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Abstract

Alcohol misuse in Scotland is a major issue which is extremely detrimental

to the health of the population and the economy (Donnelley (2008)). This

thesis aims to explore the extent of alcohol-related health risks in Scotland at

a finer geographical scale than previous research. A major objective of this

research is to geographically map alcohol-related health risks in Scotland for

males and females separately.

The Scottish data zone geographical areas are used in this study. These

areas split Scotland into 6505 small sections each with a population of ap-

proximately 500-1000 people where this is reasonable. Details of all alcohol-

related deaths and hospitalistions in Scotland during years 2002 to 2006

inclusive recorded at the data zone level are available. Information regarding

area deprivation and at-risk population structure at the data zone level has

also been obtained. Indirect age and sex standardisation is used to work out

how many cases are expected to arise in each data zone.

Firstly, the standardised incidence ratio is explored as an estimate of the

relative alcohol-related health risk in each data zone in Scotland. This is

calculated separately for the combined male and female data, the male-only

data and the female-only data. The results are mapped and discussed for

each.

Further sections go on to use spatial Bayesian hierarchical modelling tech-

niques to estimate the relative alcohol-related health risk in each data zone

in Scotland. Again these methods are considered separately for the combined

male and female data, for the male-only data and for the female-only data.
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The basis for the models considered is the Besag, York and Mollié model

(Besag et al. (1991)). The models explore both uncorrelated and correlated

heterogeneity random effects. The correlated heterogeneity effects are fitted

by means of the conditional autoregressive (CAR) prior. Fixed effects for

area deprivation are also considered.

A further chapter explores a possible link between the location of single-

malt whisky distilleries and alcohol-related health risks. This is done by

incorporating the minimum Euclidian distance from the centroid of each data

zone to a distillery into the Bayesian models already fitted to the combined

male and female data.

The final chapter gives a discussion of the project limitations, difficulties

and possibilities for future research.
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Chapter 1

Introduction

Alcohol misuse in Scotland is a major issue which is extremely detrimental

to the health of the population and the economy (Donnelley (2008)). Studies

which attempt to increase public understanding in this area are crucial in the

fight to solve, or at least to reduce, this problem.

The analysis of public health data at a small geographic scale has become

possible due to the recent availability of local geographically labelled health

and population data. Such research has also been greatly encouraged by

improvements in the fields of computing and geographic information systems.

The results from studies which use small areas are more interpretable, less

susceptible to ecological bias and capable of exposing highly localised effects,

such as pockets of extreme deprivation. Conversely, small-scale studies often

need more complicated and sophisticated statistical techniques because the

data are often sparse due to low populations in each area.

1.1 Alcohol-Related Mortality in Scotland

Alcohol-related mortality is a major public health concern in Scotland

with large increases in recent years (McLoone (2003)). There are marked

geographical differences in such deaths, and the patterning is known to be

related to social deprivation (Leyland et al. (2007)). Some evidence of spatial
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clustering has been found for relatively large areas (census tracts - mean

population 35,000 (Emslie & Mitchell (2009))). This paper will explore the

spatial clustering of alcohol-related mortality in Scotland on a smaller scale.

Scottish alcohol mortality data is available for the years 2002-2006 at the

level of data zone, a small area with mean population 780. The small area

scale of this analysis should improve our understanding of the spatial con-

centration of such deaths. The relationship at data zone level between such

deaths and the Scottish Index of Multiple Deprivation will also be investi-

gated.

The poor effects of alcohol on Scotland’s health have been known for many

years. Several historic papers mention such problems, including Glaister

(1886), which prophesied that an increase in cholera cases would arise due

to ”the festivities of the New Year season” and later mentions the effects of

”holiday-drinking” on health.

Although Scotland’s poor health record has been extensively studied, it

cannot yet be explained. Scotland has notably worse health than the rest

of Britain and has one of the lowest life expectancies in Western Europe for

both men and women (Research Unit in Health, Behaviour & Change (2007)).

Scotland has comparatively high mortality rates in most age groups for causes

including lung cancer, strokes, accidents, suicide and alcohol-related mortal-

ity compared to England and Wales. Many mortality rates are known to be

related to deprivation. However, Scotland’s higher mortality rates do not

seem to be completely explained by its higher rates of socio-economic depri-

vation. This is known as the ’Scottish Effect’ and it is not well understood

(Research Unit in Health, Behaviour & Change (2007)).

1.2 Disease Mapping

Geographic monitoring of disease is fundamental to understanding spatial

patterns that can help to identify differences in disease prominence among
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different regions or communities.

Mapping disease incidence data is now established as a primary tool in

the analysis of regional public health data and there has been considerable

development in this area in recent years due to an increase in computer

capabilities.

Disease maps can be useful in many areas including public policy health

care and ecological studies. They allow the analyst to identify areas which

have unusually low or high values, highlight areas where cases seem to cluster

together or comment on any evident patterns in disease distribution.

The data which can be used ranges from individual cases of disease with

associated location to counts of disease cases within ceratin areas. The type

of data available greatly affects the path future analysis will take and what

statistical tools can be used. Various disease mapping methods are discussed

in Chapter 3.

The purpose of disease mapping studies is often to produce smoothed

maps of the risk of disease across the study region.

1.3 Objectives/Aims

This thesis aims to model alcohol-related health risks in Scotland spatially

on a finer geographical scale than previous studies such as (Emslie & Mitchell

(2009)). This will be done using Scottish data zone level of geography. It is

hoped that mapping the relative risks of alcohol-related mortality at a finer

resolution will increase understanding of the distribution of alcohol-related

deaths across Scotland.

Previous research by Emslie & Mitchell (2009) investigated whether the

kind of social environment which tends to produce higher or lower rates of

alcohol-related mortality is the same for both men and women across Scot-

land. The results of this study showed that, as was expected, alcohol-related

mortality rates for men substantially exceeded those for women, and that
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there was significant spatial variation in the rates for both sexes. However,

they found little spatial variation between male and female rates; in areas

where men had high rates women also tended to have relatively high rates.

This thesis hopes to examine the differences between alcohol-related mortal-

ity rates between men and women on a smaller area scale. This will be done

by creating disease maps of alcohol-related risk for the combined population,

males and females separately. It is expected that the risk pattern will be sim-

ilar in each, but by looking at each group separately it allows any potential

differences to be examined and if the chosen models for each have a similar

structure, it adds confidence to the model results.

It is also of interest to investigate whether or not single malt whisky

distilleries affect the risk of alcohol-related mortality. It is proposed to fit

further models to our mortality data to see if the proximity of a distillery

to the data zones explains some of the variation in alcohol-related mortality

risk.

Bayesian hierarchical models will be used to fit the relative risk models

and the program OpenBUGS 1 will be used to implement them.

1http://www.openbugs.info/w/
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Chapter 2

Data

2.1 Data Source and Descriptions

The types of data that arise in disease mapping exercises can vary from

the location of each disease case to counts of disease cases within small areas.

It is necessary to use information about the underlying population at risk

when trying to interpret any patterns that arise.

This section describes all data that was used in the project and where it

was obtained.

2.1.1 Scottish Data Zones Data

Scottish data zones are the geographical areas used in this study. The

data zone geography covers the whole of Scotland and splits it into 6505

areas. Due to the large number of these zones, which even split relatively

small villages, it is not practical to give each a meaningful name. Instead each

data zone is assigned an individual code, for example S01003313. Each data

zone was created by combining groups of Census output areas as at 2001;

these zones nest completely within Intermediate Geographies, which in turn

nest entirely within local authority boundaries, as illustrated by Figure 2.1
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obtained from the Scottish Government website 1. Where possible each data

zone has a household population of between 500 and 1000, groups together

output areas with similar social attributes and respects physical boundaries

such as rivers and lochs. More detailed information about the creation of the

Scottish data zones can be found in the report by Flowerdew et al. (2004).

The crucial feature of the data zones is that they are considerably smaller

than previous areas for which health statistics are routinely available, such

as postcode sector or ward, but are large enough to protect patient confiden-

tiality adequately. A further positive aspect of their small size is that they

are more effective at identifying small areas with particular social attributes,

such as pockets of extreme deprivation.

Various types of geographic information about the data zones were ob-

tained from the Scottish Neighbourhood Statistics (SNS) website 2 including

the physical boundary and centroid of each area. The boundary file allows a

data zone map of Scotland to be created using geographic information sys-

tem (GIS) software such as ArcGIS 3 and is used by WinBUGS/OpenBUGS

to create the required adjacency matrix (discussed later in Chapter 3). A

look-up table was also obtained from the SNS website which identifies the

Intermediate Geography and local authority in which each data zone lies.

2.1.2 Death and Hospitalisation Data

Although this project is concerned with mortality, due to the small pop-

ulation size of each data zone, it has been decided to look at both alcohol-

related deaths and hospitalisations due to alcohol. The conditions which are

considered to be related to alcohol consumption are set out by the General

1http://www.scotland.gov.uk/Publications/2005/02/20697/52626 (accessed on

02/11/09)
2http://www.sns.gov.uk/Downloads/DownloadGeography.aspx (accessed on 10/10/09)
3http://www.esri.com/software/arcgis/index.html
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Figure 2.1: Scottish Geography Relationships (obtained from Scottish Gov-

ernment website as referenced above)

Register Office for Scotland 4 and were agreed by the Office for National

Statistics in 2006. Table 2.1 gives the causes of death that are considered to

4http://www.gro-scotland.gov.uk/statistics/deaths/alcohol-related-deaths/alcohol-

related-deaths-the-coverage-of-the-statistics.html (accessed on 13/12/09)
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be related to alcohol consumption during years 2000 to 2007 along with the

corresponding code from the International Classification of Diseases Tenth

Revision (ICD-10). It should be noted that some deaths which may be

thought of as alcohol-related by many are not covered by this definition.

These include deaths caused by road accidents, suicide, violence, falls or

fires which occur under the influence of alcohol. Medical problems which

are considered ”partly attributable to alcohol” are also not included in the

definition, and these include certain forms of cancer.

The data used was provided by the Information Services Division of NHS

Scotland 5 and consists of all alcohol-related deaths and first alcohol-related

hospitalisations in Scotland during the years 2002 to 2006. First alcohol-

related hospitalisation means that the patient has never been admitted due

to alcohol before or that they have not been admitted due to alcohol in

the last ten years. The reason for including only patients who have not

been admitted in the previous ten years is that it helps to avoid multiple

counting, such as recording 10 events when one person is admitted with the

same problem 10 times in a year. It should also be noted that deaths were

only recorded if the patient had not been admitted to hospital due to alcohol

in the last 10 years for similar reasons. This means that it is not possible

to count the same individual as both a death and a hospitalisation in this

study. This should lead to more accurate estimates of the alcohol-related

health risk in each area.

Each data entry gives a code to identify whether it represents a death or

a first hospital admission, the date of event and some patient information.

The patient information consists of their sex, age and data zone of residence

at time of admission. An age group indicator has been created to match the

age groups used in the population data discussed below. Since only the data

zone of residence is given as opposed to an exact point location or address,

subsequent analysis is based upon tract-counts within each data zone.

5http://www.isdscotland.org/isd/CCC FirstPage
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ICD-10 Code Description

F10 Mental and behavioural disorders due to use of alcohol

G31.2 Degeneration of nervous system due to alcohol

G62.1 Alcoholic polyneuropathy

I42.6 Alcoholic cardiomyopathy

K29.2 Alcoholic gastritis

K70 Alcoholic liver disease

K73 Chronic hepatitis, not elsewhere classified

K74.0 Hepatic fibrosis

K74.1 Hepatic sclerosis

K74.2 Hepatic fibrosis with hepatitic sclerosis

K74.6 Other and unspecified cirrhosis of liver

K86.0 Alcohol induced chronic pancreatitis

X45 Accidental poisoning by and exposure to alcohol

X65 Intentional self-poisoning by and exposure to alcohol

Y15 Poisoning by and exposure to alcohol, undetermined intent

Table 2.1: Alcohol-Related Conditions During Years 2000 to 2007

2.1.3 Population Data

Scottish population data has been obtained from the General Register

Office for Scotland website 6 separately for the years 2002 to 2006. For each

year the population is broken down by data zone, age group and sex. The

age groups used are zero to four years, five to nine years, 10 to 15 years,

16 to 19 years, 20 to 24 years, 25 to 29 years, then continuing in 5-year

bands until 90 plus years. Note that the age bands 10 to 15 years and 16

to 19 years do not cover five years as most bands do. This is so that it

is possible to split the data into children (less than 16 years), working age

(16 to 59/64 years) and pensionable age (60/65 years or more) if it proves

6 http://www.gro-scotland.gov.uk/statistics/publications-and-data/population-

estimates/special-area/sape/index.html (accessed on 30/11/09)
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desirable. Further information about how these population estimates are

calculated can be found on the General Register Office for Scotland website

referenced earlier in this section.

2.1.4 Possible Risk Factors

Deprivation

Previous studies such as Leyland et al. (2007) have shown that alcohol-

related mortality rates tend to be higher in more deprived areas and it is of

interest to investigate this relationship. The measure of deprivation used in

this study is the Scottish Index of Multiple Deprivation (SIMD) 2004. This

index aims to locate small areas of concentrated multiple deprivation across

Scotland as fairly as possible. It is based on the data zone geography and

combines 31 separate deprivation indicators including current income, em-

ployment, health, education, housing and geographical access. The index is

based on methodology developed by Oxford University and also implements

changes as recommended in the report by Bailey et al. (2003). Further in-

formation on the SIMD can be found on the Scottish Government website

7.

Using the SIMD estimates for 2004 seems reasonable as this is in the

middle of the study period, 2002 to 2006, and most of the data used to

calculate the estimates actually represents 2002.

The SIMD 2004 values were used to create a categorical deprivation vari-

able ranging from one to ten, 1 representing the most deprived 10% of data

zones and 10 representing the least deprived 10% of data zones.

7http://www.scotland.gov.uk/Publications/2005/01/20458/49127 (accessed on

02/08/10)
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Whisky Distilleries

This study focuses on single malt whisky distilleries in Scotland. There

are many sources online giving conflicting lists of Scottish distilleries and it

has been decided to use those listed in Jackson (1999). This book was pub-

lished in 2001, one year before the study period begins. In this book Jackson

lists ”every Scottish malt distillery that has ever witnessed its product in a

bottle”. Some of these distilleries have long been closed but are included

in the text because the whisky can still be found. It has been decided to

omit distilleries that closed over ten years before the study period, i.e. all

distilleries which closed before 1992. The postcode of each distillery is given

in Jackson (1999) and the centroid of each of these postcodes has been pro-

vided by the Scottish Government (although without permission to pass on

or publish). The centroid of the postcode in which each distillery falls has

been used as their approximate location.

The Euclidian distance between each data zone centroid and each dis-

tillery location was calculated and for each data zone the minimum distance

to a distillery was recorded in meters.

2.2 Data Summaries

2.2.1 Death and Hospitalisation Data

There were 67742 alcohol-related events of interest in Scotland during

2002 to 2006, of which 65212 (96.3%) are first hospital admissions and 2530

(3.7%) are deaths. Given that significantly more hospitalisations have been

observed than deaths, this study is de facto looking at alcohol-related hos-

pitalisations. Any spatial patterns present amongst the deaths will be ’over-

shadowed’ by patterns present in the hospitalisation data. However, it is

expected that such patterns should be similar.

As expected there are significantly more male occurrences, with 69.4%
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of first-alcohol-related admissions and 70.7% of alcohol-related deaths at-

tributed to males. For males and females, however, a very similar proportion

of cases corresponded to deaths with 3.8% for males and 3.6% for females.

There are 1409 data entries (2.1%) for which the data zone of residence

has not been recorded. This may be due to unknown area of residence at

time of admission or administrative errors. These events have been included

when estimating the overall Scottish rates for males and females and for each

age group, but obviously cannot be used when counting occurrences in each

data zone. Since there is only a small percentage missing this should not

affect the risk estimates much and there is no reason to believe that there is

any systematic reason for the missing information.

Of the 6505 data zones across Scotland only 63 (fewer than 0.1%) experi-

enced no alcohol-related deaths or hospitalisations during the study period.

All of these zones have a deprivation score of 6 or more, i.e. are part of the

least deprived half of data zones, and over half (32) had a deprivation score

of 10.

Further, the highest number of alcohol related deaths and hospitalisations

in a single zone over the period is 87. This occurred in data zone S01003313

an area of Parkhead West and Barrowfield in Glasgow’s EastEnd which ranks

in the top 10% of most deprived areas in Scotland. This supports the find-

ings of previous studies such as Leyland et al. (2007) which suggest that

high deprivation levels are linked to high alcohol-related mortality and that

alcohol-related mortality is particularly high in the Glasgow area.

2.2.2 Age Groups

Table 2.2 gives the number of alcohol-related events in each age group

during the period 2002 to 2006, as well as giving the percentage of events

that each age group accounts for. This table shows that 0.2% of the events

considered in this study correspond to children less than ten years of age.

Although this is a small percentage it consists of 114 hospitalisations which
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is more than one might expect for such young ages. It has been decided to

include all age ranges in the later model-fitting since all age groups experience

at least 38 events during the five years in question. The general pattern of the

data appears to be an increase in alcohol-related deaths and hospitalisations

in successive age groups, peaking at 45 to 49 years, followed by a general

decline through to the highest age group of 90-plus years.

Age Group (years) Frequency Percent Cumulative Percent

0 to 4 76 0.1 0.1

5 to 9 38 0.1 0.2

10 to 15 2640 3.9 4.1

16 to 19 4609 6.8 10.9

20 to 24 4806 7.1 18.0

25 to 29 3706 5.5 23.4

30 to 34 4351 6.4 29.9

35 to 39 5350 7.9 37.8

40 to 44 5984 8.8 46.6

45 to 49 6176 9.1 55.7

50 to 54 5763 8.5 64.2

55 to 59 5876 8.7 72.9

60 to 64 5595 8.3 81.1

65 to 69 4673 6.9 88.0

70 to 74 3625 5.4 93.4

75 to 79 2460 3.6 97.0

80 to 84 1366 2.0 99.0

85 to 89 483 0.7 99.8

90 + 165 0.2 100

Total 67742 100

Table 2.2: Age Group Percentages

Table 2.3 breaks down the number of alcohol-related events in each age
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group into male and female occurrences. This table shows that, as was

expected, there are many more alcohol-related deaths and hospitalisations

among men than among women. Males have a higher number of alcohol-

related events in every age group apart 10 to 15 years. This may be because

females tend to hit puberty earlier and may start adolescent drinking at an

earlier age than males. The difference between the male and female counts

increases in general until 60 to 64 years, with the exception of 20 to 24 years

where there is a bulge, and then it begins to decrease in successive age groups.

Although these figures show the patterns that one would expect, it should

be noted that this is a crude analysis which only looks at count data and takes

no account of the size or distribution of the population at risk. For example,

it takes no account of the fact that there tends to be a higher proportion of

women in the older age groups.

2.2.3 Possible Risk Factors

Deprivation

In order to summarise the level and patterning of deprivation scores across

Scotland various maps have been produced. A full map of Scotland showing

the area deprivation score in each data zone is given in Figure 2.2 along with

magnified areas of this map for Aberdeen (Figure 2.3), Ayrshire (2.4), the

Dundee area (2.5), Edinburgh (2.6), Glasgow (2.7), the Inverness area (2.8)

and Stirling (2.9).

From the full map of Scottish deprivation scores in Figure 2.2 it appears

that areas tend to be more deprived towards the north and west of the

country. An important and obvious observation is that deprivation levels

appear to be extremely high in the Glasgow City area, even when compared

to another large city such as Edinburgh. This appears to be especially true

in the East of the City. On the whole, the most deprived areas with a score of

1 tend to be very small and densely populated. There is also some evidence
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Age Group (years) Male Female Total

0 to 4 45 31 76

5 to 9 31 7 38

10 to 15 1293 1347 2640

16 to 19 2990 1619 4609

20 to 24 3411 1395 4806

25 to 29 2623 1083 3706

30 to 34 3025 1326 4351

35 to 39 3581 1769 5350

40 to 44 3999 1985 5984

45 to 49 4244 1932 6176

50 to 54 4151 1612 5763

55 to 59 4254 1622 5876

60 to 64 4166 1429 5595

65 to 69 3490 1183 4673

70 to 74 2666 959 3625

75 to 79 1816 644 2460

80 to 84 923 443 1366

85 to 89 281 202 483

90 + 87 78 165

Total 47076 20666 67742

Table 2.3: Age and Sex Frequency Table

of cluster of high and low levels of deprivation.

Over 41% of the data zones in Scotland with the worst deprivation score

of 1 fall within Glasgow City and these zones represent roughly 39% of the

data zones in Glasgow City. On the other hand the local authority areas of

Moray, Shetland Islands, Orkney Islands and Eilean Siar have no data zones

with the most severe level of deprivation.

15



Deprivation Score

1

2

3

4

5

6

7

8

9

10

Figure 2.2: Map of Scottish Data Zone Deprivation Scores

Single Malt Whisky Distilleries

In total there are 98 single malt whisky distilleries in Scotland that meet

our criteria. The minimum (approximate) distance from a data zone to a
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Figure 2.3: Map of Aberdeen Data Zone Deprivation Scores

single malt whisky distillery ranges from 0.0127 to 231.47 km and has a

mean of 22.53 km.

A Scottish map of estimated minimum Euclidean distance between each

data zone centroid and a single malt whisky distillery in meters is shown
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Figure 2.4: Map of Ayrshire Data Zone Deprivation Scores

in Figure 2.11; magnified areas of this map are shown for Aberdeen (Figure

2.11), Ayrshire (Figure 2.12), the Dundee area (Figure 2.13), Edinburgh

(Figure 2.14), Glasgow (Figure 2.15), the Inverness area (Figure 2.16) and

Stirling (Figure 2.17).
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Figure 2.5: Map of Dundee & Fife Data Zone Deprivation Scores

These maps show no clear pattern or strong similarities to the deprivation

maps discussed above. However, Glasgow City appears to be very close to a

whisky distillery, and given previous research findings of very high alcoholism

rates in the city, this may prove important.
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Figure 2.6: Map of Edinburgh Data Zone Deprivation Scores
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Figure 2.7: Map of Glasgow Data Zone Deprivation Scores
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Figure 2.8: Map of Inverness & the Highlands Data Zone Deprivation Scores
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Figure 2.9: Map of Stirling Data Zone Deprivation Scores
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Figure 2.10: Scotland Map of Proximity to a Single Malt Whisky Distillery
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Figure 2.11: Aberdeen Map of Proximity to a Single Malt Whisky Distillery
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Figure 2.12: Ayrshire Map of Proximity to a Single Malt Whisky Distillery
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Figure 2.13: Dundee Area Map of Proximity to a Single Malt Whisky Dis-

tillery
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Figure 2.14: Edinburgh Map of Proximity to a Single Malt Whisky Distillery
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Figure 2.15: Glasgow Map of Proximity to a Single Malt Whisky Distillery
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Figure 2.16: Inverness Area Map of Proximity to a Single Malt Whisky

Distillery
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Figure 2.17: Stirling Map of Proximity to a Single Malt Whisky Distillery
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Chapter 3

Review of Disease Mapping

Methods

The study of the geographical distribution of disease is facilitated by the

use of disease maps. Such maps have clear advantages over tables and have

a number of uses, often considered regarding public policy, medical research

and public health.

3.1 Introduction to Disease Mapping

Geographic monitoring of disease is paramount to understanding spatial

patterns that identify differences in disease prominence between different

regions or communities. There are two classes of disease maps: those showing

maps of individual cases and those showing maps of aggregated counts or

rates. The first requires the availability of individual addresses, the locations

of which are then mapped. Often information at this level of accuracy is

not publicly available due to privacy issues. Creating and analysing maps

of disease rates/incidence is carried out extensively in modern public-health

studies. In this chapter various mapping quantities and methods will be

discussed, including the SMR and model-based risk estimates.
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3.1.1 Age and Sex Standardisation

In order to assess whether or not the number of disease cases that occur

in an area is high or low it is useful to work out first how many cases are

expected to arise in that area given the at-risk population structure. It is

then possible to compare the observed number of cases in area i (Oi) to the

expected number of cases in area i (Ei).

