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Summary

Particle dynamics in the solar corona are of interest sime®é&haviour of the coronal plasma
is important for the understanding of how the solar coromgated to such high temperatures
compared to the photosphere ( million Kelvin, compared to a photospheric temperature
of ~ 6 thousand Kelvin ). This thesis deals with particle behaviouvarious forms of
magnetic and electric fields. The method via which partiakesaccelerated at reconnection
regions is of particular interest as particle acceleraiba magnetic reconnection region is
the basis for many solar flare models. Solar flares are rededsmergy in the solar corona.
The amounts of energy released range from the very small simoeleased by nanoflares,
that cannot be observed individually, to large events ssck-elass flares and coronal mass
ejections. Chapter one provides background informati@utthe structure of the Sun and
about various forms of solar activity, including solar flgrsunspots, and the generation of
the solar magnetic field.

Chapter 2 explores various theories of magnetic recororectMagnetic reconnection re-

gions are usually characterised as containing a centrdll,’auwegion where the magnetic

field is zero, and particles can be freely accelerated intibsgmce of an electric field, as they
decouple from the magnetic field and move non-adiabatic&lhapter 2 gives examples of
how such reconnection regions could be formed.

Chapter 3 deals with the construction of a 'noisy’ reconioectegion. For the purposes of
this work, 'noisy’ fields were created by perturbing the meiigmand electric fields with a
superposition of eigenmode oscillations. The method fecticulation of such eigenmodes,
and the creation of the electric and magnetic fields is d=tdikre.

Chapter 4 details the consequences for particle behauoarnioisy reconnection region.
The behaviour of electrons and protons in such fields wasestudt was found that adding
perturbations to the magnetic field caused many smalles taform, which increased the
size of the non-adiabatic region. This increased non-adiiabegion led to greater energisa-
tion of particles. The X-ray spectra that could be producethb accelerated electrons were



also calculated. In this chapter | also investigate the egnences of altering the distribution
of the spectrum of modes, and altering the value of the mladsistivity.

In chapter 5, the effects of collisional scattering on ées was also investigated. Colli-
sional scattering was introduced by integrating parti@gettories using a stochastic Runge-
Kutta method (which is a form of numerical integration). Eswfound that adding collisional
scattering at a reconnection region causes a significangehia particle dynamics in suffi-
ciently small electric fields. Particles which undergo isbdinal scattering in the presence of
a small electric field gain more energy than those which daundergo collisional scatter-
ing. This effect decreases as the size of the electric fietttreased. The correct relativistic
expressions for particle collisions were derived. It wagidthat collisions have a negligible
effect on relativistic particles.

Collisional scattering was also used to simulate the dfifesticles across magnetic fields. It
was found that adding more scattering caused the trajestofithe particles to change from
normal gyromotion around the magnetic field, and that pagimstead travelled across the
magnetic field. | also developed a diffusion coefficient towlthe calculation of a particle’s
drift across a magnetic field using only 1D equations.

Chapter 6 discusses the findings made in this thesis, andresghow these findings could
be built upon in the near future.
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1. The Sun As a Particle Accelerator

It is a capital mistake to theorize before
one has data. Insensibly one begins to
twist facts to suit theories, instead of
theories to suit facts.

Sherlock HolmesA Scandal In
Bohemia

1.1 Introduction

In this chapter, | will introduce the reader to the variousie of activity that take place
in the outer layers of the Sun. In order to do this, | will déserthe structure of the Sun,
and describe some of the phenomena that occur in activenggiothe solar surface. | also
briefly explore how such active regions may be formed, by thergence of magnetic flux
from within the solar interior.

| will also provide a brief introduction into the mechanisinsolar flares. This is essential,
since the much of rest of this work will focus on how partiches accelerated at reconnection
regions in the solar corona, and such reconnection regi@tabe found in solar flares.
Since noisy electric and magnetic fields will be used in lateapters to generate a kind of
plasma turbulence, | also provide some explanation of tartme in plasmas.

1.2 Particle Acceleration

Particle acceleration is a process that energises pastadlewing them to reach non-thermal
energies (i.e. energies greater than the ambient enegjyaré statistically improbable for
particles to reach in the absence of some kind of acceleratechanism). A major fraction
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of energy released in magnetised plasmas takes this forthaeselerated particles trans-
port energy away from the location at which the particlesobee energised. Accelerated
particles produce radiation across a broad range of fregesnfrom gamma rays to radio,
and these different forms of radiation are an important misgic of the properties of the
acceleration region. The type of electromagnetic radiatimitted by particles is a function
of the particle’s energy. Higher energy particles are cbpabproducing higher frequency
radiation. Studies of accelerated particles can also gsvaruinsight into the acceleration
mechanism.

Particle acceleration occurs in many situations in our ense. Examples include particle
acceleration in solar flares, in the accretion disks of gatgxand in the solar wind. Solar
flares will be discussed in more detail in section 1.3. Tharseind is composed of particles
which have been accelerated away from the Sun. These partiah be detected in situ
using satellites, or more spectacularly when they intengitt the earth’s magnetic field to
produce the aurorae.

Non-thermal particles can be detected in the halos of gadaxihe particles are detected
via the radio, gamma ray and X-ray radiation they emit (Bl@sibici, and Brunetti (2007)).
Supernova remnants also emit radiation across a spectravav@lengths, when particles
there are accelerated to high energies by shocks (see ergesét al. (2003)). Such ac-
celeration is thought to be the origin of galactic cosmicsrégee e.g. Hillas (2005)), high
energy charged particles which reach the Earth’s atmosplaed which originate within
our galaxy. Particle acceleration in energetic plasmasatembe studied in laboratories, in
devices called Tokamaks.

1.2.1 Particle Acceleration Mechanisms

There are many different possible mechanisms for partictelaration. The two most
commonly proposed mechanisms are direct electric fieldla@®n and Fermi accelera-
tion.

Electric field acceleration is simply the acceleration aftigkes in the presence of an elec-
tric field. Such electric fields can be generated in magnetomnection events. Fermi
acceleration occurs when charged particles are repeateitibgted, for example by a mag-
netic mirror. In addition to these two mechanisms, parsicteay also undergo stochastic
acceleration. For example, particles may undergo resongmaiction with electromagnetic
waves
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1.3 The Dynamic Sun

We know that we observe signatures of accelerated partidies we observe the Sun. These
particles must be accelerated somehow, by active processasious regions of the solar
plasma. The various forms of solar activity are governedhgysun’s magnetic field. This
work concerns itself with the coronal magnetic field, whisithought to originate in the
solar interior. An image of the active sun taken by the Sokandnics Observatory (SDO)
can be seen in figure 1.1.

SDO/AIA 171 2011-12-13 12:12:37 UT

Figure 1.1: Image from the Solar Dynamics Observatory (SBi@wing active regions in
the corona at a wavelength of 1X1

At this point, it is sensible to take a look at the basic ‘anatbof the sun. A diagram
of the solar interior can be seen in figure 1.2. At the very reenf the Sun is the solar
core. This is both the hottest and densest part of the Suh, aviemperature of.5 x
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107 K. The next two layers are known as the radiative zone and dheective zone. The
radiative zone is the zone in which energy is transporte@tds/the solar exterior by means
of radiative transport. In the convective zone, energyassported towards the solar exterior
vis convection. The convective zone is differentially totg, whereas the radiative zone is
uniformly rotating. The interface between the two layersa#ied the tachocline, and due
to the difference between the rotation of the convectiveraddative layers there is a large
amount of shear in this region. This shear is thought to plesueial role in generating the
large scale magnetic field of the Sun (see e.g. Jones, Thamgso Tobias (2010)).

The next layer is called the photosphere. It has a temperafieiround 6000K, and forms
the solar surface. From the photosphere (the solar surthe)wards, the plasma (the
ratio of the gas pressure to the magnetic pressure) is meetegrthan 1. This means that
the convective motions of the plasma determine the behawitthe magnetic field.

Prominence

Figure 1.2: Image showing the various layers of the solariot and atmosphere, as well as
various forms of solar activity. (NASA)

In the case of solar flares, particle acceleration takesepfathe Sun’s tenuous outer atmo-
sphere, the corona. The physical properties of the gas &bkl of the magnetic field in
the corona then form essential background to understaridimgparticles are accelerated
here. The solar corona is the uppermost layer of the solassgihere, lying above the chro-
mosphere. It is composed of an extremely hot plasma (teryperim excess of0°K). The
plasma temperature is greatly in excess of that of the loayars of the solar atmosphere
(the chromosphere and photosphere, which has a tempeoca@mpproximately 6000K), and
the reason for this is not yet understood, although seveeahamisms have been proposed,
including heating by turbulence, waves, and magnetic neection (see e.g. Aschwanden
(2001)). In the chromosphere and corona (the outermostdafehe Sun), the plasmais
less than 1, so that the magnetic field now determines thentigsaf the plasma.
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The corona is generally thought of as containing ‘activgiioas and ‘quiet’ regions. An
active region is made up of magnetic flux tubes which are arechim the photosphere, and
extend upwards through the chromosphere and corona. Thearwhactive regions varies
according to the solar cycle, which is approximately 11 gdang. Active regions contain
signs of magnetic activity, such as sunspots (dark patchéeeophotosphere, the layer of
the Sun below the chromosphere). Sunspots appear darkdecitesy are cooler than the rest
of the photospheric surface. The plasma is cooler in thegens because there is a strong
magnetic field here which inhibits convective heating ofpilesma.

Prominences are another example of an active region phetm#ith the exception of
polar crown prominences; prominences found at the solaspalway from active regions).
Prominences are areas where plasma is confined in a strudiigie extends away from the
solar surface. The plasma confined in prominences is cootedanser than the surrounding
coronal plasma. Active regions also play host to dynamiatsveuch as solar flares and
coronal mass ejections (CMEs). The proposed mechanismdbsabiar flares is described in
more detail in section 1.4. A coronal mass ejection is a largehighly energetic release of
plasma from the solar corona. It is sometimes accompaniedsojar flare.

The magnetic field emerges into the corona via a process kasvilux emergence, which
is not yet well understood. Flux emergence is a process Wiienagnetic field loops from
below the photosphere rise into the chromosphere and coftrese loops can then interact
with the coronal magnetic field (Heyvaerts, Priest, and RL&17)). A simplified illustration
of flux emergence can be seen in figure 1.3. This figure also stimsvlayers of the solar
atmosphere. Also seen in this figure are granules, coneectiNs in the photosphere which
may drive the motion of the magnetic field (Berger and Titl@9@)).

It is the emergence of magnetic flux that produces activensgfregions in which features
such as sunspots and solar flares originate). Convectiowlibe photosphere can produce
regions of twisted and tangled magnetic flux. Such tangletteusted flux stores a lot
of magnetic energy. This tangled flux is produced by photespltonvection causing the
movements of the footpoints of magnetic structures in thierea. This is is known as direct
current (DC) heating. Free energy is built up in the coronagnetic field. This energy is
then released via magnetic reconnection. (See chapter 2.)
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Figure 1.3: Magnetic flux emergence at the outer layers dbtlre The label MMF indicates
a moving magnetic feature, and the label EB indicates anriia bomb (a small scale
magnetic reconnection event,Georgoelisl. (2002)). Granules are convective cells in the
photosphere, the motion of which may drive activity in theoxc@. A plage is a bright region
surrounding a sunspot.(Pargittal. (2004))
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1.4 Solar Flares

The evidence for energetic particles can be seen in radiatgnatures across the electro-
magnetic spectrum, from radio bursts to X-rays and gamns gw do such particles gain
high energies? Solar flares give a particularly well-stddigample, with their impulsive
phase hard X-rayy-ray and radio signatures (e.g Lét al,, 2003; Whiteet al,, 2011). The
high energies of the emitting particles appear to be coresemgs of magnetic reconnection,
in which energy is released rapidly from the non-potentmhponent of the magnetic field
via a change in field line connectivity (e.g. Priest and Ferl2000). The physical processes
by which this can happen remain unclear, but it is proposad {(diller et al. (1997a)) that
during a magnetic reconnection event particles becomeugded from the magnetic field
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and are accelerated by the electric field. Shocks and higigepésma jets can also form,
which also accelerate particles.

The details of magnetic reconnection will be discussedirrin chapter 2. A solar flare is
an event in which a large amount of energy is released on shn@scales, generally on the
order of tens of seconds (Millet al. (1997h)). In a flare, the total energy content of accel-
erated electrons (according to the cold thick target im&tgtion of the hard X-rays (HXRS))
is 102 — 103! ergs, on time scales ranging from under a second to tens aftesifMiller

et al.(1997a)). The cold thick target model (CTTM) is a model whieeks to explain how
accelerated particles produce HXRs. The model describiasaisn in which particles from
the corona enter the chromosphere, which is much coolerlaadraich denser (i.e. itis col-
lisionally thick). Because of this, the particles slow dowausing them to emit X-rays vis
Bremsstrahlung.

The evolution of a solar flare can be broadly divided into fetages (Benz (2008)), which
can be seen in figure 1.4 below.

e Preflare stage.During this stage there is a small increase in EUV (extrerira uiolet)
and SXR (soft X-ray) flux, but very little change in obsereas at other wavelengths.

e Impulsive phase where bursts of HXRs are seen, as well as bursts in EUV amdscr
a range of radio wavelengths. The SXR flux also increasesgltinis time.

e Main phase where theH o and SXR fluxes peak.

e Gradual phase. The HXR, microwave and decimetric radio fluxes fall off quick
whilst the observed SXR, EUV anda flux decays more slowly.

In order to produce the observed HXRs in the impulsive phaesicles must be accelerated
to the non-thermal (i.e. high) energies. Each phase isdjlgitonger in duration than the

last. The preflare and impulsive phases have lengths of ttex of a few minutes for a large

flare. The main phase then lasts a few tens of minutes, ancttay gphase is typically a few

hours long (Benz (2008)).

Many different flare models exist. A typical example of suah@del is shown in figure 1.5.
This model shows many features common to flare models. Theetadield is modelled
as a loop. The magnetic field loop has two ’footpoints’ whicé at the interface between
the corona and the chromosphere. At these footpoints, Ipliatdn energy above 20keV)
X-rays are produced as electrons are decelerated whenbaytbe denser chromosphere
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Figure 1.4: An example of a solar flare time profile at varioavelengths (Benz (2002)).
The four stages of the flare are shown.

(Brown, 1971). The point at which these electrons are acateléd is typically situated at
the cusp of the flaring loop, although some models postutetexistence of many smaller
re-acceleration sites along the loop length (e.g. Bretval. (2009)). Soft (photon energy
below 20 keV) X-rays are produced by thermal electrons atbegoop length. The flare
loop is modelled as a magnetic flux tube which confines thenadq@asma.

Although the typical picture of a solar flare places the ragiof HXR emission at the flare
footpoints, regions of HXR emission have also been obseavé¢ide loop top, initially and
most famously by Masudat al.(1994a). Such observations require that particles ardexece
ated to high energies at the loop top, and that collisionsmtere (Kruckeet al. (2008b)).
This acceleration region is often modelled as an X-type naégbint (e.g. Fletcher and
Petkaki (1997)). The X-type neutral point is defined andfardiscussed in chapter 2.
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Figure 1.5: An example of a solar flare model. HXR indicatesaiof hard (i.e. high energy)
X-ray emission. SXR indicates areas of soft (i.e. low engdyyay emission. The flare is
shown extending outwards from the ’limb’ (the edge of theasalisk), and electrons are
accelerated from the cusp of the flaring loop towards thepmats. (Aschwanden, 2004b).

Hard X-rays place particularly stringent requirements lom flare particle accelerator. In
order for the chromospheric X-ray fluxes seen in flares to bésed, electrons must flow
through the acceleration region at a rate10°7 electrons/s (Vlahos, Krucker, and Cargill
(2009)). This requires all of the electrons in a coronal wnduof~ 103°cm? to be accel-
erated over a few minutes, unless the electrons can somehencounter the acceleration
region. Since the volume of a solar flare~isl .8 x 10?°cm? (Aschwanden (2004a)), it seems
inevitable that particles will either have to re-enter theederation region, or remain trapped
there.

1.5 Plasma Turbulence

The plasma being considered in this thesis is the coronahp@awhich is of course highly
dynamic. However, even well-controlled laboratory plasmall contain some degree of
turbulence. Turbulence can be thought of as a superpofioipples and disturbances



CHAPTER 1. THE SUN AS A PARTICLE ACCELERATOR 30

in the plasma which (at least at small amplitude) may be viemga superposition of the
natural wave modes of the plasma. In the vicinity of enerdgase, e.g. during magnetic
reconnection, such turbulence may become a major compoht plasma.

It has been suggested that the process of magnetic recamegenerates plasma turbulence
due to the plasma outflows from the reconnection region (eig.et al. (2008); Petrosian
and Liu (2004)). When a magnetised plasma is perturbed by waxde oscillations, this
produces a form of turbulence, which can accelerate elestimenergies which reproduce
the spectra seen in electron-dominated flares (Park, Reir@d Schwartz (1997)).

Kolmogorov (1941) proposed that the transfer of energy ffarge scales to small results
in a steady situation where energy is distributed over warndrer as a broken power law.

This so called 'K41 turbulence’ can be seen in figure 1.6. Bipapeaking, the spectrum is

divided into three parts. On the very largest scales, theggrspectrum has a spectral index
of -1. On intermediate scales, the spectral index is -5/3s iBthe range in which particles

within the plasma can become energised (Frisch (1995)).h@wéry smallest scales, this
energy is transferred into heat.

The -5/3 spectral index is arrived at via dimensional cogrsitions. Kolmogorov postulated
that the energy variation per unit wavenumber should depahdon the wavenumbefk],
and the rate of energy distribution per unit volung@, (as follows

E(k, ) ~ k“Y”. (1.1)

It is known thatk has units ofl /length, 1) has units ofength? /temperature®, andE has
units oflength? /temperature®. Some trivial algebra then gives the result that the index
in equation 1.1 takes the values /3.

This -5/3 power law has been seen in in-situ measurementseddlar wind, an example
of which is given in figure 1.7 (which is taken from Alexandamt al. (2009), see also e.g.
Matthaeus and Goldstein (1982)).The K41 model was orityinsled to describe unmagne-
tised plasmas. However, the appearance of a K41 power laweisdlar wind suggests that
the application of such models to magnetised plasmas inallae wind and solar corona is
possible. Indeed, a -5/3 power law can be used to model embaldue to Alfvén waves
in the solar corona (e.g.Cranmer and van Ballegooijen (P0@8d it is expected (e.g. Liu
et al. (2008)) that turbulence will be associated with magnettonmection events. Magne-
tohydrodynamic (MHD) turbulence was modelled as wave tieriee roughly 20 years after
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K41 turbulence was first proposed (Iroshnikov (1963); Kmain (1965)). However, these
models require that the energy cascade be isotropic in &ospiace, a caveat which has
met with criticism (e.g. Cho, Lazarian, and Vishniac (200n anisotropic cascade was
first modelled by Goldreich and Sridhar (1995), who devetbgpenodel of MHD turbulence
which has an energy spectrum with a spectral indek of?, the spectral index that K41
gives for turbulence on intermediate scales.

k—1
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Figure 1.6: Change in plasma energy with wavenumber acuptdithe K41 model (Gold-
stein, Roberts, and Matthaeus, 1995).

In this work, | will seek to introduce a superposition of didtances into a simulation of a
coronal plasma via creating noisy electric and magnetiddiel which the behaviour of test
particles is then studied. The creation of these fields mudised in detail in chapter 3.

1.6 Conclusion

This chapter formed a brief introduction to activity in theter layers of the Sun. We have
seen that active regions are created by magnetic flux thatgessérom the solar interior.
This flux is thought to be generated by shear at the tachqoaaesed by differences in the
rotation of the radiative zone and the convective zone. 3uglemerges due to convection,
and forms active regions where it emerges.

Phenomena associated with active regions include CMEspsts, prominences and solar
flares. Solar flares are important for the work in this themssthey can accelerate particles.
Such acceleration regions are likely to be turbulent, so lae lariefly explored the concept
of plasma turbulence.
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Figure 1.7: Variation of magnetic power density with freqag in the solar wind, as mea-
sured by Cluster (Alexandrot al., 2009).



2. Magnetic Reconnection

2.1 Introduction

In this chapter, | will detail a few examples of mechanisnmaswhich magnetic reconnection
can occur. These examples will include steady state mo8eledt-Parker and Petschek)
as well as the spontaneous kink mode and tearing mode maddé$®. discuss collisionless
reconnection, and how this can occur if the concept of artialeesistivity is introduced.
Finally, | describe an X-type neutral point, and how this barused to model an acceleration
region in the solar corona.

2.2 What is Magnetic Reconnection?

Magnetic reconnection can be simply described as a charthe structure of the magnetic
field due to plasma flows (see e.g. Priest and Forbes (2000)greTis a change in the
topology of the magnetic field due to magnetic field lines kiegand reconnecting so that
stored energy can be released. A change in magnetic fieldsteucan be described in terms
of the induction equation. The induction equation is defi®m Maxwell’s equations,
Faraday’s law, Ohm’s law and Ampere’s law. The displacencentent term of Ampere’s
law can be neglected if one makes the assumption that theviilodities are much smaller
than the speed of light, and that the oscillation timeschtb@electric field is much longer
than the timescale of the system (Jackson (1965)). Assumiagiform resistivity, this
gives

0B N o
— = B) + —V-B. 2.1

oy V x (u x )+47TV (2.1)

n is the plasma resistivity, and is the fluid velocity. The first term on the r.h.s. describes
changes in the magnetic field due to advection of the plasnh@. sEcond term describes
changes due to diffusion. The ratio of the two terms is calednagnetic Reynolds number,

33
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which is very large in the solar corona (10%). This means that the magnetic field is ’ frozen
in’, i.e. as the plasma moves, the magnetic field is carrigtt wi When two regions of
oppositely directed field (see figure 2.1) are forced togdiiglasma flows (Gorbachev and
Somov (1989)), a large current will arise at the boundaryben two regions of oppositely
directed field, in accordance with Ampere’s law:

VxB= E <47TJ + a—E) (2.2)
c ot

where J is the current density. This current is opposed by the eteodsistivity of the

plasma, and plasma diffuses through the domain boundamy liath sides. Since the field

is frozen in to the plasma, magnetic flux is then pulled integion of oppositely directed

flux, resulting in reconnection.

A A AA 4*\/
v v v /\v

Figure 2.1: Two sets of oppositely directed magnetic fieh@di shown here breaking and
reconnecting to form new field lines.

There are many theories describing reconnection. All neydidpose a mechanism whereby
the magnetic field is simplified post-reconnection, and shated energy is released as the
magnetic field re-configures following reconnection.

2.3 Steady State Reconnection

The first models of reconnection were steady state in claractd were constructed by
Sweet (1958a) and Parker (1957). The Sweet-Parker modebges that plasma flows could
cause two oppositely directed magnetic fields to be pustgsther, creating a current sheet.
The two flows are assumed to be antiparallel, of equal stnemytompressible and of uni-
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form density. There is a steady inflow of plasma into the cursheet and an outflow of
reconnected field from the narrow edges of the current sheatown in figure 2.2.
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Figure 2.2: Sweet-Parker reconnection model. Slightlypssthfrom Zweibel and Yamada
(2009). S is the Lundquist number, which is the ratio of the Alfvénéscale to the resistive
diffusion timescale.

It can be seen in figure 2.2 that plasma flows in to the long sidbeocurrent sheet (2L)
with speeds much smaller than the Alfvén speed, and isegjefcom the narrow edge of
the current sheet (2 at around the Alfvén speed. Sweet-Parker reconnectiodyzes a
reconnection rate that is much faster than resistive ddfysut much slower than the re-
connection rates inferred from solar flares. The reconoectte (defined a&;,,/U,.;) can
be derived as follows. Using ideal Ohm'’s law and the asswnptpreviously stated (that the
two flows are assumed to be antiparallel, of equal strengtigmpressible and of uniform
density), and expression for the out of plane electric figld,is given by

E, = U, Bin, (2.3)

whereU,, is the inflow speed and;, is the upstream magnetic field strength. If displace-
ment current is neglected, an expression for the out of ptamesnt (/.) can be obtained
using Ampere’s law, so that
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Bin
J.~—,
Ho0

(2.4)

whered is half of the current sheet thickness. If the electric fialtsae the sheet is matched
with the resistive electric field (given By = nJ, wheren is the resistivity) inside the sheet,
then the inflow speed is given by

p”; (2.5)

Conservation of mass gives the relationship between thewnf;,) and outflow (,.;)
speeds as

Uputd = U L. (2.6)

The inflow speed is very small because it is inversely propoal to the magnetic Reynolds
number, which is< 10® in the corona. This means that reconnection necessaritepuos
very slowly.

Petschek (1964a) proposed a reconnection model whichinedtstanding slow mode shock
waves in the inflow region. This creates a current sheet wiherénflow and outflow area
are of comparable sizes, allowing for a faster reconneativa (figure 2.3). The inflow
speed for Petschek reconnection is inversely proportitmtiie logarithm of the magnetic
Reynolds number (in the Sweet-Parker case, the reconnegetie is inversely proportional
to the square root of the magnetic Reynolds number), mednageconnection can proceed
more quickly.

