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i

Professor Hubert Farnsworth: It’s a little experiment that might win me the Nobel

Prize.

Leela: In which field?

Professor Hubert Farnsworth: I don’t care - they all pay the same.

Futurama
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Abstract

We have used data from the third and fourth science runs of the laser interferomet-

ric gravitational wave detectors LIGO and Geo 600 to produce upper limits on the

emission of gravitational waves from a selection of known neutron stars. Two differ-

ent emission mechanisms are looked into; i) the emission of continuous gravitational

waves from triaxial neutron stars; and ii) emission of quasi-normal mode ring-downs

from glitching neutron stars.

We have produced upper limits on the gravitational wave amplitude and ellipticity

for 93 known pulsars assuming continuous emission via triaxiality. This selection of

pulsars includes the majority of currently known pulsars with frequencies > 25 Hz,

with many within binary systems and globular clusters. New algorithms to take into

account the motions within binary systems and possible effects of pulsar timing noise

are presented. Also shown is the first analysis to combine the data sets from two

distinct science runs as a method of lowering the upper limits. The results are starting

to push into the range of plausible neutron star ellipticities, with the Crab pulsar

closely approaching the limit that can be set through spin-down arguments. For the

32 of these pulsars in globular clusters the results provide upper limits independent

of the cluster dynamics. The astrophysical significance of these results is discussed.

Along with results from true pulsars we also present the extraction of simulated signals

injected into the interferometers during the science runs. These provide validation

checks of both the extraction software and the coherence of the detectors.

Two techniques are discussed in relation to searching for quasi-normal mode ring-

down signals from excited neutron stars, for example during a glitch; one based on
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matched filtering and the other based on Bayesian evidence. These are both applied

to a search for such a signal from SGR 1806-20 during a GRB on 27th December 2004,

using the LIGO H1 detector and Geo 600 data. This search provided upper limits

on the energy released in gravitational waves via quasi-normal modes over the range

of frequencies from 1-4 kHz. These are compared with results from a previous search

using the bar detector AURIGA [4] and theoretical arguments. The limitations of the

search and search techniques, and possible extensions to these, are discussed.

The future of these searches is discussed with regard to extensions to the analysis

techniques and number of potential sources. Particular emphasis is placed on searches

using data from the current LSC S5 science run.
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Well, the thing about a black hole - its main distinguishing feature - is it’s black.

And the thing about space, your basic space colour is black. So how are you

supposed to see them?

Holly - Red Dwarf

Chapter 1

Introduction

This chapter will provide a brief overview of the theory behind gravitational radia-

tion. A selection of sources are discussed with emphasis on their potential to pro-

duce detectable gravitational waves. A brief overview of the detection of gravitational

waves using interferometry is given. Finally, a summary of a selection of previous

searches for several types of gravitational wave source is given.

1.1 The history and theory of gravitational radia-

tion

Prior to 1915 all conventional gravitational theory was Newtonian and in the equa-

tions of this framework the force of gravity was thought of as any other force - the

action of one body on another - with, for the case of gravity, that action being instan-

taneous. Masses attracted other masses because that was a property of mass. This

theory provided no method for the production of gravitational waves which would only

come about after a radical rethink of the theory of gravity1. With the publication of

Einstein’s General Theory of Relativity in 1915 [6] gravity became a property of space-

1although combining Newtonian gravity with special relativity, through the insertion of a delay, or
retardation, between the source, ρ(x, t), and its Newtonian gravitational potential field, φ(y, t− |x−
y|/c), gives the basic properties from which gravitational waves can be derived, as in Schutz (1984)
[5].
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time itself (indeed the idea of space-time as a combined entity {t, x, y, z} in which the

frame of reference was paramount had only just been introduced), where mass/energy

curved space-time and objects followed geodesics in this curved manifold. From the

equations of General Relativity (GR), as the theory is universally known, the predic-

tion of gravitational waves - ripples in space-time - was quickly derived by Einstein

[7].

1.1.1 The basics of gravitational wave theory

This section will provide an overview of the derivation of gravitational waves from GR,

but is not meant to be an in-depth description. A far fuller description can be found

in Schutz (1985) [8], along with definitions of many of the terms and equations used

herein.

GR describes the force of gravity in the new terms of geometry. This geometry is

described by the geodesic equation, which is the GR equivalent of the regular equation

of motion F = ma, and the Riemann curvature tensor (defined in [8]). The source of

this curvature is the energy-momentum density and flux of space which is described by

the stress-energy tensor Tαβ. From these an equivalent of the Newtonian gravitational

potential field equation (or electromagnetic potential field), the general relativistic field

equation, known as Einstein’s field equation, is defined (in natural units so G = c = 1)

as,

Gαβ ≡ Rαβ − 1

2
gαβR = 8πTαβ, (1.1)

where Rαβ and R are the Ricci tensor and scalar describing the curvature of space

(from the Riemann tensor), and gαβ is the space-time metric describing transforma-

tions relevant for the space-time. Deriving the formula for gravitational waves comes

straight from Einstein’s field equation in the weak field approximation. Under this

approximation the metric gαβ = ηαβ + hαβ, where ηαβ is the Minkowski metric for flat

space (ηαβ (α=β) = {−1, 1, 1, 1} and ηαβ (α 6=β) = 0) and hαβ is some small perturbation

with |hαβ| � 1. The background Lorentz transforms, again defined in [8], show that

hαβ transforms as a tensor all by itself rather than just being part of gαβ, so the under-
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lying space-time is always flat with hαβ defined on top of it. This allows us to think of

our curvature, and Riemann tensor, just in terms of hαβ. For convenience the metric

perturbation hαβ is redefined as the trace reverse

h̄αβ = hαβ −
1

2
ηαβh. (1.2)

Under the weak field approximation equation 1.1 reduces to

2h̄αβ = −16πTαβ, (1.3)

which for the case of free space, where Tαβ = 0, becomes

(
− ∂2

∂t2
+∇2

)
h̄αβ = 0. (1.4)

It can be seen that equation 1.4 is the three-dimensional wave equation, the solution

of which for the simplest plane waves is

h̄αβ = Aαβ exp (ikαx
α), (1.5)

showing that small perturbations in space-time will propagate as a wave. Through

further proofs, as given in [8], it can be shown that this wave will propagate at the

speed of light. Applying the transverse-traceless gauge conditions Schutz [8] shows that

the wave will be transverse and that the tensor has the form

hTT
αβ =



0 0 0 0

0 h̄xx h̄xy 0

0 h̄xy −h̄xx 0

0 0 0 0


, (1.6)

i.e. if the wave is travelling in the z direction it will only have amplitude components

in the x and y directions, and with only two independent amplitude values ATT
xx and

ATT
xy . The fact that the tensor must be traceless, Aαα = 0, implies that h̄TT

αβ = hTT
αβ .
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In a coordinate dependent system the effect of a gravitational wave will not be seen.

However, we can see how these waves (metric perturbations) affect particles by looking

at their effect on the proper distance d` between two such particles. Applying the

equation of geodesic deviation it can be shown, again in Schutz (1985) [8], that for two

particles separated in the x-direction, with 4-velocity ~U = (1, 0, 0, 0) and separation

vector ~ξ = (0, ε, 0, 0), that

∂2

∂t2
ξx =

1

2
ε
∂2

∂t2
hTT
xx , and

∂2

∂t2
ξy =

1

2
ε
∂2

∂t2
hTT
xy . (1.7)

Considering two particles initially having a separation vector ~ξ = (0, ε cos θ, ε sin θ, 0),

we get acceleration in ξ of

∂2

∂t2
ξx =

1

2
ε cos θ

∂2

∂t2
hTT
xx +

1

2
ε sin θ

∂2

∂t2
hTT
xy , (1.8)

and

∂2

∂t2
ξy =

1

2
ε cos θ

∂2

∂t2
hTT
xy −

1

2
ε sin θ

∂2

∂t2
hTT
xx . (1.9)

Using the real part of the plane wave solution to the wave equation (with us sta-

tionary at z = 0), so hTT
αβ = Aαβ cos (ωt), as shown by Hendry [9], gives solutions to

equations 1.8 and 1.9 in x and y of

ξx = ε cos θ +
1

2
ε cos θATT

xx cosωt+
1

2
ε sin θATT

xy cosωt, (1.10)

and

ξy = ε cos θ +
1

2
ε cos θATT

xy cosωt− 1

2
ε sin θATT

xx cosωt. (1.11)

If we have a ring of particles at various angles between 0 and 2π radians these equa-

tions show how the passing of a plane gravitational wave effects them in terms of the

proper distance between them and the centre of the ring (see fig 1.1). These equations

show that because of the independence of hTT
xx and hTT

xy we have two distinct linear

polarisations of the wave, one when hTT
xx 6= 0 and hTT

xy = 0 and the other when hTT
xx = 0
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and hTT
xy 6= 0. These two states, called ‘plus’ (+) and ‘cross’ (×) are seen in figure 1.1

to be rotated by 45◦ to each other, as opposed to electromagnetic wave polarisation

states with a rotation of 90◦.

Figure 1.1: The effect of a plane gravitational wave on a ring of particles over one wavelength for
the + polarisation (top) and the × polarisation (bottom).

1.1.2 Generation of gravitational waves

The equations above described how a gravitational wave propagates through space,

but says nothing about their generation as the stress-energy tensor is set to zero.

To study the generation of gravitational waves we will have return to equation 1.3

and follow the methodology shown in Schutz (1985) [8]. The solutions of this are

simplified through two assumptions: i) the time dependent part of Tαβ is sinusoidal

with angular frequency Ω; and ii) the source is small compared to the wavelength of

radiation emitted, ε� 2π/Ω. Under these assumptions the solution for h̄αβ, to lowest

order, has the form

h̄αβ = 4Jαβe
iΩ(r−t)/r, (1.12)
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where r is the distance from the source. The Jαβ term can be written in the form of

the quadrupole moment of the mass distribution

I lm ≡
∫
T 00xlxmd3x ≈

∫
ρxlxmd3x, (1.13)

where T00 ≈ ρ is the mass density (under the assumption that the source motion is

slow i.e. v � c), so

Jαβe
−iΩt =

1

2

d2

dt2
Iαβ. (1.14)

From this we can write our solution as

h̄jk = −2Ïjk/r = −2Ω2Ijke
iΩr/r. (1.15)

It can be shown, as in Flanagan and Hughes (2005) [10], that the lower order mo-

ments of the mass distribution (zeroth and dipole) are ruled out as contributing to

the gravitational wave emission through the conservation of mass/energy and angu-

lar momentum respectively. A simple approximation of the quadrupole moment for a

source with total mass M and size R, shows that Ijk is of order MR2. Equation 1.15

can be used to get a simple estimate of the gravitational wave amplitude (as shown in

Schutz, 1999 [11]) by noting that for non-spherical motions the components of Ïjk will

have magnitudes or order Mv2, where v is the non-spherical component of the velocity

inside the source. Given this an approximate amplitude will be

h ∼ 2Mv2/r (1.16)

(or h ∼ 2GMv2/c4r converting back to SI units). It should be stated that spherically

symmetric motions will not radiate.

Again we can make a gauge restriction and find a transverse-traceless gauge which

gives the simplest form of the wave. In such a gauge the quadrupole moment becomes
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the reduced quadrupole moment tensor,

Ijk → Ijk −
1

3
δjkI

l
l. (1.17)

With axis aligned so that the wave is travelling in the z-direction we get components

of our perturbation given by

h̄TT
zi = 0, (1.18)

h̄TT
xx = −h̄TT

yy = −Ω2(Ixx − Iyy)eiΩr/r, (1.19)

h̄TT
xy = −2Ω2Ixye

iΩr/r. (1.20)

These show that the reduced quadrupole moment provides the main factor in the

gravitational wave amplitude. This method is not the exact solution but is in general a

good approximation for simple sources and for providing estimates of source strength.

We will consider the example of two stars in a binary system separated by R and

of equal mass m (as shown in [10]). If we chose these to be lying in the x − y plane,

then in our coordinates x = x1 = R cos Ωt, y = x2 = R sin Ωt and z = x3 = 0. The

reduced quadrupole moment for this system is

Ijk = µ

(
xjxk −

1

3
δjkr

2

)
(1.21)

= µR2


cos2Ωt− 1

3
cos Ωt sin Ωt 0

cos Ωt sin Ωt cos2Ωt− 1
3

0

0 0 −1
3

 (1.22)

where µ = m1m2/(m1+m2) = m/2 is the reduced mass of the system, giving coefficients

of the time varying parts of the second derivative, Ïjk, as −2Ω2µR2. This gives a typical

magnitude for h of

h ≈ 4µΩ2R2

r
. (1.23)

In this example we can use Kepler’s third law (R3Ω2 = GM , where M = 2m is the
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total mass) to give (in SI units)

h =
(GM)5/3Ω2/3

c4r
. (1.24)

Values will be placed on this for realistic examples in §1.2. For two unequal masses

M(= m1 +m2) will be replaced by the chirp massM = µ3/5M2/5. These gravitational

waves will be have a completely circular polarisation perpendicular to the plane and

completely linear polarisation along the plane.

The frequency of gravitational waves can often, as with the above example, be

related to motions of the source, but in many cases it is also related to the natural

frequency of a self-gravitating body

f =
√
Gρ̄/4π ≈ (1/2π)

√
GM/R3, (1.25)

where ρ̄ is the mean mass-energy density [11]. Some examples of this will be given in

§1.2.

The energy carried away by gravitational waves (the source’s luminosity) is given

by

dE

dt
= L = − G

5c5
〈
...
I jk

...
I
jk〉. (1.26)

This can be useful for estimating the timescale over which objects will emit gravitational

waves.

1.2 Sources of gravitational waves

The above equations can be used to derive the approximate strength of gravitational

waves for simplified sources. From these we can estimate what kind of systems will

yield detectable levels of radiation. Some sources and their classification are discussed

below, with more thorough reviews to be found in Thorne (1987) [12] and Schutz (1999)

[11].
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1.2.1 Man-made sources

We could consider the possibility making some sort of gravitational wave generator

on human scales and then estimating the level of radiation. Following the example in

[11] we will construct something analogous to the binary star system described above,

consisting of two 103 kg masses held 10 m apart by a light rigid beam rotating about its

centre at a frequency of 10 Hz. As all the motion is non-spherical we will approximate h

using equation 1.16, with velocity v ∼ 300 ms−1. The distance to the source r must be

at least one wavelength away in order to detect the gravitational waves rather than the

nearby Newtonian field. For our generator the emission will be at twice the rotation

frequency f = 20 Hz as the mass distribution is symmetric about the rotation axis,

and the corresponding wavelength will be λ = 1.5×107 m. So given these values we get

an estimate of the gravitational wave amplitude h ∼ 1×10−43, which is ∼ 20 orders of

magnitude below the level we can expect to be able to detect. This shows that human

scale objects are not good sources, so we need to look elsewhere for possible sources.

In the universe, however, there are many environments with extreme energetics where

the mass-energy densities are at levels which begin to look more plausible as detectable

gravitational wave generators. These will now be discussed.

1.2.2 Continuous wave sources

A continuous (or periodic) wave source is one that emits a quasi-sinusoidal signal over

a long period. This feature will allow any detection strategy to build up signal-to-noise

over a long period of observation. The fact that the signal is persistent means that

the source must not be strongly damped (via gravitational wave or electromagnetic

emission, particle acceleration or other mechanisms), or must have some source of

power. The most obvious choice of sources with these properties are those with intrinsic

frequencies due to their own orbital or rotational motion.
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Neutron stars

Neutron stars are discussed in more detail in Chapter 2, but here we will described the

basics of their continuous wave emission mechanism. Neutron stars (seen as pulsars or

inferred in High and Low Mass X-ray Binaries - LMXBs) are known to spin with precise

frequencies and small spin-down rates, i.e. they are damped slowly, therefore fulfilling

both the criteria above for a continuous wave source. Due to their extremely high

gravitational field neutron stars are thought to be close to spherical, but to generate

gravitational waves there must be some form of asymmetry about the rotational axis.

The two main forms of rotational asymmetry will be if the star is triaxial (oblate or

prolate) or precessing (rotation of the spin axis). If we consider the case of a triaxial

star with a bump or mountain (of mass m) giving our non-sphericity, then we can

estimate the gravitational wave amplitude via equation 1.16 as in [11]. Given a radius

R and rotational frequency ν (emission will be at 2ν as rotation is about the centre of

mass) we get h ∼ 16π2GmR2ν2/c4r. It can be seen that for this case the quadrupole

moment is mR2 = εIzz, where ε = (Ixx − Iyy)/Izz is the star’s equatorial ellipticity,

and Izz is the principal moment of inertia about the rotation axis. We can write this

using some canonical neutron star values giving

h ≈ 4.2×10−26

(
Izz

1038kg m2

)( ε

10−6

)( ν

100 Hz

)2
(

1 kpc

r

)
, (1.27)

where the value of ε is on the upper end of plausible values for conventional neutron

star equations of state. This shows that in general this mechanism produces quite

weak gravitational waves, although the abundance of neutron stars and the fact that

signal-to-noise can be built up over time means they are a good potential source within

our galaxy. It can be seen in figure 1.2 that for one year of observations with the LIGO

detectors at design sensitivity we are reaching into this range, and for Advanced LIGO

(AdvLIGO) we should be in a range with many potential sources.

Free precession of a neutron star requires some mechanism to sustain it and is

generally strongly damped. With only one pulsar (PSR B1828-11) known to exhibit
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Figure 1.2: The sensitivity of the Geo 600 (tuned to 1000 Hz), LIGO and Advanced LIGO detectors
for one year of observations. The Advanced LIGO design sensitivity is the current best estimate and
subject to small changes. Included are lines representing the expected gravitational wave amplitude
from a pulsar with an equatorial ellipticity ε of 10−6 and 10−8 at a distance of 1 kpc, with Izz =
1038 kg m2. The spin-down upper limits (equation 2.3) for all known pulsars with ν > 5 Hz are also
plotted.

free precession, and a few more decreasingly likely candidates [13], the population

of sources is also likely to be small. It therefore provides a far less likely source of

gravitational waves, with the calculations of Jones and Andersson (2002) [14] giving

amplitudes of

h0 ∼ 10−27

(
Ωw

0.1

)(
1 kpc

r

)(
fs

500 Hz

)2

, (1.28)

where Ωw is the wobble angle, and fs is the signal frequency, which is well below the

level of sensitivity of LIGO, but may be a source for AdvLIGO.

Hot, newly formed neutron stars, or stars heated up during accretion from a com-

panion, could provide continuous gravitational waves due to emission from hydrody-

namic waves on the surface or within the star. Such a type of wave is the r-mode [15],

which is driven by the rotation of the star and is analogous to Rossby (or planetary)

waves on the Earth driven by the Coriolis force. For newly formed stars this could pro-

vide continuous wave emission for maybe up to a year after formation, until the star

has cooled and spun-down sufficiently [11]. For accreting stars, i.e. in LMXBs, the
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accretion can spin-up the star’s rotation such that gravitational wave emission could

provide a natural frequency limit at which gravitational wave energy loss balances that

spinning-up the star. As such the gravitational wave emission would be directly related

to the systems X-ray luminosity.

Binary systems

The other main source of continuous waves will be binary or multiple systems. All

orbiting systems will emit gravitational waves to some extent (as in our man-made

generator example), but the scale of the system will be important in whether the waves

are detectable. Evidence for the existence of gravitational waves was in fact inferred by

the study of a neutron star binary system discovered by Hulse and Talyor (1975) [16, 17]

in which the orbit was losing energy exactly as expected if carried away by gravitational

radiation. As seen above gravitational waves will be emitted at twice the frequency

of the orbital motion, with the amplitude proportional to the frequency squared and

the masses involved. Through the emission of gravitational radiation binaries will

eventually inspiral, increasing in frequency and therefore amplitude until coalescence.

As an example of this we can find the gravitational wave amplitudes and coalescence

times for a variety of systems. We will start with the nearest stellar system to our own,

the α and β-Centauri system. This system lies at a distance of 4.35 ly with two stars of

roughly 1 M� having an orbital period of 80 years (f = 4×10−10 Hz) and a separation of

23 AU. Using equation 1.24 we can calculate the amplitude of gravitational waves seen

at Earth as h ∼ 6×10−23, which would be large enough for detection were it at much

higher frequencies, but is well out of the frequency range of any planned detector

(see figure 1.3). The chirp time (or time to coalescence) of the binary can also be

estimated by making use of its luminosity and current kinetic energy (= −1/2 potential

energy = Gm1m2/2R = GµM/2R) via tchirp = 1/4(Ebinary/Lbinary) ∼ 1023 years (from

a luminosity of Lbinary ∼ 106 W). This shows that for main sequence binary systems

the gravitational wave emission will take many orders of magnitude longer than the

Hubble time to cause noticeable orbital decay.
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To get to amplitude levels and frequencies necessary for observations the binary

systems must be much more compact, therefore with much faster periods, and/or have

much more massive components, like supermassive black holes. For many systems

made up of stellar remnants i.e. white-dwarfs, neutron stars or stellar mass black holes,

orbital periods on the order of hours are seen. Such systems will also have chirp times

within the age of the universe, leading to the possibility of observing the final inspiral

(discussed below). There are predicted to be many galactic double white-dwarf binary

systems ∼ 108 (see Nelemans et al., 2001 [18]), a proportion of which with orbital

periods of a few hours (some of which have been observed, Saffer et al., 1998 [19]).

These provide a large population of sources around f ∼ 10−4 Hz, with gravitational

wave amplitudes (assuming two 0.5 M� white-dwarfs and a distance of 100 light years)

of h ∼ 10−21. Again as these are continuous sources, the signal-to-noise can be built up

over time. Due to the large amount of sources there could be much source confusion

with a noise floor made up of overlapping binary systems (see figure 1.3). This presents

a potential challenge for LISA2 data analysis in this frequency range.

As well as double white-dwarf systems, there are currently five known galactic

double neutron star systems (see Burgay et al., 2003 [20]), although the total population

of these will be far smaller than for white-dwarfs. These all have period of a few hours

leading to an estimate for the amplitude at a similar level to that for the white dwarfs.

The population of galactic black hole binaries will also be quite small and again produce

gravitational waves of a similar order of magnitude.

Black hole binaries consisting of supermassive black holes, for example those found

at the centre of most galaxies, start to become of interest on cosmological distance

scales. Such systems of black holes with M & 106 M� are likely to be visible to LISA

throughout the entire universe with amplitudes as shown in figure 1.3.

2LISA is a future spaced-based interferometric gravitational wave detector designed to view the
low frequency band from ∼ 10−4 − 10−1 Hz, and will be discussed briefly later.
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1.2.3 Burst sources

These sources will be those that emit a short duration transient burst of gravitational

radiation. The transient nature of the source means that signal-to-noise cannot be

built up over time and the event cannot be re-observed, so the event must be very

strong to have confidence in a detection and gain useful source information. Possible

mechanisms to produce such bursts are thought to occur in core-collapse supernova,

the final inspiral and coalescence of compact binaries, ringing of black holes/neutron

stars and cosmic string cusps. There may be other unknown burst sources, but we

shall briefly discuss only the conventional ones.

Binary inspirals

As we have just discussed binary systems it seems natural to extend that to the point at

which the binary system has lost so much energy through gravitational wave emission

that it is close to coalescence. During this stage the gravitational wave amplitude will
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be large and, for binaries consisting of neutron star and stellar mass black holes, the

frequency of the signal will sweep across the range of current ground based detectors;

up to fmax ≈ 1 kHz for neutron stars and fmax ≈ 10/(M1/M�) kHz for black holes with

the larger mass M1 [12]. This means that for stellar mass black holes fmax will be

at high frequencies and for supermassive black holes fmax will be at low frequencies.

Two neutron stars with a period of one second will be approximately one month from

merging, with (at a distance of 10 Mpc) the gravitational wave amplitude being ∼ a

few ×10−24. By the time such a system gets to 100 Hz it will be only a few seconds from

coalescence with amplitudes of ∼ 10−22, which is within the detectable range of current

instruments. These events can be well modelled using the quadrupole approximation

for the majority of the inspiral, but the final coalescence is far less well understood.

The rate of double neutron star binary systems about to coalesce within the effective

seeing distance of the LIGO interferometers (∼ 20 Mpc) and AdvLIGO (∼ 350 Mpc)

has been estimated from the galactic population by Kalogera et al. (2005a and 2005b)

[21, 22] to be RLIGO ∼ 0.35 yr−1 and RAdvLIGO ∼ 190 yr−1 respectively. Recently it

has been suggested by Lee and Brown (2005) [23] that neutron star-black hole binaries

could provide an even more promising source for LIGO with an detection rate increased

by a factor of ∼ 20 over double neutron star mergers. From Fox et al. (2005) [24] there

now appears to be strong observational evidence that such mergers occur, with recent

observations of the X-ray afterglow of short γ-ray bursts (GRBs) indicating mergers

to be the source.

The inspiral will leave a remnant, most likely a black hole, which will be vibrating

with a characteristic frequency fc ≈ 1.3×104(M�/M) Hz (from equation 1.25 using the

Schwarzschild radius rs = 2GM/c2). These vibrations will ring-down with a quality

factor Q = 2(1 − â)(−9/20), where â is related to the spin and must be greater than

unity meaning Q > 2 (see Creighton, 1999 [25]). For a black hole formed from two

1.4 M� neutron stars (assuming the majority of the mass is not lost) fc ≈ 5.5 kHz with
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a decay time τ & 10 hrs. The gravitational wave amplitude (taken from [12]) will be

h ≈ 1.0×10−20
( ε

0.01

) 1
2

(
103 Hz

fc

)(
10 Mpc

r

)
, (1.29)

where ε = ∆E/Mc2, is the efficiency of conversion of energy. For our example assuming

an efficiency of ε = 0.01 and a distance of 10 Mpc this gives h ≈ 2×10−21, which should

be detectable with current detectors. For larger (but still stellar range) mass mergers

the frequencies should be well into the current detector range with high signal-to-noise,

and as the waveform is very well defined should make a good target for detection. For

the supermassive black hole mergers the frequencies will be in the milliHertz range,

covered by future space based detectors e.g LISA, with gravitational wave amplitudes

so large that they will be observable throughout the universe.

The central supermassive black holes in galaxies will occasionally scatter or ‘eat’

a normal stellar mass object. These extreme mass ratio inspirals (EMRIs) could be

an interesting low frequency gravitational wave source with the waveform providing a

precise map of the space-time around the black hole. For a single black hole the rate

would typically be far less than one per year, but with approximately 100 large galaxies

within 10 Mpc the event rate for these could be reasonable.

Supernova core-collapse

The formation of neutron stars and stellar mass black holes is through the core-collapse

of massive stars in Type II supernovae. The strength and frequency of any gravitational

wave emission from such events is dependent on the degree of non-sphericity and speed

of collapse. The modelling of such collapses to a neutron star is very difficult and

therefore the gravitational wave amplitude and waveform is very uncertain. If the

collapse remains axisymmetric then it could include bounces of the core and then

damped pulsations of the proto-neutron star with characteristic frequencies of ≈ 2 kHz.

Other possibilities are that collapse could lead to a bar-mode deformation of the neutron

star, leading to it rotating end-over-end, or the deformation could be so unstable as

to break up the newly formed star. The large uncertainties in the various models lead
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to the possibility of gravitational waves carrying away energies over a large range from

∆Egw . 10−10 − 10−2 M�c
2 with frequencies from fc ∼ 200 − 10 000 Hz [12]. Using

these ranges, and adopting equation (37) of Thorne (1987) [12] the various amplitudes

of gravitational wave from core-collapse are shown in figure 1.3. Rates of Type II

supernovae in our galaxy are around 1-3 per century, which extrapolating out the

range of the large Virgo cluster of galaxies (∼ 10 Mpc) gives a rate of a few per year.

Beyond this the rate increases roughly as the distance cubed assuming an isotropic

distribution of galaxies.

Due to the simplicity of a black hole compared to a neutron star their collapse is

better understood. The collapse will lead to damped vibrations of the newly formed

black hole in the same way as for the mergers discussed above. For the creation of a

10 M� black hole we get a characteristic frequency fc ≈ 1 kHz, which for efficiencies

of ε ∼ 0.01 should give detectable gravitational waves out to around 10 Mpc (see

figure 1.3). Black holes formation rates rates are thought to be at about a third of

that for neutron stars, giving about one event per year to 10 Mpc. The formation of

black holes in supernovae is thought to be the source of long duration GRBs under the

so-called collapsar model (MacFadyen and Woosley, 1999 [26]).

Neutron star ring-downs

It has been discussed already that newly formed black holes and neutron stars could

ring-down, but what of older neutron stars? Neutron stars are seen to glitch (discussed

in more detail in Chapter 4) which it has been suggested (for example by Andersson

and Kokkotas, 1998 [27]) could provide a mechanism to excite vibrational modes of

the star. The main modes will be the fundamental fluid f -mode, the first pressure

p-mode and the first gravitational wave w-mode. The f -modes will have frequencies

of around 2 kHz, the natural frequency of a neutron star, with the other modes being

at frequencies & 10 kHz. These modes will ring down much quicker than black holes,

with decay times of around 50-100 milliseconds. The gravitational wave emission from

such modes depends on the amount of energy deposited in them during the glitch (or
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supernova). For neutron star glitches, the amount of energy available is fairly small

. 10−10 M�c
2, so these modes could only conceivably be observed within our galaxy

(see equation 4.4). In supernovae the amount of energy deposited could be much higher

. 10−4 M�c
2 and therefore provide a source into the Mpc range.

1.2.4 Stochastic sources

Stochastic sources are those that contribute to the general underlying background of

gravitational waves. This could be due to the superposition of waves from all the

types of sources discussed above, or could be primordial in nature. One of the most

prominent sources at low frequency will be the large number of local binary stars. It

can be seen in figure 1.3 how the galactic population of binary white dwarf systems

dominates the noise floor for LISA over a certain frequency range.

One of the most exciting prospects of gravitational wave detection is the possibil-

ity of seeing gravitational waves from a tiny fraction of a second after the big bang.

Whereas the photons forming the cosmic microwave background (CMB) only let us see

back to their last scattering at about 300 000 years after the big bang, gravitational

waves would have last scattered less than 10−24 seconds after the big bang [11]. Sce-

narios such as inflation would have lead to the amplification of initial perturbations in

the gravitational field, leaving a random background of gravitational radiation today.

Other alternatives to inflation would also leave their own gravitational wave signatures.

