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Abstract

This thesis presents measurements of the charm sector mixing andCP -violation parameters

yCP andAΓ, made using data collected in 2010 by the LHCb experiment at the LHC at
√
s = 7 TeV. yCP is defined as the difference from unity of the ratio of the effective lifetime

of theD0 meson decaying to aCP -undefined final state to its lifetime when decaying to a

CP -eigenstate.AΓ is theCP -asymmetry of the effective lifetimes of theD0 andD0 when

decaying to aCP -eigenstate. In the absence ofCP -violationyCP will be consistent with the

mixing parametery, andAΓ will be consistent with zero.

CP -violation in the charm sector is predicted to be very small in the SM, though first

evidence for directCP -violation in D0 decays has recently been observed by LHCb. Ob-

servation of significantly moreCP -violation than is allowed in the SM would be a strong

indication of new physics. The current world best measurements of yCP andAΓ show no

evidence ofCP -violation.

The methods used to measure the effective lifetime of theD0 are presented, together with

a detailed study of the impact parameter resolutions achieved by Vertex Locator (VELO)

sub-detector. A resolution of< 36µm on thex and y components of impact parameter

measurements is measured for particles withpT > 1GeV. The final dataset on whichyCP

andAΓ are measured comprises28.0 ± 2.8 pb−1, from which 226,110
(−)

D0 → K∓π± and

30,481
(−)

D0→ K+K− candidates are selected. The dominant sources of systematic uncertainty

arise from combinatorial backgrounds andD0 produced in decays ofB mesons. The final

results are found to be

AΓ = (−5.9± 5.9 (stat.)± 2.1 (syst.))× 10−3,

yCP = (5.5± 6.3 (stat.)± 4.1 (syst.))× 10−3.

yCP is consistent with the world average ofy and with zero, andAΓ is consistent with zero.

Thus, these results show no evidence forCP -violation or mixing in theD0 system.
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Preface

This thesis presents measurements of the charm sector mixing andCP -violation param-

etersyCP andAΓ, made using data collected in 2010 by the LHCb experiment at the LHC at
√
s = 7 TeV. The Vertex Locator (VELO) sub-detector of LHCb is particularly important

in performing these measurements. Hence, the performance of the VELO, with respect to

the resolutions it achieves on impact parameter (IP) measurements, is also studied in detail.

Chapter 1 presents a review of the Standard Model (SM) of particle physics. The gen-

eral theory is discussed, with particular emphasis placed on mixing andCP -violation in the

charm quark sector. The parametersyCP andAΓ, and their dependence on the level of mixing

and indirectCP -violation in theD0 system, are then detailed. These are defined as

yCP =
τeff(

(−)

D0→ K∓π±)

τeff(
(−)

D0→ K+K−)

− 1, and

AΓ =
τeff(D

0→ K+K−)− τeff(D
0→ K+K−)

τeff(D0→ K+K−) + τeff(D0→ K+K−)
.

In the absence ofCP -violation yCP will be consistent with the mixing parametery, while

AΓ will be consistent with zero.yCP is thus primarily a measurement of mixing in theD0

system, and requires an independent measurement ofy to check forCP -violation.

CP -violation in decays involvingc quarks is predicted to beO(10−3) or less in

the SM. Observation of significantly moreCP -violation would be indicative of new

physics. It is thus very exciting that directCP -violation in theD0 system has recently

been observed atO(10−3) by LHCb [1], which is around the upper limit allowed in

the SM. The BABAR experiment at SLAC has made the current bestmeasurement of

yCP = (11.6± 2.2 (stat.)± 1.8 (syst.))× 10−3 [2]. This excludes the no mixing hypoth-

esis at 4.1σ, and is consistent with the world average ofy = (8.0± 1.3)× 10−3 [3].

The current best measurement ofAΓ comes from the BELLE experiment at KEK, who

find AΓ = (0.1± 3.0 (stat.)± 1.5 (syst.))× 10−3 [4]. Thus, no evidence for indirectCP -

violation in theD0 system is currently observed.

The LHC accelerator complex and the LHCb detector are described in chapter 2. The

VELO is described in particular detail. It is a silicon stripdetector that measures the positions

of anyp-p collisions and displaced decay vertices in an event. It is thus essential in measuring

the lifetime of a long lived particle, like theD0. The Ring Imaging Cherenkov (RICH)

sub-detectors, which provide particle identification, arealso detailed. They provide clean

separation ofπs andKs, and so help minimise backgrounds from particle mis-identification.
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The IP resolutions achieved by the VELO are studied in chapter 3. An excellent resolution

on IPx of < 36µm is measured for particles withpT > 1GeV. A mathematical parametri-

sation of IP resolutions is derived, depending on the singlehit resolution, material budget

and extrapolation distance to the interaction point. The predictions of this parametrisa-

tion are compared to measurements made on 2011 data and data obtained from full Monte

Carlo simulation. In general IP resolutions are found to behave as expected according to

the parametrisation. A momentum dependent discrepancy in the resolutions measured on

real and simulated data is observed. This suggests that the description of the material in the

VELO is not entirely accurate in the simulation. However, complementary studies of the

distribution of material in the VELO have not been able to confirm or deny this finding.

A method by which one can extract the effective lifetime of a long lived particle from

a dataset including signal and backgrounds is presented in chapter 4. PromptD0, produced

directly at thep-p collision, are used to measure the lifetime. The backgrounds considered

thus comprise ‘secondary’D0, produced in decays ofB mesons, and combinatorial back-

grounds. First, a fit is performed to the distribution of the reconstructed mass of theD0 to

extract the signal yield and distinguish combinatorial backgrounds. For the measurement of

AΓ the flavour of theD0 at production is tagged using the decay chainD∗±→ D0π±, where

the charge of theπ± gives the flavour of theD0. An additional background enters here when

a correctly reconstructedD0 is combined with a randomπ± to make theD∗±, so that theD0

is assigned a random flavour tag. Such candidates are distinguished using a simultaneous

fit to the distributions of the reconstructed mass of theD0 and the difference between that

and the reconstructed mass of theD∗±. SecondaryD0 cannot be distinguished using the

mass distributions, but tend to have larger IPs than promptD0 at high proper decay times.

Hence, they are distinguished using a simultaneous fit to theproper-decay-time andD0 IP

distributions.

The fit to the proper decay time distribution also gives the lifetime of the signal candi-

dates. However, this fit must correct for lifetime biasing selection criteria used in the trigger

and offline candidate selections. A data-driven method of performing this correction is also

discussed in chapter 4. This involves artificially changingthe proper decay time of each

D0 candidate in the dataset and re-evaluating the decision of the candidate selection at each

proper decay time. Thus, one obtains the selection efficiency as a function of proper decay

time for each candidate. The manner in which the acceptance functions obtained via this

method are incorporated into the fit PDFs is also covered. Thefull fit PDF can be used to

distinguish signal and all backgrounds, and correct for lifetime biasing candidate selections.

These methods are applied to28.0 ± 2.8 pb−1 of data collected by LHCb in 2010. The

results and their statistical uncertainties are presentedin chapter 5. Firstly, the trigger and
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offline selection criteria applied to the data are discussed. Strong lifetime biasing selection

criteria are used to exclude combinatorial backgrounds. The final datasets comprise 286,159
(−)

D0 → K∓π± and 39,263
(−)

D0 → K+K− candidates. The results of fits to the mass distribu-

tions are then shown for theD0 → K−π+ andD0 → K+π− datasets. These are found to

contain∼99.2 % signal (including secondaryD0), of which∼95.8 % has theD0 correctly

reconstructed.

Finally, the results of fits to the proper-decay-time distributions and the effective life-

times obtained are presented. These are performed on reduced datasets in which the fraction

of secondaryD0 is suppressed, leaving 226,110
(−)

D0→ K∓π± and 30,481
(−)

D0→ K+K− can-

didates. These are found to consist of∼99.5 % promptD0. The resulting values ofyCP and

AΓ, and their statistical uncertainties, are then shown.

Chapter 6 presents stability verification studies for these measurements, and evaluates

their systematic uncertainties. Various cross-checks on the measured values ofyCP andAΓ

performed by dividing the data into subsets, showing the results to be stable. The fit method

is also proven to give no significant bias via studies on MonteCarlo simulated toy data. Many

sources of systematic uncertainties are evaluated, the dominant contributions to which come

from combinatorial backgrounds and the parametrisation ofthe background from secondary

D0. The final results are found to be

AΓ = (−5.9± 5.9 (stat.)± 2.1 (syst.))× 10−3,

yCP = (5.5± 6.3 (stat.)± 4.1 (syst.))× 10−3.

yCP is consistent with the world average ofy and with zero, andAΓ is consistent with zero.

Thus, these results show no evidence forCP -violation or mixing in theD0 system.
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Chapter 1

The Mathematical Theory of Particle

Physics

From the very first description of the movement of the planetsby the Babylonians to parti-

cle colliders like the Large Hadron Collider (LHC), the purpose of any physics experiment

has always been to observe natural phenomena and attempt to understand them. This under-

standing now takes the form of a mathematical theory to describe the underlying physical

mechanisms, which can then be used to predict future behaviour. Historically, observation

has often preceded understanding - an experiment was performed and then the mathematical

theory developed to explain its results. For instance, Galileo studied falling objects before

Newton formalised their behaviour in the theory of gravity.However, in recent decades this

situation has been reversed in particle physics. Particle physics examines and describes the

nature and interactions of the most fundamental building blocks of the universe: elementary

particles. The 1960s and 1970s saw the first high energy particle accelerator experiments

performed and gave light to a plethora of newly observed particles and phenomena. Conse-

quently, through the large collaborative effort of many theoretical physicists, the 1970s gave

birth to the over-arching mathematical theory that describes these observations: what has

come to be known as the Standard Model of particle physics (SM) [5].

The SM is one of the most successful physics theories in history. The results of almost ev-

ery particle physics experiment performed to date have beenconsistent with the predictions

of the SM. However, there are a small number of exceptions to this that call into question

the completeness of the SM. The observation that neutrinos oscillate between types indicates

that neutrinos have non-zero mass, which contradicts the SM. Indeed, the fact that there

are three different types of neutrinos, as well as three types of quarks and charged leptons,

is not explained by the SM. The SM also fails to explain indirect evidence for cosmologi-

cal phenomena like dark matter and dark energy. Further, although the SM allows for some
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difference in the behaviour of matter and anti-matter, it isinsufficient to account for the dom-

inance of matter in the universe. Thus, the SM is assumed to bean ‘effective theory’, which

is mostly correct within the scope of current measurements,but might not explain physics

at higher energies. Theoretical physicists have thus developed many possible extensions to

the SM which agree with the SM at relatively low energies, butoffer solutions to its known

short-comings, and would also predict new physical phenomena at higher energies. Among

these the most popular, and predictive, is a Supersymmetrictheory (SUSY) [6]. In order for

such a theory to solve the known issues in the SM its effects would have to be detectable at

energies not much higher than those already covered by the SM.

The purpose of experiments like those of the LHC is thus to test the SM to its limits

and attempt to discover new phenomena that it cannot explain. Any result contradicting the

SM can be examined in the context of new physics theories to determine which of them

actually describes particle physics. Further, such a result can allow these theories to make

more precise predictions of as yet unobserved phenomena. Itis for this reason that the

LHC has pushed the limits in both energy and instantaneous luminosity. Higher energy

allows the possible direct discovery of new particles outwith the scope of the SM, while high

luminosity provides large quantities of data which can be used to test the predictions of the

SM at much higher precision. The analyses presented in this thesis use data collected by the

LHCb experiment at the LHC. LHCb is an experiment of the latter kind, aiming to reveal

signs of new physics by making high precision measurements,and is described in detail in

chapter 2.

The purpose of this chapter is to describe the SM and how it is used to make predictions

of phenomena in particle physics, and thus motivate the measurements presented in chap-

ters 4, 5 and 6. After an overview of the SM in section 1.1 a morefocused description of

the theory of the physical phenomena that are examined by LHCbis given in section 1.2.

Finally, the theory behind the rate with which theD0 charmed meson decays to two light

mesons is discussed in section 1.3. The methodology and results of measuring this decay

rate are presented in chapters 4 and 5 respectively, while the systematic uncertainties on

these measurements are evaluated in chapter 6.

1.1 Overview of the Standard Model

1.1.1 Particle Content of the Standard Model

The most basic components of the universe are the elementaryparticles, which have been

confirmed experimentally to have no substructure down to a scale of∼10−19 m [5]. There

2
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Lepton Mass Spin Electric Iz Colour e µ τ

[ MeV/c2 ] Charge Charge No. No. No.

Electron,e 0.511 1
2

−1 −1
2

0 +1 0 0

e Neutrino,νe < 2× 10−6 1
2

0 +1
2

0 +1 0 0

Muon,µ 105.65 1
2

−1 −1
2

0 0 +1 0

µ Neutrino,νµ < 0.19 1
2

0 +1
2

0 0 +1 0

Tau,τ 1, 776.82± 0.16 1
2

−1 −1
2

0 0 0 +1

τ Neutrino,ντ < 18.2 1
2

0 +1
2

0 0 0 +1

(a)

Quark Mass Spin Electric Iz Colour I3 C S T B

[ MeV/c2 ] Charge Charge

Up, u 2.3+0.7
−0.5

1
2

+2
3

+1
2

r, g or b +1
2

0 0 0 0

Down,d 4.8+0.7
−0.3

1
2

−1
3

−1
2

r, g or b −1
2

0 0 0 0

Charm,c 1, 275± 25 1
2

+2
3

+1
2

r, g or b 0 +1 0 0 0

Strange,s 95± 5 1
2

−1
3

−1
2

r, g or b 0 0 -1 0 0

Top,t 173, 500± 1, 000 1
2

+2
3

+1
2

r, g or b 0 0 0 +1 0

Bottom,b 4, 180± 30 1
2

−1
3

−1
2

r, g or b 0 0 0 0 -1

(b)

Boson Mass Spin Electric Iz Colour

[ MeV/c2 ] Charge Charge

Photon,γ 0 1 0 0 0

Z0 91, 187.6± 2.1 1 0 0 0

W± 80, 385± 15 1 ±1 ±1 0

Gluon,g 0 1 0 0 8 combinations

(c)

Table 1.1: The properties of (a) the quarks, (b) the leptons and (c) the gauge bosons

of the standard model. HereIz is the z component of the weak isospin of the left-

handed field. All right-handed fields haveIZ = 0. I3 is thez component of the quark

isospin,C is ‘charm number’,S is ‘strangeness number’,T is ‘topness number’, andB

is ‘bottomness number’. Gluons carry both colour and anti-colour charge, of which 8

different combinations that are not colour neutral are possible. Anti-particles have the

same mass as particles with the sign of all quantum numbers reversed, except spin. The

properties are obtained from [7].
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are several different species of elementary particle, as shown in table 1.1. Each has a specific

set of quantum numbers that determine how particles of that type interact with other parti-

cles. In addition, each type of particle has a correspondinganti-particle which has the same

mass but opposite quantum numbers. One such quantum number is the intrinsic angular

momentum, or ‘spin’. The elementary particles can be broadly grouped into two categories

depending on their spin: fermions, that have half-integer spin, and bosons, that have integer

spin. This grouping is important due to the Spin Statistics Theorem [8], which states that

fermion wavefunctions are anti-symmetric under the interchange of two identical particles,

while boson wavefunctions are symmetric under such an interchange. A consequence of

this is that fermions obey the Pauli exclusion principal, which states that no two identical

fermions can occupy the same quantum state.

1.1.1.1 Standard Model Fermions

The group of fermions can again be grouped into two subsections: quarks and leptons. As

mentioned previously, one of the natural phenomena that theSM cannot explain is that

quarks and leptons have three ‘generations’. The particlesin each generation are identical

except in their masses.

There are two leptons in each generation: one massive particle with electric charge -1,

and one neutral particle with very little mass - a ‘neutrino’(literally ‘little neutral one’). In

the first, lightest generation these are the electron (e−) and the electron neutrino (νe). The

second and third generations consist of the muon (µ−) and tau (τ−) and their corresponding

neutrinos (νµ andντ ). The anti-particles to the charged leptons have charge +1 and are

denoted bye+, µ+, andτ+, and the anti-neutrinos byνe, νµ, andντ . Each generation of

lepton also has a ‘flavour’ quantum number. These are ‘electron-number’, ‘muon-number’

and ‘tau-number’ for the three generations respectively. The e− andνe have +1 electron-

number, while thee+ andνe have -1 electron-number, and all four have 0 muon- and tau-

number. Likewise for the second and third generations. Lepton-number is conserved in all

interactions, excluding neutrino oscillations.

The masses of each type of lepton are also shown in table 1.1. The neutrinos have such

small masses that only upper limits on their masses have beenmeasured. Neutrino masses

are known to be non-zero due to the observation that they ‘oscillate’ between generations

[9] - that is, they spontaneously change their type between generations, and thus violate

conservation of lepton-number. More precisely, the statesin which neutrinos propagate -

their ‘mass eigenstates’ - are in fact superpositions of thestates in which they interact. Thus,

if a neutrino of one type is produced in an interaction the probability that it then interacts as

a given type oscillates with time. The rate of this oscillation is dependent on the difference in

4
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mass between the neutrino types, thus if neutrinos were massless no oscillation would occur.

However, all calculations in the SM are performed under the assumption that neutrinos are

massless. As neutrino masses are very small compared to those of the other elementary

particles this is a very good approximation. The predictivepower of the SM with respect to

the physical phenomena discussed here is thus unaffected.

Similar to the leptons, there are two quarks in each generation: one ‘up-type’ with electric

charge+2
3

and one ‘down-type’ with electric charge−1
3
. These names come from the first,

lightest generation, which consists of the up (u) and down (d) quarks. The second generation

consists of the charm (c) and strange (s) quarks, and the third generation the top (t) and

bottom (b) quarks (also called the truth and beauty quarks, by the morepoetic physicists).

A recent result from the ATLAS experiment at the LHC has confirmed that quarks have no

sub-structure down to∼6× 10−20 m [10].

Where quarks differ from leptons is that they also carry ‘colour charge’. Colour charge

can take three values: red, blue and green. Its existence wasfirst indicated experimentally by

the discovery of theΩ− [11], which is a bound state of threed quarks. Such a state would be

forbidden by the Pauli exclusion principal if not for the existence of an additional quantum

number that takes three values to distinguish the otherwiseidentical quarks. Anti-quarks

have opposite electric charge, and opposite colour charge,which takes values anti-red, anti-

blue or anti-green.

Another parallel to leptons is that quarks also have a flavourquantum number. This

is isospin for the first generation, charm and strangeness for the second, and topness and

bottomness (or beauty, if you prefer) for the third. Unlike the leptons in the SM, quark

flavour is not strictly conserved in all interactions, and itis this aspect of the quark sector

that makes it so interesting to study. The consequences of this feature are the motivation for

the analyses presented in this thesis, and will be discussedfurther in sections 1.2 and 1.3.

1.1.1.2 Standard Model Bosons

There are four fundamental forces of nature: the strong, electromagnetic, weak, and gravi-

tational forces. Each force has an associated set of bosons that mediate the transfer of mo-

mentum between particles [12]. These have been discovered experimentally for the strong,

electromagnetic and weak forces, but not for gravity. Gravity is by far the weakest of the

fundamental forces. It can safely be neglected when considering high energy interactions of

elementary particles, and so will not be discussed any further.

The boson associated with the electromagnetic force is the photon (γ), which couples

to electric charge. Consequently all electrically charged particles,i.e. all fermions except

neutrinos, experience the electromagnetic force. The photon is massless and neutral, which

5
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means the photon cannot decay to lighter particles, or couple to itself, giving electromag-

netism infinite range.

The weak force is mediated by the chargedW± and neutralZ0 bosons, which couple to

all fermions (at least all ‘left-handed’ fermions, as will be discussed in section 1.1.3.2). Their

masses are relatively large:MW ≃ 80.4GeV/c2 andMZ ≃ 91.2 GeV/c2. Consequently the

range of the weak force is very small,O(10−18 m). As will be shown in section 1.1.3.2, the

weak and electromagnetic forces are in fact manifestationsof the underlying electroweak

force, and theW±, Z0 andγ the physical manifestations of its four gauge bosons.

The strong force is mediated by gluons (g), which couple to colour charge. Thus quarks

experience the strong force while leptons do not. Gluons aremassless, like the photon, but

carry colour charge themselves, which means gluons can interact with other gluons, unlike

photons. Also, as its name suggests, the strong force is by far the strongest of the fundamental

forces. This means gluons can only travel very short distances before interacting, meaning

the range of the strong force is onlyO(10−15 m) - roughly the radius of a nucleon.

This gives rise to the phenomenon of ‘colour confinement’ - only colour neutral states

are stable, and observable. Consequently, no isolated quarkhas ever been observed. Instead,

quarks exist in colour neutral bound states: either as a meson, which consists of a quark and

an anti-quark with equal and opposite colour; or as a baryon,which consists of three quarks

(or anti-quarks) each with different colour, causing it to be colour neutral. The quark and

anti-quark in mesons can annihilate each other, meaning even the lightest mesons eventually

decay. However, this is not the case for baryons. The lightest, and thus stable, baryon is the

proton, which consists ofuud valence quarks; second lightest is the neutron, which consists

of udd valence quarks. Together these form atomic nuclei, and withthe electron - the lightest

charged lepton - make up the atoms that comprise all the stable, visible matter of the universe.

In their simplest form, the symmetries of the SM dictate thatinteractions should be iden-

tical regardless of which generation of fermion is involved. However, this is known experi-

mentally not to be the case, due to the differing masses of thefermions in each generation,

and of theW± andZ0 bosons. Thus the Higgs boson was proposed as an addition to the

perfectly symmetric SM [13]. The Higgs boson breaks the symmetry of the SM, and gives

the SM particles their different masses. An excess of signalwhich is consistent with being

the Higgs boson has recently been observed by the LHC experiments ATLAS and CMS at a

mass of∼125 GeV/c2 with a significance of 5σ [14, 15].

1.1.2 The Standard Model as a Gauge Theory

The bosons of the SM, and the exchanges of quantum numbers that they perform, can be

represented as gauge groups. These describe the underlyingsymmetries of the SM, what

6
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transitions between states are allowed or forbidden and thus how the elementary particles

interact. The gauge groups specific to the SM are chosen to match experimental observation,

and could be modified to account for any new, non-SM particlesthat may be discovered at

the LHC.

An SU(n) gauge group hasn2 − 1 generators, the physical interpretation of which is

a fundamental force withn2 − 1 gauge bosons [12]. The photon has no charge itself, and

simply transfers momentum between charged particles. It isthus natural to assume that

electromagnetism can be described by aU(1) group. The weak force, on the other hand, has

three bosons - theW± andZ0- and allows transitions between states with a charge difference

of 1. Thus, it is likely to correspond to aSU(2) group. However, it was found by Glashow,

Salam and Weinberg that in fact the electromagnetic and weakforces can be described as

the physical manifestations of the underlying ‘electroweak’ force, which has gauge group

SU(2) × U(1)Y [16, 17, 18]. The gauge bosons of this group are not equal to the γ, W±,

andZ0, but are instead theW1,2,3 for theSU(2) group, and theB for theU(1)Y group. Their

respective coupling constants areg andg′. It will be shown in the following section how

these give rise to the bosons observed in nature.

The gluons that mediate the strong force allow transitions between states with three dif-

ferent colour charges. Thus, interactions via the strong force can be described by anSU(3)

group. Consequently there are 8 types of gluon,Ga for a ∈ {1, ..., 8}, that carry both colour

and anti-colour charge, and have coupling constantgs.

The whole SM is thus described by a gauge groupSU(3)× SU(2)×U(1)Y . In order to

describe the interactions of the fundamental particles onemust use Quantum Field Theory,

which is described in the following section.

1.1.3 Interactions of Elementary Particles

The most general description of any dynamical system is the LagrangianL. The exact form

of L depends on the spin of the particle that it describes. Applying the ‘Principle of Least

Action’ [19] to the Lagrangian for a fieldψ results in the Euler-Lagrange equation

∂L
∂ψ

− ∂µ

(

∂L
∂ (∂µψ)

)

= 0, (1.1)

where∂µ is the covariant derivative, the indexµ running over the 4 space-time coordinates,

from which one obtains the equations of motion for the system. The Lagrangian for a system

of many different particles undergoing many different interactions is simply the sum of the

Lagrangians for the individual particles and interactions. The SM is thus best described by

its Lagrangian.

7
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Quantum Field Theory, as its name suggests, describes all particles as mathematical

fields. For a scalar (spin-0) fieldφ, such as the Higgs boson, the Lagrangian is [12]

L =
1

2
∂µφ∂

µ − 1

2
m2φ2 − λ

4!
φ4, (1.2)

wherem is the mass of the field, and the final term represents an interaction with coupling

λ. This is the simplest interaction term that can be added while keeping the theory renor-

malisable - a necessary requirement for any physical theory. Applying the Euler-Lagrange

equation to this Lagrangian, in the absence of any interaction term, yields the Klein-Gordon

equation.

The spin-1
2

fermions are described as Dirac spinor fields,ψ, as they must also carry

information on the direction of the spin. Their Lagrangian is given by

L = ψ(iγµ∂µ −m)ψ, (1.3)

whereγµ are the Diracγ-matrices, andψ ≡ ψ†γ0. Applying the Euler-Lagrange equation

here yields the Dirac equation.

Finally, spin-1 bosons are described by a vector field,A, for which the Lagrangian is

L = −1

4
FµνF

µν , (1.4)

where the field strengthFµν ≡ ∂µAν − ∂νAµ, both for abelian fields, like the photon, and

non-abelian fields, like gluons. IfA represents the photon field, applying the Euler-Lagrange

equation results in Maxwell’s equations of electromagnetism.

The total SM Lagrangian comprises the components for each type of particle

L = Lboson kinetic + Lfermion kinetic + Lfermionmasses + LHiggs. (1.5)

The first term describes the kinematics of the bosons, and thesecond term likewise for the

fermions; the third term describes the coupling of the Higgsfield to the fermions, thus gen-

erating their masses, and the final term likewise for the bosons.

1.1.3.1 Boson Kinetic Term

Following the form of equation 1.4 and adding a term for each of the SM bosons one obtains

Lboson kinetic = −1

4
BµνB

µν − 1

4
F a
µνF

aµν − 1

4
FA
µνF

Aµν + Lgauge fixing + Lghosts, (1.6)

whereBµν is the field strength for theB field, corresponding toU(1)Y , F a
µν are those for

theSU(2) Wa bosons, witha ∈ {1, 2, 3}, andFA
µν those for theSU(3) gluons, witha ∈

{1, ..., 8}. The second last term allows a specific gauge to be chosen, which results in extra

‘Fadeev-Popov ghost’ bosons. These particles are allowed to enter in loop processes, but are

cancelled out by loops of gauge bosons, and thus do not contribute to any observables.

8
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1.1.3.2 Fermion Kinetic Term

The kinetic term of the Lagrangian for fermions consists of both the terms for all fermions

interacting via the electroweak force, and for the quarks interacting via the strong force.

Considering the weak force first, it is known to maximally violate parity, and only couples

to ‘left-handed’ fields. The ‘handedness’ of a vector field specifies whether its spin points in

the same direction as its momentum (right-handed), or the opposite direction (left-handed).

For a vector fieldψ the projection operatorsPL/R ≡ 1∓γ5

2
separate out the left- (right-)

handed components of the field. Thus, any field can be written as a superposition of left- and

right-handed components:

ψ = PLψ + PRψ ≡ ψL + ψR. (1.7)

The interactions of these two components can thus be treatedseparately.

Considering only the first generation of fermions, the left-handed fields formSU(2)

doublets

qL ≡
(

uL

dL

)

and ℓL ≡
(

νL

eL

)

, (1.8)

and the right-handed fields formSU(2) singlets

uR, dR, νR and eR. (1.9)

As the neutrino has no electric charge, and right-handed fields cannot interact via the weak

force, the right-handed neutrino cannot interact at all. Hence, it is ignored in the follow-

ing discussion. In fact, under the assumption that neutrinos are massless they have definite

chirality: either left- or right-handed. As the right-handed neutrino does not interact none

can ever be produced, leading to the conclusion that right-handed neutrinos do not exist (and

conversely, neither do left-handed anti-neutrinos).

Each of these doublets and singlets thus contributes a term of the form of equation 1.3 to

the Lagrangian (excluding the mass term which will be discussed in the following section):

Lfermion kinetic = iℓL
T
γµDℓL

µ ℓL + ieRγ
µDeR

µ eR

+ iqL
TγµDqL

µ qL + idRγ
µDdR

µ dR + iuRγ
µDuR

µ uR

+ Lquark strong interaction, (1.10)

where the couplings to the relevant gauge bosons are included in the covariant derivatives.

The term for the strong force,Lquark strong interaction, is discussed later in this section. The

right-handed singlets couple only to theU(1)Y boson, thus

DfR
µ ≡ ∂µ + ig′Y (fR)Bµ, (1.11)

9
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where the ‘weak hypercharge’Y is given by

Y (f) ≡ 2(Q(f)− IZ(f)), (1.12)

with Q(f) the electric charge of the fermionf , andIZ(f) its weak isospin, withIZ(uL) =

IZ(νL) = +1
2
, IZ(dL) = IZ(eL) = −1

2
andIZ(fR) = 0.

The left handed leptons couple to theSU(2)× U(1) bosons and so

D
ℓL
µ ≡ ∂µI+ igTaWa

µ + ig′Y(ℓL)Bµ, (1.13)

whereTa are theSU(2) generators, one representation of which is the set of Pauli spin

matrices. Expanding the first term of equation 1.10 using equation 1.13 the interaction terms

give

−g
2

(

νL eL

)

γµ

[(

W3
µ W1

µ + iW2
µ

W1
µ − iW2

µ −W3
µ

)

+
g′

g
Bµ

](

νL

eL

)

. (1.14)

Requiring that there be two physical charged bosons (W±) with no mixing (orthogonal

states) one can read off from the off diagonal terms to get

W± =
1√
2
(W1 ∓ iW2). (1.15)

For the neutral bosons, introducing the Weinberg angleθW such thattan θW = g′

g
, one can

write
(

Z0

A

)

≡
(

cos θW − sin θW

sin θW cos θW

)(

W3

B

)

. (1.16)

Thus,SU(2) andU(1)Y are unified in the physical manifestations of their bosons. Rewriting

equation 1.14 in terms of the physical bosons gives

−g
2

(

νL eL

)

γµ

(

Z0
µ

cos θW

√
2W−

µ√
2W+

µ cos θWZ0
µ − 2 sin θWAµ

)(

νL

eL

)

. (1.17)

This shows that aν-ν vertex can only couple to theZ0, while ane-e vertex can couple to

either theZ0 or γ. Thus, theγ couples only to electrically charged particles.

In addition to the electroweak interactions, the quarks also undergo strong interactions.

These are blind to the handedness of the quark fields, and instead couple to their colour

charge. Thus one must express the quark fields in terms of the three fields of different colour

charge, which formSU(3) triplets:

uc =









ur

ug

ub









and dc =









dr

dg

db









, (1.18)

10
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where the subscriptsr, g andb represent the colour charges, red, green and blue. Writing

the Lagrangian interaction term in exactly the same way as the electroweak interactions one

thus obtains

Lquark strong interaction = −gsuc
TγµGA

µT
A

s
uc − gsdc

T
γµGA

µT
A

s
dc, (1.19)

whereGA are the gluon fields, andTA

s
the generators ofSU(3), with A ∈ {1, ..., 8}. Sum-

ming over the gluon fields the generatorsT
A

s
describe which quark colour states can couple

to which gluons. However, as the gluons are massless, their different physical manifestations

are indistinguishable. Consequently, no such transformation of the underlying states to the

physical states, as was done for the electroweak bosons, canor need be performed.

1.1.3.3 Fermion Masses

An explicit mass term for fermions of the formmψψ = m(ψRψL+ψLψR) breaks theSU(2)

invariance of the Lagrangian, as the left- and right-handedfields form different multiplets

underSU(2), and so cannot be mixed. This can be solved by introducing a scalar fieldΦ

that forms anSU(2) doublet, and has a non-zero vacuum expectation value (VEV) -the

‘Higgs field’ [13]. The interactions of the fermions with this field take the form of a mass

term

LY ukawa = −Yff
T

LΦfR + h.c., (1.20)

whereYf is the ‘Yukawa coupling’, and ‘h.c.’ is the hermitian conjugate of the first term.

The Higgs potential has the form

V (Φ) = −µ2Φ∗Φ + λ|Φ∗Φ|2, (1.21)

with µ2, λ > 0. The minimum potential occurs atΦ∗Φ = 1
2
µ2/λ ≡ 1

2
v2, wherev is the VEV.

In the unitary gauge only one component of the Higgs doublet obtains the VEV, which can

be written as

〈Φ〉 = 1√
2

(

0

v

)

. (1.22)

Thus one can simply write

Φ =

(

0

v +H

)

, (1.23)

and substituting this into equation 1.20 the leptonic part gives

LY ukawa =
−Yf√

2

(

νL eL

)

(

0

v +H

)

eR + h.c.. (1.24)

11
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Thus, the mass term for the electron is

−Yev√
2
(eLeR + eReL) =

Yev√
2
ee

≡ meee, (1.25)

so the electron obtains a mass proportional to the Higgs VEV,while retaining theSU(2)

invariance of the Lagrangian. The terms involvingH represent the interactions between the

Higgs boson and the electron, which are also proportional tome. Repeating this for thed

quark yields its mass term.

As the upper component ofΦ is zero this doesn’t yield a mass term for theu quark.

However, this is achieved by exploitingSU(2) symmetry, and including a term like equation

1.20 but withΦ replaced by

Φc = ǫijΦ
j∗

=

(

0 1

−1 0

)(

0

v +H∗

)

=

(

v +H∗

0

)

, (1.26)

which naturally yields a mass term for theu

mu =
Yu√
2
v. (1.27)

1.1.3.4 Boson Masses

As the Higgs boson is scalar its contribution to the Lagrangian takes the form of equation

1.2. Incorporating its interactions with theSU(2) bosons into the covariant derivative yields

DµΦ =
1√
2

(

∂µ + i
g

2

(

W3
µ

√
2W−

µ√
2W+

µ −W3
µ

)

+ i
g′

2
Bµ

)(

0

v +H

)

, (1.28)

which gives

|Dµ|2 =
1

2
(∂µH)2 +

g2v2

4
W+µ

W−
µ +

v2

8

(

gW3
µ − g′Bµ

)2
+ interaction terms, (1.29)

where ‘interaction terms’ refers to those terms concerningthe coupling of the Higgs to other

bosons. Substituting in equation 1.16 gives the mass terms of the physicalW±, Z0 andγ

|Dµ|2 =
1

2
(∂µH)2 +

g2v2

4
W+µ

W−
µ +

v2g2

8 cos2θW
Z0
µZ

0µ + 0AµA
µ. (1.30)

Here we see that theW± andZ0 have acquired masses

mW± =
1

2
gv, and mZ0 =

1

2

gv

cos θW
, (1.31)

12
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which are related bymW± = cos θWmZ0. Theγ has remained massless, again showing that

the unification ofSU(2) andU(1) neatly describes the observable bosons. Further, asΦ is

a singlet underSU(3) it does not interact with gluons, which consequently remainmassless

as well.

1.1.4 Additional Generations

The previous section described the interactions of two quarks, u andd, and two leptons,

e, andνe, via theSU(3) × SU(2) × U(1)L gauge bosons. However, as was described in

section 1.1.1, there are in fact two further generations of fermions that are identical to this

first generation, but contain particles with larger mass.

Due to their identical quantum numbers the couplings of these additional particles to

the gauge bosons are identical to their first generation counterparts, except in the Yukawa

couplings that give rise to their mass. The couplings for each generation can be chosen to

reproduce the measured masses of the fermions. However, theYukawa couplings can be

expressed as matrices in flavour space, so the Lagrangian, equation 1.20, becomes

LY ukawa = −[Yd]ijd
T

LiΦdRj − [Yu]iju
T
LiΦ

cuRj + h.c., (1.32)

where the indicesi and j are summed over the generations. Any non-zero off diagonal

elements of the Yukawa matrices gives rise to mixing betweenthe generations.

As the interactions of the particles one generation are the same as those in any other

generation the fermion kinetic Lagrangian term is invariant under unitary rotations between

generations. Thus, one can rotate the flavour eigenstates togive the mass eigenstates, which

correspond to the diagonalised Yukawa matrices. Consequently, the states with definite mass,

in which the quarks propagate, are generally superpositions of those with definite flavour, in

which the quarks interact. Considering only the first two generations of quark, the most

general2× 2 unitary matrix can be written as

VC =

(

cos θC sin θC

− sin θC cos θC

)

, (1.33)

whereθC determines the level of mixing between the two generations.Three complex phases

can also enter into such a matrix, but these can be removed by phase transformations of the

u, d ands fields, leaving only one free parameter. Then the mass eigenstates of thed ands

can be expressed as
(

d′

s′

)

= VC

(

d

s

)

. (1.34)
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This mixing transformation was first proposed by Cabibbo [20], at a time when only the

u, d ands quarks had been discovered experimentally, and resulted inthe prediction of the

existence of thec quark. θC has been measured to be(13.04 ± 0.05)
◦

[7], thus the mixing

betweend ands is large, but not maximal.

Consequently, the coupling of thed ands to theW− can be written as

− g

2
√
2

(

u c
)

γµ(1− γ5)VC

(

d

s

)

W−
µ + h.c., (1.35)

which shows that au quark can undergo an interaction in which it is transformed to as quark,

and ac quark can be transformed into ad. However, the amplitude of these interactions is

suppressed by a factor ofsin θW, and so are ‘Cabibbo suppressed’. Those proportional to

cos θW are ‘Cabibbo favoured’.

In neutral interactions, via the exchange of aZ0 or γ, the coupling is

− g

2
√
2

(

d s
)

VC
Tγµ(1− γ5)VC

(

d

s

)

Z0
µ + h.c., (1.36)

and asVC
T = VC

−1 the mixing terms cancel out. Thus there are no flavour changing

neutral currents in the SM. This phenomenon was first predicted by Glashow, Iliopoulos and

Maiani [21] and is thus known as the GIM mechanism.

When the third generation is included the mixing matrix becomes

VCKM =









cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

















1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23

















cos θ13 0 sin θ13e
−iδ

0 1 0

− sin θ13e
iδ 0 cos θ13









=









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12c23 − s12s23s13e

iδ c23c13









, (1.37)

whereθ12 = θC , and the shorthandcij ≡ cos θij andsij ≡ sin θij is used. Similarly to

the Cabibbo mixing matrix the three anglesθij determine the level of mixing between the

three pairs of generations. However, in the3× 3 case 6 complex phases can enter, only 5 of

which can be removed by phase transformations of the quark fields - thus one complex phase

remains in the mixing matrix. This allows for the phenomenonof CP -violation, which is

discussed in section 1.2. Observation ofCP -violation thus caused Kobayashi and Maskawa

to propose the existence of the third generation before its experimental discovery [22]. Thus,

the Cabibbo mixing matrix was extended into what has come to beknown as the Cabibbo-

Kobayashi-Maskawa, or CKM, matrix.
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The mass eigenstates are given by








d′

s′

b′









= VCKM









d

s

b









, (1.38)

and consequently the matrix can also be written

VCKM =









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









, (1.39)

with |Vij|2 giving the probability of a transitioni→ j. The best current measurements of the

mixing angles andCP -violating phase, in addition toθC , are [7]

θ13 = (0.201± 0.011)
◦

, θ23 = (2.38± 0.06)
◦

, and δ = 1.20± 0.08. (1.40)

The same form of mixing matrix exists for leptons, and is the source of the neutrino

oscillations discussed in section 1.1.1.1. The ramifications of the complex phase in the CKM

matrix, and its allowance ofCP -violation in transitions of quarks between generations, is the

topic of flavour physics, which is discussed in the next section.

1.2 Flavour Physics andCP -Violation

1.2.1 Discrete Symmetries

The symmetry of the SM Lagrangian under the continuous transformations represented by

the gauge bosons gives rise to the conservation of the charges to which they couple,i.e.elec-

tric charge, weak isospin, and colour. It is also symmetric under translations and rotations

in space and time, which gives rise to momentum and energy conservation. Such continuous

symmetries are key to describing the particles and forces ofnature.

There also exist discrete transformations that give rise toimportant symmetries in nature.

Three such transformations are charge conjugation (C), which reverses the signs of internal

quantum numbers, transforming particle to anti-particle;parity (P ) which reverses the spatial

coordinates, and consequently switches the chirality of a particle; and time reversal (T ),

which transformst → −t and so reverses the linear and angular momentum of a particle.

Any theory that respects Lorentz invariance must also be invariant under the combination of

these three transformations,CPT , but need not necessarily be invariant under each individual

transformation. One consequence ofCPT invariance is that the masses of a particle and its

corresponding anti-particle must be identical.
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It is theorised that matter and anti-matter were created in equal quantities in the early

universe, thus one of the major outstanding puzzles of the universe is the dominance of matter

over anti-matter that exists today. This implies that thereis some violation of invariance

under the exchange of particle for anti-particle. The weak interaction is known to maximally

violateC andP , as it only couples to left-handed fermions and right-handed anti-fermions,

but this does not explain matter anti-matter asymmetry. This leaves the combinationCP ,

which, underCPT invariance, corresponds toT . As has been mentioned previously the non-

zero complex phase in the CKM matrix allowsCP -violation (or more precisely, violation of

CP invariance) in charged weak interactions. That said, the level ofCP -violation permitted

by the CKM mechanism is many orders of magnitude too small to account for all of the

matter-anti-matter asymmetry in the universe today. However, study ofCP -violation may

reveal new physics mechanisms to explain this.

1.2.2 CP -Violation in the CKM Matrix

An alternative representation of the CKM matrix is the Wolfenstein parametrisation [23]

which defines [7]

λ ≡ sin θ12 ≃ 0.23

A ≡ sin θ23
sin2 θ12

≃ 0.81, and

ρ− iη ≡ sin θ13e−iδ

sin θ12 sin θ23
≃ 0.14− 0.35i,

and expands up toO(λ3) to give

VCKM =









1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1









+O(λ4). (1.41)

This shows the order of each of the elements more clearly: thediagonal elements are all

close to 1, while the complex phase only enters at this order in transitions between the1st

and3rd generations. Thus,D mesons, which consist of ac quark bound with as, u or d, are

expected to exhibit very littleCP -violation. It is thus of great consequence for the SM, and

new physics theories, that LHCb has recently observed evidence for directCP -violation in

decays of theD0 meson atO(10−3) [1].

The unitarity of the CKM matrix requires thatVCKMVCKM
† = I. Firstly this requires

the mass eigenstates to be normalised

Σj=d,s,b |Vij|2 = 1, (1.42)
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Figure 1.1: One of six triangles in the complex plane made by the unitarity constraint on

the CKM matrix. This triangle, and its associatedB decays, is most commonly studied

as its angles are all of roughly the same size, and so is associated with the largest levels

of CP -violation.

for i ∈ {u, c, t}. There are also six other constraints from the requirement that the off-

diagonal elements of the product are zero. For example, one must have that

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.43)

As each CKM element is a complex number each term of this equation forms one side of

a triangle in the complex plane, with one corner at the origin, as shown in figure 1.1. The

angles in this triangle are given by

α = −arg

(

VtdV
∗
tb

VudV ∗
ub

)

, (1.44)

β = −arg

(

VtdV
∗
tb

VcdV ∗
cb

)

, (1.45)

γ = −arg

(

VudV
∗
ub

VcdV ∗
cb

)

, (1.46)

each of which dictates the level ofCP -violation in different transitions between quark gen-

erations.

