enable systematic 

investigation in to this, microfabrication technology has been used to design model 

substrates that mimic defined aspects of the extracellular matrix in vivo. I have 

exploited atomic force microscopy as a promising tool to enable the reliable 

quantification of cellular elasticity. In addition to cell elasticity studies, more 

traditional molecular biological methods were employed to complement the 

investigation in to cell responses.  

Throughout this thesis the results of elasticity studies have been used to guide 

further investigations in to the mechanisms by which cells respond to their 

surrounding environment. Elasticity data is not being advocated as a definitive 

diagnosis of cell phenotype, fate or function, rather as an additional piece to 

elucidate the puzzle.  

Chapter one: Introduction, explores the background and basics of the extracellular 

matrix as observed in vivo and goes on to highlight the advantages on offer to 

researchers attempting to recreate aspects of it using microfabrication technology. 

Fundamental features of cell adhesion are described and the basics of atomic force 
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microscopy are explained with particular emphasis on force spectroscopy 

measurements.  

Chapter two: Materials and methods, is restricted to aspects of the project than can 

be generally applied throughout the work. This includes basic cell culture and 

statistical analysis techniques as well as fabrication protocols and 

immunofluorescence detection techniques.  

Chapter three: Optimisation of cellular elasticity measurements will highlight the 

methods used to create a robust protocol for using AFM to quantify cellular 

elasticity. Important issues to consider before commencing any experiment such as 

probe selection and measurement environment will be discussed in detail. The aim 

of this is to best limit variation in the end result thus improving reliability and 

confidence in the measurement.  

Chapter four: Can common cell adhesion molecules affect elasticity? An AFM 

approach looks at the initial work done to demonstrate the effectiveness of the 

protocol developed in chapter three. The effect of simple chemical modification of 

substrates is the focus of this chapter and the longer term influences of topography 

are demonstrated.  

Chapter five: The topographical influence on cellular elasticity, takes the findings 

from chapter four – specifically that topography can have a lasting influence on 

cellular elasticity – and investigates the possibility that elasticity changes are 

precursors to more fundamental transcriptional changes. The aim here is to 

demonstrate that elasticity values as recorded by the AFM can provide additional 

information to help unravel the mechanisms of mechanotransduction and that 

topography alone can induce transcriptional changes in cells.  

Chapter six: Conclusions and future work, draws from the conclusions of the 

previous three experimental chapters in order to summarise the main points of the 

project and evaluate them against the aims originally stated in section 1.8. Also 

included are sections on the limitations of the AFM technique and possible routes 

for improvement, as well as ideas for future work continuing on from the findings 

presented here.  
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This chapter details only those materials and methods which have been generally 

applied to all experiments. Those which are specific to a particular chapter are 

detailed within the materials and methods section of that chapter.  

2.1 General reagents 

Unless otherwise stated general reagents used during the course of this work were 

purchased from Sigma Aldrich.  

2.2 Cell Culture 

NIH/3T3 fibroblasts & MG63 osteoblast-like cells (ATCC) were cultured at 37 °C and 

5% CO2 in Dulbecco’s modified Eagle medium containing nutrient mixture F-12 

(DMEM/F12, GIBCO) supplemented with 10% foetal bovine serum (FBS), 2 mM L-

glutamine and 100 U/ml of penicillin and streptomycin. Confluent cultures were 

detached from tissue culture flasks using Trypsin/EDTA solution to generate cell 

suspensions for subsequent passage or cell culture on substrates.  

Cell seeding concentration on a glass / PDMS substrates was chosen to be 2 x 104 

cells/ml to produce well developed single cells for AFM measurements. Prior to 

AFM measurements, an overnight cell culture on the prepared glass / PDMS 

substrates was carried out at 37°C, 5%CO2. The substrate with cells was then quickly 

mounted on a heated ‘BioCell’ stage (JPK instruments) which maintains cells and 

medium at 37°C for the 2 hour duration of the AFM experiments. Similar cell 

seeding densities were used when culturing cells for immunofluorescence 

microscopy and transmission electron microscopy.  

2.3 Fabrication of topographic substrates 

Described here is the process by which structured PDMS substrates were produced 

from etched silicon wafers to be used in cell studies.  

2.3.1 Silicon master fabrication 

Photolithography and dry etch procedures were used to create silicon master 

moulds for topographically structured PDMS substrates. The basic 

photolithographic procedure is shown in Figure 12. The process begins with cleaning 
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the silicon wafer: 3 x 5 minute washes in an ultrasonic bath in methanol, acetone 

and isopropyl-alcohol respectively. Next, the photoresist was spun on to the wafer at 

4000rpm for 30 seconds. In this work we used AZ4562 and Shipley S1818 positive 

photoresists therefore any areas exposed to UV light were developed away. To 

evaporate solvents from the resist the wafer is placed on a hot-plate for 3 minutes at 

90-95°C. The sample was then ready to be exposed to UV light (360nm) through a 

patterned photomask in the MA6 mask aligner (SUSS Micro Tec, Garching 

Germany). The MA6 exposure conditions are set to ‘hard contact, 50µm gap’ for 3-4 

seconds for S1818 resist and 10 seconds for AZ4562. S1818 resist samples are 

developed in a 1:1 solution of distilled water and ‘Microposit developer’ for ~30 

seconds and AZ4562 sample are developed in a 1:4 solution of ‘AZ400k developing 

solution’ and distilled water for 2-3 minutes. Results are checked under optical 

microscope to ensure complete removal of exposed photoresist. Sample is then 

dried using a nitrogen gun and subject to a post-bake at 120°C for 30 minutes. The 

sample is now ready to be dry etched. 

Samples were etched using a custom gas mixture (UDO1) at a rate of 1µm/min in the 

STS dry etch apparatus. After etching the remaining photoresist is removed by 

sonication in acetone. The etch depth was checked using the atomic force 

microscope.  
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Figure 12: Basic stages of photolithography and etching to produce silicon master moulds 

for use in soft lithography techniques. Photoresist used was S1800 series® (Shipley). Silicon 

wafers from. 

2.3.2 PDMS replica preparation 

Microstructured Poly(dimethylsiloxane) (PDMS) substrates were prepared using 

soft lithography as follows: pre-polymer (a mixture of 10:1 silicon elastomer and 

curing agent) was degassed inside a desiccator under vacuum conditions achieved 

using an external motorised pump, then cast against silicon masters and cured at 70 

°C overnight. The solidified PDMS substrates were then washed with ethanol and 

plasma treated in an oxygen barrel asher (Gala Instruments Plasmaprep 5) for 30 

seconds before cell seeding.  
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2.4 Optical and fluorescent detection 

Both transmission and fluorescent images of stained cellular structures were 

recorded using a Zeiss Axiovert inverted fluorescence microscope coupled to a 

cooled monochrome CCD digital camera (Andor iXon, Andor Technology). A filter 

set, containing an exciter D475/40, a dichroic 495LP, and an emitter E510LP were 

used for the FITC fluorescence imaging. A filter set, containing an exciter EX630/50, 

a dichroic 650, and an emitter E695 were used for the Cy5 fluorescence imaging. A 

filter set containing an exciter 500±25, a dichroic 525nm and an emitter 545nm were 

used for rhodamine fluorescence detection. All the samples were imaged using the 

same acquisition conditions.  

 

2.5 AFM 

All AFM work was carried out using the NanoWizard II Bio AFM (JPK Systems, 

Berlin), mounted on a Zeiss Observer A1 inverted optical microscope placed on top 

of a Halcyonics Micro 40 anti-vibration table. The complete set-up was acoustically 

isolated in an in-house manufactured chamber in order to reduce the interference of 

ambient noise during the measurement. More details of AFM measurements are 

described in Chapter three: optimisation of cellular elasticity measurements. Unless 

otherwise stated, all the elasticity results detailed here were got from the application 

of the Hertz model –modified only for spherical indenter geometry- to force 

distance curves. The probe used was an Arrow TL1 tipless cantilever with 4.8µm 

silica microsphere attached (see section 3.3.3 AFM colloidal probe preparation for 

details).  
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2.6 Transmission Electron Microscopy  

Transmission Electron Microscope (TEM) images were taken using a LEO 912AB 

TEM at 4000 x magnification. The accelerating voltage was 100kV. Cells for imaging 

under the transmission electron microscope were seeded on PDMS substrates as per 

the standard protocol detailed above and cultured overnight. Preparation for TEM 

imaging was as follows: 

1. Fix cells in solution of 2.5% gluteraldehyde 0.1M sodium cacodylate for one 
hour at room temperature. 

2. Rinse cells in 0.1M Sodium cacodylate and store at 4°C until able to 
commence next stages.  

3. Wash 3 x 5 minutes in 0.1M Sodium cacodylate solution. 

4. Submerge in 1% osmium tetroxide for one hour at room temperature.  

5. Wash 3 x 10 minutes in distilled water.  

6. Submerge in 0.5% Uranyl acetate for one hour in the dark.  

7. Quickly submerge in distilled water. 

8. Wash 2 x 5 minutes in a series of increasingly concentrated ethanol solutions; 

a. 30% 

b. 50% 

c. 70% 

d. 90% 

e. Absolute – 4 x 5 minute wash. 

f. Dried absolute – 4 x 5 minute wash.  

9. Submerge in 1:1 solution of dried absolute ethanol : Epon resin overnight. 

10. Submerge in pure Epon resin (minus accelerator), perform 3 solution 
changes over the next day. 

11. Samples embedded and polymerised in Epon resin (including accelerator) at 
60°C for 16-24 hours. 

12. Ultrathin (~70nm) transverse sections cut using Leica Ultracut UTC 
(Ultratome).  

13. Sample sections contrast stained for 5 minutes in 2% Methanolic Uranyl 
Acetate then 5 minutes in Reynolds Lead Citrate prior to imaging with TEM.  
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2.7 Statistical analysis  

A two-sample Student’s t-test was employed to test the null hypothesis that the 

means of two populations of cells were equal with no significant difference. This test 

was used when a direct comparison of only two population means with varying cell 

numbers was required. The test expresses the actual difference in sample means in 

relation to the variation in the data, which must be expressed as the standard 

deviation of the difference between the means.    

Data presented in chapters 3, 4 and 5 (sections 3.3.4, 3.7.2, 4.3.1, 4.3.2, 5.3, & 5.3.3) 

and throughout the thesis on cell elasticity values are expressed as mean ± 1StDev. 

Standard deviations were used to demonstrate the variation from the mean within 

the populations measured. If the standard deviation is large (relative to the mean) 

then the sample values are spread over a large range of values whereas a smaller 

standard deviation will indicate that sample values lie closer to the mean. Standard 

deviations were calculated with n-1 as the denominator, this is consistent with only 

a sample of the population being measured i.e. not every cell in every population 

could be indented with the AFM.  

Sample precision was calculated using the formula below (Eqn 5). The precision of 

the results gives the maximum difference between the sample mean and the true 

mean of the whole population.  

 

Equation 5: Used to calculate the precision (E) of the results. SD is standard 

deviation and n is sample number.  

Using the standard deviation from the results of section 3.4.4 we aimed to achieve a 

precision of 0.4 kPa or better throughout the project. This required a sample size of 

at least 22 cells however no fewer than 25 cells were used for any quantitative 

analysis of cell heterogeneity. Meeting the minimum sample number meant that 

95% of the time we could be sure that our observed sample mean fell within 0.4 kPa 

of the true population mean.  
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3.1 Abstract 

Indenting live biological samples with the AFM is a difficult task with many 

parameters to control. A comprehensive understanding of these parameters is 

essential if AFM results are to be considered reliable. In this chapter, all aspects of 

live cell indentation measurements will be investigated with the aim of producing a 

robust and reliable protocol that can be adapted to various specific experimental 

requirements.  

3.2 Introduction 

Cell heterogeneity is endemic amongst populations of cells. Perhaps not always 

obvious from the outset; it can take high resolution techniques to discover. The 

behaviour of the population or tissue as observed could in some cases mask 

individual differences (Wong, Tsai et al. 2007), however this does not negate their 

influence. When indenting single cells with the AFM these differences become 

altogether more influential due to the relatively small sample size (~30 cells) 

typically dealt with in AFM studies. Cell heterogeneity has the power to influence 

the overall view of a population’s elasticity and cast doubt over findings. Conversely, 

the behaviour of the population may not always accurately represent the behaviours 

of the individual cells within. Differences will always exist if you look with a fine 

enough resolution (Altschuler and Wu 2010). The challenge for researchers is to 

differentiate between endemic differences and those which yield important 

information relevant to the study at hand. In our case, measuring differences in 

cellular elasticity has, over the years, been the focus of many an instrument and 

many an experimental procedure. All these sources of variation mean that special 

consideration has to be given to new data sets generated.  

Upon searching the literature for a range of elasticity values as measured by AFM 

for various cell types it immediately becomes apparent that for each cell type the 

values reported for their elasticity vary widely. For example, osteoblasts have 
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recorded elasticity values of between 0.3 and 20 kPa (Simon, Cohen-Bouhacina et al. 

2003), red blood cells of between 19 and 33 kPa (Dulinska, Targosz et al. 2006) and 

3T3 fibroblasts of between 3 and 12 kPa (Rotsch, Jacobson et al. 1999). This is partly 

due to the natural heterogeneity found in living biological samples but could also be 

attributed to various imperfections or misunderstandings in the AFM method 

employed and indeed the methods used for analysis of the force-indentation curves. 

In this chapter we look at what can be done to limit the level of variation introduced 

by the AFM indentation method while reliably uncovering variation found naturally 

in cell populations through careful consideration and optimisation of the method. 

Here the aim was to develop a robust and reliable protocol for cellular elasticity 

measurements by optimising parameters such as indentation force, indentation 

speed and indentation depth as well as investigating the merits of varying tip 

geometry between sharp and spherical probes. Sample specific preparations are also 

taken in to consideration, for example, whether a cell is adherent or in suspension, 

whether microtopography is used and if cells are present as part of a monolayer or 

on their own.  

Optimisation has, to some degree, been considered by all who have published AFM 

results. This includes images, adhesion maps and force spectroscopy data; at some 

point parameters such as scan speed (Sulchek, Yaralioglu et al. 2002), force 

(Dimitriadis, Horkay et al. 2002) and depth (McPhee, Dalby et al. 2010) have all 

been considered and optimised by the operator. This is because optimisation is an 

inherent aspect of working with AFM and indeed most other complex scientific 

instruments. Instructions for optimisation are present in every handbook issued 

with equipment such that a novice would be able to guide themselves through the 

first initial steps on the road to becoming a competent user. However, optimisation 

is often very sample specific. What works for imaging microfabricated silicon wafers 

in air is not applicable to live cells. Indeed, working with biological samples requires 

many more factors to be considered and therefore optimisation becomes all the 

more important to achieving reliable results.  
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3.3 Materials and methods 

Since living cells are not a simple homogenous elastic material and as they actively 

respond to external stimuli, reliable determination of their elastic properties is 

dependent on both optimised experimental acquisition and suitable modelling to fit 

the data. Previous studies have shown that when using AFM to measure a cell’s 

mechanical properties, tip geometry, indentation depth and loading frequencies are 

all factors that can contribute to differences in the elastic modulus measured 

(Kuznetsova, Starodubtseva et al. 2007). In addition, the elastic modulus is also cell 

type dependent. Here, materials and methods specific to the optimisation and 

operation of the AFM are detailed.  

