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Secreted protein
RPMI Roswell Park Memorial Institute culture medium
sICAM Soluble Intercellular Adhesion Molecule
TCR T Cell Receptor
TG Triglycerides
TGF-β1 Transforming Growth Factor-β1
TH1 T Helper cell type 1
TH2 T Helper cell type 2
TH0 T Helper cell type 0
TNF-α Tumour Necrosis Factor-α
VCAM Vascular Cell Adhesion Molecule
VLDL Very Low Density Lipoprotein
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SUMMARY

Background

Statins are inhibitors of the rate-limiting enzyme, 3-hydroxy-3-methylglutaryl-CoA 

(HMG-CoA) reductase, in cholesterol biosynthesis. As such, they have been widely used 

in clinical practice as cholesterol lowering agents to reduce morbidity and mortality from 

coronary artery disease. There is evidence from clinical studies and in vitro experiments 

that statins have additional anti-inflammatory properties in atherosclerotic disease, which 

are unrelated to their lipid lowering activity. 

Clinical studies have previously suggested that statins might show a beneficial clinical 

effect in inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. 

Furthermore, preliminary data obtained in models of pulmonary inflammation suggest 

that the effects manifest in rheumatoid patients can be achieved also in asthma.  A proof 

of concept study was designed to test the hypothesis that atorvastatin improves asthma 

control and airway inflammation in adults with asthma. 

Methods

Fifty four adults with allergic asthma were recruited to a 22-week crossover randomised 

controlled trial comparing the effect on asthma control and airway inflammation of oral 

atorvastatin 40 mg daily with that of a matched placebo. Each treatment was administered 

for 8 weeks separated by a 6-week washout period. The primary outcome was morning 

peak expiratory flow. Secondary outcomes included spirometry, asthma control 

questionnaire (ACQ) score, asthma quality of life questionnaire (AQLQ), provocation 
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concentration to methacholine (PC20) and inflammatory markers: exhaled nitric oxide, 

sputum differential cell count, sputum supernatant and serum inflammatory markers such 

as interleukin-6 (IL-6), IL-5, IL-8, sICAM-1, TNF-α, leukotriene B4 (LTB4) and high 

sensitivity C-reactive protein (hsCRP), and blood lymphocyte proliferation. 

Results

At 8 weeks, the change in mean morning PEF, as compared with baseline, did not differ 

between the atorvastatin and placebo treatment periods [mean difference -0.5 L/min, 95% 

CI -10.6 to 9.6, p=0.921]. No statistically significant effect of atorvastatin was seen in 

evening PEF, or methacholine responsiveness (PC20). Out of all spirometry results, only 

post-salbutamol FVC showed a statistically significant result, which was slightly lower in 

the atorvastatin group [treatment difference -0.1L, 95% CI -0.2 to 0.0, p=0.037]. There 

was also no change in ACQ or AQLQ. 

No change was seen in exhaled nitric oxide. The total cell counts recovered from sputum 

were similar after atorvastatin compared to after placebo treatment. After 8 weeks, the 

mean absolute and relative sputum macrophage count was significantly reduced after 

atorvastatin compared to placebo [mean absolute difference -44.9x104 cells, 95% CI -

80.1 to -9.7, p=0.029]. There was a reciprocal increase in the relative proportion of 

sputum neutrophils [mean proportion difference 13.1%, 95% CI 1.8 to 24.4, p=0.025], 

but there were no significant changes in the absolute count of these cells or the counts 

and proportions of the other sputum cell phenotypes under atorvastatin treatment.
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The sputum concentrations of inflammatory cytokines and mediators were similar after

atorvastatin compared to after placebo treatment other than LTB4 which was significantly 

reduced [mean difference -88.1 pg/mL, 95% CI -156.4 to -19.9, p=0.014].

No significant difference was seen in the concentration of any serum marker of 

inflammation between atorvastatin and placebo treatment periods. The change in hsCRP 

was of borderline significance [mean difference -0.65 mg/L, 95% CI -1.38 to 0.09, 

p=0.082], but there were no changes in sICAM-1, TNF-α, IL-5, IL-6 and IL-8. There was 

no significant difference in lymphocyte proliferation. 

The biochemical effects of atorvastatin therapy were reflected in significant reduction in 

concentration of serum lipids; cholesterol (mean difference -1.71 mmol/l, 95% CI -1.94 

to -1.48 p<0.0001), and HDL-cholesterol (mean difference -0.14 mmol/l, 95% CI -0.26 to 

-0.02 p=0.026), but not triglycerides. There were significant, albeit modest, increases in 

mean bilirubin, AST and ALT. There was no difference in compliance, assessed by 

number of tablets returned and by biochemical results.

There was no correlation between changes in LTB4 or IL-8 and sputum macrophage 

count, sputum neutrophil count, or PEF. The only correlation observed between the 

variables that were compared was between sputum macrophages and neutrophils.

Adverse event rates were similar in patients taking atorvastatin compared with placebo. 

Equal numbers of patients were lost to follow-up in both arms of the study. One patient 

died of unrelated causes while taking the placebo medication.
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Conclusions

There were no clinically important improvements in a range of clinical indices of asthma 

control after eight weeks of treatment with atorvastatin despite expected changes in 

serum lipids. There were however changes in airway inflammation and in particular, a 

reduction in the absolute sputum macrophage count after atorvastatin compared to 

placebo and an associated reduction in sputum LTB4 and a trend towards lower CRP.

The lack of any evidence of clinical benefit of atorvastatin in allergic asthma confirms 

and extends the findings of a smaller randomised placebo controlled crossover trial of 

simvastatin in 16 subjects with asthma, which showed no change in clinical outcomes or 

inflammatory markers. 

It is unlikely that altering duration of treatment, washout period or type of statin used 

would have changed the outcome of the study. However, as all patients were receiving 

inhaled corticosteroid as part of their asthma therapy, it is possible that this may have 

masked any modest anti-inflammatory effects of the statin. Baseline asthma inflammation 

may also have been too low to show any significant improvement.

Despite the postulated anti-inflammatory actions of statins, it seems that they may not be 

appropriate for the inflammatory phenotype associated with atopic asthma. The reduction 

in alveolar macrophage count found in patients with allergic asthma may however have 

relevance to the treatment of chronic lung diseases such as COPD in which alveolar 

macrophage function has been implicated in the pathogenesis.
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1. INTRODUCTION

1.1 Asthma

1.1.1 Definition

Asthma is a clinical syndrome characterised by increased responsiveness of the tracheo-

bronchial tree to a variety of stimuli. The major symptoms of asthma are paroxysms of 

dyspnoea, wheezing and cough, which may vary from mild and almost undetectable to 

severe and unremitting. This is caused by airway smooth muscle hyperresponsiveness, 

which is the excessive narrowing of the airway lumen caused by stimuli that would cause 

little or no narrowing in the normal individual. The primary physiological manifestation 

of this hyperresponsiveness is variable airways obstruction. 

Asthma is defined by the Global Initiative for Asthma (GINA) as:

“a chronic inflammatory disorder of the airways in which many cells and cellular

elements play a role. The chronic inflammation causes an associated increase in airway 

hyperresponsiveness that leads to recurrent episodes of wheezing, breathlessness, chest 

tightness, and coughing, particularly at night or in the early morning. These episodes are 

usually associated with widespread but variable airflow obstruction that is often 

reversible either spontaneously or with treatment.” 1

1.1.2 Pathogenesis

Asthma is an inflammatory condition of the airways with both acute and chronic phases. 

An immunoglobulin E (IgE)-type response to common inhaled allergens is the most 
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common form of the disease in children 2, and is called atopic asthma. The frequency 

with which asthma is associated with atopy depends on the test used (table 1.1).

Table 1.1 Relationship of asthma and atopy

Test Population Percentage asthma

associated with atopy

Reference

Skin prick testing Adults 1-34 3

Serum IgE Adults 13-67 3

Skin prick test Children 65 4

In non-atopic asthma, it is likely that there is an immunological basis for disease, as the 

pathological features and the inflammation observed are similar in atopic and non-atopic 

asthma 5. 

1.1.2.1 Cells of the respiratory immune system

1.1.2.1.a Eosinophils

Bronchial eosinophilia is seen in both atopic and non-atopic asthma, and there is a 

correlation between sputum eosinophil concentration and asthma exacerbation rates6.

Eosinophil influx from capillaries into the lungs is controlled by vascular cell adhesion 

molecule-1 (VCAM-1), eotaxin, granulocyte-macrophage colony-stimulating factor (GM-

CSF), interleukin-4 (IL-4) and IL-5 5. When in the lung the eosinophils can be stimulated 

to release these same proinflammatory mediators, as well as cytotoxic mediators and 

growth factors, thus amplifying the inflammation. This leads to vascular leakage, 
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hypersecretion of mucus, smooth muscle contraction, shedding of epithelial cells and 

bronchial hyperresponsiveness. Eosinophils also regulate airway inflammation and may 

initiate the process of tissue repair termed ‘remodelling’ by the release of cytokines 7 and 

growth factors (see section 1.1.2.4.a below). Corticosteroids, a commonly form of asthma 

therapy, induce eosinophil apoptosis and phagocytic removal by macrophages 8, which in 

part explains their therapeutic effect.

1.1.2.1.b T Lymphocytes

Raised bronchial mucosal lymphocyte numbers are seen in all forms of asthma 9. The 

majority of T-lymphocytes bear CD4-receptors whereas CD8-positive cells are more 

rarely identified, even during exacerbations of asthma 10. 

A variety of different factors have been shown to control whether naive CD4+ T cells 

develop into TH1 or TH2 subsets depending on the mediators in their environment (Figure 

1.1). The most potent signals in influencing this process are cytokines. If naïve CD4+ T

cells are activated by antigen processed and presented by antigen-presenting cells 

(APCs), and in the presence of IL-12, a TH1-dominated population will develop, whereas 

if IL-4 is present in the environment, TH2 cells are induced. In the respiratory tract, many 

studies now suggest that TH2 responses are preferentially stimulated 11. The cytokines 

secreted by TH2 lymphocytes are thought to play a key role in the initiation and 

perpetuation of this airway inflammation 5. However, in stable chronic asthmatics TH0 or 
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TH1 cells may also be seen in the airways reflecting chronicity 12. The cells that line the 

bronchial airways create the cytokine microenvironment that controls CD4+ TH subset 

differentiation. Mast cells secrete IL-4, IL-5, and IL-13 in response to cross-linking of 

receptor-bound IgE antibody by antigen. In this manner, the early production of cytokines 

may initiate a shift in the immune responses toward TH2. Lymphocytes residing near the 

respiratory tract and secreting IL-4 also influence the cytokine milieu and shift a T-cell 

response toward TH2 13. 
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Figure 1.1 T helper (CD4+) cells in atopic diseases. Allergen is processed by antigen-presenting cells (dendritic 

cells) and presented via class II major histocompatibility complex (MHC class II) to T-cell receptors (TCR) on 

uncommitted T helper cells (Thp). Accessory molecules B7-2 and CD28 amplify this interaction. THp cells 

differentiate into TH1 cells in response to IL-12, which, under the influence of IL-12 and IL-18, can release 

interferon-γ (IFN-γ). Thp cells under the influence of IL-4 differentiate into TH2 cells, which release IL-4, IL-13 

and IL-5. IFN-γ inhibits TH2 cell differentiation and in this system IL-12, IL-18 and IFN-γ all result in inhibition 

of TH2 cells and the release of TH2 cytokines. 

Ig, immunoglobulin; IL, interleukin.  Reprinted from Barnes and Lim 5 with permission from Elsevier.
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1.1.2.1.b.i T Lymphocyte activation

T cell immune responses are initiated in secondary lymphoid organs, where naïve T cells 

(TH0) encounter antigen-presenting cells (APCs, also known as dendritic cells). The 

interaction between T lymphocytes and APCs creates a specific physical site, termed the 

"immunological synapse", at which specific ligands and costimulatory molecules trigger 

and sustain the T cell activation process. Leucocyte Function-associated Antigen-1 (LFA-

1) mediates adhesion between T cells and APCs. It also functions to lower T cell 

activation thresholds 14. 

The importance of this initial cellular adherence step is demonstrated by the use of 

monoclonal antibodies that inhibit the function of LFA-1 that have also been effective in 

reducing airway eosinophilia in a murine model of atopic asthma 15 and sputum 

eosinophilia after allergen challenge in asthmatic patients 16.

1.1.2.1.c Macrophages

Alveolar macrophages primarily function to remove particles and apoptotic cells in a 

non-inflammatory manner. However, when appropriately stimulated they can also 

process inhaled allergen, which is then presented in a modified and recognisable form to 

primed T lymphocytes 17. The macrophage itself then becomes the target of a positive 

feedback loop by producing macrophage-activation lymphokines, which heighten its 

capacity to regulate the immunogenic stimulus. They are activated in asthma 18, in 

particular night-time asthma 19. Macrophages are responsive to steroid treatment, with 
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decreased MIP-1α, IFN-γ and granulocyte macrophage – colony stimulating factor (GM-

CSF), and increased IL-10, IL-1β 20 and histone deacteylase (HDAC) 21 release after 

steroid treatment.

1.1.2.1.d Neutrophils

Biopsy, BAL and sputum samples from severe asthmatics often have a high neutrophil 

count, and a comparatively low eosinophil count 22 particularly during an exacerbation 23. 

Indeed, there is an inverse association between FEV1 and the proportion of sputum 

neutrophils 24. As corticosteroids appear to inhibit neutrophil phagocytosis and prolong 

survival 8, this may in part explain steroid resistance in severe asthma. The eosinophils, 

which respond to steroids by becoming apoptotic, disappear from the inflamed airway, 

and the neutrophil may be drawn in and act as a “substitute granulocyte” 25. However, 

there is considerable variation between patients. 

1.1.2.2 Inflammatory mediators

1.1.2.2.a Cytokines

Cytokines are a large group of glycol-protein mediators that allow communication 

between cells. They play a critical role in determining the nature of the inflammatory 

response and its persistence. To date, more than 50 different mediators have been 

identified in asthma 5. Some of these (e.g. IL-1, IL-6, TNF-α) are involved in many 

inflammatory diseases including rheumatoid arthritis and inflammatory bowel disease 11. 
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Others are more specific to atopy. Airway epithelial cells, smooth muscle cells, 

endothelial cells, and fibroblasts are all capable of synthesizing and releasing 

inflammatory mediators including cytokines. Cytokines may also play an important role 

in antigen presentation and may enhance or suppress the ability of macrophages to act as 

antigen-presenting cells 5.

The functions of some specific cytokines in the context of asthma are outlined in table 

1.2. This is illustrative and not comprehensive.

Table 1.2 Some functions associated with selected cytokines in asthma

Cytokine General function Function associated with asthma

Immunoregulatory cytokines

IL-4 B cell activation  

Monocyte and macrophage 

activation  

T cell growth factor

Increased ICAM-1 expression

Promotes immunoglobulin class 

switching from IgG to IgE.

↑ Eosinophil growth

Down-regulates IFN-γ mediated TH1 

responses

Promotes AHR (+)

IL-5 Eosinophil activation 

Mast cell and basophil 

differentiation and maturation 

Endothelial adhesion, priming 

for chemoattractants 

Cofactor for IgE synthesis

Eosinophil maturation, ↓ apoptosis

↓T H2 cells

Promotes AHR (++)
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Cytokine General function Function associated with asthma

IL-8 Primes for eosinophil 

chemotaxis

Neutrophil activator

Neutrophil and T cell 

chemoattractant

Down-regulates IgE production

IL-17 T cell proliferation

Activates epithelia, endothelial 

cells, fibroblasts

Promotes airway neutrophilia

IFN-γ Activates endothelial cells, 

epithelial cells, alveolar 

macrophages/

monocytes

Inhibition IgE isotype switch 

Eosinophil activation (late 

acting)

Macrophage activation

↓ Eosinophil influx after allergen

↓ TH2 cells

↓ IgE

↓ AHR

Pro-inflammatory cytokines

IL-1 B cell growth factor

Neutrophil chemoattractant 

T cell and epithelial cell 

activation 

Increased expression of 

endothelial adhesion molecule 

on many cell types

↑Adhesion to vascular endothelium

Eosinophil accumulation in vivo

Growth factor for TH2 cells

Promotes AHR (+)
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Cytokine General function Function associated with asthma

TNF-α Activates epithelium, 

endothelium, antigen-

presenting cells, 

monocytes/macrophages

Promotes AHR (+)

IL-6 B cell growth factor

Macrophage and eosinophil 

activator

T cell growth factor

↑ IgE

GM-CSF Proliferation and maturation of 

haematopoetic cells 

Endothelial cell migration

Mast cell, macrophage, 

epithelial cell, eosinophil and 

neutrophil differentiation, 

activation, and in vitro survival

Eosinophil apoptosis, chemotaxis and 

activation

Promotes AHR (+)

LTB4 Neutrophil and monocyte 

activator and chemoattractant

Recruits neutrophils and monocytes 

into airway

CCL2 Monocyte, lymphocyte and 

basophil recruitment

Mast cell/basophil 

degranulation

Recruits monocytes and lymphocytes 

into airway

Macrophage 

inflammatory 

protein

(MIP-1α)

Monocyte and naïve T cell 

chemoattractant 

Activates basophils and mast 

cells
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Cytokine General function Function associated with asthma

Inhibitory cytokines

IL-10 ↓ Monocyte and macrophage 

activation 

↑ B cells

↑ Mast cell growth

Inhibits TH1 cytokine production 

on APC 

↓ Eosinophil survival

↓ IgE

↓ TH1 and TH2

↓ AHR

IL-1receptor 

antagonist 

(IL-1ra)

↓ TH2 proliferation ↓ IgE

↓ AHR

IL-4 and IL-5 are key cytokines in asthma, and are over-expressed in asthmatic airways. 

IL-4 in particular drives antibody class switching to IgE and TH2 differentiation 5. IL-4 

increases the expression of vascular cell adhesion molecule-1 (VCAM-1) on endothelial 

and airway epithelial cells, and this may be important in eosinophil and lymphocyte 

trafficking 5. Recent work suggests that specifically targeting IL-4 may provide effective 

new asthma treatments, although the results of early clinical studies have been 

disappointing 26. IL-13 is structurally similar to IL-4, and both are recognised by a 

common receptor chain, and may act as alternative switches for TH2 activation 5.

Interleukin-5 (IL-5) is essential for the production, maturation, activation and survival of 

eosinophils and is also important in eosinophil chemoattraction 5. A clinical trial of a 

single dose of monoclonal antibody to IL-5 showed decreased blood eosinophils for up to 
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16 weeks and reduced sputum eosinophils after inhaled allergen challenge, but there was 

no improvement in clinical outcomes 27.

IL-1 is also important in activating T lymphocytes and is an important co-stimulator of 

the expansion of TH2 cells after antigen presentation. For example, IL-4 is expressed by 

TH2 clones, once they have been exposed to IL-1 5.

1.1.2.2.b Apoptosis

Apoptosis is a process of programmed cell death, whereby cells when they have finished 

their role or become senescent express membrane molecules e.g. Fas which are 

recognised by macrophages which remove the apoptotic cells by a non-inflammatory 

mechanism. This is a dynamic process which controls the cell distribution at inflamed 

sites, limits the progression of inflammation, and promotes resolution 28. Thus, on-going 

inflammation may be due to alterations in the regulation of cell apoptosis leading to a 

chronic and self-perpetuating inflammatory cell survival and accumulation. Activated 

cells tend to live longer in sites in active inflammation 29 as a consequence of reduced 

apoptosis 30. Increased eosinophil survival in asthma is associated with reduced 

apoptosis 30. GM-CSF, IL-3, IL-5, and RANTES (regulated upon activation, normal T-

cell expressed and secreted), which are over expressed in asthmatic airways, act to inhibit 

apoptosis 31. Apoptosis may also be delayed by expression of CD40, a receptor molecule 

expressed on eosinophils strongly associated with inflammation 32. Anti-asthmatic 
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treatments with anti-inflammatory properties may work by promoting apoptosis 33 or 

reducing cell survival 34. 

1.1.2.3 Acute inflammation in asthma

An acute episode of asthma may be triggered by exposure to allergens, viruses, or indoor 

or outdoor pollutants. From experimental models of atopic asthma, reactions can be 

divided into early phase and late phase, with this late chronic phase often involving 

processes of tissue repair called remodelling of the airways 35.

1.1.2.3.a Early phase

Early phase airway reactions against inhaled allergens are triggered by activation of cells 

bearing allergen-specific IgE. After activation of airway mast cells and macrophages, 

there is release of proinflammatory mediators such as histamine, and eicosanoids 35. 

These induce contraction of airways smooth muscle, mucus secretion and vasodilatation 

and exudation of plasma into the airways. Plasma proteins may also be responsible for 

the formation of characteristic bronchial plugs of exudates mixed with mucus produced in 

increasing amounts in asthma, and inflammatory and epithelial cells 36. Together, these 

effects contribute to airflow obstruction.
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1.1.2.3.b Late phase  

Several hours, usually 6 to 9hr, after allergen exposure, the late-phase inflammatory 

reaction occurs. This involves the recruitment and activation of eosinophils, CD4+ T cells, 

basophils, neutrophils, and macrophages. Adhesion molecules such as tumour necrosis 

factor α (TNF-α) and sVCAM are released, as are proinflammatory mediators such as 

histamine, prostaglandin D2 (PGD2), and thromboxane B2 36 and cytokines like IL-1β, 

IL-4 and IL-5, which are involved in the recruitment and activation of inflammatory cells. 

T cells are activated after allergen challenge, releasing TH2 cytokines, which may be a 

key mechanism of the late-phase response 35. 

Cytokines such as IL-5 and GM-CSF enhance eosinophil recruitment, and expression of 

adhesion molecules. Chemokines such as RANTES and eotaxin  also act on eosinophils 

and T cells to enhance their recruitment and possibly their activation. IL-16 and 

macrophage inflammatory protein 1α (MIP-1α) are found in BAL fluid of antigen-

challenged asthmatics and may also participate in the process 35.

1.1.2.4 Chronic inflammation in asthma

Inflammation in chronic asthma appears to be far more complex than a simple 

eosinophilic inflammation. All cells of the airways, including T-cells, eosinophils, mast 

cells, macrophages, epithelial cells, fibroblasts, and even bronchial smooth muscle cells 

are involved in chronic asthma and become activated. 
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This chronic inflammation may result in structural changes in the airway, such as fibrosis 

(particularly under the epithelium), increased thickness of the airway smooth muscle 

layer (hyperplasia and hypertrophy), hyperplasia of mucus- secreting goblet cells, and 

new vessel formation (angiogenesis) 35. There may also be changes in the innervation of 

the airways 5.Some of these changes may be irreversible, leading to fixed narrowing of 

the airways, a process known as “remodelling” 35.

1.1.2.4.a Remodelling

The highly complex and inter-dependent interactions involved in remodelling are 

summarised in figure 1.2. Cells implicated in remodelling include epithelial cells 

(recruiting and prolonging the survival of inflammatory cells), eosinophils (involved in 

fibrosis), neutrophils, and smooth muscle cells (hyperplasia and altered myosin 

function) 35. 
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Figure 1.2 Mechanisms of acute and chronic inflammation in asthma and remodelling processes. Reproduced 

from Bousquet et al 35, copyright American Thoracic Society 2000

1.1.2.5 Systemic inflammation in asthma

It follows that inflammation in the lungs might be associated with systemic inflammation. 

Certainly, respiratory symptoms associated with infection, such as those seen in chronic 

obstructive pulmonary disease (COPD) are associated with a raised CRP, indicative of 

systemic inflammation 37. However some studies have shown that CRP is normal in 

atopic asthma 38, which suggests a different immuno-pathogenesis.

1.1.3 Diagnosis

1.1.3.1 Clinical diagnosis

Diagnosis of asthma is made on the basis of wheezing, chest tightness and episodic 

breathlessness. There may be a family history, and/or a seasonal pattern to symptoms. 
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Measurements of symptoms and lung function are important for assessing the 

characteristics of the patient's asthma.

1.1.3.2 Physical examination

Because asthma is an episodic disorder, physical examination may be normal. The most 

commonly found abnormality on chest auscultation is wheeze, however normal chest 

auscultation does not rule out a significant limitation of airflow.

1.1.3.3 Objective testing

Patients often have a poor perception of their own disease, especially in those with long-

standing or severe disease 39. In contrast, measurement of lung function, such as the 

reversibility of lung function, provides a direct, quantitative, assessment of airflow 

limitation. Measuring the variability in lung function provides an indirect assessment of 

airway hyper-responsiveness.

The most commonly used forms of assessment of airway function are the measurement of 

forced expiratory volume in 1 second (FEV1) and its accompanying forced vital capacity 

(FVC), and the measurement of peak expiratory flow (PEF). Both of these measurements 

rely on the fact that airflow limitation is directly related to the luminal size of the airways 

(airway calibre) and the elastic properties of the surrounding lung tissue (alveoli). 

Measurement of FEV1 and FVC is undertaken during a forced expiratory manoeuvre 



18

using a spirometer. Specific technique for spirometry is discussed in the methodology 

chapter.

Because a reduced FEV1 can be caused by diseases other than those causing airflow 

limitation, a useful assessment of airflow limitation can be obtained as the ratio of FEV1

to FVC. In the normal lung, flow limitation on forced expiration results in FEV1/FVC 

ratios of greater than 80 percent and in children possibly greater than 90 percent. Any 

values less than these are suggestive of airflow limitation 1.

When making a diagnosis of asthma, a 12% improvement in FEV1 after inhalation of a 

bronchodilator, or in response to a trial of glucocorticosteroid therapy is sought 1.

Ideally lung function should be measured first thing in the morning when values are 

usually close to their lowest and last thing at night when values are usually at their 

highest. 

1.1.3.3.a Airway Hyperresponsiveness

Airway hyperresponsiveness can be assessed directly by stimulating airway smooth 

muscle with irritants (e.g. methacholine and histamine). Measurement of airway 

hyperresponsiveness has been standardized for histamine and methacholine administered 

via aerosol inhalation by tidal breathing or administered in predetermined amounts via a 

dosimeter. The provocative concentration reduces FEV1 by 20 percent from baseline 
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(PC20 or PD20). Nocturnal and/or early morning symptoms with a diurnal variation in 

peak expiratory flow (PEF) (which correlates well with FEV1) of 20 percent or more are 

highly characteristic of asthma 1. 

Key features of the diagnosis of asthma are detailed in table 1.3. 
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Table 1.3 Diagnosis of asthma in adults 1, 40

Consider the diagnosis of asthma in patients with some or all of the following:

Symptoms Signs

Episodic/variable None (common)

Shortness of breath Wheeze – diffuse, bilateral, 

Wheeze expiratory (± inspiratory)

Chest tightness  Tachypnoea

Cough

Helpful additional information

Personal or family history of asthma or atopy (eczema, allergic rhinitis)

History of worsening after use of aspirin/non-steroidal anti-inflammatory drug ingestion, use 

of β blockers (including glaucoma drops)

Recognised triggers – pollens, dust, animals, exercise, viral infections, chemicals, irritants 

Pattern and severity of symptoms and exacerbations 

Objective measurements

>20% diurnal variation on ≥ 3 days in a week for two weeks on Peak Expiratory Flow diary 

or FEV1 ≥ 12% (and 200ml) increase after short acting β2 agonist (e.g. salbutamol 400 μg by 

MDI + spacer or 2.5mg by nebuliser) 1

or FEV1 ≥ 15% (and 200ml) increase after trial of steroid tablets (prednisolone 30mg/day for 

14 days) 40

or FEV1 ≥ 15% decrease after 15 minutes of exercise (running) 40

Histamine or methacholine challenge in difficult cases 
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1.1.4 Asthma control and quality of life

1.1.4.1 Assessment of asthma control

The goals of asthma control (defined by the Global Initiative for Asthma, GINA) 1 are: 

Minimal (ideally no) chronic symptoms, including nocturnal symptoms

Minimal (infrequent) exacerbations

No emergency visits

Minimal (ideally no) need for p.r.n. (as-needed) ß2-agonist

No limitations on activities, including exercise

PEF circadian variation of less than 20 percent

(Near) normal PEF

Minimal (or no) adverse effects from medicine.

A telephone survey of 2,803 patients in seven European countries found that less than 

25% of patients manage this ideal 41. Reasons for this can include poor adherence to 

guidelines, problems with communications, inadequate education and poor motivation. 

Therefore, there is room for improvement, and new treatments can help with this 

objective. Patients have also shown a preference for tablet-based medication rather than 

inhaler if possible 42, an issue which might help compliance.

1.1.4.1.a Asthma control score

An asthma control questionnaire (ACQ) was developed by Juniper et al 43 (see appendix 

3). In patients whose asthma was stable between clinic visits, reliability of ACQ was 
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high. The questionnaire includes a survey or important clinical symptoms and short 

acting β2-agonist use and well as FEV1
43.

1.1.4.2 Quality of Life

Health related quality of life (HRQL) can be measured through generic questionnaires 

such as the Medical Outcome Survey Short-Form 36 (SF-36) 44.  The strength of generic 

instruments is that they can be compared across different medical conditions. However, 

because of their breadth, they have very little depth, and in many conditions, including 

asthma, generic instruments can be unresponsive to small but clinically important 

changes in HRQL 45. An alternative is to use disease specific questionnaires, such as that 

developed by Juniper et al. 46 (see appendix 2). This questionnaire examines different 

aspects of asthma quality of life – symptoms, activities, emotional well-being and 

environmental factors – as well as providing an overall score. The developing team 

determined a Minimal Important Difference (MID) for change in HRQL score, which 

again was based on patient perceptions. A change of 0.5 is considered to be a clinically 

significant level 47.

1.1.5 Assessment of airway inflammation

In addition to assessing clinical control of asthma, it can be helpful to measure the extent to 

which the airways are inflamed. There are several techniques that can be used for this. Non-

invasive methods such as measuring cells or mediators in exhaled breath 
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condensate 48, exhaled nitric oxide 49 and induced sputum 50 are commonly used, and they are 

well tolerated by patients. More invasive methods such as bronchoscopy with biopsy provide 

more information with higher attendant risk.

1.1.5.1Invasive investigations

1.1.5.1.a Bronchoscopy

Bronchial biopsy is an invasive technique to directly sample bronchial tissue through 

bronchoscopy. This enables comparison between animal models and human airway 

disease. By obtaining a sample of actual lung tissue, one may directly examine cellular 

pathological events, for example, apoptosis, shedding, and expression of adhesion 

molecules 51. Remodelling, expression of specific types of cell and their prevalence ratios 

can also be directly assessed. Bronchoalveolar lavage (BAL) or airway brushing can also 

be performed during bronchoscopy. This allows direct sampling of the local environment.

1.1.5.2 Non-invasive investigations

1.1.5.2.a Exhaled Gases

1.1.5.2.a.i Nitric oxide

The presence of exhaled nitric oxide (NO) in the exhaled breath of both animals and 

humans was first described in 1991 52. This was followed by the discovery that exhaled 

NO levels are higher in asthma compared to normal subjects 53, and fall with treatment 
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with corticosteroids 54. There is a correlation between exhaled NO and sputum eosinophil 

levels 54 (see section 1.1.5.2.b below).

Exhaled NO comes from the nasal mucosa and the lower airways. It is synthesised by 

inducible NO synthases (iNOS or NOS2), and from non-enzymatic sources from 

reduction of NO metabolites 54. Other diseases can be associated with higher exhaled NO, 

shown in table 1.4 below. Exhaled NO is now being introduced as a method of assessing 

the response of asthma to treatment 55.

Table 1.4 Factors affecting exhaled nitric oxide 

Increased NO Decreased NO

Breath holding 53 Cigarette smoking 53

Exercise/hyperventilation 53 Pulmonary Hypertension 53

L-arginine (oral) 53 Kartagener’s syndrome 53

Upper respiratory tract infections 53 NOS inhibitors 53

Asthma 53 Glucocorticoids 53

Allergen challenge (late response) 53 HIV infection 56

Bronchiectasis 53

Cystic fibrosis 53

Lower respiratory tract infection 53

Systemic lupus erythematosis 57

Liver cirrhosis 58
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1.1.5.2.a.ii Carbon monoxide

Levels of exhaled carbon monoxide (CO) rise in atopy and asthma, and rise further 

during an acute asthmatic reaction independently of airway caliber 59. There is also an 

association between exhaled CO and AHR 60. 

