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Summary

Particle dynamics in the solar corona are of interest since the behaviour of the coronal plasma

is important for the understanding of how the solar corona isheated to such high temperatures

compared to the photosphere (≈ 1 million Kelvin, compared to a photospheric temperature

of ≈ 6 thousand Kelvin ). This thesis deals with particle behaviour in various forms of

magnetic and electric fields. The method via which particlesare accelerated at reconnection

regions is of particular interest as particle accelerationat a magnetic reconnection region is

the basis for many solar flare models. Solar flares are releases of energy in the solar corona.

The amounts of energy released range from the very small amounts released by nanoflares,

that cannot be observed individually, to large events such as X-class flares and coronal mass

ejections. Chapter one provides background information about the structure of the Sun and

about various forms of solar activity, including solar flares, sunspots, and the generation of

the solar magnetic field.

Chapter 2 explores various theories of magnetic reconnection. Magnetic reconnection re-

gions are usually characterised as containing a central ’null’, a region where the magnetic

field is zero, and particles can be freely accelerated in the presence of an electric field, as they

decouple from the magnetic field and move non-adiabatically. Chapter 2 gives examples of

how such reconnection regions could be formed.

Chapter 3 deals with the construction of a ’noisy’ reconnection region. For the purposes of

this work, ’noisy’ fields were created by perturbing the magnetic and electric fields with a

superposition of eigenmode oscillations. The method for the calculation of such eigenmodes,

and the creation of the electric and magnetic fields is detailed here.

Chapter 4 details the consequences for particle behaviour in a noisy reconnection region.

The behaviour of electrons and protons in such fields was studied. It was found that adding

perturbations to the magnetic field caused many smaller nulls to form, which increased the

size of the non-adiabatic region. This increased non-adiabatic region led to greater energisa-

tion of particles. The X-ray spectra that could be produced by the accelerated electrons were
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also calculated. In this chapter I also investigate the consequences of altering the distribution

of the spectrum of modes, and altering the value of the inertial resistivity.

In chapter 5, the effects of collisional scattering on particles was also investigated. Colli-

sional scattering was introduced by integrating particle trajectories using a stochastic Runge-

Kutta method (which is a form of numerical integration). It was found that adding collisional

scattering at a reconnection region causes a significant change in particle dynamics in suffi-

ciently small electric fields. Particles which undergo collisional scattering in the presence of

a small electric field gain more energy than those which do notundergo collisional scatter-

ing. This effect decreases as the size of the electric field isincreased. The correct relativistic

expressions for particle collisions were derived. It was found that collisions have a negligible

effect on relativistic particles.

Collisional scattering was also used to simulate the drift of particles across magnetic fields. It

was found that adding more scattering caused the trajectories of the particles to change from

normal gyromotion around the magnetic field, and that particles instead travelled across the

magnetic field. I also developed a diffusion coefficient to allow the calculation of a particle’s

drift across a magnetic field using only 1D equations.

Chapter 6 discusses the findings made in this thesis, and explores how these findings could

be built upon in the near future.
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1. The Sun As a Particle Accelerator

It is a capital mistake to theorize before

one has data. Insensibly one begins to

twist facts to suit theories, instead of

theories to suit facts.

Sherlock Holmes,A Scandal In

Bohemia

1.1 Introduction

In this chapter, I will introduce the reader to the various forms of activity that take place

in the outer layers of the Sun. In order to do this, I will describe the structure of the Sun,

and describe some of the phenomena that occur in active regions on the solar surface. I also

briefly explore how such active regions may be formed, by the emergence of magnetic flux

from within the solar interior.

I will also provide a brief introduction into the mechanism of solar flares. This is essential,

since the much of rest of this work will focus on how particlesare accelerated at reconnection

regions in the solar corona, and such reconnection regions are to be found in solar flares.

Since noisy electric and magnetic fields will be used in laterchapters to generate a kind of

plasma turbulence, I also provide some explanation of turbulence in plasmas.

1.2 Particle Acceleration

Particle acceleration is a process that energises particles, allowing them to reach non-thermal

energies (i.e. energies greater than the ambient energy, that are statistically improbable for

particles to reach in the absence of some kind of acceleration mechanism). A major fraction
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of energy released in magnetised plasmas takes this form, and accelerated particles trans-

port energy away from the location at which the particles become energised. Accelerated

particles produce radiation across a broad range of frequencies; from gamma rays to radio,

and these different forms of radiation are an important diagnostic of the properties of the

acceleration region. The type of electromagnetic radiation emitted by particles is a function

of the particle’s energy. Higher energy particles are capable of producing higher frequency

radiation. Studies of accelerated particles can also give us an insight into the acceleration

mechanism.

Particle acceleration occurs in many situations in our universe. Examples include particle

acceleration in solar flares, in the accretion disks of galaxies, and in the solar wind. Solar

flares will be discussed in more detail in section 1.3. The solar wind is composed of particles

which have been accelerated away from the Sun. These particles can be detected in situ

using satellites, or more spectacularly when they interactwith the earth’s magnetic field to

produce the aurorae.

Non-thermal particles can be detected in the halos of galaxies. The particles are detected

via the radio, gamma ray and X-ray radiation they emit (Blasi, Gabici, and Brunetti (2007)).

Supernova remnants also emit radiation across a spectrum ofwavelengths, when particles

there are accelerated to high energies by shocks (see e.g., Torreset al. (2003)). Such ac-

celeration is thought to be the origin of galactic cosmic rays (see e.g. Hillas (2005)), high

energy charged particles which reach the Earth’s atmosphere, and which originate within

our galaxy. Particle acceleration in energetic plasmas canalso be studied in laboratories, in

devices called Tokamaks.

1.2.1 Particle Acceleration Mechanisms

There are many different possible mechanisms for particle acceleration. The two most

commonly proposed mechanisms are direct electric field acceleration and Fermi accelera-

tion.

Electric field acceleration is simply the acceleration of particles in the presence of an elec-

tric field. Such electric fields can be generated in magnetic reconnection events. Fermi

acceleration occurs when charged particles are repeatedlyreflected, for example by a mag-

netic mirror. In addition to these two mechanisms, particles may also undergo stochastic

acceleration. For example, particles may undergo resonantinteraction with electromagnetic

waves
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1.3 The Dynamic Sun

We know that we observe signatures of accelerated particleswhen we observe the Sun. These

particles must be accelerated somehow, by active processesin various regions of the solar

plasma. The various forms of solar activity are governed by the sun’s magnetic field. This

work concerns itself with the coronal magnetic field, which is thought to originate in the

solar interior. An image of the active sun taken by the Solar Dynamics Observatory (SDO)

can be seen in figure 1.1.

Figure 1.1: Image from the Solar Dynamics Observatory (SDO)showing active regions in
the corona at a wavelength of 171Å.

At this point, it is sensible to take a look at the basic ‘anatomy’ of the sun. A diagram

of the solar interior can be seen in figure 1.2. At the very centre of the Sun is the solar

core. This is both the hottest and densest part of the Sun, with a temperature of1.5 ×
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107 K. The next two layers are known as the radiative zone and the convective zone. The

radiative zone is the zone in which energy is transported towards the solar exterior by means

of radiative transport. In the convective zone, energy is transported towards the solar exterior

vis convection. The convective zone is differentially rotating, whereas the radiative zone is

uniformly rotating. The interface between the two layers iscalled the tachocline, and due

to the difference between the rotation of the convective andradiative layers there is a large

amount of shear in this region. This shear is thought to play acrucial role in generating the

large scale magnetic field of the Sun (see e.g. Jones, Thompson, and Tobias (2010)).

The next layer is called the photosphere. It has a temperature of around 6000K, and forms

the solar surface. From the photosphere (the solar surface)downwards, the plasmaβ (the

ratio of the gas pressure to the magnetic pressure) is much greater than 1. This means that

the convective motions of the plasma determine the behaviour of the magnetic field.

Figure 1.2: Image showing the various layers of the solar interior and atmosphere, as well as
various forms of solar activity. (NASA)

In the case of solar flares, particle acceleration takes place in the Sun’s tenuous outer atmo-

sphere, the corona. The physical properties of the gas and the role of the magnetic field in

the corona then form essential background to understandinghow particles are accelerated

here. The solar corona is the uppermost layer of the solar atmosphere, lying above the chro-

mosphere. It is composed of an extremely hot plasma (temperature in excess of106K). The

plasma temperature is greatly in excess of that of the lower layers of the solar atmosphere

(the chromosphere and photosphere, which has a temperatureof approximately 6000K), and

the reason for this is not yet understood, although several mechanisms have been proposed,

including heating by turbulence, waves, and magnetic reconnection (see e.g. Aschwanden

(2001)). In the chromosphere and corona (the outermost layers of the Sun), the plasmaβ is

less than 1, so that the magnetic field now determines the dynamics of the plasma.
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The corona is generally thought of as containing ‘active’ regions and ‘quiet’ regions. An

active region is made up of magnetic flux tubes which are anchored in the photosphere, and

extend upwards through the chromosphere and corona. The number of active regions varies

according to the solar cycle, which is approximately 11 years long. Active regions contain

signs of magnetic activity, such as sunspots (dark patches on the photosphere, the layer of

the Sun below the chromosphere). Sunspots appear dark because they are cooler than the rest

of the photospheric surface. The plasma is cooler in these regions because there is a strong

magnetic field here which inhibits convective heating of theplasma.

Prominences are another example of an active region phenomenon (with the exception of

polar crown prominences; prominences found at the solar poles, away from active regions).

Prominences are areas where plasma is confined in a structurewhich extends away from the

solar surface. The plasma confined in prominences is cooler and denser than the surrounding

coronal plasma. Active regions also play host to dynamic events such as solar flares and

coronal mass ejections (CMEs). The proposed mechanism behind solar flares is described in

more detail in section 1.4. A coronal mass ejection is a largeand highly energetic release of

plasma from the solar corona. It is sometimes accompanied bya solar flare.

The magnetic field emerges into the corona via a process knownas flux emergence, which

is not yet well understood. Flux emergence is a process whereby magnetic field loops from

below the photosphere rise into the chromosphere and corona. These loops can then interact

with the coronal magnetic field (Heyvaerts, Priest, and Rust(1977)). A simplified illustration

of flux emergence can be seen in figure 1.3. This figure also shows the layers of the solar

atmosphere. Also seen in this figure are granules, convective cells in the photosphere which

may drive the motion of the magnetic field (Berger and Title (1996)).

It is the emergence of magnetic flux that produces active regions (regions in which features

such as sunspots and solar flares originate). Convection below the photosphere can produce

regions of twisted and tangled magnetic flux. Such tangled and twisted flux stores a lot

of magnetic energy. This tangled flux is produced by photospheric convection causing the

movements of the footpoints of magnetic structures in the corona. This is is known as direct

current (DC) heating. Free energy is built up in the coronal magnetic field. This energy is

then released via magnetic reconnection. (See chapter 2.)
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Figure 1.3: Magnetic flux emergence at the outer layers of theSun. The label MMF indicates
a moving magnetic feature, and the label EB indicates an Ellerman bomb (a small scale
magnetic reconnection event,Georgouliset al. (2002)). Granules are convective cells in the
photosphere, the motion of which may drive activity in the corona. A plage is a bright region
surrounding a sunspot.(Pariatet al. (2004))

1.4 Solar Flares

The evidence for energetic particles can be seen in radiation signatures across the electro-

magnetic spectrum, from radio bursts to X-rays and gamma rays. How do such particles gain

high energies? Solar flares give a particularly well-studied example, with their impulsive

phase hard X-ray,γ-ray and radio signatures (e.g Linet al., 2003; Whiteet al., 2011). The

high energies of the emitting particles appear to be consequences of magnetic reconnection,

in which energy is released rapidly from the non-potential component of the magnetic field

via a change in field line connectivity (e.g. Priest and Forbes, 2000). The physical processes

by which this can happen remain unclear, but it is proposed (e.g. Miller et al. (1997a)) that

during a magnetic reconnection event particles become decoupled from the magnetic field
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and are accelerated by the electric field. Shocks and high energy plasma jets can also form,

which also accelerate particles.

The details of magnetic reconnection will be discussed further in chapter 2. A solar flare is

an event in which a large amount of energy is released on shorttime scales, generally on the

order of tens of seconds (Milleret al. (1997b)). In a flare, the total energy content of accel-

erated electrons (according to the cold thick target interpretation of the hard X-rays (HXRs))

is 1028 − 1034 ergs, on time scales ranging from under a second to tens of minutes(Miller

et al. (1997a)). The cold thick target model (CTTM) is a model whichseeks to explain how

accelerated particles produce HXRs. The model describes a situation in which particles from

the corona enter the chromosphere, which is much cooler and also much denser (i.e. it is col-

lisionally thick). Because of this, the particles slow down, causing them to emit X-rays vis

Bremsstrahlung.

The evolution of a solar flare can be broadly divided into fourstages (Benz (2008)), which

can be seen in figure 1.4 below.

• Preflare stage.During this stage there is a small increase in EUV (extreme ultra violet)

and SXR (soft X-ray) flux, but very little change in observations at other wavelengths.

• Impulsive phase, where bursts of HXRs are seen, as well as bursts in EUV and across

a range of radio wavelengths. The SXR flux also increases during this time.

• Main phase, where theHα and SXR fluxes peak.

• Gradual phase. The HXR, microwave and decimetric radio fluxes fall off quickly,

whilst the observed SXR, EUV andHα flux decays more slowly.

In order to produce the observed HXRs in the impulsive phase,particles must be accelerated

to the non-thermal (i.e. high) energies. Each phase is typically longer in duration than the

last. The preflare and impulsive phases have lengths of the order of a few minutes for a large

flare. The main phase then lasts a few tens of minutes, and the decay phase is typically a few

hours long (Benz (2008)).

Many different flare models exist. A typical example of such amodel is shown in figure 1.5.

This model shows many features common to flare models. The magnetic field is modelled

as a loop. The magnetic field loop has two ’footpoints’ which are at the interface between

the corona and the chromosphere. At these footpoints, hard (photon energy above 20keV)

X-rays are produced as electrons are decelerated when they enter the denser chromosphere
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Figure 1.4: An example of a solar flare time profile at various wavelengths (Benz (2002)).
The four stages of the flare are shown.

(Brown, 1971). The point at which these electrons are accelerated is typically situated at

the cusp of the flaring loop, although some models postulate the existence of many smaller

re-acceleration sites along the loop length (e.g. Brownet al. (2009)). Soft (photon energy

below 20 keV) X-rays are produced by thermal electrons alongthe loop length. The flare

loop is modelled as a magnetic flux tube which confines the coronal plasma.

Although the typical picture of a solar flare places the regions of HXR emission at the flare

footpoints, regions of HXR emission have also been observedat the loop top, initially and

most famously by Masudaet al.(1994a). Such observations require that particles are acceler-

ated to high energies at the loop top, and that collisions occur there (Kruckeret al. (2008b)).

This acceleration region is often modelled as an X-type neutral point (e.g. Fletcher and

Petkaki (1997)). The X-type neutral point is defined and further discussed in chapter 2.
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Figure 1.5: An example of a solar flare model. HXR indicates areas of hard (i.e. high energy)
X-ray emission. SXR indicates areas of soft (i.e. low energy) X-ray emission. The flare is
shown extending outwards from the ’limb’ (the edge of the solar disk), and electrons are
accelerated from the cusp of the flaring loop towards the footpoints. (Aschwanden, 2004b).

Hard X-rays place particularly stringent requirements on the flare particle accelerator. In

order for the chromospheric X-ray fluxes seen in flares to be achieved, electrons must flow

through the acceleration region at a rate≥ 1037 electrons/s (Vlahos, Krucker, and Cargill

(2009)). This requires all of the electrons in a coronal volume of≈ 1030cm3 to be accel-

erated over a few minutes, unless the electrons can somehow re-encounter the acceleration

region. Since the volume of a solar flare is≈ 1.8×1026cm3 (Aschwanden (2004a)), it seems

inevitable that particles will either have to re-enter the acceleration region, or remain trapped

there.

1.5 Plasma Turbulence

The plasma being considered in this thesis is the coronal plasma, which is of course highly

dynamic. However, even well-controlled laboratory plasmas will contain some degree of

turbulence. Turbulence can be thought of as a superpositionof ripples and disturbances
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in the plasma which (at least at small amplitude) may be viewed as a superposition of the

natural wave modes of the plasma. In the vicinity of energy release, e.g. during magnetic

reconnection, such turbulence may become a major componentof the plasma.

It has been suggested that the process of magnetic reconnection generates plasma turbulence

due to the plasma outflows from the reconnection region (e.g.Liu et al. (2008); Petrosian

and Liu (2004)). When a magnetised plasma is perturbed by wave mode oscillations, this

produces a form of turbulence, which can accelerate electrons to energies which reproduce

the spectra seen in electron-dominated flares (Park, Petrosian, and Schwartz (1997)).

Kolmogorov (1941) proposed that the transfer of energy fromlarge scales to small results

in a steady situation where energy is distributed over wavenumber as a broken power law.

This so called ’K41 turbulence’ can be seen in figure 1.6. Broadly speaking, the spectrum is

divided into three parts. On the very largest scales, the energy spectrum has a spectral index

of -1. On intermediate scales, the spectral index is -5/3. This is the range in which particles

within the plasma can become energised (Frisch (1995)). On the very smallest scales, this

energy is transferred into heat.

The -5/3 spectral index is arrived at via dimensional considerations. Kolmogorov postulated

that the energy variation per unit wavenumber should dependonly on the wavenumber (k),

and the rate of energy distribution per unit volume (ψ), as follows

E(k, ψ) ≈ kαψβ. (1.1)

It is known thatk has units of1/length, ψ has units oflength2/temperature3, andE has

units of length3/temperature2. Some trivial algebra then gives the result that the indexα

in equation 1.1 takes the value−5/3.

This -5/3 power law has been seen in in-situ measurements of the solar wind, an example

of which is given in figure 1.7 (which is taken from Alexandrovaet al. (2009), see also e.g.

Matthaeus and Goldstein (1982)).The K41 model was originally used to describe unmagne-

tised plasmas. However, the appearance of a K41 power law in the solar wind suggests that

the application of such models to magnetised plasmas in the solar wind and solar corona is

possible. Indeed, a -5/3 power law can be used to model turbulence due to Alfvén waves

in the solar corona (e.g.Cranmer and van Ballegooijen (2003)), and it is expected (e.g. Liu

et al. (2008)) that turbulence will be associated with magnetic reconnection events. Magne-

tohydrodynamic (MHD) turbulence was modelled as wave turbulence roughly 20 years after
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K41 turbulence was first proposed (Iroshnikov (1963); Kraichnan (1965)). However, these

models require that the energy cascade be isotropic in Fourier space, a caveat which has

met with criticism (e.g. Cho, Lazarian, and Vishniac (2002)). An anisotropic cascade was

first modelled by Goldreich and Sridhar (1995), who developed a model of MHD turbulence

which has an energy spectrum with a spectral index ofk−5/3, the spectral index that K41

gives for turbulence on intermediate scales.

Figure 1.6: Change in plasma energy with wavenumber according to the K41 model (Gold-
stein, Roberts, and Matthaeus, 1995).

In this work, I will seek to introduce a superposition of disturbances into a simulation of a

coronal plasma via creating noisy electric and magnetic fields in which the behaviour of test

particles is then studied. The creation of these fields is discussed in detail in chapter 3.

1.6 Conclusion

This chapter formed a brief introduction to activity in the outer layers of the Sun. We have

seen that active regions are created by magnetic flux that emerges from the solar interior.

This flux is thought to be generated by shear at the tachocline, caused by differences in the

rotation of the radiative zone and the convective zone. Suchflux emerges due to convection,

and forms active regions where it emerges.

Phenomena associated with active regions include CMEs, sunspots, prominences and solar

flares. Solar flares are important for the work in this thesis,as they can accelerate particles.

Such acceleration regions are likely to be turbulent, so we also briefly explored the concept

of plasma turbulence.
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Figure 1.7: Variation of magnetic power density with frequency in the solar wind, as mea-
sured by Cluster (Alexandrovaet al., 2009).



2. Magnetic Reconnection

2.1 Introduction

In this chapter, I will detail a few examples of mechanisms via which magnetic reconnection

can occur. These examples will include steady state models (Sweet-Parker and Petschek)

as well as the spontaneous kink mode and tearing mode models.I also discuss collisionless

reconnection, and how this can occur if the concept of an inertial resistivity is introduced.

Finally, I describe an X-type neutral point, and how this canbe used to model an acceleration

region in the solar corona.

2.2 What is Magnetic Reconnection?

Magnetic reconnection can be simply described as a change inthe structure of the magnetic

field due to plasma flows (see e.g. Priest and Forbes (2000)). There is a change in the

topology of the magnetic field due to magnetic field lines breaking and reconnecting so that

stored energy can be released. A change in magnetic field structure can be described in terms

of the induction equation. The induction equation is derived from Maxwell’s equations,

Faraday’s law, Ohm’s law and Ampere’s law. The displacementcurrent term of Ampere’s

law can be neglected if one makes the assumption that the fluidvelocities are much smaller

than the speed of light, and that the oscillation timescale of the electric field is much longer

than the timescale of the system (Jackson (1965)). Assuminga uniform resistivity, this

gives

∂B
∂t

= ∇× (u × B) +
cη

4π
∇2B. (2.1)

η is the plasma resistivity, andu is the fluid velocity. The first term on the r.h.s. describes

changes in the magnetic field due to advection of the plasma. The second term describes

changes due to diffusion. The ratio of the two terms is calledthe magnetic Reynolds number,

33
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which is very large in the solar corona (≈ 108). This means that the magnetic field is ’ frozen

in’, i.e. as the plasma moves, the magnetic field is carried with it. When two regions of

oppositely directed field (see figure 2.1) are forced together by plasma flows (Gorbachev and

Somov (1989)), a large current will arise at the boundary between two regions of oppositely

directed field, in accordance with Ampere’s law:

∇×B =
1

c

(

4πJ+
∂E

∂t

)

(2.2)

whereJ is the current density. This current is opposed by the electric resistivity of the

plasma, and plasma diffuses through the domain boundary from both sides. Since the field

is frozen in to the plasma, magnetic flux is then pulled into a region of oppositely directed

flux, resulting in reconnection.

Figure 2.1: Two sets of oppositely directed magnetic field lines, shown here breaking and
reconnecting to form new field lines.

There are many theories describing reconnection. All models propose a mechanism whereby

the magnetic field is simplified post-reconnection, and thatstored energy is released as the

magnetic field re-configures following reconnection.

2.3 Steady State Reconnection

The first models of reconnection were steady state in character and were constructed by

Sweet (1958a) and Parker (1957). The Sweet-Parker model proposes that plasma flows could

cause two oppositely directed magnetic fields to be pushed together, creating a current sheet.

The two flows are assumed to be antiparallel, of equal strength, incompressible and of uni-
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form density. There is a steady inflow of plasma into the current sheet and an outflow of

reconnected field from the narrow edges of the current sheet,as shown in figure 2.2.

Figure 2.2: Sweet-Parker reconnection model. Slightly adapted from Zweibel and Yamada
(2009).S is the Lundquist number, which is the ratio of the Alfvén timescale to the resistive
diffusion timescale.

It can be seen in figure 2.2 that plasma flows in to the long side of the current sheet (2L)

with speeds much smaller than the Alfvén speed, and is ejected from the narrow edge of

the current sheet (2δ) at around the Alfvén speed. Sweet-Parker reconnection produces a

reconnection rate that is much faster than resistive diffusion, but much slower than the re-

connection rates inferred from solar flares. The reconnection rate (defined asUin/Uout) can

be derived as follows. Using ideal Ohm’s law and the assumptions previously stated (that the

two flows are assumed to be antiparallel, of equal strength, incompressible and of uniform

density), and expression for the out of plane electric field,Ez, is given by

Ez = UinBin, (2.3)

whereUin is the inflow speed andBin is the upstream magnetic field strength. If displace-

ment current is neglected, an expression for the out of planecurrent (Jz) can be obtained

using Ampere’s law, so that
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Jz ≈
Bin

µ0δ
, (2.4)

whereδ is half of the current sheet thickness. If the electric field outside the sheet is matched

with the resistive electric field (given byE = ηJ, whereη is the resistivity) inside the sheet,

then the inflow speed is given by

Uin ≈ η

µ0δ
(2.5)

Conservation of mass gives the relationship between the inflow (Uin) and outflow (Uout)

speeds as

Uoutδ = UinL. (2.6)

The inflow speed is very small because it is inversely proportional to the magnetic Reynolds

number, which is≈ 108 in the corona. This means that reconnection necessarily proceeds

very slowly.

Petschek (1964a) proposed a reconnection model which contained standing slow mode shock

waves in the inflow region. This creates a current sheet wherethe inflow and outflow area

are of comparable sizes, allowing for a faster reconnectionrate (figure 2.3). The inflow

speed for Petschek reconnection is inversely proportionalto the logarithm of the magnetic

Reynolds number (in the Sweet-Parker case, the reconnection rate is inversely proportional

to the square root of the magnetic Reynolds number), meaningthat reconnection can proceed

more quickly.