3.3.1 AFM probe selection 

It is important to select an appropriate probe for force spectroscopy experiments, 

taking in to account cantilever geometry, tip geometry, coating and spring constant. 

Taking each factor in turn, this section will detail considerations to be addressed 

when selecting a probe for elasticity measurements on living cells.  

3.3.2 Spring constant and cantilever coating 

Cantilevers with a soft enough spring constant to be considered suitable for force 

spectroscopy on biological samples are often fabricated from silicon nitride (Si3N4) 

as it is extremely flexible and unlikely to break during even the deepest of 

indentations; however pure silicon (Si) cantilevers are also capable of extremely soft 

indentations. It is important to select a probe with a spring constant similar to that 

which you expect the sample to have for the most reliable results. If indenting live 

cells this would typically be around 0.02 N/m. Stiff cantilevers (> 0.1 N/m) do not 

have the sensitivity suitable for indentations on live cells. Suitable chips include the 

MLCT series (Bruker AFM Probes) which have a pyramidal shaped tip and the 

Arrow TL series which are tipless and require the addition of a colloid tip to be 

suitable for force spectroscopy on cells.  

Often, chips are coated with a reflective metal in order to increase the proportion of 

the laser light reflected off the back of the cantilever. When selecting a cantilever for 

use with live cells, be it for imaging or force spectroscopy measurements, it is 

important to select one with a coating that is not prone to dissolving in to the 
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culture medium possibly harming cells. For this reason, silver or aluminium coated 

cantilevers should not be used on live cells but gold coated cantilevers are 

appropriate. Gold coated cantilevers are prone to thermal drift however; this is due 

to the expansion of the metal coating caused by the heat of the laser spot and 

surrounding cell culture media (if incubated). They also suffer from molecules 

adhering to their surface from the sample media which can cause image artefacts 

and interfere with force-spectroscopy measurements. Some cantilevers, such as the 

Arrow TL1 series, are not coated at all and so the material retains a slight 

transparency under the microscope. While this reduces the amount of light 

reflected, it has the advantage of allowing accurate positioning of microspheres 

when preparing spherical probe indenters (3.3.3 AFM colloidal probe preparation) as 

the sphere can be seen through the cantilever itself. Cantilevers also vary in 

geometry in relation to their intended purpose. For example, triangular shaped 

cantilevers are typically best suited to contact mode applications (1.6.1.1 Contact 

Mode) as their spring constant tends to be a lot softer than the rectangular shaped 

cantilevers which, although sometimes capable of contact mode applications, tend 

to be the shape of choice for tapping mode (1.6.1.2 Tapping mode). 

3.3.3 AFM colloidal probe preparation  

To minimize the influence of the above variables on elastic modulus determination, 

conditions for indentation measurements were first evaluated. Carefully prepared 

and characterized spherical colloid AFM probes were used in this study to eliminate 

the possibility of penetrating cell membranes with a sharp tip. The spheres also 

provided a well-defined geometry for evaluating elastic modulus by fitting the data 

to specifically formulated indentation models (Costa and Yin 1999). The choice of 

indentation force is always dependent on the AFM tip and the cell type, as evident 

from a range of published values (e.g. from 0.2 (Li, Lee et al. 2008) to 20 nN 

(Wozniak, Kawazoe et al. 2009)).  

In-house prepared AFM colloidal probes were used for indentation measurements 

(Figure 13). The colloidal probes were prepared by attaching a 4.8µm silica 

microsphere (Microparticles GmbH, Berlin) to a tipless silicon nitride cantilever 

(Arrow-TL1, NanoWorld). This was done by first locating a suitable microsphere, 
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one which was isolated from surrounding microspheres, and gently nudging it using 

the AFM’s fine positioning screws to ensure it was not strongly adhered to the Petri 

dish surface. Next, the cantilever was carefully lowered on to UV curable glue 

(Loctite® 349) and pulled out laterally to remove any excess before being raised up 

off the surface (microspheres and glue on same 30mm Petri dish lid). Upon 

relocating the original microsphere the cantilever was brought in to repulsive 

contact manually using the AFM’s stepper motor controls and held there while the 

microsphere was positioned correctly in the centre. The positioning was monitored 

by the inverted optical microscope onto which the AFM was mounted. Once 

satisfied with the positioning the cantilever was raised once more and moved 

laterally to ensure the microsphere had not remained adhered to the surface. The 

cantilever was the exposed to UV light for ~10 minutes to cure the glue and secure 

the bead to the tip. The end result is shown in figure 13B. Before commencing cell 

indentations, the sensitivity and spring constant of each individual cantilever was 

determined (JPK manual). Cantilever sensitivity is the conversion factor for 

cantilever deflection from volts to nanometers; this is dependent on the kind of 

cantilever and the mounting therefore it must be repeated each time before 

measurements are recorded although values will be similar for identical cantilevers 

mounted in a similar way.  This value was typically around 80-100 nm/V. Spring 

constant values were usually ~0.02N/m.  
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Figure 13: A; Illustrates the process of attaching a microsphere to a tipless AFM cantilever. 1) 

A suitable microsphere is selected. 2) The cantilever is carefully lowered on to the glue. 3) 

Returning to the selected microsphere, the cantilever is brought in to repulsive. 4) The 

cantilever is moved to confirm attachment. Dotted white circle indicates original 

microsphere position in each image. B; Finished spherical 4.8µm diameter probe seen from 

below (1) and from side (2).  Scale = 50µm in ‘a’ and 10µm in ‘b’.  

3.3.4 Measurement environment 

The first factor to be taken in to consideration is the environment in which the cells 

are measured. It is well known that external factors such as temperature and carbon 

dioxide levels can quickly and significantly affect cell behaviour. Studies have shown 

that it is possible to induce changes in elasticity without any observable 

morphological change, and that external conditions such as temperature can have a 

much stronger influence on cell elasticity than on morphology (Kuznetsova, 

Starodubtseva et al. 2007); therefore, observing through the optical microscope will 

not always alert the user to the changing mechanical properties of the cell. 

Therefore it is important when working with live cells to take every precaution to 

maintain an in vivo-like environment during experiments. To this end, all live cell 

imaging and force spectroscopy on the AFM were carried out using the JPK BioCell™ 

(Figure 14) stage, which maintained a constant 37°C throughout in full serum 

culture medium.  
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Figure 14: JPK BioCell™ temperature controlled stage for live cell measurements. 

Due to the AFM being an inherently ‘open’ system, that is open to the wider 

environment of the lab, maintaining the recommended 5%CO2 95% air mixture as 

used in incubators was not practicable. CO2 acts to make sure the buffer in the 

media performs as intended but is not actually used by the cells themselves. The 

media used for incubator cultures and AFM measurements here includes phenol 

red, a pH indicator, which enables us to see a colour change as the acidity of the 

media changes. This colour change – from red at pH7 to purple – happens within 

the time the cells are outwith the incubator and so during the measurements 

alkalinity is increasing. To ascertain how much the pH of the cell culture media was 

changing over the ~90 minutes the cells were under the AFM; measurements were 

recorded every 10 minutes with a pH meter at 37°C and 22°C room temperature of 

the DMEM/F12 media used in all experiments. Although temperature was kept 

constant by use of a water bath, no attempt was made to influence CO2 levels. 

Results showed that at both temperatures pH remained remarkably constant, 

beginning at 7.2 in both cases and rising to 7.4 at 37°C and 7.3 at 22°C room 

temperature. This shows the capacity of the media to maintain its pH when CO2 

levels are that of air, however as no cells were present in the media tested these 

results do not represent a fair example of the conditions experienced during AFM 

measurements. For this to be accurate the experiment would need to be repeated 

with a culture of respiring cells present in the media. Although no morphological 

changes are observed during the time cells are under the AFM; it is possible that 
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unseen and unmeasured characteristics such as viability and cell growth speed are 

being affected by the conditions (Vistica, Scudiero et al. 1990). It must, therefore, be 

possible that these could manifest themselves discretely in the elasticity results. 

Attempts were made to carry out AFM experiments in a home-made CO2 

independent media to further limit variables within the experiment however the 

cells reacted adversely to this solution and so a return to DMEM was necessary. In 

order to limit the impact of reduced CO2, all AFM measurements were carried out 

within 90 minutes of the cells being removed from the incubator when no 

noticeable morphological changes had been observed.  

3.3.5 Optical overlay 

In order to accurately position the AFM tip over the areas of interest during force 

spectroscopy measurements the operator has to either a) image the cell in question 

then use the software to position the cantilever over the required area b) observe 

down the microscope eye-piece the exact location of the cantilever and use the fine 

positioning screws on the AFM head to manually position the probe, or c) overlay 

the optical image displayed on the CCD camera on to the scan region of the AFM. 

The preferred option is to overlay the optical image displayed on the CCD camera to 

the scan region of the AFM, in this way the locations are superimposed on the 

optical image instead of the AFM image (Figure 15). Direct overlay of the optical 

image takes into account aberrations in the optical image introduced by the effects 

of the mirrors and lenses of the microscope. The software is able to use recognized 

positions of the cantilever to calibrate the optical image accurately before mapping 

it on to the AFM scan region. The advantage of this is the time saved – overlaying 

the optical image takes ~1 minute compared to the ~15 minutes to scan a cell 

therefore locations are more accurately selected. Although the optical image cannot 

give the nanoscale detail of the AFM image it is more than sufficient for locating 

areas of interest such as the nucleus and can also display fluorescence information.  



76 
 

 

Figure 15: Brightfield image overlayed on to AFM scan region with locations of force-

indentation curves represented by yellow dots, shown here situated on the nucleus of a 3T3 

cell.  

However, the optical overlay technique cannot always be applied. As the software 

relies on good contrast of the cantilever against the background to automatically 

recognise its position and thus calibrate the image – focusing on the sample itself 

can lead to mistakes. The chances of accurate overlay can be increased by focusing 

on the cantilever instead of the sample and changing to brightfield mode instead of 

phase. As the data generated for overlay is completely independent of the AFM 

experiment the optical settings can be re-set once overlay is completed. Some 

biological samples can be particularly difficult to observe with many bright spots 

caused by rounded dead cells or floating debris. This appears to confuse the overlay 

algorithm and therefore results in unsatisfactory mapping of the optical image. In 

order to avoid any unreliable positioning of the AFM probe, optical overlay is only 

employed when the resulting overlay has a low standard deviation error of less than 

1 pixel, this corresponds to ~0.2µm under normal 512 x 512 AFM resolution. 

Successful overlays typically have an error of between 0.4 and 0.6 pixels however. It 

is also important to note that because the x and y scanners on the JPK NanoWizard 

II are open loop it is best to allow the piezo electric crystals time to adjust if large 

changes in area dimensions are made; as no feedback mechanism exists to monitor 
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piezo movement in these directions. This is to allow tip position on the scan area 

selected for overlay to be accurately mapped by the AFM.  

 

3.4 Results and discussion.  

Presented here are the results of various experiments performed to characterise and 

optimise the indentation parameters used during AFM experiments. Focussing 

particularly on the identification of a suitable indentation force and how this can 

influence elasticity values recorded. Factors such as measurement speed and tip 

geometry are also explored.  

3.4.1 Effect of loading force on cell integrity 

To identify a range of indentation forces that didn’t breach the plasma membrane, 

we carried out a series of force-indentation curves on live MG63 cells in the 

presence of trypan blue. Trypan blue is a stain used frequently to identify dead cells 

and tissue; it does so by passing through the membrane and colouring the damaged 

areas blue. Cells and tissues with undamaged membranes can successfully block 

entry of the stain and remain unaffected. Should any of the measurements cause 

damage to the membrane these would subsequently be detected as the stain would 

be permitted access to the cytoplasm – colouring it blue. Figure 16 shows the results 

of indentations with both sharp pyramidal tips and spherical bead indenters. Forces 

used ranged from 3.5nN - used in force indentation measurements throughout this 

project, to 20nN - the highest force achievable with the Arrow TL1 cantilever on 

which the beads were attached.  

When comparing spherical and pyramidal indenters it is important to realise that 

indenter geometry has considerable influence on the distribution of pressure within 

the cell during indentation. It is pressure, not loading force, which deforms the cell 

as pressure is the effect of loading force. For spherical indenters, the area over which 

this pressure is distributed is considerably larger than that for pyramidal or conical 

indenters. Pressure distribution also differs with increasing indentation depth for 

different geometries. For example, the radius of contact between the tip and the cell 

increases faster than the depth of the indentation as load is applied for spherical 
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indenters. For conical indenters, the relationship between the radius of contact with 

the cell and depth is a constant ratio, independent of applied load (McCann 2004)- 

note that pyramidal geometry is often approximated by equations for conical 

geometry in the literature (VanLandingham 2003). Thus, when indenting with a 

conical indenter the cell should experience a constant strain with increased loading 

force. Note, indentation strain describes the ratio of the radius of contact over the 

radius of the indenter. For a spherical indenter, increasing loading force is 

analogous to decreasing the half-angle to face of a conical indenter i.e. making it 

sharper (McCann 2004). In order to compare the distribution of pressure inflicted 

by spherical and sharp probes, one would calculate the area over which the pressure 

is applied. This can be done using equation 6 below: 

 

Equation 6: Used to calculate pressure: ‘p’ is pressure, ‘F’ is the loading force and ‘A’ 

is the area of contact with the surface.   

For this experiment, indentation approach and retract speeds were kept at a 

constant 10µm/sec to ensure comparability with indentation measurements 

throughout the project. All the cells tested (n=6) remained intact and no blue 

colouring was observed after 10 minutes, indicating that the membranes were not 

being penetrated. N.B. to illustrate the appropriateness of the experiment, with each 

tip a cell was deliberately scraped off the surface and observed for until it turned 

blue, this occurred after approximately 5 minutes. These positive results are shown 

in the bottom row of Figure 16 however the CCD camera was unable to clearly 

represent the colour change in the damaged cells (indicated by the white arrows).  
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Figure 16: Indentation measurements performed with sharp pyramidal indenters (left 

column) and spherical 4.8µm silica bead indenters (right column) in the presence of trypan 

blue. Performing this type of dye exclusion assay with trypan blue will allow the 

identification of cells with compromised membranes as these will allow the dye to pass into 

them. Cells with intact functioning membranes will not permit the dye to enter. Should the 

AFM indenter breach the cell membrane the cell would appear blue when observing with a 

microscope – as can be seen in the bottom row of images this colour change is not obvious 
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when captured with a ccd camera. In this experiment the cells were indented using forces 

far beyond what is typically used during normal elasticity measurements, even so it was not 

possible to puncture the membranes with either indenter and cells had to be scraped from 

the surface in order to achieve a positive result (white arrows). The black arrows point to 

the cell which was indented at each force. Scale bars are 100 m. 