2.4 Spontaneous Reconnection

2.4.1 Tearing Mode

Steady state reconnection is driven by large scale plasmwa.flBurth, Killeen, and Rosen-
bluth (1963) proposed that small perturbations to the miégfield could cause the field to
become unstable, causing reconnection to occur. The ¢earde instability is an instabil-
ity in which arises when the resistivity is non-zero, thotigé plasma is stabilised against
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2l

Figure 2.3: Petschek reconnection model. Slightly adaftech Zweibel and Yamada
(2009).

the tearing mode when the resistivity is zero. A tearing modeability is generated when
a plasma with a non-uniform current density is subject tdysbations. The perturbation
length scale must be greater than the length scale of therdudensity gradient in order for
an instability to form. The tearing mode is associated withformation of small-scale mag-
netic structures, called magnetic islands (see e.g. Riizkd1993)). Magnetic islands are
a series of linked X- and O-type nulls, an example of a chaimafjnetic islands is shown
in figure 2.4. The structure of an X-type neutral point is diésd in section 2.6. An O-type
null is a magnetic field structure formed from a series of eoigc elliptical field lines. At
the centre of the structure, the magnetic field strengthris. ze

2.4.2 Kink Mode

Another example of an instability that can lead to reconnads the kink mode. The kink
mode instability occurs in a flux tube which has a strong agiatent. If the magnetic
forces on one side of the tube are greater than those on tke sitte, a kink develops in
the tube. The instability becomes self-sustaining as theetoon either side of the flux tube
are increasingly imbalanced. Waelbroeck (1989) showetiftlsaich an instability is in a
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Figure 2.4: Chain of magnetic islands, formed from a serieé-@and O-type nulls. Figure
taken from Birn and Priest (2007).

non-linear state, a helical current sheet develops whinhi@zonnect as a series of magnetic
islands are formed.

2.5 Collisionless Reconnection

Collisionless reconnection in particular has been extehsstudied in recent years(e.g. Mc-
Clements, Shah, and Thyagaraja (2006)). Collisionlesswaection is a type of MHD (mag-

netohydrodynamic) reconnection in which the Hall effeechiduded. Ohm'’s law says that in

a steady state the force on particles is balanced by the dmeéo collisions. The generalised
Ohm'’s law states that:

1[V><B]+nj—|—le (2.7)

c NeeC

E=

The final term on the r.h.s. is the Hall term, which had beerentgd in the reconnection
models previously described. However, in collisionlesoramection, this term dominates.
This creates a spatial scale associated with the Hall tefmthas given by:

di=—, (2.8)

wherew,, is the ion plasma frequency. At distances less tthainom the neutral line, ions
decouple from electrons, leading to a thinner diffusioretaypan in collisional reconnection
as the electrons continue to flow inwards, (figure 2.5). Timglane current generated by the
electrons also creates a quadrupolar out of plane magnelti¢ Which can also be seen in
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figure 2.5. The collisionless approach is appropriate whsicering acceleration regions
in the solar corona since the mean free path of the partislasich larger than the size of
the acceleration region (Martens (1988)).

B-field

Current

lon flow

Electron flow

lon dissipation region

) Electron dissipation region

Figure 2.5: Collisionless reconnection model, showingiand electrons moving separately.
wy; Is the ion plasma frequency,,. is the electron plasma frequency. Zweibel and Yamada
(2009).

In the case of collisionless reconnection, the resistioftthe plasma cannot, of course, be
due to collisions. It was therefore thought that reconeactiould not occur in the absence
of collisions, as there would be no resistivity in the systétawever, Speiser (1970) showed
that one can calculate an inertial resistivity, which is achion of the amount of time parti-
cles spend in the diffusion region. It is this inertial réisisy which | use for my calculations
in chapters 3 and 4. The precise manner in which this is catledlis detailed in section
3.3.1.

2.6 The X-Type Neutral Point

An X-type neutral pointis a type of magnetic field which consea central point at which the
magnetic field goes to zero and which is divided into four @agiof different connectivity,
divided by separatrices. A 2D X-type neutral point can besedigure 2.6.

Such afield is described in 2D by the equations



CHAPTER 2. MAGNETIC RECONNECTION 40

Figure 2.6: A 2D X-type neutral point. The left hand pane shite magnetic field in the
x-y plane. The thick grey arrows indicate the direction dfaw and outflow from the Ex

B drift. This X-type neutral point does not have aRy component, and does not vary in the
z direction. This is shown in the right hand plane, which shaw arcade in the z-direction.
Figure taken from Hannah (2005).

By
B = 2.
¢ =Y (2.9)
By

By is the field strength at r=D, whef2 s the size of the region. At the centre of the region,
(i.e. at the neutral point) particles decouple from the negigriield and are freely accelerated
by any electric field present (i.e. in this region the pagtitioves non-adiabatically, meaning
that they are able to gain or lose kinetic energy). Part@tesable to move non adiabatically
near the null as they become demagetised and can gain ehargglectric field is present.
The radius of the non-adiabatic region is the point at whighgarticle’s gyroradius is the
same size as the scale length of the magnetic field. Such madjetl configurations are
therefore often considered when modelling reconnectigions in the solar corona. The X-
type field is a highly idealised configuration but its simftjieneans that essential features of
reconnection may be studied. If an electric field is imposdtié z-direction, af x B drift
results. This will tend to move patrticles closer to the nylhboving them in the x-direction.
The particles are then expelled from the null in the y-dimtt When particles enter the
non-adiabatic region, they decouple from the magnetic fiettss, and are freely accelerated
in the z-direction, parallel to the electric field. A sampl®ton trajectory can be seen in
figure 2.7. It can be seen that the particle spirals aroun@iglielines, and mirrors back and
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forth. As distance from the neutral point increases, thégals gyroradius decreases, and it
is more tightly tied to the field lines. Closer to the null, trerticle decouples from the field
lines.
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Figure 2.7: Trajectory of a proton in an unperturbed X-typatnal point.

As yet, no model exists which accounts for all of the obsepregerties of the energy release
in solar flares. As has been discussed, early reconnectidelsy@.g. Sweet (1958b), Parker
(1963)) considered the formation of current sheets by tresigliffusion. However, these

models gave reconnection rates that were much too slowch®tg1964b) suggested that
higher outflow speeds can be reached if a central region ddedrby wave propagation is
introduced.

Bulanov and Syrovatskii (1980) were the first to propose shah waves could be magneto-
hydrodynamic in nature, and considered an X-type neutralt perturbed by harmonic fast
waves that are azimuthally symmetric. They considered ay?iBdrically symmetric geom-
etry, and perturbed the system at the system boundary. Dy fthat these perturbations
became azimuthally symmetric as they approached the mitlally, this prescribed sym-
metry meant that it was unclear if this result was applicabtee generally. However, Craig
and co-authors (Craig and McClymont (1991),Craig and Ma&igt (1993),Craig and Wat-
son (1992)) found that reconnection can only occur if theavaodes perturbing the neutral
point have azimuthal symmetry.
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This thesis deals with following test particles in the preseof electric and magnetic fields
calculated by a similar formalism to Craig and McClymontg1® Test particle calculations

allow us to follow the behaviour of individual particles Wwiut considering the effect that the
particles themselves may have on the fields they move in,esbehaviour of the particles

can potentially be studied using a different approach towliich was used to calculate the
electric and magnetic fields. Whilst this approach neglédetseffect of the particles on the
fields they move in (and the effect of particles on one angtliee inclusion of such effects

would make the calculations considerably more complicatedlincrease the computation
time to an impractical extent.

Petkaki and MacKinnon (1997),(2007) considered an X-typatmal point being perturbed
by single eigenmode oscillations, similar to those studie@raig and McClymont’s work,
and found that such oscillation increased the efficiencyhef ieutral point as a particle
accelerator. Petkaki and MacKinnon (2007) found that aeftequencies were more ef-
fective at accelerating particles than others, and it wasdht that this was due to resonant
interactions, since particles were observed to gain eneugyide of the central diffusion
region.

This work seeks to extend these models by examining thetsftdcweak turbulence on
the reconnection region and on particle behaviour. Thisulence will be introduced by
considering a superposition of MHD eigenmodes. It is likiglgit a viable solution to the
problem must be time dependent. This is because steadysslatens cannot adequately
deal with the large scale advection of the plasma as wellasrtall scale diffusion region
around the neutral point. Since this project focusses onett@nnection region specifically,
a time-dependent solution is necessary.

The motivation for introducing this time dependence vianaetidependent electric field into
this picture comes from the idea of linear reconnection &b dawn by Craig and Mc-
Clymont (1991). The structure and evolution of the recotinaaegion implies the form of
the electric field which | use to accelerate particles ine¢m@mulations. It is hoped that the
superposition of modes will lead to particle scatterintpwaing the particles to re-encounter
the diffusion region many times, leading to particles réaglnigh energies. It is also pre-
dicted that such a superposition of modes will lead to regmbegsonant interactions by the
particles, which will also enable them to become highly gised. A combination of these
effects should create an effective method for particle lacagon in the corona.
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2.7 Test Particle Studies

The test particle approach is widely used in the study of lacated particles, see e.g.
Wood and Neukirch (2005), Dalla and Browning (2005), Goskyy and Browning (2011),
Zharkova and Agapitov (2009). Test particle studies canibeed into two groups: 3D
and 2D simulations. For 2D simulations such as those in k@si$, the magnetic field has
no B, component. These studies generally assume a magneticrfidie x-y plane, with
an imposed electric field component (see e.g. Petkaki andMaon (1997),Vekstein and
Browning (1997), Petkaki (1996)). These studies show tiaetfectiveness of the accelera-
tion mechanism varies depending on the initial positiorhefgarticles being accelerated, as
well as on the strength of the electric field and the size ohthlk(i.e. the size of the region
in which particles can be freely accelerated).

In 3D simulations, &, component is included. In many 3D simulations, the magriietid
takes the form of a ‘spine and fan’ field, where the ‘fan’ parvéry similar to a 2D x-point,
and is the field in the x-y plane. The ‘spine’ isfa component which extends from the
centre of the x-y plane (see e.g.Dalla and Browning (2008)wBinget al. (2010)).

I will consider particles in linearly reconnecting fieldeésalso e.g. Hamiltoet al. (2005)).
Other research has made use of more sophisticated numeracidls of reconnection to
provide the fields in which the particles move (e.g. GordgysBrowning, and Vekstein
(2010b), Gorbachev and Somov (1989), Wood and Neukirch5§g00n this work, 1 will
be considering particle motion around a null point, rathe@ntin a current sheet. The elec-
tric and magnetic fields are also time-dependent. Cruciallynique feature of this work
is the attempt to construct electric and magnetic fields @natboth ‘noisy’ and realistic.
The fields are constructed from a superposition of eigensageropriate to this spatially
inhomogeneous situation. The dynamic character of theiBeddsential to this.

It is also common practice in this kind of work to follow patg@s in the guiding centre ap-
proximation (e.g. Karlicky and Barta (2006); GordovskByowning, and Vekstein (2010a);
Browninget al. (2010)). This means that only the centre of the particlei®gotion is fol-
lowed. This simplifies the equations of motion, and allowsipkes to be followed for longer
times than | was able to do in this work. However, this workuees on effects that result
near the null from non-adiabatic behaviour, which wouldyét properly described in the
guiding centre approximation. | will therefore calculateicle trajectories by considering
their motion inz, y andz.
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2.8 Conclusion

In this chapter, | have established what is meant by magmnetiennection. | have also

looked at a selection of different methods via which magnetconnection can occur. We
have seen that early steady state models give reconnecties that are too slow when
compared with rates inferred from observations. | alsmohiced the concept of collisionless
reconnection, and the inertial resistivity that | will usethe construction of the magnetic
fields in the following chapter. | looked at the X-type neupaint, which is the basic model

of an acceleration region that | will be using in the follogiohapters. Finally, | discussed
previous test particle studies, since | will be using a testigle approach to study particle
behaviour.



3. Noisy Electric and Magnetic Fields
Near A Magnetic Null Point

3.1 Introduction

In this chapter, | will calculate the form of the electric amégnetic fields that will be used
in chapter 4. These fields will be created from a superpasifocold plasma eigenmode
oscillations. The electric and magnetic fields associatiéll thvese eigenmodes will be cal-
culated, and noisy electric and magnetic fields will be caresed from a superposition of
the fields for each of the eigenmodes. In this chapter, | v8dl the word ‘noisy’ to indicate

fields which contain superpositions of oscillations, magrhat they vary both spatially and
temporally. | use the word ‘noisy’ rather than the word ‘tuldnt’, as these fields are still
too well ordered to be considered truly turbulent. In setB8a4 | reproduce the results and
calculations of Petkaki (1996) in order to do this. The spatependence of these fields will
be introduced via the hypergeometric function, so a fasti@te method of calculating the
hypergeometric function for each electric and magnetid fiebde will be developed.

3.2 Reconnection at an X-type Neutral Point

The simplicity of the X-type neutral point field and the asatex description of linear recon-
nection provide a prototypical picture in which particlealeration may be studied. Petkaki
and MacKinnon (1997),(2007) considered an X-type neutraitgbeing perturbed by single
eigenmode oscillations, similar to those studied in Craig McClymont’s work, and found

that such oscillation increased the efficiency of the néyoant as a particle accelerator.
This was shown to be due to the finite width of the nonadiabratiion close to the neu-

tral point which allows particles to gain or lose energy m@amdly resulting in a Fermi-type

stochastic acceleration. Furthermore Petkaki and Maadin(@007, 2011) found that cer-
tain frequencies were more effective at accelerating @agtithan others, possibly through
resonant interactions, since some particles were obsénwgain energy outside of the cen-

45
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tral diffusion region. (See also G al. (2010) and the analytical discussion of Litvinenko
(2003)).

This work seeks to extend these models by examining thetsftdcweak turbulence on
the reconnection region and on particle behaviour. Thisulence will be introduced by
considering a superposition of magnetohydrodynamic (MeiDgnmodes. It is likely that a
viable solution to the problem must be time-dependent. iBlbecause steady state solutions
cannot adequately deal with the large-scale advectionefptasma as well as the small
scale diffusion region around the neutral point. The maivafor introducing this time
dependence via a time-dependent electric field into thisiacomes from the idea of linear
reconnection as laid down by Craig and McClymont (1991). 3$tmacture and evolution
of the reconnection region implies the form of the electradfiwhich | use to accelerate
particles in these simulations. The introduction of mudtipcale lengths could produce a
form of turbulence in the corona, and allow the reproductibiine scale-free behaviour seen
in solar flares.

3.3 Normalisations

In order to investigate the motion of particles at an X-tyeaitnal point, it is wise to nor-
malise the problem variables to sensible length and timlesc&he equations of motion are
made dimensionless in the same manner as the equationsiohrmoPetkaki and MacKin-

non (1997). Specifically, distances are normalised, te- (%@y)l/z, wherei = e or p for
electrons or protons, anél, = B/ D (the magnetic field at distance D) . The velocities then
are normalized to the speed of light which is appropriatéHerrelativistic equations of mo-
tion. The normalising time is derived from these to quassisuch that, = 1.87 x 10~ %s.

I normalise masses to the particle rest mas# ¥ 100G and D is a typical coronal length
scale of10°cm thend, = 5.6 x 10°%cm. The electric field is normalised t8,d;, as is the

magnetic field.
3.3.1 Resistivity

A rough estimate of inertial resistivity is given by congidg the time () a thermal particle
takes to cross the non-adiabatic region , i.e.:

1
n= 1 (3.1)
TOT,
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and

o= , (3.2)

wherer, is the normalising time. By using the timg {n seconds) taken for EkeV proton
to travel a distance equal to twice the size of the non-atimbagion, one can obtain an
approximate value for the inertial resistivity (Speise®§%)). The dimensionless resistivity
is therefore; = 3.1724 x 10711, Converting to c.g.s units gives = 5.9324 x 10-1% s. By
way of comparison, the collisional resistivityds2 x 10~!3 in these units, ot.16 x 10717 s.
This is comparable to a typical coronal value, which is uguaken to be aroundo—'° (e.g.
Litvinenko (2006)). In Craig and McClymont (1991) incredgesistivity leads to a larger
diffusion region. Increased resistivity could be due toamted inertial or anomalous effects
(e.g. Petkaki and Freeman (2008) shows that an increaseioglalrift velocity leads to
increased resistivity).

Changing the value of the resistivity will lead to changethm magnetic field. Specifically,
the size of the non-adiabatic regioyy varies withn. The values of the decay and oscillation
times for the cold plasma eigenmodes also depeng so the precise form of the perturba-
tions to the electric and magnetic fields will also changé bélieved | knew the value of
from other considerations, | could rewrite 3.1 to estimate However 3.3 provides only a
first estimate of). Other physical processes (e.g. ion-acoustic turbulemegf)t contribute
to it and | cannot assume that changes in this parameter evitiiorored in the behaviour of
test particles.

3.4 Formsof the Electric and Magnetic Fields

Following Craig and McClymont (1991) and Petkaki and MaatGn (1997) | study the
behaviour of test particles in a system with translationghriance in the-direction. Then
the magnetic field may be written:

B=Vx (¥(z,y,t)z). (3.3)

B will be calculated in a 2D cold plasma model.
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Following the method outlined in Petkaki (1996), | will lodér eigenfunctions of the po-
tential, ¢». | will use a superposition of these eigenfunctions to @eatisy electric and
magnetic fields.

In order to demonstrate how these eigensolutions are @atalnwill reproduce the calcu-
lations outlined in Petkaki (1996). Some intermediate st@pthe algebra will be omit-
ted.

In our dimensionless units, the induction equation is givgn

%—]:’ =V x (v x B) +nV*B, (3.4)

wheren is the dimensionless resistivity andis the fluid velocity. If equation 3.3 is sub-
stituted into the above equation, after using the apprtgviactor identities and integrating
over the surfacs,

B
a—f +v- Vi =V (3.5)

is obtained. Using the Lagrangian time derivative, thisloanvritten as

D1 2
— = : 3.6
Dr =V (3.6)
In our dimensionless units, the fluid momentum equation énabsence of an electric field
is given by

%:AVxBxB, (3.7)

where A is a constant which converts from our dimensionless unithdése of Craig and
McClymont;

u?d?
A= cQDI;’ (3.8)
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whereu 4 is the Alfvén speed at the system bound&rys the size of the system@ cm), ¢
is the speed of light and, is the normalising length for protons.

If the current density and vector potential are substitinealequation 3.7, this gives

Dv
T — AV (3.9)

I now want to make linear expansions of equations 3.6 and I3/®erefore writey) andv
as

=10+ (3.10)

v = vy + v, (3.11)

wherey; andv, are first-order terms. The system starts from equilibriurtinatv,=0. Using
the following:

o
5 =0 (3.12)
V4 =0, (3.13)

the time derivative of equation 3.6 can be written as

0%

o2 (v - V)t = nV>4r. (3.14)

Rewriting and linearly expanding equation 3.9 gives

M ATV, (3.15)

Combining equations 3.14 and 3.15 gives (after some alyjebra
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2 .
%TZ’ — V) = Ar?Vy, (3.16)

wherer? = z? + y? and the subscript 1 has been dropped so thi now the perturbed
potential.

3.4.1 Form of the Solution

| will look for solutions of the form:

Y = eMf(r)e™ (3.17)

Here A and f(r) are complex. The quantity: is an integer which is taken to be zero,
since these are the only solutions via which reconnectiorocaur (Craig and McClymont
(1991)). Evaluatingy, V%) andV2y, and combining their solutions gives

g = ( = _) 7). (3.18)

At this point, it is expedient to make a change of variablénghat

Ar?
= A1
z Y (3.19)
Taking and combining the first and second derivativeg with respect to- gives
> f df A2
z(l—z)@+(1—z)£ ——ﬂf(z) (3.20)

This has the same form as the general form of the hypergeigregtration, which is

z(l—z)dQ—f+(c—(a+B+1)z)

a
dz? dz

= aff(2). (3.21)

By inspection, it can be seen that
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c=1, (3.22)

a+pf+c=1, (3.23)
)\2

af =11, (3.24)

a=—3. (3.25)

The gquantitiegy, 5 and\ are all complex, so that

o= p+ ik, (3.26)
f=—p—i (3.27)
A=K+ iw. (3.28)

If these expressions far, 5 and\ are substituted into equation 3.24, after some algebra one
obtains

K Lw
“ovz vz (3.29)
g=_r Y (3.30)
WA VA '

The solution is therefore

f(r) =2 Fi(a, b;¢;2) = fr(r) +ifs(r). (3.31)
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The complex eigenvaluesare written\ = —x + iw so that the real numbetsandx are
frequency and decay rate respectively. Then the eigerwalpyare fixed by the boundary
conditions for the realf) and imaginary {) parts of the hypergeometric functionrat 1

S(f(1) =0=R(f(1)) =0

This choice of boundary condition ‘freezes in’ the field, mieg that these perturbations are
standing modes. Since the perturbation vanishes at thedaoymo flux enters or leaves the
system (see Craig and McClymont (1991)). A different chatboundary condition could
produce travelling waves, but | do not study those here. lithwin use these perturbations
(recall that these are calculated in the manner of Petk&98Q)) to produce electric and
magnetic fields.

Numerically, | found the eigenvalues using Broyden’s method (Pressal.,, 1992; Petkaki,
1996), with the analytical estimates of Craig and McClym(@991) as first guesses. The hy-
pergeometric function will be discussed further in secBoh2. This work follows particles

in the presence of a 2D magnetic field. It has been shown (ighko (1996), Hamiltoet al.
(2003)) that the addition of B, component can cause particles to become trapped within the
current sheet as they become tied to the magnetic field in-theection. As particles follow
these field lines, they are moving parallel to the electrid firading to them gaining high
energies. This means that the energies gained by partictbese simulations are likely to

be at the lower end of the energy range that could be achieitech8D geometry.

3.4.2 The Hypergeometric Function

The Gauss hypergeometric functighi (a, b; ¢; z) is given by (Abramowitz and Stegun (1965))

2F1(a7 ba & Z) = R (332)

where(z),, = z(x + 1)(z + 2)...(z +n — 1). Equation (3.32) converges only fpr] < 1.
Since | would also like to considet| > 1, | must use a transformation formula in order to
consider this region, which is given by (Abramowitz and $te¢l965))
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o F(a,b;c;2) = ?Eg?gi : Z; (—2)"%Fi(a,1 —c+a;1—b+a; %)
MOr@=b), | 1
+F(a)1“ c—b)(_z> 2F1<b’1_c+bvl—a+b,;)- (3.33)

Recalling equation 3.31, | now have a solution for the hypergetric functionf(r), since
f(r) =2 Fi(a,b;c; z(r)) (Petkaki (1996)). | could also solve the hypergeometrictiom in
this region by solving the hypergeometric equation (Petsd. (1992)), however this takes
a long time to solve numerically, and for these purposes ftoispractical. The analytic
continuation method detailed above allowed these sinauiatio run approximately 2 orders
of magnitude faster than when using the method detailed egset al. (1992). In order to
obtain a smooth function &t| = 1, the method of Prest al.(1992) (which is valid for alt)
was used to between bridge the gap between the two solufidresregion ofz for which
the Press solution was used was froih= 0.9 to |z| = 2.5. This range was determined
empirically, and is the smallest such region that gives aatmsolution.

Recall that for the problem being considered, the parametérc andz are complex and
given by (Petkaki (1996))

A
a=——+i—
2
2 2
c=1
Ar?
r=-——
nA’

where\ = —x + iw andn is the dimensionless resistivity.

Figure 3.1 shows the form of the hypergeometric functioriiermodes. = 0 : n = 3. Asn
increases, there are more oscillations present, and thiiabens are closer together.
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Figure 3.1: Form of hypergeometric function for first foug@mmodes. The solid line shows
the real part of the function, the dashed line shows the inaagipart.

For the calculation of the magnetic field perturbation, teawative of the hypergeometric
function is used, which is given by Abramowitz and Stegur6@)%as

diQFl(aa bic;z) = a_bQFl(a + 1,0+ ¢+ 15 2).
2 c

3.4.3 Explicit Forms of the Electric and Magnetic Fields

Because | am interested in a superposition of eigenmodé@udy the form of the vector
potential is given by

Nmax

) = W) 3 D e ), (3:34)
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wheren = 0,1, 2..., a,, is the amplitude of the perturbatiok, is the complex eigenvalue of
the solutiony,, is a random phase between 0 andand f,,(r) is the hypergeometric func-
tion. Below | experiment with values af,,. up to 49, a large enough number of eigenmodes
to produce disordered, noisy fields without excessive cdatjmnal effort. Eigenfunctions
were all normalised to unity at= 0. In the absence of a more detailed model for partition
of energy between modes, and to highlight the potential sbkeirbulence | adopted a flat
spectrumg,, = ay = 10~* for all n.

The magnetic field is given by

B=Vx (z,y,t)z). (3.35)
Therefore the electric field is
10Y
E=——-——2. 3.36
c Ot ® ( )

The background field includes an X-type null pointzat= y = 0, increases in strength
linearly withr and is given by

volz,y) = = (v° —2%).

DN =

Here lengths have been normalised to the gizgaken to bel0? cm) of the system (so the
outer boundary is at = 1) and field strengths to the value on the boundary. | will have t
use a different set of dimensionless units, however, tordesparticle orbits.