2.4 Spontaneous Reconnection

2.4.1 Tearing Mode

Steady state reconnection is driven by large scale plasma flows. Furth, Killeen, and Rosen-

bluth (1963) proposed that small perturbations to the magnetic field could cause the field to

become unstable, causing reconnection to occur. The tearing mode instability is an instabil-

ity in which arises when the resistivity is non-zero, thoughthe plasma is stabilised against
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Figure 2.3: Petschek reconnection model. Slightly adaptedfrom Zweibel and Yamada
(2009).

the tearing mode when the resistivity is zero. A tearing modeinstability is generated when

a plasma with a non-uniform current density is subject to perturbations. The perturbation

length scale must be greater than the length scale of the current density gradient in order for

an instability to form. The tearing mode is associated with the formation of small-scale mag-

netic structures, called magnetic islands (see e.g. Fitzpatrick (1993)). Magnetic islands are

a series of linked X- and O-type nulls, an example of a chain ofmagnetic islands is shown

in figure 2.4. The structure of an X-type neutral point is described in section 2.6. An O-type

null is a magnetic field structure formed from a series of concentric elliptical field lines. At

the centre of the structure, the magnetic field strength is zero.

2.4.2 Kink Mode

Another example of an instability that can lead to reconnection is the kink mode. The kink

mode instability occurs in a flux tube which has a strong axialcurrent. If the magnetic

forces on one side of the tube are greater than those on the other side, a kink develops in

the tube. The instability becomes self-sustaining as the forces on either side of the flux tube

are increasingly imbalanced. Waelbroeck (1989) showed that if such an instability is in a
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Figure 2.4: Chain of magnetic islands, formed from a series of X- and O-type nulls. Figure
taken from Birn and Priest (2007).

non-linear state, a helical current sheet develops which can reconnect as a series of magnetic

islands are formed.

2.5 Collisionless Reconnection

Collisionless reconnection in particular has been extensively studied in recent years(e.g. Mc-

Clements, Shah, and Thyagaraja (2006)). Collisionless reconnection is a type of MHD (mag-

netohydrodynamic) reconnection in which the Hall effect isincluded. Ohm’s law says that in

a steady state the force on particles is balanced by the forcedue to collisions. The generalised

Ohm’s law states that:

E = −1

c
[v × B] + ηj +

j × B
neec

. (2.7)

The final term on the r.h.s. is the Hall term, which had been neglected in the reconnection

models previously described. However, in collisionless reconnection, this term dominates.

This creates a spatial scale associated with the Hall term, which is given by:

di =
c

ωpi
, (2.8)

whereωpi is the ion plasma frequency. At distances less thandi from the neutral line, ions

decouple from electrons, leading to a thinner diffusion layer than in collisional reconnection

as the electrons continue to flow inwards, (figure 2.5). This in-plane current generated by the

electrons also creates a quadrupolar out of plane magnetic field, which can also be seen in
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figure 2.5. The collisionless approach is appropriate when considering acceleration regions

in the solar corona since the mean free path of the particles is much larger than the size of

the acceleration region (Martens (1988)).

Figure 2.5: Collisionless reconnection model, showing ions and electrons moving separately.
ωpi is the ion plasma frequency,ωpe is the electron plasma frequency. Zweibel and Yamada
(2009).

In the case of collisionless reconnection, the resistivityof the plasma cannot, of course, be

due to collisions. It was therefore thought that reconnection could not occur in the absence

of collisions, as there would be no resistivity in the system. However, Speiser (1970) showed

that one can calculate an inertial resistivity, which is a function of the amount of time parti-

cles spend in the diffusion region. It is this inertial resistivity which I use for my calculations

in chapters 3 and 4. The precise manner in which this is calculated is detailed in section

3.3.1.

2.6 The X-Type Neutral Point

An X-type neutral point is a type of magnetic field which contains a central point at which the

magnetic field goes to zero and which is divided into four regions of different connectivity,

divided by separatrices. A 2D X-type neutral point can be seen in figure 2.6.

Such a field is described in 2D by the equations
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Figure 2.6: A 2D X-type neutral point. The left hand pane shows the magnetic field in the
x-y plane. The thick grey arrows indicate the direction of inflow and outflow from the E×
B drift. This X-type neutral point does not have anyBz component, and does not vary in the
z direction. This is shown in the right hand plane, which shows an arcade in the z-direction.
Figure taken from Hannah (2005).

Bx =
B0

D
y (2.9)

By =
B0

D
x (2.10)

B0 is the field strength at r=D, whereD is the size of the region. At the centre of the region,

(i.e. at the neutral point) particles decouple from the magnetic field and are freely accelerated

by any electric field present (i.e. in this region the particle moves non-adiabatically, meaning

that they are able to gain or lose kinetic energy). Particlesare able to move non adiabatically

near the null as they become demagetised and can gain energy if an electric field is present.

The radius of the non-adiabatic region is the point at which the particle’s gyroradius is the

same size as the scale length of the magnetic field. Such magnetic field configurations are

therefore often considered when modelling reconnection regions in the solar corona. The X-

type field is a highly idealised configuration but its simplicity means that essential features of

reconnection may be studied. If an electric field is imposed in the z-direction, anE×B drift

results. This will tend to move particles closer to the null by moving them in the x-direction.

The particles are then expelled from the null in the y-direction. When particles enter the

non-adiabatic region, they decouple from the magnetic fieldlines, and are freely accelerated

in the z-direction, parallel to the electric field. A sample proton trajectory can be seen in

figure 2.7. It can be seen that the particle spirals around thefield lines, and mirrors back and
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forth. As distance from the neutral point increases, the particle’s gyroradius decreases, and it

is more tightly tied to the field lines. Closer to the null, theparticle decouples from the field

lines.

Figure 2.7: Trajectory of a proton in an unperturbed X-type neutral point.

As yet, no model exists which accounts for all of the observedproperties of the energy release

in solar flares. As has been discussed, early reconnection models (e.g. Sweet (1958b), Parker

(1963)) considered the formation of current sheets by resistive diffusion. However, these

models gave reconnection rates that were much too slow. Petschek (1964b) suggested that

higher outflow speeds can be reached if a central region dominated by wave propagation is

introduced.

Bulanov and Syrovatskii (1980) were the first to propose thatsuch waves could be magneto-

hydrodynamic in nature, and considered an X-type neutral point perturbed by harmonic fast

waves that are azimuthally symmetric. They considered a 2D cylindrically symmetric geom-

etry, and perturbed the system at the system boundary. They found that these perturbations

became azimuthally symmetric as they approached the null. Initially, this prescribed sym-

metry meant that it was unclear if this result was applicablemore generally. However, Craig

and co-authors (Craig and McClymont (1991),Craig and McClymont (1993),Craig and Wat-

son (1992)) found that reconnection can only occur if the wave modes perturbing the neutral

point have azimuthal symmetry.
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This thesis deals with following test particles in the presence of electric and magnetic fields

calculated by a similar formalism to Craig and McClymont (1991). Test particle calculations

allow us to follow the behaviour of individual particles without considering the effect that the

particles themselves may have on the fields they move in, so the behaviour of the particles

can potentially be studied using a different approach to that which was used to calculate the

electric and magnetic fields. Whilst this approach neglectsthe effect of the particles on the

fields they move in (and the effect of particles on one another), the inclusion of such effects

would make the calculations considerably more complicatedand increase the computation

time to an impractical extent.

Petkaki and MacKinnon (1997),(2007) considered an X-type neutral point being perturbed

by single eigenmode oscillations, similar to those studiedin Craig and McClymont’s work,

and found that such oscillation increased the efficiency of the neutral point as a particle

accelerator. Petkaki and MacKinnon (2007) found that certain frequencies were more ef-

fective at accelerating particles than others, and it was thought that this was due to resonant

interactions, since particles were observed to gain energyoutside of the central diffusion

region.

This work seeks to extend these models by examining the effects of weak turbulence on

the reconnection region and on particle behaviour. This turbulence will be introduced by

considering a superposition of MHD eigenmodes. It is likelythat a viable solution to the

problem must be time dependent. This is because steady statesolutions cannot adequately

deal with the large scale advection of the plasma as well as the small scale diffusion region

around the neutral point. Since this project focusses on thereconnection region specifically,

a time-dependent solution is necessary.

The motivation for introducing this time dependence via a time-dependent electric field into

this picture comes from the idea of linear reconnection as laid down by Craig and Mc-

Clymont (1991). The structure and evolution of the reconnection region implies the form of

the electric field which I use to accelerate particles in these simulations. It is hoped that the

superposition of modes will lead to particle scattering, allowing the particles to re-encounter

the diffusion region many times, leading to particles reaching high energies. It is also pre-

dicted that such a superposition of modes will lead to repeated resonant interactions by the

particles, which will also enable them to become highly energised. A combination of these

effects should create an effective method for particle acceleration in the corona.



CHAPTER 2. MAGNETIC RECONNECTION 43

2.7 Test Particle Studies

The test particle approach is widely used in the study of accelerated particles, see e.g.

Wood and Neukirch (2005), Dalla and Browning (2005), Gordovskyy and Browning (2011),

Zharkova and Agapitov (2009). Test particle studies can be divided into two groups: 3D

and 2D simulations. For 2D simulations such as those in this thesis, the magnetic field has

noBz component. These studies generally assume a magnetic field in the x-y plane, with

an imposed electric field component (see e.g. Petkaki and MacKinnon (1997),Vekstein and

Browning (1997), Petkaki (1996)). These studies show that the effectiveness of the accelera-

tion mechanism varies depending on the initial position of the particles being accelerated, as

well as on the strength of the electric field and the size of thenull (i.e. the size of the region

in which particles can be freely accelerated).

In 3D simulations, aBz component is included. In many 3D simulations, the magneticfield

takes the form of a ‘spine and fan’ field, where the ‘fan’ part is very similar to a 2D x-point,

and is the field in the x-y plane. The ‘spine’ is aBz component which extends from the

centre of the x-y plane (see e.g.Dalla and Browning (2008); Browninget al. (2010)).

I will consider particles in linearly reconnecting fields (see also e.g. Hamiltonet al. (2005)).

Other research has made use of more sophisticated numericalmodels of reconnection to

provide the fields in which the particles move (e.g. Gordovskyy, Browning, and Vekstein

(2010b), Gorbachev and Somov (1989), Wood and Neukirch (2005)). In this work, I will

be considering particle motion around a null point, rather than in a current sheet. The elec-

tric and magnetic fields are also time-dependent. Crucially, a unique feature of this work

is the attempt to construct electric and magnetic fields thatare both ‘noisy’ and realistic.

The fields are constructed from a superposition of eigenmodes appropriate to this spatially

inhomogeneous situation. The dynamic character of the fieldis essential to this.

It is also common practice in this kind of work to follow particles in the guiding centre ap-

proximation (e.g. Karlický and Bárta (2006); Gordovskyy, Browning, and Vekstein (2010a);

Browninget al. (2010)). This means that only the centre of the particle’s gyromotion is fol-

lowed. This simplifies the equations of motion, and allows particles to be followed for longer

times than I was able to do in this work. However, this work focuses on effects that result

near the null from non-adiabatic behaviour, which wouldn’tbe properly described in the

guiding centre approximation. I will therefore calculate particle trajectories by considering

their motion inx, y andz.



CHAPTER 2. MAGNETIC RECONNECTION 44

2.8 Conclusion

In this chapter, I have established what is meant by magneticreconnection. I have also

looked at a selection of different methods via which magnetic reconnection can occur. We

have seen that early steady state models give reconnection rates that are too slow when

compared with rates inferred from observations. I also introduced the concept of collisionless

reconnection, and the inertial resistivity that I will use in the construction of the magnetic

fields in the following chapter. I looked at the X-type neutral point, which is the basic model

of an acceleration region that I will be using in the following chapters. Finally, I discussed

previous test particle studies, since I will be using a test particle approach to study particle

behaviour.



3. Noisy Electric and Magnetic Fields

Near A Magnetic Null Point

3.1 Introduction

In this chapter, I will calculate the form of the electric andmagnetic fields that will be used

in chapter 4. These fields will be created from a superposition of cold plasma eigenmode

oscillations. The electric and magnetic fields associated with these eigenmodes will be cal-

culated, and noisy electric and magnetic fields will be constructed from a superposition of

the fields for each of the eigenmodes. In this chapter, I will use the word ‘noisy’ to indicate

fields which contain superpositions of oscillations, meaning that they vary both spatially and

temporally. I use the word ‘noisy’ rather than the word ‘turbulent’, as these fields are still

too well ordered to be considered truly turbulent. In section 3.4 I reproduce the results and

calculations of Petkaki (1996) in order to do this. The spatial dependence of these fields will

be introduced via the hypergeometric function, so a fast, accurate method of calculating the

hypergeometric function for each electric and magnetic field mode will be developed.

3.2 Reconnection at an X-type Neutral Point

The simplicity of the X-type neutral point field and the associated description of linear recon-

nection provide a prototypical picture in which particle acceleration may be studied. Petkaki

and MacKinnon (1997),(2007) considered an X-type neutral point being perturbed by single

eigenmode oscillations, similar to those studied in Craig and McClymont’s work, and found

that such oscillation increased the efficiency of the neutral point as a particle accelerator.

This was shown to be due to the finite width of the nonadiabaticregion close to the neu-

tral point which allows particles to gain or lose energy randomly resulting in a Fermi-type

stochastic acceleration. Furthermore Petkaki and MacKinnon (2007, 2011) found that cer-

tain frequencies were more effective at accelerating particles than others, possibly through

resonant interactions, since some particles were observedto gain energy outside of the cen-
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tral diffusion region. (See also Guoet al. (2010) and the analytical discussion of Litvinenko

(2003)).

This work seeks to extend these models by examining the effects of weak turbulence on

the reconnection region and on particle behaviour. This turbulence will be introduced by

considering a superposition of magnetohydrodynamic (MHD)eigenmodes. It is likely that a

viable solution to the problem must be time-dependent. Thisis because steady state solutions

cannot adequately deal with the large-scale advection of the plasma as well as the small

scale diffusion region around the neutral point. The motivation for introducing this time

dependence via a time-dependent electric field into this picture comes from the idea of linear

reconnection as laid down by Craig and McClymont (1991). Thestructure and evolution

of the reconnection region implies the form of the electric field which I use to accelerate

particles in these simulations. The introduction of multiple scale lengths could produce a

form of turbulence in the corona, and allow the reproductionof the scale-free behaviour seen

in solar flares.

3.3 Normalisations

In order to investigate the motion of particles at an X-type neutral point, it is wise to nor-

malise the problem variables to sensible length and time scales. The equations of motion are

made dimensionless in the same manner as the equations of motion in Petkaki and MacKin-

non (1997). Specifically, distances are normalised todi =
(

c2mi

eB0

)1/2

, wherei = e or p for

electrons or protons, andB0 = B/D (the magnetic field at distance D) . The velocities then

are normalized to the speed of light which is appropriate forthe relativistic equations of mo-

tion. The normalising time is derived from these to quantities such thatτp = 1.87 × 10−4s.

I normalise masses to the particle rest mass. IfB = 100G andD is a typical coronal length

scale of109cm thendp = 5.6 × 106cm. The electric field is normalised toB0di, as is the

magnetic field.

3.3.1 Resistivity

A rough estimate of inertial resistivity is given by considering the time (t) a thermal particle

takes to cross the non-adiabatic region , i.e.:

η =
1

4πστp
(3.1)
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and

σ =
ne2t

me

, (3.2)

whereτp is the normalising time. By using the time (t, in seconds) taken for a1keV proton

to travel a distance equal to twice the size of the non-adiabatic region, one can obtain an

approximate value for the inertial resistivity (Speiser (1965)). The dimensionless resistivity

is thereforeη = 3.1724× 10−11. Convertingη to c.g.s units givesη = 5.9324× 10−15 s. By

way of comparison, the collisional resistivity is2.2× 10−13 in these units, or4.16× 10−17 s.

This is comparable to a typical coronal value, which is usually taken to be around10−16 (e.g.

Litvinenko (2006)). In Craig and McClymont (1991) increased resistivity leads to a larger

diffusion region. Increased resistivity could be due to enhanced inertial or anomalous effects

(e.g. Petkaki and Freeman (2008) shows that an increased electron drift velocity leads to

increased resistivity).

Changing the value of the resistivity will lead to changes inthe magnetic field. Specifically,

the size of the non-adiabatic regionrad varies withη. The values of the decay and oscillation

times for the cold plasma eigenmodes also depend onη, so the precise form of the perturba-

tions to the electric and magnetic fields will also change. IfI believed I knew the value ofη

from other considerations, I could rewrite 3.1 to estimaterad. However 3.3 provides only a

first estimate ofη. Other physical processes (e.g. ion-acoustic turbulence)might contribute

to it and I cannot assume that changes in this parameter will be mirrored in the behaviour of

test particles.

3.4 Forms of the Electric and Magnetic Fields

Following Craig and McClymont (1991) and Petkaki and MacKinnon (1997) I study the

behaviour of test particles in a system with translational invariance in thez-direction. Then

the magnetic field may be written:

B = ∇× (ψ(x, y, t)ẑ) . (3.3)

B will be calculated in a 2D cold plasma model.
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Following the method outlined in Petkaki (1996), I will lookfor eigenfunctions of the po-

tential, ψ. I will use a superposition of these eigenfunctions to create noisy electric and

magnetic fields.

In order to demonstrate how these eigensolutions are obtained, I will reproduce the calcu-

lations outlined in Petkaki (1996). Some intermediate steps in the algebra will be omit-

ted.

In our dimensionless units, the induction equation is givenby

∂B

∂t
= ∇× (v ×B) + η∇2B, (3.4)

whereη is the dimensionless resistivity andv is the fluid velocity. If equation 3.3 is sub-

stituted into the above equation, after using the appropriate vector identities and integrating

over the surfaceS,

∂ψ

∂t
+ v · ∇ψ = η∇2ψ. (3.5)

is obtained. Using the Lagrangian time derivative, this canbe written as

Dψ

Dt
= η∇2ψ. (3.6)

In our dimensionless units, the fluid momentum equation in the absence of an electric field

is given by

dv

dt
= A∇×B×B, (3.7)

whereA is a constant which converts from our dimensionless units tothose of Craig and

McClymont;

A =
u2ad

2
p

c2D2
, (3.8)
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whereuA is the Alfvén speed at the system boundary,D is the size of the system (109 cm), c

is the speed of light anddp is the normalising length for protons.

If the current density and vector potential are substitutedinto equation 3.7, this gives

Dv

Dt
= −A∇2ψ∇ψ. (3.9)

I now want to make linear expansions of equations 3.6 and 3.9.I therefore writeψ andv

as

ψ = ψ0 + ψ1 (3.10)

v = v0 + v1, (3.11)

whereψ1 andv1 are first-order terms. The system starts from equilibrium sothatv0=0. Using

the following:

∂ψ

∂t
= 0 (3.12)

∇2ψ = 0, (3.13)

the time derivative of equation 3.6 can be written as

∂2ψ1

∂t2
+ (v̇1 · ∇)ψ0 = η∇2ψ̇1. (3.14)

Rewriting and linearly expanding equation 3.9 gives

∂v1
∂t

= −A∇2ψ1∇ψ0. (3.15)

Combining equations 3.14 and 3.15 gives (after some algebra)
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∂2ψ

∂t2
− η∇2ψ̇ = Ar2∇2ψ, (3.16)

wherer2 = x2 + y2 and the subscript 1 has been dropped so thatψ is now the perturbed

potential.

3.4.1 Form of the Solution

I will look for solutions of the form:

ψ = eλtf(r)eimφ (3.17)

Here λ and f(r) are complex. The quantitym is an integer which is taken to be zero,

since these are the only solutions via which reconnection can occur (Craig and McClymont

(1991)). Evaluatingψ̇,∇2ψ̇ and∇2ψ, and combining their solutions gives

r(rf ′)′ =

(

λ2

A+ ηλ
r2

)

f(r). (3.18)

At this point, it is expedient to make a change of variable such that

z = −Ar2
ηλ

. (3.19)

Taking and combining the first and second derivatives off with respect tor gives

z(1− z)
d2f

dz2
+ (1− z)

df

dz
= − λ2

4Af(z). (3.20)

This has the same form as the general form of the hypergeometric equation, which is

z(1 − z)
d2f

dz2
+ (c− (α+ β + 1)z)

df

dz
= αβf(z). (3.21)

By inspection, it can be seen that
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c = 1, (3.22)

α + β + c = 1, (3.23)

αβ = − λ2

4A , (3.24)

α = −β. (3.25)

The quantitiesα, β andλ are all complex, so that

α = ρ+ iξ, (3.26)

β = −ρ− iξ, (3.27)

λ = κ+ iω. (3.28)

If these expressions forα, β andλ are substituted into equation 3.24, after some algebra one

obtains

α = − κ

2
√
A

+ i
ω

2
√
A
, (3.29)

β =
κ

2
√
A

− i
ω

2
√
A
. (3.30)

The solution is therefore

f(r) =2 F1(a, b; c; z) = fℜ(r) + ifℑ(r). (3.31)
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The complex eigenvaluesλ are writtenλ = −κ + iω so that the real numbersω andκ are

frequency and decay rate respectively. Then the eigenvalues λn are fixed by the boundary

conditions for the real (ℜ) and imaginary (ℑ) parts of the hypergeometric function atr = 1

:

ℑ(f(1)) = 0 = ℜ(f(1)) = 0

This choice of boundary condition ‘freezes in’ the field, meaning that these perturbations are

standing modes. Since the perturbation vanishes at the boundary, no flux enters or leaves the

system (see Craig and McClymont (1991)). A different choiceof boundary condition could

produce travelling waves, but I do not study those here. I will then use these perturbations

(recall that these are calculated in the manner of Petkaki (1996)) to produce electric and

magnetic fields.

Numerically, I found the eigenvaluesλn using Broyden’s method (Presset al., 1992; Petkaki,

1996), with the analytical estimates of Craig and McClymont(1991) as first guesses. The hy-

pergeometric function will be discussed further in section3.4.2. This work follows particles

in the presence of a 2D magnetic field. It has been shown (Litvinenko (1996), Hamiltonet al.

(2003)) that the addition of aBz component can cause particles to become trapped within the

current sheet as they become tied to the magnetic field in thez-direction. As particles follow

these field lines, they are moving parallel to the electric field, leading to them gaining high

energies. This means that the energies gained by particles in these simulations are likely to

be at the lower end of the energy range that could be achieved with a 3D geometry.

3.4.2 The Hypergeometric Function

The Gauss hypergeometric function2F1(a, b; c; z) is given by (Abramowitz and Stegun (1965))

2F1(a, b; c; z) =

n
∑

i=0

(a)n(b)n
(c)n

zn

n!
, (3.32)

where(x)n = x(x + 1)(x + 2)...(x + n − 1). Equation (3.32) converges only for|z| < 1.

Since I would also like to consider|z| > 1, I must use a transformation formula in order to

consider this region, which is given by (Abramowitz and Stegun (1965))
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2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a

2F1(a, 1− c+ a; 1− b+ a;
1

z
)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b

2F1(b, 1− c+ b; 1− a+ b;
1

z
). (3.33)

Recalling equation 3.31, I now have a solution for the hypergeometric functionf(r), since

f(r) =2 F1(a, b; c; z(r)) (Petkaki (1996)). I could also solve the hypergeometric function in

this region by solving the hypergeometric equation (Presset al. (1992)), however this takes

a long time to solve numerically, and for these purposes it isnot practical. The analytic

continuation method detailed above allowed these simulations to run approximately 2 orders

of magnitude faster than when using the method detailed by Presset al. (1992). In order to

obtain a smooth function at|z| = 1, the method of Presset al.(1992) (which is valid for allz)

was used to between bridge the gap between the two solutions.The region ofz for which

the Press solution was used was from|z| = 0.9 to |z| = 2.5. This range was determined

empirically, and is the smallest such region that gives a smooth solution.

Recall that for the problem being considered, the parameters a, b, c andz are complex and

given by (Petkaki (1996))

a = −κ
2
+ i

ω

2

b =
κ

2
− i

ω

2

c = 1

z = −Ar2
ηλ

,

whereλ = −κ + iω andη is the dimensionless resistivity.

Figure 3.1 shows the form of the hypergeometric function forthe modesn = 0 : n = 3. Asn

increases, there are more oscillations present, and the oscillations are closer together.
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Figure 3.1: Form of hypergeometric function for first four eigenmodes. The solid line shows
the real part of the function, the dashed line shows the imaginary part.

For the calculation of the magnetic field perturbation, the derivative of the hypergeometric

function is used, which is given by Abramowitz and Stegun (1965) as

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z).

3.4.3 Explicit Forms of the Electric and Magnetic Fields

Because I am interested in a superposition of eigenmode solutions, the form of the vector

potential is given by

ψ(x, y, t) = ψ0(x, y) +
1

n

nmax
∑

n=1

ane
(λnt+φn)fn(r), (3.34)
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wheren = 0, 1, 2..., an is the amplitude of the perturbation,λn is the complex eigenvalue of

the solution,φn is a random phase between 0 and2π andfn(r) is the hypergeometric func-

tion. Below I experiment with values ofnmax up to 49, a large enough number of eigenmodes

to produce disordered, noisy fields without excessive computational effort. Eigenfunctions

were all normalised to unity att = 0. In the absence of a more detailed model for partition

of energy between modes, and to highlight the potential roleof turbulence I adopted a flat

spectrum,an = a0 = 10−4 for all n.

The magnetic field is given by

B = ∇× (ψ(x, y, t)ẑ) . (3.35)

Therefore the electric field is

E = −1

c

∂ψ

∂t
ẑ. (3.36)

The background field includes an X-type null point atx = y = 0, increases in strength

linearly withr and is given by

ψ0(x, y) =
1

2

(

y2 − x2
)

.

Here lengths have been normalised to the sizeD (taken to be109 cm) of the system (so the

outer boundary is atr = 1) and field strengths to the value on the boundary. I will have to

use a different set of dimensionless units, however, to describe particle orbits.