The amplitudesA of transitions of a particleP or its anti-particleP, to a final statef or

its charge conjugatef are given by

Af = 〈f |H|P〉 Āf̄ = 〈f̄ |H|P̄〉 (1.47)

Af̄ = 〈f̄ |H|P〉 Āf = 〈f |H|P̄〉, (1.48)

whereH is the Hamiltonian. Depending on the quarks involved in these interactions different

elements of the CKM matrix,Vij for particles, andV ∗
ij for antiparticles, enter into these

amplitudes. This meansAf andĀf̄ can have different complex phases, which can result in
∣

∣

∣

∣

Af

Āf̄

∣

∣

∣

∣

6= 1. (1.49)

Thus the decaysP→ f andP̄→ f̄ can have different decay rates - a phenomenon known

as ‘direct’ CP -violation. This can occur for both charged and neutral hadrons, and was
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first observed forK0 decays by the NA48 experiment at CERN and KTeV at Fermilab, at

O(10−6), in 1999 [24, 25]. The effect is much larger forB mesons, and was discovered by

BaBar and Belle in 2004 using the decayB0
d→ K+π− [26, 27]. In the absence of any other

CP -violating effects one can evaluate the level of directCP -violation by measuring

ACP =
N(P→ f)−N(P̄→ f̄)

N(P→ f) +N(P̄→ f̄)
, (1.50)

whereN simply represents the number of decays of that type observed. As mentioned earlier,

LHCb has also recently observed evidence for directCP -violation in decays of theD0 by

measuring∆ACP ≡ ACP(D0→ K+K−)−ACP(D0→ π+π−) [1].

CP -violation can also occur in a different manner for neutral mesons, but this first re-

quires a description of mixing in neutral mesons.

1.2.3 Mixing in Neutral Mesons andCP -Violation in Mixing

The neutral mesonsK0, D0, B0
d andB0

s consist of a quark and anti-quark that are both down-

or up-type but have different flavour. As they are neutral they can transform into their anti-

particle via charged weak interactions, as shown for theD0 in figure 1.2. This causes mixing

between theD0 andD0 in the mass eigenstates, so the mass matrix can be written
(

MD0 ∆M

∆M∗ MD0

)

, (1.51)

for which the eigenvalues areMD0 ±|∆M |. This results in two eigenstates with mass differ-

ence∆m ≡ 2 |∆M |, normally labelledL for ‘light’ andH for ‘heavy’. These can be written

in general form as

|D0
L〉 = p|D0〉+ q|D0〉 ≡

(

p

q

)

, (1.52)

which has massMD0 − 1
2
∆m ≡ mL, and

|D0
H〉 = p|D0〉 − q|D0〉 ≡

(

p

−q

)

, (1.53)

which has massMD0 + 1
2
∆m ≡ mH , for some constantsp andq such that|p|2 + |q|2 = 1.

If ∆M is real the solution isp = q = 1√
2
. UsingCP |D0〉 = −|D0〉 one sees that the

mass eigenstates are alsoCP eigenstates in this case. However, the non-zero complex phases

in the CKM matrix allow a non-zero complex phase in∆M , and sop andq are generally

complex. The time evolution of such a state can be described by

i
d

dt

(

p

±q

)

= Heff

(

p

±q

)

, (1.54)
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Figure 1.2: One of the dominant diagrams contributing toD0 mixing.

where the effective Hamiltonian is

Heff =M − i

2
Γ,

=

(

〈D0|H|D0〉 〈D0|H|D0〉
〈D0|H|D0〉 〈D0|H|D0〉

)

,

=

(

MD0 − i
2
ΓD0 ∆M − i

2
Γ12

∆M∗ − i
2
Γ∗
12 MD0 − i

2
ΓD0

)

. (1.55)

Similarly to the mass matrix, the decay rate matrixΓ has eigenvaluesΓD0 ± |Γ12|, thus

defining∆Γ ≡ 2 |Γ12| one hasΓH = ΓD0 + 1
2
∆Γ andΓL = ΓD0 − 1

2
∆Γ. Consequently, the

eigenvalues ofHeff areλH = mH − i
2
ΓH andλL = mL − i

2
ΓL. The eigenstates are also

constrained by

q

p
= ±

√

∆M∗ − i
2
Γ∗
12

∆M − i
2
Γ12

= ±2∆M∗ − iΓ∗
12

∆m− i
2
∆Γ

, (1.56)

where the± corresponds to theH andL states respectively.

Solving equation 1.55 gives the time evolution of the mass eigenstates as

|D0
H,L(t)〉 = e−iλH,Lt|D0

H,L(0)〉
= e−imH,Lt− 1

2
ΓH,Lt

(

p|D0(0)〉 ± q|D0(0)〉
)

. (1.57)

Neutral mesons interact in their flavour eigenstates, and sothey are in a pure state of either
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|D0〉 or |D0〉 at t = 0. Using equations 1.52 and 1.53 one has that

|D0(t)〉 = 1

2p
(|D0

H(t)〉+ |D0
L(t)〉)

=
1

2p

(

e−imH t− 1
2
ΓH t
(

p|D0〉 − q|D0〉
)

+ e−imLt− 1
2
ΓLt
(

p|D0〉+ q|D0〉
)

)

=
1

2

(

(

e−imH t− 1
2
ΓH t + e−imLt− 1

2
ΓLt
)

|D0〉 − q

p

(

e−imH t− 1
2
ΓH t − e−imLt− 1

2
ΓLt
)

|D0〉
)

=
1

2
e−iMD0 t− 1

2
ΓD0 t

(

(

e−i∆mt− 1
2
∆Γt + ei∆mt+ 1

2
∆Γt
)

|D0〉

− q

p

(

e−i∆mt− 1
2
∆Γt − ei∆mt+ 1

2
∆Γt
)

|D0〉
)

. (1.58)

Defining

x ≡ ∆m

Γ
, and y ≡ ∆Γ

2Γ
, (1.59)

and usingτ ≡ ΓD0t, the probability of theD0 interacting as aD0 or D0 at a given timeτ

after production is

P (D0→ D0)(τ) =
1

2
e−τ (cosh(yτ) + cos(xτ)) (1.60)

P (D0→ D0)(τ) =
1

2

∣

∣

∣

∣

q

p

∣

∣

∣

∣

2

e−τ (cosh(yτ)− cos(xτ)). (1.61)

Performing the same calculation for an initial state of pureD0 one finds that

P (D0→ D0)(τ) =
1

2

∣

∣

∣

∣

p

q

∣

∣

∣

∣

2

e−τ (cosh(yτ)− cos(xτ)). (1.62)

Thus one sees that if
∣

∣

∣

∣

q

p

∣

∣

∣

∣

6= 1, (1.63)

P (D0→ D0)(τ) 6= P (D0→ D0)(τ), (1.64)

which constitutesCP -violation in the mixing rates, known as ‘indirectCP -violation’. From

equation 1.56 one sees that this is the case if∆M or Γ12 have a complex phase, and a phase

difference between them. Although theD0 system is used here as an example these formulae

are generic for any neutral meson system.

This type ofCP -violation was the first of any to be discovered, and was observed by

Christenson, Cronin, Fitch and Turlay in 1964 in theK0 system [28].∆Γ is very large for

theK0 mass eigenstates, such that the heavy state lives∼100 times longer than the light

state. Consequently the states are normally labelledK0
L, for ‘long’, andK0

S, for ‘short’. In

the absence ofCP -violation theK0
L would haveCP eigenvalue -1. The fact that it lives so

much longer than theK0
S allows a pure state ofK0

L to be observed. This was found to decay
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to two pions, which is a state withCP eigenvalue +1, showing that|q/p| 6= 1 in theK0

system.

Another type ofCP -violation can occur when the final statef is accessible to both the

D0 andD0. Using equation 1.58 and introducing

λf ≡ q

p

Āf

Af

= −ηCP
∣

∣

∣

∣

q

p

∣

∣

∣

∣

∣

∣

∣

∣

Āf

Af

∣

∣

∣

∣

eiφ, (1.65)

whereηCP = ±1 for CP even or odd final states respectively, andφ is the relative phase

betweenq/p andAf/Āf , one obtains the instantaneous decay rate of
(−)

D0(t)→ f

Γ(
(−)

D0(t)→ f) = |〈f |H|
(−)

D0(t)〉|2

=
1

2
e−τ |

(−)

A f |2
{

(

1 +
∣

∣λ±1
f

∣

∣

2
)

cosh(yτ) +
(

1−
∣

∣λ±1
f

∣

∣

2
)

cos(xτ)

+ 2R(λ±1
f ) sinh(yτ)− 2I(λ±1

f ) sin(xτ)

}

. (1.66)

Thus one has thatΓ(D0(t)→ f) 6= Γ(D0(t)→ f) if |λf | 6= 1, i.e. if either of the criteria

for direct or indirectCP -violation are fulfilled, or ifI(λf ) 6= 0, i.e. φ 6= 0 andφ 6= π.

The interference between decays of mixed and un-mixedD0 can causeφ 6= 0 even ifCP is

conserved in both mixing and decay. Again, this is general for all neutral mesons - the case

specific to theD0 system is discussed in the next section.

1.3 The Charm Sector ParametersyCP andAΓ

TheD0 system is interesting to analyse as a test of the SM and the CKM mechanism asCP -

violation is predicted to beO(10−3) or less. Furthermore, charm physics is the only up-type

quark system in whichCP -violation can be studied. Significantly greaterCP -violation than

is predicted by the SM could be achieved through contributions of additional, non-SM par-

ticles to the mixing and decay amplitudes. Such particles could include SUSY ‘sparticles’,

or a fourth generation of fermions. Thus high precisionCP -violation measurements in the

charm sector have great potential to reveal new physics. This makes the aforementioned evi-

dence for directCP -violation in theD0 system observed by LHCb particularly exciting. The

LHCb detector, described in chapter 2, is well suited for suchanalyses as it has been specif-

ically designed to perform high precision time-dependent measurements of decays ofD and

B mesons. Further, the cross section for production ofcc pairs is very high,6.1 ± 0.93mb

[29], allowing unprecedented numbers ofD0 decays to be recorded.

Mixing in theD0 system is relatively small and has only been observed in recent years.

Both x andy, as defined in equation 1.59, areO(10−2) [3]. This makes it very difficult to
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disentangle the heavy and light mass eigenstates. However,one can still obtain sensitivity to

theCP violating parameters by measuring the ‘effective lifetimes’ of theD0 andD0 [30] -

that is, the mean proper decay time of aD that is aD0 orD0 at production.

DefiningAm andAd such that

∣

∣

∣

∣

q

p

∣

∣

∣

∣

±2

≡ 1± Am, and

∣

∣

∣

∣

Āf

Af

∣

∣

∣

∣

±2

≡ 1± Ad, (1.67)

one can use the smallness ofx andy to expand equation 1.66 up to second order inτ to give

Γ(
(−)

D0(t)→ f) ≃ e−τ |
(−)

A f |2
{

1−
(

1±
(

1

2
(Am + Ad)−

1

4
AmAd(Am + Ad)

)

− 1

8

(

(Am + Ad)
2 + A2

mA
2
d

)

+
1

2
AmAd

)

× ηCP (y cosφ∓ x sinφ)τ

+

[

1

2

(

1± 1

2
(Am + Ad) +

1

2
AmAd

)

y2−

1

2

(

∓1

2
(Am + Ad)−

1

2
AmAd

)

x2
]

τ 2
}

. (1.68)

Naming the coefficient ofτ α and that ofτ 2 β, the average decay rate is given by

Γ̂ = ΓD0

1 + α + 2β

1 + 2α + 6β

≃ ΓD0(1− α− 4β + 2α2 + 14αβ + 24β2). (1.69)

AssociatingAd with O(10−2), in accordance with experimental constraints [3], andAm and

sinφ with O(10−1), the average decay rates of
(−)

D0 can be written up toO(10−5) as [30]

Γ̂(
(−)

D0→ f) ≃ ΓD0

{

1 +

[

1± 1

2
(Am + Ad)−

1

8
(A2

m − 2AmAd)

]

ηCP (y cosφ∓ x sinφ)

Am(x
2 + y2)± 2Amy

2 cos2 φ∓ 4xy cosφ sinφ

}

. (1.70)

When theD0 decays to a final state with undefinedCP the decay rate is simply the

average of the heavy and light decay rates,ΓD0. Comparing this to the average of the decay

rates ofD0 andD0 to aCP -eigenstate final state one obtains the parameter

yCP =
Γ̂(D0→ f) + Γ̂(D0→ f)

2ΓD0

− 1. (1.71)

Using equation 1.70 and expanding up toO(10−5) gives

yCP ≃ ηCP

{[

1− 1

8
(A2

m − 2AmAd)

]

y cosφ− 1

2
(Am + Ad)x sinφ

}

, (1.72)
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and to onlyO(10−4)

yCP ≃ ηCP

[(

1 +
1

8
A2

m

)

y cosφ− 1

2
Amx sinφ

]

. (1.73)

Thus, in the absence ofCP -violation,Am = φ = 0, yCP = ηCPy, while any deviation ofyCP

from y would indicateCP -violation. This makesyCP primarily a measurement of mixing in

theD0 system, requiring an independent measurement ofy to test forCP -violation.

Examining the fractional difference of the average decay rates ofD0 andD0 to aCP -

eigenstate gives the parameter

AΓ =
Γ̂(D0→ f)− Γ̂(D0→ f)

Γ̂(D0→ f) + Γ̂(D0→ f)
. (1.74)

Again, expanding this up toO(10−5) gives

AΓ ≃
[

1

2
(Am + Ad)y cosφ−

(

1− 1

8
A2

m

)

x sinφ− Am(x
2 + y2)

+ 2Amy
2 cos2 φ− 4xy cosφ sinφ

]

ηCP
1 + yCP

, (1.75)

and toO(10−4)

AΓ ≃
[

1

2
(Am + Ad)y cosφ− x sinφ

]

. (1.76)

Thus any deviation ofAΓ from zero indicatesCP -violation.

If one chooses theCP -even final stateK+K− and theCP undefined state asK−π+ and

its charge conjugate, one can redefine these parameters in terms of the effective lifetimes of

theD0 andD0, usingτ = 1/Γ̂, as

yCP =
τeff(D

0→ K−π+) + τeff(D
0→ K+π−)

τeff(D0→ K+K−) + τeff(D0→ K+K−)
− 1, (1.77)

and

AΓ =
τeff(D

0→ K+K−)− τeff(D
0→ K+K−)

τeff(D0→ K+K−) + τeff(D0→ K+K−)
. (1.78)

As yCP only requires measurement of the average of theD0 andD0 effective lifetimes one

need not know the flavour of theD0 at production. However, forAΓ, the flavour must be

known. For this one can use the decay chainD∗± →
(−)

D0π±
s , where the charge of the slow

pion,π±
s , determines whether aD0 orD0 has been produced.

These measurements have already been performed to a high precision at theB factories.

BABAR have measured [2]

yCP = (11.6± 2.2 (stat.)± 1.8 (syst.))× 10−3, (1.79)
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which excludes the no mixing hypothesis at 4.1σ, and BELLE have [4]

yCP = (13.1± 3.2 (stat.)± 2.5 (syst.))× 10−3, (1.80)

which is 3.2σ from zero. These are both consistent with the world average of y which,

assumingCP -violation is allowed, is [31]

y = (8.0± 1.3)× 10−3. (1.81)

Thus, there is still scope to achieve the first single measurement that excludes the zero mixing

hypothesis in theD0 system at a level of 5σ by measuringyCP . Due to the current precision

on the measurement ofy anyCP -violation belowO(10−3) will be undetectable at present.

Similarly, BABAR have also measured [32]

AΓ = (2.6± 3.6 (stat.)± 0.8 (syst.))× 10−3, (1.82)

and BELLE [4]

AΓ = (0.1± 3.0 (stat.)± 1.5 (syst.))× 10−3, (1.83)

both of which are consistent with zero. DirectCP -violation atO(10−3), as observed by

LHCb, would contribute toAΓ atO(10−4) [30], thusAΓ remains primarily a measurement

ofCP -violation in mixing. However, the observation of anyCP -violation in the charm sector

is sufficient motivation to improve the accuracy of the measurement ofAΓ.

Thus, measuring the effective lifetimes of theD0 andD0 in order to achieve high preci-

sion measurements ofyCP andAΓ has high potential for discovery ofCP -violation in mixing

of theD0 system, and for confirming mixing at the level of 5σ with a single measurement.

This makes them exceptionally interesting parameters to measure at LHCb. The methods

used to do so are presented in chapter 4 and the resulting measurements in chapters 5 and 6.

These results have been submitted for publication [33].

1.4 Summary

This section provided a review of the mathematical theory behind and the motivation for the

measurements presented in chapters 4, 5 and 6. Firstly, in section 1.1 the particle content

of the Standard Model was presented, followed by a discussion of the interactions of these

particles via the gauge bosons. The Higgs mechanism, and howit bestows masses to the

fermions and theW± andZ0 bosons was also described. The consequences of there being

three generations of fermions, and the mixing between generations that is allowed in their

mass eigenstates, was examined. This was elucidated in section 1.2 with a detailed discussion
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of the CKM matrix and how the existence of three generations offermions allows forCP -

violation. The phenomenon of mixing in neutral mesons was also introduced, together with

that ofCP -violation in mixing, and in interference between mixing and decay. Finally, in

section 1.3, these phenomena were examined in the specific case of theD0 system. The

parametersyCP andAΓ, measurements of which are presented in chapters 5 and 6, were

introduced. Their implications for discoveringCP -violation in mixing in theD0 system, and

confirmation of mixing with a single measurement, were discussed, thus motivating their

measurement with increased precision.
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Chapter 2

The LHCb Detector

2.1 The LHC Accelerator Complex

The Large Hadron Collider (LHC) [34] is a synchrotron particleaccelerator located at the

European Organization for Nuclear Research (CERN) [35], on theFrench-Swiss border,

near Geneva. It is housed in a circular tunnel, 27km in circumference and roughly100 m

underground, and is part of a chain of accelerators at CERN designed to accelerate and

collide bunches of protons. The key figures of merit for such aparticle accelerator are: the

centre-of-mass energy (
√
s) obtained, as this is the total amount of energy available tocreate

new particles in a single collision; and the instantaneous luminosity (L) delivered, which is

the flux (the number crossing a unit of area per unit time) of the circulating particles. The

LHC is designed to operate at
√
s = 14 TeV, with a bunch crossing rate of 40MHz, and

maximumL of 1034 cm−2 s−1. Since starting the commissioning period in September 2009

the LHC has provided collisions at
√
s = 7 TeV throughout 2010 and 2011, operated at

a bunch crossing rate of 20MHz, and obtained a maximumL of ∼3.65 × 1033 cm−2 s−1

[36]. The
√
s has been increased to 8TeV for the 2012 run. Following the 2012 run an 18

month shut-down period will commence to allow upgrades to the LHC, so that it can attain

its design energy of 14TeV in the future.

Prior to the injection of the proton bunches into the LHC ringthey are passed through a

series of older, lower energy accelerators. The full acceleration chain is shown in figure 2.1.

The protons start as hydrogen atoms which are stripped of their electrons and passed into the

Linear Accelerator (LINAC2), where they reach an energy of 50MeV; they are then injected

into the Proton Synchrotron Booster (PSB) and reach 1.4GeV before being accelerated to

26 GeV by the Proton Synchrotron (PS). The penultimate acceleration stage is performed

by the Super Proton Synchrotron (SPS), where the protons reach 450 GeV, the minimum

energy for injection into the LHC. The LHC consists of two beampipes, each with dipole
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Figure 2.1: The LHC accelerator chain, reproduced from [35].

magnets of opposite polarity, so that two beams of protons can be accelerated in opposite

directions. The SPS injects proton bunches into both LHC beam pipes, where each beam is

then accelerated to 3.5TeV (4 TeV in 2012), and collided at
√
s = 7 TeV (

√
s = 8 TeV).

Figure 2.1 also shows the four main LHC experiments, CMS, ATLAS, ALICE and

LHCb, situated at the beam crossing points. The Compact Muon Solenoid (CMS) [37] and

A Toroidal LHC ApparatuS (ATLAS) [38] are general purpose detectors. Though their de-

signs are somewhat different, they are both barrel shaped detectors that surround the points at

which the beams collide, and are intended to find all detectable products of a collision (in the

Standard Model (SM) that is all particles except neutrinos). Their main physics programme

includes the completion of the SM with the discovery of the Higgs boson (discussed in sec-

tion 1.1.3), and its extension through the discovery of new,non-SM particles, that might be

explained by theories such as Supersymmetry (SUSY). These are generally performed us-

ing direct searches, examining invariant mass distributions. They also hope to discover, or

place limits on, dark matter candidates and large extra dimensions, by observing unexplained

losses of energy in collisions.

The LHC can also accelerate and collide lead nuclei, as was done in November 2010

and 2011 at
√
s = 7 TeV. A Lead Ion Collision Experiment (ALICE) [39] is designed to
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Figure 2.2: The production angles, relative to the beam-line, ofbb pairs produced in

proton-proton collisions at the LHC, reproduced from [42].

examine such collisions, specifically looking for and examining the nature of the exotic state

of matter known as quark-gluon plasma.

The final of the four main LHC experiments is the LHC beauty detector (LHCb) [40].

The data examined in this thesis were taken by LHCb, and so thisdetector is described

in detail in the following section. In addition to these mainfour there are the TOTEM

experiment, which studiesp-p interactions, and LHCf, which aims to measure the production

cross sections of neutral particles in the forward direction.

2.2 The LHCb Detector

The LHCb detector is designed specifically to observe decays of mesons and baryons con-

tainingb andc quarks, and make precision measurements of their properties. b quarks are

produced in pairs ofb andb in collisions at the LHC. The polar angles, relative to the beam-

line, of theb andb are highly correlated, and tend to be very small, as shown in figure 2.2.

It is because of this that the LHCb detector has its unique forward-arm design, as shown in

figure 2.3. LHCb covers only the region of high pseudo-rapidity, 1.6 < η < 4.9 [41], where

η = − ln(tan θ/2) andθ is the polar angle from the beam-line. Thus∼30% of b quarks

produced in LHC collisions fall within the acceptance of LHCb.

Analyses at LHCb require displaced decay vertices to be reconstructed very cleanly. Con-

sequently, greater signal purity is achieved for events with relatively few reconstructable in-
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Figure 2.3: The LHCb detector, reproduced from [40].

teractions per bunch crossing. The maximumL delivered by the LHC to ATLAS and CMS

during 2011 resulted inO(10) interactions per bunch crossing. During this run LHCb oper-

ated atL up to4×1032 cm−2 s−1, which provided∼2 reconstructable interactions per bunch

crossing. Although this is∼10 times less than the maximum achieved in 2011 it is still con-

siderably larger than LHCb’s design luminosity of2 × 1032 cm−2 s−1. LowerL is achieved

by using less focused beams at LHCb than for ATLAS and CMS. This means the level of

focusing can be adjusted as the beams attenuate, so that theL at LHCb is kept roughly con-

stant. This is shown in figure 2.4, where a comparison to theL at ATLAS and CMS is made.

By the end of the 2011 run the LHC had delivered an integrated luminosity (
∫

L dt) of 1220

pb−1 to LHCb, of which 1107 pb−1 was collected by LHCb.

To facilitate a clear frame of reference when discussing theLHCb detector a global co-

ordinate system is defined, and is also shown in figure 2.3. Theorigin is located at the point

at which the two LHC proton beams intersect each other and theprotons collide, known as

the interaction point. Thez-axis is parallel to the line of the proton beams, with positive z

pointing into the main LHCb detector, also called the downstream region. They-axis is in

the vertical direction, with positivey pointing upwards, and thex-axis is horizontal, with

positivex pointing into the page.

Each sub-detector in LHCb has a specific purpose, intended to allow accurate reconstruc-

tion of decays of mesons and baryons containingb andc quarks. In addition, they allow one
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Figure 2.4: Instantaneous luminosity vs time at the LHCb, ATLAS and CMS interaction

points, during an LHC fill. Reproduced from [43].

to make as clean a distinction as possible between the decaysof interest and the vast number

of other particles produced in collisions at LHCb that can fake a signal. Shown in figure

2.3, from left to right, the sub-detectors are: the Vertex Locator (VELO), situated directly

around the interaction point, to provide the first tracking points; the first of the Ring Imaging

Cherenkov detectors (RICH1), to provide particle identification; the Tracker Turicensis (TT),

the first of the large tracking stations; the magnet, to bend the trajectories of charged parti-

cles and allow their momenta to be measured; the downstream tracking stations (T1, T2 and

T3), to locate charged particles after they have passed the magnet; the second Ring Imaging

Cherenkov detector (RICH2); the first of the muon tracking stations (M1), to identify any

muons in an event; the electronic and hadronic calorimeters(ECAL and HCAL), to identify

electrons, photons, and neutral pions and kaons; and finallyfour further muon stations (M2

to M5).

The design and performance of each of these sub-detectors will now be discussed in

turn, with particular attention paid to the VELO. The performance of the VELO has great

influence on the lifetime measurements described in chapters 4, 5 and 6. Its performance in

measuring impact parameters is presented in chapter 3.

2.2.1 The Vertex Locator

The Vertex Locator (VELO) [41] is a silicon strip detector that provides precise tracking

very close to the interaction point. As its name suggests, itis used to locate the position

of any proton-proton collisions within LHCb - known as primary vertices (PVs) - as well

as the decay points of any long lived particles produced in the collisions, such asB andD

mesons - known as secondary or decay vertices (SVs or DVs). Knowledge of the positions
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of the PV and DV, as well as the momentum measurements provided by the downstream

tracking stations, allows the calculation of the proper decay time of a long lived particle.

This is key to many analyses performed at LHCb, including those presented in this thesis,

which study asymmetries between particles and anti-particles as a function of proper decay

time. Identifying displaced decay vertices is also of greatimportance to the LHCb trigger,

described in section 2.2.7, which selects which events to keep and which to discard.

2.2.1.1 Design of the VELO

The VELO is required to provide accurate measurements of thetrajectories of charged par-

ticles, very close to the interaction point. To achieve thisit must have very good spatial

resolution, and a sufficient number of sensors as to allow thefull trajectory to be recon-

structed, while keeping the material budget to a minimum. Itmust also continue to perform

well for ∼5 years of data taking for LHCb (
∫

L = ∼8 fb−1), and so must be very radiation

hard.

To minimise the extrapolation distance between the first hitof a reconstructed track and

the interaction point the active regions of the VELO sensorsstart at just 8mm from the

beam-line. This is closer than the minimum safe distance from the beam-line required by

the LHC during injection of the beams. For this reason the VELO was constructed in two

retractable halves, using 88 roughly semicircular siliconwafer sensors, as is shown in figure

2.5. During injection the VELO is open, with each half retracted from the nominal position

by 30 mm, as shown in the bottom right diagram; once stable beams are achieved the VELO

is closed, so that the two halves overlap very slightly, as shown in the bottom left diagram.

This also requires the VELO to sit inside the beam pipe when fully closed. Consequently,

to avoid any degradation of the beam pipe vacuum through out-gassing from the VELO

material, the VELO is contained within its own sealed regionof vacuum. This is achieved

by encasing the two VELO halves in thin aluminium boxes, called the RF-boxes. The inside

surface of the RF-boxes is known as the RF-foil. Aluminium was chosen due to its low Z,

giving it a relatively low radiation length (X0). It also serves to insulate the VELO sensors

from the electromagnetic field of the beams themselves. The boxes are 300µm thick at

their inner edge, and are corrugated to allow the VELO halvesto overlap when fully closed.

Figure 2.6 shows one half of the VELO with the RF-box removed.

The sensors are of two types, one measures the radial position (R), and the other measures

the azimuthal angle (φ) of charged particles that pass through them. The sensors are attached

in pairs of R andφ types to modules holding the readout electronics. 42 such modules are

positioned along the beam-line, 21 on each side; a pair of modules, one on each side of the

VELO, is known as a station. The modules in each station are offset from each other by
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Figure 2.5: The layout of the VELO modules and sensors, reproduced from [41].The

R sensors, which measure the radial position of hits, are shown in red, while φ sensors,

which measure the azimuthal angle of hits, are shown in blue. R andφ sensors are

arranged in pairs on modules, which hold the readout electronics.

15 mm, to allow the slight overlap between the two halves of the VELO when it is fully

closed. This is to allow full coverage in the R-φ plane, and also to aid in the alignment of

the modules. The two most upstream stations, labelled ‘VETOstations’ in figure 2.5, have

only R sensors. These were originally intended to be used to make a quick estimate of the

number of PVs in an event, so that the first level (L0) hardwaretrigger could reject events

with more than one PV. This idea has since been abandoned, butthe VETO stations are still

used at L0 to estimate the number of reconstructable tracks in an event, so as to reject overly

busy events.

The sensitive region of the sensors themselves consists of aroughly semicircular wafer

of silicon 300µm thick, with an angular coverage of∼182◦ . The surface of the silicon is

covered with aluminium strips, to which a bias voltage is applied. A charged particle passing

through the silicon excites electrons which then drift towards the surface of the sensor, and

create a measurable signal in the aluminium strips. This is read out to determine the point
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Figure 2.6: One half of the fully assembled VELO with the RF-foil removed, repro-

duced from [40].

at which the particle intersected the sensor. Each sensor has 2048 strips, making a total of

180,224 readout channels from the VELO. The layout of the strips on each type of sensor is

shown in figure 2.7.

The strips on R sensors are circular, so each strip is at a constant radial distance from

the centre of the sensor. To minimise the strip occupancy (the fraction of events for which a

signal is detected in any single strip), and thus ease track reconstruction, the strips are split

along radial lines, spaced 45◦ apart, into 4 sections of 512 strips each. This shortens the

strips, with the shortest closest to the interaction point.This is important as the particle flux

varies as∼ 1
r2

relative to the beam-line. To further reduce the occupancy,the strips are placed

closer together nearer the centre of the sensors than at the outer edges. The pitch (distance

between adjacent strips) on R sensors varies from 40µm at the inside edge to 101.6µm at

the outer edge, while the strip length varies from 3.8mm to 33.8 mm. This results in an

average occupancy of 1.1% for R sensors [40].

Theφ sensors are designed along similar lines. To reduce the strip length, and thus the

occupancy, they are divided into the inner and outer regions, at a radial distance of 17.25

mm. However, the strips do not exactly follow radial lines fromthe centre of the sensor: in

the inner region they make an angle of∼20◦ to the radial, at the innermost edge; while in

the outer region they make an angle of∼-10◦ to the radial, at 17.25mm. Furthermore, theφ

sensors in adjacent modules are flipped, so the inner strips are at∼-20◦ and the outer strips
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Figure 2.7: The layout of the strips on the R andφ sensors of the VELO, reproduced

from [40].

at ∼10◦ to the radial. This is done to further reduce ambiguities in track reconstruction,

and hence reduce the frequency with which hits in the VELO arepieced together incorrectly.

This layout results in the pitch on aφ sensor ranging from 38µm at the inner edge, to 97

µm at the outer edge, with the strip length ranging from 5.9mm to 24.9mm. The average

strip occupancy is consequently 1.1% in the inner region, and 0.7% in the outer region [40].

Each VELO sensor uses 16 Beetle readout chips [40] (32 per module), with each chip

reading out the charge collected on 128 strips at a rate of 1MHz. From there the analogue

signals are passed to TELL1 readout boards [40], which are based on Field-Programmable

Gate Arrays (FPGAs). There are four FPGAs per TELL1 and one TELL1 per sensor. The

TELL1 boards perform the basic pre-processing required forthe VELO signals. Among

these actions is the digitisation of the analogue signals, converting them to integer value

analogue-to-digital-converter counts (ADC counts) for each strip. Strips with high ADC

counts are then taken as ‘cluster’ seeds. The strips adjacent to these seeds are added to

each cluster, provided their ADC counts are above a certain threshold. The application of

a threshold is known as ‘zero-suppression’ and removes the majority of background noise.

The centre-of-charge of each cluster is calculated as a pulse-height weighted position using

[44]

xcluster =
ΣstripsADCstripxstrip

ΣstripsADCstrip

, (2.1)

wherexstrip is the R orφ position of the strip, andADCstrip is the ADC count of the strip.

This is taken to be the point at which a charged particle has intersected the sensor. These
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data are then sent to data acquisition system (DAQ) for full processing and reconstruction.

The resolution with which the cluster centre is measured depends largely on the spread

of the charge deposited in the VELO sensors by a traversing charged particle. If the charge

is collected by only one strip one cannot infer anything moreabout the true position of the

hit than the position of that strip - such behaviour is known as ‘binary’. If, instead, the

charge is shared between two or more adjacent strips, the distribution of the charge across

these strips can be used to determine the hit position more precisely [45]. The level of

charge sharing between strips is predominantly dependent on the geometry of the strips in the

VELO sensors. Finer strip pitch increases the likelihood that charge is shared across several

strips. Also, particles intersecting the sensors at largerangles, with respect to the normal

to the sensor plane, spread charge more evenly through the silicon. Thus the hit resolution

improves with smaller strip pitch, and with larger intersection angle. The critical geometric

parameter is the ‘projected angle’, which is the angle of intersection when projected onto the

plane to which the strip is normal.

2.2.1.2 Track and Vertex Reconstruction in the VELO

Clustering is only the first stage of event reconstruction in the VELO. The following stages

are performed by the software package MOORE[46], which uses fast reconstruction methods

to be used in the trigger, and also by BRUNEL [47], which performs more accurate recon-

struction after the data have been taken and stored. R andφ clusters on a given module that

intersect each other are combined with the knownz position of the module to make (R,φ,z)

space points. A pattern recognition algorithm is then run toselect sets of points that may

have been created by a single charged particle traversing the detector. These sets of points

are then pieced together to make tracks in the VELO. Several different pattern recognition

algorithms are run, which can result in the same tracks beingfound more than once. Conse-

quently, checks are made so that only one instance of each track is kept.

In MOORE, a simple and fast ‘line of best fit’ calculation is performedto obtain the

trajectory for most tracks, while those deemed to be of physics interest are fitted using a fast

‘Kalman filter’ technique [48, 49]; in BRUNEL a full Kalman filter is performed for all tracks.

The Kalman filter finds the best estimate of the track trajectory, taking into account scattering

and energy loss of the particle as it passes through the detector material. In all cases, any

tracks for which the best fit is not sufficiently good are discarded. This is done to remove so

called ‘ghost’ tracks, that are combinations of random hitsand do not correspond to a single

charged particle traversing the VELO. Figure 2.8 shows an example of tracks reconstructed

by the VELO, from a collision at
√
s = 7 TeV observed during July 2010. Most sensors are

hidden so that the clusters and tracks can be seen clearly. Clusters on R sensors are shown in
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Figure 2.8: A display showing tracks reconstructed in the VELO, during collisions at
√
s = 7 TeV in July 2010, reproduced from [50].

cyan, while clusters onφ sensors are in pink; the fitted track trajectories are shown blue.

Further tracking algorithms find track segments in the TT anddownstream tracking sta-

tions, which are combined with the VELO tracks. Only those tracks which have been re-

constructed in both the VELO and TT and/or downstream trackers obtain a momentum mea-

surement, as the particles making them have been displaced by the magnetic field. This will

be described in more detail in sections 2.2.3 and 2.2.4.

Once all tracks have been found, the position of any PVs in theevent can be determined.

MOORE again uses a fast estimation of the PV positions, by simply histogramming thez

coordinate of the points of closest approach to the beam-line of all tracks and taking the

mean as thez of the PV [48]. BRUNEL uses an adaptive fit method, that iteratively calculates

the PV position so as to minimise theχ2 of the PV, which is calculated as [51]

χ2
PV = Σtracks

IP 2
track

σ(IPtrack)2
, (2.2)

where the impact parameter (IP) of a track is defined as its distance of closest approach to

the PV. At each iteration tracks withIPtrack/σ(IPtrack) > 4 are excluded from the fit, until

convergence is reached. For the best estimate of the error onthe IP,σ(IPtrack), the momentum

of the track must be known; thus, the PV fit is performed after the VELO tracks have been

extended (where possible) into the downstream trackers. The resolution of IP measurements

is the topic of chapter 3.
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2.2.1.3 Performance of the VELO

The performance of the VELO is of critical importance to the majority of LHCb analyses.

The most basic parameter measured by the VELO is the positionof single hits, determined

by the cluster centres. The worst single hit resolution thatcan be achieved by a silicon strip

detector occurs when electrons excited in the silicon by a traversing particle are only ever

collected by a single strip. In this situation, known as ‘binary’, the single hit resolution

is simply given by (strip pitch)/
√
12. The single hit resolution is measured as theσ of a

Gaussian fit to the hit residual distributions. Figure 2.9a shows the distribution of residuals

in a single bin of projected angle and pitch with a single Gaussian fit, showing that the single

Gaussian describes the residuals distribution well. Figure 2.9b shows the resolution of hits

on the VELO R sensors, calculated from 2010 data, as a function of strip pitch, in two bins

of projected angle, with a comparison to the binary situation. The best resolution is 4µm for

40 µm pitch and large projected angles. This is the best single hitresolution achieved by any

LHC detector. As expected, the resolution increases with larger pitch and lower projected

angles. The resolution could potentially be further improved, particularly for tracks at low

projected angles, by studying the distribution of charge within clusters. By doing so one

could modify equation 2.1 to account for any non-linear dependence of the charge sharing

on the true point of intersection, as well as the variation inthe level of charge sharing as a

function of strip pitch and projected angle [45].

The resolution on the positions of PVs found in the VELO is also of great importance.

Equation 2.2 shows that the driving factor in this is the resolution on IP measurements. As

discussed in chapter 3 the IP resolution improves with increasing particle momentum. Figure

2.10a shows the resolution on thex component of IP (IPx) measurements as a function of

pT . Again, the performance of the VELO is very good, achieving aresolution on IPx of< 36

µm for particles withpT > 1GeV. This is in reasonable agreement with expectations from

simulation. The excellent IP resolution is reflected in the PV resolution. The resolutions on

thex andy PV co-ordinates are shown, in figure 2.10b, as a function of the number of tracks

included in the PV fit. For a PV using 25 tracks in its fit the resolution on thex coordinate

of its position is just 13.1µm, while the resolution on they coordinate is just 12.5µm

[50]. The average PV reconstructed in LHCb in fact uses> 50 tracks, but the method of

measuring their resolution requires dividing the constituent tracks of a PV into two sets and

fitting a PV with each set.

Thus the VELO has been found to perform exceptionally well inall key areas for physics

measurements. Its performance with respect to IP measurements is discussed in detail in

chapter 3.
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Figure 2.9: (a) The single hit residuals for hits with projected angle< 4 ◦ and pitch

between 60µm and 64µm, fitted with a single Gaussian. (b) The resolution of R hits

in the VELO, as a function of strip pitch, in bins of projected angle, with comparison to

the resolution of a binary detector. Reproduced from [50].
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2.2.2 The Ring Imaging Cherenkov Detectors

The two Ring Imaging Cherenkov (RICH) detectors at LHCb provide particle identification

for the experiment - that is, determination of the species ofparticles observed in the detector

(i.e. electrons (e), muons (µ), pions (π), kaons (K), or protons (p)). To do this they exploit

the phenomenon of Cherenkov radiation, whereby a charged particle traversing a di-electric

material (radiator) at a velocity greater than the local speed of light in that material emits

photons. These photons are produced at an angle to the particle’s trajectory that is dependent

on its velocity,v:

cos θC =
c

nv
, (2.3)

wherec is the speed of light in vacuum, andn is the refractive index of the material [52].

They are thus emitted in a cone around the particle as it traverses the material, and can be

observed as a ring when they intersect a photo-sensitive surface. For a givenp each different

species of charged particle will produce a ring with a different radius. Thus knowing thep

of a given track, one can compare the expected rings with the photons observed and so infer

the species of the particle that made the track.

2.2.2.1 Design of the RICH Detectors

There are two RICH detectors in LHCb as shown in figure 2.3: RICH1 [53] is positioned

before the magnet and is designed to perform particle identification (PID) for low momentum

particles; RICH2 [54] is situated downstream of the magnet, and is designed to perform

PID for high momentum particles. The momentum range covereddepends on the radiator

material used: RICH1 uses aerogel, withn ≃ 1.03, andC4F10 gas, withn ≃ 1.0014; while

RICH2 usesCF4 gas, withn ≃ 1.0005. Figure 2.11 shows the dependence ofθC on particle

momentum for the different radiators and species of particle. At high momentum all particle

species become indistinguishable by theirθC - this is known as the ‘saturation’ point. Thus

RICH1 covers particles with momenta in the range∼1 GeV to ∼70 GeV , while RICH2

covers the range from∼15 GeV to > 100 GeV. RICH1 also has a much larger angular

coverage, so as to provide PID for all particles within the acceptance of the downstream

tracking stations. Its acceptance starts at 25mrad and extends to 300mrad in the horizontal

axis and 250mrad in the vertical axis, while RICH2 has a smaller coverage, from 15 mrad

to 120 mrad in the horizontal and 100mrad in the vertical. Figure 2.12 shows schematics

of RICH1 and RICH2.

To observe the rings the Cherenkov photons must be collected;this is done using arrays

of Hybrid Photon Detectors (HPDs). A schematic of an HPD is shown in figure 2.13. An

HPD is a vacuum tube with a quartz window, coated with a photo-cathode material, at the
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Figure 2.11: The Cherenkov angle,θC , of photons produced by different particles in

different radiators, as a function of the particle momentum. Reproduced from [40].

(a) The RICH1 detector, in the

y-z plane.

(b) The RICH2 detector, in thex-z

plane (top view).

Figure 2.12: Schematics of the RICH detectors, reproduced from [40].
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Figure 2.13: A schematic of a Hybrid Photon Detector (HPD) as used in the RICH

detectors. Reproduced from [40].

detection end. Photons incident on this window produce photo-electrons which are then

accelerated through a potential of∼20 kV, to be collected by an array of silicon pixels at

the readout end of the tube. This gives the HPDs the ability todetect single photons with a

good efficiency.

The HPDs are carefully shielded from the magnetic field of theLHCb dipole, but a small

field of a few mT still penetrates to the HPDs. This modifies the trajectoriesof the photo-

electrons within them from a simple straight line. Consequently, inferring the point at which

the Cherenkov photon was incident on the quartz window is non-trivial, and care must be

taken to account for the magnetic field. Calibration is achieved by shining known patterns of

photons onto the HPDs and monitoring how the hit pattern on the silicon pixels is modified

by a non-zero magnetic field.

As the HPDs are necessarily very sensitive they must be mounted outside the path of

the majority of particles produced in collisions, to minimise background noise and avoid

damage to their silicon pixels. Arrays of highly reflective mirrors are thus used to direct the

Cherenkov photons into the HPD arrays - their positions in RICH1and RICH2 are shown in

figure 2.12. The first set of mirrors in both RICH detectors are spherical, and serve to focus

the rings of photons and direct them out of the LHCb acceptance; the second set are flat and

simply direct the photons into the HPD arrays. The mirrors must be very precisely aligned

and monitored for movement - this is done via the Laser Alignment Monitoring System

(LAMS) [55].
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Figure 2.14: An example of the distribution of photons observed in the HPDs of the

RICH1 detector, with a comparison to the Cherenkov rings expected for a given track

under theπ andK hypotheses. Reproduced from [57].

2.2.2.2 Particle Identification in the RICH Detectors and its Performance.

Each track reconstructed in LHCb is extrapolated to the HPD arrays as if it had been re-

flected by the RICH mirrors; its point of intersection with the HPDs then lies at the centre

of any rings of Cherenkov photons it may have produced. The PIDalgorithm tries five mass

hypotheses for the track (e, µ, π, K, andp). For each mass hypothesis it uses the momentum

measurements provided by the tracking systems to calculatethe expectedθC for that track,

and thus the expected radius of any Cherenkov rings produced,should it be of that species.

By comparing the hypothesised ring radius with the distribution of the photons observed it

constructs a likelihood for each mass hypothesis [56]. Figure 2.14 shows an example of the

distribution of photons observed in the HPDs of RICH1 comparedwith the expected distri-

bution for a given track under theπ andK hypotheses. There is a clear ring observed that

matches theK hypothesis, while only one photon hit lies on the ring expected from theπ

hypothesis. Thus this track is assigned a high likelihood ofbeing aK.