The rest ofyy sums over the first,,.. of the cold plasma eigenmodes calculated above,
and which were originally constructed in Hassam (1992),igCeand McClymont (1991)
and Petkaki and MacKinnon (1997) (see also Petkaki (1996hese eigenmodes have a
wavelike character far from the null and take on a resisthvaracter at smalt (i.e. they
dissipate as they approach the null). The resistive charégcimodelled using the plasma
resistivityn which is a parameter controlling the size of the diffusiogioa (Petkaki and
MacKinnon, 1997). | include only the azimuthally symmeteigenmodes that dissipate
reconnectively (Craig and McClymont, 1991, 1993; Craig ¥atson, 1992).
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With randomly chosen phasesg, such a superposition simulates turbulence involving the
eigenmodes appropriate to this inhomogeneous situati@hpays attention to the dissipa-

tion that takes place via reconnection at sm#étlee also McLaughlin, Hood, and de Moortel,
2011).

The following electric and magnetic fields were calculated édach mode (Petkaki and
MacKinnon (1997)). These fields are time dependent, andrewmler the duration of the
particle simulation.

E = a,[exp(—rt)[k(cos(wt) frsin(wt) fs) + w(cos(wt) fs + sin(wt) fr)]] (3.37)

B, = y[1+an%eazp(—mt) [k(cos(wt) fr—sin(wt) f§)+w(sin(wt) fatcos(wt) f5)]] (3.38)

B, =7[1— an%ea:p(—mﬁ) [k(cos(wt) fi — sin(wt) f§) + w(sin(wt) fy + cos(wt) f5)]],
(3.39)

where fy is the real part of the hypergeometric function, giads the imaginary part. The
valuesk andw are the real and imaginary parts of the eigenvalues of thtenbation. These
give the decay and oscillation terms of the electric and raagfields.n is the dimensionless
resistivity. Each eigenfunction was normalised so thasdfsare norm was unity at= 0

before multiplying by the amplitudes discussed above. Feturbation was also given a
random phase betwe@rand2r.

| therefore need to calculate

/0 K /O ptrdrds — 1.

Given

Ut = ) () e = S+ f3), (3.40)

this gives (at = 0)

1
| i By = 5 341
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Therefore, the perturbation for each mode is normaliset &¢ = 0. For these super-
positions of several modes, the sum of modes is divided byntheeber of modes being
considered, so that this normalisation is preserved.

Particles will be followed in the presence oifferent electric and magnetic fields, com-
posed for ions as follows:

e Case 1.F =1x 107% B, =y, B, = z. The electric field in this case is constant, and
is the same everywhere.

e Case 2: Perturbation for the = 0 mode only. The perturbation has amplitude
1074

e Case 3: Perturbation for a superposition of modes 0 — n = 4. Each perturbation
has amplitude x 10~

e Case 4: Perturbation for a superposition of modes0 — n = 19. Each perturbation
has amplitude x 10—,

e Case 5: Perturbation for a superposition of modes0 — n = 49. Each perturbation
has amplitude x 10—,

Each mode is also given a random phase at 0. These phases then remain constant
for the rest of the simulation, so that each particle sees#émee fields. These five cases
have been chosen to represent a progression in the degraebofence, more generally
‘noise’, in the reconnection region. Case 1 representstdaglyg reconnection region whose
study dates back to Speiser (1956) while the other four dasesme progressively more
dynamic and irregular. As described earlier a normalisas@dopted to ensure that electric
field amplitudes remain comparable and that differencesdelarated particle distributions
really result from the different degrees of variability asmhtial structure.

For electrons, the fields have the same composition, exbapthe perturbations in cases
2-5 and the constant electric field in case 1 all have amgitue 10-3. This is because |
only follow electrons for 0.1s due to the long computationds required for electrons, so a
higher electric field is needed to accelerate particles thisitime frame. The electric field
experienced by the electronsrat 0 can be seen in figure 3.7.

A sample of the eigenvalues fgr = 3.1724 x 10! (used in calculating the fields) can
be seen in Table 3.1. The oscillation and decay times thaethelues give can be seen
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in table 3.2. These decay and oscillation times compareufaldy with those seen in De
Moortel, Ireland, and Walsh (2000) (which gives an osdlattime ~ 180 to ~ 420s),
Aschwanderet al. (1999) (which gives an oscillation tinre 300s), Verwichteet al. (2009)
(which gives an oscillation tim&30+30s and a decay time)00+300s )and De Moortedt al.
(2002) (oscillation time~ 180 to &~ 300s). These times were inferred from observations of
coronal loops, however they give us an idea of the kind of sitaées on which disturbances
propagate in the corona.

n K (te) w (1/t.)

0 0.007224 0.117742
1 0.023451 0.367979
2 0.048197 0.621554
3 0.057407 0.880324
4 0.071435 1.137985
5 0.090700 1.396334
10 0.178909 2.700797
15 0.234672 4.073513
20 0.364947 5.372426
25 0.435492 6.731654
30 0.556102 8.101894
35 0.658314 9.481737
40 0.800338 10.83539
45 0.981808 12.15455
49 1.184325 13.20617

Table 3.1: A selection of values af and for n = 3.1724 x 1071, The unitt, is the
timescale used in Craig & McClymont’s work, whette= v, D. D is the distance from the
null at the system boundary, and is the Alven speed at the system boundary.

Magnetic and electric fields for a superposition of eigenesodere generated by simply
calculating the magnitude of the field at each mode and adbsgodes togethet,, is the
amplitude given to each mode. | chose a flat spectrum of magles ().

The variation of the electric field with (wherer is normalised td) att = 0 for can be seen
in figure 3.2. Figure 3.6 shows the variation of the pertudmaedf the magnetic field.

The variation of the electric field with time at two differaratlues of- (wherer is normalised
to D) can be seen in figures 3.3 and 3.5.

The field for case 2 is almost constant, asithe 0 mode decays very slowly. The field for
case 3 actually increases over the time of the simulatiorweer, this is merely an effect
of the choice of end point for the simulation, as higher ordedes do oscillate, causing the
field to increase and decrease. Over a longer time, the fieldafge 3 also decays. Recall
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n Decay time (s) ) Period(sf ") Frequency(Hz
0 634.0 244.0 0.0041
1 194.4 77.9 0.0128
2 94.6 46.1 0.0217
3 79.4 32.6 0.0307
4 63.8 25.2 0.0397
5 50.3 20.5 0.0488
10 25.5 10.6 0.0943
15 19.4 7.0 0.1429
20 12.5 5.3 0.1887
25 10.5 4.3 0.2326
30 8.2 3.5 0.2857
35 6.9 3.0 0.3333
40 57 2.6 0.3846
45 4.6 2.4 0.4167
49 3.9 2.2 0.4545

Table 3.2: A selection of values of oscillation time, dedayetand period for) = 3.1724 x
1071,
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Figure 3.2: Electric field variation with distance from treutral point (where is normalised
to D). Field strength is normalised to the magnetic field strieragtthe system boundary.
The field shown results from different superpositions okeigodes, each with a different
random phase.
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Figure 3.3: Electric field variation with time at= 0 (wherer is normalised taD). Field

strength is normalised to the magnetic field strength atytbeeen boundary. The field shown

results from different superpositions of eigenmodes, @étiha different random phase.

that each mode has also been given a random phase, whichswithffect the evolution of

the electric and magnetic fields. The fields for cases 4 angBaamoisier, although they
will also decay over time. The higher order modes will decast fileaving progressively
simpler fields. This can be seen in figure 3.4, which also shibe/®orms of the electric field

for modes 0 to 4. It can be seen that the number of oscillatroagjiven time increases with

the number of the mode being considered, and that each msdezeka normalised to have

the same initial amplitude. Figure 3.5 shows once againth®afield for case 2 is almost
constant. In this case, the field for case 3 does decreas¢hevieme of the simulation. The
fields for cases 4 and 5 once again appear the noisiest. Tragaviield is smaller (as would
be expected) than at= 0 in all cases
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Figure 3.4: Decay of electric field with time at= 0, for modes 0-4.
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Figure 3.5: Electric field variation with time at= 1 (wherer is normalised taD). Field
strength is normalised to the magnetic field strength atytbeen boundary. The field shown
results from different superpositions of eigenmodes, @atiha different random phase.
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Figure 3.6: Magnetic field perturbation with distance frame heutral point (where is
normalised toD). Field strength is normalised to the magnetic field streragtthe system
boundary. The field shown results from different superpasst of eigenmodes, each with a
different random phase.

The electric and magnetic fields for the= 0 mode have previously been plotted in Petkaki
(1996). My plots for thex = 0 case (case 2) reproduce these plots. | chose the supevpssiti
of 5, 20 and 50 modes (cases 3, 4 and 5) to produce progrgssaisler fields.

The electric fields that the electrons were subjected to¢h ease can be seen in figure 3.7,
which shows the electric field at = 0 for a flat spectrum of different numbers of modes,
each with amplitudeé0—3. The electrons were followed fox1 s, so the field is plotted for
this time only.
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Figure 3.7: Electric field variation with time at= 0 (wherer is normalised taD). Field

strength is normalised to the magnetic field strength atybees boundary. The field shown

results from different superpositions of eigenmodes, ewmith a different random phase.

This is the electric field experienced by the electrons. $t&@reater amplitude since elec-

trons are followed for a shorter time.

Figure 3.7 shows that over this short time scale, the etefotdid is much less noisy, therefore
the fields experienced by electrons will be less noisy. Ofseuthis is only because of the
different simulation times, as the actual fields calculatszlidentical. The fields for cases

2 and 3 are now very similar in character. The field for casesd=oscillate much more
smoothly over 0.1s than they do over 1s. The average magnitithe field is progressively
smaller in each case.

3.5 Conclusion

In this chapter, | have constructed the noisy electric angmafc fields that will be used
in the next chapter. | have done this by considering a pestugntential, and finding the

eigenmodes of this perturbation. The electric and magfietits for each eigenmode were

then calculated, and noisy fields were created from a suptiqo of the fields for each



CHAPTER 3. NOISY ELECTRIC AND MAGNETIC FIELDS... 64

eigenmode, with each mode being given a random phase. kedréatifferent cases to be
studied: one in which there are no eigenmode oscillatioms for then, = 0 mode only, one
for a superposition of modes 0 to 4, one for a superpositianades 0 to 19 and one for a
superposition of modes 0 to 49.

In order to calculate the electric and magnetic fields, | véei calculate an appropriate
value of the inertial resistivity. This was done by considgrthe time taken for a pro-
ton to cross the non-adiabatic region. The spatial depeedehthe electric and magnetic
fields was introduced via the hypergeometric function. Thesefore had to be calculated
this quickly and accurately, and fer > 1. This was done using an analytic continuation
method.



4. Consequences For Particle Behaviour

4.1 Introduction

In this chapter, | will use noisy electric and magnetic figldsccelerate protons and elec-
trons. In the previous chapter, | introduced a set of dinm@ress units which make it easier
to do this. | have already developed five different caseshferelectric and magnetic fields,
and | will study the consequences for electrons and protoregach case. In particular, |

wish to know if noisier fields are more efficient at accelergtparticles, and if so, why?

Accelerated electrons will produce X-ray bremsstrahlwagthe X-ray spectra produced by
the accelerated electrons will be calculated.

I will also investigate the consequences of varying therithgtion of the amplitudes of the
eigenmodes to better reflect a turbulent spectrum, as weilvastigating the consequences
of varying the value of the inertial resistivity.

4.2 Particle Behaviour: Protons

Here | follow test particles in the presence of model elearnd magnetic fields. Test parti-
cle calculations study the behaviour of individual paggclvhile neglecting the self-fields of
these same particles. This approach allows us to employgeedie.g. MHD) descriptions
for the electromagnetic fields and thus to explore a veryelp@ameter space with reason-
able computational effort. The huge disparity of spatiales involved probably renders a
complete description of the plasma impractical for the$esable future. This approach al-
lows us to investigate the gross properties that the reatiomemust have if it is to actually
account for observed particle distributions.

The equations of motion of a charged patrticle in the presehaemagnetic field are:

dr P
- _ 4.1
dt  mry M (4.1)

65
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Z—?:q(E+%(va)), (4.2)

wherep is the relativistic momentum of a particke s the particle velocityy is the particle
mass andy is the Lorentz factor. A charged particle in a uniform magnéeld where
electric field is equal to zero will travel along a magnetiddfigne, spiralling around the
field line with a gyroradius given by, = ’ﬁg . When the gyroradius of the particle becomes
comparable to the scale length of the field, the particledatiouple from the field lines, and

can gain energy in the presence of an electric field.
4.2.1 Equations of Motion

Although the magnetic field is 2D, the system has translatimwvariance in the z-direction,
and hence the particles were allowed to move around in 3DlIl integrate the equations
of motion numerically, and use the noisy electric and magrieids asE andB (the nor-
malised electric and magnetic fields).

According to Petkaki and MacKinnon (1997), the equationsiofion of a particle for our
normalisations for protons can be written as

dx

E = VU (43&)
dy
E = ’Uy (43b)
d
d—;’ — 1, (4.3c)
d
5; = —Byv, (4.3d)
d
% — B, (4.3€)
dp.
pr (E+ (Byvy — Byvy)). (4.3f)
In our dimensionless units
b=7v,

wherey = (14 p? + p2 + p?)'/2,
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4.2.2 Particle Energies & Trajectories

In order to investigate the behaviour of charged partiaciebe turbulent fields10000 ions
were released into electric and magnetic fields of the kirmvshabove, at positions dis-
tributed randomly withir) < z < 1,0 < y < 1, in the plane: = 0. Their starting energies
were chosen randomly from a Maxwellian distribution of tergiure5 x 10°K, a typical
coronal temperature. This temperature is equivalent tahtbemal energyV,, = kgT,
wherefk is Boltzmann’'s constant arifl is the temperature in Kelvin. This energy is equiv-
alent to a thermal speed of 0.05c for protons. The directioth® velocity was chosen
randomly using the FORTRAN code GASDEYV (Pressl. (1992)). Note that these speeds
are thermal speeds, and that the particles are not undgrgoinkind of drift at the start of
the simulation.

Numerics

The differential equations 4.3 were solved numerically discretisation according to the
4th order Runge-Kutta scheme (Pressl. (1992)). At this point, it is worth discussing the
differences between different methods of numerical irgggn.

Euler integration is the simplest method of numerical irdéign. Adopting a stepsize h, the
Euler method approximates the solution of the ODFdx = f(x,y) at a set of points;,,
via the algorithm

Accuracy can be improved by using a smaller stepsize, butgakany steps may mean that
the function takes a long time to evaluate computationally.

The midpoint method is more accurate. Each step is brokealindnd the derivative of the
function is evaluated at the midpoint.

RK4 is a refinement of the midpoint method. At each step, thivakéve of the function is
evaluated at the start of the step, as well as at two trial oirdp and a trial endpoint. All of
this information is then used to evaluate the function atetheé of the step. A comparison
of the three methods outlined here can be seen in figure 4ithwhows the solution of the
equationdy = sin(4z)dz.
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Comparison of Numerical Methods
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Figure 4.1: Comparison of three methods of numerical irtiggn, for the integration of the
equationdy = sin(4x)dx. The solid line shows the exact solution of the function.

It can be seen that each refinement of the integration mettiogidthe solution closer to the
analytical solution. The Euler method produces a resultivis very different from the true
solution ofdy = sin(4x)dx, and | concluded from this that it would be a very inaccurate
method for following particles whose equations of motioa arore complicated than this
simple function, unless a very small stepsize was used. Titipaimt method and the RK4
method both reproduce the analytical solution reasonabll; however the error associated
with the midpoint method is greater than that associated ®K4. The midpoint method
has an associated erro(h?), whereas RK4 has an associated efd¢h’), whereh is the
stepsize.

Of course, more accurate methods are possible. One suclodnistiihe Bulirsch-Stoer
method, which uses a varying stepsize in order to adapt tateef change of the function.
Such a method was used to follow particle trajectories ikdet(1996) and Petkaki and
MacKinnon (1997). However, such methods take more comipatéime than is practical
for the number of particles that | wish to follow. | chose t@ K4 for this problem as it is
accurate enough (see the discussion on shadowing thedretos) to follow the gyration

of particles without taking too long to compute their trages.
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| want to consider patrticles in the presence of a magneticpaiht. The gyroradius of
such particles can vary widely throughout the simulatiotos€ to the null, the gyroradius
becomes very big as particles are no longer tied to the miagiedtl lines. Away from the
null, particles will have small orbits, and follow the magjodield lines closely. Clearly,
the integrator used must be able to deal with a variety ofi@pstales accurately. Care
must therefore be taken to choose a timestep that is apptega the problem. Smaller
stepsizes clearly give more accurate results, but at thensepof longer running times for
the simulation. In order to determine an acceptable stepmizhese simulations, | first
examined the orbits of individual protons calculated ugdifferent stepsizes. These orbits
can be seen in figure 4.2.

Trajectory of 1 ion, superposition of 50 modes, E=10~—4

T T T T ‘ T T T T ‘ T T T T ‘ T T T T
L - ]
T4 h=10r~1 ——— T
- h=100-2 .
h=10~~3 — |

0.8— =

0.6 =

Figure 4.2: Orbit of one proton in constant electric and nedigrfields for varying stepsizes.

Figure 4.2 shows that the orbits differ slightly for diffatestepsizes. However, as long as
each individual orbit is a reasonable orbit, for a distribatof particles these slight differ-
ences should not be important. To test this, 10 000 protome fedlowed in the presence
of constant electric and magnetic fields until t=5360 (1sdor normalisations for ions if
By = 1077) for a variety of stepsizes. The distribution of their finakegies can be seen in
figure 4.3.

Figure 4.3 shows that the distributions for stepsizes and10~2 are identical, even though
the individual particle trajectories differ. This is besawalthough the individual trajectories
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Energy of WOOOO ions at t=5360, constant E & B fields, E=10~—4
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Figure 4.3: Distribution of proton energies for constaetélic and magnetic fields at t=5360
for varying stepsizes.

of the particles are not followed accurately, there existilaer particle with slightly different
initial conditions for which the trajectory in question wduwe the true trajectory. This
property of a system is known as the shadowing property (2i2002)).

It was therefore found (by inspection of figures 4.2 and 4n3)} fa stepsize of0~! was
sufficiently accurate for the purpose of following protoiis.integrate electron trajectories,
a smaller stepsize was used. Figure 4.4 shows distributiod@ 000 electrons dt= 2310,
(0.1s for our normalisations for electrons). From thes¢ribistions, the largest accurate
stepsize for electron$(x 10~?) was chosen.

4.2.3 Energy Conservation

In the absence of an electric field, the kinetic energy of atividual particle should be
conserved. This was tested for each simulation by plottiegchange in energy at each step
as a fraction of the particle’s original energy. The eledigld was set to zero in all cases, but
the magnetic fields were still allowed to evolve with timepnder to test energy conservation
of the code in a variety of different magnetic field structur€hanging magnetic fields of
course result in an electric field, so these simulationslagely very artificial, and are useful
only as numerical tests. The results for cases 1-5 for iondeaseen in figure 4.5. It can
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Energy of 10000 electrons at t=0.1s, constant £ & B fields, E=10~-3
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Figure 4.4: Distribution of electron energies for constalgictric and magnetic fields at
t=2310 (0.1s) for varying stepsizes.

be seen that energy is well conserved (to within one patbit) in all cases. In all cases
(except for case 1), there are several sharp spikes, of etquein each case, where the
particle’s energy was not conserved. The origin of theskesgis not clear, but as they are
very small (less than one part16-°), they were not thought to present significant problems
to the simulations.

The results for cases 1-5 for electrons can be seen in fig@rét4an be seen that energy is
well conserved (to within one part if0=°) in all cases. In case 1, the same small spikes can
be seen as were seen for cases 2-5 in the proton simulati@anhes8e spikes are also very
small, they were also discounted.

4.2.4 Energy Distributions: Protons

Protons were followed until = 5360, which is equivalent to 1s i3, = 10~7. Particles
which left the simulation boundary (= y = 178, z = 17.8 in units ofd,) were discarded.
These boundaries were chosen to give a system boundary iatipdane of10°cm (Craig
and McClymont (1991)), and to satisfy the condition thatdiqstem width should be around
a tenth of its size in the x-y plane (Aschwanden and Nightm{2005), which placed obser-
vational constraints on the length and width of coronal ®aping measurements from the
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Figure 4.5: Energy of an individual ion for cases 1-5 in theaize of an electric field over
a period of 1s. It can be seen that energy is well conservellicases.

TRACE (Transition Region And Coronal Explorer) archiveheBe conditions meant that 11
particles (of 10000) from case 3 and 3 particles from caserg @Wiscarded. The resulting
energy distribution is shown in figure 4.7.

Figure 4.7 compares the initial energy distribution of thles with distributions at t=1s for
the static X-type neutral point, for the n=0 mode of osditiaf and for superpositions of 5,
20 and 50 modes.

Case| AveragelE|Atr =0 | PeaklE|Atr=0| % ofProtons>0.01MeV att=1s
1 1.x107* 1.x107* 3.1
2 1.1 x10°* 1.2 x 107 1.6
3 1.4 x 107° 1.9 x 107* 0.3
4 2.8 x 1076 6.0 x 107° 1.2
5 1.1 x10°° 5.4 x 1075 16.9

Table 4.1: Fraction of protons accelerated to above 0.01 M@K average electric field
strength and peak electric field strength in each case.

Cases 1 and 2 produce similar-looking energy distributiatthough fewer particles were
accelerated to energies abave1MeV in case 2. In case B,1% of particles achieved en-
ergies abov®.01MeV. In case 2, only1.6%, achieved these energies, although the average
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E=0, case 1 magnetic field E=0, case 2 magnetic field E=0, case 3 magnetic field
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Figure 4.6: Energy of an individual electron for cases 1-thmabsence of an electric field
over a period of 1s. It can be seen that energy is well condervall cases.

electric field strength in these cases is roughly the sameade 30.3% of particles were
accelerated to above01MeV. However the average field strength in this case was giso a
proximately a tenth of that in case 1. Case 4 accelefa?és of particles to abovée.01MeV,
around half the number in case 1, but it does so using an avetagtric field that is almost
40 times smaller than that in case 1. By case 5, a second MiamvgJpe distribution of
high energy particles is produced, with a temperature &f3 x 10® K. This temperature was
obtained by considering the mean energy of the particlesisnsecond distribution16.9%

of particles have energies higher thafilMeV. In this case, the average electric field, and
the peak amplitude of the electric field are the smallest picaise. The average electric field
here is 100 times smaller than that in case 1.

Of course, | want to be satisfied that the increased energiparticles in case 5 are not
simply due to some special property of the phase differentage chosen for the eigenmode
perturbations. Let us choose a different set of random pghasd calculate the resulting
electric and magnetic fields for a superposition of 50 modesll call this case 5b. Figure

4.8 compares the energy distributions of protong at 1s for cases 5 and 5b. It can be
seen that the energy distributions are very similar for lwatbes (in that they both contain
two Maxwellian-type distributions, each with approxinigtdne same width and peak value,
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Figure 4.7: Energy distribution of 10000 protons at t=0, ahtF-5360 for different electric
and magnetic fields.

although there are slight differences between the shaphs tko graphs), so that the ‘noisy’
fields are not merely more efficient for a particular set ofg@sa but are consistently better
than unperturbed fields at accelerating particles. Othsradeandom phases were studied,
and were also found to produce the same results.

In order to investigate how the particle energy distribogi@volve over time, the energy
distributions in each case were plotted at 0.1s (figure 8.8} (figure 4.10) and 0.9s (figure
4.11). These figures show that the particles in all casesf#Xor case 4) are energised
quickly. The patrticle energy distributions do not changeywauch aftert = 0.5s. The
exception to this is case 4, where the particles are endrgtsadily throughout the duration
of the simulation, and are still gaining significant energyvieen 0.9s and 1s. Recalling
figures 3.3 and 3.5 (which showed the variation of the eledigid with time atr = 0 and

r = 1 respectively), one possible explanation for this could = tlectric field for case
4 is still generally increasing after 0.5s, whereas thetetefield in cases 2 is decreasing,
the electric field in case 3 is approaching a steady valuetandlectric field in case 5 both
increases and decreases rapidly. The consequences fonptcelerated in the electric
and magnetic fields of case 2 were investigated in PetkakMamKinnon (1997), and my
distributions at = 1s agree with their findings.
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Figure 4.8: Energy distribution of 10000 ionstat 0, and att = 5360 (1 second) for case 5

(electric and magnetic fields perturbed by a superpositi®® @igenmode oscillations, each
with a random phase) and case 5b (electric and magnetic fieltisrbed by a superposition
of 50 eigenmode oscillations, each with a different randbase).

It is known that in order to produce gamma ray radiation, gmetmust have an energy of
at least 2 MeV (Vilmer, MacKinnon, and Hurford (2011)). Nookthe protons in any of
the cases studied here achieves such an energy. Howevernmeaiium-sized flares do not
produce gamma ray radiation. Protons will of course be pitasethe coronal plasma, but
it is not easy to say anything about the role they play if theyndt produce observable
radiation.
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Figure 4.9: Energy distribution of 10000 ionstat= 0, and att = 536 (0.1 seconds) for
different electric and magnetic fields.