The stochastic background is generally characterised by its energy density rather

than the gravitational wave amplitude. In this way we can set a limit on the energy

density of the gravitational wave field in units of the critical energy density required

to close the universe, ρcrit, as

Ωgw(f) =
dρgw/ρcrit

d lnf
. (1.30)

For inflationary scenarios this should be flat across the frequency spectrum [11], whereas

other models can give altogether different spectra. The current best cosmological model
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for the universe (the dark energy and cold dark matter or ΛCDM model), from a com-

bination of CMB, Type Ia supernova, galaxy distribution and big-bang nucleosynthe-

sis results, gives a value of the overall energy density of the universe to be Ω = 1,

with Ωmatter ≈ 0.3 and ΩΛ ≈ 0.7, meaning that Ωgw � 1. Nucleosynthesis models

place conservative bounds on the total energy density in gravitational waves integrated

over frequency of
∫

d lnfΩgw(f) < 1.1×10−5 (see Abbott et al., 2005b [28]). Current

ground-based detectors should soon be able to start pushing the nucleosynthesis lim-

its of ∼ 10−5 around the 100 Hz range, with AdvLIGO able to reach well below this

to levels around ∼ 10−9 [11]. The space-based detector LISA could reach levels of

Ωgw ∼ 10−8 in the milliHertz range, but as stated its sensitivity might be limited by

the binary background.

The stochastic background would be seen as a random noise in the detectors com-

peting with their own instrumental noise. If the gravitational wave background is

greater than the instrumental noise, or the instrumental noise level is known indepen-

dently, then it could be detected using a single detector, but otherwise requires the

cross-correlation of the output of two or more close by detectors. Detectors will only

have a limited frequency over which they can constrain a gravitational wave background

level, so will not be able to give definitive results without more broadband studies using

different types of detectors.

Other more speculative sources of a stochastic background could be cosmic strings,

phase transitions during the big bang and the death of Population III stars.

1.3 Gravitational wave detection

It was not until the 1960s that people seriously started to consider the detection of

gravitational waves as plausible, and if not for the pioneering work of Joseph Weber

[29] the field may have never got off the ground. The original detectors of Weber were

large cylinders of aluminium called bar, or resonant mass, detectors. Here we will dis-

cuss interferometric detectors, which work based on the principle of how gravitational

waves interact with free masses.
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1.3.1 Interferometric detectors

The use of interferometers as gravitational wave detectors started in earnest in the

1970s with several groups turning away from the bar design. These interferometers

were either a basic Michelson design (see figure 1.4) or containing Fabry-Perot cavities.

The main advantage of the interferometers was their far wider bandwidth compared

with a bar, which has a narrow bandwidth about its resonant frequency.

End mirror

Photodetector

Laser

End mirror

Beam splitter

Power recycling mirror

Figure 1.4: A schematic of a simple Michelson interferometer with power recycling.

Interaction of gravitational waves with detectors

The principle of detecting gravitational waves is based on how they interact with freely

falling objects. It was shown in equations 1.10 and 1.11 and figure 1.1 how particles

will react to a passing wave, so we will consider two free masses (our interferometer’s

mirrors) placed perpendicular to the direction of propagation of the wave aligned in its

x − y plane. If the interferometer beam splitter is placed at a distance L0 from each

mirror, then from equations 1.10 and 1.11 a gravitational wave will produce a time

varying displacement δL of the mirrors, for each polarisation, of

δLx(t)

L0

=
1

2
(h+ + h×), (1.31)
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and

δLy(t)

L0

=
1

2
(h× − h+). (1.32)

It is the ability of an interferometer to measure such changes in its arm length via

the interference pattern produced that makes them useful for measuring gravitational

waves. The amplitudes given above are for an optimally oriented detector, and if the

plane is not perpendicular to that of the wave then the amplitude will be reduced

by a certain factor (called the beam or antenna pattern). It can be seen that for

longer arm lengths a smaller gravitational wave strain will be measurable for the same

displacement, this means that to detect the sort of source strains discussed above

interferometric gravitational wave detectors will need be large (on the km scale). Even

so they will be having to sense displacements of order 10−18 m, roughly equivalent to

sensing a displacement of order the diameter of a Gold atom between the Earth and

the moon.

Kilometre scale detectors are still much smaller than the wavelength of the gravi-

tational wave frequencies they are sensitive to L0 � λ ∼ 103 km for f ∼ 100 Hz. This

means that in the time that it takes light to travel down the arms of the interferome-

ter only a small fraction of the displacement will have taken place. To get round this

the light needs to be kept in the arms for about the half period of the wave. This

can be achieved by use of a Fabry-Perot cavity or signal recycling mirror, which can

increase the effective path length of the light by ∼ 100 [11].

Sources of noise

The displacements to be measured are small, so there will be many sources of noise

that threaten to dominate any gravitational wave signal. The dominant source of noise

for an interferometer changes with frequency, and each will be briefly discussed here

(see figure 1.5 for the noise sources in Geo 600).

At low frequencies (< few Hz) the underlying noise limit for any ground-based

detector will be gravity gradient noise. This will come from changes in the local

gravitational field, from environmental and possibly man-made sources. The spectrum
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Figure 1.5: The theoretical models of the noise sources for Geo 600 across the sensitive band of the
interferometer (taken from http://www.aei.mpg.de/~jrsmith/geocurves.html).

for this source of noise is inversely proportional to frequency to a high power and is well

below other sources of noise for current detectors [11]. It could however form a noise

wall at low frequencies for future ground-based detectors. For these low frequencies

the only way to get around gravity gradient noise is to go into space (e.g. LISA

http://lisa.jpl.nasa.gov).

The main low frequency (. 30 Hz) noise source above gravity gradient noise is

seismic noise. To isolate the mirrors from vibrations they are suspended as pendu-

lums. This provides good isolation for frequencies above the resonant frequency of the

pendulum. Even more effective isolation can be achieved by stacking several levels of

pendulums.

In the mid-range of frequencies (∼100 Hz-1 kHz) thermal noise of the masses, mirror

coatings and suspensions will dominate. These components are chosen to have natural

frequencies of vibration outside the main operating frequency range of the detectors,

with the suspensions at a few Hz and masses at several kHz. By choosing materials for

these elements with a high quality factor Q, like silica, most of the vibrational energy

will be kept to a small frequency range about the natural frequency. The use of high

Q materials means that the interferometers can be operated at room temperature, but

cooling the detectors is being studied as a possible way of reducing thermal noise in

the future.

http://www.aei.mpg.de/~jrsmith/geocurves.html
http://lisa.jpl.nasa.gov
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At high frequencies (& 1 kHz) quantum shot noise is the dominant noise source.

The fact that the laser light is made up of quantised photons gives rise to random

fluctuations in the number of photons N at the output. This is a Poisson process so the

number of photons will vary as
√
N , therefore the fractional error on the fluctuations

in the number of photons detected will be reduced by increasing the laser power i.e.

increasing N . To get the shot noise down to the low levels needed requires laser powers

far higher than any commercially produced lasers reach, so a technique called power

recycling must be used. If the interferometer output is kept on a dark fringe, so no

power is lost at the output, then the only way for power to escape is through the input,

so by placing a mirror in front of the laser this light can be sent back into the cavity (see

figure 1.4). As the mirror optics are high quality little power is lost in transmission and

the power in the cavity is built up. This means that a 10 W laser is able to give powers

of up to several kW in the cavity. The higher power can however lead to radiation

pressure noise and thermal heating of the mirror and as such a trade off needs to be

made.

All these noise sources combine to mean that current interferometers are most

sensitive in the regions of ∼ 10− 1000 Hz, although all sides of the noise curve can be

pushed outwards by applying novel techniques.

Current detectors

This thesis will focus on results from the Geo 600 and LIGO detectors. Geo 600 is a

joint British/German 600 m long folded arm Michelson interferometer based near Han-

nover, with power and signal recycling3 [30]. The Laser Interferometric Gravitational

Wave Observatory (LIGO) project [31] is a US-based set of three Fabry-Perot cavity in-

terferometers: two collocated in Hanford, WA with 4 km and 2 km arm lengths (called

H1 and H2 respectively); and one in Livingston, LA (L1), with a 4 km arm length.

These detectors make up those used by the LIGO Scientific Collaboration (LSC). All

3This is a way of holding light in the cavities for longer at certain frequencies to enhance the
sensitivity in a tunable narrow band, and is achieved by introducing another movable mirror at the
output to put light back into the cavity.
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were under construction and commissioning until they performed their first science run

in autumn 2002 (see Abbott et al., 2004c [32]), since when there have been three more

science run periods between which commissioning has taken place. The relative design

sensitivities of these can be seen in figure 1.2. Due to its smaller size Geo 600 has

been a test bed for more advanced technologies than LIGO, like monolithic double

suspensions and signal recycling, which will be used in future upgrades to the LIGO

instruments i.e. Advanced LIGO.

These detectors are not the only interferometers currently operating. The first

large scale interferometer to successfully make measurements was in fact the Japanese

300 m-arm-length Tama 300 detector. This has since performed several data taking

runs. The other main interferometer is the French/Italian 3 km VIRGO detector near

Pisa. VIRGO has been designed with a very elaborate suspension system to minimise

low frequency noise, giving it an advantage over LIGO and Geo 600 below ∼ 50 Hz.

VIRGO is still under its commissioning, but should soon join the network of detectors.

Along with the interferometers there are several groups with bar detectors. These

include AURIGA, ALLEGRO, EXPLORER and NAUTILUS which have been very

active for many years.

Future detectors

For ground-based interferometers plans are very advanced for the upgrade and con-

struction of the next generation. These include the planned upgrade to the current

LIGO detectors, by porting some technologies over from Geo 600. These should help

lower the noise floor by an order of magnitude (see figure 1.2) and expand the volume

of space covered by about a factor of ∼ 1000. The Japanese have plans for a new

detector possibly using cryogenic technologies to reduce thermal noise. Any upgrades

to Geo 600 could see it being focused on the high frequency region using advanced

optical techniques to get below the standard quantum noise limits in this region.

One of the most exciting future detectors is the space-based detector, the Laser

Interferometer Space Antenna (LISA). This joint ESA/NASA venture aims to put an
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interferometer consisting of three spacecraft forming an equilateral triangle of side 5

million km into space. This would be free from gravity gradient noise and have a

sensitivity over the frequency range of ∼ 0.1 − 100 mHz. The range of sources in this

frequency band should guarantee gravitational wave detection.

1.4 Current searches

As stated above the LSC interferometers have performed several periods of data taking

under science mode, these have been: S1 from 23rd August - 9th September 2002 with

both Geo 600 and the LIGO instruments; S2 from 14th February - 14th April 2003

with just the LIGO instruments; S3 from 31st October 2003 - 9th January 2004 with

LIGO and including Geo 600 for two separate periods; and S4 from 22nd February -

23rd March 2005 with both Geo 600 and LIGO. Using data from these runs a variety

of searches for a large section of the above sources has been carried out. Here we will

briefly summarise some of these results.

In Abbott et al. (2004a and 2005a) [33, 34] searches for continuous gravitational

waves from known pulsars were performed using data from S1 and S2 setting upper

limits on h of ∼ 10−24 and ellipticities of ∼ 10−5 for several pulsars (results from the S3

and S4 runs are presented in this thesis). Abbott et al. (2005c) [35] shows an all-sky

search for continuous gravitational waves from unknown neutron stars or other sources

in the 200-400 Hz range using S2 data, with a best upper limit on h of ∼ 4.4×10−23.

Other such all-sky coherent, semi-coherent and incoherent searches are being used on

S2 and more recent data, including a targeted search for gravitational waves from the

LMXB Sco X1, but these results are as of yet unpublished.

Searches for untriggered burst sources have been performed on LIGO data from

S1 and S2 in Abbott et al. (2004d and 2005d) [36, 37], giving a best upper limit on

the event rate for bursts of between 100-1000 Hz of less than 0.26 per day in the strain

amplitude range hrss ∼ 10−20−10−19 Hz−1/24. A coincidence burst search between LIGO

4hrss ≡
√∫
|h|2dt is the root-sum-squared amplitude spectral density for bursts
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and the Tama 300 detectors during the period of S2 (Abbott et al., 2005e [38]) has

given an upper limit of 0.12 events per day above a strain of hrss ∼ 1−3×10−19 Hz−1/2 in

the frequency range of 700-2000 Hz. In Abbott et al. (2005f) [39] a search has targeted

a GRB and set an upper limit on the radiation for the specific event GRB030329 using

LIGO data. For an event shorter than 150 ms and around 250 Hz this gave a strain

amplitude upper limit of hrss ' 6×10−21 Hz−1/2. Again burst searches for gravitational

waves from more recent runs, including coincidences with Geo 600, have yet to be

published.

The search for inspiral events has included binary neutron stars inspiral (Abbott

et al., 2004b and 2005g [40, 41]), binary black holes (Abbott et al., 2005h [42]) and

primordial black holes in the Galactic halo (MACHOs) (Abbott et al., 2005i [43]). The

binary neutron star search had a maximum range of ∼ 1.5 Mpc with an event rate

upper limit of 47 per year per Milky Way equivalent galaxy (MWEG) for neutron stars

in the mass range 1 − 3 M�. The binary black hole search found no events out to

distances of 1 Mpc for black hole masses between 3− 20 M�, giving an upper limit rate

of 38 per year per MWEG. These results are all at 90% confidence and have been set

using S2 data with more up to date results to be published.

Finally in Abbott et al. (2004e and 2005b) [44, 28] upper limits on the stochastic

background have been set using LIGO data from S1 and S3. This has given the

increasingly astrophysically interesting upper limit of Ωgw < 8.4×10−4 in the frequency

band 69-156 Hz.

All these upper limits are from LSC detectors. There are also interesting upper

limits on burst, continuous wave and stochastic sources from the various bar detector

groups. Stochastic upper limits in much lower frequency ranges are also being set via

spacecraft doppler tracking and pulsar timing. Summarising all would require a large

review paper and is out of the scope presented here. In the future all the various

detectors should form a large network, the pooling of data from which will be used to

gain the most information about sources and provide the best results.
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Chapter 2

Gravitational waves from known

pulsars

In this chapter we will discuss pulsars as a source of continuous gravitational waves.

A search technique and parameter estimation tool for such sources is described. The

inclusion of timing noise corrections and binary pulsar time delays into this search is

then discussed, along with code validation proceedures.

2.1 Pulsars and gravitational radiation

One class of astrophysical object thought to be a strong candidate for the emission

of detectable continuous gravitational waves is neutron stars. These are the ultra-

dense evolutionary end states for high mass stars (∼ 8 − 25M�) produced during

core-collapse in a Type II supernova, or accretion induced collapse of a white dwarf in

a Type I supernova. They were theorised (in the first instance by Baade and Zwicky,

1934 [45]) for several decades before evidence for their existence was confirmed by the

discovery of pulsars in 1967 by Hewish and Bell [46]. They discovered periodic coherent

radio pulses from outside the solar system. These were consistent with a beamed source

of radiation from a rapidly rotating highly magnetic object. The very fast periods seen

for the promptly discovered Crab and Vela pulsars ruled out, as sources, already known

objects such a white dwarfs as they would have radii greater than the surface of the light
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cylinder1. This left the far denser and smaller neutron stars as the prime candidate.

The pulsed emission was due to an offset between the spin axis and magnetic axis, from

which electromagnetic radiation was being beamed, occurring when the magnetic axis

crossed our line of sight; in a way analogous to a lighthouse. Since their initial discovery,

at the time of writing, 1533 pulsars have been discovered (as given by the Australia

Telescope National Facility - ATNF - online pulsar catalogue [47]). The majority have

been discovered through radio surveys of the sky, although emission from some objects

can be seen across a wide range of energies, even into the γ-ray spectrum. Surveys are

ongoing, but estimates of the number of pulsars in the galaxy can be made by inference

from the current population, taking into account biasing from selection effects, and the

supernova rate. Estimates give values of ∼ 200 000 active pulsars within our galaxy

(see Lorimer, 2001 [48]).

Pulsars are found in a wide range of environments. As might be expected from their

birth in supernovae some are found associated with supernova remnants (SNR). These

are typically young pulsars whose birth velocity has not yet caused a large displacement

from the remnant, their emissions are still enough to excite the SNR to emit, and the

SNR has not dissipated into the interstellar medium (ISM). Other pulsars are found

in binary systems as companions to a whole range of bodies ranging from planets,

through main sequence stars, to white dwarfs and other neutron stars. The so called

millisecond pulsars (pulsars with rotation periods of < 10 milliseconds) are often found

within binary systems, and their rotation speed is often attributed to their being spun-

up by accretion of material from a stellar companion. Many pulsars are seen within

globular clusters, which is not surprising due to the high concentration of old stars.

Pulsars are also seen without any association. From here on we shall classify any pulsar

not in a binary system as isolated.

The range of spin periods covered by pulsars is quite wide going from ∼ 12 sec-

onds to ∼ 1.5 milliseconds. The distribution of periods is not uniform with distinct

populations of fast millisecond and young pulsars, and slower pulsars.

1The surface which would be rotating at the speed of light.
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Pulsars are generally seen to spin-down as they lose rotational energy via various

emission mechanisms. The generally accepted energy loss is via magnetic dipole radi-

ation. The energy loss mechanism most important for us would be via gravitational

radiation. The phase evolution of a pulsar can generally be well described by the Taylor

expansion,

φ(t) = φ0 + 2π

{
ν0(t− t0) +

1

2
ν̇0(t− t0)2 +

1

6
ν̈0(t− t0)3 + . . .

}
, (2.1)

where φ0 is the initial phase, ν0 and its time derivatives are the pulsar frequency and

spin-down coefficients at an epoch t0, and t is the time in a reference frame comoving

with the pulsar. For the vast majority of pulsars the value of ν̇ is very small and ν̈

is unmeasurable or swamped by timing noise (see §2.3). To date there are only five

pulsars with well enough sampled observations to have a measurable ν̈, which allows

a quantity called the braking index, n = νν̈
ν̇2

, to be defined. For spin down caused by

pure magnetic dipole radiation then n = 3, and for pure gravitational radiation n = 5

(see Palomba, 2000 [49]). For the few pulsars with a measurable value of the breaking

index, four (PSR J0534+2200 - the Crab pulsar, PSR J1513-5908, PSR J0835-4510 - the

Vela pulsar, and PSR J0540-6919) show n < 3 [49] and one (PSR J0537-6910) shows

n ∼ 6.9 [50]. For the four pulsars with n < 3 Palomba [49] tries to explain them with

a combination of magnetic breaking and gravitational radiation.

Neutron stars are typically thought, from theoretical arguments, to have a mass

of around 1.4 M� and radii of ∼ 10 km. Using these canonical values of mass and

radius and assuming a uniform density sphere, the moment of inertia of a neutron star

is often quoted as I = 2
5
MR2 = 1038kg m2. Their structure is thought to consist of

a thin crust of highly distorted heavy nuclei (mostly iron) and a degenerate electron

gas, above a mantle of fluid neutrons with some protons and electrons, surrounding a

core of neutrons or unbound quarks (this is discussed in more detail in Benhar, 2005

[51]). Densities range from ∼ 1010 kg/m3 near the surface to ∼ 1018 kg/m3 in the

core. The true nature of the neutron star interior is unknown, with much speculation

surrounding the possibility of it consisting of strange quark matter and other exotic
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theories. Questions about the equation-of-state could possibly be answered through

observations of gravitational waves from neutron stars.

2.1.1 Gravitational wave emission mechanisms

Spinning stars with perfect symmetry about their rotation axis will not emit gravita-

tional waves, so if we expect to detect any continuous gravitational wave signal then

some mechanism must be in place to cause an asymmetry to arise. In this section the

most important gravitational wave emission mechanism we will discuss is the emission

of continuous waves from a triaxial neutron star (in Chapter 4 the emission of transient

quasi-normal modes will be discussed).

Emission from a triaxial neutron star

There are several ways in which a neutron star could be deformed from asymmetry.

During formation and crystallisation the neutron star crust may be deformed from

axisymmetry due to centrifugal forces. This deformation could then be supported by

the solid crust [52]. Another possibility is that a strong magnetic field could distort the

star. Gravitational waves produced by such mechanisms would be produced at twice

the rotation frequency of the star. They would have a characteristic strain amplitude

given by

h0 =
16π2G

c4

εIzzν
2

r
, (2.2)

where ν is the star’s spin frequency, Izz is the principal moment of inertia, ε is the

star’s ellipticity, and r is the distance to the star (see Jaranowski et al., 1998 [53]). In

this chapter and the next we shall only consider gravitational waves emitted via this

mechanism.

Emission from a precessing neutron star

Precession of a star about its rotation axis is another source of asymmetry. Gravi-

tational waves generated by precession would have a frequency at the star’s rotation

frequency, with sidebands ofset by the precession frequency from this for small wobble
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angles (Zimmermann and Szedentis, 1979 [54]). In Jones and Andersson (2002) [14]

they conclude that gravitational wave amplitudes from such sources are likely to be

orders of magnitude below the level of detectability for LIGO, but may be detectable

with AdvLIGO.

Other mechanisms

Another source of asymmetry in a star may arise if it is in a binary system and accreting

matter from its companion, as in Low Mass X-ray Binaries (LMXBs). Such systems

could emit gravitational waves via r-modes as discussed in Andersson et al. (1999)

[55] or could perhaps have large ellipticities induced by an accretion-confined magnetic

field as in Melatos and Payne (2005) [56].

2.1.2 Gravitational wave searches

Known pulsars provide an enticing target for gravitational wave searches. With known

positions and frequencies the parameter space to search over can be much smaller than

for unknown searches. The fact that the waves are continuous means that, assuming a

coherent search, you can build up signal-to-noise with longer observations (scaling as
√
T , where T is observation time). The main drawback in a search for gravitational

waves for the majority of known pulsars is that the level of emission can be inferred

to be much lower than current detector sensitivities. It is possible using existing radio

measurement to set an upper limit on gravitational wave emission amplitudes from

energy conservation arguments, assuming there is no unknown mechanism powering

the star in some way. If one assumes that all the kinetic energy lost as the pulsar

spins-down is dissipated via gravitational radiation (dEgw/dt = 4π2Izzν|ν̇|) then an

upper limit on h0 can be set as

hspin−down
0 =

(
5

2

GIzzν̇

c3r2ν

)1/2

, (2.3)
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this will be discussed in more detail in §3.5. Even so, searches do provide upper limits

on emission which can be valuable in constraining certain equations of state, and we

may just find something!

The ability to search for gravitational waves from known pulsars before the advent

of the large scale interferometric detectors was rather limited. Bar detectors are only

sensitive in a narrow band of frequencies around their resonant frequencies and so

cannot be used to target objects outside that band. A specific attempt to search for

gravitational waves from the Crab pulsar at a frequency of ∼ 60.2 Hz2, was made

with a specially designed aluminium quadrupole antenna (see Hirakawa et al., 1978

and Suzuki, 1995 [57, 58]). A search for gravitational waves from the then fastest

millisecond pulsar, PSR J1939+2134, was conducted by Hough et al (1983) [59] using

a split bar detector, producing an upper limit of h0 < 10−20.

Using the inherently broadband interferometers a larger sample of objects is acces-

sible. The first search for gravitational waves from a pulsar using an interferometer was

with the prototype 40 m interferometer at Caltech by Hereld (1983) [60]. Again the

search was for gravitational waves from PSR J1939+2134, and produced upper limits of

h0 < 3.1×10−17 and h0 < 1.5×10−17 for the first and second harmonics of the pulsar’s

rotation frequency. For the LIGO instruments all pulsars with rotation frequencies

> 25 Hz (gravitational wave frequency > 50 Hz) are accessible. Below this frequency

the seismic noise floor rises sharply giving far less stationary data and sensitivities

well below sensible levels. This generally leaves only the population of millisecond and

young pulsars accessible, consisting of 150 pulsars at the time of writing (from the

ATNF catalogue [47]). The low frequency sensitivity of the VIRGO detector may in

the future allow the probing of a larger sample of pulsars at lower frequencies.

Current searches

The search for gravitational waves from known pulsars has developed rapidly since

the start of data taking runs with the LIGO and Geo 600 interferometers in 2002.

2twice its rotation frequency at the time of their search, although the frequency now searched is
closer to ∼ 59.6 Hz.
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Data from the first science run (S1) was used to perform a search for gravitational

waves from PSR J1939+2134, assuming a triaxial star emitting at twice the rotation

frequency [33]. For this search two techniques were used: one a frequency domain,

frequentist search, and the other a time domain, Bayesian search.

The frequency domain method and others

The frequency domain search makes use of Fourier transforms of the data to search

for a signal in the correct frequency bin using a detection statistic (F -statistic [53]).

This statistic is based on a maximum-likelihood analysis, making use of the output of

matched-filters (more on matched filtering is given in §4.2.1) for a series of templates

over the pulsar signal parameters. An upper limit using this statistic can be set using

Monte-Carlo injections and establishing a threshold which gives a certain false alarm

rate and false dismissal rate.

There are efforts to search for gravitational waves from neutron stars by a variety

of other methods in the LSC using LIGO and Geo 600 data from the last four science

runs. The use of the Hough transform method can be seen in Abbott et al. (2005c) [35],

the StackSlide method is described in Mendell (2005) [61], and the PowerFlux method

is described in Dergachev (2005) [62]. These generally make use of short Fourier trans-

formed stretches of data to form something analogous to a time-frequency spectrogram.

Techniques are used to modulate this in a way consistent with the expected gravita-

tional wave form. The spectrogram is then searched for evidence of a signal using a

variety of pattern recognition procedures.

These methods do not rely on precise knowledge of the signal phase evolution

like the time domain method. This lends them to uses in all-sky searches over large

frequency and spin-down ranges rather than being used to target specific objects. They

can also be used in targeted searches for objects with badly constrained parameters, for

example the search for gravitational waves from the LMXB systems. These strategies

can also be used in hierarchical searches as described in Brady and Creighton (2000)

[63], whereby wide area searches provide possible signal candidates for a more tightly
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focused follow up search. Coincidences between candidates in different detectors can

also be applied.

For the analysis of the second science run (S2) of the LIGO interferometers the first

attempt to search for a broad range of pulsars was made. Twenty eight pulsars with

either very well defined and stable parameters or with new timing taken over the period

of S2 were searched for [34]. All these pulsars were isolated. For this search a slightly

modified version of the time domain method of S1 was used. It is this search method

which will be discussed in more detail below and which has been used to obtain the

results herein.

Another method making use of the time domain technique and Markov Chain Monte

Carlo (MCMC) statistical methods is also being explored for possible “fuzzy” targeted

searches where some signal parameters are badly constrained (see Veitch et al., 2005

[64]). An MCMC approach provides a way of intelligently exploring large parameter

spaces without having to exhaustively cover the entire range. An example of an object

for which such a search is being applied is a potential pulsar remnant of SN1987A (a

supernova which occurred in the LMC in 1987), as speculatively observed by Middled-

itch et al. (2000) [65], where the pulsar frequency and spin-down are uncertain within

a small range. Problems with this technique are that it does not naturally lend itself

to producing an upper limit (rather than a detection), although further study is going

into this area.

2.2 Time domain search method

The time domain method described here is described more fully in Dupuis (2004) and

Dupuis and Woan (2005) [66, 1]. The extensions to this included here are the additions

of timing noise corrections and binary system effects into the model. We receive data

from the gravitational wave sensitive channels of the LIGO and Geo 600 interferome-

ters. For LIGO data this is received in an uncalibrated form (raw voltages from the

instrument output) with frequency domain calibration information supplied separately

(calibration will be discussed in more detail in Chapter 3). For Geo 600 time series data
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is supplied in a calibrated form, making post-processing calibration unnecessary. All

data is received at a sampling rate of 16 384 Hz. This sampling rate means a frequency

range of 8192 Hz is available for searches. In known pulsar searches the frequency is

known very precisely, so the vast majority of this frequency space is redundant. A

way to down-sample this large bandwidth of data is useful to increase the speed of any

search. Knowledge of the pulsar parameters allows us to perform a heterodyne on the

data and down-sample it to 1
60

Hz (one sample per minute), as described later.

The expected signal from a pulsar is given by

h(t) =
1

2
F+(t;ψ)h0(1 + cos2 ι) cos 2φ(t) + F×(t;ψ)h0 cos ι sin 2φ(t), (2.4)

where φ(t) is that given in equation 2.1, F+ and F× are the detector beam patterns for

the plus and cross polarisations of the gravitational waves, ψ is the wave polarisation

angle, and ι is the angle between the rotation axis of the pulsar and the line-of-sight.

For a gravitational wave signal impinging on the Earth the signal arrival time at the

detector, t, given in equation 2.1 will be modulated by Doppler, time delay and rela-

tivistic effects caused by the motions of the Earth and other bodies in the solar system.

Therefore,

tb = t+ δt = t+
r · n̂
c

+ ∆E� + ∆S� , (2.5)

where r is the position of the detector with respect to the solar system barycentre (SSB),

n̂ is the unit vector pointing to the pulsar, ∆E� is the special relativistic Einstein delay,

and ∆S� is the general relativistic Shapiro delay. This corrects the signal to the SSB

time tb. This reference frame is assumed to be at rest with respect to the pulsar, with

its proper motion generally being negligible. For pulsar’s in binary systems there will

be additional time delays as discussed in §2.4.

We assume that our gravitational wave detector data is given by

s(t) = h(t) + n(t), (2.6)

where h(t) is the gravitational wave signal and n(t) is the noise. In searching for a
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particular pulsar we can perform a complex heterodyne of the data by multiplying it

by e−i2φ(tb), where φ(tb) is the phase evolution of that pulsar given by equation 2.1,

and tb from equation 2.5. The pulsar signal (equation 2.4) can be rewritten using

trigonometric identities as

h(t) = A1(t)ei2φ(tb) + A2(t)e−i2φ(tb), (2.7)

where

A1(t) =
1

4
F+(t;ψ)h0(1 + cos2 ι)ei2φ0 − i

2
F×(t;ψ)h0 cos ιei2φ0 , (2.8)

and

A2(t) =
1

4
F+(t;ψ)h0(1 + cos2 ι)e−i2φ0 +

i

2
F×(t;ψ)h0 cos ιe−i2φ0 , (2.9)

and φ0 is the initial phase of the gravitational wave signal from the pulsar. Performing

the heterodyne on the signal transforms

s(t)→ s(t)e−i2φ0 = shet(t) = (h(t) + n(t))e−i2φ0 = A1(t) + A2(t)e−i4φ(tb) + n(t)e−i2φ(tb)

(2.10)

which removes the phase evolution from the A1 term and increases the oscillation of

the A2 term to twice the gravitational wave frequency. A1(t) will now only oscillate

at the diurnal rate of the detector antenna pattern. The slow rate of change of the

antenna pattern means that the data can be significantly down-sampled by averaging

from 16 384 Hz to 1
60

Hz. We call each minute sample Bk where k is the sample number.