Such a process has a certain rate of mis-identification, whereby it identifies a track as

being of a certain species other than its true identity. The efficiency with which the PID

algorithm performs can be checked, without the use of simulation, by using decay channels

for which the kinematics of the decay products are sufficientto identify them without using

the RICH detectors. To check this forπ-K separation the decayD∗+ → D0(Kπ)π+ is

used, as applying a tight constraint onm(D∗+) −m(D0) is sufficient to select a very clean

signal sample. Figure 2.15 shows the efficiency, as a function of momentum, of correctly

identifying aK as aK, and wrongly identifying aπ as aK. As expected, correct PID
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Figure 2.15: The efficiency, as a function of particle momentum, with which the RICH

detectors correctly identify aK as aK, and wrongly identify aπ as aK. Measured on

2010 data. Reproduced from [57].

becomes much more difficult at high momentum. The mis-ID rateat low momentum is also

higher than was expected. This is because the aerogel, whichcovers the low momentum

region, absorbed theC4F10, somewhat reducing its efficacy as a radiator. However, the

performance of the other radiators has been as expected fromsimulation. Thus, the RICH

detectors perform their task very well, achieving on average a correct PID rate of> 90 %

and a mis-ID rate of< 10 % forπ, K andp. They are thus indispensable for most physics

analyses at LHCb.

2.2.3 The Dipole Magnet

The dipole magnet at LHCb [58] provides an integrated magnetic field of∼4 Tm in order

to displace the trajectories of charged particles and allowtheir momenta to be measured. A

diagram of the magnet is shown in 2.16. It is a warm (not super-conducting) magnet con-

sisting of two identical, saddle shaped aluminium conducting coils positioned symmetrically

above and below the beam-line. It operates at a nominal current of 5.85 kA. Its polarity can

readily be reversed, so as to cancel any asymmetries in the detection efficiency that might

fake CP-violation. Throughout data-taking in 2010 and 2011 this has been done regularly,

and an approximately equal quantity of data has been taken with each polarity.

In order to make accurate momentum measurements the magnetic field strength through-

out the detector must be known very precisely. To this end a survey of the magnetic field
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Figure 2.16: A diagram of the LHCb magnet, reproduced from [40].

strength was made in 2005 and again in 2011 using Hall probes.This achieved a spatial

accuracy of 0.2mm and a magnetic field strength accuracy of∼0.2 mT . The results of

the 2011 survey are shown in figure 2.17. Over a distance of∼5 m it provides an average

magnetic field strength of∼0.8 T in they direction, thus achieving an integrated field of

∼4 Tm . The resolution of momentum measurements achieved is discussed in section 2.2.4.

2.2.4 The Tracking System

The tracking stations downstream of the VELO serve to provide measurements of the tra-

jectories of charged particles before and after the magnet,to allow measurement of their

momenta. There are four stations: the TT, positioned beforethe magnet, and T1, T2 and T3

downstream of the magnet. The TT and the inner regions of T1-T3 are subject to very high

particle flux, thus they must be very radiation hard, and havesufficiently high granularity

as to keep occupancies low enough for reliable pattern recognition. For these reasons they

consist of silicon strip sensors. They are collectively referred to as the Silicon Tracker (ST),

with the inner regions of T1-T3 alone known as the Inner Tracker (IT). The outer regions

of T1-T3 - known as the Outer Tracker (OT) - suffer significantly less irradiation, and so

cheaper ‘straw tube’ drift-time sensors are used.
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(a) (b) (c)

Figure 2.17: The results of the 2011 magnetic field strength survey. (a) showsBx, (b)

By, and (c)Bz as a function ofz coordinate. The measurements are taken aty = 0.

The data-points in blue are at positivex, those in red at negativex, and those in black at

x = 0. Reproduced from [59].

2.2.4.1 The Silicon Tracker

The Tracker Turicensis (TT) [40, 60] is a planar tracking station, 150 cm wide and 130cm

high, covering the full angular acceptance of LHCb. It is situated after RICH1 and before

the magnet, as shown in figure 2.3. It consists of four planes of silicon strip sensors with

an (x-u-v-x) layout, shown in figure 2.18; thex layers have their detection strips aligned

vertically, while theu andv layers have theirs rotated through−5◦ and+5◦ to the vertical

respectively. This is done for similar reasons as the displacement of the strips on the VELO

φ sensors from the radial line, as described in section 2.2.1.1 - that is, to remove ambiguities

in hit association and ease pattern recognition. The TT silicon sensors are 500µm thick, 9.6

cm long and 9.4cm wide; they have a strip pitch of 183µm and 512 readout channels each,

giving it a total active area of 8.4m2 and 143,360 readout channels.

The Inner Tacker (IT) [40, 62] makes up the inner region of thethree downstream tracking

stations T1-T3 . The sensors are arranged in a cross shape, 120 cm wide and 40cm high,

about the beam-pipe, as shown in figure 2.19. Each station hasfour layers with the same

(x-u-v-x) layout as the TT. The IT sensors are either 320µm or 410 µm thick and are 7.6

cm wide and 11cm long; they have a strip pitch of 198µm and 384 readout channels each.

This gives the IT an active area of 4.0m2 and a total of 129,024 readout channels.

2.2.4.2 The Outer Tracker

The Outer Tracker (OT) [40, 63] makes up the portions of T1-T3farthest from the beam-

line. Due to the lower particle flux in this region cheaper ‘straw-tube’ drift-time sensors are

used. Each ‘straw-tube’ consists of an outer tube with a 5mm diameter, made from 25µm

thick polyimide, to make them gas tight, and 12.5µm aluminium, to transmit the signal

and provide electrical shielding. At the centre of each tubeis a cathode of 40µm thick

carbon doped polyimide. The tubes contain a mixture of 70 % Argon and 30 %CO2 which
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Figure 2.18: The layout of the four detection layers of the TT. Reproduced from [61].

Figure 2.19: The layout of the IT sensors. Reproduced from [61].
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Figure 2.20: The layout of the TT, IT, and OT together. The TT and IT are shown in

purple, and the OT in blue, with the beam-pipe shown in red. Reproduced from [40].

is ionised by traversing charged particles; the electric field of the inner cathode attracts the

ionisation electrons which create a measurable signal. Thechosen gas mixture ensures that

the electron drift time is< 50 ns for the majority of hits.

Each module comprises two staggered layers of 64 tubes, making 128 readout channels;

the diameter of the tubes give the sensors a pitch of∼5 mm. The three OT stations consist of

four layers of sensor modules, arranged in the same (x-u-v-x) layout as used in the ST. The

stations have acceptance up to 300mrad in the horizontal axis, and 250mrad in the vertical;

each station has an active area of∼29 m2 , giving a total of∼55,000 readout channels. The

layout of the TT, IT, and OT together is shown in figure 2.20.

2.2.4.3 Performance of the Tracking System

Reconstruction in the tracking stations follows much the same procedure as was described

for the VELO in section 2.2.1.2: pattern recognition, followed by duplicate removal and

track fitting. The track segments found in the VELO are then combined with those in the

TT and T1-T3 . The knowledge of the magnetic field, described in section 2.2.3, is used

to estimate the curvature of the particle trajectories as they traverse the detector and thus

provide a momentum measurement.

The ST has achieved a hit resolution of∼58 µm , while the OT has a hit resolution

of ∼230 µm [64]. Further, the full tracking system has achieved its target momentum

47



CHAPTER 2. THE LHCB DETECTOR

Figure 2.21: An example of the invariant mass resolutions achieved by the LHCb track-

ing system using 2010 data. Reproduced from [64].

resolution ofσ(p)/p ≃ 0.4%, and consequently achieved some exceptional mass resolutions,

as shown in figure 2.21.

2.2.5 The Calorimeters

LHCb has two calorimeters [40, 65], situated between the firstand second muon tracking

stations: the Electromagnetic Calorimeter (ECAL) is used to provide position and energy

measurements for photons and electrons; the Hadronic Calorimeter (HCAL) does similarly

for hadrons - neutral hadrons in particular, as they cannot be detected by the LHCb tracking

system. They are particularly useful in the first level (L0) trigger, as is described in section

2.2.7, as well as for PID. In order to distinguish electrons from hadrons the ECAL is preceded

by a Scintillator Pad Detector (SPD), that identifies charged particles and allows rejection of

neutral hadrons, and a Pre-shower detector (PS), which detects electromagnetic showers, and

thus identifies only electrons.

2.2.5.1 Design of the Scintillator Pad and Pre-shower Detectors

The SPD and PS detector modules use pads that scintillate when traversed by charged par-

ticles. The light thus produced is read out by wavelength-shifting (WLS) fibres and then

reflected along clear plastic fibres to photo-multiplier tubes (PMTs). In the case of the SPD

and PS multi-anode PMTs (MaPMTs) are used - they receive 64 fibres each, and allow the

fibres to be read out individually, giving a fine granularity to the sensors.

The SPD and PS are in fact almost identical in their design, except for the fact that

the components of the SPD are all∼0.45 % smaller than those of the PS. They consist of

rectangular scintillator pads of varying size, depending on their distance from the beam-line,

as shown in figure 2.22a. This is to account for the vast difference in occupancy between

the inner and outer edges of the detector, as has been discussed for the VELO and tracking
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(a) The segmentation of the SPD, PS,

and ECAL sensors.

(b) The segmentation of the HCAL

sensors.

Figure 2.22: Diagrams showing the segmentation of the calorimeter components. Re-

produced from [40].

stations. Their active area is 7.6m wide and 6.2m high, and they have a total of 12,032

readout channels.

They are placed on either side of a 15mm lead plate, which corresponds to 2.5X0, and

causes electrons to produce electromagnetic showers. Thusthe SPD determines whether a

traversing particle is charged, then the PS determines whether it has created an electromag-

netic shower in the lead plate, allowing the identification of electrons.

2.2.5.2 The Design of the Electromagnetic Calorimeter

The ECAL is designed to provide position and energy measurements for electrons and pho-

tons. Each ECAL module consists of 2mm of lead, to induce electromagnetic showers,

followed by 4 mm of scintillator material. The scintillator pads have a similar design to

the SPD and PS sensors, using WLS fibres to read out the light produced, except that the

fibres are grouped in bundles, and each bundle is passed to a single PMT, giving a coarser

granularity. The ECAL consists of 66 layers of such modules, with each layer arranged as

shown in figure 2.22a. This results in a total depth of 42cm, which corresponds to 25X0.

The energy resolution thus achieved is

σE
E

=
∼ 9%√
E

⊕ ∼ 0.8%, (2.4)

whereE is in GeV.

2.2.5.3 The Design of the Hadronic Calorimeter

The HCAL is designed to provide position and energy measurements for hadrons, particu-

larly neutral hadrons that cannot be detected by the tracking stations. Similarly to the ECAL
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Figure 2.23: The layout of an HCAL module. Reproduced from [40].

sensors, the detector modules consist of alternating absorber and scintillator layers each 1

cm thick, though iron is used as the absorber material. A further difference is that the scin-

tillator and absorber plates are oriented parallel to the beam-line, as shown in figure 2.23. In

the longitudinal direction each iron plate is of lengthλi, the interaction length of hadrons in

steel. Again, WLS fibres are used to read out the light from the scintillator pads to the PMTs.

The granularity of the HCAL modules is varied with distance from the beam-line, as shown

in figure 2.22b, by grouping together the WLS fibres from differing numbers of cells to be

read by a single PMT. The energy resolution thus achieved is

σE
E

=
∼ 69%√

E
⊕ ∼ 9%, (2.5)

whereE is in GeV.

2.2.6 The Muon System

The LHCb Muon tracking system [40, 66] is designed specifically to identify any muons in an

event. It consists of five stations, M1-M5, with M1 positioned before the calorimeters, so as

to provide more accurate transverse momentum (pT ) measurements to the trigger (discussed

in section 2.2.7), and M2-M5 after the calorimeters, as shown in figure 2.3. Iron absorbers

80 cm thick are placed between stations M2-M5, so only high momentum (p >∼ 6GeV)

muons penetrate to M5. M1-M3 have relatively fine granularity in the horizontal direction,

so as to provide accuratepT measurements, while M4 and M5 are much coarser, and serve

mainly to identify high momentum muons. The stations increase in surface area as their
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Figure 2.24: The segmentation of a quadrant of a muon station (left) - each rectangle

represents one chamber - and the segmentation of individual chambers in the different

regions of M1 (right) - each rectangle represents one sensor pad. Reproduced from [40].

distance from the interaction point increases, so as to maintain their angular coverage of 20

mrad to 306mrad in the horizontal axis, and 16mrad to 258mrad in the vertical.

The sensors in M2-M5 are Multi-wire proportional chambers (MWPCs); M1 requires

greater radiation hardness due to its proximity to the interaction point, and so uses Gas

Electron Multipliers (GEMs) for its innermost region, and MWPCs elsewhere. As with the

other subdetectors in LHCb, the granularity of the muon stations varies with distance from

the beam-line, to account for the wide variation in particleflux. They are divided into four

regions, R1-R4, at increasing distance from the beam-line, asshown in figure 2.24. A sensor

in R1 of M1 is∼ 10 × 25mm. The granularity of each region scales with the ratio 1:2:4:8,

so as to give each region roughly the same occupancies.

2.2.6.1 Design of the Gas Electron Multipliers

The innermost region, R1, of M1 consists of 12 GEM chambers. The sensitive regions of

each GEM chamber comprises two triple-GEM sensors. A triple-GEM sensor consists of an

anode and cathode layer, between which lie three GEM foils surrounded by inert gas. A bias

voltage is applied to the cathode and three GEM foils. Thus, ionisation electrons produced

by a traversing muon in the drift gap between the cathode and GEM foils are accelerated

through the GEM foils, and are multiplied by each transition, until they reach the anode and

are read out as a signal. A schematic of a triple-GEM sensor isshown in figure 2.25. The
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Figure 2.25: A schematic of a triple-GEM sensor, as used in R1 of M1. Reproduced

from [40].

gas mixture used isAr, CO2 andCF4 in the ratio 45:15:40, which has been found to give

drift times of less than 3ns.

2.2.6.2 Design of the Multi-Wire Proportional Chambers

The remainder of the muon stations are composed of 1368 MWPCs. Each chamber consists

of two cathode plates, spaced 5mm apart and held at 2600V; between these plates 30µm

thick gold-plated Tungsten wires are fixed, with 2mm spacing, in a mixture ofAr, CO2 and

CF4 in the ratio 40:55:5. Charged particles traversing the chamber create ionisation electrons

which are accelerated towards the wires, where they can be read out. The chambers in M1

consist of two layers of MWPCs, while in M2-M5 four layers are used. Figure 2.26 shows a

schematic of a four layer MWPC.

2.2.6.3 Performance of the Muon System

The layers in each muon chamber are taken as a logical OR to determine the presence of a

muon. In doing so the GEMs achieve an efficiency of more than 96%, while the MWPCs

achieve an efficiency of more than 95%. Figure 2.27a shows theefficiency with whichµ are

correctly identified, as a function ofp, while figure 2.27b shows the efficiency with which a

π is mis-identified as aµ. This is calculated using pairs ofµ from J/ψ decays, as theJ/ψ can

be positively identified by its invariant mass, without using the information from the muon

system. The correct ID rate is> 95 % and the mis-ID rate is just a few % for all momenta,

demonstrating the excellent performance of the muon system.
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Figure 2.26: A schematic of a four layer MWPC, reproduced from [40].

(a) The efficiency of correctly identifying aµ vs

p.

(b) The efficiency of mis-

identification ofπ asµ vsp.

Figure 2.27: PID efficiencies achieved by the muon tracking stations as a function ofp.

Reproduced from [67].
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2.2.7 The Trigger System

Due to the high collision rate provided by the LHC only a fraction of events reconstructed

in LHCb can be retained. The decision of whether to keep or discard any given event is

made by the Trigger system [40]. The rate of events detected by LHCb during 2011 was

∼10 MHz. The Trigger is designed to reduce this to a manageable storage rate of∼3 kHz,

by selecting only those events that are most interesting forphysics analyses. The limiting

factor in the data retention rate is the computing resourcesavailable: the data can only be

written to permanent storage at a certain rate, and a limitedvolume of raw storage space is

available. Further, the data must be copied to several locations globally, both for backup and

to spread the demands on any one storage element, and so must be of a manageable size.

Finally, the full offline reconstruction of the data is very CPU intensive, taking∼1.5 s per

event. Full datasets must be reconstructed within reasonable time limits, so time cannot be

spent reconstructing events that are of limited physics interest.

In order to reduce the retention rate while maximising the signal content of the data the

Trigger is designed in three levels: the level-0 (L0) trigger, and the High Level Triggers

HLT1 and HLT2. These are operated in a logical AND mode, such that only events passing

L0 are processed by HLT1, and only events passing HLT1 are processed by HLT2. Events

failing any of these stages are discarded, while those that pass all three are sent to permanent

storage.

2.2.7.1 The Level-0 Trigger

The L0 trigger is hardware based and aims to reduce the event rate from∼10 MHz to

∼1 MHz, the rate at which data from all detector components can be read out. It is imple-

mented in custom electronics, called the L0 Decision Unit (L0DU), as it is required to make

a decision within 1µs. Consequently it only uses information from the calorimeters, muon

stations and the VETO stations of the VELO. Due to the relatively high mass of mesons and

baryons containingb andc quarks their decay products tend to have high transverse momen-

tum,pT , and energy,ET , of severalGeV/c. Thus the L0DU uses the calorimeters to look for

highET clusters, produced by electrons, photons or hadrons, and the muon stations to find

pairs of highpT muons. Events with very high track multiplicity contain toomany potential

backgrounds to be worth keeping, thus the L0DU also uses the SPD and the VELO VETO

stations to perform a quick estimate of how many tracks can bereconstructed by LHCb, and

discards events in which this number is too high.

Should an event contain a sufficiently highET γ, e, or hadron, or a sufficiently highpT

pair of muons, and sufficiently few reconstructable tracks,it is passed to HLT1; otherwise it
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is discarded.

2.2.7.2 The High Level Trigger

The data from all detector elements are read out for events passing L0. These data are then

passed, at a rate of∼1 MHz, to the Event Filter computer Farm (EFF), which runs the HLT

algorithms. The HLT is implemented in C++ in the software package MOORE, and uses

simple, fast reconstruction algorithms. During early datataking in 2010 there were 4400

computer cores in the EFF, and another 4800 were added that October to enable data taking

at higherL. In 2011 theL increased further and 6000 more cores were added, bringing the

total to 15,200.

HLT1 attempts to confirm the L0 decision by matching the clusters in the calorimeters or

muon stations to tracks in the VELO and tracking stations, orconfirm the absence of tracks

for clusters made byγ and neutral hadrons. For charged particles the matched track must be

confirmed to have sufficiently highpT , and have an impact parameter greater than 0.11mm

with respect to all primary vertices in the event. HLT1 reduces the retention rate to∼30 kHz,

and passes the events selected to HLT2.

HLT2 uses the full detector information to reconstruct and select candidates for the de-

cay channels of interest for physics analyses. It consists of many selection algorithms of

many different types, each looking for a specific decay channel and applying different re-

quirements to the candidates found. This is done by the software package DAV INCI [68].

The candidates are made by combining sets of tracks under thehypothesis that they are the

decay products (‘daughters’) of a single ‘mother’ particle. Their momenta are summed to

give the momentum of the mother particle, and a vertexing algorithm run to find the most

likely decay point of the mother.

Most selections require that the tracks make a good vertex,i.e. pass within a minimum

distance of each other; that the sum of the tracks’ momenta points sufficiently close to a

primary vertex; and that the invariant mass of the mother thus made is within a certain range

of the known mass of the particle they aim to select. The full reconstruction performed in

HLT2 also allows the selections to use error information on values like flight distance and

impact parameters, and thus cut on theirχ2 rather than their raw values, as is done in HLT1.

Some selections require the mother particle to be fully reconstructed,e.g.D0 → Kπ, and

are thus called ‘exclusive’ selections; others, known as ‘inclusive’ selections, only require

the mother to be partially reconstructed,e.g.B0→ J/ψX, whereX can be any particle, and

need not necessarily be reconstructed.

Each selection in HLT2 is taken in a logical OR to decide whether to keep or discard an

event, thus reducing the event retention rate to∼3 kHz. Events passing HLT2 are sent to
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permanent storage, to be fully reconstructed offline and used in physics analyses.

2.2.8 Offline Data Processing and Simulation Software

2.2.8.1 Offline Data Processing

Once the raw data selected by the trigger are stored, they need to be reconstructed fully be-

fore any physics analyses can be performed. The offline reconstruction is performed by the

software package BRUNEL. This takes the raw hits and clusters read out from the detector

and produces tracks and primary vertices, as was described for the VELO in section 2.2.1.2.

It then associates these tracks with Cherenkov rings in the RICHdetectors, as described

in section 2.2.2.2, and with clusters in the calorimeters and muon stations, and produces a

likelihood for each track beingπ, K, e, µ or p. The track and vertex fitting, and the PID

algorithms used by BRUNEL are very rigorous, and result in a significant improvement in

the resolutions of measurable parameters over the fast algorithms used in MOORE. How-

ever, this makes reconstruction process very CPU intensive,taking∼1.5 s per event. Thus

all the data from stable running periods are reconstructed in single sessions at times when

stable versions of the reconstruction algorithms and detector alignment information are pro-

duced. The processing session for data from the 2011 run tookseveral months to complete.

A ‘reprocessing’ involves running the reconstruction on data that have been previously re-

constructed, and is only performed when it is deemed entirely necessary,e.g.when a new

detector alignment has been produced that significantly improves the data quality. The files

output by BRUNEL contain all the information concerning the fully reconstructed PVs, tracks

and their PID likelihoods, and are saved to permanent storage.

With the fully reconstructed tracks with full PID information available, searches can be

performed for the particles of interest, such asB andD mesons. This is performed by the

software package DAV INCI, as was described for HLT2 in section 2.2.7.2: sets of tracks

are combined under the hypothesis that they were made by the daughters of a single mother

particle, and the mother particle’s momentum and trajectory defined as the sum of those of

the daughters. Similarly to HLT2 a set of selection algorithms are run on the data, each

looking for a separate decay channel and applying differentselection criteria to the candi-

dates found. These are known as ‘stripping’ selections, anddiffer from HLT2 in that they

are performed on the fully offline reconstructed data, and can exploit the significantly better

resolution on measurable parameters. The stripping selections serve to confirm the HLT2

decisions, or apply tighter selections to remove backgrounds more effectively, using all the

information available offline. The stripping algorithms are run directly after the data have

been reconstructed, during a data processing or reprocessing session. The stripping algo-
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rithms are grouped broadly by the specific decays they analyse, e.g.B meson decays, orD

meson decays. Each group produces its own output files which constitute a much reduced

dataset containing only the candidates that are of interestto the specific analyses for which

the stripping selections in that group were designed. DAV INCI can then be run again by

the end user to extract the parameters of interest for their analyses from the candidates thus

stored,e.g.the mass or proper decay time of the mother particle, so that fits can be performed

to extract the underlying physics parameters.

2.2.8.2 Simulation Software

Although the analyses presented in this thesis use data driven techniques for the measurement

methodology and to evaluate systematic uncertainties, accurate simulation of the whole colli-

sion and detection process is important to verify many physics analyses performed at LHCb.

For this reason a full simulation of the LHCb detector has beenwritten using the software

package GEANT4 [69]; this is contained in the software package GAUSS. GAUSS uses the

physics simulation packages PYTHIA [70] and EVTGEN [71] to simulate proton-proton col-

lisions like those provided by the LHC. The particles thus produced are then propagated

through the simulated detector and their interactions withthe detector material,e.g.scatter-

ing and deposition of energy, is also simulated. The response of the detector elements to

these energy deposits is simulated by the package BOOLE. The energy is transformed into

signals in the detector sensors, and any pre-processing performed by the detector readout

electronics is also simulated, resulting in raw data in the same format as is read out from the

detector in reality.

From there, the simulated data can be treated identically todata read out from the detec-

tor: the trigger can be run using MOORE; the data can be fully reconstructed using BRUNEL,

and parameters of interest extracted by DAV INCI. The added benefit of the simulated data is

that the particles generated by PYTHIA can also be saved. By accessing this information and

comparing it to the hits, tracks and particles reconstructed in the detector one can easily as-

sess reconstruction and selection efficiencies,etc.; in addition one can confirm the validity of

any physics analyses by comparing the values of the physics parameters extracted from the

reconstructed data to those used in generating the collisions and their products. Thus such

simulation is essential to verify the performance of the detector and the analyses performed

using the data it records.
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2.3 Summary

This chapter has described in detail the design and performance of the LHCb detector, one

of the experiments on the LHC at CERN. Each of the subdetectors comprising LHCb was

discussed in turn and details given as to their construction. Where possible, an evaluation

of their performance using data collected so far by LHCb was shown, demonstrating the

excellent performance of the detector as a whole. The trigger system, used to select which

events to keep and which to discard, was described. The data processing required to perform

physics analyses, and the software packages that perform it, was also discussed. Finally, a

brief description was given of the software packages used inperforming full simulations of

the physics processes at the LHC and the response of the LHCb detector. How these are used

to verify the performance of the detector and the accuracy ofthe physics analyses performed

at LHCb was also detailed.
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Measurement and Characterisation of

Impact Parameter Resolutions

The impact parameter (IP) of a track with respect to a certainspace point (such as a primary

vertex (PV)) is defined as the distance of closest approach ofthe track to the point, as is

shown in figure 3.1a. Tracks made by daughters of long lived particles, that are produced

at a displaced decay vertex, consequently tend to have much larger IPs with respect to any

PVs in an event, as is shown in figure 3.1b. Further the IP of thedaughter particle is strongly

correlated to the proper decay time of the mother particle:

IP3D = | ~IP |
= |DV − PV | sin θ

=
|~pmother|τ
mmother

sin θ, (3.1)

wherePV is the position of the PV,DV , ~pmother, mmother andτ are the decay vertex, mo-

mentum, mass and proper decay time of the mother particle.θ is the opening angle of the

daughter particle with respect to the mother particle, defined as

cos θ =
~pdaughter · ~pmother

|~pdaughter||~pmother|
, (3.2)

where~pdaughter is the momentum of the daughter particle.

When looking for a specific species of particle all possible combinations of tracks are

tried to see if any of them fulfil the criteria for having been made by the daughters of a

particle of that species, as described in section 2.2.8. Thus, one type of background that

any analysis like those conducted at LHCb must deal with is from combinations of random

tracks made by particles that don’t have the same mother particle, but happen to produce a

candidate that looks like signal. Such candidates are knownas ‘combinatorial backgrounds’.
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(a) The definition of the impact parameter of a track

with respect to a primary vertex.

(b) The dependence of impact parameters of daughter particles

on the flight distance of their mother particle. HereDV is the

decay vertex of the mother particle, and~p the momentum of the

daughter particle.

Figure 3.1
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Selection criteria are applied to all candidates to minimise the background contamination.

The majority of tracks detected by LHCb are made by direct products of the fragmentation

of the colliding protons, which are produced exactly at the PV. Such tracks will thus have

small IPs with respect to the PV. The fact that the daughters of long lived particles tend to

have very large IPs thus makes the daughter IP a very powerfulselection criterion when

trying to exclude backgrounds. Cutting onχ2
IP is even more powerful. Theχ2

IP of a track is

defined as the increase PVχ2, as calculated using equation 2.2, when the track is added tothe

PV fit (note that this is not exactly equal toIP 2/σ2
IP as the position of the PV changes with

the addition of the track). Tracks made by particles produced at the PV haveχ2
IP consistent

with having IP= 0, while those made by particles not produced at the PV tend to have much

largerχ2
IP .

Asχ2
IP cuts are so common it is very important to verify that the uncertainties calculated

for IP measurements are accurate. To do this one must have detailed measurements of IP

resolutions, and a full understanding of what affects the resolution on such measurements.

This chapter presents a method to evaluate the resolution with which IP measurements can

be made at LHCb, without the use of simulation, and the resultsof its use. Detailed com-

parisons with results obtained from simulated data are thenmade. Section 3.1 discusses the

effects that contribute to IP resolutions; section 3.2 discusses the method used to evaluate IP

resolutions; section 3.3 demonstrates how the expected behaviour is observed, and makes a

comparison between real and simulated data; and finally, section 3.6 presents a more detailed

analysis and comparison, including checks of the error parametrisation.

3.1 Contributing Factors

There are three main factors that cause a reconstructed track to deviate from the original

trajectory of the particle that made it, and thus influence the resolution with which IP mea-

surements are made: the resolution with which the position of single hits on the track can

be determined (the ‘detector resolution’ or ‘single hit resolution’); the amount of detector

material through which particles must pass; and the distance between the first hit on a recon-

structed track and the interaction point [72]. The effects of these factors are shown in figure

3.2.

A particle passing through the detector material interactswith the electrons and nucleons

therein and is deflected through a small angleθ0. The distribution of the scattering angles is

assumed to be Gaussian with mean zero andσ given by [73]

σθ =
0.0136

p

√

x/X0[1 + 0.038 ln(x/X0)], (3.3)
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(a) A diagram of the VELO showing the effects of multiple scattering in

detector material and extrapolation distance to the interaction point on im-

pact parameter resolution. The solid red lines show the truetrajectory of

the particle, while the dashed red lines show the reconstructed trajectory

of the particle. When a particle passes through the detector material its

trajectory is displaced by a small angleθ0. When the trajectory is then ex-

trapolated back to the PV over the distance∆01 this causes a displacement

of the IP of sizeθ0∆01.

(b) A diagram of the VELO showing the effects of single hit resolution

and extrapolation distance to the interaction point on impact parameter

resolution. The solid red lines show the true trajectory of the particle, while

the dashed red lines show the reconstructed trajectory of the particle. As

the reconstructed hit positions are slightly displaced from the true point

of intersection of the particle with the sensors this causesa displacement

to the IP when the trajectory is extrapolated to the PV. The size of this

displacement is dependent on the single hit resolutions on each hit, the

extrapolation distance to the PV, and the distance between the two hits.

Figure 3.2
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wherep is the momentum of the particle inGeV, x is the distance travelled by the particle in

the material, andX0 is the radiation length of the material. The resulting contribution to the

IP resolution is the scattering angle multiplied by the distance between the interaction point

and the first hit on the reconstructed track,∆01.

To evaluate the effects of single hit resolution one must consider how a track is recon-

structed from the hits in the detector. If a track is reconstructed using linear interpolation

between two space points~r1 and~r2 its trajectory is given by

~r(t) = ~r1 + (~r2 − ~r1)t, (3.4)

wheret is the parameter of the line. Assuming the PV is at the origin the value oft at the

point of closest approach of the track to the PV (tPOCA) is found by minimising|~r(t)|2 with

respect tot, which gives

tPOCA =
−~r1 · (~r2 − ~r1)

|~r2 − ~r1|2
. (3.5)

Thus the impact parameter is

~IP = ~r(tPOCA)

= ~r1 + (~r2 − ~r1)tPOCA

= ~r1 + (~r2 − ~r1)

(−~r1 · (~r2 − ~r1)

|~r2 − ~r1|2
)

=
1

|~r2 − ~r1|2
(

~r1 |~r2 − ~r1|2 − (~r2 − ~r1) (~r1 · (~r2 − ~r1))
)

. (3.6)

Adopting a 2Dr-z coordinate system such that~rn =

(

rn

zn

)

this simplifies to

~IP =
r1(z2 − z1)− z1(r2 − r1)

|~r2 − ~r1|2

(

z2 − z1

−(r2 − r1)

)

. (3.7)

Requiring that the track passes through PV (the origin) we have that~r2 = z2
z1
~r1, sor2 = z2

z1
r1,

which gives ~IP = ~0.

The finite single hit resolution results in the reconstructed hit positions being slightly

displaced from the true point of intersection of a particle with the sensors. If one neglects

thez resolution but applies anr resolution such thatrn → rn + δrn, requiring that the track

passes through the PV in the absence of the resolution effects gives

~IP =
(r1 + δr1)(z2 − z1)− z1(

z2
z1
r1 + δr2 − r1 − δr1)

|~r2 − ~r1|2

(

z2 − z1

−( z2
z1
r1 + δr2 − r1 − δr1)

)

=
δr1z2 − δr2z1

|~r2 − ~r1|2

(

z2 − z1

−( z2
z1
r1 + δr2 − r1 − δr1)

)

. (3.8)
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Thus

∣

∣

∣

~IP
∣

∣

∣ =

(

(δr1z2 − δr2z1)
2

|~r2 − ~r1|4
(

(z2 − z1)
2 + (

z2
z1
r1 + δr2 − r1 − δr1)

2

)

) 1
2

=
δr1z2 − δr2z1

|~r2 − ~r1|
. (3.9)

Figure 2.9a shows that the single hit residuals are well described by a single Gaussian, thus

the resolution parametersδrn follow Gaussian distributions with mean zero. When Gaussian

random variables are added or subtracted the resulting variable is Gaussian withσ2 equal to

the the sum of the variances of the underlying variables, andmean equal to the sum of their

means. Thus the contribution to the IP resolution that results from the single hit resolution

will be Gaussian with mean zero andσ given by

σ2
hit =

σ2
1z

2
2 + σ2

2z
2
1

|~r2 − ~r1|2
, (3.10)

whereσn is ther hit resolution at~rn. Figure 2.9 shows that ther hit resolution is linearly

dependent on the strip pitch. One can crudely approximate the variation in strip pitch of the

VELO sensors as being proportional to the radial distance from the beam-line. Under this

approximation one has thatσ2 = r2
r1
σ1 =

z2
z1
σ1, and so

σ2
hit =

2σ2
1z

2
2

|~r2 − ~r1|2

= f 2
12σ

2
1, (3.11)

wheref12 ≡
√
2 z2
|~r2−~r1| is the ‘extrapolation factor’ [72]. As the PVs reconstructed by LHCb

are not exactly at the origin one must replacez2 with z2 − zPV ≡ ∆z02, and sof12 =√
2 ∆z02
|~r2−~r1| .

Of course, tracks in the VELO are reconstructed from hits in more than two VELO

stations. Thus a point in thenth station downstream of the first hit,~pn, is used instead

of ~r2 to calculate the extrapolation factorf1n. Using that|~rn − ~r1| n→∞→ ∆z02, one has

thatf1n
n→∞→

√
2, and so the contribution of hit resolution to IP resolution is reduced asn

increases. Particles are also scattered as they pass through the sensors downstream of the

first hit on their corresponding track. Thus, exactly whatn to use is dependent on thep of

the particle. As each VELO sensor is 300µm thick and the radiation length of silicon is

93.7 mm a VELO module comprises 0.64 % of one radiation length. In [72] it is reasoned

that, as the VELO stations are spaced 30mm apart about the interaction point, equation 3.3

finds that the displacement due to multiple scattering of a particle as it travels between two

VELO stations is0.032
p mm, for p in GeV. As the mean single hit resolution is∼8 µm
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this displacement is smaller than the hit resolution forp > 4GeV. Thus one should use

n = 2 + ⌊p/4⌋, for p in GeV, to calculatef1n.

In 2D geometry the IP resolution can thus be described by a Gaussian with mean zero

andσ given by

σ2
IP = σ2

hit + σ2
θ∆

2
01

= f 2
1nσ

2
1 +

(

0.0136

p

√

x/X0[1 + 0.038 ln(x/X0)]

)2

∆2
01

= f 2
1nσ

2
1 +

(

0.0136

pT

√

x/X0[1 + 0.038 ln(x/X0)]

)2

r21, (3.12)

using∆01/p = r1/pT , wherer1 is the radius of the first hit on the track.

In 3D geometry an IP has two degrees of freedom - three as it is adistance in 3D space,

minus one from the requirement of being taken at the point of closest approach to the PV. The

two underlying variables have identical Gaussian distributions withσ given by equation 3.12,

and so the measured IP resolution is decoupled into its 1Dx andy components, as shown

in figure 3.1a. Due to the forward geometry of LHCb thez component is negligible. An IP

measurement in 3D space is thus simply the sum in quadrature of its x andy components,
√

IP2
x + IP2

y. The mean offset of such a measurement from its true value is given by the

resolution on the 1D components multiplied by
√

π/2.

Measuring theσ of the distributions of IPx and IPy as a function of1/pT one thus expects

a roughly linear distribution withy-intercept dependent on the single hit resolution, and gra-

dient dependent on the detector’s material budget.f1n has some dependence on momentum

due to the dependence ofn on momentum. However, as this is a much weaker dependence

than for multiple scattering it contributes little to the gradient of the distribution.

3.2 Measurement Methodology

As stated previously, the vast majority of particles detected by LHCb are produced exactly

at the point of the proton-proton collision, and thus only have non-zero IP due to resolution

effects. Assuming the fraction of particles produced at displaced decay vertices and the

fraction of mis-reconstructed tracks to be negligible, onecan examine IP resolutions simply

by measuring the IP of all reconstructed tracks with respectto the PVs in an event.

As there is a non-zero resolution on the position of reconstructed PVs this also makes

a small contribution to the measured IP. The position of a PV is calculated by minimising

theχ2
IP of a set of tracks with respect to the PV, as described in section 2.2.1.2 and in [51].

Consequently each track included in the fit has some influence on the position of the PV. To

correctly account for this each track must be excluded from the PV fit and the PV refitted,
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so that the track has no influence on the PV position, before the IP of the track is calculated.

The contribution of PV resolution to the measured IP can be minimised by using only PVs

which have been fitted using a large number of tracks, and thushave much smaller resolution

on their position. Alternatively, one can use an independent measurement of the PV position

resolution to decouple it from the measured IP.

In order to minimise the contribution from mis-reconstructed ‘ghost’ tracks and poorly

reconstructed tracks that are excluded from most analyses,quality requirements are placed

on the tracks used. These are

χ2(track)/NDOF (track) < 4

N.VELORhits > 5

N.TThits > 0

pT > 300MeV

p < 500GeV, (3.13)

where ‘N. VELO R hits’ is the number of hits on the track in VELOR sensors, and‘N. TT

hits’ is the number of hits on the track in the ‘Tracker Turicensis’ (the first of the tracking

stations downstream of the VELO). Theχ2/NDOF cut simply requires the tracks to be well

fitted, and similarly for the minimum requirement on the number of VELO hits used in the

track. An analogous cut on the minimum number of hits is used in HLT1. The maximum

limit on p excludes any tracks that are very close to being straight lines, and thus have

very poor momentum resolution, while the minimum limit onpT removes tracks that are

excessively curved, and thus likely to be mis-reconstructed. Finally, requiring at least 1 hit

on the track in the TT reduces the likelihood that the VELO segment of the track is mis-

reconstructed. Further, only tracks that have been reconstructed in both the VELO and the

tracking stations downstream of the dipole magnet are used,as these have the most reliable

momentum measurements. On simulated data these reduce the fraction of ghost tracks from

∼13 % to∼1.7 %, and the fraction of tracks from particles produced at displaced vertices

from∼9.2 % to∼3.9 %.

Having done this, one can then examine the distributions of IPx and IPy and perform

Gaussian fits to extract the resolution.

3.3 Basic Characterisation

In this section the effects of PV resolution are suppressed by requiring the PV to be recon-

structed with more than 25 tracks. This is a reasonably soft cut, as most PVs are recon-

structed with 50 or more tracks, but ensures that the PV resolution is generally much smaller
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Figure 3.3: The distribution of IPx residuals for tracks with1.35 < 1/pT [ GeV/c] < 1.5

with a single Gaussian fit. Made using 2011 data.

than the IP resolution. To avoid any mis-association of tracks with PVs only events with one

reconstructed PV are used. Figure 3.3 shows the distribution of IPx residuals in the highest

occupancy bin of1/pT overlaid with the single Gaussian fit. While the single Gaussian does

not describe the data exactly it is sufficiently good as to give an estimate of the resolution.

Figure 3.4 shows theσ of Gaussian fits to the distributions of IPx and IPy in bins of1/pT ,

with data taken in early 2011 shown in black. The resolutionsof IPx and IPy follow almost

identical distributions and a strong, roughly linear, dependence on1/pT is seen, as predicted

by equation 3.12. The results of linear fits to the distributions are also shown. As is also

shown in section 2.2.1.3 for tracks withpT > 1GeV the IP resolutions are≤ ∼35 µm,

showing the excellent performance of the VELO in this respect. The same measurement on

simulated data is shown in red. The differences between IP resolutions for real and simulated

data are discussed in sections 3.4 and 3.6.

Due to the complicated shape of the RF-foil the material budget varies greatly across

different regions of the VELO. In particular, there is significantly more material in the region

in which the two halves of the VELO overlap, as do the two sidesof the RF-foil. Figure 3.5a

shows the mean amount of material, in radiation lengths, intersected by tracks between the

PV and their first hit, as a function of the azimuthal angleφ of the tracks. The material budget

is obtained by extrapolating tracks through the simulated description of the detector, for both

real and simulated data, and averaging the amount of material intersected by the tracks in

each bin. Thus, the value obtained may not be entirely accurate for real data, but at least

gives a rough estimate. Also shown are the regions inφ that correspond roughly to the two

separate halves of the VELO- the A and C sides. In the overlap region, aboutφ = ±π/2, the

tracks intersect∼3.5 times as much material before their first hit as tracks outside the overlap

region. Figure 3.5b shows the resolution of IPx as a function ofφ, which clearly mirrors the

distribution of the material. As tracks with a range ofpT values are used to make this plot
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Figure 3.4: The resolution of (a) IPx and (b) IPy as a function of1/pT , comparing mea-

surements made using 2011 data to those made using simulated data. This is measured

as theσ of a single Gaussian fit to the residual distributions in each bin, an example of

which is shown in figure 3.3.

the single Gaussian fits performed to obtain the resolution do not fit the data very well, but

provide an estimate of the average resolution. Plotting theresolution as a function of1/pT

for tracks in the overlap region, defined asφ ∈ [−5π
8
, −3π

8
]∪
[

3π
8
, 5π

8

]

, one obtains figure 3.5c,

while tracks outside the overlap region give figure 3.5d. They intercepts of the distributions

in these two figures are very similar, while the gradient in the overlap region is considerably

larger. This is in agreement with the predictions of equation 3.12, as the material budget only

affects the gradient of the distribution as a function of1/pT .

The fast reconstruction algorithms used in the HLT, described in section 2.2.1.2, result

in a slightly worse single hit resolution than that of the rigorous methods used offline. Thus,

to evaluate the effect of varying the single hit resolution one can compare the IP resolutions

attained in the HLT to those found offline, as shown in figure 3.6a. Both the HLT reconstruc-

tion methods yield largery-intercepts than the offline method, as a result of the poorerhit

resolution, again in agreement with equation 3.12. The simplest ‘line of best fit’ method used

in the HLT, labelled ‘HLT Unfitted’ in the figure, does not takeinto account the scattering

of particles as they pass through detector; thus, multiple scattering contributes more strongly

to the IP resolution, resulting in a steeper gradient as a function of 1/pT . The fast Kalman

filter method used in the HLT, labelled ‘HLT Fitted’, does notsuffer from this short-coming.

Hence, it agrees well with the offline resolutions at lowpT (high 1/pT ), and differs only at

high pT due to the poorer hit resolution. It in fact appears slightlybetter than the offline

resolutions at lowpT . This may be due to the fact that the HLT pattern recognition has a

lower track finding efficiency than the offline algorithm, particularly at low momentum, and

68



CHAPTER 3. STUDY OF IMPACT PARAMETER RESOLUTIONS

 [rad]φ
-3 -2 -1 0 1 2 3

0
M

ea
n 

x/
X

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

LHCb Preliminary

 = 7 TeVs
2011 Data
Simulation

C Side C SideA Side

(a) The mean material budget, in radi-

ation lengths, in the simulated descrip-

tion of the detector between the interac-

tion point and the first hit on a track, as

a function of the azimuthal angleφ. This

is calculated by extrapolating tracks from

both real and simulated data through the

simulated description of the detector, and

so does not necessarily represent the ma-

terial budget of the VELO in reality.