To account for the population structure indirect age and sex standardis-

ation is normally used. This first calculates an expected number of cases in

age-and-sex stratum j in area i (Eij), given by

Eij = Nij

∑
iOij∑
i Nij

,

where Nij represents the number of people in age-and-sex stratum j in area i

and Oij represents the observed number of cases among people in age-and-sex

strata j in area i. The expected number of cases in area i is then calculated

by summing the expected number of cases in that area in each age-and-sex

stratum using the following method:

Ei =
∑
j

Eij.

3.1.2 Standardised Mortality and Incidence Ratios

The standardised mortality ratio (SMR) and standardised incidence ratio

(SIR) are commonly used when creating disease maps as they give a simple

and efficient estimate of the relative risk of disease-related risk in a given

area. The SMR relates specifically to disease-related deaths and so gives an

estimate of the risk of death by a given disease in an area, whereas the SIR

relates to the number of new disease cases within an area.
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Standardised Mortality Ratio

The SMR is calculated as the ratio of observed disease-related deaths

within an area to the expected number of disease-related deaths in that area.

Mathematically, the SMR for area i is given by

SMRi =
Oi

Ei

. (3.1)

If the observed number of disease deaths in an area is greater than the

expected number, this results in an SMR greater than 1, which indicates that

this area has a higher risk of death due to the disease in question relative to

the study region as a whole.

Although it is an easy-to-understand and convenient risk estimate there

are several drawbacks associated with the SMR and its use has been criticised

by several researchers including Lawson et al. (2003a), Clayton & Kaldor

(1987) and Tsai & Wen (1986). The measure is very sensitive to zero values

of observed counts and expected counts close to zero. The following example

illustrates the latter point. If we are looking at a fairly rare disease while

using geographical areas with low populations, it is possible that the expected

number of disease deaths in a given area is 0.5. If this area had an observed

count of zero then it would result in a relative risk estimate of zero. However,

if the observed count was 1 this would result in a relative risk estimate of 2.

The fact that a single death has the ability to affect risk estimates so much is

a very undesirable property. A further weakness of the SMR is that it does

not have the capacity to incorporate important risk factors in the way that

model-based risk estimates can.

Standardised Incidence Ratio

The standardised incidence ratio (SIR) is concerned with new disease

cases rather than disease deaths and can be used to estimate the prevalence

of disease in different areas. It is calculated in the same manner as the SMR,
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but uses the expected number and observed number of new disease cases

rather than the expected and observed number of disease deaths. It suffers

from the same interpretation problems as the SMR. Since this thesis deals

with first-hospitalisations and deaths for people who have not been admitted

to hospital with alcohol-related illness for at least 10 years, it deals with new

cases of alcohol-related disease. The SIR will therefore will be used in place

of the SMR in the later analysis chapters.

3.1.3 Mapping Relative Risk Estimates

Relative risk estimates are usually represented using a cloropleth thematic

map which provides an easy way to visualise how the values vary across

the region and shows the level of variability within a region. This involves

splitting the estimated risk values into different interval classes and assigning

to each class a shade, colour or pattern which will be used to fill areas of

that class on the map. Two common methods for specifying the classification

intervals are the equal-interval method and the equal-representation method.

The equal-interval method involves splitting the estimated relative risks into

a fixed number of classes each of which represents an equal range of values

but relates to differing numbers of areas. One pitfall of this method is that

for a highly skewed or uneven relative risk distribution some classes will

cover many more observations than others do. The map will therefore be

dominated by these classes and will show little spatial variation when this

may not be the case. For the equal-representation method percentiles of the

estimated relative risk distribution, such as quartiles or quintiles, are used

as cut-points for the class intervals, which results in each class representing

an equal number of areas but having different ranges. Although this method

ensures that each class is represented equally on the map it can also be

deceptive because risk estimates with similar values may often be assigned to

different classes causing some areas of the map to appear more heterogeneous

than they really are (Davies (2005)).
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Another common method for choosing categories when mapping values

is the Jenks natural breaks classification 1. This is the method used by

the ArcGIS geographical mapping software which has been used to produce

later maps in this study. The Jenks classes aim to reflect natural groupings

inherent in the data. Category boundaries are chosen as the breakpoints

that best group similar values together, maximising the difference between

the classes.

Even when suitable interval classes have been created the colour or pat-

tern scheme used to represent these classes on the map can affect how the

values are interpreted. Some alternative graphical presentation methods are

discussed in Marshall (1991).

The mapping issues discussed above should be considered when dealing

with every relative risk estimate discussed in this thesis. This includes the

SMR, SIR and model-based risk estimates.

3.2 Basic Disease Mapping Models

3.2.1 Likelihood Models

Using parametric modelling methods allows the relative risks to be esti-

mated and mapped using maximum likelihood methods.

Poisson Model

The classical model adopted in many disease mapping studies assumes

that the counts of disease cases follow Poisson distributions with different

expectations for each area, as discussed by Lawson et al. (2003b). For area

i the observed count of disease cases (Oi) is assumed to follow a Poisson

distribution with a mean which is a multiplicative function of the expected

count (Ei) and a relative risk (θi). Mathematically speaking the distribution

1http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Naturalbreaks%28Jenks%29
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of the area counts for area i is assumed to be

Oi ∼ Poisson(Eiθi)

with probability mass function

P (Oi|θi) =
(Eiθi)

Oie−(Eiθi)

Oi!
.

Apart from an additive constant the log-likelihood for this model can be

derived to be

l(θ|O) =
m∑
i=1

Oilog(Eiθi)−
m∑
i=1

Eiθi

where m is the number of areas in the study region. If we differentiate the

log-likelihood and follow the usual steps the maximum likelihood estimate of

the relative risk θ̂i is found to be Oi

Ei
, which is equal to the SMR for area i,

with an estimated standard error of ese(θ̂i) =
√
Oi

Ei
.

This method shares some drawbacks with the SMR; the most extreme

relative risk estimates will be those based on only a few cases and, on the

other hand, the most extreme p-values from tests comparing relative risk

estimates to 1 or those confidence intervals excluding 1 may simply identify

regions with larger populations and hence more information (Mollié (1999)).

These issues are more likely to occur when dealing with small study regions or

rare diseases and mean that, although the relative risks have been estimated

using a model when mapped, they may still be misleading. Mapping issues,

including choosing specification intervals and colour schemes for cloropleth

maps, are still relevant and can affect how the risk estimates are interpreted.

A further negative feature of the SMR/SIR and the basic Poisson model

discussed here is that none of them considers the spatial structure of the study

region. Using these methods it is not possible to account for the fact that

areas which are in close proximity to one another often have similar levels
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for many factors. This may affect the risk of disease, such as environmental

factors or social views towards alcohol or drug use.

Extra-Poisson variation is a common problem when using this model and

it occurs when the observed counts within the regions fluctuate around the

mean for each region more than is expected for a Poisson model. The ex-

istence of such extra variation can give rise to unrepresentative geographic

variation in the disease relative risks (Davies (2005)).

The level of over-dispersion present can be reduced by considering any

available confounding variables during the standardisation stage, on top of

age and sex. Many possible confounding variables relating to socioeconomic

status, which can indicate local deprivation levels or lifestyle choices, could

be included at this stage. Including such variables should result in a map

which is a much better representation of the true underlying risk surface.

3.2.2 Fixed Effects

Although confounding variables can be included in the standardisation

stage this may not be the best approach. For example, a categorical depri-

vation score could be included in the standardisation stage, but this will not

allow the effect of deprivation to be estimated or its significance tested. In-

cluding deprivation score in a model for relative risk as a fixed effect will allow

an estimate of the effect of deprivation on the relative risk to be quantified.

Since the relative risk (θi) must always be positive it is common to model

log(θi). Deprivation score could be included as a confounding variable in

many ways in such a model, but in the following example we will model the

logarithm of the relative risk as a linear function of deprivation score:

θi = exp{β0 + β1xi},

where exp(β0) represents the background risk across the entire study region,

β1 is a linear parameter and xi represents the deprivation score in area i.
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An example of fitting a spatial trend using the spatial coordinates of the

tract centroids is shown in the fixed-effects section of Lawson et al. (2003b).

Many types of fixed-effects model for the relative risk (θi) can be fitted

using conventional statistical packages which allow Poisson regression or log-

linear modelling, such as R and S-Plus.

3.2.3 Random Effects

The modelling techniques mentioned so far assume that once all con-

founding variables are included in the model the resulting risk estimates will

convey the true disease risk structure. Unfortunately, it is rarely the case

that every confounding variable is measured or even thought of in such stud-

ies. There are almost always believed to be some unobserved factors, known

as random effects, which affect the risk of disease as well as any observed fac-

tors. These random effects should be included in the risk-modelling process

and the method for doing so has been the topic of much literature.

The consideration of random effects in disease mapping studies has be-

come more common in recent years. In its simplest interpretation a random

effect represents an extra component of variation which can be estimated

within the study region and assigned a probability distribution. A possible

source of this additional variation could be if a spatial covariate is inter-

polated to region centroids. When this happens there will be some degree

of error in the estimated values and hence in any analysis which uses these

values. Also, there may be some extra variation attributable to the regions

themselves; for example, if local authority boundaries are used as tracts,

there may be differences in council intervention programs for some diseases

that the researcher is unaware of. When observed counts that are thought to

follow a Poisson distribution exhibit a higher variance than expected, i.e. the

variance is greater than the mean, it is known as overdispersion. Sparseness

and clustering of disease cases can both cause overdispersion.

For spatial mapping models it is possible to break this extra variation
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down into uncorrelated heterogeneity and correlated heterogeneity. Uncor-

related heterogeneity is simply a kind of independent and spatially uncor-

related additional variation, whereas correlated heterogeneity arises from a

model which assumes that each spatial tract is correlated with the neigh-

bouring geographical units. The correlated type implies that there is spatial

autocorrelation between the tracts, which can arise if the disease cases are

clustered throughout the study region or if there are unobserved factors at

work in the data.

Some further discussion on random effects can be found in Lawson et al.

(2003b).

3.3 Hierarchical Bayesian Disease Mapping

The development of Bayesian disease mapping models has helped to over-

come the problem of over-dispersion and provide a means to include existing

spatial information about the geographical distribution of disease risk across

the study region.

Hierarchical Bayesian models, using which a problem is broken down

into a series of levels linked by simple rules of probability, take on a very

flexible framework capable of accommodating uncertainty and prior scientific

knowledge while retaining many advantages of earlier likelihood methods

(Arab et al. (2007)).

Since the introduction of the Bayesian hierarchical model and the devel-

opment of Markov Chain Monte Carlo methods (discussed below) there has

been a vast amount of research, both theoretical and applied, in this area.

Good introductions and discussions on Bayesian hierarchical methods can

be found in Congdon (2010), Congdon (2003), Carlin & Louis (2009) and

Gelman et al. (2004a), while a good introduction to using these methods in

a disease mapping context is given in Lawson et al. (1999) and Lawson et al.

(2003a).
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Bayesian disease mapping methods utilise two sources of information,

using both the observed disease data together with prior knowledge about

how the disease rates vary within the study region. The information that

dominates depends on the study; in cases where there are a large number of

disease cases in each area the abundance of data will lead the disease obser-

vations to dominate the analysis, whereas, when we are either looking at a

rare disease or using small area tracts with low populations, the sparseness of

events observed often leads to the prior information having a larger influence

on the relative risk estimates.

3.3.1 Bayesian Approaches to Relative Risks

Bayesian methods incorporate the observed data through the likelihood

of observed values (Oi) given the relative risk parameters (θi). Any prior

beliefs about the geographic variation of the relative risks are catered for by

assigning an appropriate probability distribution to θ which is known as the

joint prior distribution and denoted by g(θ|δ), where δ are hyperparameters.

This prior distribution for θ explains all that is known about the relative

risks before the study data has been collected. It is possible to use infor-

mative priors, weakly informative priors or non-informative priors. However,

care must be taken since some seemingly uninformative prior distributions

can prove to be quite informative. An informative prior is used when some

information which is available before data collection is incorporated into the

analysis; a non-informative prior is a common choice and is used to express

that there is no knowledge of θ before the data has been observed. A uniform

distribution over the sample space is commonly used as a non-informative or

diffuse prior.

The likelihood function of the relative risks given the observed disease

counts is the product of m independent Poisson distributions, where m is

the number of areas in the study region, since the Oi can be considered con-

ditionally independent given g(θ) (Mollié (1999)). The likelihood function
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of relative risks given the observed data is therefore

L(O|θ) =
m∏
i=1

L(Oi|θi).

The aim of Bayesian analysis is to estimate the posterior distribution for

θ, on which inference about the relative risks is based. This distribution

describes the behaviour of the risk parameters when the data is observed

and prior assumptions have been made. If we assume for now that all that

is unknown are the relative risks then the posterior is given by

p(θ|O, δ) ∝ L(O|θ)g(θ|δ).

It is unusual in practice to consider a completely specified prior distribu-

tion with known hyperparameters δ. The Empirical Bayes approach assumes

that the hyperparameters are unknown and drawn from an unspecified prob-

ability distribution whereas the fully Bayesian approach uses a three-stage

hierarchical model in which the hyperparameters are said to follow a specified

probability distribution, known as the hyperprior distribution.

3.3.2 Empirical Bayes

It is common to distinguish between empirical Bayes methods and fully

Bayesian methods on the basis that any method which seeks to approximate

the posterior distribution is regarded as empirical Bayes and all others are

regarded as fully Bayesian (Bernardo & Smith (1994)).

Using the empirical Bayes approach involves assuming that the hyper-

parameters are unknown and are drawn from some unspecified distribution,

and estimates of these hyper-parameters are used to work out the poste-

rior distribution. Often, but not always, these estimates are obtained using

maximum marginal likelihood or generalised least squares methods.
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Informative discussions of several empirical Bayes methods can be found

in Leyland & Davies (2005), Davies (2005) and Lawson et al. (2003b) along

with useful references to research in this area.

3.3.3 Fully Bayesian

The fully Bayesian approach differs from the empirical Bayes approach,

in that now the prior distribution is defined before the observed data is

considered. The fully Bayesian approach involves fitting a hierarchical model

where the distribution of the hyper-parameters (δ) is fully specified. This is

distribution is known as the hyper-prior distribution gδ(δ) and is incorporated

into the modelling process. If we now consider that neither the relative risks

nor the hyperparameter values are known, the joint posterior distribution of

the relative risks θ and the hyper-parameters δ given the observed data O is

p(θ, δ|O) ∝ L(O|θ)gθ(θ|δ)gδ(δ)

where gθ(θ|δ) is the prior distribution of θ.

The marginal posterior distribution for θ given the observed data can be

found by integrating out the hyperparameters as follows:

p(θ|O) =

∫
p(θ, δ|O)dδ.

The use of a hierarchical structure leads the Bayes point estimates to be

shrunk towards a value that is related to the distribution of all parameters

in the hierarchical structure. It is assumed that the prior closely represents

the ”truth”, and hence different prior choice should lead to different levels of

shrinkage.

A comparison of some common Bayesian disease mapping models in terms

of goodness-of-fit criteria is given by Lawson et al. (2000) and an in-depth

review of the main spatial priors which have been proposed for fitting full

Bayesian disease mapping models is given by Best et al. (2005).
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The fully Bayesian approach has fairly recently become commonly used

due to the increased availability of software which can perform Markov chain

Monte Carlo methods of posterior simulation.

3.4 Posterior Inference

For simple likelihood models, like the Poisson model discussed above, of-

ten maximum likelihood is used to compute point estimates and associated

variability for the parameters. When Bayesian hierarchical models are used

the parameters are assumed to arise from a distribution of possible values

rather than take on fixed values, meaning that it is no longer possible to

provide simple point estimates for the θis in this way. In this case the pos-

terior distribution must be found and examined to find point estimates such

as the posterior mode or posterior mean for a parameter of interest. For

some simple posterior distributions it is possible to find exact forms of these

estimates, but in most realistic disease mapping models it is not possible to

derive simple estimators for parameters such as the relative risk since a closed

form of the posterior is unobtainable. In these situations posterior sampling

must be used.

Posterior sampling involves using simulation methods to gain samples

from the posterior distribution which are then summarised to get estimates

of the desired parameters. The remainder of this section discusses some of

the posterior simulation methods which can be used.

3.4.1 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) methods are efficient and flexible

posterior sampling methods which can be applied to a variety of models (see

e.g. Lawson et al. (2003a)). Such methods have been incorporated into

several statistical packages including WinBUGS and OpenBUGS.

Most MCMC methods aim to produce a sample from the joint posterior
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distribution. To do this a Markov chain must be constructed such that the

proposed distribution is easy to sample from and represents the joint posterior

distribution. The parameter values are then iteratively simulated within this

Markov chain and the iteration process continues until the chain converges

to a stationary distribution. Once a stationary distribution is reached, the

chain is assumed to represent the posterior distribution. If the chain has

run for a sufficient number of iterations, realised values from this chain can

be used to estimate various properties of the posterior distribution of the

parameters.

Put simply, MCMC iterations involve using only the most recent values

of the parameters, to generate proposed new values from given probability

distributions. The posterior probability of the new values is compared with

that of the old values and then new values will be accepted according to a

certain rule. If the new values are accepted then these values will replace

the existing values to become the current parameter values. This process

will repeat many times, each time simulating an estimate for each unknown

parameter. The idea is that the output from each iteration together will form

sample from the joint posterior distribution of unknown parameters.

Some algorithms used to construct the required Markov chain are dis-

cussed in the following sub sections.

3.4.2 Sampling Algorithms

It is essential for all MCMC algorithms that the right transition probabil-

ities for a Markov chain which has the joint posterior distribution, P (θ|O),

as its equilibrium distribution can be constructed. These transition proba-

bilities will be defined for a Markov chain consisting of θ1, θ2, ... θt with

state space Θ and equilibrium distribution P (θ|O) (Lawson (2009a)) below.

Let q(θ,θ
′
) be a transition probability function, sometimes referred to as

the proposal density, where θ represents the current values of the parameters

and θ
′
represents the new proposed values. The algorithms use this proposal
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density, which depends only on θ the latest chain values for the parameters,

to generate new proposed parameter values θ
′
.

Metropolis Updates

For Metropolis updates a symmetric proposal function, q(θ,θ
′
), should

be chosen. Then the transition probabilities for a discrete distribution can

be defined as

p(θ,θ
′
) =

 α(θ,θ
′
)q(θ,θ

′
) if θ

′ ̸= θ

1−
∑

θ
′′ α(θ,θ

′′
)q(θ,θ

′′
) if θ

′
= θ

where α(θ,θ
′
) = min

{
1, P (θ

′
|O)

P (θ|O)

}
and θ

′′
represents any permitted combi-

nation of parameter values which is not the same as the current values θ.

Here α(θ,θ
′
) represents the acceptance probability and the proposed val-

ues θ
′
will be accepted with this probability.

For Metropolis updates the proposal function must be an irreducible and

aperiodic transition function.

Metropolis-Hastings Updates

The Metropolis-Hastings algorithm is an extension to the Metropolis al-

gorithm in which the proposal function no longer needs to be symmetric

and

α(θ,θ
′
) = min

{
1,

P (θ
′|O)q(θ

′
,θ)

P (θ|O)q(θ,θ
′
)

}
.

For this algorithm the definition of the proposal function can be quite general

and posterior distribution only needs to be known up to a proportionality.

Metropolis-Hastings updates also require that the proposal function is irre-

ducible and aperiodic.

Gibbs Updates

The Gibbs sampler is one of the more popular algorithms to use with

Bayesian hierarchical models. It is a special case of the Metropolis-Hastings
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algorithm where the proposal is generated for each θi from the conditional

distribution of θi given all other elements of θ. The new parameter value

which is proposed is always accepted, i.e. the acceptance probability is always

1.

If, say, θi is to be updated, then θ′j = θj for j ̸= i and

θi ∼ P (θ∗i |θ−i)

in which p (θ∗i |θ−i) represents the conditional distribution of θi given that

θ−i := {θj, j ̸= i} .

3.4.3 Convergence

When using MCMCmethods it is necessary to assess whether the iterative

simulations have converged to the equilibrium distribution of the Markov

chain. Each chain must be run for a sufficiently long burn-in period to allow

convergence to this distribution to occur and all parameter values simulated

during this burn-in period should be discarded from further analysis and

parameter estimation. The length of this burn-in period can be very different

between different problems. The burn-in period also needs to be long enough

to allow the full parameter space to be explored and avoid the estimator

becoming stuck at a local maxima rather than the global maxima.

It is therefore crucial to check that there has been an adequate burn-in

period. There are several methods to check for convergence, although there is

no way to be totally sure, and most methods are at least slightly subjective.

Several convergence diagnostics are discussed in Cowles & Carlin (1996).

These diagnostics can be split into those which require multiple chains to be

run in parallel with different starting values and those which can be applied

to single chains. Obviously those methods which can be applied to single

chains can be applied individually to each chain in multiple-chain examples.
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Single-Chain Methods

Various diagnostic methods for assessing convergence of single chains have

been suggested, including monitoring the stability of functions of the poste-

rior probability across the iterations, the Brooks-Draper diagnostic (Brooks

& Draper (1999)) and the Raftery-Lewis diagnostic (Raftery & Lewis (1992)).

The most common method to visually check for convergence of a single

chain is to look at a history graph which plots the simulated parameter value

at each iteration against the iteration number. When this plot shows no

obvious patterns or trends and looks roughly like a horizontal band across

the plot then it is likely that the chain has converged. However, even when

the history plot does look like this it does not necessarily mean that the

whole parameter space has been explored.

Multi-Chain Methods

The most popular multi-chain convergence diagnostic is the Gelman-

Rubin diagnostic plot, which is produced by WinBUGS. This plot uses a

green line to show the width of the central 80% interval of the pooled chains,

a blue line to show the average width of the 80% intervals within the individ-

ual runs and red to represent their ratio R=(pooled/within). When checking

for convergence one should be looking for R to settle at a value of 1 as well

as for the pooled and within-interval widths to reach stability.

Checking whether multiple chains have converged can also be done visu-

ally using history plots as described for single-chain methods. In this case

separate lines will be shown for each chain and when convergence is reached

these lines should form consistently overlapping horizontal bands across the

plot. If the lines for each chain form horizontal bands that do not overlap

then this can indicate that some or all of the chains have become ”stuck” at

local maxima as described above.
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3.5 Goodness-of-Fit

If the MCMC algorithms converge this does not necessarily mean that the

model is a good fit to the data. Many issues relating to model goodness-of-fit

should be considered.

The deviance is a measure often used in Bayesian statistics when looking

at the goodness-of-fit of a model. One disadvantage of using the estimated

deviance directly is that it does not incorporate the level of parameterisation

in the model; it is always possible to improve the fit of a model by adding in

further parameters, unless the model is already saturated.

Commonly used methods such as the Akaike information criterion (AIC)

and Bayesian information criterion (BIC) aim to penalize for model complex-

ity according to the number of parameters in the model.

In hierarchical Bayesian disease mapping studies the most common mea-

sure of goodness-of-fit is the Deviance information criterion (DIC).

3.5.1 DIC

Like the AIC and BIC methods DIC aims to penalize more complex

models. The DIC was proposed by Spiegelhalter et al. (2002) and has the

basic principle of being a measure of goodness-of-fit plus a penalty for model

complexity (Spiegelhalter (2006)).

As the name suggests, the goodness-of-fit element is based on the de-

viance, which is given by

D(θ) = −2logL(O|θ).

The effective number of parameters in the model, pD, is estimated and

used as a measure of model complexity. Spiegelhalter et al. propose that

pD = Eθ|O[D]−D(Eθ|O[θ]),

often denoted by

pD = D −D(θ),
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where D is the posterior mean deviance and D(θ) is the deviance calculated

at the posterior mean of the unknown parameters. These quantities are easily

monitored when using MCMC methods in OpenBUGS.

An alternative estimate of the effective number of parameters, proposed

by Andrew Gelman and discussed in Gelman et al. (2004b) and Lawson

(2009b), is half the posterior variance of the deviance,

p∗D =
1

2
var{D}.