1.1.5.2.b Induced sputum

Induced sputum as a method for assessment of airway inflammation was introduced in 

1958 by Bickerman, using inhalation of hypertonic saline in aerosol form 61. Early studies 

found that inhalation of saline could induce bronchospasm in poorly controlled asthmatic 

subjects, so changes were made to the technique 62. The modern technique has been 

shown to be very safe, although bronchospasm can still occur 63. It is possible to obtain 

spontaneous sputum from some patients, especially those with more severe disease, but 

the sample tends to have fewer viable cells 64, and thus be of less value.

Individuals with asthma demonstrate increases in sputum markers of inflammatory cell 

activation or increased vascular permeability, such as tryptase, IL-5, and fibrinogen  as 

well as sputum cell counts for eosinophils, mast cells and neutrophils 65. One example of 

the value of induced sputum as a biomarker in asthma is that there are changes in sputum 

eosinophil count seen after treatment with prednisolone, correlating with clinical 

improvement 66.
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1.1.5.2.c Exhaled breath condensate

Condensation of some volatiles in gases in exhaled breath can be achieved simply by 

cooling the tubing through which the patient is exhaling. Successful collection has been 

reported with a variety of devices with different designs 67. Most widely used designs 

include immersion of a Teflon-lined tubing in an ice-filled bucket and a specially 

designed double-wall glass condenser system. The collected fluid represents the volatile 

part of aerosolized pulmonary extracellular-lining fluid. The pH of breath condensate 

fluid of patients with acute asthma has been shown to be over two log orders lower than 

in control subjects, suggesting that this may be a good indicator of altered airway 

environment which may be part of the inflammation 68. Markers in exhaled breath that 

may prove to be clinically useful in the future include aldehydes, glutathione 69, carbon 

monoxide, hydrogen peroxide, ethane 70, and nitrate or nitrites 71.

1.1.5.2.d Methacholine or histamine hyperreactivity

Tests of airway hyperresponsiveness are non-specific in isolation, as positive test results 

have been described in patients with allergic rhinitis, cystic fibrosis, bronchitis, and 

chronic obstructive pulmonary disease. However, a change in methacholine 

responsiveness is used to assess response to anti-inflammatory medications such as 

inhaled corticosteroids, or specific immunotherapy 72.



27

1.1.5.2.e Blood tests

1.1.5.2.e.i IgE

A study of children with raised IgE levels (at least 10 times the mean) showed a strong 

link with asthma symptoms 4. Both total IgE and IgE against Dermatophagoides farinae

(house dust mite) have been shown to be strongly associated with asthma 73. 

1.1.5.2.e.ii Eosinophils

There is a link between raised serum eosinophils and asthma symptoms in children 74. 

However, in severe asthma the bronchial eosinophils tend to be reduced relative to raised 

neutrophils 24, so it is unlikely that their peripheral eosinophil count would be an accurate 

reflection of disease.

1.1.5.2.e.iii C-Reactive Protein

C-reactive protein (CRP) is the prototype acute phase protein and is a major systemic 

inflammatory marker synthesised by hepatocytes in response to IL-6 75. CRP is a very 

non-specific marker of inflammation: levels may be transiently elevated for 2 to 3 weeks 

after a major infection or trauma, and is transiently raised after exercise 76. CRP may also 

be of limited value among patients with chronic inflammatory conditions such as 

rheumatoid arthritis and SLE.  Finally, adipocytes also release IL-6, and obesity itself is 

related to a raised CRP 77. Some studies have shown that CRP is elevated in asthmatic 

subjects 78, although this association was weakened when obesity was controlled for. 

Other studies have suggested that CRP is similar between asthmatic and non-asthmatic 
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non-smokers 38. However, if CRP is measured using very sensitive techniques (high 

sensitivity or hs-CRP), a significant difference can be seen between asthmatic and 

healthy people (mean±SD 1.33±1.48mg/L compared with 0.21±0.30mg/L) 79. This 

difference is not seen in patients taking inhaled corticosteroids. Steroid-naive patients 

also showed a negative correlation between clinical indices such as FEV1 and hs-CRP, 

and a positive correlation relative to sputum eosinophils 79.  

1.1.6 Asthma treatment

1.1.6.1 Pharmacological treatments

Some of the drugs that are effective in asthma can only be used via inhalation because 

they are not absorbed when given orally. Medications taken for asthma fall into two 

groups, relievers and preventors. Relievers are rapid-acting bronchodilators that act to 

relieve bronchoconstriction and its accompanying acute symptoms such as wheezing, 

chest tightness, and cough. Inhaled β2 agonists such as salbutamol are bronchodilators, 

and act principally to dilate the airways by relaxing airway smooth muscle. They reverse 

bronchoconstriction and related symptoms of acute asthma, but do not reverse airway 

inflammation or reduce airway hyperresponsiveness 80. Long-acting β2 agonists (LABAs), 

such as formoterol, salmeterol provide relief of symptoms in addition to a reduction in 

exacerbations 81.

Preventors are medications taken on a long-term basis to keep persistent asthma under

control. Of all single medications, inhaled glucocorticosteroids (ICS) are at present the most 
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effective controllers 1. Oral steroid medication is indicated as treatment of an acute 

exacerbation of asthma not responding to other treatment, or for longer term treatment of 

unresponsive asthma 40. Leucotriene receptor antagonists are another oral medication that can 

improve asthma control 40. More recently, Omalizumab (a recombinant humanised 

monoclonal antibody against IgE) has been shown to be useful in patients with atopic asthma 

and concomitant allergic rhinitis 82. 

1.1.7 Summary

Asthma is a highly complex inflammatory disorder with many potential therapeutic 

approaches. Treatments aim to modify many aspects of the disease, usually with the 

intention of decreasing inflammation, the most commonly used being corticosteroids. 

Future developments in asthma medication will focus on alternative anti-inflammatory 

agents.

1.2 Atheroma and Inflammation – parallels for asthma

Atherosclerosis has been described as “a chronic inflammation induced and perturbed by 

lipid accumulation” 83. The primary site of inflammation is in the arteries. T lymphocytes 

and monocytes are early progenitors of this inflammation 84. The T lymphocytes involved 

show a predominantly TH1 cytokine picture, with expression of IL-2 and IFN-γ in a large 

proportion of plaques 83. A much lower proportion of plaques show TH2 cytokines such as 

IL-4. The natural consequence of atherosclerosis is plaque rupture, which can cause 

myocardial ischaemia or infarctions or cerebrovascular events, and can lead to death. 
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Post mortem studies of patients who have died suddenly of coronary ischaemia suggest 

that the typical causal lesion is often a small, unnoticed plaque, causing minimal clinical 

symptoms. These plaques have a thin or fragmented fibrous cap, which has a poor 

connective tissue skeleton (see table 1.5). This cap ruptures, exposing the blood in the 

lumen to the procoagulant effects of a lipid-rich core infiltrated with inflammatory 

cells 85-87. Cytokines released by the lipid core attract smooth muscle cells into the 

subintimal space.  Both cell types trigger further matrix break down within the lesion by 

releasing metalloproteases 88.  This process is exacerbated by IFNγ secretion, which 

suppresses collagen formation by intimal smooth muscle cells 89 and in addition may lead 

to their apoptosis 88.

Table 1.5 Characteristic features of the vulnerable atherosclerotic plaque (from Sattar & Gaw 85).

Thin, fragmented fibrous cap

Underdeveloped connective tissue skeleton

Lipid enrichment

Inflammatory cell infiltration

Evidence of proteolytic enzyme release

Apoptosis of smooth muscle cells

1.2.1 Inflammatory markers and coronary heart disease 

Systemic levels of acute phase markers such as white cell count, serum amyloid A (SAA) and 

C-reactive protein (CRP) have been shown to predict the risk of coronary heart disease 
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(CHD) events independently in men and women 90 - 93. Markers such as VCAM-1 may be 

released by vascular endothelium in very early stages of atherosclerosis 94.

The answer to how circulating cytokines enhance CHD risk likely lies in the dual 

functions of cytokines, for in addition to their role in regulating immune responses, 

cytokines mediate numerous metabolic effects. One consequence of this functional 

pleiotropy is that the intensity of the metabolic adaptations parallels other cytokine 

effects 85  Cytokine-induced metabolic effects, such as temporary changes in lipids and 

peripheral insulin resistance, function as part of the physiological reaction to infection 

and acute inflammation, to ensure the transport of specific metabolic fuels to and from 

essential organs 95. In the short term, these changes are beneficial. However, when these 

same cytokines are chronically elevated, even modestly as in the case of obese 

individuals, the effects are harmful, and may promote accelerated atherogenesis. Indeed, 

CRP concentrations in population studies correlate with levels of many classical and 

novel CHD risk factors 96.

1.2.2 Statins

Statins are a class of cholesterol-lowering drugs that reduce cholesterol biosynthesis 

through competitive inhibition of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A 

(HMG-CoA) reductase (Figure 1.3) Statins occupy a portion of the binding site in HMG-

CoA, thus blocking access to the active site 97. They were initially introduced to the 

market in 1987 and there are now several commercially available drugs with similar 



32

properties groups under the umbrella term “statin” (table 1.6). In 2004 atorvastatin was 

the best selling drug in the world 98. Their main clinical application is in cardiovascular 

disease, where they have been consistently shown to decrease mortality from ischaemic 

heart disease 99 - 102 and stroke 103, 104. These studies also showed that treatment with 

statins provided greater protection than predicted from cholesterol reduction 105, therefore 

further anti-inflammatory functions of these drugs were suggested, for example 

preventing essential substitution (e.g. prenylation) of signalling molecules.  
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Figure 1.3 Cholesterol biosynthesis pathway showing potential effects of inhibition of 3-hydroxy-3-

methylglutaryl coenzyme A (HMG-CoA) reductase by statins, causing decreased prenylation of signalling 

molecules, as well as derivatives from mevalonate and cholesterol. 
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Table 1.6 The statin family of drugs

Drug name Dose range (mg) Comment

Atorvastatin 10 – 80 Completely synthetic origin

Fluvastatin 20 – 80

Lovastatin Not prescribed in the UK The original medication, derived from Aspergillus terreus.

No longer prescribed in the UK

Mevistatin Not prescribed in the UK Original molecule derived from Penicillium citrinum. 

Never used clinically due to side effects

Pitavastatin Not prescribed in the UK Also known as Itavastatin. Not yet commercially available

Pravastatin 10 – 40

Rosuvastatin 5 – 20 New drug

Simvastatin 10 – 80 Discovered from Aspergillus terreus

Cerivastatin Not prescribed in the UK Removed from the market in 2001 due to severe 

adverse reactions

Evidence has accumulated that statins lower C-reactive protein (CRP) 106 – 109, a key 

indicator of inflammation, which itself is an independent risk factor for cardiovascular 

mortality and morbidity 110, 111. This reduction in CRP is likely a consequence of the 

ability of statins to reduce the production of IL-6 112, 113; the cytokine which activates the 

acute-phase CRP response 75. Based on these observations it has been proposed that the 
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clinical effectiveness of statins might be due to a combination of functions including 

cholesterol reduction, anti-inflammatory, antithrombotic and immunomodulatory effects. 

1.2.3 Effect of statins in vascular endothelium

Statin therapy has been shown to have impact upon many processes in atheroma, helping 

to reduce the likelihood of atherosclerotic plaque rupture, or limiting thrombus formation 

should rupture occur.  Comparative investigations suggest that the lipid soluble statins are 

capable of modulating vascular smooth muscle cell growth, independently of their 

cholesterol lowering capability 114.  The statins may also directly suppress platelet 

activation, limiting platelet thrombus formation 115. In addition, they may stabilise lesions 

through a change in the composition of the plaque 116, 117, and a reduction in the number 

of inflammatory cells within the plaque 118. 

1.2.3.1 Plaque stability

Ultrasound studies have shown that statin therapy does not result in extensive plaque 

regression 119. This seems to contradict the findings of large intervention trials, which 

indicated that the plaques of treated patients carried a lower risk for acute coronary 

events 99, 101, 120, 121. It has been shown from experimental work in primates 122 and in a 

clinical trial of patients undergoing carotid endarterectomy that statins have a plaque-

stabilising effect 123. Histological examination in the trial showed that the lesions in the 

treated patients contained a significantly lower concentration of lipids (-66%), less 
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oxidized LDL (-40%), and lower macrophage and T-cell counts (-41% and -54%, 

respectively) than did arteries from untreated control individuals. 

1.2.4 Mechanism of action

Statins have several possible mechanisms of action that may be inter-related which result 

in the reduction of inflammation. These include a) modulating the cholesterol content, 

and thus reducing the stability of lipid raft formation and subsequent effects on the 

activation and regulation of immune cells, and b) preventing the prenylation of signalling 

molecules and subsequent down-regulation of gene expression; both resulting in reduced 

cytokine, chemokine and adhesion molecule expression, with effects on cell apoptosis or 

proliferation. 

There are additional less well described anti-inflammatory properties of statins including 

antioxidant effects which have been described for some statins related to their ability to 

scavenge oxygen-derived free radicals 124.

1.2.4.1 Lipid raft formation

Lipid rafts are small cell membrane structures, or microdomains, rich in cholesterol and 

glycosphingolipid, which house intracellular enzymes, mainly kinases. These lipid rafts 

can be translocated by the actin cytoskeleton, which controls their specific redistribution, 

clustering and stabilisation within the cell membrane. When these rafts are assembled 

they form critical sites for processes such as cell movement, intracellular transport or 
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signal transduction. Lipid rafts act as platforms, bringing together molecules essential for 

the activation of immune cells, but also separating such molecules when the conditions 

for activation are not appropriate. Several strands of evidence suggest that the inhibition 

of cholesterol synthesis by statins disrupts these lipid rafts and thereby influences the 

function of lymphocytes 125, 126 (figure 1.4). A central component of the interaction 

between lymphocytes and antigen presenting cells, which results in T-cell activation, is 

interferon-γ (IFN-γ) induced up-regulation and assembly of the major histocompatibility 

complex class-II (MHC-II). Statins reduce IFN-γ production by TH1 cells 127 and thus act 

as repressors of MHC-II-mediated T-cell activation 128, 129. This effect may, however, 

decrease over time 130. 
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Figure 1.4 Lipid rafts and statins. The T-cell receptor (TCR) and costimulatory molecules, including lymphocyte 

function-associated antigen 1 (LFA-1), CD28, CD4, and CD40 ligand (CD40L), are recruited to lipid rafts after activation. 

Statins interfere with the activation of T cells by depleting membrane cholesterol and disrupting the integrity of lipid rafts. 

Statin treatment causes the exclusion from lipid microdomains of raft-associated molecules such as the Lck protein tyrosine 

kinase, the inhibition of actin polymerization, and the formation of a stable immunologic synapse and therefore disrupts T-

cell activation From Ehrenstein, et al. 125 Copyright © 2005 Massachusetts Medical Society. All rights reserved. 
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1.2.4.2 Prenylation and regulation of cytokine synthesis

Altered cytokine synthesis observed with statin therapy may be a consequence of altered 

lipid raft formation.  However, there is an alternative or additional pathway of cytokine 

synthesis that may be affected by statins.  The mevalonate synthetic pathway mediated by 

HMG-CoA reductase is crucial for the biosynthesis of isoprenoids (Figure 1.3, above), 

which are essential for normal cellular proliferation and activity. Farnesyl pyrophosphate

is a later intermediate on this pathway and serves as a precursor for the synthesis of 

various isoprenoids, for example geranylgeranyl or farnesyl groups, which prenylate 

proteins through covalent links. These can anchor these proteins to lipid rafts. Many 

prenylated proteins play important roles in the regulation of cell growth, cell secretion 

and signal transduction. Thus, by inhibiting prenylation, statins affect many cell 

processes involved in inflammation.

1.2.5 Anti-inflammatory effects of statins on non-respiratory cells and diseases 

These two complementary mechanisms of prenylation and lipid raft stability allow statins 

to affect the function of many different cells and to attenuate inflammation in 

experimental models of disease.  

1.2.5.1 Cell adhesion molecules

Statins interfere with cell binding by reducing leukocyte–endothelial cell adhesion 131, 132. 

This occurs because statins attenuate the up-regulation of P-selectin normally seen on 

activated endothelial cells 133, and they also interfere with monocyte 134 and lymphocyte 
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attachment to endothelium by suppressing intercellular adhesion molecule-1 (ICAM-1) 

and lymphocyte-function-associated antigen 1 (LFA-1) interactions 135 (figure 1.5). 

Statins have been shown to decrease the expression of the receptor for chemoattractant 

chemokine ligand 2 (CCL2) expression on endothelial cells in rats 136, 137 and thereby 

reduce monocyte adhesion to vascular endothelium. Interference with the same 

chemokine in mice causes them to be unable to mount a TH2 cell response 138.

Figure 1.5 Interruption of leucocyte–endothelium interaction. Leucocyte function-associated antigen 1 (LFA1) 

is important for lymphocyte binding to endothelial cells and for lymphocyte activation. Various statins directly 

inhibit this endothelial interaction by attaching to LFA1, thereby blocking its binding to intercellular adhesion 

molecule 1 (ICAM1). From Terblanche et al 139. Reprinted with permission from Elsevier.
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1.2.5.2 Cytokine and mediator release

Statins alter protein expression, which is reflected in altered cytokine release. In vitro 

experiments looking at spontaneous and lipopolysaccharide-induced secretion of 

interleukin (IL)-6 and tumour necrosis factor (TNF)-α in human cell lines showed 

reduced output due to statins in both cases 112, 140. Fluvastatin and simvastatin but not 

pravastatin reduce production of IL-6 and interleukin-1 β (IL-1β) in human umbilical 

vein endothelial cells (HUVECs) 141. Atorvastatin has also been shown to inhibit 

production of TNF-α 142. Lovastatin induces T H2 production of IL-4, IL-5 and IL-10 in 

vitro 127. Increased prostacyclin 143 and decreased endothelin 144 production are seen in 

human endothelial cells after statin treatment.

1.2.5.3 Cellular apoptosis or proliferation

Statins increase apoptosis as demonstrated in human vascular endothelial cells 145, and in 

plasma cell lines from patients with multiple myeloma 146. Statins can then enhance the 

clearance of apoptotic cells by human and mouse macrophages, a statin-specific effect 

reversible with mevalonate, through modulation of Rho-GTPases 147, 148. Lovastatin and 

simvastatin have also been shown to block Fc receptor-mediated phagocytosis by 

cultured human monocytes 149.

Proliferation of T lymphocytes and B lymphocytes is inhibited by statins 150, 151, and 

statins can alter the ratio of TH1 to TH2 lymphocytes; cerivastatin, simvastatin, lovastatin, 

and atorvastatin can promote TH2 polarisation through suppression of TH1 lymphocyte 
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development and augmentation of TH2 lymphocyte development from naive CD4+ T cells 

when primed in vitro 152. Statins also reduce the proliferation of cardiac fibroblasts in rat 

and rabbit models 153.

1.2.5.4 Antioxidant effects

Metabolites of atorvastatin have been shown to possess potent antioxidative 

properties 154, 155, and protect very low density lipoprotein (VLDL), low density 

lipoprotein (LDL) and high density lipoprotein (HDL) from oxidation 156.  Simvastatin 

acts as an antioxidant in  rat liver microsomes 157 and vascular smooth muscle 158, and 

human lipoprotein particles 159, which may contribute to its anti-atherogenic effect. 

1.2.5.5 Experimental models of disease

Statins have diverse effects on many chronic animal models of auto-immune disease. In 

models of systemic lupus erythematosus (SLE) the administration of atorvastatin resulted 

in a significant reduction in serum IgG anti-dsDNA antibodies and decreased proteinuria, 

reduced glomerular immunoglobulin deposition and glomerular injury. Disease 

improvement was paralleled by decreased expression of MHC class II on monocytes and 

B lymphocytes. T cell proliferation was impaired by atorvastatin in vitro and in vivo and 

a significant decrease in glomerular MHC class II expression was also observed 160. 

Cerivastatin and simvastatin have also been shown to inhibit human neutrophil response 

to ANCA in vitro 161.
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In experiments with collagen-induced arthritis in mice, simvastatin was given 

intraperitoneally either before (prophylactically) or after (therapeutically) induction of 

arthritis and a marked reduction in serum IL-6 and IFN-γ was seen, with a significant 

histological improvement 162 (figure 1.6).

Figure 1.6 Simvastatin in collagen-induced arthritis. Simvastatin administration to mice with after onset 

collagen-induced arthritis resulted in significantly reduced joint pathology. A–D, Mice were treated with 

phosphate-buffered saline or simvastatin (40 mg/kg) following detection of arthritis. After 14 days of 

simvastatin administration, arthritic paws were removed and stained with Haemotoxylin & Eosin or toluidine 

blue. Profound cartilage surface erosion and loss of proteoglycan was observed in PBS controls (arrows), 

whereas simvastatin recipients exhibited  significantly reduced histologic evidence of destruction. From Leung 

et al 162 Copyright 2003 The American Association of Immunologists, Inc. 
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In a mouse model of autoimmune retinal disease, treatment with 20 mg/kg/day 

intraperitoneal lovastatin over 7 days, suppressed clinical ocular pathology, retinal vascular 

leakage, and leukocytic infiltration into the retina 163. Efficacy was reversed by co 

administration of mevalonolactone, the downstream product of HMG-CoA reductase.

1.2.5.6 Clinical studies

A double-blind, randomised, placebo-controlled trial examined the efficacy of atorvastatin 40 

mg daily for six months in rheumatoid arthritis. At the end of that period, patients who had 

received statin were found to have decreased plasma levels of lipids, fibrinogen and 

viscosity. Disease activity score improved significantly on atorvastatin treatment compared 

with placebo. CRP and erythrocyte sedimentation rate reduced by 50% and 28% respectively, 

relative to placebo 164.

A trial of atorvastatin during tetanus toxoid (TT) vaccination showed a marked increase in 

anti-TT antibodies 15 days post-vaccination, with a suppression of lymphocyte and platelet 

count 165. This complex immunological picture raises more questions about the effect of 

statins on the immune system.

1.2.5.7 Different statins may have different anti-inflammatory properties

It has recently become apparent that the different families of statins may have different 

biochemical functions. Kiener and colleagues 166 showed that lipophilic statins such as 

atorvastatin and simvastatin have a much greater effect on inflammatory responses in 
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human and mouse models than the hydrophilic pravastatin. Similarly, when looking at 

sensitisation of human smooth muscle cells to apoptotic agents, lovastatin and 

simvastatin showed a powerful sensitising effect, whereas atorvastatin showed less of an 

effect, and pravastatin had no activity 167. There is also a dose-response effect seen for 

example where cerivastatin is much more potent than fluvastatin in blocking NF-κB 

activation in human blood monocytes 168. Some statins have differing effects on protein 

expression, for example in monocytes stimulated by lipopolysaccharide (LPS), 

pravastatin and fluvastatin may induce production of TNF-α, IFN-γ, and IL-18 169, 170, 

whereas atorvastatin and simvastatin inhibit production of TNFα 112, 113, 142, 171. 

It is therefore important to recognise that all statins may not have the same therapeutic 

potential. For example, a clinical study in 27 healthy volunteers found significant 

differences between the ex vivo immunological responses after atorvastatin and 

simvastatin therapy. Atorvastatin led to a significant down-regulation of the expression of 

human leukocyte antigen (HLA)-DR and of the CD38 activation marker on peripheral T 

cells, whereas simvastatin up-regulated both these molecules. In contrast, superantigen-

mediated T cell activation was inhibited by simvastatin and enhanced by atorvastatin 172. 

However, initial experimental work in inflammatory lung disease has used both 

simvastatin 173 and pravastatin 174 with clear effect.
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1.2.6 Potential therapeutic role for statins in respiratory disease

The therapeutic effect of statins on cardiovascular and auto-immune disease seem to be 

broadly anti-inflammatory, which are also likely to apply to lung diseases in which there 

is an inflammatory component (figure 1.7). 

Figure 1.7 Potential anti-inflammatory effects of statins on different structural and inflammatory cells within 

the lungs.



47

1.2.6.1 Possible effects of statins on cellular inflammatory processes in the lung

There are several inflammatory processes in the lung that may be susceptible to the

effects of statins.

Statins could affect the chemokine and adhesion molecule-directed migration of 

inflammatory cells from blood into the airways 169, 175 - 177. Since both eosinophils and 

macrophages express the adhesion molecule LFA-1, this offers a potential target for 

modification of airway inflammation. Treatments other than statins targeted at reducing 

the expression of LFA-1 have been effective in decreasing airway eosinophilia in a 

mouse model of atopic asthma 15 and have reduced sputum eosinophilia after allergen 

challenge in asthmatic patients 16. Since statins can inhibit LFA-1/ICAM-1 interaction, as 

seen in HIV 135, there is potential for statins to have an equivalent effect in asthma, where 

the pathophysiology is associated with eosinophil accumulation. Lovastatin has recently 

been shown to inhibit human alveolar epithelial production of IL-8 178, which might also 

contribute a beneficial effect of statins in the treatment of neutrophil associated 

inflammatory diseases of the lungs.

The observation that statins increase eosinophil apoptosis in humans 179 suggests a further 

therapeutic role. The mechanism of this is likely due to the rapid reduction of cellular 

expression of CD40 after statin administration and this strongly inhibits eosinophil 

survival 32. Similarly, the neutrophilia associated with a mouse model of acute lung injury 

is markedly reduced with lovastatin treatment 180, and this modulation of neutrophil 
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apoptosis may prove beneficial in other inflammatory lung diseases, such as smokers 

with asthma or COPD where neutrophils are present and where corticosteroid treatment 

may be of limited benefit. In addition to induction of apoptosis, statins, in this case 

lovastatin, also enhance the clearance of apoptotic cells by human and mouse 

macrophages, a statin-specific effect reversible with mevalonate 147.

Statins could affect the activation and proliferation of a variety of cells associated with 

lung inflammation. For example, statins suppress TH1 cell activation, and IFN-γ 

production, as seen in a recent trial in rheumatoid arthritis 164, and by analogy this 

treatment could decrease the IFN-γ dependent pathology of chronic asthma and 

pulmonary tuberculosis. Similarly, statins decrease natural killer (NK) cell activity in 

treated transplant patients 181 and this might be relevant to the pathogenesis of asthma in 

which NK cells may have a pathogenic role 182, 183. The decrease in expression of MHC-II 

induced by statins has been observed on monocytes, macrophages, and on B lymphocytes 

in mice 160, which implies a widespread down-regulatory effect on presentation and 

immune response to inhaled or lung-associated antigens. 

Statins may also have a role in attenuating the tissue repair and remodelling 

consequences of chronic aberrant immune activation and inflammation. For example 

statins inhibit the proliferation of airway smooth muscle in human cell lines 184 and lower 

the expression of the profibrogenic cytokine transforming growth factor (TGF)-β1 185. 

Statins also reduce the tissue damage and cellular changes associated with cigarette 
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smoking. The mechanism of this appears to be related to statins reducing the production 

of matrix metalloprotease (MMP)-9 and airway remodelling in smoking rats 186, 187, and 

rabbits 188 and in human macrophages 189 and monocytes 142 from smokers. Other MMPs 

may also be reduced 188 - 192. By targeting this key aspect of remodelling, this indicates a 

potential therapeutic role for statins in fibrotic lung diseases. 

Finally, it is worth bearing in mind the different pharmacological properties between 

statins. For example, lovastatin seems to increase lymphocyte secretion of IL-4 and IL-5 

in a mouse model of multiple sclerosis 127, and therefore this particular statin may be of 

limited use in asthma, where these cytokines are directly implicated in the pathogenesis.

1.2.6.2 Statin treatment of human and experimental respiratory diseases

1.2.6.2.a Age-related deterioration in lung function

A cohort study of 803 patients suggested that statins significantly reduced the deleterious 

effect of age on lung function, with patients taking a statin exhibiting a mean decline in 

FEV1 of 10.9mL/year, compared with 23.9mL/year in patients who were not 193. This 

protective effect was reduced in smokers. 

1.2.6.2.b Asthma

In a mouse model of atopic airways disease, the potential benefits of statin therapy on 

inflammatory airway disease were demonstrated 173. In this model, airway eosinophilia 
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was elicited using ovalbumin (OVA) as the allergen. Simvastatin given before each OVA 

challenge caused a reduction in inflammatory cell infiltrate and eosinophilia in broncho-

alveolar fluid, and a decrease in the OVA-specific production of IFN-γ, IL-4 and IL-5 by 

thoracic node lymphocytes in vitro (figure 1.8). The same anti-inflammatory effects of 

pravastatin have been reported in a similar experimental model of atopic airway 

inflammation 174. The anti-inflammatory properties of statins observed in animal models 

of atopic asthma 173 and in smoking-induced lung disease 186 suggests that statin treatment 

could improve asthma control in smokers with asthma who are insensitive to treatment 

with corticosteroids 194.
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Figure 1.8 Histological evidence of decreased lung inflammation in mice treated with simvastatin. A, Naive 

mouse, given saline challenge. B, ovalbumin antigen challenged mouse; peribronchial and perivascular 

inflammatory infiltrates are seen, with eosinophils present and mucosal hyperplasia. C, ovalbumin-challenged 

mouse plus treatment with simvastatin; a reduction in inflammatory infiltrates is seen compared with B.

Hematoxylin & Eosin staining. Reproduced from MacKay et al. 173 Copyright 2004 The American Association 

of Immunologists, Inc.
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Separately, fluvastatin has been shown to inhibit proliferation of human peripheral blood 

mononuclear cells (PBMC) from asthmatic patients, and to reduce expression of IL-5 and 

IFN-γ, in response to both allergen-specific (house dust mite) and non-allergen specific 

stimulation 195. 

1.2.6.2.c Emphysema and COPD

In rat and mouse models of emphysema 186, 196 found that simvastatin inhibited lung 

parenchymal destruction, reduced mRNA expression of IFN-γ, TNF-α and MMP-12, and 

peribronchial and perivascular inflammatory cell infiltration. Induction of MMP-9, a 

major inflammatory mediator, was reduced in the same model when the experiment was 

repeated using human lung microvascular endothelial cells in vitro 186. A nested case-

control study in humans has also suggested that statins may decrease respiratory mortality 

in patients with COPD 197.

1.2.6.2.d Pulmonary hypertension

Statins induce Rac 1 expression while suppressing Rho A in a rat model of pulmonary 

hypertension 198, and induce apoptosis of pulmonary vascular cells 198, 199. A rat model 

also shows improved pulmonary artery pressure, ventricular and blood vessel 

remodelling, and polycythaemia 200, suggesting a significant survival advantage following 

treatment with simvastatin 186, 201. An open-label clinical case series of patients with 
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pulmonary hypertension showed that simvastatin delays disease progression and may 

improve survival 202. 

1.2.6.2.e Idiopathic pulmonary fibrosis (IPF)

Early experimental data suggests that simvastatin could modify critical determinants of the 

profibrogenic machinery responsible for the aggressive clinical profile of IPF, and could 

potentially prevent adverse lung parenchymal remodelling associated with persistent 

myofibroblast formation 203. This hypothesis has recently been tested in a clinical trial of 

lovastatin in IPF but preliminary data showed no improvement in survival 204.

1.2.6.2.f Acute lung injury

In a model of acute lung injury, mice treated with simvastatin showed decreased lung 

permeability, along with significant reduction in NF-κB mediated gene transcription, 

suggesting a potential role for statins in the management of this disease 205. 

1.2.6.2.g Community acquired pneumonia

This concern for an adverse role for statins in reducing resistance to lung infection was partly 

addressed in a retrospective cohort study which showed that statins  were associated with a 

22% decrease in overall 30-day mortality (from 28% to 6%) from community-acquired 

pneumonia. This remained significant even after adjustment for potential confounders such as 

previous co-morbidity, which would normally be expected to increase mortality 206. A case-
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control study of diabetic patients concurred 207. However, there is still a need to monitor the 

effects of statin therapy prospectively on the immune response. Interestingly, a study of statin 

therapy of Chlamydia pneumoniae in mice suggested an increase in inflammatory cell 

infiltration into the lungs during acute infection 208.