 [rad]φ
-3 -2 -1 0 1 2 3

mµ

20

30

40

50

60

70

80

90

100

110

LHCb Preliminary

 = 7 TeVs
2011 Data
Simulation

C Side C SideA Side

(b) The average resolution of IPx as a

function of the azimuthal angleφ of the

tracks, integrating overpT . The dashed

lines show the divisions used to select the

overlap region and its complement when

making figures (c) and (d).
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Figure 3.6

so only finds the better quality tracks.

At the beginning of the 2010 run the stability of the LHC beamswas not verified, and so

some data was taken with the VELO open. As the beam stability improved the VELO was

gradually closed. This affords the opportunity to check theeffect of varying extrapolation

distance on IP resolutions, by measuring them for each valueof the VELO opening, as shown

in figure 3.6b. As track and vertex reconstruction is more difficult with the VELO open the

minimum number of R hits in the VELO was reduced to 3 and the minimum number of

tracks used to reconstruct the PV reduced to 10 to make these plots. The effects of single

hit resolution and multiple scattering are both amplified bythe extrapolation distance, thus

the IP resolution is increased uniformly at larger VELO openings. The sensitive area of the

VELO sensors starts at 8.2mm from the beam-line, thus with the VELO open at 10mm

it starts at
√
8.22 + 102 ≈ 12.9 mm, and for 14mm opening at∼16.2 mm. It is apparent

that the gradient of the distribution as a function of1/pT scales roughly linearly with the

distance to the sensitive region, while they-intercept has a more complicated dependence.

This behaviour is also predicted by equation 3.12.

Thus the expected behaviour of IP resolutions with varying single hit resolution, material

budget and extrapolation distance has been shown to agree qualitatively with that predicted

by equation 3.12. A quantitative comparison is made in section 3.6.
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3.4 Comparison to Simulated Data

From figures 3.4 and 3.5 it is clear that IP resolutions behavein the same manner in simulated

data as in real data, though there are some striking differences. They-intercepts of the

distributions as a function of1/pT , shown in figure 3.4, are very similar for simulated data

and 2011 data, indicating that the hit resolutions agree reasonably well between them. This

has been confirmed by independent measurements of the singlehit resolution [50]. The large

difference in the gradients of these distributions, however, suggests an issue with the detector

material in the simulation. Figure 3.5a shows that the tracks from real and simulated data

intersect roughly the same amount of material in the simulated description of the detector.

The small differences observed are likely due to differences in the distributions of tracks and

PVs between real data and simulation. However, figures 3.5c and 3.5d show that there is a

good agreement between simulated and 2011 data in the overlap region of the VELO, and a

large discrepancy in their gradients as a function of1/pT elsewhere. This could mean that

there is material missing from the simulated description ofthe detector, that the distribution

of the material is incorrect, or that the model of multiple scattering in the detector material

is incorrect in the simulation.

To explain this discrepancy, any material missing from the simulated description of the

VELO must be outside the overlap region. However, the gradient of the distribution as a

function of1/pT depends on
√

x/X0. Thus, it would require∼50 % more material outside

the overlap region in reality than in the simulation to account for the difference in gradients

between real and simulated data. This stimulated detailed studies into the simulation of the

VELO [74]. Only small discrepancies in the amount of material were found, though some

differences in the shape of the RF-foil were apparent. One error discovered was that the

RF-foil was 250µm thick in the simulation, which was the original design value. This was

corrected to the actual manufactured value of 300µm. This increased the gradient of the

IP resolution as a function of1/pT only slightly. The RF-foil is known to in fact be∼15 %

heavier in the simulation than in reality after this correction. This explains why the resolu-

tions on simulated data are actually slightly worse than on real data in the overlap region.

Tomography of the VELO has also been performed using real andsimulated data, by exam-

ining the distributions of vertices formed by interactionsin the VELO material [75]. Again,

small discrepancies are evident between data and simulation, particularly in the shape of the

RF-foil, but it is not clear if this is sufficient to account forthe difference in IP resolutions.

Studies of the effects of using a more accurate model of the RF-foil in the simulation are

currently under way.

The modelling of multiple scattering in GEANT has also been studied in detail [76, 77],
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but only very small issues have been found. Thus the source ofthe discrepancy is still

under investigation. More detailed comparisons of IP resolutions on real and simulated data

are made in section 3.6, with particular attention paid to the implications for the material

budget.

3.5 The Effects of VELO Sensor and Module Alignment

In order to accurately determine the position of hits in the VELO the positions and relative

alignment of its component parts must be known very precisely. This requires knowledge of

the positions of the two halves of the VELO, the modules within each half, and the sensors

in each module. The alignment is intended to be known to a precision below the single hit

resolution of the detector, so that the single hit resolution is not degraded by misalignments.

Systematic offsets of the assumed component positions fromtheir true positions cause biases

in the hit resolutions, displacing the mean residual from zero. The VELO module positions

were measured to a precision of∼10 µm after its assembly and before its installation. These

measurements were made at room temperature. For operation the VELO sensors are cooled

to their operational temperature of∼-5 ◦C. The baseplate to which the modules are attached

is maintained at∼20◦C. Consequently the VELO alignment needed to be determined in-

directly after its installation and adjustment to operational conditions, to account for any

movement of its components. Further, the VELO is closed and opened at the beginning and

end of each fill, hence both long- and short-term alignment stability needs to be monitored.

The alignment of the VELO halves, modules, and sensors is determined by allowing

their assumed positions to vary a small amount in fits that minimise the mean hit residuals

andχ2 of tracks fitted in the VELO [78, 79, 80]. There are four different VELO alignments,

of progressively improving quality, that were developed during the 2010 and 2011 runs.

The first alignment is that determined prior to the 2010 run using the initial pre-installation,

metrology and beam-absorber collisions; in the second, tracks reconstructed from collisions

at LHCb were used to improve the alignment of the two VELO halves; in the third, such

tracks were also used to determine the alignment of the VELO sensors and modules; and in

the fourth, tracks reconstructed from collisions between the proton beams and residual gas

in the LHC beam-pipe (‘beam-gas’ collisions) were added to those from thep-p collisions

to further constrain the sensor and module alignment. As there was an intervention to the

downstream trackers between the 2010 and 2011 runs, which may have affected their relative

alignment to the VELO, the first three alignments only apply to the 2010 run, and the fourth

to the 2011 run.

Comparing the distributions of IP resolutions as a function of 1/pT for these different
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Figure 3.7

alignments provides another method of examining the effectof the VELO alignment on the

single hit resolution, and the effect of single hit resolution on IP resolutions. This is shown

for 2010 data, using the first three alignments, in figure 3.7a, and for 2011 data, using the

3rd and 4th alignments, in figure 3.7b. As has been shown in section 3.3 the improving

alignment, and hence improving single hit resolution, causes they-intercept of these distri-

butions to reduce, while the gradient remains roughly constant. This is particularly apparent

in the difference between the earliest, pre-2010 alignment, and the second alignment, as this

marked a significant improvement in the knowledge of the relative positions of the VELO

halves. The improvements thereafter are progressively smaller, as the alignment grows closer

to the ideal.
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Figure 3.8

Figures 3.7c and 3.7d show the means of the Gaussian fits to theIPx distributions for the

different alignments as a function of1/pT . No significant deviations from zero are seen, so

the IP resolutions appear to be unbiased. However, thepT of a track has little correlation to

any specific region of the VELO, and so is unlikely to reveal any region dependent biases. If,

instead, one separates the tracks according to their azimuthal angleφ this restricts the tracks

analysed to very specific regions of the VELO. In particular,one half of the VELO primarily

covers the regionφ ∈ (−π
2
, π
2
) (the ‘A side’), and the other half the complement of this region

(the ‘C side’). Figures 3.8a and 3.8b show the mean of IPx distributions in bins ofφ, and

reveal some significant,φ dependent biases.

The pre-2010 alignment shows an offset in the mean IPx of tracks reconstructed in one

half of the VELO to those reconstructed in the other half. This reflects the preliminary nature

of the alignment determined with beam-absorber collisions, such that the relative alignment

of the VELO halves was not well known. Consequently, IP measurements are also biased, as

shown in figure 3.8a, with the sign of the bias depending on thehalf of the VELO in which

the tracks are reconstructed. After re-evaluating the alignment of the VELO halves, in the

second alignment, this bias is much reduced, making the meanIP resolutions much more

consistent with zero.

The third iteration of the alignment, in which tracks from collisions were used to im-

prove the sensor and module alignment, achieved a general improvement in the single hit

resolution. This is seen by the reduction in they-intercept of the resolution as a function of

1/pT in figure 3.7a. However, when examining the mean of the residuals as a function ofφ

a clear, almost sinusoidal bias is introduced. In general, misalignments to the VELO sen-
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sors and modules are random, and so only degrade the overall detector resolution. However,

certain parameters in the sensor and module alignment do notaffect the single hit residuals

when they are varied coherently for a group of (or all) sensors or modules. The alignment

process thus has little sensitivity to these parameters, which are known as ‘weak modes’.

One such weak mode is the rotational alignment of the VELO modules about the beam-line.

This must be fixed for the VELO as a whole and the rotational alignment of the modules

determined with respect to this. However, tracks reconstructed fromp-p collisions originate

at the interaction point within the VELO, and so each track only intersects relatively few sta-

tions in specific regions of the VELO. This means that different regions of the VELO that are

separated inz have little correlation in the alignment algorithms, as very few tracks intersect

both regions. This can result in consistent biases to the rotational alignment of the modules

in such separate regions. A misalignment to the rotational module positions introduces a

bias to theφ of tracks reconstructed in the VELO. Asx = r cosφ, a small biasδφ to the

measuredφ results in a biasδx = −r sinφ δφ to the reconstructedx position. This can cause

a sinusoidal bias to IPx as a function ofφ.

The addition of beam-gas events in the4th alignment achieved greater constraint on the

rotational module alignment. Such collisions are distributed evenly along the beam-line and

produce particles that are close to parallel with the beam-line. Hence, their reconstructed

tracks can traverse the entire length of the VELO. Collisionsof ‘satellite’ bunches, which

consist of protons that are offset by one RF bucket from the main proton bunches and collide

at±700mm from the interaction point, were also used. Thus, the rotational alignment of the

VELO modules can be better constrained using these data samples. As shown in figure 3.8b,

the sinusoidal bias to IPx is almost completely removed, leaving no significant bias.

Thus, it is clear that examining IP resolutions, and their dependence on the geometric

parameters of the tracks used to measure them, provides a sensitive method to evaluate the

quality of the VELO sensor alignment. In particular, IP resolutions are sensitive to weak

modes in the alignment that cannot be evaluated by examininghit residuals alone.

3.6 Detailed Comparison of Observed Resolutions with Ex-

pectations

The preceding sections have shown that IP resolutions depend on many different parame-

ters, most notably: particle momentum, material budget, detector resolution, extrapolation

distance to the interaction point, and the detector alignment. The material budget and ex-

trapolation distance to the interaction point vary considerably across different regions of the
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Figure 3.9: The distribution of IPx residuals for tracks with1.35 < 1/pT [ GeV/c] < 1.5

with a single Gaussian fit, as in figure 3.3, using only tracks in the VELO overlap region,

defined byφ ∈
[−5π

8 , −3π
8

]

∪
[

3π
8 , 5π8

]

. Made using 2011 data.

VELO, and simply examining IP resolutions in bins of1/pT or φ is insufficient to separate

out these variations. As a consequence the IP distribution in a single bin of1/pT , for exam-

ple, consists of the integrated contributions from many regions of different material budget,

extrapolation distance,etc., and is thus not well described by a single Gaussian, as shownby

gigure 3.3. Clearly the single Gaussian only describes the shape very roughly, and fails to fit

to either the peak or the tails of the distribution. Figure 3.9 shows the same plot, made using

only tracks in the VELO overlap region, as defined in section 3.3. The single Gaussian fit is

perhaps slightly improved by the reduced variation in the material budget, but is still quite

poor.

Binning finely inη andφ splits the VELO into small regions in which the material budget

and distance to the interaction point vary very little. To further restrict the variation of the

geometric parameters of tracks in any one bin the PVs are required to be within±50 mm of

the origin.

Figure 3.10 shows the mean values of the parameters of equation 3.12 that contribute to

the effects of multiple scattering on IP resolution in bins of η andφ. The mean radius of the

first hit on a track is fairly constant across theη-φ plane. It is slightly larger in the overlap

region of the VELO due to the small ‘cut aways’ at the corners of the VELO sensors, visible

in figure 2.7, which cause their sensitive region to start slightly farther from the beam-line.

It also decreases slightly at highη as the tracks are closer to parallel with the inside edge

of the sensors. The mean material budget intersected by tracks before their first hit is again

extracted from the simulated description of the detector, and varies much more. As expected

it is considerably larger in the overlap region, due to the overlaps in the RF-foil. It also

increases withη, as the tracks intersect the RF-foil at smaller angles and thus travel much

farther within it.
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Figure 3.10: The mean values of the parameters of equation 3.12 that contribute to the

effect of multiple scattering on IP resolutions, in bins ofη andφ. (a) shows the average

radius of the first hit on a track, and (b) the average material budget, in radiation lengths,

of the simulated detector intersected by the track before its first hit. The material budget

is obtained by extrapolating tracks from real data through the simulated description of

the detector, and so may not be the same as the distribution of material in reality. Made

using 2011 data.

Figure 3.11 shows the mean values of the parameters of equation 3.12 that contribute to

the effects of detector resolution on IP resolution. The resolution of the first hit on a track

is estimated from its radius, from which one can obtain the strip pitch and thus estimate the

hit resolution. The hit resolution closely follows the distribution of the radius of the first

hit, in figure 3.10a, as the strip pitch varies roughly linearly with radial distance from the

beam-line. The number of stations,n, used to calculate the extrapolation factorf1n depends

on thep of the tracks and the VELO geometry. Tracks with higherp tend to be closer to

parallel with the beam-line, and so have largerη, thusn increases withη. However, at

very largeη the first hit is generally in one of the VELO stations far downstream from the

interaction point, and so the number of stations in which a track has hits is limited by the

length of the VELO. This is particularly apparent in the overlap region at highη. Here the

increased distance to the sensitive region of the VELO sensors means tracks only have hits

in the most downstream VELO stations, causingn to decrease. This is reflected in the values

of the extrapolation factorf1n. It is slightly larger in the overlap region due to the increased

extrapolation distance to the first hit on a track, but is otherwise quite flat forη < 3.8. This is

because the increase ofn with η is compensated for by the increase in extrapolation distance

to the first hit. At very largeη n becomes sufficiently large to cause a significant reduction

in f1n, except in the overlap region where the decrease inn and increase in extrapolation

distance causesf1n to become large at largeη.
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Figure 3.11: The parameters of equation 3.12 that contribute to the effects of detector

resolution on IP resolutions, in bins ofη andφ. (a) shows the average resolution on the

position of the first hit on a track, (b) the average number of stations used tocalculate

the extrapolation factor,f1n, and (c) the average value off1n. Made using 2011 data.
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a [ µm ] b ǫ [ µm ]

σPV x 106± 9 0.66± 0.07 0.5± 1.7

σPV y 116± 12 0.76± 0.07 2.6± 1.3

Table 3.1: The fitted values of the parameters of equation 3.15, for thex andy PV

co-ordinates, taken from the studies in [75].

As mentioned in section 3.2 the measured IP also contains a contribution from the PV

resolution, and so the measured IP resolution is in fact

σIP,meas =
√

σ2
IP + σ2

PV . (3.14)

To properly account for this one must use an independent measurement of the PV resolution

and fit the IP distributions with a probability density function (PDF) that includes the PV

resolution term. Studies of PV resolution, presented in [75], parametrise it as

σPV (N) =
a

N b
+ ǫ, (3.15)

whereN is the number of tracks used to fit the PV, anda, b andǫ are fit parameters. The

values ofa, b andǫ obtained from the studies in [75] are shown in table 3.1. Equation 3.12

motivates an IP resolution PDF with a constant term and a termdependent on1/pT summed

in quadrature. AsN varies for each PV the PDF used for the IP fit is a Gaussian withσ given

by

σIP,meas(N, pT )
2 = σPV (N)2 + A2 +

(

B

pT

)2

, (3.16)

whereA andB are the fit parameters. An unbinned maximum likelihood fit is then performed

to the distributions of IPx and IPy to obtainA andB in each bin ofη andφ.

Figure 3.12 shows the fitted values ofA,B and the mean of the Gaussian obtained in each

bin of η andφ using 2011 data. The values ofA follow the distribution off1n to some extent,

though not particularly well at highη. On the other hand the values ofB appear to follow

the distribution of the material budget quite well. The meanstill shows some evidence of

the sinusoidal dependence onφ caused by the rotational misalignment about thez-axis. The

variation of this bias withη shows how it affects different regions of the VELO separately.

Nonetheless, it is never more than a fewµm from zero, and is thus negligible. Figure 3.13

shows the total fitted PDF, integrated overpT , η andφ, overlaid on the IPx distribution for

2011 data. There is still some improvement to be made as the very centre of the peak of the

distribution is not fitted precisely, but this is sufficient to gain a clear understanding of the

behaviour of IP resolutions.
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Figure 3.12: The fitted values of (a)A and (b)B as defined in equation 3.16 and (c) the

mean, inµm, of the Gaussian in bins ofη andφ. From fits to the IPx resolution using

2011 data.

mµ
-150 -100 -50 0 50 100 150
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000  = 7 TeVs

2011 Data

LHCb Preliminary

Figure 3.13: The fitted PDF integrated overpT , η andφ, overlaid on the IPx distribution

for 2011 data.
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Figure 3.14: The ratio of the measured value ofA, as defined in equation 3.16, to that

predicted by equation 3.12, for (a) 2011 data and (b) simulated data.

Using the values of the parameters of equation 3.12 shown in figures 3.10 and 3.11 one

can compare the values ofA andB found with those predicted by equation 3.12. This gives

A = f1nσ1, and (3.17a)

B = 0.0136
√

x/X0[1 + 0.038 ln(x/X0)]r1. (3.17b)

Figure 3.14 shows the ratio of the measured values ofA to those predicted by equation 3.12

for both 2011 data and simulated data. There is clearly not a very good agreement, though in

the regionη < 3.8 the ratio is at least roughly flat outside the overlap region,despite being

less than 1. This is likely due to the fact that the parametrisationn = 2 + ⌊p/4⌋ used to

calculatef1n assumes that tracks only intersect the VELO sensors after their first hit. This is

true outside the overlap region at lowη, causing the ratio to be roughly flat. The offset from

1 is likely due to the very rough estimation made of the resolution of the first hit. Elsewhere

tracks continue to intersect the RF-foil between VELO stations after their first hit, and so

the displacement due to multiple scattering in between VELOstations is significantly larger.

This would causen to be smaller andf1n larger in these regions, and could account for the

poor agreement between the observed and predicted values. Aparametrisation ofn that takes

into account variations in the material budget and a more careful extraction of the first hit

resolution might make the predicted values more accurate. Nonetheless, the parametrisation

of the effects of detector resolution on IP resolution appears to be approximately correct.

Figure 3.15 shows the same for thepT dependent parameterB. It is particularly strik-

ing that on simulated data the ratio is very close to 1 across theη-φ plane, showing that the

predictions of equation 3.12 are very accurate in this respect. On 2011 data there is a good

agreement between the observed and predicted values in the overlap region, but elsewhere
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Figure 3.15: The ratio of the measured value ofB, as defined in equation 3.16, to that

predicted by equation 3.12, for (a) 2011 data and (b) simulated data.

there is a large discrepancy. Given the excellent agreementbetween prediction and observa-

tion on simulated data it appears that the description of multiple scattering in the simulation

is accurate, and one is led to conclude that the values ofx/X0 input to equation 3.12 are

incorrect for 2011 data in this region.

This can also be seen by examining the ‘pull’ distributions for the IP measurements.

The pull is defined as(IPmeas − IPtrue)/σIP , whereσIP is the estimated error on the IP

calculated by the reconstruction algorithms. AsIPtrue is zero for particles produced exactly

at the interaction point the pull is simplyIPmeas/σIP . If the errors are estimated correctly

the pull distribution should be consistent with a Gaussian with mean zero andσ = 1. Figure

3.16 shows theσ of Gaussian fits to the pull distribution of IPx in bins ofη andφ, for 2011

data and simulated data. For simulated data theσ is consistent with one across theη-φ

plane, showing that the errors are estimated correctly. For2011 data the errors are accurate

in the overlap region, but are significantly underestimatedelsewhere, again showing that the

parameters input to the error calculations are incorrect inthese regions.

Using the measured values ofB and the mean radius of the first hit on a track one can

then use equation 3.17b to extractx/X0. Figure 3.17 shows the extracted values ofx/X0 and

the ratio of these to the values extracted from the simulateddescription of the detector, for

2011 data. The variation in material budget estimated from the values ofB is significantly

less than that of the simulated detector, as the material budget outside the overlap region

is estimated to be∼2 times larger. This is strong evidence that there is material missing

from the simulated detector. However, as discussed in section 3.4 and in [74], the simulated

description of the VELO is in fact known to be reasonably accurate. Regardless, it is clear

that the parametrisation of the effects of multiple scattering on IP resolution is very accurate,
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Figure 3.16: Theσ of Gaussian fits to the momentum integrated pull distributions of

IPx in bins ofη andφ. For (a) 2011 data and (b) simulated data.

and that measuring IP resolutions provides a powerful method of examining the distribution

of material in the VELO.

3.7 Summary and Conclusions

This section discussed the factors that determine impact parameter (IP) resolution in the

VELO. A method of measuring IP resolution without the use of simulation was presented,

and its results shown. A mathematical parametrisation of the IP resolution, factoring in con-

tributions from detector geometry and resolution and the effects of multiple scattering was

derived in section 3.1. Measurements of IP resolutions on 2011 data and simulated data

were presented and compared. In section 3.3 the general behaviour of IP resolutions on hit

resolution, detector alignment, extrapolation distance,and material budget was examined

and found to be consistent with expectations. A significant discrepancy between IP resolu-

tions on 2011 data and simulated data was also found, and discussed in section 3.4. A more

detailed comparison of the predictions of the parametrisation to the measurements made on

2011 and simulated data was also made in section 3.6. The parametrisation of the effects

of detector resolution was found to be of limited accuracy, and suggestions were made as to

how to improve it. The parametrisation of the effects of multiple scattering were found to be

very accurate on simulated data, but less so on 2011 data. This would most logically sug-

gest that there is material missing from the simulated description of the detector. However,

these results appear to disagree with complementary analyses made of the VELO material,

and so the source of the discrepancy is still under investigation. The most likely source of

inaccuracy in the simulated description of the VELO is the RF-foil. Its shape is known to
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Figure 3.17: (a) The values ofx/X0 extracted from thepT dependent term of fits to the

IPx distributions from 2011 data and (b) the ratio of these with the values extracted from

the simulated description of the detector.

the simplified in the simulation, and studies are under way into the effects of using a more

accurate description of the RF-foil.
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Chapter 4

Method of Extracting the Lifetime of a

Particle

Both of the parametersyCP andAΓ, described in section 1.3, involve measurements of the

mean proper decay time (‘lifetime’ for short) of theD0 meson. The constant decay proba-

bility as a function of time of a long lived particle results in its proper decay time following

an exponential distribution. Extracting the lifetime froma sample of pure signal candidates

reconstructed using an ideal detector would thus be trivial. However, in reality one must deal

with backgrounds that can mimic the decay channel of study when reconstructed under the

signal hypothesis, particularly in the complex, hadronic environment at LHCb. Candidate

selection criteria that are used to exclude backgrounds, both in the trigger during data-taking

and offline, can bias the observed lifetime of the signal candidates. Any measurement made

by the detector also has a finite resolution. Accounting for these effects makes the extraction

of the lifetime rather more challenging. This section describes the various methods used to

do so in order to measureyCP andAΓ.

Section 4.1 describes the essentials of fitting distributions of variables from data with

probability density functions in order to find the optimal values of the parameters that de-

termine their shape. The various sources of background and how they can be distinguished

from signal are discussed in section 4.2. The methodology required to extract the lifetime of

the signal candidates is described in section 4.3, with particular attention paid to the method

of correcting for a lifetime biasing candidate selection. The full probability density function

required to extract the lifetime is presented in section 4.4. Finally, possible extensions and

improvements to the methods presented here are discussed insection 4.5.
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4.1 Obtaining the Best Fit to Data

4.1.1 Parameter Optimisation Using the Maximum Likelihood

Any property of the signal candidates in a dataset can be described statistically as a random

variable. Such a variable,x, follows a probability density function (PDF),f(x), which gives

the probability that its value lies within a certain interval

P (x ∈ [x1, x2]) =

∫ x2

x1

f(x)dx. (4.1)

A necessary requirement for a PDF is thus that it must be normalised,
∫ +∞
−∞ f(x)dx = 1, i.e.

thatx must take a finite value for any one candidate in the dataset. This has the corollary

thatf(x)
x→±∞→ 0. Further, ifx is a physical observable,f(x) and its first derivative must

be continuous. Otherwise, a PDF can take almost any form. A ‘parametric’ PDF is one that

is described by a specific mathematical formula, the exact shape of which is determined by

a set of free parameters. The normalised Gaussian function is an example of a parametric

PDF, for which the parameters are the mean andσ.

As a long lived particle has a constant probability of decaying as a function of time its

proper-decay-time distribution can be described by an exponential function. The correspond-

ing PDF is thus

f(t) =
1

τ
e−

t
τ Θ(t), (4.2)

wheret is the measured proper decay time,Θ(t) is the Heaviside step function, which is zero

for t < 0, andτ is the lifetime. This satisfies
∫ +∞
−∞ f(t)dt = 1 and〈t〉 ≡

∫ +∞
−∞ tf(t)dt = τ .

To extract an unknownτ from a dataset one must determine the value ofτ that gives the

maximum likelihood for the data. The likelihood function is

L(t1, ..., tn, τ) =
N
∏

i=1

f(ti, τ), (4.3)

whereti are the proper decay times of each of theN candidates in the dataset. Taking the

natural logarithm of the likelihood the product is transformed into a sum while the maximum

is still attained at the same value ofτ . Substituting in the explicit form off(t) one obtains

ln(L(t1, ..., tn, τ)) = ΣN
i=1 ln(f(ti, τ))

= Σi ln

(

1

τ
e−

ti
τ Θ(ti)

)

= −N ln(τ)− Σi
ti
τ
. (4.4)

Differentiating with respect toτ one finds that the maximum is achieved when

d

dτ
(ln(L)) = −N

τ
+

1

τ 2
Σiti

= 0, (4.5)
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which gives

τ =
1

N
Σiti. (4.6)

So the optimal value ofτ is given by the mean of the values ofti in the dataset, as one would

expect. This also means that fitting for the lifetime of a sample of taggedD0 or D0 using

a single exponential PDF will yield the ‘effective lifetimes’ as described in section 1.3. In

section 4.3 it will be shown how this simple PDF needs to be modified in order to be used on

a realistic dataset.

The likelihood function can easily be generalised and maximised to find the optimal val-

ues of arbitrary parameters of arbitrary PDFs, provided a single solution exists. The values

of the parameters thus obtained are those for which the givenPDFs best fit the data. It is this

method that is used for parameter optimisation in the following sections. The optimisation

process itself is performed by the software package MINUIT [81]. The optimisation algo-

rithm varies the values of the free parameters in the fit and examines the value and the rate

of change ofln(L) in order to find the parameter values that yield the maximumln(L). The

amount by which the parameters are varied is iteratively refined to give a high precision on

their optimal values. The statistical uncertainties on these values are determined by finding

the variation in the value of each individual parameter thatresults in a change in the log

likelihood of∆ ln(L) = 1
2
.

4.1.2 Multi-Dimensional PDFs for Multiple Classes of Candidate

As will be shown in the next section realistic data consists of candidates of several different

background classes in addition to true signal candidates. This must be accounted for in the

fit PDF. Further, distinguishing these backgrounds from thesignal requires examining the

distributions of more than one variable. The PDF used to perform such a fit must describe

the distributions of all variables of interest for all classes of candidate.

The set of discriminating variables,X, is chosen such that each class of candidate follows

a different distribution for these variables. This allows astatistical separation of the different

classes to be achieved. In this case the PDF required to describe the data becomes the linear

sum of the PDFs for each class. The coefficients in this sum arethe relative fractions of each

class in the dataset. Thus the full PDF is given by

f(X) = ΣclassP (class)fclass(X), (4.7)

whereP (class) is the relative fraction of that class of candidate, andfclass(X) is the PDF of

the variablesX for that class. In general the relative fractions of each class will be unknown,

and so will be allowed to float in the fit, in addition to the parameters of the PDFs. In this
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case one must use the constraint thatΣclassP (class) = 1 to remove one of these fractions

from the fit, and allow a unique solution to be found by the optimisation process. Once the

optimisation has been performed one can use the PDFs to determine the probability that a

given candidate is of a given class using

P (class|Xi) =
P (class)fclass(Xi)

f(Xi)

=
P (class)fclass(Xi)

ΣclassP (class)fclass(Xi)
, (4.8)

whereXi are the values of the variablesX for candidatei.

WhenX consists of more than one variable any correlation between its constituent vari-

ables must be taken into account in their PDFs. IfX = {x, y, z} then the PDF can be

factorised as

fclass(x, y, z) = fclass,xy(x, y|z)fclass,z(z)
= fclass,x(x|y, z)fclass,y(y|z)fclass,z(z), (4.9)

wherefclass,y(y|z) is the PDF of the variabley for that class given the value ofz (also known

as the conditional PDF ofy), and so on. If the value ofy is independent of the value ofz

thenfclass,y(y|z) = fclass,y(y). If any of the PDFs in this factorisation are identical for all

classes then they factor out of the full PDF, equation 4.7. Consequently the contribution of

such a PDF to the log likelihood is independent of the other PDFs, and so can be neglected

in the determination of their optimal parameter values. However, if the PDFs are different

for any two of the classes of candidate they must be included in the fit PDF in order to

obtain the correct optimal values ofP (class) and the PDF parameters. This is known as

the ‘Punzi effect’ [82]. For example, this must be taken intoaccount when using a proper-

decay-time PDF that uses the per-candidate error on the proper decay time to account for the

detector resolution: if the distribution of the per-candidate errors is different for signal and

background then the PDF of the per-candidate errors must also be factored into the fit PDF.

If one can factorise the set of discriminating variablesX into two independent sets,Y

andZ, then one can write the fit PDF as

f(Y,Z) = Σclassfclass,Y (Y)fclass,Z(Z)P (class)

= [Σclassfclass,Y (Y)P (class)]

[

Σclass

(

fclass,Z(Z)
fclass,Y (Y)P (class)

(Σclassfclass,Y (Y)P (class))

)]

= [Σclassfclass,Y (Y)P (class)] [Σclassfclass,Z(Z)P (class|Y)] , (4.10)

whereP (class|Y) is the probability of the given candidate belonging to that class given its

values of the variablesY, as defined in equation 4.8. The two terms in this PDF contribute
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two separate terms to the log likelihood. As the first term here is entirely independent of the

second its contribution to the likelihood can be maximised separately, provided the variables

Y provide full discrimination between all classes. This allows one to perform two separate

fits, each using fewer PDFs, rather than a single fit with many PDFs. The first fit finds the

optimal parameters to describe the variablesY and the second fit finds the optimal descrip-

tion of the parametersZ, using the PDFs ofY to provide statistical discrimination between

the different classes of candidate.

This is useful as performing two fits with fewer free parameters is considerably less CPU

intensive than performing one fit with many free parameters.This is because the dimension-

ality of the likelihood space is given by the number of free parameters in the fit. Thus, the

number of steps required to determine the maximum likelihood, i.e. the number of different

combinations of different parameter values that must be tried by MINUIT , grows exponen-

tially with the number of free parameters. Consequently, treating the PDFs of variables that

are known to be independent separately significantly reduces the number of steps required to

find their optimal parameter values, and can thus save a greatdeal of CPU time. However,

one must be certain that the variables concerned are indeed fully independent.

4.1.3 Obtaining Non-Parametric PDFs from Data Using Kernel Den-

sity Estimation

The PDFs used to describe data often have a physically motivated form, with parameters that

have physical interpretations. The exponential PDF used todescribe the proper-decay-time

distribution of a long lived particle, discussed in section4.1.1, is one example of this. In

some cases there is no physically motivated reason to use anyparticular shape of PDF to

describe the distribution of a given variable. In this case one can use parametric PDFs with

sufficient flexibility as to allow them to fit the data. For example, a sum of several exponential

PDFs with differentτ values might be used to describe the proper-decay-time distribution of

combinatorial backgrounds. This has the disadvantage thatit introduces a large number of

free parameters into the fit, and so can affect the fit stability and significantly increase the fit

time. An alternative, preferable option is to obtain the PDFfrom the data itself.

Simply histogramming a variable is insufficient for use as a fit PDF, as binning a con-

tinuous distribution necessarily loses information on itsshape and is likely to introduce a

bias into the fit. A more accurate way to reproduce a continuous distribution from data is to

use kernel density estimation [83]. In this technique each candidate in a dataset contributes

one ‘kernel function’ to the total distribution, rather than just one entry in one bin of a his-

togram. A kernel function,K(x), must be normalised to have an area of one and have a
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mean of zero. They serve to spread the contribution of each candidate over a certain range.

The kernel function for a given candidate is translated to have mean equal to the value of

the variable of interest for that candidate. The width of thekernel functions is adjusted by

introducing a ‘bandwidth’ parameterh so that the kernel function becomes1
h
K((x−xi)/h),

for a candidate with measured variable valuexi. The total distribution is then given by the

sum over the candidates in the dataset of their kernel functions

f(x) =
1

Nh
ΣN

i=1K((x− xi)/h). (4.11)

The Gaussian function provides an ideal kernel function as it is continuous and infinitely

differentiable. The bandwidth parameterh thus corresponds to theσ of the Gaussian.

The bandwidth determines the amount by which the contribution of each candidate is

spread, and is thus comparable to the bin width of a histogram. Using too small a band-

width results in too little overlap between the contributions of each candidate, and a final

distribution that is not smooth, while too large a bandwidthcan over-smooth the distribution,

and distort its shape. In [83] the optimal bandwidth is derived by minimising the mean inte-

grated squared error of the total distribution,f(x). Further, an adaptive bandwidth, which is

different for each candidate, is introduced and found to be

hi =

(

4

3N

)1/5√
σ

f0(xi)
, (4.12)

whereN is the number of candidates in the dataset,σ is the standard deviation of the variable

x, andf0(xi) is an a priori estimate of the value of the PDF for the given candidate. Here

it is sufficient to use a normalised histogram to estimatef0(x). This has the properties

that larger datasets result in narrower kernels, while regions of lower density (lowerf0(x))

result in broader kernels. One can further adapt the bandwidth by using the uncertainty

on the measured value for each candidate as theσ parameter, such that regions where the

uncertainties are larger result in wider kernels. Alternatively, one can use the ‘local standard

deviation’,i.e.the standard deviation calculated using then candidates with value ofx closest

to that of the candidate for which the bandwidth is being determined, for somen. This would

result in smallerσ in peaking regions and largerσ in flatter regions. Figure 4.1 shows an

example of a PDF obtained from toy data using this method witha fixed value ofσ.

One issue of this technique is in reproducing distributionsof variables that are bounded

within a certain range. In this case the kernel function mustbe adjusted to be defined and

normalised only within the range of the variablex. There are two common ways of dealing

with this: either to truncate and normalise the kernel function within the given range, or to

reflect the kernel function at the boundary. Both these options are problematic as they alter

the mean of the kernel function from the desired value,xi, generally shifting it farther from
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Figure 4.1: An example of a proper-decay-time PDF reproduced from data using kernel

density estimation, with 50 candidates. (a) and (b) show the same plot using a linear and

log scale respectively. The dashed blue lines show the individual Gaussian kernel func-

tions for the first 10 candidates, and the solid blue line the sum of all kernelfunctions.

The solid red line shows the distribution used to generate the proper decay times of the

candidates.

the boundary. Such a bias to the mean of the kernels results inslightly lower density very

near the boundary, and slightly higher density at a small distance from the boundary, com-

pared to the distribution that the data actually follow. Kernel functions that retain the correct

mean in the presence of a boundary do exist, but are unsuitable for use in building a PDF in

this manner [83]. Nonetheless, this deviation is small, andkernel density estimation remains

a reliable method of obtaining a PDF from data. Any deviationof the PDF obtained using

kernel density estimation from the true distribution of thedata will result in a systematic un-

certainty on the final measurement. The size of this systematic uncertainty can be estimated

by varying theσ parameter used to calculate the bandwidth in equation 4.12.This is done

for the analyses presented in chapters 5 and 6 in section 6.3,where it is found to be small.

The computational implementation of this technique poses afew challenges. Firstly,

evaluating the value of the PDF for a given value ofx using equation 4.11 would require

evaluating the value of one Gaussian for each candidate in the dataset. This alone would be

computationally intensive. Further, as each PDF in a fit is evaluated once for each candidate

for each iteration of the fit, the number of calculations required for each fit iteration would

depend quadratically on the number of candidates in the dataset. Consequently, this is not

a viable option for large datasets. The solution to this is tosample the exact analytical PDF

at fine intervals across the range of the variablex, and store these values. One can then

interpolate between these values to evaluate the PDF at intermediate values ofx. 3rd order

spline interpolation performs this task adequately. In regions of low density where the values
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of f(x) are close to zero the spline interpolation can give negativevalues. In this case simple

linear interpolation can be used instead, to ensure the values off(x) remain positive.

In order for the shape off(x) to be reproduced accurately by the interpolation there must

be a large number of sampling points. GenerallyO(1000) is found to suffice. The integral

of f(x) can then be approximated for a given range ofx by summing over the value off(x)

at each sampling point in the range, multiplied by the width of the sampling intervals. Again

this can be very computationally intensive when a large number of sampling points is used,

particularly if one needs to evaluate the integral repeatedly. In this case one can simplify the

calculation by using a cumulative integral function

I(x) =

∫ x

−∞
f(x′)dx′. (4.13)

EvaluatingI(x) at each sampling point inx, storing the values, and interpolating between

them allows quick evaluation of the integral off(x) using
∫ x2

x1

f(x)dx = I(x2)− I(x1). (4.14)

This involves only a small number of calculations, rather than the several hundred that would

be required otherwise. AsI(x) is a strictly increasing function the interpolation between its

sampling points must also be strictly increasing. Consequently, it is easiest to use linear

interpolation forI(x).

Kernel density estimation in this form has been applied to other physics analyses [84, 85]

and found to work well. Thus, it provides a reliable method ofobtaining PDFs from data.

4.2 Discrimination of Signal and Background

The final datasets used to extract physics parameters consist of candidates reconstructed

as detailed in section 2.2.8.1, with the candidate selection applied as described in section

5.1. While the candidate selection can be optimised to maximise the signal content of the

dataset there are certain backgrounds that cannot be fully excluded. In this case one needs

to examine the distributions of the kinematic variables of the signal and backgrounds, and

use those that have sufficient separation to achieve a statistical discrimination between the

different candidate types.

Should the signal and background candidates follow sufficiently different distributions

in proper decay time it would be possible to distinguish themusing only that. However,

any class of candidate, whether signal or background, will generally follow something akin

to an exponential distribution in proper decay time. Thus the distribution of proper decay
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time alone is insufficient to separate signal from background, and additional variables must

be used. In the majority of cases it is sufficient to use the reconstructed mass of theD0,

m(D0), as the discriminating variable. This is particularly convenient as it is independent of

the proper decay time for most classes of candidate.

4.2.1 Backgrounds Distinguishable Using Mass Variables

The physical width of theD0 is very small, so the mass of theD0 is essentially constant.

Thus, the reconstructedm(D0) is simply this constant value plus the resolution term, which

ideally gives it a Gaussian distribution centred on the massof theD0. m(D0) is given by the

invariant mass of the sum of the momentum 4-vectors of its daughter particles. For a two

body decay this is given by

m(D0)2 = (E1 + E2)
2 − |~p1 + ~p2|2

=

(

√

m2
1 + |~p1|2 +

√

m2
2 + |~p2|2

)2

− |~p1|2 − |~p2|2 − 2~p1 · ~p2

≃ 2|~p1||~p2| − 2~p1 · ~p2
= 2|~p1||~p2|(1− cos θ), (4.15)

whereθ is the opening angle between the two daughter particles, andthe approximation

mn ≪ |~pn| is made. The resolution on the momenta of the daughter particles hasσ(p)p ∝ p,

thus the resolution ofm(D0) is also dependent on the daughter particlep. As the daugh-

ter particlep takes a wide range of values, the PDF of the reconstructedm(D0) for signal

is generally approximated by a sum of several Gaussians withdifferent σ but a common

mean. When there are relatively light charged particles, likeπ±, in the final state these can

radiate photons while traversing the detector, and lose momentum. This results in a lower

reconstructed mass for the motherD0. In such cases the motherD0 mass distribution can be

described by a PDF like the ‘Crystal Ball’ PDF [86]. This is a Gaussian but with a larger

lower tail to model candidates for which the daughter particles have lost momentum through

photon emission.

Physics backgrounds that must be considered are certain types of decays that can closely

resemble signal when reconstructed under the signal hypothesis. The decaysD0 → K+K−

andD0→ K−π+ can be such backgrounds for each other. Working under theK+K− hypoth-

esis, aD0 → K−π+ decay would result in the mass of theD0 being reconstructed as larger

than the trueD0 mass, as theπ is assigned the mass of aK. Conversely, working under the

K−π+ hypothesis, aD0→ K+K− decay would be reconstructed as a low massD0, as theK

is assigned the mass of aπ. Fortunately, due to the excellent momentum resolution provided

by the LHCb tracking systems, the resolution on the mass of theD0 is sufficiently small that
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the mass peaks resulting from decays of either of these typesreconstructed under either hy-

pothesis do not overlap to any significant degree. One decay that may need to be taken into

account in future is that ofD0 → K−π+π0 when working under theK+K− hypothesis: in

this case theπ0 is not reconstructed, while theπ+ is assigned theK mass. This can result in a

candidate with reconstructed mass quite close to the trueD0 mass. However, at the precision

of the measurements presented in chapter 5, the level of thisbackground is sufficiently small

as to be safely neglected.

Combinatorial backgrounds are those candidates that resultfrom random combinations

of particles observed in the detector. These do not correspond to the decay products of a

single mother particle, but can still happen to have the right kinematic properties to pass the

candidate selection. The distribution ofm(D0) from combinatorial backgrounds tends not to

peak, as they do not correspond to a real decay. Thus the PDF ofm(D0) for combinatorial

backgrounds can generally be described by a low order polynomial, normalised within the

mass range covered by the data.

In the case of the measurement ofAΓ the flavour of theD0 at production is tagged by

reconstructing the decayD∗+ → D0π+
s . The charge of the slow pion,πs, is used to de-

termine whether aD0 or D0 was produced. Consequently, another type of background that

must be considered is ‘randomly-tagged’D0, where theD0 is reconstructed correctly but is

combined with a randomπs to make theD∗+. Assumingπ+ andπ− are produced in equal

quantities this results in half of suchD0 candidates being assigned the wrong flavour tag.

Such backgrounds will have the correct mass for theD0 and are thus indistinguishable from

signal usingm(D0) alone. However, the mass of the resultingD∗+ follows the distribution

of combinatorial background. Thus, the mass differencem(D∗+) − m(D0) ≡ ∆m can be

used to distinguish randomly-taggedD0, and determine what fraction of the dataset they

constitute. Doing so is necessary as treating randomly-taggedD0 as signal would bias the

measured effective lifetime.