Before this averaging takes place it is prudent to low-pass filter the data to prevent

aliasing from other bands contaminating the pulsar signal band. The filters used are

three consecutive third order Butterworth infinite impulse response (IIR) filters, with

a cut-off frequency of 1
2

Hz. This should also effectively suppress the fast oscillating

A2(t) term. After filtering, the data can then be averaged to give

Bk =
1

M

M∑
i=1

s′het(ti), (2.11)
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where s′het is the filtered heterodyned data and M = 16 384 Hz × 60 s = 983 040. The

averaging will also act as another level of low pass filtering. In this approach the pulsar

phase and therefore solar system barycentring time delays need to be calculated for

every sample of data at 16 384 Hz. This can be computationally expensive, but does

mean that the filter cut-off frequencies can be tight and the data averaged to a low

rate. If the pulsar parameters were not well known, so that the signal could drift across

the heterodyned band, then the filter cut-offs and re-sampling rate might need to be

increased. This can be done on purpose to try to reduce the computation time. For

example an initial heterodyne using a phase calculated with just the pulsar frequency

and without the barycentring can be carried out. The data can then be re-sampled

to, say, 4 Hz and re-heterodyned with the frequency derivatives and barycentre timing

corrections included. When performing such an analysis for a few pulsars the former

strategies’ computational time is not too constraining, but for many pulsars it can

become quite inefficient.

2.2.1 Bayesian analysis

Once the data has been heterodyned we are left with the complex value

Bk =
1

4
F+(tk;ψ)h0(1 + cos2 ι)ei2φ0 − i

2
F×(tk;ψ)h0 cos ιei2φ0 + n(tk)

′, (2.12)

where n(tk)
′ is the heterodyned averaged noise for the kth sample. We want to somehow

search for the signal buried in this noise. This signal is defined by the four unknown

parameters of h0, ψ, ι and φ0.

To search for the signal we use a Bayesian parameter estimation method. Two

slightly different approaches to this are considered in Dupuis (2004) [66], one in which

the noise variance is estimated from the data and one in which the noise variance is

considered to be unknown. Here we will concentrate on the latter method. Bayesian

statistics make use of the basic rules of probability theory, namely the product rule
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and the sum rule. Application of these leads to Bayes’ theorem,

p(x|y, I) =
p(y|x, I)× p(x|I)

p(y|I)
, (2.13)

where p(x|y, I) is called the posterior probability distribution function (pdf) of x given

y, p(y|x, I) is the likelihood function of y given x, p(x|I) is the prior probability dis-

tribution of x.

In our search we start off with the Gaussian likelihood function as representing the

likelihood of each complex Bk,

p(Bk|a, σk) =
1

(σk
√

2π)2
exp

(
−|Bk − yk|2

2σ2
k

)
, (2.14)

where a = {h0, ψ, ι, φ0}, yk = Bk−n(tk)
′ is our model, and σk is the standard deviation

of the noise in Bk. It is shown in Bretthorst (1988) [3] that such a likelihood function is

the least informative. This is not to say that it is a bad likelihood function to use, but

just means that it is expressing the least prior information on what the distribution

looks like. If we assume that the noise in each Bk is independent then our complete

likelihood for the whole set of data can be given by the product of all the Gaussians,

p({Bk}|a, {σk}) =

(
n∏
k=1

1

(σk
√

2π)2

)
exp

(
−

n∑
k=1

|Bk − yk|2

2σ2
k

)
, (2.15)

where n is the number of Bks. In the search of Abbott et al. (2004a) [33] this likelihood

was used with the standard deviation of each Bk calculated before the down-sampling

took place. In a strict sense the Gaussian likelihood should only be used when the

noise level is known in advance, whereas in [33] it was estimated from the data. This

can lead to non-negligible uncertainties in σ when the number of data points used to

estimate it is low. In subsequent searches [34, 66] the above likelihood was adapted

for the case where the noise variance was unknown. This is achieved by taking the

variance as an unknown nuisance parameter and marginalising over it for segments of

data when the noise level can be assumed to be stationary. If we split the n Bks into
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M segments of length mj with the same noise level then

n =
M∑
j=1

mj. (2.16)

The likelihood for each segment j can be rewritten as

p({Bk}j|a) ∝
∫ ∞

0

p({Bk}j, σj|a)dσj

∝
∫ ∞

0

p(σj|a)p({Bk}j|a, σj)dσj, (2.17)

where p(σj|a) is the prior on the noise floor and the likelihood is the Gaussian likelihood

given in equation 2.15. As σj is a scale parameter the least informative prior on it is

the Jeffreys’ prior (uniform in log space)

p(σj|a) ∝ 1
σj

(σj ≥ 0), (2.18)

= 0 (σj < 0).

Combining the prior in equation 2.18 with equation 2.17 gives a likelihood integral

p({Bk}j|a) ∝
∫ ∞

0

1

σ
2mj+1
j

exp

(
− 1

2σ2
j

mj∑
k=1

|Bk − yk|2
)

dσj. (2.19)

This integral can be solved analytically following the procedure given in [66]. Making

the substitutions

u2 =

∑
|Bk − yk|2

2σ2
j

, (2.20)

du = −
√∑

|Bk − yk|2√
2σ2

j

dσj,
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and rearranging as

1

σj
=

√
2u√∑
|Bk − yk|2

, (2.21)

dσj

σ2
j

=
1√

2
∑
|Bk − yk|2

du,

gives an integral of the form

p({Bk}j|a) ∝ 2mj

(∑
|Bk − yk|2

)−mj
∫
e−u

2

u2mj−1du, (2.22)

the solution to which is

p({Bk}j|a) ∝ 2mj−1
(∑

|Bk − yk|2
)−mj

m!

p({Bk}j|a) ∝
(∑

|Bk − yk|2
)−mj

. (2.23)

This approximates a Student’s t-distribution with 2mj − 1 degrees of freedom. As the

number of degrees of freedom increase this will tend towards a Gaussian distribution.

To get a joint likelihood for the whole data set of n points we can use the product rule

to combine the likelihoods of each segment j giving

p({Bk}|a) ∝
M∏
j

p({Bk}j|a). (2.24)

Once we have this likelihood we can use Bayes’ theorem to start estimating the

posterior probability distributions of the various signal parameters. For this we need

to set priors for each of our signal parameters. For the four parameters we use a uniform

prior over their ranges: φ0 over [0, 2π], ψ over [−π/4, π/4], ι in terms of cos ι over [−1, 1]

and h0 over [0,∞]. These are the least informative priors for φ0, ψ and cos ι, but that

for h0 is just a compromise solution. With h0 being a scale factor the Jeffreys’ prior

would provide the least informative prior, but as this is improper (non-normalisable)

one would not be able to use it to set an upper limit. Such a prior would also have the

effect of overwhelming the likelihood of the data, meaning we would not be updating
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our knowledge from the experiment. One could also say that the spin-down upper limits

provide a prior on h0, but with this, for most pulsars, being at a much lower level than

our noise floor means that we learn nothing from the experiment. The compromise

solution of a uniform prior allows us to normalise our posterior probability and means

that our solution just represents the sensitivity of the detector. It is in reality just a

more conservative value than that which could be obtained with more realistic priors.

Using these priors and our likelihood function we can produce a 4-dimensional

posterior pdf

p(h0, φ0, ψ, cos ι|{Bk}) ∝ p({Bk}|h0, φ0, ψ, cos ι)p(h0)p(φ0)p(ψ)p(cos ι). (2.25)

This contains all the probability information, but can be hard to interpret. For the

case of setting upper limits on h0 the angle parameters can be considered as nuisance

parameters and be computationally marginalised over

p(h0|{Bk}) ∝
∫ φ0=2π

φ0=0

∫ ψ=π/4

ψ=−π/4

∫ cos ι=1

cos ι=−1

p(h0, φ0, ψ, cos ι|{Bk})dφ0dψd cos ι. (2.26)

If a signal is detected then the same sort of marginalisation can be used to extract

pdfs of the other parameters (as will be seen for signal injections in Chapter 3). Using

the pdf for h0 an upper limit on the signal amplitude can be set by marginalising from

zero up to the degree of belief required. We generally give a 95% degree of belief upper

limit, where h95%
0 is calculated from

0.95 =

∫ h95%0

h0=0

p(h0|{Bk})dh0. (2.27)

Such an upper limit can always be set even if there is signal present.

This analysis can easily be extended into a multi-detector analysis by combining the

data sets from several detectors. As long as the data sets are independent the product

rule can just be used to combine the likelihoods for each detector. The detectors also

need to be coherent as any phase offsets between them can completely ruin the result,
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with the possibility of nullifying a real signal if they are π out of phase (the validity

of the detectors phase coherence is discussed more in Chapter 3 with relation to signal

injections). If there are n detectors of equal sensitivity and the data sets are of equal

length this can be considered equivalent of having one detector with n times the data

length, with an increase in signal-to-noise (S/N) of
√
n. In practice using the network

of detectors in the LSC, there can be quite large differences in sensitivity and live time,

meaning that the most sensitive detector will dominate any multi-detector analysis. As

the detectors become more comparable this becomes a useful technique in increasing

S/N and has already been used in [34].

2.3 The problem of timing noise

Pulsars are generally very stable over periods of several days, but there are phenomena

which can show up deviations in this timing stability. With the very high accuracy

of pulsar timing any random timing irregularities will start to become evident. One

such phenomenon is that of timing noise. This phenomenon has been known about

since the early days of pulsar observations and represents a random walk in phase,

frequency or frequency derivative of the pulsar about the regular spin-down model

given in equation 2.1 [67]. The strength of this effect has been quantitatively defined,

in Cordes and Helfand (1980) [67] as the activity parameter A, as referenced to that of

the Crab pulsar, and in Arzoumanian et al (1994) [68] as the stability parameter ∆8.

A is based on the logarithm of the ratio of the rms residual phase of the pulsar, after

removal of the timing model, to that of the Crab pulsar over an approximately 3 year

period. ∆8 provides a more absolute measure not being based on the stochastic nature

of the Crab pulsar’s timing noise and being defined for a fixed time (108 s) as

∆8 = log

(
1

6ν
|ν̈| × (108 s)3

)
. (2.28)

This quantity has the oddity that it is the logarithm of a value with the dimensions of

seconds, as it is supposed to represent the pulsar clock error. A more appropriate value
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for us to use is the phase residual which would be obtained by removing ν from the

equation, or the fractional phase residual by using (108s)2. Even so we will continue

to use the ∆8 parameter for comparison to the literature, but when used shall quote

the actual phase residual. There is a definite correlation between these parameters

and the pulsar’s spin-down rate, therefore possibly the pulsar’s age. Young pulsars,

like the Crab pulsar, generally show the most timing noise activity. The categorisation

of the type of timing noise (i.e. phase, frequency or frequency derivative) in Cordes

and Helfand (1980) [67] allowed them to ascribe different processes for each. The

majority of pulsars studied showed frequency-type noise, possibly a result of random

fluctuations in the stars moment of inertia. The actual mechanism behind the process

is still unknown, with Cordes and Greenstein (1981) [69] positing and then ruling out

several mechanisms inconsistent with observations.

Any timing noise intrinsically linked to the rotation of the pulsar, as opposed to

motions of the electromagnetic emission source or fluctuation in the magnetosphere,

could be important in the search from gravitational waves from the object. The im-

plications of timing noise with respect to a gravitational wave search is discussed in

Jones (2004) [70]. The three categories of timing nose would each have a different

effect on any search. If, as is thought most likely, all parts of the neutron star are

strongly coupled on short timescales then there should be no difference between the

electromagnetic phase and gravitational wave phase (as expected if timing noise is

frequency-type noise). If the timing noise were purely a magnetospheric fluctuation

then phase wandering caused by timing noise would not be seen in the gravitational

wave emission. The third possibility, whereby the electromagnetic emission source wan-

ders, would result from a weak exchange of angular momentum between the parts of

the star responsible for electromagnetic and gravitational wave emission. This would

be seen as a factor, representing the ratio of moments of inertia of the two parts of

the star α = Iem/Igw, between the electromagnetic and gravitational wave timing noise

phase [70]. In principle this factor could be included as another search parameter, but

in general we will take this factor to be 1 as in the case of frequency noise. As we need
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very precise knowledge of the phase evolution of a pulsar for our analysis anything

that could lead to a drift in phase from the simple Taylor expansion model needs to be

addressed. The majority of pulsars though, show timing noise at levels which would

not affect our analysis.

As previously stated the level of timing noise is proportional to the pulsar spin-down

rate/age. Of the pulsars analysed in Chapter 3 the Crab pulsar is the youngest. The

problem of timing noise will be discussed more with respect to how it is countered for

this pulsar. The method was used in Abbott et al. (2005a) [34], but has not previously

been described in detail. A more detailed look into the effects of timing noise for other

pulsars will be discussed later.

2.3.1 Timing noise in the Crab pulsar

A pulsar was discovered in the Crab nebula (M1) in 1968 and since then it has been

one of the most intensively studied pulsars. It has been observed across the whole

range of the electromagnetic spectrum since the initial radio and optical observations.

Its parameters are given in table 2.1 as taken from the ATNF catalogue [47]. The

Table 2.1: The parameters of the Crab pulsar given in the ATNF catalogue.

PSR J0534+2200

Right ascension α 05h34m31s.973
Declination δ 22◦00′52′′.06

proper motion in α −13 mas/yr
proper motion in δ 7 mas/yr

Position epoch MJD 40675
ν 30.2254370 Hz
ν̇ −3.86228×10−10 Hz/s
ν̈ 1.2426×10−20 Hz/s2

Frequency epoch MJD 40000
Distance 2.0 kpc

Crab pulsar (J0534+2200) is the youngest known pulsar, with an actual age of 951

years (the formation of the Crab nebula is associated with a supernova observed in AD

1054). A spin-down age can also be calculated at −ν/2ν̇ = P/2Ṗ = 1250 years. The
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Crab pulsar is also one of the few in which a value of ν̈ can be accurately measured,

allowing a value of the braking index, n ∼ 2.5, to be calculated. Analyses of long-term

timing observation of the Crab pulsar are given in Lyne et al. (1993) [71] and Wong et

al. (2001) [72]. These analyses show some of the timing features which make the Crab

pulsar such an interesting object: the timing noise and glitches.

Since 1982 there has been a regular monitoring program of the Crab pulsar at

Jodrell Bank Observatory, and timing ephemerides from this are publicly available

online [73]. The ephemeris gives the pulsar frequency and frequency derivative and

associated errors, and the associated epoch. The epochs, generally given on the 15th of

each month, represent the time of the peak of the first pulse after midnight on that day.

They therefore represent zero of modulus phase of the electromagnetic pulse. Notes are

given in the event of a timing irregularity or glitch being observed. Using the online

ephemeris it is possible to show the timing noise of the pulsar (figure 2.1) by fitting the

frequency (up to second order) to the simple Taylor expansion of equation 2.1. The

section of data used was chosen to be free of glitches as these cause a step change in

the frequency and frequency derivative, which generally fall back to pre-glitch values,

but can induce a permanent change. The parameters of the fit are given in table 2.2.

Figure 2.1 compares well the that given in Lyne et al. (1993) [71], although some
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Figure 2.1: The timing noise in the frequency of the Crab pulsar after removing a quadratic fit to
the frequency as given in the Jodrell Bank ephemeris. Fit parameters are given in table 2.2.
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Table 2.2: Parameters of fit for Crab pulsar frequency.

PSR J0534+2200

ν 30.05922413656965 Hz
ν̇ −3.809951556460455×10−10 Hz/s
ν̈ 1.207087526259945×10−20 Hz/s2

Frequency epoch MJD 45015

difference can be expected due to the different lengths of data and epochs used in the

fitting. It can be seen that on scales of several months there is quite a large variation in

the timing residual (including a possible 20 month quasi-sinusoidal periodicity shown

in Lyne et al., 1988 [74]). It is shown in [71] that on smaller time scales the variation

is far smoother. The question that needs asking is whether a single model fit for the

Crab pulsar is going to be good enough to track the phase without significant phase

wandering, or whether the timing noise will mean that such a simple model would

be too inaccurate to track the phase. In Jones (2004) [70] a decoherence timescale,

Tdecoherence, is constructed as the time over which the timing noise will cause the phase

to deviate by 1 radian from the second order Taylor expansion of phase. This makes

use of the “activity parameter” and is calculated for the Crab pulsar to be ∼ 2.6 years.

Using the activity parameter as a measure of Tdecoherence can be imprecise as it is not

a fixed quantity and will vary with the model fit epoch and time-span. The activity

parameter will also not account for any permanent changes to spin-down caused by

glitches. Tdecoherence should therefore not be taken as a hard and fast value to adhere

to. Another estimate of the effects of timing noise can also be made using the ∆8

parameter, although for the Crab pulsar its value as derived from equation 2.28 is not

altogether useful. This is because for the Crab pulsar, unlike most other pulsars, timing

noise is not the dominant component in ν̈, but is more a feature of even higher order

terms (although for the Crab pulsar even an intrinsic non-timing noise dominated value

of
...
ν can be measured to an accuracy of 10% [75]). In Arzoumanian et al. (1994) [68]



2.3: The problem of timing noise 55

they fit a linear relation between ∆8 and log Ṗ as

∆8 = 6.6 + 0.6 log Ṗ , (2.29)

where Ṗ = −ν̇/ν2 is the period derivative, which we can use for the Crab pulsar

instead. This gives ∆8 ≈ −0.8 which relates to a timing noise cumulative time offset

of ∼ 0.15 s or a phase offset of ∼ 4.4 cycles over a period of approximately three years.

A larger value than Tdecoherence suggests.

It is reasonable that if a third order model for the Crab pulsar phase was fit over a

period of a few months, then it should fairly accurately represent the phase in that set

of data. It is when the stretch of data you need to cover extends for longer than this

that such a fit breaks down. However the Crab pulsar ephemeris provides timing every

month, which should be sufficient to update the model. By using the phase, frequency

and frequency derivative for each entry in the ephemeris as boundary conditions to

a set of simultaneous equations the full phase evolution between each month can be

calculated, giving a fifth order equation,

φ5th(tb) = φ0 + 2π

{
ν0(tb − t0) +

1

2
ν̇0(tb − t0)2

+
1

6
ν̈0(tb − t0)3 +

1

24

...
ν0(tb − t0)4 +

1

120

....
ν0 (tb − t0)5

}
. (2.30)

For most of the time this method might well be unnecessarily complicated and a simple

linear interpolation between months would be sufficient.

In terms of how this affects the analysis in §2.2 it can be made equivalent to per-

forming an extra heterodyne step as described in Pitkin and Woan (2004) [76]. In the

initial heterodyne a third order fit to the the phase is used, with values of ν and ν̇ taken

from the ephemeris at the closest time before the time of the data to be analysed, and ν̈

taken from the ATNF pulsar catalogue [47]. Then, assuming for the moment that any

gravitational wave signal would also show timing noise, we apply a second heterodyne
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using the phase difference between equations 2.1 and 2.30

B′k = Bke
−i2[φ

5th
(tb)−φ(tb)]. (2.31)

This step can be performed on the Bks after the filtering and down sampling as the

rate of change of this phase difference will be very slow.

The effect of this extra heterodyne can be seen using the example of the S2 analysis.

This science run of the LIGO interferometers lasted approximately two months and

overlapped three entries in the Crab pulsar ephemeris. The S2 run started on 14th Feb

2003, so values of the frequency and spin-down used in the initial heterodyning were

chosen to be those given in the first ephemeris entry prior to the run (15th Jan 2003).

The second derivative was set to be that taken from the ATNF catalogue. The values

shown in table 2.3 were multiplied by two to give the gravitational wave frequency.

Once the Bks were produced the ephemeris values were used to calculate the phase

Table 2.3: The parameters used in the initial heterodyne stage of the Crab pulsar analysis for S2.

PSR J0534+2200

ν 29.8102713888 Hz
ν̇ −3.736982×10−10 Hz/s
ν̈ 1.2426×10−20 Hz/s2

Frequency epoch GPS 726624013

given in equation 2.30. The difference between the initial heterodyne phase and the 5th

order phase is shown in figure 2.2. This phase difference is used in the extra heterodyne

to remove the variation. It can be seen in figure 2.2 how a linear fit between ephemeris

values would be acceptable for these times, with only small deviations in phase from

the fifth order fit. The black crosses in figure 2.2 provide the first step in checking

the code used for the extra heterodyne stage. The red points represent the phase

difference used in our extra heterodyne step (equation 2.31) to heterodyne each S2

data point as calculated using our code, whereas the black crosses just show the phase

difference between the initial heterodyne and the individual Crab pulsar ephemeris

data points. The fact that these overlap provides a check that the heterodyne code is
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Figure 2.2: The red points show the phase difference between that used in the initial heterodyne
and that interpolated from a fifth order fit to the ephemeris. The black crosses show just the phase
difference between the initial heterodyne and the individual ephemeris values.

producing the correct phase difference. A second step in checking the code is to make

sure it introduces no spurious phase or amplitude changes to the Bks. We can check

the ratio of the magnitudes of the Bks before and after the timing noise heterodyne,

|Bk before|/|Bk after|. This ratio is equal to 1, bar tiny numerical noise, showing that

there are no unexpected amplitude changes introduced. We can also check that we can

recover the phase correction, ∆φ(t) = 2[φ5th(tb)−φ(tb)], using the Bks before (a = Bk)

and after (b = Bke
−i∆φ) the timing noise heterodyne is applied and the relation

a · b∗

a · a∗
=
Bk ·B∗kei∆φ

Bk ·B∗k
= ei∆φ. (2.32)

Using the identity ei∆φ = cos ∆φ + i sin ∆φ the original phase correction can be ex-

tracted. This extracted phase is shown in figure 2.3 and can be seen to be identical to

that calculated and shown in figure 2.2.

If we simulate a signal from the Crab pulsar over the period of S2 with the following

parameters, h0 = 0.5, φ0 = 0.0, ψ = 0.0 and ι = π, we can see how including a timing

noise heterodyne step affects the parameter estimation. Figure 2.4 shows the extracted

values of h0 and φ0 for the signal with and without the timing noise removed. It can

be seen that there is very little difference between the amplitudes for the two cases,
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Figure 2.3: The timing noise phase correction as extracted from the Bks before and after hetero-
dyning.

due to the slope of the phase difference ∆φ not being too steep over the period of

S2. However, the extracted value of the phase is affected quite heavily, mainly due to
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Figure 2.4: The extracted pdfs for h0 and φ0 for a simulated signal from the Crab pulsar over the
period of S2 with and without timing noise removed.

the the phase offset between the start of S2 and the epoch of the initial heterodyne

parameters seen in figure 2.2.

We can simulate a Crab pulsar signal and analyse it with and without the timing

noise heterodyne step over greater periods than just S2 to show its importance. The

same process as above has been carried out over the period of the S3 run, using the

same initial heterodyne parameters and pulsar injection parameters. The extracted
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pdfs can be seen in figure 2.5 and show that without the timing noise correction the

signal is completely missed. The fact that the signal is not seen at all if the timing noise
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Figure 2.5: The extracted pdfs for h0 and φ0 for a simulated signal from the Crab pulsar over the
period of S3 with and without timing noise removed.

heterodyne is not used might seem at odds with the 2.6 year decoherence time stated

above, as S3 was only about 8 months after S2. It is not seen however, because the

initial heterodyne values used were chosen to be those from the Crab ephemeris closest

to the start of S2 and not those from a more general fit to the data over an extended

period, as was used to calculate Tdecoherence. If we perform a fit to the Crab pulsar

ephemeris over the whole of 2003, when the S2 and S3 took place, we can again check

what difference removing or not removing the timing noise has for S3 (see figure 2.6).

Now it can be seen that for an extended fit for the Crab parameters whether or not

Table 2.4: The parameters of the Crab for a fit to second order in frequency over the period of
2003 using monthly ephemeris data.

PSR J0534+2200

ν 29.81027139567395 Hz
ν̇ −3.736984315709851×10−10 Hz/s
ν̈ 1.070857000427481×10−20 Hz/s2

Frequency epoch GPS 726624013.0597030

the timing noise is removed makes little difference over S3, although a slight phase

offset is present. One might then ask if it is then necessary to perform the extra

timing noise heterodyne if fits to the pulsar parameters over periods of say a year are
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Figure 2.6: The extracted pdfs for h0 and φ0 for a simulated signal from the Crab pulsar over the
period of S3 with and without timing noise removed for initial heterodyne values obtained from a fit
to the ephemeris over 2003 (see table 2.4).

good enough to provide the initial heterodyne parameters. This is when the value of

Tdecoherence does come into play. For times scales less than this a single heterodyne with

properly fit parameters might be sufficient, although for long observation times, as are

required for continuous wave sources to build up S/N , it is best to track the phase

as accurately as possible. This also allows the maximum information to be extracted

if a detection occurs, as the electromagnetic and gravitational wave phases can be

compared accurately. Glitches in the pulsar could also throw out the accuracy of any

general fit, that a continuous updating of parameters, as is done with the timing noise

heterodyne stage, would not be sensitive to.

2.3.2 Timing noise in other pulsars

For the majority of pulsars timing noise is most prominent in the second derivative of

frequency, but for millisecond pulsars this value is often so small as to be unmeasurable.

For these pulsars an estimate of the effect of timing noise in terms of the ∆8 parameter

can be made. This value can be used to estimate the cumulative phase contribution

of timing noise. As values of ν̈ are so often unavailable values of ∆8 can be estimated

via equation 2.29. In Chapter 3 this test will be used to examine the validity of the

timing solutions for the selection of pulsar in our analysis.
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2.4 Pulsars in binary systems

Of the 1533 pulsars in the ATNF catalogue some 112 are in binary systems. The

first of which, PSR J1915+1606, was discovered by Hulse and Taylor in 1974 [16].

Of these 112 pulsars 88 of them have spin frequencies greater than 25 Hz (out of a

total 150 isolated and binary pulsars). The majority of millisecond pulsars are in

binary systems. This disproportionally large number of fast spinning pulsars in binary

systems is unsurprising, as their rotation speed can be attributed to the very fact that

they have a companion. In such systems accretion of material from a companion onto

the pulsar results in it being spun-up as angular momentum is conserved. This process

is seen in LMXBs, where material accreting onto the neutron star is intensely heated

and emits X-rays. The Eddington limit suggests that there must be a limit on the rate

of accretion where it matches the rate at which the star can lose energy. Assuming

the energy is lost through magnetic dipole radiation a limit on the pulsar period from

accretion spin-up can be given by

P = 1.9B
6/7
9 milliseconds, (2.33)

where B9 is the magnetic field strength on the stars surface in units of 109 gauss [75].

It its shown in figure 10.1 of Lyne and Graham-Smith (1998) [75] that the majority of

millisecond pulsars fall below this limit. Of course this is assuming accretion energy is

only lost via dipole radiation and discounting the possibility of energy loss via grav-

itational wave emission. A limit on the spin period of recycled3 millisecond pulsars

supposing gravitational wave emission plays a role in energy loss is given in Andersson

(1999) [55]. The mechanism for producing this limit will only be in play during the

accreting stage when the neutron star is hot. It is believed that all millisecond pulsars

are recycled and belonged to binary systems for which, in the case of now isolated

pulsars, a subsequent disruption, i.e. a supernova explosion or merger, caused the

loss/expulsion of the companion star. Millisecond pulsars have a magnetic field several

3pulsars spun-up by accretion.
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orders of magnitude lower than the slower population meaning that their spin-down

rate (due to magnetic dipole radiation) is significantly lower and they will continue to

spin at high speeds over a long period.

2.4.1 Pulsar timing

A brief discussion on how pulsar timing information is obtained is relevant here. The

majority of pulsars have been discovered and are monitored using radio telescopes.

Searches, discussed in more detail in Lyne and Graham-Smith (1998) [75], in gen-

eral use Fourier transform methods to look for periodic signals in the radio telescope

output. Radio astronomers also take into account, and fit, the effect of interstellar

dispersion across the radio frequency band which they observe, whereby electrons in

the interstellar medium slow down electromagnetic waves as a function of frequency.

This dispersion measure will depend on the density of the ISM through which the radio

waves have had to travel. Once a pulsar signal is detected timing measurements can be

made. Over short periods of time the time series radio data can be folded at the pulsar

frequency to build up the S/N of the actual pulse. Once a stable pulse is obtained4

the time of arrival (TOA) can be measured at the peak of the pulse. These pulse times

can then be used to extract more precise information about the pulsar parameters,

including its position and frequency parameters.

The most prevalent tool used by pulsar astronomers for fitting timing measurements

is the Tempo software [2]. This requires precise solar system ephemerides, containing

the positions and velocities of the major solar system bodies, to convert TOAs at a

detector to the rest frame of the pulsar. It computes the pulsar phase at each TOA,

φ(Ti), over the range of pulsar parameters (α, δ, ν, ν̇, etc), and uses a χ2 goodness of

fit statistic to determine the best model via minimisation. A starting point for the fit

is obtained through a rough knowledge of the position and frequency from the initial

discovery, but it can still be quite complex as there can be many other parameters

that could be contributing. Below it is seen how a pulsar in a binary system requires

4individual pulses can vary in shape, but the summation of many gives a generally stable pulse
shape.
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a complex model with many more parameters than an isolated object.

2.4.2 Binary pulsar timing

The fact that the majority of pulsars within our gravitational wave frequency band are

in binary systems means that in any search for known pulsars, if we want to maximise

the number of potential sources, then we need to look into how this will effect the

search described above. This has not been used or described before in previous pulsar

gravitational wave searches. Equation 2.5 shows the timing corrections needed to take

account of Doppler and relativistic delays to a signal and transform it to the SSB. As

is generally the case any additional Doppler delays from the pulsar’s actual motion

relative to the SSB are negligible and the SSB frame can be considered as the rest

frame of the pulsar. For a pulsar in a binary system this will not be the case and

its motion within the system will need to be taken into account. To achieve this a

transform from binary system barycentre to the pulsar proper time is needed.