3.4.2 Determination of loading force (nN) 

To determine a suitable indentation force for live cell force spectroscopy, 3T3 

fibroblasts were used as a model cell line. A series of deeply penetrating (≥ 1 µm) 

force-distance curves were obtained from cells seeded onto untreated glass 

coverslips and cultured overnight. Using Hertz’s model for data fitting graphs of 

indentation depth versus elastic modulus (Figure 17 & Figure 18) were produced, 

from which we could identify a plateau region where elasticity values remained 

relatively constant. Shallow indentations <50 nm often resulted in massively 

underestimated values possibly due to the insufficient indentation depth. An 

increase in elasticity was seen in all examples as the tip penetrated deeper in to the 

cell; indicating a contribution from the nucleus itself and possibly the substrate. To 

minimise this influence, only the portion of the indentation curve up to 500 nm was 

used for the analysis (N.B. this also ensures the validity of Hertz’s model: 

indentation depth < 10% of sample height). Considering that cells are inherently 

heterogeneous, an indentation force of 3.5 nN was chosen to provide enough 

indentation depth. No alterations in cell morphology or cell integrity were observed 

at the applied force. Note; only one graph of indentation versus elasticity was 

produced per cell however a value for whole cell elasticity was recorded with each 

indentation. The repeated measurements (5x/cell over 5min) did not show any 

directional change in the elastic modulus measured other than random fluctuation. 
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Figure 17: Effect of indentation depth on cell elasticity calculation. Values of elasticity were 

recorded at 20nm increments starting with initial contact between the tip and the sample 

(0.0 on x-axis). Figure shows the tendency of the values to increase as the curve penetrates 

deeper. Very shallow curves (<50nm) tend to underestimate elasticity. In this example, the 

plateau region of reliable elasticity values is present between ~300nm and 600nm deep and 

the final indentation depth is 1.2µm.  

Plotting the elasticity against indentation depth revealed a region of reliable results 

in each case however it varied in size between cells, as can be seen in Figure 18. 

Values before the constant region tend to be variable and underestimate elasticity 

possibly as a result of insufficient stress being exerted on the cytoskeleton beneath 

the plasma membrane, an exception being Figure 18C where values are constant 

from initial tip-sample contact until ~500nm deep. With deeper indentations 

elasticity values began to rise constantly, this was observed in all cases. This could 

be due to the influence of the underlying substrate which starts to couple in 

mechanically or the tip could be detecting the nucleus and pushing it through the 

cell. For these reasons all curves were analysed up until a 500nm depth limit as this 

was an appropriate depth for most cells, even if the total curve depth often reached 

~1.2µm, approximately 24% of typical cell height.  
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A: Plateau region present between ~200n and 800nm. 

Shows similar trend of increasing elasticity values as 

indentation penetrates deeper and unreliable values for 

very shallow depths of <50nm. Total depth of indentation 

is 1.928µm, significantly deeper than the other curves 

recorded.  

 

B: Plateau region present from beginning of recorded 

values (~200nm) until ~500nm deep, then elasticity values 

increase in a similar fashion as indentation deepens.  
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C: This graph again shows relatively constant elasticity values 

present from the initial stages of indentation (~4nm) until 

approximately 500nm deep where the values begin to increase 

as seen in graphs A, B and Figure 16.  

Figure 18: Indentation depth versus elasticity graphs for three other 3T3 cells. These 

graphs were constructed in a similar way to that shown in Figure 16 and show 

indentations on three different cells, A, B and C, of the same population. Observed 

are differences in final indentation depth, plateau region and elasticity value.  

 

Figures 17 and 18 highlight the variation possible within cells of the same 

population. Under identical indentations each cell behaved differently, showing the 

difficulties present when attempting to construct a reliable method for force 

spectroscopy on live cells. The plateau region of elasticity values varied in depth and 

size with each cell, as did the final indentation height and value of elasticity. Certain 

constants emerged however – the tendency to exaggerate elasticity with deeper 

penetrating indentations and the presence of a plateau region – if not its size and 

depth. This experiment has gone some way to explaining levels of variation 

observed in published AFM results and informing new users of the need to devise 

protocols to cater for the majority of cells in a population as there is little chance of 

accurately predicting the behaviour of every one.   
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3.4.3 Indentation depth.  

Using an indentation force of 3.5nN ensures a sufficient depth of curve will be 

available for analysis. This value was chosen because the total depth of a force-

distance curve for any given force is very variable and can often result in shallow 

indentations (<500nm). However, the possible effect of the nucleus on the elasticity 

results remained a concern. Inclusion of the nucleus in elasticity measurements by 

indenting deep enough to contact it could have an effect on elasticity values because 

the nucleus of mammalian cells is reported to be significantly stiffer than the 

surrounding cytoplasm (Guilak, Tedrow et al. 2000; Caille, Thoumine et al. 2002). If 

this is true, then a probe encountering the nucleus during the approach period of a 

force distance curve would effectively be pushing the nucleus through the 

cytoplasm. This could have knock-on effects on the resulting stiffness values, which 

are extracted using the Hertz model modified for the specific geometry of the 

indenter. Should the probe push the nucleus through the cell this would be akin to 

changing the indenter geometry for a portion of the indentation. In an attempt to 

investigate the distance available under the plasma membrane before the nucleus 

would be contacted, transmission electron microscopy (TEM) was utilised to image 

transverse sections of MG63 cells situated in PDMS grooves and pits. This technique 

enabled us to visualise the cytoplasm above and below the nucleus and determine if 

it was likely that the nucleus could be mechanically affected during force distance 

measurements. Five cells were imaged in total, three on pits and two on grooved 

PDMS surfaces. Unfortunately, due to the low seeding density of the samples and 

difficulties adapting the TEM preparation procedure with the PDMS discs, a full set 

of images was not possible as several samples were destroyed. Of the five cells that 

were imaged, measurements were taken at three points above and below the 

nucleus 1µm apart so as to average the thickness of cytoplasm in each region.  As 

can be seen in Figure 19, there was ca. 820nm between the upper membrane of the 

nucleus and the outer membrane of the cell, and ca. 530nm between the lower 

membrane of the nucleus and the base cell membrane. These values were typical of 

the 5 cells measured, showing cytoplasm thickness varying between ~600nm and 

~900nm above the nucleus and ~300nm – 600nm below.  
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It is important to note that the sample preparation steps necessary to image using a 

TEM are often associated with shrinkage, which can sometimes introduce artefacts 

in to the image. It has been demonstrated using high resolution scanning electron 

microscopy that shrinkage during preparation is uniform across all organelles 

within the cell and structural components are preserved in their previous 

arrangements; however sample to sample levels of shrinkage are variable (Gusnard 

and Kirschner 1977). Because of this it was not possible to know by exactly what 

volume our samples would shrink as no study in the literature could be identified as 

recreating the conditions and cell type used here, though studies report that ethanol 

dehydration / fixation and critical point drying techniques employed during sample 

preparation can cause up to a 25-30% reduction in sample size (Gusnard and 

Kirschner 1977; M. Loferer-KroBbacher 1998). Due to the excellent preservative 

qualities of the resins, their ability to be easily sectioned, their stability under the 

electron beam and the fact that no alternative preparation method was available, it 

was necessary to proceed with the method.   

Although only 500nm of indentation was analysed after the initial contact point 

with the membrane it is impossible to rule out contributions from the nucleus in 

the resulting Young’s modulus values. As discussed, the Hertz model is accurate for 

indentations <10% of the total sample thickness; total sample thickness in these 

conditions includes the nucleus of the cell in each case. To rule out nuclear 

contributions we would need to be indenting <10% of the cytoplasm thickness above 

the nucleus, which would result in an indentation depth of around ~80nm 

maximum. As shown in Figures 17 and 18, indentations of this depth are too variable 

to ascertain a reliable value of elasticity therefore it must be conceded that nuclear 

position and movement is in some way influencing the force-indentation curve and 

as a result the extracted value of elasticity with each measurement.  
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Figure 19: Schematic highlighting areas of cell depicted by TEM images. Shows approximate 

distance between nuclear membrane and plasma membrane above and below cell. Note it 

was not possible to determine the exact lateral position of the transverse section imaged. 

Cell shown is an MG63 cell situated within a 40µm PDMS pit. Scale = 1µm.  
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3.4.4 Determining indentation speed (µm/sec) 

Previous studies showed that both elastic and viscous properties of cells can 

contribute to the information gained through AFM indentation (A-Hassan, Heinz et 

al. 1998; Mahaffy, Park et al. 2004; Smith, Tolloczko et al. 2005; Rosenbluth, Lam et 

al. 2006). The viscous property is associated with time-dependent relaxation of cells 

upon indentation and thus its contribution to indentation measurements was 

frequency dependent. Since the viscous relaxation time is dependent on cell type 

and associated with the subcellular structure where testing takes place, as well as 

the state of the cells adhering to the substrate, indentation speeds varying from 

1µm/s to 25µm/s (i.e. from 0.1 to 1.5 Hz) were investigated. Ideally, this would allow 

us to identify an appropriate “operating window” that minimized the viscous 

response of the fibroblasts.  

 

Figure 20: Influence of indentation speed on cell elastic modulus. A) The elastic modulus of 

three single cells measured at difference speeds. The three cells are randomly chosen to 

illustrate cell heterogeneity. The data were fitted with Hertz’s model adapted for a spherical 

indenter. B) Average elastic modules of 25 cells measured at different speeds. The speeds 

range 1µm/sec to 25µm/sec. Error bars show 1 standard deviation from the mean value.  

Figure 20A shows the representative elastic response of individual cells to a 

systematic change in the indentation speed. All the 3T3 cells were plated on 

uncoated glass coverslips for 12 hours prior to the indentation test and Hertz’s 

model was applied to derive the elastic modulus of the cell from the force-distance 

curves. The data obtained highlight the high levels of variation at the single cell 
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level showing no significant change in elasticity over the range of speeds tested. The 

average elasticity of 25 single cells at different indentation speeds (i.e. 125 force-

distance curves for each speed) is shown in Figure 20B. Results show an average 

elasticity of 1.31 ± 0.95 kPa for cells indented at 1µm/sec, 1.06 kPa ± 0.66 kPa for cells 

indented at 3m/sec, 1.07 ± 0.650 kPa for cells indented at 10um/sec, 1.12 ± 0.76 kPa 

for cells indented at 16µm/sec and 1.17 ± 0.88 kPa for cells indented at 25µm/sec. 

Again it is not possible to identify a significant trend as the variation is too large. 

From these results we concluded that indentation speed did not affect the resulting 

values of elasticity over the range tested, however as the smallest standard deviation 

value observed was for 10µm/sec and so this was selected as the indentation speed 

for the rest of the project. To limit any pre-conditioning effect on the cells caused by 

the repeated order of measurements carried out on each cell, we alternated the 

order in which each speed was tested. This meant that some cells experienced 

increasing indentation speeds, some decreasing and some an alternating pattern.  

 Using the largest standard deviation value (0.95 kPa) obtained for the range of 

speeds tested here we aimed to calculate the sample size required for a precision of 

0.4 kPa. Using the Equation 5 detailed in section 2.7 Statistical analysis, we 

calculated that for a sample precision of 0.4 kPa the minimum sample size required 

was 22 cells, therefore for the remainder of the project the minimum sample size 

measured for quantitative assessment of cell heterogeneity was 25.  

3.4.5 Cell Plasticity  

The elastic response of a cell is its ability to recover morphology following 

mechanical deformation. Plasticity describes any non-recoverable aspect, the 

tendency to be ‘moulded’ by the mechanical deformation. In this case, indentation 

with a spherical probe is the method of deformation. In order to test for the cells 

ability to recover following indentation, cell height was measured as the first point 

of contact between the probe and the cell with each indentation performed using 

the software tools described in section 4.3.3 AFM Measurements. Five indentations 

were performed in total, each one second apart with a loading force of 3.5nN on the 

centre of the nuclear region. The cells used were MG63 cells cultured on uncoated 
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glass coverslips overnight in DMEM/F12 media under 5% CO2 conditions. The 

results are shown in Figure 21.  

It is of interest to know if cell height at the point of indentation is recoverable, if not 

then with each subsequent indentation the probe will penetrate deeper in to the cell 

and the influence of the nucleus and underlying substrate will become more 

influential. This could manifest itself as a time dependant increase in apparent 

elasticity over the course of the measurements on each cell.  

 

Figure 21: Line plot of recorded cell height over the course of 5 sequential indentation 

measurements on 10 MG63 cells. The table lists the height at which the probe first contacts 

the cell. Values shown in µm. The line plot shows the relationship between indentation 

number and contact point height.  

 

1 2 3 4 5

Cell 1 5.123 5.463 5.378 5.639 5.547

Cell 2 5.459 5.249 5.379 5.587 5.277

Cell 3 5.045 4.976 4.985 5.118 5.021

Cell 4 5.909 5.759 5.798 5.982 5.826

Cell 5 4.847 4.886 4.764 4.639 4.917

Cell 6 4.671 4.7 4.42 4.603 4.787

Cell 7 4.748 4.364 4.966 4.68 4.374

Cell 8 5.181 5.094 5.153 5.25 5.076

Cell 9 4.99 4.903 4.99 5 4.978

Cell 10 4.916 5.175 4.743 4.686 4.984
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As can be seen in Figure 21, there is no clear trend of cell deformation over the 

course of the measurements; 4 cells show a higher contact point on the final 

indentation compared to the first (cells 1, 4, 5 & 10) and the remaining 6 show a 

lower contact point on the final indentation compared to the first (cells 2, 3, 6, 7, 8 

& 9). Although the contact point does fluctuate by ~130nm for each cell the 

variations are not significant enough to suggest that cell height is affected by 

indentation; it is likely that this is a manifestation of the limitations of the 

experiment. As a result of this experiment we can conclude that the indentation 

protocol used throughout this thesis does not result in non-recoverable cell 

deformation at the point of contact.  

3.4.6 Application of Hertz model 

Referring back to section 1.7.1 Models for deriving elasticity from indentation 

measurements, it was discussed that the Hertz model is most reliable for 

indentations between 5-10% of total sample depth. For a cell this is approximately 

300-500 nm. Identifying the force needed to arrive at this depth and analysis of 

elasticity results versus depth can be seen in sections 3.4.2 and 3.4.3. However, 

identifying an optimum indentation force range for generating reproducible curves 

is just part of the correct application of the Hertz model – the model itself has to be 

applied correctly to the measurements at the analysis stage of the experiment.  

Because of the variation in final indentation depth it is not suitable to automatically 

apply the Hertz fit to the entire curve using the JPK Data Processing software, 

manual interpretation of the correct depth for analysis is required. This involves 

discarding sections of the curve that go beyond the limit of reliable Hertz fitting, 

Figure 22 and 23. To do this, the entire force indentation curve is selected and the 

point of first contact between the tip and the sample is highlighted by the software. 