1.2.6.2.h Lung transplantation

The outcomes in lung transplantation were compared between 39 patients taking statins 

for hyperlipidemia (mainly atorvastatin and pravastatin) and 161 who were not. Acute 

rejection was less frequent, bronchoalveolar lavage (BAL) showed lower total cellularity, 

as well as lower proportions of neutrophils and lymphocytes, and survival was 91% 

compared with 54% in controls 209.  

1.3 Summary

Asthma is a chronic, degenerative disease, with serious negative effects on quality of life. 

At present, many therapies exist, but many patients still do not have complete control. 

Statins may be a possible novel adjunct to current therapies: their anti-inflammatory 

credentials are well established. The evidence from animal models is strongly suggestive 

of a beneficial effect in terms on improving inflammation. The logical next step would be 

a proof of concept clinical trial.
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2. HYPOTHESIS

This randomised controlled trial will test the hypothesis that statins improve asthma 

control and airway inflammation of patients with chronic allergic asthma. 

2.1 Primary End Point

The primary end point is an improvement in morning PEF. It is expected that an 

improvement of 20l/min will be seen after 8 weeks of atorvastatin.

2.2 Secondary End Points

2.2.1 Clinical

It is expected that an improvement will be seen in indicators of asthma control, including:

Asthma control questionnaire score

Asthma Quality of Life Questionnaire 

PC20 methacholine

2.2.2 Inflammatory

Markers of inflammation in blood and sputum are expected to show a reduction 

inflammation. This would be seen in a reduction in inflammatory cells in sputum cell 

count, such as macrophages, neutrophils and eosinophils. This would be accompanied by 

a reduction in inflammatory cytokines in sputum supernatant and serum. In particular, a 

reduction in CRP and IL-6 would be expected. 
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3. RANDOMISED CONTROLLED TRIAL

3.1 Recruitment

54 adult allergic asthmatic patients were recruited from hospital respiratory clinics and 

from general practice.  Potentially eligible patients were identified by scrutiny of hospital 

records and from computerised General Practice records.  Their hospital doctor or GP 

then invited them to take part and volunteers were screened for eligibility in the research 

unit. 

3.1.1 GPASS

The General Practice Administration system for Scotland (GPASS) is the national 

Primary Care System and is one of Britain's leading general practice systems. It is used in 

over 890 Scottish practices (www.show.scot.nhs.uk/gpass/), and allows searching of 

patient records by a number of parameters, including age, diagnosis and/or prescriptions. 

A shortcoming of any patient record system is that the information on the database has 

been entered by a number of people and many of them may not have any clinical 

background. Consequently, it is prudent to keep the original search wide. For example, a 

search based on prescription is more likely to be accurate than a search based on 

documented diagnosis.

Once a list of broadly suitable patients was produced, the details of each patient were 

examined for other exclusion criteria. The resultant list was then left for the GP and 
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practice nurse to examine so that they could remove any patients they deemed unsuitable, 

e.g. housebound patients. 

3.1.1.1 Search strategy

A search was performed for patients age between 18 and 70 who had been prescribed a 

β2-agonist inhaler and an inhaled corticosteroid in the last year, see figure 3.1

Figure 3.1 GPASS search strategy for patients 

GROUP  (and) -

Registration age in years is between 18 and 70 inclusive

And

Prescription drug BNF code is 301011 (SELECTIVE BETA2 AGONISTS)

And

Prescription weeks since issued is less than or equal to 52 

And

GROUP (and) -

Prescription drug BNF code is 302000 (CORTICOSTEROIDS)

And

Prescription weeks since issued is less than or equal to 52
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3.2 Subjects

3.2.1 Inclusion criteria

The inclusion criteria are shown in figure 3.2. 

Figure 3.2 Inclusion criteria

Diagnosis of asthma:

Objective: 

Confirmed by methacholine airway hyperresponsiveness (PC20 ≤ 8 mg/mL) or

by evidence of variable airflow obstruction with an increase in FEV1 of > 12% following nebulised 

salbutamol (2.5 mg) 210 or

Diurnal peak flow variability of > 20% for 3 days in a week (with a minimum change of 60 L)

during the run-in period of the study 40

AND

Symptomatic: 

Episodic wheezing, chest tightness and/or dyspnoea 211

AND 

Asthma control questionnaire score of ≥ 1 (range 0-7) prior to randomisation or

Use of inhaled beta2-agonist on 5 or more days in the week before randomisation or

FEV1 reversibility >12% or diurnal peak flow variability of  >20% during the run-in period 

of the study for at least 3 days of a week

Age range 18-70 years

Duration of asthma ≥ 1 year and on stable medication for 4 weeks

Receiving regular inhaled steroid treatment (≤ 1000 mcg Beclomethasone equivalent daily) 

and no other medication for their asthma other than a short-acting bronchodilator

Stable asthma medication for at least 4 weeks prior to randomisation

Written informed consent
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3.2.2 Exclusion criteria

Exclusion criteria are listed in figure 3.3.

Figure 3.3 Exclusion criteria

Current smokers or ex-smokers of < 1 year or ex-smokers who have smoked > 5 pack years

Patients with unstable asthma; defined as the presence of 1 or more of the following events, 

due to asthma, in the month prior to randomisation: 

 Emergency/”out of hours” visit of patients to the GP

 GP visit to patient at home

 A & E hospital attendance

 Hospital admission

Patients in whom cardiovascular risk requires statin therapy

Any known sensitivity or adverse reaction to statin, or previous evidence of myopathy or

myositis plus creatinine kinase and liver function tests > x2 upper limit of normal range

Non-atopic asthma; defined as skin test wheal ≤ 3mm over negative control saline

Pregnancy or lactation

Patients who require medications known to interact with statins, such as azole antifungal agents, 

erythromycin, clarithromycin, cyclosporine, gemfibrozil, verapamil and amiodarone

Inability to fully comprehend the patient information sheet

Inability to demonstrate correct use of peak flow meter after instruction

Patients who showed specific IgE sensitivity or were skin test positive to grass pollen 

allergen were not recruited from mid May to the end of July (grass allergen season in 

UK) if they were symptomatic of hayfever.
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3.3 Structure of Study

The study was a 24-week randomised double blind crossover study comparing the effect 

on asthma control of oral atorvastatin therapy (40 mg daily) with that of a matched 

placebo. Each treatment was administered for 8 weeks separated by a 6-week washout 

period and a 2-week run-in period prior to randomisation. Randomisation was performed 

in sequential blocks of four. 

Patients were assessed on 9 visits (13 occasions, as some visits were performed over 2 

days) (figure 3.4):

Screening visit 

Obtain written informed consent 

General medical history & physical examination

ACQ

Spirometry and reversibility testing

Blood sampling 

Skin prick testing

Issue diary card and peak flow meter 

Adjustment of asthma medication to BTS guidelines if required. If any changes were 

made, randomisation visit was deferred an extra two weeks to allow four weeks on stable 

medication
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Randomisation visit

Baseline clinical measurements

2 weeks after screening visit (or 4 weeks if any change made to baseline asthma 

medication)

ACQ

AQLQ 43(See appendix 2)

ATS Score to assess severity of asthma

Spirometry and reversibility testing

Induced sputum

Exhaled NO

Methacholine responsiveness

Randomise patient if all criteria met

Issue medication container A.

Issue diary card 

Follow up visits (Phase A)

2 and 4 weeks after randomisation

Spirometry and reversibility testing

Issue new diary

End of medication A visit (Phase A)

8 weeks after randomisation
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ACQ

AQLQ 43(See appendix 2)

ATS Score to assess severity of asthma

Spirometry and reversibility testing

Induced sputum

Exhaled NO

Blood sampling

Methacholine responsiveness

Issue new diary

End of washout visit (Phase B)

At least 6 weeks after end of medication A

ACQ

AQLQ 43(See appendix 2)

ATS Score to assess severity of asthma

Spirometry and reversibility testing

Induced sputum

Exhaled NO

Blood sampling

Methacholine responsiveness

Issue medication container B

Issue new diary
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Follow up visits (Phase B)

2 and 4 weeks after starting medication B

Spirometry and reversibility testing

Issue new diary

End of medication B visit (Phase B)

8 weeks after starting medication B

ACQ

AQLQ 43(See appendix 2)

ATS Score to assess severity of asthma

Spirometry and reversibility testing

Induced sputum

Exhaled NO

Blood sampling

Methacholine responsiveness

Patients recorded morning and evening PEF measurements and daily symptoms 

throughout the study. 
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3.3.1 Pregnancy testing

Pregnancy test was performed in all women of child-bearing age before all methacholine 

tests and subjects were informed about adequate contraception during and for one month 

after the study.

3.3.2 Exacerbations during washout phase

If a subject had an exacerbation during the wash-out phase of the study, visit 6 was 

delayed until the patient had been stable for 4 weeks.
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Figure 3.4 Flow chart for structure of study

Screening visit

Baseline tests performed

↓ 2 weeks 

Enrolment visit, 

Entry criteria into the study 

confirmed

↓ Minimum 2 weeks

Randomisation

 ↓

Phase A 

TREATMENT A

Treatment & control group

Tablets taken for 8 weeks

(Atorvastatin or Placebo)

 ↓

Follow up visits at 

weeks 2,4 & 8

↓

Washout phase

(No tablets)

6 weeks

↓

Follow up visit 

(confirm patient well enough 
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for

second phase)

↓

Phase B 

TREATMENT B

Treatment & control group

Tablets for a further 8 weeks

(Active or Blank tablets)

↓

Follow up visits at 

weeks 16 & 18

↓

22 week visit

End of study

3.4. Statistical analysis

3.4.1 Power calculations

A sample size of 44 has 90% power to detect a difference in means of 20L/min in peak 

expiratory flow (PEF) (primary endpoint), assuming a standard deviation of differences 

of 40L/min, using a paired t-test with a 0.05 two-sided significance level. A total of 54 

patients were recruited to ensure that 44 patients completed the study.
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3.4.2 Analysis Sets

As this was a crossover study, patients only contribute to an analysis if the data point 

from both treatment periods was available. The Full Analysis Set therefore consists of 

those patients who attended the final visit of treatment Period B. All of the available data 

is present in the Full Analysis Set.

3.4.2.1 Baseline Data 

The baseline demographic and other characteristics are presented by sequence group (i.e. 

AB or BA treatment sequences), and in total, using the minimum, maximum, mean and 

standard deviation for continuous variables, and counts and percentages for categorical 

variables. 

3.4.3 Endpoints

3.4.3.1 General Principles

Each of the two treatment periods lasts for eight weeks, and Week 8 data was analysed 

with statistical tests. The Week 0, Week 2 and Week 4 visits were summarised where 

data was available, but was not analysed by statistical tests. In all trials the later data is 

usually most important, but this is particularly true of crossover studies, where the end of 

Period B is the furthest from the washout period. The summaries of the earlier visits were 

considered as extra information for general interest regarding the timing of the treatment 
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effect, and are not considered to cause problems with multiplicity. Descriptions of 

endpoints are summarised in Table 3.1.

Results were analysed as the difference between means (treatment difference) or medians 

of endpoints, without controlling for baseline variables, as these are considered irrelevant 

in crossover trials. Comparison is therefore not made between baseline values of 

variables.
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Table 3.1 Description of end points

End point Derived from Time of measurement

Primary end point

Mean morning peak flow 

(PEF)

Patient diary cards Just before the Week 8 visits of each 

treatment period

Secondary end points

Mean evening peak flow 

(PEF)

Patient diary cards Just before the Week 8 visits of each 

treatment period.

Daily Asthma Control Score Patient diary cards Just before the Week 8 visits of each 

treatment period.

Mean number of puffs of relief 

β2 agonist as measured in the 

morning

Patient diary cards Just before the Week 8 visits of each 

treatment period.

Mean number of puffs of relief 

β2 agonist as measured in the 

evening

Patient diary cards Just before the Week 8 visits of each 

treatment period.

Exacerbation rates Patient diary cards Just before the Week 8 visits of each 

treatment period.

Asthma Control Score Clinic questionnaire Week 8 visit of each treatment period

ATS Score Clinic questionnaire Week 8 visit of each treatment period

Asthma Quality of Life 

Questionnaire

Clinic questionnaire Week 8 visit of each treatment period

Use of Oral Steroids Patient diary cards Throughout study
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End point Derived from Time of measurement

Pre-salbutamol: 

FEV1

PEF

FVC

FEF25-75

FEV1 percentage predicted

PEF percentage predicted

FVC percentage predicted

FEF25-75 percentage predicted

Clinic Spirometry Week 8 visit of each treatment period

Post-salbutamol:

FEV1

PEF

FVC

FEF25-75

FEV1 percentage predicted

PEF percentage predicted

FVC percentage predicted

FEF25-75 percentage predicted

PC20 methacholine

Clinic Spirometry Week 8 visit of each treatment period

Asthma Related Events

- Out of hours visits to GP

- GP home visits

- Visits to Accident and 

Emergency

- Hospitalisations

Patient diary cards Throughout study
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End point Derived from Time of measurement

Exhaled NO (FENO)

Exhaled CO

Clinic testing Week 8 visit of each treatment period

Immunological Tests in Blood:

- ICAM-1

- IL-6

- hsCRP

- TNF-α

- Lymphocyte proliferation

Clinic sample Week 8 visit of each treatment period

Lipids in Blood

- Cholesterol

- Triglycerides

- HDL cholesterol

Clinic sample Week 8 visit of each treatment period

Serum Biochemistry Safety 

Checks

Renal function:

- Urea

- Potassium

- Sodium

Liver function tests:

- Bilirubin

- AST 

- ALT

Clinic sample Week 8 visit of each treatment period

Sputum Cell Counts

- Total cell count

- Macrophages

Clinic sample Week 8 visit of each treatment period
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End point Derived from Time of measurement

- Neutrophils

- Eosinophils

- Lymphocytes

- Viability

- Epithelial cells

Macrophage activation indices 

(sputum):

- MPO

- LTB4

- IL-1b

- IL-1RA

- IL-6

- IL-8

- IL-17

- TNF-α

- IFN-γ

- GM-CSF

- MIP-1a

- CCL2

Clinic sample Week 8 visit of each treatment period

3.4.3.2 Treatment of Diary Cards

The diary cards had space for up to eight weeks’ data. However, we analysed only the 

last seven days data that were filled in prior to each visit. A card was declared null and 

void if there was no morning PEF data. The last day’s data was calculated by counting 

back to the last non-missing day. For each of morning PEF, evening PEF, daily control 
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scores and puffs of relief medication separately, the number of non-missing days in the 

seven-day period up to (and including) the identified last day of data was counted. At 

least three days’ data for each variable had to be available separately for that variable to 

be considered as evaluable. The means of the seven days were calculated for each of the 

evaluable variables. 

3.4.3.3 Treatment of ACQ Scores (Clinic & Diary Versions)

For the standard clinic version of the ACQ score there are seven questions each scored on 

a seven-point scale (0=good control, 6=poor control). The overall score is the mean of the 

seven responses.

The daily diary ACQ is slightly different. The morning PEF data is used instead of FEV1, 

and converted to a percentage predicted value which is scored like the FEV1 version on 

the standard version (i.e. >95% = 0, 95%-90% = 1, 80%-89% = 2, 70%-79% = 3, 60%-

69% = 4, 50%-59% = 5 <50% = 6). Beta2 agonists puffs are totalled for the morning and 

afternoon (to calculate the number of puffs used in last 24 hours). The scores for this are: 

0 puffs, 1-2 puffs = 1, 3-4 puffs = 2, 5-8 puffs = 3, 9-12 puffs = 4, 13-16 puffs = 5, >16 

puffs = 6. Once this is done the mean of the seven questions can be calculated.
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3.4.3.4 Treatment of Use of Oral Steroids

The use of oral steroids was calculated by examining the CRF at each study visit, to see if 

a patient used oral steroids at any time during the treatment period (i.e. unlike the other 

endpoints Week 2 and Week 4 visits were included as well).

3.4.3.5 Treatment of Asthma Related Events

The total number of these events (out of hours visits to GP, GP home visits, visits to 

accident and emergency, hospitalisations) was calculated across each of the visits in a 

treatment period (i.e. Weeks 2, 4 and 8). The totals were also calculated separately for 

each of the four different types of event. 

3.4.4 Analysis Techniques

The main analyses were carried out by Normal Linear Models that include parameters for 

patient, period and treatment. 

3.4.5 Software

All analyses were carried out using SAS version 9 (SAS Institute, Cary, NC).  
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3.5 Location of work

All the clinical work for the study was undertaken at the Asthma Research Centre, 

Department of Respiratory Medicine, Gartnavel General Hospital, Glasgow. Sputum and 

blood analysis were performed within the department of Immunology, Western 

Infirmary, Glasgow and Department of Biochemistry, Royal Infirmary, Glasgow. 

Statistical analyses were performed in conjunction with the Robertson Centre for 

Biostatistics at the University of Glasgow.

3.6 Patient Safety

3.6.1 Drug interactions and side effects associated with atorvastatin

Statins should be administered with caution if there is a history of liver disease, a history 

of alcohol excess, renal impairment/failure or hypothyroidism. In the screening process 

the renal and hepatic function were assessed using routine biochemistry testing. Patients 

with a history of hereditary muscular disorders or previous history of muscular toxicity 

whilst using statin medication subjects were excluded from this study.

 

Side effects with statins are rare 212, but include headache, myalgia, abdominal pain, 

flatulence, diarrhoea, nausea, vomiting, insomnia, anorexia, alopecia, peripheral 

neuropathy, urticaria, pruritis, impotence, chest pain, hypoglycaemia or 

hyperglycaemia 213. Atorvastatin has recently been identified as causing nightmares 214, a 

feature also seen in other statins. 
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Patients concurrently taking digoxin, oral contraceptives, amlodipine, colestipol, antacids 

or warfarin were closely monitored (and appropriate blood levels measured) as 

atorvastatin may enhance or decrease the effect of these drugs.  It is also been shown that 

the level of atorvastatin in the body may be reduced if the patient is on any of the drugs 

listed above 212.  Patients on azole antifungal agents, erythromycin, clarithromycin, 

azithromycin, cyclosporine, gemfibrozil, verapamil and amiodarone were excluded from 

this study and general practitioners were asked to omit the study medication if any of 

these medications were required during the course of the study.

As per the recommendations of the MHRA 215, subjects were asked to avoid fresh 

grapefruit juice while on the study and to report muscle pain, weakness or cramps and to 

stop treatment if this was severe. Creatine kinase (CK) levels were checked and treatment 

did not re-commence if levels were elevated >2 times normal.

3.6.2 Unused medication

All unused medication was returned to the pharmaceutical company (Pfizer) for 

destruction at the end of the study.  

3.6.3 Current anti-asthma drug treatment

Patients were asked to continue on their usual anti-asthma drug therapy throughout the 

study.



77

3.6.4 Adverse Events

An adverse event (AE) is defined by the UK Medicines for Human Use (Clinical Trials) 

Regulations 2004 (SI 2004/1031) as:

An exacerbation, or unexpected increase in the frequency or intensity of a pre-

existing condition (other than asthma), including intermittent or episodic conditions.

Significant or unexpected worsening or exacerbation of asthma

A suspected drug interaction

Any clinically significant laboratory abnormality

Adverse events are graded according to their severity as follows:

Mild: Awareness of signs or symptoms, but easily tolerated.  There is no loss of time 

from normal activities.   Symptoms resolve easily with no medical treatment (other than 

short-acting bronchodilators).  Signs and symptoms are transient.  

Moderate: Discomfort severe enough to cause interference with the patient’s usual 

activities.  Symptomatic treatment is possible.

Severe: Incapacitating with inability to do work or usual activities, signs and 

symptoms may be of a systemic or require medical intervention and/ or treatment.  

Hospitalisation may be required.  

A reasonably related event is one that is in the opinion of the investigator, possibly, 

probably or definitely related to the study product.  
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3.6.4.1 Serious Adverse Events

A serious adverse event (SAE) is any adverse event, which results in:

Death

Is life-threatening (this refers to an event in which the patient was at risk of death at

the time of the event; it does not refer to an event that hypothetically might have 

caused death if it were more severe)

In-patient hospitalisation or prolongation of inpatient hospitalisation. (Hospitalisation 

for a pre-existing condition, including elective procedures, which has not worsened, 

does not constitute a serious adverse event)

Persistent or significant disability/incapacity that interferes with the person’s ability 

to conduct normal activities of daily living

Congenital anomaly or birth defect

In addition, an important medical event may be considered a SAE when, based on 

appropriate medical judgment, it may jeopardise the subject and/or may require medical 

or surgical intervention to prevent one of the outcomes listed.  

Any SAE that was ongoing on completion of the trial would have been followed until it 

resolved or stabilised,

returned to baseline condition or value (if baseline value is available) or 

could be attributed to agent(s) other than the study agent/ to factors unrelated to study 

conduct
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3.6.4.2 Suspected Unexpected Serious Adverse Reactions (SUSAR)

SUSARs are suspected adverse reactions related to an investigational medicinal product 

that are both unexpected and serious.  

3.6.4.3 Method for the reporting of Adverse Events

Serious Adverse Events: were collected in the CRF and a SAE form completed for each 

one. These were held in the site file and formed part of the Annual Safety Report which was 

sent to the MHRA, Ethics and the sponsor.

Serious Adverse Reactions (SARs): are reactions judged by the chief investigator to be 

related to the study drug, although listed in the protocol as expected drug reactions. These 

were collected in the CRF and a SAE form completed for each one. All SARs were held in 

the site file and formed part of the Annual Safety Report sent out as above.

Suspected Unexpected Serious Adverse Reactions: are reactions judged by the chief 

investigator to be related to the study drug, and are unexpected study drug reactions 

according to the protocol. If they occur, they are collected in the CRF and an SAE form 

completed for each one. SUSARs should be sent to the MHRA, ethics committee and the 

sponsor within 7 days for all fatal or life-threatening SUSARs and 15 days for all others.
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3.6.5 Clinical Trial Obligations

3.6.5.1 Ethics and the MHRA

In 2004, the introduction of EU directive 2001/20/EC means that in order to conduct a 

clinical trial of a medicinal product, the following must be obtained:

3.6.5.2 Sponsorship

A sponsor is an individual, company, institution or organisation which takes 

responsibility for the initiation, management or financing of a clinical trial. For this trial, 

the North Glasgow University Directorate NHS Trust Research and Development agreed 

to act as sponsor.

3.6.5.3 Ethical approval

An ethics committee is an independent body consisting of health care professionals and 

non-medical members. The function of an ethics committee is to provide an opinion 

before a clinical trial starts having been given details of the following particulars:

• The relevance of a clinical trial and the trial design

• Evaluation of the expected benefits and risks

• The protocol

• Suitability of the investigator and supporting staff

• The investigator’s brochure

• The quality of facilities available



81

• The process for obtaining informed consent and the alternative procedures for doing so 

on behalf of those incapable of giving informed consent

• Details of any indemnity or compensation in the event of injury or death attributable to 

the clinical trial

• Insurance to cover the liability and the investigator and sponsor

• Details of payments to be made to investigators and participants in the trial

• Arrangements for the recruitment of clinical trial subjects

Only if the opinion of the ethics committee on all the above points is favourable will the 

trial be permitted to start. The legislation requires that the decision from the ethics 

committee must be supplied within 60 days of the date of receipt of the application. If the 

ethics committee requires further information to make a final judgment as to its opinion, 

the time taken for that further information to be supplied by the applicant is not included 

in the 60-day schedule. 

To ensure the effective functioning of ethics committees, a new UK Ethics Committee 

Authority (UKECA) has been created to establish, recognise and monitor ethics 

committees. The executive procedures of the UKECA are carried out by the Central 

Office of Research Ethics Committee (COREC).

Ethics committee approval was granted on the 18th January 2005. 
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3.6.5.4 MHRA Approval

Applying to the MHRA for Clinical Trial Approval (CTA) is a complex undertaking. The 

amount of information required for the application was substantial. With assistance from 

Karen Dunlop at Pfizer, we eventually, in March 2005, submitted:

Application form

Protocol

Investigational Medicinal Product (IMP) brochure

The MHRA then has 30 days to consider its response, during which time it may ask one 

lot of questions. If it does so, the 30 day clock is “on hold” until a reply is obtained 

(figure 3.5).

We received no questions, and on day 30 (9th April 2005), we received permission to 

proceed.
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Figure 3.5 Flowchart for Application to MHRA for Clinical Trial Authorisation (CTA)
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3.6.5.5 Amendments

Where a change must be made to the protocol, this must first be approved by the ethics 

committee and the MHRA, unless the change relates to patient safety, in which case the 

amendment may be submitted after the change has taken place. Normally the MHRA will 

issue approval subject to ethics committee agreement. Copies of both agreements are then 

forwarded to the sponsor. Patients were asked to re-consent if there were any 

amendments to the protocol. 

3.6.5.6 Annual Safety Reports

It is the legal responsibility of the sponsor to submit, once a year throughout the clinical 

trial, (or on request), a safety report to the MHRA and the Ethics Committee, taking into 

account all new available safety information produce along the reporting period.  Safety 

reports were issued on the 18th January 2006 and at the close of the study on the 27th

February 2007.

3.6.5.7 Other obligations

3.6.5.7.a Trial registration

In line with recent requirements by International Committee of Medical Journal Editor 

(ICMJE) journals 216 - 218, clinical trials hoping for future publication are required to be 

registered on an international, searchable database. In addition, this database must hold 

specific information about the trial, as specified by a WHO registration advisory group 219

(see table 3.2, below). For trials recruiting after the 1st of July 2005, the deadline for this 
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registration was the 13th September 2005 219. Trials must be registered before the first 

patient is recruited 218. Accordingly, the trial was registered with www.clinicaltrials.gov 

on 30th June 2005. Clinicaltrials.gov was established by the US National Institute of 

Health and is one of the largest research databases currently in existence 216.

Table 3.2 Minimum required information for Clinical Trial Database, as defined by the ICMJE 219

Item Comment

Unique trial number The unique trial number will be established by the primary 

registering entity (the registry)

Trial registration date The date of registration will be established by the primary 

registering entity

Secondary IDs May be assigned by sponsors or other interested parties (there 

may be none)

Funding source(s) Name of the organization(s) that provided funding for the study

Primary sponsor The main entity responsible for performing the research

Secondary sponsor(s) The secondary entities, if any, responsible for performing the 

research

Responsible contact 

person 

Public contact person for the trial, for patients interested in 

participating

Research contact 

person 

Person to contact for scientific inquiries about the trial

Title of the study Brief title chosen by the research group (can be omitted if the 

researchers wish)

Official scientific title of the 

study

This title must include the name of the intervention, the condition 

being studied, and the outcome (e.g. The International Study of 
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Item Comment

Digoxin and Death from Congestive Heart Failure)

Research ethics 

review 

Has the study at the time of registration received appropriate 

ethics committee approval (yes/no)? (It is assumed that all 

registered trials will be approved by an ethics board before 

commencing.)

Condition The medical condition being studied (e.g. asthma, myocardial 

infarction, depression)

Intervention(s) A description of the study and comparison/control intervention(s). 

(For a drug or other product registered for public sale anywhere 

in the world, this is the generic name; for an unregistered drug 

the generic name or company serial number is acceptable.) The 

duration of the intervention(s) must be specified

Key inclusion and 

exclusion criteria

Key patient characteristics that determine eligibility for 

participation in the study

Study type Database should provide drop-down lists for selection. This 

would include choices for randomized vs. nonrandomized, type 

of masking (e.g. double-blind, single-blind), type of controls (e.g. 

placebo, active), and group assignment, (e.g. parallel, crossover, 

factorial)

Anticipated trial start date Estimated enrolment date of the first participant

Target sample size The total number of subjects the investigators plan to enroll 

before closing the trial to new participants

Recruitment status Is this information available (yes/no)? (If yes, link to information.)

Primary outcome The primary outcome that the study was designed to evaluate. 

Description should include the time at which the outcome is 
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Item Comment

measured (e.g. blood pressure at 12 months)

Key secondary outcomes The secondary outcomes specified in the protocol. Description 

should include time of measurement (e.g. creatinine clearance at 

6 months)

3.6.5.7.b Confidentiality

All investigators ensured that patient confidentiality was maintained at all times adhering 

to the Data Protection Act (1998) and according to the Clinical Trials Directive 

2001/20/EC ‘Good Clinical Practice’ (G.C.P) guidelines.  

3.6.5.7.c Monitoring of the study

The study was intended to be monitored within 6 months of the first patient being 

recruited. However, due to staffing constraints within the Research and Development, full 

monitoring was delayed until July 2007. An audit of documentation was carried out in 

April 2006. 10% of all patient information documented in the case report file was 

checked and verified for completeness and adherence to the protocol.  The Chief 

Investigator and the research team reviewed recruitment on a fortnightly basis.  
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4. METHODOLOGY

4.1 Asthma-specific measurements

4.1.1 Diary card recordings 

A diary card was used (Appendix 1) to measure asthma symptoms 220, PEF recordings 

and inhaled beta2-agonist use. PEF measurements were be undertaken by patients at 

home using a mini-Wright peak flow meter (Clement Clarke, Harlow, UK). On return 

visits, the diary was analysed for variability and exacerbations (see below). The best of 

three measurements was recorded twice daily (prior to treatment with salbutamol) in the

diary. Peak flow variability was calculated from the difference between the highest and 

lowest daily reading divided by the mean PEF reading multiplied by 100 (amplitude % 

mean). 

One of the reasons that PEF is collected in clinical trials is that for the individual patient, 

regular daily measurements often provide the clinician with a much clearer picture of the 

patient’s clinical status that does a single measure of FEV1 or PEF made in the clinic. 

Frequent measurement of PEF provides valuable information about diurnal variation in 

airway calibre and evidence of day-to-day fluctuation in the patient’s status 221.

4.1.1.1 Asthma quality of life (AQLQ)

Quality of life was assessed using the Juniper Asthma Quality of Life Questionnaire 222, 

before and after taking each medication (on visits 2, 5, 6 and 9). A sample of this 

questionnaire is in Appendix 2.
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4.1.1.2 Asthma Control

Asthma control was assessed using the Juniper Asthma Control Questionnaire (ACQ) 43

on each visit. The patient answered the first 6 questions, and the final question was 

completed by a member of the research team from spirometry. A sample of this 

questionnaire is in Appendix 3. 

4.1.2 Spirometry (FEV1, FVC), reversibility testing

Baseline pre-bronchodilator spirometric measurements were recorded from the best of 

three attempts using a dry wedge spirometer (Vitalograph, Buckingham, UK) (figure 

4.1), with measurements not varying by more than 5% or 0.2 mL. Spirometric 

measurements were made before and after nebulised salbutamol (2.5 mg). Measurements 

were performed at the same time of day (am or pm) for each patient. 

Figure 4.1 Spirometry
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4.1.3 Asthma severity

Asthma severity, or impairment, is defined by physiological and clinical parameters 223.

The degree of impairment is calculated as the sum of the scores for post-bronchodilator 

FEV1, reversibility of FEV1, or PC20, and medication need: 

• Postbronchodilator FEV1: this is scored from zero (no evidence of airflow 

limitation) to 4 (severe degree of airflow limitation, FEV1 < 50% predicted).

• Reversibility to salbutamol or hyperresponsiveness to methacholine (defined as 

PC20 <8 mg/mL: scored from zero (reversibility <10% or PC20>8 mg/mL) to 3 

(reversibility >30% or PC20<0.125 mg/mL).

• Minimum medication needed to control symptoms: from none (scored zero) to 

high dose systemic steroid daily (scored 4).

4.1.4 Exacerbations of asthma and Adverse Events 

Mild exacerbation was defined as one of the following for 2 consecutive days: 

• a drop in PEF > 20% below baseline value, 

• use of more than 3 additional puffs of reliever bronchodilator over 24 hours 

(excluding prophylactic puffs for exercise) as compared with baseline value, or 

• night awakening due to asthma. 

A severe exacerbation was defined as:

• any worsening of asthma control considered by the investigator or GP to require a 

short course of oral corticosteroids/hospitalization, or 
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• decrease in morning PEF to more than 30% below the baseline value on 2 

consecutive days 224.