It should be noted that Gelman’s p∗D tends to over-estimate the effec-

tive number of parameters in a model, meaning that more complex model

structures may be over-penalized. This is likely to be more of an issue when

dealing with complicated hierarchical models. The measure is, however, in-

variant to parameterisation and easy to calculate (discussion given on the

DIC BUGS website2). A very interesting discussion into some potential pit-

falls of the p∗D measure of model complexity is given on Andrew Gelman’s

website 3.

The posterior variance of the deviance can also be easily estimated by

working out the variance of the deviance values simulated in the MCMC

chain.

The DIC statistic is then calculated as either

DIC = D + pD

or

DIC = D + p∗D.

When comparing models it is believed that those with a lower DIC are a

better fit to the data.

2http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml
3http://andrewgelman.com/2006/07/number of param/
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3.6 Besag, York and Mollié Model

As discussed in section 3.2.3 when modelling relative risks of disease it

is possible to include random effects to account for any extra variation or

overdispersion present. Also discussed was that for spatial models this extra

variation can be broken down into uncorrelated heterogeneity and correlated

heterogeneity, where the former is just independent and spatially uncorre-

lated additional variation and the latter assumes that each area is correlated

with its neighbouring geographic units.

The Besag, York and Mollié model is a fully Bayesian disease mapping

model which does just this. The area-specific random effects are decomposed

into an element which takes into account the effects that vary in an unstruc-

tured manner between areas (correlated heterogeneity) and an element which

models the effects which vary in an unstructured manner across the study

region (uncorrelated heterogeneity).

The model was initially established by Clayton & Kaldor (1987), further

developed by Besag et al. (1991) and has been used in several disease mapping

studies. If we continue to let Oi and Ei represent the observed and expected

number of disease cases in area i respectively, and let θi stand for the relative

risk in area i, then this model can be written as

Oi ∼ Poisson(Eiθi)

log(θi) = α + ui + vi

where α is a baseline or overall level of relative risk, ui represents correlated

heterogeneity and vi the uncorrelated heterogeneity. The log of θi is modelled

as opposed to θi to ensure that any estimated relative risks are not negative.

Since this is an example of a Bayesian model, prior distributions must

be specified for these random effects. The prior for the uncorrelated hetero-

geneity is a normal distribution with mean 0 and precision τ 2v ,

vi ∼ N(0, τ 2v ).
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The correlated heterogeneity is said to follow a spatial correlation struc-

ture, where estimation of the relative risk in each area depends on its neigh-

bouring areas. The specific prior used is the conditional autoregressive

(CAR) model introduced by Besag et al. (1991). This prior states that

[ui|uj, i ̸= j, τ 2u ] ∼ N(ui, τ
2
i )

where ui is the mean of the areas bordering area i,

ui =
1∑
j ωij

∑
j

ujωij,

τ 2i =
τ 2u∑
j ωij

,

(3.2)

and ωij=1 if area i and area j are adjacent, or ωij=0 if they are not.

The hyperparameters τ 2v and τ 2u control the variability of random effects

v and u. If this is to be a fully Bayesian example then these hyperparameters

need to be assigned hyperpriors. These are both often assigned gamma(ε, ρ)

priors with some appropriate set values for ε and ρ.

3.7 Alternatives to the Besag, York andMollié

Model

Although the Besag, York and Mollié model seems to be the most popu-

lar disease mapping model, there are several alternatives to the conditional

autoregressive prior structure. One such alternative specification involves

only a single random effect which covers both correlated and uncorrelated

heterogeneity. This can be done in practice by specifying a prior distribution

which has two parameters which govern these affects. An example is given by

Diggle et al. (1998), in which the covariance matrix of a multivariate normal

prior distribution is parametrically modeled using such terms.

This approach is related to universal Kriging (Cressie (1993)), which in-

volves covariance models that use variance and covariance range parameters.
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These methods are commonly known as ’generalised linear spatial modelling.’

It is common for these parameters to define a multiplicative relationship be-

tween the correlated and uncorrelated heterogeneity. The fully Bayesian

analysis of this model also requires the use of posterior sampling algorithms

similar to those discussed above.

In comparisons of CAR models and such fully-specified covariance models

there appears to be differing opinions about which are most useful in esti-

mating relative risk in disease maps (Best et al. (2005) and Henderson et al.

(2002)).

Further disease mapping methods have been suggested by Leroux (2000)

which use maximum likelihood estimation for a generalised linear mixed

model. This model allows for log-linear covariate adjustments and localised

smoothing of rates through the estimation of correlated random effects. The

covariance structure of the random effects is based on a recently proposed

model which parameterises spatial dependence through the inverse covariance

matrix. Markov chain Monte Carlo simulation methods are also required to

fit this model.
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Chapter 4

Standardised Incidence Ratio

As discussed in Chapter 3 the SMR and SIR have some serious draw-

backs. However, it is still of interest to look at these results to gain an initial

impression of the risk surface. Doing so also gives the ability to compare

these disease maps to model-based disease maps in terms of the degree of

smoothness and general pattern. All SIR values discussed here have been cal-

culated at the Scottish Data zone level using the data discussed in Chapter

2 and the methods described in Chapter 3.

This chapter will firstly discuss the SIR values for the combined male

and female data and then go on to look at the SIR values for each gender

individually. Due to the extremely small area of many inner-city data zones

several regions of the Scotland maps produced will need to be magnified.

Each time a map is discussed a complete map of Scotland will be shown, along

with further magnified maps of the Aberdeen, Ayrshire, Dundee, Edinburgh,

Glasgow, Inverness and Stirling areas. The magnified areas will always use

the same risk ranges and colour key as the full Scotland map so that they

are comparable.
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4.1 Combined Male and Female SIR

The SIR values discussed in this section have been calculated using the

combined male and female data. Age and sex standardisation has been used

as described in Chapter 3.

Table 4.1 below identifies the data zones which exhibit ten of the lowest

and the ten highest SIR values. The 10 zero SIR values shown in Table 4.1

are just sample of the 63 zero SIR values observed. This highlights one of

the main disadvantages of using the SIR as a risk estimate: since there were

no observed deaths or hospitalisations in these data zones the SIR indicates

that there is no risk in these areas, which obviously cannot be true. Of

the 63 data zones for which the combined SIR value is zero, all of which

have a deprivation score of 6 or more, with 32 of these areas having the

least-deprived deprivation score of 10.

In contrast, the ten highest combined SIR values shown in Table 4.1 range

from 4.259 to 6.308 and all relate to data zones in the most deprived category.

These values clearly show how unevenly alcohol-related risk is distributed

across Scotland, with a data zone within Parkhead West and Barrowfield

experiencing over 6.3 times the number of deaths and hospitalisations due to

alcohol that was expected. It definitely appears that there is a strong asso-

ciation between deprivation score and SIR value. However, this association

appears to be particularly strong for the worst deprivation score of 1. Of the

100 highest combined SIR values in Scotland, 81 correspond to areas with a

deprivation score of 1, and all but 1 relate to a score of 3 or less.

Given below in Figure 4.1 is a violin plot for the combined SIR values

for every data zone in Scotland grouped by deprivation score. The violin

plot used here was created using the vioplot package in R, which combines

a boxplot and a (doubled) kernel density plot. These plots show that the

median SIR values increase from deprivation score 10 through to deprivation

score 1. The difference in SIR values between consecutive deprivation scores
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appears to be greater for the more deprived scores, and is largest between

deprivation scores 1 and 2. This indicates that, if there does prove to be

a relationship between deprivation score and combined SIR, it may not be

linear with deprivation treated as a bona fide numerical score.
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Figure 4.1: Violin Plots of Combined SIR by Deprivation Score

On top of the indication of a relationship between deprivation score and

combined SIR value, Table 4.1 also suggests that there may be spatial clus-

tering in alcohol-related deaths and hospitalisations in Scotland. Of the 10

data zones with the highest combined SIR values, 5 fall within the Glasgow

City local authority. When looking at the 100 highest combined SIR values

there is some fairly strong evidence of spatial clustering, as 51 of these areas

fall within Glasgow City.

4.1.1 Combined Male and Female SIR Maps

A data zone cloropleth map of Scotland showing the combined SIR values

is shown in Figure 4.2. Magnified sections of this map are given for the

Aberdeen, Ayrshire, Dundee, Edinburgh, Glasgow, Inverness and Stirling
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areas in Figure 4.3, Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7, Figure 4.8

and Figure 4.9 respectively.

Firstly, if we compare these maps to the corresponding deprivation score

data zone maps in Chapter 2 the similarities in patterning are striking. This

data definitely seems to agree with previous studies in that alcohol-related

health risks appear to be much higher in more deprived areas.

Figure 4.2 indicates that the SIR values are lower in the East of Scotland.

However, it must be remembered that the choice of specification intervals and

colour scheme can affect the interpretation of such maps. Two further plots

have therefore been created: a scatter plot of combined SIR value against

data zone centroid easting coordinate using hexagonal binning (Figure 4.10a)

and a scatter plot of combined SIR against easting coordinate (Figure 4.10b).

The lowess (locally weighted scatterpoint smoothing) line has been imposed

on to Figure 4.10b using R. Both plots in Figure 4.10 provide further evidence

that the SIR values do tend to be lower in the East of Scotland, although

the relationship does not appear quite as strong as Figure 4.2 suggests.

There also seems to be some indication in Figure 4.2 that SIR values are

higher in the north of Scotland. Similar plots have been created to objec-

tively look at how the combined SIR values relate to how far north the data

zones are; Figure 4.11a shows a scatter plot of combined SIR against data

zone northing coordinate using hexagonal binning and Figure 4.11b shows

a scatter plot of combined SIR against northing coordinate with a superim-

posed lowess line. Neither plot in Figure 4.11 shows a particularly strong

relationship, although, with the exception of the northing range of around

630000 to 700000, there is slight evidence of the combined SIR increasing as

you go further north in Scotland.

Looking at the full SIR map of Scotland in Figure 4.2 allows us to gain a

picture of the large sparsely populated rural data zones of Scotland. Most of

these rural areas have a combined SIR value less than 0.88, so in general, large

rural areas observed fewer total deaths and hospitalisations than expected.
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Legend

SIR

0.0000 - 0.4793

0.4794 - 0.8799

0.8800 - 1.3519

1.3520 - 1.9535

1.9536 - 2.8290

2.8291 - 6.3076

Figure 4.2: Data Zone Map of Alcohol-related SIR

However, in the North West of Scotland and particularly in the regions of the

Inner and Outer Hebrides and the Isle of Skye alcohol-related risk appears

to be higher than average. There are also two mainland data zones with SIR

values between 1.95 and 2.83 which stand out, one in the Ben Nevis area and
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the data zone directly north of Loch Alsh.

Now to consider the two largest cities in Scotland and compare the com-

bined SIR maps for Glasgow and Edinburgh in Figure 4.7 and Figure 4.6

respectively. Even at first glance these maps show that Glasgow has far

higher SIR values than Edinburgh on average. The majority of data zones in

Edinburgh appear to have an SIR value of less than 0.88 and the relatively

few data zones in this city which have a SIR values in excess of 1.9536 seem

to lie on the periphery of the city. In contrast, the Glasgow combined SIR

map shows a high density of extremely high SIR values in inner city areas.

SIR values of over 2.8 are shown across many parts of the city, but appear

to be most common in the East of Glasgow and to the South of the Clyde.

There are some definite clusters of high SIR values in the East of Glasgow.

All of the magnified areas of the combined SIR map, shown in Figures

4.3 to 4.8, indicate that there is much greater variation in the area of data

zones within the lower SIR classes. The data zones with the highest SIRs

tend to be small densely populated areas with high deprivation levels. All of

these magnified maps also show a strong relationship between SIR value and

deprivation as well as highlighting that there is no ”norm” pattern in SIR

values for towns and cities across Scotland.

4.2 Male SIR

This section considers the SIR values calculated using only the male data.

In this case the methods described in Chapter 3 were used to calculate the

SIR, except that sex standardisation is obviously no longer needed. This

section aims to compare the male SIR results with the combined SIR results.

A table showing the 10 highest and 10 lowest male SIR values in Scotland

has been produced and is shown in Table 4.2 below. Obviously, since the 10

lowest combined SIR values are zero, the 10 lowest male SIR values are also

zero. In fact, for males there were 196 data zones which experienced no
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Legend

SIR
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2.8291 - 6.3076

Figure 4.3: Data Zone Map of Aberdeen Alcohol-related SIR

alcohol-related deaths or hospitalisations; of these areas over 39.7% have a

deprivation score of 10 and only 9.18% have a deprivation score less than 7.

The 10 highest male SIR values, as shown in Table 4.2, also all relate to

areas with the most deprived score of 1. Upon looking at the 100 highest
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Legend

SIR
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0.4794 - 0.8799

0.8800 - 1.3519
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2.8291 - 6.3076

Figure 4.4: Data Zone Map of Ayrshire Alcohol-related SIR

male SIR values, it can be seen that 86 of these correspond to areas with a

deprivation score of 1 and 53 fall within Glasgow City. The male SIR results

are therefore similar to the combined SIR results. This is to be expected

since, as is shown in Chapter 2, there were many more recorded male alcohol-
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Legend
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Figure 4.5: Data Zone Map of Fife Alcohol-related SIR

related deaths and hospitalisations during the study period; as a result the

male data will have a greater influence on the combined data. The results

suggest that there is a strong relationship between deprivation and alcohol-

related health risks for males; also that any such relationship may not be
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Legend
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2.8291 - 6.3076

Figure 4.6: Data Zone Map of Edinburgh Alcohol-related SIR

linear, since the worst deprivation score of 1 appears to be more strongly

associated with very high male SIR values, than the best deprivation score

of 10 is with very low values.

Violin plots have also been produced for the male SIR values and are
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Legend
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Figure 4.7: Data Zone Map of Glasgow Alcohol-related SIR

shown in Figure 4.12. These show a very similar picture to that in Figure

4.1 above; the male SIR values are greater on average for lower (worse)

deprivation scores. Again, the difference in average male SIR value between

successive deprivation scores increases as deprivation score decreases, with
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Legend
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Figure 4.8: Data Zone Map of Inverness Alcohol-related SIR

the greatest difference occurring between deprivation score 1 and 2. It again

appears then, that any relationship between deprivation score and alcohol-

related risk will not be linear but will be monotonic.
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Legend
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Figure 4.9: Data Zone Map of Stirling Alcohol-related SIR

4.2.1 Male SIR Maps

A data zone map of the male SIR values has been produced for the whole

of Scotland (Figure 4.13), along with accompanying magnified sections show-
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Figure 4.10: Plots of Combined SIR against Easting
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Figure 4.11: Plots of Combined SIR against Northing

ing Aberdeen (Figure 4.14), Ayrshire (Figure 4.15), the Dundee area (Figure

4.16), Edinburgh (Figure 4.17), Glasgow (Figure 4.18), the Inverness area

(Figure 4.19) and Stirling (Figure 4.20).

The full male SIR map of Scotland, Figure 4.13, exhibits very similar pat-
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Figure 4.12: Violin Plots of Male SIR by Deprivation Score

terning to both the combined SIR map of Scotland discussed above and the

deprivation score map of Scotland shown in Chapter 2. This is further evi-

dence of an association between deprivation score and alcohol-related health

risks for males in Scotland.

The full Scottish male SIR map in Figure 4.13, like the combined SIR

map, suggests that the values are higher further North and further West in

Scotland. Plots similar to those in Figure 4.10 and Figure 4.11 above have

been produced for the male SIR values; Figure 4.21 shows two scatter plots of

male SIR against data zone centroid easting, one using hexagonal binning and

the second with an added lowess line and Figure 4.22 shows the equivalent

plots for data zone centroid northings. These plots are extremely similar

to those for the combined SIR values. Both plots in Figure 4.21 suggests

that the male SIR values do appear to be lower in the East of Scotland, but

that any relationship between easting and male alcohol-related risk is likely

to be fairly weak. In Figure 4.22 neither plot suggests a particularly strong

relationship between male SIR and data zone centroid northing, although,
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with the exception of the northing range of around 630000 to 700000, there is

slight evidence of the male SIR increasing as you go further north in Scotland.

If we now compare the Glasgow and Edinburgh areas in the male SIR

map, shown in Figure 4.18 and Figure 4.17 respectively, they too show very

similar patterns to the combined SIR maps for these areas discussed above.

For males too the higher SIR values in Edinburgh appear more around the

peripheral of the city, where as there are some evident clusters of very high

male SIR values just to the East and South of Glasgow city center. In line

with the combined results, the male SIRs tend to be much higher on average

in Glasgow than in Edinburgh.

The magnified areas showing some smaller cities and towns in Scotland

(Figures 4.14 to Figure 4.20) all exhibited patterns so similar to their com-

bined SIR equivaltents that the comments made above still apply. There

appears to be no common distribution of high male SIR values throughout

the different towns and cities in Scotland. However, the very high values

almost always occur in small, densely populated and highly deprived data

zones.
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Legend
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Figure 4.13: Data Zone Map of Male Alcohol-related SIR
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Legend
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Figure 4.14: Data Zone Map of Aberdeen Male Alcohol-related SIR
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Figure 4.15: Data Zone Map of Ayrshire Male Alcohol-related SIR
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Legend
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Figure 4.16: Data Zone Map of Fife Male Alcohol-related SIR
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Legend

Male_SIR

0.0000 - 0.4662

0.4663 - 0.9180

0.9181 - 1.4601

1.4602 - 2.1402

2.1403 - 3.1431

3.1432 - 7.9524

Figure 4.17: Data Zone Map of Edinburgh Male Alcohol-related SIR
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Legend
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Figure 4.18: Data Zone Map of Glasgow Male Alcohol-related SIR
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Legend
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Figure 4.19: Data Zone Map of Inverness Male Alcohol-related SIR
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Legend
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Figure 4.20: Data Zone Map of Stirling Male Alcohol-related SIR
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Figure 4.21: Plots of Male SIR against Easting
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Figure 4.22: Plots of Male SIR against Northing

4.3 Female SIR

The SIRs calculated using only female data will now be discussed. Like

the previous sections, we will start by looking at a table which gives the data

zones with the ten highest and 10 lowest female SIRs values in Scotland,
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Table 4.3.

Obviously again, if the ten lowest SIR values for the combined data are

zero, this must also be the case for the female only data, which is confirmed

in Table 4.3. In total there are 761 data zones with a female SIR value of

zero. This is considerably more than the male count of just 196. This agrees

further with previous research which has shown alcohol abuse to be much

greater among males in Scotland than among females. Of the 796 data zones

which experience a zero female SIR value, 26.4% have a deprivation score

of 10 and more than 16.2% have a deprivation score of 5 or less. This is in

contrast to the male SIR results, where over 39% of the zero values were for

areas with the least deprived score of 10 and only 9.8% had a score of 7 or

less. This suggests that deprivation score may share a greater association

with male SIR than with female SIR.

Of the 10 highest female SIR values shown in Table 4.3 7 represent data

zones with a deprivation score of 1 and 3 with a score of 2. All of the 10

highest male SIR values were in areas with a deprivation score of 1, so it is

of interest to compare the figures for the 100 highest SIR values for males

and females. Only 68% of the 100 highest female SIR values correspond to

areas with a deprivation score of 1 compared to 86% for males. This adds to

the suggestion that deprivation score may have a stronger association with

male alcohol-related risk than with female alcohol-related risk. Of the 10

highest female SIR values just three correspond to Glasgow City compared

to 8 for males. As a first look this suggests that clustering may be stronger for

males, although this is weak evidence and clustering is much better judged

by looking at maps of SIR values.

A violin plot of SIR values by deprivation score has also been produced

for the female data and is shown below in Figure 4.23. This plot shows

that female SIR values tend to be higher in more deprived areas. As the

deprivation score worsens from 10 to 2 the median female SIR value appears

to increase in a roughly linear fashion. However, there is then a relatively
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large jump in median female SIR value moving from deprivation score 2 to 1.

It appears, that female SIR values during this period are linked to deprivation

score, but probably to a lesser extent than for males. Both the data for males

and for females suggest that any relationship between these variables may

not be linear; so far a linear relationship between deprivation score and SIR

seems less likely for males.
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Figure 4.23: Violin Plots of Female SIR by Deprivation Score
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4.3.1 Female SIR Maps

A data zone map of Scotland depicting the female SIR values is shown in

Figure 4.24, along with magnified sections of this map for Aberdeen (Figure

4.25), Ayrshire (Figure 4.26), the Dundee area (Figure 4.27), Edinburgh

(Figure 4.28), Glasgow (Figure 4.29), the Inverness area (Figure 4.30) and

Stirling (Figure 4.31).

On a first glance at the female SIR map of Scotland in Figure 4.24 it

appears to be less smooth than its male equivalent. In general alcohol-related

health risks appear to be higher in the South and East of the country, but

possibly less so than for the males.

Two plots of female SIR against data zone centroid easting are shown in

Figure 4.32, the first using hexagonal binning, and the second with a superim-

posed lowess line. In fact these plots show a very similar association between

SIR value and easting to that exhibited by the male values. In general there

appears to be a decrease in female SIR value as you move from West to East

up to around 3e5 where it begins to settle. Two similar plots were produced

showing female SIR against data zone centroid Northing, shown in Figure

4.33. Again these plots also show an extremely similar pattern to that of the

male data; the SIR values tend to increase from South to North, with the

exception of a small region which lies between the Northing values of 600,000

and 700,000. There appears to be a large amount of variation around the

lowess line, and neither relationship appears to be very strong. This suggests

that it may not be worth factoring Easting and Northing into the modelling

process, especially since other spatial methods will be explored.

Looking further at Figure 4.24 it can be seen that there are some data

zones which have a female SIR of between 1.99 and 3 which also have a

male SIR of less than 0.47. There are also some areas which have a lower

female SIR than the male equivalent. The female map does exhibit an overall

pattern which is similar to, but much less smooth than, that of the males.

This relative lack of smoothness may indicate that female alcohol-related
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risk varies less smoothly across Scotland. Alternatively, it may simply be

due to the fact that alcohol-related deaths and hospitalisations are much less

common among women, resulting in lower numbers of observed cases and

more erratic/ less reliable risk estimates.

Legend
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0.2287 - 0.7060

0.7061 - 1.2696

1.2697 - 1.9882

1.9883 - 3.0027

3.0028 - 6.5393

Figure 4.24: Data Zone Map of Female Alcohol-Related SIR
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Figure 4.25: Data Zone Map of Aberdeen Female Alcohol-Related SIR
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Figure 4.26: Data Zone Map of Ayrshire Female Alcohol-Related SIR
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Legend
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Figure 4.27: Data Zone Map of Fife Female Alcohol-Related SIR

4.4 Comparison of Male and Female SIR Val-

ues

Comparing the zoomed-in areas of the female SIR map of Scotland, Fig-

ure 4.24, with the male equivalents it can be seen that they all exhibit similar
88



Legend
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Figure 4.28: Data Zone Map of Edinburgh Female Alcohol-Related SIR

patterns, but that the female values appear to be less smooth than the males

in each. However, it should be noted that the SIR map risk level colour

definitions are different for the two sexes. In order to make it simpler to

compare the estimated level of alcohol-related health risk across Scotland
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Legend
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Figure 4.29: Data Zone Map of Glasgow Female Alcohol-Related SIR

between males and females some further plots have been produced. The

ratio of female to male SIR in each of the datazones in Scotland has been

computed and maps showing these values have been created for the follow-

ing areas: Scotland (Figure 4.35), Aberdeen (Figure 4.36), Ayrshire (Figure
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Figure 4.30: Data Zone Map of Inverness Female Alcohol-Related SIR

4.37), Dundee (Figure 4.38), Edinburgh (Figure 4.39), Inverness (Figure 4.41)

and Stirling (Figure 4.42).

It should be noted that there are 133 instances where the male alcohol-

related SIR is zero but the female equivalent for a data zone is positive. It is
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Figure 4.31: Data Zone Map of Stirling Female Alcohol-Related SIR

therefore impossible to estimate a ratio of female to male SIR since it would

involve dividing by zero. Such data zones are shaded white in the following

ratio maps.