Energy of ions, constant field Emergy of '\oms, superpos'\t'\on of 5 modes Energy of ions, superposition of 50 modes
1000 T T T T T T 1000 T T T T T T

8 100 E 8 100 8 E
3 3 3
5 5 5
a a a
5 5 5
o o o
2 2 2
§ § §
=z 10 4 ERR ]S = 4

1 1 1 1

-6 -5 -3 -2 - 0 1 - - 1 -6 -5 -3 -2 -1 0 1

Loq(energy (Mev)) Loq(energy (Mev)) Loq(energy (Mev))
Energy of ions, mode O only Energy of \ons superposmon of 20 modes
1000 T T T T T T 1000

@ 100 E| @ 100
< <
T T
s s
& &
k3 k3
T T
2 2
5 5
Z  10p El Z  10p

1 HM\ 1 1 1 1 1 1

-6 -5 —4 -3 -2 -1 0 1 - 1

Log(energy (Mev)) Log(energy (Mev))

Figure 4.10: Energy distribution of 10000 ionstat 0, and att = 2680 (0.5 seconds) for
different electric and magnetic fields.
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Figure 4.11: Energy distribution of 10000 ionstat 0, and att = 4824 (0.9 seconds) for
different electric and magnetic fields.

For our normalisations, an electric fieldl,= 0.0001 corresponds to an electric fieldsf1.8
V/m. My weakest average electric field (case 5) is therefer@ 018 V/m, yet it is able to
accelerate particles to energies of almogeV. Recall that the electric field for case 5 is
made up of a superposition of perturbations of 50 eigenmaoéligshis field is so noisy, on
average it is very small. However, the peak amplitude of trecése 5 is still only around
half that for case 1, indicating that it is the fluctuationsha electric and/or magnetic fields
that produce the high energy tail of particles.

Dalla and Browning (2005) found that in a 3D static X-type tnalupoint, electric fields of
1.5kV/m were required to reach these energies (in a system wjaetieles were allowed
to move equal distances iny andz). The electric field strength in solar flares and erupt-
ing prominences has been measured to be in the regiagk\dm (Somov, Oreshina, and
Kovalenko (2008) and Foukal, Little, and Gilliam (1987)pestively) , around 000 times
bigger than the peak value in case 5, whicki$ V/m. However, solar flare protons with en-
ergies in the GeV range, much greater than the energiesvachiath this small field, have
been observed (e.g. Wang and Wang (2006); Kanleaet. (1993); Vilmeret al. (2003)).
The noisy fields in case 5 seem to be very efficient at accalgrparticles. In order to dis-
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cover the reason behind this acceleration, a sample otjemtnust be examined in more
detail.

High Energy Particles

In the X-type neutral point model, particles become enedyas they pass through the non-
adiabatic region around the null, if an electric field is pras | must therefore determine
whether particles achieve higher energies for the supgigosof modes because they spend
more time in this region, or if there is some other cause. dieoto investigate this, the initial
positions of all 10 000 protons were plotted for each of tiheusations.

Initial Position of Protons, Constant E & B Initial Position of Protons, 5 Modes E & Initial Position of Protons, 50 Modes E & B
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Figure 4.12: Initial positions of protons for all cases. ®show the positions (at= 0) of
protons which gain less thdif0 times their initial energies. Crosses show the positiots (a
t = 0) of protons which gain more thar0 times their initial energies: andy are given in
units ofd,.

Figure 4.12 shows that the size of the region where highlygesed particles originate
changes as more modes are added. In case 4, it can be seeiglhandrgy particles can
originate from a much wider region compared to cases 1-3ase &, high energy particles
can originate from an extended central region, and fromianegong the separatrices.
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Figure 4.13: Final positions of protons for all cases. Dboisthe positions (at = 5360)

of protons which gain less tha0 times their initial energies. Crosses show the positions
(att = 5360) of protons which gain more thar0 times their initial energiesr andy are
given in units ofd,,.

Figure 4.13 shows the final positions of protons in all casesases 1 and 2, high energy
protons are ejected from the X-point into regions at 0, |y| ~ 1. Recall figure 2.6, which
shows the direction of thE x B drift at an X-type neutral point. Since high energy parscle
are those which undergo this x B drift, the initial location of these particles now makes
sense, as these are the particles which can most readilaldmig the x-axis.. In cases 3 and
4, high energy protons end the simulation at the null poirnih wore such particles being
found in case 4. In case 5, high energy particles are clubtesede a region of ~ 0.5, as
well as along the separatrices. There is also a concentrattiower energy particles around
the null.

The final positions of the protons is not symmetrically dimited for cases 3, 4 and 5. This
is because particles began the simulation in the quadrantz < 1,0 < y < 1. When
the magnetic fields are simple, this is not important for thalfpositions of the protons, as
their motion is governed bk x B drift. This causes particles to travel towards the central
null, and they are then expelled from this region in the yediion, with approximately equal
numbers of particles travelling in the positive and negagidirection. As more modes are
addedE x B drift is no longer the dominant effect on the motion of thetjpées. The change



CHAPTER 4. CONSEQUENCES FOR PARTICLE BEHAVIOUR 80

in the magnetic field topology, and the noisier electric feddse particles to follow different
trajectories, so that their final positions are no longermatnically distributed. This could
be due to trapping by newly-created structures within thgme#c field, or due to small
scale changes in the electric field causing changes in thielpar trajectories.

Clearly, adding more modes changes the way in which pastimte energised. In cases 1
and 2, particles appear to be energised via being drawnhetX4{point viakE x B drift, and
being expelled from it. When more modes are added, high gipendicles tend to remain in
a central region of increasing size. Could this be due taghatrapping?

4.2.5 Determining the Size of the Non-Adiabatic Region

When the motion of the particle is adiabatic, its magnetiomant is conserved. For our
normalisations, the magnetic moment is given by (e.g.ChernTarreblanca (1984))

2
v

- 5 (4.5)

I

In regions where a particle’s magnetic moment varies, théamas non-adiabatic and in
the presence of an electric field a change in energy will odéigure 4.14 shows this rela-
tionship. At times and positions where the particle’s magmaoment changes, so does its
energy. These large magnetic moment variations occurnvitht 0.5, as do large changes
in the particle’s energy. This finding is supported by figur&24 which shows that high
energy particles can originate from a central region withiua~ 0.5. Compare this with
figure 4.16, which shows variation in magnetic moment andgneith time and position
for case 2. The particles shown do not gain such high enemgnektheir magnetic moment
changes significantly only within =~ 0.2, so any large energy change takes place within a
smaller region, meaning that the non-adiabatic region g& @is smaller than that in case
5.

Ideally, I would like to find particles whose magnetic momemnges and which travel large
distances in-. These particles proved difficult to find, as it would appéet particles that
encounter such regions do not travel great distances, stiggehat they become trapped
within a small local region.

Is an increase in the size of the non-adiabatic region soéslgonsible for the greater ener-
gies reached by particles? High energies can also be adhigvmultiple crossings of the

non-adiabatic region. However, when a high energy panetigns to the non-adiabatic re-
gion, it spends less time in this region as it is travellingiéa. Therefore the energy gained in
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Figure 4.14: Variation of magnetic moment and energy of leigérgy protons with distance
from the neutral point and time, for case 5. These two padiglere chosen as they both
gained more thad00 times their original energy. Particle 1 (black) and paeti2l(red) are
the same particles in each frame of the figure.

the non-adiabatic region decreases with successive ogssdiitvinenko (2003)). This leads
me to the conclusion that measurement of a particle’s magmeiment is not an especially
robust method of determining the size of the non-adiabagmon, as only a few particles can
be examined individually. A better method could be the meament of the particle’s gy-
roradius relative to the magnetic field scale length. If thdiple’s gyroradius is larger than
the magnetic field scale length, the particle is moving ndiaaatically. However, the scale
length of the magnetic field can be difficult to determine for tases with more disordered
fields.

Figure 4.15 shows the trajectories in the x-y plane of thea2gms shown in figure 4.14, as
well as the variation of their distance from the neutral puaiith time. It can clearly be seen
that the particles spend most of their time orbiting the aukmall values of. The same
plot for case 2 (figure 4.17) shows that particles are freedeento large distances from the
neutral point when only one eigenmode is present, and ticatzarticles orbit the field lines
of a typical X-point geometry. The two particles shown in figd.17 move between~ 0.1
andr ~ 1 over the time period of the simulation. The two particles gufe 4.14 stay at
approximately the same distance from the neutral point ¥&r dalf the simulation time,



CHAPTER 4. CONSEQUENCES FOR PARTICLE BEHAVIOUR 82

Position of protons, 50 Modes E & B

1.0
0.8

0.6

0.4

0.2

0.0

Y
\‘H\‘\H‘\H‘H\‘\H‘\H
\‘H\‘\H‘\H‘H\‘\H‘\H

-0.2

. .
0.6 0.8

o

Position of protons, 50 Modes E & B

100.000

10.000

1.000

0.100

0.010

0.001

. . . . .
0 1000 2000 3000 4000 5000
t

Figure 4.15: Trajectories of 2 protons in the x-y plane (tap)l variation of distance from
the neutral point with time (bottom) for case 5. These twdiplas were chosen as they both
gained more thad00 times their original energy. Particle 1 (black) and paeti2l(red) are
the same particles in each frame of the figure.
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Figure 4.16: Variation of magnetic moment and energy of leigérgy protons with distance
from the neutral point and time, for case 2.These two pagielere chosen as they both
gained more thaf times their original energy. Particle 1 (black) and paeti2l(red) are the
same particles in each frame of the figure.
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Figure 4.17: Trajectories of 2 protons in the x-y plane (tap)l variation of distance from
the neutral point with time (bottom) for case 2. These twdiplas were chosen as they both
gained more thafn times their original energy. Particle 1 (black) and paeti2l(red) are the
same particles in each frame of the figure

indicating that particles in case 5 gain large amounts ofggndue to becoming trapped at
favourable locations within the magnetic field.

4.2.6 Energy Distributions: Electrons

In section 3.3 | set out the form of my dimensionless unitsesSehunits are dependent on
the particle species. For electrons, | will take a normia¢jdength of ten timed,. This is to
reduce computation times to a more practical length. Thiesgi, = 1.3 x 10°cm and and

t. = 4.33 x 10~°s. For the same reason | also take a particle massrof. This reduces the
computation time because the normalising length dependiBeoparticle mass. Since the
normalising speed is taken to bethis defines an intrinsic timescale to the problem, which
also depends on the particle mass. Therefore by incredseggirticle mass we can increase
the timescale associated with the problem, thus decre#istngpmputation time required to
follow particles until a specific physical time. Becauselsd hormalisations | have chosen
for the mass of the electrons, the equations of motion muattbeed as set out below.

In c.g.s units, (for the rate of change of the x component@ftrticle’s momentum):

—q
Qe Db (4.6)
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Let us choose some normalising length, and a normalising timg,. Let’'s normalise speed
toc, sothatd, /t, = c. | will normalise the magnetic field so that the dimensiosliesmgnetic
field, B is given by

- B
B = 4.7
where
B
By = —. 4,
=5 (4.8)

B is the magnetic field strengthat= D,whereD is the size of the system. | will takg to
be 100G, and to bel10%cm.

Making quantities dimensionless, this gives

dp qdiBo ~
i TnDe By, 0,. (4.9)

In the calculations of Petkaki and MacKinnon, and previgusthis chapter, the normalising
length¢,,) is chosen so that

qdiBo
meDc?

~1. (4.10)

I will call this value of the normalising lengt#., which is a very short length (3 x 10°cm).
This means that the normalising times for electrons will berespondingly short, so the
integration times will be very long. If the normalising lehgs increased td0d,, the running
time of the simulation is correspondingly reduced. At trogp, | also increase the electron
mass tol0m.., which gives

q100d2B,

= 10. 411
10m.Dc? ( )

The equations of motion now look like this (where | have dregbthe tildes, and all quantities
are dimensionless)
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at " (4.122)
dy
prial (4.12b)
d
d_j =V, (412C)
dps
7 10B,v, (4.12d)
Py _ 10,0, (4.12¢)
dt
dp-
== —(10E + (10B,v, — 10Bv,)). (4.12f)

Electrons were followed until = 2310, which is equivalent to 0.1s iB, = 10~". Because

the simulation was stopped @tl s, the average electric fields experienced by the electrons
will be slightly different than those experienced by thetpns, which were followed for

1s. Particles which left the simulation boundanry £ y = 769.,z = 76.9 in units of

10 x d.) were noted. These boundaries were chosen to give the sateesigoundaries as
for protons. The resulting energy distribution is shown gufe 4.18.

Figure 4.18 compares the initial energy distribution of éhectrons with distributions at

t = 0.1s for the static X-type neutral point, for the = 0 mode of oscillation, and for
superpositions of 5, 20 and 50 modes. It can be seen thattases2 look broadly similar,

as they did for ions. The bulk distribution of electrons ie&gised, although no high energy
tail is produced. This means that the electrons have beaedaather than accelerated.
The average temperature that electrons are heated to in tase 2 isv 1.8 x 107 K. This

is approximately the temperature to which the coronal ptaseated during a solar flare
(Lin et al. (1981); Tsunetat al. (1992); Tsuneta (1996)). In both cases, no electrons leave
the system. In case 1, more electrons gain high energiesritease 2, and more electrons
lose energy in case 2.

In case 3, there is a tail of low energy electrons, as well asall$igh energy tail. There is
a higher maximum energy than in cases 1 and 2. Again, no [esrtieave the system. The
low energy tail is likely to be caused by particles which aeealerated as they attempt to
move against an electric field directed against their doaatf motion. In case 4 more high
energy particles are seen and very few particles are dateterBy case 5, a low energy tail
of decelerated particles is not seen, but we do see an irctdagh energy tail, as well as
the highest peak energy of any of the cases. However, we dsesoany significant bulk
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Figure 4.18: Energy distribution of 10000 electrons at 0, and att = 2310 (0.1 seconds)
for different electric and magnetic fields. The blue curvesthe energies of the electrons at
the time stated. The black curves are the initial energyidigions.

heating. This is probably because the mean electric fieldasaw. No particles leave the
system in any case.

| therefore conclude that cases 2 and 3 are less efficientcatemating particles than the
constant field of case 1. Cases 4 and 5 see fewer particleemetigies over 0.01 MeV than
in case 1, but greater maximum energies are achieved. Theeferic field in cases 4 and
5 is also roughly half that in case 1, meaning that these fagkelsnore efficient at energising
electrons.

Comparing figure 4.18 with figure 4.9, which shows the eneiglyidutions for ions at 0.15s,
it can be seen that electrons are indeed more easily engfiige protons. In 0.1s, only a
few tens of protons are energised.

As | did for protons, | will plot the energy distributions fetectrons at a selection of times
in order to study the evolution of the distribution. The @yedistributions fort = 0.01s
(4.19)f = 0.05s (4.20) andt = 0.09s (4.21) were plotted. It can be seen that the distribu-
tions change throughout the duration of the simulationhap the electrons are still gaining
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Case| Average|E| At r =0 | Peak|E| At r = 0 | % of Electrons> 0.01MeV at t=0.1s
1 1.x 1073 1.x 1073 4.84
2 1.1 x 1073 1.2 x 1073 0.54
3 1.5 x 107* 1.8 x 1074 0.85
4 3.9 x 1074 5.2 x 1074 1.34
5 1.6 x 1074 4.9 x 1074 2.34

Table 4.2: Number of electrons accelerated to above 0.01 Wi#vaverage electric field
strength and peak electric field strength in each case.

energy at the end of the simulation, and a steady state hd®antreached. In cases where
deceleration occurs, the deceleration occurs more quibkly the acceleration.

It can be seen that electrons in case 3 reach high energiequiekly (within 0.01s), but that

as the simulations progress, more electrons achieve hagleggies in cases 4 and 5.
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Figure 4.19: Energy distribution of 10000 electrons at 0, and att = 231 (0.01 seconds)
for different electric and magnetic fields. The blue curvesthe energies of the electrons at
the time stated. The black curves are the initial energyiligtons.
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Figure 4.20: Energy distribution of 10000 electrong at0, and at = 1155 (0.05 seconds)
for different electric and magnetic fields. The blue curvesthe energies of the electrons at
the time stated. The black curves are the initial energyidigions.

High Energy Particles

In order to investigate how the particles become energaatiyhy in this case adding more
modes does not necessarily make a more efficient acceletaminitial and final positions
of all 10 000 electrons were plotted for each case.

Figure 4.22 shows that the locations of the origin of highrgpelectrons are quite different

in each case. In case 1, high energy electrons mainly otgimighin» ~ 0.2, or in the half

of the region below the = y line. In case 2, very few high energy electrons are seen.el'hos
which are seen originate either very close-te- 0, or atr ~ 1. For case 3, we see a very
defined region within- ~ 0.4 where high energy particles originate as well as a region at
r =~ 1. In case 4, two concentric circles are seen where high erggicles originate, as
well as a few high energy particles scattered at larger gatdie. Case 5 is similar to case

4; concentric circles of high energy particles are seer) mibre such particles than in case
4. | speculate that these concentric rings arise from thiadrytally symmetric character

of the eigenmode disturbances. High energy particles conggnate from energetically
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Figure 4.21: Energy distribution of 10000 electrong at0, and at = 2079 (0.09 seconds)
for different electric and magnetic fields. The blue curvesthe energies of the electrons at
the time stated. The black curves are the initial energyidigions.

favourable positions in this cylindrically symmetric geeiny, so that regions where high
energy particles originate form concentric rings.

Figure 4.23 shows the locations of high energy particles-at).1s. In case 1, the electrons
are ejected from the central region. High energy electrodsup atr ~ 0, y ~ |2|. As for
protons, electrons are drawn \Eax B drift into the null along the x-axis, and are expelled
along the y-axis. Since high energy particles are thosetwiclergo thi€ x B drift, the
initial location of these particles now makes sense, agthesthe particles which can most
readily drift along the x-axis. In case 2, the majority ofattens end up in a circular region
within » ~ 1. Some electrons are expelled in a similar fashion to thosmge 1. High
energy patrticles are found in both regions.

In case 3 there are high energy particles:at 0, y ~ |2|. Low energy particles form a
well defined central circle with ~ 1, as well as two symmetric arcs@at= |1|. For case 4,
high energy particles also end up withimz 1. Lower energy particles form two concentric
circles are formed with radiz 1 and 2. In case 5, the low energy particles form a circular
central region, as well as two symmetric arcs. The majorithigh energy particles are
found either at the centre, or in an extended region on tl hignd side.
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Figure 4.22: Initial positions of electrons for all caseat®show the positions (at= 0) of
electrons which gain less thdf times their initial energies. Crosses show the positiohs (a
t = 0) of electrons which gain more thde times their initial energies: andy are given in
units of10 x d..

Clearly, these two figures show that electrons behave véfgreintly when more perturba-
tions are added to the electric and magnetic fields. Instégdmicles being drawn into

the null and then expelled, they are drawn to specific spktcations where they can be
energised. These may possibly represent the nodes of thkatimes, or a magnetic field

topology which results in particle trapping.

4.2.7 Determining the Size of the Non-Adiabatic Region

Using the same arguments as in section 4.2.5, the size obthadiabatic region for elec-
trons was established by calculating the magnetic momethieaélectrons.

Figure 4.24 shows the variation of particle magnetic mométit time and distance from
the neutral point for two electrons in case 5. It can be segtrthie particle magnetic moment
changes substantially betweenr: 0.1—0.2, after which any changes are small untit 0.5.
Figure 4.25 shows the trajectory of the particles in the Xayp, and the variation in distance
from the null point with time. It can be seen that the elecsrarainly follow the field lines
created by the eigenmode disturbances. The two electransestion also spend significant
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Figure 4.23: Final positions of electrons for all cases.3btow the positions (at= 2310)

of electrons which gain less than times their initial energies. Crosses show the positions
(att = 2310) of electrons which gain more tha times their initial energiesr andy are
given in units of10 x d..

amounts of time trapped at the radii at which the particlegggnetic moment can vary, i.e.
in regions where they can gain energy.

Figure 4.26 shows how the magnetic moment of electronsyariease 2. In case 2, parti-
cles which gain energy tend to remain close to the null, anad wnable to identify particles
which gained large amounts of energy and travelled to largét can be seen that mag-
netic moment of the electrons undergoes large changeswrithi 0.1. Figure 4.27 shows
that these particles follow circular orbits within this nasl moving to smaller radii as the
simulation progresses.

Figure 4.28 shows how the magnetic moment of electrons syamiease 3. As for case
2, particles which gain energy tend to remain close to the ant | was unable to identify
particles which gained large amounts of energy and travédiéarge r. It can be seen that the
particles in figure 4.28 remain trapped at approximatelydiseance from the neutral point
at which they began the simulation, and that their magnedicient varies at these locations,
I.e. they are moving non-adiabatically. Figure 4.29 shdvas these particles follow circular
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Figure 4.24: Variation of magnetic moment and energy of leghargy electrons with dis-
tance from the neutral point and time, for case 5. These twiicfes were chosen as they
both gained more tha400 times their original energy. Particle 1 (black) and paetizl(red)
are the same patrticles in each frame of the figure.

orbits at these radii, remaining at a roughly constant degdrom the neutral point as the
simulation progresses.

In attempting to plot the variation in distance from the riailelectrons in cases 3, 4 and 5, it
was consistently difficult to find particle which gained lamounts of energy and travelled
large distances from the null. | wished to find such partictesrder to explore the variation
in magnetic moment of particles as they travelled througboeix-y plane.

For each of the cases 3, 4 and 5, particles which travellge @distances from the null did not
gain very much energy (they typically gained less than timéiial energy). Since magnetic
moment should be conserved when a particle is moving adaltigit particles which do not
gain very much energy will not change their magnetic momamthm This means that such
particles are not very useful indicators of the variationha magnetic moment throughout
the x-y plane. Particles which did experience large chamgesagnetic moment did not
travel very far in the x-y plane, and so could only providemfation about the variation of
magnetic moment within a small region.
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Figure 4.25: Trajectories of 2 electrons in the x-y plan@)i@nd variation of distance from
the neutral point with time (bottom) for case 5. These twdipi@s were chosen as they
travelled reasonably far in r without escaping the systethaso gained large amounts of
energy. Particle 1 (black) and particle 2 (red) are the saangctes in each frame of the
figure.

4.2.8 Magnetic Field Topology

Why do some of the particles studied stay so close to the Rigj@re 4.30 shows the shape
of the magnetic field close to the null for case 5. It can be sleainfor the superposition of
modes the centre of the field is significantly altered fromaadard X-type neutral point. The
field for case 5 contains contains a region of closed magfielit(an O-type neutral point)
at its centre where the particle can become trapped. Siese ttlosed regions are within
r = 0.5, where the particles can move non-adiabatically, pagialich become trapped in
these regions can gain significant amounts of energy. Thextosy of one such particle (a
proton) is shown, and the patrticle is seen to be approximé&ébwing one of the central
circular field lines. Note that the field is plottedtat 0.5s, but the trajectory shown is the
path taken by the proton over the whole time of the simulatidowever, the central loop
that the particle is following remains approximately camstin size and shape throughout
the simulation. Near the null, one also sees the developofenany smaller X-type and
O-type points, which will also be regions of particle demeiigation, and therefore give rise
to acceleration in the presence of an electric field. Suchneiagstructures are reminiscent
of those caused by a tearing mode instability when a plasrttafimite conductivity (such
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Figure 4.26: Variation of magnetic moment and energy of leghargy electrons with dis-
tance from the neutral point and time, for case 2. These twiicfes were chosen as they
travelled reasonably far in without escaping the system and also gained large amounts of
energy. Particle 1 (black) and particle 2 (red) are the saangctes in each frame of the
figure.

as the plasma | simulate) is perturbed at an X-type point{-Willeen, and Rosenbluth
(1963)).

4.2.9 Particle Trapping & Pitch Angle

As we have seen, adding more perturbations to the magnéticéiases many smaller struc-
tures to form. What effect do these structures have on thejggpitch angle?

Protons

Figure 4.31 shows the distribution of proton pitch angles-at5360 (1 second) for all cases.
The black histograms indicate the initial pitch angles &f plarticles, an approximately flat
distribution. The distributions for cases 1, 3 and 3 lookaollg similar. The distribution is
symmetric about a peak at zero, and there are two smalles@aki, indicating particles
travelling parallel to the magnetic field. It can be seen #uting more modes causes the
distribution of pitch angles dt= 5360 to become flatter, meaning that adding more modes
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Figure 4.27: Trajectories of 2 electrons in the x-y plan@)i@nd variation of distance from
the neutral point with time (bottom) for case 2. These twdipi@s were chosen as they
travelled reasonably far in without escaping the system and also gained large amounts of
energy. Particle 1 (black) and particle 2 (red) are the saangctes in each frame of the
figure

causes greater scattering in pitch angle. In this chaptsill befine scattering as simply
being any process which causes the pitch angle of the matbathange. As more modes
are added, many more patrticles with pitch angles parall¢héomagnetic field are also
seen. If particles are travelling parallel to the magneéidfithey will be following magnetic
field lines very closely (possibly as a result of a magnetiooniforce, i.e. as the particles
travel into an area of decreasing magnetic field, the magnatror force will cause their
pitch angles to decrease), which could lead to particle®lirag more easily to areas of the
magnetic field where they can gain energy.