If the selected contact point is appropriate, the fit is applied to the entire non-

contact portion of the curve and up to ~500 nm past the contact point. If the 

automatically selected contact point is not suitable the curve is either discarded or a 

more suitable point chosen manually. In this way it is possible to analyse the same 

curve for different indentation depths and check the repeatability of the results, as 

shown in Figure 17. Note that different methods exist for identifying an appropriate 
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first contact point on a force indentation curve, these include; the first instance the 

approach curve crosses the baseline in to positive forces and does not cross back, a 

significant dampening in hysteresis caused by contact between the tip and the 

sample or the first time the approach curve reaches a predefined force. The method 

used by the JPK analysis software shown here could not be identified unfortunately 

as this information could not be made available to us.  

As mentioned in section 1.7 Cell elasticity quantification by AFM, the Hertz model 

has been adapted for various geometries of indenter including cone, paraboloid, 

quadratic pyramid, flat cylinder and sphere and so it is important that the correct 

version is chosen at this stage. For more details of the model used see section 1.7.1 

Evaluation of elasticity from indentation measurements.  

 

 

Figure 22: Identification of a fit range from a force – indentation curve (processed to show 

tip-sample separation as discussed in Figure 9). The red line is the approach curve, the 

vertical dashed line denotes the contact point of the approach curve and the green line 

indicates the fit of Hertz’s model. The blue shaded region highlights the area selected by the 

user to be considered for the elasticity calculation – in this instance the first ~300nm has 
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been chosen for analysis.  Shown is an example of a good fit of the Hertz model to the tip-

sample separation curve as selected by eye, with an RMS value of ~30pN.  

 

 

Figure 23: Shown is a typical example of when the Hertz model fails to accurately fit the 

indentation curve.  Areas identified by eye as being too ill-fitting to analyse are highlighted 

A, B and C.  Section ‘A’ shows an obviously inaccurate contact point location and little 

correlation between the initial ~500nm of the red indentation curve and the green fit of the 

model. This is not acceptable as the first 500nm of each indentation are used to extract the 

Young’s modulus value for that measurement. Sections ‘B’ and ‘C’ fail to fit the 

measurement due to the change in angle of the indentation curve, highlighted by the arrow. 

This type of angle change, or ‘two-stage’ shape, seen in the repulsive contact portion of the 

curve resulted in a poor fit and the measurement was discarded. Here, the RMS value was 

148pN.  

 

As shown in Figure 23, the software was not always able to accurately fit the model 

to the data. This occurred most commonly on force indentation curves with a ‘two-

stage’ repulsive contact region and a difficult to identify contact point. A ‘two-stage’ 

approach curve is when the angle of the repulsive contact portion of the curve 

A 

B 

C 
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appears to change abruptly during indentation, resulting in large differences 

between the approach curve and the model fit. It is hypothesised that this 

phenomenon could occur because the tip has encountered two or more layers of 

elasticity within the cell, perhaps contacting the nucleus or pushing the nucleus out 

of the path of the tip. Difficult to identify contact points are often very shallow 

increases in force found on the approach curve where it is not clear exactly when 

the tip has begun to push upon the cytoskeleton of the cell instead of the ECM and 

membrane protrusions found on the surface. Often there would be no amount of 

curve selectable that would result in an accurate fit of the like seen in Figure 22 and 

so these curves would be discarded outright. If there were not at least three 

accurately fitted curves for a cell then that cell would be excluded from the final 

results. It was estimated that between 5 – 15% of cells were discarded per 

experiment for this reason. The decision to emit or include a curve was left to the 

discretion of the user as no RMS range was identified. Each measurement was 

judged by eye meaning that any curve fit that did not appear to follow the approach 

curve closely was instantly discarded. The most important region of the curve fit 

judged was the initial ~500nm of repulsive contact, if this was observed to be 

accurate with no deviations from the measurement then the result was recorded. 

Variations in contact point were tolerated to within ~100nm if the repulsive contact 

portion was deemed accurately fitted. This is because of the intrinsic difficulty in 

selecting contact points when the indenter must first contact secreted cellular 

proteins and other membrane protrusions which may register on the measurement 

but not indicate the elasticity of the cell. The subjective nature of this technique is a 

weakness in the analysis process as it allows room for user interpretation, therefore 

when carrying out analysis we erred on the side of caution and when in any doubt, 

the curve was discarded. A retrospective look at the RMS values of several included 

and excluded curves highlighted significant variation, perhaps influenced by the 

conditions of the measurement. It appears as though the limitations of applying the 

Hertz model to indentations can be influenced by cell type, cell position (within 

surface grooves / pits) and perhaps even the surface material on which cells are 

seeded. This observation could not be explored further due to time constraints 

however it seems to indicate that an RMS range for the exclusion of ill-fitting curves 
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would have to be specifically catered to each cell type and experimental condition 

and could not be applied retrospectively across the board.  

To investigate the comparability of the JPK analysis software two other software 

programs were utilised to analyse the same set of measurements. It was hoped that 

by comparing the analysis software used throughout this project to similar 

programs some measure of reliability could be invested in the results. These 

additional programs were gifted to us by Dr Kristian Franze of the University of 

Cambridge Departments of Physiology and Neuroscience and Dr Robert Kiss 

formerly of Heriot-Watt University Department of Chemical Engineering and used 

with their permission; the programs will be referred to as ‘Cam’ and ‘Rob’ 

respectively. Both software tools were constructed individually with the aim of 

fitting the Hertz model to AFM indentation data and extracting the Young’s 

modulus. Neither software was ‘open’ to us and so no code could be scrutinised 

however full functionality was available and each program was applied according to 

instructions specific to it. In the case of the Cam software; the program attempted 

to fit the Tu and Chen models in addition to the Hertz in order to select a winning 

fit for each measurement. For the data set tested in this example the Cam software 

returned the Hertz model as the winner 62% of the time, the Chen model 28% of 

the time and lastly the Tu model won 10% of the time. This is evidence that the 

Hertz model, although limited, is an appropriate choice for indentations on the 

nuclear regions of cells for reasons detailed in section 1.7.2 Models for deriving 

elasticity from indentation measurements.  

The sample data set tested was a culture of 3T3 cells seeded on uncoated glass 

coverslips for 24 hours previous to the measurements. 25 cells were measured. A 

similar protocol for indentation was followed to that described earlier in the 

chapter, briefly; 5 indentations on the nuclear region with a maximum force of 

3.5nN and a constant speed of 10µm/sec were performed. A spherical 4.8µm silica 

microsphere mounted on an Arrow TL1 tipless cantilever was used as the probe. The 

elasticity of each cell was got by averaging the values of the 5 indentations 

performed.  
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Figure 24 shows comparable values of elasticity returned by both the JPK and the 

CAM software programs of 2.07 kPa ± 1.37 and 2.03 kPa ± 0.86 respectively; however 

a significant difference was observed in the results returned by the ROB software, 

showing average cellular elasticity to be 5.79 kPa ± 2.24. This highlights one possible 

source of variation in published AFM elasticity data.  

 

Figure 24: Analysis software comparison. This figure shows the returned values of elasticity 

for a population of 3T3 cells given by each of the three programs tested.  The ROB software 

returned significantly different values (p < 0.01) to those of the JPK or CAM programs, 

showing the average elasticity of the population to be 5.79 kPa ± 2.24. The JPK and CAM 

programs returned average elasticity values of 2.07 kPa ± 1.37 and 2.03 kPa ± 0.86 

respectively; there was no significant difference between these values. Error bars show 1 

standard deviation from the mean.  

Possible reasons for the disparity in the results are hard to identify as they likely lie 

within the code of each program. They could pertain to how the software deals with 

indentations over the recommended 10% of total sample thickness; for example, the 

JPK software allows the user to manually discard regions of an indentation curve 

should they penetrate too deep within a cell however the CAM and ROB programs 
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have no such feature. Perhaps, where the indentation is too deep, the CAM software 

is able to select a more appropriate model to fit thus limiting the influence of the 

substrate effect, whereas the ROB software has no such feature. Ultimately, the 

success of these home-made programs depends on the background experience of 

the creator, both in the physics of AFM indentation theory and in computational 

modelling. The take home message from this comparison must be that if the user is 

not confident in either of the afore mentioned fields then care must be taken to 

ensure that the most repeatable, reliable method for analysis has been adopted and 

applied throughout. In this way, the potential of the AFM as a biological toolbox is 

unlocked and the resulting data can be incorporated in to and important for 

progressive stages of investigation.   

3.4.7 Tip geometry: sharp vs. sphere 

To investigate the effect tip geometry can have on elasticity values we compared 

elasticity results from 3T3 cells indented both with a sharp MLCT pyramidal tip 

(Bruker AFM Probes) and a spherical silica microsphere mounted on a tipless 

cantilever (3.3.3 AFM colloidal probe preparation). In each case the cells were 

indented five times directly over the nuclear region in a square formation with a 

central point, the average elasticity value from the 5 force measurements was 

averaged again to identify the population average. Four populations were measured, 

those cultured on uncoated glass, N3, RGD and mannose coated glass. The Hertz 

model was used to extract Young’s modulus values. The effect of surface coating on 

cellular elasticity will be discussed in detail in Chapter 4 however to improve sample 

numbers these conditions have been included here. Each population was cultured 

overnight on their respective substrate before force measurements were carried out 

the following day. Separate populations were used to test the two different probe 

geometries. The aim was two-fold; to investigate whether these molecules could 

affect cellular elasticity and to what extent the tip geometry could affect the 

resulting elasticity values. As can be seen from Figure 25 there are significant 

differences between the results returned from each probe. Elasticity values got from 

using the sharp pyramidal indenter are at least three-fold stiffer that those got from 

using the spherical indenter, returning values of 9.3kPa, 6.1kPa, 6.2kPa and 7.2kPa 
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for N3, RGD, mannose and uncoated glass respectively. Elasticity values reported by 

the spherical indenter are 1.2kPa, 2.0kPa, 2.2kPa and 2.2kPa for the same conditions.  

 

Figure 25: Graph compares elasticity results from 3T3 cells cultured on N3, RGD, Mannose 

and uncoated glass surfaces after indentation with either a sharp pyramidal MLCT tip (grey 

bars) or a spherical silica microsphere (black bars). Ten cells were measured on each 

substrate (5 x sharp and 5 x sphere). Errors bars show 1 standard deviation from the mean 

value.  

It seems obvious that indenter geometry will change the indented footprint on the 

sample during the repulsive contact portion of the curve, resulting in a different 

elasticity value being returned. The theory behind using spherical indenters for live 

cell measurements is to indent a larger surface area of the sample, providing a more 

representative value. It is plausible that sharp indenters could penetrate the fragile 

plasma membrane of the cell during indentation because all the pressure of the 

indentation is focused on a relatively small area on the cell surface. This would 

presumably increase the chance of the tip contacting directly individual cytoskeletal 

elements underneath the membrane during the measurement and effectively push 
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these through the cell. Due to the relatively increased stiffness of e.g. F-actin in 

comparison to the surrounding cytoplasm this could have the effect of artificially 

increasing the measured elasticity and explain the difference in values observed in 

Figure 25. However as shown in Figure 16 this was unlikely to be the case in this 

instance as it proved not possible to breach the membrane using the forces 

described here.  

Sharp indenters could conceivably indent between the filamentous fibres of the 

cytoskeleton, without penetrating the cell membrane, which could result in the 

elasticity of the cell being misrepresented. The larger imprint of the spherical 

indenter is more likely to push upon the structural filaments and therefore return a 

more representative value of elasticity. Since the filamentous actin of the cell is the 

main contributor to cellular elasticity (Kuznetsova, Starodubtseva et al. 2007) it is 

important that its influence is taken in to account when indentation measurements 

are performed. For this reason we opted to employ spherical indenters for all live 

cell measurements unless otherwise stated. For more details on how pressure can be 

related to indenter geometry for a given loading force, see section 3.4.1.  

 

3.5 Conclusions 

By systematic evaluation and optimization of operational parameters in AFM 

indentation measurements, as well as by selecting the appropriate models for data 

fitting, we have demonstrated that AFM can be a robust method for monitoring 

living cell mechanical properties.  

By first evaluating indentation force and the possible effects on the cell membrane 

we arrived at the conclusion that the range of forces that could conceivably be 

applied to a living cell (~3.5-5 nN) were not likely to damage the plasma membrane, 

Figure 16. Once the non-lethality of the measurements had been established it was 

important to identify a level of force that could comply with the limitations of the 

chosen Hertz model and return repeatable values of elasticity. In section 3.4.2 

Determination of loading force (nN), it was shown that depth of indentation could 

significantly affect elasticity results and so it was important to find a depth range at 

which the returned values of elasticity were as repeatable as possible. This range was 
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identified as between ~300 – 600 nm (Figure 17) which is in agreement with the 

conditions of applying the Hertz model to cells as reported in the literature, which 

state that between 5-10% of total sample thickness is an appropriate depth range.  

At this range we are in a good position to get repeatable elasticity results which suit 

the application of the Hertz model, however it remained unknown whether the 

indentations were compressing purely cytoplasmic material or if the effect of the 

nucleus was also being measured. In order to investigate this, TEM images of sample 

cells were examined and found to have sufficient distance between the plasma 

membrane and nuclear membrane to accommodate indentations of the range 

selected, however it was clear that the influence of the nucleus could not be ruled 

out just because the indenter does not physically contact it. This is due to the 

indentation depth being greater than 10% of the cytoplasm thickness above the 

nucleus, implying that nuclear contributions are unavoidable unless indentation 

depth is reduced to ~80nm – a depth that has been shown to result in unreliable 

values for elasticity. To what extent and in what manor the results are affected by 

enhanced cell spreading on flat surfaces as opposed to structured ones – and how 

this in turn affects nuclear mechanics was not investigated as part of this thesis 

although it does propose interesting questions, such as how much can the thickness 

of the cytoplasm above the nucleus influence the elasticity results? Could cell height 

indicate the thickness of this layer and therefore be proportional to elasticity and is 

this cell type dependent?   

A statistically significant relationship between indentation speed and resulting 

values of elasticity could not be established as large cell-cell and intra cell variations 

were present in the calculated results, particularly for speeds at the extreme ends of 

the measured range (1µm/sec and 25µm/sec). Caution should be taken when 

interpreting the absolute values obtained since these are dependent on both the cell 

type and subcellular units being probed.  Importantly, we have found that the 

mechanical properties recorded on cell nuclear area give a reliable comparison 

between cells under the same measurement conditions.   
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4.1 Abstract 

The phenomenon that cells respond to chemical and topographic cues in their 

surroundings has been widely examined and exploited in many fields ranging from 

basic life science research to biomedical therapeutics. Adhesion promoting 

molecules such as Poly-L-lysine (PLL) and fibronectin (Fn) are commonly used for 

in vitro cell assays to promote cell spreading/proliferation on tissue culture plastic 

and to enhance the biocompatibility of biomedical devices. Likewise, engineered 

topography is often used to guide cell growth and differentiation. Little is known 

about how these cues affect the biomechanical properties of cells and subsequent 

cell function.  