The rest ofψ sums over the firstnmax of the cold plasma eigenmodes calculated above,

and which were originally constructed in Hassam (1992), Craig and McClymont (1991)

and Petkaki and MacKinnon (1997) (see also Petkaki (1996)).These eigenmodes have a

wavelike character far from the null and take on a resistive character at smallr (i.e. they

dissipate as they approach the null). The resistive character is modelled using the plasma

resistivityη which is a parameter controlling the size of the diffusion region (Petkaki and

MacKinnon, 1997). I include only the azimuthally symmetriceigenmodes that dissipate

reconnectively (Craig and McClymont, 1991, 1993; Craig andWatson, 1992).
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With randomly chosen phasesφn, such a superposition simulates turbulence involving the

eigenmodes appropriate to this inhomogeneous situation, and pays attention to the dissipa-

tion that takes place via reconnection at smallr (see also McLaughlin, Hood, and de Moortel,

2011).

The following electric and magnetic fields were calculated for each mode (Petkaki and

MacKinnon (1997)). These fields are time dependent, and evolve over the duration of the

particle simulation.

E = an[exp(−κt)[κ(cos(ωt)fℜsin(ωt)fℑ) + ω(cos(ωt)fℑ + sin(ωt)fℜ)]] (3.37)

Bx = y[1+an
1

2η
exp(−κt)[κ(cos(ωt)f ′

ℜ−sin(ωt)f ′
ℑ)+ω(sin(ωt)f

′
ℜ+cos(ωt)f

′
ℑ)]] (3.38)

By = x[1− an
1

2η
exp(−κt)[κ(cos(ωt)f ′

ℜ − sin(ωt)f ′
ℑ) + ω(sin(ωt)f ′

ℜ + cos(ωt)f ′
ℑ)]],

(3.39)

wherefℜ is the real part of the hypergeometric function, andfℑ is the imaginary part. The

valuesκ andω are the real and imaginary parts of the eigenvalues of the perturbation. These

give the decay and oscillation terms of the electric and magnetic fields.η is the dimensionless

resistivity. Each eigenfunction was normalised so that itssquare norm was unity att = 0

before multiplying by the amplitudes discussed above. Eachperturbation was also given a

random phase between0 and2π.

I therefore need to calculate

∫ 2π

0

∫ 1

0

ψψ∗rdrdφ = 1.

Given

ψψ∗ = eλtf(r)eimφeλtf(r)∗e−imφ = e2λt(f 2
ℜ + f 2

ℑ), (3.40)

this gives (att = 0)

∫ 1

0

(f 2
ℜ + f 2

ℑ)rdr =
1

2π
. (3.41)
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Therefore, the perturbation for each mode is normalised to1 at t = 0. For these super-

positions of several modes, the sum of modes is divided by thenumber of modes being

considered, so that this normalisation is preserved.

Particles will be followed in the presence of5 different electric and magnetic fields, com-

posed for ions as follows:

• Case 1:E = 1× 10−4, Bx = y, By = x. The electric field in this case is constant, and

is the same everywhere.

• Case 2: Perturbation for then = 0 mode only. The perturbation has amplitude1 ×
10−4.

• Case 3: Perturbation for a superposition of modesn = 0 − n = 4. Each perturbation

has amplitude1× 10−4.

• Case 4: Perturbation for a superposition of modesn = 0− n = 19. Each perturbation

has amplitude1× 10−4.

• Case 5: Perturbation for a superposition of modesn = 0− n = 49. Each perturbation

has amplitude1× 10−4.

Each mode is also given a random phase att = 0. These phases then remain constant

for the rest of the simulation, so that each particle sees thesame fields. These five cases

have been chosen to represent a progression in the degree of turbulence, more generally

‘noise’, in the reconnection region. Case 1 represents the steady reconnection region whose

study dates back to Speiser (1956) while the other four casesbecome progressively more

dynamic and irregular. As described earlier a normalisation is adopted to ensure that electric

field amplitudes remain comparable and that differences in accelerated particle distributions

really result from the different degrees of variability andspatial structure.

For electrons, the fields have the same composition, except that the perturbations in cases

2-5 and the constant electric field in case 1 all have amplitude 1 × 10−3. This is because I

only follow electrons for 0.1s due to the long computation times required for electrons, so a

higher electric field is needed to accelerate particles overthis time frame. The electric field

experienced by the electrons atr = 0 can be seen in figure 3.7.

A sample of the eigenvalues forη = 3.1724 × 10−11 (used in calculating the fields) can

be seen in Table 3.1. The oscillation and decay times that these values give can be seen
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in table 3.2. These decay and oscillation times compare favourably with those seen in De

Moortel, Ireland, and Walsh (2000) (which gives an oscillation time≈ 180 to ≈ 420s),

Aschwandenet al. (1999) (which gives an oscillation time≈ 300s), Verwichteet al. (2009)

(which gives an oscillation time630±30s and a decay time1000±300s )and De Moortelet al.

(2002) (oscillation time≈ 180 to ≈ 300s). These times were inferred from observations of

coronal loops, however they give us an idea of the kind of timescales on which disturbances

propagate in the corona.

n κ (tc) ω (1/tc)
0 0.007224 0.117742
1 0.023451 0.367979
2 0.048197 0.621554
3 0.057407 0.880324
4 0.071435 1.137985
5 0.090700 1.396334
10 0.178909 2.700797
15 0.234672 4.073513
20 0.364947 5.372426
25 0.435492 6.731654
30 0.556102 8.101894
35 0.658314 9.481737
40 0.800338 10.83539
45 0.981808 12.15455
49 1.184325 13.20617

Table 3.1: A selection of values ofω andκ for η = 3.1724 × 10−11. The unittc is the
timescale used in Craig & McClymont’s work, wheretc = vAD. D is the distance from the
null at the system boundary, andvA is the Alven speed at the system boundary.

Magnetic and electric fields for a superposition of eigenmodes were generated by simply

calculating the magnitude of the field at each mode and addingthe modes together.an is the

amplitude given to each mode. I chose a flat spectrum of modes (an = 1).

The variation of the electric field withr (wherer is normalised toD) at t = 0 for can be seen

in figure 3.2. Figure 3.6 shows the variation of the perturbation of the magnetic field.

The variation of the electric field with time at two differentvalues ofr (wherer is normalised

toD) can be seen in figures 3.3 and 3.5.

The field for case 2 is almost constant, as then = 0 mode decays very slowly. The field for

case 3 actually increases over the time of the simulation. However, this is merely an effect

of the choice of end point for the simulation, as higher ordermodes do oscillate, causing the

field to increase and decrease. Over a longer time, the field for case 3 also decays. Recall
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n Decay time (s)
(

1
κ

)

Period(s)
(

2π
ω

)

Frequency(Hz)
0 634.0 244.0 0.0041
1 194.4 77.9 0.0128
2 94.6 46.1 0.0217
3 79.4 32.6 0.0307
4 63.8 25.2 0.0397
5 50.3 20.5 0.0488
10 25.5 10.6 0.0943
15 19.4 7.0 0.1429
20 12.5 5.3 0.1887
25 10.5 4.3 0.2326
30 8.2 3.5 0.2857
35 6.9 3.0 0.3333
40 5.7 2.6 0.3846
45 4.6 2.4 0.4167
49 3.9 2.2 0.4545

Table 3.2: A selection of values of oscillation time, decay time and period forη = 3.1724×
10−11.

Figure 3.2: Electric field variation with distance from the neutral point (wherer is normalised
to D). Field strength is normalised to the magnetic field strength at the system boundary.
The field shown results from different superpositions of eigenmodes, each with a different
random phase.
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Figure 3.3: Electric field variation with time atr = 0 (wherer is normalised toD). Field
strength is normalised to the magnetic field strength at the system boundary. The field shown
results from different superpositions of eigenmodes, eachwith a different random phase.

that each mode has also been given a random phase, which will also affect the evolution of

the electric and magnetic fields. The fields for cases 4 and 5 appear noisier, although they

will also decay over time. The higher order modes will decay first, leaving progressively

simpler fields. This can be seen in figure 3.4, which also showsthe forms of the electric field

for modes 0 to 4. It can be seen that the number of oscillationsin a given time increases with

the number of the mode being considered, and that each mode has been normalised to have

the same initial amplitude. Figure 3.5 shows once again thatthe field for case 2 is almost

constant. In this case, the field for case 3 does decrease overthe time of the simulation. The

fields for cases 4 and 5 once again appear the noisiest. The average field is smaller (as would

be expected) than atr = 0 in all cases
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Figure 3.4: Decay of electric field with time atr = 0, for modes 0-4.

Figure 3.5: Electric field variation with time atr = 1 (wherer is normalised toD). Field

strength is normalised to the magnetic field strength at the system boundary. The field shown

results from different superpositions of eigenmodes, eachwith a different random phase.



CHAPTER 3. NOISY ELECTRIC AND MAGNETIC FIELDS... 62

Figure 3.6: Magnetic field perturbation with distance from the neutral point (wherer is

normalised toD). Field strength is normalised to the magnetic field strength at the system

boundary. The field shown results from different superpositions of eigenmodes, each with a

different random phase.

The electric and magnetic fields for then = 0 mode have previously been plotted in Petkaki

(1996). My plots for then = 0 case (case 2) reproduce these plots. I chose the superpositions

of 5, 20 and 50 modes (cases 3, 4 and 5) to produce progressively noisier fields.

The electric fields that the electrons were subjected to in each case can be seen in figure 3.7,

which shows the electric field atr = 0 for a flat spectrum of different numbers of modes,

each with amplitude10−3. The electrons were followed for0.1 s, so the field is plotted for

this time only.
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Figure 3.7: Electric field variation with time atr = 0 (wherer is normalised toD). Field

strength is normalised to the magnetic field strength at the system boundary. The field shown

results from different superpositions of eigenmodes, eachwith a different random phase.

This is the electric field experienced by the electrons. It has a greater amplitude since elec-

trons are followed for a shorter time.

Figure 3.7 shows that over this short time scale, the electric field is much less noisy, therefore

the fields experienced by electrons will be less noisy. Of course, this is only because of the

different simulation times, as the actual fields calculatedare identical. The fields for cases

2 and 3 are now very similar in character. The field for cases 4 and 5 oscillate much more

smoothly over 0.1s than they do over 1s. The average magnitude of the field is progressively

smaller in each case.

3.5 Conclusion

In this chapter, I have constructed the noisy electric and magnetic fields that will be used

in the next chapter. I have done this by considering a perturbed potential, and finding the

eigenmodes of this perturbation. The electric and magneticfields for each eigenmode were

then calculated, and noisy fields were created from a superposition of the fields for each
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eigenmode, with each mode being given a random phase. I created 5 different cases to be

studied: one in which there are no eigenmode oscillations, one for then = 0 mode only, one

for a superposition of modes 0 to 4, one for a superposition ofmodes 0 to 19 and one for a

superposition of modes 0 to 49.

In order to calculate the electric and magnetic fields, I needed to calculate an appropriate

value of the inertial resistivity. This was done by considering the time taken for a pro-

ton to cross the non-adiabatic region. The spatial dependence of the electric and magnetic

fields was introduced via the hypergeometric function. Thistherefore had to be calculated

this quickly and accurately, and forr > 1. This was done using an analytic continuation

method.



4. Consequences For Particle Behaviour

4.1 Introduction

In this chapter, I will use noisy electric and magnetic fieldsto accelerate protons and elec-

trons. In the previous chapter, I introduced a set of dimensionless units which make it easier

to do this. I have already developed five different cases for the electric and magnetic fields,

and I will study the consequences for electrons and protons in each case. In particular, I

wish to know if noisier fields are more efficient at accelerating particles, and if so, why?

Accelerated electrons will produce X-ray bremsstrahlung,so the X-ray spectra produced by

the accelerated electrons will be calculated.

I will also investigate the consequences of varying the distribution of the amplitudes of the

eigenmodes to better reflect a turbulent spectrum, as well asinvestigating the consequences

of varying the value of the inertial resistivity.

4.2 Particle Behaviour: Protons

Here I follow test particles in the presence of model electric and magnetic fields. Test parti-

cle calculations study the behaviour of individual particles while neglecting the self-fields of

these same particles. This approach allows us to employ reduced (e.g. MHD) descriptions

for the electromagnetic fields and thus to explore a very large parameter space with reason-

able computational effort. The huge disparity of spatial scales involved probably renders a

complete description of the plasma impractical for the foreseeable future. This approach al-

lows us to investigate the gross properties that the reconnection must have if it is to actually

account for observed particle distributions.

The equations of motion of a charged particle in the presenceof a magnetic field are:

dr

dt
=

p

mγ
= v (4.1)
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dp

dt
= q

(

E+
1

c
(v ×B)

)

, (4.2)

wherep is the relativistic momentum of a particle,v is the particle velocity,m is the particle

mass andγ is the Lorentz factor. A charged particle in a uniform magnetic field where

electric field is equal to zero will travel along a magnetic field line, spiralling around the

field line with a gyroradius given byrg =
mcv⊥
|q|B

. When the gyroradius of the particle becomes

comparable to the scale length of the field, the particle willdecouple from the field lines, and

can gain energy in the presence of an electric field.

4.2.1 Equations of Motion

Although the magnetic field is 2D, the system has translational invariance in the z-direction,

and hence the particles were allowed to move around in 3D. I will integrate the equations

of motion numerically, and use the noisy electric and magnetic fields asE andB (the nor-

malised electric and magnetic fields).

According to Petkaki and MacKinnon (1997), the equations ofmotion of a particle for our

normalisations for protons can be written as

dx

dt
= vx (4.3a)

dy

dt
= vy (4.3b)

dz

dt
= vz (4.3c)

dpx
dt

= −Byvz (4.3d)

dpy
dt

= Bxvz (4.3e)

dpz
dt

= (E + (Byvx −Bxvy)). (4.3f)

In our dimensionless units

p = γv,

whereγ = (1 + p2x + p2y + p2z)
1/2.
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4.2.2 Particle Energies & Trajectories

In order to investigate the behaviour of charged particles in the turbulent fields,10000 ions

were released into electric and magnetic fields of the kind shown above, at positions dis-

tributed randomly within0 ≤ x ≤ 1, 0 ≤ y ≤ 1, in the planez = 0. Their starting energies

were chosen randomly from a Maxwellian distribution of temperature5 × 106K, a typical

coronal temperature. This temperature is equivalent to thethermal energyWth = kBT ,

wherekB is Boltzmann’s constant andT is the temperature in Kelvin. This energy is equiv-

alent to a thermal speed of 0.05c for protons. The direction of the velocity was chosen

randomly using the FORTRAN code GASDEV (Presset al. (1992)). Note that these speeds

are thermal speeds, and that the particles are not undergoing any kind of drift at the start of

the simulation.

Numerics

The differential equations 4.3 were solved numerically viadiscretisation according to the

4th order Runge-Kutta scheme (Presset al. (1992)). At this point, it is worth discussing the

differences between different methods of numerical integration.

Euler integration is the simplest method of numerical integration. Adopting a stepsize h, the

Euler method approximates the solution of the ODEdy/dx = f(x, y) at a set of pointsxn
via the algorithm

yn+1 = yn + f(xn, yn)h. (4.4)

Accuracy can be improved by using a smaller stepsize, but taking many steps may mean that

the function takes a long time to evaluate computationally.

The midpoint method is more accurate. Each step is broken in half, and the derivative of the

function is evaluated at the midpoint.

RK4 is a refinement of the midpoint method. At each step, the derivative of the function is

evaluated at the start of the step, as well as at two trial midpoints and a trial endpoint. All of

this information is then used to evaluate the function at theend of the step. A comparison

of the three methods outlined here can be seen in figure 4.1, which shows the solution of the

equationdy = sin(4x)dx.
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Figure 4.1: Comparison of three methods of numerical integration, for the integration of the
equationdy = sin(4x)dx. The solid line shows the exact solution of the function.

It can be seen that each refinement of the integration method brings the solution closer to the

analytical solution. The Euler method produces a result which is very different from the true

solution ofdy = sin(4x)dx, and I concluded from this that it would be a very inaccurate

method for following particles whose equations of motion are more complicated than this

simple function, unless a very small stepsize was used. The midpoint method and the RK4

method both reproduce the analytical solution reasonably well, however the error associated

with the midpoint method is greater than that associated with RK4. The midpoint method

has an associated errorO(h2), whereas RK4 has an associated errorO(h5), whereh is the

stepsize.

Of course, more accurate methods are possible. One such method is the Bulirsch-Stoer

method, which uses a varying stepsize in order to adapt to therate of change of the function.

Such a method was used to follow particle trajectories in Petkaki (1996) and Petkaki and

MacKinnon (1997). However, such methods take more computation time than is practical

for the number of particles that I wish to follow. I chose to use RK4 for this problem as it is

accurate enough (see the discussion on shadowing theorems,below) to follow the gyration

of particles without taking too long to compute their trajectories.
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I want to consider particles in the presence of a magnetic null point. The gyroradius of

such particles can vary widely throughout the simulation. Close to the null, the gyroradius

becomes very big as particles are no longer tied to the magnetic field lines. Away from the

null, particles will have small orbits, and follow the magnetic field lines closely. Clearly,

the integrator used must be able to deal with a variety of spatial scales accurately. Care

must therefore be taken to choose a timestep that is appropriate to the problem. Smaller

stepsizes clearly give more accurate results, but at the expense of longer running times for

the simulation. In order to determine an acceptable stepsize or these simulations, I first

examined the orbits of individual protons calculated usingdifferent stepsizes. These orbits

can be seen in figure 4.2.

Figure 4.2: Orbit of one proton in constant electric and magnetic fields for varying stepsizes.

Figure 4.2 shows that the orbits differ slightly for different stepsizes. However, as long as

each individual orbit is a reasonable orbit, for a distribution of particles these slight differ-

ences should not be important. To test this, 10 000 protons were followed in the presence

of constant electric and magnetic fields until t=5360 (1s forour normalisations for ions if

B0 = 10−7) for a variety of stepsizes. The distribution of their final energies can be seen in

figure 4.3.

Figure 4.3 shows that the distributions for stepsizes10−1 and10−2 are identical, even though

the individual particle trajectories differ. This is because although the individual trajectories
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Figure 4.3: Distribution of proton energies for constant electric and magnetic fields at t=5360
for varying stepsizes.

of the particles are not followed accurately, there exists another particle with slightly different

initial conditions for which the trajectory in question would be the true trajectory. This

property of a system is known as the shadowing property (e.g.Ott (2002)).

It was therefore found (by inspection of figures 4.2 and 4.3) that a stepsize of10−1 was

sufficiently accurate for the purpose of following protons.To integrate electron trajectories,

a smaller stepsize was used. Figure 4.4 shows distributionsof 10 000 electrons att = 2310,

(0.1s for our normalisations for electrons). From these distributions, the largest accurate

stepsize for electrons(3× 10−3) was chosen.

4.2.3 Energy Conservation

In the absence of an electric field, the kinetic energy of an individual particle should be

conserved. This was tested for each simulation by plotting the change in energy at each step

as a fraction of the particle’s original energy. The electric field was set to zero in all cases, but

the magnetic fields were still allowed to evolve with time, inorder to test energy conservation

of the code in a variety of different magnetic field structures. Changing magnetic fields of

course result in an electric field, so these simulations are clearly very artificial, and are useful

only as numerical tests. The results for cases 1-5 for ions can be seen in figure 4.5. It can
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Figure 4.4: Distribution of electron energies for constantelectric and magnetic fields at
t=2310 (0.1s) for varying stepsizes.

be seen that energy is well conserved (to within one part in10−6) in all cases. In all cases

(except for case 1), there are several sharp spikes, of equalsize in each case, where the

particle’s energy was not conserved. The origin of these spikes is not clear, but as they are

very small (less than one part in10−6), they were not thought to present significant problems

to the simulations.

The results for cases 1-5 for electrons can be seen in figure 4.6. It can be seen that energy is

well conserved (to within one part in10−6) in all cases. In case 1, the same small spikes can

be seen as were seen for cases 2-5 in the proton simulations. As these spikes are also very

small, they were also discounted.

4.2.4 Energy Distributions: Protons

Protons were followed untilt = 5360, which is equivalent to 1s ifB0 = 10−7. Particles

which left the simulation boundary (x = y = 178, z = 17.8 in units ofdp) were discarded.

These boundaries were chosen to give a system boundary in thex-y plane of109cm (Craig

and McClymont (1991)), and to satisfy the condition that thesystem width should be around

a tenth of its size in the x-y plane (Aschwanden and Nightingale (2005), which placed obser-

vational constraints on the length and width of coronal loops using measurements from the
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Figure 4.5: Energy of an individual ion for cases 1-5 in the absence of an electric field over
a period of 1s. It can be seen that energy is well conserved in all cases.

TRACE (Transition Region And Coronal Explorer) archive). These conditions meant that 11

particles (of 10000) from case 3 and 3 particles from case 5 were discarded. The resulting

energy distribution is shown in figure 4.7.

Figure 4.7 compares the initial energy distribution of the ions with distributions at t=1s for

the static X-type neutral point, for the n=0 mode of oscillation, and for superpositions of 5,

20 and 50 modes.

Case Average|E| At r = 0 Peak|E| At r = 0 % of Protons> 0.01MeV at t=1s
1 1.× 10−4 1.× 10−4 3.1
2 1.1× 10−4 1.2× 10−4 1.6
3 1.4× 10−5 1.9× 10−4 0.3
4 2.8× 10−6 6.0× 10−5 1.2
5 1.1× 10−6 5.4× 10−5 16.9

Table 4.1: Fraction of protons accelerated to above 0.01 MeVwith average electric field
strength and peak electric field strength in each case.

Cases 1 and 2 produce similar-looking energy distributions, although fewer particles were

accelerated to energies above0.01MeV in case 2. In case 1,3.1% of particles achieved en-

ergies above0.01MeV. In case 2, only1.6%, achieved these energies, although the average
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Figure 4.6: Energy of an individual electron for cases 1-5 inthe absence of an electric field
over a period of 1s. It can be seen that energy is well conserved in all cases.

electric field strength in these cases is roughly the same. Incase 3,0.3% of particles were

accelerated to above0.01MeV. However the average field strength in this case was also ap-

proximately a tenth of that in case 1. Case 4 accelerates1.2% of particles to above0.01MeV,

around half the number in case 1, but it does so using an average electric field that is almost

40 times smaller than that in case 1. By case 5, a second Maxwellian-type distribution of

high energy particles is produced, with a temperature of≈ 7.3×108 K. This temperature was

obtained by considering the mean energy of the particles in this second distribution.16.9%

of particles have energies higher than0.01MeV. In this case, the average electric field, and

the peak amplitude of the electric field are the smallest of any case. The average electric field

here is 100 times smaller than that in case 1.

Of course, I want to be satisfied that the increased energies of particles in case 5 are not

simply due to some special property of the phase differencesI have chosen for the eigenmode

perturbations. Let us choose a different set of random phases and calculate the resulting

electric and magnetic fields for a superposition of 50 modes.I will call this case 5b. Figure

4.8 compares the energy distributions of protons att = 1s for cases 5 and 5b. It can be

seen that the energy distributions are very similar for bothcases (in that they both contain

two Maxwellian-type distributions, each with approximately the same width and peak value,
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Figure 4.7: Energy distribution of 10000 protons at t=0, andat t=5360 for different electric
and magnetic fields.

although there are slight differences between the shapes ofthe two graphs), so that the ‘noisy’

fields are not merely more efficient for a particular set of phases, but are consistently better

than unperturbed fields at accelerating particles. Other sets of random phases were studied,

and were also found to produce the same results.

In order to investigate how the particle energy distributions evolve over time, the energy

distributions in each case were plotted at 0.1s (figure 4.9),0.5s (figure 4.10) and 0.9s (figure

4.11). These figures show that the particles in all cases (except for case 4) are energised

quickly. The particle energy distributions do not change very much aftert = 0.5s. The

exception to this is case 4, where the particles are energised steadily throughout the duration

of the simulation, and are still gaining significant energy between 0.9s and 1s. Recalling

figures 3.3 and 3.5 (which showed the variation of the electric field with time atr = 0 and

r = 1 respectively), one possible explanation for this could be that electric field for case

4 is still generally increasing after 0.5s, whereas the electric field in cases 2 is decreasing,

the electric field in case 3 is approaching a steady value and the electric field in case 5 both

increases and decreases rapidly. The consequences for protons accelerated in the electric

and magnetic fields of case 2 were investigated in Petkaki andMacKinnon (1997), and my

distributions att = 1s agree with their findings.
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Figure 4.8: Energy distribution of 10000 ions att = 0, and att = 5360 (1 second) for case 5
(electric and magnetic fields perturbed by a superposition of 50 eigenmode oscillations, each
with a random phase) and case 5b (electric and magnetic fieldsperturbed by a superposition
of 50 eigenmode oscillations, each with a different random phase).

It is known that in order to produce gamma ray radiation, protons must have an energy of

at least 2 MeV (Vilmer, MacKinnon, and Hurford (2011)). Noneof the protons in any of

the cases studied here achieves such an energy. However, many medium-sized flares do not

produce gamma ray radiation. Protons will of course be present in the coronal plasma, but

it is not easy to say anything about the role they play if they do not produce observable

radiation.
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Figure 4.9: Energy distribution of 10000 ions att = 0, and att = 536 (0.1 seconds) for

different electric and magnetic fields.