What effect does this pitch angle scattering have on thevieaof particles? An obvious
answer is that pitch angle scattering causes particles daagehtheir trajectories. Figure
4.32 shows the locations at which the pitch angle of the garthanges by more thary2,

in other words, the locations at which the particle’s di@ttof motion is reversed. If a
particle’s pitch angle had changed by more thdf in 0.1s, a ‘pitch angle scattering event’
was determined to have occurred. It can be seen that larggeban pitch angle mainly
occur closest to the neutral point in all cases. As more madeadded, more such changes
occur. For cases 1 and 2 and, around the same number of laaggeshoccur. As more
modes are added, this figure increases, such that by caseridasix times as many large
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Figure 4.28: Variation of magnetic moment and energy of l@ghrgy electrons with dis-
tance from the neutral point and time, for case 3. The redri¥peesents a particle which
gained 500 times its original energy. The black particlé¢ Bysergy. Particle 1 (red) and
particle 2 (black) are the same particles in each frame dfiglee.
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Figure 4.29: Trajectories of 2 electrons in the x-y plan@)i@nd variation of distance from
the neutral point with time (bottom) for case 3. The red lispresents a particle which
gained 500 times its original energy. The black particlé &sergy. Particle 1 (red) and
particle 2 (black) are the same particles in each frame diigluee.
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(a) (b)
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Figure 4.30: Magnetic field contours with a sample protojettary overplotted for case 5,
fortheregion-1 <z <1,—-1 <y <1 (a)fortheregion-0.3 <z <0.3,-03<y<0.3
(b), and (c) for the region-0.03 < x < 0.03, 0.25 < y < 0.3, displaying some of the
smaller structures formed by the perturbations. Note tiafield is plotted at = 0.5s, but
the trajectory shown is the path taken by the proton over thelevtime of the simulation.
However, the central loop that the particle is following Bens approximately constant in
size and shape throughout the simulation. Panel (d) shasvetignitude of the magnetic
field atz = 0 for —0.3 < y < 0.3. It can be seen that the magnetic field goes to zero (here,
the magnetic field is considered to be zerpHf < 0.01) 7 times, 6 of which are outside the
central null, indicating that the small scale structuresnse panels (b)-(c) of this figure are
indeed nulls.

changes in particle direction are made as for cases 1 and 2ake 5, the size of the region
where the particle’s trajectory can be reversed also iserggeatly. For cases 1 to 4 all
such changes occur within= 1. It should be noted that these changes are recorded every
0.1s.
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Figure 4.31: Pitch angle distribution of 10000 protons &t &nd also at t=5360 for different
forms of the electric and magnetic fields.

Therefore, | can say that adding more perturbative modesesathe pitch angle of the pro-
tons to change more often. | speculate that this ‘pitch asgégtering’ is caused by the
development of small scale structures within the magnaetlid.filn that sense, adding more
perturbations to the electric and magnetic fields causestakpitch angle scattering to

occur.

Do these changes in the particles’ trajectories mean thaidlticles will spend more time in
the non-adiabatic region? Figure 4.33 shows the numbemefstieps spent at each value of
r. It can be seen that adding more modes causes particlestd spe time at small. The
plots for cases 1 and 2 again look very similar. As more modesdded, the peak of the
distribution broadens,and more particles spend time agdalues of-. By cases 5, there
is a sharp peak at < 0.2, suggesting that particles become trapped there. It seketg |
that the increase in occurrences of large changes in pitgle amuses particles to spend
more time atr < 1. The ‘scattering’ caused by adding more perturbative madeses
particles to change direction, and they may become trappegjions where they can move
non-adiabatically and gain energy.
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Figure 4.32: Positions at which ion trajectory changes byentioans /2 for different forms
of the electric and magnetic fields. It can be seen that soiteh‘pngle scattering’ events
occur even when there are no perturbations present. Howeserthat these occur at small
values ofr, and so can be attributed to the fact that the particle issdi@she null and is not
undergoing regular gyromotion about a field line.

Electrons

Electrons are lighter, so any process which causes changésh angle will have a greater
effect on electrons. This is because the small mass of tbhe@hegives it a small gyroradius,
meaning that the electron is able to interact with smallatesstructures than protons can
interact with. Therefore electrons will be more susceptitol small scale changes in the
electric and magnetic fields. Figure 4.34 shows the didinbwf pitch angles in all cases
att = 0.1s. It can be seen that in all cases, particles start out withtadi&ribution of
pitch angles. In case 1, the cosine of the pitch angle ofglestthen evolves to a symmetric
distribution centred on 0.

In case 2, the distribution is symmetric, with particlesdiewy to have pitch angles parallel to
the magnetic field. This could account for the high and lowgyails, since some patrticles
will travel away from the null, meaning that they will not becalerated, whereas other
particles will be transported directly to the null. Recaddiathat the low energy tail could be
caused by particles moving in the opposite direction to tbetec field.
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Figure 4.33: Number of timesteps spent by ions at each vdludar different forms of the
electric and magnetic fields.

In case 3, the distribution of pitch angles is much flattahalgh there are slightly more
particles travelling parallel to the magnetic field. Agaims could account for the high and
low energy tails, since some particles will travel away frtima null, meaning that they will
not be accelerated, whereas other particles will be trategdirectly to the null. The high
and low energy tails in this case are bigger than in case 2s dduld reflect the effect of
eigenmode oscillations on the topology of the magnetic filich could result in particle

trapping.

In case 4, the distribution of pitch angles is on average angbd. Particles have a range
of pitch angles, distributed fairly evenly. This could @thmean that the particles do not do
much at all, or that the ‘scattering’ effect affects all paes equally, so that the distribution

of pitch angles is unchanged.

In case 5, the distribution of pitch angles is also unchanged the distribution looks similar
to that in case 4, except that there is a slight peak in pastichvelling perpendicular to the
magnetic field, i.e. parallel to the electric field. Of coyrdeese particles are following the
magnetic field lines in the x-y plane, so they travel paratighe electric field merely when
their trajectories intersect this plane.
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Pitch angle of electrons, constant field Pitch angle of electrons, superposition of 20 modes
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Figure 4.34: Pitch angle distribution of 10000 electrong at 0, and also at = 2310
(0.1s) for different forms of the electric and magnetic feld’he blue histograms indicate
particles that stay within the system boundaries. Red ¢niatas indicate particles which left
the system, at the time at which they left the system.

What can this information tell us about the behaviour ofipkas? Are the distributions for
cases 3, 4 and 5 flat because the pitch angles don’'t changecaude they change a lot,
so that the net effect of the changes is zero? Figure 4.35sstit@Mocations at which the
pitch angle of the particle changes by more thdf. It should be noted that these changes
are recorded everg.0ls . It can be seen that the electrons have most large pitch angle
changes in case 1. This is perplexing, since one might expatpitch angle changes are
due to the interaction of the electrons with small scale gkann the electric and magnetic
fields. This high number of pitch angle changes may be becalestrons in case 1 are
moving more quickly as they experience a higher averagéreldeld, and so their pitch
angle evolves more rapidly. In case 2, the number of largehangle changes drops by
over two thirds. These changes also tend to occur furthey &wen the null, and there is a
strong dip in the number of changesrat 2. Case 3 has very few pitch angle changes. The
majority occur between = 1 andr = 2. Cases 4 and 5 are broadly similar in character.
There are fewer pitch angle changes than for case 1, but inanefor cases 2 and 3. Most
pitch angle changes occur closer to the null, with the nunalbesuch changes decreasing
with increasing r. The distributions of pitch angle seen guffe 4.34 for cases 4 and 5 are
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therefore flat because there are many changes in pitch amgteno particular direction
being favoured. Overall, there are many more changes ih pitgle for electrons than for
ions, which is to be expected since electrons are much ligltel so are more affected by
scattering-type events.

Locations of pitch angle change >pi/2, constant Locations of pitch angle change >pi/2, 20 modes
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Figure 4.35: Positions at which electron trajectory changemore thanr/2 for different
forms of the electric and magnetic fields.

mber

As we did for ions, we must ask if these changes in pitch anglese electrons to spend
more time in the nonadiabatic region. Figure 4.36 shows thehber of timesteps spent at
each value of-. For cases 1, 3, 4 and 5, the form of the distribution is theesamvery
small number of steps are spent very close te 0, and the number of steps spent at each
radius increases relatively smoothly up-te- 1. For case 2 however, there is a very different
distribution. The number of steps spent at each radiusasesevery quickly up to ~ 0.2.

It then decreases agjoes to 1. This appears to indicate a region where partialebecome
trapped, although this is clearly not a region where pasicdan become highly energised,
since such significant trapping would surely cause pasgitdebecome highly energised if
the region was one in which particles could move non-adiedét.

Fewer particles spend timesrak 1 in cases 4 and 5 than in case 3. Therefore, adding more
modes does not cause more trapping at smatowever, the creation of many nulls means
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that there are more areas in which the particles can movedmiatically, so that particles
do not need to be trapped at very smaith order to gain energy.
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Figure 4.36: Number of timesteps spent by electrons at ealcle vfr for different forms of
the electric and magnetic fields.

4.3 Comparison of Electron & Proton Results

At this point, it is sensible to compare the effect of the §yoifields on electrons with the
effect on protons. Tables 4.1 and 4.2 show that electrorsudnjected to electric fields which
are around an order of magnitude greater than the electlits fibat protons are exposed
to. This is true for all cases. However, electrons are foddvior0.1s, whereas protons are
followed for1s. | can therefore make meaningful comparisons between thkdistributions
for both species of particle.

For protons, the energy distribution develops a high enpagyat the end of the simulation
in all cases, although the precise character of this valiresases 1-4, the high energy part
of the distribution looks like a high energy ‘tail’ (altholign case 3 the tail is very small). In
case 5, the high energy part of the spectrum looks like a seldaxwellian-type distribution.
By contrast, the distributions for electrons at the end efdimulation look quite different. In
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cases 1 and 2, the distribution in subject to bulk heatind rerhigh energy tail is developed.
A high energy tail develops by case 3, the size of which irsean cases 4 and 5.

In the case of electrons, the energy distributions contiouevolve over the whole simu-
lation, in contrast to the energy distributions for protowkich do not change much after
t = 0.5s. | speculate that this is because electrons are followed frorter time, and so
there are more small-scale perturbations present in tietrieland magnetic fields (as these
perturbations decay fastest, their effect diminishes tuitie). Electrons, being less massive,
are more affected by such small-scale changes. This carbalseen when one considers
the initial and final positions of the particles. The initedd final positions of electrons
form symmetric, circular patterns, consistent with the fthat the eigenmode disturbances
in these simulations are cylindrically symmetric. Theialiand final positions of protons do
not form such patterns, and the initial and final positionmitpns owes more to the overall
X-point geometry.

It can therefore be said that both electrons and protons are #gfficiently accelerated by
‘noisier’ fields, but that electrons are more affected bydkact nature of this ‘noise’.

4.4 Resulting X-Ray Spectra

Since energy spectra for the electrons have now been obialme resulting X-ray photon
fluxes can be calculated. Since | am considering electroas acceleration region, it is
assumed that these X-rays are a result of thin target breahfightg. This is because the
region in which the electrons are accelerated is of compatatiow density, and hence it is
collisionally thin. The thin target X-ray flux is calculat@uc.g.s. units using the expression
(e.g. Schrijver and Siscoe (2010))

S(E,) = i;{’; [E h o5, (EJo(E)N(E.)d(E,), (4.13)

whereFE. is the energy of the electrafi,, is the energy of the photon,is the velocity of the
electron,N is the number density of the electrongis the number density of the protons,
R is the distance from the source at which the emission is gbdel’ is the volume of
the system and is the bremsstrahlung cross section. Since some of the@bscteach
relativistic energies, the cross section given in Haug 7)®used. There is a slight caveat
here: the electrons | have used are 'heavy electrons’, whetel0m,.. This means that the
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X-ray spectra shown here are merely indicative of the pabmal X-ray spectra. The X-ray
spectra obtained can be seen in figure 4.37. If such speetreoarpared with an observed

X-ray spectrum (figure 4.38, Krucket al. (2008a)), we can see how realistic these spectra
are.

10" | 107 L
10 100 10 100
Photon energy(keV) Photon energy(keV)

Figure 4.37: X-ray spectra generated from electron enesgyilalitions at = 0.1s for cases
1-5.

Figure 4.38 (from Kruckeet al. (2008a)) shows a typical flare hard X-ray photon spectrum
together with the major components used in fitting it: a therepectrum (shown in red) at
energies below about 20keV, plus a non-thermal power-ldwxteending to higher energies.
These components occur in the synthesised spectra to gatggrees. Most of our studied
cases produce power-law components that are rather toditertlat) compared with most
flare spectra (i.e. photon spectral indedin the range 1 - 2), in common with many other re-
connection test particle calculations (e.g. Turknetral. (2006)). Case 2, however, involves
a combination of a steeper power-law tail plus thermal camepo that is more similar to
observations. The spectral indexan be calculated using the relation

_ —log(I(Ey)/1(E))
log(Fs/ E)

(4.14)
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Figure 4.38: Example of an observed X-ray spectrum. The wedecshows the fit to the
thermal emission. Kruckest al. (2008a).

where(E) is the photon flux at energy,, andI(Es) is the photon flux at energy,.
Values for E> and E; were selected by taking the maximum and minimum values of the
energy of the part of the spectrum being considered. Forental part of the spectrum,

a spectral index was not taken, but instead the mean tempei@l) of the spectrum was
calculated using the relation

T=— 4.15
o (4.15)

whereF is the mean energy of the thermal part of the spectrum (ire3puhnd: 5 is Boltz-
mann’s constant.

The spectral indices of the non-thermal part of the X-raycspeproduced in each case can
be seen in table 4.3, as well as the mean temperature of theahpart of each spectrum.
It can be seen that the mean temperature of the thermal campimcreases as more modes
are added.
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Case| Mean Temperature (K) (Thermal Radiationppectral Index (Non-Thermal Radiation)
1 (1.1 £0.5) x 10® Not applicable
2 (1.140.5) x 108 2.740.2
3 (1.6 £0.5) x 108 0.4+0.2
4 (2.0 £0.5) x 108 1.540.2
5 (3.34£0.5) x 108 1.540.2

Table 4.3: Mean temperature of the thermal parts of the Xspgctra produced from the
accelerated electron distributions, and spectral indi¢¢se non-thermal parts of the same
distributions.

Case 1, involving a steady electric field and no turbulenoescot result in an extended
power-law tail but to a thermal type distribution with a hegghtemperature than assumed
initially. In the X-type null model, turbulence evidentlygys an important role in the devel-
opment of power-law electron tails. It could be speculakted the emergence of a ‘superhot’
spectral component late in a flare (Lén al. (1981)) reflects the development of a state of
steady reconnection with most turbulence having decaykdrdsket al. (1984) suggested
such steady reconnection as the explanation of the flareigratiase. The suspected coro-
nal origin of the superhot component (Krucker et al., 20088a)ld be consistent with my
thin target calculation, concentrating on the vicinity loé tenergy release region.

4.5 Non-Flat Spectrum of Modes

So far in this work, the amplitude of the eigenmode distudeamas the same for each mode
(i.e. a flat spectrum). In order to better model turbulencéham manner of Kolmogorov
(1941), the amplitudes of the modes could be distributedomsver law with a spectral index
of —5/3, as discussed in section 1.5. Perturbations on a varietyatés could be produced
by convective motions in the photosphere causing osaltatin the coronal plasma. Large
scale explosive events such as solar flares or coronal neageg, as well as smaller scale
reconnection events could also produce disturbances sotle@al magnetic field. A cascade
of energy from large to small scales could also be used toagxpthe unexpectedly high
temperature of the solar corona. Particles become endrgisentermediate scales, and this
energy is converted to heat at the smallest length scalésdidissipation range).

It is known (Kolmogorov (1941)) that turbulence on interrizdd scales can be modelled as
a power law with a spectral index ef5/3. It is also known (Alexandrovat al. (2009)) that
such a power law is observed in the solar wind. Let us invastigonsequences for ions if
the amplitude of the eigenmode oscillations follows suclsgitution. | will distribute the
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amplitude of the modes according to the wavenumber of theensadh that the amplitude
will be

ay = aokf/?’, (4.16)

wherek is the wavenumber of the mode, amgis a constant which can be fixed to have any
amplitude. For these simulations, | chage= 0.0001, which was the amplitude of each
mode for the flat spectrum of modes. The eigenmodes in th@moigeneous situation are
not described by a single wavenumber. This is because thedbthe waves varies with.

For the purposes of distributing energy across modes as1rakkéugh wavenumber can be
calculated at = 0. This can be estimated using

d’E 1
~ oo (4.17)
I will calculate the total electric and magnetic fields in #sne manner as in previous sim-
ulations: by calculating the field for each mode and addiegi#ids together, then dividing
by the number of modes. The eigenfunctions are still noedlso that their square norms
are unity at = 0. The form of the electric field generated by such a spectrumaxfes can
be seen in figure 4.39. It can be seen that, unlike the eld@tctfor a flat spectrum, the
electric field for this distribution decreases with time éothe simulation time). The vari-
ation of the electric field withr is the same as for the flat spectrum of modes. The average
field strength is greater than for the flat modes at 0, but is smaller at other values of

Tr.

The electric field for thé—>/% spectrum decays more quickly than the electric field for e fl
spectrum if the simulation is stoppedtat 1s. If the simulation is run for longer times, this
effect disappears. This can be seen in figure 4.40, whichshleas that the electric field for
the flat spectrum of modes is much larger and nosier thandh#ték—>/3 spectrum.

The effect of these new electric and magnetic fields on psotam be seen in figure 4.41. It
can be seen that these new fields do not accelerate parpobdgbly because they are too
small.

In order to better study the consequences for particle exatebn, | will increase the magni-
tude ofag to 0.01, for both spectra of modes. The energy distributfatys= 1s) of protons
that have been accelerated in these fields can be seen in4ig@reFor the flat spectrum of
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Figure 4.39: Electric field for a spectrum of modes with ttaiplitude distributed als—5/3.
The left hand plot shows the variation of the electric fielthwime atr = 0, the middle plot
shows the variation of the electric field with timerat 1, and the right hand plot shows the
variation of the electric field with at¢ = 0.

modes, this creates an average electric field-at0 of ~ 1.8V//m. For thek~>/® spectrum,
the average electric field at= 0 is ~ 10V/m The average electric field strength in a solar
flare is~ 1000V /m (Somov, Oreshina, and Kovalenko (2008),in which the eledield
strength is calculated from the motion of the flare ribboitg)an be seen that whilst the flat
spectrum of modes accelerates particles to higher enetres 5/3 spectrum produces a
more realistic looking high energy tail of protons (more amto observed proton energy
distributions, see e.g. Van Hollebeke, Ma Sung, and McDb(Ed75), in which data from
185 solar flare events was analysed).

In order to understand why the protons are accelerated to Isigh energies for the flat
spectrum of modes, the behaviour of a sample of ten protossstualied in more detail.
These protons were selected randomly. The evolution ofdhiecfe’s distance from the null
with time, and the variation of the particle’s energy wittstdince from the null are both
plotted, and can be seen in figure 4.43. It can be seen thatddtat spectrum of modes,
particles gain most energy at< 1. Some particles remain trapped at smafl- ~ 0.1).

The majority of particles (around 6000) leave the systerat (it they move to distances in
x or y that are greater than 1Z§ or distances in that are greater that7.8d,), and their
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Figure 4.40: Electric field variation with time at r=0. Theptplot shows the field for a
spectrum of modes with their amplitude distributedkas’?. The bottom plot shows the
field for a flat spectrum of modes.

energies are not plotted in figure 4.42. For thé/? distribution, particles move steadily to
largerr as the simulation progresses, and gain energy at a varielwés ofr. The final
position of protons at = 1 in shown in figure 4.44. This figure clearly shows that for tiaé fl
spectrum of modes, a lot of particles leave the system. Fokth'3 distribution, particles
remain within the system.

Finally, the final positions of protons in the flat spectrureecavere plotted on a logarithmic
scale. The results of this can be seen in figure 4.45, whiclvshioat the protons clearly
split into two populations. One population stays close torthll, and moves a large distance
in z. The other moves a large distance in the x-y plane. It can ée #®t the particles
which gain a lot of energy (plotted in red) either stay clasée null or are ejected to very
large distances. Recall that for a flat spectrum of mode® ther large oscillations in the
electric field at small (see figure 3.2). These oscillations are much larger thasetkiat

the k%% spectrum gives at smai| hence the flat spectrum energises particles much more if
the protons are at small valuesrof

The expected energy gain of a particle can be calculated iewad! that kinetic energy in S
units is
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Figure 4.41: Energy of 10 000 protonstat 1s. The right hand plot shows protons which
have been accelerated in fields composed of a flat spectruigesfraode oscillations. The
left hand plot shows protons which have been acceleratedlgsfcomposed of a spectrum
of modes with their amplitude distributed &s®®. For both plotsg, =0.0001

1
E), = 5mv?, (4.18)
which means that
dEk dv
—k _ L 4.1
a "V w (4.19)

Sincev x B is always perpendicular to then

d
mv - d_‘t, =ev-E. (4.20)

To convert the energy into eV, draep(the charge of the particle) from the equation above.
Since the code is run fdrs the maximum energy gain is
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Figure 4.42: Energy of 10 000 protonstat 1s. The right hand plot shows protons which
have been accelerated in fields composed of a flat spectruigesfraode oscillations. The
left hand plot shows protons which have been acceleratedlgsfcomposed of a spectrum
of modes with their amplitude distributed &s®?. For both plotsg, =0.01
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cE =3 x 10°E. (4.21)

The maximum electric field anywhere in the system at 0 is ~ 10 000 V/m for the flat
spectrum of modes (this peak field isratz 0.0001). This gives a possible energy gain of
2.6 x 10°MeV for protons which encounter these high electric fielésgths. By contrast,
the peak electric field strength in the system at 0 for the k=5/3 spectrum of modes is

55 V/m. This gives a possible energy gainidf x 10*MeV for protons, much lower than the
possible energy gain for the flat spectrum of modes. Theraldatld strength also decays
more quickly than for the flat spectrum of modes (over the &tmn time), meaning that
particles do not experience these peak field strengths flongs

It should be noted that the energies achieved by particlethéflat spectrum of modes are
artificially high, and the distribution in figure 4.42 is ogidlhaped. This could be an effect
of the fact that | increased the magnitude of the electridfiet the flat spectrum (in order
to better compare the effects of the flat spectrum andthé€ spectrum), meaning that the
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Figure 4.43: Plots of the variation of the proton’s energthwdistance from the null, and of
the variation of distance from the null with time. The colaidithe line identifies a particle
with the same initial conditions. For all plotg, =0.01
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Figure 4.44: Plots of positions of protonstat 1s. For all plots,aq =0.01. The left hand
panel shows the position of protons in the x-y plane, thetigimd panel shows position of
protons in the x-z plane.

peak electric field is artificially high (around ten times tipical electric field strength in a
solar flare).
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Figure 4.45: Plots of positions of protonstat 1s. Particles that gain more than 100 000
times their original energy are plotted in red. For all plats=0.01

In order to test this, the behaviour of particles in an eiedteld with (=1, and the modes
distributed ask—°/3 was studied. Here, the average electric field strength at 0 is ~
1000V /m, a typical electric field strength for a solar flare. The peakifstrength anywhere
in the system is= 5000 V/m att = 0.

Figure 4.46 shows the resulting energy distributions-atl s for protons accelerated in such
fields. Protons which travelled further thafi8d, in the z or y direction, or further than
17.8d,, in the z direction were discarded, as they had left the simulatigrore This meant
that around a quarter of the protons studied were discattlean be seen that some protons
gain energies well in excess of 1000 GeV. Even very high grestar flares do not produce
protons with such high energies (e.g Wang and Wang (2006)).pMvious calculations
showed that the highest energy that particles will achisvanticipated to be around 100
MeV. This is for particles in an electric field of 10 000 V/m rfour values of the initial
energy. | therefore conclude that the magnetic field condiiom is having a large effect on
the ability of particles to become highly energised.
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Figure 4.46: Energies of protonstat 1s. Protons were accelerated in fields composed of
a superposition of 50 modes distributed with amplitugdes- a,k~%2, wherea, = 1 and k
is the wavenumber of the mode.

4.6 Effect of Varying Resistivity

In the above simulations, | have used the vajue 3.124 x 10~!! for the dimensionless
resistivity. It has been seen (in section 3.3.1) that varytre resistivity causes the size of the
non-adiabatic region to vary. How does varying the regtgtaffect particles in the case of
a superposition of 50 modes? Here, | return to a flat spectfumodes, witha; = 0.0001.

| will investigate particle behaviour for two values of r&wiity, n = 3.124 x 10~*° and

n = 3.124 x 10712, Recall that the collisional resistivity for this plasmaig x 10713, The
resulting values of: (decay) andv (oscillation) can be seen in tables 4.4 and 4.5.