 

4.2 Introduction  

In this study, we have applied atomic force microscopy (AFM) to investigate these 

biomechanical properties. Operational factors, including indentation depth and 

speed, and mathematical models for data fitting have been systematically evaluated 

(see Chapter 3 section 3.3). We then quantified how PLL, Fn and microtopography 

affected cellular elasticity and the organisation of the cytoskeleton. Cellular 

elasticity after 1 day in culture was greater on Fn coated surface as compared to PLL 

or glass. These statistically significant differences disappeared after two more days 

in culture. In contrast, the significantly higher elasticity associated with cells grown 

on micrometric grooves remained for at least three days. This work sheds light on 

the apparently simple but debatable questions: Are engineered chemical cues 

eventually masked by a cell’s own matrix proteins and so only exert short-term 

influence? Does engineered topography as well as engineered chemistry affect cell 

elasticity? 

Most soft tissues such as skin and muscle appear to be pliable and elastic – this is 

evident in their deformability and their ability to recover shape after deformation 

(such as after pinching) - however they are in fact viscoelastic materials. Tissue cells 
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are engaged in a constant equilibrium, assembling and disassembling their 

cytoskeleton in response to surrounding environments. The continued 

reorganisation of cytoskeletal components (i.e. actin filaments, intermediate 

filaments and microtubules), contributes to the complicated and dynamic 

viscoelasticity displayed by cells (Ingber, Dike et al. 1994; Janmey and McCulloch 

2007). In recent years it has become increasingly evident that the cytoskeleton plays 

an essential role in detection, transduction and regulation of the interaction forces 

between a cell and its extracellular matrix (Burridge and ChrzanowskaWodnicka 

1996; Janmey 1998). These processes are associated with fundamental cellular 

functions and other important events (Chen, Mrksich et al. 1997; Kramer, Shen et al. 

2005; Paszek, Zahir et al. 2005; Engler, Sen et al. 2006).  

 

Naturally occurring extracellular matrix consists of proteins and glycosaminoglycans 

which act as chemical and physical cues to the cells. Mimicking the natural habitat 

in vitro is a necessary approach for unravelling the mechanisms underlying basic cell 

functions and for developing effective therapeutic medicines. Benefiting from 

advancements in micro-/nano-technology, significant developments have been 

achieved in a few decades. A large body of literature has detailed cellular responses 

to ECM protein patterns (Folch and Toner 2000), physical topography (Guilak, 

Cohen et al. 2009) and substrate stiffness (Engler, Sen et al. 2006; Engler, Carag-

Krieger et al. 2008). For example, adhesive ECM micropatterns regulate initial 

adhesion of cells on substrates and determine cell fates (i.e. apoptosis or 

proliferation) (Chen, Mrksich et al. 1997), and have also been valuable for studying 

spatial regulation of cell-cell interaction (Folch and Toner 2000). Similarly, micro- 

and nano-topography has been shown to modulate the structure of the cellular 

cytoskeleton, cell-phenotype and gene expression (Curtis and Wilkinson 1997; Dalby 

2005). Despite these cues being in different formats, it is well recognized that the 

resultant alterations in cell behaviour might be interlinked with the mechanical 

behaviour of cells being influenced by the many regulatory pathways associated 

with focal adhesions (Chen, Alonso et al. 2003).  

 

However, little is known about the mechanisms involved in these pathways. This is 

partly because of the highly variable, heterogeneous and dynamic nature of living 
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cells that impose formidable challenges to retrieve reliable information. For a long 

time, mechanical properties of living cells have been examined as a whole, using 

methods such as micropipette aspiration (Hochmuth 2000), optical stretching 

(Guck, Schinkinger et al. 2005) and optical (and magnetic) tweezers (Moffitt, 

Chemla et al. 2008). However, these methods provide average information and are 

more suitable for cells in suspension. More recently, techniques such as magnetic 

twisting cytometry (Fabry, Maksym et al. 2001), traction force microscopy (Parker, 

Brock et al. 2002; Wang, Tolic-Norrelykke et al. 2002) and AFM (Tao, Lindsay et al. 

1992) have been developed to probe the mechanical properties of heterogeneous 

subcellular structures. Among these, AFM is perhaps the most flexible tool as it 

allows both the imaging of cells and the quantification of cell mechanical properties 

with nanoscale spatial resolution (Butt, Cappella et al. 2005).  

 

The last few years have witnessed a significant growth in the use of AFM for 

quantifying local elastic and viscoelastic properties of living cells (Tao, Lindsay et al. 

1992). A number of studies have shown that cellular mechanical properties are 

linked with cellular phenotype (Mathur, Collinsworth et al. 2001; Darling, Topel et 

al. 2008), pathological states of cells (Paszek, Zahir et al. 2005; Dulinska, Targosz et 

al. 2006; Cross, Jin et al. 2007), aging (Lieber, Aubry et al. 2004; Berdyyeva, 

Woodworth et al. 2005) and cellular differentiation stages (Pajerowski, Dahl et al. 

2007). For example, using AFM it has been observed that aging increases cardiac 

myocyte stiffness which contributes to the occurrence of left ventricular (LV) 

diastolic dysfunction (Lieber, Aubry et al. 2004). In addition, it has been 

demonstrated that the mechanical properties of cells can be a promising marker for 

cancer diagnostics (Discher, Dong et al. 2009). Despite these developments the 

investigation of cellular mechanics is still in its early stages but has the promise to 

make significant contributions to many fields. One such field is tissue engineering, 

where cellular mechanical properties can be quantitative markers, monitoring the 

regulation of cell differentiation towards a targeted function (for example, 

regenerated bone tissues, fat tissue) using engineered microenvironments.  

 
In this study we investigated the potential of local cellular mechanical properties, as 

determined by AFM, to quantitatively evaluate the influence of an engineered 
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microenvironment on cellular structure and function. We have established a robust 

measurement regime that has been applied to study the effect of two commonly 

engineered aspects of the cellular microenvironment, namely (A) the chemical 

properties of the substrate (i.e. the presence of ECM proteins) and (B) surface 

topography. In addition, by incubating the cells for one or three days on different 

types of substrate we wished to shed light on the apparently simple but debatable 

questions: For how long does a particular substrate property influence cell behaviour? 

Is physical topography a permanent cue that constantly affects cells? Are engineered 

chemical cues masked by a cell’s own matrix proteins and so only exert short-term 

influence? The results of our studies demonstrate that the local elasticity of the 

nuclear area can serve as a reliable marker for the overall mechanical properties of a 

cell and permits intercellular comparison. This presents the opportunity to connect 

cellular mechanics with overall and sub-cellular morphology. 

 

4.3 Materials and methods 

Only materials and methods unique to this chapter are detailed in this section. For 

more general materials and methods, see Chapter 2.  

4.3.1 Substrate preparation. 

Common adhesion promoting molecules, namely Poly-L-lysine (MW 70-150,000 

kDa, Sigma) and Fibronectin (Bovine plasma, Sigma) were used to coat glass 

coverslips (diameter of 24mm) according to manufacturer’s guidelines. Glass 

coverslips were first cleaned by 5 minutes of sonication in 70% ethanol then dried 

using nitrogen gun. For PLL coating, glass coverslips were incubated for 10 minutes 

at 37°C in a 0.01% PLL (w/v) aqueous solution and left to dry at room temperature. 

For Fibronectin (Fn) coating, the coverslips were soaked overnight at 4°C in a 

sterilised Fn solution at a concentration of 5µg/ml. Wherever necessary, substrates 

were sterilised under UV light for 15 minutes prior to cell culture. All the substrates 

were washed in PBS followed by incubation at 37°C with 1% BSA/PBS solution to 

block non-specific binding of the proteins. This was to negate any possible influence 

from the proteins in the supplemented culture media.  
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4.3.2 Cytoskeleton & fibronectin detection  

To stain the F-actin cytoskeleton cells were cultured on the various substrates using 

the same conditions as those for AFM measurements. Briefly, cells were first fixed in 

4% formaldehyde/PBS, with 1% sucrose at 37 °C for 15 min and then stained for F-

actin filaments using phalloidin-fluorescein in PBS/Tween (1:50; Sigma) at 37 °C for 1 

hour (Faulstich, Trischmann et al. 1983). The slides were stored in PBS/Tween 

solution until imaged.  

Immunofluorescence labelling was applied to differentiate between the fibronectins 

secreted from the 3T3 mouse fibroblasts or that derived from bovine serum that was 

present in the culture medium and on the Fn-coated substrates. Cells were first 

fixed and permeabilized with BD Cytofix/Cytoperm solution (BD Biosciences, San 

Diego) for 15 minutes at 37°C. They were then washed with PBS and left to soak in 

1% PBS/BSA blocking solution for 5 minutes at 37°C. After this, cells were stained 

with primary antibodies specific to each type of fibronectin following the protocol 

provided by the suppliers. For this, ab23750 (Abcam Ltd.) from rabbit was used for 

mouse specific fibronectin, and ab26245 (Abcam Ltd) from mouse for bovine 

specific fibronectin. Having the primary antibodies raised in different species is 

necessary to avoid cross reactivity when the secondary antibodies are added. This 

was followed by thorough washing of cells with 0.5% PBS/Tween20 and the addition 

of the secondary antibody solution, namely Cy5 conjugated goat anti-rabbit or FITC 

conjugated anti-mouse IgG in 1% PBS/BSA solution at concentrations of 20 µg/ml.  

Finally, the cells were washed again in PBS/Tween20 and stored in the dark at 4°C 

until imaged.  
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4.3.3 AFM measurements 

 

Figure 26: a) An optical image of a silica microsphere (diameter 5µm) glued to the end of a 

tipless cantilever using UV curable glue. b) An optical image of the cantilever (with 

microsphere attached) positioned over a 3T3 cell nucleus attached to an uncoated glass 

coverslip. Scale = 10µm.  

Spherical indenter probes of the type shown in Figure 26A were prepared for the 

experiment according to the protocol detailed in Figure 13. The location of elasticity 

measurements was the nucleus of each cell (Figure 26B) and the pattern of 

indentations is shown in Figure 27. 
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Figure 27: A contact mode AFM image of a live 3T3 cell showing the indentation area. 

Superimposed on the image are three white dots representing the locations of the glass 

force-distance curves used to calculate cell height by the custom built software and five 

yellow dots representing the pattern of indentations performed on the cell nucleus. The 

dots are not to scale. The centre indentation is always carried out first as it is selected first 

on the AFM software, no correlation between indentation order and elasticity results 

observed.  

After 1 or 3 days culture, cells had developed a spread morphology (Figure 26B), 

resulting in different elasticities within each cell (Ingber, Dike et al. 1994; A-Hassan, 

Heinz et al. 1998). With the aid of the optical microscope the AFM probe could 

easily be located on a particular cell and its subunits of interest with µm scale 

positional accuracy (Figure 26B). To enable comparable elasticity measurements of 

individual cells while eliminating the local variations within a cell, only the nuclear 

area was selected for indentation measurements. This permits the evaluation of the 

overall mechanical properties of the cytoplasm using optimised conditions. For each 

cell, five indentation measurements were carried out on the nuclear area: The first 

indentation was carried out on the centre of the nucleus and the remaining 4 in a 

3µm x 3µm square around it (Figure 27). Prior to indenting the nuclei, three 

indentations on the glass surrounding the cell of interest were performed (indicated 

in Figure 27). The contact points of these three measurements were used to define 

the average z-position of the underlying substrate (i.e. a z-position reference). 

Subtraction of this z-reference from the cantilever’s z-position at the moment it 
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comes into contact with the cell returns the height of the cell at each individual 

position. For cells on a microgrooved substrate reference curves were performed on 

troughs to ensure the cell body was on the same plane as the contact point of the 

curve.  

The apparent elastic modulus of the nuclear area of a cell was then derived by 

analysing the obtained force-distance curves with the JPK software using Hertz’s 

model (see chapter 1 section1.7.1 Models for deriving elasticity from indentation 

measurements) A range of indentation speeds were tested and the optimal one used 

for subsequent systematic investigation of the influence of different substrates, see 

section 3.4.4. The range of indentation speed parameters explored included 1µm/s 

and 3µm/s with a ramp size of 5 µm, and 10µm/s, 16µm/s and 25µm/s with a ramp 

size of 8 µm, see section 3.4.4.  

The elasticity of a given cell was determined from the average of the values obtained 

by the 5 indentations made. At least 25 cells on 4 replicate substrates were measured 

for each experimental condition unless otherwise stated. 
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4.4 Results and Discussion 

4.4.1 Chemical cues affect cellular elasticity significantly in the short term 

only 

 

Figure 28: Influence of common adhesive molecules, Fn and PLL, on cell elastic properties. 

A) Elastic modulus and B) cell height of 3T3 cells cultured on Fn, PLL and uncoated glass 

overnight and after 3 days. Note cells were isolated after overnight culture and were still 

sub-confluent after 3 days culture. For elastic modulus, significant differences were found 

for any pair of the three populations (p<0.02) after overnight culture; however, there is no 

significant difference between them after 3 days culture. In the case of cell height, 
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significant difference was observed only between cells cultured overnight on Fn coated and 

those on PLL coated substrates.  Error bars show 1 standard deviation from the mean value.  

ECM proteins (e.g. Fn and collagen) and adhesion enhancing molecules (e.g. PLL 

and 3-aminopropyl-triethoxysilane) are often used to promote initial cell 

attachment on surfaces (Folch and Toner 2000). In this short term, one day study, 

3T3 fibroblasts were seeded at low density and cultured overnight on Fn coated, PLL 

coated and uncoated (control) glass coverslips giving rise to single cells with a 

spread morphology. The average elastic modulus of cells (n=25) for each set of 

substrates was determined using the standardized protocol derived in Chapter 3. As 

shown in Figure 28A (black bars), cells cultured on Fn coated glass coverslips had a 

higher elastic modulus of 3.0 ±1.2 kPa in comparison to those cultured either on PLL 

coated (1.3±0.4 kPa) or on uncoated glass coverslips (2.0 ± 0.9 kPa). Student t-test 

showed that the differences observed between each pair of these three populations 

were statistically significant (p<0.02). 

It is well known that the interaction between a cell and its surrounding 

environment influences the focal adhesion formation (Geiger, Spatz et al. 2009). As 

a consequence, the cell adapts its shape (i.e. becomes more spread, flattened when 

the material is more adhesive), leading to variations in cell height. Since both cell 

height and elastic modulus were derived from the same force-distance curve, a 

correlation between these could be identified. The average cell heights of cells 

cultured on Fn coated, uncoated glass and PLL coated glass were 2.9±1.6 µm, 3.8±1.7 

µm and 4.6±1.8 µm respectively (Figure 28B, black bars). This represented a 

statistical difference in height, cells cultured on Fn coated glass were flatter in 

comparison to those on PLL coated glass (p<0.01) and those on uncoated (control) 

glass substrates (p=0.06). However, the height difference was not significant when 

the cells cultured on uncoated and PLL coated glass (p=0.1) were compared. 