Figure 4.10: Energy distribution of 10000 ions att = 0, and att = 2680 (0.5 seconds) for

different electric and magnetic fields.
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Figure 4.11: Energy distribution of 10000 ions att = 0, and att = 4824 (0.9 seconds) for

different electric and magnetic fields.

For our normalisations, an electric field,E = 0.0001 corresponds to an electric field of≈ 1.8

V/m. My weakest average electric field (case 5) is therefore≈ 0.018 V/m, yet it is able to

accelerate particles to energies of almost1MeV. Recall that the electric field for case 5 is

made up of a superposition of perturbations of 50 eigenmodes. As this field is so noisy, on

average it is very small. However, the peak amplitude of the for case 5 is still only around

half that for case 1, indicating that it is the fluctuations inthe electric and/or magnetic fields

that produce the high energy tail of particles.

Dalla and Browning (2005) found that in a 3D static X-type neutral point, electric fields of

1.5kV/m were required to reach these energies (in a system whereparticles were allowed

to move equal distances inx, y andz). The electric field strength in solar flares and erupt-

ing prominences has been measured to be in the region of1kV/m (Somov, Oreshina, and

Kovalenko (2008) and Foukal, Little, and Gilliam (1987) respectively) , around1000 times

bigger than the peak value in case 5, which is≈ 1 V/m. However, solar flare protons with en-

ergies in the GeV range, much greater than the energies achieved with this small field, have

been observed (e.g. Wang and Wang (2006); Kanbachet al. (1993); Vilmeret al. (2003)).

The noisy fields in case 5 seem to be very efficient at accelerating particles. In order to dis-
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cover the reason behind this acceleration, a sample of particles must be examined in more

detail.

High Energy Particles

In the X-type neutral point model, particles become energised as they pass through the non-

adiabatic region around the null, if an electric field is present. I must therefore determine

whether particles achieve higher energies for the superpositions of modes because they spend

more time in this region, or if there is some other cause. In order to investigate this, the initial

positions of all 10 000 protons were plotted for each of the simulations.

Figure 4.12: Initial positions of protons for all cases. Dots show the positions (att = 0) of

protons which gain less than100 times their initial energies. Crosses show the positions (at

t = 0) of protons which gain more than100 times their initial energies.x andy are given in

units ofdp.

Figure 4.12 shows that the size of the region where highly energised particles originate

changes as more modes are added. In case 4, it can be seen that high energy particles can

originate from a much wider region compared to cases 1-3. In case 5, high energy particles

can originate from an extended central region, and from a region along the separatrices.
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Figure 4.13: Final positions of protons for all cases. Dots show the positions (att = 5360)
of protons which gain less than100 times their initial energies. Crosses show the positions
(at t = 5360) of protons which gain more than100 times their initial energies.x andy are
given in units ofdp.

Figure 4.13 shows the final positions of protons in all cases.In cases 1 and 2, high energy

protons are ejected from the X-point into regions atx ≈ 0, |y| ≈ 1. Recall figure 2.6, which

shows the direction of theE×B drift at an X-type neutral point. Since high energy particles

are those which undergo thisE × B drift, the initial location of these particles now makes

sense, as these are the particles which can most readily drift along the x-axis.. In cases 3 and

4, high energy protons end the simulation at the null point, with more such particles being

found in case 4. In case 5, high energy particles are clustered inside a region ofr ≈ 0.5, as

well as along the separatrices. There is also a concentration of lower energy particles around

the null.

The final positions of the protons is not symmetrically distributed for cases 3, 4 and 5. This

is because particles began the simulation in the quadrant0 ≤ x ≤ 1, 0 ≤ y ≤ 1. When

the magnetic fields are simple, this is not important for the final positions of the protons, as

their motion is governed byE × B drift. This causes particles to travel towards the central

null, and they are then expelled from this region in the y-direction, with approximately equal

numbers of particles travelling in the positive and negative y direction. As more modes are

added,E×B drift is no longer the dominant effect on the motion of the particles. The change
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in the magnetic field topology, and the noisier electric fieldcause particles to follow different

trajectories, so that their final positions are no longer symmetrically distributed. This could

be due to trapping by newly-created structures within the magnetic field, or due to small

scale changes in the electric field causing changes in the particles’ trajectories.

Clearly, adding more modes changes the way in which particles are energised. In cases 1

and 2, particles appear to be energised via being drawn into the X-point viaE × B drift, and

being expelled from it. When more modes are added, high energy particles tend to remain in

a central region of increasing size. Could this be due to particle trapping?

4.2.5 Determining the Size of the Non-Adiabatic Region

When the motion of the particle is adiabatic, its magnetic moment is conserved. For our

normalisations, the magnetic moment is given by (e.g.Chen and Torreblanca (1984))

µ =
v2⊥
|B| . (4.5)

In regions where a particle’s magnetic moment varies, the motion is non-adiabatic and in

the presence of an electric field a change in energy will occur. Figure 4.14 shows this rela-

tionship. At times and positions where the particle’s magnetic moment changes, so does its

energy. These large magnetic moment variations occur within r ≈ 0.5, as do large changes

in the particle’s energy. This finding is supported by figure 4.12, which shows that high

energy particles can originate from a central region with radius≈ 0.5. Compare this with

figure 4.16, which shows variation in magnetic moment and energy with time and position

for case 2. The particles shown do not gain such high energies, and their magnetic moment

changes significantly only withinr ≈ 0.2, so any large energy change takes place within a

smaller region, meaning that the non-adiabatic region in case 2 is smaller than that in case

5.

Ideally, I would like to find particles whose magnetic momentchanges and which travel large

distances inr. These particles proved difficult to find, as it would appear that particles that

encounter such regions do not travel great distances, suggesting that they become trapped

within a small local region.

Is an increase in the size of the non-adiabatic region solelyresponsible for the greater ener-

gies reached by particles? High energies can also be achieved by multiple crossings of the

non-adiabatic region. However, when a high energy particlereturns to the non-adiabatic re-

gion, it spends less time in this region as it is travelling faster. Therefore the energy gained in
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Figure 4.14: Variation of magnetic moment and energy of highenergy protons with distance
from the neutral point and time, for case 5. These two particles were chosen as they both
gained more than400 times their original energy. Particle 1 (black) and particle 2 (red) are
the same particles in each frame of the figure.

the non-adiabatic region decreases with successive crossings (Litvinenko (2003)). This leads

me to the conclusion that measurement of a particle’s magnetic moment is not an especially

robust method of determining the size of the non-adiabatic region, as only a few particles can

be examined individually. A better method could be the measurement of the particle’s gy-

roradius relative to the magnetic field scale length. If the particle’s gyroradius is larger than

the magnetic field scale length, the particle is moving non-adiabatically. However, the scale

length of the magnetic field can be difficult to determine for the cases with more disordered

fields.

Figure 4.15 shows the trajectories in the x-y plane of the 2 protons shown in figure 4.14, as

well as the variation of their distance from the neutral point with time. It can clearly be seen

that the particles spend most of their time orbiting the nullat small values ofr. The same

plot for case 2 (figure 4.17) shows that particles are free to move to large distances from the

neutral point when only one eigenmode is present, and that such particles orbit the field lines

of a typical X-point geometry. The two particles shown in figure 4.17 move betweenr ≈ 0.1

andr ≈ 1 over the time period of the simulation. The two particles in figure 4.14 stay at

approximately the same distance from the neutral point for over half the simulation time,
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Figure 4.15: Trajectories of 2 protons in the x-y plane (top)and variation of distance from
the neutral point with time (bottom) for case 5. These two particles were chosen as they both
gained more than400 times their original energy. Particle 1 (black) and particle 2 (red) are
the same particles in each frame of the figure.

Figure 4.16: Variation of magnetic moment and energy of highenergy protons with distance
from the neutral point and time, for case 2.These two particles were chosen as they both
gained more than5 times their original energy. Particle 1 (black) and particle 2 (red) are the
same particles in each frame of the figure.
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Figure 4.17: Trajectories of 2 protons in the x-y plane (top)and variation of distance from
the neutral point with time (bottom) for case 2. These two particles were chosen as they both
gained more than5 times their original energy. Particle 1 (black) and particle 2 (red) are the
same particles in each frame of the figure

indicating that particles in case 5 gain large amounts of energy due to becoming trapped at

favourable locations within the magnetic field.

4.2.6 Energy Distributions: Electrons

In section 3.3 I set out the form of my dimensionless units. These units are dependent on

the particle species. For electrons, I will take a normalising length of ten timesde. This is to

reduce computation times to a more practical length. This givesde = 1.3 × 106cm and and

te = 4.33× 10−5s. For the same reason I also take a particle mass of10me. This reduces the

computation time because the normalising length depends onthe particle mass. Since the

normalising speed is taken to bec, this defines an intrinsic timescale to the problem, which

also depends on the particle mass. Therefore by increasing the particle mass we can increase

the timescale associated with the problem, thus decreasingthe computation time required to

follow particles until a specific physical time. Because of the normalisations I have chosen

for the mass of the electrons, the equations of motion must bealtered as set out below.

In c.g.s units, (for the rate of change of the x component of the particle’s momentum):

dpx
dt

=
−q
c
Byvz (4.6)
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Let us choose some normalising length,dn, and a normalising timetn. Let’s normalise speed

to c, so thatdn/tn = c. I will normalise the magnetic field so that the dimensionless magnetic

field, B̃ is given by

B̃ =
B

B0dn
, (4.7)

where

B0 =
B

D
. (4.8)

B is the magnetic field strength atr = D,whereD is the size of the system. I will takeB to

be 100G, andD to be109cm.

Making quantities dimensionless, this gives

dp̃x

dt̃
= − qd2nB0

meDc2
B̃yṽz. (4.9)

In the calculations of Petkaki and MacKinnon, and previously in this chapter, the normalising

length(dn) is chosen so that

qd2nB0

meDc2
= 1. (4.10)

I will call this value of the normalising lengthde, which is a very short length (1.3×105cm).

This means that the normalising times for electrons will be correspondingly short, so the

integration times will be very long. If the normalising length is increased to10de, the running

time of the simulation is correspondingly reduced. At this point, I also increase the electron

mass to10me, which gives

q100d2eB0

10meDc2
= 10. (4.11)

The equations of motion now look like this (where I have dropped the tildes, and all quantities

are dimensionless)
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dx

dt
= vx (4.12a)

dy

dt
= vy (4.12b)

dz

dt
= vz (4.12c)

dpx
dt

= 10Byvz (4.12d)

dpy
dt

= −10Bxvz (4.12e)

dpz
dt

= −(10E + (10Byvx − 10Bxvy)). (4.12f)

Electrons were followed untilt = 2310, which is equivalent to 0.1s ifB0 = 10−7. Because

the simulation was stopped at0.1s, the average electric fields experienced by the electrons

will be slightly different than those experienced by the protons, which were followed for

1s. Particles which left the simulation boundary (x = y = 769., z = 76.9 in units of

10 × de) were noted. These boundaries were chosen to give the same system boundaries as

for protons. The resulting energy distribution is shown in figure 4.18.

Figure 4.18 compares the initial energy distribution of theelectrons with distributions at

t = 0.1s for the static X-type neutral point, for then = 0 mode of oscillation, and for

superpositions of 5, 20 and 50 modes. It can be seen that cases1 and 2 look broadly similar,

as they did for ions. The bulk distribution of electrons is energised, although no high energy

tail is produced. This means that the electrons have been heated, rather than accelerated.

The average temperature that electrons are heated to in cases 1 and 2 is≈ 1.8× 107 K. This

is approximately the temperature to which the coronal plasma is heated during a solar flare

(Lin et al. (1981); Tsunetaet al. (1992); Tsuneta (1996)). In both cases, no electrons leave

the system. In case 1, more electrons gain high energies thanin case 2, and more electrons

lose energy in case 2.

In case 3, there is a tail of low energy electrons, as well as a small high energy tail. There is

a higher maximum energy than in cases 1 and 2. Again, no particles leave the system. The

low energy tail is likely to be caused by particles which are decelerated as they attempt to

move against an electric field directed against their direction of motion. In case 4 more high

energy particles are seen and very few particles are decelerated. By case 5, a low energy tail

of decelerated particles is not seen, but we do see an increased high energy tail, as well as

the highest peak energy of any of the cases. However, we do notsee any significant bulk
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Figure 4.18: Energy distribution of 10000 electrons att = 0, and att = 2310 (0.1 seconds)
for different electric and magnetic fields. The blue curves are the energies of the electrons at
the time stated. The black curves are the initial energy distributions.

heating. This is probably because the mean electric field is too low. No particles leave the

system in any case.

I therefore conclude that cases 2 and 3 are less efficient at accelerating particles than the

constant field of case 1. Cases 4 and 5 see fewer particles withenergies over 0.01 MeV than

in case 1, but greater maximum energies are achieved. The peak electric field in cases 4 and

5 is also roughly half that in case 1, meaning that these fieldsare more efficient at energising

electrons.

Comparing figure 4.18 with figure 4.9, which shows the energy distributions for ions at 0.1s,

it can be seen that electrons are indeed more easily energised than protons. In 0.1s, only a

few tens of protons are energised.

As I did for protons, I will plot the energy distributions forelectrons at a selection of times

in order to study the evolution of the distribution. The energy distributions fort = 0.01s

(4.19),t = 0.05s (4.20) andt = 0.09s (4.21) were plotted. It can be seen that the distribu-

tions change throughout the duration of the simulation, so that the electrons are still gaining
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Case Average|E| At r = 0 Peak|E| At r = 0 % of Electrons> 0.01MeV at t=0.1s
1 1.× 10−3 1.× 10−3 4.84
2 1.1× 10−3 1.2× 10−3 0.54
3 1.5× 10−4 1.8× 10−4 0.85
4 3.9× 10−4 5.2× 10−4 1.34
5 1.6× 10−4 4.9× 10−4 2.34

Table 4.2: Number of electrons accelerated to above 0.01 MeVwith average electric field
strength and peak electric field strength in each case.

energy at the end of the simulation, and a steady state has notbeen reached. In cases where

deceleration occurs, the deceleration occurs more quicklythan the acceleration.

It can be seen that electrons in case 3 reach high energies very quickly (within 0.01s), but that

as the simulations progress, more electrons achieve higherenergies in cases 4 and 5.

Figure 4.19: Energy distribution of 10000 electrons att = 0, and att = 231 (0.01 seconds)
for different electric and magnetic fields. The blue curves are the energies of the electrons at
the time stated. The black curves are the initial energy distributions.
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Figure 4.20: Energy distribution of 10000 electrons att = 0, and att = 1155 (0.05 seconds)
for different electric and magnetic fields. The blue curves are the energies of the electrons at
the time stated. The black curves are the initial energy distributions.

High Energy Particles

In order to investigate how the particles become energised,and why in this case adding more

modes does not necessarily make a more efficient accelerator, the initial and final positions

of all 10 000 electrons were plotted for each case.

Figure 4.22 shows that the locations of the origin of high energy electrons are quite different

in each case. In case 1, high energy electrons mainly originate within r ≈ 0.2, or in the half

of the region below thex = y line. In case 2, very few high energy electrons are seen. Those

which are seen originate either very close tor = 0, or atr ≈ 1. For case 3, we see a very

defined region withinr ≈ 0.4 where high energy particles originate as well as a region at

r ≈ 1. In case 4, two concentric circles are seen where high energyparticles originate, as

well as a few high energy particles scattered at larger values of r. Case 5 is similar to case

4; concentric circles of high energy particles are seen, with more such particles than in case

4. I speculate that these concentric rings arise from the cylindrically symmetric character

of the eigenmode disturbances. High energy particles couldoriginate from energetically
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Figure 4.21: Energy distribution of 10000 electrons att = 0, and att = 2079 (0.09 seconds)
for different electric and magnetic fields. The blue curves are the energies of the electrons at
the time stated. The black curves are the initial energy distributions.

favourable positions in this cylindrically symmetric geometry, so that regions where high

energy particles originate form concentric rings.

Figure 4.23 shows the locations of high energy particles att = 0.1s. In case 1, the electrons

are ejected from the central region. High energy electrons end up atx ≈ 0, y ≈ |2|. As for

protons, electrons are drawn viaE × B drift into the null along the x-axis, and are expelled

along the y-axis. Since high energy particles are those which undergo thisE × B drift, the

initial location of these particles now makes sense, as these are the particles which can most

readily drift along the x-axis. In case 2, the majority of electrons end up in a circular region

within r ≈ 1. Some electrons are expelled in a similar fashion to those incase 1. High

energy particles are found in both regions.

In case 3 there are high energy particles atx ≈ 0, y ≈ |2|. Low energy particles form a

well defined central circle withr ≈ 1, as well as two symmetric arcs aty ≈ |1|. For case 4,

high energy particles also end up withinr ≈ 1. Lower energy particles form two concentric

circles are formed with radii≈ 1 and 2. In case 5, the low energy particles form a circular

central region, as well as two symmetric arcs. The majority of high energy particles are

found either at the centre, or in an extended region on the right hand side.
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Figure 4.22: Initial positions of electrons for all cases. Dots show the positions (att = 0) of
electrons which gain less than10 times their initial energies. Crosses show the positions (at
t = 0) of electrons which gain more than10 times their initial energies.x andy are given in
units of10× de.

Clearly, these two figures show that electrons behave very differently when more perturba-

tions are added to the electric and magnetic fields. Instead of particles being drawn into

the null and then expelled, they are drawn to specific spatiallocations where they can be

energised. These may possibly represent the nodes of the oscillations, or a magnetic field

topology which results in particle trapping.

4.2.7 Determining the Size of the Non-Adiabatic Region

Using the same arguments as in section 4.2.5, the size of the non-adiabatic region for elec-

trons was established by calculating the magnetic moment ofthe electrons.

Figure 4.24 shows the variation of particle magnetic momentwith time and distance from

the neutral point for two electrons in case 5. It can be seen that the particle magnetic moment

changes substantially betweenr ≈ 0.1−0.2, after which any changes are small untilr ≈ 0.5.

Figure 4.25 shows the trajectory of the particles in the x-y plane, and the variation in distance

from the null point with time. It can be seen that the electrons mainly follow the field lines

created by the eigenmode disturbances. The two electrons inquestion also spend significant
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Figure 4.23: Final positions of electrons for all cases. Dots show the positions (att = 2310)
of electrons which gain less than10 times their initial energies. Crosses show the positions
(at t = 2310) of electrons which gain more than10 times their initial energies.x andy are
given in units of10× de.

amounts of time trapped at the radii at which the particle’s magnetic moment can vary, i.e.

in regions where they can gain energy.

Figure 4.26 shows how the magnetic moment of electrons varies in case 2. In case 2, parti-

cles which gain energy tend to remain close to the null, and I was unable to identify particles

which gained large amounts of energy and travelled to larger. It can be seen that mag-

netic moment of the electrons undergoes large changes within r ≈ 0.1. Figure 4.27 shows

that these particles follow circular orbits within this radius, moving to smaller radii as the

simulation progresses.

Figure 4.28 shows how the magnetic moment of electrons varies in case 3. As for case

2, particles which gain energy tend to remain close to the null, and I was unable to identify

particles which gained large amounts of energy and travelled to large r. It can be seen that the

particles in figure 4.28 remain trapped at approximately thedistance from the neutral point

at which they began the simulation, and that their magnetic moment varies at these locations,

i.e. they are moving non-adiabatically. Figure 4.29 shows that these particles follow circular
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Figure 4.24: Variation of magnetic moment and energy of highenergy electrons with dis-
tance from the neutral point and time, for case 5. These two particles were chosen as they
both gained more than400 times their original energy. Particle 1 (black) and particle 2 (red)
are the same particles in each frame of the figure.

orbits at these radii, remaining at a roughly constant distance from the neutral point as the

simulation progresses.

In attempting to plot the variation in distance from the nullfor electrons in cases 3, 4 and 5, it

was consistently difficult to find particle which gained large amounts of energy and travelled

large distances from the null. I wished to find such particlesin order to explore the variation

in magnetic moment of particles as they travelled throughout the x-y plane.

For each of the cases 3, 4 and 5, particles which travelled large distances from the null did not

gain very much energy (they typically gained less than theirinitial energy). Since magnetic

moment should be conserved when a particle is moving adiabatically, particles which do not

gain very much energy will not change their magnetic moment much. This means that such

particles are not very useful indicators of the variation ofthe magnetic moment throughout

the x-y plane. Particles which did experience large changesin magnetic moment did not

travel very far in the x-y plane, and so could only provide information about the variation of

magnetic moment within a small region.
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Figure 4.25: Trajectories of 2 electrons in the x-y plane (top) and variation of distance from
the neutral point with time (bottom) for case 5. These two particles were chosen as they
travelled reasonably far in r without escaping the system and also gained large amounts of
energy. Particle 1 (black) and particle 2 (red) are the same particles in each frame of the
figure.

4.2.8 Magnetic Field Topology

Why do some of the particles studied stay so close to the null?Figure 4.30 shows the shape

of the magnetic field close to the null for case 5. It can be seenthat for the superposition of

modes the centre of the field is significantly altered from a standard X-type neutral point. The

field for case 5 contains contains a region of closed magneticfield (an O-type neutral point)

at its centre where the particle can become trapped. Since these closed regions are within

r ≈ 0.5, where the particles can move non-adiabatically, particles which become trapped in

these regions can gain significant amounts of energy. The trajectory of one such particle (a

proton) is shown, and the particle is seen to be approximately following one of the central

circular field lines. Note that the field is plotted att = 0.5s, but the trajectory shown is the

path taken by the proton over the whole time of the simulation. However, the central loop

that the particle is following remains approximately constant in size and shape throughout

the simulation. Near the null, one also sees the developmentof many smaller X-type and

O-type points, which will also be regions of particle demagnetisation, and therefore give rise

to acceleration in the presence of an electric field. Such magnetic structures are reminiscent

of those caused by a tearing mode instability when a plasma with finite conductivity (such
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Figure 4.26: Variation of magnetic moment and energy of highenergy electrons with dis-
tance from the neutral point and time, for case 2. These two particles were chosen as they
travelled reasonably far inr without escaping the system and also gained large amounts of
energy. Particle 1 (black) and particle 2 (red) are the same particles in each frame of the
figure.

as the plasma I simulate) is perturbed at an X-type point(Furth, Killeen, and Rosenbluth

(1963)).

4.2.9 Particle Trapping & Pitch Angle

As we have seen, adding more perturbations to the magnetic field causes many smaller struc-

tures to form. What effect do these structures have on the particle pitch angle?

Protons

Figure 4.31 shows the distribution of proton pitch angles att = 5360 (1 second) for all cases.

The black histograms indicate the initial pitch angles of the particles, an approximately flat

distribution. The distributions for cases 1, 3 and 3 look broadly similar. The distribution is

symmetric about a peak at zero, and there are two smaller peaks at±1, indicating particles

travelling parallel to the magnetic field. It can be seen thatadding more modes causes the

distribution of pitch angles att = 5360 to become flatter, meaning that adding more modes
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Figure 4.27: Trajectories of 2 electrons in the x-y plane (top) and variation of distance from
the neutral point with time (bottom) for case 2. These two particles were chosen as they
travelled reasonably far inr without escaping the system and also gained large amounts of
energy. Particle 1 (black) and particle 2 (red) are the same particles in each frame of the
figure

causes greater scattering in pitch angle. In this chapter, Iwill define scattering as simply

being any process which causes the pitch angle of the particle to change. As more modes

are added, many more particles with pitch angles parallel tothe magnetic field are also

seen. If particles are travelling parallel to the magnetic field, they will be following magnetic

field lines very closely (possibly as a result of a magnetic mirror force, i.e. as the particles

travel into an area of decreasing magnetic field, the magnetic mirror force will cause their

pitch angles to decrease), which could lead to particles travelling more easily to areas of the

magnetic field where they can gain energy.

What effect does this pitch angle scattering have on the behaviour of particles? An obvious

answer is that pitch angle scattering causes particles to change their trajectories. Figure

4.32 shows the locations at which the pitch angle of the particle changes by more thanπ/2,

in other words, the locations at which the particle’s direction of motion is reversed. If a

particle’s pitch angle had changed by more thanπ/2 in 0.1s, a ‘pitch angle scattering event’

was determined to have occurred. It can be seen that large changes in pitch angle mainly

occur closest to the neutral point in all cases. As more modesare added, more such changes

occur. For cases 1 and 2 and, around the same number of large changes occur. As more

modes are added, this figure increases, such that by case 5 around six times as many large
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Figure 4.28: Variation of magnetic moment and energy of highenergy electrons with dis-
tance from the neutral point and time, for case 3. The red linerepresents a particle which
gained 500 times its original energy. The black particle lost energy. Particle 1 (red) and
particle 2 (black) are the same particles in each frame of thefigure.

Figure 4.29: Trajectories of 2 electrons in the x-y plane (top) and variation of distance from
the neutral point with time (bottom) for case 3. The red line represents a particle which
gained 500 times its original energy. The black particle lost energy. Particle 1 (red) and
particle 2 (black) are the same particles in each frame of thefigure.
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(a) (b)

(c) (d)

Figure 4.30: Magnetic field contours with a sample proton trajectory overplotted for case 5,
for the region−1 ≤ x ≤ 1, −1 ≤ y ≤ 1 (a) for the region−0.3 ≤ x ≤ 0.3, −0.3 ≤ y ≤ 0.3
(b), and (c) for the region−0.03 ≤ x ≤ 0.03, 0.25 ≤ y ≤ 0.3, displaying some of the
smaller structures formed by the perturbations. Note that the field is plotted att = 0.5s, but
the trajectory shown is the path taken by the proton over the whole time of the simulation.
However, the central loop that the particle is following remains approximately constant in
size and shape throughout the simulation. Panel (d) shows the magnitude of the magnetic
field atx = 0 for −0.3 < y < 0.3. It can be seen that the magnetic field goes to zero (here,
the magnetic field is considered to be zero if|B| < 0.01) 7 times, 6 of which are outside the
central null, indicating that the small scale structures seen in panels (b)-(c) of this figure are
indeed nulls.

changes in particle direction are made as for cases 1 and 2. For case 5, the size of the region

where the particle’s trajectory can be reversed also increase greatly. For cases 1 to 4 all

such changes occur withinr = 1. It should be noted that these changes are recorded every

0.1s.
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Figure 4.31: Pitch angle distribution of 10000 protons at t=0, and also at t=5360 for different
forms of the electric and magnetic fields.