The basic transformation and binary models below are summarised in Taylor and

Weisberg (1989) [17] and used in the pulsar timing program Tempo [2]. The trans-

formation from SSB time tb (in TT) to pulsar proper time T follows the form of

equation 2.5 and is

tb − t0 = T + ∆R + ∆E + ∆S + ∆A, (2.34)

where ∆R is the Roemer time delay giving the propagation time across the binary

orbit; ∆E is the Einstein delay and gives gravitational redshift and time dilation cor-

rections; ∆S is the Shapiro delay and gives general relativistic correction; and ∆A is

the aberration delay caused by the pulsars rotation. When radio astronomers search

for pulsars in binary systems they need to have a model of that system to calculate the

transformation to proper time. For the majority of systems the orbits can be described

as Keplerian (just governed by Newtonian gravity and following Kepler’s laws). Such

Keplerian orbits are defined by five parameters, T0 - the time of periastron (closest

approach in the binary orbit); ω - the longitude of periastron; Pb - the orbital period; e

- the orbital eccentricity (where e =
√

(1− b2/a2) and a and b are the semi-major and
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semi-minor axis of the orbital ellipse respectively); and x ≡ (a sin i)/c is the projected

semi-major axis, with i being the orbital inclination. We will look at the three main

models used by radio pulsar astronomers to describe binary systems.

Blandford-Teukolsky model

The first model put forward for use in describing pulsars in binary systems was that of

Blandford and Teukolsky [77] (BT), which provided a model that made no assumptions

about the correct relativistic theory of gravity. This model assumes a Keplerian orbit

with slow precession, into which additional relativistic effects have been added. Other

phenomena can be taken into account through time derivatives of the four main orbital

elements excluding T0. As shown in [17] equation 2.34 becomes

tb − t0 = T + {x sinω(cosE − e) + [x cosω(1− e2)1/2 + γ] sinE}

×
{

1− 2π

Pb
[x cosω(1− e2)1/2 cosE − x sinω sinE]

×(1− e cosE)−1
}
, (2.35)

where γ incorporates gravitational redshift and time dilation effects, and E is the

eccentric anomaly as defined via Kepler’s equation,

E − e sinE =
2π

Pb
(tb − T0). (2.36)

The eccentric anomaly can be well approximated by power series in e as in Dhurandhar

and Vecchio (2001) [78], but in practice it is often easier to solve iteratively. Any

additional relativistic effect can be fit via the inclusion of ω̇, Ṗb, ẋ and ė, so for example

ω = ω0+ω̇(tb−T0). The BT model has been used to fit data for 47 of the binary pulsars

with ν > 25 Hz, so is the most common model used. One of these systems is modelled

using the Tempo model BT2P which accommodates three orbits, the first of which

can be relativistic, but the second and third are Keplerian. The system is a multiple

system, described in Wolszczan et al. (2000) [79], in which three, or possibly four,

planets orbit the pulsar. Although additional orbits complicate the above equations it
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has been suggested to us by Michael Kramer [80] that the ordinary BT model is good

enough to describe the system for our purposes.

Low eccentricity model

The second most common model used in fitting radio observations of binaries is the

low eccentricity model (called ELL1 in Tempo) developed in Lange et al. (2001) [81].

It is used as a fit for pulsars in very low eccentricity orbits where e is almost zero and

is the model for 34 of the pulsars with ν > 25 Hz. With an almost circular orbit it is

very hard to fit a value of T0 and ω, so these parameters, along with e, are replaced

with the time of the ascending node of the orbit (Tasc ≡ T0−ωPb/2π) and the first and

second Laplace-Lagrange parameters η ≡ e sinω and κ ≡ e cosω. The time delays for

this model, defined in [81] and the Tempo code, are

∆R + ∆E = ∆RE = x
(

sin Φ +
κ

2
sin 2Φ− η

2
cos 2Φ

)
, (2.37)

∆RE′ = x cos Φ, (2.38)

∆RE′′ = −x sin Φ, (2.39)

∆S = −2rln(1− s sin Φ), (2.40)

∆A = A0 sin Φ +B0 cos Φ, (2.41)

where the phase of the orbit is Φ = 2π
Pb

(tb − Tasc), r = Gm2/c
3 is the Shapiro range

parameter for a companion mass m2, s = sin i is the Shapiro shape parameter, and A0

and B0 are abberation coefficients. Time derivatives for the parameters are taken into

account with the reference epoch now being Tasc. The time delay thus becomes

tb − t0 = T + ∆RE

(
1− 2π

Pb
∆RE′+

4π2

P 2
b

∆RE′2 +
2π2

P 2
b

∆RE∆RE′′
)

+ ∆S + ∆A. (2.42)

The inclusion of the Sharpiro shape and range parameters means that, under strong-

field gravity conditions, this model can provide more information about the nature of

the system than the BT model. These parameters are nearly degenerate and can show
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up as a small correction to the observed ellipticity. For the majority of systems the

effect of the ∆S term is negligible. The abberation delay coefficients will also be small

and are also degenerate with other values, so the ∆A term will contribute very little.

In Tempo the abberation coefficients are not included in the model fitting procedure

although they can be set to a fixed value if desired.

Damour-Deruelle model

The third most common model is the Damour-Deruelle (DD) model [82]. This model

uses a method for solving the relativistic two-body problem to post-Newtonian order

and is valid under very general assumptions about the nature of gravity in strong field

regimes. It is useful for highly relativistic systems where the most information needs

to be extracted from the timing solution. There are six pulsars with ν > 25 Hz in the

ATNF catalogue using this model. This model is again summarised in [17] with the

various time delays given by

∆R = x sinω[cosE − e(1 + δr)]

+x[1− e2(1 + δθ)
2]1/2 cosω sinE, (2.43)

∆E = γ sinE, (2.44)

∆S = −2r log {1− e cosE − s[sinω(cosE − e)

+(1− e2)1/2 cosE sinE]}, (2.45)

∆A = A0{sin [ω + Ae(E)] + e sinω}

+B0{cos [ω + Ae(E)] + e cosω}, (2.46)

where the eccentric anomaly is now defined via Kepler’s equation as

E − e sinE = 2π

[(
T − T0

Pb

)
− Ṗb

2

(
T − T0

Pb

)2
]
, (2.47)
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and the true anomaly Ae(E) is given by

Ae(E) = 2 arctan

[(
1 + e

1− e

)1/2

tan
E

2

]
. (2.48)

The time derivative of ω now comes into the equation via ω = ω0 + kAe(E), where

k = ω̇Pb/2π, but the other time derivatives and γ are essentially the same as for the

BT model. The abberation coefficients and parameters δr and δθ are again small and

nearly degenerate with other parameters, making the ∆A term negligible.

2.4.3 Comparison with TEMPO

The above three models are all implemented in the pulsar timing software package

Tempo. In our search for gravitational waves from binary systems we also require

these additional time corrections to correctly calculate the phase of the pulsar for

heterodyning. Code to calculate the binary time delays for each model have been

adapted from their Tempo counterparts and are available under CVS in the LALapps

repository [83]. Some consistency tests have been performed between the two codes,

which are described below.

PSR J1012+5307

A convincing check of the LALapps code is to use it to demodulate a signal from a radio

pulsar. To do this Michael Kramer supplied us with a set of TOAs for PSR J1012+5307

obtained with the Effelsberg 100 m radio telescope in Bonn, Germany. This pulsar has

the second most circular orbit known and hence requires the ELL1 model. The data

spanned just over 5 years5 of on and off observations of the pulsar, and was supplied

in the form of TOAs in MJD6 with timing errors in µs and the observing frequency.

We were also supplied with the Tempo fit to the pulsar parameters (see table 2.5).

There were several correction that needed to be made to the supplied TOAs to

convert them from the time system measured at the radio telescope to GPS. The

5from 2nd January 2000 to 12th February 2005
6Modified Julian Date = Julian Date - 2400000.5
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Table 2.5: The parameters of PSR J1012+5307. Values are quoted with 1σ errors in brackets.

PSR J1012+5307

α 10h12m33s.43368(1)
δ 53◦07′02′′.5880(2)
PMRA 2.38(3) mas/yr
PMDEC −25.35(5) mas/yr
ν 190.267837621884(9) Hz
ν̇ −6.2022(2)×10−16 Hz/s
ν̈ 2.0(3)×10−27 Hz/s2

Frequency epoch MJD 50700
Dispersion measure 9.0233(7) cm−3 pc
Observing Frequency 1408.6 MHz
Binary model ELL1
x 0.581817(1) s
Pb 0.6046727136(2) days
Tasc MJD 50700.0816289(4)
η 7(4)×10−7

κ −1(40)×10−8

first correction to the raw TOAs was to correct for the difference between the sta-

ble Hydrogen maser time source at the telescope and coordinate Universal Time of

the National Institute of Science and Technology UTC(NIST) reference, supplied by

Michael Kramer. This correction was typically of order a few µs. The next correction

that could have been made was the conversion from UTC(NIST) to UTC although

this has been less than ±100 ns since 6th July, 19947 so in practice was left out. The

conversion between time in UTC times (given in MJD) to GPS times then follows as

tGPS = (tUTC(MJD) − 44244 days) × 86400 s + leapseconds, where the 44244 days is the

MJD of the GPS time epoch (1st January, 1980) and the leap seconds represent the

difference between UTC and GPS required as UTC is adjusted to match the Earth’s

rotation. For the times span of our given TOAs the number of leap seconds was always

13.

The next step was to correct the times for interstellar dispersion. The dispersion

7http://tf.nist.gov/timefreq/pubs/bulletin/nistutc2000.htm

http://tf.nist.gov/timefreq/pubs/bulletin/nistutc2000.htm
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time delay is given by

∆tdisp = 4.148808×103 MHz2 pc−1 cm3 s×DM/f 2 s, (2.49)

where DM is the dispersion measure in cm−3 pc and f is the radio observation frequency

in MHz (see table 2.5 for values). This correction is subtracted from the TOAs to give

observations at infinite frequency with no dispersion.

The next stage compared the publicly available LIGO Algorithm Library (LAL)

[84] barycentring codes to Tempo. As the pulsar parameters were calculated using

Tempo we can check whether our barycentring codes can use these values to match

the pulsar’s phase. One of the major differences between our binary time domain

code and the Tempo code is the time system used. All epochs in Tempo are defined

in Barycentric Dynamical Time (TDB) whereas the general reference time for gravita-

tional wave data analysis in the LSC is GPS time. Epochs can be converted to Barycen-

tric Dynamical Time (TDB), which is a generally used timescale for ephemerides refer-

enced to the solar solar barycentre. This timescale is related to Terrestrial Time (TT

- formerly Terrestrial Dynamical Time TDT), which represents a time consistent with

relativity for an observer on the Earth’s surface, by a small factor, TDB = TT + δt,

no greater than a couple of milliseconds and given by

δt = 0.001 658 s× sin Φ + 0.000 014 s× sin 2Φ, (2.50)

where Φ = 357.53◦ + 0.985 600 28◦(MJD − 51 544.5) is the mean anomaly, or phase,

of the Earth’s orbit at the given Modified Julian Date. TT is related to International

Atomic Time (TAI) via TT = TAI + 32.184 seconds8 The conversion from TT to GPS

time, therefore meant subtracting 51.184 s, where 32.184 s comes from the difference

between TT and TAI and the remaining 19 s are the number of leap seconds between

TAI and GPS. The code to calculate the SSB time delay takes in the pulsar’s position,

8There are many definitions of time used in astronomy and very careful attention of which one is
being used and how to convert between them is essential when high precision timings are being made.
A good guide to these is given at [85].
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the telescope position and a solar system ephemeris9 and was used for each pulsar

TOA to correct to the time at the SSB. This code was written by Curt Culter and

has been independently tested against Tempo [33, 66] showing no more than 4µs

difference between the two. Once corrected to the SSB the TOAs then needed to be

corrected to the pulsar proper time by calculating the time delays in the binary system

using the binary system parameters (see table 2.5). The binary and solar system time

delays for a selection of TOAs covering part of the binary orbit are shown in figure 2.7.

Once the corrections to the TOA had been applied the phase could be checked. All
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Figure 2.7: The binary and solar system time delays calculated for PSR J1012+5307 over a part of
an orbit.

TOAs should be in phase as they each represent the peak of a pulse. If the TOAs

were incorrectly converted by the barycentring codes then this would show up by them

being out of phase. The phase at each TOA was calculated using the supplied frequency

and frequency derivatives in equation 2.1, with φ0 = 0 and the frequency epoch as t0.

Figure 2.8 shows how the TOAs barycentred using our code stay in phase well over

the observation time. There is a slight slope of ∼ 0.04 rads/yr in the phase. A yearly

periodicity is also present possibly showing up the slight difference in the LAL solar

system barycentring code and Tempo, although these effects are at a very low level.

There are several points that are quite out of phase which correspond to times when

the level of noise on the TOA measurements was high.

9the ephemerides used are those published by the Jet Propulsion Laboratory [86].
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Figure 2.8: The modulus of the pulsar phase at each TOA over a 5 year period.

The parameters for PSR J1012+5307 were generated using the ELL1 model, so the

above test really only checked the code describing that model. We can also check the

two other models by converting Tasc to T0 and the Laplace-Lagrange parameters κ and

η to e =
√

(κ2 + η2) and ω. As this pulsar has such a low eccentricity then T0 can be

set equal to Tasc and ω set to zero. Doing this we can again produce the phase plots

for the BT and DD models (figure 2.9). The phase is again well described for these
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Figure 2.9: The modulus of the pulsar phase at each TOA over a 5 year period for the BT and DD
models.

two models, with the slope and periodicity still present. This suggests that the slope

and periodicities are not caused by the binary timing correction code (as each model

is independent), but may be a results of slight errors in the other timing corrections,

the solar system barycentring code or the parameters used.
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Direct check against TEMPO

As was done for the solar system barycentring code, the binary timing code can be

tested directly against Tempo. Tempo can be set into the so called predictive mode,

whereby it uses a set of pulsar parameters to predict the pulsar phase over a period

of time. This predicted phase can be then be compared with that calculated using

our binary timing code. This was done for each model with a set of 500 randomly

generated binary pulsar systems over a period of 100 days. The detector location was

set to be at the SSB, so the solar system time delay errors would not be included.

Histograms of the time residuals between the codes are shown in figure 2.10 for each

model. These show that the time difference between the two codes is generally less
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Figure 2.10: Timing residuals between the pulsar phase as predicted by Tempo and that computed
with our binary code for 500 random pulsars for each binary model.

than ±1µs, meaning there is a very good agreement between the codes and sufficient

accuracy to ensure any signal and template remain in phase.



Blackadder: ...the fact that this secret has eluded the most intelligent people since

the dawn of time doesn’t dampen your spirits?

Percy: Oh, no. I like a challenge

Blackadder

Chapter 3

Results of the search for continuous

gravitational waves from known

pulsars

In this chapter we give results of the search for continuous gravitational waves from a

selection of known pulsars using LIGO and Geo 600 data. We also show the extraction

of several hardware signal injections and their interpretation. We discuss the selection

of the pulsars used in the search, with regard to the validity of the pulsar parameters

and possible timing noise effects. Briefly discussed is the possiblity of marginalising

over calibration and distance errors in any results. Results for these pulsars are then

given in terms of upper limits on the gravitational wave amplitude and ellipticity, and

the astrophysical implications discussed. The code used to produce these results can

be found at [83] under CVS with tag S3KnownPulsarSearch_220605.

3.1 The science runs

This chapter will focus on the results of the known pulsar search in data from the third

and fourth LIGO and Geo 600 science runs (S3 and S4). These runs were carried out
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from 31st October, 2003 to 9th January, 2004 and 22nd February to 23rd March, 2005

respectively. The search technique described in the previous chapter has been applied

to this data to produce upper limits on the gravitational wave amplitude and equatorial

ellipticity for a selection of known radio pulsars. The work is a natural extension of the

work of Réjean Dupuis [66] and published in Abbott et al. (2004a and 2005a) [33, 34].

3.1.1 Detector calibration

Most scientific instruments need calibrating in some way to obtain accurate information

about their measurements, and gravitational wave detectors are no different. They need

to be calibrated to obtain their true response in terms of gravitational wave strain

and phase over their frequency range, where strain, s(t) = (Lx(t) − Ly(t))/L0, is the

differential arm length of the interferometer over the arm length. Below we describe the

calibration procedure for data from the LIGO interferometers. Geo 600 data is supplied

in a pre-calibrated format, with the calibration procedure described in Hewitson et al.

(2003) [87]1. The raw output of the detector is the error signal e(t), which needs to be

converted into strain. To do this e(t) is multiplied by a response function R(f) so, in

the frequency domain,

s̃(f) = R(f)ẽ(f), (3.1)

where s̃(f) and ẽ(f) are the Fourier transforms of s(t) and e(t). The derivation of

this response function, via the control loop which keeps the mirror motions small and

the interferometer in lock, is given in the LIGO Calibration Documentation [88]. The

variations in this function with time are tracked using calibration lines with known

amplitudes injected into the control loop at certain frequencies. The response function

as a function of frequency and time is then given by

R(f, t) =
1 + α(t)β(t)H0(f)

α(t)C0(f)
, (3.2)

1such a procedure is now being performed for LIGO data.
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where the C0(f) and H0(f) are the sensing function and open loop gain respectively at

a reference time t0, and the α(t) and β(t) coefficients track the changes in these using

the calibration lines. The functions H0 and C0 are complex and have a phase response

as well as amplitude: H0 = |H0|eiθH , C0 = |C0|eiθC .

In terms of our analysis the Bks discussed in Chapter 2 will initially be uncalibrated.

They are calibrated to give a strain via.

<{Bk calibrated} = <{Bk}<{R(f, t)} − ={Bk}={R(f, t)},

={Bk calibrated} = <{Bk}={R(f, t)}+ ={Bk}<{R(f, t)}. (3.3)

3.2 Hardware injections

For analysis validation purposes simulated gravitational wave signals for a variety of

sources (bursts, pulsars, inspirals and stochastic) have been injected into the LIGO

interferometers during the science runs from S2 onwards. In S2 two pulsar signals were

injected [34]. This was increased to 10 initial signals for S3 and S4 covering a wider

range of signal parameters. Extracting and understanding these injections has been

quite an arduous task, but has been invaluable in validating the analysis.

The hardware injection signals are produced using software (under LALapps [83]),

which is partially independent of the extraction code. Similarities between the code in-

clude the use of the same barycentring routines and the same detector antenna response

function routines. The injection code defines the signal amplitude and orientation as

the two parameters A+ = 1
2
h0(1 + cos ι) and A× = h0 cos ι which are independent,

rather than h0 and cos ι which are partially degenerate. The signals were added into

the LIGO detectors via the excitation signal of the test mass in one arm.

3.2.1 S3 injections

An initial analysis of the S3 pulsar injections is given in [66]. The data have since been

re-analysed with more recent versions of the calibration functions, the results of which
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are presented here. For S3 initially 10 pulsars signals were injected, with a further one

added at the end of the run to be in coincidence with a single injection into Geo 600.

The majority of injection parameters were decided upon randomly, although pulsar

frequencies needed to avoid major instrumental or calibration lines, and amplitudes

were dependent on the frequency. The injections were split into two groups of five,

where values of h0 were calculated to give 2 each with S/Ns of approximately 3, 9, 27,

81 and 243. The parameter values are shown in table 3.1. The 10 initial signals were

Table 3.1: The parameter values for the S3 pulsar hardware injections. All angular parameters are
given in radians.

Pulsar α δ νgw (Hz) ν̇gw (Hz/s) h0 φ0 ι ψ
0 1.25 -0.98 265.5 −4.15×10−12 9.38×10−25 2.66 0.65 0.77

1 0.65 -0.51 849.1 −3.00×10−10 8.49×10−24 1.28 1.09 0.36

2 3.76 0.06 575.2 −1.37×10−13 1.56×10−23 4.03 2.76 -0.22

3 3.11 -0.58 108.9 −1.46×10−17 6.16×10−23 5.53 1.65 0.44

4 4.89 -0.21 1430.2 −2.54×10−8 1.01×10−21 4.83 1.29 -0.65

5 5.28 -1.46 52.8 −4.03×10−18 1.83×10−23 2.23 1.09 -0.36

6 6.26 -1.14 148.7 −6.73×10−9 5.24×10−24 0.97 1.73 0.47

7 3.90 -0.36 1221.0 −1.12×10−9 2.81×10−23 5.24 0.71 0.51

8 6.13 -0.58 194.3 −8.65×10−9 6.02×10−23 5.89 1.50 0.17

9 3.47 1.32 763.8 −1.45×10−17 1.61×10−22 1.01 2.23 -0.01

Geo 0.78 -0.62 1125.6 −2.87×10−11 7.5×10−22 1.99 0.84 0.37

injected into the LIGO detectors for approximately the first half of the run, then all

were turned off for a couple of weeks, to ensure data was present that was not artificially

contaminated, and then turned back on with the two loudest signals removed. The

simultaneous injection with Geo 600 was switched on near the end of the run.

These signals were extracted from the detector data using the analysis techniques

described in Chapter 2. The two most important parameters for checking that the

calibration of the instruments was correct were the amplitude and initial phase, so in

the Bayesian fitting procedure the ι and ψ parameters were held fixed at their known

values. This was done because the correlations between h0 and cos ι and φ0 and ψ,

respectively could lead to the marginalised posterior probability distributions for each

parameter being distorted or spread out [66]. Figure 3.1 shows the posteriors for the

initial 10 injected signal.
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Figure 3.1: The pdfs of h0 and φ0 for 10 injections into the LIGO detectors during S3.
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The pdfs in figure 3.1 are not quite the true posteriors that were extracted, but

have been corrected for some calibration differences and injection errors. The h0 pdfs

have been multiplied by a factor related to the difference in the detector actuation

function amplitudes between those used to calculate the injection amplitudes and those

used to calculate the final calibration response function. The ratio of these actuation

amplitudes is shown in figure 3.2. For the H1 and H2 interferometers the amplitudes are
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Figure 3.2: The ratio of the actuation function amplitudes for the LIGO interferometers between
that measured for the S3 calibration and that measured prior to S3 during the E10 engineering run.

similar with ratios of approximately 1.0 and 0.8 respectively. For the L1 interferometer

there is almost a factor of two difference. In reality these factors might not quite reflect

the true error between the injection amplitudes and those extracted, as the extracted

values actually use the full response function to calibrate the amplitude, but they do

provide an estimate. The variations from the true injected amplitude, after the above

corrections, could also be due to systematic uncertainties in the calibration (a method

of marginalising over these is discussed in §3.4.1), as it can be seen for the stronger

injections that the peak value of h0 for H1 is systematically higher than H2. For L1

there seem to be large uncertainties which cause the pdfs to wander about the true

value. The two other main anomalies are in the amplitudes of Pulsar7 and Pulsar0

in H2. Pulsar7 appears to be missing from H2, which has been tracked down to the

fact that its amplitude was accidentally set at 1/60 of the supposed injection value.
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Pulsar0 appears slightly larger in H1 than H2 (at odds with the general systematic

showing the opposite), which is due to it being injected with an amplitude ∼ 1.6 larger

than expected.

The phases have also been corrected due to an error included during their injection.

For the injections the true values of φ0 need to be corrected for the actuation phase

φact. This additional phase was added with the wrong sign leading to the extracted

phase being ∼ 2φact away from the true value of φ0. Again there was slight difference

between the actuation phase used for the injection and that used for the calibration it

was extracted with, so the true correction required the subtraction of both actuation

phases (although they were very similar).

After the introduction of these corrections it can be seen that the phases agree with

each other to within a few degrees. This provides some evidence that there is phase

coherence between the detectors and that a joint analysis, combining the data from

the detectors, would be possible. Unfortunately, as the corrections to the phase and

amplitudes were included after the fitting procedure, the joint analysis could not be

used on the injections as in [34].

The Geo 600 injection has been analysed in [66]. It was injected into the instrument

in a different way to the LIGO injections as described in Weiland et al. (2004) [89]. As

described in [66] the phase and amplitude of this signal in Geo 600 were significantly off

their true values due to pickup between the injection hardware and the interferometer

gravitational wave channel.

3.2.2 S4 injections

For S4 the 10 initial injections used in S3 were again used to create artificial signals

in the LIGO interferometers. Their amplitudes were adjusted to give approximately

the same S/N as for S3, but taking into account the better sensitivity during this

run. For all but Pulsar9 the h0 values were reduced by a half, with Pulsar9 being

so strong that its amplitude was reduced by a factor of 20. The phases for all the

injections are also shifted by π radians with respect to those given in table 3.1. These
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signals were injected for the second half of the run from 8th March 2005 onwards. The

updated h0 values are shown in table 3.2. There were also an additional two signals,

simulated to be from pulsars in binary systems, injected for the last day of the run.

The binary pulsar injections allowed the testing of the binary timing code described in

Chapter 2 as the injection code and extraction code were written independently. The

binary injection signal (Pulsar10 and 11) parameters were taken from Pulsar3 and

8 respectively, with the frequencies changed and amplitudes increased to make sure

they were visible over the short injection time. The frequency, amplitude and binary

system parameters are shown in table 3.3. The binary system parameters were chosen

to have one in a relatively eccentric orbit and one in a circular orbit with fairly short

periods, so that they would have completed or nearly completed at least one full orbit

during the injection. The T0 values are given in the pulsar rest frame2.

Table 3.2: The parameter values for the S4 pulsar hardware injections.

Pulsar 0 1 2 3 4
h0 4.69×10−25 4.25×10−24 7.81×10−24 3.08×10−23 5.03×10−22

Pulsar 5 6 7 8 9
h0 9.17×10−24 2.62×10−24 1.40×10−23 3.01×10−23 8.06×10−24

Table 3.3: The parameter values for the S4 binary pulsar hardware injections.

Pulsar νgw (Hz) h0 T0 (MJD in GPS) Pb (days)
10 250.6 1.23×10−22 51749.71156482407 1.35405939

11 188.0 4.93×10−22 52812.92041175901 0.31963390

e ω0 (degs) a sin i (secs)
10 0.0 0.0 1.65284

11 0.180567 322.571 2.7564

These signals were again extracted using the analysis techniques from Chapter 2.

For the binary system injections the BT model was used, although as no relativistic

parameters were included any of the models could have been used. Figure 3.3 shows

2This is a difference between the code used to create the signals which took in values of T0 in the
SSB frame and then corrected to the pulsar rest frame, and the code used to extract them which
follows the Tempo convention of defining all epochs in the pulsar rest frame.
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the extracted pdfs of h0 and φ0 for the 10 isolated pulsar injections, where again ι and

ψ were held fixed at their known values. Unlike the S3 injection pdfs in figure 3.1 there
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Figure 3.3: The pdfs of h0 and φ0 for 10 isolated pulsar injections into the LIGO detectors during
S4.

have been no amplitude corrections applied to the S4 pdfs, because the calibrations

used to calculate the injections and extract the injections are very similar. Due to the

phase consistency between the detectors the joint likelihood, using all three detectors,

have also been calculated. In general the values of h0 are well matched with the
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injection values. Again there are possible systematics which could affect the position

of the pdfs. For S4 the actuation functions used to calculate the injection amplitudes

and those used to calculate the final response function are much more similar than

those for S3, with a ratio close to unity. The actuation phases are also very closely

matched.

Figure 3.4 shows the pdfs for the two binary system pulsar injections. These show
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Figure 3.4: The pdfs of h0 and φ0 for the 2 binary pulsar injections into the LIGO detectors during
S4.

similar matches to their injected values as the isolated pulsars. This is a good confir-

mation that the binary timing code can track the phase well and has no sign errors

(assuming the independent injection code also does not contain the same sign errors).

Here the main apparent error is the amplitude of Pulsar10 in L1, which appears a

factor of ∼ 4 lower than it should. At present the source of this error is unknown,

although as the amplitude for Pulsar10 was derived from that of Pulsar3 multiplied

by four, it could just be that this multiplication was left out.

3.3 Pulsar selection

The first criterion for selecting known pulsars to be included in this search was their

frequency, the limiting factor being the low frequency noise floor of the detector. Below

about 50 Hz the noise floor of the LIGO detectors increases rapidly making searches

below this frequency a poor prospect. This is shown as a law of diminishing returns

by equation 2.2 where the pulsar amplitude goes as ν2, but the noise floor rises dra-

matically at low frequencies, so in general pulsar gravitational wave amplitudes will be
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smaller in a frequency range that has a far worse detector sensitivity. The choice of a

50 Hz gravitational wave frequency cut-off (pulsar spin frequency of 25 Hz) is still some-

what arbitrary, but it also in some ways represents the split between the population of

fast (millisecond/recycled and young) pulsars and slow pulsars.

The first stage of the selection process involved using the ATNF online pulsar cata-

logue [47] (described in Manchester et al., 2005 [90]) which provides a list of pulsars and

their parameters. As stated in Chapter 2 this catalogue shows that there are currently

150 pulsars with spin frequencies > 25 Hz. The accuracy of these parameters varies

for each pulsar, and is dependent on several factors such as when it was discovered,

how often it is monitored or even whether the catalogue has been recently updated

with current best fits. The accuracy of the parameters is important in our search to

make sure parameter errors do not lead to unacceptable phase errors in the heterodyne.

Also important is the epoch of the parameters as more recent measurement will better

reflect to current state of the pulsar. Such considerations are not a problem for the

Crab pulsar as it is monitored on a very regular basis, so parameters are continuously

updated [73]. Working closely with Andrew Lyne and Michael Kramer from Jodrell

Bank Observatory we were supplied with up-to-date parameter information on as many

pulsars as possible. They provided us with parameters for 75 pulsars for which recent

timing data from around the period of the S3 run was available. For many of the other

pulsars recent timing was either not present or unobtainable. For all pulsars the pa-

rameters were estimated using the whole set of data available. For pulsars where their

timing straddled S3, the frequency (and occasionally frequency derivative) parameters

were then re-estimated over that period with the other parameters held fixed at their

previously calculated values. When Tempo fits a parameter it will calculate the as-

sociated uncertainty on that parameter (ostensibly a 1σ error, although in reality it

is more commonly assumed to be ∼ 1
2
σ), but no uncertainty will be produced if the

parameter is fixed. This meant that if the pulsar parameters were re-fitted over S3 any

uncertainty associated with the fixed parameters would be folded into the estimate of

the freely varying frequency parameters (including effects of timing noise for example).
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Since we are not terribly concerned with how good the fits are, but only whether the

best parameters allow us to model the phase accurately (i.e. can they be used to un-

wind what Tempo did to produce them) the parameter values should be exactly what

we need for S3.