Signal, with theD∗+ correctly reconstructed, will form a peak in∆m about 145.4MeV,

which is the true difference in mass between theD∗+ andD0. Similarly tom(D0), the PDF

of m(D∗+), and thus of∆m, can be modelled by a sum of several Gaussians with a common

mean for signal. Further, the resolution ofm(D∗+) andm(D0) are correlated, as they both

depend on the momenta of theD0 decay products, so the resulting resolution on∆m is much

reduced.

Combinatorial backgrounds will again be relatively evenly distributed in∆m, with no

peak formed. The PDF of∆m is restricted to be zero in the region∆m < m(π+), as this

region is unphysical. Pure combinatorial backgrounds, where theD0 is also combinatorial,

follow the same distribution in∆m as randomly-taggedD0. Thus, only by examining the
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Figure 4.2: The distribution of∆m versusm(D0), using 2010 data. Region A covers

the signal peaks in∆m andm(D0), and contains the majority of the signal candidates. In

region B a signalD0 candidate is combined with a randomπs, so that theD0 is assigned

a random flavour tag; such candidates peak inm(D0), but not in∆m, as theD∗+ is mis-

reconstructed. Region C contains the tails of the signal peak inm(D0) but also contains

a significant fraction of combinatorial backgrounds, while region D is predominantly

combinatorial backgrounds. The dataset used here and the selection criteria applied to it

are described in section 5.1.

distributions ofm(D0) and∆m simultaneously can one distinguish randomly-taggedD0

from pure combinatorial background and signal. Figure 4.2 shows the distribution of∆m

versusm(D0), and details the types of candidate that dominate each region in the∆m-m(D0)

plane.

m(D0) and∆m are independent by definition, and both are independent of the proper

decay time. Thus, if the set of proper decay time variables isT then, following the form of

equation 4.10, the fit PDF is given as

f(m(D0),∆m,T) =
[

Σclassfclass,m(m(D0))fclass,∆m(∆m)
]

[

Σclassfclass,T (T)P (class|m(D0),∆m)
]

. (4.16)

4.2.2 Dealing with SecondaryD0

A source of background that contributes in studies ofD mesons but not forB mesons is that

of D mesons that are produced in decays ofB mesons. Approximately 10 % ofD0 observed

by LHCb are produced viaB→ D0X, whereX can be a number of different particles, and

theB can be of any species ofB meson. As the lifetime ofB mesons is∼1.5 ps, and theB is
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Figure 4.3: A diagram showing how aB→ D0(hh′)X decay reconstructed asD0→ hh′

results in a positive bias to theD0 flight distance, and consequently its proper decay time.

Also shown is how the impact parameter of such aD0 is generally larger than that of a

particle produced at the PV.

not reconstructed, such decays result in a significantly larger reconstructed proper decay time

for theD0 than is actually the case, as shown in figure 4.3. This would cause a significant

positive bias to the measured effective lifetime of theD0 if these ‘secondary’ decays are not

discriminated from the signal decays, which are produced directly at the primary vertex.

In a flavour tagged sample ofD0 one does have access to the position at which theD0 is

actually produced via theD∗+ decay vertex, formed by theD0 andπs. However, as the mass

difference between theD∗+ andD0 is only 145.4MeV and the mass of aπ+ is 139.6MeV

[7] the πs tends to have very low momentum. As discussed in chapter 3 impact parameter

(IP) resolution varies as1p and so the resolution on the vertex made by theD0 andπs is so

poor as to make it useless in determining the proper decay time of theD0. Further, attempting

to reconstruct theB, even partially, is non-trivial as its other decay productsmay be neutral

or outwith the LHCb acceptance; this would also create more difficulties when dealing with

promptD0 decays. Thus it is best to simply reconstruct theD0 as if it was produced at the

PV and calculate its proper decay time accordingly.

This means that secondaryD0 decays cannot be used in measuring the effective lifetimes,

and must be statistically discriminated in the fit PDF. Ideally, one would use a variable that

is independent of proper decay time to distinguish prompt and secondaryD0, so that their

relative fractions are known before the fit to the proper-decay-time distribution is performed.

However, theD0, andD∗+ for tagged data, are both reconstructed correctly for secondaryD0,

and som(D0) and∆m cannot be used to distinguish them. Further, secondaryD0 produced

in decays in which theB decays almost immediately are close to indistinguishable from

promptD0. However, the longer theB lives before decaying the larger the impact parameter

of theD0 is likely to be, as is also shown in figure 4.3. This is because the trajectories of the

B andD0 are not necessarily collinear, and so the larger the distance between the PV and the

point at which theD0 is produced the larger the IP of theD0 is likely to be. The IP of prompt
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(a) (b)

Figure 4.4: The distribution ofln(χ2(IPD0)) versus proper decay time for (a) prompt

D0 and (b) secondaryD0, obtained from full Monte Carlo simulated data. Reproduced

from [87].

D0 will always be consistent with zero, and is independent of the proper decay time.

Thus one can use theD0 IP to distinguish prompt and secondaryD0. Given the excellent

resolution on IP measurements provided by the VELO it is beneficial to use theχ2(IPD0) as

this takes into account the many effects that contribute to the IP resolution. Further, as the

χ2(IPD0) can take a very wide range of values for secondaryD0 it is useful to take the natural

logarithm, and fit the distribution ofln(χ2(IPD0)), which is confined to a much narrower

spectrum. Figure 4.4 shows the distribution ofln(χ2(IPD0)) as a function of proper decay

time for prompt and secondaryD0, obtained using full Monte Carlo simulated data. This

shows that the distribution ofln(χ2(IPD0)) is very similar for prompt and secondaryD0 near

zero proper decay time, but takes much larger values for secondaryD0 at high proper decay

times. As theln(χ2(IPD0)) PDF for secondaryD0 is dependent on the proper decay time,

the ln(χ2(IPD0)) distribution can only be fitted simultaneously with the proper-decay-time

distribution, at the same time as the effective lifetime is determined.

Adding such a PDF to the proper-decay-time part of equation 4.16, and leaving the other

variables of the proper-decay-time fit generic asT, gives

f(m(D0),∆m, ln(χ2(IPD0)),T) =
[

Σclassfclass,m(m(D0))fclass,∆m(∆m)
]

[

Σclassfclass,T (T)fclass,IP (ln(χ
2(IPD0))|T)P (class|m(D0),∆m)

]

.

(4.17)

Here prompt and secondaryD0 must be treated as a single signal class in the mass component
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of the fit, as they are indistinguishable using the mass distributions. The fraction of signal

that is prompt (or secondary) is then determined in the proper-decay-time andln(χ2(IPD0))

fit. For prompt signal one has thatfclass,IP (ln(χ2(IPD0))|T) = fclass,IP (ln(χ
2(IPD0))), as

theχ2(IPD0) is independent of proper decay time, as shown in figure 4.4a. However, this is

likely not the case for combinatorial backgrounds, for which the reconstructedD0 need not

point to the PV. Thus both secondaryD0 and combinatorial backgrounds require a PDF for

ln(χ2(IPD0)) that depends on the proper decay time of the candidate.

The exact form of a PDF forln(χ2(IPD0)) is difficult to determine. If the errors on the

IP are estimated perfectly then the distribution ofχ2(IPD0) for promptD0 would follow a

χ2 distribution with two degrees of freedom. However, as was shown in chapter 3, the errors

on IP measurements are known not to be estimated correctly. Further, they are unlikely to

ever be estimated perfectly, as this would require a perfectparametrisation of the detector

resolutions, and perfect simulation of the detector material. So a perfectχ2 PDF is unlikely

to provide an adequate description of the data. Consequently, the approach used in chapter 5

is to use a parametric PDF with a sufficiently large number of free parameters as to allow it

to fit the data, for both prompt and secondaryD0. This is described in detail in section 5.3.1.

4.3 Extraction of the Lifetime

4.3.1 The Proper-Decay-Time PDF

With the backgrounds fully discriminated one can fit the proper-decay-time distribution to

obtain the effective lifetime of the signal. Each class of candidates also requires a PDF for

the proper-decay-time distribution, to be used in equation4.17.

The first consideration that has to be made is that the measurement of proper decay time

provided by the detector has an uncertainty on it. The excellent performance of the VELO

results in a small proper-decay-time resolution for LHCb,∼50 fs [88], but it must still be

taken into account in order to correctly extract particle lifetimes. The measured proper decay

time can be described as the true proper decay time of the particle plus a resolution term

tmeas = ttrue + δt. (4.18)

Here the true proper decay time,ttrue, follows the original distribution,i.e.an exponential for

signal, while the resolution term,δt, should follow a Gaussian with mean zero andσ equal to

the average uncertainty on the measured proper decay time. Thus the measured proper decay

time,tmeas, can be described for signal by the convolution of an exponential distribution with
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(a) An example of the proper-decay-time

PDF for promptD0, as defined in equa-

tion 4.19, withτ = 410.1 fs andσt =

50 fs.

Proper Decay Time [ps]
0 0.5 1 1.5 2 2.5 3

f(
t)

-410

-310

-210

-110

1

(b) An example of the proper-decay-time

PDF for secondaryD0, as defined in

equation 4.21, withτ1 = 270 fs, τ2 =

800 fs, andσt = 50 fs.

Figure 4.5

a Gaussian:
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1
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2
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∫ ∞
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− σt
τ

)

, (4.19)

[84] where the Gaussian frequency functionF is defined as

F (x) =
1√
2π

∫ x

−∞
e−

1
2
y2dy. (4.20)

An example of the shape of this PDF is shown in figure 4.5a, where one sees that the

resolution effect allows a small fraction of candidates to have negative proper decay times.

This PDF would be appropriate for the prompt signal, and the fitted value ofτ would yield

the effective lifetime as desired. Similarly, the proper decay time of randomly-taggedD0

can also be modelled using such a PDF, in which case the fittedτ would yield the average

effective lifetimes of theD0 andD0.

The PDF for secondaryD0 is rather more complicated - here one has the contribution

from theB flight distance to take into account. This is further complicated by the fact that

several different species ofB, each with slightly different lifetimes, can produceD0, and also

that theB andD0 need not necessarily be collinear. Thus deriving an exact, parametric PDF

for the secondaryD0 proper-decay-time distribution is very difficult. However, making the

simplified assumption that the contribution from theB to the reconstructedD0 proper decay
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time can be modelled by a single exponential, the proper decay time is given by the sum of

two exponentially distributed variables. Thus, the PDF is given by the convolution of two

exponentials

fsec,t(t) =
1

τ1
e−t/τ1Θ(t)⊗ 1

τ2
e−t/τ2Θ(t)

=

∫ t

−∞

1

τ1
e−t′/τ1Θ(t′)

1

τ2
e−(t−t′)/τ2Θ(t− t′)

=







1
τ2−τ1

(

e−t/τ2 − e−t/τ1
)

if τ1 6= τ2,

t
τ21
e−t/τ1 if τ1 = τ2.

(4.21)

Accounting for the detector resolution is done analogouslyto the prompt signal case. In

performing a convolution with the Gaussian resolution function the two exponential terms in

theτ1 6= τ2 case yield terms like1
τ
× (equation 4.19). An example of this PDF is shown in

figure 4.5b.

In the ideal case of a single species ofB, with theB andD0 collinear, oneτ parameter

would correspond to theD0 lifetime and the other to theB lifetime scaled by∼m(D0)/m(B).

However, as the realistic case is more complicated than thissimplified model the fittedτ

values lose their physical meaning, and simply serve to describe the average shape of the

proper-decay-time distribution for secondaryD0. Figure 4.6 shows a fit using this PDF to

the proper-decay-time distribution of a sample of secondary D0 obtained from full Monte

Carlo simulation. The PDF describes the data well, showing that the approximations made

are good.

Combinatorial backgrounds pose an equally challenging problem in modelling their proper-

decay-time distribution, as no physical rationale can be applied to deciding what shape to use.

There are various approaches to modelling this distribution. A common method is to use a

sum of several exponential PDFs with differentτ values. However this has the drawback

that, as the size of the dataset increases, more exponentialPDFs generally need to be added

to the sum in order to obtain a sufficiently accurate description of the distribution. Other-

wise a large systematic uncertainty on the measured signal lifetime can result. An alternative

approach is to use Monte Carlo simulations of the combinatorial background to obtain the

shape of the proper-decay-time distribution, but this requires a great deal of faith in the accu-

racy of the simulation and can also result in significant systematic uncertainties. In [84] an

approach is detailed as to how to obtain a non-parametric PDFusing kernel density estima-

tion, while [89] proposes a method in which the information from the mass fit can be used

to statistically cancel the contribution of backgrounds tothe proper-decay-time fit. However,

combinatorial backgrounds are in fact neglected in the fits performed to obtain the measure-

ments presented in chapter 5, for the reasons detailed in section 5.3.1, and so will not be
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Figure 4.6: The distribution of the proper decay time of secondaryD0, obtained from

full Monte Carlo simulated data, fitted with the convolution of two exponential functions

and a Gaussian function.

discussed any further here. However, some discussion of howto go about including such

backgrounds in the fit PDF can be found in section 4.5.

4.3.2 Accounting For Lifetime Biasing Candidate Selections

The PDFs presented for prompt and secondaryD0 in the previous section make the assump-

tion that the selection criteria applied to the final data have no dependence on the proper

decay time of the candidates. In this case the distributionsare unmodified from the ideal

case beyond the effects of detector resolution. However, aswas discussed in chapter 3, the

vast majority of particles detected in LHCb are produced directly at the PV. This can result

in an overwhelming quantity of combinatorial background when searching for relatively rare

decays.

Such background candidates will for the most part have very low proper decay times, as

their constituent particles are prompt. Thus it is often beneficial to apply selection criteria

that favour longer lived candidates, which are much more likely to correspond to a long lived

particle, and so exclude much of the combinatorial background. However, this also rejects

any short lived signal, and modifies the observed proper-decay-time distribution from its

original shape. Should the specific decay examined have a particularly unique characteristic,

such as a pair of muons that can be identified very cleanly in the final state, or a resonant

intermediate state with very small resolution on its reconstructed mass, such ‘lifetime bias-

ing’ selection criteria can be avoided. The only way to do this for the decaysD0 → K−π+

101



CHAPTER 4. METHODOLOGY OF LIFETIME EXTRACTION

andD0 → K+K− would be to use the PID information provided by the RICH detectors to

apply a tight lower bound on the PID to select theKs. However, the RICH reconstruction

is too slow to be used during data-taking in the trigger, and so this is not currently an op-

tion. Neural networks and multi-variate selections, usingonly variables that are independent

of proper decay time, can also achieve similar results, but often result in relatively low se-

lection efficiencies. Consequently, the analyses presentedin chapters 5 and 6 use lifetime

biasing selection criteria.

This introduces a proper-decay-time dependent selection efficiency, which tends to be

small at low proper decay times and much larger at high properdecay times. Figure 4.7

shows the proper-decay-time distribution of untaggedD0 → K−π+ candidates from 2010

data compared to the expected exponential distribution. The distribution of the data is clearly

strongly biased from the original exponential, with very few candidates at low proper decay

times. The tail of the distribution also tends to zero more quickly than the unbiased expo-

nential, showing that long lived candidates are also somewhat disfavoured. The reasons for

this are discussed in the following section. Common approaches to dealing with this bias

are to either use a parametric description of the acceptanceas a function of proper decay

time, or to obtain the acceptance function from simulations. One can then simply multiply

the unbiased PDF by this acceptance function. However, boththese approaches tend to in-

troduce large systematic uncertainties due to inaccuracies in the acceptance functions thus

obtained. Consequently they are undesirable options when attempting to measure lifetimes

to the accuracy required to make competitive measurements of yCP andAΓ. As yCP andAΓ

only require the calculation of the ratio of effective lifetimes such acceptance effects can be

cancelled in the calculation, as is done forB0
s → K+K− in [85]. However, this requires that

the acceptance as a function of proper decay time is the same for all decay modes, or that

any differences between them are corrected. The analyses presented in chapters 5 and 6 use

a more sophisticated method by which the acceptance as a function of proper decay time is

obtained for each individual candidate in the dataset, and then used in the fit.

4.3.2.1 Method of Calculating Per-Candidate Proper-Decay-Time Acceptance Func-

tions

Lifetime biasing selection criteria involve putting limits (‘cuts’) on any kinematic variables

of a candidate that are correlated to its proper decay time. The most common such cut to

apply is a minimum limit on the IP, orχ2(IP ), of the decay products of the candidate. This

is very effective at excluding prompt backgrounds, but obviously favours long lived signal

candidates. Other lifetime biasing cuts include minimum limits on the flight distance (or its

χ2) of the mother particle, or even simply its proper decay time. Requiring the ‘pointing
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Figure 4.7: The proper-decay-time distribution of untaggedD0→ K−π+ candidates us-

ing 2010 data (black points) compared to the unbiased exponential distribution expected

for signal (red line). The candidate selection clearly disfavours shortlivedD0 and biases

the observed proper-decay-time distribution. Very long lived candidatesare also some-

what disfavoured. The data are selected by requiring1848 < m(D0)[MeV] < 1880 and

χ2(IPD0) < 2.7, in addition to the selection criteria detailed in section 5.1, to maximise

the signal content.
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angle’, defined as the angle between the momentum vector of the mother particle and the

line between its associated PV and its decay vertex, to be near zero also disfavours short

lived candidates.

The method to correct for these effects, known as the ‘swimming’ algorithm, was first

used by the NA11 experiment [90], further developed at DELPHI [91] and brought into a

form close to that applied here at CDF [92, 93, 94]. It was then implemented at LHCb

[84, 85, 95], where the implementation of the high level trigger (HLT) entirely in software

makes it particularly applicable, as explained below. The swimming algorithm exploits the

fact that the proper decay time of the mother particle is independent of the kinematics of its

daughter particles. This allows one to artificially change the proper decay time of the mother

particle, by moving its production or decay vertex along thedirection of the mother particle’s

momentum, without needing to modify the daughter particles’ kinematics. One can then re-

evaluate the decision of the candidate selection for each proper decay time, and thus build

the acceptance function for each candidate. An example of how this is done, assuming cuts

are placed on the IP of the daughter particles, is shown in figure 4.8.

At each proper decay time the given candidate will either pass or fail the selection, giving

acceptance one or zero. Thus the acceptance function can be expressed as a sum of top-

hat and step functions. The proper decay times at which the acceptance value changes are

referred to as ‘turning points’, and the acceptance function can be expressed as a vector of

these turning points. The proper decay time at which the candidate is actually found naturally

falls within a region in which the acceptance is one. Upper ‘turn-off’ points, at higher proper

decay times, can result from applying cuts to the maximum IP of the daughters, or the mother

particle’s flight distanceχ2, etc., however such cuts are not used at LHCb. Another way in

which this can occur is through the use of minimum IP cuts on the daughters in the presence

of multiple PVs in the event, as shown in figure 4.9. This is because the IP of any track is

taken with respect to all PVs in the event and the minimum value found used as the selection

variable. This effect causes a lower acceptance rate on average at high proper decay times.

The most accurate method of changing the proper decay time ofa candidate would be

to move the mother particle’s decay vertex in the direction of the mother’s momentum then

extrapolate the daughter tracks through the detector to determine where hits in the detector’s

sensors would be found. The full reconstruction would then need to be run again using these

displaced hits to reconstruct the candidate. However, correctly extrapolating the daughter

trajectories would be very complicated, and re-running thereconstruction at every step pro-

hibitively CPU intensive. Thus the simpler approach of moving the PVs in the direction of

the mother particle’s momentum, while keeping the daughtertracks fixed in their measured

positions, is taken. This has the same effect of modifying the mother particle’s proper decay
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Figure 4.8: An example of how the swimming algorithm determines the acceptance as

a function of proper decay time for a given two body decay candidate. Minimum IP cuts

are placed on the daughter particles, with the accepted range shown by theblue bands

perpendicular to the daughter particles’ tracks. In (a) the IP of the positively charged

daughter particle is too small and the candidate would fail the selection, givingzero

acceptance; at (b) the daughter particle’s IP becomes large enough to pass the selection

and the acceptance is one; (c) shows the candidate at its measured proper decay time,

which is necessarily at a position where the acceptance is one; finally, the algorithm

continues to higher proper decay times in (d).
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(a) (b)

(c)

Figure 4.9: An example showing how use of minimum IP cuts on the daughter particles

(shown by the blue circles) can cause candidates not to be accepted at high proper decay

times when there is more than one PV in an event. In (a) the IPs of both daughter

particles are large enough to pass the cuts; in (b) the minimum IP of the negatively

charged daughter particle is that taken w.r.t. the pileup PV, and is too small forthe

candidate to be selected; finally, in (c) both IPs are once again large enough for the

candidate to be accepted.
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time while being much less prone to error and much more viablein terms of the CPU time

required.

The approximation of moving the PVs in the event means that this implementation of the

swimming method is insensitive to any variation in the reconstruction efficiency as a function

of proper decay time. A lower reconstruction efficiency can occur for mother particles that

travel a large distance in the transverse plane before decaying, as the pattern recognition in

the reconstruction looks for tracks coming from the beam-line. Such effects are studied in

section 6.3.7 and found to be negligible at the precision of the results presented in chapters

5 and 6, but will need to be studied in more detail for future higher precision measurements.

One effect that can be taken into account is that, due to the finite size of the VELO, at

very high proper decay times the daughters of theD0 will no longer have sufficiently many

hits in the VELO as to be reconstructable. In the offline reconstruction at least three space

points are required to reconstruct a track in the VELO, whilein HLT1 this is increased to five.

This also naturally causes an upper acceptance effect, though only at very high proper decay

times, as aD0 must live for several tens of times the average lifetime of theD0 in order for

its daughters to intersect so few VELO stations. Nonetheless, this can readily be accounted

for by simply checking how many VELO stations the daughter tracks would intersect at

each proper decay time had the decay vertex been moved instead of the PVs. The proper

decay time beyond which the daughter tracks intersect too few VELO stations becomes the

maximum turn-off point. This is then combined with those found for the candidate selection

by ensuring that the acceptance is zero beyond this point.

As was described in sections 2.2.7 and 2.2.8 the candidate selection in fact consists of

several consecutive stages: the hardware L0 trigger, followed by the software HLT1 and

HLT2, and finally the offline stripping selection. The L0 stage triggers only onpT andET ,

which are independent of proper decay time. Thus the swimming algorithm need not be

applied to the L0 trigger. Lifetime biasing cuts are appliedin the HLT, but the fact that these

are implemented in software allows their specific reconstruction and selection algorithms to

be re-run identically as was done at the time of data-taking.This is crucial to the swimming

algorithm as it requires re-evaluating the trigger decision at many different proper decay

times; any difference between the triggers used when the data are taken and those used for

the swimming algorithm would result in large systematic uncertainties on the turning points.

Candidates are also required to have triggered the event themselves, and not simply be part of

an event that was triggered by some other characteristic. Thus, generally specific trigger (and

stripping) lines are selected and applied to the candidatesduring the swimming algorithm,

so that the acceptance functions obtained are with respect to those specific selections. As the

HLT and offline reconstruction use different algorithms theswimming algorithm is run on
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each separately, and the acceptance functions obtained merged by taking a logical AND.

The specifics of the swimming algorithm are detailed in section 2.4 of [87]. It consists of

firstly performing a scan by moving the PVs over a range of±600 mm to determine the ap-

proximate positions of any turning points, and then refiningtheir positions using iteratively

finer, localised scans about the turning points. This could be repeated to obtain an arbitrary

precision on the turning point positions, but to limit CPU time a resolution on the turning

points of∼4.6 µm is used. This translates into a resolution on the proper decay time of the

turning points of∼0.5 fs. There are also various ways in which a bias can enter into the

determination of the turning points. These include imperfect reproduction of the trigger de-

cisions, as previously mentioned, as well as differences inthe proper-decay-time resolution

between the trigger and offline reconstruction. The studiesmade to evaluate the significance

of these effects are also described in [87], where they are found to be negligible.

One other complicating effect can occur if not all of the daughters are required to trigger

on a specific line. For instance, the HLT1 ‘1 track’ line requires only a single track with high

IP to trigger the event. This can be either or both of theD0 daughters in a two body decay.

Further, whether either track triggers the event varies with proper decay time independently

for each track, resulting in a much more complicated acceptance function. To avoid this issue

only candidates for which both daughters have triggered theevent are used in the analyses

presented in chapters 5 and 6, which results in excluding 5% of the available candidates.

4.3.2.2 Incorporating Acceptance Function Variables intothe Fit PDF

The turning points obtained by the swimming algorithm for each candidate enter into the fit

as additional variables in the PDF. Thus the set of proper decay time variables, left generic

in equation 4.17, becomesT = {t, nTP, TP1, ..., TPn}, wheret is the proper decay time,

nTP the number of turning points found, andTP1..n the proper decay times of the turning

points. The proper decay time component of the fit PDF thus becomes

fclass,T (T) = fclass,T (t, nTP, TP1, ..., TPn)

= fclass,t(t|nTP, TP1, ..., TPn)fclass,TPs(nTP, TP1, ..., TPn). (4.22)

As the first turning point is always a turn-on point, and the VELO geometric acceptance

results in the last turning point always being a turn-off point, there should always be an even

number of turning points. Due to the implementation of the swimming algorithm this is not

always the case, as in a few rare instances the scan for turning points does not go far enough

to reach the point at which the daughters cannot be reconstructed in the VELO. In this case

the final turn-off point is taken to be at+∞. Thus pairing the turning points consecutively

yields the intervals in which the candidate would be accepted. The acceptance as a function
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Figure 4.10

of proper decay time for a given candidate can thus be writtenas a sum of top-hat functions:

A(t|nTP, TP1, ..., TPn) = Σ
nTP/2
n=1 Θ(t− TP2n−1)Θ(TP2n − t). (4.23)

The conditional PDF of the proper decay time given the turning points is simply the

unbiased proper-decay-time PDF, like those discussed in section 4.3.1, restricted to and nor-

malised in the range in which the candidate would be accepted:

fclass,t(t|nTP, TP1, ..., TPn) =
fclass,t(t)A(t|nTP, TP1, ..., TPn)

Σ
nTP/2
n=1

∫ TP2n

TP2n−1
fclass,t(t′)dt′

. (4.24)

The denominator of this equation can be interpreted as the probability that the candidate

should pass the selection criteria given its turning points. The normalisation for an exponen-

tial PDF convoluted with a Gaussian, equation 4.19, is givenby [84]
∫ t2
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. (4.25)

Similarly the two exponential terms in the proper-decay-time PDF for secondaryD0, equa-

tion 4.21, yield normalisation terms exactly like this, multiplied by 1
τ
. An example of a

per-candidate acceptance function and the resulting proper-decay-time PDF for a promptD0

candidate is shown in figure 4.10.

Factorising out the PDF of the acceptance variables gives

fclass,TPs(nTP, TP1, ..., TPn) =fclass,nTP (nTP )fclass,TP1(TP1|nTP )...
fclass,TPn(TPn|nTP, TP1, ..., TPn−1). (4.26)

109



CHAPTER 4. METHODOLOGY OF LIFETIME EXTRACTION

A PDF with so many correlated variables can be very difficult to work with. Exactly how

to handle this depends on the distribution of turning pointsobtained for any given dataset.

The specific implementation of this part of the PDF is thus discussed in section 5.3.1. In the

simplest case this PDF may be the same for all classes of candidate in the dataset. In this

case it factors out of the full fit PDF, equation 4.17, and has no effect on the determination

of the optimal fit parameter values. It can thus be ignored in the fit PDF. However, should

fclass,TPs(nTP, TP1, ..., TPn) be different for different classes of candidate it must be in-

cluded in the fit PDF; otherwise, the determination of the fit parameters will be biased as a

result of the Punzi effect, as discussed in section 4.1.2.

4.3.2.3 Calculating the Average Proper-Decay-Time Acceptance

The full fit, performed using the per-candidate acceptance functions determined by the swim-

ming algorithm, fits to the distributions of a large number ofvariables: t, ln(χ2(IPD0)),

nTP , TP1, ... ,TPn. Indeed, asnTP varies, the dimensionality of the fit is not constant -

the fit can be viewed as several simultaneous fits to disjoint datasets, each with a different

nTP . Visualising the results of such a fit is thus impossible without integrating out some of

the fit variables. The most important visualisation to obtain is that of the projection of the

fit onto the axis of the proper decay time, so that it can be overlaid on the proper-decay-time

distribution of the data. This involves integrating out thedependence of the fit PDF on the

turning point variables, and thus obtaining the average acceptance as a function of proper

decay time for the data.

As was described in section 4.3.2.2 the PDF for each class forthe lifetime fit takes the

form

fclass,T (t, nTP, TP1, ..., TPn) = fclass,t(t|nTP, TP1, ..., TPn)fclass,TPs(nTP, TP1, ..., TPn)

=
fclass,t(t)

(

Σ
nTP/2
n=1 Θ(t− TP2n−1)Θ(TP2n − t)

)

Σ
nTP/2
n=1

∫ TP2n

TP2n−1
fclass,t(t′)dt′

fclass,TPs(nTP, TP1, ..., TPn). (4.27)

To obtain the average proper-decay-time PDF for that class one then needs to integrate out
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the acceptance variables

fclass,t,avg(t) =

∫ +∞

−∞
fclass,T (t, nTP, TP1, ..., TPn)dnTPdTP1...dTPn

= fclass,t(t)

∫ +∞

−∞

(

(

Σ
nTP/2
n=1 Θ(t− TP2n−1)Θ(TP2n − t)

)

Σ
nTP/2
n=1

∫ TP2n

TP2n−1
fclass,t(t′)dt′

fclass,TPs(nTP, TP1, ..., TPn)

)

dnTPdTP1...dTPn

≡ fclass,t(t)Aclass,avg(t). (4.28)

Thus the problem becomes one of calculating the average acceptance rate as a function of

proper decay time,Aclass,avg(t), for each class. In the simple case that the distribution of

turning points is the same for all classes the PDFfclass,TPs(nTP, TP1, ..., TPn) can simply

be modelled as a sum over each candidate in the dataset of Dirac δ-functions, taking the val-

ues of the turning points for each candidate. The integral over the turning points then simply

becomes a sum, and the average acceptance function the sum ofthe acceptance functions for

each candidate:

Aclass,avg(t) = ΣN
i=0

Σ
nTPi/2
n=1 Θ(t− TPi,2n−1)Θ(TPi,2n − t)

Σ
nTPi/2
n=1

∫ TPi,2n

TPi,2n−1
fclass,t(t′)dt′

. (4.29)

Figure 4.11 shows examples of acceptance functions calculated in this manner. Here one

sees that the contribution of each candidate increases as the probability of its being selected

decreases, and that the acceptance function grows more smooth as the number of candidates

increases. The existence of upper turning points also clearly decreases the average accep-

tance at higher proper decay times.

Note that, although the distribution of turning points may be the same for all classes of

candidate, this does not mean that the average acceptance functions are the same. This is

due to the weights in the denominator of equation 4.29. As theunbiased proper-decay-time

PDF is different for each class so is this weight, and thus theresulting acceptance function

differs as well. The case in which the distribution of turning points is different for each class

is rather more complicated, and depends on the form of the PDFof the turning points. It is

thus discussed in section 5.3.1 together with the specificfclass,TPs(nTP, TP1, ..., TPn) used

to perform the fits in chapter 5.

Having obtained the average acceptance functions for each class one can then compare

the average proper-decay-time PDF obtained to the distribution of the data, and use this to

calculate theχ2 of the lifetime fit. Although this provides a much more comprehensible
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Figure 4.11: Examples of average acceptance functions calculated from toy data using

equation 4.29. In (a) five candidates are used and the contribution of each candidate is

shown by blue dashed lines, while the total average acceptance shown in red. (b) shows

the average acceptance calculated using 100 candidates.

visualisation of the fit results it is very much a simplification of the full fit process. Thus

one must also be careful to ensure that the PDFs of the turningpoint values used in the fit

(assuming they need be included) describe the data well across the whole phase space of the

fit.

4.4 The Full Fit PDF

With the PDFs determined as described in the previous sections of this chapter, one can

express the full fit PDF as

f(m(D0),∆m, t, ln(χ2(IPD0)), nTP, TP1, ..., TPn)

= Σclass

[

fclass,m(m(D0))fclass,∆m(∆m)

fclass,t(t|nTP, TP1, ..., TPn)fclass,IP (ln(χ
2(IPD0))|t)fclass,TPs(nTP, TP1, ..., TPn)

]

.

(4.30)

Thus, one can perform the fit to the mass distributions first, to provide discrimination of

any backgrounds that can be distinguished by their mass. This having been done, one can

perform the fit to the proper-decay-time variables. At this stage the per-candidate accep-

tance variables are used to account for the selection bias, while theχ2(IPD0) is used to

distinguish secondaryD0. Thus full discrimination is achieved between the signalD0 and

all backgrounds, the selection bias is corrected, and one obtains the effective lifetime of the

signal.
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4.5 Possible Extensions

4.5.1 Accounting for Combinatorial and Three Body Backgrounds

As has been mentioned previously, combinatorial backgrounds are neglected in the fits per-

formed to obtain the measurements presented in chapters 5 and 6. When the much larger

dataset collected during 2011 is analysed such backgroundsmust be taken into account, in

order to achieve a sufficiently small systematic uncertainty on the measurements obtained.

Also, when fitting for theK+K− lifetime one must account for three body backgrounds such

asD0 → K−π+π0. Thus, these classes of background must be added to the fit, and their

relevant PDFs obtained.

The PDFs for the mass distributions from such backgrounds should be well enough de-

scribed by simple analytical functions. Obtaining accurate proper-decay-time PDFs for these

backgrounds is rather more difficult. In [84, 85] a method is used whereby one uses the mass

fit to calculateP (background|m). Then kernel density estimation is used, weighting each

candidate’s contribution byP (background|m)2, to obtain a proper-decay-time distribution

that is dominated by the background. Using the known proper-decay-time PDF for the signal

one can then subtract the remaining contribution of the signal to this distribution to obtain

a PDF purely for background. There are a few caveats to this method that complicate its

implementation. One of these is that it can only be used in thecase that the proper-decay-

time PDF is unknown for only one class of background. It has, nonetheless, proven effective

under these circumstances.

A more general method is presented in the next section.

4.5.1.1 sWeights and sPlots

An elegant solution to the problem of multiple backgrounds with unknown proper-decay-

time PDFs is to use ‘sPlots’, which are described in detail in[96]. This can to some extent be

viewed as a more general extension of the previously described technique. It similarly uses a

fit to some discriminating variablesX, such asm(D0) and∆m, to calculate the probability

of each candidate belonging to each class,P (class|X). From these a symmetric matrix

is calculated which has the same dimension as the number of classes of candidates, and is

defined by

V
−1
nm =

1

N2P (classn)P (classm)
ΣN

i=1P (classn|Xi)P (classm|Xi), (4.31)

where the sumi is over allN candidates in the dataset, and the indicesn andm represent

the different candidate classes. From this one can define an ‘sWeight’ for each candidate for
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each class

sPclass(Xi) =
ΣN. classes

j=1 Vclass,jfj(Xi)

NΣN. classes
k=1 P (classk)fk(Xi)

, (4.32)

wherefj(X) is the PDF of the variablesX for classj. If one then makes a histogram of

a variable that is independent of those inX and weights each candidates contribution by

its sWeight for a specific class, one obtains the distribution of that variable for that specific

class - the ‘sPlot’ of this variable. This is because the sWeights are calculated in such a

way that the contributions from any other classes of candidate in the dataset cancel in the

histogram. Thus, one can obtain separate distributions of agiven variable for each class

in the dataset, regardless of how many classes there are, andwithout needing to know the

distribution for any classes beforehand. One caveat here isthat the variable being plotted

must be independent of the discriminating variablesX.

Thus, using the mass as the discriminating variable, one canobtain the proper-decay-

time distributions for all backgrounds, without needing touse the PDF for signal. Figure

4.12a shows a fit to the mass distribution of toy data with a signal and background class

using 10,000 candidates of which 80 % are signal. The symmetric matrix used to calculate

the sWeights in this case is

Vnm =

(

9512.2 −1550.1

−1550.1 3588.0

)

. (4.33)

There are various normalisation rules associated with sWeights. One can see that the sum

of the elements in the first row is equal to the number of signalcandidates (within statistical

uncertainties), and the sum across the second row is equal tothe number of background

candidates. The sum of sWeights for a given candidate over all classes of candidate must

also be equal to one. For example, using equation 4.32, the sWeights for a candidate with

mass 1816.1MeV, which has a high probability of being background, are

sPsignal(1816.1MeV) =
9512.2× 4.1× 10−9 − 1550.1× 0.0104

10, 000× (0.8× 4.1× 10−9 + 0.2× 0.0104)
= −0.76

(4.34a)

sPbkg.(1816.1MeV) =
−1550.1× 4.1× 10−9 + 3588.0× 0.0104

10, 000× (0.8× 4.1× 10−9 + 0.2× 0.0104)
= 1.76,

(4.34b)

and for a candidate with mass 1863.5MeV, which has a high probability of being signal, the

sWeights are

sPsignal(1863.5MeV) =
9512.2× 0.046− 1550.1× 0.010

10, 000× (0.8× 0.046 + 0.2× 0.010)
= 1.09, (4.35a)

sPbkg.(1863.5MeV) =
−1550.1× 0.046 + 3588.0× 0.010

10, 000× (0.8× 0.046 + 0.2× 0.010)
= −0.09. (4.35b)
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Figure 4.12
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Figures 4.12b and 4.12c shows the sWeights as a function of mass calculated using this fit

for signal and background respectively. One can see that thesWeight for signal is positive

in regions where a candidate has a high probability of being signal, and negative in regions

where the the probability of being background is high. The opposite is seen in the sWeights

for background. sPlots of the proper decay time for signal and background are shown in

figures 4.12d and 4.12e respectively. These are overlaid with the PDFs used to generate the

proper decay time for signal and background. There is an excellent agreement between the

sPlots and the generation PDFs for both classes.

sWeights can also be used for kernel density estimation, so that one can obtain a continu-

ous distribution. One issue in doing so is that sWeights can take negative values, and can thus

give negative regions in the distribution obtained, particularly in regions of low density. This

makes such a distribution unsuitable for use as a PDF. Simplysetting these negative regions

to zero is unsatisfactory as it results in discontinuities in the PDF. The technique described

in [84] encounters a similar issue when the signal contribution is subtracted from the proper-

decay-time distribution obtained by weighting byP (background|m)2. As this distribution

has a certain amount of statistical fluctuation negative regions can result after the subtraction.

The solution proposed in [84] is to compare the distributionprior to the subtraction,f0(t), to

that after,f1(t). Defining the value

ǫ(t) =
f1(t)

f0(t)
, (4.36)

one can then map the interval(−∞, ǫ0) → (0, ǫ0) using a function

ǫc(t) =







ǫ(t) if ǫ(t) ≥ ǫ0,

ǫ0

(

− 2
π
arctan

(

ǫ0−ǫ(t)
ǫ0

)

+ 1
)

if ǫ(t) < ǫ0,
(4.37)

such thatǫc(t) is always positive. Herearctan is used due to its asymptotic behaviour, and

could be replaced by any asymptotic function. This definition has the advantage of having a

continuous first derivative. Applying the correctionf1(t) = ǫc(t)f0(t) thus ensures thatf1(t)

is also always positive, and can thus be used as a PDF. The value of ǫ0 varies the scale of the

correction applied, and so must be tuned such that the distribution is not altered too much

or too little. In [84] a value ofǫ0 = 0.01 is suggested. This method is used together with

the method of obtaining a proper-decay-time PDF for combinatorial background described

in [84] in the determination of the effective lifetime ofB0
s→ K+K− detailed in [85].

The same method can be used to correct for negative regions when using sWeights in

kernel density estimation. Having made the sPlot of a given variable for a given class one can

also make the plot of the same variable and instead weight each candidate byP (class|X)2.

One can then use this plot to apply exactly the same correction to the sPlot, and remove any
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negative values. Thus, sPlots made using kernel density estimation can be used as PDFs in a

fit.

4.5.1.2 Using sPlots to Obtain an Unbiased Proper-Decay-Time PDF

Making an sPlot of the proper-decay-time distribution fromthe data yields only the average

distribution, with the acceptance effects averaged as well, as in equation 4.28. In order to

use the per-candidate acceptance functions determined by the swimming algorithm one must

have the unbiased proper-decay-time PDF for each class. Using equation 4.28 this can be

obtained by dividing the average proper-decay-time distribution by the average acceptance

as a function of proper decay time. The average acceptance can be calculated using equa-

tion 4.29, or the methods used for more complicated turning point distributions described

in section 5.3.1.4. However, equation 4.29 also requires the unbiased proper-decay-time

PDF. This issue can be circumvented by using an initial estimate of the unbiased proper-

decay-time PDF when calculating the average acceptance. One can then divide the average

proper-decay-time distribution by the acceptance function thus obtained to give the unbi-

ased proper-decay-time PDF. Comparing this to the estimate PDF used in calculating the

average acceptance one can check the accuracy of the initialestimate PDF, and thus of the

unbiased PDF obtained. If they are different one can use the newly obtained unbiased PDF

to recalculate the average acceptance. This process can be iterated upon until the unbiased

PDF used to calculate the average acceptance, and the PDF obtained by dividing the average

proper-decay-time distribution by the average acceptanceagree sufficiently well.

Such an iterative process can have convergence issues in regions of very low acceptance.

Thus, if it is necessary to use this process it may also be necessary to exclude the regions of

lowest acceptance from the fit.

4.5.1.3 The sFit Method

Although using sPlots presents one method of dealing with additional backgrounds there

is in fact a much simpler method of using sWeights to account for these backgrounds in

the lifetime fit. This is the ‘sFit’ technique [89]. In this case the sWeights are calculated

similarly, by using a fit to some discriminating variables, such as the mass. Then, rather

than using the sWeights to make sPlots of the desired variables for the desired classes, each

candidate’s contribution to the log likelihood of the proper-decay-time fit is instead weighted

by its sWeight for the signal class. Just as in an sPlot, this use of sWeights means that the

contribution of backgrounds cancels out of the total log likelihood of the data. Thus, only

the signal component of the data contributes to the proper-decay-time fit. This means that
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only the signal PDFs need be considered in the full proper-decay-time fit PDF. One need

not know the proper-decay-time PDFs for any backgrounds that can be discriminated by

the mass distribution. In the case of theD0 this means that secondaryD0 would still need

to be considered, as they cannot be discriminated by any variable that is not dependent on

proper decay time. However, provided the PDFs used in the fit to the mass distributions are

accurate, combinatorial backgrounds, and any other backgrounds such asD0 → K−π+π0,

can be cancelled out of the lifetime fit, and need not be parametrised.

One minor drawback of this method is that the statistical uncertainties, as estimated by

the∆ ln(L) = 1
2

technique used by MINUIT , can be underestimated. This is because the

dataset is somewhat reduced in the cancellation of the backgrounds, reducing its statistical

power. The level of this reduction is determined by how cleanly the signal and backgrounds

are separated by the variables used to calculate the sWeights.

4.5.2 Obtaining an Accurate Parametrisation of SecondaryD0

Using the sFit technique, described in the previous section, would leave secondaryD0 as

the only background to consider in the lifetime fit. Secondary D0 are the primary source

of background toD0 → hh′ decays anyway, so improving their parametrisation in the fit

is key to achieving high precision measurements. As discussed in section 4.2.2 parametric

PDFs with sufficient flexibility as to allow them to fit the dataare used in the measurements

presented in chapters 5 and 6. However, the shape of such PDFsis still quite restricted,

and so using non-parametric PDFs, such as those obtained using kernel density estimation,

would be preferable. During the 2011 run large quantities ofB→ D0(hh′)X decays were

collected. These candidates could potentially be reconstructed as promptD0 → hh′ and

thus be used to obtain PDFs for secondaryD0. However, a careful study of trigger selection

biases would be required.