Therefore, I can say that adding more perturbative modes causes the pitch angle of the pro-

tons to change more often. I speculate that this ‘pitch anglescattering’ is caused by the

development of small scale structures within the magnetic field. In that sense, adding more

perturbations to the electric and magnetic fields causes a sort of pitch angle scattering to

occur.

Do these changes in the particles’ trajectories mean that the particles will spend more time in

the non-adiabatic region? Figure 4.33 shows the number of timesteps spent at each value of

r. It can be seen that adding more modes causes particles to spend more time at smallr. The

plots for cases 1 and 2 again look very similar. As more modes are added, the peak of the

distribution broadens,and more particles spend time at lower values ofr. By cases 5, there

is a sharp peak atr < 0.2, suggesting that particles become trapped there. It seems likely

that the increase in occurrences of large changes in pitch angle causes particles to spend

more time atr < 1. The ‘scattering’ caused by adding more perturbative modescauses

particles to change direction, and they may become trapped in regions where they can move

non-adiabatically and gain energy.
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Figure 4.32: Positions at which ion trajectory changes by more thanπ/2 for different forms
of the electric and magnetic fields. It can be seen that some ‘pitch angle scattering’ events
occur even when there are no perturbations present. However, note that these occur at small
values ofr, and so can be attributed to the fact that the particle is close to the null and is not
undergoing regular gyromotion about a field line.

Electrons

Electrons are lighter, so any process which causes changes in pitch angle will have a greater

effect on electrons. This is because the small mass of the electron gives it a small gyroradius,

meaning that the electron is able to interact with smaller scale structures than protons can

interact with. Therefore electrons will be more susceptible to small scale changes in the

electric and magnetic fields. Figure 4.34 shows the distribution of pitch angles in all cases

at t = 0.1s. It can be seen that in all cases, particles start out with a flat distribution of

pitch angles. In case 1, the cosine of the pitch angle of particles then evolves to a symmetric

distribution centred on 0.

In case 2, the distribution is symmetric, with particles tending to have pitch angles parallel to

the magnetic field. This could account for the high and low energy tails, since some particles

will travel away from the null, meaning that they will not be accelerated, whereas other

particles will be transported directly to the null. Recall also that the low energy tail could be

caused by particles moving in the opposite direction to the electric field.
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Figure 4.33: Number of timesteps spent by ions at each value of r for different forms of the
electric and magnetic fields.

In case 3, the distribution of pitch angles is much flatter, although there are slightly more

particles travelling parallel to the magnetic field. Again,this could account for the high and

low energy tails, since some particles will travel away fromthe null, meaning that they will

not be accelerated, whereas other particles will be transported directly to the null. The high

and low energy tails in this case are bigger than in case 2. This could reflect the effect of

eigenmode oscillations on the topology of the magnetic field, which could result in particle

trapping.

In case 4, the distribution of pitch angles is on average unchanged. Particles have a range

of pitch angles, distributed fairly evenly. This could either mean that the particles do not do

much at all, or that the ‘scattering’ effect affects all particles equally, so that the distribution

of pitch angles is unchanged.

In case 5, the distribution of pitch angles is also unchanged, and the distribution looks similar

to that in case 4, except that there is a slight peak in particles travelling perpendicular to the

magnetic field, i.e. parallel to the electric field. Of course, these particles are following the

magnetic field lines in the x-y plane, so they travel parallelto the electric field merely when

their trajectories intersect this plane.
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Figure 4.34: Pitch angle distribution of 10000 electrons att = 0, and also att = 2310
(0.1s) for different forms of the electric and magnetic fields. The blue histograms indicate
particles that stay within the system boundaries. Red histograms indicate particles which left
the system, at the time at which they left the system.

What can this information tell us about the behaviour of particles? Are the distributions for

cases 3, 4 and 5 flat because the pitch angles don’t change, or because they change a lot,

so that the net effect of the changes is zero? Figure 4.35 shows the locations at which the

pitch angle of the particle changes by more thanπ/2. It should be noted that these changes

are recorded every0.01s . It can be seen that the electrons have most large pitch angle

changes in case 1. This is perplexing, since one might expectthat pitch angle changes are

due to the interaction of the electrons with small scale changes in the electric and magnetic

fields. This high number of pitch angle changes may be becauseelectrons in case 1 are

moving more quickly as they experience a higher average electric field, and so their pitch

angle evolves more rapidly. In case 2, the number of large pitch angle changes drops by

over two thirds. These changes also tend to occur further away from the null, and there is a

strong dip in the number of changes atr ≈ 2. Case 3 has very few pitch angle changes. The

majority occur betweenr = 1 andr = 2. Cases 4 and 5 are broadly similar in character.

There are fewer pitch angle changes than for case 1, but more than for cases 2 and 3. Most

pitch angle changes occur closer to the null, with the numberof such changes decreasing

with increasing r. The distributions of pitch angle seen in figure 4.34 for cases 4 and 5 are
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therefore flat because there are many changes in pitch angle,with no particular direction

being favoured. Overall, there are many more changes in pitch angle for electrons than for

ions, which is to be expected since electrons are much lighter, and so are more affected by

scattering-type events.

Figure 4.35: Positions at which electron trajectory changes by more thanπ/2 for different
forms of the electric and magnetic fields.

As we did for ions, we must ask if these changes in pitch angle cause electrons to spend

more time in the nonadiabatic region. Figure 4.36 shows the number of timesteps spent at

each value ofr. For cases 1, 3, 4 and 5, the form of the distribution is the same: a very

small number of steps are spent very close tor = 0, and the number of steps spent at each

radius increases relatively smoothly up tor = 1. For case 2 however, there is a very different

distribution. The number of steps spent at each radius increases very quickly up tor ≈ 0.2.

It then decreases asr goes to 1. This appears to indicate a region where particles can become

trapped, although this is clearly not a region where particles can become highly energised,

since such significant trapping would surely cause particles to become highly energised if

the region was one in which particles could move non-adiabatically.

Fewer particles spend times atr < 1 in cases 4 and 5 than in case 3. Therefore, adding more

modes does not cause more trapping at smallr. However, the creation of many nulls means



CHAPTER 4. CONSEQUENCES FOR PARTICLE BEHAVIOUR 103

that there are more areas in which the particles can move non-adiabatically, so that particles

do not need to be trapped at very smallr in order to gain energy.

Figure 4.36: Number of timesteps spent by electrons at each value ofr for different forms of
the electric and magnetic fields.

4.3 Comparison of Electron & Proton Results

At this point, it is sensible to compare the effect of the ‘noisy’ fields on electrons with the

effect on protons. Tables 4.1 and 4.2 show that electrons aresubjected to electric fields which

are around an order of magnitude greater than the electric fields that protons are exposed

to. This is true for all cases. However, electrons are followed for0.1s, whereas protons are

followed for1s. I can therefore make meaningful comparisons between the final distributions

for both species of particle.

For protons, the energy distribution develops a high energypart at the end of the simulation

in all cases, although the precise character of this varies.In cases 1-4, the high energy part

of the distribution looks like a high energy ‘tail’ (although in case 3 the tail is very small). In

case 5, the high energy part of the spectrum looks like a second Maxwellian-type distribution.

By contrast, the distributions for electrons at the end of the simulation look quite different. In



CHAPTER 4. CONSEQUENCES FOR PARTICLE BEHAVIOUR 104

cases 1 and 2, the distribution in subject to bulk heating, and no high energy tail is developed.

A high energy tail develops by case 3, the size of which increases in cases 4 and 5.

In the case of electrons, the energy distributions continueto evolve over the whole simu-

lation, in contrast to the energy distributions for protons, which do not change much after

t = 0.5s. I speculate that this is because electrons are followed fora shorter time, and so

there are more small-scale perturbations present in the electric and magnetic fields (as these

perturbations decay fastest, their effect diminishes withtime). Electrons, being less massive,

are more affected by such small-scale changes. This can alsobe seen when one considers

the initial and final positions of the particles. The initialand final positions of electrons

form symmetric, circular patterns, consistent with the fact that the eigenmode disturbances

in these simulations are cylindrically symmetric. The initial and final positions of protons do

not form such patterns, and the initial and final position of protons owes more to the overall

X-point geometry.

It can therefore be said that both electrons and protons are more efficiently accelerated by

‘noisier’ fields, but that electrons are more affected by theexact nature of this ‘noise’.

4.4 Resulting X-Ray Spectra

Since energy spectra for the electrons have now been obtained, the resulting X-ray photon

fluxes can be calculated. Since I am considering electrons atan acceleration region, it is

assumed that these X-rays are a result of thin target bremsstrahlung. This is because the

region in which the electrons are accelerated is of comparatively low density, and hence it is

collisionally thin. The thin target X-ray flux is calculatedin c.g.s. units using the expression

(e.g. Schrijver and Siscoe (2010))

S(Eph) =
npV

4πR2

∫ ∞

Eph

σEph
(Ee)v(Ee)N(Ee)d(Ee), (4.13)

whereEe is the energy of the electron,Eph is the energy of the photon,v is the velocity of the

electron,N is the number density of the electronsnp is the number density of the protons,

R is the distance from the source at which the emission is observed, V is the volume of

the system andσ is the bremsstrahlung cross section. Since some of the electrons reach

relativistic energies, the cross section given in Haug (1997) is used. There is a slight caveat

here: the electrons I have used are ’heavy electrons’, wherem = 10me. This means that the
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X-ray spectra shown here are merely indicative of the potential real X-ray spectra. The X-ray

spectra obtained can be seen in figure 4.37. If such spectra are compared with an observed

X-ray spectrum (figure 4.38, Kruckeret al. (2008a)), we can see how realistic these spectra

are.

Figure 4.37: X-ray spectra generated from electron energy distributions att = 0.1s for cases
1-5.

Figure 4.38 (from Kruckeret al. (2008a)) shows a typical flare hard X-ray photon spectrum

together with the major components used in fitting it: a thermal spectrum (shown in red) at

energies below about 20keV, plus a non-thermal power-law tail extending to higher energies.

These components occur in the synthesised spectra to varying degrees. Most of our studied

cases produce power-law components that are rather too hard(i.e. flat) compared with most

flare spectra (i.e. photon spectral indexγ in the range 1 - 2), in common with many other re-

connection test particle calculations (e.g. Turkmaniet al.(2006)). Case 2, however, involves

a combination of a steeper power-law tail plus thermal component that is more similar to

observations. The spectral indexγ can be calculated using the relation

γ =
−log(I(E2)/I(E1))

log(E2/E1)
(4.14)
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Figure 4.38: Example of an observed X-ray spectrum. The red curve shows the fit to the
thermal emission. Kruckeret al. (2008a).

whereI(E1) is the photon flux at energyE1, andI(E2) is the photon flux at energyE2.

Values forE2 andE1 were selected by taking the maximum and minimum values of the

energy of the part of the spectrum being considered. For the thermal part of the spectrum,

a spectral index was not taken, but instead the mean temperature (T ) of the spectrum was

calculated using the relation

T =
E

kB
, (4.15)

whereE is the mean energy of the thermal part of the spectrum (in Joules), andkB is Boltz-

mann’s constant.

The spectral indices of the non-thermal part of the X-ray spectra produced in each case can

be seen in table 4.3, as well as the mean temperature of the thermal part of each spectrum.

It can be seen that the mean temperature of the thermal component increases as more modes

are added.
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Case Mean Temperature (K) (Thermal Radiation)Spectral Index (Non-Thermal Radiation)
1 (1.1± 0.5)× 108 Not applicable
2 (1.1± 0.5)× 108 2.7± 0.2
3 (1.6± 0.5)× 108 0.4± 0.2
4 (2.0± 0.5)× 108 1.5± 0.2
5 (3.3± 0.5)× 108 1.5± 0.2

Table 4.3: Mean temperature of the thermal parts of the X-rayspectra produced from the
accelerated electron distributions, and spectral indicesof the non-thermal parts of the same
distributions.

Case 1, involving a steady electric field and no turbulence, does not result in an extended

power-law tail but to a thermal type distribution with a higher temperature than assumed

initially. In the X-type null model, turbulence evidently plays an important role in the devel-

opment of power-law electron tails. It could be speculated that the emergence of a ‘superhot’

spectral component late in a flare (Linet al. (1981)) reflects the development of a state of

steady reconnection with most turbulence having decayed. Sturrocket al. (1984) suggested

such steady reconnection as the explanation of the flare gradual phase. The suspected coro-

nal origin of the superhot component (Krucker et al., 2008a)would be consistent with my

thin target calculation, concentrating on the vicinity of the energy release region.

4.5 Non-Flat Spectrum of Modes

So far in this work, the amplitude of the eigenmode disturbance was the same for each mode

(i.e. a flat spectrum). In order to better model turbulence inthe manner of Kolmogorov

(1941), the amplitudes of the modes could be distributed as apower law with a spectral index

of −5/3, as discussed in section 1.5. Perturbations on a variety of scales could be produced

by convective motions in the photosphere causing oscillations in the coronal plasma. Large

scale explosive events such as solar flares or coronal mass ejections, as well as smaller scale

reconnection events could also produce disturbances in thecoronal magnetic field. A cascade

of energy from large to small scales could also be used to explain the unexpectedly high

temperature of the solar corona. Particles become energised on intermediate scales, and this

energy is converted to heat at the smallest length scales (inthe dissipation range).

It is known (Kolmogorov (1941)) that turbulence on intermediate scales can be modelled as

a power law with a spectral index of−5/3. It is also known (Alexandrovaet al. (2009)) that

such a power law is observed in the solar wind. Let us investigate consequences for ions if

the amplitude of the eigenmode oscillations follows such a distribution. I will distribute the
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amplitude of the modes according to the wavenumber of the mode such that the amplitude

will be

an = a0k
−5/3
n , (4.16)

wherek is the wavenumber of the mode, anda0 is a constant which can be fixed to have any

amplitude. For these simulations, I chosea0 = 0.0001, which was the amplitude of each

mode for the flat spectrum of modes. The eigenmodes in this inhomogeneous situation are

not described by a single wavenumber. This is because the form of the waves varies withr.

For the purposes of distributing energy across modes as in K41 a rough wavenumber can be

calculated atr = 0. This can be estimated using

k ≈ d2E

dx2
1

E
. (4.17)

I will calculate the total electric and magnetic fields in thesame manner as in previous sim-

ulations: by calculating the field for each mode and adding the fields together, then dividing

by the number of modes. The eigenfunctions are still normalised so that their square norms

are unity att = 0. The form of the electric field generated by such a spectrum ofmodes can

be seen in figure 4.39. It can be seen that, unlike the electricfield for a flat spectrum, the

electric field for this distribution decreases with time (over the simulation time). The vari-

ation of the electric field withr is the same as for the flat spectrum of modes. The average

field strength is greater than for the flat modes atr = 0, but is smaller at other values of

r.

The electric field for thek−5/3 spectrum decays more quickly than the electric field for the flat

spectrum if the simulation is stopped att = 1s. If the simulation is run for longer times, this

effect disappears. This can be seen in figure 4.40, which alsoshows that the electric field for

the flat spectrum of modes is much larger and nosier than that for thek−5/3 spectrum.

The effect of these new electric and magnetic fields on protons can be seen in figure 4.41. It

can be seen that these new fields do not accelerate particles,probably because they are too

small.

In order to better study the consequences for particle acceleration, I will increase the magni-

tude ofa0 to 0.01, for both spectra of modes. The energy distributions(at t = 1s) of protons

that have been accelerated in these fields can be seen in figure4.42. For the flat spectrum of
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Figure 4.39: Electric field for a spectrum of modes with theiramplitude distributed ask−5/3.
The left hand plot shows the variation of the electric field with time atr = 0, the middle plot
shows the variation of the electric field with time atr = 1, and the right hand plot shows the
variation of the electric field withr at t = 0.

modes, this creates an average electric field atr = 0 of ≈ 1.8V/m. For thek−5/3 spectrum,

the average electric field atr = 0 is ≈ 10V/m The average electric field strength in a solar

flare is≈ 1000V/m (Somov, Oreshina, and Kovalenko (2008),in which the electric field

strength is calculated from the motion of the flare ribbons).It can be seen that whilst the flat

spectrum of modes accelerates particles to higher energies, the−5/3 spectrum produces a

more realistic looking high energy tail of protons (more similar to observed proton energy

distributions, see e.g. Van Hollebeke, Ma Sung, and McDonald (1975), in which data from

185 solar flare events was analysed).

In order to understand why the protons are accelerated to such high energies for the flat

spectrum of modes, the behaviour of a sample of ten protons was studied in more detail.

These protons were selected randomly. The evolution of the particle’s distance from the null

with time, and the variation of the particle’s energy with distance from the null are both

plotted, and can be seen in figure 4.43. It can be seen that for the flat spectrum of modes,

particles gain most energy atr < 1. Some particles remain trapped at smallr (r ≈ 0.1).

The majority of particles (around 6000) leave the system (that is, they move to distances in

x or y that are greater than 178dp, or distances inz that are greater than17.8dp), and their
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Figure 4.40: Electric field variation with time at r=0. The top plot shows the field for a
spectrum of modes with their amplitude distributed ask−5/3. The bottom plot shows the
field for a flat spectrum of modes.

energies are not plotted in figure 4.42. For thek−5/3 distribution, particles move steadily to

largerr as the simulation progresses, and gain energy at a variety ofvalues ofr. The final

position of protons att = 1 in shown in figure 4.44. This figure clearly shows that for the flat

spectrum of modes, a lot of particles leave the system. For the k−5/3 distribution, particles

remain within the system.

Finally, the final positions of protons in the flat spectrum case were plotted on a logarithmic

scale. The results of this can be seen in figure 4.45, which shows that the protons clearly

split into two populations. One population stays close to the null, and moves a large distance

in z. The other moves a large distance in the x-y plane. It can be seen that the particles

which gain a lot of energy (plotted in red) either stay close to the null or are ejected to very

large distances. Recall that for a flat spectrum of modes there are large oscillations in the

electric field at smallr (see figure 3.2). These oscillations are much larger than those that

thek−5/3 spectrum gives at smallr, hence the flat spectrum energises particles much more if

the protons are at small values ofr.

The expected energy gain of a particle can be calculated if werecall that kinetic energy in SI

units is
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Figure 4.41: Energy of 10 000 protons att = 1s. The right hand plot shows protons which
have been accelerated in fields composed of a flat spectrum of eigenmode oscillations. The
left hand plot shows protons which have been accelerated in fields composed of a spectrum
of modes with their amplitude distributed ask−5/3. For both plots,a0 =0.0001

Ek =
1

2
mv2, (4.18)

which means that

dEk

dt
= mv · dv

dt
. (4.19)

Sincev ×B is always perpendicular tov then

mv · dv
dt

= ev ·E. (4.20)

To convert the energy into eV, drope (the charge of the particle) from the equation above.

Since the code is run for1s the maximum energy gain is
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Figure 4.42: Energy of 10 000 protons att = 1s. The right hand plot shows protons which
have been accelerated in fields composed of a flat spectrum of eigenmode oscillations. The
left hand plot shows protons which have been accelerated in fields composed of a spectrum
of modes with their amplitude distributed ask−5/3. For both plots,a0 =0.01

cE = 3× 108E. (4.21)

The maximum electric field anywhere in the system att = 0 is ≈ 10 000 V/m for the flat

spectrum of modes (this peak field is atr ≈ 0.0001). This gives a possible energy gain of

2.6 × 106MeV for protons which encounter these high electric field strengths. By contrast,

the peak electric field strength in the system att = 0 for thek−5/3 spectrum of modes is≈
55 V/m. This gives a possible energy gain of1.6×104MeV for protons, much lower than the

possible energy gain for the flat spectrum of modes. The electric field strength also decays

more quickly than for the flat spectrum of modes (over the simulation time), meaning that

particles do not experience these peak field strengths for aslong.

It should be noted that the energies achieved by particles for the flat spectrum of modes are

artificially high, and the distribution in figure 4.42 is oddly shaped. This could be an effect

of the fact that I increased the magnitude of the electric field for the flat spectrum (in order

to better compare the effects of the flat spectrum and thek−5/3 spectrum), meaning that the
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Figure 4.43: Plots of the variation of the proton’s energy with distance from the null, and of
the variation of distance from the null with time. The colourof the line identifies a particle
with the same initial conditions. For all plots,a0 =0.01

Figure 4.44: Plots of positions of protons att = 1s. For all plots,a0 =0.01. The left hand
panel shows the position of protons in the x-y plane, the right hand panel shows position of
protons in the x-z plane.

peak electric field is artificially high (around ten times thetypical electric field strength in a

solar flare).
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Figure 4.45: Plots of positions of protons att = 1s. Particles that gain more than 100 000
times their original energy are plotted in red. For all plots, a0 =0.01

In order to test this, the behaviour of particles in an electric field with a0=1, and the modes

distributed ask−5/3 was studied. Here, the average electric field strength atr = 0 is ≈
1000V/m, a typical electric field strength for a solar flare. The peak field strength anywhere

in the system is≈ 5000 V/m att = 0.

Figure 4.46 shows the resulting energy distributions att = 1s for protons accelerated in such

fields. Protons which travelled further than178dp in the x or y direction, or further than

17.8dp in thez direction were discarded, as they had left the simulation region. This meant

that around a quarter of the protons studied were discarded.It can be seen that some protons

gain energies well in excess of 1000 GeV. Even very high energy solar flares do not produce

protons with such high energies (e.g Wang and Wang (2006)). My previous calculations

showed that the highest energy that particles will achieve is anticipated to be around 100

MeV. This is for particles in an electric field of 10 000 V/m, for our values of the initial

energy. I therefore conclude that the magnetic field configuration is having a large effect on

the ability of particles to become highly energised.
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Figure 4.46: Energies of protons att = 1s. Protons were accelerated in fields composed of
a superposition of 50 modes distributed with amplitudesan = a0k

−5/3, wherea0 = 1 and k
is the wavenumber of the mode.

4.6 Effect of Varying Resistivity

In the above simulations, I have used the valueη = 3.124 × 10−11 for the dimensionless

resistivity. It has been seen (in section 3.3.1) that varying the resistivity causes the size of the

non-adiabatic region to vary. How does varying the resistivity affect particles in the case of

a superposition of 50 modes? Here, I return to a flat spectrum of modes, witha0 = 0.0001.

I will investigate particle behaviour for two values of resistivity, η = 3.124 × 10−10 and

η = 3.124× 10−12. Recall that the collisional resistivity for this plasma is2.2× 10−13. The

resulting values ofκ (decay) andω (oscillation) can be seen in tables 4.4 and 4.5.

Particle Behaviour

Let us now examine the consequences for particle behaviour in fields constructed using these

modes and resistivities. The energy distribution of 1000 protons att = 1s for different values

of resistivity can be seen in figure 4.47. It can be seen that particles are accelerated to higher

energies for lower values of resistivity.
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n κ ω Decay Time (s) Period (s)
0 0.007231 0.117742 633.36 244.44
1 0.040132 0.623374 114.12 46.17
2 0.056878 0.880324 80.52 32.69
3 0.066333 1.138055 69.05 25.29
4 0.094551 1.396227 48.44 20.61
5 0.123517 1.915506 37.08 15.03
10 0.209239 3.487320 21.89 8.25
15 0.318289 5.099938 14.39 5.64
20 0.437758 6.728753 10.46 4.28
25 0.587363 8.373390 7.80 3.44
30 0.713287 10.03532 6.42 2.87
35 0.869951 11.77654 5.26 2.52
40 1.009341 13.95606 4.54 2.20
45 1.429638 18.77579 3.20 1.53
49 2.000738 16.38633 2.38 1.76

Table 4.4: A selection of values ofω andκ for η = 3.1724×10−10. The decay and oscillation
times for these values ofω andκ are also listed.

Figure 4.47: Energy of 1000 protons at t=1s for a superposition of 50 modes. The spectrum
of modes is flat, anda0 = 0.0001. The resistivity,η = 3.1724× 10−10 in the left hand plot,
andη = 3.1724× 10−12 in the right hand plot.

Since the values for the eigenmodesκ andω have changed slightly, the forms of the electric

and magnetic fields will also have changed slightly. This will alter the topology of the mag-
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n κ ω Decay Time (s) Period (s)
0 0.007227 0.117752 633.76 244.43
1 0.023451 0.367979 195.30 78.21
2 0.040132 0.623374 114.12 46.17
3 0.056887 0.880318 80.51 32.69
4 0.056878 0.880328 80.52 32.69
5 0.073724 1.137993 62.12 25.29
10 0.161704 2.438449 28.32 11.80
15 0.204973 3.495437 22.34 8.23
20 0.304888 4.561388 15.02 6.31
25 0.384146 5.643078 11.92 5.10
30 0.436674 6.729363 10.49 4.28
35 0.540241 7.826324 8.48 3.68
40 0.619834 8.928312 7.39 3.22
45 0.698822 10.03623 6.55 2.87
49 0.812018 11.15022 5.64 2.58

Table 4.5: A selection of values ofω andκ for η = 3.1724×10−12. The decay and oscillation
times for these values ofω andκ are also listed.

netic field. It is known that the size of the central null changes withη, but what about the

many smaller nulls created by the superposition of modes?