It was found that in just over half of the data zones in Scotland the
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Figure 4.32: Plots of Female SIR against Easting
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Figure 4.33: Plots of Female SIR against Northing

ratio of female to male alcohol-related SIR is less than 1. In fact, the actual

percentage is approximately 50.67% which is around what one would expect if

the spatial pattern of alcohol-related risk is the same in both sub-populations.

There were several areas where the female alcohol-related relative risk
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was unusually high compared to that for males, with a ratio of greater than

10 in 25 of the data zones. The maximum ratio observed was 21.83 and

this was observed for data zone S01001315 which is an area of Mauchline

in East Ayrshire. Boxplots of the ratio of female to male SIR values split

by deprivation score are shown in below in Figure 4.34; this shows that the

median ratio of around 0.93 is very similar across the 10 deprivation scores,

but that there is a larger variation in the ratio in less deprived areas.
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Figure 4.34: Boxplots of the Ratio of Female to Male SIR by Deprivation

Score

Firstly, by looking at Figure 4.35 it is apparent that there is no obvious

patterns or trends in the ratio of female to male SIR values. There is evidence

of data zones with very high ratios both in large rural areas, island areas and

in small inner city areas. The majority of the ratios above 3.9541 appear to

fall in the central belt of Scotland.

Further, the enlarged Edinburgh area from the ratio map (Figure 4.39)

exhibits much higher female to male SIR ratios on the whole than in the

equivalent map of Glasgow (Figure 4.40). This ties in with the above com-
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ments relating to the variation in ratios differing according to deprivation

levels, since from earlier maps it is clear that on average deprivation is much

lower in the the Edinburgh area than in Glasgow.

Ratio of Female to Male SIR

0.0000 - 0.4817

0.4818 - 1.1378

1.1379 - 2.0449

2.0450 - 3.9540

3.9541 - 7.9390

7.9391 - 21.8278

Figure 4.35: Data Zone Map of the Ratio of Female to Male SIR in Scotland

Area
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Figure 4.36: Data Zone Map of the Ratio of Female to Male SIR in the

Aberdeen Area

Improving this lack of smoothness, along with improving the reliability

of the estimates is the aim of the modelling process.
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Figure 4.37: Data Zone Map of the Ratio of Female to Male SIR in the

Ayrshire Area
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Figure 4.38: Data Zone Map of the Ratio of Female to Male SIR in the

Dundee and Fife Area

4.5 SIR and Local Authority

As discussed above, due to the extremely small geographical area of many

of the data zones, on A4 paper it is necessary to show the map of Scotland in
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Figure 4.39: Data Zone Map of the Ratio of Female to Male SIR in the

Edinburgh Area

sections. Viewing the SIR pattern in such a way makes it harder to compare

several areas of the maps simultaneously than if they were shown in a single

figure. In an attempt to highlight any differences within the SIR maps or
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Figure 4.40: Data Zone Map of the Ratio of Female to Male SIR in the

Glasgow Area

between male and female SIR values which were missed using sectioned maps,

two further boxplots have been produced. Boxplots of SIR value by local

authority are shown in Figure 4.43 for males and Figure 4.44 for females.
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Figure 4.41: Data Zone Map of the Ratio of Female to Male SIR in the

Inverness Area

Figure 4.43 suggests that the local authorities with the highest median

male SIR value for the period in question are Eilean Siar (the Outer He-

brides), Glasgow City and Inverclyde. This result is no surprise in terms of
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Figure 4.42: Data Zone Map of the Ratio of Female to Male SIR in the

Stirling Area

Glasgow City, but Eilean Siar is an area which may not have been expected

to have such a high average male SIR. The Scottish data zone map of male

SIR (Figure 4.13) does suggest that there were high values experienced in

102



Eilean Siar, but none appears to be in the most deprived category of 3.14 to

7.95. The similarity in average male SIR value in Eilean Siar compared with

that of Glasgow City must be due to the fact that, although there are many

extremely high values experienced within Glasgow, these are cushioned by

the appearance of several low male SIR values between 0 to 0.47.
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Figure 4.43: Boxplot of Male SIR by Local Authority

The boxplots of female SIR by local authority (Figure 4.44) are now

considered. For females the three local authorities with the highest median

SIR value are Eilean Siar, East Ayrshire and South Ayrshire. Eilean Siar

appears to stand out more for the females than for the males as having the

highest median value. The patterns then do not seem to be the same for male

and female SIR across Scotland. The plots for males and females also suggest
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that alcohol-related risk in Scotland occurs to differing degrees throughout

the country, with high risks being experienced in both rural and inner city

locations.

However due to the sparseness of the female data compared to that of

the and the discussed drawbacks of the SIR method, there should not be too

much weight placed upon these plots.
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Figure 4.44: Boxplot of Female SIR by Local Authority
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Chapter 5

BYM Models for Combined

Data

Although the SIR is a quick and easy risk estimate, it has some serious

drawbacks which have been discussed earlier in this thesis. With the aim

of overcoming these problems model-based estimates for the relative risk of

alcohol-related death or hospitalisation in each data zone across Scotland will

now be considered.

Firstly, models will be fitted to the combined male and female data. The

basis for the model structure used is that of the Besag, York and Mollié model

(Besag et al. (1991)) discussed in Chapter 3. This is a spatial Bayesian model

which considers both correlated and uncorrelated heterogeneity. The models

are based on the expected and observed counts of alcohol-related deaths and

hospitalisations in each data zone.

5.1 Models Considered

This chapter will investigate nine different models for the combined alcohol-

related relative risk across the data zones. These models will differ in terms

of both fixed effects and random effects. As random effects each model will

include either uncorrelated heterogeneity (v), correlated heterogeneity (u) or
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a convolution prior (u + v). Area deprivation score is the only fixed effect

which is explicitly fitted in any of the models. The expected count data

used to fit these models has already been standardised for age and sex, so

they should not be included at the model-building stage. Deprivation score

has been modelled as a fixed effect in two different ways; firstly in a linear

manner and secondly by assigning a separate parameter to each of the 10

deprivation scores.

Table 5.1 gives a summary of the nine different models compared in this

section; it indicates how the deprivation score has been incorporated (if at

all) and what random effects have been included.

Model Name Fixed Effects Random Effects

Model A-v none v

Model A-u none u

Model A none u+ v

Model B-v linear deprivation v

Model B-u linear deprivation u

Model B linear deprivation u+ v

Model C-v non-linear deprivation v

Model C-u non-linear deprivation u

Model C non-linear deprivation u+ v

Table 5.1: Models for Combined Alcohol-Related Relative Risks

As explained in section 3.6, the Besag, York and Mollié model assumes

that the relative risk in area i, θi, is given by

θi = exp (α+ ui + vi)

where exp(α) is the baseline or overall level of relative risk. Model A fits

exactly the BYM model.

Model B incorporates a linear term for area deprivation score, giving

θi = exp (α + βdi + ui + vi)
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where β is a parameter and di is the deprivation score in area i. The depri-

vation parameter β has been assigned a vague normal prior with mean 0 and

a precision (inverse variance) of e−5.

Model C goes one step further and adds a non-linear deprivation term to

the basic model A. This gives

θi = exp (α + βdi + ui + vi)

where there is a separate parameter, β1 to β10, for each of the 10 deprivation

scores. The parameter for the worst deprivation score of 1, β1, has been

arbitrarily set to zero and the remaining 9 parameters are given vague normal

prior distributions with mean zero and precision e−5. So, for Model C we

have

β1 = 0 and

βj ∼ N(0, exp(−5)),

for j in 2:10.

The background relative risk α is said to follow an improper flat prior in

all 9 models. This is the most vague form of prior; it is effectively a uniform

distribution across the entire real line, which means α has an equal prior

probability of being any real value.

The code for all of the models specifies a normal prior distribution with

mean zero for the uncorrelated heterogeneity and a conditional autoregressive

prior for the correlated heterogeneity, so

vi ∼ N
(
0, τ 2v

)
and[

ui|uj, i ̸= j, τ 2u
]

∼ N
(
ui, τ

2
i

)
where τ 2v , ui and τ 2i are as described in section 3.6.

Vague gamma hyperprior distributions have been assigned to the inverse

variance hyperparameters of both random effects. In particular,

τ 2v ∼ gamma(0.5, 0.0005) and

τ 2u ∼ gamma(0.5, 0.0005).
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This hyperprior distribution has been chosen since it is sufficiently vague

and commonly used in disease mapping studies where there is no strong

prior knowledge.

All nine models have been run using OpenBUGS and the code for Model

A, Model B and Model C is shown below in appendix section 10.1, 10.2 and

10.3 respectively. The code for the other variations of these models can be

easily obtained by omitting the redundant parts of the code; for example,

Model A-v can be obtained by deleting all parts of the Model A code which

relate to the correlated heterogeneity random effect u.

5.2 Convergence

The aim of using any of the sampling methods discussed in Chapter 3

section is to simulate a Markov chain whose equilibrium distribution is the

desired distribution (Gilks et al. (1996)). It is hoped that the joint distribu-

tion of the simulated values will converge, or stabilise, to the joint posterior

distribution. Often such simulations will take a number of iterations to con-

verge, but the length of this so called ’burn-in’ period varies greatly between

different studies and different models. It is necessary to carry out a number of

convergence checks in order to determine a suitable number of burn-in itera-

tions. All parameter estimates are based only on iterations after the burn-in

period, so the values obtained during this period are effectively forgotten.

There must be enough post-burn-in iterations to allow accurate posterior

estimates to be calculated from the samples.

The models investigated simulate a separate relative risk parameter and

in some cases two random effects for every single area. Given that there are

6505 data zones in the study it proved impractical to record these parameter

values at every iteration. For all nine combined models the relative risk has

been fully monitored for a subset of the data zones and a summary monitor

has been set for the remaining areas. All other parameters in the models
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have been fully monitored. A summary monitor gives exact estimates of the

mean and standard deviation of the simulated parameter sample along with

approximate 95% credible intervals.

The relative risk estimate was recorded at every iteration for the data

zones given in Table 8.2 below.

Data zone Code Relative Risk Parameter Reason Chosen

S01006393 θ115 poor deprivation score

S01006438 θ14 poor deprivation score

S01006490 θ1 good deprivation score

S01006505 θ2 good deprivation score

S01003744 θ2521 rural area

S01003915 θ2692 rural area

S01003380 θ3044 urban/city area

S01002325 θ4687 urban/city area

S01005521 θ985 island / no neighbouring areas

S01000447 θ6238 island / no neighbouring areas

Table 5.2: Data Zones with Fully Monitored Relative Risk Estimates

It was found that adequate convergence was achieved by all of the com-

bined data models after a burn-in of 10,000 iterations, after which each model

was run for a further 150,000 iterations. Two identical sampling algorithms

were run simultaneously from different starting points, in order to allow more

robust checks for convergence. A variety of methods were used to ascertain

convergence and these are discussed below.

Convergence will only be discussed in detail for Model C-u, since the same

checking methods were used and satisfied for all nine models.

Firstly, the history plots for a selection of the relative risk and other

parameters from Model C-u are shown in Figures 5.5, 5.6, 5.7 and 5.8. These

plots show the parameter value at each iteration post burn-in period against

the iteration number, for both chains on the same plot. Every one of these

history plots indicates that Model C-u has converged well. They exhibit

no obvious patterns or trends and the lines for each chain form consistently

overlapping horizontal bands across the plots. This is strong evidence that

both chains have converged, or settled, to a stable posterior distribution.
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However, it must be remembered that it is still possible that the simulation

has just become ‘stuck’ in a certain area of the parameter space.

For the same subset of Model C-u parameters the Gelman-Rubin diag-

nostic plots, as discussed in section 3.4.3, are shown in Figure 5.3 and Figure

5.4. Again, all of these plots suggest that both chains have achieved ade-

quate convergence. This is because the green line, which shows the width of

the central 80% interval of the pooled chains, and the blue line, which shows

the average width of the 80% intervals within the individual chains, are both

stable and the red line which represents their ratio is stable at a value of 1.

In fact, the intervals are so similar for the individual chains and the pooled

chains that the blue line almost completely obscures the green line.

A further indication of the satisfactory convergence of Model C-u is that,

for the same subset of parameters, the posterior density plots shown in Figure

5.1 and Figure 5.2 all appear to be smooth. A lack of convergence often

results in such parameter posterior density plots appearing more uneven and

‘spikey’.
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5.3 DIC

As discussed in Chapter 3 the Deviance Information Criterion, DIC, is a

commonly used measure of goodness of fit for spatial Bayesian models such

as the BYM model. Table 5.3 gives the deviance, DIC and related values

calculated using the pD method for all nine models fitted to the combined

data in this chapter. In this table the model results are sectioned in two ways:

firstly, split by the fixed effects they contain, either no deprivation, linear

deprivation or non-linear deprivation, and secondly, the results are also split

into models which were fitted using only correlated/spatial heterogeneity (u),

uncorrelated heterogeneity (v) or both (u+ v).

Table 5.3 shows that the DIC is lowest for the model which does not

incorporate deprivation but includes both uncorrelated and correlated het-

erogeneity effects (Model A). This is definitely not what one would expect,

since when comparing the data zone deprivation score maps and data zone

SIR maps the patterns shown are very similar. It is therefore highly unlikely

that deprivation score does not explain a significant amount of the varia-

tion in relative risks. However, when fitting a spatially smooth model which

includes an equally smooth covariate, it is not uncommon that the model se-

lection process suggests to remove the covariate, even though it seems to be

highly relevant. The issue is that both the covariate and the smooth random

effects compete with each other as they have similar explanatory power.

Both the posterior mean of the deviance (D) and the point estimate of

the deviance obtained by substituting in the posterior means of the other

model parameters (D̂) are given. The DIC section on the WinBUGS website

indicates that D̂ is a better measure of fit than D which can be considered

more of a measure of adequacy. So Table 5.3 suggests that Model A-v fits

the data best, which is again unexpected.

The most obvious problem presented by Table 5.3 is the negative pD

values. The pD value should represent the effective number of parameters in
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the model, but for two of the nine models investigated (Model A and Model

B-u) this value is negative. This is possible but highly undesirable. Such

negative pD values can occur when there is a non-log-concave likelihood,

when the posterior for a parameter is especially asymmetric or bimodal or

when there is another situation that causes the posterior mean to be a poor

summary statistic causing large deviance values. Upon investigation it does

not appear that any of the posterior distributions for the fully monitored

parameters are particulary multi-modal or skewed. Unfortunately, since it

was not possible to fully monitor the majority of the model parameters it is

not possible to rule out posterior multi-modality or asymmetry as a cause of

the negative pD values.

Due to the negative pD results achieved using the DIC values in Table

5.3 it has been decided to focus on an alternative method for calculating

the DIC. This method uses an alternative to pD known as p*D which was

developed by Andrew Gelman (as discussed in Chapter 3). Since each p*D

value is calculated as a proportion of the corresponding parameter sample

variance they cannot be negative. Table 5.4 gives the p*D, DIC calculated

using p*D and deviance values. In this table the lowest DIC of 36591 cor-

responds to Model C-u which includes non-linear deprivation and correlated

heterogeneity. The p*D method of calculating DIC therefore results in much

more intuitive model selection.

5.4 Model Selection

It would be normal practice to choose Model C-u as the ‘best’ model

since it has the lowest DIC value. The selection of Model C-u indicates

that the relationship between alcohol-related relative risk and deprivation

score in Scotland is not linear. This is consistent with previous discussions

in Chapter 4, which noted that there was a larger increase in average SIR

value between the deprivation scores of 1 and 2 than between any other
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pair of consecutive scores. The difference in average combined SIR between

sequential deprivation scores increases as deprivation worsens. So when using

the p*D method of DIC, it seems to lead to a sensible model choice in this

case.

It must, however, be remembered that these models are based on as-

sumptions which are set by the modeller by way of the prior and hyperprior

distributions for the parameters and hyperparameters. Although a model

which incorporates non-linear deprivation and only correlated heterogeneity

has been chosen under the current priors, it needs to be investigated whether

this would normally be the case. With limited time to complete this project

a comprehensive analysis of how sensitive the model results are to the priors

is not possible. However, sensitivity to the gamma(0.5, 0.0005) hyperpriors

assigned to τ 2u and τ 2v will be examined.

5.5 Hyperprior Sensitivity Analysis

The nine models given in Table 5.1 will be re-run with different hyperprior

distributions assigned to τ 2u and τ 2v . These sensitivity models will use the

same names as those given in Table 5.1 but with ‘Sens’ appended at the end,

for example ‘Model A-Sens’. The reason for running the models with different

hyperpriors is firstly to see whether the choice of prior will affect the model

selection, and secondly, to see by how much the estimated alcohol-related

relative risk estimates are affected by the alternative priors.

The alternative hyperpriors considered in each model (where necessary)

are

τ 2u ∼ Gamma(1, 1) and

τ 2v ∼ Gamma(1, 1).

These distributions are much less vague and very different from the previous

hyperpriors used. They are not ideal as a first choice. However, if the models
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can be fitted using such different hyperpriors and still give similar results,

this will suggest that the models are not too sensitive to hyperprior choice.

Convergence of all sensitivity models was also monitored and checked and

these models were also found to converge adequately after 10,000 iterations.

As with the original models, each sensitivity model was then run for a further

150,000 simulations.

Once all nine sensitivity models had been run the DIC values were calcu-

lated. Table 5.5 gives the deviance statistics, pD and DIC values calculated

using the pD method for the sensitivity models. Negative pD values also arise

for the sensitivity models, again only for models which contain the correlated

heterogeneity term ui.

Due to the occurrence of these negative pD values, the p*D method of

calculating DIC will also be used for the sensitivity models. Table 5.6 gives

the deviance statistics, p*D value and DIC value calculated using p*D for

all nine sensitivity models. Using this method the DIC value was lowest for

the sensitivity model which incorporates fixed effects for non-linear area de-

privation and both correlated and uncorrelated heterogeneity random effects

(Model C-Sens).

If model selection is carried out for both the original and the sensitiv-

ity models using the p*D method of calculating DIC, the lowest values are

observed for different models. However, both Model C-u and Model C-Sens

include the spatial random effect ui and a non-linear area deprivation score

fixed parameter. The need for the additional non-spatial random effect is

probably because the priors assigned to the precision terms of both random

effects in the sensitivity models are much more restrictive. The original pre-

cision priors specify a mean of 1000 and a variance of 2,000,000 compared to

both a mean and variance of 1 for the sensitivity models.

The similarity in the models chosen using very different priors suggests

that the model structures are not overly sensitive to the hyperprior choice. It

is also of interest to compare the actual parameter estimates of both chosen
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models.

Some of the results from Model C-u and Model C-Sens are given in Table

5.7. The point estimates for all fully monitored parameters from these models

are given along with corresponding credible intervals. The point estimates

are calculated by treating the simulated chain values as a sample from the

true posterior distributions and taking the mean of each parameter sample.

The credible intervals used are equivalent to frequentist confidence intervals.

The 95% central Bayesian credible intervals given comprise the 2.5% and the

97.5% quantiles of each parameter sample for the fully monitored parameters.

With the exception of the precision and variance parameters, every Model

C-u parameter estimated in Table 5.7 lies within the corresponding Model

C-Sens confidence interval and vice versa. This indicates that the choice of

hyperprior has not dramatically affected the alcohol-related relative risks in

each area. The results for the variance parameters in Table 5.7 show that,

although Model C-Sens contains both correlated and uncorrelated hetero-

geneity and Model C-u contains only correlated heterogeneity, Model C-Sens

attributes over 72% of the total variance to spatial effects.

Given the strong similarities between the Model C-u and Model C-Sens

results for combined male and female alcohol-related relative risk across Scot-

land, Model C-u will be considered the final model since it has a much more

appropriate hyperprior distribution and it has been shown not to be very

sensitive to hyperprior choice.

5.6 Model Results

A selection of the parameters fitted in Model C-u are shown in Table 5.7.

This table shows that none of the 95% credible intervals for the Model C-u

deprivation parameters overlap or contain zero. This is strong evidence that

all deprivation scores have a significant effect on combined alcohol-related

relative risks in Scotland and hence should all be included in the model.
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This information further supports the model choice; if the DIC had suggested

this model but the individual deprivation score parameters proved not to be

significant, this would potentially lead to an alternative model choice.

Box plots of the simulated area deprivation score parameters in Model

C-u, β2 to β10 (β1 was arbitrarily set to zero so was not simulated), are

shown in Figure 5.9. Although a non-linear fixed effect was found to be the

most appropriate way to include the area deprivation score, the β param-

eter estimates themselves appear to be fairly linear. All of the deprivation

score parameter estimates are negative and the value of βdi gets progressively

smaller as di increases from a score of 2 to a score of 10. This is as one would

expect; there is a larger decrease in the relative risk estimate for less deprived

areas. The chosen model suggests that it is highly likely that, on average,

the least deprived data zones with a deprivation score of 10 have an alcohol-

related relative risk which is between only 0.161 and 0.179 times that of the

most deprived data zones.

The structure of Model C-u means that the chosen model assumes that the

alcohol-related relative risk in each data zone depends on the risk estimates

in the neighbouring areas.

1098765432

-1.03

Boxplots of Deprivation
Parameters for Model C-u

Figure 5.9: Boxplots of Deprivation Parameters for Model C-u
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The ten hightest and ten lowest alcohol-related relative risks calculated

using Model C-u are given in Table 5.8. It must be remembered that the

credible intervals given for the model parameters which have been assigned a

summary monitor are only approximate.When we compare this to the equiv-

alent for the combined SIR values (Table 4.2) it is immediately apparent

that there are no longer any zero relative risk estimates. Other than this

however, the results do seem to be similar to those obtained using the SIR

method. All of the ten lowest values correspond to data zones with an area

deprivation score of at least 8, with 6 having the least deprived score of 10.

For the highest combined relative risks estimated using this model, all ten

correspond to data zones with the worst deprivation score of 1.

It should also be noted the most extreme high-risk estimates from Model

C-u are lower than those obtained via the the combined SIR method. The

modelling process has therefore reduced the problem of extremely low and

extremely high risk estimates experienced with the SIR method due to the

rarity of the disease and the extremely small study regions.

5.7 Alcohol-Related Relative Risk Maps

In this section the alcohol-related relative risk estimates calculated for

each data zone in Model C-u have been mapped. A data zone map of Scot-

land depicting the combined relative risk estimates is shown in Figure 5.10,

along with magnified sections of this map for Aberdeen (Figure 5.11), Ayr-

shire (Figure 5.12), the Dundee area (Figure 5.13), Edinburgh (Figure 5.14),

Glasgow (Figure 5.15), the Inverness area (Figure 5.16) and Stirling (Figure

5.17).

Before any comparisons between the maps in this chapter and the com-

bined SIR maps given in Chapter 4 can be made, it must be noted that the

legend cut points used are not the same. However, bearing this in mind, it

can be seen that the modelled risk estimates appear to give a very similar
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general pattern to that of the combined SIR method. The modelled SIR

values are, however, much smoother due to the incorporation of correlated

heterogeneity. Large blocks of colour, which represent clusters of certain risk

categories, can be observed in the maps for modelled risks.