4.6 Summary

This chapter presented in detail the methods used in performing fits to extract the effective

lifetime of theD0 meson in order to measure the parametersyCP andAΓ described in section

1.3. First, the general principles of fitting distributionsof variables from data were introduced

in section 4.1. This covered how the optimal values of the parameters of probability density

functions (PDFs) can be found from the data, as well as the general form of PDFs used to

describe datasets containing several classes of candidate, i.e. signal and backgrounds. The

technique of obtaining continuous PDFs from data using kernel density estimation was also
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introduced.

Section 4.2.1 then covered how to distinguish the majority of backgrounds using fits to

mass distributions, and section 4.2.2 dealt specifically with how to distinguish secondaryD0,

produced inB decays, from prompt signal. These techniques are used as described, where

possible, in distinguishing signal and backgrounds in the fits performed to extractyCP and

AΓ detailed in chapters 5 and 6.

The fit PDFs required to obtain the effective lifetime of the signal and to parametrise

the proper-decay-time distribution of secondaryD0 were discussed in section 4.3.1. Section

4.3.2 described how to correct for lifetime biasing selection criteria in the trigger and offline

candidate selections using the ‘swimming algorithm’. Alsocovered was how to incorporate

the acceptance variables determined by the swimming algorithm into the fit PDFs. This is

used in chapters 5 and 6 to extract the average lifetimes of theD0 andD0 in order to calculate

yCP andAΓ. The specifics of the PDF of the acceptance variables themselves are discussed

in section 5.3.1, where kernel density estimation is used toobtain PDFs of the turning points

from the data. The full fit PDF required to extract the effective lifetime of the signal was

then presented in section 4.4. This is essentially that which is used to measure the lifetimes

of D0 andD0 in chapter 5, with the exception that the level of combinatorial backgrounds

is sufficiently low as to be neglected in the fit, as discussed in section 5.2. A corresponding

systematic uncertainty for this simplification is assignedin section 6.3.3. Finally, possible

improvements to the fit method, particularly involving the implementation of ‘sWeights’,

were discussed in section 4.5.
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Chapter 5

Measurement of the Charm Sector

Mixing and CP-Violation Parameters

yCP andAΓ

The fit methodology detailed in chapter 4 allows the extraction of the effective lifetime of a

sample ofD0 candidates. These can then be used to calculate the parameters yCP andAΓ,

as discussed in section 1.3 and defined in equations 1.71 and 1.74. Section 5.1 details the

data used to do so, and the selection criteria applied to obtain the final datasets. Section 5.2

then describes the specific details and results of the fits performed to extract the signal yield.

The specific methodology and results of the fits used to extract the effective lifetimes are

presented in section 5.3. Finally, the resulting values ofyCP andAΓ and their statistical un-

certainties are shown. The stability of these measurementsand their systematic uncertainties

are evaluated in chapter 6.

5.1 Data Sample and Selection

The data used for the measurements presented here were collected by LHCb during Septem-

ber and October 2010 at
√
s = 7 TeV. The full sample comprises28.0± 2.8 pb−1. A further

∼10 pb−1 were collected prior to September 2010 but the swimming algorithm, detailed in

section 4.3.2, was not commissioned for this period. Consequently it can only be applied to

data collected after the release of v10r2 of the HLT softwarepackage MOORE.

There are several issues in triggeringD0 decays. Due to the very high production rate of

D0 at LHCb a clean signal sample can readily be obtained. The mainissue is doing so while

keeping the acceptance rate within the required limits. This rate must fit within the timing

constraints of the HLT, and stay within the limits of the available permanent storage space.
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The configuration of the L0 trigger varied somewhat during the relevant running period, to

account for changes in running conditions. As described in section 2.2.7 it requires a highpT

track segment in the muon chambers or highET cluster in the calorimeters and also applies

a maximum limit on the particle multiplicity, as estimated by the SPD and VELO VETO

stations. The value of theET cut greatly influences the number ofD0 decays selected.

Although the tracks made by the daughters of aD0 tend to be among the highestET tracks

in an event, theirET is still rather low compared to the daughters of aB. Thus, too tight an

ET cut can result in a very low selection efficiency forD0 decays. Consequently the value of

theET cut at L0 requires careful tuning to allow a reasonable sample ofD0 to be collected

while keeping the L0 acceptance rate below the maximum inputrate to the HLT. During the

relevant running period the cut value varied betweenET > 2.26GeV andET > 4.14GeV.

The majority of the data were taken usingET > 3.6GeV.

The specific HLT lines relevant to the data studied here are the HLT1 ‘1 Track’ and

HLT2 ‘D2hh’ triggers. As its name suggests, the ‘1 Track’ trigger requires only one track

with a large impact parameter to trigger an event. The ‘D2hh’trigger fully reconstructsD0

candidates under four mass hypotheses:D∗± →
(−)

D0π±
s with D0 → K−π+, D0 → K+π−,

(−)

D0 → K+K− and
(−)

D0 → π+π−. Events with candidates passing the selection under any of

these hypotheses are triggered. The HLT faces similar issues as L0 in reducing the event rate

to that allowed by the capacity of the permanent storage. Hence, some very tight lifetime

biasing selection criteria are used. The cuts used during the relevant data-taking period are

listed in table 5.1. To further reduce the retention rate thecandidates in HLT2 are required to

have reconstructed mass within 25MeV of theD0 mass. This requirement removes much of

the mass side-bands that contain primarily combinatorial backgrounds. To ensure that some

candidates from the mass side-bands are retained an almost identical HLT2 trigger line is

run with a much wider mass window of± 250 MeV about theD0 peak - the ‘D2hh Wide

Mass’ trigger. To keep the acceptance rate low a ‘prescale’ of exactly 1 % is applied to

this trigger, meaning that a random sample consisting of only 1 % of the events passing this

trigger are kept. Though some cut values differ between the ‘D2hh’ and ‘D2hh Wide Mass’

triggers those that affect the reconstructed mass distributions are superseded by tighter cuts

in the offline selection; those uncorrelated to the reconstructed mass only change the relative

retention rate between the two trigger lines slightly.

An ‘untagged’ trigger line, where theD∗± is not reconstructed and so the flavour of the

D0 is unknown, is also run. During the 2010 run this trigger lineapplied a tight cut of

χ2(IPD0) < 2. While this requirement removes most of the contribution from secondary

D0 there remains a small, irreducible fraction in the dataset.As secondaryD0 can only

be cleanly distinguished from promptD0 at highχ2(IPD0) this cut makes it exceptionally
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Trigger Selection

HLT1 ‘1 Track’ Single track|IP | > 110µm

Single trackχ2
IP > 34

Single track N. VELO Hits> 9

HLT2 ‘D2hh’ Daughterχ2
IP > 2

D0 χ2(flight distance) > 25

D0 cos(pointing angle) > 0.99985

1864.8− 25 < m(D0)[MeV] < 1864.8 + 25

Table 5.1: The salient trigger criteria applied to the data studied in this chapter, using

the HLT1 ‘1 Track’ and HLT2 ‘D2hh’ triggers.

difficult to achieve any discrimination of secondaryD0. Thus, the dataset collected using

the untagged trigger line in 2010 cannot be used in measurements of the effective lifetime of

theD0. For this reason only the dataset collected using the taggedtrigger line is used in the

measurements presented here.

The HLT selections produce a very clean sample ofD0 candidates with a high signal

fraction. Thus the stripping selection serves only to ensure that the selected candidates are

of good quality, once the full offline reconstruction is run.The selection criteria applied are

shown in table 5.2. Here the datasets for each mass hypothesis are made disjoint by the use of

delta-log-likelihood (DLL) cuts on the PID. The likelihoodof a given track being of a given

species is calculated using the information provided by theRICH detectors, as described in

section 2.2.2.2.DLLKπ is the difference in the natural logarithm of the likelihoodof the

given track corresponding to aK and aπ. A positiveDLLKπ thus implies that the track is

more likely to have been made by aK than aπ, while a negativeDLLKπ implies the opposite.

Requiring a positiveDLLKπ for K candidates and a negativeDLLKπ for π candidates thus

ensures thatD0→ K−π+, D0→ K+π−,
(−)

D0→ K+K− and
(−)

D0→ π+π− candidates all form

disjoint datasets. As the majority of tracks are made byπs the probability of mis-identifying

aπ as aK is higher than that of mis-identifying aK as aπ. Hence, a tighter DLL cut is used

to identifyKs than is used to identifyπs.

The fit range is restricted to specific intervals in the reconstructed mass of theD0,m(D0),

the difference betweenm(D0) and the reconstructed mass of theD∗+, ∆m, and the proper

decay time of theD0, t. Thus, the final datasets used are those defined to lie in the region

1864− 16 < m(D0) [MeV] < 1864 + 16, 145.4− 2 < ∆m [MeV] < 145.4 + 2, and0.25 <

t [ ps] < 6.0. To obtain access to the mass side-bands candidates withm(D0) in the regions

[1815, 1848] MeV and[1880, 1915] MeV obtained using the ‘D2hh Wide Mass’ trigger are
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Type Value

Daughters p > 5.0 GeV

pT > 0.9 GeV

Trackχ2/NDOF< 5

K DLLKπ > 8

π DLLKπ < −5

D0 Vertexχ2/NDOF< 13

pT > 3.3 GeV

Flight distance> 0.9 mm

D∗+ Vertexχ2/NDOF< 13

pT > 3.6 GeV

πs pT > 260 MeV

Table 5.2: The stripping selection criteria applied after offline reconstruction. Here

DLLKπ is the difference between the natural logarithm of the likelihood of the given

track corresponding to aK and that of it corresponding to aπ (the ‘delta-log-likelihood’

between theK andπ hypotheses).

included in the datasets. The acceptance interval in properdecay time is applied to remove

the region of very low statistics at low proper decay times, which can cause instabilities in

the fit, and to exclude very long lived backgrounds, which canbias the fit results. These cuts

are included in the per-candidate acceptance functions as minimum and maximum turning

points. Additionally, as was discussed in section 4.3.2.1,only events with a single candidate

are used, and both tracks of the candidates selected are required to have fired the HLT1

‘1 Track’ trigger. Finally, all candidates are required to have at most six turning points

in the acceptance function determined by the swimming algorithm, in order to limit the

number of fit variables. This is a very loose selection criterion, as very few candidates have

more than two turning points, as shown in figure 5.8a. The number of candidates fulfilling

these criteria for each decay channel are shown in table 5.3.The untagged datasets, used

to calculateyCP , are simply the combined datasets ofD0 andD0 in each decay mode. The

decayD0 → K−π+ is Cabibbo favoured, whileD0 → K+K− is Cabibbo suppressed, thus

significantly moreD0 → K−π+ thanD0 → K+K− candidates are reconstructed. As the

decayD0 → π+π− is doubly Cabibbo suppressed the number of candidates selected in

this channel is only only∼40 % that ofD0 → K+K−. The inclusion of these candidates

would require additional background studies and would yield only a∼15 % improvement in

precision onτeff(
(−)

D0→ h+h−). Thus, onlyD0→ K+K− candidates are currently used when
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D0 D0 Untagged

K+K− 19,717 19,546 39,263

Kπ 140,814 145,345 286,159

Table 5.3: The number of candidates used in the fits to extractyCP andAΓ, including

backgrounds.

measuringyCP andAΓ.

5.2 Extraction of the Signal Yields

5.2.1 The Specific Methods Used to Fit the Distributions of

m(D0) and∆m

The methods used to fit the distributions ofm(D0) and∆m, in order to extract the relative

fractions of signalD0, randomly-taggedD0 and combinatorial backgrounds, are those de-

scribed in section 4.2.1. SecondaryD0 cannot be distinguished using the mass distributions

and so are included in the signal class at this stage. In orderto increase the fit speed the

fits to the distributions ofm(D0) and∆m are performed separately. The specific PDFs are

chosen as those that best describe the data. The results of the fits using these PDFs to the

D0→ K−π+ andD0→ K+π− datasets are presented in section 5.2.2.

As discussed in section 4.2.1 the PDF ofm(D0) for signal candidates can be described

by a sum of several Gaussian functions with a common mean. A sum of two Gaussians is

found to describe the data sufficiently well, so that the PDF is given by

fsignal,m(m(D0)) = fm1Gauss(m(D0), µm, σm1) + (1− fm1)Gauss(m(D0), µm, σm2).

(5.1)

No sensitivity to a lower radiative tail in the signal mass distributions is observed in any of the

decay channels. This may need to be considered in future whendealing with larger datasets

and the PDF adjusted accordingly. For combinatorial backgrounds the mass distribution is

modelled using a straight line, normalised within the fit range

fbkg,m(m(D0)) =






1
mmax−mmin

− 1
2
Kbkg(mmax +mmin) +Kbkgm(D0) ifmmin < m(D0) < mmax,

0 ifm(D0) < mmin ormmax < m(D0).

(5.2)
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Parameter Class Description

fsignal Both The fraction of signalD0 (including secondary and

randomly-taggedD0) in the dataset

µm Signal The mean mass of the signal

fm1 Signal The relative fraction of the first Gaussian

σm1 Signal Theσ of the first Gaussian

σm2 Signal Theσ of the second Gaussian

Kbkg Combi. Background The gradient of the linear mass distribution

Table 5.4: The parameters of the fit tom(D0) and their meaning. The class of candi-

date to which they apply is also shown; this can be signalD0 (including secondary and

randomly-taggedD0), combinatorial background, or both.

The full list of parameters in this fit is shown in table 5.4.

Due to the retention of only 1 % of candidates passing the ‘D2hh Wide Mass’ trigger

there are very few candidates in the mass side-bands. A scalefactor is introduced for the

PDFs in the side-band regions to account for the difference in acceptance rate between the

two triggers. This factor is calculated simply as the ratio of the number of candidates in the

signal region obtained using the ‘Wide Mass’ trigger to the number in this region obtained

using the signal trigger. This transpires to be very close tothe 1 % relative retention rate.

The fit to the mass distribution is then performed to obtain the fraction of combinatorial

background in the datasets.

To determine the fraction of randomly-taggedD0, as is required for correct measurement

of AΓ, a fit is then done to the distribution of∆m. This is performed using candidates in the

range140 < ∆m [MeV] < 160, not just in the signal region of145.4 − 2 < ∆m [MeV] <

145.4 + 2. All other selection criteria are unchanged. In this fit the PDF for correctly tagged

signal is modelled as the sum of two Gaussians with a common mean, plus a third with an

independent mean

fsignal,∆m =f∆m1Gauss(∆m,µ∆m1, σ∆m1) + f∆m2Gauss(∆m,µ∆m1, σ∆m2)

+ (1− f∆m1 − f∆m2)Gauss(∆m,µ∆m2, σ∆m3). (5.3)

The third Gaussian is added to provide a sufficiently good description of the data. Although

its addition is not physically motivated, studies have shown that the candidates described by

this Gaussian are indeed signal-like [97].

Combinatorial background and randomly-taggedD0 are modelled as a single class of

candidate with the same PDF for∆m. The ‘RooDstD0Bg’ PDF, defined in the ROOFIT
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Figure 5.1: An example of the RooDstD0Bg PDF, as defined in equation 5.4, with

A = −0.34, B = 0.01, C = 2.8 andD = 139.5.

package [98], is used to describe their distribution. It is defined as

f(∆m) =







(

∆m
D

)A (
1− e−(∆m−D)/C

)

+B
(

∆m
D

− 1
)

if ∆m ≥ D

0 if ∆m < D.
(5.4)

The parameterD defines the turn-on point of the distribution, which should be equal to

m(π+) as discussed in section 4.2.1;C determines the curvature of the distribution at low

∆m; A andB define its slope at high∆m. An example of the shape of this PDF is shown in

figure 5.1. The list of parameters in the∆m fit are given in table 5.5.

To aid convergence of the fit, theB parameter of this PDF is fixed to 0.01. The fraction

of candidates determined to be of this class thus corresponds to the fraction of combinatorial

background plus the fraction of randomly-taggedD0. The fraction of correctly taggedD0

lying within the signal region145.4−2 < ∆m [MeV] < 145.4+2 is then calculated to obtain

the rate relevant to the final measurements. This is done by integrating the respective PDFs

over the signal region and recalculating their relative fractions. The fraction of correctly

tagged signal is then subtracted from the fraction of all signal determined by the fit tom(D0)

to obtain the random-tag rate,frandom-tag signal= fsignal− ftagged signal. As discussed in section

4.2.1, asπ+ andπ− are produced in equal quantities, candidates will only be assigned the

wrong flavour tag at half of this rate.

5.2.2 Measurements of Signal Yield and Random-Tag Rate

The number of candidates in the mass side-bands for theD0→ K+K− datasets is so low that

the fit to the distribution ofm(D0) cannot converge when a combinatorial background PDF

is included. Thus, in order to evaluate the signal yield and random-tag rate onlyD0→ K−π+
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Parameter Class Description

ftagged signal Both The fraction of signal that have theD∗± correctly reconstructed,

and so have the correct flavour tag (including secondaryD0)

µ∆m1 Signal The mean∆m for the first two Gaussians

f∆m1 Signal The relative fraction of the first Gaussian

σ∆m1 Signal Theσ of the first Gaussian

f∆m2 Signal The relative fraction of the second Gaussian

σ∆m2 Signal Theσ of the second Gaussian

µ∆m2 Signal The mean of the third Gaussian

σ∆m3 Signal Theσ of the third Gaussian

Abkg Background Controls the slope of the PDF at high∆m

Bbkg Background Controls the slope of the PDF at high∆m - fixed to 0.01 in the fit

Cbkg Background Controls the slope of the PDF at low∆m

Dbkg Background The turn-on point of the PDF

Table 5.5: The parameters of the fit to∆m, and their meaning. The class to which they

relate is also shown; this can be signal (including secondaryD0), background (randomly-

taggedD0 and combinatorial background combined), or both.

candidates are used. This can be done as the random-tag rate is independent of theD0 decay

channel, andD0 → K−π+ provides significantly more candidates thanD0 → K+K−. The

implications of this for the fit to the proper-decay-time distribution and the determination of

the signal effective lifetimes are discussed in section 5.3.1.

The fits tom(D0) and∆m for D0 → K−π+ andD0 → K+π− are shown in figure 5.2.

The pull of the fit in each bin is shown below each plot. The pullis calculated as the number

of candidates minus the value of the fit PDF, divided by the statistical error on the number

of candidates. The pulls are evenly distributed about zero,showing that the PDFs describe

the data well. The corresponding fitted parameter values areshown in table 5.6. There is

∼99.2 % signal in the datasets used to determine the effectivelifetimes, of which∼95.7 %

has theD∗± correctly reconstructed. Although the analogous fits to theD0 → K+K− mass

distributions do not converge stably they predict the fraction of combinatorial background to

be∼3 %.

The meanm(D0) obtained is 1864.05± 0.18MeV, which is slightly lower that the world

average value of 1864.80± 0.14 MeV [7]. A low mean reconstructed mass is a common

issue in the reconstruction at LHCb, as the momentum scale is slightly biased. Indeed, the

fitted mean of∆m for signal is 145.4075± 0.0021MeV, which is reasonably consistent
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Figure 5.2: (a) and (b): The fits to the distributions ofm(D0) for D0 → K−π+ and

D0 → K+π− respectively, overlaid on the fitted PDFs for signal (including randomly-

taggedD0 and secondaryD0) and combinatorial background. (c) and (d): The fits to

the distributions of∆m for D0 → K−π+ andD0 → K+π− respectively, overlaid with

the fitted PDFs for signal (including secondaryD0) and background (comprising com-

binatorial background and randomly-taggedD0). The pull of the fit in each bin is shown

below each plot. The corresponding fitted parameter values are shown in table 5.6.
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D0→ K−π+ Mass Fit Results

Parameter Fitted Value

fsignal 0.9921± 0.0024

µm 1864.050± 0.026 MeV

fm1 0.33± 0.15

σm1 6.17± 0.51 MeV

σm2 9.43± 0.82 MeV

Kbkg (−1.56± 0.40)× 10−4 MeV−1

(a)

D0→ K+π− Mass Fit Results

Parameter Fitted Value

fsignal 0.9929± 0.0033

µm 1864.040± 0.026 MeV

fm1 0.708± 0.044

σm1 7.06± 0.14 MeV

σm2 13.4± 1.0 MeV

Kbkg (−2.0± 2.6)× 10−4 MeV−1

(b)

D0→ K−π+ ∆m Fit Results

Parameter Fitted Value

ftagged signal 0.8226± 0.0021

µ∆m1 145.4080± 0.0029 MeV

f∆m1 0.192± 0.029

σ∆m1 0.365± 0.019 MeV

f∆m2 0.647± 0.034

σ∆m2 0.715± 0.043 MeV

µ∆m2 145.731± 0.046 MeV

σ∆m3 1.412± 0.057 MeV

Abkg −0.07± 0.52

Bbkg 0.01

Cbkg 2.59± 0.41

Dbkg 139.16± 0.18 MeV

ftagged signal 0.9581± 0.0065

(c)

D0→ K+π− ∆m Fit Results

Parameter Fitted Value

ftagged signal 0.8208± 0.0020

µ∆m1 145.4070± 0.0030 MeV

f∆m1 0.205± 0.038

σ∆m1 0.374± 0.021 MeV

f∆m2 0.590± 0.045

σ∆m2 0.689± 0.045 MeV

µ∆m2 145.647± 0.032 MeV

σ∆m3 1.284± 0.044 MeV

Abkg −0.64± 0.55

Bbkg 0.01

Cbkg 2.97± 0.55

Dbkg 138.92± 0.23 MeV

ftagged signal 0.9569± 0.0068

(d)

Table 5.6: (a) The fitted values with their statistical uncertainties of the parameters of

the fit tom(D0) usingD0→ K−π+, and (b) the same forD0→ K+π−. The parameter

definitions are shown in table 5.4 on p. 125. (c) The fitted values and their statistical

uncertainties of the fit to∆m usingD0 → K−π+, and (d) the same forD0 → K+π−.

The final rows in (c) and (d) show the values offtagged signal when calculated in the

signal region,145.4 ± 2MeV. The parameter definitions are shown in table 5.5 on

p. 127. The corresponding fitted distributions are shown in figure 5.2.
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with the expected value of 145.421± 0.010MeV [7], showing thatm(D0) andm(D∗+) are

biased by the same amount. This bias to the reconstructedm(D0) is sufficiently small as

not to be an issue in the determination of the effective lifetimes. The proper decay time of a

given candidate is calculated ast = m(D0)DF/p, whereDF is the distance of flight in the

detector. As the reconstructedm(D0) is determined by the momenta of its daughters it is

biased by almost exactly the same factor asp. Thus, this bias cancels almost completely in

the calculation of the proper decay time. Any remaining biaswill cancel in the calculation

of yCP andAΓ. The bias to the mean reconstructedm(D0) can thus be safely neglected in

the measurements presented here.

5.3 Extraction of the Effective Lifetimes

5.3.1 Specific Methodology of the Simultaneous Fit to Proper Decay

Time and ln(χ2(IPD0))

The method of performing the simultaneous fit to the distributions of proper decay time and

ln(χ2(IPD0)) are for the most part those detailed in sections 4.2.2 and 4.3.2. However, as

mentioned in section 5.2.2, so few candidates are accepted by the ‘Wide Mass’ trigger line

in the mass side-bands that the fit to the distribution ofm(D0) cannot be used to distinguish

combinatorial backgrounds forD0→ K+K−. Similarly, very little statistical discrimination

is achieved forD0→ K−π+. This means that none of the methods detailed in section 4.5 can

be used to obtain a proper-decay-time PDF for combinatorialbackgrounds. Attempting to

use a parametric PDF, such as a sum of exponentials, also results in a fit that cannot converge

stably. However, the level of combinatorial backgrounds inthe signal region is∼1 % for

D0 → K−π+, as shown in table 5.6, and∼3 % forD0 → K+K−. Given the precision that

can be achieved using the statistics given in table 5.3 it is reasonable to neglect backgrounds

at this level in the fit to the proper-decay-time distribution without significantly degrading

the precision of the result. Doing so means that the proper-decay-time component of the

fit only considers prompt and secondaryD0. A systematic uncertainty resulting from this

approximation is calculated in section 6.3.

As the mass parameters provide no discrimination between prompt and secondaryD0

these are omitted from the full fit PDF, which takes the form

f(T) = Σclassfclass,t(t|nTP, TP1, ..., TPn)fclass,IP (ln(χ
2(IPD0))|t)

fclass,TPs(nTP, TP1, ..., TPn)P (class). (5.5)

The exact form of the PDF of the acceptance variables,fclass,TPs(nTP, TP1, ..., TPn), is
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discussed in section 5.3.1.3.

5.3.1.1 Accounting for Mis-TaggedD0

The effects of mis-taggedD0 can be accounted for after the signal lifetime has been ob-

tained by using the random-tag rates determined by the fits tom(D0) and∆m using the

D0→ K−π+ datasets. Treating mis-taggedD0 as signal in the determination of the effective

lifetime introduces a small bias, depending on the mis-tag rate. Assuming no production

asymmetry forπ± the fraction of candidates that have the wrong flavour tag will be half of

the random-tag rate determined by the mass distribution fits. For a small mis-tag rate the

measured effective lifetimes will be

τmeas(D
0) ≃ (1− ǫ+)τeff(D

0) + ǫ+τeff(D
0), (5.6a)

τmeas(D
0) ≃ (1− ǫ−)τeff(D

0) + ǫ−τeff(D
0), (5.6b)

whereǫ+ is the fraction of the candidates tagged asD0 that are actuallyD0, and vice versa

for ǫ−. These are found usingǫ± = 1
2
frandom-tag signalfor theD0 andD0 datasets respectively.

These can be solved to remove the bias from mis-tagged candidates to give

τeff(D
0) ≃ 1

1− ǫ+ − ǫ−

(

(1− ǫ−)τmeas(D
0)− ǫ+τmeas(D

0)
)

, (5.7a)

τeff(D
0) ≃ 1

1− ǫ+ − ǫ−

(

(1− ǫ+)τmeas(D
0)− ǫ−τmeas(D

0)
)

. (5.7b)

AΓ is then calculated using these corrected lifetimes. Using the results of the fits tom(D0)

and∆m usingD0→ K−π+ andD0→ K+π−, shown in table 5.6, yields

ǫ+ = 0.017± 0.003, and (5.8a)

ǫ− = 0.018± 0.003, (5.8b)

where the uncertainties are the sum in quadrature of the statistical uncertainty and systematic

uncertainties from the accuracy of integrating the PDFs, the accuracy of the fit model, and

theD∗± production asymmetry. AsyCP uses the effective lifetimes of the untagged samples

no correction for mis-taggedD0 need be applied before calculating its value.

5.3.1.2 The Proper-Decay-Time andln(χ2(IPD0)) PDFs

The chosen PDFs of proper decay time for prompt and secondaryD0 are those discussed and

motivated in section 4.3.1. The distribution ofln(χ2(IPD0)) has no physically motivated

shape, and so the PDFs ofln(χ2(IPD0)) are chosen to give a sufficiently good description of

the data. The fits made using these PDFs are presented in section 5.3.2.
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Figure 5.3: The distribution ofln(χ2(IPD0)) as a function of proper decay time for the

D0→ K−π+ dataset.

As discussed in section 4.3.1, the proper-decay-time PDF for promptD0 is taken as

the convolution of an exponential PDF with a Gaussian resolution PDF. For secondaryD0

a convolution of two exponential PDFs with a Gaussian is used. This approximation was

shown to describe data obtained from full Monte Carlo simulation sufficiently well. Oneτ

parameter of this PDF is fixed to 270fs, to aid the fit convergence. This value is obtained

from the fit to the sample of secondaryD0 obtained from Monte Carlo simulated data shown

in figure 4.6. Theσ of the Gaussian component that corresponds to the effect of proper-

decay-time resolution is fixed to 50fs for both PDFs. Under the assumption that the proper-

decay-time measurements are unbiased, the mean of the Gaussian resolution function is fixed

to zero.

Figure 5.3 shows the distribution ofln(χ2(IPD0)) as a function of proper decay time,

for theD0→ K−π+ dataset. This clearly shows a dominant proper-decay-time independent

component peaking aroundln(χ2(IPD0)) = 1.5, from promptD0; there is also clearly a

small fraction of the data for which theln(χ2(IPD0)) increases with proper decay time,

which corresponds to secondaryD0. The distribution ofln(χ2(IPD0)) roughly follows the

shape of a bifurcated Gaussian - a Gaussian function with differentσ values below and above

the mean. This is defined as

Bif.Gauss(x, µ, σlow, σhigh) =







2σlow

σlow+σhigh
Gauss(x, µ, σlow) if x ≤ µ,

2σhigh

σlow+σhigh
Gauss(x, µ, σhigh) if x > µ.

(5.9)

Figure 5.4 shows the distribution ofln(χ2(IPD0)) as a function of proper decay time for

promptD0, taken from full Monte Carlo simulated data. Also shown are the values ofµ,
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Figure 5.4: (left) The distribution ofln(χ2(IPD0)) as a function of proper decay time

for promptD0, from full Monte Carlo simulation. (right) The fitted values of the mean,

and lower and upperσ of a bifurcated Gaussian in each bin of proper decay time.

σlow andσhigh obtained from fitting a bifurcated Gaussian in each bin of proper decay time.

As expected, no significant variation in these parameters isseen between bins. This justifies

the use of a PDF that is independent of proper decay time. To fitthe data sufficiently well a

sum of two bifurcated Gaussians and one symmetric Gaussian,all with a common mean, is

used. Thus the PDF forln(χ2(IPD0)) for promptD0 is given by

fsignal,IP (x) =fIP1Bif.Gauss(x, µIP , σlowIP1, σhighIP1)

+ fIP2Bif.Gauss(x, µIP , σlowIP2, σhighIP2)

+ (1− fIP1 − fIP2)Gauss(x, µIP , σIP3). (5.10)

The distribution ofln(χ2(IPD0)) as a function of proper decay time for secondaryD0,

also obtained from simulation, is shown in figure 5.5. Here there is a clear dependence of

theµ of the bifurcated Gaussian fit on proper decay time. A fit to thedistribution of theµ

values is also shown, using the parametrisation

µ(t) = µIP0 + µIP1 ln(1 + t/tIP0). (5.11)

This fits the data well, and so is used to parametrise the mean of the fit PDF as a function

of proper decay time. There is some indication of a dependence of σlow on proper decay

time. However, to keep the PDF as simple as possible this is kept constant. The PDF of

ln(χ2(IPD0)) for secondaryD0 is also given by the sum of two bifurcated Gaussians and a

symmetric Gaussian. The values ofσlow andσhigh in figure 5.5 are similar to those for prompt

D0. Consequently, theσ parameters are constrained to be the same as those for the PDFof
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Figure 5.5: (left) The distribution ofln(χ2(IPD0)) as a function of proper decay time

for secondaryD0, from full Monte Carlo simulation. (right) The fitted values of the

mean, and lower and upperσ of a bifurcated Gaussian in each bin of proper decay time.

promptD0, multiplied by a scaling factor. The relative fractions of the three components

of the PDF are also constrained to be the same as in the PDF for promptD0. The PDF of

ln(χ2(IPD0)) for secondaryD0 is thus given by

fsecondary,IP (x|t) =fIP1Bif.Gauss(x, µIP0 + µIP1 ln(1 + t/tIP0), cIPσσlowIP1, cIPσσhighIP1)

+ fIP2Bif.Gauss(x, µIP0 + µIP1 ln(1 + t/tIP0), cIPσσlowIP2, cIPσσhighIP2)

+ (1− fIP1 − fIP2)Gauss(x, µIP0 + µIP1 ln(1 + t/tIP0), cIPσσIP3).

(5.12)

The value oftIP0 is fixed to be 180fs again to aid the convergence of the fit. This value is

obtained from the fit shown in figure 5.5.

5.3.1.3 The PDF of the Acceptance Variables

The final components required for the fit are the PDFs of the turning points, which has the

general formfclass,TPs(nTP, TP1, ..., TPn). Section 4.3.2 discussed the simplest scenario in

which the distributions of turning points are the same for all classes of candidate, in which

case their PDFs can be omitted from the fit PDF. To examine if this is the case for prompt

and secondaryD0, plots are made of the distributions of the turning points asa function

of ln(χ2(IPD0)). As shown in figure 5.3 the region of lowln(χ2(IPD0)) is dominated by

promptD0, while secondaryD0 dominate at highln(χ2(IPD0)).

Figure 5.6 shows the total distribution ofTP1 and its distribution as a function ofln(χ2(IPD0)),

from theD0 → K−π+ dataset. In the region where promptD0 dominate the average value
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Figure 5.6: (a) The distribution ofTP1 and (b) the same distribution as a function of

ln(χ2(IPD0)) with the average value in each bin ofln(χ2(IPD0)) overlaid, from 2010

D0→ K−π+ data.

of TP1 is constant. At highln(χ2(IPD0)), where secondaryD0 dominate,TP1 tends to be

much larger. AsTP1 and proper decay time are correlated (in thatt ≥ TP1), and so are

ln(χ2(IPD0)) and proper decay time for secondaryD0, this plot is insufficient to infer a de-

pendence ofTP1 on ln(χ2(IPD0)). However, it does indicate that the distribution ofTP1 is

very different for prompt and secondaryD0. Thus, separate PDFs of the turning points for

prompt and secondaryD0 must be included in the fit PDF.

The PDF of the turning points,fclass,TPs(nTP, TP1, ..., TPn), describes a large number

of variables, and so is difficult to implement in the fit. In [94] this is circumvented by using

a Fischer discriminant to transform the vector of turning point values into a single value, and

a systematic error assigned for any bias this might introduce. An alternative approach, used

here, is to examine the turning point distributions and simplify their PDFs accordingly.

Firstly, the value ofTP1 should be determined entirely by the candidate selection and the

kinematics of the candidates, thus it is natural thatTP1 should follow a different distribution

for prompt and secondaryD0. As discussed in section 4.3.2.1, the only reasons that addi-

tional turning points appear are due to having multiple PVs in the event, and the geometric

acceptance of the VELO. These are independent of the candidate kinematics and selection

criteria, making it a safe assumption thatTP1 is independent ofnTP .

In addition, the following turning points can be assumed to be correlated only in that

TPn ≥ TPn−1. Thus, transforming the fit variables from the turning points to the difference

between two consecutive turning points yields a set of uncorrelated fit variables, and the PDF
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Figure 5.7: (a) The distribution ofTP2−TP1 and (b) the same distribution as a function

of ln(χ2(IPD0)) with the average value in each bin ofln(χ2(IPD0)) overlaid, from 2010

D0→ K−π+ data.

becomes

fclass,TPs(nTP, TP1, ..., TPn) =fclass,nTP (nTP )fclass,TP1(TP1)
∏nTP

n=2
fclass,∆TPn

(TPn − TPn−1|nTP ). (5.13)

One cannot assume that the difference between turning points is independent ofnTP . For

example, in the case of only two turning points being found for a given candidate the differ-

ence between the first and second turning points is likely to be large; if four turning points

are found this difference is likely to be smaller. Nonetheless, this is a much simpler PDF to

implement in the fit.

One can further reason that as the distributions of the number of turning points and the

differences between turning points are independent of the candidate kinematics they should

be the same for prompt or secondaryD0. Figure 5.7 shows the total distribution of the dif-

ference between the first and second turning points and its distribution and mean value as

a function ofln(χ2(IPD0)). No significant variation is seen, thus confirming the assump-

tion that this distribution is the same for prompt and secondary D0. Figure 5.8 also shows

the distribution of the number of turning points. Again, this is constant as a function of

ln(χ2(IPD0)), and so can be assumed to be the same for prompt and secondaryD0. Thus,

only the PDF of the first turning point need be included in the fit PDF.

Unlike the proper decay time and mass, there are no physically motivated PDFs that can

be used for these variables. The best approach is thus to extract the PDFs from the data

themselves. A cut ofln(χ2(IPD0)) < 1 is applied to select a data sample of almost pure

promptD0. Kernel density estimation, as described in section 4.1.3,is then used on this

dataset to obtain a PDF of the first turning point for promptD0.
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Figure 5.8: (a) The distribution of the number of turning points and (b) the same distri-

bution as a function ofln(χ2(IPD0)) with the average value in each bin ofln(χ2(IPD0))

overlaid, from 2010D0→ K−π+ data.

Obtaining the PDF for secondaryD0 is rather more difficult. As described in section

5.3.1.2, parametric PDFs for the proper decay time andln(χ2(IPD0)) are used for both

prompt and secondaryD0. Thus, their shape is determined reasonably well before thefit

by using the optimal parameter values obtained in a previousfit. As only the PDF of the first

turning point need be considered for the fit, this PDF for secondaryD0 is the only unknown

one. A rough first estimate of this PDF is obtained by using kernel density estimation on the

first turning point values for the whole dataset.

Thus one has a PDF for each class for the set of variablesT, fclass,T (T). Although the

PDF of the first turning point for secondaryD0 is not correct at this time, these PDFs can

still be used to calculate the probability of a candidate being prompt or secondaryD0

P (class|Ti) =
fclass(Ti)P (class)

Σclassfclass(Ti)P (class)
, (5.14)

where the PDF for a given class has the form of the right hand side of equation 5.5. Again, the

termfclass,TPs(nTP, TP1, ..., TPn) is simply replaced here byfclass,TP1(TP1), as its other

components factor out of this calculation.

As is explained in [96], weighting each candidate byP (class|Ti) for a specific class and

histogramming one of the variables inT yields the distribution of that variable for that class,

assuming the PDFs used to calculate the weights are correct.If the PDFs are incorrect the

distribution obtained will differ from the PDF used to describe the variable. Thus, calculating

the weights,P (secondary|Ti), and using them to weight the kernel functions when plotting

the values ofTP1, a new PDF is obtained. If the initial PDF ofTP1 for secondaryD0 is

correct, the new PDF is close to identical to the original. Ifnot, the new PDF is different, but

slightly closer to the correct distribution than the previous PDF. In this case, the new PDF
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Figure 5.9: (a) The PDFs of the first turning point for prompt and secondaryD0, ob-

tained from data using kernel density estimation. (b) The average acceptance as a func-

tion of proper decay time for prompt and secondaryD0, calculated using equation 5.15.

is used to recalculate the weightsP (secondary|Ti) and then used to plotTP1 again. Thus,

this process is iterated upon until the PDF used to calculatethe weights and the one obtained

using them agree sufficiently well. At this point one can be certain that the PDF describes

the data well.

This assumes that the other fit PDFs used in calculating the weights describe the data

well, prior to the fit. Thus, there is some dependence of the PDF ofTP1 obtained on the initial

values of the parameters of the other fit PDFs. Provided theseinitial values are reasonably

close to the final fitted values the PDF obtained will be sufficiently accurate, as it is still

mostly defined by the distribution of the data. Any remaininginfluence of the initial fit

parameter values is almost completely removed by a second iteration of the proper-decay-

time fit, which is described in section 5.3.1.5. This iterative technique can be used for any

PDF for any class, but only in the case that only one PDF for onevariable is unknown.

Thus, separate PDFs of the first turning point for prompt and secondaryD0 are obtained.

An example of the PDFs thus obtained, usingD0 → K−π+ data, are shown in figure 5.9a.

The PDFs of the first turning point for prompt and secondaryD0 → K−π+, extracted from

data using this method, are shown in figure 5.9a. As expected,TP1 takes much higher values

for secondaryD0 than for promptD0.

As these PDFs are obtained using kernel density estimation they have no free parameters,

and so remain constant throughout the fit procedure. The fulllist of parameters in the proper-

decay-time fit is shown in table 5.7.
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Parameter Class Description

fprompt Both The fraction of promptD0 in the dataset

τD0 Prompt The effective lifetime of the signal

τ1 Secondary The firstτ parameter of the proper-decay-time PDF - fixed to 270

fs

τ2 Secondary The secondτ parameter of the proper-decay-time PDF

σt Both The σ of the Gaussian proper-decay-time resolution function -

fixed to 50 fs

µIP Prompt The central value of theln(χ2(IPD0)) PDF - applies to both bi-

furcated Gaussians and the symmetric Gaussian

fIP1 Both The relative fraction of the first bifurcated Gaussian of the

ln(χ2(IPD0)) PDF

σlowIP1 Both The lowerσ of the first bifurcated Gaussian of theln(χ2(IPD0))

PDF

σhighIP1 Both The upperσ of the first bifurcated Gaussian of theln(χ2(IPD0))

PDF

fIP2 Both The relative fraction of the second bifurcated Gaussian of the

ln(χ2(IPD0)) PDF

σlowIP2 Both The lower σ of the second bifurcated Gaussian of the

ln(χ2(IPD0)) PDF

σhighIP2 Both The upper σ of the second bifurcated Gaussian of the

ln(χ2(IPD0)) PDF

σIP3 Both Theσ of the symmetric Gaussian of theln(χ2(IPD0)) PDF

cIPσ Secondary The scale factor between theσ parameters of prompt and sec-

ondaryln(χ2(IPD0)) PDFs

µIP0 Secondary The central value of theln(χ2(IPD0)) PDF att = 0 - applies to

both bifurcated Gaussians and the symmetric Gaussian

µIP1 Secondary Describes the rate of increase of the central value of the

ln(χ2(IPD0)) PDF as a function oft

tIP0 Secondary Describes the rate of increase of the central value of the

ln(χ2(IPD0)) PDF as a function oft - fixed to 180fs

Table 5.7: The parameters of the proper-decay-time fit and their meaning. The class of

candidate to which they apply is also shown; this can be promptD0, secondaryD0, or

both.
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5.3.1.4 Calculation of the Average Acceptance as a Functionof Proper Decay Time

As different PDFs for the first turning point are required forprompt and secondaryD0 the

simple method of calculating the average acceptance function by summing the acceptance

functions for each individual candidate, discussed in section 4.3.2.3, cannot be used. An

acceptance function obtained by doing so would contain contributions from the turning point

distributions of the other classes of candidate, and so would not be accurate. Thus, the

average acceptance function must be calculated for each class by integrating over the turning

point PDFs specific to each class.

Using the form of the PDF of the turning points in equation 5.13 and thatnTP takes

integer values, the integral required to calculate the average acceptance function becomes

Aclass,avg(t) = ΣnTPmax

nTP=2

[

P (nTP |class)

∫ +∞

−∞

(

(

Σ
nTP/2
n=1 Θ(t− TP2n−1)Θ(TP2n − t)

)

Σ
nTP/2
n=1

∫ TP2n

TP2n−1
fclass,t(t′)dt′

fclass,TP1(TP1)

∏nTP

n=2
fclass,∆TPn

(TPn − TPn−1|nTP )
)

dTP1...dTPnTP

]

.

(5.15)

Examples of the PDF of the first turning point,fclass,TP1(TP1), are shown for prompt and

secondaryD0 → K−π+ in figure 5.9a. Note that, although the PDFs of the differences

between turning points are not implemented in the fit, they need to be known to properly

calculate the average acceptance function. Thus, normalised histograms, made using the full

dataset, are used to estimate their distributions.

As the PDFs of the turning points and their separation aren’tanalytical functions this

integral can only be evaluated numerically. TakingN bins inTP1 of width δTP1, andN

bins in(TP2 − TP1) of width δTP2−1 one can define

TP1,i = TP1,0 + iδTP1, and (5.16)

TP2,ij = TP1,0 + iδTP1 + jδTP2−1. (5.17)

Then one can express the term fornTP = 2 as a sum

P (nTP = 2|class)ΣN
i=0Σ

N
j=0

(

(Θ(t− TP1,i)Θ(TP2,ij − t))
∫ TP2,ij

TP1,i
fclass,t(t′)dt′

fclass,TP1(TP1,i)δTP1

fclass,∆TP2(TP2,ij − TP1,i|nTP = 2)δTP2−1

)

. (5.18)
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This is essentially the total sum of the per-candidate acceptance functions for each value of

TP1 andTP2 weighted by the probability of finding that number of turningpoints and those

turning point values. Analogous calculations are performed for higher values ofnTP , up to

its maximum value of six.