Figure 4.48: Magnetic field contours att = 0.5s. The resistivity,η = 3.1724× 10−10 in the
left hand plot, andη = 3.1724× 10−12 in the right hand plot.
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The magnetic field topology for two different values ofη can be seen in figure 4.48. It

can be seen that for smallerη, the form of the small-scale nulls changes slightly. Slightly

more small nulls are formed atr > 0.5. These could also cause particles to become highly

energised. The form of the magnetic field is also changed nearthe centre of the region; the

field becomes less complex when the resistivity is decreased. The variation of the magnitude

of the magnetic field withr at t = 0 can be seen in figure 4.49. Here, the magnetic field is

considered to have fallen to zero if|B| ≤ 0.01. By this definition three nulls are created for

η = 3.1724 × 10−10 , whilst eight are created forη = 3.1724 × 10−12, so that more non-

adiabatic regions (sites of particle acceleration) have been created for lower resistivity.

Figure 4.49: Magnetic field variation with distance from thenull at t = 0.s. The resistivity,
η = 3.1724× 10−10 in the top plot, andη = 3.1724× 10−12 in the bottom plot.

Changing the decay time and period of the eigenmode oscillations also causes changes in

the electric field. The change in decay time does not affect particles over the time of this

simulation, since particles are only followed for 1s, and the decay times of all of the modes

(for both values ofη) are longer than this. However, decreasingη does make the electric field

less noisy, as can be seen in figure 4.50. It can therefore be concluded that it is not the nois-

ier electric field that causes particles to become more highly energised in the comparisons

of cases 1 to 5. Rather, it is the creation of further acceleration sites within the magnetic

field.
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Figure 4.50: Electric field variation with time atr = 0.s. The resistivity,η = 3.1724×10−10

in the top plot, andη = 3.1724× 10−12 in the bottom plot.

4.7 Conclusions

In this chapter, I have investigated the behaviour of protons and electrons in noisy magnetic

and electric fields. We have seen that adding more perturbative modes to the fields causes

particles to gain higher energies. The reasons for this are twofold: the perturbations change

the form of the magnetic field such that more nulls are created, and the particles become

trapped. There are therefore more regions where particles can become energised, and par-

ticles spend longer in these regions. Since electrons are lighter, they are more affected by

perturbations, and so are energised more quickly. The results for protons have been pre-

sented in Burge, Petkaki, and MacKinnon (2012). I have also calculated the thin target

X-ray bremsstrahlung for the distributions of electron energies att = 0.1s. We have seen

that adding more modes produces more realistic X-ray spectra. If the electric and magnetic

fields are static, the spectrum produced is composed of thermal emission. When modes are

added, we see non-thermal emission being produced.

Other work on test particle simulations of 2D reconnection regions (e.g. Petkaki and MacK-

innon (2011)), show identical results for the energy distributions for electrons and protons

in the case where there are no perturbations (using the same initial conditions as used in this
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thesis). Initially, it was hoped that the use of a spectrum ofperturbative modes would signifi-

cantly enhance acceleration due to resonant-type interactions. This was because Petkaki and

MacKinnon (2007) found that certain frequencies preferentially accelerated different parts

of an initial proton spectrum, therefore it was proposed that a spectrum of frequencies would

accelerate all parts of the distribution. In Petkaki and MacKinnon (2007), certain frequencies

produced bimodal distributions of proton energies, similar in character to the energy distri-

bution for case 5 att = 1s. This makes the distribution for case 5 surprising, as theseprotons

were accelerated by fields perturbed by a superposition of 50modes. It is possible that one

of the frequencies used was especially effective at accelerating particles, thus producing a

distribution similar in character to those seen for single frequency disturbances. If this is the

case, we know that the eigenmode in question must be in then = 20 to n = 49 range, since

this effect is not seen in any of the other cases.

I also investigated the consequences of using a different distribution of eigenmode oscil-

lations to compose the electric and magnetic fields. The amplitude of the modes was dis-

tributed according to ak−5/3 spectrum, wherek is the wavenumber of the eigenfunction. It

was found that such a distribution did not accelerate particles as efficiently as a flat spectrum

of modes, probably because the field produced were smaller. However, when the amplitude

of the field is sufficiently high, thek−5/3 spectrum produces a high energy tail of particles

that is more realistic than the energy distribution produced by the flat spectrum of modes. For

the flat spectrum of modes, many particles leave the simulation as they travel large distances

in thez-direction.

I have also investigated the consequences of changing the value of the inertial resistivity. A

decrease in the value of the inertial resistivity meant thatthe fields were more efficient at

accelerating particles. Decreasing resistivity leads to changes in the formation of the small-

scale nulls, so that more such nulls are created away from thevery centre of the region.

Since there are more sites of particle acceleration, particles can become more highly ener-

gised.



5. Effect of Collisions on Particle Tra-

jectories

5.1 Introduction

In this chapter I will describe work aimed at including the effects of binary collisions in test

particle calculations. I start by recalling Honeycutt’s (1992) extension of the RK4 method

to stochastic differential equations. I will apply this method to the 1D problem described by

MacKinnon and Craig (1991), verifying that it reproduces analytical results for the distri-

bution function, at least as well as simpler numerical methods. The 1D Fokker-Planck (FP)

description is only valid when electrons move adiabatically so I will next recast the descrip-

tion of scattering in terms of all three velocity components. As a further check I will confirm

that the 3D description applied to the 1D problem reproducesthe 1D results. As a first appli-

cation of this method I will study collisional cross-field scattering of suprathermal electrons.

Finally, with confidence in the code established, I will use it to study the modifications to

electron acceleration near null points.

5.2 Collisions in the Solar Corona

The test particle calculations carried out in Chapter 4 considered particles in a collisionless

plasma. However, it seems obvious that particles in a real plasma will undergo collisions.

It is also known that in order for hard X-rays (HXRs) to be emitted, particles must undergo

collisions. Therefore, in order to account for coronal HXR sources (e.g. Masudaet al.

(1994b)), collisions must be introduced into the acceleration mechanism. Because protons

are heavier than electrons, collisions will have a greater impact on electron trajectories.

Masudaet al. (1994b) suggested that a coronal HXR source could be createdby a very high

temperature plasma at the top of a flaring loop. However, as Fletcher (1995) pointed out,

a HXR source created by heating should be seen to increase in size as the plasma expands.

The fact that this is not seen would then require some kind of plasma confinement at the

121
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top of the loop (e.g. Fletcher and Martens (1998) found that amagnetic bottle could be

formed by the geometry of the current sheet). If instead the loop top source is a result of

non-thermal particles that are created by transport effects, no source of thermal emission is

required.

Hamiltonet al. (2003) developed a method of including collisions when following particle

trajectories, but their method included only energy change, not collisional scattering. If pitch

angle scattering via collisions is taken into account when considering the trajectories of par-

ticles at an X-type neutral point, it is hoped that particleswill return to the non-adiabatic

region more frequently, leading to particles attaining higher energies. In this chapter, I will

address scattering due to binary collisions, a process whose statistical character is well un-

derstood.

The inclusion of collisions means that the random forces which these collisions generate

must be modelled. This is done by describing the particle’s motion using stochastic differen-

tial equations, which are easier to solve computationally.Stochasticity can be modelled by

the inclusion of a Gaussian random noise process in the system of differential equations. This

can be done by using a Wiener process (a continuous-time stochastic process) of the required

mean and variance to calculate a new value of the Gaussian noise component each time it is

required. Then the envelope of the particle trajectories isgoverned by a Fokker-Planck (FP)

equation (e.g. Gardiner 1983).

The general form of a FP equation withn+1 independent variables (t, x1, x2, ..., xn) is given

by

df

dt
+ A

df

dx
+
D

2

d2f

dx2
= 0, (5.1)

wheref is the distribution function being considered. According to Gardiner (1985), a FP

equation can be written as a stochastic differential equation of the form

dx = A(x, t)dt+ D(x, t)1/2dW(t). (5.2)

The first term of (5.2) is a slowing down term. The second term will be evaluated by using

a stochastic RK4.x is the vector(x1, x2, ...xn), W(t) is an n-variable Wiener process,D

gives the amplitude of the scattering term.
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In 1D, the non-relativistic FP equation is (see e.g. MacKinnon and Craig (1991))

∂f

∂t
+ µv

∂f

∂z
− C

∂

∂v

(

f

v2

)

− C

v3
∂

∂µ

(

(1− µ2)
∂f

∂µ

)

= 0, (5.3)

f is the distribution function of the electrons,C = 4πe4Λn/m2
e, whereΛ is the Coulomb

logarithm, usually taken to be 25 in the solar corona.µ is the cosine of the pitch angle of

the particle, andz is the distance that the particle has travelled along the magnetic field line.

This equation is valid for the case where the gyroradius is very small and particles are tied to

field lines. Under these circumstances, the motion of an electron can be described using just

its pitch angle and velocity. In a cold medium, the electronsslow down deterministically.

Later, this will be generalised this to a 3D description, where the evolution ofvx, vy andvz
will be followed.

MacKinnon and Craig (1991) examined how a FP equation could be replaced by a set of

stochastic differential equations which can be integratednumerically using Euler integra-

tion. However, in order to integrate particle trajectoriesin oscillating electric and magnetic

fields, a more accurate method of numerical integration was chosen, a stochastic fourth-order

Runge-Kutta (RK4) method. The stochastic RK4 method has themajor benefit of reducing

to the deterministic RK4 methods used in the previous chapter in the absence of noise.

5.3 Stochastic Integration Methods

5.3.1 Deterministic RK4

In the original Runge-Kutta method (Presset al. (1992)):

x(∆t) = x0 +
∆t

6
(
k1
∆t

+
2k2
∆t

+
2k3
∆t

+
k4
∆t

), (5.4)

wherex is the variable being considered, (which in this case isvx, vy or vz), ∆t is the

timestep being used, and

k1 = ∆tf(t0, x0)

k2 = ∆tf(t0 +
∆t
2
, x0 +

k1
2
)
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k3 = ∆tf(t0 +
∆t
2
, x0 +

k2
2
)

k4 = ∆tf(t0 +
∆t
2
, x0 +

k3
2
).

At t = 0, t = t0, x0 is the value of the solution (x) at t = t0 andf is the function being

considered. Equation 5.4 provides a numerical estimate ofx at t = ∆t. This gives a solution

of the equation being considered with an associated error ofthe order of∆t5.

5.3.2 Stochastic RK4

Honeycutt (1992) considered the one-variable additive noise equation

dx = f(x)dt+ DdW(t). (5.5)

W(t) is a Wiener process which scales as(∆t)1/2. If this is integrated from 0 to∆t, and

the Taylor expansion off is taken, an expression forx(∆t) is obtained which includes a

stochastic term,R(∆t). The full form ofR(∆t) is very lengthy, and can be seen in Honeycutt

(1992). The stochastic RK4 that is developed must have the same statistical properties as

x(∆t) for the deterministic part, andR(∆t) for the stochastic part. In order to develop a

stochastic integrator, Honeycutt (1992) considered the equation

dx

dt
= F (x). (5.6)

The algorithm for integrating this via second order Runge-Kutta integration is

x(∆t) = x0 +
∆t

2
(F1 + F2), (5.7)

where

F1 = f(x0)

F2 = f(x0 +∆tF1).
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However, this algorithm cannot be used to integrate equation 5.5 directly, due to the presence

of a stochastic term. Instead, letF (x) = f(x) and introduce the stochasticity as part of the

integration algorithm.

x(∆t) = x0 +
∆t

2
(F1 + F2) + (2D∆t)

1

2ψ (5.8)

ψ is a random number with〈ψ〉 = 0 and〈ψ2〉 = 1. D is the amplitude of the stochastic

term. For purely mathematical problems the amplitude of this can be varied arbitrarily.

For physical problems, care must be taken to select an appropriate value ofD (e.g. via

comparison with the FP equation governing the distribution). This can then be extended to

a fourth-order Runge-Kutta via comparison with the usual deterministic RK4 method found

in Presset al. (1992):

x(∆t) = x0 +
∆t

6
(F1 + 2F2 + 2F3 + F4) + (2D∆t)

1

2ψ, (5.9)

where

F1 = f(x0)

F2 = f(x0 +∆tF1 + (2D∆t)
1

2ψ)

F3 = f(x0 +∆tF2 + (2D∆t)
1

2ψ)

F4 = f(x0 +∆tF3 + (2D∆t)
1

2ψ)

5.4 The Test Problem

In order to develop and test an RK4 algorithm, I will considera problem which already has

a known solution. The problem used was that considered in MacKinnon and Craig (1991),

which dealt with pitch-angle scattering of particles in a non-magnetised medium. The FP

equation for this problem also has a known analytical solution (for the spatially homogeneous

case) which is given in terms of the Legendre polynomials, which acts as a further check for

the stochastic RK4 solution. MacKinnon and Craig (1991) developed a stochastic system for
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calculating the variation in particle pitch angle that makes use of the Ito form of a stochastic

differential equation.

The FP equation can be replaced by a system of stochastic differential equations (s.d.e s).

As shown by MacKinnon and Craig (1991) this general equivalence in this particular case

means thatµ evolves according to the s.d.e.

dµ = − 2µ

v(t)3
dt+

[

(1− µ2)

v(t)3

]1/2

r(t)dt, (5.10)

wherer(t) is a Gaussian random noise process. The initial distribution is monoenergetic.

Speeds are normalised to the initial speed (v0), distances are normalised to(v40nm
2
e)/(4πe

4λ)

and times are normalised to(v30nm
2
e)/(4πe

4λ), wheren is the density of the plasma andλ

is the Coulomb logarithm. It should be noted here thatv is also evolving with time; the

particles are slowing down monotonically. This can be integrated using the Euler method or

by using stochastic RK4 with a noise term

D =

[

(1− µ2)

v3

]

. (5.11)

Here,D is chosen by directly comparing equations (5.9) and (5.10).This means that in

the FORTRAN code for the stochastic RK4 method, when integrating an s.d.e, all of the

r.h.s. of equation 5.10 is not evaluated. Instead, only the first term of the r.h.s is integrated,

and the second (stochastic term) is included as part of the integrator itself. I carried out

a comparison of the 2 methods. A particular example is shown in figure 5.1, att = 0.06

(the stopping time for these particles ist = 1/3). This shows that all three solutions are in

close agreement. Similarly good agreement is found for later times. This apparently simple

process, of adding a Wiener noise term to each of the RK4 iterates, is justified in detail by

Honeycutt (1992).
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Figure 5.1: Comparison of stochastic RK4, Euler integration, and the exact solution evalu-

ated using Legendre polynomials, t=0.06.

5.5 3D Description of Particle Motion

5.5.1 Equations of Motion

MacKinnon and Craig (1991) is applicable if particles are tied tightly to field lines and do

not drift across the field. If particles are no longer tied tightly to field lines, e.g. near a null,

a more general 3D description is needed. In order to make the test problem more generally

applicable, I will now consider how to re-cast it in the form of a set of o.d.e.s such as those

given in equations (4.3). I want to introduce collisional scattering by extending (4.3) to

include stochastic terms. It should be noted that this solution is merely a generalisation of

that given in MacKinnon and Craig (1991). Such a generalisation should be made in order

to follow the evolution of the particles invx vy andvz. Once this is known, the behaviour

of particles in the presence of electric and magnetic fields can also be considered. In the

first instance I am considering a problem in which no electricor magnetic fields are present.

Equations (4.3) are therefore rewritten as
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dx

dt
= vx (5.12a)

dy

dt
= vy (5.12b)

dz

dt
= vz (5.12c)

dpx = −A(x, t)xdt + (D1/2dW)x (5.12d)

dpy = −A(x, t)dty + (D1/2dW)y (5.12e)

dpz = −A(x, t)dtz + (D1/2dW)z. (5.12f)

The drift A(x, t) and diffusion termsD will now be determined by exploring how the dis-

tribution function of the particles evolves, and using thisinformation to develop drift and

diffusion terms for the behaviour of a single particle. I will do this by drawing on the known

velocity diffusion coefficients in a FP description (Trubnikov (1965)) and the equivalence be-

tween FP and s.d.e. descriptions. Once the coefficients of the first- and second-order terms

in the FP equation are known,A andD immediately follow.

According to Trubnikov (1965), the effect of collisions (Cα/β, whereCα/β is the sum of the

drift A(x, t) and diffusion termsD) on a particle,α, moving through a medium of particles

of typeβ is given by

Cα/β = (−∇v j
α/β), (5.13)

where

jα/β =
1

mα
F

α/β
i fα −D

α/β
ik ∇kfα. (5.14)

The first term on the r.h.s is the slowing down term. The secondterm on the r.h.s is the

scattering term. When equation 5.14 is inserted into equation 5.13, the first term on the

r.h.s of equation 5.14 turns out to be analagous to the first term on the r.h.s. of equation

5.2. Similarly, the second term on the r.h.s of equation 5.14turns out to be analagous to the

second term on the r.h.s. of equation 5.2. The subscripti = (x, y, z) , as does the subscript

k andfα is the distribution function of particles of typeα and

F
α/β
i =

m2
α

mβ

∂

∂vk
D

α/β
ik (5.15)
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D
α/β
ik = Kα/β v

2δik − vivk
v3

. (5.16)

Kα/β =
λnβ

4π

(

4πeαeβ
mα

)2

,

Hereλ is the Coulomb logarithm, which is usually taken to be 25 in the solar corona, andnβ

is the number density ofβ particles, which is109cm−3 in a typical flare loop (Aschwanden

and Benz (1997)). It should be noted that the velocity of the field particles is taken to be zero,

since in this case the behaviour of a particle with a velocitymuch greater than the thermal

velocity is being studied.

I want to obtain an expression for the slowing-down term (A(x, t)), so equation 5.15 must

be rewritten. To evaluate∂
∂vk
D

α/β
ik must be rewritten as

∂

∂vk
D

α/β
ik = Kα/β

(

∂

∂vx

(

v2δix − vivx
v3

)

+
∂

∂vy

(

v2δiy − vivy
v3

)

+
∂

∂vz

(

v2δiz − vivz
v3

)

.

)

(5.17)

One can then write the first term of the R.H.S as:

∂
∂vx

(

v2δix−vivx
v3

)

= ∂
∂vx

(

v2δxx−v2x
v3

+ v2δyx−vyvx
v3

+ v2δzx−vzvx
v3

)

,

which equals

∂
∂vx

(

v2δxx−v2x
v3

+ v2δyx−vyvx
v3

+ v2δzx−vzvx
v3

)

= ∂
∂vx

(

v2−v2x−vyvx−vzvx
v3

)

.

Evaluating the above, for the first term of (5.17) gives:

∂
∂vx

(

v2−v2x−vyvx−vzvx
v3

)

= 1
v5
(3v2x(vx + vy + vz)− v2(3vx + vy + vz)).

And similarly, the second and third terms of (5.17) are

∂
∂vy

(

v2−v2y−vyvx−vyvz
v3

)

= 1
v5

(

3v2y(vx + vy + vz)− v2(vx + 3vy + vz)
)

,

∂
∂vz

(

v2−v2z−vyvz−vzvx
v3

)

= 1
v5
(3v2z(vx + vy + vz)− v2(vx + vy + 3vz)),
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which gives

∂

∂vk
D

α/β
ik = Kα/β−(vx + vy + vz)

v3
.

There is also a first-order term which is obtained from the collision term. When this is added

in, and recalling that the slowing-down term is given by

A(x, t) = −Kα/βmα

mβ

∂

∂vk
D

α/β
ik , (5.18)

a slowing-down term of the form

A(x, t) = Kα/β

(

mα

mβ

+ 2

)

(

−vx
v3
,−vy

v3
,−vz

v3

)

(5.19)

can be obtained. I now wish to sum over interactions with bothelectrons and protons. The

particleα is always an electron. This because ions do not scatter very much collisionally in

pitch angle. The particle that it is colliding with (β) can be an electron or a proton. Summing

over collisions with electrons and protons gives

A(x, t) = Kα/β

(

me

me

+
me

mp

+ 2

)

(

−vx
v3
,−vy

v3
,−vz

v3

)

. (5.20)

Since protons are so much heavier than electrons (mp/me = 1836), the termme

mp
can be

neglected. This gives a slowing down term

A(x, t) = −3Kα/β
(vx
v3
,
vy
v3
,
vz
v3

)

. (5.21)

Therefore

A(x, t)x = −3
Kα/βvx
v3

(5.22a)

A(x, t)y = −3
Kα/βvy
v3

(5.22b)
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A(x, t)z = −3
Kα/βvz
v3

. (5.22c)

A physically correct value ofD must now be determined for this problem. This can be ob-

tained by considering the interaction of a test particle with a field of ’background’ particles.

According to Trubnikov (1965), the diffusion term can be written as

D
α/β
ik = Kα/β ∂

∂vi

(

v2δik − vivk
v3

· ∂fα
∂vk

)

. (5.23)

I therefore need to evaluate

∂

∂vi

(

v2δik − vivk
v3

· ∂fα
∂vk

)

. (5.24)

Expanding this gives

∂

∂vi

(

v2δik − vivk
v3

· ∂fα
∂vk

)

=
∂

∂vi

(

v2δix − vivx
v3

· ∂fα
∂vx

+
v2δiy − vivy

v3
· ∂fα
∂vy

+
v2δiz − vivz

v3
· ∂fα
∂vz

)

(5.25)

Evaluating the first term

∂
∂vi

(

v2δix−vivx
v3

· ∂fα
∂vx

)

=

v2−v2x
v3

∂2f
∂v2x

− 3vx(v2−v2x)
v5

∂f
∂vx

+vx
v3

(

3v2y
v2

∂f
∂vx

− vy
∂f

∂vy∂vx
− ∂f

∂vx

)

+vx
v3

(

3v2z
v2

∂f
∂vx

− vz
∂f

∂vz∂vx
− ∂f

∂vx

)

.

Similarly, the second term of (5.25) equals:

∂
∂vi

(

v2δix−vivy
v3

· ∂fα
∂vy

)

=



CHAPTER 5. EFFECT OF COLLISIONS ON PARTICLE TRAJECTORIES 132

vy
v3

(

3v2x
v2

∂f
∂vy

− vx
∂f

∂vx∂vy
− ∂f

∂vy

)

+
v2−v2y
v3

∂2f
∂v2y

− 3vy(v2−v2y)

v5
∂f
∂vy

+vy
v3

(

3v2z
v2

∂f
∂vy

− vx
∂f

∂vz∂vy
− ∂f

∂vy

)

.

And the third term of (5.25) equals

∂
∂vi

(

v2δix−vivz
v3

· ∂fα
∂vz

)

=

vz
v3

(

3v2x
v2

∂f
∂vz

− vx
∂f

∂vx∂vz
− ∂f

∂vz

)

+ vz
v3

(

3v2y
v2

∂f
∂vz

− vy
∂f

∂vy∂vz
− ∂f

∂vz

)

+v2−v2z
v3

∂2f
∂v2z

− 3vz(v2−v2z)
v5

∂f
∂vz

.

Bringing the 3 terms together, this can be written as the matrix

D =
1

v3







v2z + v2y −vxvy −vxvz
−vxvy v2x + v2z −vyvz
−vxvz −vyvz v2x + v2y






(5.26)

plus a first order term, which will be added into the slowing down term

First order part ofDik = −2vx
v3

∂f

∂vx
− 2vy

v3
∂f

∂vy
− 2vz

v3
∂f

∂vz
. (5.27)

Recall that the stochastic term is given by((2Kα/βD)1/2·r)xdt1/2, wherer is a vector contain-

ing the random numbers by whichD1/2 will be multiplied (r)dt1/2 = dW), thus obtaining

the noise term in the stochastic RK4 method. I therefore wantto know the ‘square root’ of

the matrixD. According to standard theory, everyn× n matrix can be writtenVLV −1. L is

a matrix whose diagonal values are the the eigenvalues of thematrix, and whose other values
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are 0. V is a matrix whose columns are the unit eigenvectors of the original matrix. The

matrixD1/2 is therefore constructed as

D1/2 = VEV−1, (5.28)

whereV is a matrix whose columns are the unit eigenvectors ofD, andV−1 is its inverse.

E is a matrix whose diagonal values are the square roots of the eigenvalues ofD, and whose

other values are 0. The eigenvaluesλ of a3× 3 matrixM are calculated as follows.

det(M− λI) = 0, (5.29)

where I is the identity matrix anddet indicates the matrix determinant. The eigenvalues,λ

of D were found using Mathematica, and are given by

λ1 =
1

v
(5.30)

λ2 =
1

v
(5.31)

λ3 = 0. (5.32)

The corresponding eigenvectors (x) are found using the relation

Dx = λx. (5.33)

That is,the eigenvector is the vector which, when multiplied by the corresponding eigenvalue,

returns an answer which is equal to the product of the original matrix and its eigenvector. The

eigenvectors (x) of D are

x1 =







−vz
vx

0

1






(5.34)
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x2 =







−vy
vx

1

0






(5.35)

x3 =







vx
vz
vy
vz

1






(5.36)

D1/2 can then be calculated, and turns out to be:

D1/2 =
1

v5/2







v2z + v2y −vxvy −vxvz
−vxvy v2x + v2z −vyvz
−vxvz −vyvz v2x + v2y






(5.37)

At energies below the thermal speed, diffusion in particle energy becomes important. How-

ever, this is not included here as this approach assumes thatparticle energies are much greater

than the thermal speed.