The final number of pulsars used for the S3 and S4 analyses is 93. The extra pulsars

had their parameters taken from the most recent values on the ATNF catalogue, except

PSR J0537-6910 for which parameters were taken from Marshall et al. (2004) [50] and

the Crab pulsar where parameters were taken from the monthly ephemeris [73]. This

still left 57 pulsars out of the analysis for which a judgement was made that the

parameters were not defined accurately enough for our needs. This judgement call was

easy for many of the newly discovered pulsars (for example the 21 newly discovered

milliseconds pulsars in the Terzan 5 globular cluster in Ransom et al., 2005 [91]) where

simply not enough observations have been collected to give good parameter estimates.

3.3.1 Parameter checking

For pulsars where the radio parameter estimation was not performed over the epoch of

S3, as timing was unavailable, it is worth checking whether the parameter errors could

be enough to cause serious uncertainties in the heterodyne phase. For all pulsars this

is an important consideration for the S4 run as no new timing has yet been obtained

for this period. For all pulsars there are positional errors, which could affect the

solar system barycentring time delay, and there are frequency and frequency derivative

errors, all of which can affect the phase accuracy. For pulsars in binary systems there

are errors associated with all the binary orbital parameters, which can again affect

the phase through barycentring time delay errors. These errors are not necessarily

uncorrelated though, for example the error on frequency could affect the accuracy

of the first frequency derivative, and the binary time of periastron and longitude of

periastron are highly correlated.

It is useful to see what effect these errors have on the phase over the course of S3

and S4, by propagating them over the period of the runs. We can just add/subtract
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errors from the best fit values of all the parameters and work out the combination

which gives a maximum phase deviation from that found using the best fit values. Due

to the correlations between certain parameters this will give a conservative limit on the

maximum phase error. Tempo can be used to produce a covariance matrix for each of

these parameters, which would take into account the correlations, but unfortunately

this was not done for the parameters produced for S3.

When applying this we chose a criterion that any phase error > 30◦ is unacceptable.

This criterion was somewhat arbitrary, but was thought to be a reasonable compro-

mise as it is small enough not cause a too much decoherence of a possible signal and

large enough to avoid excluding too many pulsars. Applying this to S3 it is seen that

13 pulsars lie above this limit3. Eight of these are in binary systems: PSRs J0024-

7204H, J0407+1607, J0437-4715, J1420-5625, J1518+0205B, J1709+2313, J1740-5340

and J1918-0642, and five are isolated: PSRs J0030+0451, J0537-6910, J1721-2457,

J1730-2304 and J1910-5959B. For five of the binary systems it is the T0 and ω0 param-

eters which contribute most to the phase error. However, it also the case that these

pulsars are in very low eccentricity (highly circular) orbits, thus meaning the errors on

the T0 and ω0 parameters are intrinsically hard to measure and will most likely be far

smaller than the quoted value. For these pulsars we can recalculate the phase error

with the errors on T0 and ω0 set to zero and we find that for four of them (PSRs J0024-

7204H, J0407+1607, J1420-5625, J1709+2313) the error now falls below our limit of

30◦. For the other pulsars it is the error on the frequency and/or position parameters,

or in a couple of the binary cases the period error, which contribute most to the phase

error.

Applying this to S4, using the above phase error limit, we actually have one pulsar

(PSR J1910-5959B) fall back below the limit leaving 12 pulsars above it. This is due to

the frequency parameter errors contributing most to the phase error for this pulsar and

therefore with the shorter timespan of S4 not so much phase error could accumulate.

If new parameter estimations over the period of S4 are made then these will be used

3for tables of errors see http://www.astro.gla.ac.uk/~matthew/analyses/ParamErrors.htm.

http://www.astro.gla.ac.uk/~matthew/analyses/ParamErrors.htm
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in the future.

This is not to say that for the pulsars where the phase error is possibly large it

will be, as these are the worst case values. Therefore, results for these pulsars will still

be given, but will retain a caveat that they could be unreliable due to possible phase

errors. This could mean that for pulsars where the maximum phase error ∆φmax is

< 90◦ the upper limits may need scaling by ∼ 1/ cos ∆φmax, and if ∆φmax is ≥ 90◦ the

results will have to be discarded. With our limit of 30◦ this would lead to a scaling

in amplitude of ∼ 15%. In general results just reflect the noise floor anyway, although

it would be wrong to say that an upper limit was for a particular pulsar, rather than

for just a particular area of the noise floor, if it was known that the phase used in

the search was definitely wrong. Here we will give the best fit parameter values the

benefit of the doubt and accept them all as correct, with the above caveat. In the

future when we obtain pulsar timing we will be supplied with the covariance matrix of

the parameters, thus allowing us to calculate phase errors in a far more rigorous and

non-conservative way.

3.3.2 Timing noise

Timing noise was described in Chapter 2 with particular focus on the Crab pulsar.

For the Crab pulsar the timing noise can be taken account of via a second heterodyne

procedure as its phase evolution is regularly followed. For other pulsars some way

to estimate the effect of timing noise on its phase is needed that does not rely on

continuous observation. One such estimate is the ∆8 parameter given by equations 2.28

and 2.29, which provides a cumulative phase error by assuming the measured ν̈ is

dominated by timing noise. Therefore, this can only really be estimated empirically

for pulsars for which a value of the second frequency derivative has been measured.

For other pulsars an estimate can be made using the linear relation fit between the

period derivative Ṗ and ∆8 in Arzoumanian et al. (1994) [68] as given in equation 2.29.

The values of ∆8 and its corresponding cumulative rotational phase error are given in

table 3.5 and shown in figure 3.5. Figure 3.5 also shows a linear fit to values for which
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Figure 3.5: The values of ∆8 for our selection of pulsars.

ν̈ has been used to calculate ∆8 given by ∆8 = 8.9 + 0.8 log Ṗ . If this fit was to be

used instead of equation 2.29 (which was fitted by eye) it would make little difference

for the majority of pulsars as their ∆8 values are already small. For the linear fit a

value of the intrinsic spin-down (discussed in more detail in §3.4) has been used when

available and if positive. For pulsars which were re-timed over the period of S3 timing

noise should not be a problem at all (for the S3 analysis at least) as any timing noise,

which usually has variations on time scales of several month to years, will have been

folded into the other parameters.

Table 3.5: Values of ∆8 and associated phase error.

Pulsar ν log Ṗ ∆8 phase error (degs)

J0024-7204E 282.8 -19.02 -4.81 3.2
J0024-7204F 381.2 -19.20 -4.92 3.3
J0024-7204Q 247.9 -19.47 -5.08 1.5
J0024-7204T 131.8 -18.53 -4.52 2.9
J0024-7204U 230.3 -19.03 -4.82 2.5

J0030+0451 205.5 -20.00 -5.40 0.6
J0034-0534 532.7 -20.30 -5.58 1.0
J0218+4232 430.5 -19.11 -9.43 0.0
J0407+1607 38.9 -19.10 -4.86 0.4
J0437-4715 173.7 -19.73 -5.24 0.7

J0534+2200 29.8 -12.37 -0.82 3216.4
J0537-6910 62.0 -13.29 -1.37 1898.8
J0613-0200 326.6 -20.06 -5.44 0.9
J0621+1002 34.7 -19.34 -5.00 0.2
J0711-6830 182.1 -20.08 -5.45 0.5
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J0737-3039 44.1 -17.75 -4.05 2.8
J0751+1807 287.5 -20.11 -4.67 4.4
J1012+5307 190.3 -19.77 -5.77 0.2
J1022+1001 60.8 -19.36 -5.02 0.4
J1024-0719 193.7 -19.73 -5.24 0.8

J1045-4509 133.8 -19.85 -5.31 0.5
J1300+1240 160.8 -18.94 -9.95 0.0
J1420-5625 29.3 -19.17 -4.90 0.3
J1435-6100 107.0 -19.62 -5.17 0.5
J1455-3330 125.2 -19.61 -5.38 0.4

J1518+0205A 180.1 -19.38 -5.03 1.2
J1537+1155 26.4 -17.63 -3.98 2.0
J1603-7202 67.4 -19.95 -5.37 0.2
J1629-6902 166.6 -20.00 -5.40 0.5
J1640+2224 316.1 -20.79 -5.87 0.3

J1643-1224 216.4 -19.84 -5.30 0.8
J1709+2313 215.9 -20.83 -5.90 0.2
J1713+0747 218.8 -20.10 -5.46 0.5
J1721-2457 286.0 -20.23 -5.54 0.6
J1730-2304 123.1 -19.47 -5.08 0.7

J1732-5049 188.2 -19.86 -5.32 0.7
J1740-5340 273.9 -18.77 -4.66 4.3
J1744-1134 245.4 -20.05 -5.26 1.0
J1745-0952 51.6 -19.02 -4.81 0.6
J1748-2446A 86.5 -19.44 -3.04 56.9

J1756-2251 35.1 -17.99 -4.20 1.6
J1757-5322 112.7 -19.58 -5.15 0.6
J1801-1417 275.9 -20.28 -5.57 0.5
J1802-2124 79.1 -19.14 -4.89 0.7
J1804-0735 43.3 -18.35 -4.62 0.7

J1804-2717 107.0 -19.39 -5.03 0.7
J1810-2005 30.5 -18.65 -10.84 0.0
J1823-3021A 183.8 -17.47 -3.32 62.8
J1824-2452 327.4 -17.79 -7.03 0.0
J1843-1113 541.8 -20.02 -5.41 1.5

J1857+0943 186.5 -19.75 -6.80 0.0
J1905+0400 264.2 -20.31 -5.59 0.5
J1909-3744 339.3 -20.22 -5.53 0.7
J1910-5959A 306.2 -20.51 -5.71 0.4
J1910-5959C 189.5 -20.66 -5.79 0.2

J1910-5959D 110.7 -18.02 -4.21 4.9
J1911-1114 275.8 -20.20 -5.52 0.6
J1913+1011 27.8 -14.47 -1.07 1689.2
J1918-0642 130.8 -19.62 -5.17 0.6
J1939+2134 641.9 -18.98 -5.40 1.8

J1952+3252 25.3 -14.23 -1.02 1754.4
J1955+2908 163.0 -19.54 -5.13 0.9
J1959+2048 622.1 -19.77 -4.83 6.6
J2019+2425 254.2 -20.59 -5.76 0.3
J2051-0827 221.8 -19.90 -5.34 0.7

J2124-3358 202.8 -19.69 -5.21 0.9
J2129-5721 268.4 -19.68 -5.21 1.2
J2145-0750 62.3 -19.53 -5.12 0.3
J2229+2643 335.8 -20.82 -5.89 0.3
J2317+1439 290.3 -20.62 -5.77 0.4

J2322+2057 208.0 -20.02 -5.41 0.6

Almost all the timing noise phase errors are small enough to be negligible for our

analysis. Using the same 30◦ phase error criterion as with the parameter errors we

see that the estimated timing noise is not negligible for six pulsars: PSRs J0534+2200

(Crab pulsar), J0537-6910, J1748-2446A, J1823-3021A, J1913+1011, and J1952+3252.

The ∆8 values for the Crab pulsar and PSR J0537-6910 have been obtained from the

linear relation even though they have very accurately measured values of ν̈. This is

because for these pulsars timing noise will not be the dominant component of ν̈. The

value for the Crab pulsar is not important as the timing noise is taken into account
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with an extra heterodyne. For the other five pulsars it could be important, so these

results will be flagged as possible problem pulsars. As for the pulsars with possible

parameter errors all the results presented here will give the benefit of the doubt that

timing noise has not had an adverse effect, therefore the results should be treated with

caution.

There are pulsars in globular clusters for which there is no ν̈ and Ṗ is negative (ν̇

is positive), so no value of ∆8 can be assigned. For these pulsars the value of ν̇ (and

therefore ν̈) must be rather small to have been affected by globular cluster motions

(discussed more in §3.4), so timing noise should be negligible.

3.3.3 The data

The results presented below make use of heterodyned data as described in Chapter 2.

For each science run there were various cuts made in what data was used. The first

and most obvious cut was to use only data taken when the detectors were in lock in so

called science mode. This is data which has been deemed to be of good quality. The

science mode segments were obtained using the LIGOtools [92] code segwizard. The

length of times of these science mode segments represent the full data set for the runs.

The first cut after this was from dividing the data into the 60 seconds chunks that

comprise each Bk value. This meant that up to 60 seconds could be lost from each

locked stretch of data. The start of each locked stretch would also have, by definition,

been preceded by a discontinuity in the data. Such a discontinuity would cause the

filters in our analysis to ring and produce an apparent glitch in the Bks. This being so

the first Bk after the beginning of a lock stretch was removed in post-processing.

The heterodyning was performed on large computer clusters where the data was

split up between the available computers. This splitting of data meant that it artificially

introduced discontinuities in the data for each chunk. This would again ring the filters,

so the first Bk was always removed. For the analysis on the LSC computer cluster at

Caltech4, with 580 processors, this meant that almost 10 hours of data was artificially

4http://ldas-gridmon.ligo.caltech.edu/ganglia

http://ldas-gridmon.ligo.caltech.edu/ganglia
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contaminated and removed. The Bayesian analysis we use makes the assumption of

stationarity of the data over a certain length of time. In the previous analysis of S2 [34]

this length of time was fixed at the fairly arbitrary value of 30 minutes, so the value

of mj in equation 2.23 was always 30. This meant that only contiguous 30 minutes

segments could be used, again discarding more data. In our current analysis this 30

minute limit becomes the maximum length of a data segment, with segments smaller

than this now being allowed. A lower limit on segment lengths of 5 minutes was set,

as it was felt that very little more information could be added from segments shorter

than this. This allowed the majority of the Bks to contribute to the analysis.

In Dupuis (2004) [66] a Kolmogorov-Smirnoff test was used to check the validity

of the assumption of stationarity over each 30 minute segment for S3. This generally

showed about 20% of all segments did not conform to this assumption. Despite this

all segments have been included, because as stated in §2.2 the Gaussian distribution

is the least informative distribution and any deviations from it will be incorporated as

extra noise.

3.4 Results

Here we will present 95% degree-of-belief upper limits on the amplitude of gravita-

tional waves (h0) emitted from the 93 pulsars as discussed above. The value of h0 is

independent of any assumptions about the neutron star other than it being triaxial

and therefore emitting gravitational waves at twice its rotation frequency. The results

will also be presented in terms of the pulsars’ equatorial ellipticity ε = (Ixx − Iyy)/Izz,

which under this assumption of triaxiality can be related to h0 via

ε = 0.237

(
h0

10−24

)(
r

1 kpc

)(
1 Hz2

ν2

)(
1038 kg m2

Izz

)
, (3.4)

where Izz is the principle moment of inertia, r is the distance to the star and ν is

the pulsar frequency5 [34]. To obtain an upper limit on ε from that found for h0 the

5not the gravitational wave signal frequency.
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fiducial moment of inertia value of Izz = 1038 kg m2 is generally used. The validity of

this is discussed later.

The results are also presented in comparative terms as a ratio with the upper limit

deduced from spin-down arguments via equation 2.3. This makes the assumption that

all rotational energy is lost via gravitational wave emission, which for some cases is

known to not be true (see §3.4.6). Despite this the spin-down limit is seen as a natural

crossing point after which we can begin to speculate on the nature of the neutron star.

The spin-down upper limit will obviously depend on the rate of spin-down, this value

however, can be masked by radial and transverse motions of the object (see Lyne and

Graham-Smith, 1998 [75]). The Shklovskii effect [93], in which the pulsar has a large

transverse velocity v, will cause an apparent rate of change in the pulsars period of

ṖS =
v2

rc
P, (3.5)

where r is the pulsar’s distance. With its 1/r scaling this is obviously more prominent

for close by pulsars. In the ATNF catalogue [47] values of the intrinsic period derivative

Ṗint = Ṗ − ṖS can be obtained with this effect corrected for. This provides an intrinsic

spin-down rather than that measured6, and for cases where it is available this is the

value that is used for the spin-down ratio.

Another cause of changes to the observed pulsar Ṗ is if it is being accelerated in a

gravitational field, like that of a globular cluster. If there is a radial component of the

velocity vr, then the observed value of Ṗ = (1 + vr/c)Ṗint (Phinney, 1993 [94]). These

effects can cause pulsars to have apparent spin-ups (seen in quite a large number of

globular cluster pulsars) although are only strong enough to greatly effect pulsars with

intrinsically small period derivatives. There are still many globular clusters for which

the radial accelerations have not been measured, therefore no spin-down upper limit

can be set, making the direct gravitational wave results a unique limit.

6Note that the heterodyne procedure still needs to make use of the measured spin-down rather
than the intrinsic spin-down as these Doppler effects will have the same effect on the gravitational
waves.
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3.4.1 Marginalising over errors

Calibration errors

When calculating the pdfs for h0 above there was no account taken of the errors/uncertainties

in calibration. In previous work [33, 34] these have just been quoted as a percentage

uncertainty in the final result. It is possible to fold the errors into the results, where

it is in fact seen that they make no difference (under the assumption that the error is

additional random noise). Following work done by Romano (2005) [95] we can model

the calibration error as a extra parameter λ in our likelihood function, so

Bk → λBk, and σj → λσj. (3.6)

Applying this to equation 2.19 we get

p({Bk}j|a, λ) ∝
∫ ∞

0

1

(λσj)2mj+1
exp

(
− 1

2(λσj)2

mj∑
k=1

|λBk − yk|2
)

d(λσj), (3.7)

which after integrating leaves

p({Bk}j|a, λ) ∝ 1

λ2mj

(∑
|Bk − yk/λ|2

)−mj

. (3.8)

If we use a uniform prior distribution for λ, and give some range for the calibration

uncertainty between λmin and λmax, we can marginalise over it,

p({Bk}j|a) ∝
∫ λmax

λmin

1

λ2mj

(∑
|Bk − yk/λ|2

)−mj

dλ. (3.9)

If we perform this integration numerically between λmin = 1 − x and λmax = 1 + x,

where x is our calibration uncertainty (e.g. 10%), it can be seen that the pdf remains

identical to that without the uncertainty parameter added (figure 3.6). The use of

a Jeffreys prior for λ would make little difference, with it just making the factor in

equation 3.9 1/λ2mj−1. This result is not too surprising as if the value is just random

noise with equal probability over an equal range either side of the obtained value then
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Figure 3.6: Comparison of pdfs calculated with a calibration uncertainty as in equation 3.9 compared
to that from equation 2.23 without the calibration uncertainty.

that value will stay the most probable.

Distance errors

Another area of uncertainty is the distance to the pulsar. This is required when calcu-

lating the pulsars ellipticity. There are a variety of ways to measure pulsar distances,

with the two main distance indicators being parallax, for nearby objects, and inter-

stellar dispersion, for more distant sources. Measurements made using the dispersion

measure make use of a model of the distribution of electron density within the galaxy,

with the current best model being that of Taylor and Cordes (1993) [96]. Despite this

there are still errors of about 10% on most measurements (see review of pulsar distance

measurements in Frail and Weisberg, 1990 [97]). The majority of pulsar distance mea-

surements provided in [47] make use of the Taylor and Cordes model, but it otherwise

gives the best estimate. Plots of the pulsar distances from the Earth are shown in

figure 3.7.

As with the calibration uncertainty we can take a similar view of the distance

uncertainty, although this also requires a change of variable. We will assume that the

distance error is a random number within a given distribution symmetric about the
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Figure 3.7: Best estimate distances in kpc from the Earth for our 92 pulsars [47] (PSR J0537-6910
is left out as it is very distant in the LMC), where x = r cos δ cosα, y = r cos δ sinα and z = r sin δ
are the normal conversions between spherical polar and Cartesian coordinates. The magenta circles
represent pulsars in globular clusters.
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best estimate. To change variables from h0 to ε the pdf is

p(ε|r) = p(h0|r)
dh0

dε
, (3.10)

which from differentiating equation 3.4 gives

p(ε|r) ∝ p(h0|r)
r

. (3.11)

From this we get

p(ε, r) = p(ε|r)p(r),

∝ p(h0|r)
r

p(r),

p(ε) ∝
∫
p(h0|r)
r

p(r)dr, (3.12)

which given a uniform distribution for p(r) over a range rmin to rmax, where rmin =

r − 0.1r and rmax = r + 0.1r (assuming 10% errors from the best fit distance r), just

gives p(ε) ∝ p(h0). This is intuitively the case as if there is an equal probability that

the pulsar is slightly closer or slightly further away, then the most probabilistically

likely value would be the best fit value. This would be the same if the prior p(r) were

a Gaussian distribution about the best fit value. If there were not equal probability

either side of the best fit this would not be the case, but for all our distance errors we

shall assume it is.

3.4.2 S3

The S3 run was partaken with the three LIGO interferometers and Geo 600. These

detectors had different duty cycles and sensitivities over the run. The collocated H1

and H2 interferometers maintained a relatively high duty cycle of ∼ 69.3% and ∼

63.4% respectively7. The L1 interferometer was badly affected by anthropogenic noise

sources during the day and thus had a relatively poor duty cycle of ∼ 21.8%. The

7http://www.phys.lsu.edu/faculty/gonzalez/S3LockStats/

http://www.phys.lsu.edu/faculty/gonzalez/S3LockStats/
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Geo 600 interferometer did not operate for the full time of S3, but had two main data

taking periods between which improvements were made to its sensitivity. These were

from 5th to 12th November 2003, called S3 I, and 30th December 2003 to 13th January

2004, called S3 II. Typical sensitivities for these can be seen in figure 3.8. It can be seen
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Figure 3.8: Typical sensitivity curves for the LIGO and Geo 600 interferometers over the period of
S3. These curves have been reproduced using the official LIGO and Geo 600 sensitivities from [98, 99].

that Geo 600 only competes with the LIGO detectors for frequencies & 1 kHz, where

the signal recycling was tuned to. The LIGO detectors have their best sensitivities

between ∼ 100 and 200 Hz.

The S3 injections suggest that there is phase consistency between the LIGO detec-

tors, which allows a joint analysis combining the data from all interferometers. For all

but one pulsar (PSR J1939+2134, the, until recently, fastest millisecond pulsar with

νgw ∼ 1283.9 Hz) it was not worth including Geo 600 data in the joint analysis. The

phase coherence of Geo 600 with the LIGO interferometers was checked in [66]. The

results of h95%
0 for each LIGO interferometer and the joint results, including ellipticity

(assuming Izz = 1038 kg m2 and the best estimate distances from [47]) are given in

table 3.6. The results for PSR J1939+2134 including Geo 600 in the joint analysis are

given in table 3.7.
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Table 3.6: Results of the S3 analysis for the three LIGO interferometers. * denotes pulsars for
which only a spin-up is measured and † denotes pulsars for which the spin-down is corrected for the
Shklovskii effect. Pulsars for which timing noise might represent a problem are denoted by ‡ and those
where the parameter errors might represent a problem are denoted by �.

Pulsar h95%0 H1 h95%0 H2 h95%0 L1 h95%0 Joint ε UL ratio

J0024-7204C 6.4×10−24 3.8×10−24 1.1×10−23 3.1×10−24 1.2×10−4 *
J0024-7204D 2.0×10−24 2.5×10−24 5.8×10−24 1.5×10−24 4.8×10−5 *
J0024-7204E 1.5×10−24 3.5×10−24 7.9×10−24 1.4×10−24 2.0×10−5 1631†

J0024-7204F 2.4×10−24 4.3×10−24 1.2×10−23 2.1×10−24 1.7×10−5 2576†

J0024-7204G 1.2×10−24 2.9×10−24 7.7×10−24 1.1×10−24 1.9×10−5 *

J0024-7204H� 2.2×10−24 4.8×10−24 9.1×10−24 2.4×10−24 2.8×10−5 *
J0024-7204I 1.9×10−24 4.4×10−24 8.4×10−24 1.7×10−24 2.3×10−5 *
J0024-7204J 2.7×10−24 7.9×10−24 1.6×10−23 2.7×10−24 1.4×10−5 *
J0024-7204L 1.3×10−24 3.2×10−24 6.4×10−24 1.2×10−24 2.5×10−5 *
J0024-7204M 1.4×10−24 3.7×10−24 9.7×10−24 1.4×10−24 2.1×10−5 *

J0024-7204N 1.8×10−24 4.3×10−24 9.5×10−24 1.7×10−24 1.8×10−5 *
J0024-7204Q 1.4×10−24 3.8×10−24 6.5×10−24 1.1×10−24 2.0×10−5 2274
J0024-7204S 2.7×10−24 4.9×10−24 10.0×10−24 2.5×10−24 2.3×10−5 *
J0024-7204T 8.1×10−25 2.4×10−24 4.1×10−24 7.5×10−25 4.9×10−5 718
J0024-7204U 2.0×10−24 3.0×10−24 6.2×10−24 1.6×10−24 3.5×10−5 2079†

J0030+0451� 1.6×10−24 3.6×10−24 4.9×10−24 1.4×10−24 1.8×10−6 279
J0034-0534 6.0×10−24 7.6×10−24 2.1×10−23 4.0×10−24 3.3×10−6 3017
J0218+4232 3.0×10−24 5.1×10−24 1.3×10−23 2.5×10−24 1.9×10−5 3117
J0407+1607� 1.8×10−24 1.1×10−23 9.1×10−24 1.7×10−24 1.1×10−3 4958
J0437-4715� 8.1×10−24 5.2×10−24 1.2×10−23 4.7×10−24 5.1×10−6 452†

J0534+2200 8.1×10−24 9.1×10−23 4.3×10−23 7.6×10−24 4.0×10−3 5.3†

J0537-6910‡� 6.7×10−25 6.6×10−24 4.8×10−24 6.6×10−25 2.0×10−3 23
J0613-0200 2.2×10−24 5.5×10−24 9.6×10−24 2.0×10−24 9.7×10−6 3205†

J0621+1002 3.2×10−24 2.8×10−23 1.2×10−23 2.9×10−24 1.1×10−3 5354†

J0711-6830 1.3×10−24 6.1×10−24 6.5×10−24 1.1×10−24 8.5×10−6 1203†

J0737-3039A 1.1×10−24 7.4×10−24 7.4×10−24 1.1×10−24 7.8×10−5 91
J0751+1807 1.7×10−24 4.0×10−24 7.2×10−24 1.5×10−24 8.7×10−6 2521
J1012+5307 1.1×10−24 2.4×10−24 5.8×10−24 1.1×10−24 3.6×10−6 442†

J1022+1001 8.6×10−25 1.3×10−23 8.8×10−24 8.6×10−25 1.6×10−5 197
J1024-0719 1.7×10−24 4.0×10−24 4.5×10−24 1.3×10−24 2.9×10−6 302

J1045-4509 1.2×10−24 3.0×10−24 4.1×10−24 1.1×10−24 4.8×10−5 3311†

J1300+1240 1.3×10−24 3.4×10−24 4.3×10−24 1.2×10−24 8.3×10−6 863†

J1420-5625� 5.6×10−24 6.7×10−23 3.0×10−23 5.4×10−24 2.6×10−3 8232
J1435-6100 6.7×10−25 2.6×10−24 3.5×10−24 6.3×10−25 4.2×10−5 1574
J1455-3330 9.0×10−25 4.3×10−24 5.4×10−24 8.6×10−25 9.6×10−6 562†

J1518+0205A 2.3×10−24 2.6×10−23 1.6×10−23 2.1×10−24 1.2×10−4 7627
J1518+0205B� 9.5×10−25 4.8×10−24 4.7×10−24 9.9×10−25 1.2×10−4 *
J1537+1155 1.6×10−23 10.0×10−23 6.5×10−23 1.6×10−23 4.9×10−3 2285†

J1603-7202 5.9×10−25 3.2×10−24 3.9×10−24 5.7×10−25 4.8×10−5 1318†

J1623-2631 1.1×10−24 4.5×10−24 3.7×10−24 1.1×10−24 6.7×10−5 383†

J1629-6902 9.3×10−25 2.5×10−24 5.1×10−24 8.0×10−25 9.2×10−6 1041
J1640+2224 2.6×10−24 4.2×10−24 1.1×10−23 2.6×10−24 7.3×10−6 5329†

J1643-1224 2.0×10−24 5.5×10−24 6.6×10−24 1.7×10−24 4.2×10−5 5776†

J1701-3006A 1.1×10−24 4.2×10−24 4.7×10−24 1.2×10−24 5.2×10−5 *
J1701-3006B 1.5×10−24 3.9×10−24 8.5×10−24 1.4×10−24 3.0×10−5 *

J1701-3006C 1.5×10−24 4.1×10−24 7.3×10−24 1.6×10−24 3.8×10−5 *
J1709+2313� 1.4×10−24 4.6×10−24 6.4×10−24 1.4×10−24 1.3×10−5 5633†

J1713+0747 2.4×10−24 6.5×10−24 7.2×10−24 2.5×10−24 1.4×10−5 2663†

J1721-2457� 2.3×10−24 5.8×10−24 8.6×10−24 1.5×10−24 6.8×10−6 2260
J1730-2304� 1.1×10−24 2.9×10−24 4.6×10−24 9.4×10−25 7.5×10−6 378

J1732-5049 1.0×10−24 3.2×10−24 5.3×10−24 8.9×10−25 1.1×10−5 1233
J1740-5340� 1.4×10−24 4.3×10−24 7.5×10−24 1.4×10−24 1.0×10−5 592
J1744-1134 1.6×10−24 4.1×10−24 5.5×10−24 1.5×10−24 2.1×10−6 483†

J1745-0952 1.1×10−24 5.1×10−24 5.3×10−24 1.1×10−24 2.3×10−4 1482
J1748-2446A‡ 7.9×10−25 2.7×10−24 3.1×10−24 7.7×10−25 2.1×10−4 *

J1748-2446C 8.3×10−25 7.9×10−24 3.5×10−24 8.2×10−25 1.2×10−4 *
J1756-2251 2.3×10−24 1.7×10−23 1.2×10−23 2.3×10−24 1.3×10−3 1422
J1757-5322 8.0×10−25 3.7×10−24 3.9×10−24 7.3×10−25 1.8×10−5 715
J1801-1417 2.2×10−24 4.8×10−24 7.7×10−24 1.7×10−24 9.8×10−6 3224
J1802-2124 9.6×10−25 3.9×10−24 3.6×10−24 9.8×10−25 1.2×10−4 1704

J1804-0735 1.5×10−24 7.4×10−24 8.4×10−24 1.5×10−24 1.6×10−3 3532
J1804-2717 9.3×10−25 3.5×10−24 3.5×10−24 9.9×10−25 2.4×10−5 686
J1807-2459A 1.8×10−24 5.0×10−24 9.6×10−24 1.6×10−24 9.8×10−06 *
J1810-2005 6.8×10−24 7.1×10−23 2.5×10−23 6.5×10−24 6.7×10−3 15134
J1823-3021A‡ 1.8×10−24 3.8×10−24 4.9×10−24 1.7×10−24 9.1×10−5 649

J1824-2452 1.6×10−24 4.5×10−24 9.8×10−24 1.6×10−24 1.7×10−5 416†

J1843-1113 5.5×10−24 8.1×10−24 2.0×10−23 4.8×10−24 7.7×10−6 5167
J1857+0943 1.8×10−24 3.8×10−24 4.8×10−24 1.8×10−24 1.1×10−5 1117†
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J1905+0400 1.7×10−24 5.9×10−24 6.7×10−24 1.7×10−24 7.9×10−6 2556
J1909-3744 1.8×10−24 4.5×10−24 1.1×10−23 1.5×10−24 2.6×10−6 1095†

J1910-5959A 1.5×10−24 4.9×10−24 9.1×10−24 1.3×10−24 1.3×10−5 6488
J1910-5959B� 7.1×10−25 9.3×10−24 5.5×10−24 7.0×10−25 4.6×10−5 *
J1910-5959C 1.1×10−24 2.9×10−24 4.9×10−24 1.1×10−24 2.8×10−5 8176
J1910-5959D 7.4×10−25 4.3×10−24 5.2×10−24 8.2×10−25 6.3×10−5 394
J1910-5959E 1.2×10−24 2.6×10−24 5.8×10−24 1.1×10−24 2.1×10−5 *

J1911+0101A 2.7×10−24 4.9×10−24 8.5×10−24 1.9×10−24 4.4×10−5 *
J1911+0101B 2.2×10−24 4.3×10−24 5.3×10−24 1.8×10−24 9.3×10−5 *
J1911-1114 1.8×10−24 4.3×10−24 9.4×10−24 1.7×10−24 8.6×10−6 2617†

J1913+1011‡ 1.3×10−23 7.5×10−23 4.0×10−23 1.1×10−23 1.5×10−2 202
J1918-0642� 1.1×10−24 3.3×10−24 4.1×10−24 9.4×10−25 1.8×10−5 926

J1939+2134 7.2×10−24 7.7×10−24 3.3×10−23 5.0×10−24 1.0×10−5 2733†

J1952+3252‡ 2.9×10−23 2.5×10−22 7.8×10−23 3.1×10−23 2.8×10−2 247†

J1955+2908 1.7×10−24 3.1×10−24 4.8×10−24 1.5×10−24 7.0×10−5 4497†

J1959+2048 6.2×10−24 9.9×10−24 2.8×10−23 5.3×10−24 4.9×10−6 3769†

J2019+2425 1.9×10−24 4.0×10−24 6.9×10−24 1.5×10−24 4.9×10−6 2075†

J2051-0827 1.4×10−24 4.0×10−24 6.9×10−24 1.2×10−24 7.6×10−6 1187†

J2124-3358 1.1×10−24 3.2×10−24 5.4×10−24 1.1×10−24 1.6×10−6 206†

J2129-5721 1.6×10−24 3.9×10−24 7.0×10−24 1.4×10−24 1.2×10−5 2014†

J2140-2310A 7.7×10−25 4.2×10−24 3.6×10−24 7.7×10−25 2.0×10−4 *
J2145-0750 8.7×10−25 8.3×10−24 3.9×10−24 8.2×10−25 2.5×10−5 400†

J2229+2643 2.7×10−24 5.5×10−24 9.6×10−24 2.4×10−24 7.3×10−6 6185
J2317+1439 3.5×10−24 4.6×10−24 7.9×10−24 2.7×10−24 1.4×10−5 9406†

J2322+2057 1.6×10−24 3.9×10−24 6.6×10−24 1.2×10−24 5.0×10−6 1229†

Table 3.7: The S3 results for PSR J1939+2134 including Geo 600 .