The following were monitored to assess adverse events:

• Emergency or “out of hours” visit of patients to the GP; 

• GP visit to patient at home; 

• GP or investigator prescribing extra treatment; 

• A & E hospital attendance; 

• Hospital admission and length of stay. 

Patients recorded events that they would consider “out of the ordinary” for them, such as 

headaches, nausea or muscle cramps, that might be attributable aside-effects of the 

medications. These were also documented in the adverse events section.

4.1.5 Airway responsiveness

Recent guidelines for bronchial challenge testing with methacholine have been 

published 225. The tidal breathing method described is a version of Cockcroft’s 

technique 226, which has been shown to produce slightly better responses that the 

alternative breath-hold with dosimeter method 227. The nebuliser was calibrated before the 

study began (Appendix 4). After initial spirometry, patients received 2 minutes of 

nebulised 3% saline. Further spirometry was then performed. Patients received 2 minutes 

of increasing concentrations of methacholine, from 0.03mg/mL to 16 mg/mL. After each 

period, spirometry was preformed at 30 seconds and 90 seconds, with a third test at 180 
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seconds if a fall in FEV1 was recorded (figure 4.2). Once a drop in FEV1 of 20% from the 

lowest post-saline FEV1 was recorded, all measurement stopped and the patient was 

given a nebuliser of salbutamol to reverse the effects of the methacholine. The patient 

was then monitored until the FEV1 returned to normal.

Figure 4.2 Methacholine administration

Methacholine hyperreactivity is measured by the PC20, a function of the concentration 

required to bring about a drop in FEV1 of 20%. This is calculated using the following 

equation: 
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Where 

C1 = second to last methacholine concentration (i.e. the concentration preceding C2)

C2 = final methacholine concentration (the concentration resulting in a 20% or greater fall 

in FEV1)

R1 = percent fall in FEV1 after C1 and

R2 = percent fall in FEV1 after C2

This was inserted into a Microsoft Excel package for ease of calculation:

Post Saline FEV1

(mL)

2nd last FEV1

(mL)

Last FEV1

(mL)

Concentration

at 2nd last FEV1 

(mg/mL)

Concentration

at last FEV1

(mg/mL)

3190 2930 2520 4 8

1st % fall 2nd % fall
PC20 

(mg/mL)

8.15047 21.0031 7.5787

A value of methacholine hyperreactivity >16 mg/mL was read as 16 mg/mL. Bronchial 

hyper-reactivity is defined as a PC20 FEV1 of <8 mg/mL, so patients who had a level 

below this were suitable for inclusion in the trial.  Methacholine challenge testing was 
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only performed in subjects who had a baseline FEV1 of greater than 60% predicted. 

Patients who had a baseline FEV1 lower than this were still included in the trial, but 

without methacholine testing.

4.2 Measurement of atopy

Atopy is the predisposition to produce IgE antibody to common aeroallergens. This can 

be identified and quantified by either skin-prick testing or serum immunoassay. 

Allergen skin prick tests give a more sensitive and more repeatable diagnosis of atopy 

than measurement of serum IgE antibody 228, 229. At the screening visit, skin prick tests for 

allergy to cat dander, house dust mite (Dermatophagoides farinae) and mixed grass 

pollen (wheat, timothy grass, foxtail grass, rye-grass, meadow grass, cocksfoot) was 

performed (Soluprick, ALK, Horsholm, Denmark), with a positive control (histamine) 

and a negative control (saline and glycerine) 230.  A positive result was a wheal reaction 

after 15 minutes of 3mm greater than  the control wheal diameter 231. 

In the event of a negative skin prick test, but a strong history of atopy (e.g. hay fever), a 

serum sample was sent to the hospital immunology laboratory for IgE antibody testing. 

In addition, serum samples from each patient were saved for batch analysis at the end of 

the study. Total IgE and specific IgE to house dust mite, and grass pollen were assayed 

by automated fluorescent-immunoassay (Unicap 100, Pharmacia UK, Ltd, Milton 
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Keynes, UK,). Total IgE >120 International Units/L and specific IgE >0.35 Arbitrary 

Units/L were considered positive.

4.3 Induced sputum

Sputum was induced using an ultrasonic nebuliser (Sonix 2000, Medic Ltd, Harlow, 

Essex, UK), initially filled with 3% saline. Subjects inhaled the nebulised solution for 7 

minutes (nebuliser output 0.9 mL/min; mass median diameter 5.5 micrometer) following 

pre-treatment with 2.5mg nebulised salbutamol. After this, the nebuliser was filled with 

4% saline and the nebulised solution inhaled for a further 7 minutes (figure 4.3). Finally, 

the nebuliser was filled with 5% saline and the nebulised solution was inhaled for a final 

7 minutes. At each 7-minute interval the inhalation was stopped to allow expectoration 

into a polypropylene container, and for spirometry checks. The test was not performed on 

subjects with an FEV1 less than 1 L. If FEV1 fell by 20% or more, or if troublesome 

symptoms occurred, the test was stopped. If the FEV1 fell by 10-20%, the concentration 

of saline was not increased. The sample was kept on ice until processed for cell counts 

and centrifugation to harvest the soluble phase of sputum. This was always done within 2 

hours 50. Cell counts were performed and the supernatant stored for analysis of 

inflammatory mediators.
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Figure 4.3 Induced sputum technique

4.3.1 Analysis of sputum

Analysis was performed in a procedure similar to that described by Popov et al 232. 

Sputum was poured into a petri dish and mucous plugs were selected from surrounding 

saliva (figure 4.4). Plugs were transferred into a pre-weighed bijou bottle and weighed. 

A 1:10 dilution of dithiothreitol (DTT) (Calbiochem, Merck Biosciences Ltd, Beeston): 

Phosphate buffered saline (PBS) (VWR International Ltd, Poole) 4 times the weight of 

sputum was added to the sample and mixed in. A further 4 times the original weight of 

sputum of PBS was then added. The sample was then passed through a sterile nylon 
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(nitex) mesh to filter out clumps, into a pre-weighed centrifuge tube, which was then 

weighed again. An aliquot of 20 µL was removed then diluted 1:1 with 0.1% trypan blue 

(Sigma Aldrich Company Ltd, Gillingham). A manual total cell count and a viability 

count were then performed using a haemocytometer (figure 4.5). Samples were assessed 

at this point and excluded if they failed to meet the criteria listed in table 4.1.

Table 4.1 Sputum cell count – criteria for exclusion of sample

Parameter Threshold for exclusion

Cell viability <40%

Total cells to be counted <400

Proportion of squamous cells >80%

The sample was then centrifuged at 1000 rpm for 10 minutes, at 4 °C. Multiple 1 mL 

aliquots of supernatant were stored at –20 °C. If only 1 mL was available, it was split into 

2 x 0.5 mL.
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Figure 4.4 Selection of mucus plugs

Figure 4.5 Cell counting
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4.3.1.1 Differential cell counting by staining of cytocentrifuge cell smear preparations

The cell pellet was resuspended at a concentration of 0.6 x 106/mL in a volume of 200 µL 

which was kept on ice. 70 µL was pipetted into each funnel of a cytocentrifuge to obtain 

7 x 104/mL, insert into a cytospin holder. 2 slides (VWR International Ltd, Poole) were 

prepared for cytospins, using filter cards, funnels and cytoclips (Thermo Electron 

Corporation, Basingstoke) as per manufacturer’s instructions. They were then spun at 450 

rpm for 6 minutes (Shandon Cytospin 4 Cytocentrifuge, Thermo Electron Corporation, 

Basingstoke), then air dried for 1 – 2 hours. Samples were then fixed in methanol for 10 

minutes. Fixed slides were then stained using Romanowsky staining – Rapi Diff II Stain 

Pack (Triangle Biomedical Sciences Ltd, Skelmersdale).

A differential cell count of greater than 400 inflammatory cells was performed. In 

addition to this the squamous epithelial cell count was performed in order to estimate 

saliva contamination. 

4.3.1.2 Analysis of sputum biomarkers

4.3.1.2.i Microbead fluorescent assay: Luminex technology

The inflammatory cytokines IL-1β, IL-6, IL-8, TNF-α, GM-CSF IL-1RA, IL-17, IFN-γ, 

MIP-1α and CCL2  were measured using an assay kit (Biosource, Invitrogen, Paisley, 

UK).  The format of luminex allows the measurement of a combination of various 
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cytokines or other mediators at the same time in a small volume, which makes it 

particularly suitable for sputum samples.

Luminex technology consists of a uniform batch of polystyrene microbeads dyed 

internally with a combination of two fluorescent markers, which give this batch a unique 

spectral address for identifying that bead set on a fluorescent reader. Using different 

ratios of markers with different batches of beads allows them to be detected separately 

when they are mixed. A batch of beads with a characteristic marker identity is coated 

with a capture antibody specific for the cytokine or mediator of interest, thus each 

cytokine or mediator has a specific set of beads that can be identified simultaneously in a 

mix. 

The beads are prepared by washing twice using the supplied buffer; after this, they are 

ready to use.  The sputum supernatant samples are incubated with the antibody-coated 

beads on an orbital shaker for 2 hours.  Internal quality control and quantification is 

achieved using standard samples containing known amounts of these mediators. After 

this time, any unbound sample is washed from the well by washing 3 times with the 

supplied wash buffer, which is aspirated using a vacuum manifold.  A cocktail of 

cytokine-specific biotinylated detection antibodies are added and incubated for a further 

hour.  The plate is the washed 3 times to remove any unbound detection antibody, and 

streptavidin conjugated to the fluorescent protein, R-phycoerythrin, is added then 

incubated for 30 minutes.  An additional 3 washes later, the beads are analysed by 
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fluorimetry with the Bio-plex System instrument (Bio-Rad Laboratories, Hertfordshire, 

UK).  As the analyte forms an essential component of the sandwich between the 

microbead and the fluorescent reporter dye, the amount of fluorescence associated with 

each bead set can be directly attributed to the concentration of cytokine in each sample.  

Multiple beads are read for each analyte giving a mean value of fluorescence intensity, 

which is directly proportional to the concentration of the cytokine or mediator in each 

sputum supernatant sample.

Occasionally while using this test, the beads become stuck together. This unpredictable 

occurrence means that the beads are thus unable to be counted properly. These results are 

discarded and not included in the final analysis. 

Validity of this technique is examined using a technique known as “spiking”233. This 

involves adding a known amount of mediator to unprocessed sputum, processing the 

sputum as usual and then measuring recovery by immunoassay. Unspiked sputum is 

simultaneously processed and assayed so that percentage recovery can be calculated. This 

technique is however, extremely expensive and due to the limited resources of this study 

it was not possible to run spiking experiments specifically for these mediators. However, 

previous work in our department has shown good levels of recovery, consistent with 

those described by other centres233, 234. Despite this, measuring mediators in sputum 

supernatant remains difficult and controversial, and all results must be interpreted with 

considerable caution.
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4.3.1.2.ii Enzyme-linked immunoassay, ELISA

4.3.1.2.ii.a Leukotriene (LT)B4

This assay is based a competitive binding technique during which any LTB4 present in a 

sample competes with a set amount of alkaline phosphatase-labelled LTB4 conjugate for 

sites on a mouse monoclonal antibody (R&D Systems, Abingdon, UK).  The microplate 

has been coated with goat anti-mouse antibody, and during incubation the mouse 

monoclonal antibody will become bound to the coating antibody.  The sample and 

conjugate compete for binding sites on the antibody.  Following a wash step to remove 

excess conjugate and any unbound sample, a substrate solution is added to the wells in 

order to determine the bound enzyme activity.  Following colour development the 

absorbance is read immediately at 405 nm.  As the assay is a competitive ELISA, the 

intensity of the colour in a given well is inversely proportional to the concentration of 

LTB4 in that sample.

The sputum supernatants were diluted 1:2 with the supplied assay buffer before use in 

this assay. The microplate was marked into sections to contain the samples and standards, 

and wells for total activity, non-specific binding, maximum binding and substrate blank 

were also included.  Assay buffer was added to all wells, excluding the wells reserved for 

total activity and substrate blank.  The standards and samples were then added to the 

allocated wells, with the LTB4 conjugate being added directly afterwards.  The LTB4

conjugate was not added to the total activity or substrate blank wells.   LTB4 antibody 

solution was then added to the wells, excluding the non-specific binding, total activity 
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and substrate blank wells.  The plate was left to incubate at room temperature for 2 hours, 

on a horizontal orbital microplate shaker.  A wash removed any unbound sample or 

excess conjugate.  At this stage, LTB4 conjugate was added to the total activity wells.  

The substrate para-nitrophenyl phosphate was added, and allowed to incubate for 1 hour 

at room temperature on the benchtop.  When the colour had developed sufficiently, a 

solution of 1N sulphuric acid stopped the reaction and stabilized the colour in each well, 

and the plate was read immediately.

A standard curve was generated which allowed the calculation of the concentration of 

LTB4 in each sample, after the non-specific binding optical density was subtracted from 

each result.

LTB4 is a competitive ELISA, and requires the use of various internal controls mentioned 

above (total activity, non-specific binding, and substrate blanks) in duplicate, as the 

manufacturer states that results are only valid in the presence of these controls. This 

meant that a smaller total number of samples could be run in the analysis, so not all 

patient samples could be included.

4.3.1.2.ii.b Myeloperoxidase

Myeloperoxidase (MPO) was measured using a test kit developed for the quantitative 

measurement of natural human MPO (Cambridge Bioscience, Cambridge, UK).  The 

assay was based on the sandwich ELISA technique.  The sputum supernatants were 
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diluted 1:5 with the supplied dilution buffer before use in this assay. Samples and 

standards are incubated in microtitre wells coated with antibodies recognising human 

MPO.  During this incubation step, the solid-bound antibody captures any MPO present 

in the sample.  Unbound material present in the sputum supernatant sample is removed 

by washing.  Biotinylated second antibody to human MPO is then added to the wells.  If 

human MPO was present in the sample, the biotinylated-antibodies will bind to the 

captured MPO.  Excess biotinylated-antibodies are removed by washing.  Streptavidin-

peroxidase conjugate is applied to the wells.  This conjugate reacts specifically with the 

biotinylated-antibody bound onto the detected MPO.  Excess streptavidin-peroxidase 

conjugate is removed by washing, and the substrate, tetramethylbenzidine is added to the 

wells.  A coloured product develops, and the amount of colour that forms is directly 

proportional to the concentration of MPO present in the sample.  The enzymatic reaction 

is stopped by the addition of citric acid and the absorbance at 450 nm is measured with a 

spectrophotometer.  A standard curve is obtained by plotting the absorbance values 

versus the corresponding concentrations of defined standards.

4.4 Measurement of exhaled Nitric Oxide

Exhaled NO (FENO) is detected using chemiluminescence and detection depends on the 

photochemical reaction between NO and ozone generated in the analyser 235. The 

specificity of exhaled NO measurements by chemiluminescence has been confirmed by 

gas chromatography-mass spectrometry 236. FENO was measured on a chemiluminescence 

analyser (LR2149, Logan Research Ltd., Rochester, Kent).  In 2005 the American 
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Thoracic Society and European Respiratory Society published joint guidelines for 

measurement of FENO
49. These superseded previous guidelines 237, 238.

Measurement of FENO requires slow expiration against resistance, which creates back 

pressure to close the soft palate and thus eliminates contamination of exhaled NO by 

nasal NO 239 (figure 4.6).
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Figure 4.6 Exhaled nitric oxide  testing

4.5 Allergen-driven blood  lymphocyte proliferative response in vitro.

Peripheral blood mononuclear cells were separated by density gradient centrifugation 

over lymphoprep, ficol-isopaque SG 1.088.  The mononuclear cells were harvested, 

washed, counted and at 106 cells/mL cultured in vitro with a growth medium of RPMI, 

10% autologous plasma, under penicillin and streptomycin cover for 3 days with or 

without mitogen (phytohaemagglutinin, PHA), or solid-phase anti-CD3/28 bound onto 

microbeads, in a humidified atmosphere at 37 °C with 5% CO2. Proliferation was 

measured by incorporation of tritiated thymidine (0.5 uCi) for 16 hours before harvest 

onto glass-fibre filters and counting in a beta counter. 
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4.6 Other immunological tests in blood 

Serum was analysed for C-reactive protein (CRP) concentration in the Routine Lipids 

section of the Biochemistry Department of Glasgow Royal Infirmary (high sensitivity 

assay, Roche/Hitachi, Roche Diagnostics GmbH, Mannheim, Germany). High sensitivity 

commercial ELISA kits were used for a variety of serum mediators according to 

manufacturers’ instructions (IL-6 and TNF-α, Quantikine; sICAM-1, Parameter; both R 

& D Systems Europe Ltd, Abingdon). 

4.7 Measurement of renal and liver safety parameters, and lipids in blood

Routine biochemistry laboratory samples were sent to the hospital laboratory for 

screening, at the end of treatment periods A and B, and before starting treatment period 

B. 

Blood for renal function (urea and electrolytes) and liver function tests (LFTs) were 

performed before and after each treatment period and creatinine kinase (CK) was 

performed at baseline. If a patient complained of muscle pain or excessive muscle 

fatigue, CK was repeated at that time. Cholesterol, triglycerides and HDL-cholesterol 

were measured in the Gartnavel General Biochemistry Laboratory at screening, at the end 

of treatment periods A and B, and before starting treatment period B. 
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4.8 Equivalent steroid dose

Equivalent steroid dose was calculated according to GINA guidelines 1 (see table 4.2). 

Patients with a beclomethasone equivalent of 1000mcg or less were eligible for the trial. 

Table 4.2 Equivalent inhaled corticosteroid doses (from GINA 1)

Drug Multiplication factor to calculate beclomethasone equivalent

Beclomethasone 1

Budesonide 1

Qvar 2

Fluticasone 2
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5. RESULTS

5.1 Introduction

4303 patients were invited to participate in the trial, from 39 practices and hospital 

outpatients. Of these, 439 expressed an interest in taking part. 140 were excluded prior to 

clinical screening by telephone, for reasons such as pregnancy or lactation, current statin 

medication, diagnoses of COPD, non-attendance at appointments or because they were 

unable to be contacted. Of the 137 subjects that attended screening at Gartnavel General 

Hospital, 54 were recruited to the trial between August 2005 and August 2006 (table 5.1).

Table 5.1 Reasons for exclusion of screened patients from study

Reason for exclusion from study Number of patients

Withdrew or unable to provide consent 20

Negative allergy test 24

Negative spirometry 16

Unsuitable medication 3

Declined to take part 20

5.2 Flow of participants

The progress of participants through the trial is shown in the CONSORT diagram (figure 

5.1).
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Figure 5.1 CONSORT diagram showing flow of patients through study

Patients invited n = 4303

Suitable for screening n = 299

Positive responses n = 439

Screened n = 137

Randomized n = 54

Competed trial n = 48

Analyzed for primary endpoint n = 46

Not eligible n = 140

Declined screening n = 81

Excluded n = 83

Lost to follow-up n = 3
Discontinued n = 3

Final diary missing n = 2
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5.3 Baseline characteristics

5.3.1 Demographics

Baseline demographic characteristics of the 54 subjects who underwent randomisation 

were similar (table 5.2). 

Patients taking atorvastatin before placebo were younger than the group taking placebo 

first, mean age 39.4 years compared with 45.9 years. This difference was non-significant 

(p=0.082). There were equal numbers of women in both groups (42.9% vs. 42.3%) and 

all patients were white. 10.7% in the atorvastatin and 11.5% in the placebo group were 

former smokers. The mean duration of asthma was 24.9 years.

Mean alcohol consumption was 8.2 units per week, this was similar in both groups. 

88.9% of patients had positive IgE serology (total IgE >120 IU/L or specific IgE for 

house dust mite or grass pollen >0.35 IU/L), similar in both groups (85% for atorvastatin, 

92.3% for placebo). Finally, mean equivalent beclomethasone dose was 476 mg (SD 

283), with no significant differences between groups.
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Table 5.2: Demography at baseline mean (SD) in all patients, and sub divided into those randomised to received 

atorvastatin then placebo, and those randomised to receive placebo then atorvastatin

Variable Total

(n=54)

Atorvastatin > 

Placebo

(n=28)

Placebo > 

Atorvastatin

(n=26)

t-test

(p value)

Male sex, n (%) 23 (42.59) 12 (42.9) 11 (42.3) 0.968

Ex-smoker, n (%) 6 (11.11) 3 (10.7) 3 (11.5) 0.923

Age in years (SD) 42.5 (13.7) 39.4 (13.4) 45.9 (13.5) 0.082

Asthma duration years

(SD)

24.9 (16.6) 24.1 (15.0) 25.7 (18.4) 0.730

Equivalent

beclomethasone dose,  

mg (SD)

476 (283) 441 (309) 513 (251) 0.351

Positive IgE testing, n (%) 48 (88.9) 24 (85.7) 24 (92.3) 0.438

Alcohol units (SD) 8.2 (8.0) 9.1 (8.3) 7.2 (7.7) 0.387

5.3.2 Baseline outcome measures

5.3.2.1 PEF

Baseline PEF measurements of randomised patients are listed in table 5.3.  Mean (SD) 

morning PEF measurements were 390.3 L/min (103.5) (Table 5.3). Values in the group 

commencing on atorvastatin and placebo were similar (395.6 L/min (107.8) vs. 384.6 

L/min (100.5)). Evening PEF measurements were also similar (overall mean 403.3 L/min 

(101.4), atorvastatin 408.9L/min (109.4), placebo 397.4 L/min (93.9)). 
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Table 5.3 Baseline PEF

Variable Total Atorvastatin > 

Placebo

Placebo > 

Atorvastatin

n Mean Std 

Dev

n Mean Std 

Dev

n Mean Std 

Dev

Morning PEF 

(L/min)

54 390.3 103.5 28 395.6 107.8 26 384.6 100.5

Evening PEF 

(L/min)

52 403.3 101.4 27 408.9 109.4 25 397.4 93.9

5.3.2.2 Reliever inhaler use

Baseline use of reliever inhalers was similar between groups. Total mean (SD) number of 

puffs of reliever inhaler was 2.3 (2.0). 

Table 5.4 Baseline reliever inhaler use

Variable Total Atorvastatin > 

Placebo

Placebo > 

Atorvastatin

n Mean Std 

Dev

n Mean Std 

Dev

n Mean Std 

Dev

Puffs of reliever 

inhaler used daily

51 2.3 2.0 27 2.1 2.1 24 2.5 2.0

5.3.2.3 Asthma severity 

Mean (SD) ATS severity score was 3.3 (1.3) (Table 5.5). There was no significant 

difference in score between groups.
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Table 5.5 Baseline ATS severity score

Variable Total Atorvastatin > 

Placebo

Placebo > 

Atorvastatin

n Mean Std 

Dev

n Mean Std 

Dev

n Mean Std 

Dev

ATS severity score 54 3.3 1.3 28 3.1 0.9 26 3.5 1.5

5.3.2.4 Asthma Control Questionnaire (ACQ) Score

Mean (SD) ACQ score was 1.5 (0.8) at baseline (Table 5.6). There was no significant 

difference between groups.

Table 5.6 Baseline Asthma Control Score

Variable Total Atorvastatin > 

Placebo

Placebo > 

Atorvastatin

n Mean Std 

Dev

n Mean Std 

Dev

n Mean Std 

Dev

ACQ 54 1.5 0.8 28 1.5 0.8 26 1.6 0.8

5.3.2.5 FEV1

Table 5.7. Mean (SD) FEV1 pre-salbutamol was 2.78 L (0.85) with no difference between 

groups, mean post-salbutamol was 3.18 L (0.84). This equates to a mean reversibility of 

14.9% (11.7). Mean percentage predicted FEV1was 85.7% (19.3), comparable between 

groups.
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Table 5.7 Baseline FEV1 and reversibility 

Variable Total Atorvastatin > 

Placebo

Placebo > 

Atorvastatin

n Mean Std 

Dev

n Mean Std

Dev

n Mean Std 

Dev

FEV1 pre-salbutamol (L) 54 2.78 0.85 28 2.96 0.91 26 2.59 0.74

FEV1 post-salbutamol (L) 54 3.18 0.84 28 3.33 0.98 26 3.02 0.65

Predicted FEV1 (%) 54 85.7 19.3 28 86.9 17.3 26 84.4 21.6

FEV1 reversibility (%) 54 14.9 11.7 28 13.3 9.4 26 17.0 13.8

5.3.2.6 PEF (spirometry)

Mean (SD) PEF when measured at the clinic by spirometry was 426.6 L/min (130.4) pre-

salbutamol, and 499.8 L/min (133.4) post-salbutamol. Mean percentage predicted PEF 

(pre-salbutamol) was 92.3% (22.9), which was similar in both groups (Table 5.8).

Table 5.8 Baseline PEF (spirometry)

Variable Total Atorvastatin > 

Placebo

Placebo > 

Atorvastatin

n Mean Std 

Dev

n Mean Std 

Dev

n Mean Std 

Dev

Spirometry PEF 

pre-salbutamol (L/min)

54 426.6 130.4 28 434.2 122.2 26 418.3 140.8

Spirometry PEF post-

salbutamol (L/min)

54 499.8 133.4 28 505.9 138.9 26 493.3 129.7

Predicted PEF (%) 54 92.3 22.9 28 91.7 19.2 26 93.0 26.7
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5.3.2.7 FVC

Mean (SD) FVC pre-salbutamol was 3.70L (1.10), post-salbutamol was 4.03L (1.04). 

Mean percentage predicted FVC was 95.8% (20.2) (Table 5.9). 

Table 5.9 Baseline FVC

Variable Total Atorvastatin > 

Placebo

Placebo > 

Atorvastatin

n Mean Std 

Dev

n Mean Std 

Dev

n Mean Std 

Dev

FVC pre-

salbutamol (L)

54 3.70 1.10 28 3.98 1.26 26 3.41 0.82

FVC post-

salbutamol (L)

54 4.03 1.04 28 4.20 1.23 26 3.85 0.80

Predicted FVC (%) 54 95.8 20.2 28 98.5 20.6 26 92.8 19.6

5.3.2.8 FEF25-75

Mean (SD) FEF25-75 pre-salbutamol was 2.35 L/sec (1.09) (Table 5.10). Post-salbutamol 

was 2.87 L/sec (1.11). Mean percentage predicted FEF25-75 was 60.6% (25.0), which was 

comparable between groups.
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Table 5.10 Baseline FEF25-75

Variable Total Atorvastatin > 

Placebo

Placebo > 

Atorvastatin

n Mean Std 

Dev

n Mean Std 

Dev

n Mean Std 

Dev

FEF25-75 pre-salbutamol 

(L/sec)

54 2.35 1.09 28 2.40 1.04 26 2.23 1.15

FEF25-75 post-salbutamol 

(L/sec) 

54 2.87 1.11 28 3.03 1.18 26 2.70 1.04

Predicted FEF25-75 

(%)

54 60.6 25.0 28 59.4 20.2 26 61.8 29.7

5.3.2.9 FEV1/FVC ratio

Mean (SD) pre-salbutamol FEV1/FVC ratio was 75.5% (9.8) (Table 5.11). Mean post-

salbutamol FEV1/FVC ratio was 79.1% (8.2). 

Table 5.11 Baseline FEV1/FVC ratio

Variable Total Atorvastatin > 

Placebo

Placebo > 

Atorvastatin

n Mean Std 

Dev

n Mean Std 

Dev

n Mean Std 

Dev

FEV1/FVC ratio 

pre-salbutamol (%)

54 75.5 9.8 28 75.2 8.8 26 75.7 10.9

FEV1/FVC ratio 

post-salbutamol (%)

54 79.1 8.2 28 79.6 8.0 26 78.6 8.6
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5.3.2.10 Methacholine responsiveness

Geometric mean (SD) methacholine responsiveness as measured by PC20 was 

2.23mg/mL (3.65) (Table 5.12). Initial results were slightly lower in the atorvastatin 

group compared with the placebo group [1.95 mg/mL (4.03) vs. 2.69 mg/mL (4.23)].

Table 5.12: Baseline methacholine responsiveness

Variable Total Atorvastatin > Placebo Placebo > Atorvastatin

n Geometric 

mean

Std 

Dev

n Geometric

mean

Std 

Dev

n Geometric 

mean

Std 

Dev

Methacholine 

responsiveness

(PC20, mg/mL)

43 2.23 3.65 22 1.95 4.03 21 2.69 4.23

5.3.2.11 Asthma Quality of Life Questionnaire (AQLQ) 

AQLQ score was similar between groups at baseline (Table 5.13). Total score was 5.55 

(range 1-7). Total score and sub-scores of symptoms (5.38), activities (5.88), emotional 

well-being (5.39) and environmental quality of life (5.34) showed no obvious differences 

between groups. 



119

Table 5.13 Baseline AQLQ scores (One patient in the placebo arm completed their questionnaire incorrectly).

Variable Total Atorvastatin > Placebo Placebo > Atorvastatin

n Median IQR n Median IQR n Median IQR 

AQLQ 53 5.75 5.03, 6.19 28 5.77 4.92, 6.17 25 5.75 5.09, 6.28

AQLQ- symptoms 53 5.38 4.83, 6.08 28 5.50 4.58, 6.08 25 5.67 5.33, 6.08

AQLQ - activities 53 5.88 5.50, 6.45 28 6.18 5.38, 6.45 25 6.27 5.55, 6.55

AQLQ - emotions 53 5.39 4.60, 6.40 28 5.70 4.4, 6.3 25 5.80 4.80, 6.60

AQLQ - environment 53 5.34 4.75, 6.25 28 5.63 4.63, 6.13 25 5.50 4.75, 6.25

5.3.3 Inflammatory markers

The baseline values for various inflammatory markers in the groups randomised to start 

with either atorvastatin or placebo are described below. 

5.3.3.1 Sputum markers

5.3.3.1.a Sample quality

Median total filtrate volume was 18.5 mL (IQR 8.0 to 35.5). This was similar between 

groups. Additionally, indicators of sputum quality such as total cells recovered (2 

x106/mL, 0.9 to 6.7), and viability (77.0%, 65.5 to 85.5), were also comparable (Table 

5.14).
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Table 5.14 Baseline sputum sample quality. The lower number of samples in absolute number of cells counted 

represents samples discarded due to inadequate quality, as discussed in the methodology section.

Variable Total Atorvastatin Placebo

n Median IQR n Median IQR n Median IQR 

Filtrate volume (mL) 36 18.5 8.0, 35.5 19 20.0 8.0, 41.0 17 17.0 8.0, 35.0

Total number of cells 

recovered from sample 

(x106/mL)

36 2.0 0.9, 6.7 19 1.8 0.9, 4.8 17 2.7 0.9, 7.0

Viability (%) 36 77.0 65.5, 85.5 19 75.0 67.0, 85.0 17 78.0 64.0, 88.0

Total cell count per ml 

sputum filtrate (x106/mL)

36 0.14 0.07, 0.28 19 0.14 0.07, 0.22 17 0.12 0.07, 0.34

Total viable cells 

recovered from sample 

(x106/mL)

36 1.4 0.8, 4.3 19 1.4 0.7, 3.0 17 1.9 0.9, 4.9

Absolute number of cells

counted per slide

30 576 501, 643 16 581 520, 671 14 566 481, 609

5.3.3.1.b Cell counts

No significant difference was seen between groups for all cell counts (Table 5.15). 

Median macrophages were 196.5 x104 cells per slide (IQR 101.3 to 235.0). Neutrophils 

were 129.8 x104 cells per slide (60.0 to 186.5), eosinophils were 6.4 x104 cells per slide 

(2.0 to 16.3) and lymphocytes were 2.5 x104 cells per slide (1.0 to 5.5). Bronchial 

epithelial cells accounted for 44.0 x104 cells per slide (12.0 to 60.3) and total non-

squamous cells were 405.3 x104 cells per slide (401.5 to 410.0).
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Table 5.15 Baseline values for sputum cell counts 

5.3.3.1.c Cell count proportions

There was no significant difference between patients starting with atorvastatin and those 

starting with placebo for any of the different cell types in sputum analysis (Table 5.16). 