5.5.2 Different Coordinate Systems

It is sometimes numerically expedient to use polar coordinates in order to study the stochastic

behaviour of a particle. For example, it will be seen in Section 5.9.2 that when considering

the motion of particles at an X-type neutral point, it is moreaccurate to use polar coordinates

since numerical errors arise when modelling the slowing down of a particle if Cartesian

coordinates are used.

If we change variables fromvx, vy, vz to v, µ, θ,the Fokker-Planck equation describing a

particle undergoing drift and diffusion becomes:

F = −D
v2
∂f

∂v
− D

v3

[

∂

∂µ

(

sin2(φ)
∂f

∂µ

)

+
1

sin2(φ)

∂2f

∂2θ

]

, (5.38)

whereD = nλ4πe4

m2
e

andµ = cos(φ) (φ is the particle’s pitch angle andθ is its azimuthal

angle). The energy loss and scattering terms can be readily chosen from equation 5.38, and

the form of the stochastic differential equations obtainedfor the motion of an electron can

be seen in Section 5.10.
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5.6 Relativistic Collisional Scattering

5.6.1 Slowing-Down Term

As has been noted, the above approach is not valid for relativistic particles, that is for parti-

cles with energies greater than≈ 160 keV. Leach and Petrosian (1981) discussed collisions

in the relativistic case and found that the energy change dueto collisions is given by

dE

dt
=

4πr20cnΛ

β
(5.39)

wheren is the number density of the plasma andr0 is the classical electron radius, which is

given byr0 = e2/(mec
2). The factorβ = v/c.

Since, in c.g.s unitsE = (γ − 1)mc2,

dγ

dt
=

4πe4cniλ

mev
. (5.40)

It is known that

dβ

dt
=

1

βγ3
dγ

dt
, (5.41)

and

dv

dβ
= c. (5.42)

Therefore

dv

dt
=
dβ

dt

dv

dβ
=

c

βγ3
dγ

dt
, (5.43)

which means (substituting from 5.40):
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dv

dt
=

1

γ3
4πe4nλ

m2
e

1

v2
. (5.44)

The non-relativistic slowing-down rate is

dv

dt
= −4πe4nλ

m2
e

1

v2
. (5.45)

It can be seen that the only difference between the above equation and the slowing-down

rate given by Leach and Petrosian (1981) is a factor of1/γ3. Therefore in order for the

equations of motion to be relativistic, a factor of1/γ3 must be included in the slowing-down

term.

5.6.2 Change in Pitch Angle

According to MacKinnon and Craig (1991), the non-relativistic term giving change in pitch

angle is given by

∂f

∂t
=

4πe4nλ

m2
ev

3

∂f

∂µ

(

(1− µ2)
∂f

∂µ

)

. (5.46)

Leach and Petrosian (1981) give a relativistic pitch angle term which has the form

∂f

∂t
=
πe4nλ

m2
ev

3

3 + γ

γ2
∂f

∂µ

(

(1− µ2)
∂f

∂µ

)

. (5.47)

It can readily be seen that equation 5.47 is equal to equation5.46 for γ ≈ 1. Therefore

in order to make the scattering term relativistic, the ‘noise strength’ in the stochastic RK4

becomes

D = (Kα/β 3 + γ

4γ2
B)1/2 · r . (5.48)
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5.7 Conversion to Numerical Method

Since the stochastic differential equations have now been written out, they must be solved

numerically using the stochastic RK4. The scattering termsof (5.12) are therefore taken and

used to determine a value of the noise strength,D.

The stochastic term looks like:

Dik = ((2Kα/βD)1/2 · r)xdt1/2.

Recall that for the stochastic RK4

x(∆t) = x0 +
∆t

6
(F1 + 2F2 + 2F3 + F4) + (2D∆t)

1

2ψ,

whereψ is a random variable and the stochastic element of the integrator is contained within

the final term. Comparing the previous two equations therefore gives

D = (Kα/βD)1/2 · r . (5.49)

This gives a 1 x 3 matrix of values forD. I will extend the 1D approach of Honeycutt to

3D without further formal development. Inspection of her argument suggests that her 1D

description should be straightforwardly extensible to 3D.The algorithm for stochastic RK4

can therefore be written as

F1 = f(x0 + (2∆t)1/2D)

F2 = f(x0 +∆tF1 + (2∆t)1/2D)

F3 = f(x0 +∆tF2 + (2∆t)1/2D)

F4 = f(x0 +∆tF3 + (2∆t)1/2D). (5.50)

5.7.1 Application to Test Problem

In order to test this approach, the Mackinnon & Craig test problem is recast as a system of 6

o.d.e.s, as follows



CHAPTER 5. EFFECT OF COLLISIONS ON PARTICLE TRAJECTORIES 138

dx

dt
= vx (5.51a)

dy

dt
= vy (5.51b)

dz

dt
= vz (5.51c)

dvx = −3
K̃vx
v3

dt + ((K̃∆tD)1/2dW))x (5.51d)

dvy = −3
K̃vy
v3

dt+ ((K̃∆tD)1/2dW))y (5.51e)

dvz = −3
K̃vz
v3

dt+ ((K̃∆tD)1/2dW)z. (5.51f)

K has unitscms−2, and is made dimensionless in accordance with the units of MacKinnon

and Craig (1991), so that

K̃ =
Kα/βτ

v30
=

4πe4λ

m2
e

v30nm
2
e

4πe4λ

1

v30
= 1, (5.52)

whereτ is the normalising time for this problem. Again, only the first term on the r.h.s of

equations 5.51d to 5.51f is evaluated. The second term on ther.h.s. is incorporated directly

into the stochastic RK4 as the form of the noise term,D.

I have recast the differential equations describing particle motion in terms of Cartesian co-

ordinates to allow combination of Lorentz and collisional forces. However it is known that

particle speed decreases monotonically, as1/v2. It is also known (from MacKinnon and

Craig (1991)) how the distribution of particle pitch anglesshould evolve with time. The

3D stochastic code should reproduce this behaviour. The cosine of the pitch angleµ must

therefore be calculated. This can be done using

µ =
vz
v
. (5.53)

The resulting distributions forµ can be seen in figure 5.2, which compares the distribution

of µ values att = 0.18 as calculated from integrating 5.51 using the stochastic RK4, as

calculated exactly using Legendre polynomials, and as calculated by using Euler integration

to integrate 5.10. All three solutions agree closely. The slowing down of one electron can

be seen in figure 5.3, which compares the change in speed of an electron as calculated by
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integrating the set of equations 5.51 using the stochastic RK4 with the speed of an electron

as calculated usingv = (1− 3t)1/3 (MacKinnon and Craig (1991)).

It is known thatv evolves deterministically, but here random quantities areadded to the

components ofv. I therefore wish to be sure that the particle still slows down monotonically.

Speeds are normalised to the initial speed (v0), distances are normalised to(v40nβm
2
e)/(4πe

4λ)

and times are normalised to(v30nβm
2
e)/(4πe

4λ).

Figure 5.2: Comparison of stochastic RK4 integrating a set of 6 equations to determine the

velocity components of the particles, Euler integration ofthe same solution reduced to one

equation, evaluating the pitch angle of the particle only ; and the exact solution evaluated

using Legendre polynomials, t=0.18. All three solutions agree closely.
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Figure 5.3: Comparison of the calculation of the slowing down of one electron calculated

using stochastic RK4 integrating a set of 6 equations and by evaluating the analytic solution

of MacKinnon and Craig (1991). The two solutions agree closely for the stepsize shown,

which is 0.0001.

The effect of choosing a different stepsize was also investigated. Figure 5.4 shows that

the slowing down of an individual particle is very sensitiveto the choice of stepsize if the

particle is followed using the stochastic RK4 method. It is known (e.g. Presset al. (1992))

that the error associated with RK4 isO(h5), whereh is the stepsize being used. When the

particle’s trajectory is calculated analytically in the manner of MacKinnon and Craig (1991),

stepsize is not as important. The analytical and numerical solutions diverge, particularly

at highert because the analytical solution is exact, where as the numerical solution has an

error associated with it. These errors accumulate over the time of the simulation, and so the

solutions begin to diverge.
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Figure 5.4: Comparison of the calculation of the slowing down of one electron calculated

using stochastic RK4 integrating a set of 6 equations and by evaluating the analytic solution

of MacKinnon and Craig (1991). The two solutions agree more closely as the stepsize is

decreased.

Although the choice of stepsize has a significant effect on the slowing down of an individual

particle, it does not greatly affect the overall distribution of the particles’ pitch angles. The

distribution of particle pitch angles att = 0.3 for stepsizes 0.01 (figure 5.5),0.001 (figure

5.6),0.0001 (figure 5.7) and 0.00001 (figure 5.8) can be seen below.

It can be seen that decreasing the stepsize does not have a great effect on the overall dis-

tribution when the pitch angles are evaluated using velocity components that are calculated

using RK4. In fact, the effect of stepsize is much greater on the distribution where the pitch

angle was calculated directly using Euler integration as inMacKinnon and Craig (1991).

Using a smaller stepsize meant that fewer particles left thesimulation (i.e. fewer particles

attained non-physical pitch angles), and the solution was closer to that given by the Legendre

polynomial solution and the RK4 solution.
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Figure 5.5: Comparison of stochastic RK4 integrating a set of 6 equations to determine the
velocity components of 100 000 particles, Euler integration of the same solution reduced to
one equation, evaluating the pitch angle of the particle only ; and the exact solution eval-
uated using Legendre polynomials, t=0.3. The stepsize usedwas 0.01 for both numerical
integration methods.

5.8 Cross-Field Scattering

It is well known that particles can diffuse across field linesin magnetised plasmas (e.g.

Galloway, Helander, and MacKinnon (2006)). In order for cross-field diffusion to happen,

there must be some kind of stochastic process involved. If the field lines themselves are

tangled or subject to stochastic fluctuations (e.g. Rechester and Rosenbluth (1978)), particles

can diffuse across the field. Tangled field lines have been observed by the TRACE (transition

region and coronal explorer) satellite; an example of such tangled field lines can be seen in

figure 5.9.

Particle collisions can give rise to diffusion across the magnetic field. It was therefore thought

that the stochastic RK4 method could be used to simulate cross-field scattering. In order

to test this, a simulation was constructed which considereda single electron starting with

velocity in thex direction only, moving through a magnetic fieldBx = 1G,By = Bz = 0,

with no electric field present.
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Figure 5.6: Comparison of stochastic RK4 integrating a set of 6 equations to determine the
velocity components of 100 000 particles, Euler integration of the same solution reduced to
one equation, evaluating the pitch angle of the particle only ; and the exact solution eval-
uated using Legendre polynomials, t=0.3. The stepsize usedwas 0.001 for both numerical
integration methods.

5.8.1 Equations of Motion

The equations of motion of a test particle in electric and magnetic fields are given in (4.3).

When the slowing down terms given in (5.51) are introduced, (4.3) is re-written for electrons

moving in a fully ionised hydrogen plasma. Recall that collisional scattering is introduced

by integrating these equations using the stochastic RK4. For equations (5.55a) to (5.55c),

no noise is added. For equations (5.55d) to (5.55f), the noise term given in equation (5.49)

is used. For this simulation times are normalised to the electron gyroperiod,speeds to the

initial speed of the particle,and mass to the electron rest mass. The non-relativistic electron

gyrofrequency is given by (in c.g.s units):

ωce = eB/mec = 1.76× 107Brad/s (5.54)

Therefore whenB = 1G, the electron gyroperiod is3.57 × 10−7s. Using the above set of

normalisations, and adding the magnetic field term, (5.51) is written as:
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Figure 5.7: Comparison of stochastic RK4 integrating a set of 6 equations to determine the
velocity components of 100 000 particles, Euler integration of the same solution reduced to
one equation, evaluating the pitch angle of the particle only ; and the exact solution evalu-
ated using Legendre polynomials, t=0.3. The stepsize used was 0.0001 for both numerical
integration methods.

dx

dt
= vx (5.55a)

dy

dt
= vy (5.55b)

dz

dt
= vz (5.55c)

me
dvx
dt

= −3
K̃vx
v3

+ ((K̃∆tD)1/2W))x (5.55d)

me
dvy
dt

= −2πBxvz − 3
K̃vy
v3

+ ((K̃∆tD)1/2W))y (5.55e)

me
dvz
dt

= 2πBxvy − 3
K̃vz
v3

+ ((K̃∆tD)1/2W))z (5.55f)
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Figure 5.8: Comparison of stochastic RK4 integrating a set of 6 equations to determine the
velocity components of 100 000 particles, Euler integration of the same solution reduced to
one equation, evaluating the pitch angle of the particle only ; and the exact solution evalu-
ated using Legendre polynomials, t=0.3. The stepsize used was 0.00001 for both numerical
integration methods.

Here, the factorKα/β is made dimensionless, so that

K̃ =
AKα/βτ

v0
. (5.56)

The normalising time isτ (in this case, the particle gyroperiod), andv0 is the normalising

speed (in this case, the initial speed, 0.1c). A factorA was introduced, which is the ratio of

the gyroperiod and the collision time. This was used to scalethe slowing down and scattering

terms. This can be considered to be analogous to altering thedensity of the plasma that the

particle is moving through, which of course leads to changesin the slowing down rate and

scattering frequency of the particles.

All electrons are started at positionx = y = 0. They are also given the same velocities,

0.06c in the x direction,0.06c in the y direction and0.05c in the z direction. The ‘push’

in the y direction causes the particle to gyrate around the magneticfield in the absence of

collisional scattering. Particles were followed untilt = 12.4, which is the stopping time for
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Figure 5.9: Tangled magnetic field lines in the solar corona as observed by TRACE (Gal-
loway, Helander, and MacKinnon (2006)). The far left panel shows an example of regular,
ordered coronal loops. The middle and right hand panels showmore tangled, disordered
loops. Galloway, Helander, and MacKinnon (2006) proposed arelationship between the
random walk of scattered particles and diffusion across thefield lines as a result of this
macroscopic tangling.

electrons ifA = 1. The monotonic slowing down of one electron can be seen in figure 5.10.

The slowing down of the particle is smooth, and monotonic, asexpected.

Figure 5.11 shows how an electron’s trajectory is altered from simple gyromotion for in-

creasing values of̃K, i.e. when more collisional scattering and slowing down is added. As

the size ofA (and thereforeK̃) is increased, the particle’s trajectory begins to change from

simple gyromotion. WhenA = 1, the particle’s trajectory is substantially altered, due to

change in direction and increased deceleration, the particle does not travel as far in the x

direction.

Figure 5.12 shows the y position of 10 000 electrons every half a gyroperiod in the casesA=0,

0.01, 0.1 and 1. All electrons began the simulation atx = y = 0. For low values ofA, (i.e.

for less pitch angle scattering), the peak of the distribution depends mostly on the electron

position as it spirals around the field. At smallerA, particles cluster around distinct points

at each half-gyroperiod. With increasingA, particles spread out in the y-direction as time

increases, so that their positions are not primarily determined by gyromotion. Histograms

were plotted att = 0, 0.5τ, 1.τ, 1.5τ...12τ, 12.5τ , whereτ is one gyroperiod. Each histogram

is plotted in a different colour. Colours closer to black represent earlier times, colours closer



CHAPTER 5. EFFECT OF COLLISIONS ON PARTICLE TRAJECTORIES 147

Figure 5.10: Slowing down of one electron in the caseA = 1. There is no electric field, and
the magnetic field is 1G in thex direction only

to red represent later times. A total of 24 histograms were plotted for each value ofA, one

for each half-gyroperiod.

It can be seen that the peak of each distribution deviates more and more from its expected

position as the simulation progresses. The position of the peak of the distribution is plotted

for successive gyroperiods in figure 5.13, which shows that the displacement of the peak of

the distribution varies linearly with time. For the initialconditionsA = 1, B = Bx = 1G,

v0=0.1c andn = 1.× 1014cm−3 (this high density was chosen to give a short slowing-down

time, which could be quickly simulated), the electrons drift across the field at the rate of

≈ 2× 107cms−1.

Figure 5.14 shows the average displacement of the distribution in z. As in figure 5.13, the

displacement of the peak varies linearly with time, at approximately the same rate as the

displacement iny.
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Figure 5.11: Electron trajectory in the cases A=0,10−2,10−1 and 1. There is no electric field,
and the magnetic field is 1G in the x direction only

5.8.2 Perpendicular Diffusion Coefficient

It should now be possible to construct a coefficient to describe the diffusion of the particles

across the magnetic field. It is known that the perpendiculardiffusion coefficient (D⊥) in a

thermal plasma is (Helander and Sigmar (2002))

D⊥ ≈ ρ2

τ
, (5.57)

whereρ is the particle’s gyroradius andτ is its collision time This expression is normally

given for thermal particles; I assume it can be extended to nonthermal particles. The gyrora-

dius is given by

ρ =
v(1− µ2)1/2

eB/mc
, (5.58)
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Figure 5.12: Distribution ofy position at every half a gyroperiod for different am-
plitudes of slowing down and scattering terms, i.e. histograms were plotted att =
0, 0.5τ, 1.τ, 1.5τ...12τ, 12.5τ , whereτ is one gyroperiod. Each histogram is plotted in a dif-
ferent colour. Colours closer to black represent earlier times, colours closer to red represent
later times.

whereµ is the cosine of the particle’s pitch angle.τ is taken to be equal to the energy

loss time, which is the same as the collisional scattering time for suprathermal electrons.

Therefore

τ =
v

|dv/dt| (5.59)

and since

dv

dt
= −4πe4Λne

m2
e

1

v2
, (5.60)

this gives
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Figure 5.13: Change in the meany position of the electron distribution with time for different
amplitudes of slowing down and scattering terms. The meany position was plotted every
gyroperiod, and the meany position in the absence of scattering should be zero at the times
plotted.

τ =
m2

e

4πe4Λne
v3, (5.61)

therefore

D⊥ ≈ 4πe2Λnec
2

B2

(1− µ2)

v
cm2s−1. (5.62)

Fixing A = 1, v0=0.1c,B = 1G, I can examine the effect of varying the density of the

medium in which the electrons move. The diffusion iny for different densities can be seen

in figure 5.15 which shows that the amount of diffusion is directly proportional to the density

of the medium.

Let us now keep the density fixed (at1 × 1014cm−3), keep a magnetic field of 1G, and vary

the value ofv0. The diffusion iny for different values ofv0 can be seen in figure 5.16. This

figure shows that the amount of diffusion is inversely proportional tov0.



CHAPTER 5. EFFECT OF COLLISIONS ON PARTICLE TRAJECTORIES 151

Figure 5.14: Change in the meanz position of the electron distribution with time for different
amplitudes of slowing down and scattering terms. The meanz position was plotted every
gyroperiod, and the meanz position in the absence of scattering should be zero at the times
plotted.

Finally, let us keep the density fixed (at1 × 1014cm−3), fix v0 = 0.1c, and vary the value of

B. The diffusion iny for different values ofB can be seen in figure 5.17, which shows that

the amount of diffusion is inversely proportional toB2.

So, the change in a particle’s position due to scattering is indeed proportional to

∆y2 ∝ n

vB2
, (5.63)

therefore

D⊥ =
4πe2Λnec

2

B2

(1− µ2)

v
cm2s−1. (5.64)

Figure 5.18 shows the value of the variance ofy with time at successive gyroperiods, as well

as the diffusion calculated using:
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Figure 5.15: Change iny with time for different densities. The variance ofy was plotted
every gyroperiod.

∆y2 = 2D⊥t (5.65)

It can be seen that the two methods agree reasonably well. Thefactor2 in equation 5.65 was

added as it was empirically found to be present. It would therefore be possible to follow a

particle’s behaviour using only the 1D equations for changein µ andv, and calculating the

diffusion of the particles in space by using the diffusion coefficient.

5.9 Collisional Scattering At An X-Type Neutral Point

How do outcomes for the electrons I considered in section 4.2.6 change if collisional pitch-

angle scattering and energy loss is also included? On the onehand, particles will lose energy

to collisions. On the other hand collisional scattering maylead to electrons encountering the

non-adiabatic region more frequently. Which effect will bemore important? In the following

section, the dimensionless units of chapter 4 are used.
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Figure 5.16: Change iny with time for different values ofv0. The variance ofy was plotted
every gyroperiod.

5.9.1 The Dreicer Field

When considering collisional scattering, the velocity of the electrons must be taken into

account. If electrons have speed less than the thermal velocity, collisions happen with almost

constant frequency, increasing in number as the thermal velocity is approached. If an electron

is moving faster than the thermal velocity, the collision frequency scales as1/v2, so collisions

become less frequent as the electron’s speed increases (seee.g. Rozelot, Klein, and Vial

(2000), Trubnikov (1965)).

Since electron energy loss rate decreases with energy, there is a critical electron energy for

which energy gain from electric field is greater than energy loss from collisions. Electrons

above this critical energy can be freely accelerated out of the thermal distribution by the

electric field. The Dreicer field is the strength of electric field for which this critical energy

equals the thermal energy, i.e. all electrons in the plasma can be freely accelerated. The

speed at which collisions become less important as known as the runaway speed and is given

by (e.g. Holman (1985))
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Figure 5.17: Change iny with time for different values ofB. The variance ofy was plotted
every gyroperiod.

vr = vTe

(

ED

E

)1/2

. (5.66)

vTe
is the thermal speed of the electrons, which is given by

vTe
=

(

kBT

me

)1/2

. (5.67)

The electric field strengthED is the Dreicer field, which is given by (e.g. Holman (1985))

ED =
eΛ

λD
= 2.33× 10−8

( n

109cm−3

)

(

T

107K

)−1(
Λ

23.2

)

statvoltcm−1, (5.68)

whereΛ is the Coulomb logarithm,λD is the Debye length, andT is the plasma temperature.

For the plasma being considered (T = 1.4× 107K, n = 1010cm−3,Λ = 25, the Dreicer field

is 1.8 × 10−7statvoltcm−1, which is 5.4 × 10−3 V/m. The electric field applied in these

simulations is10−3 in dimensionless units, which is 3.9 V/m for electrons.
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Figure 5.18: Change in the variance ofy with time. The variance ofy was plotted every gy-
roperiod, and is marked with a cross. The solid line is the average displacement as calculated
using the diffusion coefficient,D, averaged over the numberof electrons being considered (10
000 in this simulation).

For the plasma being considered,vTe
is 1.5× 107ms−1 This gives a runaway speed of5.6×

105ms−1 for E=0.001, which in my units is a speed of1.9× 10−3. This means that all of the

electrons in the distribution are ’runaway’ electrons, andcan be accelerated out of a thermal

distribution.

5.9.2 Equations of Motion

Recall the set of equations 5.51, and add the appropriate electric and magnetic field terms

for an unperturbed X-type neutral point. This gives, for an electron moving in a fully ionised

hydrogen plasma:

dx

dt
= vx (5.69a)

dy

dt
= vy (5.69b)

dz

dt
= vz (5.69c)
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me
dvx
dt

= Byvz − 3
K̃vx
v3

+ ((K̃∆tD)1/2W))x (5.69d)

me
dvy
dt

= −Bxvz − 3
K̃vy
v3

+ ((K̃∆tD)1/2W))y (5.69e)

me
dvz
dt

= −(E + (Byvx − Bxvy))− 3
K̃vz
v3

+ ((K̃∆tD)1/2W))z. (5.69f)

Once again,̃K isK expressed in the appropriate dimensionless units. In this case

K̃ =
Kte
c3

. (5.70)

I will integrate the set of equations 5.69 taking into account collisional scattering for case

1 (constant electric field in the z-direction, and an unperturbed X-type neutral point as the

magnetic field). Once again, the scattering is introduced through the stochastic integrator,

rather than by the inclusion of scattering terms in the equations of motion.

The slowing-down time was calculated using (MacKinnon and Craig (1991))v = (1 −
3t)1/3. It is important to note that this equation is in the units of MacKinnon and Craig,

where speed is normalised to the initial speed of the particle, and time is normalised to

(v30nβm
2
e)/(4πe

4λ). Electrons were chosen to all start the simulation with the same velocity,

0.07c, which is an energy of 1.23 keV. The simulation ran for0.015s, which is equivalent to

the electron stopping time. To concentrate on the influence of collisions on the acceleration

process I adopted a mono-energetic initial electron distribution. Electrons were released

within the volume0 ≤ x ≤ 1, 0 ≤ y ≤ 1. In the case that no electric field is present,

the particles should slow down monotonically, This can be seen in figure 5.19. The slowing

down in this figure is slightly disappointing, as it is noisier than might be expected from the

well-behaved test problem studied at the start of this chapter.

The slowing down can be made more uniform if a sufficiently small stepsize is taken. This

can be seen in figure 5.20, which shows the slowing down of 5 electrons with identical start-

ing conditions. Their trajectories were integrated using stepsizes of 0.01,0.001 and 0.0001. It

can be seen that the slowing down of the 5 electrons begins to look more similar as a smaller

stepsize is taken. As the stepsize decreases, the rate of energy loss becomes smoother, and

there are no gains in energy, as would be expected.
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Figure 5.19: Slowing down of one electron at an X-type neutral point. A stepsize of0.001
was used here. The electric field has magnitude0. The slowing down in this figure is slightly
disappointing, as it is noisier than might be expected from the well-behaved test problem
studied at the start of this chapter. This is due to numericalissues which will be avoided by
considering the problem in spherical polar coordinates.