Interestingly, a lower cell height correlated well with a higher elastic modulus, 

suggesting that more flattened, isolated cells might be stiffer in general. A spread 

cell indicates that a cell has developed a well organised contractile cytoskeletal 

network which contributes to the cell’s stiffness. This finding is in line with a 

previous study which showed that the elastic moduli of osteoblasts plated on Fn or 

collagen coated surfaces were higher than of those cells plated on either plain or 
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PLL coated glass, during the first hour after seeding (Takai, Costa et al. 2005). It is 

also a possibility that lower cell height results in a larger percentage of the total cell 

height being indented, thereby increasing the contributions of the stiffer nucleus or 

enhancing the substrate effect, giving rise to increased Young’s modulus values.   

On all of the tested substrates cells became sub-confluent after 3 days growth. 

Interestingly, the coating dependant difference in cellular stiffness observed at 1 day 

of culture disappeared (Figure 28, gray bars). Similar elastic moduli were found for 

cells cultured on PLL (1.3±0.4 kPa) and Fn (1.3±0.5 kPa) coated substrates. Although 

cells cultured on uncoated glass appeared stiffer (1.7 ± 0.7 kPa) than those on either 

of the other two substrates, the difference was not significant (p>0.2 for both cases). 

Similarly, there was no significant difference in cell height after 3 days culture 

(Figure 28B, grey bars).   

 

Figure 29: Fluorescence images of actin structures for cells cultured of 3T3 cells cultured on 

Fn, PLL and uncoated glass overnight and after 3 days. Scale = 50µm.  
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The disappearance of the differences in cell elasticity after 3 days culture probably 

suggests a scenario in which cells remodel their surrounding substrate and mask the 

engineered chemical cues. As shown in Figure 29 (left column), individual cells had 

already developed a spread morphology and a highly visible F-actin network after 1 

day in culture (N.B. seeding density was optimized to maintain isolated cells for 

detecting effects that arose from the Fn and PLL coatings alone, rather than cell-cell 

interactions). Cells cultured on Fn coated substrates showed the highest intensity of 

filaments and highly organized networks, which were followed by cells cultured on 

uncoated control glass and those on PLL coated substrates. This difference in the F-

actin structure and its intensity was in good agreement with the order of the elastic 

moduli as well as with the previous finding that the F-actin network determines the 

elastic properties of living cells (Rotsch and Radmacher 2000).   

After 3 days culture, subconfluent cell layers had formed in all cases (Figure 29, right 

column). Many cells were connected with others in the near neighbourhood, which 

might have induced additional effects on cell elasticity. In addition, intensive F-

actin networks were found in all cases without distinguishable variations. These 

qualitative observations and correlated quantitative elasticity measurements 

showed that physically absorbed chemical cues might influence cell mechanical 

properties in the short term (e.g. less than a day) but can be quickly overcome by 

the cells remodelling their local ECM. Previously, Lussi et al. have shown that 

chemical patterns in general have a limited lifetime, independent of the way they 

had been formed (Lussi, Falconnet et al. 2006).   

To test this hypothesis, cell produced fibronectin (denoted as Cell-Fn) and Fn of 

bovine origin (denoted as bovine-Fn) were differentially labelled. Bovine Fn was 

present either on the Fn coated surfaces, or could have adsorbed to the surface from 

the FBS present in the culture serum. After 1 day in culture, cells on PLL coated and 

uncoated glass were fully covered with cell-Fn (Figure 30, cell-Fn column). In 

addition, scattered traces of cell-Fn were found in the surrounding areas. In 

contrast, cells cultured on Fn coated glass showed a central, dark patch with a 

limited amount of cell-Fn evident near the edges of the cell membrane (Figure 30A, 
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cell-Fn column). Interestingly, cell-shape-like well-organized cell-Fn matrix was 

found on the surface even after the cell(s) had migrated away (Figure 30A, white 

arrow in the cell-Fn column). Negligible bovine-Fn was found on PLL coated and 

uncoated glass, whereas substantial amounts of bovine-Fn was found on both the 

surface and the cells cultured on Fn-coated glass (Figure 30, bovine-Fn column). 

The obvious difference in production of cell produced fibronectin after 1 day culture 

sheds light on the difference found in cell elasticity. Cells cultured on Fn-coated 

glass tend to remodel the bovine-Fn on the surface and add little of their own Fn, as 

suggested by the presence of bovine-Fn and the lack of cell-Fn on cells. It is worth 

noting that intensive and a well-organized cell-Fn matrix on the surface (Figure 30A, 

white arrow in the cell-Fn column) was only found for the cells cultured on Fn-

coated glass after 1 day culture. Taken together, this means that the initial stage of 

the remodelling and integration process plays a key role in modulating cell 

cytoskeleton structure and results in the higher elasticity.  
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Figure 30: Immunofluorescence and DIC images of cell produced fibronectin (denoted as 

cell-Fn) and fibronectin from either Fn-coated surface or medium (denoted as bovine-Fn) 

on Fn, PLL and uncoated glass. The cell-Fn was detected by FITC labelling and the bovine-

Fn by Cy5 labelling. (A) After 1 day culture. Two distinct phenomena were observed for cells 

cultured on Fn coated glass, which are presented in Fn-coated (I) and (II). The white arrow 

in the Fn-coated row indicates the cell-Fn left on the substrate after cell migration, since no 

cell is present in the DIC image. (B) After 3 days culture. Weak bovine-Fn was found on the 

three substrates. This is mainly due to unspecific binding of primary antibodies to cellular 

proteins, as shown by the control where only secondary antibodies were used and results in 

low background (the control row). Scale = 50 m. 
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After 3 days culture, the significant differences observed after 1 day in culture 

disappeared (Figure 30B). Cell produced fibronectin matrix was found all over the 

cells and between cells in all cases. The phenomenon is in good agreement with the 

similar F-actin structure and elasticity values observed after 3 days in culture.  

4.4.2 Does microtopographic structure affect cell elasticity both in the short 

and long term? 

To address this question, similar indentation measurements were made on the cells 

cultured on flat (unstructured) PDMS and PDMS structured with microgrooves 

(dimension 12.5 μm period 1 μm deep) (Figure 31). To promote cell adhesion on 

PDMS and to provide a similar chemical environment to those discussed above, the 

PDMS substrates were coated with PLL. Much evidence has shown that cells adopt a 

fusiform shape and follow the micropattern (Clark, Connolly et al. 1990), which can 

be utilized to guide cell growth in applications such as neuron regeneration (Clark, 

Connolly et al. 1990; Sørensen, Alekseeva et al. 2007; Yu, Leipzig et al. 2008). 

However, so far little is known about how cellular mechanical properties are 

influenced by interactions between cells and topography and how this will evolve 

with time (Yim, Darling et al.). 
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Figure 31: Influence of microtopography on cell elastic properties. A) Elastic modulus and B) 

cell height of 3T3 cells cultured on microgrooves and flat PDMS substrate respectively 

overnight (single cells) and after 3 days (sub-confluent cell layer). Cells cultured on grooves 

are statistically stiffer than those on the flat surface after overnight culture (p<0.05) and 

after 3 days culture (p<0.05). Error bars show 1 standard deviation from the mean value.  
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In contrast to the phenomenon observed in the study of chemical cues described 

above, cells cultured on microgrooves were significantly stiffer than those cultured 

on flat surfaces after 1 day culture (p<0.05) and this remained the same after 3 days 

culture (p<0.05), shown in Figure 31A. The average elastic modulus of cells cultured 

on grooves after 1 day culture reached 2.1 ± 0.8 kPa compared to 1.3 ± 0.5 kPa for 

those on the flat PDMS surface. Slight increases in the elastic modulus were 

observed in both cases after 3 days culture and, interestingly, the significant 

difference between these remained. It is worth noting that after 3 days culture the 

elastic modulus of cells on PLL coated flat PDMS (1.4 ± 0.6 kPa) is similar to those 

on PLL coated glass substrates (1.3±0.4 kPa). This suggests that the substrate 

underlying the PLL coat, PDMS versus glass, had only a negligible effect even 

though these are in principle very different materials (silicon-elastomer versus glass) 

with initially very different physicochemical surface properties. This result also 

underlines the robustness of the indentation and analysis protocol we have 

developed. 



118 
 

 

Figure 32: Optical and Fluorescence images of cells on microgrooved and flat PDMS 

substrates after different culture periods. (A) Fluorescence image (actin) of cells cultured on 

flat PDMS. (B) Phase contrast images (left) and fluorescence images of actin (right) of cells 

cultured on microgrooves.  All scale bars are 50 m. 
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No significant variations in cell height were observed (Figure 31B) suggesting that 

height variation might not account for the observed differences in stiffness. 

However, fluorescence images of cell cytoskeleton (F-actin) of the two populations 

showed that there were clear differences in intensity, which could be where the 

mechanical differences arise (Figure 32). After overnight culture, cells developed 

irregular shapes on the flat surface with a random F-actin network (Figure 32A). 

However, those on the microgrooves aligned themselves along the microgrooves. 

They adopted a spindle shape (Figure 32B) with the F-actin filaments following the 

underlying groove patterns. After 3 days of culture cell growth could be seen. 

Although cells became more spread over time on both types of substrates, they 

retained the fusiform/spindle shape on grooves or a “fried egg shape” on the flat 

substrate that they had adopted in the early stages of culture. This suggested that 

cells continuously sense the presence of the microgrooves. This is supported by 

studies where neurons were aligned by proxy of an aligned astrocyte monolayer 

(Sørensen, Alekseeva et al. 2007). 

 

4.5 Conclusions 

It is well established that the mechanical properties of living cells are linked to their 

shape, motility, and responses to biochemical and physical cues in their 

surroundings (Elson 1988; Fletcher and Mullins 2010). Mechanical characterization 

not only provides complementary information to that obtained by biochemical 

methods, but also has the potential to be a quantitative marker for cell growth and 

differentiation. Here the AFM is presented as a practical tool for evaluating 

quantitative differences in cellular elasticity induced by simple chemical 

modification to the substrate surface or topographical features.  

Statistical differences in elasticity have been observed when 3T3 fibroblasts were 

cultured on Fn coated, PLL coated and uncoated control glass after 1 day culture, 

where cells on Fn-coated substrates presented the highest stiffness. This difference 

disappeared after a longer culture of 3 days. Immunofluorescence studies suggest 

that the remodelling of fibronectin coated on the substrates has played a significant 

role in the observed differences after 1 day culture. In contrast, significantly higher 
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elasticity values were recorded from cells grown on microgrooves, these values 

remained higher during the entire culture period. These variations found in 

elasticity correlated well with the immunofluorescence study of cytoskeleton 

structure.  
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5.1 Abstract  

The effects of topography on cell function and fate have been the focus of much 

research for many years. Simple geometries and arrangements of shapes such as 

parallel grooves and circular wells can induce behaviour in cells that goes far beyond 

morphological changes. However, the mechanisms by which cell’s sense the 

surrounding topographical environment and alter behaviour accordingly is still 

largely unknown.  We hypothesised that the arrangement of the cytoskeleton as 

dictated by topography transmits tension through the cytoplasm and influences 

gene transcription within the nucleus. Traditionally, this would be investigated 

using immunofluorescence microscopy and other common molecular biology 

techniques that involve cell fixation and lysis. However, in this study, atomic force 

microscopy (AFM) was exploited to investigate the evolving structural properties of 

live cells in response to their topographic environment, thus enabling an earlier 

more progressive understanding of the underlying mechanism.    

Three topographies, namely grooves, pits and unstructured PDMS substrates were 

employed to induce the differentiation of MG63 osteoblast-like cells. Cellular 

elasticity values, an indication of the mechanical properties of the cytoskeleton, 

were quantified using AFM. Results showed that cells whose morphology was 

completely defined by pit geometry had a significantly softer elasticity (Young’s 

modulus  E= 0.862 kPa ± 0.28) than those where only a portion of the cell body was 

in contact with a pit and those either on grooves or on unstructured surfaces (E= 

1.52-1.92 kPa) after 1 days culture. Further immunofluorescence study showed that 

activation of RUNX2, a transcription factor associated with osteoblast 

differentiation, was found in the nucleus of cells in pits only. However, no activation 

of RUNX2 was observed from cells in all conditions when the tension was inhibited 

using blebbistatin. The results strongly suggested that the pattern of tension acting 

on the nucleus affects gene transcription, this is in agreement with McBeath 

(McBeath, Pirone et al. 2004), Kilian (Kilian, Bugarija et al. 2010), Engler (Engler, 

Sen et al. 2006) and most recently McMurray (McMurray, Gadegaard et al. 2011).  



122 
 

5.2 Introduction  

Within the body cells usually reside in extra cellular matrix (ECM) comprising of 

other cell types and proteins, such as collagen, elastin, glycoproteins and 

proteoglycans. The ECM provides cells with important structural support as well as 

chemical, biological and physical signals. These signals help determine cell fate and 

behaviours such as migration and differentiation and are vital to normal 

physiological function. In order to fully unravel these processes, it has become 

increasingly important to replicate in vivo conditions in vitro.  

Micro and nanofabrication has become an effective method to create in vivo like 

microenvironments for cell studies (Richter, Reinhardt et al. 2010). Topographic and 

chemical patterns have been produced using conventional microfabrication 

methods, such as lithography and embossing (Charest, Eliason et al. 2006) and it 

has been demonstrated that topographic structures affect cell morphology as well as 

cell fate and function (Dalby, Gadegaard et al. 2007). This raises the possibility that 

gene transcription itself responds to topography alone.  

However, it remains largely unknown how topography induces such a response. It is 

believed that mechanotransductive pathways are able to process topography 

induced cues (e.g. focal adhesion formations and cytoskeletal rearrangements) and 

in turn guide cell behaviour (Patel, Thakar et al. 2010). This points toward a 

complicated relationship between the cell, ECM and the microenvironment, 

independent of soluble chemical signals in the culture medium. Evidence for this 

can be found in the tendency of cells to change their elastic modulus in response to 

microtopography and substrate stiffness (Califano and Reinhart-King 2009; 

Steedman, Tao et al. 2010). In addition to the changes in elasticity, transcriptional 

changes and variations in protein expression are also evident using traditional 

molecular biological methods such as western blot analysis and immunostaining. 

However, this correlation between these global cytoskeletal changes and 

transcriptional changes remains unknown.  

In this work, it is investigated how biophysical cues from the microenvironment 

could be influencing transcriptional changes within the nucleus. The hypothesis is 

that tension or patterns of tension induced by topography play a key role in 
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influencing cell cytoskeleton structure and function which might have the potential 

to induce signs of differentiation. We have previously shown that cellular elasticity 

as quantified by AFM indicates an early stage response of the cell to its environment 

(section 4.4 Results and Discussion). Utilizing the same approach we hope to shed 

light on the evolving physical properties of live cells as they conform to 

topographical features.  These measurements are in conjunction with traditional 

molecular biological techniques such as immunofluorescence staining to reveal 

structures of interest. In particular, we focused our attention on the formation of 

phosphorylated myosin II structures within the cytoplasm of the cell. The actin-

myosin relationship is a key mechanism of tension within the cell cytoskeleton and 

thus, when interacting with actin the myosin is in its active, phosphorylated, state. 