Variable Total Atorvastatin Placebo

n Media

n

IQR n Median IQR n Median IQR 

Macrophages 

(x104 cells)

30 196.5 101.3, 235.0 16 191.0 167.3, 217.0 14 213.0 95.5, 254.0

Neutrophils

(x104 cells)

30 129.8 60.0, 186.5 16 129.8 57.5, 177.8 14 146.0 66.0, 268.0

Eosinophils

(x104 cells)

30 6.4 2.0, 16.3 16 4.9 1.3, 18.9 14 6.4 4.0, 13.5

Lymphocytes

(x104 cells)

30 2.5 1.0, 5.5 16 2.6 1.6, 8.3 14 2.5 1.0, 4.5

Bronchial 

epithelial cells

(x104 cells)

30 44.0 12.0, 60.3 16 50.8 23.5, 71.1 14 19.5 11.5, 50.0

Total non-

squamous cells

(x104 cells)

30 405.3 401.5, 410.0 16 407.8 402.5, 413.3 14 403.5 401.5, 409.5

Squamous 

epithelial cells

(x104 cells)

30 178.3 110.5, 257.0 16 181.3 118.0, 269.5 14 173.5 86.0, 212.0



122

Median macrophages represented 49.5% (IQR 30.5 to 57.5) of total cell count. 

Neutrophils accounted for 35.5% (14.5 to 48.3), eosinophils 1.5% (0.6 to 5.0), 

lymphocytes 0.7% (0.3 to 1.1) and bronchial epithelial cells 10.8% (3.0 to 16.0). Median 

squamous cells as a proportion of absolute cell count were 30.8% (20.8 to 38.5). 

Table 5.16 Baseline values for sputum cell count proportions

Variable Total Atorvastatin Placebo

n Median IQR n Median IQR n Median IQR 

Macrophage % 30 49.5 30.5, 57.5 16 47.3 40.5, 53.8 14 52.8 24.5, 61.5

Neutrophil % 30 35.5 14.5, 48.3 16 35.5 14.0, 43.8 14 35.8 14.8, 67.5

Eosinophil % 30 1.5 0.6, 5.0 16 1.1 0.3, 5.0 14 2.0 0.8, 3.0

Lymphocyte % 30 0.7 0.3, 1.1 16 0.8 0.5, 1.9 14 0.6 0.3, 1.0

Bronchial epithelial 

cells %

30 10.8 3.0, 16.0 16 12.5 5.5, 21.8 14 5.0 2.5, 13.5

Squamous cells as % 

of absolute count

30 30.8 20.8, 38.5 16 31.0 22.8, 39.8 14 30.0 20.0, 37.0

5.3.3.1.d Supernatant analysis

More variability was observed in the supernatant samples than other baseline values. 

Sputum LTB4 was higher in the atorvastatin group than the placebo group [atorvastatin 

median 216.8 ng/mL (IQR 66.5 to 303.5) vs. placebo median 162.0 ng/mL (73.5 to 

222.5), as was MPO [54.4 ng/mL (15.4 to 85.8) vs. 44.2 ng/mL (37.0 to 80.4)]. In 

contrast, IL-1b was higher in the placebo group [atorvastatin median 41.2 pg/mL (28.6 to 
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91.9) vs. 162.8 pg/mL (61.9 to 223.2), as was IL-1RA [22.8 ng/mL (13.3 to 40.7) vs. 41.2 

ng/mL (25.8 to 52.6), IL-6 [30.6 pg/mL (15.0 to 59.2) vs. 91.9 pg/mL (21.7 to 161.2), IL-

17 [15.9 pg/mL (3.6 to 49.9) vs. 97.7 pg/mL (32.8 to 159.7), TNF-α [7.7 pg/mL (2.8 to 

17.7) vs. 43.3 pg/mL (9.2 to 61.0), IFNγ [9.7 pg/mL (3.3 to 23.9) vs. 40.8 pg/mL (19.2 to 

85.5), GM-CSF [126.9 pg/mL (77.6 to 184.2) vs. 304.0 pg/mL (134.3 to 488.3), MIP1α

[118.2 pg/mL (61.6 to 276.7) vs. 363.9 pg/mL (139.0 to 769.6), and CCL2 [195.1 pg/mL 

(123.2 to 368.5) vs. 332.5 pg/mL (220.7 to 616.9). Finally, IL-8 was similar between 

groups [1.4 ng/mL (0.7 to 9.6) vs. 2.0 ng/mL (1.0 to 4.7)] (Table 5.17).
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Table 5.17 Baseline values for sputum supernatant inflammatory markers

Variable Total Atorvastatin Placebo

n Median IQR n Median IQR n Median IQR 

LTB4 (ng/mL) 37 179.0 73.5, 276.0 20 216.8 66.5, 303.5 17 162.0 73.5, 222.5

MPO (ng/mL) 37 47.8 32.6, 80.4 20 54.4 15.4, 85.8 17 44.2 37.0, 80.4

IL-1b (pg/mL) 37 76.4 38.9, 167.2 20 41.2 28.6, 91.9 17 162.8 61.9, 223.2

IL-1RA (ng/mL) 37 27.8 18.8, 47.0 20 22.8 13.3, 40.7 17 41.2 25.8, 52.6

IL-6 (pg/mL) 37 35.2 19.5, 105.6 20 30.6 15.0, 59.2 17 91.9 21.7, 161.2

IL-8 (ng/mL) 37 1.9 0.8, 5.8 20 1.4 0.7, 9.6 17 2.0 1.0, 4.7

IL-17 (pg/mL) 37 32.8 3.6, 137.9 20 15.9 3.6, 49.9 17 97.7 32.8, 159.7

TNF-α (pg/mL) 37 11.4 4.6, 46.5 20 7.7 2.8, 17.7 17 43.3 9.2, 61.0

IFN-γ (pg/mL) 37 19.8 4.9, 71.6 20 9.7 3.3, 23.9 17 40.8 19.2, 85.5

GM-CSF 

(pg/mL)

37 149.5 93.0, 367.9 20 126.9 77.6, 184.2 17 304.0 134.3, 488.3

MIP1α (pg/mL) 37 167.4 74.5, 483.8 20 118.2 61.6, 276.7 17 363.9 139.0, 769.6

CCL2 (pg/mL) 37 257.5 143.7, 477.3 20 195.1 123.2, 368.5 17 332.5 220.7, 616.9
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5.3.3.2 Serum markers

No obvious differences were seen between groups for CRP [median 1.2 mg/L (IQR 0.6 to 

2.6)], ICAM-1 [209.4 ng/mL (185.7 to 245.2)], TNF-α [1.1 pg/mL (0.7 to 1.8)], IL-6 [1.1 

pg/mL (0.7 to 3.1)], IL-1 [101.0 pg/mL (7.6 to 172.1)] or IL-8 [14.3 pg/mL (0.6 to 24.0)]. 

IL-5 was higher in the atorvastatin group than the placebo group [median 11.2 pg/mL 

(1.9 to 20.2) vs. 3.3 pg/mL (1.9 to 31.2)]; as was IL-10 [median 49.5 pg/mL (10.5 to 

102.5) vs. 33.9 pg/mL (10.5 to 77.4)] (table 5.18).

Table 5.18 Baseline values for serum inflammatory markers. Different sample sizes reflect availability of 

results for different tests, as discussed in the methodology

Variable Total Atorvastatin Placebo

n Median IQR n Median IQR n Median IQR 

CRP (mg/L) 53 1.2 0.6, 2.6 28 1.3 0.9, 2.9 25 0.9 0.5, 2.3

ICAM-1 

(ng/mL)

54 209.4 185.7, 245.4 28 210.0 170.5, 244.8 26 209.4 191.2, 245.4

TNF-α (pg/mL) 54 1.1 0.7, 1.8 28 1.1 0.8, 1.9 26 1.0 0.7, 1.8

IL-6 (pg/mL) 54 1.1 0.7, 3.1 28 1.3 0.7, 3.0 26 1.1 0.7, 3.4

IL-1 (pg/mL) 47 101.0 7.6, 172.1 25 101.2 20.5, 164.9 22 99.5 7.6, 172.1

IL-5 (pg/mL) 47 7.3 1.9, 26.4 25 11.2 1.9, 20.2 22 3.3 1.9, 31.2

IL-8 (pg/mL) 47 14.3 0.6, 24.0 24 14.1 4.4, 22.9 23 14.3 0.6, 29.3

IL-10 (pg/mL) 46 36.1 10.5, 87.0 25 49.5 10.5, 102.5 21 33.9 10.5, 77.4
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5.3.3.3 Lymphocyte proliferation

There was no difference between groups for the control lymphocyte proliferation [median 

412 counts/min/well (IQR212 to 652). In contrast, testing using PHA gave lower results 

for the group starting with atorvastatin [36672 counts/min/well (2288 to 104773) vs. 

20721 counts/min/well (724 to 96458) for placebo], as did anti-CD3/28 [15681 

counts/min/well (2097 to 65625) vs. 7407 counts/min/well (487 to 50815)] (table 5.19). 

Table 5.19 Baseline values for lymphocyte proliferation

Variable Total Atorvastatin Placebo

n Median IQR n Median IQR n Median IQR 

Control 

(counts/min/well)

47 412 212, 652 25 440 267, 641 22 340 210, 652

PHA 

(counts/min/well)

47 36518 894, 

104642

25 36672 2288, 

104773

22 20721 724, 96458

Anti-CD3/28 

(counts/min/well)

47 13880 658, 

65625

25 15681 2097, 65625 22 7407 487, 50815

5.3.3.4 Exhaled gases

Total baseline median (IQR) exhaled Nitric Oxide (FENO) was 18.33 ppb, (10.05 to 

33.07). Exhaled carbon monoxide (CO) median was 4.38 ppm (3.83 to 5.07) (Table 

5.20). There was no difference between groups.
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Table 5.20 Baseline values for exhaled gases

Variable Total Atorvastatin Placebo

n Median IQR n Median IQR n Median IQR 

Exhaled NO 

(ppb)
53 18.33 10.05, 33.07 28 18.71 11.33, 44.1 25 17.1 9.13, 32.05

Exhaled CO 

(ppm)
53 4.38 3.83, 5.07 28 4.43 3.82, 5.13 25 4.35 3.93, 4.83

5.3.3.5 Biochemical indices

5.3.3.5.a Lipids

No difference between groups was seen in baseline serum triglycerides [median 1.3 

mmol/L (IQR 0.8 to 1.7)], cholesterol [5.1 mmol/L (4.5 to 5.9)] or HDL [1.3 mmol/L (1.1 

to 1.5)] (table 5.21).

Table 5.21 Baseline serum lipids. One value is missing for triglycerides in the atorvastatin group due to a lab 

error.

Variable Total Atorvastatin Placebo

n Median IQR n Median IQR n Median IQR

Triglycerides (mmol/L) 52 1.3 0.8, 1.7 26 1.3 0.7, 1.7 26 1.2 0.8, 1.7

Cholesterol (mmol/L) 53 5.1 4.5, 5.9 27 5.0 4.3, 6.1 26 5.1 4.6, 5.8

HDL (mmol/L) 53 1.3 1.1, 1.5 27 1.3 1.1, 1.7 26 1.3 1.2, 1.5
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5.3.3.5.b Renal function

There was no difference in baseline urea [median 4.6 mmol/L (IQR 4.0 to 6.1)], 

potassium [4.0 mmol/L (3.9 to 4.2)] or sodium [140 mmol/L (138 to 141)] (table 5.22).

Table 5.22 Baseline values for renal function. One value is missing for potassium in the placebo group due to a 

haemolysed sample.

5.3.3.5.c Liver function

No difference was observed between groups in baseline values for bilirubin [median 9 

μmol/L (IQR 7 to 11)], AST [22 IU/L (19 to 27)] or ALT [21 IU/L (17 to 34)] (table 

5.23).

Variable

Total Atorvastatin Placebo

n Median IQR n Median IQR n Median IQR

Urea 

(mmol/L)
53 4.6 4.0, 6.1 27 4.6 4.1, 6.4 26 4.6 3.9, 6.1

Potassium 

(mmol/L)
52 4.0 3.9, 4.2 27 4.0 3.9, 4.2 25 4.1 3.9, 4.2

Sodium 

(mmol/L)
53 140 138, 141 27 140 139, 141 26 140 138, 141
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Table 5.23 Baseline values for liver function. One value is missing for AST in the placebo group due to a 

haemolysed sample

Variable Total Atorvastatin Placebo

n Media

n

IQR n Media

n

IQR n Media

n

IQR

Bilirubin (μmol/L) 53 9 7, 11 27 9 6, 11 26 9 8, 11

AST (IU/L) 52 22 19, 27 27 22 19, 26 25 23 18, 28

ALT (IU/L) 53 21 17, 34 27 20 17, 33 26 23 16,35

5.4 Loss to follow-up

3 patients (5.5%) were lost to follow-up. 3 prematurely discontinued, with a further 2 

patients failing to return their final diary. Thus for the primary end point, 14.8% were 

effectively lost to follow-up. Loss to follow up of 5% or lower is usually of little concern, 

whereas a loss of greater than 20% means that readers should be concerned about the 

possibility of bias. Losses between 5 and 20% can still be a source of bias 240.

5.5 Compliance

5.5.1 Peak flow measurements

Compliance with measuring PEF can be a problem in all clinical trials. We attempted to 

minimise this by emphasising the importance of diary card completion. In this study, the 

number of missing results was equal in both placebo and atorvastatin arms at analysis 

(table 5.24). 
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Table 5.24 Summary of incomplete data from peak flow diaries (morning PEF). Note 6 patients were 

prematurely excluded from the trial, 3 lost to follow-up and 3 discontinued.

Stage of trial Included results 

(n)

Missing results (n)

Atorvastatin Randomisation 49 4

Week 8 46 7

Placebo Randomisation 54 0

Week 8 47 7

5.5.2 Tablets

All patients were asked to return any unused medication and the container at the end of 

each course of treatment (2 per patient). 75.7% of containers were returned. Compliance 

was calculated by comparing the number of tablets returned with the number issued. 

Mean compliance was 94.5% for atorvastatin and 96.6% for placebo.

Compliance from medication was also inferred by alteration in serum cholesterol and 

LFTs, discussed in the results section, below.

5.6 Carry over effect

Crossover trials are elegant because they remove patient variation by allowing the patient 

to be compared with themselves. This makes them more efficient than a parallel group 

study 241. The principle drawback of a crossover trial is the possibility of a “carry over” 

effect. This is minimized by the use of a “washout period” (in the case of this study, six 
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weeks). Treatment-period interaction analysis shows no evidence of carry over effect for 

any outcome (Appendix 5).

5.7 Results – Clinical 

5.7.1 Peak expiratory flow

The primary outcome was morning PEF at 8 weeks. At 8 weeks, the difference in mean 

morning peak expiratory flow, for atorvastatin as compared with placebo, did not differ 

between groups [treatment difference -0.5 L/min, 95% CI -10.6 to 9.6, p=0.921]. There were 

no significant changes at 2 or 4 weeks (table 5.25 and 2.26, figure 5.2 and 5.3). There was 

also no difference in evening PEF [treatment difference 4.6 L/min, -5.8 to 14.9, p=0.377] 

(table 5.25 and 2.26, figure 5.4 and 5.5).
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Table 5.25 Morning and evening PEF at weeks 0, 2, 4 and 8

Variable Atorvastatin

Week 0 Week 2 Week 4 Week 8

n Mean SD n Mean SD n Mean SD n Mean SD

Δ Diary 

morning 

PEF, L/min

49 389.6 115.7 47 384.3 111.4 39 383.9 111.0 46 387.0 106.5

Δ Diary 

evening

PEF, L/min

48 402.6 114 47 392.6 110.5 39 389.3 112.1 46 395.3 101.0

Placebo

Week 0 Week 2 Week 4 Week 8

n Mean SD n Mean SD n Mean SD n Mean SD

Δ Diary 

morning 

PEF, L/min

54 386.4 106.9 52 387.1 110.0 45 380.5 105.8 47 393.9 114.2

Δ Diary 

evening

PEF, L/min

53 401.0 105.6 52 399.5 114.4 45 395.7 109.5 47 403.8 116.3



133

Table 5.26 Morning and Evening PEF at week 8 for atorvastatin and placebo treatment, with treatment 

difference

Figure 5.2 Morning PEF at 2, 4 and 8 weeks for atorvastatin and placebo. Bars indicate standard deviation. No 

significant difference is seen between groups at any point. 
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Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Mean SD n Mean SD

Δ Diary morning 

PEF, L/min

46 387.0 106.5 47 393.9 114.2 -0.5 -10.6,  9.6 0.921

Δ Diary evening

PEF, L/min

46 395.3 101.0 47 403.8 116.3 4.6 -5.8, 14.9 0.377
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Figure 5.3 Box and whisker plot for morning PEF after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.921).

Figure 5.4 Evening PEF at 2, 4 and 8 weeks for atorvastatin and placebo. Bars indicated standard deviation. No 

significant difference is seen between groups at any point.
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Figure 5.5 Box and whisker plot for evening PEF after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.377).

5.7.2 Reliever inhaler use

There was no difference in reliever inhaler use at 2, 4 or 8 weeks [treatment difference at 

8 weeks 0.08 puffs of inhaler, 95% CI -0.41 to 0.57, p=0.745] (Table 5.27, Figure 5.6 and 

5.7).

Table 5.27 Reliever inhaler use at week 8 for atorvastatin and placebo treatment, with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Mean SD n Mean SD

Puffs of reliever inhaler 47 2.1 2.0 47 2.1 1.9 0.08 -0.41, 0.57 0.745
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Figure 5.6 Reliever inhaler use at 0, 2, 4 and 8 weeks. Bars indicate standard deviation. No significant 

difference is seen between groups at any point.
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Figure 5.7 Box and whisker plot for use of reliever inhaler after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *.

Mean is indicated by +. No significant difference is seen between groups (p=0.745).
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5.7.3 Spirometry

5.7.3.1 FEV1

FEV1 did not show a statistically significant difference after 8 weeks of atorvastatin  

[treatment difference 0.01 L (95% CI -0.08 to 0.10), p=0.815 pre-salbutamol, and -0.05 L 

(-0.12 to 0.03), p=0.205, post-salbutamol](table 5.28 and figure 5.8 and 5.9). The values 

were also considered as percentage predicted for an adult of the same age and height. 

Mean FEV1 % predicted (pre-salbutamol), did not differ between the atorvastatin and the 

placebo group [treatment difference -0.05% (-3.0 to 2.9), p=0.973] (table 5.28 and figure 

5.10). There was a non-significant trend towards lower reversibility in the atorvastatin 

group [treatment difference -3.0% (-6.4 to 0.3) p=0.074] (table 5.28 and figure 5.11). 

Table 5.28 FEV1 results for atorvastatin compared with placebo after 8 weeks, with treatment difference

Variable
Atorvastatin Placebo Treatment 

difference
95% CI

P 

valuen Mean SD n Mean SD

FEV1 pre salbutamol, L 48 2.77 0.83 50 2.71 0.79 0.01 -0.08, 0.10 0.815

FEV1 post salbutamol, L 49 3.06 0.83 50 3.12 0.80 -0.05 -0.12, 0.03 0.205

FEV1 % predicted 48 83.0 17.3 50 82.6 18.2 -0.05 -3.0, 2.9 0.973

FEV1 reversibility, % 48 15.0 11.7 50 17.5 15.6 -3.0 -6.4, 0.3 0.074
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Figure 5.8 Box and whisker plot for FEV1 pre-salbutamol after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.815).

Figure 5.9 Box and whisker plot for FEV1 post-salbutamol after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.205).
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Figure 5.10 Box and whisker plot for percentage predicted FEV1 after 8 weeks for atorvastatin and placebo. 

The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by 

*. Mean is indicated by +. No significant difference is seen between groups (p=0.973).

Figure 5.11 Box and whisker plot for FEV1 reversibility after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. A trend of borderline significance is seen between groups (p=0.074).
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5.7.3.2 Spirometry PEF

There was no difference in PEF measured during spirometry pre-salbutamol [treatment 

difference 4.8 L/min (95% CI -11.9 to 21.6) p=0.563] (table 5.29, figure 5.12). Post-

salbutamol PEF was slightly lower in the atorvastatin group [treatment difference -12.4 

L/min (25.5 to -0.8) p=0.064] (table 5.29, figure 5.13). Percentage PEF predicted pre-

salbutamol did not vary between groups [treatment difference 0.2% (-3.3 to 3.6) p=0.927] 

(table 5.29, figure 5.14).

Table 5.29 Spirometry PEF results for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable
Atorvastatin Placebo Treatment 

difference
95% CI

P 

valuen Mean SD n Mean SD

PEF during spirometry, 

L/min, pre-salbutamol
48 427.1 129.6 50 417.8 127.9 4.8 -11.9, 21.6 0.563

PEF during spirometry, 

L/min, post-salbutamol
49 482.4 135.5 50 491.4 128.9 -12.4 -25.5, 0.8 0.064

PEF % predicted 48 92.0 22.1 50 90.6 23.5 0.2 -3.3, 3.6 0.927
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Figure 5.12 Box and whisker plot for spirometry PEF pre-salbutamol after 8 weeks for atorvastatin and 

placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. No significant difference is seen between groups (p=0.563).

Figure 5.13 Box and whisker plot for spirometry PEF post-salbutamol after 8 weeks for atorvastatin and 

placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. A trend of borderline significance is seen between groups (p=0.064).
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Figure 5.14 Box and whisker plot for percentage predicted spirometry PEF pre-salbutamol after 8 weeks for 

atorvastatin and placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. 

Outliers are identified by *. Mean is indicated by +. No significant difference is seen between groups (p=0.927).

5.7.3.3 FVC

No effect of atorvastatin was seen in pre-salbutamol mean (SD) FVC [treatment 

difference 0.0 L (95% CI -0.1 to 0.1), p=0.627] (table 5.30, figure 5.15). Post-salbutamol 

FVC was slightly lower in the atorvastatin group [treatment difference -0.1 L (-0.2 to 

0.0), p=0.037] (table 5.30, figure 5.16). Percentage FVC predicted pre-salbutamol did not 

vary between groups [treatment difference -1.3% (-4.5 to 2.0) p=0.431] (table 5.30, figure 

5.17).
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Table 5.30 FVC results for atorvastatin compared with placebo after 8 weeks, with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Mean SD n Mean SD

FVC, pre-salbutamol, L 48 3.6 1.1 50 3.7 1.0 0.0 -0.1, 0.1 0.627

FVC, post-salbutamol, L 49 3.9 1.04 50 4.00 1.0 -0.1 -0.2, 0.0 0.037

FVC % predicted 48 92.9 16.5 50 93.8 18.1 -1.3 -4.5, 2.0 0.431

Figure 5.15 Box and whisker plot for FVC pre-salbutamol after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.627)
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Figure 5.16 Box and whisker plot for FVC post-salbutamol after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. A significant difference is seen between groups (p=0.037)

Figure 5.17 Box and whisker plot for percentage predicted FVC pre-salbutamol after 8 weeks for atorvastatin 

and placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. No significant difference is seen between groups (p=0.431).
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5.7.3.4 FEF25-75

No effect could be seen on mean FEF25-75 either pre-salbutamol [treatment difference 0.0 

L/sec (95% CI -0.2 to 0.2), p=0.871] (table 5.31, figure 5.18) or post-salbutamol 

[treatment difference 0.1 L/sec (-0.1 to 0.2), p=0.484] (table 5.31, figure 5.19). 

Percentage FEF25-75 predicted pre-salbutamol did not vary between groups [treatment 

difference 1.2% (-2.5 to 4.9) p=0.512] (table 5.31, figure 5.20).

Table 5.31 FEF25-75 results for atorvastatin compared with placebo after 8 weeks, with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Mean SD n Mean SD

FEF 25-75 pre-

salbutamol, 

(L/sec)

48 2.3 1.0 48 2.3 1.2 0.0 -0.2, 0.2 0.871

FEF 25-75 post-

salbutamol, 

(L/sec)

49 2.9 1.2 48 2.8 1.2 0.1 -0.1, 0.2 0.484

FEF 25-75 % 

predicted

47 57.9 21.4 48 56.8 23.3 1.2 -2.5, 4.9 0.512
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Figure 5.18 Box and whisker plot for FEF25-75 pre-salbutamol after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.871).

Figure 5.19 Box and whisker plot for FEF25-75 post-salbutamol after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.484).
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Figure 5.20 Box and whisker plot for percentage predicted FEF25-75 pre-salbutamol after 8 weeks for 

atorvastatin and placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. 

Outliers are identified by *. Mean is indicated by +. No significant difference is seen between groups (p=0.521).

5.7.3.5 FEV1/FVC ratio

Finally, no effect was seen on the mean FEV1/FVC ratio, either pre-salbutamol [treatment 

difference -28.6% (95% CI -71.1 to 13.8) p=0.181] (table 5.32 and figure 5.21) or post-

salbutamol [treatment difference -20.9% (-65.1 to 23.3) p=0.346] (table 5.32 and figure 

5.22).
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Table 5.32 FEV1/FVC ratio results for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Mean SD n Mean SD

FEV1/FVC pre-salbutamol, % 48 75.4 10.7 50 102.1 139.1 -28.6 -71.1, 

13.8

0.181

FEV1/FVC post-salbutamol, % 49 85.8 44.9 50 106.7 140.1 -20.9 -65.1, 

23.3

0.346

Figure 5.21 Box and whisker plot for FEV1/FVC ratio pre-salbutamol after 8 weeks for atorvastatin and 

placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. No significant difference is seen between groups (p=0.181).
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Figure 5.22 Box and whisker plot for FEV1/FVC ratio post-salbutamol after 8 weeks for atorvastatin and 

placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. No significant difference is seen between groups (p=0.346).

5.7.4 Asthma severity

No effect was seen on mean ATS score [treatment difference -0.16 (95% CI –0.49 to 

0.17) p=0.323] (table 5.33 and figure 5.23). 

Table 5.33 ATS score results for atorvastatin compared with placebo after 8 weeks, with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Mean SD n Mean SD

ATS 

score

48 3.2 1.6 50 3.4 1.4 -0.16 -0.49, 0.17 0.323
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Figure 5.23 Box and whisker plot for ATS score after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.323).

5.7.5 Asthma control questionnaire (ACQ) score

Statins showed no effect on ACQ score [treatment difference -0.03, (-0.28 to 0.21), 

p=0.783] (table 5.34, figure 5.24). 

Table 5.34 ACQ score results for atorvastatin compared with placebo after 8 weeks, with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P 

valuen Mean SD n Mean SD

ACQ 49 1.4 0.9 50 1.5 0.8 -0.03 -0.28, 0.21 0.783
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Figure 5.24 Box and whisker plot for ACQ score after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.783).

5.7.6 Asthma quality of life (AQLQ)

Total AQLQ score was not significantly different between atorvastatin and placebo 

[treatment difference 0.1 (-0.1 to 0.3) p=0.284] (table 5.35, figure 5.25). Subdivision into 

symptoms [0.1 (-0.1 to 0.4) p=0.316], activities [0.1 (-0.1 to 0.3) p=0.226], emotional well-

being [0.1 (-0.2 to 0.4) p=0.540] and environment [0.1 (-0.2 to 0.3) p=0.590] did not show 

any difference between the categories (table 5.35, figure 5.26).
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Table 5.35 AQLQ results for atorvastatin compared with placebo after 8 weeks, with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P 

valuen Median IQR n Median IQR

AQLQ - total 48 5.9 5.4, 

6.6

49 5.9 5.4, 

6.4

0.1 -0.1, 0.3 0.284

AQLQ – symptoms 48 6.0 5.2, 

6.4

49 5.8 5.1, 

6.3

0.1 -0.1, 0.4 0.316

AQLQ –

activity

48 6.3 5.5, 

6.9

49 6.3 5.6, 

6.6

0.1 -0.1, 0.3 0.226

AQLQ – emotional 

well-being

48 6.0 4.9, 

6.8

49 5.8 5.0, 

6.4

0.1 -0.2, 0.4 0.540

AQLQ –

environment

48 5.9 5.0, 

6.5

49 5.8 5.0, 

6.5

0.1 -0.2, 0.3 0.590
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Figure 5.25 Box and whisker plot for AQLQ after 8 weeks for atorvastatin and placebo. The boxes represent 

the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is indicated 

by +. No significant difference is seen between groups (p=0.284).
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Figure 5.26 Box and whisker plots for AQLQ components after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (symptoms p=0.316, activity p=0.226, 

emotional well-being p=0.540, environment p=0.590).

5.7.7 Methacholine responsiveness

No difference was seen in methacholine responsiveness (PC20) between patients on 

atorvastatin and placebo [treatment difference 0.05 mg/mL (95% CI -1.60 to 1.70), 

p=0.949] (table 5.36 and figure 5.27).
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Table 5.36 Methacholine responsiveness results for atorvastatin compared with placebo after 8 weeks, with 

treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Geometric

mean

Std 

dev

n Geometric

mean

Std 

dev

Methacholine 

responsiveness 

(PC20) mg/mL

38 2.64 4.68 39 2.21 5.81 0.05 -1.60, 

1.70

0.949

Figure 5.27 Box and whisker plot for methacholine responsiveness after 8 weeks for atorvastatin and placebo. 

The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by 

*. Mean is indicated by +. No significant difference is seen between groups (p=0.949).
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5.8 Biochemical outcomes 

5.8.1 Lipids

No difference was seen between atorvastatin and placebo for triglycerides [treatment 

difference -0.2 mmol/L (95% CI -0.5 to 0.1), p=0.106] on serum lipid testing (table 5.37, 

figure 5.21). However, a significant change was seen in cholesterol [-1.7 mmol/L (-1.9 to 

-1.5) p<0.0001] and HDL [-0.1 mmol/L (-0.3 to -0.0) p=0.026] (table 5.37, figure 5.28). 

This suggests good compliance with medication and a clear effect on lipid profile within 

the timescale of the trial.

Table 5.37 Serum lipid results for atorvastatin compared with placebo after 8 weeks, with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

Triglycerides 

(mmol/L)

47 0.9 0.6, 1.3 47 1.1 0.8, 1.6 -0.2 -0.5, 0.1 0.106

Cholesterol 

(mmol/L)

47 3.3 2.9, 3.9 47 5.1 4.5, 5.7 -1.7 -1.9, 

-1.5

<0.001

HDL 

(mmol/L)

47 1.2 1.1, 1.5 47 1.4 1.1, 1.7 -0.1 -0.3,

-0.0

0.026
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Figure 5.28 Box and whisker plots for serum lipids after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. Significant differences are present for Cholesterol and HDL but not triglycerides (triglycerides 

p=0.106, cholesterol p<0.001, HDL p=0.026).

5.8.2 Urea and electrolytes

No effect was seen on urea [treatment difference 0.1 mmol/L (95% CI -0.2 to 0.4) 

p=0.586], potassium [-0.1 mmol/L (-0.3 to 0.0) p=0.104] or sodium [0.4 mmol/L (-0.5 to 

1.3) p=0.340] (table 5.38, figure 5.29) during the trial.
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Table 5.38 Urea and electrolyte results for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

Urea (mmol/L) 46 5.1 4.0, 6.0 48 4.7 4.1, 5.8 0.1 -0.2, 0.4 0.586

Potassium 

(mmol/L)

46 4.0 3.8, 4.1 47 4.1 3.8, 4.3 -0.1 -0.3, 0.0 0.104

Sodium 

(mmol/L)

46 140.0 139.0, 141.0 48 139.0 138, 141 0.4 -0.5, 1.3 0.340

Figure 5.29 Box and whisker plot for urea and electrolytes after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant differences are seen (urea p=0.586, potassium p=0.104, sodium 

p=0.340).
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5.8.3 Liver function tests

Differences were statistically significant in serum bilirubin [treatment difference 1.8 

μmol/L (95% CI 0.7 to 2.9) p=0.002], AST [2.9 IU/L (0.8 to 4.9) p=0.007] and ALT [5.6 

IU/L (2.7 to 8.5) p<0.0001] (table 5.39, figure 5.30). This again suggests compliance 

with medication. These differences are clinically small and do not indicate any adverse 

events. 