5.10 Drift & Diffusion in Polar Co-ordinates

I do not wish to take a stepsize smaller than 0.001, as this would cause the computation time

of the simulations to be increased to an impractical extent.I therefore decided to re-cast the

equations of motion for an electron in polar co-ordinates. Iam interested in the variation of

the particle’s velocity, azimuthal angle (θ), and pitch angle (φ). The equations of motion for

an electron in polar co-ordinates (in the absence of any drift and diffusion terms) are written

as follows:

dx

dt
= vx = vsin(φ)cos(θ) (5.71a)

dy

dt
= vy = vsin(φ)sin(θ) (5.71b)

dz

dt
= vz = vcos(φ) (5.71c)
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Figure 5.20: Slowing down of 5 electrons with identical starting conditions, including colli-
sional scattering. Three different stepsizes were used. There is no electric field present.

dv

dt
=

q

me

E · v
v

=
q

me
Ecos(φ) (5.71d)

dθ

dt
=

q

me
(cot(φ)(cos(θ)Bx + sin(θ)By)) (5.71e)

dφ

dt
=

q

me
(E ∗ sinphi/v) + (Bycos(θ)− Bxsin(θ)) (5.71f)

Changing variables fromvx, vy, vz to v, µ, θ,the stochastic differential equations governing

the motion of one electron are given by

dx

dt
= vsin(φ)cos(θ) (5.72a)

dy

dt
= vsin(φ)sin(θ) (5.72b)

dz

dt
= vcos(φ) (5.72c)

dv

dt
=

q

me

Ecos(φ)− D̃

v2
(5.72d)
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dθ

dt
=

q

me

(cot(φ)(cos(θ)Bx + sin(θ)By)) +

(

D̃

v3sin2(φ)

)1/2

r (5.72e)

dφ

dt
=
Esin(φ)

v
+ (Bycos(θ)−Bxsin(θ))−

2D̃cos(φ)

v3
+

(

D̃(sin2(φ))

v3

)1/2

r (5.72f)

wherer is a random variable. The slowing down of one electron in the absence of any

electric field can be seen in figure 5.21, which shows the required smooth, monotonic slowing

down.

Figure 5.21: Slowing down of one electron at an X-type neutral point. A stepsize of0.001
was used here. The electric field has magnitude0.

Application to X-Type Neutral Point

Now that the appropriate equations of motion in polar co-ordinates have been obtained, the

consequences of electron drift and diffusion at an X-type neutral point can be investigated.

I initially considered particles being accelerated in an electric field,E=0.001 for my dimen-

sionless units. The effects on particle trajectories can beseen in figure 5.22. It can be seen

that adding collisional scattering and slowing down causesthe trajectories of the particles to

change, as would be expected. The particles change direction more frequently, and so cross

the non-adiabatic region more often.
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Figure 5.22: Trajectories of 5 electrons for case 1, integrated with and without the addition of
collisional scattering. The sample has identical startingconditions for both sets of electrons.
The electric field has magnitude0.001 in our dimensionless units.

The effect that collisional scattering has on particle energies can be seen in figure 5.23.

The density of the plasma being considered here is1010cm−3. This density was chosen

as it is a reasonable density for the solar corona, and it is high enough to show clearly

the effect of the addition of collisions. The particles werefollowed until their theoretical

stopping time, for such a density, 0.015s. The particles begin with an energy such that

log10(Eninitial) = −2.9. Most particles remain at this energy in both cases. In the absence

of collisional scattering, some particles are acceleratedby the electric field. If collisional

scattering is added, some particles are accelerated, but some are decelerated. The maximum

energy achieved is the same in both cases, although more particles achieve this energy in the

absence of collisions.

However, one must bear in mind that if only collisional energy loss was included, the elec-

trons which undergo collisional scattering should have stopped completely att = 0.015s.

The fact that they have not stopped means that they are being re-energised by the electric

field. This is due to the fact that adding collisional scattering causes the particles to change

direction more often, meaning that they cross the non-adiabatic region more often, thus gain-

ing more energy.
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Figure 5.23: Energies at t=0.015s for 10000 electrons whosetrajectories have been integrated
without the addition of collisional scattering (left) and with collisional scattering (right). The
electric field has magnitude0.001 in our dimensionless units.

Figures 5.24 and 5.25 show the energy distributions for electrons ifE=0.0001 andE = 10−5.

As the electric field decreases, it can be seen that lower energies are achieved, both with

and without collisional scattering. However, once again, the electrons undergoing collisions

should have lost all of their energy in this time.

For these simulations, a particle is considered to have lostall of its energy if its energy is

less than5.11× 10−3eV (this value was chosen as our simulations normalised energyto the

electron rest mass energy, and the simulation was found to become unstable if the particle

energy fell below10−7 in these units). It can be seen that the amount of particles left with

energy greater than5.11 × 10−3eV decreases with decreasing electric field. Interestingly,

for the cases shown in figures 5.24 and 5.25, the distributions when collisions are included

are comprised of a lower energy peak and a higher energy peak.I suggest that the lower

energy peak is caused by electrons that have gained just enough energy to remain above the

cut-off energy, but which have generally been slowing down.The higher energy peak is

caused by electrons which have been accelerated. This is notseen for a higher electric field

(figure 5.23) as this field is high enough to accelerate the majority of the electrons in the

distribution.

What happens if a sub-Dreicer field is applied to the electrons? The Dreicer field for an

electron density of1010cm−3 and temperature1.4 × 107 K is 5.4 × 10−3 V/m. If a field
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Figure 5.24: Energies att = 0.015s for 10000 electrons whose trajectories have been in-
tegrated without the addition of collisional scattering (left) and with collisional scattering
(right). The electric field has magnitude0.0001 in our dimensionless units.

Figure 5.25: Energies att = 0.015s for 10000 electrons whose trajectories have been in-
tegrated without the addition of collisional scattering (left) and with collisional scattering
(right). The electric field has magnitude10−5 in our dimensionless units.

of 10−7 in our units is applied, that is equivalent to3.9 × 10−4 V/m, so the electrons will

experience a sub-Dreicer field. Electrons in a field of this magnitude have a runaway speed of
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5.7×107ms−1, which is 0.18 in our units, meaning the electrons are initially travelling below

the runaway speed, and collisions will be more important. The effect of the sub-Dreicer field

on electrons which both do and do not undergo collisional scattering can be seen in figure

5.26.

Figure 5.26: Energies att = 0.015s for 10000 electrons whose trajectories have been in-
tegrated without the addition of collisional scattering (left) and with collisional scattering
(right). The electric field has magnitude10−7 in our dimensionless units.

It can be seen that when electrons in such a low field do not undergo collisional scattering,

their energy does not change. The electric field is too low to accelerate the electrons. How-

ever, if the particles undergo collisional scattering theylose energy, but they do not all lose

all of their energy. If the electric field is less than the Dreicer field, collisions become more

important, and more particles are left with energies greater than5.11 × 10−3eV after the

expected stopping time than are found for a small super-Dreicer field.

5.10.1 The Relativistic Case

Recall that the set of equations of motion used above is not valid in the relativistic case. How-

ever, using the arguments set forth in section 5.6, I can write a set of relativistic equations of

the form:

dx

dt
= vsin(φ)sin(θ) (5.73a)
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dy

dt
= vcos(φ) (5.73b)

dz

dt
= vcos(φ) (5.73c)
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5.10.2 Application to X-Type Neutral Point

In order to investigate the consequences of collisions for relativistic electrons, electrons were

started with an energy of 65keV. Energies of greater than around 160keV are too high for sim-

ulations to model the collisional behaviour of particles ina non-relativistic manner (Leach

and Petrosian (1981)). Therefore if these particles are accelerated by more than 2.5 times

their original energy, the calculations will need to be relativistic in order to be accurate. In

order to reduce the simulation time, I have increased the plasma density here to1012cm−3,

which gives a stopping time for 65 keV electrons of0.04s.

The energy distributions for relativistic particles, withand without the inclusion of collisional

scattering can be seen in figure 5.27. The inclusion of collisional scattering does not make

any difference to the energy distribution of the electrons if they start the simulation at high

energies. This is also true for a much smaller electric field (E = 1 × 10−7), as can be seen

in figure 5.28.

Figures 5.27 and 5.28 reproduce the quantitative results ofthe non-relativistic case. Colli-

sions cause electrons to achieve a greater spread of energies if the electric field is relatively

large. If the electric field is relatively small, particles simply lose energy due to collisions. In

both cases, particles remain at higher energies than would be expected, as they are energised

by the electric field.
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Figure 5.27: Energies att = 0.04s for 10000 electrons whose trajectories have been in-
tegrated without the addition of collisional scattering (left) and with collisional scattering
(right), using the relativistic expressions for collisional scattering and collisional energy loss.
The electric field has magnitude0.001 in our dimensionless units.

Figure 5.28: Energies att = 0.04s for 10000 electrons whose trajectories have been in-
tegrated without the addition of collisional scattering (left) and with collisional scattering
(right), using the relativistic expressions for collisional scattering and energy loss. The elec-
tric field has magnitude1× 10−7 in our dimensionless units.
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5.11 Conclusion

In this chapter, I have developed a method for including collisions in the calculation of par-

ticle trajectories. This method was developed by extendingthe stochastic RK2 method of

Honeycutt (1992) to an RK4 method, which was then tested using the problem of colli-

sional scattering in an unmagnetised plasma, as studied in MacKinnon and Craig (1991).

The stochastic integrator performed better than the Euler integration used in MacKinnon and

Craig (1991) for this 1D problem. The integrator was then extended for use in 3D calcula-

tions, with the drift and diffusion terms calculated using the method outlined in Trubnikov

(1965). This method also performed well when used to find a solution to the test prob-

lem.

With confidence in the integration method, I then used the stochastic RK4 integrator to fol-

low electrons gyrating around a constant magnetic field directed along the x axis, in the

absence of an electric field. Increasing the magnitude of thedrift and diffusion terms caused

the electrons to drift across the field. An analytical expression for this drift was then ob-

tained.

Finally, the stochastic integrator was used to add collisions to particle trajectories at an X-

type neutral point. The addition of collisions causes the particles to lose energy, but because

the particles are scattered in pitch angle, they return to the neutral point and are energised

by the electric field. Therefore, even though the particles are followed for one stopping

time, some of them still have energy. The amount of particlesleft with energy greater than

5.11× 10−3eV decreases with decreasing electric field. However, if the electric field is less

than the Dreicer field, collisions become more important, and more particles are left with

energies greater than5.11 × 10−3eV after the expected stopping time than are found for a

small super-Dreicer field.

For relativistic electrons, collisions caused electrons to achieve a greater spread of energies

if the electric field was relatively large. If the electric field was relatively small, particles

simply lost energy. This is a quantitative reproduction of the results for the non-relativistic

case.

I have shown that in the presence of an electric field, electrons that undergo collisions will

still be energetic after their expected stopping time. These energised electrons will continue

to produce Bremsstrahlung radiation, and could potentially produce a visible HXR source in

the solar corona.



6. Conclusions and Future Work

What you do in this world is a matter of

no consequence. The question is what

can you make people believe you have

done.

Sherlock Holmes,A Study In Scarlet

This thesis has focused on the behaviour of particles in different forms of electric and mag-

netic fields, both with and without the inclusion of collisional scattering. Such behaviour has

been explored in the context of magnetic reconnection regions in solar flares, and for cross

field drift in magnetised plasmas.

6.1 Noisy Electric & Magnetic Fields

The main body of this work has dealt with creating a simulation in which particles move in

a magnetic field based on a perturbed X-type neutral point, and also in a noisy electric field

which was created via a superposition of cold plasma eigenmodes. A large amount of time

during this project has been devoted to developing the computational method used to calcu-

late the hypergeometric function quickly and accurately. Calculating the eigenmodes of the

hypergeometric function via integrating the hypergeometric differential equation (e.g. Press

et al. (1992)) proved to take an excessive amount of time computationally when superposi-

tions of many modes were required. Instead, an analytic continuation of the summation for

the hypergeometric function was used. Analytic continuation methods are used to extend the

region in which a particular analytic function can be used. In this case, the hypergeometric

function can be represented as the summation of a series of terms in the regionz < 1. How-

ever, outside of this region, this series no longer converges. Analytic continuation solves

this problem, allowing us to continue representing the hypergeometric function as a series.

167
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This was found to reproduce the results of Presset al. (1992), and the computation time was

decreased by several orders of magnitude.

Adding many eigenmode oscillations caused the X-type neutral point to be dramatically

changed and a complex magnetic field containing many smallerX- and O-type nulls was

produced. An accompanying noisy electric field was also created, in the z-direction only.

This work follows particles in the presence of a 2D magnetic field. A third componentBz

of the equilibrium field would modify the structure ofE andB, but Hamiltonet al. (2005)

show that a regime of sufficiently smallBz exists in which the resulting modifications are

negligible for particle acceleration purposes. LargerBz would result in reduced reconnection

rate (and thus electric fields) as well as introducing time-dependent structure in the z direc-

tion, a more complex situation which I do not investigate here. The addition of a non-zero

Bz component merely increases the efficiency of the acceleration, as particles tend to stay

within the current sheet (see also Litvinenko (1996)). Thismeans that the energies gained by

particles in these simulations are likely to be at the lower end of the energy range that could

be achieved with a 3D geometry.

Various physical effects would result from relaxing the 2D,cold plasma model. Gruszecki

et al. (2011) show that non-linear effects become important as waves propagate towards the

null, at a distance determined by plasma beta and the amplitude of the disturbance. De-

partures from azimuthal symmetry occur along with localised current spikes, all of which

would have implications for accelerated particles. The plasma beta here is identically zero,

which minimises these effects although they could become important in a more realistic

treatment.

6.1.1 Consequences for Protons

Protons and electrons were released into these fields, and their behaviour was studied. Pro-

tons were easier to study since their greater mass means thatthe normalising timescale was

greater. It was found that as more eigenmodes were added, theacceleration region became

more efficient. This is due to the creation of a larger non-adiabatic region, and the fact that

particles become trapped within this region. Adding more perturbative modes also causes

particle pitch angles to vary more often, meaning that particles in the noisy fields undergo a

kind of non-resonant pitch angle scattering. They change direction more often, which may

lead them to crossing the non-adiabatic region more frequently. The smaller nulls that are

created by a superposition of modes could also be sites for particle acceleration.
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While there have been many studies of test particle acceleration in reconnection regions,

the small volume involved in these regions is a problem if thelarge numbers of particles

apparently accelerated in flares are to be accounted for. Theeffects described here open up

the possibility of a much larger volume being involved in particle acceleration.

The effect of varying the distribution of the amplitude of the eigenmode oscillations was

also investigated. It was found that letting the amplitude of the eigenmodes fall of asa0k−5/3

(where k is the wavenumber of the mode, anda0 is an arbitrary amplitude) produced a

smaller total disturbance than for a flat spectrum of modes. The fields created by such a

disturbance produced a high energy tail of particles which was much smoother and more

regular in character than that produced by a flat spectrum of modes for the samea0.

Finally, the effect of varying the inertial resistivity wasstudied. It was found that decreasing

resistivity caused protons to become more highly energised. Decreasing resistivity leads

to changes in the formation of the small-scale nulls, so thatmore such nulls are created

away from the very centre of the region. Since there are more sites of particle acceleration,

particles can become more highly energised. Decreasing thevalue of the resistivity also

causes the electric field to become less noisy. However, particles are still accelerated to

higher energies in this less noisy field. It can therefore be concluded that it is not the noisier

electric field that causes particles to become more energised as more perturbations are added

in cases 1-5. Rather, it is the changes in the topology of the magnetic field, and the creation

of more nulls, which are the sites of particle acceleration.

6.1.2 Consequences for electrons

It was more difficult to study electrons as their normalisingtimescale was much shorter due

to their smaller mass, and smaller time steps had to be used toresolve the behaviour of

the particles. In order to compensate for this, the normalising length scale for protons was

changed to ten times the particle’s gyroradius at the systemboundary, rather than simply

the gyroradius at the system boundary, as it was for protons.The electron mass was also

increased to10me. This improved the computation time but still meant that electrons were

only followed for a tenth of the time of protons. The masses ofthe test particles are still

much less than those of ions and I expect major differences between electrons and ion to be

revealed by these calculations.

It was found that the magnetic and electric fields of case 1 caused the electron distribution

to gain energy as a whole (i.e. the plasma was heated). When eigenmode oscillations were

added, this heating did not occur, but instead the addition of a superposition of eigenmode
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oscillations caused the distribution to develop a high energy nonthermal tail. Again these

effects appear to be due to the trapping of particles within the non-adiabatic region. Recall

also that many smaller nulls are formed when more perturbative modes are added to the

magnetic field.

I also calculated the X-ray spectra that would be produced bythin-target bremsstrahlung

from the energy distributions of electrons calculated in chapter 4. It was found that adding

more modes produced X-ray spectra that were similar in character to those that are observed:

the spectra are comprised of both thermal and non-thermal photons. It is of course difficult

to make quantitative statements here; the idealised natureof the simulations mean that the

electron distributions are merely illustrative of those that may be found when some of the

conditions are relaxed (for example, the introduction of aBz component to the magnetic

field). However, the fact that the X-ray spectra produced arequalitatively comparable to

those which are observed is encouraging.

In integrating the trajectories for protons and in particular in integrating the electron trajec-

tories for a superposition of modes, a major difficulty was the length of time taken for the

simulations to run. The simulations took a long time to run asthe gyromotion of the in-

dividual particles was being resolved at all times. The simulations could be sped up if the

gyromotion was only followed within the non-adiabatic region. At largerr, I could merely

follow the guiding centre of the particle’s motion. This is much quicker to calculate as the

equations of motion are much simpler. However, a difficulty arises in matching the calcu-

lations at the boundary between the two regimes. If the information about thevx, vy and

vz components of the particle’s velocity was not preserved, these would have to be inferred

in order to have detailed information about particle dynamics near the null. Calculating

these quantities accurately (and quickly enough that the computation time saved by using

the guiding centre approach further from the null is not negated) will be an important issue

to be resolved.

6.2 Collisional Scattering

In order to model collisional scattering of particles, a stochastic Runge-Kutta integrator was

developed, in the manner of Honeycutt (1992). This integrator was seen to reproduce the

results of MacKinnon and Craig (1991) when tackling the sameproblem. The stochastic

RK4 method was found to reproduce the distribution of particle pitch angles, and in fact per-

formed better than the method of MacKinnon and Craig (1991) at later times. The monotonic

slowing down of electrons was also well modelled.
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With confidence in the stochastic RK4 established, I used this method to model cross field

drift. Electrons were followed in the presence of a magneticfield in the x-direction only.

It was found that adding more collisional scattering causesthe particles to drift across the

field, disrupting their usual gyromotion. An analytical diffusion coefficient was obtained,

and the drift across the field lines predicted by this matchedwell with the results obtained

when particle trajectories were integrated using a stochastic integration method. This gave

us further confidence in the accuracy of the stochastic integrator. In this case, the monotonic

slowing down of particles was also well modelled.

Stochastic RK4 was also used to add collisional scattering to electrons at an X-type neutral

point. It was found that adding collisional scattering caused particles to achieve a greater

spread of energies, and to remain energised after their theoretical collisional stopping time.

As the size of the electric field is decreased, fewer electrons remain energised after one

stopping time, if the electric field is above the Dreicer fieldvalue. If the electric field is

below the Dreicer value, more particles remain energised, although because the magnitude

of the field is necessarily small, they do not achieve high energies.

This is because electrons in a field greater than the Dreicer field are ‘runaway’ electrons,

i.e. they are less affected by collisions, and so they are less likely to have their direction

changed by a collision. Collisions merely cause such particles to lose energy. For electrons

in a sub-Dreicer electric field, collisions are more important. Therefore the trajectories of

these particles are more likely to be altered, meaning that they cross the neutral point more

times than particles that do not undergo collisional scattering. When particles cross the

neutral point, they gain energy. Therefore particles whichundergo collisional scattering

in the presence of a sub-Dreicer electric field will gain moreenergy than those which do

not undergo collisions (for small electric fields). The correct expressions to describe the

collisions of relativistic electrons were also derived.

The fact that energetic electrons are still seen is interesting as these electrons will be pro-

ducing Bremsstrahlung radiation for longer than one might expect if only their collisional

stopping time is considered. With high enough electric fields, these electrons could produce

a coronal HXR source. The highest electric field I used for electrons was3.9V/m. Electric

fields has high as1kV/m have been observed in solar flares (Gorbachev and Somov (1989)).

It is therefore possible that electrons could be emitting HXR via collisional Bremsstrahlung,

and yet remain energised for times much longer than their stopping time.

The stochastic integrator performed slightly disappointingly in this case when it came to

modelling the slowing down of the particles. Although the form of the slowing down is still
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correct, the slowing down does not happen smoothly, but rather noisily. This is interesting

since this did not occur in the other two problems studied, which suggests that the ’noisy

slowing down’ is a result of the set-up of this problem. I speculate that since the drift and

diffusion terms in the stochastic integration algorithm are calculated from thevx, vy andvz
of the particles, large changes in these quantities near thenull could cause anomalously high

drift and diffusion terms, which could lead to the ’noisy slowing down’ seen in this work.

This problem was avoided by switching to a polar co-ordinatesystem, which recovered the

expected monotonic slowing down.

6.3 Future Work

In order to better investigate the dynamics of electrons, faster codes should be developed.

One way in which the speed at which particle trajectories arecalculated could be increased

is by parallelizing the code. Currently the time-scales associated with electron transport

mean that such simulations are computationally expensive,and run for impractical lengths of

time. Developing fast numerical integration methods, or finding quickly evaluated, analytical

expressions which describe the turbulent fields in which theparticles move would be a crucial

part of this work. Once these rapid simulations are created,they could be applied to problems

involving turbulent magnetic fields in a variety of astrophysical contexts.

In this work, I followed the orbit of each test particle individually, integrating the entire orbit

for one particle before moving on to calculating the orbit for the next particle. The only

way to integrate the trajectories of many particles quicklywas to start several runs at once.

This is a reasonably good method of decreasing the simulation time, but there are clever

ways of doing this that make better use of the processing power available to us. If I was to

rewrite the code for integrating particle orbits so that thebehaviour of all of the particles was

followed simultaneously (i.e. take one timestep, evaluateall quantities of interest for all of

the particles in the simulation, and then take the next timestep), then I could parallelise the

code. Running a process in parallel means that instead of theprocessor doing each of its

required tasks in sequence, several processors are used to perform several tasks at once. The

amount by which this could speed up the processing time is given by Amdahl’s law (Amdahl

(1967)), which states

Tinc =
1

rs +
rp
n

(6.1)
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wherers is the fraction of the code that has not been parallelised,rp is the fraction of the

code that has been parallelised, and n is the number of processors available.Tinc is the factor

by which the running code of the time could be shortened. Thismeans that if I was to rewrite

the code so that half of it is in parallel, by running this job on 16 processors I could cut the

running time of the code in half. If I was able to make 95% of ourcode parallel, our running

time on 16 processors would be a tenth of that of a serial code.

Of course, it is possible to speed up calculations by making the calculations themselves

simpler, and therefore quicker to evaluate. If one moves to aguiding centre approximation,

the equations of motion are much simpler. The cross-field diffusion coefficient I developed

will allow guiding centre studies of electron dynamics, in systems with a guide field. Such

systems allow the use of a guiding centre everywhere (Wood and Neukirch (2005)). If the

diffusion in pitch angle and the diffusion across the field can be modelled, then one can

model all changes in the orbit of particles, whilst using simpler equations of motion, which

will be able to be evaluated more quickly.

Numerical methods for stochastic differential equations have poorer convergence properties

than similar methods for ordinary differential equations,as was illustrated by the small step-

size needed to accurately follow the monotonic slowing downof particles. While my adop-

tion of Honeycutt’s (1992) stochastic RK4 method provided agood description of pitch-

angle scattering, future work should investigate more sophisticated variants of stochastic

RK4 methods, e.g. as described in Burrage and Burrage (1999), in order to improve the

accuracy of the integrator.

I speculate that the stochastic RK4 integrator does not model the slowing down of an electron

at the X-type neutral point accurately because the particles are not tightly tied to the magnetic

field lines when they encounter the null point. This means that vx, vy andvz can vary by large

amounts as the particle gains energy in this region. Since the drift and diffusion terms are

dependent onvx, vy andvz, these changes may cause the drift and diffusion terms to vary

inappropriately. A more accurate approach was achieved by recasting the problem in a polar

coordinate system.

The stochastic RK4 integrator was also used to model cross field drift. In the problem studied

in this work, the consequences for particles are simple; particles drift across the field lines

as they undergo collisions. If the field lines were not simplestraight field lines, but were

instead tangled (as has been observed in the solar corona, see section 5.8), then diffusion

across these field lines could have interesting consequences for particle dynamics. Diffusion

across the tangled magnetic field will cause particles to travel to different spatial locations
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than they would be able to reach by diffusing across straightfield lines, since they would

be able to follow these tangled field lines to locations that they could not access via drift

alone.

I am also interested in determining how magnetic field topology influences turbulent interac-

tions, and how the turbulent interactions can change magnetic field topology. I have already

studied weak turbulence at an x-type neutral point, but I am also interested in simulating

particle dynamics in fields such as the Arnold-Beltrami-Childress field, which is an example

of a deterministically chaotic flow. Could such a flow be used in modelling turbulent flows

in the solar corona or solar wind? Previous work on the ABC field has focussed on more

generalised models of turbulent flows; it would be interesting to see if such flows could be

applied in astrophysical contexts.
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