Each term for each value ofnTP thus requires calculating and summingNnTP accep-

tance functions. FornTP = 2 usingN = 1000 requires106 separate calculations, which

is manageable. However, usingN = 1000 for nTP = 4 one would have1012 calculations,

and1018 for nTP = 6, which would require a prohibitive amount of CPU time. ThusN is

scaled according to the value ofnTP in order to be able to perform such a calculation within

reasonable time limits. This results in requiring very small N for largenTP . However, as

shown in figure 5.8,P (nTP |class) is very small for highnTP . Thus, the calculation of the

average acceptance is dominated by thenTP = 2 term, and highernTP terms contribute

very little. Hence, using smallN for highnTP does not significantly reduce the accuracy of

the average acceptance function thus obtained.

An example of the acceptance functions calculated in this manner for prompt and sec-

ondaryD0 → K−π+ are shown in figure 5.9b. For promptD0 the acceptance rate is very

small at low proper decay times, as expected from the use of minimum χ2
IP cuts on the

D0 daughter tracks. The presence of multiple turning points, due to multiple PVs in the

events, causes the acceptance to peak at moderate proper decay times and drop slightly at

high proper decay times. This effect is small as the average number of PVs reconstructed

by LHCb during the relevant data-taking period is only∼2.1. This is consistent with expec-

tations, as discussed in section 4.3.2.1. SecondaryD0 have very low acceptance at low and

moderate proper decay times, as the first turning point tendsto take much larger values.

5.3.1.5 Suppression of SecondaryD0

The difficulties in obtaining a sufficiently accurate description of secondaryD0 result in

a large systematic uncertainty on the effective lifetimes determined using the full dataset.

Consequently, an additional fit is performed on a subset of thedata after the fit to the full

dataset. The fraction of secondaryD0 is suppressed for this second fit by applying a cut

of ln(χ2(IPD0)) < 2. The parameters of theln(χ2(IPD0)) PDFs are fixed in the second

fit to the values obtained in the first fit using the full dataset. The fraction of promptD0

in the reduced dataset is calculated by evaluating the integral of the fit PDFs for prompt

and secondaryD0 up to the cut value. This fraction is then also fixed. Thus, theonly free

parameters in the second fit areτD0 andτ2.

Due to the correlation betweenln(χ2(IPD0)) and proper decay time for secondaryD0,

the cutln(χ2(IPD0)) < 2 introduces an average acceptance as a function of proper decay
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D0 D0 Untagged

K+K− 15,234 15,247 30,481

Kπ 111,212 114,898 226,110

Table 5.8: The number of candidates used in the fits to extractyCP andAΓ, including

backgrounds, after requiringln(χ2(IPD0)) < 2.

time for secondaryD0. This is given by the integral of the PDF ofln(χ2(IPD0)) up to the

cut value:

Asec(t|χ2
max(IPD0)) =

∫ ln(χ2
max(IPD0 ))

−∞
fsec,IP (x|t)dx. (5.19)

Thus the proper decay time PDF for secondaryD0 becomes

fsec,t(t|χ2
max(IPD0)) =

1

N
Asec(t|χ2

max(IPD0))fsec,t(t), (5.20)

where the normalisation is given by

N =

∫ +∞

−∞
Asec(t|χ2

max(IPD0))fsec,t(t)dt. (5.21)

Such a cut also modifies the distribution of the first turning point for secondaryD0. This

PDF is thus re-evaluated on the reduced dataset using the method discussed in section 5.3.1.3,

with only one iteration. It is produced using kernel densityestimation, and weighting each

candidates contribution byP (secondary|Ti), as determined by the first fit and defined in

equation 5.14. This has the consequence that any dependenceof the PDF ofTP1 for sec-

ondaryD0 on the initial values of the fit parameters, prior to the first fit, is almost completely

eliminated. The values ofτD0 determined by this second fit for each decay channel are then

used to calculateyCP andAΓ (after the correction for mis-taggedD0 in the case ofAΓ).

The number of candidates passing the trigger and offline selection criteria, detailed in

section 5.1, are shown in table 5.3. These are used in the firstiteration of the fit. The number

of candidates also fulfilling the requirement ofln(χ2(IPD0)) < 2, that are used in the second

fit iteration, are shown in table 5.8.

5.3.1.6 Blinding

During the development of the final fit methodology the lifetimes of theD0 → K+K−

datasets were blinded. This was done to ensure that no user imposed bias, either conscious

or unconscious, could be introduced to the observed values of AΓ andyCP before the final fit

methodology was defined. The blinding was achieved by scaling the lifetimes output by the

fit by an unknown factor between 0.97 and 1.03. Only once the full fit procedure was agreed

upon were the blinding factors removed.
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5.3.1.7 Future Considerations

Due to the complicated nature of the full fit PDF it is possiblethat the approximations made

here may prove not to be exact when examining larger datasetsin the future.

One minor issue exists due to the geometric acceptance of theVELO, or in the presence

of a maximum cut on the proper decay time. In this case the PDF of the difference between

the last and second last turning points is modified as the lastturning point always falls in

roughly the same place (or exactly the same place when applying a maximum cut). This

would affect the PDFs of the differences between turning points for secondaryD0 much

more, as the value ofTP1 takes much larger values. However, as the contribution of sec-

ondaryD0 to the dataset is suppressed so strongly in the second iteration of the fit, this effect

is sufficiently small as to be neglected for the measurementspresented here. A relevant

systematic uncertainty is nonetheless calculated in section 6.3.5.

Another consideration that must be made comes from properlyexamining the PDF of

ln(χ2(IPD0)) in equation 4.17. In the previous section it was assumed thatln(χ2(IPD0))

depends only ont for secondaryD0; however, this PDF is in fact conditional on the full

set of proper-decay-time fit variables,{t, nTP, TP1, ..., TPn}. As, during the swimming

algorithm, PVs are moved along the direction of the momentumvector of theD0 the IP, and

χ2(IPD0), of theD0 does not change with the distance swum. However, this does not rule

out the possibility of correlation between theχ2(IPD0) and the values of the turning points.

Intuitively, one might expect that aD0 candidate with a very largeχ2(IPD0), such as those

for secondaryD0 at high proper decay times, may well be inclined to have a larger value

for TP1. A largerχ2(IPD0) implies a larger pointing angle; at lower proper decay times

the pointing angle will get larger still, and so may well cause the candidate not to pass the

selection, resulting in a large value forTP1. Hence a correlation betweenχ2(IPD0) andTP1

is plausible, in addition to the dependence ofχ2(IPD0) on proper decay time for secondary

D0.

As shown by figure 5.6 the value ofTP1 appears uncorrelated toln(χ2(IPD0)) for prompt

D0, and so such considerations only affect secondaryD0 (and potentially combinatorial back-

grounds in future). Thus, as secondaryD0 contribute so little to the final fit dataset, it is rea-

sonable to neglect such effects for the measurements presented here. Again, a corresponding

systematic uncertainty is applied in section 6.3.6. However, such effects will need to be

studied carefully when larger datasets are examined in future.
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5.3.2 Measurements of Effective Lifetimes

The simultaneous fit to the proper-decay-time andln(χ2(IPD0)) distributions, detailed in

section 5.3.1, is applied to each of the datasets to determine the effective lifetime of the

signal. The first iteration of the fit, which is used to determine the parameters of the PDFs

of ln(χ2(IPD0)), is performed using the statistics shown in table 5.3. The signal lifetime

(andτ2 parameter for secondaryD0) is determined in the second iteration of the fit, after the

application of the cut ofln(χ2(IPD0)) < 2, the statistics for which are shown in table 5.8.

Table 5.9 shows the fitted values and their statistical errors for all parameters in the fits to the

D0→ K−π+ andD0→ K+π− datasets. Table 5.10 shows the same results forD0→ K+K−

andD0 → K+K−. The results of the fits to the combined, untagged datasets are shown

in table 5.11. No significant correlation betweenτD0 and any of the other fit parameters is

observed in either iteration of the proper-decay-time fit onany dataset.

The projections of the corresponding fits onto the proper-decay-time andln(χ2(IPD0))

axes are shown forD0→ K−π+ andD0→ K+π− in figure 5.10. The pull of the fit in each

bin is shown below each plot. For secondaryD0 the projection onto theln(χ2(IPD0)) axis

is achieved by integrating the PDF ofln(χ2(IPD0)) multiplied by the average proper-decay-

time PDF over the range of proper decay time in the fit. The average proper-decay-time PDF

for each class is obtained by integrating over the range of turning point values and the number

of turning points, up to the maximum of six, as described by equation 5.15. Examples of the

acceptance functions thus obtained are shown in figure 5.9b.

Figure 5.11 shows the distributions of the data and the pull values of the fits in the

ln(χ2(IPD0)) and proper-decay-time plane, forD0 → K−π+ andD0 → K+π− after the

final iteration of the fit. The pulls are evenly distributed about zero, showing that the fit-

ted PDFs describe the data well. Figures 5.12 and 5.13 show the fit projections and their

pulls for D0 → K+K−, D0 → K+K− and untaggedD0 → K+K− andD0 → K−π+. The

pulls of the projections are also generally distributed evenly about zero. With the higher

statistics ofD0 → K−π+ some small regions where the pulls are consistently positive or

negative are apparent, for example the region2 < ln(χ2(IPD0)) < 6 in figure 5.13c. This

implies some small inaccuracies in the fit PDFs, though thereare no apparent structures to

the pulls in the region ofln(χ2(IPD0)) < 2, in which the final fit is performed to extract the

effective lifetimes. Thus, it is clear that the average acceptance as a function of proper de-

cay time is reproduced accurately using the data obtained bythe swimming algorithm, and

the parametrisation of theln(χ2(IPD0)) distribution is sufficiently good. Any systematic

uncertainties resulting from inaccuracies in the fit PDFs are evaluated in section 6.3.

A summary of the effective lifetimes determined on each dataset is shown in table 5.12.

The lifetimes for the taggedK+K− datasets after applying the correction for the bias from
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D0→ K−π+ Proper-Decay-Time Fit Results

Parameter Fitted Value

fprompt 0.93019± 0.00086

τ1 0.270 ps

µIP 1.306± 0.014

fIP1 0.557± 0.016

σlowIP1 1.652± 0.041

σhighIP1 0.724± 0.022

fIP2 0.120± 0.020

σlowIP2 2.777± 0.080

σhighIP2 1.362± 0.039

σIP3 0.922± 0.018

cIPσ 0.929± 0.011

µIP0 0.558± 0.071

µIP1 1.969± 0.028

tIP0 0.180 ps

fprompt 0.99518

τ2 0.59± 0.16 ps

τD0 410.6± 1.3 fs

(a)

D0→ K+π− Proper-Decay-Time Fit Results

Parameter Fitted Value

fprompt 0.93055± 0.00085

τ1 0.270 ps

µIP 1.298± 0.013

fIP1 0.571± 0.016

σlowIP1 1.684± 0.040

σhighIP1 0.747± 0.022

fIP2 0.102± 0.018

σlowIP2 2.888± 0.088

σhighIP2 1.401± 0.042

σIP3 0.911± 0.018

cIPσ 0.934± 0.011

µIP0 0.344± 0.070

µIP1 2.066± 0.028

tIP0 0.180 ps

fprompt 0.99498

τ2 0.84± 0.19 ps

τD0 409.9± 1.3 fs

(b)

Table 5.9: The fitted values and their statistical errors of the parameters of the simulta-

neous fit to the proper decay time andln(χ2(IPD0)) distributions, for (a)D0→ K−π+

and (b)D0 → K+π−. The values of the parameters in the last three rows are those

determined in the second fit, after applying the cut ofln(χ2(IPD0)) < 2. Parameters

without errors are fixed in the fit. The definitions of the parameters are given in table

5.7 on p. 139. No significant correlation betweenτD0 and any of the other fit param-

eters is observed in either iteration of the proper-decay-time fit. The corresponding fit

projections are shown in figure 5.10.
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Figure 5.10: (a) The projection onto theln(χ2(IPD0)) axis of the first iteration of the si-

multaneous fit to the proper decay time andln(χ2(IPD0)) distributions forD0→ K−π+.

The red dashed line shows the cut ofln(χ2(IPD0)) < 2 used for the second iteration of

the fit. (b) The projection onto the proper decay time axis of the results of the second

iteration of the fit, using candidates left of the red dashed line in (a). (c) and (d) show

the same forD0→ K+π−. The pull of the fit in each bin is shown below each plot. The

corresponding fit results are shown in table 5.9.
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Figure 5.11: Distribution of ln(χ2(IPD0)) as a function of proper decay time from

the subset of the data used in the final iteration of the proper-decay-time fit,for (a)

D0 → K−π+ and (b)D0 → K+π−. (c) and (d) show the pull values (data minus fit,

divided by the statistical error) in each bin.
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mis-taggedD0 are also shown. These are used in the calculation ofAΓ. The corrections

are performed using equations 5.7a and 5.7b with the mis-tagrates shown in equations 5.8a

and 5.8b. The systematic uncertainties on the lifetimes themselves have not been estimated

and would require careful consideration for these measurements to significantly improve

the knowledge of the absoluteD0 lifetime. Hence, the lifetimes are quoted with statistical

uncertainties only. These are used to calculate the values of and statistical uncertainties on

yCP andAΓ. Many of the sources of systematic uncertainty on the absolute lifetimes are

expected to cancel in the calculation ofyCP andAΓ.

As a cross-check a ‘pseudo’AΓ measurement is also made usingD0→ K−π+ andD0→
K+π−, defined analogously toAΓ as

AKπ,eff
Γ =

τeff(D
0→ K+π−)− τeff(D

0→ K−π+)

τeff(D0→ K+π−) + τeff(D0→ K−π+)
. (5.22)

UnderCPT invariance theD0 andD0 should have identical effective lifetimes, thusAKπ,eff
Γ

should yield a result consistent with zero. This also means that mis-taggedD0 do not bias

the measured effective lifetimes, and so no mis-tag correction is applied when calculating

AKπ,eff
Γ . This provides a strong cross-check on the fit method as it exploits the significantly

higher statistics in theD0→ K−π+ channel compared toD0→ K+K−.

The effective lifetimes shown in table 5.12 give the following results, showing only sta-

tistical uncertainties:

AKπ,eff
Γ = (−0.9± 2.2)× 10−3, (5.23a)

AΓ = (−5.9± 5.9)× 10−3, (5.23b)

yCP = (5.5± 6.3)× 10−3. (5.23c)

As mentioned in section 5.3.1.6 the measurements ofyCP andAΓ were blinded while the fit

methodology was being developed. Further cross-checks on these measurements are shown

in section 6.1, and the determination of their systematic uncertainties discussed in section

6.3.

5.4 Conclusions

This chapter presented the measurements ofyCP andAΓ, the motivation and methodology

for which has been discussed in chapters 1 and 4. Section 5.1 presented the datasets used

and the selection criteria applied to the reconstructedD0 candidates. The data comprises

28.0 ± 2.8 pb−1 collected during the 2010 run, and yields 39,263 untaggedD0 → K+K−

candidates and 286,159 untaggedD0→ K−π+ candidates after the selection is applied.
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D0→ K+K− Proper-Decay-Time Fit Results

Parameter Fitted Value

fprompt 0.9231± 0.0024

τ1 0.270 ps

µIP 1.419± 0.044

fIP1 0.579± 0.043

σlowIP1 1.64± 0.13

σhighIP1 0.652± 0.044

fIP2 0.152± 0.087

σlowIP2 2.62± 0.23

σhighIP2 1.23± 0.10

σIP3 0.977± 0.047

cIPσ 0.922± 0.028

µIP0 0.91± 0.18

µIP1 1.854± 0.072

tIP0 0.180 ps

fprompt 0.9952

τ2 0.47± 0.22 ps

τD0 410.4± 3.4 fs

(a)

D0→ K+K− Proper-Decay-Time Fit Results

Parameter Fitted Value

fprompt 0.9256± 0.0023

τ1 0.270 ps

µIP 1.260± 0.035

fIP1 0.539± 0.045

σlowIP1 1.798± 0.066

σhighIP1 0.803± 0.076

fIP2 0.062± 0.013

σlowIP2 3.000± 0.079

σhighIP2 1.714± 0.094

σIP3 0.956± 0.038

cIPσ 0.924± 0.028

µIP0 0.29± 0.18

µIP1 2.057± 0.073

tIP0 0.180 ps

fprompt 0.9947

τ2 0.27± 0.30 ps

τD0 405.7± 3.4 fs

(b)

Table 5.10:The fitted values and their statistical errors of the parameters of the simulta-

neous fit to the proper decay time andln(χ2(IPD0)) distributions, for (a)D0→ K+K−

and (b)D0 → K+K−. The values of the parameters in the last three rows are those

determined in the second fit, after applying the cut ofln(χ2(IPD0)) < 2. Parameters

without errors are fixed in the fit. The definitions of the parameters are given in table

5.7 on p. 139. No significant correlation betweenτD0 and any of the other fit param-

eters is observed in either iteration of the proper-decay-time fit. The corresponding fit

projections are shown in figure 5.12.
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Figure 5.12: (a) The projection onto theln(χ2(IPD0)) axis of the first iteration

of the simultaneous fit to the proper decay time andln(χ2(IPD0)) distributions for

D0 → K+K−. The red dashed line shows the cut ofln(χ2(IPD0)) < 2 used for the

second iteration of the fit. (b) The projection onto the proper decay time axis of the

results of the second iteration of the fit, using candidates left of the red dashed line in

(a). (c) and (d) show the same forD0→ K+K−. The pull of the fit in each bin is shown

below each plot. The corresponding fit results are shown in table 5.10.
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UntaggedD0→ K+K−

Proper-Decay-Time Fit Results

Parameter Fitted Value

fprompt 0.9245± 0.0017

τ1 0.270 ps

µIP 1.328± 0.026

fIP1 0.557± 0.026

σlowIP1 1.789± 0.038

σhighIP1 0.723± 0.036

fIP2 0.0639± 0.0097

σlowIP2 3.00± 0.37

σhighIP2 1.567± 0.067

σIP3 0.976± 0.016

cIPσ 0.922± 0.020

µIP0 0.60± 0.13

µIP1 1.949± 0.053

tIP0 0.180 ps

fprompt 0.9951

τ2 0.39± 0.18 ps

τD0 408.0± 2.4 fs

(a)

UntaggedD0→ K−π+

Proper-Decay-Time Fit Results

Parameter Fitted Value

fprompt 0.93038± 0.00060

τ1 0.270 ps

µIP 1.3014± 0.0096

fIP1 0.564± 0.011

σlowIP1 1.669± 0.029

σhighIP1 0.736± 0.015

fIP2 0.110± 0.013

σlowIP2 2.832± 0.059

σhighIP2 1.382± 0.028

σIP3 0.917± 0.012

cIPσ 0.9322± 0.0080

µIP0 0.450± 0.049

µIP1 2.018± 0.020

tIP0 0.180 ps

fprompt 0.99507

τ2 0.72± 0.13 ps

τD0 410.24± 0.90 fs

(b)

Table 5.11: The fitted values and their statistical errors of the parameters of the si-

multaneous fit to the proper decay time andln(χ2(IPD0)) distributions, for (a) un-

taggedD0 → K+K− and (b) untaggedD0 → K−π+. The values of the parameters

in the last three rows are those determined in the second fit, after applying thecut of

ln(χ2(IPD0)) < 2. Parameters without errors are fixed in the fit. The definitions of the

parameters are given in table 5.7 on p. 139. No significant correlation betweenτD0 and

any of the other fit parameters is observed in either iteration of the proper-decay-time fit.

The corresponding fit projections are shown in figure 5.13.
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Figure 5.13: (a) The projection onto theln(χ2(IPD0)) axis of the first iteration of the

simultaneous fit to the proper decay time andln(χ2(IPD0)) distributions for untagged

D0 → K+K−. The red dashed line shows the cut ofln(χ2(IPD0)) < 2 used for the

second iteration of the fit. (b) The projection onto the proper decay time axis of the

results of the second iteration of the fit, using candidates left of the red dashed line in

(a). (c) and (d) show the same for untaggedD0→ K−π+. The pull of the fit in each bin

is shown below each plot. The corresponding fit results are shown in table5.11.

Decay D0 D0 Untagged

K+K− 410.4± 3.4 fs 405.7± 3.4 fs 408.0± 2.4 fs

K+K− Mis-tag Corrected 410.5± 3.4 fs 405.6± 3.4 fs

Kπ 410.6± 1.3 fs 409.9± 1.3 fs 410.24± 0.90 fs

Table 5.12: A summary of the effective lifetimes determined for each decay channel

and their statistical errors. The lifetimes for the taggedK+K− final states are shown

both before and after applying the correction for the bias from mis-taggedcandidates.
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The specifics of the fit methodology, discussed for more general cases in chapter 4, were

described for the mass fits in section 5.2.1. The results of the mass fits to determine the

fractions of combinatorial backgrounds and randomly-taggedD0 were then shown in section

5.2.2. Due to the very small number of candidates accepted inthe side-band regions, mass fits

to theD0→ K+K− datasets cannot converge stably, and so only results from theD0→ K−π+

datasets were presented.

The specifics of the fits to extract the effective lifetimes were then detailed in section

5.3.1. This includes the exact parametrisation of the PDFs used in the fit, and the methods

for extracting the distributions of the acceptance variables, determined by the swimming

algorithm, from the data. Due to very limited statistics in the mass side-bands, combinatorial

backgrounds are neglected in the fit to extract the effectivelifetimes. The effects of mis-

taggedD0 are corrected after the lifetime fits have been performed using the random-tag

rates determined by theD0 → K−π+ mass fits. An additional fit iteration is also added

after the application of a cut ofln(χ2(IPD0)) < 2, in order to suppress the component of

secondaryD0 in the data. This reduces the final statistics to 30,481 untaggedD0 → K+K−

candidates and 226,110 untaggedD0→ K−π+ candidates.

The results of the simultaneous fits to the proper-decay-time andln(χ2(IPD0)) distribu-

tions for each ofD0 → K−π+, D0 → K+π−, D0 → K+K−, D0 → K+K−, and untagged

D0 → K−π+ andD0 → K+K− were then shown in section 5.3.2. The fit PDFs and the

average acceptance rate as a function of proper decay time determined by the swimming

algorithm were shown to be accurate. A measurement ofAKπ,eff
Γ , defined analogously toAΓ

but usingτeff(D0→ K−π+) andτeff(D0→ K+π−), is made as a cross-check. The resulting

measurements, with only statistical uncertainties, are found to be

AKπ,eff
Γ = (−0.9± 2.2)× 10−3, (5.24a)

AΓ = (−5.9± 5.9)× 10−3, (5.24b)

yCP = (5.5± 6.3)× 10−3. (5.24c)

The stability of these measurements and their systematic uncertainties are evaluated in chap-

ter 6.
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Chapter 6

Stability Verification and Evaluation of

Systematic Uncertainties foryCP andAΓ

Chapter 5 presented the data and specific methods used to measure yCP andAΓ. A mea-

surement ofAKπ,eff
Γ , defined analogously toAΓ but usingτeff(D0 → K−π+) andτeff(D0 →

K+π−), is made as a cross-check. The resulting measurements, withonly statistical uncer-

tainties, are shown in equations 5.23a to 5.23c. Before the physical meaning of these results

can be discussed they must be shown to be reliable and any systematic effects on their values

evaluated.

Cross-checks of these results, performed by splitting the data according to various dif-

ferent criteria, are shown in section 6.1. Verification studies of the fit method itself, made

using toy Monte Carlo simulation, are then shown in section 6.2. Finally, the systematic

uncertainties onyCP andAΓ that may arise from various aspects of the event reconstruction

and fit methodology are evaluated in section 6.3. The systematic uncertainties onAKπ,eff
Γ are

also calculated, to ensure that they are compatible with those found foryCP andAΓ. The

final results are then shown, and their physical interpretation discussed.

6.1 Measurement Cross-Checks

The measurement ofAKπ,eff
Γ , defined as

AKπ,eff
Γ =

τeff(D
0→ K+π−)− τeff(D

0→ K−π+)

τeff(D0→ K+π−) + τeff(D0→ K−π+)
, (6.1)

should be consistent with zero, as bothτeff(D0→ K−π+) andτeff(D0→ K+π−) should yield

the average lifetime of theD0 mass eigenstates. The result shown in equation 5.23a, is very

much consistent with this. As this exploits the high statistics of the
(−)

D0→ K∓π± channel this
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AND AΓ

alone provides a good deal of confidence in the measurements of AΓ andyCP . Additionally,

the untagged lifetimes, shown in table 5.12, are equal to theaverage of the lifetimes forD0

andD0, as they should be. Finally, the untaggedD0 → K−π+ lifetime is nicely consistent

with the world average value of [7]

τeff(D
0→ K−π+) = 410.1± 1.4 fs. (6.2)

Thus, the basic measurements imply that the results are reliable.

To ensure that the fit results do not exhibit any dependence onany properties of the can-

didates or the running conditions, the data are split into bins depending on several different

parameters.AKπ,eff
Γ , AΓ andyCP are then measured on each individual dataset. The param-

eters by which the data are split are: the running period, to examine any dependence on the

running conditions of LHCb; theD0 momentum, to examine any dependence on the momen-

tum scale; theD0 pT , for similar reasons; and the number of PVs in the event, which varies

the level of lifetime biasing effects, as discussed in section 4.3.2.1. Theχ2-probability of the

variations of the fitted values between the datasets is determined to evaluate their statistical

significance. This is calculated with respect to the fit values obtained on the full datasets,

using the uncorrelated statistical uncertainties. The uncorrelated uncertainties are calculated

for the lifetimes using

σ2
τ,X,uncorr. = σ2

X,bin + σ2
X,full − 2

√
ρXσX,binσX,full, (6.3)

for AΓ andAKπ,eff
Γ using

σ2
AΓ,uncorr.

=

(

2τD0,bin

(τD0,bin + τD0,bin)2

)2

σ2
D0,bin +

(

2τD0,bin

(τD0,bin + τD0,bin)2

)2

σ2
D0,bin

(6.4)

+

(

2τD0,full

(τD0,full + τD0,full)2

)2

σ2
D0,full +

(

2τD0,full

(τD0,full + τD0,full)2

)2

σ2
D0,full

− 2
√
ρD0σD0,binσD0,full

2τD0,bin

(τD0,bin + τD0,bin)2
2τD0,full

(τD0,full + τD0,full)2

− 2
√
ρD0σD0,binσD0,full

2τD0,bin

(τD0,bin + τD0,bin)2
2τD0,full

(τD0,full + τD0,full)2
,

and foryCP using

σ2
yCP ,uncorr. =

(

1

τKK,bin

)2

σ2
Kπ,bin +

(

τKπ,bin

τ 2KK,bin

)2

σ2
KK,bin (6.5)

+

(

1

τKK,full

)2

σ2
Kπ,full +

(

τKπ,full

τ 2KK,full

)2

σ2
KK,full

− 2
√
ρKπσKπ,binσKπ,full

1

τKK,bin

1

τKK,full

− 2
√
ρKKσKK,binσKK,full

τKπ,bin

τ 2KK,bin

τKπ,full

τ 2KK,full

,
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Bin No. Run Range N. UntaggedD0→ K+K− N. UntaggedD0→ K−π+

1 80200− 80375 3,134 18,821

2 80376− 80650 3,740 30,472

3 80651− 80875 6,315 41,342

4 80876− 81309 219 1,883

5 81310− 81375 7,756 63,196

6 81401− 81475 3,918 28,395

7 81476− 82000 5,275 41,115

Table 6.1: The run ranges and the corresponding dataset sizes for the results shown in

figures 6.1 and 6.2. The ranges are chosen to select data taken with different trigger

configurations.

whereτX,bin is the measured lifetime in the given data bin for decay channel X, σX,bin its

statistical uncertainty,τX,full andσX,full the same for the full dataset, andρX the fraction

of the full dataset for the given decay channel that lies in the given bin. On occasion the

datasets are too small after splitting the data for the fits toconverge accurately, in which case

the results are omitted from the comparisons.

The values obtained when splitting by running period are shown in figure 6.1 forAKπ,eff
Γ

andAΓ, and figure 6.2 foryCP . The run ranges chosen correspond to periods in which

different trigger configurations were used. The number of candidates in each dataset for

each running period is shown in table 6.1. The values of each measurement for each running

period, as well as the effective lifetimes that contribute to them, agree within their statistical

errors. Theχ2-probabilities also indicate that the variations between bins are consistent with

statistical variations. The higher statistics of the untaggedD0→ K−π+ channel also allows

examination of the pull distribution forτeff(D0→ K−π+) using the results from each running

period. The pulls are calculated with respect to the value obtained using the full untagged

D0 → K−π+ sample. The uncorrelated statistical uncertainties are used to calculate the

pull. Their distribution is shown in figure 6.3, fitted with a single Gaussian. Although the

uncertainties on the mean andσ are large they are clearly consistent with zero and one

respectively. This also confirms that the measured effective lifetimes and their statistical

uncertainties are determined correctly.

The results of splitting the data byD0 p are shown forAKπ,eff
Γ andAΓ in figure 6.4 and

for yCP in figure 6.5. Splitting byD0 pT gives the results shown in figures 6.6 and 6.7. One

might infer some weak dependence ofAKπ,eff
Γ andAΓ on p from these figures. However,

these values are still consistent within their statisticalerrors, and theχ2-probabilities are
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Figure 6.1: (a) The fitted values ofτeff(D0 → K−π+) (top left) andτeff(D0 → K+π−) (top right),

and the resulting values ofAKπ,eff
Γ (bottom) in different running periods. (b) The same forτeff(D

0→
K+K−), τeff(D0 → K+K−) andAΓ. The run ranges and statistics corresponding to each bin are

shown in table 6.1. There are too fewD0 → K+K− candidates in bin 4 for the fit to converge, so

this is omitted from the comparison. The red dashed lines show the fitted values obtained using the

whole dataset. The black error bars show the statistical uncertainties on each point, while the broad

green error bars show the uncorrelated statistical uncertainties w.r.t. the red dashed line. Theχ2 and

P -values shown are calculated w.r.t. the red dashed line using the uncorrelated uncertainties.
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Figure 6.2: Fitted values of untaggedτeff(D0 → K−π+) (top left) and untagged

τeff(D
0→ K+K−) (top right), and the resulting values ofyCP (bottom) in different run-

ning periods. The run ranges and statistics corresponding to each bin are shown in table

6.1. The red dashed lines show the fitted values obtained using the whole dataset. The

black error bars show the statistical uncertainties on each point, while the broad green

error bars show the uncorrelated statistical uncertainties w.r.t. the red dashed line. The

χ2 andP -values shown are calculated w.r.t. the red dashed line using the uncorrelated

uncertainties.
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Figure 6.3: The pull distribution of the values of untaggedτeff(D0 → K−π+) when

splitting the data by running period, taken with respect to the value obtained onthe full

dataset.
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Figure 6.4: (a) The fitted values ofτeff(D0 → K−π+) (top left) andτeff(D0 → K+π−) (top right),

and the resulting values ofAKπ,eff
Γ (bottom) in different bins ofD0 momentum. (b) The same for

τeff(D
0→ K+K−), τeff(D0→ K+K−) andAΓ. The bin ranges are chosen to give roughly the same

statistics in each bin. There are too fewD0 → K+K− candidates in the highestp bin for the fit to

converge, so it is omitted from the comparison. The red dashed lines show the fitted values obtained

using the whole dataset. The black error bars show the statistical uncertainties on each point, while

the broad green error bars show the uncorrelated statistical uncertainties w.r.t. the red dashed line. The

χ2 andP -values shown are calculated w.r.t. the red dashed line using the uncorrelated uncertainties.
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Figure 6.5: Fitted values of untaggedτeff(D0 → K−π+) (top left) and untagged

τeff(D
0→ K+K−) (top right), and the resulting values ofyCP (bottom) in different bins

of D0 momentum. The bin ranges are chosen to give roughly the same statistics in each

bin. The red dashed lines show the fitted values obtained using the whole dataset. The

black error bars show the statistical uncertainties on each point, while the broad green

error bars show the uncorrelated statistical uncertainties w.r.t. the red dashed line. The

χ2 andP -values shown are calculated w.r.t. the red dashed line using the uncorrelated

uncertainties.
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Figure 6.6: (a) The fitted values ofτeff(D0→ K−π+) (top left) andτeff(D0→ K+π−)

(top right), and the resulting values ofAKπ,eff
Γ (bottom) in different bins ofD0 pT . (b)

The same forτeff(D0→ K+K−), τeff(D0→ K+K−) andAΓ. The bin ranges are chosen

to give roughly the same number of candidates in each bin. The red dashedlines

show the fitted values obtained using the whole dataset. The black error bars show

the statistical uncertainties on each point, while the broad green error barsshow the

uncorrelated statistical uncertainties w.r.t. the red dashed line. Theχ2 andP -values

shown are calculated w.r.t. the red dashed line using the uncorrelated uncertainties.
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Figure 6.7: Fitted values of untaggedτeff(D0 → K−π+) (top left) and untagged

τeff(D
0 → K+K−) (top right), and the resulting values ofyCP (bottom) in different

bins ofD0 pT . The bin ranges are chosen to give roughly the same number of candi-

dates in each bin. The red dashed lines show the fitted values obtained using the whole

dataset. The black error bars show the statistical uncertainties on each point, while the

broad green error bars show the uncorrelated statistical uncertainties w.r.t. the red dashed

line. Theχ2 andP -values shown are calculated w.r.t. the red dashed line using the un-

correlated uncertainties.
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consistent with statistical variations. Further, as the trends forAKπ,eff
Γ andAΓ are in the

opposite direction, and no similar dependence is seen when splitting by pT , one can safely

conclude that these apparent trends are simply due to statistical fluctuations. The values of

yCP obtained in each bin are also consistent with each other.

Finally, splitting the data by the number of PVs in each eventgives the results shown

in figures 6.8 and 6.9. As was discussed in section 4.3.2.1 higher PV multiplicity results in

a greater number of turning points in the per-candidate acceptance functions determined by

the swimming algorithm. Thus, examining candidates from events with different numbers of

PVs may reveal any issues in accurately determining acceptance functions with varying num-

bers of turning points. The results show no significant dependence on the PV multiplicity,

and so multiple turning point acceptance functions appear to be determined accurately.

These cross-checks thus show that the measurements ofAKπ,eff
Γ , AΓ andyCP are stable

and exhibit no significant dependence on running period,D0 p andpT , and PV multiplicity.

6.2 Verification Using Toy Monte Carlo Data

There are various ways in which a systematic bias can occur inthe effective lifetimes de-

termined by the method laid out in section 5.3.1. The cross-checks detailed in section 6.1

are insensitive to any such biases as they would affect all measurements in the same man-

ner, regardless of how the data are divided up. To verify the accuracy of the fit method and

ensure that any bias resulting from the fit method itself is negligible one must examine its

results in many ‘pseudo experiments’ using Monte Carlo simulated ‘toy data’. In such toy

data the variables of interest for each candidate, such as the reconstructedm(D0) or proper

decay time, are generated using specific, known PDFs. Resolution effects are modelled by

adding variables following Gaussian distributions to the generated variable of interest. Toy

data is preferable over the full GEANT based simulation described in section 2.2.8.2 for such

method verification as it is much less CPU intensive to produce, and so can easily be gener-

ated in much larger quantities. Also, generating the toy data using the exact same PDFs as

are used in the fit means that any observed bias originates from the fit method itself, rather

than any reconstruction biases.

For the toy data studied here the parameters of the PDFs used to generate the variables

of interest are, where possible, those obtained from the fitsto theD0 → K−π+ dataset.

These results are shown in tables 5.6 (a) and (c) for the mass fits and table 5.11(b) for the

proper-decay-time fit. PromptD0 candidates are generated using a double Gaussian PDF

for the mass, an exponential PDF with a Gaussian resolution term for the proper decay

time, and a double bifurcated Gaussian plus a single Gaussian, with means independent of
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Figure 6.8: (a) The fitted values ofτeff(D0 → K−π+) (top left) andτeff(D0 → K+π−) (top right),

and the resulting values ofAKπ,eff
Γ (bottom) in different bins of PV multiplicity. (b) The same for

τeff(D
0 → K+K−), τeff(D0 → K+K−) andAΓ. There are too fewD0 → K+K− candidates with

3 PVs for the fit to converge, and so this dataset is omitted from the comparison. The red dashed

lines show the fitted values obtained using the whole dataset. The black errorbars show the statistical

uncertainties on each point, while the broad green error bars show the uncorrelated statistical uncer-

tainties w.r.t. the red dashed line. Theχ2 andP -values shown are calculated w.r.t. the red dashed line

using the uncorrelated uncertainties.
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Figure 6.9: Fitted values of untaggedτeff(D0 → K−π+) (top left) and untagged

τeff(D
0 → K+K−) (top right), and the resulting values ofyCP (bottom) in different

bins of PV multiplicity. The red dashed lines show the fitted values obtained using

the whole dataset. The black error bars show the statistical uncertainties oneach point,

while the broad green error bars show the uncorrelated statistical uncertainties w.r.t. the

red dashed line. Theχ2 andP -values shown are calculated w.r.t. the red dashed line

using the uncorrelated uncertainties.
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proper decay time, for theln(χ2(IPD0)). Similarly, for secondaryD0 the mass is generated

with the same PDF as promptD0, the proper decay time is generated using a sum of two

exponential variables plus a Gaussian resolution term, andthe ln(χ2(IPD0)) using the same

PDF as for promptD0 but with a proper-decay-time dependent mean of the form given by

equation 5.11. Combinatorial background candidates are generated using a linear PDF for

the mass, a single exponential PDF with Gaussian resolutionfor the proper decay time and

a bifurcated Gaussian, with mean independent of proper decay time, for theln(χ2(IPD0)).

The parameters of the mass PDF for combinatorial backgrounds are taken from the results of

the mass fit forD0→ K−π+, shown in table 5.6(a), while those of the proper decay time and

ln(χ2(IPD0)) PDFs are taken from fits to the mass side-bands of the untaggedD0→ K−π+

dataset. Although theln(χ2(IPD0)) distribution for combinatorial backgrounds is likely

to have some proper-decay-time dependence, in reality it isnot possible to determine this

from the data. Generating theln(χ2(IPD0)) independent of proper decay time makes the

combinatorial backgrounds more like signal than secondaryD0. Thus any bias originating

from neglecting their PDFs in the proper-decay-time fit is likely to be slightly larger than

in reality. Only 1 % of candidates in the mass side-bands are kept, to mirror the relative

retention rate between the ‘D2hh’ and ‘D2hh Wide Mass’ trigger lines. No mis-tagged signal

candidates are generated.

The first turning point value is generated with a double bifurcated Gaussian PDF. For

prompt and secondaryD0 the parameters of this PDF are chosen to match the shape of

the PDFs obtained using kernel density estimation from fits to data, like those shown in

figure 5.9a. For combinatorial backgrounds the parameters are again obtained from fits to the

mass side-bands of untaggedD0 → K−π+ data. The number of turning points is generated

identically for all classes of candidate using a Gaussian PDF, the results of which are then

rounded to positive integer values. The difference betweenturning points also follows the

same distribution for all classes. It is generated using a single exponential PDF the mean of

which is obtained from a fit to the untaggedD0 → K−π+ dataset. The number of turning

points and their values are generated before the proper decay time, and the generated proper

decay time then required to lie within these acceptance intervals. No resolution is considered

on the turning point values.

1000 such datasets of 20,000 candidates, of which 93 % are promptD0, 6 % secondary

D0, and 1 % combinatorial backgrounds, were generated. The full lifetime fit procedure,

as detailed in section 5.3.1, was then applied to each. The pull of the fitted value ofτD0 ,

defined as the fitted value minus the value used during the generation of the data, divided by

the statistical error on the fitted value, is then plotted forall datasets. The pull distribution

is shown in figure 6.10a, fitted with a Gaussian. The mean of this distribution is slightly
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Figure 6.10: The pull distributions of the fitted values ofτD0 obtained using 1000 toy

datasets. In (a) the datasets consist of 20,000 candidates each with 93 % signal, 6 %

secondaryD0, and 1 % combinatorial backgrounds. In (b) the datasets are identical but

contain 100,000 candidates each. In (c) the datasets also contain 100,000candidates

each, but no combinatorial background is generated.

displaced from, but still consistent with, zero, and theσ is consistent with one. This shows

that the fit method causes no significant bias to the lifetimesobtained and estimates the

statistical errors correctly.

A further 1000 datasets were generated with 100,000 candidates each, and this process

repeated. The corresponding pull distribution is shown in figure 6.10b. With the increased

statistics a significant bias of 0.28σ is apparent. However, this only equates to a bias of

∼0.4 fs on the lifetimes obtained. To verify the source of this bias 1000 datasets of 100,000

candidates each were generated with no combinatorial backgrounds. The mean of the re-

sulting pull distribution, shown in figure 6.10c, is much closer to zero. This shows that the

largest source of systematic bias to the fitted lifetimes results from neglecting combinatorial

backgrounds in the proper-decay-time fit. A small bias may still remain, but as this corre-

sponds to∼0.1 fs it is negligible. The likely source of any remaining bias is inaccuracies in
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reproducing the PDFs of the first turning point from data using kernel density estimation, as

discussed in section 4.1.3.

Indeed, any consistent bias that displaces the measured lifetimes ofD0 andD0 by the

same amount, such as those shown in figure 6.10, will mostly cancel in the calculation of

AΓ. However, due to the different levels of background in theK−π+ andK+K− final states,

a significant bias may result from neglecting combinatorialbackground when calculating

yCP . To examine what size of bias to expect, toy datasets were generated to mimic untagged

D0 → K+K− andD0 → K−π+ data. TheD0 → K−π+ datasets have 230,000 candidates

each, a signal lifetime of 410.1fs and 1 % combinatorial background. TheD0 → K+K−

datasets have 30,000 candidates each, a signal lifetime of 407.9 fs and 3 % combinatorial

background. This roughly mimics the 2010 untagged datasets, with a generatedyCP of

5.5 × 10−3. Fitting the proper-decay-time distribution in the mass side-bands of the 2010

datasets gives a mean lifetime of∼420± 40 fs. To examine the effects of relatively extreme

scenarios, two configurations were used to generate the toy data: one with the lifetime of the

combinatorial background at 360fs and one with the lifetime at 480fs. 1000 datasets of

D0 → K+K− andD0 → K−π+ were then generated in both configurations, and the full fit

procedure performed on each. The values ofyCP and their pull were then plotted for each

configuration.

Figure 6.11a shows the fitted values ofyCP from the datasets with the combinatorial

background generated with a lifetime of 360fs. A small bias of+1.3 × 10−3 is observed.

The corresponding pull distribution foryCP is shown in figure 6.11b. The bias corresponds

to ∼0.18σ, but the statistical uncertainties are still estimated correctly. Figures 6.11c and

6.11d show the corresponding distributions for the datasets with a combinatorial background

lifetime of 480 fs. Here a bias of−2.0× 10−3, corresponding to∼0.28σ, is observed. The

statistical uncertainties are also estimated correctly.

The omission of combinatorial background is expected to be one of the main sources of

systematic uncertainty in the measurements obtained. It isthus reassuring that in both these

cases the biases observed are considerably smaller than thestatistical uncertainties onyCP .

Further, as combinatorial background is generated in the toy data withln(χ2(IPD0)) inde-

pendent of proper decay time it is more similar to promptD0 than secondaryD0. In reality

combinatorial background is expected to have some correlation betweenln(χ2(IPD0)) and

proper decay time, making it more like secondaryD0 than promptD0. The biases observed

here can thus be taken as conservative upper estimates.

In both cases the statistical uncertainty onyCP is 7.5 × 10−3. Assuming a1/
√
N de-

pendence, and that the datasets are 100 % signal, one would expect the uncertainty to be

7.0 × 10−3, using the size of the datasets after the cut ofln(χ2(IPD0)) < 2. The increase
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Figure 6.11: (a) The fitted values ofyCP from toy data when generating combinatorial

background with a lifetime of 360fs, and (b) the corresponding pull distribution. (c)

and (d) show the same plots when generating combinatorial background witha mean

lifetime of 480 fs.
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in the observed uncertainty is likely due to the fact that thefit PDFs do not describe the data

exactly when combinatorial background is neglected.