Pulsar h95%0 Geo 600 h95%0 Joint ε spin-down UL ratio

J1939+2134 8.5×10−23 5.0×10−24 1.0×10−5 2732†

It can be seen in table 3.7 that including Geo 600 in the analysis does not add

significantly to the results.

3.4.3 S4

Between S3 and S4 the L1 interferometer was upgraded with better seismic isolation.

This greatly reduced the amount of time the interferometer was thrown out-of-lock

by anthropogenic noise, and allowed it to operate successfully during the day, with

a duty cycle of ∼ 74.5% and a longest lock stretch of 18.7 hours. The H1 and H2

interferometers also both improved their duty cycles to ∼ 80.5% and ∼ 81.4%, with

longest lock stretches of almost a day. The best sensitivities for all the detectors during

S4 can be seen in figure 3.9.

The results of the S4 analysis for the LIGO interferometers is given in table 3.8. For

S4 the Geo 600 interferometer provided two pulsars on a comparable scale to LIGO:

PSR J1939+2134 and PSR J1843-1113. At present there has been no test of the phase

consistency of the LIGO and Geo 600 interferometers during S4, although there is no
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Figure 3.9: Best sensitivities of the LIGO and Geo 600 detectors during S4. These curves have been
reproduced using the official LIGO and Geo 600 sensitivities from [98, 99].

reason to believe they are not coherent - no hardware injection was made in Geo 600 for

S4.

Table 3.8: Results of the S4 analysis for the three LIGO interferometers. Superscripts are the same
as in table 3.6

Pulsar h95%0 H1 h95%0 H2 h95%0 L1 h95%0 Joint ε UL ratio

J0024-7204C 1.1×10−23 3.3×10−24 6.2×10−24 3.1×10−24 1.2×10−4 *
J0024-7204D 1.2×10−24 1.3×10−24 1.3×10−24 7.5×10−25 2.5×10−5 *
J0024-7204E 1.2×10−24 1.4×10−24 1.8×10−24 8.4×10−25 1.2×10−5 961†

J0024-7204F 1.5×10−24 2.4×10−24 3.2×10−24 1.2×10−24 9.2×10−6 1420†

J0024-7204G 9.9×10−25 1.3×10−24 1.7×10−24 6.7×10−25 1.2×10−5 *

J0024-7204H� 1.6×10−24 1.6×10−24 1.8×10−24 1.0×10−24 1.2×10−5 *
J0024-7204I 1.1×10−24 1.4×10−24 2.9×10−24 9.7×10−25 1.3×10−5 *
J0024-7204J 1.8×10−24 2.2×10−24 4.8×10−24 1.2×10−24 6.0×10−6 *
J0024-7204L 1.2×10−24 1.3×10−24 1.8×10−24 1.0×10−24 2.2×10−5 *
J0024-7204M 1.1×10−24 1.3×10−24 1.7×10−24 7.8×10−25 1.2×10−5 *

J0024-7204N 1.6×10−24 1.9×10−24 2.3×10−24 9.2×10−25 9.7×10−6 *
J0024-7204Q 1.0×10−24 1.2×10−24 2.3×10−24 8.7×10−25 1.6×10−5 1777
J0024-7204S 1.4×10−24 1.6×10−24 2.7×10−24 9.1×10−25 8.2×10−6 *
J0024-7204T 6.4×10−25 8.3×10−25 9.1×10−25 4.4×10−25 2.9×10−5 418
J0024-7204U 1.1×10−24 1.2×10−24 2.1×10−24 6.6×10−25 1.4×10−5 849†

J0030+0451� 1.2×10−24 2.0×10−24 1.5×10−24 7.6×10−25 9.8×10−7 153
J0034-0534 4.1×10−24 4.4×10−24 3.9×10−24 1.9×10−24 1.5×10−6 1416
J0218+4232 1.9×10−24 3.3×10−24 3.2×10−24 1.6×10−24 1.2×10−5 2024
J0407+1607� 1.5×10−24 2.8×10−24 1.5×10−24 1.0×10−24 6.5×10−4 2936
J0437-4715� 1.4×10−23 3.1×10−24 6.8×10−24 2.7×10−24 3.0×10−6 264†

J0534+2200 5.1×10−24 8.2×10−24 1.5×10−23 4.4×10−24 2.3×10−3 3.1†

J0537-6910‡� 4.7×10−25 1.1×10−24 1.2×10−24 5.5×10−25 1.7×10−3 19
J0613-0200 2.2×10−24 2.0×10−24 2.1×10−24 1.2×10−24 5.7×10−6 1887†

J0621+1002 1.6×10−24 4.3×10−24 1.6×10−24 9.2×10−25 3.4×10−4 1700†

J0711-6830 1.1×10−24 1.2×10−24 1.5×10−24 7.9×10−25 5.9×10−6 837†

J0737-3039A 8.4×10−25 1.8×10−24 1.0×10−24 6.1×10−25 4.2×10−5 49
J0751+1807 1.8×10−24 1.8×10−24 2.2×10−24 1.2×10−24 7.1×10−6 2057
J1012+5307 7.8×10−25 1.1×10−24 1.4×10−24 5.1×10−25 1.7×10−6 212†

J1022+1001 1.1×10−24 1.7×10−24 7.4×10−25 5.7×10−25 1.1×10−5 131
J1024-0719 1.3×10−24 1.4×10−24 1.3×10−24 7.6×10−25 1.7×10−6 174

J1045-4509 8.3×10−25 1.2×10−24 1.2×10−24 6.2×10−25 2.7×10−5 1816†

J1300+1240 1.5×10−24 1.6×10−24 9.8×10−25 8.8×10−25 6.2×10−6 643†
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J1420-5625� 3.8×10−24 6.2×10−24 5.1×10−24 2.9×10−24 1.4×10−3 4472
J1435-6100 6.9×10−25 1.0×10−24 8.4×10−25 4.1×10−25 2.8×10−5 1024
J1455-3330 6.8×10−25 9.7×10−25 1.3×10−24 5.2×10−25 5.8×10−6 338†

J1518+0205A 3.4×10−24 2.1×10−24 1.7×10−24 1.4×10−24 8.0×10−5 5007
J1518+0205B� 9.3×10−25 1.8×10−24 1.3×10−24 5.4×10−25 6.3×10−5 *
J1537+1155 4.5×10−24 1.2×10−23 5.0×10−24 2.7×10−24 8.3×10−4 383†

J1603-7202 5.0×10−25 1.3×10−24 8.9×10−25 4.2×10−25 3.6×10−5 978†

J1623-2631 9.3×10−25 1.9×10−24 8.9×10−25 7.5×10−25 4.8×10−5 273†

J1629-6902 8.6×10−25 9.9×10−25 1.1×10−24 5.4×10−25 6.3×10−6 711
J1640+2224 1.8×10−24 1.8×10−24 2.2×10−24 1.1×10−24 3.1×10−6 2277†

J1643-1224 1.3×10−24 1.8×10−24 1.5×10−24 1.1×10−24 2.8×10−5 3821†

J1701-3006A 9.7×10−25 1.5×10−24 1.3×10−24 6.8×10−25 3.1×10−5 *
J1701-3006B 1.2×10−24 1.6×10−24 2.8×10−24 1.0×10−24 2.1×10−5 *

J1701-3006C 1.4×10−24 1.5×10−24 1.9×10−24 9.2×10−25 2.2×10−5 *
J1709+2313� 1.1×10−24 1.8×10−24 1.7×10−24 7.6×10−25 7.1×10−6 3059†

J1713+0747 1.3×10−24 1.3×10−24 1.6×10−24 8.9×10−25 4.9×10−6 938†

J1721-2457� 1.4×10−24 2.4×10−24 1.7×10−24 8.7×10−25 3.9×10−6 1303
J1730-2304� 7.6×10−25 1.9×10−24 8.8×10−25 6.0×10−25 4.7×10−6 240

J1732-5049 1.3×10−24 1.3×10−24 1.8×10−24 7.5×10−25 9.1×10−6 1046
J1740-5340� 1.2×10−24 1.7×10−24 1.7×10−24 9.5×10−25 6.9×10−6 401
J1744-1134 1.9×10−24 1.6×10−24 1.4×10−24 1.1×10−24 1.5×10−6 353†

J1745-0952 6.4×10−25 1.7×10−24 8.2×10−25 5.0×10−25 1.0×10−4 662
J1748-2446A‡ 5.5×10−25 10.0×10−25 1.0×10−24 3.8×10−25 1.1×10−4 *

J1748-2446C 7.0×10−25 1.3×10−24 7.7×10−25 4.3×10−25 6.3×10−5 *
J1756-2251 1.6×10−24 5.2×10−24 2.5×10−24 1.6×10−24 9.2×10−4 997
J1757-5322 7.6×10−25 9.1×10−25 8.5×10−25 4.5×10−25 1.1×10−5 437
J1801-1417 1.5×10−24 1.8×10−24 1.6×10−24 9.1×10−25 5.1×10−6 1686
J1802-2124 7.6×10−25 10.0×10−25 8.0×10−25 4.8×10−25 6.1×10−5 836

J1804-0735 9.2×10−25 2.2×10−24 1.0×10−24 6.4×10−25 6.8×10−4 1490
J1804-2717 7.5×10−25 9.4×10−25 7.4×10−25 4.9×10−25 1.2×10−5 340
J1807-2459A 1.4×10−24 2.0×10−24 1.8×10−24 9.8×10−25 5.9×10−6 *
J1810-2005 4.3×10−24 7.1×10−24 4.6×10−24 2.4×10−24 2.5×10−3 5612
J1823-3021A‡ 1.3×10−24 1.3×10−24 1.2×10−24 7.8×10−25 4.3×10−5 307

J1824-2452 1.7×10−24 2.0×10−24 2.3×10−24 1.0×10−24 1.1×10−5 269†

J1843-1113 3.1×10−24 3.3×10−24 4.0×10−24 1.8×10−24 2.8×10−6 1887
J1857+0943 1.3×10−24 1.7×10−24 1.1×10−24 6.6×10−25 4.1×10−6 412†

J1905+0400 1.6×10−24 2.1×10−24 1.8×10−24 1.3×10−24 5.8×10−6 1877
J1909-3744 1.7×10−24 1.7×10−24 2.4×10−24 1.1×10−24 1.9×10−6 805†

J1910-5959A 1.7×10−24 2.5×10−24 2.1×10−24 9.7×10−25 9.8×10−6 4974
J1910-5959B 2.4×10−24 1.2×10−24 1.0×10−24 7.4×10−25 4.9×10−5 *
J1910-5959C 8.2×10−25 1.1×10−24 1.3×10−24 6.7×10−25 1.8×10−5 5115
J1910-5959D 5.2×10−25 9.9×10−25 8.6×10−25 4.1×10−25 3.2×10−5 198
J1910-5959E 9.7×10−25 1.3×10−24 1.3×10−24 6.0×10−25 1.2×10−5 *

J1911+0101A 1.6×10−24 1.9×10−24 1.8×10−24 9.3×10−25 2.1×10−5 *
J1911+0101B 1.2×10−24 1.3×10−24 1.1×10−24 7.2×10−25 3.7×10−5 *
J1911-1114 1.4×10−24 1.9×10−24 2.1×10−24 1.0×10−24 4.9×10−6 1504†

J1913+1011‡ 3.2×10−24 8.5×10−24 5.2×10−24 2.8×10−24 3.8×10−3 51
J1918-0642� 7.7×10−25 1.2×10−24 9.0×10−25 4.8×10−25 9.3×10−6 470

J1939+2134 4.0×10−24 4.2×10−24 5.2×10−24 2.4×10−24 4.9×10−6 1280†

J1952+3252‡ 4.9×10−24 10.0×10−24 6.1×10−24 4.0×10−24 3.7×10−3 33†

J1955+2908 8.0×10−25 1.4×10−24 1.2×10−24 5.9×10−25 2.8×10−5 1837†

J1959+2048� 3.0×10−24 4.7×10−24 3.9×10−24 2.1×10−24 1.9×10−6 1481†

J2019+2425 1.4×10−24 1.6×10−24 1.8×10−24 8.5×10−25 2.8×10−6 1189†

J2051-0827 1.5×10−24 1.8×10−24 1.9×10−24 1.0×10−24 6.3×10−6 983†

J2124-3358 1.2×10−24 1.4×10−24 1.3×10−24 8.0×10−25 1.1×10−6 151†

J2129-5721 1.1×10−24 1.4×10−24 1.6×10−24 7.8×10−25 6.5×10−6 1087†

J2140-2310A 6.2×10−25 1.2×10−24 9.7×10−25 4.5×10−25 1.1×10−4 *
J2145-0750 6.7×10−25 1.6×10−24 6.8×10−25 4.2×10−25 1.3×10−5 208†

J2229+2643 1.9×10−24 3.2×10−24 2.3×10−24 1.4×10−24 4.1×10−6 3497
J2317+1439 1.6×10−24 1.7×10−24 1.9×10−24 9.1×10−25 4.9×10−6 3238†

J2322+2057 1.2×10−24 1.5×10−24 1.6×10−24 7.8×10−25 3.3×10−6 812†

The results with the two pulsars for which Geo 600 has been included are given in

table 3.9. It can be seen that Geo 600 adds only fractionally to the overall sensitivity

Table 3.9: The S4 results including Geo 600 .

Pulsar h95%0 Geo 600 h95%0 Joint ε spin-down UL ratio

J1843-1113 3.8×10−23 1.8×10−24 2.8×10−6 1875
J1939+2134 2.6×10−23 2.4×10−24 4.9×10−6 1300†
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for PSR J1843-1113.

3.4.4 S3 and S4

Our analysis technique allows us to combine the data from different runs in a way

similar to the ability to combine data from all the interferometers to create a joint

results. This becomes useful when runs are of a similar sensitivity, which is the case for

areas of the frequency spectrum for S3 and S4. The data can be combined by simply

concatenating the separate calibrated Bk files together. This is valid provided that the

calibration phase is consistent between runs.

The results for the LIGO interferometers are given in table 3.10.

Table 3.10: Results of the combined S3 and S4 analysis for the three LIGO interferometers.
Superscripts are the same as in table 3.6

Pulsar h95%0 H1 h95%0 H2 h95%0 L1 h95%0 Joint ε UL ratio

J0024-7204C 5.3×10−24 2.4×10−24 5.7×10−24 2.1×10−24 7.9×10−5 *
J0024-7204D 8.0×10−25 1.2×10−24 1.4×10−24 5.3×10−25 1.7×10−5 *
J0024-7204E 10.0×10−25 1.2×10−24 1.8×10−24 7.8×10−25 1.1×10−5 890†

J0024-7204F 1.1×10−24 2.3×10−24 3.2×10−24 8.8×10−25 6.9×10−6 1069†

J0024-7204G 8.2×10−25 1.1×10−24 1.6×10−24 5.7×10−25 1.1×10−5 *

J0024-7204H� 1.4×10−24 1.5×10−24 1.8×10−24 9.1×10−25 1.1×10−5 *
J0024-7204I 1.1×10−24 1.3×10−24 2.7×10−24 9.9×10−25 1.4×10−5 *
J0024-7204J 1.6×10−24 2.1×10−24 4.8×10−24 1.0×10−24 5.2×10−6 *
J0024-7204L 8.6×10−25 1.2×10−24 1.8×10−24 8.4×10−25 1.8×10−5 *
J0024-7204M 9.6×10−25 1.1×10−24 1.8×10−24 7.0×10−25 1.1×10−5 *

J0024-7204N 1.1×10−24 1.5×10−24 2.3×10−24 7.2×10−25 7.6×10−6 *
J0024-7204Q 8.5×10−25 1.1×10−24 2.3×10−24 6.7×10−25 1.2×10−5 1382
J0024-7204S 1.2×10−24 1.4×10−24 2.7×10−24 9.1×10−25 8.3×10−6 *
J0024-7204T 5.8×10−25 7.9×10−25 8.7×10−25 3.9×10−25 2.6×10−5 377
J0024-7204U 1.2×10−24 1.0×10−24 2.0×10−24 7.3×10−25 1.6×10−5 943†

J0030+0451� 1.0×10−24 1.9×10−24 1.4×10−24 7.4×10−25 9.5×10−7 148
J0034-0534 3.3×10−24 3.9×10−24 4.0×10−24 1.6×10−24 1.3×10−6 1224
J0218+4232 1.5×10−24 2.7×10−24 3.0×10−24 1.3×10−24 9.8×10−6 1643
J0407+1607� 1.1×10−24 2.7×10−24 1.5×10−24 8.8×10−25 5.6×10−4 2535
J0437-4715� 7.3×10−24 2.4×10−24 6.5×10−24 2.3×10−24 2.5×10−6 218†

J0534+2200 4.3×10−24 8.3×10−24 1.4×10−23 3.8×10−24 2.0×10−3 2.7†

J0537-6910‡� 3.9×10−25 1.2×10−24 1.2×10−24 4.3×10−25 1.3×10−3 15
J0613-0200 1.4×10−24 1.8×10−24 2.1×10−24 1.0×10−24 4.9×10−6 1619†

J0621+1002 1.5×10−24 4.3×10−24 1.5×10−24 9.1×10−25 3.4×10−4 1680†

J0711-6830 7.4×10−25 1.1×10−24 1.5×10−24 5.9×10−25 4.4×10−6 626†

J0737-3039A 6.4×10−25 1.7×10−24 1.0×10−24 5.3×10−25 3.7×10−5 43
J0751+1807 1.4×10−24 1.6×10−24 2.3×10−24 1.0×10−24 6.0×10−6 1747
J1012+5307 6.3×10−25 9.8×10−25 1.3×10−24 4.5×10−25 1.5×10−6 185†

J1022+1001 7.4×10−25 1.7×10−24 7.2×10−25 4.9×10−25 9.4×10−6 113
J1024-0719 1.0×10−24 1.3×10−24 1.3×10−24 6.0×10−25 1.3×10−6 139

J1045-4509 6.6×10−25 1.2×10−24 1.1×10−24 6.3×10−25 2.7×10−5 1833†

J1300+1240 1.2×10−24 1.6×10−24 9.9×10−25 8.3×10−25 5.9×10−6 606†

J1420-5625� 3.2×10−24 6.3×10−24 5.1×10−24 2.6×10−24 1.2×10−3 3987
J1435-6100 4.7×10−25 8.2×10−25 7.8×10−25 3.4×10−25 2.3×10−5 850
J1455-3330 5.3×10−25 1.0×10−24 1.3×10−24 4.6×10−25 5.1×10−6 299†

J1518+0205A 1.7×10−24 2.1×10−24 1.7×10−24 1.1×10−24 6.5×10−5 4030
J1518+0205B� 6.7×10−25 1.8×10−24 1.2×10−24 4.4×10−25 5.1×10−5 *
J1537+1155 4.4×10−24 1.2×10−23 4.9×10−24 2.6×10−24 8.0×10−4 369†

J1603-7202 3.8×10−25 1.2×10−24 8.9×10−25 3.2×10−25 2.7×10−5 743†

J1623-2631 6.9×10−25 1.8×10−24 8.9×10−25 4.4×10−25 2.8×10−5 161†

J1629-6902 5.7×10−25 8.9×10−25 1.1×10−24 4.3×10−25 5.0×10−6 567
J1640+2224 1.5×10−24 1.7×10−24 2.1×10−24 1.0×10−24 2.8×10−6 2079†

J1643-1224 1.2×10−24 1.8×10−24 1.3×10−24 1.1×10−24 2.6×10−5 3616†
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J1701-3006A 7.1×10−25 1.5×10−24 1.2×10−24 5.2×10−25 2.3×10−5 *
J1701-3006B 9.4×10−25 1.5×10−24 2.7×10−24 8.1×10−25 1.7×10−5 *

J1701-3006C 9.4×10−25 1.5×10−24 1.9×10−24 7.7×10−25 1.8×10−5 *
J1709+2313� 8.9×10−25 1.8×10−24 1.6×10−24 6.6×10−25 6.1×10−6 2655†

J1713+0747 1.1×10−24 1.4×10−24 1.7×10−24 8.0×10−25 4.4×10−6 838†

J1721-2457� 1.1×10−24 1.9×10−24 1.8×10−24 7.2×10−25 3.3×10−6 1080
J1730-2304� 6.4×10−25 1.6×10−24 9.1×10−25 4.4×10−25 3.5×10−6 176

J1732-5049 7.5×10−25 1.0×10−24 1.8×10−24 5.6×10−25 6.7×10−6 772
J1740-5340� 8.9×10−25 1.8×10−24 1.7×10−24 8.7×10−25 6.3×10−6 367
J1744-1134 1.4×10−24 1.6×10−24 1.4×10−24 9.1×10−25 1.3×10−6 301†

J1745-0952 6.1×10−25 1.7×10−24 8.0×10−25 4.7×10−25 9.9×10−5 623
J1748-2446A‡ 4.4×10−25 9.0×10−25 1.0×10−24 3.6×10−25 9.8×10−5 *

J1748-2446C 5.2×10−25 1.3×10−24 7.5×10−25 3.9×10−25 5.7×10−5 *
J1756-2251 1.5×10−24 5.0×10−24 2.5×10−24 1.6×10−24 9.0×10−4 976
J1757-5322 6.1×10−25 9.0×10−25 8.7×10−25 4.2×10−25 1.1×10−5 409
J1801-1417 1.2×10−24 1.7×10−24 1.7×10−24 7.9×10−25 4.4×10−6 1456
J1802-2124 6.7×10−25 1.0×10−24 7.7×10−25 5.7×10−25 7.1×10−5 980

J1804-0735 7.0×10−25 2.1×10−24 1.0×10−24 5.8×10−25 6.1×10−4 1336
J1804-2717 5.7×10−25 9.0×10−25 7.4×10−25 4.7×10−25 1.1×10−5 329
J1807-2459A 1.1×10−24 1.8×10−24 1.8×10−24 8.3×10−25 4.9×10−6 *
J1810-2005 3.2×10−24 7.2×10−24 4.5×10−24 2.3×10−24 2.4×10−3 5342
J1823-3021A‡ 1.1×10−24 1.2×10−24 1.1×10−24 6.8×10−25 3.8×10−5 269

J1824-2452 1.2×10−24 1.7×10−24 2.2×10−24 8.4×10−25 9.0×10−6 221†

J1843-1113 2.7×10−24 3.0×10−24 4.0×10−24 1.6×10−24 2.5×10−6 1690
J1857+0943 1.1×10−24 1.7×10−24 1.1×10−24 6.2×10−25 3.8×10−6 388†

J1905+0400 1.1×10−24 1.7×10−24 1.7×10−24 9.8×10−25 4.5×10−6 1440
J1909-3744 1.4×10−24 1.5×10−24 2.2×10−24 8.8×10−25 1.5×10−6 628†

J1910-5959A 1.1×10−24 1.7×10−24 2.0×10−24 7.6×10−25 7.6×10−6 3863
J1910-5959B 6.8×10−25 1.2×10−24 10.0×10−25 5.1×10−25 3.4×10−5 *
J1910-5959C 6.3×10−25 9.8×10−25 1.2×10−24 5.0×10−25 1.3×10−5 3852
J1910-5959D 4.6×10−25 9.5×10−25 9.0×10−25 4.1×10−25 3.2×10−5 198
J1910-5959E 8.1×10−25 1.1×10−24 1.3×10−24 5.6×10−25 1.1×10−5 *

J1911+0101A 1.1×10−24 1.8×10−24 1.8×10−24 7.8×10−25 1.8×10−5 *
J1911+0101B 1.2×10−24 1.2×10−24 1.2×10−24 8.0×10−25 4.0×10−5 *
J1911-1114 1.1×10−24 1.7×10−24 2.2×10−24 8.7×10−25 4.3×10−6 1308†

J1913+1011‡ 3.1×10−24 8.6×10−24 5.0×10−24 2.6×10−24 3.5×10−3 47
J1918-0642� 6.1×10−25 1.1×10−24 8.2×10−25 4.6×10−25 8.8×10−6 449

J1939+2134 3.5×10−24 3.8×10−24 5.3×10−24 2.0×10−24 4.0×10−6 1063†

J1952+3252‡ 4.5×10−24 10.0×10−24 6.0×10−24 3.6×10−24 3.3×10−3 30†

J1955+2908 6.9×10−25 1.3×10−24 1.2×10−24 5.0×10−25 2.4×10−5 1558†

J1959+2048� 2.8×10−24 4.6×10−24 3.8×10−24 1.9×10−24 1.8×10−6 1363†

J2019+2425 1.3×10−24 1.5×10−24 1.9×10−24 8.0×10−25 2.7×10−6 1114†

J2051-0827 1.1×10−24 1.7×10−24 1.9×10−24 8.5×10−25 5.2×10−6 814†

J2124-3358 7.7×10−25 1.2×10−24 1.3×10−24 5.9×10−25 8.5×10−7 112†

J2129-5721 1.0×10−24 1.4×10−24 1.6×10−24 7.5×10−25 6.2×10−6 1038†

J2140-2310A 4.7×10−25 1.2×10−24 9.1×10−25 3.7×10−25 9.5×10−5 *
J2145-0750 5.6×10−25 1.5×10−24 6.6×10−25 4.0×10−25 1.2×10−5 195†

J2229+2643 1.4×10−24 2.7×10−24 2.3×10−24 9.3×10−25 2.8×10−6 2357
J2317+1439 1.5×10−24 1.6×10−24 1.9×10−24 8.7×10−25 4.6×10−6 3091†

J2322+2057 1.0×10−24 1.3×10−24 1.3×10−24 6.7×10−25 2.9×10−6 702†

Geo 600 was included in the joint analysis for the same two pulsars as the S4 results

(see table 3.11). For the vast majority of pulsars combining the two runs improves the

Table 3.11: The combined S3 and S4 results including Geo 600 .

Pulsar h95%0 Geo 600 h95%0 Joint ε spin-down UL ratio

J1843-1113 3.7×10−23 1.6×10−24 2.5×10−6 1671
J1939+2134 2.5×10−23 2.0×10−24 4.1×10−6 1071†

results, although for a few the S3 data has a detrimental effect (of a few percent) with

the S4 data providing the lowest upper limit.