Particle Behaviour

Let us now examine the consequences for particle behavidi@lds constructed using these
modes and resistivities. The energy distribution of 10@Qqgns at = 1s for different values
of resistivity can be seen in figure 4.47. It can be seen théitfes are accelerated to higher
energies for lower values of resistivity.



CHAPTER 4. CONSEQUENCES FOR PARTICLE BEHAVIOUR 116
n K w Decay Time (S) Period (s)
0 0.007231 0.117742 633.36 244.44
1 0.040132 0.623374 114.12 46.17
2 0.056878 0.880324 80.52 32.69
3 0.066333 1.138055 69.05 25.29
4 0.094551 1.396227 48.44 20.61
5 0.123517 1.915506 37.08 15.03
10 0.209239 3.487320 21.89 8.25
15 0.318289 5.099938 14.39 5.64
20 0.437758 6.728753 10.46 4.28
25 0.587363 8.373390 7.80 3.44
30 0.713287 10.03532 6.42 2.87
35 0.869951 11.77654 5.26 2.52
40 1.009341 13.95606 4.54 2.20
45 1.429638 18.77579 3.20 1.53
49 2.000738 16.38633 2.38 1.76

Table 4.4: A selection of values efandx for = 3.1724 x 10~1°. The decay and oscillation
times for these values of andx are also listed.
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Figure 4.47: Energy of 1000 protons at t=1s for a supermrsaf 50 modes. The spectrum
of modes is flat, and, = 0.0001. The resistivityy; = 3.1724 x 1071% in the left hand plot,
andn = 3.1724 x 1072 in the right hand plot.

Since the values for the eigenmodeandw have changed slightly, the forms of the electric
and magnetic fields will also have changed slightly. Thig alter the topology of the mag-
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The magnetic field topology for two different values mfcan be seen in figure 4.48. It
can be seen that for smaller the form of the small-scale nulls changes slightly. Slght
more small nulls are formed at> 0.5. These could also cause particles to become highly
energised. The form of the magnetic field is also changedthearentre of the region; the
field becomes less complex when the resistivity is decrealweelvariation of the magnitude

of the magnetic field withr at¢ = 0 can be seen in figure 4.49. Here, the magnetic field is
considered to have fallen to zerg | < 0.01. By this definition three nulls are created for
n = 3.1724 x 1071° |, whilst eight are created foy = 3.1724 x 10~!2, so that more non-
adiabatic regions (sites of particle acceleration) haenlmeeated for lower resistivity.

IBI At t=0., 50 modes, eta=3.124e—10
10* [ o] i

107° 107° 107* 1073 1072 107" 10°
r(d_p)
IBI At t=0., 50 modes, eta=3.124e—12
‘ AT ‘ :

1Bl
o
o
o

107° 107° 107* 1073 1072 107" 10°
r(d_p)

Figure 4.49: Magnetic field variation with distance from thél at¢ = 0.s. The resistivity,
n = 3.1724 x 10~ in the top plot, and) = 3.1724 x 10~'2 in the bottom plot.

Changing the decay time and period of the eigenmode osoiltlso causes changes in
the electric field. The change in decay time does not affetigies over the time of this
simulation, since particles are only followed for 1s, anel decay times of all of the modes
(for both values ofy) are longer than this. However, decreasiripes make the electric field
less noisy, as can be seen in figure 4.50. It can thereforermucted that it is not the nois-
ier electric field that causes particles to become more Wighérgised in the comparisons
of cases 1 to 5. Rather, it is the creation of further accetarasites within the magnetic
field.
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Figure 4.50: Electric field variation with time at= 0.s. The resistivityy; = 3.1724 x 10~1°
in the top plot, and) = 3.1724 x 10~'2 in the bottom plot.

4.7 Conclusions

In this chapter, | have investigated the behaviour of pretmd electrons in noisy magnetic
and electric fields. We have seen that adding more pertuebatodes to the fields causes
particles to gain higher energies. The reasons for thisvavotd: the perturbations change
the form of the magnetic field such that more nulls are creatad the particles become
trapped. There are therefore more regions where partialedecome energised, and par-
ticles spend longer in these regions. Since electrons ginéeli, they are more affected by
perturbations, and so are energised more quickly. Thetsefurl protons have been pre-
sented in Burge, Petkaki, and MacKinnon (2012). | have aldoutated the thin target
X-ray bremsstrahlung for the distributions of electronrgres att = 0.1s. We have seen
that adding more modes produces more realistic X-ray spelftthe electric and magnetic
fields are static, the spectrum produced is composed of #lemission. When modes are
added, we see non-thermal emission being produced.

Other work on test particle simulations of 2D reconnectiegions (e.g. Petkaki and MacK-
innon (2011)), show identical results for the energy distiions for electrons and protons
in the case where there are no perturbations (using the satia¢conditions as used in this
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thesis). Initially, it was hoped that the use of a spectrumesturbative modes would signifi-
cantly enhance acceleration due to resonant-type intenactThis was because Petkaki and
MacKinnon (2007) found that certain frequencies prefeafigtaccelerated different parts
of an initial proton spectrum, therefore it was proposed argpectrum of frequencies would
accelerate all parts of the distribution. In Petkaki and Kiaoon (2007), certain frequencies
produced bimodal distributions of proton energies, similecharacter to the energy distri-
bution for case 5 at= 1s. This makes the distribution for case 5 surprising, as thes®ns
were accelerated by fields perturbed by a superposition ofi&fes. It is possible that one
of the frequencies used was especially effective at actalgr particles, thus producing a
distribution similar in character to those seen for singégjiency disturbances. If this is the
case, we know that the eigenmode in question must be in ta0 to n = 49 range, since
this effect is not seen in any of the other cases.

| also investigated the consequences of using a differesttilolition of eigenmode oscil-
lations to compose the electric and magnetic fields. The it&undpl of the modes was dis-
tributed according to & °/3 spectrum, wheré is the wavenumber of the eigenfunction. It
was found that such a distribution did not accelerate gagtias efficiently as a flat spectrum
of modes, probably because the field produced were smaleveter, when the amplitude
of the field is sufficiently high, thé—°/3 spectrum produces a high energy tail of particles
that is more realistic than the energy distribution produmgthe flat spectrum of modes. For
the flat spectrum of modes, many patrticles leave the sinoulais they travel large distances
in the z-direction.

| have also investigated the consequences of changing the ohthe inertial resistivity. A
decrease in the value of the inertial resistivity meant thatfields were more efficient at
accelerating particles. Decreasing resistivity leadsianges in the formation of the small-
scale nulls, so that more such nulls are created away fronveghecentre of the region.
Since there are more sites of particle acceleration, pastan become more highly ener-
gised.



5. Effect of Collisions on Particle Tra-
jectories

5.1 Introduction

In this chapter | will describe work aimed at including théeets of binary collisions in test
particle calculations. | start by recalling Honeycutt'992) extension of the RK4 method
to stochastic differential equations. | will apply this inedl to the 1D problem described by
MacKinnon and Craig (1991), verifying that it reproduceslgtical results for the distri-
bution function, at least as well as simpler numerical méthd he 1D Fokker-Planck (FP)
description is only valid when electrons move adiabatycsdi | will next recast the descrip-
tion of scattering in terms of all three velocity componewts a further check | will confirm
that the 3D description applied to the 1D problem reprodtieed D results. As a first appli-
cation of this method I will study collisional cross-fieldastering of suprathermal electrons.
Finally, with confidence in the code established, | will us®istudy the modifications to
electron acceleration near null points.

5.2 Collisionsin the Solar Corona

The test particle calculations carried out in Chapter 4 ictamed particles in a collisionless
plasma. However, it seems obvious that particles in a reanph will undergo collisions.
It is also known that in order for hard X-rays (HXRS) to be dedt particles must undergo
collisions. Therefore, in order to account for coronal HX¢uces (e.g. Masudat al.
(1994Dh)), collisions must be introduced into the accelenatnechanism. Because protons
are heavier than electrons, collisions will have a greatgaict on electron trajectories.

Masudaet al. (1994b) suggested that a coronal HXR source could be creégtadrery high
temperature plasma at the top of a flaring loop. However, eliér (1995) pointed out,
a HXR source created by heating should be seen to increageiasthe plasma expands.
The fact that this is not seen would then require some kindadma confinement at the

121
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top of the loop (e.g. Fletcher and Martens (1998) found thatagnetic bottle could be

formed by the geometry of the current sheet). If instead dlog ltop source is a result of
non-thermal particles that are created by transport effext source of thermal emission is
required.

Hamiltonet al. (2003) developed a method of including collisions whendwihg particle
trajectories, but their method included only energy changecollisional scattering. If pitch
angle scattering via collisions is taken into account whamsalering the trajectories of par-
ticles at an X-type neutral point, it is hoped that particle return to the non-adiabatic
region more frequently, leading to particles attaininghieigenergies. In this chapter, 1 will
address scattering due to binary collisions, a processevsiagistical character is well un-
derstood.

The inclusion of collisions means that the random forcescivithese collisions generate
must be modelled. This is done by describing the particl@gon using stochastic differen-

tial equations, which are easier to solve computation&tpchasticity can be modelled by
the inclusion of a Gaussian random noise process in thersystdifferential equations. This

can be done by using a Wiener process (a continuous-timieagtic process) of the required
mean and variance to calculate a new value of the Gaussiaa component each time it is
required. Then the envelope of the particle trajectorigmiserned by a Fokker-Planck (FP)
equation (e.g. Gardiner 1983).

The general form of a FP equation wiih- 1 independent variables, 1, x5, ..., x,,) IS given
by

df df Dd*f
I/ [ i 5.1
@ a2 S
where f is the distribution function being considered. According3ardiner (1985), a FP
equation can be written as a stochastic differential eqoaif the form

dx = A(X, t)dt + D(x, t)/>dW(t). (5.2)

The first term of (5.2) is a slowing down term. The second teiithbe evaluated by using
a stochastic RK4x is the vector(xy, 2o, ...x,,), W(t) is an n-variable Wiener procesb,
gives the amplitude of the scattering term.
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In 1D, the non-relativistic FP equation is (see e.g. Mackdimand Craig (1991))

%+m%§4§(§)—%%(uﬂﬁ%):& (5.3)
[ is the distribution function of the electron§, = 4re*An/m?, whereA is the Coulomb
logarithm, usually taken to be 25 in the solar coropas the cosine of the pitch angle of
the particle, and is the distance that the particle has travelled along thenetagfield line.
This equation is valid for the case where the gyroradiusig small and particles are tied to
field lines. Under these circumstances, the motion of artrelecan be described using just
its pitch angle and velocity. In a cold medium, the electrsizsv down deterministically.
Later, this will be generalised this to a 3D description, vehie evolution ob,,, v, andwv,
will be followed.

MacKinnon and Craig (1991) examined how a FP equation coeldeplaced by a set of
stochastic differential equations which can be integraecherically using Euler integra-
tion. However, in order to integrate particle trajectoie®scillating electric and magnetic
fields, a more accurate method of numerical integration Wwasen, a stochastic fourth-order
Runge-Kutta (RK4) method. The stochastic RK4 method hasjer benefit of reducing
to the deterministic RK4 methods used in the previous chaptbe absence of noise.

5.3 Stochastic | ntegration Methods

5.3.1 Deterministic RK4

In the original Runge-Kutta method (Prestsal. (1992)):

At ky 2k 2Ky k&
(A =z + (- 2 22

6 (At ar T At A (5.4)

wherez is the variable being considered, (which in this case,isv, or v,), At is the
timestep being used, and

]i]l = Atf(t(], Io)

kz = Atf(t(] + %,xo + %)
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ks = Atf(to+ 4L, mo + 22)
ko= Atf(to+ 5, mo + 2.

Att = 0,t = tg, x¢ is the value of the solutiont] att = t, and f is the function being

considered. Equation 5.4 provides a numerical estimateadf = At. This gives a solution
of the equation being considered with an associated erreabrder ofA#®.

5.3.2 Stochastic RK4

Honeycutt (1992) considered the one-variable additiveeneguation

dx = f(x)dt + DdW (t). (5.5)

W (t) is a Wiener process which scales(dst)'/2. If this is integrated from 0 ta\t, and
the Taylor expansion of is taken, an expression faf(At) is obtained which includes a
stochastic termi(At). The full form of R(At) is very lengthy, and can be seen in Honeycutt
(1992). The stochastic RK4 that is developed must have time statistical properties as
x(At) for the deterministic part, an®(At) for the stochastic part. In order to develop a
stochastic integrator, Honeycutt (1992) considered thaion

d;z:_

— = Fla). (5.6)

The algorithm for integrating this via second order Rungsdt&integration is

where

Fy = f(x0)

FQ = f(SU(] + AtFl)



CHAPTER 5. EFFECT OF COLLISIONS ON PARTICLE TRAJECTORIES 125

However, this algorithm cannot be used to integrate equatid directly, due to the presence
of a stochastic term. Instead, IB{z) = f(x) and introduce the stochasticity as part of the
integration algorithm.

2(At) = 20 + %(F1 + Fy) + (2DAt) 29 (5.8)

v is a random number witke)) = 0 and(¢?) = 1. D is the amplitude of the stochastic
term. For purely mathematical problems the amplitude of tian be varied arbitrarily.
For physical problems, care must be taken to select an apat®walue ofD (e.g. via
comparison with the FP equation governing the distribytidinis can then be extended to
a fourth-order Runge-Kutta via comparison with the usugihsinistic RK4 method found
in Presset al. (1992):

At 1

where

Fy = f(xo)
Fy = f(zo + AtFy + (2DAL)z1))
Fy = f(xo + AtFy + (2DAL)z1))

Fy = f(xo + AtFy + (2DAt)21))

5.4 The Test Problem

In order to develop and test an RK4 algorithm, | will considgrroblem which already has
a known solution. The problem used was that considered irkiaon and Craig (1991),

which dealt with pitch-angle scattering of particles in axmoagnetised medium. The FP
equation for this problem also has a known analytical sotutior the spatially homogeneous
case) which is given in terms of the Legendre polynomials¢civacts as a further check for
the stochastic RK4 solution. MacKinnon and Craig (1991 etflepved a stochastic system for
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calculating the variation in particle pitch angle that makese of the Ito form of a stochastic
differential equation.

The FP equation can be replaced by a system of stochasgcafiffal equations (s.d.e s).
As shown by MacKinnon and Craig (1991) this general equiaden this particular case
means that evolves according to the s.d.e.

o oa\q1/2
du:—U?gBdt+[(lv(t;;>] r(t)dt, (5.10)

wherer(t) is a Gaussian random noise process. The initial distribuSanonoenergetic.
Speeds are normalised to the initial speg, distances are normalised(tginm?)/(4me*\)
and times are normalised fo3nm?)/(4re*)), wheren is the density of the plasma and
is the Coulomb logarithm. It should be noted here thas also evolving with time; the
particles are slowing down monotonically. This can be irdégd using the Euler method or
by using stochastic RK4 with a noise term

D= [M} . (5.11)

U3
HereD is chosen by directly comparing equations (5.9) and (5.Ihis means that in
the FORTRAN code for the stochastic RK4 method, when integgaan s.d.e, all of the
r.h.s. of equation 5.10 is not evaluated. Instead, only tsetérm of the r.h.s is integrated,
and the second (stochastic term) is included as part of tiegrator itself. | carried out
a comparison of the 2 methods. A particular example is showfigure 5.1, at = 0.06
(the stopping time for these particlestis= 1/3). This shows that all three solutions are in
close agreement. Similarly good agreement is found for tatees. This apparently simple
process, of adding a Wiener noise term to each of the RK4t@gras justified in detail by
Honeycutt (1992).
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1D Euler:0 particles leave simulation —
1D RK4: O particles leave simulation
Legendre Polynomial

800 — —

600 —

400 —

number of electrons
T

200 —

Pitch Angle

Figure 5.1: Comparison of stochastic RK4, Euler integrateind the exact solution evalu-
ated using Legendre polynomials, t=0.06.

5.5 3D Description of Particle Motion

5.5.1 Equations of Motion

MacKinnon and Craig (1991) is applicable if particles agsttightly to field lines and do
not drift across the field. If particles are no longer tiedntig to field lines, e.g. near a null,
a more general 3D description is needed. In order to make=#tgtoblem more generally
applicable, 1 will now consider how to re-cast it in the forrnaoset of 0.d.e.s such as those
given in equations (4.3). | want to introduce collisionahtering by extending (4.3) to
include stochastic terms. It should be noted that this gwius merely a generalisation of
that given in MacKinnon and Craig (1991). Such a generatinaghould be made in order
to follow the evolution of the particles in, v, andv,. Once this is known, the behaviour
of particles in the presence of electric and magnetic fieats also be considered. In the
first instance | am considering a problem in which no eledrimagnetic fields are present.
Equations (4.3) are therefore rewritten as
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Ccll—f = U, (5.12a)

dy

— =y (5.12b)

dz

& _ 12

o = U (5.12c)
dp, = —A(X, t),dt + (DY2dW), (5.12d)
dp, = —A(x, t)dt, + (D'2dW), (5.12¢e)
dp, = —A(x,t)dt, + (DY2dW).. (5.12f)

The drift A(x,t) and diffusion term® will now be determined by exploring how the dis-
tribution function of the particles evolves, and using timrmation to develop drift and
diffusion terms for the behaviour of a single particle. Iiib this by drawing on the known
velocity diffusion coefficients in a FP description (Trukow (1965)) and the equivalence be-
tween FP and s.d.e. descriptions. Once the coefficientedirgt- and second-order terms
in the FP equation are knowA,andD immediately follow.

According to Trubnikov (1965), the effect of collision8{”, whereC®/? is the sum of the
drift A(x,t) and diffusion term®) on a particle, moving through a medium of particles
of type 3 is given by

CHP = (=V,j*"), (5.13)

where .
" = —F fo = D"V f. (5.14)

o

The first term on the r.h.s is the slowing down term. The sedend on the r.h.s is the

scattering term. When equation 5.14 is inserted into eqndiil3, the first term on the

r.h.s of equation 5.14 turns out to be analagous to the first to the r.h.s. of equation

5.2. Similarly, the second term on the r.h.s of equation futds out to be analagous to the
second term on the r.h.s. of equation 5.2. The subsceptz, y, ) , as does the subscript
k and f, is the distribution function of particles of typeand

20
Fe/s = Za © pols (5.15)
mg 8vk
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0 — Vs
D“/B Joo/p Y Ok — Vilk (5.16)

v3

2
oo = 2 (s

47 Mg,

Here\ is the Coulomb logarithm, which is usually taken to be 25 mdblar corona, anas

is the number density of particles, which isl0°cm =2 in a typical flare loop (Aschwanden
and Benz (1997)). It should be noted that the velocity of thlel fparticles is taken to be zero,
since in this case the behaviour of a particle with a velogitich greater than the thermal
velocity is being studied.

| want to obtain an expression for the slowing-down tef{x, t)), so equation 5.15 must

be rewritten. To evaluat%Di/ ? must be rewritten as

0 o/ 0 [ 1%, —vv 0 [v%6;, —vv 0 (0%, —vv
_Da Ka/g 1T 1Yx = 1Y 1Yy 1z 1Yz
vy, (8% ( v3 ) i vy ( v3 * v, v3

(5.17)

One can then write the first term of the R.H.S as:

0 V20 —vive | _ 0 U25zz Ux v 5yac UyUz V20,0 — V00
Ovg ( T Ovug + + 3 !

v3 v

which equals

2 2
9 v 6961 —’Uz + Sy vyvz + 02020 — V05 _ 0 V™ —Vp —UyVUz —Vz Uz
Ovg 3 Ovg :

v v3

Evaluating the above, for the first term of (5.17) gives:

£J£ﬁﬂﬂﬂﬁ)=%®ﬂw+%+w—#@w+%+w»

3

And similarly, the second and third terms of (5.17) are

L(M>_L(3U2(U + vy, +v,) — v} (v, + 3v, +v,))
Ovy b AN Y z z Y 20

3

V3

&(ﬁﬁﬂ&ﬁﬁ)=%®ﬁw+%+wyﬂﬂw+%+%m,
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which gives

0 _
—D;);c/ﬁ — Koz/ﬂ (

8vk

Uy + Uy + V)
3

There is also a first-order term which is obtained from thésioh term. When this is added
in, and recalling that the slowing-down term is given by

0
A(x,t) = —Kko/8la 2 pols 5.18
(X7 ) mpg avk ik ( )
a slowing-down term of the form
Ax, 1) = K8 (e 1o (—ﬁ W —2> 5.19
S e G (5.19)

can be obtained. | now wish to sum over interactions with edéctrons and protons. The
particlea is always an electron. This because ions do not scatter vech rrollisionally in
pitch angle. The particle that it is colliding witl¥)Y can be an electron or a proton. Summing
over collisions with electrons and protons gives

A(x,t) = Ko/? <m— + My 2) ( Ve Uy —%> . (5.20)

me My v3’ w3 0l

Since protons are so much heavier than electrong/:.. = 1836), the termZ—; can be
neglected. This gives a slowing down term

B a/g (Vz Uy Uz
Therefore
Ko/By,
A(X,t), = =3 3 (5.22a)
Ko/B
A(X, t), = —3—— (5.22b)
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Ke/By,

A(X,t), = —3 3

: (5.22c)

A physically correct value oD must now be determined for this problem. This can be ob-
tained by considering the interaction of a test particldwaifield of 'background’ particles.
According to Trubnikov (1965), the diffusion term can betiam as

0 [ v¥y — vivg  Of,
DB — [gels 2 ik Ttk Za) 5.23
ik ov; ( v3 vy, ( )
| therefore need to evaluate
0 [V, —vivy  Of,
: . 24
ov; ( v3 8%) (5-24)

Expanding this gives

0 (V%6 — v;up 0fa _ 0 (126, — v;U, 0fa N 0205, — VU Ofa N v28;, — v;v, Ofa
ov; v3 vy, ov; v3 v, v3 v, v3 ov,
(5.25)

Evaluating the first term

o) (v25mfvivz . %) —

Ov; v3 Ovg

v?—v2 92f  Bug(v:—v2) 8f

v3 G2 v Ovg

ve (3Y5 Of of of
+v_3 (v2 e Uyavyavz T us

v (302 0f of _ of
+vg ( 1)2Z Ovg Uz v, Ovy Ovg ) *

Similarly, the second term of (5.25) equals:

o 028, —v;vy C0fa )
Ov; v3 vy )
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v (3vzof ., _9f _ Of
v3 \ 0?2 Auy T Qug Ovy Ovy
U2,U§ 2f 3vy(v27v§) af

T e T T o vy

vy [ 3v2 Af af af
+v_gl’ (v2 vy Uxavzavy o a_vy> )
And the third term of (5.25) equals

0 (v?émvwz . %) _

Ov; v3 Ov,

ve (302 Of of _ of
v3 v2 Ov, T vy Ov, v,
v ((3vy of of of
_'_U_?’ (v_2 v, Uyavyavz v,
+U2—Uzﬂ _ 31)2(1)2—1)3)%
v Q2 v° v, "

Bringing the 3 terms together, this can be written as theimatr

vg + U; —UpUy  —UgU,
_ 2 2
D= e —UgUy VI VS —UU, (5.26)
2 2
—VgV,  —UV, U+ vy

plus a first order term, which will be added into the slowingvdderm

) . 21135 8f 2Uy af 2vz 8f
First order part ab;;, = B T T

(5.27)

Recall that the stochastic term is given9k*/#D)*/2.r),.dt'/?, wherer is a vector contain-
ing the random numbers by whi@'/? will be multiplied (r)dt'/> = dW), thus obtaining
the noise term in the stochastic RK4 method. | therefore wakhow the ‘square root’ of
the matrixD. According to standard theory, everyx n matrix can be writte?/LV ~*. L is

a matrix whose diagonal values are the the eigenvalues ofigiiex, and whose other values
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are 0. V is a matrix whose columns are the unit eigenvectors of thgirai matrix. The
matrix D'/2 is therefore constructed as

DY/2 = VEV !, (5.28)

whereV is a matrix whose columns are the unit eigenvectorBpandV ! is its inverse.
E is a matrix whose diagonal values are the square roots ofgeealues oD, and whose
other values are 0. The eigenvaluesf a3 x 3 matrix M are calculated as follows.

det(M — \) = 0, (5.29)

where | is the identity matrix andet indicates the matrix determinant. The eigenvalues,
of D were found using Mathematica, and are given by

AL = E (5.30)

v

1
)\2 == — (531)

v
A3 = 0. (5.32)

The corresponding eigenvectorg @re found using the relation

Dx = A\x. (5.33)

Thatis,the eigenvector is the vector which, when multgbbg the corresponding eigenvalue,
returns an answer which is equal to the product of the origiadrix and its eigenvector. The
eigenvectorsx) of D are

=10 (5.34)
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—y

0
= | (5.36)
1

D2 can then be calculated, and turns out to be:

] vg + U; —UpUy  —UgU,
1/2 _ 2 2
D/ = 57 —UpUy VI VS —UU, (5.37)
2 2
—VUgU,  —UU, UL+ vy

At energies below the thermal speed, diffusion in particlergy becomes important. How-
ever, thisis notincluded here as this approach assumgsatiatie energies are much greater
than the thermal speed.