There is a possibility that some would say the risk estimates for Model

C-u have been forced to be over smooth by only allowing for spatial random

effects in the model. The appropriateness of this model would depend on the

intended use. If specific individual data zones are of interest then it may be

decided that uncorrelated heterogeneity should also be included. However,

if dealing with very small areas and/or rare diseases, it may be desired to

include only correlated heterogeneity, where this seems reasonable, in order

to encourage smoothing over differences between areas which only occur due

to chance rather than to any real differences. For example, if two neigh-

bouring areas are expected to experience 0.5 deaths in any given period but

one experiences none and the other experiences 1, without including spatial

random effects these would areas would have very different risk estimates.
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Model 6-u Model 6-Sens

Parameter Estimate 95% Credible Interval Estimate 95% Credible Interval

α 0.7177 (0.6913, 0.7441) 0.7236 (0.6952, 0.7518)

β1 0 NA 0 NA

β2 -0.2894 (-0.3226, -0.2563) -0.2971 (-0.3336, -0.2607)

β3 -0.5014 (-0.5375, -0.4655) -0.5116 (-0.5504, -0.4727)

β4 -0.6636 (-0.7018, -0.6258) -0.6728 (-0.7135, -0.6322)

β5 -0.8627 (-0.9034, -0.8223) -0.8747 (-0.918, -0.8316)

β6 -0.9963 (-1.038, -0.9548) -1.009 (-1.053, -0.965)

β7 -1.188 (-1.232, -1.144) -1.205 (-1.252, -1.159)

β8 -1.398 (-1.444, -1.351) -1.415 (-1.464, -1.366)

β9 -1.579 (-1.628, -1.53) -1.595 (-1.647, -1.544)

β10 -1.772 (-1.826, -1.718) -1.788 (-1.844, -1.732)

τ2u 9.43 (8.281, 10.72) 14.45 (12.34, 16.87)

τ2v NA NA 38.44 (32.77, 45.05)

var(u) 0.1065 (0.09324, 0.1208) 0.06964 (0.05927, 0.08102)

var(v) NA NA 0.02619 (0.0222, 0.03052)

θ1 0.269 (0.1756, 0.3924) 0.2651 (0.1655, 0.4014)

θ2 0.2704 (0.2038, 0.351) 0.2714 (0.1822, 0.3886)

θ14 1.917 (1.434, 2.497) 1.901 (1.354, 2.574)

θ115 1.849 (1.381, 2.409) 1.88 (1.336, 2.545)

θ985 0.7569 (0.7339, 0.7802) 0.7561 (0.5585, 0.9971)

θ2521 0.6679 (0.5071, 0.8622) 0.6835 (0.4698, 0.9562)

θ2692 1.095 (0.8849, 1.34) 1.068 (0.7626, 1.446)

θ3044 1.399 (1.075, 1.782) 1.306 (0.9342, 1.762)

θ4687 1.243 (1.002, 1.521) 1.337 (0.9593, 1.804)

θ6238 0.5068 (0.4887, 0.5253) 0.4889 (0.3552, 0.6555)

Table 5.7: Selection of Parameters from Model C-u and Model C-Sens
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Mean Relative Risk

 (Combined)

0.1687 - 0.5779

0.5780 - 0.9093

0.9094 - 1.2910

1.2911 - 1.7640

1.7641 - 2.3920

2.3921 - 4.2930

Figure 5.10: Data Zone Map of Mean Alcohol-Related Relative Risk

133



Mean Relative RIsk

(Combined)

0.1687 - 0.5779

0.5780 - 0.9093

0.9094 - 1.2910

1.2911 - 1.7640

1.7641 - 2.3920

2.3921 - 4.2930

Figure 5.11: Aberdeen Area Data Zone Map of Mean Alcohol-Related Rela-

tive Risk
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Mean Relative Risk

(Combined)

0.1687 - 0.5779

0.5780 - 0.9093

0.9094 - 1.2910
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Figure 5.12: Ayrshire Area Data Zone Map of Mean Alcohol-Related Relative

Risk
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Figure 5.13: Dundee Area Data Zone Map of Mean Alcohol-Related Relative

Risk
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Mean Relative Risk

(Combined)
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0.5780 - 0.9093

0.9094 - 1.2910

1.2911 - 1.7640
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2.3921 - 4.2930

Figure 5.14: Edinburgh Area Data Zone Map of Mean Alcohol-Related Rel-

ative Risk
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Mean Relative Risk

(Combined)

0.1687 - 0.5779

0.5780 - 0.9093

0.9094 - 1.2910
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2.3921 - 4.2930

Figure 5.15: Glasgow Area Data Zone Map of Mean Alcohol-Related Relative

Risk
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Mean Relative Risk

(Combined)

0.1687 - 0.5779

0.5780 - 0.9093

0.9094 - 1.2910
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Figure 5.16: Inverness Area Data Zone Map of Mean Alcohol-Related Rela-

tive Risk
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Figure 5.17: Stirling Area Data Zone Map of Mean Alcohol-Related Relative

Risk
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Chapter 6

BYM Models for Male Data

The previous Chapter investigates various spatial Bayesian models for

the combined male and female relative alcohol-related risk across Scotland.

As well as looking at the combined data, it is also of interest to analyse the

male and female deaths and hospitalisations separately. Doing so will allow

comparisons to be drawn between the results for each gender, as well as

potentially providing stronger evidence of any relationships suggested. For

example, if the chosen models for male, female and combined alcohol-related

risk all suggest that area deprivation score is a significant factor, it allows

one to be more confident in the models produced due to the consistency in

their results.

This Chapter will consider several Bayesian models for male relative

alcohol-related risk at the data zone level across Scotland.

6.1 Models Considered

The models considered for the male alcohol-related risks are exactly the

same as those fitted to the combined data in Chapter 5, but now fitted to the

male only death and hospitalisation data. The data used consists of every

male alcohol-related death and hospitalisation in Scotland during years 2002

to 2006 inclusive. The expected number of occurrences in each data zone has
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been calculated using age-standardisation as described in Chapter 3.

As was the case for the combined models, the male models discussed are

inspired by the Besag, York and Mollié model (Besag et al. (1991)). The

male models vary in terms of both fixed effects and random effects. The

only fixed effect considered is a bona fide area deprivation score. This score

is included in two different ways; either in a linear manner or by assigning

a separate parameter to each of the ten deprivation scores. Again there

are two separate random effects considered; correlated heterogeneity (u) and

uncorrelated heterogeneity (v).

The nine male models considered are summarised with respect to the

fixed and random effects included in Table 6.1 below.

Model Name Fixed Effects Random Effects

Male Model A-v none v

Male Model A-u none u

Male Model A none u+ v

Male Model B-v linear deprivation v

Male Model B-u linear deprivation u

Male Model B linear deprivation u+ v

Male Model C-v non-linear deprivation v

Male Model C-u non-linear deprivation u

Male Model C non-linear deprivation u+ v

Table 6.1: Models for Male Alcohol-Related Relative Risks

Since these models are exactly the same as those considered for the com-

bined data, the discussion in Section 5.1 regarding model structures, pa-

rameters and prior distributions still hold. The most important points will,

however, be summarised here.

Vague normal priors with mean zero and precision e−5 have been assigned

to all deprivation parameters with the exception of β1 in the non-linear case,

which has been arbitrarily set to zero.

The codes for all of the models specify a normal prior distribution with
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mean zero for the uncorrelated heterogeneity and a conditional autoregressive

prior for the correlated heterogeneity, so that

vi ∼ N
(
0, τ 2v

)
and[

ui|uj, i ̸= j, τ 2u
]

∼ N
(
ui, τ

2
i

)
where τ 2v , ui and τ 2i are as described in section 3.6 of Chapter 3.

Vague Gamma hyperprior distributions have been assigned to the inverse

variance hyperparameters of both random effects. In particular

τ 2v ∼ Gamma(0.5, 0.0005) and

τ 2u ∼ Gamma(0.5, 0.0005).

This hyperprior distribution has been chosen since it is sufficiently vague

and commonly used in disease mapping studies where there is no strong

prior knowledge.

These male models were run using OpenBUGS and the code for Male

Model A, Male Model B and Male Model C is shown in Appendices section

1.1, 1.2 and 1.3 respectively. Note that this is exactly the same code as was

used for the equivalent combined models; the only difference lies in the data

to which they were fitted. Again, the code for all other male models can

be derived from this code by deleting any redundant sections; for example

delete all code in Male Model A which relates to uncorrelated heterogeneity,

v, in order to obtain Male Model A-u.

6.2 Convergence

As discussed in Section 5.1.2 when using any of the sampling methods

discussed in Chapter 3, it is hoped that the joint distribution of the simulated

Markov Chains will converge, or stabilise, to the joint posterior distribution.

Due to the large number of data zones, and hence parameters in each

model, it was not practicable to store the simulated value of every parameter
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at each iteration. Instead the central model parameters, along with a chosen

subset of the data zone relative risk parameters, have been fully monitored.

The data zone relative risk parameters chosen to be monitored, along with

reasons why they were chosen, are shown below in Table 8.2. The remaining

parameters had a summary monitor set. A summary monitor means that

at each iteration the summary statistics for that variable are updated, but

that the simulated parameter value itself is not stored. This results in exact

estimates of the mean and standard deviation of the simulated parameter

sample, but only approximate 95% credible intervals.

Data zone Code Relative Risk Parameter Reason Chosen

S01006393 θ115 poor deprivation score

S01006438 θ14 poor deprivation score

S01006490 θ1 good deprivation score

S01006505 θ2 good deprivation score

S01003744 θ2521 rural area

S0100391 θ2692 rural area

S01003380 θ3044 urban/city area

S01002325 θ4687 urban/city area

S01005521 θ985 island / no neighbouring areas

S01000447 θ6238 island / no neighbouring areas

S01003031 θ2885 lowest total population

S01000799 θ5792 highest male population

S01002622 θ3557 highest female population

S01003313 θ3046 highest male SIR

S01006473 θ89 zero male SIR value

S01006341 θ172 zero male SIR value

S01003043 θ2889 very high male SIR

Table 6.2: Data Zones with Fully Monitored Male Relative Risk Estimates

Convergence was monitored for all male alcohol-related risk models and

it was found that all appeared to converge well after a burn-in period of

50,000 iterations. For each model two chains were run for a further 150,000

post-burn-in simulations. The resulting diagnostic plots from all nine models
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suggest that this is a long enough chain length. Since the same convergence

checks were carried out and satisfied for all male models, they will only be

discussed in detail for Male Model C-u.

Firstly, the sample history plots for each of the fully monitored parameters

in Male Model C-u are shown in Figures 6.1 to 6.6. For each of the chosen

parameters, a line plot of simulated value against iteration number is shown.

The simulation path for one chain is shown in blue while the second chain is

shown in red. These plots all show that for the duration of the 150,000 post-

burn-in iterations the simulated parameter values for each chain consistently

overlap. Moreover, none of the plots exhibits any obvious patterns or trends

and the simulated values form horizontal bands across each plot. Although

these plots can only be looked at for a subset of the total model parameters,

they give strong evidence that the model has converged. Since two different

chains with different starting points are consistently giving similar values,

it suggests that the chains have in fact settled to the appropriate posterior

distribution.

For the same subset of Male Model C-u parameters the Gelman-Rubin

diagnostic plots, as discussed in section 3.4.3, are shown in Figure 6.7 and

Figure 6.8. All of these plots also suggest that more than adequate conver-

gence has been achieved. This is because the green line, which represents

the width of the central 80% interval of the pooled chains, and the blue line,

which shows the average width of the 80% intervals within the individual

chains, are both stable and the red line which shows their ratio has settled

to a value of 1. As was the case for the combined models, the intervals are

so similar for the individual chains and the pooled chains that the blue line

almost completely obscures the green line.

A further visual check of model convergence is to look at the sample

probability density plots. These are shown for the same selection of Male

Model C-u parameters in Figure 6.9 and Figure 6.10. Each of these plots

shows a smooth transition in probability between different parameter values.
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These plots also suggest that the simulated chains have been run for a long

enough post-burn-in period. Even in cases where models have been shown

to converge, if enough iterations are not run, these density plots can appear

uneven and ‘lumpy’ in appearance.

The evidence presented above gives strong evidence that Male Model C-u

has achieved adequate convergence after an initial 50,000 iterations and a

further 150,000 iterations for two simulation chains. This was also found to

be the case for the other 8 alcohol-related male relative risk models.
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6.3 DIC

Now that all nine male models have been run and are deemed to have

achieved satisfactory convergence it is necessary to choose between them.

As discussed in Chapter 3, the Deviance Information Criterion, DIC, is a

commonly used measure of goodness of fit for spatial Bayesian models such

as those discussed in this chapter.

Table 6.3 gives the DIC for each male model calculated using the pD

method, along with the corresponding pD and deviance values. In this table

the model results are are sectioned in two ways: firstly, split by the fixed

effects they contain, either no deprivation, linear deprivation or non-linear

deprivation, and secondly, the split by whether the models contain only cor-

related heterogeneity (u), uncorrelated heterogeneity (v) or both (u+ v).

By looking at this table it is immediately obvious that the problem of

negative pD values experienced for the combined models is also an issue for

the male models. There are three instances of negative pD values here, all

in models with contain an element of spatial correlation between data zones.

As was discussed in the previous chapter, negative pD values are a possible

but very undesirable phenomenon. The value pD is supposed to represent

the effective number of parameters in the model, and so obviously this value

should not be negative. Such negative values can occur when there is a

non-log-concave likelihood, when the posterior for a parameter is especially

asymmetric or bimodal or when there is another situation that causes the

posterior mean to be a poor summary statistic causing large deviance. The

diagnostic plots discussed above in the Convergence section, along with the

equivalent plots for the other male models, showed no evidence of particularly

asymmetric or non-unimodal distributions, and there is no other obvious

reason why the posterior mean should be a poor parameter estimate.

The lowest DIC value observed in Table 6.3 is for Male Model A which

includes both correlated and uncorrelated random effects and no fixed effects.
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This model choice is definitely not what one would expect given the strong

similarities exhibited between the deprivation maps and the male SIR maps

discussed in Chapter 4. From previous subjective impressions it is highly

likely that area deprivation score will account for some of the variation in

data zone male alcohol-related risk across Scotland. Also, as the WinBUGS

website suggests, D̂ is a better measure of fit than D which can be considered

more a measure of adequacy. This means that Table 6.3 suggests that Male

Model A-v, which contains only uncorrelated heterogeneity and no covariates,

fits the male data best. This too is a very unlikely outcome given previous

strong indications of a link between male alcohol-related risk and deprivation

levels.

Due to the negative pD values and dubious model choice in which they

result, it has been decided to instead calculate DIC using the p*D method.

This is the same method which was used in the previous combined model

chapter. The p*D method is discussed in Chapter 3, and bases the estimated

number of effective parameters, p*D, on half the variance of the model de-

viance.

The DIC values for the male models of alcohol-related relative risk calcu-

lated using the p*D method are shown in Table 6.4 below. Obviously, since

the estimates of p*D are just half the variance of the model deviance, they

are all positive. The lowest DIC using this method is for the model which

includes non-linear deprivation and only spatial heterogeneity, Male Model

C-u. This is a much more believable and reasonable sounding model choice.

Furthermore, this is the same model structure as was chosen for the com-

bined male and female data, which strengthens confidence in any inferred

relationships.
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6.4 Male Model Selection

In normal circumstances the model with the lowest DIC would be chosen

as the ‘best’ model. For the models of male alcohol-related relative risk

in Scotland, this would be Male Model C-u. The selection of this model

indicates that the relationship between alcohol-related relative risk and area

deprivation is not linear. This is consistent with subjective impressions given

in Chapter 4, which suggested that there was a greater increase in average

male SIR value between the deprivation scores of 1 and 2 than between any

other pair of consecutive scores. Male Model C-u also includes spatial or

correlated heterogeneity, which seems reasonable since in the male SIR maps

shown in Chapter 4 similar values do tend to cluster together, even though

the maps were not overly smooth.

It seems then, that using DIC calculated via the p*D method leads to a

reasonable model selection for the male risks. However, as was the case for the

combined models, it must be remembered that the male models are based on

assumptions which are set by the modeller and incorporated via the prior and

hyperprior distributions for the parameters and hyperparameters. Although

Male Model C-u seems a reasonable choice, it is possible that the same model

structure would not be chosen if different prior and hyperprior distributions

were considered. Since there has been limited time to complete this project, a

full and comprehensive sensitivity analysis was not possible. However, model

sensitivity to the Gamma (0.5,0.0005) hyperprior distributions specified for

the inverse variance parameters τ 2u and τ 2v will be examined.

6.5 Male Hyperprior Sensitivity Analysis

All male models listed in Table 6.1 will be re-run with different hyperprior

distributions assigned to τ 2u and τ 2v . The names used for these sensitivity

models will be the same as those given in Table 6.1 but with ‘Sens’ appended

at the end, e.g. ‘Male Model A-Sens’. The main reason for running the
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models with different hyperpriors is to see whether the same model structure

would be selected. It is also of interest to see how parameter estimates and

credible intervals are affected even if the same model structure is chosen.

The alternative priors used are the same as those used for the combined

models. In each model the following hyperpriors will be used where necessary

τ 2u ∼ Gamma(1, 1) and

τ 2v ∼ Gamma(1, 1).

Again, these distributions are much less vague and very different from the

original hyperpriors used. This would not be the ideal distributions to use

as first choice for these models. However, if the male models can be fitted

using two very different hyperprior distributions and still give similar results,

this would provide strong evidence that the models are not too sensitive to

hyperprior choice.

Convergence of all male sensitivity models was monitored and checked,

with all converging well after 50,000 iterations. As with the original male

models, two chains were then simulated for a further 150,000 iterations. This

resulted in samples of 300,000 simulated values for each fully monitored pa-

rameter.

Once all of the male sensitivity models had been run the DIC values

were calculated. Table 6.5 gives the deviance, pD and DIC values calculated

using the pD method for each male sensitivity model. This table shows that

the negative pD issue discussed earlier in the DIC section is still present

in the male sensitivity models. Again, it only affects those models which

incorporate correlated heterogeneity, u, in some way. The lowest DIC value

corresponds to a model which includes no fixed effects, which due to strong

suggestions of a link between deprivation score and male alcohol-related risk

seems dubious.

Due to the negative pD values and questionable model selection obtained,

it has been decided to instead calculate DIC using the p*D method seen
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before. The DIC values obtained via this method are given in Table 6.6

along with the deviance statistics and p*D values required to calculate these

figures.

Since the p*D estimate of the effective number parameters is a positive

proportion of the deviance variance, all p*D values are positive. Using this

method the lowest DIC value corresponds to a Male Model C-Sens, which fits

non-linear deprivation and both correlated and uncorrelated heterogeneity to

the male data.

Changing the hyperpriors used has therefore led to a slight difference in

model selection. From the original male models, Male Model C-u was cho-

sen, which includes non-linear deprivation and only correlated heterogeneity.

Under both the original and sensitivity methods then, both chosen models

suggest that there is a non-linear relationship between male alcohol-related

risk in Scotland and deprivation score, and both incorporate a spatial ran-

dom effect. Given how different the hyperprior distributions assigned were,

this slight difference does not pose a large problem.

It is also of interest to compare the parameter estimates between the cho-

sen original and sensitivity models. The estimates and 95% credible intervals

for all fully monitored parameters in Male Model C-u and Male Model C-

Sens are given in Table 6.7. Ignoring the variance and precision parameters,

for all but one of the remaining parameters, the estimate from each model

lies within the corresponding credible interval from the other. The one pa-

rameter for which this does not hold is the relative risk parameter θ3046. For

this parameter the estimate from the sensitivity model does not lie within

the credible interval from the original model. The two estimates for this

parameter do seem a little different. However, the estimate from the sensi-

tivity model does not lie too far away from the upper bound of the credible

interval from the original model. I do not think that this difference should

cause too much alarm. The parameter in question corresponds to the data

zone which experienced the highest male SIR value, but the risk parameter
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which corresponds to the data zone with the second-highest male SIR, θ2889,

did not experience such a problem.

Obviously, since the Male Model C-u includes only correlated hetero-

geneity when Male Model C-Sens includes both correlated and uncorrelated

heterogeneity the variance parameter estimates will not be the same. How-

ever, even though Male Model C-Sens contains both spatial and non-spatial

random effects, it assigns over 71% of the variation to correlated heterogene-

ity. The need for the additional non-spatial random effect will most likely

be because the priors assigned to the precision terms of both random effects

in the sensitivity models are much more restrictive. The original precision

priors specify a mean of 1000 and a variance of 2,000,000 compared to both

a mean and variance of 1 for the sensitivity models.

Given the strong similarities between the Male Model C-u and Male

Model C-Sens results for male alcohol-related relative risk across Scotland,

Male Model C-u will be chosen as the final model since it has a much more

appropriate and vague hyperprior distribution and it has been shown not to

be very sensitive to hyperprior choice.

6.6 Male Model Results

A selection of the parameters fitted in the final male relative risk model,

Male Model C-u, are shown in Table 6.7. None of the 95% credible inter-

vals for the nine deprivation scores overlaps or contains zero. This strongly

suggests that all deprivation scores have a significant effect on male alcohol-

related relative risks in Scotland and hence should be included in the model.

This evidence further supports the model choice; if the DIC suggested this

model but it was shown that the individual deprivation score parameters

were not significant, this could potentially lead to an alternative model se-

lection. Boxplots of the simulated samples of area deprivation parameter

values from Male Model C-u are shown in Figure 6.11. Although the chosen
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model does not contain linear deprivation, the individual area deprivation

score parameters themselves appear to be fairly linear, with a larger jump in

value between deprivation scores 1 and 2. These boxplots also show that the

modelled relationship between deprivation and risk is monotonic.

All of the deprivation score parameter estimates are negative and the

value of βdi gets progressively smaller as di increases from a score of 2 to

10. This was also observed for the combined models and is what one would

expect; there is a larger decrease in the relative risk estimates for less deprived

areas. The chosen model suggests it is highly likely that, on average, the least

deprived data zones with an area deprivation score of 10 have a male alcohol-

related relative risk which is between only 0.148 and 0.168 times that of the

most deprived areas.

2 3 4 5 6 7 8 9 10

Boxplot of Deprivation Parameters
for Male Model C-u

Figure 6.11: Boxplots of Deprivation Parameters for Male Model C-u
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Since Male Model C-u includes only correlated heterogeneity, it ensures

that 100% of the variance in alcohol-related risk which remains after fitting

the fixed effect of deprivation is ascribed to spatial effects, or correlated

heterogeneity. This means that the model assumes that male alcohol-related

risk in each data zone depends on the risk estimates in its neighbouring areas.

The ten highest and lowest male alcohol-related relative risk estimates

calculated using Male Model C-u are given in Table 6.8. This table also

gives the data zone which these risk estimates correspond to, along with the

appropriate deprivation score and intermediate geography name. It should

be remembered that, for all of the parameters which have not been fully mon-

itored, the 95% credible intervals given are only approximations produced by

OpenBUGS. The ten highest male risk estimates correspond to data zones

with an area deprivation score of 1, as was the case for the highest 10 male

SIR values. It is also noticeable that 4 of the 10 highest risk estimates fall

within Glasgow City. This agrees both with previous research and the male

SIR results which suggest that there are high levels of male alcohol-related

health problems in the Glasgow area. However, the results in Table 6.8

also suggest that there may be clusters of data zones in the Highland region

that experience relatively high numbers of male alcohol-related deaths and

hospitalisations.

Another feature highlighted in Table 6.8 is that the ten lowest relative

risk estimates are non-zero, which was not the case for the 10 lowest male

SIR values. The ten lowest model-based male risk estimates all correspond

to data zones with an area deprivation score of 8 or greater, with five having

the ‘best’ deprivation score of 10.

The male relative risks estimated using Bayesian spatial models range

from 0.1496 to 5.078 whereas the male SIR values range from 0 to 7.952.

This smaller range of risk estimates shows that the use of spatial Bayesian

modelling techniques has successfully reduced the problem of extremely low

and extremely high risk estimates experienced with the SIR methods. These
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extreme male SIR values are caused by the rartiy of the disease and the

extremely small study regions.

6.7 Male Alcohol-Related Relative Risk Maps

The main aim of this research is to map the alcohol-related health risk

across Scotland. In this section the estimates of male alcohol-related relative

risk, calculated using Male Model C-u, are plotted for the whole of Scotland

at the data zone level of geography.

A data zone map of Scotland depicting the male relative risk estimates is

shown in Figure 6.12, with magnified areas of this map shown for Aberdeen

(Figure 6.13), Ayrshire (Figure 6.14), the Dundee area (Figure 6.15), Edin-

burgh (6.16)), Glasgow (Figure 6.17), the Inverness area (Figure 6.18) and

Stirling (Figure 6.19).