Therefore, staining for phospho-myosin is a way of visualizing the structure and 

orientation of tensile filaments within the cell. We also inhibited the function of 

myosin II within cells using blebbistatin. In this way, cells exposed to non-lethal 

concentrations of blebbistatin are unable to maintain the same levels of tension in 

their actin cortex as untreated cells and thus exhibit lower levels of elasticity 

(Martens and Radmacher 2008).  

For this stage of the project we wished to employ a cell type in which differentiation 

could be identified as this was one of the key behavioural changes under 

investigation However, due to restricted access to mesenchymal stem cells – our 

first choice - we opted for MG63 osteoblast-like cells. This cell line has been 

transformed close to the mature osteoblast stage therefore still has some 

differentiation potential before it reaches maturity. Studies have previously shown 

this cell line to be capable of differentiation in response to surface roughness and 

composition (Martin, Schwartz et al. 1995; Lincks, Boyan et al. 1998) and specific 

growth factors (Bonewald, Kester et al. 1992) so it is our hypothesis that the cells 

have the potential to differentiate in response to topography alone. Culture 

conditions remain identical to those previously described in section 2.2 Cell Culture 

unless otherwise stated in the text. 

In order to investigate the role tension plays in activating the differentiation 

machinery of a cell we stained for the phosphorylated RUNX2 transcription factor. 

RUNX2 is essential for the generation of healthy bone, it regulates the transcription 
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of several key genes and while not sufficient in itself to drive differentiation it is 

responsible for many important events in the process (Schroeder, Jensen et al. 

2005). The presence of RUNX2 in the nuclei of MG63 cells is therefore a sign that 

aspects of differentiation signalling have been initiated. We looked for the 

appearance of the phosphorylated form of the transcription factor in the nuclei of 

MG63 cells cultured on microstructured PDMS substrates. Three topographies were 

tested; 12.5 µm wide, 1µm deep grooves, 40 µm diameter, 1µm deep pits and flat 

unstructured PDMS. Cells were cultured overnight on each topography and RUNX2 

staining was carried out in parallel with AFM indentation measurements. These 

experiments were then repeated after overnight culture in blebbistatin infused 

media. Consistent with the hypothesis that tension within the cytoskeleton plays a 

role in activating the transcription machinery within a cell, we observed a reduction 

in cytoskeletal strength and failed to find any instances of activated RUNX2 within 

the nuclei of MG63 cells confined by the geometry of a pit.  

5.3 Materials and Methods 

Only those methods unique to this chapter are presented here. For more detail on 

general methods mentioned in this chapter please refer to Chapter two: Materials 

and methods.  

5.3.1 Blebbistatin culture 

Cells were seeded as before and placed in 37°C, 5% CO2 incubator for ~45minutes. 

At this time, 100µl of blebbistatin solution, concentration 3.05 mM, was introduced 

to the culture media in the Petri dishes (2ml).  

Cells were incubated overnight and AFM measurements were carried out the 

following day.  

5.3.2 Phospho-myosin & phospho-runx2 detection 

To image phospho-myosin and phospho-runx2 cells were cultured under the same 

conditions as for AFM measurements i.e. overnight on micro-engineered PDMS 

substrates. Cells were first fixed in 4% formaldehyde/PBS solution for 15min at 37°C 

then submerged in permeabilization buffer for 5 min at 4°C. After washing in 0.5% 

PBS/Tween 20 the cells were then blocked using 1%BSA/PBS solution for 5min at 

37°C. After this cells were incubated with the selected primary antibody (p-runx2: 
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Abgent- AP3559a, p-myosin: Abcam-ab2480) in 1%BSA/PBS for 1 hour at 37°C, 

rhodamine-phalloidin was co-incubated with p-myosin stains to visualize 

filamentous actin. Cells were then washed for 3 x 5min in 0.5%PBS/Tween 20 before 

incubation with the biotin conjugated secondary antibody (Vector Labs) for 1 hour 

at 37°C and then washed again before final incubation with streptavidin-FITC 

(Vector Labs SA-5001) for 30min at 4°C. Cell were washed and stored in PBS at 4°C 

until imaged. Both transmission and fluorescent images of stained cells were taken 

using a Zeiss Axiovert inverted fluorescence microscope fitted with a cooled 

monochrome CCD digital camera (Andor iXon, Andor Technology). A filter set 

containing an exciter D475±40nm, a dichroic 495nm LP and an emitter E510nm LP 

were used for the FITC fluorescence detection. A filter set containing an exciter 

500±25, a dichroic 525nm and an emitter 545nm were used for rhodamine 

fluorescence detection. All samples were imaged under the same acquisition 

conditions.  

 

5.3.3 Phospho-runx2 activity analysis 

Open source image analysis software ‘ImageJ’ was used to analyse contrast 

differences between the nuclei of cells and the surrounding cytoplasm. A standard 

circular sample area of 24units in diameter was drawn on each image and values for 

maximum, minimum and mean pixel values were recorded. This sampling area was 

positioned in three locations for each cell: 1; a region with no fluorescent features, 2; 

within the nuclear area of the cell in question and 3; a region of cytoplasm within 

the cell in question. After subtracting mean pixel background values of position 1 

from those of the nucleus and cytoplasm, positions 2 and 3 respectively, the two 

were divided to give the difference in fluorescence intensity between the two 

locations (Equation 7). Differences greater than 1 indicated the nucleus was brighter 

that the surrounding cell, values less than 1 indicated the nucleus was darker. 
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Equation 7: N = mean pixel value of nucleus, C = mean pixel value of cytoplasm, B = 

mean pixel value of background.  

Instances where the nucleus was found to be brighter than the surrounding cell 

were taken to indicate that phosphorylated transcription factor runx2 was active in 

the nucleus. The position of each cell (‘in’ pit, ‘on’ pit, groove, unstructured) was 

also recorded along with pixel intensity in order to build a picture of topography 

versus runx2 activity. 

 

5.4 Results and discussion 

5.4.1 Cellular elasticity on topography 

AFM force-spectroscopy measurements were carried out on MG-63 cells on 

structured PDMS substrates at one and three day time points. As shown in Figure 

33, following overnight (1 day) cultures, cells located in pits had a significantly lower 

elasticity (0.8621  ± 0.2836 kPa) than those on pits (1.8655 ± 0.5028 kPa), grooves 

(1.5188 ± 0.5933 kPa) or unstructured PDMS (1.9183 ± 0.5882 kPa). This difference 

was maintained until the three day time point (grey bars) when results show cells in 

pits still exhibiting a significantly softer elastic modulus (0.9012 ± 0.2656 kPa) than 

those on pits (1.6178 ± 0.3116 kPa), grooves (1.4317 ± 0.4875 kPa) or unstructured 

PDMS (1.9443 ± 0.6274 kPa). This highlights the ability of topography to maintain 

its influence over cells as opposed to the sometimes transient effect chemical 

patterns can have (McPhee, Dalby et al. 2010). It also shows that the 40µm Ø pits 

had a softening effect on the MG-63 cell cytoskeleton, decreasing elasticity by an 

average of 50% after 1 day and 45% after 3 days.  Elasticity values obtained from cells 

on the remaining topographies are comparable to those from cells cultured on glass 

substrates and fall within the range of published data (Shin and Athanasiou 1999; 

Docheva, Padula et al. 2008).  
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Figure 33: Shows elasticity values of MG63 cells after 1 & 3 days culture on unstructured, 

grooved and pitted PDMS substrates. Significant differences (p < 0.02) were found between 

the elasticity values of those cells fully confined by pits (In pits) and those on all other 

topographies. There were no significant differences found between cells on other 

topographies or between 1 & 3 day culture time points. Error bars show 1 standard deviation 

from the mean value.  
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5.4.2 Topography induced activation of differentiation  

Immunofluorescent labelling of phospho-runx2, a marker for osteogenic 

differentiation (Schroeder, Jensen et al. 2005) was carried out on all cells after 1 day 

culture. 

 

Figure 34: Immunofluorescence and DIC images of phosphorylated runx2 transcription 

factor on unstructured, grooved and pitted PDMS substrates after 1 day culture. The runx2 

was detected using FITC. The images show an absence of fluorescence from the nuclei of all 

cells except those confined by pit geometry. Scale bar = 50µm. 

Figure 34 shows activity of the runx2 transcription factor absent from the nuclei of 

cells on pits, unstructured and grooved substrates but present in most (78%) cells 

confined by pit geometry. Control staining experiments without the primary 

antibody showed normal levels of background fluorescence probably due to non-

specific binding of the biotinylated secondary antibody. Statistical analysis of the 

images showed activity of the transcription factor present in 78% of cells confined 
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completely by pit geometry ( IN pits), 15% of cells in contact with pits but not 

defined by (On pits) and 4% of cells on grooved and unstructured substrates (Table 

1).  

Table 1: Shows the mean pixel values of cell nuclei (N), cytoplasm (C) and background (B). 

Nuclear and cytoplasmic values (minus background) were divided to give the difference, <1 

= nucleus is darker than surrounding cell, >1 = nucleus is brighter than surrounding cell.  

Topography 
N-B / C-B 
[<1] 

N-B / C-B 
[>1] 

Total 
cells 

% active 
runx2 

Flat  66 3 69 4 

Grooves  52 2 54 4 

On pits  35 6 41 15 

IN pits  15 52 67 78 

  Total cells 231  
 

5.4.3 Role of tension in cell differentiation 

To investigate the role of tension in runx2 activation in the nuclei of cells in pits, 

blebbistatin was added to culture medium 45 minutes after seeding and left 

overnight. Blebbistatin is a small molecule which specifically inhibits the myosin 

head groups from binding to actin filaments – this has the effect of disabling the 

cytoskeleton of the cells and effectively removing tension (Limouze, Straight et al. 

2004; Martens and Radmacher 2008). As Figure 35 shows, the previously observed 

difference in elasticity between cells ‘in’ and cells ‘on’ pits had disappeared. Both 

populations of cells had elasticity values comparable to those in pits (IN: 0.8895 kPa 

± 0.5134, ON: 0.8289 kPa ± 0.4769). These results show that under normal culture 

conditions cells in pits are exhibiting levels of elasticity similar to those observed 

when the cytoskeleton is inhibited.  
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Figure 35: Shows the elasticity values recorded from cells confined by (IN) and in contact 

with (ON) pits after overnight culture with culture medium containing blebbistatin. The 

previous significant difference between the two groups has disappeared. Reference line 

shows elasticity values of cells defined by pits after 1 day culture without blebbistatin. Error 

bars show 1 standard deviation from the mean value.  
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5.4.4 Disruption of cytoskeletal tension  

When runx2 staining was repeated on cells confined by pits cultured overnight with 

blebbistatin, no activity was observed in any cell nuclei (Figure 36). This lack of 

activation suggested that tension is required for activation of runx2. 

 

Figure 36: Immunofluorescence and DIC images of phospho-runx2 location in MG63 cells 

cultured overnight in the presence of blebbistatin. The lack of fluorescence in the nuclei of 

the cells indicates the absence of phosphorylated runx2. Scale bar = 50µm.  
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5.4.5 Location of tension within the cell 

To further understand how tension plays a role in cell differentiation, 

immunostaining for the formation of phosphorylated myosin II structures within 

the cytoplasm of a cell was carried out on MG63 cells cultured overnight on all 

topographies (Figure 37). The actin-myosin relationship is a key mechanism of 

tension within a cell cytoskeleton and thus, when interacting with actin the myosin 

is in its active phosphorylated state. Therefore, staining for phospho-myosin is a 

way of visualizing the structure and orientation of tensile filaments within the cell.  
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Figure 37: Immunofluorescence images showing phosphorylated myosin II (green) and 

filamentous actin (red) in MG63 cells cultured overnight on unstructured, grooved and 

pitted PDMS substrates. Co-localisation of the two proteins appears yellow. With the 

exception of cells ‘in’ pits, p-myosin appears to localise at one edge of a cell. Cells ‘in’ pits 

show a more general clustering of p-myosin around the nucleus and is noticeably absent 

from cell edges in the examples shown above. Scale bar = 40µm.  
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However, as is shown in Figure 37, phosphorylated myosin II structures do not 

present themselves as filaments, instead what we observed were granular clusters of 

phospho-myosin with no obvious directional motivation.  This enabled us to look 

for differences in the location of the tensile regions within cells on the different 

topographies but not the direction of the tensile filaments.  

Initial observations of stained cells show a tendency for those on flat or grooved 

surfaces to have co-localisation of phospho-myosin and actin in one location around 

the periphery of the cell. It was hypothesised that this would be the leading edge of 

the cell however no definitive investigations were carried out to confirm this. 

Examples of this co-localisation are also seen in cells designated as ‘on pits’ as can 

be seen in Figure 37, again we believe this to be the leading edge of these cells as 

they either move in to or away from a surface feature. This observation is in 

agreement with elasticity results shown in Figure 33 where it is shown that cells ‘on’ 

pits, grooves or unstructured surfaces show similar elasticity values.  

Initial observation of cells designated as ‘in’ pits appears to show co-localisation not 

at a defined point on the cell periphery but in a general cloud formation around the 

nucleus (Figure 37: ‘In pits’). We believe this apparent difference in the co-

localisation of phospho-myosin and actin correlates with the reduced elasticity 

observed with the AFM (Figure 33) and could be a contributory factor to the 

differences in RUNX2 transcription seen in Figure 34 and Table 1.   

Looking at the actin stress fibre orientation alone gives us some additional insight in 

to the possible role tension patterns could play. Clear differences exist between the 

structures present in cells that have managed to spread on the substrate and those 

confined by pit geometry. Few examples of long filamentous fibres were observed in 

cells confined by pits compared to those on grooves or unstructured PDMS; this is 

in agreement with elasticity data presented in Figure 33. Filamentous actin was 

observed around the cell edge under all conditions however it was not always 

possible to identify fibres directly orientated from here toward the nuclear region.  
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5.5 Discussion  

The results observed in this work corroborate the hypothesis that cell morphology, 

passively influenced by topography, can induce gene transcription changes within a 

cell by means of tension, although we were unable to ascertain how the orientation 

of tensile filaments could be involved. Observations of filamentous actin orientation 

allowed us some insight in to the role of tensile filaments on transcription however 

not enough evidence was existed to draw a significant conclusion. Tension can be 

transmitted via various components of the cytoskeleton such as actin & microtubule 

filaments from the outer membrane and ECM to the nucleus. The forces acting 

upon the nuclear membrane could induce positional transformations on the 

chromatin in the nucleus, in turn influencing the likelihood of particular genes 

being transcribed (Maniotis, Bojanowski et al. 1997; Maniotis, Chen et al. 1997; 

Dalby, Biggs et al. 2007; Dalby, Gadegaard et al. 2007). That cell morphology, 

function and viability can all be influenced by microtopography of suitable scales is 

well known and many examples exist in the literature, (Clark, Connolly et al. 1990; 

Chen, Mrksich et al. 1997; Chen, Mrksich et al. 1998; Lam, Clem et al. 2008), but it is 

clear that this is just the first phase of a more complicated series of steps leading to 

eventual fate or phenotype changes in cells.  