The upper limits on h0 and ε from the S3, S4 and the combined data set are plotted

in figures 3.10 and 3.11. Figure 3.10 also shows an estimate of the upper limit across
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Figure 3.10: 95% upper limits on h0 for 93 pulsars using the S3, S4 and combined data sets. Bold
stars represent pulsars within globular clusters. Also shown is the joint LIGO upper limit estimated
from their best noise spectral densities during S4. A joint upper limit estimate for LIGO using their
design (SRD) sensitivities integrated over one year is shown. Several pulsar spin-down upper limits
are also shown for those within the range of the figure.
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Figure 3.11: Upper limits on pulsar ellipticity for the S3, S4 and combined data sets. Bold stars
represent pulsars within globular clusters. Also shown is the ellipticity limit that could be produced
using the joint design sensitivity upper limit integrated over one year for a source at a distance of
1 kpc. The spin-down upper limits are also plotted.
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the frequency range by combining the LIGO noise spectral density sensitivity curves,

taken as the best sensitivity during S4. The estimate is made using the relation h95%
0 =

10.8
√
Sh(f)/Tobs, where Sh(f) is the one-sided power spectral density (PSD) and Tobs is

each detector’s live time (using the associated duty cycle of each interferometer during

the run). The factor 10.8, given in Dupuis and Woan (2005) [1], has been modified

from the value of 15.3 calculated in [66] from simulations using white noise averaged

over sky position, due to an error in the definition of the noise spectral density. The

joint upper limit curve is produced by combining the detector PSDs via

S(f) =

(
Tobs H1

Sh(f)H1

+
Tobs H2

Sh(f)H2

+
Tobs L1

Sh(f)L1

)−1

(3.13)

h95%
0 = 10.8

√
S(f).

In [34] a similar plot to figure 3.10 is shown for the S2 data using a factor of 11.4 in

the relation between the upper limit and PSD. This definition comes from using the

F -statistic search method and setting a 1% false alarm rate and 10% false dismissal

rate for signals given the underlying detector PSD. It can be seen that the majority

of the combined S3 and S4 upper limits are dominated by the S4 data, with a few for

which the S4 data alone produces the more stringent upper limit. Combining the data

set has pushed two of the ellipticity limits below the level of 10−6. The implications of

these results will be discussed in §3.5.

3.4.5 Moment of inertia - ellipticity plane

The moment of inertia of a neutron star will depend on the equation-of-state (EOS)

used to model it. For all the above results on pulsar ellipticity a moment of inertia of

1038 kg m2 has been assumed (see Chapter 2), which relies upon a particular equation-

of-state being correct. It also assumes a neutron star mass of 1.4M�. For many known

radio pulsars in binary systems, where the mass can be measured, this mass estimate

appears to be remarkably well kept (see Thorsett and Chakrabarty, 1999 [100]). Recent

measurements have reported two of the most massive pulsars known with Nice et al.
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(2005) [101] giving the highest recorded pulsar mass at 2.1M�, although with wide

error bars, and Ransom et al. (2005) [91] giving a mass of 1.68M� at 95% confidence.

There are many equations-of-state, some considered more realistic (using nucleons and

leptons) and others considered less likely (involving more exotic particles or quark

states), giving moments of inertia varying over factors of about two, with Thorne

(1987) [12] giving a range for different EOS of 3×1037 kg m2 . Izz . 3×1038 kg m2.

The high mass neutron stars given above could possible have ellipticities towards the

high end of this range. Attempts have been made by Bejger and Haensel (2002 and

2003) [102, 103] to set limits on the moment of inertia of the Crab pulsar by equating

its spin-down energy loss to the expansion of the Crab nebula and its electromagnetic

emission, which have been used to confine its mass and radius. More recently Bejger

et al. (2005) [104] have set constraints on the moment of inertia of the neutron stars

in the double pulsar binary system PSRs J0737-3039A and B giving values close to the

canonical value.

As suggested in Pitkin et al (2005) [105] instead of using equation 3.4 to set a limit

on ε directly it can be used to set a limit on the neutron star quadrupole moment Iε,

which does not contain the mass and moment of inertia assumptions. The quadrupole

moment can then be used to provide constraints on an I − ε plane with exclusion

regions. With this plane, an upper limit on ε can then be read off using your favoured

equation-of-state. The spin-down upper limit can also be used to provide exclusion

regions via the relation

Izz =
5|Ω̇|c5

32GΩ5

1

ε2
. (3.14)

For most pulsars, forming an I − ε plane will generally provide very little more

information than the straight limit set with the canonical moment of inertia when

compared to the spin-down limit. For the Crab pulsar and PSR J0537-6910, which are

nearing their spin-down limits, it starts to become more interesting with the experi-

mental values nearing the point where they beat the spin-down limit for moments of

inertia from exotic equations-of-state8. In the following sections the results for these

8This is not to say that they are compatible with ellipticities obtainable with exotic EOSs which
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two pulsars are discussed.

There are a couple of other constraints which can be placed on the I − ε plane (see

figure 3.12). The first constraint is that from the EOS. These provide limits on the

possible mass and radius of neutron stars and can provide upper and lower limits on

the range of moments of inertia. They will also constrain the maximum ellipticity that

the neutron star could sustain, estimates of which for various neutron star equations of

state are given by Owen (2005) [106]. For the Crab pulsar a lower limit can be placed

on the moment of inertia by equating its loss in rotational energy with the energetics

of the Crab nebula surrounding it (discussed below) [103].
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Figure 3.12: The regions in the moment of inertia Izz-ε plane for a pulsar that can be excluded
via various methods. The electromagnetic emission of a pulsar can set a lower limit on the moment
of inertia by equating the EM emission with the rotational energy loss of the pulsar. The various
equations-of-state for neutron stars can constrain the mass/radius relation and therefore moment of
inertia [107]. Equations of state will also put limits on the maximum allowable ellipticity of the
neutron star. A limit can be set from upper limits on gravitational wave emission.

3.4.6 The Crab pulsar

Of the known radio pulsars, the Crab pulsar has often been considered one of the most

promising sources of gravitational waves. This is in part due to its youth and therefore

large spin-down rate, leading to a relatively large spin-down upper limits orders of

are generally a few orders of magnitude smaller.
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magnitude higher than for most other pulsars. The high rate of glitching in the pulsar

also provides possible evidence of asymmetry. One glitch model, favoured for the Crab

pulsar, is that there is a change in the pulsar ellipticity, and breaking of the crust, as

the star settles to its new equilibrium state as it spins-down [75]. Back in the 1970s

estimates of gravitational wave strains were spurred on by the experimenters producing

novel technologies which could start the possibility of probing these low strains, with

Zimmermann (1978) [108] producing estimates of gravitational wave strains from the

Crab pulsar ranging from 2×10−25 . h0 . 2×10−29.

The first searches for gravitational waves from the Crab pulsar were by the Japanese

using specially designed resonant bar detectors, with frequencies of around 60 Hz [57].

The most recent result using such a bar was from 1993 and gave a 1σ upper limit

of h0 ≤ 2×10−22 [58]. This upper limit has now been overtaken with the advent

of the interferometric gravitational wave detectors, with results of the S2 run, giving

h95%
0 = 4.1×10−23 [34]. Using equation 2.3, and taking Izz = 1038 kg m2 and r = 2 kpc,

gives a spin-down upper limit for the Crab pulsar of h0 < 1.4×10−24. This meant that

for S2 the Crab pulsar results was still a factor of ∼ 30 above the spin-down limit. This

was still the closest result to the spin-down upper limit so far obtained and closest of

any of the known pulsars searched for.

The Crab pulsar does require special attention. As described in Chapter 2 the effect

of timing noise has to be taken into account. Also its gravitational wave frequency sits

very close to 60 Hz, which is the mains AC frequency in the US, so checks need to be

made that this line, as appearing in the detector spectra, does not interfere with the

analysis. Figure 3.13 shows the spectra around the 60 Hz for the LIGO interferometers

during a section of S3 and S4. It can be seen that the 60 Hz power line does not seem

to interfere with the data at the Crab pulsar frequency of ∼ 59.6 Hz.

The general results for the Crab pulsar can be seen with the others in tables 3.6,

3.8 and 3.10. It can be seen that the results improve by about an order of magnitude

over those from the previous S2 run. The majority of this improvement was between

the S2 and S3 runs, with there not being as big an improvement in the low frequencies
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Figure 3.13: The LIGO noise spectral densities between 55 and 65 Hz for S3 (left) and S4 (right)
showing the 60 Hz power line and Crab pulsar frequency.

between S3 and S4. The results for the Crab pulsar over the S2, S3 and S4 runs

are plotted on the I − ε plane in figure 3.14. It can be seen that over the range of
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Figure 3.14: The moment of inertia-ellipticity plane for the Crab pulsar over the S2, S3 and S4
runs.

3×1037 < Izz < 3×1038 kg m2, which covers moments of inertia from even some of the

most exotic EOS, that the ratio of the spin-down upper limit to our results ranges from

∼ 5 at the lower end to ∼ 1.5 at the upper end. For the Crab pulsar the spin-down

limit argument is rather spurious as it is known that at least some of the spin-down

energy goes into the energetics of the Crab nebula. The fact that the braking index

of the pulsar is not 3, but 2.51, shows that it is not spinning down purely through

magnetic dipole radiation. In Palomba (2000) [49] several reasons for having n 6= 3
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are mentioned, including particle acceleration in pulsar winds or non-dipole magnetic

fields, but in particular there is discussion of the effects of gravitational radiation. If

the spin-down were purely through emission of gravitational waves one would expect

n = 5, so Palomba (2000) [49] tries combining all possible mechanisms of producing

n = 2.51 to provide limits on the gravitational wave emission. This gives an upper limit

of ε ≤ 3×10−4, which is 2.5 times lower than the previous spin down limit (assuming all

emission via gravitational waves) and therefore makes our result over six times greater

than this new upper limit.

For these results we have assumed that the α parameter of Jones (2004) [70] has

a value of 1, i.e. the gravitational wave and electromagnetic timing noise of the Crab

pulsar are the same. As previously stated this seems to be a good assumption, although

when our results start to beat the spin-down limit it could be worth including this as

an extra parameter in the search.

3.4.7 PSR J0537-6910

Another interesting pulsar worth closer study is PSR J0537-6910. This pulsar, associ-

ated with the SNR N157B in the Large Magellanic Cloud (LMC), is currently only seen

as an X-ray pulsar and is the fastest rotating young pulsar, with a rotation frequency

of ∼ 62 Hz [50]. It is also one of the most prolific glitchers of the known pulsars, with a

rate of 2.3 per year seen over the period of study in Marshall et al. (2004) [50] (with a

number of observations using the Rossi X-ray Timing Explorer between 19th January

1999 and 23rd August 2001). Despite this high glitch rate Marshall et al. (2004) [50]

were able to carry out phase-connected timing solutions between glitches and get mea-

surements of ν̈ and therefore the braking index n. The observed value of n ≥ 6.9 is well

away from the pure dipole radiation value of 3, although as stated in [50] there could

be some contamination due to timing noise and uncertainties in the pulsars position

and the ν̈ value. We have not been able to obtain timing data for this pulsar over the

periods of S3 and S4, so the high glitch rate and unknown timing noise mean these

results should be accepted as possibly invalid. It also has potential problems with the
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frequency parameter errors pushing its maximum phase error over our 30◦ limit. Its

parameters taken from [50], and as used for the heterodyne procedure (at twice the

frequency), are given in table 3.12.

Table 3.12: The parameter values for PSR J0537-6910.

PSR J0537-6910

α 05h37m47s.36

δ −69◦10′20′′.4

ν (Hz) 62.0261895958(13)

ν̇ (Hz s−1) −1.992720(4)×10−10

ν̈ (Hz s−2) 6.1(3)×10−21

Epoch (MJD) 52061.334068867

What makes this pulsar interesting are its similarities with the Crab pulsar. As it

is young it has a relatively high spin-down rate (just under half that of the Crab). It

also happens to be in the most sensitive part of the LIGO spectrum, which accounts

for why its joint upper limit for S4 is so good. One disappointment is that, being an

LMC object, it is relatively far away with r ' 49.4 kpc. These factors mean that this

pulsar is the second closest, after the Crab pulsar, to its spin-down upper limit at only

∼ 6 times the Crab pulsar value for the combined results. The results in terms of the

I − ε plane are shown in figure 3.15.
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Figure 3.15: The moment of inertia-ellipticity plane for PSR J0537-6910 over the S2, S3 and S4
runs.
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3.5 Astrophysical interpretation

It can be seen from tables 3.6, 3.8 and 3.10 that for the majority of pulsars the upper

limits we have produced are at least a couple of orders of magnitude above those from

the spin-down argument. If we were to take a pulsar for which our S4 upper limit was

still 100 times above the spin-down limit, we would require an S4 sensitivity run of

∼ 1000 years until we could match the spin-down limit. This being so is there anything

that we can take from the results in terms of useful astrophysics?

The first thing we can say is that for many of the globular cluster pulsars for

which there is a Doppler induced apparent spin-up we are providing the only limits

independent of the pulsars’ motion within the cluster. The maximum apparent spin-up

induced by acceleration in a globular cluster is 4.7×10−13 Hz s−1 for PSR J2129+1210D

in the cluster M15 [90]. This large apparent spin-up is due to the pulsar being close

to the centre of the cluster and thus being subject to the largest accelerations. Given

this value we can speculate that this is the sort of magnitude of frequency derivative

that could be masked by acceleration effects and therefore use −4.7×10−13 Hz s−1 as a

maximum spin-down for all our globular cluster pulsars. This has not been used here,

but may be useful in providing a spin-down upper limit in the future.

It is also interesting to note, despite our limits on the known pulsars being high

in relation to the spin-down ones, that our ellipticity limits are well into the range

permitted by at some models of strange quark stars or hybrid stars (ε ∼ a few times

10−4 − 10−5) and are reaching into the range permitted by more conventional neutron

star EOSs (ε ∼ a few times 10−7) [106].

Currently the fifth LSC science run (S5) is underway with this providing the pos-

sibility of beating the Crab pulsar spin-down limit within a few months. In reality we

will need to be a few times better than the straight spin-down limit before we can say

we are into an interesting regime. This is because we know that some energy is being

lost through magnetic breaking and powering the nebula, and if we take Palomba’s

argument stated above we need to be at least 2.5 times better than spin-down. Again

this is assuming our canonical moment of inertia, and some of this may be clawed back
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if the Crab pulsar is in the higher mass range.



Facts are meaningless. You could use facts to prove anything that’s even remotely

true!

Homer Simpson - The Simpsons

Chapter 4

Neutron star quasi-normal mode

searches

In this chapter we will describe the possible emission of gravitational wave ring-down

signals from neutron stars during glitches. We then describe two search techniques;

one using matched-filtering and the other using Bayesian evidence (sometimes called

the marginal likelihood). These techniques are them applied to search for a ring-down

signal from the magnetar SGR 1806-20 during a GRB on 27th December 2004.

4.1 Neutron stars as burst sources

As well as being potential sources of continuous gravitational waves, under certain

conditions neutron stars may also provide a good source of burst-like transient events.

Such bursts could come from the birth of the neutron star in a supernova, where

the violence of the event excites various vibrational modes of the hot young proto-

neutron star (PNS) [109]. At present there have been no searches to specifically target

vibrational mode signals from PNSs, although such signals could possibly come under

the remit of more generic burst source searches. Neutron stars in binary systems will

emit a transient chirp signal during the final stages of the binary inspiral as they

coalesce. These are some of the most promising gravitational wave sources as the
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extreme energetics of the event can produce very large amplitude waves that can be seen

over great distances. Searches for such signals have been carried out using data from

the LIGO detectors (see Abbott et al., 2004b [40]). For the current LIGO sensitivity

such binary inspiral signals (for two 1.4M� neutron stars) will be observable out to a

distance of . 15 Mpc.

There is another possible mechanism which could induce a burst of gravitational

waves from a neutron star. Quasi-normal mode oscillations could be set up during

a neutron star glitch leading to a gravitational wave ring-down signal (see Kokkotas

et al., 2001 and Kokkotas and Schmidt, 1999 [110, 111]). The most promising of

these vibrational modes for detection using current gravitational wave detectors are

the fundamental fluid modes (f -modes) due to their frequencies being between ∼ 1.5−

4 kHz [27] and therefore within the frequency range of detectors. The nature of this

signal is closely related to the structure of the star and could provide a direct probe

of the equation-of-state, making such signals an exciting prospect for detection and

opening up neutron star asteroseismology.

4.1.1 Neutron star glitches

A pulsar glitch is seen as an irregularity in its timing whereby there is a step increase

in its frequency followed by an exponential recovery back to the pre-glitch level (see

Lyne and Graham-Smith, 1998 [75] for more details). These were first seen in the Vela

pulsar. The step changes in frequency cover a range of magnitudes from ∆ν/ν ∼ 10−9

to∼ 10−6. Glitches have so far been observed in 45 pulsars (as given in the ATNF pulsar

catalogue [47] at the time of writing). The majority of these have only been observed to

glitch once, although sparseness of observations leads to some uncertainty in the actual

number of glitches. A few are quite prolific glitchers, with PSR J0835-4510 (the Vela

pulsar) and PSR J1740-3015 both having been seen to glitch the maximum observed

number of 14 times. Two other prolific glitchers are the young pulsars discussed in

Chapter 3: the Crab pulsar and PSR J0537-6910.

The cause of pulsar glitches is still unknown, but two main theories have been
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postulated. The first involves an adjustment in the pulsar ellipticity/moment of inertia.

This occurs when the crust of the pulsar reaches breaking strain as it spins-down and

the centrifugal force reduces and therefore has to adjust to a new equilibrium [75] i.e.

starquakes. This possibility seems to be the most likely cause of the glitches seen in the

Crab pulsar. The second possibility involves a transfer of angular momentum between

the stars crust and superfluid interior when the two dramatically uncouple [75].

4.1.2 The ring-down signal

A ring-down signal will have the form

y(t) =

 A sin [2πf(t− T0) + φ0]e−(t−T0)/τ for t ≥ T0,

0 for t < T0

(4.1)

where A is the initial amplitude, φ0 is the initial phase, τ is the decay constant and

T0 is the signal arrival time. The frequency of such signals can be calculated from the

characteristic timescale of the dynamical process involved, which is related to the mean

density of mass involved giving f ∼
√
ρ̄. The ring-down timescale can be estimated

using the ratio of the oscillation energy to the power emitted in gravitational waves,

giving τ ∼ R(R/M)3. In Andersson and Kokkotas (1998) [27] these are used to cal-

culate the ring-down frequency f and damping time τ for the f -modes using various

neutron star EOSs, the empirical fits to which are are given in [27] by

f(kHz) ≈ 0.78 + 1.635

[
(M/1.4 M�)

(R/10 km)3

]1/2

, (4.2)

and

1

τ(s)
≈ (M/1.4 M�)3

(R/10 km)4

{
22.85− 14.65

[
(M/1.4 M�)

(R/10 km)

]}
. (4.3)

These relations show how important information on the neutron star mass/radius rela-

tion (and therefore EOS) could be extracted from the detection of a ring-down signal,

with such observations possibly providing a unique measurement.

The amount of energy released in a glitch can be inferred by the fractional change in
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frequency. From Andersson and Kokkotas (1998) [27] the effective achievable amplitude

of gravitational wave searches, assuming a matched filtering search strategy, for the f -

mode is given by

heff ∼ 2.2×10−21

(
E

10−6M�c2

)1/2(
2 kHz

f

)1/2(
50 kpc

r

)
, (4.4)

where heff = h
√
fτ , from the effective amplitude scaling as the square root of the

observed number of cycles [111], and E is the available pulsation energy liberated

via whichever mechanism excited the star. For a newly formed neutron star in a

supernova explosion the amount of energy released in gravitational waves has been

estimated (via simulations) to be within the range 10−4 − 10−7 M�c
2 giving a range

of heff ∼ 10−19 − 10−22 [111] (assuming all energy goes into f -modes and using the

fiducial frequency and distance). For the two different glitch models the amount of

energy released can be estimated in different ways as shown in van Riper et al. (1991)

[112]. For the angular momentum exchange model (thought to be the most probable

explanation for the Vela pulsar glitches) the amount of energy released depends on the

angular momentum exchanged between the superfluid interior and crust ∆J ∼ I∆Ω,

where ∆Ω is the angular frequency change from the glitch. The energy change is then

∆E = ∆JΩlag, where Ωlag is the lag frequency between the superfluid and crust, with

a range of values of 1-100 rad s−1 (or possibly . 0.1 rad s−1) [112]. For the largest

Vela pulsar glitch, with a fractional frequency change of ∆Ω/Ω = 3.1×10−6 [113],

this gives a ∆J ∼ 2×1034 J giving an energy release of ∆E ∼ 2×1034 − 2×1036 J

≈ 10−13 − 10−11 M�c
2. Using these value in equation 4.4, with r = 0.29 kpc gives a

value of heff ∼ 10−22−10−21, assuming all energy loss goes into gravitational waves. In

[112] the energy is assumed to go into heating the star rather than gravitational wave

emission, but even if a few percent goes into f -modes this could still be a considerable

gravitational wave amplitude.

For starquake driven glitches the energy released is given in van Riper et al. [112]

as ∆E ≈ µVcrustεmaxεquake, where εquake = ∆Ω/Ω is equivalent to the relative change in

moment of inertia, µ is the mean shear modulus of the star, Vcrust is the volume of the
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crust (where µVcrust ∼ 1041 J), and εmax is the maximum deformation from equilibrium

the crust can withstand without breaking (given in [112] as εmax . 10−2 although this

could vary somewhat). Assuming this εmax and taking the largest Crab pulsar glitch,

where ∆Ω/Ω ∼ 8×10−8 [71], we get an energy release of ∆E ∼ 8×1031 J, which is a

couple of orders of magnitude less than for the Vela pulsar glitches, and will therefore

probably not be as good a gravitational wave source. If the starquake mechanism can

provide similar fractional frequency changes to a neutron star to those seen in the Vela

pulsar during glitches, then this mechanism could still be a valuable potential source.

4.2 Search methods

4.2.1 Matched filtering

Matched filtering methods can be used in searches where the shape of the signal is

well defined by theory. This is not the case for generic burst searches where the signal

shape is unknown, but is the case for the binary inspiral search (up to the point at

which theoretical models and simulations break down), and for ring-down signals as in

equation 4.1. Matched filtering is a method of correlating the detector output with a

filter (or template) produced for a set of parameter values. Given a detector output

d(t) = As(t) + n(t), where A is the signal amplitude, s(t) the signal shape normalised

such that 〈s|s〉 = 1 and n(t) is the noise, and a filter h(t), then the matched filter will

be their inner product

〈d|h〉 = 2

∫ ∞
0

d̃∗(f)h̃(f) + d̃(f)h̃∗(f)

Sn(f)
df,

= 4<

[∫ ∞
0

d̃∗(f)h̃(f)

Sn(f)
df

]
, (4.5)

where d̃(f) is the Fourier transform d̃(f) =
∫∞
−∞ d(t)ei2πftdt and Sn(f) is the detector

one sided noise power spectral density (see Owen, 1996 [114] for a more complete

description). The matched filter time series output, for a given filter, will be the

inverse Fourier transform of this (see Abbott et al., 2004b [40] for an application of
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this to inspiral searches), giving a real time series

x(t) = 4<

[∫ ∞
0

d̃∗(f)h̃(f)

Sn(f)
e2πiftdf

]
. (4.6)

The signal-to-noise ratio S/N of this output is then given by ρ(t) = |x(t)|/σ, where

σ2 = 4

∫ ∞
0

|h̃(f)|2

Sn(f)
df (4.7)

is the filter variance. For a template exactly matching a signal present in the data the

filtering will be optimal in the sense that the expectation value of 〈d|h〉 (=S/N) will

provide the signal amplitude A exactly. If the template does not match the filter it

will be non-optimal and the expectation value will be mis-matched from A by a factor

of 〈s|h〉.

Template bank generation

In a search for a signal in noise we clearly want to use the optimal filter i.e. the

one which most closely matches the signal shape. A continuous template bank will

be computationally impossible, but we still need enough templates to ensure that the

mis-match between adjacent templates will not seriously decrease the effectiveness of

the search. Following [114], we see that given a vector of intrinsic signal parameters λ,

the match between two templates with parameters λ and λ + ∆λ is defined as

M(λ,∆λ) = 〈h(λ)|h(λ + ∆λ)〉. (4.8)

Expanding this as a power series to second order in ∆λ about ∆λ = 0 leads to the

metric interpretation of the mis-match between templates

1−M = gij∆λ
i∆λj, (4.9)
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where the metric gij is defined as

gij(λ) = −1

2

(
∂2M

∂∆λi∂∆λj

)
∆λk=0

. (4.10)

This is the square of the proper distance between two templates ds2. Substituting the

decay constant τ with the ring-down quality factor Q = τπf we have λ = {f,Q} giving

mis-match (from the LALapps ring-down code documentation [115]) of

ds2 =
1

8

[
3 + 16Q4

Q2(1 + 4Q2)2
dQ2 − 2

3 + 4Q2

fQ(1 + 4Q2)
dQdf +

3 + 8Q2

f 2
df 2

]
(4.11)

Equation 4.11 can be used to place templates in our parameter space for a given

value of the mismatch. From [114], assuming closely spaced templates in an N -

dimensional hypercube we get

ds2 = gij∆λ
i∆λj = N(d`/2)2, (4.12)

where the proper length d` forms the sides of the hypercube. If we work in terms of

log f , the metric gij only depends on Q, making the number of dimensions in parameter

space N = 1. For a range of Qs starting at Qmin templates can be placed at intervals of

d log f = dφ = d`/
√
gφφ across the range of φ. The value of Q can then be incremented

by dQ = d`/
√
gQQ and the placement of templates in φ repeated. This can be seen in

figure 4.1 where each point represents a template. It can been seen that the coverage

of the Q range can be quite coarse while that for f is quite fine meaning that there

will still be a quite fine coverage of τ .

There is obviously a trade-off between the number of templates used (which will

increase for smaller mis-matches and larger parameter ranges) and the speed of the

search, so the value of the mis-match needs to be chosen with this in mind.

Code to perform a ring-down search using matched filtering with a template bank as

described above has been developed in LALapps [83] in the main by Jolien Creighton.

This search was initially intended to look for black hole ring-downs after mergers as in
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Figure 4.1: Template bank for our ring-down parameters over the range f(Hz) = [1000, 1005] and
Q = [1000, 10000] with a mismatch of 1%.

Creighton (1999) [25], where the values of Q and f can be used to imply parameters

of the black hole. The simple ring-down template also applies to our case of neutron

star ring-downs, so we are able to make use of the code for these purposes.

4.2.2 Bayesian evidence based search

Bretthorst (1988) [3] looks into the problem of parameter estimation for ring-down

signals in noise, with the frequency and decay time being the parameters of interest.

He derives a joint posterior probability distribution for the ring-down frequency and

decay time of

p(f, τ |D, I) ∝
[
1− R(f, τ)2 + I(f, τ)2

Ncd̄2

] 2−N
N

, (4.13)

where

R(f, τ) =
N∑
i=1

di cos (2πfti)e
−ti/τ , (4.14)

I(f, τ) =
N∑
i=1

di sin (2πfti)e
−ti/τ , (4.15)

c ≈ 1

2

N∑
i=1

e−2ti/τ , (4.16)
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and

d̄2 =

∑N
i=1 d

2
i

N
, (4.17)

where di are the data points. The ring-down amplitude and phase (see equation 4.1)

have been analytically marginalised over using uniform priors, as has the unknown

noise standard deviation (using a Jeffreys prior) in a similar way to that described in

Chapter 2 for the pulsar parameter estimation, leaving a Student’s-t-like distribution.

This posterior only holds under the assumptions of no low frequency components in

the data, i.e. t � 1/f (as approximations are made in averaging sinusoids to zero)

and that there is a large data set, N � 1. The use of this as a parameter estimation

tool can be seen in figure 4.2, where a ring-down signal has been injected into noise

and the posterior pdf extracted using the above method. A comparison of this method
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Figure 4.2: The posterior pdfs for the ring-down parameters f and τ . The dotted black lines
represents the true signal parameters. The left-hand plot shows the joint pdf with probability contours.
The other two plots show marginalised pdfs for each parameter.

for parameter estimation of ring-down frequencies with that of more classical Fourier

power spectrum and periodogram analyses is given in [3] and can be seen in figure 4.3.

Figure 4.3 shows how the Bayesian estimation technique can be far superior in pinning

down the parameter value over more traditional methods.

This parameter estimation can be extended into a potential search for ring-down

signals in which the parameter values are not considered important but the evidence of

any signal being present is wanted. By marginalising over the range of the frequency
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Figure 4.3: A comparison of the posterior pdf from equation 4.13 marginalised over τ , and the
periodogram and power spectrum for a ring-down signal (with amplitude = 1, f = 3519.9 Hz and
τ = 0.11 s) injected into Gaussian noise with σ = 1.

and decay time parameters a single value is obtained called the evidence,

evidence =

∫ fmax

fmin

∫ τmax

τmin

p(f, τ |I)p(D|f, τ, I)dfdτ, (4.18)

which tells us something about the presence or absence of any ring-down signals in the

given range. To evaluate its efficacy some comparison is needed between the value of

the evidence when only noise is present to that when a ring-down signal is present.

To get an idea of how this algorithm performs when a signal is not present we

have performed extensive simulations on 1000 realisations of Gaussian noise. This

used a uniformly placed 4001 × 21 grid in f(Hz) = [1000, 4000] and τ(s) = [0.05, 0.5]

to evaluate the posterior and perform the marginalisation, where the grid size was

chosen as the best compromise between computational speed and parameter extraction

accuracy from many trial grids. A plot of the evidence values obtained can be seen in

figure 4.4. This has a mean value of log evidence = 5.97 and shows log evidence values

extending to ∼ 8.5.
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Figure 4.4: Evidence of a ring-down signal in 1000 independently realised one second (sampled at
16384 Hz) sets of Gaussian noise.

4.3 Ring-down search from 27th December 2004 γ-

ray burst of SGR 1806-20

4.3.1 Soft γ-ray Repeaters

Soft γ-ray repeaters (SGRs) are seen as sources of short, extremely high luminosity

bursts of soft spectrum γ-rays. Their periods of burst activity can be sporadic with

extremely active periods followed by lengthy quiet periods. SGRs are also seen as

quiescent soft X-ray sources. There are currently four (possibly five) SGRs known, a

review of which can be found in Hurley (2000) [116]. The collocation of SGRs with

supernova remnants has lead to the hypothesis that they are a class of very highly

magnetised neutron stars called magnetars. Such stars have dipole magnetic fields of

B ∼ 1014−1015 G (cf. ∼ 1012 G for normal pulsars and ∼ 108 G for millisecond pulsars),

which means they will quickly spin-down via magnetic breaking.