Again, before any comparisons between these maps and those produced

in earlier chapters can be made, it must be noted that the shading cut points

used are not the same. Bearing this in mind, the modelled male relative risks

appear to give a very similar overall pattern to the male SIR maps shown

in Chapter 4. As was the case for the combined risk estimates, the male

model-based risk estimates appear much smoother across the country. All of

the male relative risk maps show evidence of large blocks or groups of data

zones which fall within the same risk category. The removal of the ‘noise’

experienced in the male SIR maps by using modelling techniques makes it

much easier to assess the general pattern of risk in the country and to locate

clusters of high-risk areas. For example, the male relative risk estimate map

of Glasgow (Figure 6.17) shows, even more strongly than the equivalent male

SIR map, that there is a cluster of many data zones towards the East of

Glasgow which exhibit very high alcohol-related health risks.

As discussed in section 5.7, using a model which contains only correlated

heterogeneity may be regarded by some as forcing any disease maps to be
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fairly smooth. The appropriateness of Male Model C-u, as is the case for any

model, depends on how the results are to be used.

Mean Relative Risk

 (Male)

0.1496 - 0.5837

0.5838 - 0.9433

0.9434 - 1.3600

1.3601 - 1.8840

1.8841 - 2.5700

2.5701 - 5.0780

Figure 6.12: Data Zone Map of Mean Male Alcohol-Related Relative Risk
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Mean Relative RIsk

(Male)

0.1496 - 0.5837

0.5838 - 0.9433

0.9434 - 1.3600

1.3601 - 1.8840

1.8841 - 2.5700

2.5701 - 5.0780

Figure 6.13: Aberdeen Area Data Zone Map of Mean Male Alcohol-Related

Relative Risk
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Male Model C-u Male Model C-Sens

Parameter Estimate 95% Credible Interval Estimate 95% Credible Interval

α 0.7362 (0.7062, 0.7661) 0.7403 (0.7083, 0.7723)

β1 0 NA 0 NA

β2 -0.2949 (-0.3326, -0.2571) -0.3027 (-0.3442, -0.2615)

β3 -0.5143 (-0.5553, -0.4735) -0.5257 (-0.5701, -0.4814)

β4 -0.7065 (-0.7503, -0.6628) -0.716 (-0.7628, -0.6693)

β5 -0.8984 (-0.9451, -0.8518) -0.912 (-0.9618, -0.8622)

β6 -1.048 (-1.097, -1.0) -1.063 (-1.114, -1.012)

β7 -1.239 (-1.29, -1.188) -1.257 (-1.311, -1.204)

β8 -1.471 (-1.526, -1.417) -1.487 (-1.544, -1.431)

β9 -1.646 (-1.704, -1.588) -1.662 (-1.722, -1.602)

β10 -1.846 (-1.909, -1.782) -1.861 (-1.926, -1.795)

τ2u 8.785 (7.581, 10.15) 12.99 (10.99, 15.39)

τ2v NA NA 32.76 (27.48, 39.1)

var(u) 0.1145 (0.09852, 0.1319) 0.07755 (0.06499, 0.091)

var(v) NA NA 0.03078 (0.02558, 0.03638)

θ1 0.2602 (0.1652, 0.3892) 0.2522 (0.1499, 0.3952)

θ2 0.2681 (0.198, 0.3544) 0.272 (0.1757, 0.401)

θ14 1.901 (1.376, 2.547) 1.923 (1.308, 2.696)

θ89 0.4708 (0.3651, 0.5964) 0.4392 (0.2935, 0.6284)

θ115 1.803 (1.303, 2.416) 1.814 (1.224, 2.564)

θ172 0.4131 (0.2993, 0.5537) 0.3912 (0.2524, 0.5774)

θ985 0.732 (0.7059, 0.7589) 0.7389 (0.5295, 0.9996)

θ2521 0.6363 (0.4734, 0.837) 0.6385 (0.4214, 0.9235)

θ2692 1.067 (0.8461, 1.324) 1.054 (0.7255, 1.473)

θ2885 0.5145 (0.3363, 0.7547) 0.55 (0.3324, 0.8558)

θ2889 4.832 (3.359, 6.65) 5.043 (3.478, 6.969)

θ3044 1.44 (1.084, 1.867) 1.299 (0.892, 1.807)

θ3046 5.078 (4.139, 6.146) 6.247 (4.992, 7.674)

θ3557 0.3627 (0.2975, 0.4379) 0.3587 (0.2511, 0.4935)

θ4687 1.218 (0.9648, 1.519) 1.372 (0.9506, 1.906)

θ5792 0.3114 (0.2255, 0.4161) 0.2919 (0.1991, 0.4077)

θ6238 0.4795 (0.4588, 0.5004) 0.4758 (0.3345, 0.6546)

Table 6.7: Selection of Parameters from Male Model C-u and Male Model

C-Sens
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Mean Relative Risk

(Male)

0.1496 - 0.5837

0.5838 - 0.9433

0.9434 - 1.3600

1.3601 - 1.8840

1.8841 - 2.5700

2.5701 - 5.0780

Figure 6.14: Ayrshire Area Data Zone Map of Mean Male Alcohol-Related

Relative Risk
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Mean Relative Risk

(Male)

0.1496 - 0.5837

0.5838 - 0.9433

0.9434 - 1.3600

1.3601 - 1.8840

1.8841 - 2.5700

2.5701 - 5.0780

Figure 6.15: Dundee Area Data Zone Map of Mean Male Alcohol-Related

Relative Risk
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Mean Relative Risk

(Male)

0.1496 - 0.5837

0.5838 - 0.9433

0.9434 - 1.3600

1.3601 - 1.8840

1.8841 - 2.5700

2.5701 - 5.0780

Figure 6.16: Edinburgh Area Data Zone Map of Mean Male Alcohol-Related

Relative Risk

176



Mean Relative Risk

(Male)

0.1496 - 0.5837

0.5838 - 0.9433

0.9434 - 1.3600

1.3601 - 1.8840

1.8841 - 2.5700

2.5701 - 5.0780

Figure 6.17: Glasgow Area Data Zone Map of Mean Male Alcohol-Related

Relative Risk
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Mean Relative Risk

(Male)

0.1496 - 0.5837

0.5838 - 0.9433

0.9434 - 1.3600

1.3601 - 1.8840

1.8841 - 2.5700

2.5701 - 5.0780

Figure 6.18: Inverness Area Data Zone Map of Mean Male Alcohol-Related

Relative Risk
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Mean Relative Risk

(Male)

0.1496 - 0.5837

0.5838 - 0.9433

0.9434 - 1.3600

1.3601 - 1.8840

1.8841 - 2.5700

2.5701 - 5.0780

Figure 6.19: Stirling Area Data Zone Map of Mean Male Alcohol-Related

Relative Risk
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Chapter 7

BYM Models for Female Data

The previous two chapters have used Bayesian spatial models to obtain

alcohol-related health-risk estimates both for the whole population and for

the male population at the data zone level across Scotland. This chapter aims

to use the same model structures to calculate estimates of female alcohol-

related health risks in Scotland. Doing so will allow comparisons between

risk patterns and any associations with deprivation to be made between the

results for each gender.

The data used in this chapter consists of the observed and expected counts

of female alcohol-related deaths and hospitalisations in Scotland during the

years 2002 to 2006 inclusive. The expected number of female deaths in

each data zone during this period has been calculated using indirect age

standardisation as discussed in Chapter 3.

7.1 Female Models Considered

This chapter explores nine different models for the female alcohol-related

relative risk across Scotland. These models are of exactly the same form

as those considered for the combined and male only data in Chapter 5 and

Chapter 6 respectively. The models are based on the Besag, York and Mollié

model (Besag et al. (1991)) and differ in terms of both fixed and random
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effects.

As random effects each model will include either uncorrelated heterogene-

ity (v), correlated heterogeneity (u) or both (u + v). The only fixed effect

considered here is a bona fide data zone deprivation score, as discussed in

Chapter 2. Area deprivation score has been modelled in two ways; firstly

in a linear fashion and secondly by fitting a separate parameter to each of

the 10 deprivation scores. Since age standardisation was performed when

the expected number of events in each area were calculated it should not be

included at the modelling stage.

Table 7.1 gives a summary of the nine models considered in this section,

listing the fixed and random effects included in each.

Model Name Fixed Effects Random Effects

Female Model A-v none v

Female Model A-u none u

Female Model A none u+ v

Female Model B-v linear deprivation v

Female Model B-u linear deprivation u

Female Model B linear deprivation u+ v

Female Model C-v non-linear deprivation v

Female Model C-u non-linear deprivation u

Female Model C non-linear deprivation u+ v

Table 7.1: Models for Female Alcohol-Related Relative Risks

Since these models have exactly the same structure as those considered for

the combined and male data, the discussion in Section 5.1 regarding model

structures, parameters and prior distributions still hold. However, the most

important points are restated here.

Vague normal priors with mean zero and precision e−5 have been assigned

to all deprivation parameters with the exception of β1 in the non-linear case,

which has been arbitrarily set to zero.

Each model specifies, where necessary, a normal prior distribution with
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mean zero for the uncorrelated heterogeneity and a conditional autoregressive

prior for the correlated heterogeneity. This gives

vi ∼ N
(
0, τ 2v

)
and[

ui|uj, i ̸= j, τ 2u
]

∼ N
(
ui, τ

2
i

)
where τ 2v , ui and τ 2i are as described in section 3.6 of Chapter 3.

Vague gamma hyperprior distributions have been assigned to the inverse

variance hyperparameters of both random effects. In particular

τ 2v ∼ Gamma(0.5, 0.0005) and

τ 2u ∼ Gamma(0.5, 0.0005).

This hyperprior distribution has been chosen since it is sufficiently vague

and commonly used in disease mapping studies where there is no strong

prior knowledge.

All female models were run using OpenBUGS and the code for Female

Model A, Female Model B and Female Model C is shown in Appendices

section 1.1, 1.2 and 1.3 respectively. Note that this is exactly the same code

as was used for the equivalent combined and male models, the only difference

lies in the data to which they were fitted. Again, the code for all other female

models can be derived from this code by deleting any redundant sections; for

example delete all code in Female Model B which relates to uncorrelated

heterogeneity, v, in order to obtain Female Model B-u.

7.2 Female Convergence

As has been discussed before, the aim of using any of the sampling meth-

ods discussed in Chapter 3 is for the joint distribution of the simulated values

to converge, or settle, to the joint posterior distribution. A burn-in period of

iterations is run for each model until adequate convergence has been reached

and then, after discarding existing simulated values, the simulation is con-

tinued for a further number of iterations. The length of the burn-in period
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and subsequent iterations required varies greatly between different studies

and models.

For reasons discussed in section 5.2, it is not practicable to record the

simulated value at each iteration for all of the parameters in each model.

For all models the female relative risk parameters have been fully monitored

for a subset of data zones and a summary monitor has been set for the

remaining areas. All other model parameters have been fully monitored.

Instead of storing the simulated value of a parameter at every post-burn-

in iteration a summary monitor only holds summary statistics about the

simulated sample of that parameter. These summary statistics are updated

at every iteration but the simulated value itself is then discarded. The 95%

credible intervals given by OpenBUGS are exact for fully monitored variables

but only approximate for those assigned a summary monitor.

The relative risk parameters chosen to be fully monitored, along with the

reasons for doing so are given in Table 8.2

Achieving adequate convergence for the female models proved to be much

more difficult than for the combined and male equivalents. In the end, it was

decided to use a burn-in period of 150,000 iterations followed by simulating

two chains for a further 350,000 iterations. There are still some convergence

issues even with these long chain lengths. However, due to the limited time

to complete this project longer chains could not realistically be investigated.

Discussed below are various convergence checks and diagnostics which

were monitored for the female models. Since the same checks were carried

out for all nine models, these will only be discussed in detail for Female

Model C-u.

Firstly, the history plots for all fully monitored model parameters will be

considered, shown in Figures 7.1, 7.2, 7.3, 7.4, 7.5 and 7.6. History plots give

a line plot of simulated parameter values against iteration number, with one

simulation chain shown in blue and the other in red. The plots in Figure

7.1 and Figure 7.2 show that the deprivation parameters, β2 to β10, appear
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Data Zone Code Relative Risk Parameter Reason Chosen

S01006393 θ115 poor deprivation score

S01006438 θ14 poor deprivation score

S01006490 θ1 good deprivation score

S01006505 θ2 good deprivation score

S01003744 θ2521 rural area

S0100391 θ2692 rural area

S01003380 θ3044 urban/city area

S01002325 θ4687 urban/city area

S01005521 θ985 island / no neighbouring areas

S01000447 θ6238 island / no neighbouring areas

S01003031 θ2885 lowest total population

S01000799 θ5792 highest male population

S01002622 θ3557 highest female population

S01003313 θ3046 highest male SIR

S01006473 θ89 zero female SIR value

S01006341 θ172 zero female SIR value

S01003043 θ2889 very high male SIR

Table 7.2: Data Zones with Fully Monitored Female Relative Risk Estimates

to have converged well; they all form a horizontal band across the history

plot where both chains consistently overlap. Figure 7.1 also shows, however,

that the α parameter from this model, which was assigned a flat improper

prior, has not achieved ideal convergence. The two α chains show similar

values, but can be seen to ‘weave’ above and below each other and hence not

consistently overlap.

All of the relative risk parameters monitored appear to exhibit strong

convergence (Figures 7.3 to 7.6) with the exception of θ985 and θ6238. The

similarity of these two history plots with the history plot for α makes it clear

that this is due to the lack of convergence in α feeding through to these

parameters. Both θ985 and θ6238 are relative risk parameters for islands,

or ‘neighbourless’, data zones. Female Model C-u includes only correlated

heterogeneity, u, which has been assigned a continuous autoregressive prior
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distribution. As discussed in Section 3.6 the CAR prior depends on the

mean of the bordering, or neighbouring, areas ui and τ 2i . For areas with no

neighbours, then, any relative risks calculated using this model can effectively

have no random effects. This is likely to explain the similarities between the

patterning observed in the α, θ985 and θ2386 history plots.

The Gelman-Rubin diagnostic plots as described in section 3.4.3 will also

be discussed for the fully monitored parameters of Female Model C-u, shown

in Figure 7.7 and Figure 7.8. Again all of the parameter plots shown in these

figures suggest that the simulated values have converged to the equilibrium

distribution, with the exception of α, θ985 and θ6238. Comfortable convergence

is exhibited in the majority of the BGR plots since the green line, which shows

the width of the central 80% interval of the pooled chains, and the blue line,

which shows the average width of the 80% intervals within the idividual

chains, are both stable and the red line which represents their ratio is stable

at a value of 1. In fact, the intervals are so similar for the individual chains

and the pooled chains that the blue line almost completely obscures the green

line. The three parameters mentioned which could have converged better are

highlighted since the red and blue lines in these plots are not horizontal in

appearance and have not settled to any values. For the BGR plots too, the

patterns observed for θ985 and θ6238, which refer to neighbourless areas, are

very similar to that shown for α for the reasons discussed above. This relates

to a common problem in spatial statistics known as ‘edge effects’ where by

values for areas which lie at the edge of a map or study region are often less

well estimated than those that do not. Although it is a common problem

this is the first time that there has been evidence to suggest such problems

in this study.

A last visual check of convergence for Female Model C-u will be carried

out by looking at the probability density plots of the simulated parameter

samples, given in Figure 7.9 and Figure 7.10. Obviously, these plots can only

be checked for the parameters which have been fully monitored. In Figure
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7.9 we can see that the density plot for α is smooth in appearance, but is not

symmetrical. This is a further indication that the convergence of α is not

as good as one would have hoped for. The probability density plots for θ985

and θ6238 show much weaker signs of poor convergence than their history and

BGR plots. However, they are less bell shaped and less symmetrical than

one would ideally like to see.

I feel it is reasonable to use these female models given that the deviance

on which model selection is based has converged very well, and it appears

that all other parameters have converged adequately apart from the intercept

level of risk and the relative risk estimates for island areas.

Again, as is true for any real-life Bayesian model simulation, it is not

possible to say for sure that the parameter estimates have converged to the

required posterior distribution. It is possible, but unlikely, that instead of ex-

ploring the whole parameter space the simulation chains have become ‘stuck’

in a certain area.
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7.3 Female DIC

As discussed in previous chapters, the DIC is a measure of goodness-of-

fit which is commonly used to choose between Bayesian models of differing

complexities. The DIC values have been calculated for all nine female models

using the pD method and the results are given in Table 7.3. The values

in this table have been split according to the random and fixed effects in

each model; for fixed effects either none, linear deprivation or non-linear

deprivation and for random effects either correlated heterogeneity only (u),

uncorrelated heterogeneity only (v) or both (u+ v).

Table 7.3 shows that negative pD values are experienced for some of

the female models as in the case of the combined and male relative risk

models. Again, these possible but undesirable negative values only occur for

models which contain spatial random effects (u). The lowest female DIC

value calculated using the pD method is shown to correspond to a model

which contains no fixed effects. Given the strong similarities in patterning

exhibited between the female SIR maps and the deprivation score maps it

is very unlikely that deprivation score does not explain a significant amount

of the variation in relative risks. Due to the dubious model choice and the

undesirable negative pD values, it was decided to instead calculate DIC using

the p*D method used in the previous two chapters and discussed in Chapter

3.

The female DIC values calculated using the p*D method are shown in

Table 7.4. The lowest female DIC value using the p*D method corresponds

to the model which includes non-linear deprivation and only correlated het-

erogeneity (u), Female Model C-u. The p*D method of calculating DIC

therefore leads to a much more intuitive model choice.
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7.4 Female Model Selection

It would be normal practice to select Female Model C-u as the ‘best’

model for female alcohol-related relative risks in Scotland since it gave the

lowest DIC value. The selection of this model is consistent with the subjec-

tive impressions made in the female SIR section of Chapter 4. Here it was

predicted that there would be a link between female alcohol-related relative

risk and area deprivation score, but that the relationship may not be linear.

The lack of linearity was suggested since there was noticed to be a larger

increase in average female SIR value between the deprivation scores of 1 and

2 than between any other pair of consecutive scores.

As always though, it must be remembered that these Bayesian models

are based on a set of assumptions chosen by the modeller and incorporated

via the prior and hyperprior distributions used. Although Female Model C-u

has been chosen when using the current priors, this might not always be the

case. It is necessary to investigate how sensitive the female model selection

and parameter estimates are to the choice of prior distributions used. Un-

fortunately, due to the limited time available to complete this project a fully

comprehensive sensitivity analysis will not be possible. The sensitivity to the

choice of hyperpriors assigned to τ 2u and τ 2v will, however, be examined.

7.5 Female Hyperprior Sensitivity Analysis

The nine female models given in Table 7.1 will be re-run with different

hyperprior distributions given to τ 2u and τ 2v . Similarly to previous chapters,

these sensitivity models will use the same names as those given in Table 7.1

but with ‘Sens’ appended at the end, for example ‘Female Model A-Sens’.

Running these models with different hyperpriors allows one to see whether

the choice of distribution will affect the model selection and to see by how

much the estimated alcohol-related relative risk estimates are affected.

The alternative hyperpriors used are the same as those used for the com-
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bined and male models. Where necessary, each female sensitivity model uses

the following hyperpriors:

τ 2u ∼ Gamma(1, 1) and

τ 2v ∼ Gamma(1, 1).

These distributions are a lot more restrictive than the original gamma dis-

tributions used and would not be an ideal first choice. However, it is hoped

that, even though the hyperpriors used are so different, the model choice and

relative risk estimates will be similar between the original and sensitivity

female models. If this is true then this indicates that the model results are

not too sensitive to hyperprior choice.

Convergence of all nine sensitivity models was monitored and all were

found to have converged at least as well as Female Model C-u discussed

above after a burn-in period of 150,000 iterations followed by two chains of

350,000 simulations.

Once again, when all female sensitivity models had been run, the DIC val-

ues were calculated. Table 7.5 shows the DIC values for the female sensitivity

models calculating using the pD method. This table shows that negative pD

values are also experienced by some of the female sensitivity models which

contain correlated heterogeneity. The lowest DIC value is experienced for

the model which contains linear deprivation and both correlated and uncor-

related random effects, Female Model B-Sens. However, due to the negative

pD values and to be consistent with the model selection methods used for

the original models, DIC calculated using the p*D method will be used in-

stead. Table 7.6 gives the DIC values calculated using the p*D method for

the female sensitivity models. Here the lowest DIC value corresponds to the

model with non-linear deprivation and only u, Female Model C-u-Sens.

The original and sensitivity female models therefore both lead to the

same model structure being chosen. It is now of interest to see how the

estimated parameter values compare between the two models. Table 7.7 gives
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the estimate and 95% credible interval for all fully monitored parameters in

both Female Model C-u and Female Model C-u-Sens. From this table it

is clear that the female models are not too sensitive to hyperprior choice,

since the parameter estimate from each model lies within the corresponding

credible interval from the other.

7.6 Female Model Results

Since the results of the selected female model and female sensitivity model

were so similar, it has been decided that Female Model C-u will be considered

the final model since it uses more appropriate and vague hyperpriors.

The Female Model C-u results in Table 7.7 show that none of the credible

intervals for the deprivation parameters, β2 to β10, contain zero and there are

only two instances where they slightly overlap: for β3 and β4 and for β5 and

β6. Boxplots of the deprivation parameter samples have been produced and

are given below in Figure 7.11. The boxplots show that the β values appear to

be less linear than those shown for the combined and male models discussed

previously, but they still appear fairly linear. The reason that non-linear as

opposed to linear deprivation proved to be included in the best fitting female

model is likely to be the large decrease in estimated value between β1 and β2.

These results support the model choice; if all credible intervals were found to

contain zero or overlap, this would suggest that non-linear deprivation was

not necessary and an alternative model may be more appropriate.

All of the deprivation score parameter estimates are less than or equal

to zero and the value of βdi gets progressively smaller as di increases from

a score of 1 to 10. This is as one would expect, since it suggests that more

deprived ares will have a smaller decrease in relative risk than less deprived

areas. In fact, Female Model C-u suggests that it is highly likely that, on

average, the least deprived data zones with a deprivation score of 10 have

an alcohol-related relative risk which is between only 0.177 and 0.211 times
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that of the most deprived data zones.

If the fully monitored relative risk parameters are compared between the

final female results (Table 7.7) and the male results (Table 6.7) it can be seen

that several areas appear to show significant differences between male and

female estimates. So, although both the male and female risks are estimated

using the same model structure, the data has resulted in different estimates

being produced.

The structure of Female Model C-u ensures that 100% of the variance

which remains after fitting non-linear deprivation is assigned to spatial ef-

fects, or correlated heterogeneity. This means that the chosen model assumes

that the female alcohol-related relative risk in each data zone depends on the

risk estimates of its neighbouring areas. Thus, estimates for island or coastal

areas, or any areas with a small number of bordering areas for that matter,

may have poorer less reliable estimates than those with many neighbours.

This phenomenon is known as the ‘edge effects’ and has been extensively

studied in papers such as Rodeiro & Lawson (2005) and Yamada (2009).

The effective lack of random effects in the chosen model for neighbourless

areas means that all neighbourless areas with the same deprivation score will

have the same relative risk estimates.

The ten highest and ten lowest alcohol-related relative risk estimates cal-

culated using Female Model C-u are given in Table 7.8. First of all this table

shows that unlike the female SIR values given in Table 4.3 there are now

no zero female risk estimates. It is also clear that the model-based female

risk estimates have much a smaller range than the female SIR values. This

indicates that the modelling process has successfully dealt with, or smoothed

over, the SIR problem of extreme risk estimates.

Another clear issue in this table is that the credible intervals for the

four lowest risk estimates contain negative values. Obviously, by the nature

of relative risks and the models used, no negative values could have been

simulated for these parameters. The reason for the negative value is that
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Figure 7.11: Boxplots of Deprivation Parameters for Female Model C-u

when parameters are assigned a summary monitor rather than a full monitor,

which is the case for the majority of parameters in this research, the credible

intervals produced by OpenBUGS are only approximate. This is the first

time this issue has arisen and I believe it to be because the lowest estimated

female risks are so close to zero.

Although it has not been possible to fully monitor all of the female relative

risk parameters, those listed in Table 8.2 have been. For these parameters the

exact 95% credible intervals given by the full monitor have been compared

with their approximate equivalents given by the summary monitor. Apart

from for a few intervals for estimates which are extremely close to zero, they

were almost exactly the same.