5.5.2 Different Coordinate Systems

Itis sometimes numerically expedient to use polar cootdmen order to study the stochastic
behaviour of a particle. For example, it will be seen in SBtH.9.2 that when considering
the motion of particles at an X-type neutral point, it is maceurate to use polar coordinates
since numerical errors arise when modelling the slowingrdaiva particle if Cartesian
coordinates are used.

If we change variables from,,v,, v, to v, i, 0,the Fokker-Planck equation describing a
particle undergoing drift and diffusion becomes:

sin’ (@)

DU DI (), L F gy

op sin?(¢) 020

whereD = %’;e‘l andu = cos(¢) (¢ is the particle’s pitch angle andis its azimuthal
angle). The enérgy loss and scattering terms can be reddibea from equation 5.38, and
the form of the stochastic differential equations obtaif@dhe motion of an electron can
be seen in Section 5.10.
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5.6 Redativistic Collisional Scattering

5.6.1 Slowing-Down Term

As has been noted, the above approach is not valid for redtatiparticles, that is for parti-
cles with energies greater than160 keV. Leach and Petrosian (1981) discussed collisions
in the relativistic case and found that the energy changealoellisions is given by

dE  4wrien

T (5.39)

wheren is the number density of the plasma anRds the classical electron radius, which is
given byrg = ¢?/(m.c?). The factors = v/c.

Since, in ¢.g.s unit& = (v — 1)mdc?,

dy 4meten; A

— 5.40
dt MV ( )
It is known that
dg 1 dvy
_ = 5.41
dt B3 dt’ ( )
and
dv
Therefore
dv dﬁ@ ¢ dy (5.43)

dt — dtdB g3 dt’

which means (substituting from 5.40):
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dv 1 dre*n)\ 1

i s el (5.44)
The non-relativistic slowing-down rate is
d 4retn) 1
L S (5.45)

dat m2  v?

It can be seen that the only difference between the aboveiequand the slowing-down
rate given by Leach and Petrosian (1981) is a factot /of*. Therefore in order for the
equations of motion to be relativistic, a factorigfy® must be included in the slowing-down
term.

5.6.2 Change in Pitch Angle

According to MacKinnon and Craig (1991), the non-relaticiserm giving change in pitch
angle is given by

Of  Ame*n\Of 2 Of
=L = L (a-»HE). 4
ot~ m2o® ou <( M) o (5.46)
Leach and Petrosian (1981) give a relativistic pitch angletwhich has the form
of me*nA3+~0f 0 Of
A — (1 - — . 5.47
ot m2vd 4% Ou (1=p )8,u ( )

It can readily be seen that equation 5.47 is equal to equé&tid® forv ~ 1. Therefore
in order to make the scattering term relativistic, the ‘eastsrength’ in the stochastic RK4
becomes

3+

D = (K°/* 4727 B)/2.r. (5.48)
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5.7 Conversion to Numerical Method

Since the stochastic differential equations have now beagtew out, they must be solved
numerically using the stochastic RK4. The scattering tesh{5.12) are therefore taken and
used to determine a value of the noise strenbth,

The stochastic term looks like:

Dy = ((2K*PD)Y2 . 1), dt"/?.
Recall that for the stochastic RK4

At 1

wherey is a random variable and the stochastic element of the iattegis contained within
the final term. Comparing the previous two equations theegjives

D = (K*/PD)1/2 ¢, (5.49)

This gives a 1 x 3 matrix of values fdp. | will extend the 1D approach of Honeycutt to
3D without further formal development. Inspection of heguanent suggests that her 1D
description should be straightforwardly extensible to Ibe algorithm for stochastic RK4
can therefore be written as

Fl = f(.CCO + (2At)1/2D)
Fy = f(xo + AtF, + (2A1)Y2D)
Fs = f(xo + AtF, + (2A1)Y2D)

Fy = f(zo + AtFy + (2A1)Y2D). (5.50)

5.7.1 Application to Test Problem

In order to test this approach, the Mackinnon & Craig tesbf@m is recast as a system of 6
0.d.e.s, as follows
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E = Vg (551a)
dy
dz
4= _ 51
priaks (5.51c¢)
LK . 12
dv, = =3— dt + ((KAtD)Y2dW)), (5.51d)
K -
dv, = —3—Ydt + (K AD)Y2dW)), (5.51e)
v
dv, = —3K”Z dt + ((KAtD)Y2dW) (5.51f)

K has unitsms—2, and is made dimensionless in accordance with the units okif@mon
and Craig (1991), so that

Ke/Pr  Ame*luinm? 1

3

K= = —
2 4y 3
vy m?2  4met v

=1, (5.52)

wherer is the normalising time for this problem. Again, only the ffiterm on the r.h.s of
equations 5.51d to 5.51f is evaluated. The second term ontilse is incorporated directly
into the stochastic RK4 as the form of the noise teiim,

I have recast the differential equations describing plarticotion in terms of Cartesian co-
ordinates to allow combination of Lorentz and collisionaides. However it is known that
particle speed decreases monotonicallyl 48. It is also known (from MacKinnon and
Craig (1991)) how the distribution of particle pitch angksould evolve with time. The
3D stochastic code should reproduce this behaviour. Thieead the pitch angle: must
therefore be calculated. This can be done using

= —. (5.53)

The resulting distributions for can be seen in figure 5.2, which compares the distribution
of . values att = 0.18 as calculated from integrating 5.51 using the stochastid,Ri¢
calculated exactly using Legendre polynomials, and asikd by using Euler integration
to integrate 5.10. All three solutions agree closely. Tlsvslg down of one electron can
be seen in figure 5.3, which compares the change in speed décetnoa as calculated by
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integrating the set of equations 5.51 using the stochastit \®ith the speed of an electron
as calculated using = (1 — 3t)'/3 (MacKinnon and Craig (1991)).

It is known thatv evolves deterministically, but here random quantitiesadded to the
components of. | therefore wish to be sure that the patrticle still slows danonotonically.
Speeds are normalised to the initial speegl, distances are normalised(tgnsm?)/(4met )

and times are normalised toingm?)/(4me)).

500 T T T T ‘ T T T T ‘

1D Euler:41 particles leave simulation
3D RK4: O particles leave simulation
Legendre Polynomial
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Figure 5.2: Comparison of stochastic RK4 integrating a §éteguations to determine the
velocity components of the particles, Euler integratioth&f same solution reduced to one
equation, evaluating the pitch angle of the particle onlynd ¢he exact solution evaluated
using Legendre polynomials, t=0.18. All three solutionseagclosely.



CHAPTER 5. EFFECT OF COLLISIONS ON PARTICLE TRAJECTORIES 140

Analytic Solution
3D RK4 -
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Figure 5.3: Comparison of the calculation of the slowing davf one electron calculated
using stochastic RK4 integrating a set of 6 equations andvalpating the analytic solution
of MacKinnon and Craig (1991). The two solutions agree diof® the stepsize shown,
which is 0.0001.

The effect of choosing a different stepsize was also ingattd. Figure 5.4 shows that
the slowing down of an individual particle is very sensitteethe choice of stepsize if the
particle is followed using the stochastic RK4 method. Itm®wn (e.g. Presst al. (1992))
that the error associated with RK4d5h°), whereh is the stepsize being used. When the
particle’s trajectory is calculated analytically in themnar of MacKinnon and Craig (1991),
stepsize is not as important. The analytical and numerwiattisns diverge, particularly
at highert because the analytical solution is exact, where as the ncatheplution has an
error associated with it. These errors accumulate oveiirtieeaf the simulation, and so the
solutions begin to diverge.
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Stepsize=0.01 Stepsize=0.00"1

Analytic Solution
3D RK4

Analytic Solution
3D RK4
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t t
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Figure 5.4: Comparison of the calculation of the slowing davf one electron calculated
using stochastic RK4 integrating a set of 6 equations andvalpating the analytic solution
of MacKinnon and Craig (1991). The two solutions agree mdosaty as the stepsize is
decreased.

Although the choice of stepsize has a significant effect erstbwing down of an individual
particle, it does not greatly affect the overall distriloutiof the particles’ pitch angles. The
distribution of particle pitch angles at= 0.3 for stepsizes 0.01 (figure 5.5),0.001 (figure
5.6),0.0001 (figure 5.7) and 0.00001 (figure 5.8) can be selewb

It can be seen that decreasing the stepsize does not havateefieet on the overall dis-
tribution when the pitch angles are evaluated using vel@mmponents that are calculated
using RK4. In fact, the effect of stepsize is much greatethendistribution where the pitch
angle was calculated directly using Euler integration aMacKinnon and Craig (1991).
Using a smaller stepsize meant that fewer particles lefsthreilation (i.e. fewer particles
attained non-physical pitch angles), and the solution Wasec to that given by the Legendre
polynomial solution and the RK4 solution.
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3D RK4: O particles leave simulation
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Figure 5.5: Comparison of stochastic RK4 integrating a §ét@guations to determine the
velocity components of 100 000 particles, Euler integratbthe same solution reduced to
one equation, evaluating the pitch angle of the particlg ¢rand the exact solution eval-
uated using Legendre polynomials, t=0.3. The stepsize wssd0.01 for both numerical

integration methods.

5.8 Cross-Field Scattering

It is well known that particles can diffuse across field linesmagnetised plasmas (e.g.
Galloway, Helander, and MacKinnon (2006)). In order forss-dield diffusion to happen,
there must be some kind of stochastic process involved. elffiid lines themselves are
tangled or subject to stochastic fluctuations (e.g. Reehastd Rosenbluth (1978)), particles
can diffuse across the field. Tangled field lines have beearoed by the TRACE (transition
region and coronal explorer) satellite; an example of saclyled field lines can be seen in
figure 5.9.

Particle collisions can give rise to diffusion across thgneic field. It was therefore thought
that the stochastic RK4 method could be used to simulatesdielsl scattering. In order
to test this, a simulation was constructed which considarsthgle electron starting with
velocity in thez direction only, moving through a magnetic fielt) = 1G, B, = B, = 0,
with no electric field present.
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Figure 5.6: Comparison of stochastic RK4 integrating a §ét@guations to determine the
velocity components of 100 000 particles, Euler integratbthe same solution reduced to
one equation, evaluating the pitch angle of the particlg ¢rand the exact solution eval-
uated using Legendre polynomials, t=0.3. The stepsize wssd).001 for both numerical
integration methods.

5.8.1 Equations of Motion

The equations of motion of a test particle in electric and megig fields are given in (4.3).

When the slowing down terms given in (5.51) are introducé)(is re-written for electrons

moving in a fully ionised hydrogen plasma. Recall that sdihal scattering is introduced
by integrating these equations using the stochastic RK4.egoations (5.55a) to (5.55c¢),
no noise is added. For equations (5.55d) to (5.55f), theerteisn given in equation (5.49)
is used. For this simulation times are normalised to thetreleayyroperiod,speeds to the
initial speed of the particle,and mass to the electron restsnThe non-relativistic electron
gyrofrequency is given by (in c.g.s units):

Wee = eB/m.c = 1.76 x 107 Brad/s (5.54)

Therefore whem3 = 1@, the electron gyroperiod i%.57 x 10~7s. Using the above set of
normalisations, and adding the magnetic field term, (5 $Written as:
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Figure 5.7: Comparison of stochastic RK4 integrating a §ét@guations to determine the
velocity components of 100 000 particles, Euler integratbthe same solution reduced to
one equation, evaluating the pitch angle of the particlg o@ind the exact solution evalu-
ated using Legendre polynomials, t=0.3. The stepsize ussdd001 for both numerical
integration methods.

dx
— = U{L’
dt
dy
— =
dt 4
dz B
ar
dv Ko -
—r__3=" KAtD)/*W
Me dt 3 3 + (( ) )z
dvy f(vy - 1/2
me— = —2nB,v, — 37 + ((KAtD)/“W)),
d z K z o
med_i — 27B,u, — 3—= + ((KAD)°W)).
v

(5.55a)
(5.55D)

(5.55¢)

(5.55d)

(5.55€)

(5.55f)
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Figure 5.8: Comparison of stochastic RK4 integrating a §éteguations to determine the
velocity components of 100 000 particles, Euler integratbthe same solution reduced to
one equation, evaluating the pitch angle of the particlg o@ind the exact solution evalu-
ated using Legendre polynomials, t=0.3. The stepsize ussdv0001 for both numerical
integration methods.

Here, the factoi®/? is made dimensionless, so that

N o/8
g AT (5.56)

Vo

The normalising time is (in this case, the particle gyroperiod), angdis the normalising
speed (in this case, the initial speed, 0.1c). A factavas introduced, which is the ratio of
the gyroperiod and the collision time. This was used to st&eslowing down and scattering
terms. This can be considered to be analogous to alterindethgity of the plasma that the
particle is moving through, which of course leads to changeke slowing down rate and
scattering frequency of the particles.

All electrons are started at positian= y = 0. They are also given the same velocities,
0.06¢ in the x direction,0.06¢ in the y direction and).05¢ in the z direction. The ‘push’
in the y direction causes the particle to gyrate around the magfieletin the absence of
collisional scattering. Particles were followed unti: 12.4, which is the stopping time for
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Figure 5.9: Tangled magnetic field lines in the solar coronalaserved by TRACE (Gal-
loway, Helander, and MacKinnon (2006)). The far left parfevgs an example of regular,
ordered coronal loops. The middle and right hand panels shove tangled, disordered
loops. Galloway, Helander, and MacKinnon (2006) proposedlaionship between the
random walk of scattered particles and diffusion acrossfigid lines as a result of this
macroscopic tangling.

electrons ifA = 1. The monotonic slowing down of one electron can be seen indigLLO.
The slowing down of the particle is smooth, and monotoniexsected.

Figure 5.11 shows how an electron’s trajectory is alterednfsimple gyromotion for in-
creasing values ok, i.e. when more collisional scattering and slowing downdded. As
the size of4 (and thereforek) is increased, the particle’s trajectory begins to changen f
simple gyromotion. Wheml = 1, the particle’s trajectory is substantially altered, dae t
change in direction and increased deceleration, the padmes not travel as far in the x
direction.

Figure 5.12 shows the y position of 10 000 electrons evefyd@roperiod in the case$=0,
0.01, 0.1 and 1. All electrons began the simulatiom at y = 0. For low values of4, (i.e.

for less pitch angle scattering), the peak of the distrdoutiepends mostly on the electron
position as it spirals around the field. At smallér particles cluster around distinct points
at each half-gyroperiod. With increasing particles spread out in the y-direction as time
increases, so that their positions are not primarily detggchby gyromotion. Histograms
were plotted at = 0,0.57, 1.7, 1.57...127, 12.57, wherer is one gyroperiod. Each histogram
is plotted in a different colour. Colours closer to blackresent earlier times, colours closer
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Slowing down of electron undergoing crossfield drift
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Figure 5.10: Slowing down of one electron in the case- 1. There is no electric field, and
the magnetic field is 1G in thedirection only

to red represent later times. A total of 24 histograms weottgl for each value ofl, one
for each half-gyroperiod.

It can be seen that the peak of each distribution deviates @wad more from its expected
position as the simulation progresses. The position of dak pf the distribution is plotted
for successive gyroperiods in figure 5.13, which shows thadisplacement of the peak of
the distribution varies linearly with time. For the initiebnditionsA = 1, B = B, = 1G,
1p=0.1c andh = 1. x 10*em =2 (this high density was chosen to give a short slowing-down
time, which could be quickly simulated), the electronstdadross the field at the rate of
~ 2 x 107cms™1.

Figure 5.14 shows the average displacement of the distibbut z. As in figure 5.13, the
displacement of the peak varies linearly with time, at agppnately the same rate as the
displacement iny.
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Figure 5.11: Electron trajectory in the cases A#02,10~* and 1. There is no electric field,
and the magnetic field is 1G in the x direction only

5.8.2 Perpendicular Diffusion Coefficient

It should now be possible to construct a coefficient to desdtie diffusion of the particles
across the magnetic field. It is known that the perpendiaifusion coefficient O) in a
thermal plasma is (Helander and Sigmar (2002))

p?
D~ (5.57)
T

wherep is the particle’s gyroradius andis its collision time This expression is normally
given for thermal particles; | assume it can be extended mbh@wmal particles. The gyrora-
dius is given by

U(l _ M2)1/2

eB/mc (5.58)

p:
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Figure 5.12: Distribution ofy position at every half a gyroperiod for different am-
plitudes of slowing down and scattering terms, i.e. histogg were plotted at =
0,0.57, 1.7, 1.57...127, 12.57, wherer is one gyroperiod. Each histogram is plotted in a dif-
ferent colour. Colours closer to black represent earliaet, colours closer to red represent
later times.

where . is the cosine of the particle’s pitch angle. is taken to be equal to the energy
loss time, which is the same as the collisional scatteringg tior suprathermal electrons.
Therefore

v
= 5.59
"7 dv/dt] (5.59)
and since
4dme*An, 1
dv__ me*An, (5.60)

dt m2 %’

this gives
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Figure 5.13: Change in the megposition of the electron distribution with time for differe
amplitudes of slowing down and scattering terms. The mgpaosition was plotted every
gyroperiod, and the meanposition in the absence of scattering should be zero atrinesti
plotted.

me 3
= .61
dretAn, (5.61)
therefore
dre’An.c? (1 — u?
D, ~ me Anee” (1 - p )cmzs’l. (5.62)
B2 v

Fixing A = 1, vy=0.1c, B = 1G, | can examine the effect of varying the density of the
medium in which the electrons move. The diffusionyifor different densities can be seen
in figure 5.15 which shows that the amount of diffusion is clieproportional to the density
of the medium.

Let us now keep the density fixed (atx 104cm~2), keep a magnetic field of 1G, and vary
the value ofvy. The diffusion iny for different values of), can be seen in figure 5.16. This
figure shows that the amount of diffusion is inversely proipo&l tov,.
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Figure 5.14: Change in the meaposition of the electron distribution with time for differe
amplitudes of slowing down and scattering terms. The mepaosition was plotted every
gyroperiod, and the meanposition in the absence of scattering should be zero atriesti
plotted.

Finally, let us keep the density fixed (atx 10**cm3), fix v, = 0.1¢, and vary the value of
B. The diffusion iny for different values of3 can be seen in figure 5.17, which shows that
the amount of diffusion is inversely proportional B3.

So, the change in a particle’s position due to scatteringdsed proportional to

Ay? o —— 5.63
Yy X (5.63)

therefore

A Anoc? (1 — 112
p, = frehnec (1= o (5.64)
B2 v

Figure 5.18 shows the value of the variance @fith time at successive gyroperiods, as well
as the diffusion calculated using:
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Figure 5.15: Change ip with time for different densities. The variance gfvas plotted
every gyroperiod.

Ay? =2D t (5.65)

It can be seen that the two methods agree reasonably welfattwe2 in equation 5.65 was
added as it was empirically found to be present. It woulddftee be possible to follow a
particle’s behaviour using only the 1D equations for chainge andv, and calculating the
diffusion of the particles in space by using the diffusioefficient.

5.9 Caoallisional Scattering At An X-Type Neutral Point

How do outcomes for the electrons | considered in sectior64&Range if collisional pitch-
angle scattering and energy loss is also included? On thka particles will lose energy
to collisions. On the other hand collisional scattering e to electrons encountering the
non-adiabatic region more frequently. Which effect willaere important? In the following
section, the dimensionless units of chapter 4 are used.
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Figure 5.16: Change in with time for different values of,. The variance of; was plotted
every gyroperiod.

5.9.1 The Dreicer Field

When considering collisional scattering, the velocity o€ telectrons must be taken into
account. If electrons have speed less than the thermaliigloalisions happen with almost
constant frequency, increasing in number as the thermatigis approached. If an electron
is moving faster than the thermal velocity, the collisicetfuency scales agv?, so collisions
become less frequent as the electron’s speed increases.{seRozelot, Klein, and Vial
(2000), Trubnikov (1965)).

Since electron energy loss rate decreases with energg, iharcritical electron energy for
which energy gain from electric field is greater than eneapg lfrom collisions. Electrons
above this critical energy can be freely accelerated ouhefthermal distribution by the
electric field. The Dreicer field is the strength of electreddifor which this critical energy
equals the thermal energy, i.e. all electrons in the plasamabe freely accelerated. The
speed at which collisions become less important as knowmeasihaway speed and is given
by (e.g. Holman (1985))
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Figure 5.17: Change in with time for different values of3. The variance of) was plotted
every gyroperiod.

1/2
v = vr, <E—ED) : (5.66)

vr, IS the thermal speed of the electrons, which is given by

k? T 1/2
vz, :< & ) . (5.67)

Me

The electric field strength, is the Dreicer field, which is given by (e.g. Holman (1985))

E—eA—233><108( n ) T\ (A gatvolsem™! (5.68)
b=, "~ 10%m—3) \ 107K 939 ) Srarvorem '

whereA is the Coulomb logarithmy, is the Debye length, arifl is the plasma temperature.
For the plasma being considerdd € 1.4 x 10" K, n = 10'%m =3, A = 25, the Dreicer field
is 1.8 x 10~ "statvoltem™!, which is5.4 x 103 V/m. The electric field applied in these
simulations isl0~2 in dimensionless units, which is 3.9 V/m for electrons.
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Comparison of stochastic RK4 and diffusion coefficient
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Figure 5.18: Change in the varianceyolvith time. The variance of was plotted every gy-
roperiod, and is marked with a cross. The solid line is theayedisplacement as calculated
using the diffusion coefficient,D, averaged over the nunolbetectrons being considered (10
000 in this simulation).

For the plasma being considereg, is 1.5 x 107ms~! This gives a runaway speed b x
10°ms~! for E=0.001, which in my units is a speed bf) x 10~3. This means that all of the
electrons in the distribution are runaway’ electrons, aad be accelerated out of a thermal
distribution.

5.9.2 Equations of Motion

Recall the set of equations 5.51, and add the appropriat&rieland magnetic field terms
for an unperturbed X-type neutral point. This gives, for Eat&on moving in a fully ionised
hydrogen plasma:

é—f — v, (5.69a)
d
d—i’ — v, (5.69b)
d
Z _ 0, (5.69¢)
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dv, Kuv,

me—t = Byv. = 3=% + (KAtD)' W), (5.69d)
K _
m@% = —B,v. - 37" + (KAtD) W), (5.69€)
v
dv. Re. -
med—i = —(E+ (Byv, = Byvy)) =3 UZ’ + ((KAtD)2W)).. (5.69)

Once againk is K expressed in the appropriate dimensionless units. In #sis ¢

Kt.

K = =

. (5.70)

I will integrate the set of equations 5.69 taking into acdouwilisional scattering for case
1 (constant electric field in the z-direction, and an unpbed X-type neutral point as the
magnetic field). Once again, the scattering is introduceoluth the stochastic integrator,
rather than by the inclusion of scattering terms in the aqoatof motion.

The slowing-down time was calculated using (MacKinnon amdi@(1991))v = (1 —
3t)1/3. It is important to note that this equation is in the units chdWinnon and Craig,
where speed is normalised to the initial speed of the parti@hd time is normalised to
(vingm?)/(4me*X). Electrons were chosen to all start the simulation with #reesvelocity,
0.07c, which is an energy of 1.23 keV. The simulation rardfot 5s, which is equivalent to
the electron stopping time. To concentrate on the influeficelbsions on the acceleration
process | adopted a mono-energetic initial electron tstion. Electrons were released
within the volume0 < =z < 1,0 < y < 1. In the case that no electric field is present,
the particles should slow down monotonically, This can Ense figure 5.19. The slowing
down in this figure is slightly disappointing, as it is noisiiran might be expected from the
well-behaved test problem studied at the start of this @rapt

The slowing down can be made more uniform if a sufficiently kstapsize is taken. This
can be seen in figure 5.20, which shows the slowing down ofd&reles with identical start-
ing conditions. Their trajectories were integrated usiegsizes of 0.01,0.001 and 0.0001. It
can be seen that the slowing down of the 5 electrons beginekomhore similar as a smaller
stepsize is taken. As the stepsize decreases, the ratergfdoss becomes smoother, and
there are no gains in energy, as would be expected.
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Slowing down of electron at X—point, £E=0
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Figure 5.19: Slowing down of one electron at an X-type néytoint. A stepsize 00.001
was used here. The electric field has magnitudehe slowing down in this figure is slightly
disappointing, as it is noisier than might be expected fromwell-behaved test problem
studied at the start of this chapter. This is due to numeissales which will be avoided by
considering the problem in spherical polar coordinates.