Table 5.39 Liver function test results for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

Bilirubin 

(μmol/L)

47 10 8, 13 47 8 6, 10 1.8 0.7, 2.9 0.002

AST (IU/l) 47 23 18, 27 47 20 16, 24 2.9 0.8, 4.9 0.007

ALT (IU/l) 47 26 18, 35 47 20 15, 33 5.6 2.7, 8.5 <0.001
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Figure 5.30 Box and whisker plot for liver function tests after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. Significant differences are present in all cases (bilirubin p=0.002, AST p=0.007, ALT p<0.001).

5.9 Patients who did not complete the trial

5.9.1 Loss to follow up

Three patients were lost to follow up. A further two patients did not complete their final 

diary, so their PEF data could not be used for analysis of the primary end point.

5.9.2 Patient withdrawals

Three patients were withdrawn prematurely from the trial. One patient had medication-

related side-effects (muscle cramps). One patient had a severe exacerbation of asthma 
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very early in the trial and elected to withdraw from the trial and commence long-acting 

beta agonists. The patient was followed-up clinically until symptoms had improved.

Unfortunately, one patient also died during this study. Following post mortem his death 

was attributed to alcohol excess and aspiration of gastric contents. There was no evidence 

to suggest that asthma played any part in his death.

5.10 Adverse events

5.10.1 Exacerbation rates

The rate of exacerbation is intended to measure the probability that a patient who is 

currently exacerbation-free will experience an exacerbation within a small time 

interval 2, 40. In a cross-over study, the important comparison is between exacerbation 

rates in the two separate arms of the study. Numbers of both mild and severe 

exacerbations were similar between the two groups (table 5.40).

Table 5.40 Mild and severe exacerbations for atorvastatin and placebo

Treatment Number of mild 

exacerbations (%)

Number of severe 

excerbations (%)

Atorvastatin (n=52) 33 (63.5) 1 (1.9)

Placebo (n=54) 38 (70.4) 1 (1.9)
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5.10.2 Asthma related adverse events

In addition to exacerbation rates, treatment with oral steroids, unscheduled GP visits, GP 

home visits, Accident & Emergency visits and hospital admissions for asthma or 

respiratory symptoms were measured. Frequency of these events was similar between 

groups (table 5.41).

Table 5.41 Asthma related adverse events

Event Total Atorvastatin Placebo

Oral steroid 

treatment

1 1 0

Unscheduled GP 

appointment

3 1 2

GP home visit 0 0 0

A&E visit 3 2 1

Hospital admission 0 0 0

Total asthma 

related adverse 

events

7 4 3

5.10.3 Possible drug related adverse events

Possible drug-related adverse events occurred on 38 occasions for patients taking 

atorvastatin and on 46 occasions for placebo. There were no striking differences between 

groups, including episodes of muscle cramps. All adverse events are listed in table 5.42.
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Table 5.42 Adverse events in trial, comparing atorvastatin with placebo. The different denominators reflect the 

fact that two patients left the trial before receiving atorvastatin.

Event name Atorvastatin 

Number of events (% total)

n=52

Placebo

Number of events (% total)

n=54

Any adverse event 38 (73.1) 46 (85.2)

Muscle cramp 3 (5.8) 5 (9.3)

GI upset 7 (13.5) 7 (13.0)

Hayfever 0 (0.0) 2 (3.7)

Headache 7 (13.5) 7 (13.0)

Insomnia 0 (0.0) 1 (1.9)

Joint pain 7 (13.5) 8 (14.8)

Pins and needles 1 (1.9) 2 (3.7)

Tiredness 1 (1.9) 4 (7.4)

UTI 1 (1.9) 2 (3.7)

Ankle swelling 1 (1.9) 0 (0.0)

Breast pain 0 (0.0) 1 (1.9)

Chest tightness 1 (1.9) 0 (0.0)

Cough 0 (0.0) 1 (1.9)

Death 0 (0.0) 1 (1.9)

Depression 1 (1.9) 0 (0.0)

Dermatitis 2 (3.8) 1 (1.9)

Dizziness 0 (0.0) 2 (3.7)

Conjunctivitis 1 (1.9) 1 (1.9)

Hernia 0 (0.0) 1 (1.9)

Mouth swelling 1 (1.9) 0 (0.0)
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Event name Atorvastatin 

Number of events (% total)

n=52

Placebo

Number of events (% total)

n=54

Nocturia 2 (3.8) 0 (0.0)

Nosebleed 0 (0.0) 2 (3.7)

Palpitations 1 (1.9) 0 (0.0)

Rectal bleeding 0 (0.0) 1 (1.9)

Rash 0 (0.0) 1 (1.9)

Sinusitis 1 (1.9) 1 (1.9)

Sore throat 2 (3.8) 2 (3.7)

Weak legs 0 (0.0) 1 (1.9)

5.11 Clinical results - Summary

A statistically significant difference was seen in post-salbutamol FVC, which was lower 

in the atorvastatin group. No other statistical or clinical difference can be seen between 

patients treated with eight weeks atorvastatin and placebo, although there was a non-

significant trend towards lower post-salbutamol PEF and lower reversibility in the 

atorvastatin-treated group. These findings are clinically insignificant but may indicate a 

subtle effect on lung function, or may simply be artefact. Serum biochemistry indicates 

compliance with medication. 
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5.12 Results – inflammatory markers

5.12.1 Sputum cell differential 

5.12.1.1 Sputum quality indicators

Results are summarised in table 5.44. Total sputum cell count was unchanged between 

the two groups [treatment difference -0.1 x106 cells (95% CI -0.1 to 0.0), p=0.090]. There 

was no difference in cell viability [treatment difference 1.6% (-5.8 to 8.9), p=0.669], nor 

in total number of cells recovered [treatment difference -2.4 x106 cells (-6.7 to 1.9) 

p=0.257] or total viable cells recovered [treatment difference -2.0 x106 (-5.2 to 1.2) 

p=0.209] (table 5.43). 4 samples in the atorvastatin group and 6 samples in the placebo 

group were of insufficient quality for further analysis (as defined by the criteria in section 

4.3.1, above).

Table 5.43 Sputum quality indicators for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P 

valuen Median IQR n Median IQR

Total cell count per ml 

sputum filtrate (x106/mL)

40 0.1 0.1, 0.2 38 0.1 0.1, 0.3 -0.1 -0.1, 0.0 0.090

Viability (%) 40 71.0 66.0, 81.0 38 70.0 60.0, 80.0 1.6 -5.8, 8.9 0.669

Total number of cells 

recovered from sample 

(x106)

40 2.3 1.3, 4.2 38 2.5 1.1, 5.7 -2.4 -6.7, 1.9 0.257

Total viable cells recovered 

from sample (x106) 

40 1.7 0.9, 2.8 38 1.6 0.6, 4.7 -2.0 -5.2, 1.2 0.209
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5.12.1.2 Sputum cell count

5.12.1.2.a Macrophages

There was a marked reduction in total macrophage count in the atorvastatin treated group 

[treatment difference -44.9 x104 cells (-80.1 to 9.7), p=0.015]. This corresponds to a 

reduction in the proportion of macrophages in the cell count [treatment difference -10.9% 

(-20.5 to -1.2), p=0.029] (table 5.44, figure 5.31).

Table 5.44 Sputum macrophage cell count and proportion for atorvastatin compared with placebo after 8 weeks, 

with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P 

valuen Median IQR n Median IQR

Macrophage 

cell count (x104

cells)

34 134.3 71.0, 201.0 32 171.25 135.0, 222.8 -44.9 -80.1, -9.7 0.015

Macrophage % 34 37.0 20.5, 52.5 32 45.3 36.5, 58.5 -10.9 -20.5, -1.2 0.029
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Figure 5.31 Box and whisker plot for macrophage cell count and proportion after 8 weeks for atorvastatin and 

placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. Significant differences are seen between groups (cell count p=0.015, 

percentage p=0.029).

5.12.1.2.b Neutrophils

A small rise in neutrophil numbers were seen in the atorvastatin treated group [treatment 

difference 46.9 x104 cells (-2.1 to 95.9), p=0.060] (table 5.45, figure 5.32), with a 
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comparable shift in neutrophil percentage of total count [treatment difference 13.1% (1.8 

to 24.3), p=0.025].

Table 5.45 Sputum neutrophil cell count and proportion for atorvastatin compared with placebo after 8 weeks, 

with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

Neutrophil 

cell count 

(x104

cells)

34 133.3 81.5, 234.0 32 100 50.3, 167.8 46.9 -2.1, 95.9 0.060

Neutrophil % 34 34.8 22.0, 65.0 32 25.0 15.0, 41.9 13.1 1.8, 24.3 0.025
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Figure 5.32 Box and whisker plot for neutrophil cell count and proportion after 8 weeks for atorvastatin and 

placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. Cell count shows a trend towards significance (p=0.060), while 

percentage shows a significant difference between groups (p=0.025).
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5.12.1.2.c Eosinophils

No difference was seen in sputum eosinophil count [treatment difference -12.1 x104 cells 

(-32.8 to 8.7), p=0.242] (table 5.46, figure 5.33), or eosinophil percentage of total count 

[treatment difference -2.7% (-7.0 to 1.7), p=0.219].

Table 5.46 Sputum eosinophil cell count and proportion for atorvastatin compared with placebo after 8 weeks, 

with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

Eosinophil cell 

count (x104 cells)

34 3.8 2.0, 10.5 32 5 1.0, 10.5 -12.1 -32.8, 8.7 0.242

Eosinophil % 34 1.0 0.5, 3.0 32 1.5 0.4, 3.0 -2.7 -7.0, 1.7 0.219
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Figure 5.33 Box and whisker plot for eosinophil cell count and proportion after 8 weeks for atorvastatin and 

placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. No significant difference is seen between groups (cell count p=0.242, 

percentage p=0.219).
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5.12.1.2.d Lymphocytes

No difference was seen in sputum lymphocyte count [treatment difference 0.5 x104 cells 

(-0.8 to 1.7), p=0.455] (table 5.47, figure 5.34), or lymphocyte percentage of total count 

[treatment difference 0.2% (-0.1 to 0.5), p=0.271].

Table 5.47 Sputum lymphocyte cell count and proportion for atorvastatin compared with placebo after 8 weeks, 

with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

Lymphocyte 

cell count x104

cells

34 2.0 1.0, 4.5 32 1.9 1.0, 5.0 0.5 -0.8, 1.7 0.455

Lymphocyte % 34 0.6 0.4, 1.0 32 0.5 0.3, 1.4 0.2 -0.1, 0.5 0.271



173

Figure 5.34 Box and whisker plot for lymphocyte cell count and proportion after 8 weeks for atorvastatin and 

placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. No significant difference is seen between groups (cell count p=0.455, 

percentage p=0.271).
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5.12.1.2.e Bronchial epithelial and squamous epithelial cells

No difference was seen in sputum bronchial epithelial cell count [treatment difference      

-3.4 x104 cells (-23.2 to 16.3), p=0.723], or percentage of total count [treatment 

difference 0.3% (-5.3 to 5.9), p=0.913] (table 5.48, figure 5.35). There was also no effect 

on squamous epithelial cell count [treatment difference -79.5 x104 cells (-201.6 to 42.6) 

p=0.191] or proportion [-5.5% (-17.0 to 6.0) p=0.333] (table 5.48, figure 5.36).

Table 5.48 Sputum bronchial epithelial and squamous epithelial cell counts and proportions for atorvastatin 

compared with placebo after 8 weeks, with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P 

valuen Median IQR n Median IQR

Bronchial epithelial 

cell count (x104

cells)

34 38.8 17.0, 59.0 32 33.5 18.8, 69.3 -3.4 -23.2, 16.3 0.723

Bronchial epithelial 

cell %

34 10.3 4.0, 24.0 32 11.9 5.0, 17.8 0.3 -5.3, 5.9 0.913

Squamous 

epithelial 

cell count (x104

cells)

34 156.0 101.0, 325.5 32 288.0 162.8, 352.5 -79.5 -201.6, 

42.6

0.191

Squamous cells as 

% of absolute count

34 31.0 20.0, 46.5 32 41.8 25.3, 48.8 -5.5 -17.0, 6.0 0.333
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Figure 5.35 Box and whisker plot for bronchial epithelial cell count and proportion after 8 weeks for 

atorvastatin and placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. 

Outliers are identified by *. Mean is indicated by +. No significant difference is seen between groups (cell count 

p=0.723, percentage p=0.913).
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Figure 5.36 Box and whisker plot for squamous epithelial cell count and proportion after 8 weeks for 

atorvastatin and placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. 

Outliers are identified by *. Mean is indicated by +. No significant difference is seen between groups (cell count 

p=0.191, percentage p=0.333).
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5.12.2 Sputum cytokines

5.12.2.1 LTB4

Sputum supernatant LTB4 was significantly reduced in the atorvastatin treated group 

compared with placebo [treatment difference -88.1 pg/mL (95% CI -156.4 to -19.9) 

p=0.014] (table 5.49, figure 5.37).

Table 5.49 Sputum supernatant LTB4 for atorvastatin compared with placebo after 8 weeks, with treatment 

difference. Lower sample numbers reflect the fact that the total number of assays that could be run was limited 

by the necessity of internal controls, as discussed in the methodology section.

Variable Atorvastatin Placebo Treatment 

difference

95% CI P 

valuen Median IQR n Median IQR

LTB4 

(pg/mL)

37 50.4 27.6, 

79.8

33 68.2 28.6, 

130.2

-88.1 -156.4, -19.9 0.014
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Figure 5.37 Box and whisker plot for sputum supernatant LTB4 after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. A significant difference is seen between groups (p=0.014).

5.12.2.2 MPO

There was no significant difference in sputum supernatant MPO in the group treated with 

atorvastatin compared with placebo [treatment difference -32.6 ng/mL (95% CI -112.8 to 

47.7) p=0.414] (table 5.50, figure 5.38).

Table 5.50 Sputum supernatant MPO for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

MPO 

(ng/ml)

41 87.5 51.0, 

193.0

38 112.3 56.5, 

206.0

-32.6 -112.8, 

47.7

0.414
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Figure 5.38 Box and whisker plot for sputum supernatant MPO after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.414).

5.12.2.3 IL-1β

There was no significant difference in sputum supernatant IL-1β in the group treated with 

atorvastatin compared with placebo [treatment difference -35.8 ng/mL (95% CI -156.2 to 

84.6) p=0.548] (table 5.51, figure 5.39).

Table 5.51 Sputum supernatant IL-1β for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P 

valueN Median IQR n Median IQR

IL-1β

(pg/mL)

41 89.7 34.9, 

178.14

38 92.6 34.7, 

353.5

-35.8 -156.2, 

84.6

0.548
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Figure 5.39 Box and whisker plot for sputum supernatant IL-1β after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.548).

5.12.2.4 IL-1RA

There was no significant difference in sputum supernatant IL-1RA in the group treated 

with atorvastatin compared with placebo [treatment difference -3.4 ng/mL (95% CI -9.3 

to 2.5) p=0.252] (table 5.52, figure 5.40).

Table 5.52 Sputum supernatant IL-1RA for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable Atorvastatin Placebo Treatment 

difference

95% 

CI

P 

valuen Median IQR n Median IQR

IL-1RA 

(ng/mL)

41 28.5 17.0, 

46.0

38 35.4 19.3, 

52.6

-3.4 -9.3, 

2.5

0.252
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Figure 5.40 Box and whisker plot for sputum supernatant IL-1RA after 8 weeks for atorvastatin and placebo. 

The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by 

*. Mean is indicated by +. No significant difference is seen between groups (p=0.252).

5.12.2.5 IL-6, IL-8 and IL-17

There was no significant difference in sputum supernatant IL-6 in the group treated with 

atorvastatin compared with placebo [treatment difference -42.9 pg/mL (95% CI -118.7 to 

33.0) p=0.258] (table 5.53, figure 5.41). IL-8 also showed no difference [-1607.3 pg/mL 

(-5678.1 to 2463.7) p=0.426] (table 5.53, figure 5.42). IL-17 was similarly unaffected 

[-30.5 pg/mL (-163.2 to 102.1) p=0.642] (table 5.53, figure 5.43). 
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Table 5.53 Sputum supernatant IL-6, IL-8 and IL-17 for atorvastatin compared with placebo after 8 weeks, with 

treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P 

valuen Median IQR n Median IQR

IL-6 

(pg/mL)

41 36.4 12.1, 75.6 38 48.1 12.9, 

121.0

-42.9 -118.7, 33.0 0.258

IL-8 

(pg/mL)

41 1474.2 544.0, 

3615.7

38 1462.6 557.3, 

5072.1

-1607.3 -5678.2, 

2463.7

0.426

IL-17 

(pg/mL)

41 41.8 3.6, 120.3 38 39.7 3.7, 342.3 -30.5 -163.2, 

102.1

0.642

Figure 5.41 Box and whisker plot for sputum supernatant IL-6 after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.258).
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Figure 5.42 Box and whisker plot for sputum supernatant IL-8 after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.426).

Figure 5.43 Box and whisker plot for sputum supernatant IL-17 after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.642).
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5.12.2.6 TNF-α

There was no significant difference in sputum supernatant TNF-α in the group treated 

with atorvastatin compared with placebo [treatment difference -30.3 pg/mL (95% CI 

-111.6 to 51.0) p=0.453] (table 5.54, figure 5.44). 

Table 5.54 Sputum supernatant TNF-α for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P 

valuen Median IQR n Median IQR

TNFα 

(pg/mL)

41 12.5 4.7, 

45.3

38 16.2 4.4, 

123.0

-30.3 -111.6, 

51.0

0.453
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Figure 5.44 Box and whisker plot for sputum supernatant TNF-α after 8 weeks for atorvastatin and placebo. 

The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by 

*. Mean is indicated by +. No significant difference is seen between groups (p=0.453).

5.12.2.7 IFN-γ

There was no significant difference in sputum supernatant IFN-γ in the group treated with 

atorvastatin compared with placebo [treatment difference -38.4 pg/mL (95% CI -175.4 to 

98.6) p=0.571] (table 5.55, figure 5.45). 

Table 5.55 Sputum supernatant IFN-γ for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P 

valuen Median IQR n Median IQR

IFN-γ 

(pg/mL)

41 23.9 3.8, 

678.0

38 21.5 3.1, 

155.5

-38.4 -175.4, 

98.6

0.571
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Figure 5.45 Box and whisker plot for sputum supernatant IFN-γ after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.571).

5.12.2.8 GM-CSF

There was no significant difference in sputum supernatant GM-CSF in the group treated 

with atorvastatin compared with placebo [treatment difference -44.2 pg/mL (95% CI 

-262.5 to 174.1) p=0.682] (table 5.56, figure 5.46). 

Table 5.56 Sputum supernatant GM-CSF for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P 

valuen Median IQR n Median IQR

GM-CSF 

(pg/mL)

41 144.5 87.4, 287.5 38 159.4 99.7, 

664.7

-44.2 -262.5, 

174.1

0.682
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Figure 5.46 Box and whisker plot for sputum supernatant GM-CSF after 8 weeks for atorvastatin and placebo. 

The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by 

*. Mean is indicated by +. No significant difference is seen between groups (p=0.682).

5.12.2.9 MIP-1α

There was no significant difference in sputum supernatant MIP-1α in the group treated 

with atorvastatin compared with placebo [treatment difference -513.2 pg/mL (95% CI 

-1588.4 to 562.0) p=0.337] (table 5.57, figure 5.47). 

Table 5.57 Sputum supernatant MIP-1α for atorvastatin compared with placebo after 8 weeks, with treatment 

difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

MIP-1α 

(pg/mL)

41 195.1 64.1, 

466.8

38 176.4 63.0, 897.4 -513.2 -1588.4, 562.0 0.337
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Figure 5.47 Box and whisker plot for sputum supernatant MIP-1α after 8 weeks for atorvastatin and placebo. 

The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by 

*. Mean is indicated by +. No significant difference is seen between groups (p=0.337).

5.12.2.10 CCL2

There was no significant difference in sputum supernatant CCL2 in the group treated 

with atorvastatin compared with placebo [treatment difference -137.3 pg/mL (95% CI 

-612.7 to 338.2) p=0.560] (table 5.58, figure 5.48). 

Table 5.58 Sputum supernatant CCL2 for atorvastatin compared with placebo after 8 weeks, with treatment 

difference. 

Variable Atorvastatin Placebo Treatmen

t 

differenc

e

95% CI P value

n Median IQR n Median IQR

CCL2 

(pg/mL)

41 256.5 124.9, 495.6 38 300.9 124.9, 963.7 -137.3 -612.7, 

338.2

0.560
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Figure 5.48 Box and whisker plot for sputum supernatant CCL2 after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.560).

5.12.3 Serum markers of inflammation

5.12.3.1 CRP

Serum CRP showed a trend towards decrease in the treatment group, although the result 

was not significantly different between atorvastatin and placebo after 8 weeks [treatment 

difference -0.7 mg/L (95% CI -1.4 to -0.1), p=0.082] (table 5.59, figure 5.49).

Table 5.59 Serum CRP for atorvastatin compared with placebo after 8 weeks, with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

CRP (mg/L) 47 0.6 0.5, 1.5 44 1.1 0.6, 2.5 -0.7 -1.4, 0.1 0.082
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Figure 5.49 Box and whisker plot for serum CRP after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.086).

5.12.3.2 ICAM-1

No significant difference was seen in serum ICAM-1 between atorvastatin and placebo 

after 8 weeks [treatment difference -6.5 ng/mL (-21.4 to -8.4) p=0.382] (table 5.60, figure 

5.50).

Table 5.60 Serum ICAM-1 for atorvastatin compared with placebo after 8 weeks, with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

ICAM-1 

(ng/mL)

47 200.9 173.3, 

221.8

46 204.6 164.1, 

239.5

-6.5 -21.4, 

8.4

0.382
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Figure 5.50 Box and whisker plot for serum ICAM-1 after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.382).

5.12.3.3 TNF-α

No significant difference was seen in serum TNF-α between atorvastatin and placebo 

after 8 weeks [treatment difference -0.5 pg/mL (-2.5 to -1.4), p=0.584] (table 5.61, figure 

5.51).

Table 5.61 Serum TNF-α for atorvastatin compared with placebo after 8 weeks, with treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

TNF-α

(pg/mL)

47 1.0 0.6, 

1.9

46 1.2 0.8, 

1.9

-0.5 -2.5, 1.4 0.584
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Figure 5.51 Box and whisker plot for serum TNF-α after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.584).

5.12.3.3 IL-1, IL-5, IL-6, IL-8 and IL-10

No significant difference was seen between atorvastatin and placebo after 8 weeks in 

serum IL-1 [treatment difference -10.2 pg/mL (-42.2 to 21.7), p=0.519] (table 5.62, figure 

5.52), IL-5 [treatment difference -3.4 pg/mL (-11.3 to 4.5), p=0.378] (table 5.62, figure 

5.53), IL-6 [treatment difference 0.0 pg/mL (-1.9 to 1.9), p=0.982] (table 5.62, figure 

5.54), IL-8 [treatment difference -515.5 pg/mL (-1524.0 to 493.9), p=0.304] (table 5.62, 

figure 5.55), or IL-10 [treatment difference -5.8 pg/mL (-26.5 to 15.0), p=0.573] (table 

5.62, figure 5.56).
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Table 5.62 Serum IL-1, IL-5, IL-6, IL-8 and IL-10 for atorvastatin compared with placebo after 8 weeks, with 

treatment difference. Different samples sizes are due to beads sticking during analysis, as mentioned in the 

methodology section.

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

IL-1 

(pg/mL)

40 96.6 52.3, 142.5 42 97.1 56.1, 

153.3

-10.2 -42.2, 21.7 0.519

IL-5 

(pg/mL)

40 1.9 1.9, 21.6 31 1.9 1.9, 28.0 -3.4 -11.3, 4.5 0.378

IL-6 

(pg/mL)

47 1.3 0.74, 3.12 46 1.2 0.7, 3.6 0.0 -1.9, 1.9 0.982

IL-8 

(pg/mL)

40 0.7 0.6, 12.2 36 8.1 0.6, 17.5 -515.5 -1524.0, 

493.9

0.304

IL-10 

(pg/mL)

40 34.6 10.5, 70.9 39 38.5 10.5, 68.6 -5.8 -26.5, 15.0 0.573
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Figure 5.52 Box and whisker plot for serum IL-1 after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.519).

Figure 5.53 Box and whisker plot for serum IL-5 after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.378).
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Figure 5.54 Box and whisker plot for serum IL-6 after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.982).

Figure 5.55 Box and whisker plot for serum IL-8 after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.304).
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Figure 5.56 Box and whisker plot for serum IL-10 after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.573).

5.12.4 Lymphocyte proliferation

No significant difference was seen in lymphocyte proliferation between atorvastatin and 

placebo for control [treatment difference 107 counts/min/well (95% CI -89 to 303) 

p=0.276] (table 5.63, figure 5.57), PHA [treatment difference 4688 counts/min/well 

(-13351 to 22728) p=0.602] (table 5.63, figure 5.58) or anti-CD3/28 [treatment difference 

3983 counts/min/well (-7681 to 15647) p=0.494] (table 5.63, figure 5.59).
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Table 5.63 Lymphocyte proliferation results for atorvastatin compared with placebo after 8 weeks, with 

treatment difference

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

Control

(counts/min/

well)

46 380 223, 691 46 329 186, 549 107 -89, 303 0.276

PHA

(counts/min/

well)

46 5165 792, 43814 46 3422 375, 38951 4688 -13351, 

22728

0.602

Anti-CD3/28

(counts/min/

well)

46 1544 494, 27139 46 1375 379,19088 3983 -7681, 15647 0.494
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Figure 5.57 Box and whisker plot for lymphocyte proliferation (control) after 8 weeks for atorvastatin and 

placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. No significant difference is seen between groups (p=0.276).

Figure 5.58 Box and whisker plot for lymphocyte proliferation (PHA) after 8 weeks for atorvastatin and 

placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. No significant difference is seen between groups (p=0.602).
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Figure 5.59 Box and whisker plot for lymphocyte proliferation (Anti-CD3/28) after 8 weeks for atorvastatin 

and placebo. The boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are 

identified by *. Mean is indicated by +. No significant difference is seen between groups (p=0.494).

5.12.5 Exhaled gases

No difference was seen between atorvastatin and placebo for concentration of exhaled 

NO [treatment difference -1.6 ppb (95% CI -7.1 to 4.0), p=0.559] (table 5.64, figure 

5.60), or CO [treatment difference -0.2 ppm (-0.6 to 0.3), p=0.438)] (table5.64, figure 

5.61).
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Table 5.64 Exhaled nitric oxide and carbon monoxide results for atorvastatin compared with placebo after 8 

weeks, with treatment difference (due to machine dysfunction, one patient did not have an exhaled CO 

measurement at week 8 while on placebo).

Variable Atorvastatin Placebo Treatment 

difference

95% CI P value

n Median IQR n Median IQR

Exhaled 

NO (ppb) 

44 16.2 9.0, 

38.1

48 17.3 9.0, 

42.7

-1.6 -7.1, 4.0 0.559

Exhaled 

CO (ppm)

44 4.2 3.7, 4.7 47 4.1 3.6, 

5.1

-0.2 -0.6, 0.3 0.438

Figure 5.60 Box and whisker plot for exhaled nitric oxide after 8 weeks for atorvastatin and placebo. The boxes 

represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. Mean is 

indicated by +. No significant difference is seen between groups (p=0.559).
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Figure 5.61 Box and whisker plot for exhaled carbon monoxide after 8 weeks for atorvastatin and placebo. The 

boxes represent the interquartile range, with the whiskers representing 1.5×IQR. Outliers are identified by *. 

Mean is indicated by +. No significant difference is seen between groups (p=0.438).

5.13 Inflammatory markers - summary

While no changes were seen in serum markers of inflammation or exhaled gases, changes 

were seen in sputum macrophage and neutrophil counts, with an associated fall in LTB4

and a trend in reduction of CRP. This may suggest a localized reduction in inflammation, 

despite the lack of clinical effect. The implications of these changes are discussed in the 

following chapter. 
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5.14 Correlations

5.14.1 LTB4

There was no correlation in week 8-week 0 delta between sputum LTB4 and sputum IL-8, 

sputum macrophages, neutrophils or eosinophils, or with PEF (table 5.65).

Table 5.65 Pearson Correlation Coefficient in week 8-week 0 delta for LTB4 with IL-8, sputum macrophage 

neutrophil and eosinophil count, and PEF

Variable R value R2 P value Number of 

observations

Sputum IL-8 0.220 0.048 0.114 53

Macrophage 

percentage

0.277 0.077 0.076 42

Macrophage cell 

count

0.114 0.013 0.471 42

Neutrophil cell 

count

-0.166 0.027 0.295 42

Neutrophil 

percentage

-0.166 0.027 0.294 42

Eosinophil cell 

count

-0.114 0.013 0.390 46

Eosinophil 

percentage

-0.090 0.008 0.500 46

Morning PEF 0.174 0.030 0.238 48

Evening PEF -0.027 0.001 0.862 45
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5.14.2 IL-8

There was no correlation at week 8-week 0 delta between sputum IL-8 and sputum 

macrophages, neutrophils or eosinophils, or with PEF (table 5.66).

Table 5.66 Pearson Correlation Coefficient in week 8-week 0 delta for IL-8 with sputum macrophage, 

neutrophil and eosinophil count, and PEF

Variable R value R2 P value Number of 

observations

Macrophage 

percentage

0.073 0.005 0.619 49

Macrophage cell 

count

0.072 0.005 0.623 49

Neutrophil cell 

count

-0.064 0.004 0.663 49

Neutrophil 

percentage

-0.073 0.005 0.618 49

Eosinophil cell 

count

0.147 0.021 0.240 46

Eosinophil 

percentage

0.143 0.021 0.251 46

Morning PEF 0.008 0.000 0.956 56

Evening PEF -0.027 0.001 0.847 53
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5.14.3 Sputum macrophages

There was a good correlation in week 8-week 0 delta between sputum macrophage cell 

count and neutrophils (r=-0.842, p<0.0001for cell counts). There was no correlation with 

eosinophils or PEF (table 5.67).

Table 5.67 Pearson Correlation Coefficient in week 8-week 0 delta for sputum macrophage count with 

neutrophil and eosinophil count and percentage, and PEF

Variable R value R2 P value Number of 

observations

Neutrophil cell 

count

-0.842 0.918 <0.0001 50

Neutrophil 

percentage

-0.848 0.921 <0.0001 50

Eosinophil cell 

count

-0.211 0.045 0.088 46

Eosinophil 

percentage

-0.161 0.026 0.200 46

Morning PEF -0.195 0.442 0.193 46

Evening PEF -0.011 0.103 0.946 44

5.14.4 Sputum neutrophils

There was no correlation in week 8-week 0 delta between sputum neutrophil cell count or 

percentage and eosinophils or PEF (table 5.68).
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Table 5.68 Pearson Correlation Coefficient in week 8-week 0 delta for sputum neutrophil count with 

eosinophils and PEF

Variable R value R2 P value Number of 

observations

Eosinophil cell 

count

-0.092 0.009 0.458 46

Eosinophil 

percentage

-0.120 0.0.14 0.337 46

Morning PEF 0.246 0.496 0.099 46

Evening PEF 0.071 0.267 0.645 44

5.14.5 Sputum eosinophils

There was no correlation in week 8-week 0 delta between sputum eosinophil cell count or 

percentage and PEF (table 5.69).

Table 5.69 Pearson Correlation Coefficient in week 8-week 0 delta for sputum eosinophil count and PEF

Variable R value R2 P value Number of 

observations

Morning PEF 0.054 0.003 0.677 59

Evening PEF 0.132 0.017 0.310 48
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5.15 Correlations summary

No correlation was seen between the inflammatory markers tested and macrophages, 

neutrophils, eosinophils or lung function. There was a significant correlation between 

sputum macrophages and neutrophils, and a trend towards a correlation between 

neutrophils and morning PEF. 
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6. DISCUSSION

6.1 Principal findings

This randomised controlled study examined the effects on asthma control and airway 

inflammation of oral atorvastatin 40 mg daily with that of a matched placebo in adults 

with allergic asthma. The hypothesis was that atorvastatin improves asthma control and 

airway inflammation in adults with asthma. We found that atorvastatin has no effect on a 

range of clinical indices of control of chronic allergic asthma after 2 months of treatment. 