It is known that cell elasticity is a function of the strength and structure of the 

cytoskeleton and in particular the actin network – which provides cells with a strong 

scaffolding against which force can be applied in order to manipulate cell 

morphology and produce movement (Laevsky and Knecht 2003). When topography 

is employed to alter cell morphology, the cytoskeletal architecture is also modified, 

resulting in elasticity changes (Figure 33).  

The MG-63 osteoblast-like cells used in this study are a transformed cell line that 

can be stimulated to exhibit behaviour of mature osteoblasts. Typically, this 

stimulation takes the form of secreted hormones (Kraus, Deschner et al. 2011) or 

chemical cues (Kawano, Ariyoshi et al. 2011), but here we showed that topography 

alone can potentially play the same role. Interestingly, when these cells were 

exposed to micron-scale topographical features in the form of pits it induced a 

softening of the cell’s overall mechanical stiffness. This result is in contrast to that 

detailed in section 4.4.2 ‘Does microtopographic structure affect cell elasticity both 
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in the short term and long term?’ where it was shown that 3T3 cells exhibit a 

stiffening of their cytoskeleton in response to grooved topographical features. This 

contrast in response to topography, we hypothesis, could be attributed to several 

key differences between the experiments. Firstly, it is possible that these two cell 

lines (MG63 & 3T3) respond differently to topography due to each having a cell type 

specific proteome, thus enabling them to react according to type when faced with 

environmental cues (Clark, Connolly et al. 1990; Lewandowska, Pergament et al. 

1992; Stevens and George 2005). It is also possible that the difference in response is 

due to the difference in topographical feature; pits vs. grooves. This chapter 

discusses the possibility that the location of focal adhesions throughout the cell is 

involved in gene transcription patterns and therefore cell behaviour; it therefore 

follows that topographical variations could result in different focal adhesion 

positioning and therefore induce various responses from cells (Boyan, Hummert et 

al. 1996).   

Little evidence exists in the literature suggesting topography can induce such a 

response in MG-63 cells, owing partly to them being a transformed cell line and 

therefore less common in differentiation experiments. However A. Mata et al 

observed such behaviour with human mesenchymal stem cells (hMSCs),(Alvaro 

Mata 2009). Increased osteogenic differentiation was recorded when culturing 

hMSCs in 40µm holes constructed from randomly orientated nano fibres (Alvaro 

Mata 2009). While hMSCs and MG-63 cells are significantly different, it is thought 

that topography offers a constant stimulus that transcends cell state and continues 

to induce osteoblastic differentiation in cells at all stages of the lineage. 12.5µm 

grooves were chosen as the comparison topography because they are significantly 

different from the pits and therefore more likely to induce a recordable difference. 

They are also well characterised and have been used in this field of research since 

the 1960’s (Curtis and Varde 1964). They are also simple to fabricate(Curtis and 

Wilkinson 1997) and have been shown to induce differentiation along a completely 

different lineage to the MG63 cells in other cell types (Dalby, Riehle et al. 2003). 

Evidence for this is seen in Figure 34 where activity of the osteogenic transcription 

factor RUNX2 is seen to be significantly increased in cells confined by pit geometry. 

This is in contrast to those cells cultured on grooved PDMS and those on 
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unstructured flat PDMS. We hypothesise that the constant contact with curved 

edges is producing a specific pattern of focal adhesions which are interpreted by cell 

mechanosensitive receptors and translated in to chromatin changes, resulting in 

transcription changes. The cells on other topographies are not exposed to the same 

patterns and so do not adhere in the same way. Evidence for this comes from those 

cells on pits but not fully confined by them, aka ‘on’ pit cells as shown in Figure 34. 

Here, although the cell can be seen spreading over the structure its morphology 

appears to remain unaffected. It is unsurprising then, that the elasticity values of 

these cells are similar to those found in cells cultured on unstructured PDMS 

(Figure 33).  

Evidence supporting the hypothesis that tension is essential to the activation of 

differentiation pathways is seen in Figure 35 and Figure 36. Figure 35 shows that in 

the presence of blebbistatin the Young’s modulus of cells can be drastically 

softened. In the case of the cells in contact with pits we see a drop from 1.8655 ± 

0.5028 kPa to 0.8289 ± 0.4769 kPa however for cells confined by pits there is little 

change (0.8621 ± 0.2836 kPa to 0.8895 ± 0.5134 kPa respectively) indicating that pit 

geometry encourages soft cytoskeletons. Figure 36 shows that although Young’s 

modulus values had been reduced to similar levels as those observed for cells 

confined by pits, there was no evidence of activated RUNX2 in the nuclei of any cells 

regardless of their location ‘in’ a pit or ‘on’ a pit. This result highlighted the need to 

further investigate the tension within the cell cytoskeleton. In order to do this we 

stained for phosphorylated myosin II hoping to visualize where it comes in to 

contact with actin filaments of the cell (Figure 37). This enabled us to locate areas of 

increased tension within cells on various topographies and attempt to identify 

similarities between groups.  It was thought that these differing tension profiles 

created by the topographical features would increase our knowledge of the 

intervening steps between morphological change and transcriptional changes. 

Although we were unable to resolve the filamentous structure of the phosphorylated 

myosin II – actin network despite numerous and thorough repeats of the 

experiment, we were able to correlate differences in the co-localisation of phospho-

myosin and actin with elasticity values and phospho-RUNX2 levels. Due to this 

result we have been able to implicate patterns of tension in directing cell fate and 



138 
 

function. It is also well documented that substrate stiffness contributes greatly to 

cell differentiation. Engler et al (Engler, Sen et al. 2006) demonstrated that stiff 

substrates will induce differentiation down the osteoblastic lineage while soft 

substrates promote neurogenic differentiation. We hypothesise that PDMS mixed at 

a 10:1 ration of polymer to primer results in a substrate too stiff to be manipulated by 

cells and thus could be considered as a possible promoter of osteogenic 

differentiation. 

 

5.6 Conclusions 

The work presented in this chapter has shown that topography alone can contribute 

to the activation of cell differentiation pathways and that tension plays a vital role in 

the decision to alter behaviour. We have shown the AFM to be a useful instrument 

for gathering structural information during the early stages of change and that the 

elasticity values recorded can help us understand how morphological influences can 

affect the cell cytoskeleton. We have shown that specific geometries can have 

differing effects on cell behaviour and hinted at the possibility of curved edges being 

key to osteogenic differentiation. We have also demonstrated the potential for 

MG63 cells to be used in future differentiation studies where the procurement of 

stem cells is not an option.  

Investigations in to the apparent differences in patterns of tension observed in 

Figure 37 are on-going as increasing numbers of cells required to make a confident 

assessment of the results. To compliment this it is our future aim to co-stain MG63 

cells on topographies with phospho-myosin and phospho-runx2 antibodies as this 

would allow us to observe directly any relationship between the two that at the 

moment remains as correlation.  



139 
 

 

6.1 Abstract 

This chapter will discuss the main conclusions that can be drawn from the work 

described here; evaluating how the aims and objectives of the thesis have been dealt 

with and the next steps that could be taken to further the investigations.  

6.2 Discussion and conclusions 

The phenomenon of cellular response to the microenvironment has many 

contributing factors. It encompasses aspects of molecular and cellular biology, 

biophysics and biochemistry. As such, approaches aimed at better understanding 

the fundamentals within the area have to address each aspect of the relationship 

one at a time. In the work presented here, a systematic approach was adopted to 

investigate the possibility of using elasticity as an early stage indicator of cellular 

responses to the microenvironment.  

Beginning with simple chemical modifications to glass substrates using common 

adhesive molecules, I utilized the AFM to extract elasticity differences between 

populations of single cells. Repeated elasticity measurements performed at a later 

time points indicated that the initial effects of chemical modifications can be 

transient and overcome by the local secretion of extracellular matrix by the cells 

themselves. This observation prompted the use of microfabricated topography in 

cell elasticity studies. Beginning with simple grooved structures moulded in PDMS, 

cell elasticity was measured at two time points similar to the previous chemical 

modification experiment. It was found that topography was able to maintain an 

influence over cellular elasticity for at least the duration of the experiment.  

These observations encouraged further investigation in to topography and its 

potential influences over cellular elasticity. In light of the findings from a recent 

paper by Alvaro Mata (Alvaro Mata 2009) it was decided that the topography to be 

investigated would be circular pits. The reason for this was the discovery that cells 

cultured within the confines of the pit showed increased levels of osteogenic marker 

proteins. Our aim was culture MG63 osteoblast-like cells in microfabricated pits in 

an investigation in to the relationship between cell morphology and function.  
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As well as using the AFM to gather elasticity data from individual cells under 

various conditions, the results were complimented at each stage by routine 

immunostaining techniques and fluorescence microscopy. This provided us with a 

convincing argument for the topographical influence over cell function as it was 

shown in section 5.4.2: Topography induced activation of differentiation; that the 

initial differences in elasticity measured using the AFM could be backed-up with 

established molecular biological methods.  

The combination of an engineered ECM, immunofluorescence staining and AFM 

has led to an improved understanding of how cells respond to the 

microenvironment. The theory introduced in chapter 5 that patterns or levels of 

tension present within the cytoskeleton of the cell can influence transcription 

within the nucleus is not new. It was the aim of this chapter to go some way to 

filling in missing pieces of the relationship; from force sensing focal adhesions 

bridging the gap between the cytoplasm and the surrounding environment to the 

transport of mechanical signals through the cytoskeleton to the nuclear membrane. 

We observed the localisation of tension within cells by staining for phosphorylated 

myosin II. This allowed us to relate cellular elasticity values and observed 

transcriptional changes to tension within the cell.  

Unfortunately it was not possible to gather sufficient cell numbers as part of the 

phospho-myosin experiment (Figure 37). Several attempts were made however the 

experiment only worked on a precious few occasions. All avenues were explored to 

try and achieve clear images of regions of tension within the cell however none 

proved successful. It is my hope that should the work of this chapter continue in the 

near future this experiment continue to be further investigated. However, the data 

gathered from the cells imaged to this date appear to show that further 

investigation is warranted. From the examples shown in Figure 37 we can observe a 

clear difference in the co-localisation of phospho-myosin and actin in cells confined 

by pits compared to those unconfined by pits or on grooved / unstructured surfaces. 

In conclusion, we have demonstrated the merits of using the AFM as a versatile tool 

for gathering multiple forms of data from live cells. Focussing on its performance as 

a nanoscale indenter, we have highlighted its ability to carry out precise elasticity 

measurements under physiologically relevant conditions and on a variety of 
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biological samples with high spatial resolution. The optimisation of the method 

described in Chapter 3 emphasises the importance of indentation speed, force and 

depth and the need to tailor aspects of the protocol to the specific needs of the 

experiment at hand, for example; indenting on non-adherent cell lines in section 

5.4.2: Topography induced activation of differentiation. The ability to complement 

3D topographical information with high resolution elasticity maps will aid in the 

elucidation of the mechanotransduction pathway investigated here as well as many 

more fields of interest. The option gather this data without prior treatment of the 

sample such as fixing, coating and the like offers an incentive to biologists in 

particular concerned with the possible effects of these processes on the systems and 

structures under investigation.  

6.2.1 Wider applications  

In addition to the work pertaining to the overall aims of the project the AFM 

technique has been applied to a variety of wider applications as a result of numerous 

collaborations with groups both within the University of Glasgow and further afield.  

One such application involved systematic force spectroscopy measurements on soft 

polyacrylamide gels in collaboration with Dr Panwong Kuntanawat from the Centre 

for Cell Engineering, University of Glasgow. Here, the AFM was utilized to ascertain 

height profiles of the gels and look for regions of varying stiffness. Polymer gels are 

used frequently in tissue engineering research and 3D culture scaffolds. Substrate 

stiffness can have significant effects on cellular processes (Janmey, Winer et al. 

2009; Nemir and West 2010) and so characterisation of gel stiffness can provide 

researchers with useful data on which to build subsequent experiments. It can also 

help provide explanations for unusual or interesting cellular behaviour.   
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6.2.2 Limitations 

There are limitations to take in to consideration however, beginning with the 

relationship between tip geometry and elasticity results. As can be seen in Figure 25, 

tip geometry can have a significant effect on the values returned by the 

measurement even if all other experimental conditions are kept constant. It is 

therefore imperative that when comparing elasticity values from the literature or 

from previous experiments that this be taken in to consideration. This is one 

explanation offered for the wide range of values published for elasticity of various 

cell types. In the work presented here, spherical indenters were chosen to increase 

the indentation footprint of the tip on the cell based on the understanding that a 

more representative elasticity value would be returned.  

Analysing the force-distance curves produced by the AFM introduces another 

limiting aspect to the method, the mathematical models used to fit the 

measurement curves. As reported in the literature and discussed in section 1.7: Cell 

elasticity quantification by AFM, no model perfectly fits the physical parameters of 

indentation measurements. It was not the aim of this work to develop and test new 

models or explore the limitations of each and so the decision was taken to use the 

Hertz model throughout. The Hertz model comes with its own set of limitations, 

detailed in section 1.7, however the advantage of this model is that the limitations 

are well understood and so we are in a position to combat the affect they have on 

the data. Through an understanding of the model we have been able to change 

aspects of the experimental method, such as indentation depth, to produce curves 

that fit the model well and produce reliable results. This is an area that could 

benefit from further investigation by physicists keen to produce a model suited to 

the parameters of AFM indentation measurements.  
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6.3 Future work  

Aspects of this work showed promise and scope for further investigation, specifically 

the exploitation of microfabrication technology to recreate aspects of the physical 

environment experienced by cells in vivo. Due to the scale of features present at this 

level of biology it takes great control and precision to fabricate features relevant to 

cells. Knowledge of what to incorporate, in terms of feature size and shape, can only 

be gathered from an in depth understanding of the extracellular matrix and 

experience in cell culture on various topographies. As mentioned previously, much 

work has been done on the effects of substrate elasticity on cell behaviour and it 

would be of great interest to incorporate this in to topographical variations. As such, 

the PDMS used in this study is not soft enough to be manipulated by cells however 

materials such as matrigel and collagen gels can be moulded in a similar way so as 

to provide the same topographical features but with a Young’s modulus able to be 

contorted by the cells.   

It would have been an advantage, had time allowed, to further investigate the effects 

documented in Chapter 5 using different cell types. Although MG63 cells are 

suitable to this kind of investigation, much could be learned from the behaviour of 

less terminally differentiated cells such as mesenchymal stem cells or indeed 

primary cells. Should the phospho-myosin experiment ever yield encouraging 

results it would seem obvious to attempt to recreate the phenomenon with different 

cell types. It would also be of interest to look at other characterisations of 

intracellular tension, perhaps calculating it by cell volume or height. This would 

give us a more comprehensive understanding of the distribution and level of tension 

present within cells which could compliment phospho-myosin and actin staining 

results.  
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