If we look further at the results in Table 7.8 it is again the case that

the ten highest female risk estimates from Female Model C-u correspond to

data zones with a deprivation score of 1, whereas only half of the lowest risk

estimates are for areas with the least deprived score of 10.

Although the 20 most extreme model-based risk estimates for females

(Table 7.8) do not correspond to the same data zones as those for males

(Table 6.8) there are some strong similarities. Data zones in the following
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intermediate geographies appear in the highest ten risk estimates for both

males and females: Ayr North Harbour, Wallacetown and Newton South

and Inverness Merkinch. In a comparison of the ten lowest male and fe-

male model-based risk estimates in these tables, it can be seen that none of

the intermediate geographies are the same, but both sexes experienced low

estimated values in Renfrewshire and Argyll & Bute.

7.7 Female Alcohol-Related Relative Risk Maps

A much simpler way to examine the patterning of the Female Model C-u

alcohol-related relative risk estimates is to map them at the data zone level

across Scotland.

Similarly to previous chapters, the female relative risk estimates will be

mapped at the data zone level of geography across the whole of Scotland

(Figure 7.12). Magnified areas of this map will also be shown, due to the very

small area of many data zones, for Aberdeen (Figure 7.13), Ayrshire (Figure

7.14), Dundee (7.15), Edinburgh (7.16), Glasgow (7.17), the Inverness area

(Figure 7.18) and Stirling (Figure 7.19).

When comparing the full map of female relative risk estimates (Figure

7.12) with the female SIR map (Figure 4.24) it is clear that the modelling

process has helped to create a much smoother map of female risk estimates.

However, it must be remembered that the risk cut points used in each are not

the same. The modelled results show large blocks of colour which represent

clusters of areas which fall into the same risk category. The appearance of

higher female risk values in the North West Isles of Scotland appear to be

even stronger for the modelled risk estimates.

The model-based female risk maps also share very similar patterns to the

deprivation maps shown in Chapter 2, as one would expect since deprivation

score has been included in the modelling process. This added smoothness

makes it much easier to pick out ‘hotspots’ of relatively high or low female
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alcohol-related risk; this is shown especially well if the female relative risk

and female SIR maps of Edinburgh and Glasgow are compared (Figure 7.16,

Figure 4.28, Figure 7.17 and Figure 4.29).

The patterns exhibited by the female model-based risk estimates are very

similar to those shown in the male maps in Chapter 6; however, they are some

differences. Most notably the high alcohol-related health risks experienced

in the South and East of Glasgow City appear to be much more extreme for

males than for females. Also, females have been estimated to have relatively

higher risks in North and South Uist compared to males.

Again, there is the possibility that some would say Female Model C-u

forced the female relative risk maps to be overly-smooth by only including

spatial random effects in the model. This issue is discussed further in Section

5.7.
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Mean Relative Risk

 (Female)

0.0007 - 0.6139

0.6140 - 0.9295

0.9296 - 1.2730

1.2731 - 1.6870

1.6871 - 2.2400

2.2401 - 3.8230

Figure 7.12: Data Zone Map of Mean Female Alcohol-Related Relative Risk
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Female Model C-u Female Model C-u-Sens

Parameter Estimate 95% Credible Interval Estimate 95% Credible Interval

α 0.5986 (0.514, 0.6809) 0.6047 (0.4524, 0.6785)

β1 0 NA 0 NA

β2 -0.2991 (-0.352, -0.2461) -0.2981 (-0.3516, -0.2446)

β3 -0.4957 (-0.5526, -0.4388) -0.4947 (-0.5522, -0.4373)

β4 -0.5867 (-0.6461, -0.5274) -0.5859 (-0.6458, -0.5259)

β5 -0.8008 (-0.8645, -0.7372) -0.8004 (-0.8648, -0.7359)

β6 -0.9009 (-0.9663, -0.8356) -0.9003 (-0.9663, -0.8344)

β7 -1.107 (-1.177, -1.037) -1.106 (-1.176, -1.035)

β8 -1.265 (-1.339, -1.192) -1.264 (-1.338, -1.191)

β9 -1.468 (-1.547, -1.389) -1.466 (-1.545, -1.387)

β10 -1.643 (-1.729, -1.558) -1.642 (-1.729, -1.557)

τ2u 10.39 (8.252, 13.03) 9.245 (7.509, 11.34)

var(u) 0.09753 (0.07676, 0.1212) 0.1094 (0.08817, 0.1332)

θ1 0.3239 (0.207, 0.4816) 0.3224 (0.2012, 0.4882)

θ2 0.3 (0.2203, 0.3981) 0.2974 (0.2151, 0.3997)

θ14 1.965 (1.385, 2.692) 1.967 (1.367, 2.73)

θ89 0.5594 (0.4351, 0.7065) 0.5562 (0.4274, 0.7099)

θ115 1.872 (1.33, 2.552) 1.875 (1.313, 2.583)

θ172 0.5758 (0.4171, 0.7733) 0.5748 (0.4105, 0.7813)

θ985 0.7398 (0.6774, 0.806) 0.7452 (0.6401, 0.805)

θ2521 0.6833 (0.5044, 0.9047) 0.6861 (0.4987, 0.92)

θ2692 1.204 (0.9423, 1.513) 1.203 (0.9309, 1.525)

θ2885 0.4498 (0.2959, 0.6572) 0.4563 (0.2933, 0.6787)

θ2889 2.207 (1.388, 3.305) 2.218 (1.365, 3.377)

θ3044 1.241 (0.9103, 1.651) 1.25 (0.9035, 1.683)

θ3046 1.988 (1.512, 2.558) 1.987 (1.494, 2.581)

θ3557 0.4573 (0.3701, 0.5579) 0.4562 (0.3661, 0.5607)

θ4687 1.22 (0.9542, 1.534) 1.22 (0.9453, 1.549)

θ5792 0.5057 (0.3428, 0.7175) 0.507 (0.3378, 0.7291)

θ6238 0.514 (0.4673, 0.5637) 0.518 (0.4427, 0.5641)

Table 7.7: Selection of Parameter Results from Female Model C-u and Female

Model C-u-Sens
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Mean Relative RIsk

(Female)

0.0007 - 0.6139

0.6140 - 0.9295

0.9296 - 1.2730

1.2731 - 1.6870

1.6871 - 2.2400

2.2401 - 3.8230

Figure 7.13: Aberdeen Area Data Zone Map of Mean Female Alcohol-Related

Relative Risk
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Mean Relative Risk

(Female)

0.0007 - 0.6139

0.6140 - 0.9295

0.9296 - 1.2730

1.2731 - 1.6870

1.6871 - 2.2400

2.2401 - 3.8230

Figure 7.14: Ayrshire Area Data Zone Map of Mean Female Alcohol-Related

Relative Risk
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Mean Relative Risk

(Female)

0.0007 - 0.6139

0.6140 - 0.9295

0.9296 - 1.2730

1.2731 - 1.6870

1.6871 - 2.2400

2.2401 - 3.8230

Figure 7.15: Dundee Area Data Zone Map of Mean Female Alcohol-Related

Relative Risk
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Mean Relative Risk

(Female)

0.0007 - 0.6139

0.6140 - 0.9295

0.9296 - 1.2730

1.2731 - 1.6870

1.6871 - 2.2400

2.2401 - 3.8230

Figure 7.16: Edinburgh Area Data Zone Map of Mean Female Alcohol-

Related Relative Risk
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Mean Relative Risk

(Female)

0.0007 - 0.6139

0.6140 - 0.9295

0.9296 - 1.2730

1.2731 - 1.6870

1.6871 - 2.2400

2.2401 - 3.8230

Figure 7.17: Glasgow Area Data Zone Map of Mean Female Alcohol-Related

Relative Risk
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Mean Relative Risk

(Female)

0.0007 - 0.6139

0.6140 - 0.9295

0.9296 - 1.2730

1.2731 - 1.6870

1.6871 - 2.2400

2.2401 - 3.8230

Figure 7.18: Inverness Area Data Zone Map of Mean Female Alcohol-Related

Relative Risk

217



Mean Relative Risk

(Female)

0.0007 - 0.6139

0.6140 - 0.9295

0.9296 - 1.2730

1.2731 - 1.6870

1.6871 - 2.2400

2.2401 - 3.8230

Figure 7.19: Stirling Area Data Zone Map of Mean Female Alcohol-Related

Relative Risk
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Chapter 8

Distance Models for Combined

Male and Female Data

So far this thesis has modelled alcohol-related health risks across Scotland

while accounting for area deprivation levels and the age and sex structure of

the population. All previous modelling chapters find that data zone depriva-

tion score is a significant fixed effect. However, in each of the chosen models

some variation in relative risk values persists after the deprivation variable

is fitted. This chapter will consider a further fixed effect, in addition to area

deprivation score, in an attempt to explain some of the remaining variation

in Scottish alcohol-related health risks.

The additional covariate considered here is the minimum Euclidian dis-

tance from each data zone centroid to a single malt whisky distillery. Further

discussion on how these distances are estimated is given in Chapter 2. It is

well documented that Scotland has a strong history in whisky production

and it is possible that close proximity to such distilleries may have an effect

on alcohol-related risk. Such a link may arise because staff discounts are

offered to employees of the distilleries.

It is also known that alcohol consumption levels are influenced by social

and cultural attitudes towards the substance. A more remote possibility is

that, given the old age of many of the distilleries, their existence in a given
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area may prove to be an indicator of the historical and general attitude

towards alcohol within that area.

It must be remembered that any potential link found between alcohol-

related risk and proximity to a single malt whisky distillery will not neces-

sarily be causal. If the results show that there is a significant relationship

between alcohol-related risk and distillery proximity, it will not be possible to

say that being close to a distillery causes higher or lower risk, just that there

is an association between either wide/close proximity and high risk rates.

Distance models will only be examined for the combined male and female

data in the first instance. The data used is exactly the same as that used for

the combined models in Chapter 5, but with the addition of the estimated

minimum distance from each data zone to a single malt whisky distillery.

8.1 Models Considered

This Chapter will fit 15 new models to the combined male and female

death and hospitalisation data. Like previous chapters these models are

based on the Besag, York and Mollié model which is a Bayesian relative

risk model that incorporates spatial random effects. The models will vary in

terms of both fixed and random effects. As random effects each model will

contain either correlated heterogeneity (u), uncorrelated heterogeneity (v) or

a convolution prior (u+ v).

Two fixed effects are considered in these models; area deprivation score

and the minimum distance to a distillery. Since the expected count data

used here has already been standardised for age and sex it is not necessary

to include these variables in the modelling process. Deprivation has been

modelled in two different ways; firstly in a linear manner and secondly by

assigning a separate parameter to each of the ten bona fide deprivation scores.

In all 15 models an additive-link distance effect has been included, which

will be discussed below. Models which consider deprivation alone for the
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combined data have already been explored in Chapter 5 and they will not be

run again in this section.

The first check for a spatial association between alcohol-related health

risk and single malt whisky distilleries is to see if there is a decline in relative

disease risk with increased distance from a distillery. It has been decided to

use an additive-link distance effect to fit the distance covariate in all models

since for radial distance decline the background rate of risk is believed to

be unaffected at large distances. Discussions of similar model structures are

given in section 7.7.1 of Lawson et al. (2003a).

Since the models in this Chapter examine two fixed effects it is necessary

to consider appropriate interaction terms. This is because any association

between the distance to a distillery and alcohol-related risk may not be the

same for areas with differing deprivation levels.

Table 8.1 names all 15 distance models explored and gives a summary of

the fixed and random effects included in each.

Model Name Fixed Effects Random Effects

Distance Model A-v distance v

Distance Model A-u distance u

Distance Model A distance u+ v

Distance Model B-v distance & linear deprivation v

Distance Model B-v-Int distance, linear deprivation & interaction term v

Distance Model B-u distance & linear deprivation u

Distance Model B-u-Int distance, linear deprivation & interaction term u

Distance Model B distance & linear deprivation u+ v

Distance Model B-Int distance, linear deprivation & interaction term u+ v

Distance Model C-v distance & non-linear deprivation v

Distance Model C-v-Int distance, non-linear deprivation & interaction term v

Distance Model C-u distance & non-linear deprivation u

Distance Model C-u-Int distance, non-linear deprivation & interaction term u

Distance Model C distance & non-linear deprivation u+ v

Distance Model C-Int distance, non-linear deprivation & interaction term u+ v

Table 8.1: Distance Model Names and Descriptions

As explained in section 3.6, the Besag, York and Mollié model assumes
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that the relative risk in area i, θi, is given by

θi = exp(α + ui + vi)

where exp(α) is the baseline or overall level of relative risk. The models con-

sidered here are based on this but also incorporate the fixed effects discussed

above.

Distance Model A fits only distance as a fixed effect, giving

θi = exp (α+ log(1 + exp(−α2mi)) + ui + vi)

where mi is the minimum distance from the centroid of area i to a single

malt whisky distillery measured in meters and α2 is a parameter. Given this

structure the prior for α2 must be constrained as numerical instability can

arise if a vague prior distribution is used. All 15 models fitted in this chapter

assign α2 a normal prior with mean zero and variance 1, so

α2 ∼ N(0, 1).

The justification of such an additive model is related to the behaviour of

the multiplicative model when the distance mi becomes large. Consider the

alternative of a multiplicative model in which

θi = exp(α0 + othercovariates− α1 ∗m1), (8.1)

then at large distances the whole risk level tends to zero. This is strictly not

appropriate since the risk could easily be high at distance from a distillery due

to reasons unrelated to the source. An additive link is therefore used since

it keeps the background risk unaltered when mi is large. The α2 parameter

is a distance decline parameter and when it is significant and positive this

implies that there is a significant distance decline.

Distance Model B includes both linear deprivation and the distance factor,

giving

θi = exp (α + log(1 + exp(−α2mi)) + βdi + ui + vi)
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where di represents the deprivation score in data zone i. In this model, and

all models which include linear deprivation, the β parameter is assigned a

diffuse normal prior with mean zero and precision e−5,

β ∼ N(0, e−5).

Since Distance Model B contains two fixed effects it is necessary to fit a

second model for this combination which also includes a term to represent

a possible interaction between these effects. Distance Model B-Int contains

such an interaction term and models the relative risk in area i as

θi = exp (α + log(1 + exp(−α2mi)) + βdi + β2dimi + ui + vi)

where β2 is given a vague normal prior distribution, N(0, e−5).

Distance Model C also includes both distance and deprivation effects,

but unlike Distance Model B non-linear deprivation is considered. Distance

Model C fits the relative alcohol-related risk in data zone i as

θi = exp (α + log(1 + exp(−α2mi)) + βdi + ui + vi)

where there is a separate parameter, β1 to β10, for each of the ten deprivation

scores. The parameter for the worst deprivation score of 1 has been arbitrarily

set to zero and the remaining 9 parameters are given vague normal prior

distributions, N(0, e−5). Therefore, for Distance Model C we have

β1 = 0 and

βj ∼ N(−, e−5),

for j in 2:10.

Again, there must be a further model fitted to the combined data which

includes an interaction term between the two fixed effects included in Dis-

tance Model C. An appropriate interaction term is included in Distance

Model C-Int, which gives the relative risk in area i as,

θi = exp
(
α + log(1 + exp(−α2mi)) + βdi + β2di

mi + ui + vi

)
.
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Distance Model C-Int introduces a further 10 parameters, β21 to β210 , which

apply to the interaction term. The parameter β21 which corresponds to the

worst deprivation score of 1 is arbitrarily set to zero and β22 to β210 are set

to follow the same vague normal prior distributions as β2 to β10.

All models discussed in this chapter have been simulated using the Open-

BUGS software. The OpenBUGS code for Distance Model A, Distance Model

B, Distance Model B-Int, Distance Model C and Distance Model C-Int is

given in Appendix sections 10.4 to 10.8 respectively. The code for all 15

distance models considered can be derived from these scripts by omiting the

redundant parts of the code, for example by deleting all references to u in

the Distance Model A code to obtain the code for Distance Model A-v.

8.2 Convergence

The distance models investigated simulate a separate relative risk param-

eter and in some cases two random effects for every single area. Given that

there are 6505 data zones in the study it proved impossible to record these

parameter values at every iteration due to computer memory limitations.

For all 15 distance models a summary monitor has been set for all relative

risk and random effect parameters. A subset of the relative risk parameters

have also been fully monitored in order to assess convergence and are given

in Table 8.2. All other model parameters have been fully monitored.

All previous models considered for the combined alcohol-related relative

risk, discussed in Chapter 5, were found to display strong evidence of ad-

equate convergence after a burn-in period of 10,000 iterations. Two post

burn-in chains of 150,000 simulations were run for each of these models.

It is desirable to be able to compare the fit of the distance models to the

earlier deprivation-only models of combined relative risk. For this reason all

15 distance models have also been run for 10,000 burn-in iterations followed

by two simulation chains of length 150,000 from different starting points.
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Data Zone Code Relative Risk Parameter Reason Chosen

S01006393 θ115 poor deprivation score

S01006438 θ14 poor deprivation score

S01006490 θ1 good deprivation score

S01006505 θ2 good deprivation score

S01003744 θ2521 rural area

S0100391 θ2692 rural area

S01003380 θ3044 urban/city area

S01002325 θ4687 urban/city area

S01005521 θ985 island / no neighbouring areas

S01000447 θ6238 island / no neighbouring areas

S01003031 θ2885 lowest total population

S01000799 θ5792 highest male population

S01002622 θ3557 highest female population

S01003313 θ3046 highest male SIR

S01006473 θ89 zero female SIR value

S01006341 θ172 zero female SIR value

S01003043 θ2889 very high male SIR

Table 8.2: Data Zones with Fully Monitored Relative Risk Estimates

Convergence of these models was checked in the same way as previous

chapters. Very similar levels of convergence were observed for all 15 models,

so only the results for Distance Model B-u will be discussed in detail.

Firstly, history plots for a selection of the relative risk and other param-

eters from Distance Model B-u are shown in Figures 8.1, 8.2, 8.3 and 8.4.

These plot all post burn-in simulated parameter values against the corre-

sponding iteration number, showing both chains on the same plot. Colour is

used to distinguish between the different sets of results, with one chain being

shown in red and the other in blue.

With the exception of α2, these plots all exhibit extremely good conver-

gence characteristics with the points forming a horizontal band across each

plot which exhibit no patterns or trends. Although the convergence of α2

is not as good as for the other non-relative-risk parameters, there are no

obvious patterns or trends in the history plot and the values of both chains

consistently overlap. It appears that this parameter would benefit if the

model was run for a longer period. However, given the limited time available
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and the fact that all distance and previous combined relative risk models

would have to be re-run with a longer chain length, coupled with the fact

that convergence currently looks fairly reasonable for this variable, it has

been decided to use these results. The reason that all models should be run

with the same chain length is that the p*D method of calculating DIC is

based on the variance of the simulated deviance values. While under perfect

convergence the posterior variance should not vary with the number of chain

iterations, under only adequate convergence it is possible that the posterior

variance may decrease as the number of simulations increases, all be it very

slightly.

The history plots also show that all of the relative risk parameters have

converged very well, with the exception of θ985 (or RR[985]) which corre-

sponds to an island/ neighbourless area. This parameter still appears to

have achieved convergence since both chains consistently overlap and do not

exhibit any trends or patters, but like α2 it appears that it would benefit

from a longer chain length.

For the same subset of Distance Model B-u parameters the Gelman-Rubin

diagnostics, as discussed in section 3.4.3, are given in Figure 8.5 and Figure

8.6. All of these plots suggest adequate model convergence. The green line,

which represents the width of the central 80% interval of the pooled chains,

and the blue line, which shows the average width of the 80% intervals within

the individual chains, are both stable and the red line which represents their

ratio is stable at a value of 1. In fact, the intervals are so similar for the indi-

vidual and the pooled chains, that the blue line almost completely obscures

the green line.

The density plots from Distance Model B-u were also examined for these

parameters and are shown in Figures 8.7 and 8.8. These plots add further

evidence that the model has converged adequately. The plots show a very

smooth density for all fully monitored parameters apart from α2 and θ985. Al-

though not completely smooth, the densities for these parameters do closely
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resemble normal densities and do not appear to be particularly multimodal.

Given the above evidence, it has been assumed that all 15 distance mod-

els of combined alcohol-related relative risk have a achieved adequate con-

vergence. However, with more time it would be better to run these models

with a longer simulation chain length.
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8.3 DIC

The DIC measure of goodness-of-fit will be used to choose the best fitting

distance model of combined alcohol-related relative risk. However, it may be

the case that the earlier models for the combined relative risks provide a

better fit to the data. The DIC values will therefore be compared between

all 15 distance models discussed in this Chapter and all 9 deprivation models

considered in Chapter 5.

Since the distance model DIC results will be compared with the DIC

results in Chapter 5, it has been decided to start with the p*D method of

calculating DIC. The DIC values, calculated using the p*D method, for all

distance models are given in Table 8.3.

Model Name D v̂ar{D} p∗D DIC

Distance Model A-v 32090 12927.7 6463.9 38553.9

Distance Model A-u 32330 12100 6050 38380

Distance Model A 32150 12633.8 6316.9 38466.9

Distance Model B-v 32070 11837.44 5918.72 37988.7

Distance Model B-v-Int 32080 11794 5897 37977

Distance Model B-u 32420 8363.1 4181.6 36601.6

Distance Model B-u-Int 32420 8374.1 4187.1 36607.1

Distance Model B 32060 10774.4 5387.2 37447.2

Distance Model B-Int 32060 10983.0 5491.5 37551.5

Distance Model C-v 32090 11772.3 5886.2 37976.2

Distance Model C-v-Int 32100 11837.4 5918.7 38018.7

Distance Model C-u 32430 8306.5 4153.3 36583.3

Distance Model C-u-Int 32430 8302.9 4151.4 36581.4

Distance Model C 32070 10836.8 5418.4 37488.4

Distance Model C-Int 32070 10629.6 5314.8 37384.8

Table 8.3: DIC for Distance Models using p*D

The lowest distance model DIC value is 36601.6. This corresponds to

Distance Model B-u which includes distance decline and linear deprivation

fixed effects and a correlated heterogeneity random effect. However, if we

compare this value to the DIC values given in Table 5.4 the DIC for Model

C-u is lower.
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8.4 Model Selection

It is common practice to select the model with the lowest DIC value as the

‘best’ model. Using this method, the results obtained suggest that Model C-u

is the best model for combined alcohol-relative risk that has been considered

in this thesis. Previous discussion of Model C-u is given in sections 5.4 and

5.6, but most notably for this chapter it does not incorporate the distance

effect. This suggests that the minimum distance between data zone centroid

and a single malt whisky distillery, fitted as a distance-decline effect, does

not explain a significant amount of the variation which remains after area

deprivation is considered.

It must be remembered that all of these models are based on assumptions

which are set by the investigator by way of the prior and hyperprior distri-

butions for the parameters and hyperparameters. Although proximity to a

single malt distillery has proved to be insignificant here, this may not be the

case under different assumptions. With limited time to complete this project

a comprehensive sensitivity analysis is not possible. However, sensitivity to

the gamma(0.5,0.0005) hyperpriors assigned to τ 2u and τ 2v will be examined.

8.5 Hyperprior Sensitivity Analysis

Every distance model listed in Table 8.1 will be re-run with alternative

hyperprior distributions assigned to τ 2u and τ 2v . These sensitivity models will

use the same names as those given in Table 8.1 but with ’Sens’ appended at

the end, for example ‘Distance Model A-Sens’. The reason for running the

models with alternative hyperpriors is to see whether the choice of hyperprior

will affect model selection. If a distance model is chosen under the different

assumptions, then the risk estimates from that model will be compared with

those from Model C-u.

The alternative hyperpriors considered in each model (where required)
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are

τ 2u ∼ Gamma(1, 1) and

τ 2v ∼ Gamma(1, 1).

These are the same alternative priors used for the earlier combined relative

risk models and, as discussed in section 5.5, they are much less vague and

very different from the original hyperpriors used.