Immunological investigations showed a change in both relative and absolute sputum 

macrophage and neutrophil counts, and an associated reduction in sputum LTB4, but no 

other significant effects.

6.1.1 Clinical effects

The lack of any evidence of clinical benefit of atorvastatin in allergic asthma confirms 

and extends the findings of Menzies et al 243, who performed a crossover trial of 

simvastatin (2 weeks at 20mg, 2 weeks at 40mg vs. placebo with no washout) in 16 

subjects with asthma. In our study the statin chosen, atorvastatin, was administered at a 

higher dose and for longer duration that the earlier study 243 and to larger group of 

participants (n=54), but we still showed no evidence of an improvement in asthma 

control. 
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6.1.2 Inflammatory outcomes

In addition to the cholesterol lowering effects of statins through the inhibition of HMG 

CoA reductase, statins have posited anti-inflammatory effects 244. There is evidence that 

statins can influence the in vitro function of a range of inflammatory cells including T-

lymphocytes 245, monocytes 246, macrophages 189, eosinophils 174 and neutrophils 161. 

6.1.2.1 Eosinophils

Animal models suggest that statins decrease eosinophil survival 32 and increase 

eosinophil apoptosis 179. This would suggest that patients treated with statins should show 

a decrease in sputum eosinophils. This was not the case in this study. In addition, to 

support the evidence of a lack of effect of statins on eosinophilic inflammation, there was 

no reduction in exhaled nitric oxide, which is closely linked with sputum eosinophilia 247. 

Menzies at al 243 also failed to show any change in sputum eosinophils or eNO.

6.1.2.2 Macrophages

The reduction in sputum absolute alveolar macrophage count after atorvastatin treatment 

echoes similar findings in atherosclerosis 191. Several mechanisms, either alone or in 

combination, might explain this decrease. Reduced macrophage growth, decreased 

recruitment, antioxidant effects, decreased cell adhesion and/or an altered cytokine 

profile may all go some way towards explaining the effect on macrophages seen in this 

study.
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6.1.2.2.a Reduced macrophage growth

Statins reduce growth of both animal and human macrophages 191, 248 and possibly 

atorvastatin had a similar effect on sputum alveolar macrophage numbers. 

6.1.2.2.b Decreased macrophage recruitment

LTB4 is raised in induced sputum supernatant in asthma 249 and mediates the recruitment 

of alveolar macrophages through B leukotriene receptor 1 250. The decrease in sputum 

LTB4 concentrations within the airways by atorvastatin therapy could contribute to the 

reduction found in sputum macrophage count. Atorvastatin has also been shown to 

reduce CCL2, involved in macrophage recruitment, in the arteries of 

hypercholesterolaemic rabbits 251, human vascular cells 252, and in in vitro models of 

sepsis 134.

6.1.2.2.c Antioxidant effects

Statins possess potent antioxidative properties 154, 155. Simvastatin has been identified as 

an antioxidant in rat liver microsomes 157 and vascular smooth muscle 158, and human 

lipoprotein particles 159. The reduced production of reactive oxygen species from human 

bronchial epithelial cells 253 and endothelial cells 124, 254 by atorvastatin might also 

influence alveolar macrophage function.
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6.1.2.2.d Decreased cell adhesion

Statins could affect the chemokine and adhesion molecule-directed migration of 

inflammatory cells from blood into the airways 169, 175, 177. Statins have specifically been 

shown to interfere with cell binding and macrophage recruitment to the lung 134, 255, 256. 

Decreased monocyte to endothelial cell adhesion is due to attenuation of up-regulation of 

P-selectin on activated endothelial cells 133, and decreased expression of CCL2 receptor 

has also been seen on endothelial cells in rats 136, 137.  This reduction in binding could also 

relate to inhibition of LFA-1/ICAM-1 interaction 135, which could thus reduce 

macrophage function, although interestingly previous work suggests that expression of 

these molecules is increased by statins 256. 

6.1.2.2.e Altered cytokine profile

Finally, statins reduce the in vitro release of cytokines and mediators including TNFα

from monocytes 142, IL-6, IL-1β and endothelin-1 from endothelial cells, IL-5 and IFN-γ 

from human peripheral blood mononuclear cells (PBMC) 195, and in vivo circulating 

levels of TNFα, IL-6 170, and CCL2, a chemokine responsible for the recruitment of 

monocytes to sites of inflammation 257, 258. Similar effects on the release of these 

cytokines and mediators, including from cells within the airways could reduce the 

recruitment of alveolar macrophages to the airways. Against this latter mechanism, we 

found no reduction in sputum TNFα, or circulating IL-6, TNFα, and ICAM-1 
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concentrations following atorvastatin therapy. Future studies should examine these 

potential pathways. 

In stable asthma alveolar macrophages are activated 259, 260 and show an increased 

capacity to release pro-inflammatory cytokines 261. The absolute macrophage count in 

sputum is not elevated in asthma 262, and despite the reduction in absolute macrophage 

count by atorvastatin there was no improvement in clinical outcomes. It is not known 

whether the activation status of alveolar macrophages was impaired by atorvastatin in the 

study.

6.1.2.3 Neutrophils

In a mouse model, the neutrophilia associated with acute lung injury is markedly reduced 

with lovastatin treatment 180 and bronchoalveolar lavage neutrophil count is reduced in 

lung transplant recipients receiving statins 209. Lovastatin has been shown to inhibit 

neutrophil chemotaxis 178. Paradoxically we found a significant increase in the proportion 

of neutrophils in induced sputum with atorvastatin therapy. The absolute neutrophil 

counts were not significantly different between groups, suggesting that the increased 

proportion of neutrophils occurred because of the low macrophage proportion and the 

expression of the results as a percentage. In support of this explanation, the sputum LTB4

concentration was reduced after atorvastatin therapy, which would be more likely to be 

associated with a reduced neutrophil count. LTB4 is expressed mainly by activated 

macrophages and to a lesser extent neutrophils 250. Decreased production of LTB4 would 
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be consistent with a reduction in the numbers and activation status of sputum 

macrophage. 

IL-8 is another important cytokine involved in the recruitment of neutrophils, and 

previous studies have suggested that lovastatin inhibits human alveolar epithelial 

production of IL-8 178. In this study however, the circulation and sputum concentrations 

of IL-8 were not altered by atorvastatin. There was no correlation between LTB4

production and IL-8 production within patients in this study.

6.1.2.4 Inflammatory markers

Previous studies have shown that statins lower inflammatory markers such as CRP 91, 107 -

109 and IL-6 112, 113 in ischaemic heart disease. Interestingly, this study showed very few 

anti-inflammatory effects of statin medication in patients with asthma. Most notably, 

there was no change in IL-6, and CRP reduction was only of borderline significance. 

Menzies et al also failed to show any change in CRP in their trial of simvastatin in 

asthma 243. This contrasts with a recent study of atorvastatin in rheumatoid arthritis 164, 

where these were reduced by atorvastatin. This may be due to the fact that CRP levels 

were not high at baseline or due to lack of statistical power. Changes in CRP may also 

have been masked by concomitant use of inhaled corticosteroids.

However, a reduction in sputum LTB4 was observed. LTB4 is normally raised in 

asthma 263, and is expressed by macrophages and neutrophils. Decreased expression of 
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LTB4 would be consistent with the alteration in sputum macrophage and neutrophil 

count, discussed above.

6.1.2.5 Summary

Despite the well-established anti-inflammatory actions of statins, it seems that they are 

not appropriate for the inflammatory phenotype associated with atopic asthma.

6.1.3 Duration of treatment

We estimated that 8 weeks duration of therapy was long enough to show a clinical effect, 

on the basis that a drop in cholesterol can already be seen within 6 weeks of statin 

treatment 99, and CRP has been shown to fall within four weeks 264, possibly even in the 

first two days 265. Anti-inflammatory effects were seen in 28 days in animal models of 

allergic asthma 173. It is however possible that a longer trial would have shown clinical 

effects. Alternatively, such changes may be more apparent in disease states with raised 

CRP levels, as a reduction of borderline significance was seen in the present study. It is 

possible that the administration of atorvastatin therapy for a longer duration might 

improve different clinical outcome measures of asthma such as indices of airway 

remodelling and statins have been shown to inhibit smooth muscle proliferation in both 

vascular 114 and airway smooth muscle 184, 203and lower the expression of the 

profibrogenic cytokine transforming growth factor (TGF)-β1 185. Another possible line of 

investigation would be to measure rates of exacerbation, as previous studies have 
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suggested that statins decrease episodes of pneumonia 207 or may reduce the associated 

mortality 206.

6.1.4 Statin used

It is unlikely that using a different statin would have showed greater effects. An earlier 

trial in rheumatoid arthritis 164 used atorvastatin with success. However, the initial 

experimental work in inflammatory lung disease was using simvastatin 173 and 

pravastatin 174 with clear effect. Indeed, Kiener and colleagues 166 showed that lipophilic 

statins such as atorvastatin and simvastatin have a much greater effect on inflammatory 

responses in human and mouse models than the hydrophilic pravastatin. Additionally, 

Joukhadar et al showed no difference in effect on inflammatory parameters when 

comparing atorvastatin, simvastatin or pravastatin 266. Furthermore no therapeutic effect 

was found in a previous trial of simvastatin in asthma 243, adding further weight to the 

idea that the lack of effect is not statin-specific. 

6.1.5 Washout period

The six week washout period for this study was considered acceptable because evidence 

suggests that the anti-inflammatory effects do not last this long. Circulating levels of 

sVCAM-1 revert to normal in 2 days 267, CRP 268  and IL-6 begin to increase after at most 

3 days and have returned to baseline after 7 days’ withdrawal 187, 265, 269. In contrast, a 

study examining CRP and MMPs showed that although there was a rapid restoration of 

CRP, MMPs remained unchanged 120 days after statin withdrawal 270. In the event, 
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analysis of treatment-period interaction (Appendix 5) showed no significant results for 

any variable, indicating that the washout period selected was adequate.

6.1.6 Concomitant inhaled corticosteroid

One possible explanation for the apparent lack of efficacy in this study is that all patients 

were taking regular inhaled corticosteroid therapy. The anti-inflammatory action of this 

medication may be enough to overwhelm any modest effect from statins. This may in 

part explain why the observed reduction in CRP was of borderline significance, as 

corticosteroids have been shown to lower CRP in healthy individuals 271. Interestingly, in 

the Menzies et al study, all patients were withdrawn from inhaled corticosteroids before 

treatment began, with patients receiving a long-acting beta2-agonist instead 243. This too 

could mask a subtle anti-inflammatory action 272. They examined the effect of two weeks 

of 20mg and two weeks of 40mg simvastatin in a crossover trial of asthmatic patients 

taking LABA and SABA alone after withdrawal of corticosteroids and other anti-

inflammatory medications. The study had no washout period. Their study also failed to 

show any effect on most clinical parameters. 

An alternative would be to attempt to withdraw all long-acting medication from patients 

before starting statin therapy, but this is likely to create practical difficulties, as patients 

likely to benefit from this medication are unlikely to tolerate the withdrawal of all other 

long-acting treatments.
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6.1.7 Compliance 

Compliance with medication, as measured by tablet count, does not seem to have been 

problematic. This is borne out by the significant changes in serum lipids and liver 

function tests observed in the patients receiving atorvastatin. 

6.2 Strengths and limitations of the study

6.2.1 The introduction of the EU Clinical trial directive.

The changes to regulation of clinical trials introduced in 2005 have had a wide-reaching 

impact on research in the UK 273 - 276. In particular, the bureaucratic demands made of 

researchers have been significant. Every stage of the project has had additional delays 

due to the need to collect approval from sponsors, ethics and the MHRA. Many of these 

delays unfortunately had significant knock-on effects in terms of delays to recruitment. It 

has been argued that such cumbersome work, and particularly the demands placed on a 

sponsor, for a small-scale non-commercial trial may well hinder the implementation of 

hypothesis-testing work such as this in the future 277.

6.2.2 Recruitment issues and Generalisability

A Canadian cross-sectional study of asthma severity and prevalence 278 suggested that 

78.9% of patients could be described as having mild to moderate asthma according to the 

Canadian Asthma Consensus Guidelines, broadly comparable with the patients included 

in the current study. Consequently, studying this group of patients is appropriate. If levels 
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of co-medication (e.g. with LABAs or leukotriene receptor antagonists) increase, then 

findings in milder patients may become less generalisable in future.

6.2.3 Severity of asthma

Baseline measures of asthma severity in this study indicate relatively mild asthma (all 

spirometric measures >75% predicted), with relatively low inflammatory indices (e.g. 

geometric mean methacholine responsiveness 2.23 mg/mL, median eosinophils 1.5%). 

This is essentially a feature of available patients for recruitment – more severe patients 

tend to be on additional medications or be more poorly controlled, which would have 

excluded them from this study. It is worth noting that mean baseline reliever use was 2.3 

puffs of inhaler per day, mean ATS severity score was 3.3, and mean ACQ 1.5. There 

was thus some scope for improvement in asthma control. 

Repeat analysis of the results, using only patients with baseline sputum eosinophils above 

3% (to investigate the effect on more severe asthmatics) still showed no change in 

outcomes, and indeed the observed effects on sputum were no longer seen (Table 6.1). 

Although this subgroup analysis cannot be conclusive, particularly considering the small 

sample size (n=11), it adds weight to the argument that there is no clinical effect to be 

found. 
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Table 6.1 Reanalysis of primary end point and significant findings from main study, using only patients 
with baseline sputum eosinophils >3% (n=11). Only serum cholesterol shows a statistically significant 
effect

Variable Treatment 

difference

95% CI p 

value

Morning PEF , L/min -0.42 -33.34, 32.51 0.975

Evening PEF, L/min 4.83 -20.78, 30.44 0.648

FEV1 pre-salbutamol, L 0.08 -0.2, 0.4 0.595

FEV1 post-salbutamol, L 0.03 -0.2, 0.3 0.797

Macrophage cell count, 

x106

-4.9 -69.2, 59.4 0.842

Neutrophil cell count, 

x106

41.7 -29.7, 113.2 0.180

Eosinophil cell count, 

x106

-27.9 -79.3, 23.4 0.206

Serum CRP, mg/L -0.3 -1.3, 0.70 0.470

Serum cholesterol, 

mmol/L

-1.8 -2.7, -1.0 0.002

Sputum LTB4, ng/mL -69.8 -196.1, 56.4 0.199

6.2.4 Power of the study

The original power calculations indicated that a sample size of 44 would give 90% power 

to detect a difference in means of 20L/min in peak expiratory flow (PEF) (primary 

endpoint), assuming a standard deviation of differences of 40L/min, using a paired t-test 

with a 0.05 two-sided significance level. We recruited a total of 54 patients to ensure that 
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44 patients completed the study. Fewer patients provided sputum samples, thus limiting 

the potential of the trial to find significant differences between the groups. Secondary end 

points must this be regarded as “hypothesis-generating”, rather than definitive. 

6.3 Implications for future research

6.3.1. Mechanism of macrophage reduction

Future studies could examine the potential pathways discussed above for reduction of 

sputum macrophage count.

6.3.1 Different statins

While atorvastatin has not been shown to have any clinical effect, there might be merit in 

examining the effect of other statins in the same setting. 

6.3.2 Smoking-related inflammatory lung disease

Smoking in asthma alters the clinical picture of the disease, with resistance to normal 

therapies, especially corticosteroids 194. Most trials of asthma medications specifically 

exclude smokers, making this an area ripe for further investigation. 

Although in the present study no improvement was seen in asthma control for non-

smokers, a significant change in sputum macrophages and neutrophils was shown. This 

may have relevance to the treatment of other chronic lung diseases. Alveolar 

macrophages have been implicated in the pathogenesis of number of chronic lung 
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diseases, including COPD 279, 280. The pathogenesis of COPD seems to involve both 

increased apoptosis and decreased clearance of apoptotic cells by macrophages (a process 

known as efferocytosis) 283 - 285, as well as an imbalance of macrophage and neutrophil-

related inflammation in the lung parenchyma 286, 287 (figure 6.1). Lovastatin enhances the 

clearance of apoptotic cells by human and mouse macrophages, a statin-specific effect 

reversible with mevalonate, through modulation of Rho-GTPases 147, 148, 279, 280. 

Lovastatin and simvastatin have also been shown to block Fc receptor-mediated 

phagocytosis by cultured human monocytes 149. Macrophage expression and production 

of MMP-9 is also reduced by statins 191, which could have an impact on COPD. LTB4 is 

also increased in COPD 288, and this study suggests that statins decrease expression. 

Recent evidence may also show that statins may inhibit lung parenchymal destruction, 

and peribronchial and perivascular infiltration of inflammatory cells in a rat model of 

smoking-induced emphysema 186. Furthermore, a recent nested case-control study in 

humans has also suggested that statins may decrease respiratory mortality in patients with 

COPD 197.Taken together with the reduction in the sputum macrophage count with 

atorvastatin found in this study, these findings imply that the efficacy of statins should be 

investigated in COPD.
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Figure 6.1  Chronic inflammation in COPD is driven initially by cigarette smoking and other inhaled irritants, 

which induce a specific pattern of inflammation that predominantly involves the peripheral airways and lung 

parenchyma. This pattern of inflammation is characterized by an increase in neutrophils, macrophages and 

CD8+ T lymphocytes in small and large airways and in lung parenchyma and pulmonary vasculature. Alveolar 

macrophages have a crucial part in orchestrating this inflammation through the release of proteases, such as 

MMP-9, inflammatory cytokines, such as TNF-α, and other cytokines, such as IL-8, that attract neutrophils into 

the airways. Reprinted from Cazzola et al 286, with permission from Elsevier

6.4 Conclusion

In conclusion, we have demonstrated that atorvastatin administered for 8 weeks to adults 

with mild to moderate atopic asthma resulted in no improvement in asthma control. The 

reduction in the sputum macrophage count suggests potential areas for investigation of 

atorvastatin in chronic lung disease in which activated alveolar macrophages have been 

implicated in the pathogenesis, such as COPD.
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Appendix 1: Asthma Diary 
(from Santanello NC, Barber BL, Reiss TF, Friedman BS, Juniper EF, Zhang J. 
Measurement characteristics of two asthma symptom diary scales for use in clinical 
trials. European Respiratory Journal 1997;10:646-651.)

Appendix 1

Circle year 2005/ 2006 Effect of statins on control of chronic asthma
Subject number MON TUES WED THU FRI SAT SUN

Day/Month DD/MM

M
O

R
N

IN
G

Peak flow (best of 3)

Was blue (reliever) inhaler 
used in the 4 hours before  
peak flow testing? 

Yes □
No  □

Yes □
No  □

Yes □
No  □

Yes □
No  □

Yes □
No  □

Yes □
No  □

Yes □
No  □

1. How often did you 
experience asthma symptoms 
today?
0                                       6

0= none of the time
6 = all of the time

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

2. How much did your asthma 
symptoms bother you today?

0                                       6
0= not at all bothered 
6 = severely bothered.

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

3. How much activity could 
you do today?

0                                       6
0= more than usual activity 
6= less than usual activity.

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

4. How often did your asthma 
affect your activities today?

0     6

0=none of the time 
6=all of the time.

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

0□
1□
2□
3□
4□
5□
6□

EV
EN

IN
G

Night  peak flow (best of 3)

Was blue inhaler taken within 
4 hours of night peak flow ?

Yes □
No  □

Yes □
No  □

Yes □
No  □

Yes □
No  □

Yes □
No  □

Yes □
No  □

Yes □
No  □

5. Did you wake up with 
asthma symptoms?
No = 0
Once = 1
More than once = 2
Awake “all night” =3

0□
1□
2□
3□

0□
1□
2□
3□

0□
1□
2□
3□

0□
1□
2□
3□

0□
1□
2□
3□

0□
1□
2□
3□

0□
1□
2□
3□

6. How many puffs of the blue 
inhaler did you use today? 
Have you taken your study 
tablets today?

Yes □
No  □
NA □ 

Yes □
No  □
NA □

Yes □
No  □
NA □

Yes □
No  □
NA □

Yes □
No  □
NA □

Yes □
No □ 
NA □

Yes □
No  □
NA □



Appendix 2: ASTHMA QUALITY OF LIFE QUESTIONNAIRE (AQLQ)

Appendix 2

Please complete all questions by circling the number that best describes how you have been during the 
last 2 weeks as a result of your asthma.

HOW LIMITED HAVE YOU BEEN DURING THE LAST 2 WEEKS IN THESE ACTIVITIES AS A RESULT 
OF YOUR ASTHMA?

Totally Extremely Very Moderate Some A little  Not at all
Limited  Limited  Limited Limitation Limitation Limitation  Limited

1. STRENUOUS ACTIVITIES 1  2  3 4 5 6  7
(such as hurrying, exercising, 
running up stairs, sports)

2. MODERATE ACTIVITIES 1  2  3 4 5 6  7
(such as walking, housework, 
gardening, shopping, climbing stairs)

3. SOCIAL ACTIVITIES 1  2  3 4 5 6  7
(such as talking, playing with pets/children,
visiting friends/relatives)

4. WORK-RELATED 1  2  3 4 5 6  7
ACTIVITIES (tasks you have to do
at work*) *If you are not employed or self-employed, these should be tasks you have to do most days.

5. SLEEPING 1  2  3 4 5 6  7

HOW MUCH DISCOMFORT OR DISTRESS HAVE YOU FELT DURING THE LAST 2 WEEKS?
A Very  A Great  A Good Moderate Some Very  None
Great Deal Deal  Deal Amount Little

6. How much discomfort or 1  2  3 4 5 6  7
distress have you felt over the last
2 weeks as a result of CHEST 
TIGHTNESS?

IN GENERAL, HOW MUCH OF THE TIME DURING THE LAST 2 WEEKS DID YOU:
All of the Most of A Good Some of A Little Hardly any None of
time the time bit of the time of the of the  the time

the time time time
7. Feel CONCERNED ABOUT 1 2 3 4 5 6  7
HAVING ASTHMA?

8. Feel SHORT OF BREATH 1 2 3 4 5 6  7
as a result of your asthma?

9. Experience asthma symptoms1 2 3 4 5 6  7
as a RESULT OF BEING 
EXPOSED TO CIGARETTE 
SMOKE?

10. Experience a WHEEZE 1 2 3 4 5 6  7
in your chest?

11. Feel you had to AVOID A 1 2 3 4 5 6  7
SITUATION OR ENVIRONMENT
BECAUSE OF CIGARETTE SMOKE?
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HOW MUCH DISCOMFORT OR DISTRESS HAVE YOU FELT DURING THE LAST 2 WEEKS?

A Very A Great A Good Moderate Some Very None
Great Deal Deal Amount Little
Deal

12. How much discomfort or 1 2 3 4 5 6 7
distress have you felt over the
last 2 weeks as a result of 
COUGHING?

IN GENERAL, HOW MUCH OF THE TIME DURING THE LAST 2 WEEKS DID YOU
All of the Most of A good Some of A little Hardly None of
time the time bit of the time the time any of of the time

time the time
13. Feel FRUSTRATED as a 1 2 3 4 5 6 7
result of your asthma?

14. Experience a feeling of 1 2 3 4 5 6 7
CHEST HEAVINESS?

15. Feel CONCERNED 1 2 3 4 5 6 7
ABOUT THE NEED TO USE
MEDICATION for your asthma?

16. Feel the need to CLEAR 1 2 3 4 5 6 7
YOUR THROAT?

17. Experience asthma 1 2 3 4 5 6 7
symptoms as a RESULT OF
BEING EXPOSED TO DUST?

18. Experience DIFFICULTY 1 2 3 4 5 6 7
BREATHING OUT as a result
of your asthma?

19. Feel you had to AVOID A 1 2 3 4 5 6 7
SITUATION OR ENVIRONMENT 
BECAUSE OF DUST?

20. WAKE UP IN THE 1 2 3 4 5 6 7
MORNING WITH ASTHMA 
SYMPTOMS?

21. Feel AFRAID OF NOT 1 2 3 4 5 6 7
HAVING YOUR ASTHMA
MEDICATION AVAILABLE?

22. Feel bothered by HEAVY 1 2 3 4 5 6 7
BREATHING?

23. Experience asthma 1 2 3 4 5 6 7
symptoms as a RESULT OF 
THE WEATHER OR AIR 
POLLUTION OUTSIDE?
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24. Were you WOKEN AT 1 2 3 4 5 6 7
NIGHT by your asthma?

25. AVOID OR LIMIT GOING 1 2 3 4 5 6 7
OUTSIDE BECAUSE OF
THE WEATHER OR AIR 
POLLUTION?

26. Experience asthma 1 2 3 4 5 6 7
symptoms as a RESULT OF
BEING EXPOSED TO STRONG 
SMELLS OR PERFUME?

27. Feel AFRAID OF GETTING 1 2 3 4 5 6 7
OUT OF BREATH?

28. Feel you had to AVOID A 1 2 3 4 5 6 7
SITUATION OR ENVIRONMENT 
BECAUSE OF STRONG SMELLS 
OR PERFUME?

29. Has your asthma 1 2 3 4 5 6 7
INTERFERED WITH GETTING 
A GOOD NIGHT'S SLEEP?

30. Have a feeling of FIGHTING 1 2 3 4 5 6 7
FOR AIR?

HOW LIMITED HAVE YOU BEEN DURING THE LAST 2 WEEKS?
Most Not Several Very Few No
Done Not Done Not Done Limitation

31. Think of the OVERALL 1 2 3 4 5 6 7
RANGE OF ACTIVITIES that 
you would have liked to have 
done during the last 2 weeks.
How much has your range of 
activities been limited by your 
asthma?

HOW LIMITED HAVE YOU BEEN DURING THE LAST 2 WEEKS?
Totally Extremely Very Moderate    Some  A Little Not at all
Limited Limited Limited Limitation   Limitation  Limitation Limited

Overall, among ALL THE 1 2 3 4 5 6 7
ACTIVITIES that you have
done during the last 2 weeks, 
how limited have you been
by your asthma?



Appendix 2: ASTHMA QUALITY OF LIFE QUESTIONNAIRE (AQLQ)

Appendix 2

DOMAIN CODE:
SYMPTOMS: 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 29, 30
ACTIVITY LIMITATION: 1, 2, 3, 4, 5, 11, 19, 25, 28, 31, 32
EMOTIONAL FUNCTION: 7, 13, 15, 21, 27
ENVIRONMENTAL STIMULI: 9, 17, 23, 26

The Asthma Quality of Life Questionnaire is copyrighted. It may not be changed, translated, or sold 
(paper or software) without the permission of Elizabeth Juniper.
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Appendix 3: ASTHMA CONTROL QUESTIONNAIRE Score
Circle the number that best describes how your asthma has been during the night and this morning. 

1 On average, during the past week, how often were you woken by your asthma during the night?

Never 0
Hardly ever 1
A few times 2
Several times 3
Many times 4
A great many times 5
Unable to sleep because of asthma 6

2 On average, during the past week, how bad were your asthma symptoms when you woke up in
the morning?

No symptoms 0
Very mild symptoms 1
Mild symptoms 2
Moderate symptoms 3
Quite severe symptoms 4
Severe symptoms 5
Very severe symptoms 6

3 In general, during the past week, how limited were you in your activities because of your asthma?

Not limited at all 0
Very slightly limited 1
Slightly limited 2
Moderately limited 3
Very limited 4
Extremely limited 5
Totally limited 6

4 In general, during the past week, how much shortness of breath did you experience because of your 
asthma?

None 0
A very little 1
A little 2
A moderate amount 3
Quite a lot 4
A great deal 5
A very great deal 6
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5 In general, during the past week, how much of the time did you wheeze?

Not at all 0
Hardly any time at all 1
A little of the time 2
A moderate amount of the time 3
A lot of the time 4
Most of the time 5
All the time 6

6 On average, during the past week, how many puffs of short-acting bronchodilator (eg Ventolin) 
have you used each day?

None 0
1-2 puffs most days 1
3-4 puffs most days 2
5-8 puffs most days 3
9-12 puffs most days 4
13-16 puffs most days 5
More than 16 puffs most days 6

To be completed by a member of the Research Team
[Record actual values in the shaded cells and score the FEV1 % predicted in the last column]

FEV1 prebronchodilator > 95% predicted 0
95-90% 1

FEV1 predicted  89-80% 2
79-70% 3

FEV1 % predicted  69-60% 4
59-50% 5
<50% predicted 6

TOTAL SCORE
SCORE / 7

The Asthma Control Diary is copyrighted. It may not be translated, adapted, or sold (paper or software) without the 
permission of Elizabeth Juniper.



APPENDIX 4: MEASUREMENT OF NEBULISER OUTPUT  -

Wright’s nebuliser

A4.1 Apparatus

Rotameter 3 ml syringe

Flow meter Needle

O2 or air supply (50 psi) Stop watch

Phosphate buffered saline Digital balance

Wright nebuliser

A4.2 Method

1. Add 3ml saline to vial

2. Attach vial to nebuliser and weigh on balance

3. Attach flow meter to rotameter

4. Adjust the flow meter until the rotameter indicates 6 l/min

5. Record the flow meter reading. (True flow rate is measured by the rotameter)

6. Disconnect the rotameter keeping the flow meter at exactly the same setting.

7. Attach the nebuliser to the flow meter for exactly 2 minutes.

8. Disconnect the flow meter and re-weight the nebuliser and vial. The difference 

in weight from Step 2 above is the nebuliser output for 2 minutes (assuming 

specific gravity of saline to be 1.0)

9. Repeat this procedure 5 times at true flow rates of 6 l/min, 7 l/min, and 8 

l/min, 9 l/min and 10 l/min.

10. Mean the 5 measurements of nebuliser output.

Plot true flow rate against nebuliser output (figure A4.1) and read off the true flow 

rate that will give an output of 0.13 ml/min.

Plot flow meter reading against true flow rate (e.g. figure A4.2) to determine the flow 

meter setting that will produce an output of 0.13 ml/min.

Use this flow rate to operate the nebuliser during methacholine inhalation tests.
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Figure A4.1 Calibration of nebuliser output: Nebuliser output versus true flow rate 
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Figure A4.2 Calibration of nebuliser output: Flow meter reading versus true flow rate 



Table A4.1 Calibration of nebuliser output: Data for calibration 

Flow 

meter 

rate

Rotameter 

rate

Weight 

before

Weight 

after 2 

minutes

Difference Mean Mean 

output/minute

Mean 

flow 

rate

5.75 6 107.33 107.21 0.12

5.75 6 107.2 107.05 0.15

6 6 107.05 106.91 0.14

5.75 6 107.47 107.33 0.14

5.75 6 107.58 107.42 0.16 0.142 0.071 5.8

7 7 108.03 107.83 0.2

7 7 107.7 107.5 0.2

7 7 107.75 107.56 0.19

7 7 107.56 107.37 0.19

7 7 107.8 107.61 0.19 0.194 0.097 7

8 8 107.77 107.54 0.23

8 8 107.73 107.52 0.21

7.5 8 107.52 107.32 0.2

7.75 8 107.82 107.59 0.23

8 8 107.91 107.69 0.21 0.216 0.108 7.85

9 9 107.88 1076.7 0.21

9 9 107.39 107.17 0.22

9 9 107.79 107.56 0.23

9 9 108.07 107.84 0.23

9 9 107.89 107.66 0.23 0.224 0.112 9

9.75 10 108.36 108.1 0.26

10 10 107.99 107.71 0.28

10 10 107.85 107.57 0.28

10 10 107.85 107.57 0.28

10 10 108.01 107.74 0.25 0.27 0.135 9.95
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Appendix 5: Treatment-period interaction analysis.

Treatment-period interaction analysis for all outcomes in the trial. The p value represents the probability of no 

difference between groups, i.e. that the null hypothesis is true and both groups are the same. No values are 

statistically significant.