These studies thus show that the fit method described in section 5.3.1 and used to give the

results shown in section 5.3.2 produces no significant biases to the measured parameters and

estimates their statistical uncertainties accurately. What biases are observed can be attributed

to neglecting combinatorial background in the fit PDF. Any resulting bias to the measured

values ofyCP is expected to be considerably smaller than the statisticaluncertainty achieved

on its measured value.

6.3 Determination of Systematic Uncertainties

As mentioned previously, the cross-checks performed in section 6.1 demonstrate that the

measurements ofyCP andAΓ, presented with their statistical uncertainties in section 5.3.2,

are stable and reliable, but do not give any indication as to the size of any systematic bi-

ases. Section 6.2 demonstrated that any bias resulting fromthe implementation of the fit

itself is negligible, but also showed that a small bias is introduced as a result of neglecting

combinatorial backgrounds in the fit for the effective lifetimes. As these results are found

on ideal, toy data, any biases to the results obtained on the 2010 datasets are likely to be

different. They also do not test for any biases resulting from the method of determining the

per-candidate acceptance functions using the swimming algorithm, which is performed prior

to and separately from the fit itself. To estimate the possible size of any such bias, various

parameters within the fit are varied within a small range and the fits repeated. The systematic

uncertainty resulting from each effect is taken as half of the total variation in the measured

values ofAKπ,eff
Γ ,AΓ andyCP . Variation of certain parameters change the size of the datasets

used and so introduce some statistical variation into the fitresults. In these cases the system-

atic uncertainty is still taken as the full range of variation in the results, in order to provide a

conservative upper estimate of its value. The systematic uncertainties determined forAKπ,eff
Γ

are compared to those onAΓ andyCP to ensure compatibility.

6.3.1 Uncertainty on the VELO Length Scale

The proper decay time of a particle is determined using the distance between the PV and

its decay vertex. Any bias to the relative positions of the VELO modules along thez-axis

can thus result in a bias to the measured proper decay time. These positions were measured

during the assembly of the VELO to an accuracy of 10µm, and again, once the VELO was

sealed in the RF-box, using the track based alignment described in section 3.5. These two
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measurements agree to an accuracy of 50µm. Any potential bias the random displacement

of an individual module may cause is reduced by the requirement that tracks have at least

9 hits in the VELO; the use of two tracks in calculating the position of the decay vertex;

and the fact that the first hits on the tracks in any dataset aredistributed across many dif-

ferent modules in both halves of the VELO. Consequently, the resulting bias to any lifetime

measurement, such as those made here, is limited to be less than 0.04 % [99].

The track based alignment method is insensitive to a relative scaling of thez positions

of the VELO modules. This is constrained only by the direct position measurements made

during the assembly. At operational temperature the base plate of the VELO, to which the

modules are attached, is maintained at 20◦C - slightly below room temperature. Thus,

the base plate may have contracted slightly after the measurements made during assembly,

which would introduce a scaling in thez positions of the modules. A conservative estimate

of a 10◦C temperature difference would correspond to a scaling of the z positions of the

modules by∼5 × 10−5 [99]. This would translate into a similar level of bias to a lifetime

measurement, which is negligible.

Uncertainties on the relative positions of the VELO and the downstream tracking stations

can also introduce a lifetime bias. In particular, the position of the TT determined by track

based alignment differs by 2mm from the measurements made during its assembly. The

worst case scenario for lifetime measurements would be if this was entirely due to the VELO

z scale. This would introduce a lifetime bias of 0.1 %. Although the VELOz scale is known

to a higher level of accuracy than this, as discussed above, this is conservatively assigned as

an upper estimate to any resulting bias.

Hence, a systematic uncertainty of 0.1 % is assigned to the effective lifetime measure-

ments made here. This corresponds to∼0.4 fs for theD0. AsAKπ,eff
Γ , AΓ andyCP all use

ratios of lifetimes such a bias will cancel. The uncertaintyfrom the VELO length scale is

thus negligible.

6.3.2 Uncertainty on the Per-Candidate Acceptance Variables

As discussed in section 4.3.2.1 the swimming algorithm determines the positions of the turn-

ing points for the acceptance function for each candidate using an iterative refinement pro-

cess. This results in a resolution on the proper decay time ofthe turning points of∼0.5 fs

(∼4.6 µm). The worst case scenario would be if this process resulted in a consistent bias

to the turning point values. To test this the turning point values for each candidate are dis-

placed from their measured values and the fit re-run for each value of the displacement. A

highly conservative bias of up to± 3.4 fs (30 µm), corresponding to∼6.5σ, is applied. The

results of these test are shown in figure 6.12 forAKπ,eff
Γ andAΓ and in figure 6.13 foryCP .
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Systematic uncertainties of±0.10× 10−3, ±0.17× 10−3, and±0.22× 10−3 respectively are

thus assigned.

Proper-decay-time dependent differences between the proper-decay-time resolution in

the trigger and offline reconstruction algorithms could also result in a consistent scaling of

the turning point values. Thus, the turning point values arescaled by up to1±0.003 and the fit

repeated for each scale value. A scale of1± 0.001 is likely to be the worst case scenario, but

the full range of1±0.003 is used to give a conservative estimate of any resulting bias. The fit

results are shown in figures 6.14 and 6.15. An uncertainty of±0.049× 10−3, ±0.15× 10−3,

and±0.13× 10−3 is thus assigned toAKπ,eff
Γ , AΓ andyCP respectively.

6.3.3 Uncertainty Due to Neglecting Combinatorial Backgrounds

The bias resulting from the omission of PDFs for combinatorial background in the fit is eval-

uated by varying the fraction of combinatorial background in the datasets. This is achieved

by varying the size of the signal window in∆m. The default value is±2MeV, and so this

is compared to using±1MeV and±3MeV. This varies the fraction of combinatorial back-

ground in theD0 → K−π+ datasets between∼0.46 % and∼1.06 %. The relative variation

for theD0 → K+K− datasets should be of the same size. The results are shown in figures

6.16 and 6.17. These lead to systematic uncertainties of±1.5 × 10−3, ±1.3 × 10−3, and

±0.85× 10−3 for AKπ,eff
Γ , AΓ andyCP respectively.

The uncertainty onyCP is of a similar size to the bias observed in the studies on toy

data, detailed in section 6.2. In addition to this studies were done whereby a fixed PDF for

combinatorial background is added to the fit. The proper decay time is modelled as a single

exponential. Four separate cases are considered: fixing thelifetime of the background to

360 fs or 480 fs, as in the toy studies; and having theln(χ2(IPD0)) PDF for the background

the same as prompt or secondaryD0. The background fraction is fixed to 1 % forD0 →
K−π+ and 3 % forD0 → K+K−, and the fits repeated for each of the four configurations.

The case of the background being like promptD0 in ln(χ2(IPD0)) results in a change toyCP

of −2.0× 10−3 with the background lifetime at 360fs, and+4.4× 10−3 at 480 fs. Having

the background like secondaryD0 in ln(χ2(IPD0)) results in a change of−0.1 × 10−3 and

−0.2 × 10−3 for background lifetimes of 360fs and 480 fs respectively. The change in

this case is very small due to the suppression of the secondary-like component of the data

in the final iteration of the fit. In reality any resulting biasis likely to lie between these two

extremes. Thus, the systematic uncertainties determined by varying the signal window in

∆m are taken as reasonable estimates.
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Figure 6.12: The effects on the measured values of (a)AKπ,eff
Γ , and (b)AΓ, of biasing the turning

point values by a small amount. The datasets in each bin are not fully correlated as biasing the

turning points causes some candidates to have measured proper decay time outwith their acceptance

intervals. The uncertainties shown are uncorrelated with respect to the nominal result. The red dashed

line shows the nominal result. Blue dashed lines are drawn at the nominal result ±1× its statistical

uncertainty, if this is in range.
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Figure 6.13: The effects on the measured value ofyCP of biasing the turning point

values by a small amount. The datasets in each bin are not fully correlated asbiasing

the turning points causes some candidates to have measured proper decaytime outwith

their acceptance intervals. The uncertainties shown are uncorrelated withrespect to the

nominal result. The red dashed line shows the nominal result. Blue dashed lines are

drawn at the nominal result±1× its statistical uncertainty, if this is in range.
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Figure 6.14: The effects on the measured values of (a)AKπ,eff
Γ , and (b)AΓ, of scaling the turning

point values by a small amount. The datasets in each bin are not fully correlated as biasing the

turning points causes some candidates to have measured proper decay time outwith their acceptance

intervals. The uncertainties shown are uncorrelated with respect to the nominal result. The red dashed

line shows the nominal result. Blue dashed lines are drawn at the nominal result ±1× its statistical

uncertainty, if this is in range.
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Figure 6.15: The effects on the measured value ofyCP of scaling the turning point

values by a small amount. The datasets in each bin are not fully correlated asbiasing

the turning points causes some candidates to have measured proper decaytime outwith

their acceptance intervals. The uncertainties shown are uncorrelated withrespect to the

nominal result. The red dashed line shows the nominal result. Blue dashed lines are

drawn at the nominal result±1× its statistical uncertainty, if this is in range.
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Figure 6.16: The effect on (a)AKπ,eff
Γ and (b)AΓ of varying the width of signal window

in ∆m from its nominal value of±2MeV. The uncertainties shown are uncorrelated

with respect to the nominal result. The red dashed line shows the nominal result. Blue

dashed lines are drawn at the nominal result±1× its statistical uncertainty, if this is in

range.
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Figure 6.17: The effect onyCP of varying the width of signal window in∆m from its

nominal value of±2MeV. The uncertainties shown are uncorrelated with respect to

the nominal result. The red dashed line shows the nominal result. Blue dashed lines are

drawn at the nominal result±1× its statistical uncertainty, if this is in range.

6.3.4 Uncertainty from the Parametrisation of Proper-Decay-Time Resolution

As discussed in section 5.3.1 the proper-decay-time resolution is modelled by a single Gaus-

sian with width 50fs. Any difference between this and the resolution function inreality may

result in a systematic bias to the effective lifetimes. Thisparameter is also used as input to

the calculation of theσ of the Gaussian kernel functions used to extract the PDFs of the first

turning point, as described in section 5.3.1.3. To check themodelling of the proper-decay-

time resolution and the accuracy of kernel density estimation in reproducing the distribition

of TP1 from the data the proper-decay-time resolution in the fit is varied between 30fs and

70 fs. The results of this are shown in figures 6.18 and 6.19, and result in a systematic un-

certainty of±0.0034 × 10−3, ±0.048 × 10−3, and±0.056 × 10−3 for AKπ,eff
Γ , AΓ, andyCP

respectively.

6.3.5 Uncertainty from the Boundaries of the Proper-Decay-Time Fit

As mentioned in section 5.1 the range of proper decay times inthe fit is restricted to be be-

tween 0.25ps and 6 ps. The lower limit is placed to avoid instabilities in the fit inregions

of very low statistics, while the upper limit is used to exclude very long lived backgrounds.
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Figure 6.18: The results for (a)AKπ,eff
Γ and (b)AΓ of varying the width of the proper-

decay-time resolution function from its nominal value of 50fs. The datasets in each

bin are 100 % correlated and so no uncertainties are shown. The red dashed line shows

the nominal result. Blue dashed lines are drawn at the nominal result±1× its statistical

uncertainty, if this is in range.
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Figure 6.19: The results foryCP of varying the width of the proper-decay-time

resolution function from its nominal value of 50fs. The datasets in each bin are 100 %

correlated and so no uncertainties are shown. The red dashed line shows the nominal

result. Blue dashed lines are drawn at the nominal result±1× its statistical uncertainty,

if this is in range.
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Varying these values thus allows evaluation of the accuracyof the fit model and the impact of

such long lived backgrounds. This also examines the effectsof the assumption that the dif-

ference between the first and second turning points follows the same distribution for prompt

and secondaryD0. As discussed in section 5.3.1.7 this may not be strictly true in the presence

of an upper limit on the proper decay time.

In figures 6.20 and 6.21 the lower bound is varied from 0.25ps to 0.2 ps and 0.3ps.

This results in systematic uncertainties of±0.092× 10−3, ±0.14× 10−3, and±0.75× 10−3

for AKπ,eff
Γ , AΓ andyCP respectively. In figures 6.22 and 6.23 the upper bound is varied

from 6 ps to 5 ps and 8 ps. This results in systematic uncertainties of±0.073 × 10−3,

±0.21× 10−3, and±0.15× 10−3 for AKπ,eff
Γ , AΓ andyCP respectively.

6.3.6 Uncertainty from the Parametrisation of SecondaryD0

SecondaryD0 and backgrounds with a similar topology are strongly suppressed in the final

iteration of the proper-decay-time fit by the cut ofln(χ2(IPD0)) < 2. To examine how well

the remaining fraction of secondaryD0 is modelled in the fit this cut is varied between 1.5,

which is just above the peak of theln(χ2(IPD0)) distribution for prompt signal, and 3.5. This

varies the fraction of secondaryD0 determined to be in the final iteration of the fit between

∼0.4 % to∼1.6 %. Any potential correlation between the values of the turning points and

ln(χ2(IPD0)) for secondaryD0, as discussed in section 5.3.1.7, will also vary with the value

of this cut. As combinatorial backgrounds will tend to have largerχ2(IPD0) this test also

varies their relative fraction in the datasets. The resultsof this are shown in figures 6.24 and

6.25. These result in systematic uncertainties of±0.63×10−3,±1.7×10−3, and±3.9×10−3

for AKπ,eff
Γ , AΓ andyCP respectively.

This variation is particularly large foryCP . From figure 6.25 it is clear that this is due

to the variation inτeff(D0→ K+K−) at low cut values. This is potentially due mostly to the

contribution from combinatorial background, as the fraction of combinatorial background for

D0→ K+K− is much larger than forD0→ K−π+. The combination of the uncertainty aris-

ing from this study and that from the variation of the∆m window thus likely over-estimates

the effects of combinatorial background. Nonetheless, both values are conservatively in-

cluded in the total systematic uncertainty.

6.3.7 Uncertainties Due to Varying Reconstruction Inefficiencies

As mentioned in section 4.3.2.1 the reconstruction efficiency of theD0 can vary as a function

of its transverse flight distance due to the assumption in thereconstruction algorithms that all

tracks originate from the beam-line. The swimming algorithm is insensitive to such effects
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Figure 6.20: The effects on (a)AKπ,eff
Γ and (b)AΓ of varying the lower bound on proper

decay time from its nominal value of 0.25ps. The uncertainties shown are uncorrelated

with respect to the nominal result. The red dashed line shows the nominal result. Blue

dashed lines are drawn at the nominal result±1× its statistical uncertainty, if this is in

range.
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Figure 6.21: The effects onyCP of varying the lower bound on proper decay time from

its nominal value of 0.25ps. The uncertainties shown are uncorrelated with respect to

the nominal result. The red dashed line shows the nominal result. Blue dashed lines are

drawn at the nominal result±1× its statistical uncertainty, if this is in range.

as the PVs are moved in order to change theD0 proper decay time, rather than moving the

decay vertex and the tracks made by the daughter particles. Thus any such effect would

result in a bias to the measured lifetimes.

The existence of any reconstruction bias is evaluated usingfull Monte Carlo simulated

data. The number ofD0 generated is compared to the number reconstructed, using the offline

reconstruction, as a function of their proper decay time. The data are further divided up

into bins ofp andη to examine any geometric dependence on the reconstruction efficiency.

A linear fit is performed to the efficiency distribution in each bin. Figure 6.26 shows the

efficiency as a function of proper decay time for candidates with 50 < p [ GeV] < 70.

The gradient of the linear fit isβ = (2.5 ± 5.0) × 10−3, showing no significant variation

in the efficiency as a function of proper decay time. Figure 6.27 shows the gradients of

fits to the efficiency distributions in bins ofη andp. No significant deviations from zero

are observed. Thus, no reconstruction bias to the measured lifetimes is observed, and no

systematic uncertainty is assigned.

Any similar bias resulting from the HLT reconstruction algorithms can be checked on

real data by calculating the reconstruction efficiency withrespect to the offline reconstruc-

tion. This is achieved using a sample ofD0 reconstructed from the minimum bias trigger
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Figure 6.22: The effects on (a)AKπ,eff
Γ and (b)AΓ of varying the upper bound on proper

decay time from its nominal value of 6ps. The uncertainties shown are uncorrelated

with respect to the nominal result. The red dashed line shows the nominal result. Blue

dashed lines are drawn at the nominal result±1× its statistical uncertainty, if this is in

range.
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Figure 6.23: The effects onyCP of varying the upper bound on proper decay time from

its nominal value of 6ps. The uncertainties shown are uncorrelated with respect to

the nominal result. The red dashed line shows the nominal result. Blue dashed lines are

drawn at the nominal result±1× its statistical uncertainty, if this is in range.

line, in which no lifetime biasing cuts are applied. The relative efficiency as a function of

proper decay time is shown for HLT1 in figure 6.28a and HLT2 in figure 6.28b, fitted with

a constant. The constant fit describes the data well, thus showing that there is no significant

reconstruction bias. No systematic uncertainty for reconstruction biases in the HLT is thus

applied.

6.3.8 Summary of Systematic Uncertainties and Final Results

The systematic uncertainties assigned from each study detailed in the previous section for

AKπ,eff
Γ , AΓ andyCP are detailed in table 6.2. The contribution of each effect isassumed to

be independent of the others, thus the total systematic uncertainty is calculated as the sum in

quadrature of the uncertainties for each contributing effect. The dominant systematics arise

from the parametrisation of secondaryD0 and neglecting combinatorial backgrounds in the

fit. This gives the final result for the cross-check measurement

AKπ,eff
Γ = (−0.9± 2.2 (stat.)± 1.6 (syst.))× 10−3, (6.6)

which is consistent with zero, as expected. The systematic uncertainties determined for this

measurement are of a similar size to those found forAΓ andyCP . This shows that the method
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Figure 6.24: The effects on (a)AKπ,eff
Γ and (b)AΓ of varying the maximum cut on

ln(χ2(IPD0)) in the final fit iteration from its nominal value of 2. The uncertainties

shown are uncorrelated with respect to the nominal result. The red dashed line shows

the nominal result. Blue dashed lines are drawn at the nominal result±1× its statistical

uncertainty, if this is in range.
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Figure 6.25: The effects onyCP of varying the maximum cut onln(χ2(IPD0)) in the

final fit iteration from its nominal value of 2. The uncertainties shown are uncorrelated

with respect to the nominal result. The red dashed line shows the nominal result. Blue

dashed lines are drawn at the nominal result±1× its statistical uncertainty, if this is in

range.
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Figure 6.26: The reconstruction efficiency as a function of proper decay time from

simulated data, for candidates with50 < p [ GeV] < 70. The linear fit has gradient

β = (2.5± 5.0)× 10−3. Reproduced from [87].
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Figure 6.27: The gradients,β, of linear fits to the reconstruction efficiency as a function

of proper decay time in bins ofη (a) andp (b), from simulated data. Reproduced from

[87].
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Figure 6.28: The efficiency of the reconstruction in (a) HLT1 and (b) HLT2 with respect

to the offline reconstruction, as a function of proper decay time, fitted with a constant.
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Figure 6.29: Combined world averages of directCP -violation and indirectCP -violation

in theD0 system, including the measurement ofAΓ presented here. Calculated by the

Heavy Flavour Averaging Group [3].

of evaluating systematic uncertainties is also reliable. The final measurements ofAΓ andyCP

are found to be

AΓ = (−5.9± 5.9 (stat.)± 2.1 (syst.))× 10−3, (6.7a)

yCP = (5.5± 6.3 (stat.)± 4.1 (syst.))× 10−3. (6.7b)

These results have been submitted for publication [33]. This is the first time these measure-

ments have been performed at a hadron collider experiment.AΓ is consistent with zero, and

yCP is consistent with the world average value ofy = (8.0 ± 1.3) × 10−3 [3]. Thus no

indication ofCP -violation is observed in these results. Indeed, this valueof yCP is also con-

sistent with zero, and so shows no evidence for mixing in theD0 system. These results are

not yet competitive with the world best measurements made bytheB factories, discussed in

section 1.3, but are consistent with them. Nonetheless, they make an important contribution

to the world average values. The average measurements of direct and indirectCP -violation

in theD0 sector including this measurement ofAΓ, combined by the Heavy Flavour Aver-

aging Group [3], are shown in figure 6.29. The combined average is currently dominated

by the measurement of∆ACP performed by LHCb [1], and sits above 3σ from the zero

CP -violation hypothesis. Also included is a preliminary measurement of∆ACP by the CDF

collaboration, which is in agreement with that of LHCb. The average value ofAΓ is still

consistent with zero.
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Systematic Effect AKπ,eff
Γ (10−3) AΓ (10−3) yCP (10−3)

VELO length scale < ±0.001 < ±0.001 < ±0.001

Turning point bias ±0.10 ±0.17 ±0.22

Turning point scaling ±0.049 ±0.15 ±0.13

Combinatorial background

(varying∆m window)

±1.5 ±1.3 ±0.85

Proper time resolution ±0.0034 ±0.048 ±0.056

Minimum proper time cut ±0.092 ±0.14 ±0.75

Maximum proper time cut ±0.073 ±0.21 ±0.15

SecondaryD0 (varying maxi-

mum ln(χ2(IPD0)) cut)

±0.6 ±1.7 ±3.9

Reconstruction bias < ±0.1 < ±0.1 < ±0.1

Total systematic uncertainty ±1.6 ±2.1 ±4.1

Statistical uncertainty ±2.2 ±5.9 ±6.3

Measured value −0.9 −5.9 5.5

Table 6.2: Summary of systematic uncertainties detailed in section 6.3.

6.4 Conclusions

This chapter presented verification of the stability of the measurements ofyCP andAΓ pre-

sented in chapter 5, and evaluated the systematic uncertainties on their values. The same

is done for the cross-check measurement ofAKπ,eff
Γ to ensure compatibility with the values

obtained foryCP andAΓ.

Several cross-checks on the measurements ofAKπ,eff
Γ , AΓ andyCP , were performed and

the results shown in section 6.1. No significant dependence of the results on running period,

D0 p andpT , and event PV multiplicity is observed, thus demonstratingthat the results are

stable. Section 6.2 described how the full fit was applied to toy Monte Carlo simulated data

in order to evaluate any measurement bias resulting from thefit method. The only significant

bias observed results from neglecting combinatorial backgrounds in the lifetime fit, though

this bias is still much smaller than the statistical uncertainty on the measurements obtained.

Many possible sources of systematic bias were evaluated in section 6.3. The dominant

systematic effects were found to be from neglecting combinatorial backgrounds in the life-

time fit, and varying the fraction of secondaryD0 in the datasets. The final value of and

uncertainty on the cross-check measurementAKπ,eff
Γ is found to be

AKπ,eff
Γ = (−0.9± 2.2 (stat.)± 1.6 (syst.))× 10−3, (6.8)
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which is consistent with zero, as expected. The final resultsfor yCP andAΓ are

AΓ = (−5.9± 5.9 (stat.)± 2.1 (syst.))× 10−3, (6.9a)

yCP = (5.5± 6.3 (stat.)± 4.1 (syst.))× 10−3. (6.9b)

These are the first measurements of these values at a hadron collider experiment, and have

been submitted for publication [33].AΓ is consistent with zero, andyCP is consistent with

the world average value ofy = (8.0 ± 1.3) × 10−3 [3] and with zero. Thus no indication

of CP -violation or mixing is observed in these results. Althoughthe statistical uncertainties

attained are not yet competitive with previous measurements made atB factories they make

an important contribution to the world average.
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Chapter 7

Conclusions and Outlook

7.1 Summary

This thesis presented measurements of the charm sector mixing andCP -violation parame-

tersyCP andAΓ. These were first introduced in chapter 1 in the context of themathematical

theory used to describe interactions of elementary particles, the Standard Model (SM). The

elementary particles and their interactions were first discussed and the consequences of their

being three generations of fermions introduced. This allows mixing between the flavour

eigenstates, in which the fermions interact, and the mass eigenstates, in which they prop-

agate. The level of mixing is characterised by the Cabibbo-Kobayashi-Maskawa (CKM)

matrix, which also allows forCP -violation in interactions that involve transitions between

quark generations. This manifests asCP -violation in decays of mesons and baryons.

The different types ofCP -violation that can occur were then discussed. DirectCP -

violation occurs if the amplitudes of a decay and itsCP conjugate decay differ in that
∣

∣Af/Āf̄

∣

∣ 6= 1. The SM predicts thatCP -violation in interactions involving charm (c) quarks

isO(10−3) or less. It is thus very exciting that a recent LHCb result has measured directCP -

violation atO(10−3) in decays of theD0 meson [1], which consists ofcu valence quarks.

Mixing also occurs in systems of neutral mesons, such as theD0, whereby theD0 transforms

itself into aD0, and vice versa. IndirectCP -violation in mixing occurs if|q/p| 6= 1, where

q andp are the coefficients of the flavour eigenstates of theD0 in the definition of the mass

eigenstates. An additional form ofCP -violation can occur if the final state is accessible to

both the meson and anti-meson. In this case the decays of un-mixed and mixed states can

interfere and cause indirectCP -violation, even in the case thatCP -violation is conserved in

both mixing and decay.

The parametersyCP andAΓ were then introduced.yCP examines the difference between

the average decay rate of theD0 andD0 to aCP -eigenstate, to its average decay rate to a
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CP -undefined final state:

yCP =
Γ̂(D0→ f) + Γ̂(D0→ f)

2ΓD0

− 1

=
τeff(

(−)

D0→ K∓π±)

τeff(
(−)

D0→ K+K−)

− 1, (7.1)

whereτeff is the average proper decay time, or ‘effective lifetime’, of the
(−)

D0 in the decay.

K∓π± is chosen as theCP -undefined final state as it is Cabibbo favoured, and so benefits

from a large branching fraction.K+K− is theCP -even final state with the largest branching

fraction. AsyCP is calculated using the combined effective lifetime of theD0 andD0 the

flavour of the
(−)

D0 at production need not be known.AΓ examines the difference in the average

decay rate between an initial state ofD0 andD0 decaying to aCP -eigenstate:

AΓ =
Γ̂(D0→ f)− Γ̂(D0→ f)

Γ̂(D0→ f) + Γ̂(D0→ f)

=
τeff(D

0→ K+K−)− τeff(D
0→ K+K−)

τeff(D0→ K+K−) + τeff(D0→ K+K−)
. (7.2)

Here the flavour of the
(−)

D0 must be known at production, and so the chainD∗± →
(−)

D0π± is

used. The charge of theπ± thus determines the flavour of the
(−)

D0. In the absence ofCP -

violation yCP will be measured to be consistent with the mixing parametery = ∆Γ/ΓD0 ,

andAΓ will be consistent with zero. New, non-SM, particles can potentially enter into the

mixing and decay processes and enhance the level ofCP -violation, thus increasing the size

of AΓ and the deviation ofyCP from y. The current world best measurements ofyCP andAΓ

were made by BABAR and BELLE, and show no evidence for indirectCP -violation.

Chapter 2 then discussed the experimental setup of the LHCb detector at the LHC. Each

of the sub-detectors were discussed in turn, and their excellent performance during the 2010

data-taking run presented. The trigger systems used to decide which events to keep and

which to discard were also detailed, as well as the offline data processing required for any

physics analyses to be performed. LHCb is well designed for measuring the lifetime of

theD0, as is required foryCP andAΓ. The Vertex Locator (VELO) provides precise mea-

surements of the positions of the proton-proton collisionswithin LHCb (primary vertices or

PVs) as well as any displaced vertices produced by the decay of long lived particles. It thus

provides a proper-decay-time resolution of∼50 fs, which is much smaller than the average

lifetime of theD0. The Ring Imaging Cherenkov Detectors (RICH) provide very accurate

particle identification, allowing clean separation ofπs andKs. This is essential in distin-

guishing theK∓π± andK+K− final states. Finally, the production cross section ofD0 at

LHCb is very large, allowing large numbers ofD0 decays to be reconstructed.
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The performance of the VELO was further evaluated in chapter3, which examined the

resolutions it achieves on impact parameter (IP) measurements. IP measurements are essen-

tial in the trigger, as the decay products of long lived particles like theD0 tend to have larger

IPs. The resolution with which IPs can be determined is also reflected in the vertex and

proper-decay-time resolutions. A parametrisation of IP resolutions was derived, depending

on the single hit resolution in the VELO, the material budget, and the extrapolation distance

to the interaction point. A method of measuring IP resolutions without the use of simulation

was then introduced, and its results compared to this parametrisation. In general IP resolu-

tions were found to vary as expected with the various parameters involved. The performance

of the VELO in this respect was also found to be excellent, achieving a resolution on IPx

of < 36 µm for particles withpT > 1GeV. A detailed comparison between 2011 data and

simulated data was made, and both were compared to the predictions of the mathematical

parametrisation. A momentum dependent discrepancy between 2011 and simulated data was

observed, whereby the IP resolutions on 2011 data are∼20 % worse at low momentum than

on simulated data. This effect is confined to the regions of the VELO away from that in

which the two halves of the VELO overlap; within the overlap region the resolutions on

2011 and simulated data agree well. As this discrepancy is momentum dependent it suggests

an issue with the description of the VELO material or the modelling of multiple scattering

in material in the simulation. Complementary studies have not found any major issues in

either of these areas, though the shape of the RF-foil, which encases the VELO, is known

to be simplified in the simulation. Studies are underway to determine the effects of using

a more accurate description of the RF-foil in the simulation.Thus, the exact source of the

discrepancy between IP resolutions on data and simulation remains to be found.

The methods used to extract the effective lifetime of a specific decay from a dataset con-

taining signal as well as different backgrounds were discussed in chapter 4. First, the general

methods of extracting the optimal parameters of probability density functions (PDFs) from

data using maximum likelihood fits was detailed. Also discussed was how this can be used to

statistically distinguish signal and backgrounds, and determine their optimal descriptions and

relative fractions in the dataset. For flavour taggedD0 one can use a simultaneous fit to the

distributions ofm(D0) and∆m ≡ m(D∗±)−m(D0) to distinguish signal, randomly-tagged

D0, combinatorial backgrounds and potentially any three bodybackgrounds that may need to

be taken into account in future. SecondaryD0, produced inB→ D0X decays, cannot be dis-

tinguished using the distributions ofm(D0) or ∆m. However, as theB is not reconstructed

they can be distinguished using theχ2(IPD0), which tends to take larger values at high re-

constructed proper decay times than promptD0. Thus, secondaryD0 are distinguished using

a simultaneous fit to the proper-decay-time andln(χ2(IPD0)) distributions.
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The method by which the effective lifetime of the signal is determined was then covered.

Firstly, the proper-decay-time PDFs that can be used to model prompt and secondaryD0, tak-

ing into account the effects of non-zero proper-decay-timeresolution, were presented. This

was followed by a description of the data-driven method of correcting for lifetime biasing

candidate selection criteria, the ‘swimming algorithm’, which is key to the measurements

presented here. This technique exploits the fact that the kinematics of the decay products of

aD0 are independent of the proper decay time of theD0 itself. This allows one to artificially

change the proper decay time of theD0 by moving any PVs in the event in the direction

of theD0 momentum. The decision of the candidate selection is then re-evaluated at each

proper decay time. Thus, one can calculate the selection efficiency as a function of proper

decay time for eachD0 candidate. The fact that the High Level Trigger (HLT) at LHCb

is implemented in software is also key to this method, as it allows the trigger to be re-run

identically as was done during data-taking. The technicalities of including the per-candidate

acceptance functions calculated by this algorithm in the fitPDF were also discussed. Finally,

the general form of the full fit PDF was presented. This PDF provides full discrimination be-

tween signal and all backgrounds, accounts for detector resolution, and corrects for lifetime

biasing candidate selection criteria. It can thus be used toextract the effective lifetime of the

signal.

Chapter 5 then presented the measurements ofyCP andAΓ made using the techniques

presented in chapter 4. The data used were collected by LHCb during the 2010 data-taking

run, and comprise28.0 ± 2.8 pb−1. The specific trigger and offline selections applied to the

data were detailed. The final datasets comprise 286,159
(−)

D0 → K∓π± and 39,263
(−)

D0 →
K+K− candidates.

The results of fits to the distributions ofm(D0) and∆m to determine the fractions of

signal, randomly-taggedD0, and combinatorial backgrounds were then shown. As the level

of combinatorial backgrounds is very low, the fraction of combinatorial
(−)

D0 → K+K− can-

didates cannot be determined accurately. Thus, only results for
(−)

D0 → K∓π± were shown.

These found that the datasets consist of∼99.2 % signal, of which∼95.8 % has theD∗±

correctly reconstructed.

Following this, the specifics of the fits to extract effectivelifetimes were discussed. As

the level of combinatorial backgrounds is so low, their effect is neglected in these fits and

a corresponding systematic uncertainty assigned. The fits to the proper-decay-time and

ln(χ2(IPD0)) distributions thus consider only prompt and secondaryD0. The bias result-

ing from mis-taggedD0 is accounted for after the determination of the effective lifetimes,

using the random-tag rates determined by the mass fits to the
(−)

D0 → K∓π± datasets. The
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specific PDFs used to describe the data were then presented, as well as the manner in which

the acceptance variables determined by the swimming algorithm are accounted for in the fit.

As an accurate parametrisation of secondaryD0 is difficult to achieve with the data avail-

able an additional fit iteration is performed on a subset of the data in which the fraction of

secondaryD0 is suppressed. This reduces the final datasets to 226,110
(−)

D0 → K∓π± and

30,481
(−)

D0→ K+K−. The results of the fits using these PDFs and the effective lifetimes and

their statistical uncertainties thus determined on each dataset were then given. The quality

of these fits was assessed and found to be sufficiently good. The values ofyCP andAΓ, and

their statistical uncertainties, were then shown.

Chapter 6 presented checks of the stability of the measurements of yCP andAΓ, and the

evaluation of their systematic uncertainties. The datasets were split into several subsets to

evaluate any dependencies in the results. The values ofyCP andAΓ obtained on all subsets

of the data were found to be consistent within their statistical uncertainties, showing them to

be stable. A cross-check measurement ofAKπ,eff
Γ was also made. This is defined analogously

toAΓ, but usingτeff(D0→ K−π+) andτeff(D0→ K+π−), and so exploits the high statistics

of the
(−)

D0 → K∓π± channel. It was found to be consistent with zero, as expected, again

showing the results to be reliable. The results of many pseudo experiments on toy Monte

Carlo simulated data were then shown. The only significant bias found was determined to be

due to neglecting combinatorial backgrounds in the fit.

Finally, various sources of systematic uncertainty in the results were considered. The

dominant systematics were found to result from neglecting combinatorial backgrounds and

the parametrisation of secondaryD0. These result in the final measurements ofAΓ andyCP

AΓ = (−5.9± 5.9 (stat.)± 2.1 (syst.))× 10−3, (7.3a)

yCP = (5.5± 6.3 (stat.)± 4.1 (syst.))× 10−3. (7.3b)

AΓ is consistent with zero andyCP is consistent with the world average measurement of

y = (8.0 ± 1.3) × 10−3 [3] and with zero. Thus, these results show no evidence forCP -

violation or mixing. Although the statistical uncertainties attained are not yet competitive

with previous measurements made at theB factories they make an important contribution to

the world average.
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7.2 Outlook

7.2.1 Current and Near Future LHCb Data

The dataset already collected in 2011 comprises 1107 pb−1 , which is∼39 times as large as

that used for the analyses presented here. This could reducethe statistical uncertainty onyCP

andAΓ by a factor of∼6, and so has the potential to achieve a precision of1 × 10−3. This

would of course require controlling the systematic uncertainties to this level. Should this be

achieved these would represent the world best measurementsby far, and the first 5σ single

measurement ofD0 mixing, viayCP . Given the observation by LHCb of directCP -violation

in theD0 system atO(10−3), this provides real promise for observing indirectCP -violation

as well.

The largest contributing factors to the systematic uncertainties on the measurements pre-

sented here are from the parametrisation of secondaryD0 and neglecting combinatorial back-

grounds in the fit. Improvements in the trigger selections mean that the 2011 datasets allow

access to much larger, clean samples of both these backgrounds. Thus, using 2011 data

and possibly some of the methods detailed in section 4.5 these systematic effects should be

greatly reduced from the values presented here.

The 2012 run should provide at least as much integrated luminosity as in 2011. The

data will also be taken at
√
s = 8 TeV, causing an increase in theD0 production cross

section. The available trigger and permanent storage capacity for charm physics has also

been significantly increased. This will extend the reach of these measurements below10−3

and reach a sensitivity at which the effects of new physics beyond the SM could become

apparent. The measurement of∆ACP, which provides the first evidence for directCP -

violation in theD0 system, will reach similar precision. This could potentially resolve the

debate as to whether its measured value is allowed within theSM, or if new physics is at

play. These datasets will also yield a significant sample of ‘wrong sign’D0→ K+π− decays.

These give access to the mixing parametersx′2 andy′2, which are related tox andy by a

strong phase. A time dependent Dalitz analysis ofD0→ K0
Sh

+h− will also give access tox

andy. These should be able to obtain sensitivities ofO(10−3). CP -violation is also being

searched for in other three and four body decay modes.

Figure 7.1 shows the projection to 2017 of the measurements of ∆ACP andAΓ performed

by LHCb, assuming the same central values are obtained. In order to achieve sensitivities at

or belowO(10−4) the high luminosity regime of the LHCb upgrade would be required.
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Figure 7.1: The contour plot of direct vs. indirectCP -violation in theD0 system using

the current values of the∆ACP andAΓ measurements performed at LHCb. The inner

contour shows the projection of these values to 2017, assuming the same central values

and a reduction in the total uncertainties by a factor of1/
√
N . Reproduced from [100].

7.2.2 The LHCb Upgrade

LHCb is fast becoming a world leader in flavour physics and has already collected some

of the largest datasets yet recorded for many key decay channels. However, the recorded

integrated luminosity, and thus the size of these datasets,will scale linearly with running

time, while the statistical precision that can be attained scales as1/
√
N . For example, after

five years of nominal operation an additional five years of data-taking would only improve

the precision achieved by a factor of1/
√
2. With any luck five years will be sufficient for

LHCb to discover many indications of physics beyond the SM that will require probing at

much higher precision. Thus, an upgrade is required to increase the instantaneous luminosity

at which LHCb operates, and so increase the rate at which this precision improves.

While LHCb has performed admirably at an instantaneous luminosity of up to∼ 4× 1032 cm−2 s−1

the L0 trigger becomes very inefficient for hadronic decay modes at higher luminosities. This

is because it only has access to information from the calorimeters and muon stations, which

can be read out at 40MHz. This information is insufficient to efficiently trigger decays of

long lived particles at high luminosity while keeping retention rates low enough to fit within

the timing constraints of the trigger. Thus, the upgraded detector is intended to be able to

readout information from all its sub-detectors at 40MHz [101]. This would allow the first

level trigger to perform more complete event reconstruction, and trigger on the presence of

displaced decay vertices. This both greatly increases the efficiency of the first level trigger

for hadronic decays, and allows the upgraded detector to potentially operate at instantaneous
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luminosities up to∼ 2 × 1033 cm−2 s−1. At this rate the upgraded detector would collect

in one year of data-taking what the current detector will collect in five to ten years. The

upgraded detector is currently at the design stage, with theintention of beginning installa-

tion in 2017. The operational instantaneous luminosity of the LHCb upgrade is still lower

that the maximum design luminosity of the LHC at present. Hence, the LHCb upgrade is

not contingent on an upgrade to the LHC, but is compatible withthe future high luminosity

LHCb running phase.

For high yield decay channels likeD0→ K−π+ andD0→ K+K− the LHCb upgrade will

afford the opportunity to measure indirectCP -violation in theD0 system, viayCP andAΓ,

to a precision belowO(10−4). DirectCP -violation will also be able to reach similar levels

of precision, via measurements like∆ACP. The Dalitz analysis of the decayD0→ K0
Sh

+h−

and wrong signD0 → K+π− will also provide measurements of the mixing parameters

x andy of a similar accuracy. Measurements at this precision will provide exceptionally

strong tests of the SM and potentially insight into the nature of physics beyond the SM. The

measurements made in theB sector using the datasets collected by an upgraded LHCb will

also provide stringent tests on the predictions of the SM andthe CKM mechanism. These

include various complementary measurements via differentdecay channels of the CKM an-

gle γ to a precision of less than 1◦, to examine if the unitarity triangles are indeed unitary.

A measurement at an accuracy of 1 % will also be possible on the‘zero crossing point’ in

the forward-backward asymmetry of the decayB0→ K∗0µ+µ−, which can be strongly influ-

enced by new physics. Thus, the LHCb upgrade presents the possibility of a new era in high

precision tests of the SM. Indeed, the additional flexibility introduced in the LHCb trigger in

the upgrade will also allow the detector to become a more general purpose experiment in the

forward region. This will extend its reach in areas such as lepton flavour violatingτ decays,

electroweak studies, and long lived exotics.

7.2.3 Other Flavour Physics Experiments

While LHCb and the LHCb upgrade provide exciting prospects for the future of flavour

physics, LHCb is far from the only flavour physics experiment currently planned. Histor-

ically, flavour physics measurements have been performed atprecision, asymmetrice+-e−

colliders, which benefit from much lower backgrounds than hadronic machines like the LHC.

Such experiments include BABAR on the PEPII collider at SLAC,and BELLE on the KEKB

collider at KEK. The measurements ofyCP andAΓ performed at BABAR and BELLE are

currently the world bests. The D0 and CDF experiments at the TEVATRON p-p collider have

also made valuable contributions to flavour physics both in theD andB sectors. While all

these experiments have stopped data-taking in recent yearsthere are some exciting prospects
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on the horizon for experiments to complement and challenge LHCb.

The KEKB collider is being upgraded to SuperKEKB [102], which intends to achieve a

maximum instantaneous luminosity of8 × 1035 cm−2 s−1. This would allow an integrated

luminosity of 50ab−1 to be accumulated by 2022. This requires an upgrade of the detector,

Belle-II, to deal with higher sensor occupancies and improvevertexing and PID performance.

Another prospect for the future is the SuperB experiment, proposed to be built in at the

Cabibbo Laboratory, in Italy [103]. It too is an asymmetrice+-e− collider that aims to

operate initially at an instantaneous luminosity of1036 cm−2 s−1, and collect 75ab−1 within

five years of data-taking. TheseB factories operate primarily with
√
s equal to the mass

of theΥ(4S) resonance, which decays to quantum correlatedB B pairs. This will allow

them to collect several tens of billions of such pairs. Largesamples ofD0 decays will also

be collected viaB→ D0X ande+e− → qq. They could potentially also operate for some

time at theψ(3770) resonance, which producesD0 D0 pairs. As these pairs are quantum

correlated they would offer sensitivities to phase differences inD0 decays.

The LHCb upgrade will benefit from higher production cross sections than the futureB

factories, and will thus obtain the highest precision in channels in which all decay products

are charged. However, due to the cleaner environment of theB factories they will be able

to study channels with neutral decay products, which are very difficult to perform at LHCb.

They will also be able to search for very rare SM decays, such asB→ ℓν, in which LHCb

cannot compete. The ability of SuperB to partially polarise its electron beams may also help

to reduce backgrounds. Additionally, the fact thatB andD mesons are produced in quantum

correlated pairs allows determination of the strong phase difference in mixing, which will

need to be used as input to the measurement ofx andy via D0→ K0
Sh

+h−. Thus, the mea-

surements performed at an upgraded LHCb and the futureB factories will both complement

and compete with each other.

Thus, the coming years present many possibilities in testing the SM to its limits and be-

yond. These could lead to the discovery of new physics and provide a deeper understanding

of the nature of the most basic elements of the universe. However the coming years play out,

it is a very exciting time to be involved in flavour physics.
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