5.10 Dirift & Diffusion in Polar Co-ordinates

| do not wish to take a stepsize smaller than 0.001, as thisdw@wse the computation time
of the simulations to be increased to an impractical extiethierefore decided to re-cast the
equations of motion for an electron in polar co-ordinateamlinterested in the variation of
the particle’s velocity, azimuthal anglé)( and pitch angled). The equations of motion for

an electron in polar co-ordinates (in the absence of anyatd diffusion terms) are written

as follows:

Ccll—atj = v, = vsin(¢)cos(0) (5.71a)
% = v, = vsin(¢p)sin(6) (5.71b)
9% _ ), = veos(9) (5.710)
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Slowing down of electron at X—point, E=0, stepsize=0.01
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Figure 5.20: Slowing down of 5 electrons with identical 8tay conditions, including colli-
sional scattering. Three different stepsizes were useeteliB no electric field present.

d .
L mieEvV ~ L Beos(¢) (5.71d)
g q .
5= E(cot(qﬁ)(cos(@)Bx + sin(0)By)) (5.71e)
% = mie(E * sinphi/v) + (Bycos(0) — Bysin(0)) (5.71f)

Changing variables from,, v,, v, to v, 11, 6,the stochastic differential equations governing
the motion of one electron are given by

dx

o= vsin(¢p)cos(0) (5.72a)
% = vsin(¢)sin(0) (5.72b)
% — veos(6) (5.72¢)

dv — iEcos(@ _D (5.72d)

dt  me v2
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. 1/2
fl_f = mie(cot(gb)(cos(G)Bx + sin(0)B,)) + (ﬁ%) r (5.72¢)
. . - 1/2
% — ESZTH(@ + (Bycos(0) — Bysin(f)) — 2D053S(¢) + <D(SZ:3 (¢))> r  (5.72f)

wherer is a random variable. The slowing down of one electron in theeace of any
electric field can be seen in figure 5.21, which shows the req@mooth, monotonic slowing
down.

Slowing down of 1 electron, E=0
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Figure 5.21: Slowing down of one electron at an X-type néytoint. A stepsize 00.001
was used here. The electric field has magnitude

Application to X-Type Neutral Point

Now that the appropriate equations of motion in polar caratés have been obtained, the
consequences of electron drift and diffusion at an X-typatnaé point can be investigated.
[ initially considered particles being accelerated in aceic field, £=0.001 for my dimen-
sionless units. The effects on particle trajectories casdem in figure 5.22. It can be seen
that adding collisional scattering and slowing down catisedrajectories of the particles to
change, as would be expected. The particles change dimeutioe frequently, and so cross
the non-adiabatic region more often.
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Electron Trajectories, No Scattering
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Figure 5.22: Trajectories of 5 electrons for case 1, integravith and without the addition of
collisional scattering. The sample has identical startimgditions for both sets of electrons.
The electric field has magnitu@ded01 in our dimensionless units.

The effect that collisional scattering has on particle gigsr can be seen in figure 5.23.
The density of the plasma being considered her&di€cm 3. This density was chosen
as it is a reasonable density for the solar corona, and itgh Bnough to show clearly
the effect of the addition of collisions. The particles wésowed until their theoretical
stopping time, for such a density, 0.015s. The particlesnbegth an energy such that
logio(Enimiia) = —2.9. Most particles remain at this energy in both cases. In tiserade
of collisional scattering, some patrticles are acceleratethe electric field. If collisional
scattering is added, some patrticles are accelerated, im&t ae decelerated. The maximum
energy achieved is the same in both cases, although morel@aechieve this energy in the
absence of collisions.

However, one must bear in mind that if only collisional enel@ss was included, the elec-
trons which undergo collisional scattering should havesta completely at = 0.015s.
The fact that they have not stopped means that they are beiaegergised by the electric
field. This is due to the fact that adding collisional scatigicauses the particles to change
direction more often, meaning that they cross the non-adiiabegion more often, thus gain-
ing more energy.
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Figure 5.23: Energies at t=0.015s for 10000 electrons wtiageetories have been integrated
without the addition of collisional scattering (left) andtlvcollisional scattering (right). The
electric field has magnitude001 in our dimensionless units.

Figures 5.24 and 5.25 show the energy distributions fotelas if £=0.0001 and” = 10~°.
As the electric field decreases, it can be seen that lowegieseare achieved, both with
and without collisional scattering. However, once agdir,electrons undergoing collisions
should have lost all of their energy in this time.

For these simulations, a particle is considered to havealbsif its energy if its energy is
less tharb.11 x 103V (this value was chosen as our simulations normalised erteripe
electron rest mass energy, and the simulation was founddonhbe unstable if the particle
energy fell belowl0~7 in these units). It can be seen that the amount of particfesvith
energy greater thai 11 x 10~3eV decreases with decreasing electric field. Interestingly,
for the cases shown in figures 5.24 and 5.25, the distribsitidmen collisions are included
are comprised of a lower energy peak and a higher energy deskggest that the lower
energy peak is caused by electrons that have gained justjeremergy to remain above the
cut-off energy, but which have generally been slowing dowihe higher energy peak is
caused by electrons which have been accelerated. This seaotfor a higher electric field
(figure 5.23) as this field is high enough to accelerate theontgjof the electrons in the
distribution.

What happens if a sub-Dreicer field is applied to the elestPoiThe Dreicer field for an
electron density ofl0°cm = and temperaturé.4 x 107 K is 5.4 x 1072 V/m. If a field
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Figure 5.24: Energies @t= 0.015s for 10000 electrons whose trajectories have been in-
tegrated without the addition of collisional scatteringft)l and with collisional scattering
(right). The electric field has magnitude001 in our dimensionless units.
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Figure 5.25: Energies d@t= 0.015s for 10000 electrons whose trajectories have been in-
tegrated without the addition of collisional scatteringft)l and with collisional scattering
(right). The electric field has magnitude—° in our dimensionless units.

of 10~7 in our units is applied, that is equivalent3® x 10~* V/m, so the electrons will
experience a sub-Dreicer field. Electrons in a field of thignitaide have a runaway speed of
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5.7x10"ms~!, which is 0.18 in our units, meaning the electrons are iijtteavelling below
the runaway speed, and collisions will be more importane &tfiect of the sub-Dreicer field
on electrons which both do and do not undergo collisiondttecag can be seen in figure
5.26.
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Figure 5.26: Energies d@t= 0.015s for 10000 electrons whose trajectories have been in-
tegrated without the addition of collisional scatteringft) and with collisional scattering
(right). The electric field has magnitude~—" in our dimensionless units.

It can be seen that when electrons in such a low field do notrgodmllisional scattering,
their energy does not change. The electric field is too lowctzkerate the electrons. How-
ever, if the particles undergo collisional scattering these energy, but they do not all lose
all of their energy. If the electric field is less than the Begifield, collisions become more
important, and more particles are left with energies gretdtan5.11 x 103V after the
expected stopping time than are found for a small supereBrdield.

5.10.1 The Relativistic Case

Recall that the set of equations of motion used above is riotivethe relativistic case. How-
ever, using the arguments set forth in section 5.6, | carevarget of relativistic equations of
the form:

dz , .
- = vsin(¢)sin(0) (5.73a)
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d
W _ cos(s) (5.73b)
% = vcos(9) (5.73c)
d 1D
d—: = mieEcos(gb) i (5.73d)
do b \"
== mie(cot(gb)(cos(G)Bx + sin(0)B,)) + (W) r (5.73e)
. . 1/2
d¢  Esin(¢) . 3+ 2Dcos(¢) 3+ D(sin?(¢))
T + (Bycos(0) — Bysin(6)) — o 3 + ( 12 3 r
(5.73)

5.10.2 Application to X-Type Neutral Point

In order to investigate the consequences of collisionsHativistic electrons, electrons were
started with an energy of 65keV. Energies of greater thamatd60keV are too high for sim-
ulations to model the collisional behaviour of particlesinon-relativistic manner (Leach
and Petrosian (1981)). Therefore if these particles arelaated by more than 2.5 times
their original energy, the calculations will need to be tiglatic in order to be accurate. In
order to reduce the simulation time, | have increased thenpdadensity here to0'2cm =3,
which gives a stopping time for 65 keV electron)di4s.

The energy distributions for relativistic particles, wathd without the inclusion of collisional

scattering can be seen in figure 5.27. The inclusion of cofied scattering does not make
any difference to the energy distribution of the electrdribey start the simulation at high

energies. This is also true for a much smaller electric fi€ld=( 1 x 10~7), as can be seen

in figure 5.28.

Figures 5.27 and 5.28 reproduce the quantitative resultiseohon-relativistic case. Colli-
sions cause electrons to achieve a greater spread of enértjie electric field is relatively
large. If the electric field is relatively small, particlamply lose energy due to collisions. In
both cases, particles remain at higher energies than weutatfprected, as they are energised
by the electric field.
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Figure 5.27: Energies at = 0.04s for 10000 electrons whose trajectories have been in-
tegrated without the addition of collisional scatteringft)l and with collisional scattering
(right), using the relativistic expressions for collisadscattering and collisional energy loss.
The electric field has magnitu@de)01 in our dimensionless units.
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Figure 5.28: Energies at = 0.04s for 10000 electrons whose trajectories have been in-
tegrated without the addition of collisional scatteringft) and with collisional scattering
(right), using the relativistic expressions for collisabiscattering and energy loss. The elec-
tric field has magnitudé x 10~7 in our dimensionless units.
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5.11 Conclusion

In this chapter, | have developed a method for includingigiolhs in the calculation of par-
ticle trajectories. This method was developed by extenthegstochastic RK2 method of
Honeycutt (1992) to an RK4 method, which was then testedguitia problem of colli-
sional scattering in an unmagnetised plasma, as studiedatKMnon and Craig (1991).
The stochastic integrator performed better than the Eategration used in MacKinnon and
Craig (1991) for this 1D problem. The integrator was thereeded for use in 3D calcula-
tions, with the drift and diffusion terms calculated usihg method outlined in Trubnikov
(1965). This method also performed well when used to find at®ol to the test prob-
lem.

With confidence in the integration method, | then used thetststic RK4 integrator to fol-
low electrons gyrating around a constant magnetic fieldctic along the x axis, in the
absence of an electric field. Increasing the magnitude doditifteand diffusion terms caused
the electrons to drift across the field. An analytical exgpi@s for this drift was then ob-
tained.

Finally, the stochastic integrator was used to add colisito particle trajectories at an X-
type neutral point. The addition of collisions causes théiglas to lose energy, but because
the particles are scattered in pitch angle, they returnemtutral point and are energised
by the electric field. Therefore, even though the partickesfallowed for one stopping
time, some of them still have energy. The amount of partildé&svith energy greater than
5.11 x 10~3eV decreases with decreasing electric field. However, if thetdt field is less
than the Dreicer field, collisions become more important] arore particles are left with
energies greater thanll x 10-3¢V after the expected stopping time than are found for a
small super-Dreicer field.

For relativistic electrons, collisions caused electranadhieve a greater spread of energies
if the electric field was relatively large. If the electriclievas relatively small, particles
simply lost energy. This is a quantitative reproductiontef tesults for the non-relativistic
case.

I have shown that in the presence of an electric field, elasttbat undergo collisions will
still be energetic after their expected stopping time. Ehasergised electrons will continue
to produce Bremsstrahlung radiation, and could potegtmaiduce a visible HXR source in
the solar corona.



6. Conclusions and Future Work

What you do in this world is a matter of
no consequence. The question is what
can you make people believe you have
done.

Sherlock HolmesA Study In Scarlet

This thesis has focused on the behaviour of particles iemfft forms of electric and mag-

netic fields, both with and without the inclusion of collisal scattering. Such behaviour has
been explored in the context of magnetic reconnection regiio solar flares, and for cross
field drift in magnetised plasmas.

6.1 Noisy Electric & Magnetic Fields

The main body of this work has dealt with creating a simutatirowhich particles move in
a magnetic field based on a perturbed X-type neutral poidtaéso in a noisy electric field
which was created via a superposition of cold plasma eigeesoA large amount of time
during this project has been devoted to developing the ctetipnal method used to calcu-
late the hypergeometric function quickly and accuratelglcGlating the eigenmodes of the
hypergeometric function via integrating the hypergeoioelifferential equation (e.g. Press
et al. (1992)) proved to take an excessive amount of time comunaily when superposi-
tions of many modes were required. Instead, an analytidrogetion of the summation for
the hypergeometric function was used. Analytic contirarathethods are used to extend the
region in which a particular analytic function can be usedthis case, the hypergeometric
function can be represented as the summation of a seriesws te the region: < 1. How-
ever, outside of this region, this series no longer conwergenalytic continuation solves
this problem, allowing us to continue representing the hypemetric function as a series.

167
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This was found to reproduce the results of Presal. (1992), and the computation time was
decreased by several orders of magnitude.

Adding many eigenmode oscillations caused the X-type aepwoint to be dramatically
changed and a complex magnetic field containing many sméHlend O-type nulls was
produced. An accompanying noisy electric field was alsotetkan the z-direction only.
This work follows particles in the presence of a 2D magnestdfi A third componenf3,

of the equilibrium field would modify the structure éf and B, but Hamiltonet al. (2005)
show that a regime of sufficiently smal, exists in which the resulting modifications are
negligible for particle acceleration purposes. LarBewould result in reduced reconnection
rate (and thus electric fields) as well as introducing tirepahdent structure in the z direc-
tion, a more complex situation which I do not investigateshéFhe addition of a non-zero
B. component merely increases the efficiency of the accederadis particles tend to stay
within the current sheet (see also Litvinenko (1996)). Theans that the energies gained by
particles in these simulations are likely to be at the lowet ef the energy range that could
be achieved with a 3D geometry.

Various physical effects would result from relaxing the 2DBId plasma model. Gruszecki
et al. (2011) show that non-linear effects become important agwavopagate towards the
null, at a distance determined by plasma beta and the amelé the disturbance. De-
partures from azimuthal symmetry occur along with localisarrent spikes, all of which

would have implications for accelerated particles. Thepla beta here is identically zero,
which minimises these effects although they could beconmoitant in a more realistic

treatment.

6.1.1 Consequences for Protons

Protons and electrons were released into these fields, emd#haviour was studied. Pro-
tons were easier to study since their greater mass mearthéhabrmalising timescale was
greater. It was found that as more eigenmodes were addedc¢tieéeration region became
more efficient. This is due to the creation of a larger noralagiic region, and the fact that
particles become trapped within this region. Adding morgysbative modes also causes
particle pitch angles to vary more often, meaning that plagiin the noisy fields undergo a
kind of non-resonant pitch angle scattering. They changeetion more often, which may
lead them to crossing the non-adiabatic region more fretfpuefihe smaller nulls that are
created by a superposition of modes could also be sites foclpaacceleration.
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While there have been many studies of test particle acdelaran reconnection regions,
the small volume involved in these regions is a problem iflirge numbers of particles
apparently accelerated in flares are to be accounted forefféets described here open up
the possibility of a much larger volume being involved intpe acceleration.

The effect of varying the distribution of the amplitude oethigenmode oscillations was
also investigated. It was found that letting the amplitutide eigenmodes fall of agk 5/
(where k is the wavenumber of the mode, andis an arbitrary amplitude) produced a
smaller total disturbance than for a flat spectrum of moddse fields created by such a
disturbance produced a high energy tail of particles whiels wiuch smoother and more
regular in character than that produced by a flat spectrunoofesfor the same,.

Finally, the effect of varying the inertial resistivity watudied. It was found that decreasing
resistivity caused protons to become more highly energid@elcreasing resistivity leads
to changes in the formation of the small-scale nulls, so thate such nulls are created
away from the very centre of the region. Since there are mtwe of particle acceleration,
particles can become more highly energised. Decreasingatue of the resistivity also
causes the electric field to become less noisy. Howevericlesrtare still accelerated to
higher energies in this less noisy field. It can thereforedreltided that it is not the noisier
electric field that causes particles to become more energsenore perturbations are added
in cases 1-5. Rather, it is the changes in the topology of thgnetic field, and the creation
of more nulls, which are the sites of particle acceleration.

6.1.2 Consequences for electrons

It was more difficult to study electrons as their normalisiingescale was much shorter due
to their smaller mass, and smaller time steps had to be usezstdve the behaviour of
the particles. In order to compensate for this, the norimagilength scale for protons was
changed to ten times the particle’s gyroradius at the sy&teomdary, rather than simply
the gyroradius at the system boundary, as it was for protdhg. electron mass was also
increased td0m,.. This improved the computation time but still meant thatetens were
only followed for a tenth of the time of protons. The massesheftest particles are still
much less than those of ions and | expect major differenceedes electrons and ion to be
revealed by these calculations.

It was found that the magnetic and electric fields of case $axhthe electron distribution
to gain energy as a whole (i.e. the plasma was heated). Whenrande oscillations were
added, this heating did not occur, but instead the additfasuperposition of eigenmode
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oscillations caused the distribution to develop a high gn@&onthermal tail. Again these
effects appear to be due to the trapping of particles withénrton-adiabatic region. Recall
also that many smaller nulls are formed when more pertwdatiodes are added to the
magnetic field.

| also calculated the X-ray spectra that would be producethbytarget bremsstrahlung
from the energy distributions of electrons calculated iaptkr 4. It was found that adding
more modes produced X-ray spectra that were similar in charto those that are observed:
the spectra are comprised of both thermal and non-thernoabph. It is of course difficult
to make quantitative statements here; the idealised nafute simulations mean that the
electron distributions are merely illustrative of thosattinay be found when some of the
conditions are relaxed (for example, the introduction dB.acomponent to the magnetic
field). However, the fact that the X-ray spectra producedcaraitatively comparable to
those which are observed is encouraging.

In integrating the trajectories for protons and in partacuh integrating the electron trajec-
tories for a superposition of modes, a major difficulty wae lgngth of time taken for the
simulations to run. The simulations took a long time to rurthes gyromotion of the in-
dividual particles was being resolved at all times. The $atons could be sped up if the
gyromotion was only followed within the non-adiabatic @wi At largerr, | could merely
follow the guiding centre of the particle’s motion. This isial quicker to calculate as the
equations of motion are much simpler. However, a difficuliges in matching the calcu-
lations at the boundary between the two regimes. If the métion about the,, v, and
v, components of the particle’s velocity was not preservegsehwould have to be inferred
in order to have detailed information about particle dyresmear the null. Calculating
these quantities accurately (and quickly enough that tinepcation time saved by using
the guiding centre approach further from the null is not nedjpwill be an important issue
to be resolved.

6.2 Collisional Scattering

In order to model collisional scattering of particles, acht@stic Runge-Kutta integrator was
developed, in the manner of Honeycutt (1992). This integraias seen to reproduce the
results of MacKinnon and Craig (1991) when tackling the samdlem. The stochastic

RK4 method was found to reproduce the distribution of perfpitch angles, and in fact per-

formed better than the method of MacKinnon and Craig (19€IBYer times. The monotonic

slowing down of electrons was also well modelled.
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With confidence in the stochastic RK4 established, | usesdrttéthod to model cross field
drift. Electrons were followed in the presence of a magniid in the x-direction only.
It was found that adding more collisional scattering caubesparticles to drift across the
field, disrupting their usual gyromotion. An analyticalfdgion coefficient was obtained,
and the drift across the field lines predicted by this matakiell with the results obtained
when particle trajectories were integrated using a stdachiamegration method. This gave
us further confidence in the accuracy of the stochasticiateg In this case, the monotonic
slowing down of particles was also well modelled.

Stochastic RK4 was also used to add collisional scattedregectrons at an X-type neutral
point. It was found that adding collisional scattering aiparticles to achieve a greater
spread of energies, and to remain energised after theirdtieal collisional stopping time.
As the size of the electric field is decreased, fewer elestr@main energised after one
stopping time, if the electric field is above the Dreicer fighdue. If the electric field is
below the Dreicer value, more particles remain energisiapoagh because the magnitude
of the field is necessarily small, they do not achieve highigias.

This is because electrons in a field greater than the Dreieler dire ‘runaway’ electrons,
l.e. they are less affected by collisions, and so they aeliksly to have their direction
changed by a collision. Collisions merely cause such pastito lose energy. For electrons
in a sub-Dreicer electric field, collisions are more impotiaTherefore the trajectories of
these particles are more likely to be altered, meaning et tross the neutral point more
times than particles that do not undergo collisional sdatje When particles cross the
neutral point, they gain energy. Therefore particles whicklergo collisional scattering
in the presence of a sub-Dreicer electric field will gain menergy than those which do
not undergo collisions (for small electric fields). The eutrexpressions to describe the
collisions of relativistic electrons were also derived.

The fact that energetic electrons are still seen is intergsts these electrons will be pro-
ducing Bremsstrahlung radiation for longer than one migipeet if only their collisional
stopping time is considered. With high enough electric figtdese electrons could produce
a coronal HXR source. The highest electric field | used foctetes was3.9V/m. Electric
fields has high askV//m have been observed in solar flares (Gorbachev and Somov)§1989
It is therefore possible that electrons could be emittingRHXa collisional Bremsstrahlung,
and yet remain energised for times much longer than thgapstg time.

The stochastic integrator performed slightly disappamli in this case when it came to
modelling the slowing down of the patrticles. Although thenficof the slowing down is still
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correct, the slowing down does not happen smoothly, bueratbisily. This is interesting
since this did not occur in the other two problems studiedgchvisuggests that the 'noisy
slowing down’ is a result of the set-up of this problem. | gdate that since the drift and
diffusion terms in the stochastic integration algorithra ealculated from the,, v, andv,

of the particles, large changes in these quantities neamuiheould cause anomalously high
drift and diffusion terms, which could lead to the 'noisywlog down’ seen in this work.
This problem was avoided by switching to a polar co-ordirsgem, which recovered the
expected monotonic slowing down.

6.3 Future Work

In order to better investigate the dynamics of electronstefacodes should be developed.
One way in which the speed at which particle trajectoriescateulated could be increased
is by parallelizing the code. Currently the time-scaleeaisged with electron transport
mean that such simulations are computationally experaigkrun for impractical lengths of
time. Developing fast numerical integration methods, atifig quickly evaluated, analytical
expressions which describe the turbulent fields in whiclp#récles move would be a crucial
part of this work. Once these rapid simulations are credbey,could be applied to problems
involving turbulent magnetic fields in a variety of astroploal contexts.

In this work, | followed the orbit of each test particle inalually, integrating the entire orbit
for one particle before moving on to calculating the orbit fiee next particle. The only
way to integrate the trajectories of many particles quickéys to start several runs at once.
This is a reasonably good method of decreasing the simaolétioe, but there are clever
ways of doing this that make better use of the processing pavalable to us. If | was to
rewrite the code for integrating particle orbits so thatlibbaviour of all of the particles was
followed simultaneously (i.e. take one timestep, evaladltquantities of interest for all of
the particles in the simulation, and then take the next tiegsthen | could parallelise the
code. Running a process in parallel means that instead gfrtieessor doing each of its
required tasks in sequence, several processors are useddmpseveral tasks at once. The
amount by which this could speed up the processing time &gy Amdahl’s law (Amdahl
(1967)), which states

Tine = (6.1)

-
Ts+ o
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wherer is the fraction of the code that has not been parallelisgds the fraction of the
code that has been parallelised, and n is the number of marsesvailableT;,,. is the factor
by which the running code of the time could be shortened. ifi@ans that if | was to rewrite
the code so that half of it is in parallel, by running this jaib 16 processors | could cut the
running time of the code in half. If | was able to make 95% of coale parallel, our running
time on 16 processors would be a tenth of that of a serial code.

Of course, it is possible to speed up calculations by makmegdalculations themselves
simpler, and therefore quicker to evaluate. If one movesguoiding centre approximation,
the equations of motion are much simpler. The cross-fieldgldn coefficient | developed
will allow guiding centre studies of electron dynamics, ystems with a guide field. Such
systems allow the use of a guiding centre everywhere (Wodd\sukirch (2005)). If the
diffusion in pitch angle and the diffusion across the fielth t® modelled, then one can
model all changes in the orbit of particles, whilst using @ien equations of motion, which
will be able to be evaluated more quickly.

Numerical methods for stochastic differential equatioagehpoorer convergence properties
than similar methods for ordinary differential equatioaswas illustrated by the small step-
size needed to accurately follow the monotonic slowing dodparticles. While my adop-
tion of Honeycutt's (1992) stochastic RK4 method providedoad description of pitch-
angle scattering, future work should investigate more stighted variants of stochastic
RK4 methods, e.g. as described in Burrage and Burrage (18998)yder to improve the
accuracy of the integrator.

| speculate that the stochastic RK4 integrator does not htleelslowing down of an electron
at the X-type neutral point accurately because the pastarie not tightly tied to the magnetic
field lines when they encounter the null point. This meansuthay, andv, can vary by large
amounts as the particle gains energy in this region. Sineeltift and diffusion terms are
dependent om,, v, andv,, these changes may cause the drift and diffusion terms o var
inappropriately. A more accurate approach was achieveddasting the problem in a polar
coordinate system.

The stochastic RK4 integrator was also used to model crddsifié. In the problem studied
in this work, the consequences for particles are simplejgbes drift across the field lines
as they undergo collisions. If the field lines were not simgilaight field lines, but were
instead tangled (as has been observed in the solar coranagston 5.8), then diffusion
across these field lines could have interesting conseqaéoicparticle dynamics. Diffusion
across the tangled magnetic field will cause particles teetrtp different spatial locations
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than they would be able to reach by diffusing across strdight lines, since they would
be able to follow these tangled field lines to locations thatytcould not access via drift
alone.

| am also interested in determining how magnetic field togpinfluences turbulent interac-
tions, and how the turbulent interactions can change mayjinet topology. | have already
studied weak turbulence at an x-type neutral point, but | &0 mterested in simulating
particle dynamics in fields such as the Arnold-Beltramii@tass field, which is an example
of a deterministically chaotic flow. Could such a flow be usediodelling turbulent flows

in the solar corona or solar wind? Previous work on the ABQifles focussed on more
generalised models of turbulent flows; it would be interesto see if such flows could be
applied in astrophysical contexts.
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