Again, since the sensitivity results for the distance models will be com-

pared with those for the previous combined models of relative risk in chap-

ter 5, the only DIC values considered will be those calculated using the

p*D method. For each distance sensitivity model the DIC value and related

statistics are given in Table 8.4.

Model Name D v̂ar{D} p∗D DIC

Distance Model A-v-Sens 32080 13018.8 6509.4 38589.4

Distance Model A-u-Sens 32330 12078.0 6039.0 38369.0

Distance Model A-Sens 32070 12122.0 6061.0 38131.0

Distance Model B-v-Sens 32050 11556.3 5778.1 37828.1

Distance Model B-v-Int-Sens 32060 11664.0 5832.0 37892

Distance Model B-u-Sens 32390 8208.4 4104.2 36494.2

Distance Model B-u-Int-Sens 32390 8210.2 4105.1 36495.1

Distance Model B-Sens 31820 8602.6 4301.3 36121.3

Distance Model B-Int-Sens 31820 8617.4 4308.7 36128.7

Distance Model C-v-Sens 32060 11642.4 5821.2 37881.2

Distance Model C-v-Int-Sens 32070 11642.4 5821.2 37891.2

Distance Model C-u-Sens 32400 8184.8 4092.4 36492.4

Distance Model C-u-Int-Sens 32400 8040.7 4020.4 36420.4

Distance Model C-Sens 31820 8613.7 4306.8 36126.8

Distance Model C-Int-Sens 31820 8561.8 4280.9 36100.9

Table 8.4: DIC for Distance Sensitivity Models using p*D

Of all the distance relative risk sensitivity models, the lowest DIC value

of 36100.9 was observed for Distance Model C-Int-Sens. This model contains

non-linear deprivation, a distance decline effect, an interaction term between

deprivation and distance along with both correlated and uncorrelated het-

erogeneity. If we compare this to Distance Model B-u which is the distance

model with the lowest DIC when run using the original hyperpriors it can be
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seen that their structures are quite different. Distance Model B-u contains

terms for distance decline, linear deprivation and correlated heterogeneity.

So the chosen distance models under both hyperprior distributions differ in

terms of both random effects, interaction terms and fixed effect structure

chosen.

These differences in model structure seem to be quite substantial. How-

ever, it may be the case that, although very different models have been

assumed, the resulting relative risk estimates would be similar between these

models. This, however, will not be investigated. This is because if the DIC

values for the distance sensitivity models in Table 8.4 are compared with

those for the earlier combined sensitivity models in Table 5.6 the lowest DIC

value of 36092.6 is actually observed for Model C-Sens.

Thus, under both the original and alternative hyperprior distributions,

it is suggested that a distance decline effect should not be included in the

model for combined alcohol-related relative risks in Scotland.

A comparison of the Model C-u and Model C-Sens parameter estimates

is given in section 5.5.

8.6 Model Results

Since under both sets of assumptions the lowest DIC value corresponds

to a non-distance model of combined relative risk, fitted in chapter 5, the

resulting risk estimates are the same as those discussed for Model C-u in

section 5.6.

The maps of combined male and female alcohol-related relative risk across

Scotland given in section 5.7 give the same results as this chapter since dis-

tance was not included in the chosen model.

It should be remembered that these results do not mean that there is

no relationship between alcohol-related risk and proximity to a single malt

whisky distillery. Instead they indicate that fitting the above distance-decline
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effect does not appear to account for a significant amount of the unexplained

variation in relative risk which remains after allowing for age, sex and area

deprivation score. It may prove that using a different form of distance fixed

effect, fitting the same model to similar but different data or running exactly

the same models for longer chain lengths would yield different results.
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Chapter 9

Discussion

This chapter aims to discuss the merits and shortcomings of this research

as well as various areas in which future research could be carried out.

9.1 Summary of Results

The results of this study suggest that area deprivation score is signifi-

cantly associated with alcohol-related health risk for both males and females.

Both the selected male and female models suggest that the relative risks are

best described by a non-linear area deprivation score effect and correlated

heterogeneity. More precisely, it is suggested that both male and female

alcohol-related health risk is higher in more deprived areas and that the risk

in any given area is related to the risk in its neighbouring areas.

The given analysis offers insufficient evidence to suggest that there is an

association between the combined male and female alcohol-related health risk

and proximity to a single malt whisky distillery.

9.2 Merits of Project

This thesis has allowed alcohol-related health relative risk maps of Scot-

land to be produced at a much finer level of geography than ever before. This

241



allows the patterns in relative risk to be examined in much more detail and

with less loss of information due to aggregation. Being able to map these

health risks at a small area level may prove useful when trying to allocate

alcohol-related funding appropriately between small community NHS centres

such as general practice surgeries.

I feel that the inclusion of both deaths and hospitalisations due to alcohol

as opposed to just deaths gives a much better indication of the patterns of

problem drinking across Scotland. For example, many people who are heavy

drinkers are also heavy smokers, but when aiming to identify the areas with

the highest levels of problem drinking it makes sense to count someone who

has been hospitalised due to cirrhosis of the liver even if they later died of

lung cancer. Many previous studies focus on alcohol-related deaths only.

This thesis has produced disease maps and estimates of alcohol-related

health relative risks across Scotland separately for males and females. This

makes comparisons between male and female risk estimates straightforward

and the use of colour-coded maps makes such comparisons very accessible to

non-statisticians.

This project also ventured into new territories in Bayesian spatial mod-

elling. I can find no existing papers which consider Bayesian spatial models

similar to those used in this project with as many areas. The use of 6505 data

zone areas caused some problems while running the models in OpenBUGS.

I contacted the BUGS project at Cambridge regarding these problems and

developments were made to the OpenBUGS software which fixed these issues.

9.3 Persisting Issues of Project

There are some issues highlighted throughout this work which would be

worth some further investigation.

The negative pD values obtained for some of the combined, male and

female models of relative risk are undesirable. It would be of interest to
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carry out further investigations into why these values have arisen.

The complex spatial geography of Scotland, with its many islands, also

presents a major challenge for the type of models used in this thesis. The

difficulty is related to potential ‘edge effects’. All final models for the alcohol-

related relative risks in Scotland contain spatial heterogeneity, which means

that the risk in any given area depends on the risk in its neighbouring areas.

The selected models will therefore produce poorer relative risk estimates for

areas which do not share a border with any other areas.

The default option in most GIS mapping packages, and in OpenBUGS, is

to assume that if two areas are separated by a physical boundary such as a

river or sea they are not neighbours. However, the neighbourhood structure

used for the spatial modelling is intended to represent correlations in the

underlying alcohol-realted health risk, due to similarities in environmental

and socioeconomic risk factors, rather than just physical proximity. It could

be argued that many of the Scottish islands may have similar levels of risk to

other nearby islands, yet they would not be regarded as neighbours by default

in the current analysis. Further research could be carried out in which these

physical boundaries are treated differently, hence defining the neighbouring

areas differently.

More importantly, the island/neighbourhood structure of Scotland may

be at the heart of the convergence problems found for some models, which

may in turn explain the problems found with the negative pD estimates in

the model comparison criteria.

The alternative measure of pD, p∗D, which has been used in the model

selection process throughout this thesis, tends to over penalise more complex

hierarchical models (as discussed in Chapter 3). Other model selection pos-

sibilities could have been explored. For example, since I had a prior belief

that deprivation level should be incorporated into the final models of alcohol-

related relative risk a more subjectivist approach could have been explored.

However, since I had no strong a priori opinion about the specific form that
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any such deprivation level relationship should take this would have proved

difficult.

Limitations in computing capabilities have meant that not all parame-

ters in the fitted models could be fully monitored. Parameters which were

not fully monitored were assigned a summary monitor. Summary monitors

output exact mean and standard deviation values based on the sample of

simulated values for the monitored parameter, but only approximate 95%

credible intervals. Ideally every parameter would be fully monitored in order

to avoid these approximate intervals.

9.4 Areas for Further Research

I feel that there are many more areas in which this research could be

expanded in the future.

The current research considers an association between proximity to a

single malt whisky distillery and alcohol-related health risks. The current

methods use the approximate minimum Euclidian distance between each

data zone and a distillery, which is ‘as the bird flies’. It would be desirable

to try and estimate more ‘real world’ distances, possibly by considering the

minimum length of road between a data zone and a distillery.

As well as investigating the effects of physical distance between areas and

distilleries, it would be beneficial to look at the proportion of the population

in each area that live within a certain distance of a distillery and/or that

work in a distillery if such information is available.

A further element regarding a possible link between whisky production

and alcohol-related health risks in Scotland would be to include all distil-

leries in Scotland and, possibly most importantly, whisky bottling plants.

It is probably more common for workers to buy or take whisky home from

places where it is held in bottles rather than casks or distillers. A further

improvement which could be made is to develop and include a measure of
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the scale of production or staff numbers at each distillery and bottling plant.

As well as investigating the effects of physical distance between areas and

distilleries, it would be beneficial to look at the proportion of the popula-

tion in each area that live within a certain distance of a distillery and the

proportion of the population that work in a distillery if such information is

available.

On top of age, sex, deprivation and proximity to whisky production there

are other factors which are worth consideration in a model for alcohol-related

health relative risk.

It would be interesting to incorporate the proportion of adults in each area

that are in longterm relationships. Such data may not be readily available,

but the proportion of adults who are married or in civil partnerships could

be used as a proxy if more accurate data is not available.

A further area of interest is the number of premises with a late licence

within a certain distance of a data zone. This would allow investigation into

whether alcohol risk rates are higher or lower in areas with late licences.

Being able to buy alcohol for longer may cause people to drink more, but

on the other hand shorter legal drinking hours may increase the incidence

of binge drinking before the premises close and gatherings in people’s homes

after closure in which they can drink for as long as they like.

When considering such small areas it may also be worth including factors

which describe the religious population in each area. For example, without

including such a factor there may be small areas that have a much lower

alcohol-related risk estimate than expected given neighbouring risk values

and deprivation level if there is a high muslim population in the area.

It could also be of interest to further the investigation into a link between

alcohol-related health risks and deprivation by examining the individual com-

ponents of deprivation separately.

As well as considering additional variables within the existing model

structures, there are several alternative Bayesian spatial model structures
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which could be explored including shared components models for males and

females together, multivariate CAR models and mixture models.
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Chapter 10

Appendices

10.1 Model A - OpenBUGS Code

model (1)

{ (2)

for (i in 1:m) (3)

{ (4)

# Poisson Likelihood for ObservedCounts (5)

y[i]~dpois(mu[i]) (6)

log(mu[i])<-log(e[i])+alpha+u[i]+v[i] (7)

# Relative Risk (8)

theta[i]<-exp(alpha+u[i]+v[i]) (9)

# Prior distribution for the uncorrelated heterogenity (10)

v[i]~dnorm(0,tau.v) (11)

} (12)

eps<-1.0E-6 (13)

#CAR distribution for the spatial correlated heterogenity (14)

u[1:m]~car.normal(adj[],weights[],num[],tau.u) (15)

# Weights (16)

for (k in 1:sumNumNeigh) (17)

{ (18)

weights[k]<-1 (19)

} (20)

# Improper distribution for the mean relative risk in the study region (21)

alpha~dflat() (22)

mean<-exp(alpha) (23)

# Hyperprior distributions on inverse variance paramenters of random effects (24)

tau.u~dgamma(0.5,0.0005) (25)

tau.v~dgamma(0.5,0.0005) (26)

var.u <- 1/tau.u (27)

var.v<- 1/tau.v (28)

} (29)
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10.2 Model B - OpenBUGS code

model (1)

{ (2)

for (i in 1:m) (3)

{ (4)

# Poisson likelihood for observedcounts (5)

y[i] ~ dpois(mu[i]) (6)

log(mu[i]) <- log(e[i]) + alpha + v[i] + u[i] + beta*d[i] (7)

# RelativeRisk (8)

theta[i] <- exp(alpha + v[i] + u[i] + beta*d[i]) (9)

# Prior distribution for the uncorrelated heterogenity (10)

v[i] ~ dnorm(0, tau.v) (11)

eps <- 1.0E-6 (12)

# CAR prior distribution for spatial correlated heterogenity (13)

u[1:m] ~ car.normal(adj[], weights[], num[], tau.u) (14)

# Weights (15)

for(k in 1:sumNumNeigh) (16)

{ (17)

weights[k] <- 1 (18)

} (19)

# Improperprior distribution for the mean relative risk in the study region (20)

alpha ~ dflat() (21)

mean <- exp(alpha) (22)

# Prior on regression coefficients (23)

beta ~ dnorm(0.0, 1.0E-5) (24)

# Hyperprior distribution on inverse varianceparameter of random effects (25)

tau.u ~ dgamma(0.5, 0.0005) (26)

tau.v ~ dgamma(0.5, 0.0005) (27)

var.u <- 1/tau.u (28)

var.v<- 1/tau.v (29)

} (30)
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10.3 Model C - OpenBUGS code

model (1)

{ (2)

for (i in 1:m) (3)

{ (4)

# Poisson likelihood for observedcounts (5)

y[i] ~ dpois(mu[i]) (6)

log(mu[i]) <- log(e[i]) + alpha + v[i] + u[i] + beta[d[i]] (7)

# RelativeRisk (8)

theta[i] <- exp(alpha + v[i] + u[i] + beta[d[i]]) (9)

# Prior distribution for the uncorrelated heterogenity (10)

v[i] ~ dnorm(0, tau.v) (11)

} (12)

eps <- 1.0E-6 (13)

# CAR prior distribution for spatial correlated heterogenity (14)

u[1:m] ~ car.normal(adj[], weights[], num[], tau.u) (15)

# Weights (16)

for(k in 1:sumNumNeigh) (17)

{ (18)

weights[k] <- 1 (19)

} (20)

# Improperprior distribution for the mean relative risk in the study region (21)

alpha ~ dflat() (22)

mean <- exp(alpha) (23)

# Prior on beta coefficients (24)

beta[1] <- 0 (25)

for (k in 2:10) (26)

{ (27)

beta[k] ~ dnorm(0.0, 1.0E-5) (28)

} (29)

# Hyperprior distribution on inverse varianceparameter of random effects (30)

tau.u ~ dgamma(0.5, 0.0005) (31)

tau.v ~ dgamma(0.5, 0.0005) (32)

var.u <- 1/tau.u (33)

var.v<- 1/tau.v (34)

} (35)
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10.4 Distance Model A - OpenBUGS code

model {

u[1:m] ~ car.normal( adj[], weights[], num[], tau.u)

for ( i in 1:m )

{

# Poisson likelihood for observedcounts

y[i] ~ dpois( mu[i])

f[i] <- ( 1 + exp( -alpha2*dist[i] ) )

# log(f[i]) is an additive-link distance effect. If the estimate of alpha2 is positive

# then there is a decline with distance, which might be interpereted as

# significant if the alpha2 is well estimated.

log( mu[i] ) <- log(e[i]) + alpha + log(f[i]) + v[i] + u[i]

RR[i] <- mu[i]/e[i]

# Prior distribution for the uncorrelated heterogenity

v[i] ~ dnorm(0.0, tau.v)

}

eps <- 1.0E-6

tau.u ~ dgamma( 0.5, 0.0005)

tau.v ~ dgamma( 0.5, 0.0005)

alpha2 ~ dnorm(0.0, 1)

alpha ~ dflat()

for ( k in 1:sumNumNeigh)

{

weights[k] <- 1

}

}

250



10.5 Distance Model B - OpenBUGS code

model {

u[1:m] ~ car.normal( adj[], weights[], num[], tau.u)

for ( i in 1:m )

{

# Poisson likelihood for observedcounts

y[i] ~ dpois( mu[i])

f[i] <- ( 1 + exp( -alpha2*dist[i] ) )

# log(f[i]) is an additive-link distance effect. If the estimate of alpha2 is positive

# then there is a decline with distance, which might be interpereted as significant

# if the alpha2 is well estimated.

log( mu[i] ) <- log(e[i]) + alpha + beta*dep[i] + log(f[i]) + v[i] + u[i]

RR[i] <- mu[i]/e[i]

# Prior distribution for the uncorrelated heterogenity

v[i] ~ dnorm(0.0, tau.v)

}

eps <- 1.0E-6

tau.u ~ dgamma( 0.5, 0.0005)

tau.v ~ dgamma( 0.5, 0.0005)

beta ~ dnorm(0.0, 1.0E-5)

alpha2 ~ dnorm(0.0, 1)

alpha ~ dflat()

for ( k in 1:sumNumNeigh)

{

weights[k] <- 1

}

}
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10.6 Distance Model B-Int - OpenBUGS code

model {

u[1:m] ~ car.normal( adj[], weights[], num[], tau.u)

for ( i in 1:m )

{

# Poisson likelihood for observedcounts

y[i] ~ dpois( mu[i])

f[i] <- ( 1 + exp( -alpha2*dist[i] ) )

# log(f[i]) is an additive-link distance effect. If the estimate of alpha2 is positive

# then there is a decline with distance, which might be interpereted as significant

# if the alpha2 is well estimated.

log( mu[i] ) <- log(e[i]) + alpha + beta*dep[i] + log(f[i]) + beta2*dep[i]*dist[i] + v[i] + u[i]

RR[i] <- mu[i]/e[i]

# Prior distribution for the uncorrelated heterogenity

v[i] ~ dnorm(0.0, tau.v)

}

eps <- 1.0E-6

tau.u ~ dgamma( 0.5, 0.0005)

tau.v ~ dgamma( 0.5, 0.0005)

beta ~ dnorm(0.0, 1.0E-5)

beta2 ~ dnorm(0.0, 1.0E-5)

alpha2 ~ dnorm(0.0, 1)

alpha ~ dflat()

for ( k in 1:sumNumNeigh)

{

weights[k] <- 1

}

}
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10.7 Distance Model C - OpenBUGS code

model {

u[1:m] ~ car.normal( adj[], weights[], num[], tau.u)

for ( i in 1:m )

{

# Poisson likelihood for observedcounts

y[i] ~ dpois( mu[i])

f[i] <- ( 1 + exp( -alpha2*dist[i] ) )

# log(f[i]) is an additive-link distance effect. If the estimate of alpha2 is positive

# then there is a decline with distance, which might be interpereted as significant

# if the alpha2 is well estimated.

log( mu[i] ) <- log(e[i]) + alpha + beta[dep[i]] + log(f[i]) + v[i] + u[i]

RR[i] <- mu[i]/e[i]

# Prior distribution for the uncorrelated heterogenity

v[i] ~ dnorm(0.0, tau.v)

}

eps <- 1.0E-6

tau.u ~ dgamma( 0.5, 0.0005)

tau.v ~ dgamma( 0.5, 0.0005)

# Prior on beta coefficients

beta[1] <- 0

for (j in 2:10)

{

beta[j] ~ dnorm(0.0, 1.0E-5)

}

alpha2 ~ dnorm(0.0, 1)

alpha ~ dflat()

for ( k in 1:sumNumNeigh)

{

weights[k] <- 1

}

}
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10.8 Distance Model C-Int - OpenBUGS code

model {

u[1:m] ~ car.normal( adj[], weights[], num[], tau.u)

for ( i in 1:m )

{

# Poisson likelihood for observedcounts

y[i] ~ dpois( mu[i])

f[i] <- ( 1 + exp( -alpha2*dist[i] ) )

# log(f[i]) is an additive-link distance effect. If the estimate of alpha2 is positive

# then there is a decline with distance, which might be interpereted as significant

# if the alpha2 is well estimated.

log( mu[i] ) <- log(e[i]) + alpha + beta[dep[i]] + log(f[i]) + beta2[dep[i]]*dist[i] + v[i] + u[i]

RR[i] <- mu[i]/e[i]

# Prior distribution for the uncorrelated heterogenity

v[i] ~ dnorm(0.0, tau.v)

}

eps <- 1.0E-6

tau.u ~ dgamma( 0.5, 0.0005)

tau.v ~ dgamma( 0.5, 0.0005)

# Prior on beta coefficients

beta[1] <- 0

for (j in 2:10)

{

beta[j] ~ dnorm(0.0, 1.0E-5)

}

beta2[1] <- 0

for (j in 2:10)

{

beta2[j] ~ dnorm(0.0, 1.0E-5)

}

alpha2 ~ dnorm(0.0, 1)

alpha ~ dflat()

for ( k in 1:sumNumNeigh)

{

weights[k] <- 1

}

}
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Besag, J., York, J. & Mollié, A. (1991), ‘Bayesian image restoration with

two applications in spatial statistics’, Annals of the Institute of Statistical

Mathematics 43, 1–59.

Best, N., Richardson, S. & Thomson, A. (2005), ‘A comparison of bayesian

spatial models for disease mapping’, Stat Methods in Medical Research

14, 35–39.

Brooks, S. & Draper, D. (1999), Comparing the efficiency of MCMC sam-

plers, Technical report, Department of Mathematical Sciences, University

of Bath.

Carlin, B. P. & Louis, T. A. (2009), Bayesian Methods for Data Analysis,

third edn, Chapman and Hall/CRC.

255



Clayton, D. & Kaldor, J. (1987), ‘Empirical bayes estimates of age-

standardized relative risks for use in disease mapping.’, Biometrics 43(3).

Congdon, P. (2003), Applied Bayesian Modelling, John Wiley and Sons Ltd.

Congdon, P. D. (2010), Applied Bayesian Hierarchical Methods, Chapman

and Hall/CRC.

Cowles, M. K. & Carlin, B. P. (1996), ‘Markov chain monte carlo convergence

diagnostics: A comparative review’, Journal of the American Statistical

Association 91(434), 883–904.

Cressie, N. A. C. (1993), Statistics for Spatial Data (revised edition), Wiley.

Davies, C. A. (2005), Spatial Multilevel Modelling of Cancer Mortality in

Europe, PhD thesis, Department of Statistics, University of Glasgow.

Diggle, P. j., Tawn, J. & Moyeed, R. (1998), ‘Model-based geostatistics’,

Journal of the Royal Statistical Society 47, 299–350.

Donnelley, R. (2008), ‘Changing Scotland’s relationship with alcohol: a dis-

cussion paper on our strategic approach’, Technical report, Scottish Gov-

ernment.

Emslie, C. & Mitchell, R. (2009), ‘Are there gender differences in the geog-

raphy of alcohol-related mortality in scotland? an ecological study’, BMC

Public Health 9, 58.

Flowerdew, R., Graham, E. & Feng, Z. (2004), The production of an updated

set of data zones to incorporate 2001 census geography and data, Technical

report, School of Geography and Geosciences, University of St Andrews.

Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2004a), Bayesian

Data Analysis, second edn, Chapman and Hall/CRC.

256



Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2004b), Bayesian

Data Analysis, Chapman and Hall / CRC, chapter Model checking and

improvement, pp. 157–192.

Gilks, W., Richardson, S. & Spiegelhalter, D. (1996), Markov Chain Monte

Carlo in Practice, Chapman and Hall.

Glaister, J. (1886), ‘The epidemic history of Glasgow during the century

1783-1883’, Philosophical Society of Glasgow.

Henderson, R., Shimakura, S. & Gorst, D. (2002), ‘Modeling spatial variation

in leukimia survival data’, Journal of the American Statistical Association

(97), 965 to 972.

Jackson, M. (1999), Malt Whisky Companion, fourth edn, Dorling Kindersley

Limited, 80 Strand, London,.

Lawson, A. B. (2009a), Bayesian Disease Mapping: Hierarchical modelling

in spatial epidemiology, Chapman and Hall / CRC.

Lawson, A. B. (2009b), Bayesian Disease Mapping: Hierarchical modelling

in spatial epidemiology, Chapman and Hall / CRC.

Lawson, A. B., Browne, W. J. & Rodeiro, C. L. V. (2003a), Disease Mapping

with WinBUGS and MLwiN, 1st edn, John Wiley and Sons Ltd.

Lawson, A. B., Browne, W. J. & Rodeiro, C. L. V. (2003b), Disease Mapping

with WinBUGS and MLwiN, John Wiley and Sons Ltd., chapter Disease

Mapping Basics, pp. 1–15.

Lawson, A., Biggeri, A., Boehning, D., Lesaffre, E., Viel, J. & Clark, A.

(2000), ‘Disease mapping models: an emprical evaluation’, Satistics in

Medicine 19.

257
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