SGRs are occasionally seen to emit giant flares of γ-rays, with thousands of times

the luminosity of ordinary bursts and with harder spectra. The identification of these

short duration (∼ 0.2 second) γ-ray bursts (GRBs) with SGRs provides a possible

source of some classical GRBs without any known counterpart. The cause of such

giant bursts is discussed in Hurley et al. (2005) [117] and is thought to be a result

of some extreme instability in the magnetar involving crustal breaking and magnetic
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reconnection, with huge amounts of energy coming from the untwisting of the magne-

tosphere. Such reconfigurations of the crust and magnetic field could set up oscillations

in the star (see Ioka, 2001 [118] and Kokkotas and Schmidt, 1999 [111]) which will be

damped by emission of gravitational waves. This makes giant flares from SGRs a po-

tential target for our ring-down search. Various methods of energy release to power the

flares and possible gravitational wave emission are discussed in Horvath (2005) [119].

On 27th December 2004 the most luminous SGR flare yet seen was observed from

SGR 1806-20 [117]. It was observed by five separate space-based γ-ray detectors and

such was its intensity that it briefly saturated them all. The flare lasted ∼ 380 seconds

with an initial 0.2 second spike. The event information is shown in table 4.1. Although

Table 4.1: The parameters of SGR 1806-20 and the giant flare.

SGR 1806-20

α 15h56m37s

δ −20◦13’50”
Distance ∼ 15 kpc
Burst time 21:30:27 UTC 27-Dec-2004
Burst duration 200 ms

the time of this burst was outside of any LSC science run period, both the LIGO

H1 detector and Geo 600 were taking data at the time. This gives the interesting

possibility of performing a targeted search for gravitational waves from this source.

A search for gravitational waves from quasi-normal modes of this source has already

been performed using data from the AURIGA bar detector (see Baggio et al., 2005 [4]).

It had a limited bandwidth of ∼ 100 Hz around their detectors most sensitive frequency

of 900 Hz (below the expected f -mode frequency range). This search performed a time

convolution of the data with the ring-down signal model for 10 s around the peak of

the burst over a range of f values spaced at ∆f = 1/(2τ) = 5 Hz, where τ = 100 ms,

and with time steps ∆t = 201.5 ms. This method did not make use of optimal matched

filtering. This gave an upper limit across the frequency range on the total gravitational

wave energy of around 10−5 M�c
2.

We can obtain an upper limit estimate on the gravitational wave amplitude from
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this burst using the equations in §4.1.2. In Woods et al. (2005) [120] an upper limit on

the change in frequency of SGR 1806-20 during the GRB is given as ∆f < 2×10−5 Hz.

Taking this value and assuming the model of angular momentum exchange between

interior and crust we can get an upper limit on the energy release of ∆E < 1034−1036 J

(for the range of Ωlag), which is very similar to that for large glitches of the Vela

pulsar. With a distance to SGR 1806-20 of ∼ 15 kpc, and again assuming all the

energy goes into exciting f -modes and using equation 4.4 we get an upper limit range

of heff < 10−23−10−24. From the discussion in [117] breaking of the crust, and therefore

a change in the moment of inertia, seems a more likely mechanism of energy release

to set up stellar oscillations. With a period of 7.48 s an upper limit on the relative

change in moment of inertia can be calculated giving an energy release of ∆E < 1035 J

and a gravitational wave amplitude upper limit on heff < 5×10−24. These energies are

still orders of magnitude less than that given off in γ-rays at the peak of the flare with

E ≈ 3.5×1039 J [117]. The energy for which can be explained by the release of energy

stored in the twisted magnetic field (Etwist ∼ 1039 J) via magnetic reconnection.

4.3.2 A preliminary search

First look

The first thing we did upon receiving information about the 27th December 2004 GRB

was to look by eye at the data for any obvious signal. The data from 20 s around the

time of the burst, high-pass filtered at 900 Hz, are shown as a time series in figure 4.5

and a spectrogram in figure 4.6. No obvious glitch is seen in this data above the level

of the noise floor.

Szabolcs Marka and Peter Kalmus [121] have also been looking at this data for a

possible low frequency burst, but for our quasi-normal mode search the low frequencies

have been filtered out. In the low frequency region the Geo 600 data does not really

help as its sensitivity below ∼ 1000 Hz is much worse than H1.
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Figure 4.5: The time series of data from H1 and Geo 600 for 20 seconds around the time of the 27th

December 2004 GRB. The data has been high-pass filtered at 900 Hz with an 8th order Butterworth
filter.
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Figure 4.6: The spectrogram of data from H1 and Geo 600 for 60 seconds around the time of the 27th

December 2004 GRB. The data has been high-pass filtered at 900 Hz with an 8th order Butterworth
filter and the strength of the Geo 600 calibration lines has been suppressed for contrast.
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Matched filter search

After the initial examination of the data we have made use of the LALapps ring-down

code (as described in §4.2.1) to search for signals in the data at the time of the GRB.

This work was performed with the help of an undergraduate summer student Edward

Bloomer as part of a Robert Cormack Bequest Scholarship. The ring-down code takes

in several parameters to perform the search which have been chosen with our particular

targets in mind. These were: f(Hz) = [1000, 4000], Q = [1000, 10 000], φ0 = 0, high-

pass frequency = 800 Hz, and a maximum template mismatch of 10%. This produces

a template bank of 26 023 filters spaced as is shown in figure 4.7. The code will then
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Figure 4.7: The template bank for the ring-down search with f(Hz) = [1000, 4000], Q =
[1000, 10 000], and a maximum mismatch of 10%.

output triggers if any of the templates match the data above a certain S/N threshold.

The level of this threshold needs to be set carefully as even Gaussian noise will give

a underlying level of template matching. To determine the threshold to use for our

data around the time of the GRB, we ran the code on simulated data and data from

periods off-source, giving us a background level. Running the code over 120 seconds of

simulated Gaussian noise (using the low S/N threshold of 1), gives us an idea of the

background distribution of events picked up by the matched filtering (see figure 4.8).

It can be seen from figure 4.8 that there is a clustering of events around an S/N of 3,
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Figure 4.8: The number of triggers at given S/N and frequency for the LALapps ring-down code
using 120 seconds of Gaussian noise.

with a tail extending out to ∼ 7. This shows that even in completely Gaussian noise

the code gives a background of events and a threshold of S/N > 7 is probably needed

unless the events can be vetoed in some other way.

Simulated white noise does not necessarily reflect the true nature of our data which

can contain many artifacts, either continuous, like instrumental lines, or transient in

nature. The same search was therefore performed (using the parameters given above

for the simulated noise) on 120 s of data approximately half an hour after the GRB.

Here the threshold has been increased to an S/N of 5 to avoid the large number of

events around S/N ≈ 3. For H1 the data is uncalibrated and whitened, and as the

calibration lines lie below 1000 Hz they are out of our band [88], meaning that many

spectral features will be suppressed (see figure 4.9). This background analysis produced

a total of 2814 events with S/N > 5 with a maximum S/N of 7.2 (see figure 4.10). This

is at a similar level to the analysis on Gaussian noise. The ring-down code is sensitive

to lines in the spectrum, with lines at ∼ 1040 Hz producing an excess of events as well

as the strongest events (see figure 4.11). As certain events are from a known origin,

i.e. the line, it is perhaps possible to veto them and therefore bring down our final

choice of S/N cut for the results. A histogram comparing the S/N of events with

those thought to be caused by the line feature (between 1025-1050 Hz) removed over

the histogram of all events is shown in figure 4.12. It can be seen that the strongest
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Figure 4.9: The uncalibrated spectrum of H1 (in ADC units) for 60 s from GPS 78822000, high-pass
filtered at 800 Hz.
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Figure 4.10: The distribution in S/N of events from the matched filtering algorithm for 120 s of H1
data from GPS 788220000.
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Figure 4.11: The distribution in frequency of events from the matched filtering algorithm for 120 s
of H1 data from GPS 788220000.
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events (S/N > 7) appear to be caused by the line feature, and with these removed

the maximum S/N is 6.8. The fact that the line has been removed in post-processing

(rather than attempting to filter it out in the data before analysis) means that it is

impossible to tell if the events were really triggered by the line or not, so it is safest to

use all the triggers for our S/N threshold rather than removing them in a semi-ad-hoc

way. Figure 4.12 also shows that, other than the obvious line-like features, the S/N is

fairly level across the frequency range, meaning that it is probably best to use a single

S/N threshold cut across all frequencies. It can been seen in figure 4.13 that there are
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Figure 4.12: On the left is a histogram of S/N for events with and without removing those between
the frequencies of 1025-1050 Hz. On the right is the S/N against frequency where the excess events
around the ∼ 1040 Hz lines can be seen.

three distinct amplitude bands of events, which relate to the three bands of templates

over Q seen in figure 4.7. The band of events with the smallest amplitude relate to

those with the largest Q values, with successively smaller Qs giving successively larger

amplitude events.

The Geo 600 data being used is already calibrated and contains many large spectral

features within our search band which dominate the spectrum (see figure 4.14). Again

the matched filtering code was run over a 120 s section of data away from the GRB

time to gauge a background level of events and their S/Ns. This produced 13 589

events with an S/N > 5 (see figure 4.15), compared with the 2814 found in the H1

data, suggesting that the Geo 600 data is far less clean, as can indeed be seen from

the spectrum. Figure 4.15 also shows a large cluster of events around GPS 788220100

suggesting some disturbance in the data. The tail in events extends further than that
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Figure 4.13: The calibrated strain amplitude of events against frequency for 120 s of H1 data from
GPS 788220000.
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Figure 4.14: The noise spectral density for Geo 600 estimated from ten 4 s Hanning windowed
segments with 50% overlap from GPS 788220060.
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Figure 4.15: The distribution in S/N of events from the matched filtering algorithm for 120 s of
Geo 600 data from GPS 788220000.

for H1 with a maximum S/N of 10.5. The large lines in the spectrum below 2000 Hz

are picked up strongly by the matched filters (see figure 4.16) with the disturbance at

around GPS 788220100 contributing a significant amount of events in the upper half

of the frequency range. The larger number of lines in the spectrum makes it harder

to veto out with confidence triggers that they were caused by the lines, although it is

obvious from figures 4.16 and 4.17 that the largest S/N triggers are caused by a line

at ∼ 1176 Hz. From these background studies we can set thresholds on the S/N at
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Figure 4.16: The distribution in frequency of events from the matched filtering algorithm for 120 s
of Geo 600 data from GPS 788220000.

the time of the glitch, which we will take as > 8 for H1 and > 11 for Geo 600.

After calculating a background threshold the matched filtering code was then run

over the 120 s surrounding the time of the glitch, using the same parameters as for the

background and simulated noise studies. This provided 12 537 events for Geo 600 and

2126 events for H1 with S/N > 5. These numbers are similar to those found on the
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Figure 4.17: The S/N against frequency for events from the matched filtering algorithm for 120 s
of Geo 600 data from GPS 788220000.

background segments. No events rise above our thresholds to give us any possible astro-

physical triggers. In H1 the strongest events appear approximately 4.3 seconds before

the time of the GRB, although these appears to be associated with the ∼ 1040 Hz line

feature becoming particularly strong around this time (see also the evidence analysis

below).

The most obvious veto for non-gravitational wave signals is coincidence between

detectors. Any gravitational wave signal strong enough should be visible in data from

multiple detectors, with coincidence between arrival times and amplitudes. This is

most useful, and allows the the most stringent thresholds to be set, when the detectors

are of comparable sensitivity and are coaligned. For the detector pair we have, the

Geo 600 data is approximately an order of magnitude less sensitive than H1, meaning

that any signal visible to both would be very strong in H1. The fact that the detectors

are not coaligned also means that they have different responses to the gravitational

wave polarisation, which additionally complicates things. This factor will reduce the

effective gravitational wave amplitude for all except a source optimally positioned di-

rectly above the plane of the detector. The polarisation of any signal is unknown, so

any coincidence threshold will have to be set with this reduction factor in mind for

the less sensitive detector. In our search for gravitational waves from SGR 1806-20
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we know the source position and can therefore calculate the detectors’ responses to

different source orientations. For Geo 600 the factor
√
F 2

+ + F 2
× = 0.84 and for H1 it

is 0.50.

In our case where no triggers are seen above the set S/N threshold no coincidence

analysis is possible. If we were to reduced our threshold too far however, say to the

S/N > 5 used in the background analyses, it would become difficult to use such a

coincidence veto with the large number of events seen leading to many accidental

coincidences.

Many events will be produced by artifacts which do not in fact resemble our ex-

pected ring-down waveform, as seen with the events from instrumental lines, so some

method of vetoing these is useful. In the matched filter search for inspiralling binaries

a χ2 based discriminator is used to veto such events [122]. The evidence based search

below was originally conceived as a possible waveform consistency veto, with the hope

of combining the matched filter results and evidence searches.

Evidence search

This method is most efficient if the ring-down signal begins at the start of the data

section being studied. It would take too long computationally, and be unnecessary, to

implement such a search from the start of each consecutive sample at 16 384 Hz. A

time step of 1
8

s and a data length of 1 s was chosen as a reasonable duration to catch

the shortest events and span the longest events. The overlap between consecutive data

segments (0.875 s) means that the evidence for each is not truly independent and could

be correlated.

As with the matched filtering search we want to gauge some background level for this

method. It was seen in figure 4.4 that Gaussian noise will give a certain background

level, but again real data needs studying. For this purpose the same section of off-

source data as used in the matched filter search was studied. The data for both H1

and Geo 600 was high-pass filtered to remove low frequency noise before applying the

evidence finding algorithm. The first evidence value from each data segment analysed
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was ignored due to contamination from the filter response, although overlapping of data

in the analysis meant that all the time was covered. The evidence for 4776 overlapping

segments from H1 (covering 597 s) from GPS 788220000 can be seen in figure 4.18. The
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Figure 4.18: The evidence of a ring-down signal in H1 data from GPS 788220000 for 597 s.

H1 data was uncalibrated and whitened so certain spectral features were suppressed.

As with the test on Gaussian noise figure 4.18 shows the value of log evidence clustering

around 6, with a mean of 6.55. For real data a larger tail to the evidence is present

suggesting more spectral contamination within the frequency band. This can be seen

when looking at the posterior pdf of frequency at times when the evidence is highest,

for example at the time of the maximum value of log evidence = 17.9. From the studies

on Gaussian noise such high evidence values would suggest the presence of a signal,

but figure 4.19 shows that this value is almost entirely due to the spectral line at

f ∼ 1045 Hz, as seen in the matched filter studies above. This was confirmed as a

spectral line feature, and not an actual signal, by studying spectra from periods long

before the GRB occurred. This means that without removing this spectral feature a

far higher threshold on the evidence than is suggested by Gaussian noise studies is

needed. We will set a threshold of log evidence > 20 for the data around the GRB.

The search performed on the 120 s of data around the time of the GRB produces

evidence values similar to those in the background (see figure 4.20). There are spikes

in the evidence which, as with the background data, are caused by the spectral lines,
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Figure 4.19: Comparison of the posterior pdf of frequency from the Bayesian method for the data
giving the highest background evidence value and an FFT of the same data.

like the matched filter events. The highest value of log evidence = 18.3 occurs ∼ 4.3 s

before the GRB, at the same time as the highest S/N matched filter event, suggesting

the same source. The frequency posterior and spectrum have been examined showing

the f ∼ 1045 Hz spectral line to be particularly strong at this time. None of these

spikes crosses our log evidence > 20 threshold.

−50 0 50
5

10

15

20

time from GPS 788218240

lo
g

 e
vi

d
e

n
ce

6 8 10 12 14 16 18

10
0

10
1

10
2

log evidence

Figure 4.20: The evidence of a ring-down signal in H1 data from for 120 seconds around the GRB
time of GPS 788218240 s.

Using studies of the efficiency of this algorithm it still might prove useful in vetoing

H1 triggers above the original matched filter S/N threshold of 5. To do this a simulation

has been performed in which 4000 ring-down signals of varying amplitude, frequency
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and decay time have been injected into Gaussian noise and the S/N and evidence

calculated. These signals have a start time that varies randomly between 0 − 1
8

s to

reproduce the time step between consecutive segments used in the actual analysis. The

evidence as a function of S/N is plotted in figure 4.21. The flat roof on the evidence is

an artifact of the evidence code, which sets the posterior value equal to e230 (≈ 10100)

if it is greater than this, due to it otherwise getting outside the dynamic range allowed

by double precision. We need to set some evidence limit for which we believe the code
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Figure 4.21: The evidence for ring-down signals against the signal S/N for 4000 simulated ring-down
signals injected into Gaussian noise.

has truly seen the signal. From our studies on Gaussian noise with no signal injected

(see figure 4.4) we can see that evidence values can reach out to nearly 108.5 with a

mean of ∼ 106, so conservatively we can say that we see a signal if the evidence is

> 1010. From figure 4.21 this means that we see all the events with S/N > 5.63. Using

this evidence threshold we can plot the efficiency of the search (see figure 4.22) and see

that above an S/N of 6 we see all triggers and below an S/N of 2.5 we see no triggers.

It has been seen that lines in the spectra can produce a large evidence value even

though they are not ring-downs. To estimate how this could effect the analysis we have

done a simulation by injecting 2000 sinusoids with random frequency and amplitude

parameters into Gaussian noise. The evidence against S/N is plotted in figure 4.23

and shows that, using our evidence threshold of above 1010 being a signal detection,

all sinusoids with S/N & 6.7 will be picked up. This shows that the evidence as it is
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Figure 4.22: The efficiency of the evidence search for different signal S/Ns.

currently implemented, using short 1 second stretches of data, is not promising as a

method of distinguishing ring-downs from lines, and possible extensions to this end are

discussed below.
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Figure 4.23: The evidence for ring-down signals against S/N for 2000 simulated sinusoids injected
into Gaussian noise.

Detector data can also contain many transient δ-function like events, so a simulation

has been performed to see whether these trigger our evidence algorithm above the level

of Gaussian noise. 2000 δ-functions have been in injected into Gaussian noise with a

range of amplitudes (see figure 4.24) and it can be seen that all evidence values are

well below our evidence threshold of 1010 and cover a very similar range to those from

pure noise (see figure 4.4). Such signals do not seem to affect our algorithm in any
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way. In the future other types of signal such as ring-ups or chirps will be tested.
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Figure 4.24: The evidence for ring-down signals against S/N for 2000 simulated δ-functions injected
into Gaussian noise.

For Geo 600 the data is calibrated and contains very strong calibration lines within

our band of study. Without the removal of these lines it makes our evidence studies

almost useless as they completely swamp the evidence. This can be seen in the fre-

quency posterior pdf for a section of Geo 600 data (see figure 4.25) in which almost all

the probability is at the frequencies of the spectral lines shown in figure 4.14. These
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Figure 4.25: The frequency posterior for ring-down signals in a section of Geo 600 data.

excessively large probability values also make it hard to calculate a true value of the

evidence as they will be out of the range of the double precision variable in the code.
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For all the Geo 600 data analysed this limit on the evidence is reached just from the

spectral lines and can therefore tell us nothing about the presence of ring-down signals.

These studies show that the Bayesian evidence method, as currently implemented,

does not sufficiently discriminate against non-decaying sinusoids. In the absence of

there being any better alternative hypothesis the code will take sinusoids as the nearest

thing to a ring-down signal. In our implementation this happens because of the short

1 s time of the data segments being used. It was shown that for δ-functions, which are

essentially very short ring-downs, the 1 s time stretch is long enough by far that the

probability that they are within our range of τ becomes very small. If the segment

times were increased then the probability of long duration sinusoids being within our τ

range should also be small, although a very preliminary test shows that this timescale

needs to be � 100 s.

There are several possible options which could be implemented in the future to help

make the algorithm more robust against non-ring-down signals. One way, as just stated,

would be to increase the length of data segments. This could become computationally

expensive, although if the marginalisation can be performed analytically, or at least

approximated analytically, then this would become far more practical. Another obvious

method is to use notch filters to remove known instrumental lines e.g. calibration lines,

suspension violin modes. A more complex method would be to extend the Bayesian

analysis to include non-decaying sinusoids in some way that they can be excluded. This

would mean that a number of sinusoidal models, N , could be included

y(t) = A sin (2πft+ φ0)e−(t−T0)/τ +
N∑
i=1

Bi sin (2πfit+ φi), (4.19)

which would provide a better model for any line features to assume, leaving the ring-

down model free to estimate the presence of ring-down signals alone. Along similar

lines you could instead have N ring-down models and veto any with values of τ outside

our range, which would include non-decaying sinusoids with τ =∞, or transient delta

functions with τ → 0. Or a model withN1 ring-downs andN2 sinusoids. The parameter

T0 could also be searched over, eliminating the need for large numbers of overlaps
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between successive data segments. This could become computationally expensive for

data with many lines and might need to be implemented using an MCMC approach.

This would be similar to a method being developed to estimate the large number white

dwarf binary system in LISA data [123].

4.3.3 Results

The aim of this search was to find out whether or not any ring-down gravitational

wave burst was seen associated with the 27th December 2004 GRB and in that the result

is negative. We are however, able to set an upper limit on gravitational wave emission

by making use of our S/N thresholds. These results only make use of the matched

filter search.

For Geo 600 data no triggers were seen above our S/N threshold of 11 across our

entire frequency range, so using the antenna response of 0.84 we can produce an upper

limit on the effective strain from our source as given by figure 4.26. For the H1 data no
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Figure 4.26: The upper limit on effective amplitude of ring-down signals from SGR 1806-20 using
Geo 600 data shown along with an estimate of the noise spectral density.

triggers were seen above our S/N threshold of 8 across the entire frequency range, so

using the antenna response of 0.50 we can produce an upper limit on the effective strain

as given in figure 4.27. The H1 data gives the most stringent upper limits with them

ranging from h0 ∼ 10−20 at the low frequency end to h0 ∼ 10−19 at the high frequency
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end. The S/N , and therefore amplitudes, will have an error of about 5% from the 10%

filter mis-match used in the matched filtering. These results are plotted in terms of an

upper limit on the energy emitted (via equation 4.4 using r = 15 kpc) in figure 4.28.

This gives an upper limit on the energy emitted ranging from E ∼ 2×10−6 M�c
2 at the
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Figure 4.27: The upper limit on the effective amplitude of ring-down signals from SGR 1806-20
using H1 data shown along with an estimate of the noise spectral density.

low frequency end to E ∼ 5×10−4 M�c
2 at the high frequency end (see figure 4.28).

The results at low frequency beat those given in Baggio et al. (2005) [4] although

do not quite extend into their frequency range. The results are still about 3 orders

of magnitude greater than the upper limit from spin-down argument set above with

heff < 10−23, but are into the range of amplitudes expected from new born neutron

stars. Thus we are starting to get into the range of some interesting astrophysics.

Here we have performed and described only a preliminary analysis of this data, with

much work still needed. The data can be made more effective for this study with some

line removal strategy. A background coincidence analysis can be performed to attempt

to reduce the S/N threshold. The matched filter search and evidence search will also

be combined to provide increased confidence in the result. Therefore a more detailed

analysis of the data could potentially push down the upper limits stated above.
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Figure 4.28: The upper limit on energy of ring-down signals from SGR 1806-20 using H1 data.

4.4 Other pulsar ring-down studies

4.4.1 Crab and Vela pulsar glitches

The Crab and Vela pulsars have both glitched during periods when at least one inter-

ferometer has been taking data. For the Crab pulsar these glitches have been on 3rd

March, 6th September and 12th November 2004 [73]. For the Vela pulsar a glitch with

a fractional change in period of 2.1×10−6 was observed on 7th July 2004 [124]. At

present this data has yet to be dug out and analysed and although a detection is very

unlikely these could provide some interesting upper limits.



You win again, gravity.

Captain Zapp Brannigan - Futurama

Chapter 5

Future work

The present status of the ongoing search for gravitational waves is that no evidence has

yet been seen for their direct detection. Despite this pessimistic sounding statement we

are still advancing ever closer towards the first direct sighting. In the meantime we are

reaching the point where interesting astrophysics can be gained from our null results.

Upper limits on various emission mechanisms and event rates can begin to constrain

theoretical models of sources and population studies.

This thesis has given the current status of the search for gravitational waves from

a selection of known neutron stars via two different mechanisms. This, however, is not

the end state of each search, with much more work continuing in the future.

5.1 The known pulsar search

One of the first things to be noted is that here we have searched for 93 known pulsars,

this being the number for which adequate timing solutions were available. There are

currently 150 pulsars within our band, with more being discovered from radio surveys

on a regular basis. This will increase our search sample and hopefully provide some

candidates with more promising detection possibilities i.e. young pulsars with high

spin-down rates. We are in close contact with radio astronomers to get the most up-to-

date timing solutions possible, although obviously timing observations from the time

of a science run can only be used in a post-run analysis. As we have seen from their
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inferred spin-down upper limits the known radio pulsars are not the best candidates

for gravitational wave detection. There are, however, several pulsars only seen in X-

rays which might provide better candidates, for example PSR J0537-6910 described

in §3.4.7. With several space-based high energy telescopes (the Rossi X-ray Timing

Explorer, Chandra, XMM-Newton and INTEGRAL) currently operating, X-ray pulsars,

mainly those in LMXB systems, are becoming a far more studied source. These provide

more enticing candidates, with conditions for sustaining gravitational wave emission

being more favourable. Other enticing places to search are SNRs, with Veitch et al.

(2005) [64] developing a search for a possible remnant of SN 1987A. Due to the many

X-ray pulsars and other potential sources having far less well defined, or unknown,

parameters than many radio pulsars, a search as performed in this thesis would be

inadequate. The MCMC search for gravitational waves from a SN 1987A remnant in

[64] could, for instance, be extended to search over binary parameters and used in

LMXB searches.

The search algorithm, as it is currently used by performing a single fine grained

heterodyne at the exact pulsar phase, is computationally fairly slow. The main speed

restriction on this is having to compute the Doppler correction to the SSB (and binary

system barycentre for some) for every data sample. This will only get slower as more

pulsars are included. The speed of the algorithm also becomes a problem if the data

has to be re-analysed many times, for example if certain data segments were missed

or new calibration data is used. One possible method to reduce the computational

burden of the search, and more easily allow repeated analysis, would be to return

to a two stage heterodyne process similar to that used in the S1 pulsar search [33].

This performed an initial heterodyne at the pulsar frequency, but did not include

spin-down or Doppler corrections, allowing the data to be massively down-sampled

and filtered before the finer corrections were applied in a second heterodyne. There

are some limitations on this, in that the down-sampling and filtering must be able to

accommodate the frequency range drift caused by Doppler motions, with particular care

for binary pulsars, although going from 16 384 Hz to 1 Hz would still provide plenty of
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range. In practice a less crude initial heterodyne using as many parameters as possible

can also be used. This would mean that during the course of a science run the initial

heterodyne can still be performed using older timing solutions, and then the second

stage heterodyne used to perform additional phase corrections when up-to-date timing

information is made available - this is essentially what is done for the Crab pulsar with

regards to timing noise corrections.

The heterodyne approach may well be phased out in the longer term. When there

are many pulsars across a wide range of frequencies a more sensible approach may

be to use Fourier transforms of the data, which essentially provide a fixed frequency

heterodyne over all frequencies. Short time baseline Fourier transforms (SFTs) of the

data for LIGO and Geo 600 are already produced for the frequency domain pulsar

searches and could be used for our purposes. The SFTs need to be short enough that

the source’s signal is not spread out over many frequency bins due to Doppler/spin-

down effects. Under such an approach the exact frequency of the source would be

calculated and extrapolated between successive frequency bins. This cuts down the

problem computationally, as the SFTs are pre-produced and the frequency only needs

to be calculated at the rate of the time baseline of the SFTs.

The marginalisation in equation 2.26 used in the Bayesian parameter estimation

currently numerically sums over the nuisance parameters. The grid over which the

marginalisation takes place is limited by computer memory restraints, so the integration

is only approximate. The possibility of performing these integrals analytically needs

to be explored.

5.2 The ring-down search

The ring-down search presented in this thesis is in a very preliminary state and was

more about outlining and testing the algorithms than producing a full and thorough

search pipeline. Much of what needs to be done is outlined at the end of Chapter 4.

The particular case of the search for a signal from the 27th December GRB needs a

more thorough study of event background rates and the coincidence analysis. When
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the evidence based search becomes more stable against spectral lines it will be provide a

good complementary strategy to the matched filtering search. There are other glitches

from the Crab and Vela pulsars to be searched for.

With S5 starting and providing an almost continuous data set for a year or so, it

provides the opportunity to catch as many glitches as we can. With pulsars such as

the Crab, Vela and J0537-6910 being prolific glitchers there should be several events

during the run. As with the known pulsar continuous wave search, the timing for these

glitches can only be obtained post-event. This will again need close cooperation with

those observing the pulsars to obtain accurate information as soon as possible. Glitches

seen in accreting X-ray pulsars provide an excellent target, with fractional frequency

changes seen up to ∆ν/ν ∼ 3×10−4 for one such object (SAX J2103.5+4545) [125]

being two orders of magnitude above the maximum seen in Vela glitches. Another

good accreting X-ray potential target is KS 1947+300 which had a glitch of fractional

frequency change at ∆ν/ν ∼ 4×10−5 [126].

5.3 S5 and beyond

The fifth science run (S5) of the LSC interferometers started officially on 4th November

2005, with H1 and H2 to start with, and L1 and Geo 600 joining later. This run

marks the start of full time operation of the interferometers at approximately their

design sensitivities. This should give sensitivities to pulsars at around that given in

figure 3.10, and allow us to beat the spin-down upper limits for at least the Crab pulsar

by approximately an order of magnitude.

Towards the end of the decade LIGO will be decommissioned and upgrades to

Advanced LIGO installed. This should give access to many more potential sources

and beat the spin-down limits for many pulsars. Possible upgrades to Geo 600 to tune

it to the high frequencies could provide a good window to look at oscillation modes

of neutron stars, with possibilities extending beyond the fundamental f -mode. This

would perhaps be able to spot high frequency oscillations from newborn neutron stars

to a large distance.
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Hopefully gravitational wave astronomy will soon be able to provide much needed

insight into the structure and nature of neutron stars, which is currently open to much

speculation. This will be complimentary to electromagnetic studies, but should provide

a wealth of unique information.
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