Variable P value

Morning PEF 0.680

Evening PEF 0.666

Reliever inhaler use 0.887

ATS score 0.033

Asthma control Score 0.975

FEV1 pre-salbutamol 0.081

FEV1 post-salbutamol 0.167

% predicted FEV1 0.360

FEV1 reversibility 0.096

PEF (spirometry) pre-salbutamol 0.467

PEF (spirometry) post-sabutamol 0.610

% predicted PEF 0.846

FVC pre-salbutamol 0.110

FVC post-salbutamol 0.289

% predicted FVC 0.281

FEF25-75 pre-salbutamol 0.206

FEF25-75 post-salbutamol 0.407

% predicted FEF25-75 0.383

FEV1/FVC ratio pre-salbutamol 0.900

FEV1/FVC ratio post-salbutamol 0.862

Sputum total cell count 0.471

Viability 0.610

Volume of filtrate 0.243

Total number of cells recovered 

from sample

0.303

Total viable cells recovered from 

sample 

0.318

Macrophages 0.606

Neutrophils 0.198

Eosinophils 0.695

Lymphocytes 0.489
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Variable P value

Bronchial epithelial cells 0.358

Total non-squamous cells 0.674

Squamous epithelial cells 0.349

Absolute number of cells counted

per slide

0.484

% macrophages 0.327

% neutrophils 0.204

% eosinophils 0.843

% lymphocytes 0.317

% bronchial epithelial cells 0.381

% squamous cells 0.567

Serum CRP 0.178

Serum ICAM 0.661

Serum  TNFα 0.635

Serum IL-6 0.577

Serum IL-1 0.546

Serum IL-5 0.260

Serum IL-8 0.245

Serum IL-10 0.249

Serum Triglycerides 0.362

Serum Cholesterol 0.803

Serum HDL 0.595

Serum LDL 0.245

Serum Urea 0.576

Serum Potassium 0.250

Serum Sodium 0.975

Serum Bilirubin 0.395

Serum AST 0.716

Serum ALT 0.919

Exhaled NO 0.220

Exhaled CO 0.258

Quality of Life score 0.442

QOL Symptoms 0.326

QOL Activities 0.764

QOL Emotional well-being 0.213

QOL Environmental 0.850
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Variable P value

Methacholine (PC20) 0.880

Sputum supernatant MPO 0.347

Sputum supernatant LTB4 0.156

Sputum supernatant IL-1b 0.517

Sputum supernatant IL-1RA 0.584

Sputum supernatant IL-6 0.501

Sputum supernatant IL-8 0.460

Sputum supernatant IL-17 0.673

Sputum supernatant TNFα 0.387

Sputum supernatant IFNγ 0.437

Sputum supernatant GM-CSF 0.694

Sputum supernatant MIP1α 0.240

Sputum supernatant MCP1 0.596

Lymphocyte proliferation Control 0.071

Lymphocyte proliferation PHA 0.969

Lymphocyte proliferation Anti CD3/28 0.773
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ABSTRACT 

Background
Statins have anti-inflammatory properties that may be beneficial in the treatment 
of asthma. We tested the hypothesis that atorvastatin added to inhaled 
corticosteroids treatment improves lung function and airway inflammation in 
atopic adults with asthma 

Methods 
Fifty four adults with atopic asthma were recruited to a double-blind, randomised 
controlled crossover trial comparing the effect of oral atorvastatin 40 mg daily 
with that of a matched placebo on asthma control and airway inflammation. Each 
treatment was administered for 8 weeks separated by a 6-week washout period. 
The primary outcome was morning peak expiratory flow (PEF). Secondary 
outcomes included FEV1, asthma control questionnaire score, airway 
hyperresponsiveness to methacholine, induced sputum cytology and 
inflammatory biomarkers.

Results
At 8 weeks, the change in mean morning PEF, as compared with baseline, did 
not differ substantially between the atorvastatin and placebo treatment periods 
[mean difference -0.5 L/min, 95% Cl -10.6 to 9.6, p=0.921]. Values for other 
clinical outcomes were similar between the atorvastatin and placebo treatment 
periods. The absolute sputum macrophage count was reduced after atorvastatin 
compared to placebo [mean difference -45.0x104 cells, 95% Cl -80.1 to -9.7, 
p=0.029], as was the sputum fluid leukotriene B4 [mean difference -88.1pg/ml, 
95% CI -156.4 to -19.9, p=0.014].

Conclusion 
The addition of atorvastatin to inhaled corticosteroids results in no short-term 
improvement in asthma control, but reduces sputum macrophage counts in mild 
to moderate atopic asthma. We speculate that the change in sputum 
macrophage count suggests potential areas for investigation of statins in other 
chronic lung diseases.

Clinical Trials.gov number: NCT00126048

Word count: 248

Key words
Asthma; atorvastatin; statins; inhaled corticosteroids; induced sputum; alveolar 
macrophages, leukotriene B4

Dedication
This paper is dedicated to the memory of Dr Stuart Wood, Senior Lecturer in 
General Practice at the University of Glasgow, who died in March 2006.
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INTRODUCTION 

Statins are inhibitors of 3-Hydroxymethyl-3-glutaryl Coenzyme A reductase (HMG 
CoA reductase), a rate-limiting step in cholesterol synthesis. In addition to 
clinically important cholesterol lowering properties 1, statins also have diverse 
anti-inflammatory effects 2-5. Statins prevent the isoprenylation of signalling 
molecules such as Ras and Rho, which are involved in driving many 
inflammatory processes including lymphocyte activation. Statin treatment 
therefore has the potential to modify immune-driven diseases , and this has been 
tested in experimental models of auto-immune diseases 6.  A recent trial of 
atorvastatin in rheumatoid arthritis showed improvement in clinical outcome 
measures 7 associated with reduction in blood inflammatory biomarkers such as 
erythrocyte sedimentation rate, C-reactive protein (CRP) and interleukin-6 (IL-6). 

Atopic asthma is an immune-mediated airway disease associated with 
eosinophilic airway inflammation and Th2 cytokine functional profile 8. Recent 
studies have shown that simvastatin and pravastatin can effectively reduce these 
acute changes in murine models of allergic lung inflammation 3 9 10. It has been 
postulated that the anti-inflammatory effects of statins may have relevance for the 
treatment of asthma and other respiratory disease 5. 

The aim of this study was to test the hypothesis that atorvastatin added to 
inhaled corticosteroids treatment improves lung function and sputum cell counts 
in atopic adults with asthma. We designed a randomised double blind crossover 
placebo controlled trial to investigate the effect of oral atorvastatin 40 mg daily for 
8 weeks on measures of asthma control and airway inflammation in adults with 
allergic asthma receiving inhaled corticosteroids alone. The dose and duration of 
statin therapy with atorvastatin was greater than that used in a previous placebo-
controlled crossover trial of short-term, low dose simvastatin in 16 subjects with 
steroid-naïve asthma, which showed no clinical beneficial effects on asthma 
control 11. Atorvastatin was chosen because of its favourable in vitro and in vivo
anti-inflammatory properties 7 12 13 and evidence of clinical benefit at the dose of 
40 mg daily in rheumatoid arthritis 7. 

METHODS

Subjects

Chronic symptomatic atopic asthma subjects aged 18–70 years were recruited 
from general practices and hospital clinics. Subjects were taking ≤ 1000 mcg 
beclometasone equivalent daily, no other medication for asthma other than a 
short-acting beta2-agonist and had been on stable medication for at least four 
weeks before randomisation. Atopy to common allergens was established by skin 
prick test or specific serum IgE antibody measurement. Subjects were excluded if 
they were pregnant or lactating, current smokers, ex-smokers with > 5 pack-year 
smoking history, receiving statins or had a known allergy to them, had a 
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respiratory tract infection or needed oral corticosteroids in the 6 weeks preceding 
inclusion. All participants gave written informed consent. The study was approved 
by the West Glasgow Ethics Committee.

Study design and assignment

The study was a 24-week randomised double blind crossover study comparing 
the effect of oral atorvastatin therapy (40 mg daily) with that of a matched 
placebo, on asthma control and airway inflammation. After a 2-week run-in period, 
each treatment was administered to randomised patients for 8 weeks, separated 
by a 6-week washout period. Randomisation was performed by a centralised 
telephone service in sequential blocks of 4. Researchers and participants were 
blinded to allocation and had no access to the randomisation code held by the 
Data Centre until completion of the study. 

During the two-week run-in period, subjects continued their usual asthma 
medication and recorded peak expiratory flow (PEF) and symptoms twice daily, 
in their diary. Further visits were undertaken at randomisation, and after 2, 4, and 
8 weeks (Phase 1). After a washout period of 6 weeks, Phase 2 of the crossover 
was started, with visits after 2, 4, and 8 weeks. At each visit, spirometry was 
performed. Patients recorded morning and evening PEF measurements and 
symptoms throughout the study. Before and after each treatment period, airway 
responsiveness to methacholine, a validated asthma control questionnaire (ACQ) 
score, asthma quality of life questionnaire (AQLQ) score, induced sputum and 
exhaled nitric oxide (FeNO) were recorded and blood samples were taken for 
immunological tests, lipids and liver functions.  Tablets were counted at the end 
of each treatment period as a measure of compliance.

Measurements

Patients maintained a validated diary card14, recording morning and night PEF 
(Mini-Wright; Clement Clarke, Harlow, UK), daytime symptoms, night awakenings, 
use of inhaled rescue medication, and study tablet consumption. Spirometry was 
measured with a dry spirometer (Vitalograph Ltd., Buckingham, UK)15. ACQ was 
recorded16. Methacholine airway responsiveness was measured in subjects with 
a baseline FEV1 of >  60% predicted using Cockcroft’s technique17 with 
concentrations of methacholine from 0.03 to 16 mg/ml18.  Skin prick tests for 
allergy to cat dander, house dust mite (Dermatophagoides farinae) and mixed 
grass pollen were performed (Soluprick, ALK, Horsholm, Denmark). Total IgE 
and specific IgE to house dust mite, grass pollen, and cat dander were assayed 
by the Unicap 100 system (Pharmacia UK Ltd, Milton Keynes, UK). Total IgE 
levels >120 IU/ml and specific IgE levels >0.35 AU/ml were considered raised. 
Atopy was defined when a patient had a positive skin prick test or elevated 
specific IgE level. Sputum was induced as previously described 19. Differential 
cell count was performed and the sputum supernatant fluid analyzed for 
leukotriene (LT) B4 and myeloperoxidase (MPO) using enzyme immunoassay 
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(EIA) (R&D Systems, Abingdon, UK), and IL-8, TNFα, IFN-γ  using a Luminex 
microbead fluorescence kit (Biosource, Invitrogen, Paisley, UK). FeNO was 
measured using a chemiluminescence analyzer (Logan Research Ltd., 
Rochester, UK) at a flow rate of 50 ml/s according to consensus guidelines20. 
Serum was analysed for IL-5, high sensitivity (hs) IL-6, IL-8, hsTNF-α, sICAM-1 
and hsCRP by EIA (R & D Systems). Peripheral blood concentrations of urea, 
electrolytes, lipids, liver function and full blood count were measured in the 
hospital accredited laboratories at the beginning and end of each treatment 
period.

Statistical analysis

Baseline characteristics were described by number and percentage of patients 
for categorical variables and mean (SD) for continuous variables.  Response to 
atorvastatin on lung function, diary data, induced sputum, mediator levels and 
exhaled nitric oxide versus placebo was assessed by normal linear models that 
included parameters for patient, period and treatment. 

A sample size of 44 was calculated to have 90% power to detect a difference in 
means of 20L/min in PEF (primary endpoint)21, assuming a standard deviation of 
differences of 40L/min, using a paired t-test with a 5% two-sided significance 
level. A total of 54 patients were recruited to ensure that 44 patients completed 
the study. All data was analysed using SAS version 9 (SAS Institute, Cary, NC). 

Response to atorvastatin on lung function, diary data, induced sputum, mediator 
levels and exhaled nitric oxide versus placebo was assessed by normal linear 
models that included parameters for patient, period and treatment. When 
variables were unsuitable for this, the within-patient treatment differences were 
calculated and then analysed by either t-test or Wilcoxon test, as appropriate. 
Significance at a level of 5% was accepted for the primary endpoint, the mean of
the morning PEF measurements taken from the 7 days of diary recording before 
each study visit. The mean was calculated if there were at least three days of 
completed data within that period.

RESULTS 

Recruitment and baseline characteristics

A total of 4303 asthmatic patients from 39 practices and hospital clinics were 
invited to participate (Figure 1). Of the 439 replies, screening visits were 
arranged for 137 volunteers and 54 were randomised. Baseline demographic and 
clinical characteristics of patients are listed in Table 1 and baseline inflammatory 
biomarkers in Table 2. Distributions of baseline characteristics were similar for 
patients starting with placebo and those starting with atorvastatin. All subjects 
were atopic.
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Table 1: Demographics and clinical characteristics of subjects 

Variable All Patients (n=54)

Male sex, n (%) 23 (42.6%)
Ex-smoker, n (%) 6 (11.1%)
Age, years 42.5 (13.7)
Asthma duration, years 24.9 (16.6)
Positive IgE serology (%) 89%
Equivalent beclometasone daily dose,
mcg, median (IQR) 400 (200-800)

Morning PEF, L/min 390.3 (103.5)
Evening PEF, L/min 403.3 (101.4)
FEV1 pre-salbutamol, L 2.78 (0.86)
FEV1 post-salbutamol, L 3.18 (0.84)
FEV1 % predicted 85.7 (19.3)
FEV1 %reversibility 14.9 (11.7)
Geometric mean (range) PC20 (mg/ml) 2.5 (0.9 - 6.2)
Asthma Control Questionnaire Score 1.5 (0.8)
AQLQ Score, median (IQR) 5.75 (5.03-6.19)

Definition of abbreviations: PEF, peak expiratory flow; FEV1, Forced Expiratory 
Volume in one second; AQLQ, asthma quality of life questionnaire, PC20, 
concentration of methacholine that reduces the FEV1 by 20%.
Data represented as mean (SD) unless otherwise indicated.  

Changes in clinical outcomes 

Changes in clinical outcomes after atorvastatin treatment are listed on Table 3 
and illustrated in Figure 2.  At 8 weeks, the change in mean morning PEF, as 
compared with baseline, did not differ between the atorvastatin and placebo 
treatment periods [mean difference -0.5 L/min, 95% Cl -10.6 to 9.6, p=0.921]. 
The estimated mean difference for the primary outcomes (20L/min) was much 
larger than that obtained in the study. No statistically significant effect of 
atorvastatin was seen in evening PEF, pre- and post- salbutamol FEV1 or 
methacholine responsiveness (PC20). Similarly, there was no significant 
difference in ACQ score or AQLQ score between atorvastatin and placebo 
treatment periods.



7

Table 2: Baseline induced cytology and inflammatory biomarker levels. 

Variable Median (IQR)
Induced sputum cell counts and proportion (%)
Total cell count (x106) 1.4 (0.8- 4.3)
Macrophages (x104) 
Macrophages %

196.5 (101.3 - 235.0) 
49.5 (30.5 - 57.5)

Neutrophils (x104)
Neutrophils %

129.8 (60.0 - 186.5)
35.5 (14.5 - 48.3)

Eosinophils (x104)
Eosinophils %

6.4 (2.0 - 16.3)
1.5 (0.6 - 5.0)

Lymphocytes (x104)
Lymphocytes %

2.5 (1.0 - 5.5)
0.7 (0.3 - 1.1)

Bronchial epithelial cells (x104)
Bronchial epithelial cells %

44.0 (12.0 - 60.3)
10.0 (8.0 - 316.0)

Mediators
MPO (ng/mL) 179.0 (73.5 - 276.0)
LTB4 (pg/mL) 47.8 (32.6 - 80.4)
IL-8 (ng/mL) 1.9 (0.8 - 5.3)
TNFα (pg/mL) 11.4 (4.6 - 46.5)
IFN-γ (pg/mL) 19.8 (4.9 - 71.6)
Exhaled nitric oxide
FeNO ppb 18.3 (10.1 - 33.1)
Serum biomarkers
hs-CRP (mg/L) 1.68. (0.5 – 3.8).
sICAM (ng/mL) 209.4 (185.7 - 245.4)
IL-5 (pg/mL) 7.3 (1.9 - 26.4)
IL-8 (pg/mL) 14.3 (0.6 - 24.0)
TNF-α (pg/mL) 1.1 (0.7 - 1.8)
IL-6 (pg/mL) 1.1 (0.7 - 3.1)

Abbreviations: CRP, C-reactive protein; HDL, high density lipoprotein; NO, nitric oxide; 
ppb, parts per billion; sICAM, soluble inter-cellular adhesion molecule; TNFα, tumour 
necrosis factor-α; IL, interleukin; MPO, Myeloperoxidase; LT, Leukotriene; IFN, 
interferon.

Changes in inflammatory biomarkers

Induced sputum cytology
The total cell counts recovered from sputum were similar after atorvastatin 
compared to after placebo treatment (Table 3). After 8 weeks, the mean absolute 
and relative sputum macrophage count was significantly reduced after 
atorvastatin compared to placebo [mean absolute difference -44.9x104 cells, 95% 
Cl -80.1 to -9.7, p=0.029] (Table 3, Figure 3). There was a reciprocal increase in 
the relative proportion of sputum neutrophils [mean proportion difference 13.1% 
(1.8 to 24.4), p=0.025] (Table 3, Figure 3), but there were no significant changes 
in the absolute count of these cells or the counts and proportions of the other 
sputum cell phenotypes under atorvastatin treatment. 
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Table 3: Treatment differences in outcome measures after 8-weeks 
atorvastatin compared to placebo.

Variable Atorvastatin Placebo
Treatment difference, 

atorvastatin minus 
placebo (95% CI)

Clinical outcomes [mean (SD)]
Morning PEF L/min
Evening PEF L/min
FEV1 pre-salbutamol, L
FEV1 post-salbutamol, L

387.0 (106.5) 
395.3 (101.0) 
2.7 (0.8) 
3.1 (0.8)

393.9 (114.2) 
403.8 (116.3) 
2.7 (0.8) 
3.1 (0.8) 

-0.5 (-10.6, 9.6) 
4.6 (-5.8, 15.0) 
0.01 (-0.01, 0.10) 
-0.05 (-0.13, 0.03)

PC20 methacholine 
geometric mean (range), mg/ml  

2.7 (0.9, 10.3) 3.0 (0.6, 9.6) 0.05 (-1.6, - 1.7)

ACQ 1.4 (0.9) 1.5 (0.8) -0.03 (-0.28, 0.21)
AQLQ, median (IQR) 5.9 (5.4, 6.6) 5.9 (5.4, 6.4) 0.1 (-0.1, 0.3)

Sputum differential cell count and proportion (%)
Total cell count (x106) 1.7 (0.9, 2.8) 1.6 (0.6, 4.7) -0.07 (-0.14, 0.01)
Macrophage (x104)
Macrophage %

134.3 (71.0, 201.0) 
37.0 (20.5, 52.5)

171.3 (135.0, 222.8) 
45.3 (36.5, 58.5)

-44.9 (-80.1, -9.7) *
-10.9 (-20.5, -1.2) *

Neutrophil (x104) 
Neutrophil %

133.3 (81.5, 234.0) 
34.8 (22.0, 65.0)

100.0 (50.3, 167.8) 
25.0 (15.0, 41.9)

47.1 (-2.0, 96.2) 
13.1 (1.8, 24.4) *

Eosinophil (x104)
Eosinophil %

3.8 (2.0, 10.5) 
1.0 (0.5, 3.0)

5.0 (1.0, 10.5) 
1.5 (0.4, 3.0)

-12.1 (-32.9, 8.6)
-2.7 (-7.1, 1.7)

Lymphocyte (x104)
Lymphocyte %

2.0 (1.0, 4.5) 
0.6 (0.4, 1.0)

1.9 (1.0, 5.0) 
0.5 (0.3, 1.4)

0.4 (-0.9, 1.7) 
0.15 (-0.18, 0.49)

Bronchial epithelial cell (x104)
Br. epithelial cell %

38.8 (17.0, 59.0) 
10.3 (4.0, 24.0)

33.5 (18.8, 69.3) 
11.9 (5.0, 17.8)

-3.5 (-23.3, 16.3) 
0.28 (-5.32, 5.88)

Sputum mediators
Leukotriene B4 50.4 (27.6, 79.8) 68.2 (28.6, 130.2) -88.1 (-156.4, -19.9) *
Interferon-γ 23.9 (3.8, 68.0) 21.5 (3.1, 155.5) -38.4 (-175.4, 98.6)
MPO (ng/mL) 87.5 (51.0, 193.0) 112.3 (56.5, 206.0) -32.6 (-112.8, 47.7)
TNFα 12.5 (4.7, 45.3) 16.2 (4.4, 123.0) -30.3 (-111.6, 51.0)
Interleukin-8 1.5 (0.5, 3.6) 1.5 (0.6, 5.1) -1.6 (-5.7, 2.5)
Exhaled NO (ppb)

16.17 (8.99, 38.1) 17.32 (9.0, 42.69) -1.6 (-7.1, 3.9)
Serum biomarkers
hs-CRP (mg/L) 0.64 (0.45, 1.46) 1.06 (0.58, 2.48) -0.65 (-1.38, 0.09)
sICAM (ng/mL) 201 (173, 222) 204 (164, 239) -6.5 (-21.4, 8.4)
TNFα 1.03 (0.60, 1.90) 1.17 (0.77, 1.87) -0.5 (2.5, 1.4)
Interleukin-5 1.87 (1.87, 21.63) 1.87 (1.87, 27.96) -3.4 (-11.3, 4.5)
Interleukin-6 1.28 (0.74, 3.12) 1.19 (0.69, 3.56) -0.02 (-1.89, 1.85)
Interleukin-8 0.71 (0.56, 12.17) 8.06 (0.56, 17.54) -0.5 (-1.5, 0.5)
Serum biochemical markers
Triglycerides (mmol/l) 0.9 (0.6, 1.3) 1.1 (0.8, 1.6) -0.24 (-0.54,  0.05)
Cholesterol (mmol/l) 3.3 (2.9, 3.9) 5.1 (4.5, 5.7) -1.7 (-1.9, -1.5) ***
HDL-cholesterol (mmol/l) 1.2 (1.1, 1.5) 1.4 (1.1, 1.7) -0.14 (-0.26, -0.02) *
Bilirubin (μmol/l) 10.0 (8.0, 13.0) 8.0 (6.0, 10.0) 1.8 (0.7, 2.9) **
AST (IU/l) 23.0 (18.0, 27.0) 20.0 (16.0, 24.0) 2.9 (0.8, 4.9) **
ALT (IU/l) 26 (18, 35) 20 (15, 33) 5.6 (2.7, 8.5) ***



9

Abbreviations: ACQ, Asthma Control Questionnaire; ALT, alanine aminotransferase;
AQoL, Asthma Quality of Life Questionnaire; AST,  aspartate aminotransferase; CRP, C-
reactive protein; diff., differential; FEV1, forced expiratory volume in one second; HDL, 
high density lipoprotein; MPO, myeloperoxisade; NO, nitric oxide; ppb, parts per billion; 
PEF, peak expiratory flow rate; sICAM, soluble inter-cellular adhesion molecule; TNFα, 
tumour necrosis factor-α. Mediator levels pg/ml unless otherwise indicated. 
Data represented as median (IQR) unless otherwise indicated.  
* = p<0.05, ** = p < 0.01, *** = p < 0.001.

Inflammatory biomarkers in sputum
The sputum concentrations of inflammatory cytokines and mediators were similar 
after atorvastatin compared to after placebo treatment (Table 3) other than 
leukotriene B4 (LTB4) which was significantly reduced [mean difference -88.1 
pg/mL (95% CI -156.4 to -19.9) p=0.014].

Exhaled nitric oxide
There was no significant change in FeNO after atorvastatin compared to placebo, 
[mean difference -1.6 ppb, 95% CI -7.1 to 3.9, p=0.559] (Table 3). 

Inflammatory biomarkers in serum
No significant difference was seen in the concentration of any serum marker of 
inflammation between atorvastatin and placebo treatment periods (Table 3). The 
change in hsCRP was of borderline significance [mean difference -0.65 mg/L, 
95% CI -1.38 to 0.09, p=0.082], but there were no changes in sICAM-1, TNF-α, 
IL-5, IL-6 and IL-8.

Change in biochemical markers 

The biochemical effects of atorvastatin therapy were reflected in significant 
reduction in concentration of serum lipids; cholesterol (mean difference -1.71 
mmol/l, 95% CI -1.94 to -1.48 p<0.0001), HDL-cholesterol (mean difference -0.14 
mmol/l, 95% CI -0.26 to -0.02 p=0.026), but not triglycerides [Table 3]. There 
were significant, albeit modest, increases in mean bilirubin, AST and ALT. 

Adverse events 

Adverse event rates were similar in patients taking atorvastatin compared with 
placebo. One patient receiving atorvastatin required oral steroid, while none in 
the placebo group did. 2 patients from each group made unscheduled visits to 
their general practitioner, and 2 patients from the atorvastatin group compared 
with one from the placebo group attended the emergency department in relation 
to their asthma during the study. Equal numbers of patients were lost to follow-up 
in both arms of the study. One patient died of unrelated causes while taking the 
placebo medication.
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Compliance 

There was no difference in compliance, assessed by number of tablets returned 
and by biochemical results. 

DISCUSSION 

This randomised controlled study tested the hypothesis that atorvastatin added to 
inhaled corticosteroids treatment could improve lung function and airway 
inflammation in adults with allergic asthma. We found that that there were no 
clinically important improvements in a range of clinical indices of asthma control 
after eight weeks of treatment with atorvastatin despite expected changes in 
serum lipids. There were, however changes in airway inflammation and in 
particular, a reduction in the absolute sputum macrophage count after 
atorvastatin compared to placebo and an associated reduction in sputum LTB4.
 
The lack of any evidence of clinical benefit of atorvastatin in allergic asthma 
confirms and extends the findings of Menzies et al 11, who performed a 
randomised placebo controlled crossover trial of simvastatin in 16 steroid-naïve 
subjects with asthma. Simvastatin was administered for 2 weeks at 20 mg daily 
and 2 weeks at 40 mg daily, with no washout between active and placebo 
treatment periods 11. In our study the statin chosen, atorvastatin, was 
administered at a higher dose and for longer duration and to a larger group of 
participants (n=54), but we found no evidence of improvement in lung function or 
airway hyperresponsiveness. We estimated that 8 weeks duration of therapy was 
long enough to show a clinical effect, on the basis that serum cholesterol levels 
fall within 6 weeks of statin treatment 22, and our own findings show a highly 
significant drop in cholesterol after 8 weeks’ treatment. Plasma CRP 
concentration has been shown to fall within four weeks , and possibly even in the 
first two days of treatment23. However, CRP reduction was only of borderline 
significance in the present study possibly because the CRP levels were not high 
at baseline or due to lack of statistical power. Changes in CRP may be more 
apparent in lung diseases with raised CRP levels which could include COPD, or 
in exacerbations, because previous studies have suggested that statins decrease 
episodes of pneumonia 24. Statins have an inhibitory effect on human airway 
smooth muscle cell proliferation 25, therefore it is possible that the administration 
of atorvastatin therapy for a longer duration of time might have improved different 
clinical outcome measures of asthma such as indices of airway remodelling.

It is unlikely that using a different statin would have shown any greater effects. A 
trial in rheumatoid arthritis 7 used atorvastatin with evidence of clinical benefit. 
Although the initial experimental work in inflammatory lung disease used 
simvastatin 3 10 and pravastatin 9, Joukhadar and colleagues showed no 
difference in effect on inflammatory parameters when comparing atorvastatin, 
simvastatin or pravastatin 12. Furthermore no therapeutic effect was found with 
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simvastatin in asthma 11. The six week washout period for the present study was 
considered acceptable because evidence suggests that the anti-inflammatory 
effects of statins do not last this long. Circulating levels of sVCAM-1 revert to 
normal in 2 days 26, and CRP 27  and IL-6 concentrations have returned to 
baseline after 7 days withdrawal 23 28. No evidence of a carry-over effect on 
clinical outcome measures was seen in the present study. 

One possible explanation for the apparent lack of clinical efficacy in this study is 
that all patients were taking regular inhaled corticosteroid therapy and had a low 
basal sputum eosinophil count. In the study by Menzies et al, all patients were 
withdrawn from inhaled corticosteroids before treatment began, with patients 
receiving a long-acting beta2-agonist instead11. The lack of efficacy with 
atorvastatin is unlikely due to insufficient room for improvement in clinical 
outcome measures since the patients group had evidence of reversibility in FEV1
of approximately 15% and has a raised mean ACQ score of 1.5. Compliance with 
medication was supported by tablet counting and by the significant changes in 
serum lipids and liver function tests observed in the patients receiving 
atorvastatin. 

There was no effect of statin therapy on any of the inflammatory biomarkers other 
than decreases in sputum macrophage count and LTB4 concentration. 
Several mechanisms, either alone or in combination, might explain these 
observations. Firstly, statins reduce growth of both animal and human 
macrophages 29 30 and possibly atorvastatin had a similar effect on sputum 
alveolar macrophage numbers. Secondly, LTB4 is raised in induced sputum 
supernatant in asthma 31 and mediates the recruitment of alveolar macrophages 
through the B leukotriene receptor-1 32. The decrease in sputum LTB4
concentrations observed in patients treated with atorvastatin could contribute to 
the reduced sputum macrophage count. Thirdly, statins interfere with cell binding 
by reducing monocyte to endothelial cell adhesion and the recruitment of 
macrophages to the lung 33 34. Finally, statins reduce the in vitro release of 
cytokines and mediators including TNFα from monocytes 35 and endothelial cells  
36 37. Similar effects on the release of these cytokines and mediators, including 
from cells within the airways could reduce the recruitment of alveolar 
macrophages to the airways. Against this latter mechanism, we found no 
reduction in sputum TNFα, or circulating IL-6, TNFα, and ICAM-1 concentrations 
following atorvastatin therapy. Future studies should examine these potential 
pathways. 

The reduction in alveolar macrophage count found in patients with allergic 
asthma may have relevance to the treatment of chronic lung diseases such as 
COPD in which alveolar macrophage function has been implicated in the 
pathogenesis 38. Lovastatin has effects on human and mouse macrophage 
function by enhancing the clearance of apoptotic cells, a statin-specific effect 
reversible with mevalonate, through modulation of Rho-GTPases 39. Production 
of MMP-9 is also reduced by statins 29, which could also have an impact on 
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COPD. Recent evidence suggests that statins may inhibit lung parenchymal 
destruction, and peribronchial and perivascular infiltration of inflammatory cells in 
a rat model of smoking-induced emphysema 40.

In a mouse model, the neutrophilia associated with acute lung injury is markedly 
reduced with lovastatin treatment 41. Paradoxically we found a significant 
increase in the proportion of neutrophils in induced sputum with atorvastatin 
therapy. The absolute neutrophil counts were not significantly different between 
groups, suggesting that the increased proportion of neutrophils occurred because 
of the low macrophage proportion and the expression of the results as a 
percentage. In support of this explanation, the sputum LTB4 concentration was 
reduced after atorvastatin therapy, which would be more likely to be associated 
with a reduced neutrophil count. 

In conclusion, we have demonstrated that short-term therapy with statins does 
not improve lung function or other indices of asthma control of patients with mild 
to moderate atopic asthma who are already receiving treatment with inhaled 
corticosteroids. The reduction in the sputum macrophage count suggests 
potential areas for investigation of atorvastatin in chronic lung disease in which 
activated alveolar macrophages have been implicated in the pathogenesis, such 
as COPD.
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FIGURE LEGENDS

Figure 1: Flow of subjects through the study

Patients invited n = 4303

Suitable for screening n = 299

Positive responses n = 439

Screened n = 137

Randomised n = 54

Competed trial n = 48

Analysed for primary endpoint n = 46

Not eligible n = 140

Declined screening n = 162

Excluded n = 83

Lost to follow-up n = 3
Discontinued n = 3

Final diary missing n = 2
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Figure 2: Mean (95% confidence interval) difference between atorvastatin and 
placebo treatment periods in morning PEF (L/min), FEV1 (L), PC20 methacholine 
(mg/ml) and ACQ score (range 0-6). 
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Figure 3: Mean (95% confidence interval) difference between atorvastatin and 
placebo treatment periods in change in absolute macrophage, neutrophil and
eosinophil counts (x104 cells) compared with baseline. * = p<0.05
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