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Abstract

In this thesis we consider some boundary value problems concerning nonlinear deforma-

tions and incremental motions in magnetoelastic solids. Three main problems have been

addressed relating to waves propagating on the surface of a finitely deformed half-space

and waves propagating along the axis of a thick-walled tube.

First, the equations and boundary conditions governing linearized incremental motions

superimposed on an initial motion and underlying electromagnetic field are derived and

then specialized to the quasimagnetostatic approximation. The magnetoelastic material

properties are characterized in terms of a “total” isotropic energy density function that

depends on both the deformation and a Lagrangian measure of the magnetic field.

In the first problem, we analyze the propagation of Rayleigh-type surface waves for dif-

ferent directions of the initial magnetic field and for a simple constitutive model of a

magnetoelastic material in order to evaluate the combined effect of the finite deformation

and magnetic field on the surface wave speed. Numerical results for a Mooney–Rivlin type

magnetoelastic material show that a magnetic field in the considered (sagittal) plane in

general destabilizes the material compared with the situation in the absence of a magnetic

field. A magnetic field applied in the direction of wave propagation is more destabilizing

than that applied perpendicular to it.

In the second problem, the propagation of Love-type waves in a homogeneously and finitely

deformed layered half-space is analyzed for a Mooney–Rivlin type and a neo-Hookean type

magnetoelastic energy function. The resulting wave speed characteristics in general depend

significantly on the initial magnetic field as well as on the initial finite deformation, and

the results are illustrated graphically for different combinations of these parameters. In the

absence of a layer, shear horizontal surface waves do not exist in a purely elastic material,

but the presence of a magnetic field normal to the sagittal plane makes such waves possible,
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these being analogous to Bleustein–Gulyaev waves in piezoelectric materials.

Then, we consider nonlinear axisymmetric deformations and incremental motions of a

cylindrical magnetoelastic tube. The effects of internal pressure, axial stretch, and mag-

netic field are studied for two different kinds of energy density functions. It is found that

in general an underlying azimuthal magnetic field increases the total internal pressure,

affects the axial load, and induces stability in the tube. Dependence of the incremental

motion on internal pressure, axial stretch, thickness of tube, and the applied magnetic

field is illustrated graphically.

Finally, we consider the general equations of Electrodynamics and Thermodynamics in

continua. In particular, we write the equations governing mechanical waves, electromag-

netic fields and temperature changes in a magnetoelastic conductor with a motivation to

describe the electromagnetic acoustic transduction (EMAT) process. This is a work in

progress and an open research problem for the future.
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Chapter 1

Introduction

Recent times have seen a rapid increase in the engineering devices that exploit and rely on

multi-physical couplings. A large subset of these devices work using the electro-magneto-

mechanical interactions in solids and liquids. In particular, many synthetic elastomers

that are capable of significant changes in their mechanical properties on the application

of a magnetic field have been developed, as highlighted in the works of [Jolly et al., 1996],

[Ginder et al., 2002], [Lokander and Stenberg, 2003], [Yalcintas and Dai, 2004], [Varga

et al., 2006], and [Boczkowska and Awietjan, 2009].

Typically these elastomers consist of a rubber matrix filled with small micron-sized

magnetically active particles (see, for example, Figure 1.1). The magnetic particles try to

arrange themselves in the direction of applied magnetic field and therefore influence the

macroscopic shape and the local elastic modulus of the material. These elastomers exhibit

remarkable properties such as tuneable elastic modulus, non-homogeneous deformation,

and a quick response to the magnetic field. Hence, they can be used in various engineering

applications like vibration dampers and robotics as demonstrated by [Böse et al., 2012].

The above-mentioned developments have motivated a considerable increase in study-

ing the coupling of electromagnetic and mechanical phenomena in the recent literature.

Specially, the problem of wave propagation under a state of finite deformation in the pres-

ence of an electromagnetic field is very important for various applications. An important

application of such analysis is in the experimental determination of the magnetoelastic

properties of the materials concerned as done by [Jolly et al., 1996], [Böse and Röder,

2009], and [Johnson et al., 2012]. [Jolly et al., 1996] prepared a form of magnetoelastic

elastomers by mixing carbonyl iron particles of 3–4 µm size in silicone oil and then allowing

the mixture to cure in the presence of a magnetic field. They then performed double lap

1
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(a) (b)

Figure 1.1: Schematic of a magnetoelastic material inspired from the results of [Jolly

et al., 1996] representing elastomers filled with ferromagnetic particles. (a) Randomly

distributed particles, isotropic material. (b) Particles aligned in a direction by the appli-

cation of a magnetic field during the curing process. The resulting mechanical response is

transversely isotropic.

shear tests for such specimens to determine the effective Young’s elastic modulus of the

elastomers containing 10%, 20%, and 30% iron by volume. [Johnson et al., 2012] study the

behaviour of such elastomers under a dynamic loading in the presence of an underlying

magnetic field to observe the effects on shear modulus, and natural frequency of a finite

system. They report that initial stress and an underlying magnetic field significantly alter

their results. Theoretical analysis of wave propagation under a state of finite deformation

in the presence of magnetic field is also important for non-destructive evaluation, such as

through electromagnetic acoustic transducers.

The effect of initial stress on the propagation of magnetoelastic waves was addressed as

early as 1966 by [Yu and Tang, 1966], who considered the propagation of plane harmonic

waves for some special cases of initial stress relevant to seismic wave propagation. [De

and Sengupta, 1971, 1972] used the equations of [Yu and Tang, 1966] in order to discuss

surface and interfacial waves in magnetoelastic conducting solids.

A paper by [Maugin, 1981] reviewed the major developments in deformable magnetoe-

lastic materials until that time with special emphasis on wave propagation in magnetizable

conducting materials. This was followed by a series of works, notably those by [Maugin

and Hakmi, 1985] on magnetoelastic surface waves with a bias magnetic field orthogonal to

the sagittal plane, by [Abd-Alla and Maugin, 1987] on the general form of the magnetoa-

coustic equations, by [Abd-Alla and Maugin, 1988] on magnetoelastic waves in anisotropic

materials, by [Lee and Its, 1992] on Rayleigh waves in an undeformed magnetoelastic
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conductor and by [Hefni et al., 1995a, 1995b, 1995c] on surface and bulk magnetoelastic

waves in electrical conductors. Similar parallel developments have been there in the field

of electroelasticity, but in this thesis we focus solely on the magnetoelastic materials. Most

of the work in this field is based on the study of electromagnetic phenomena in continua

by [Pao, 1978], [Maugin, 1988], and [Eringen and Maugin, 1990a, 1990b].

Recently, a new constitutive formulation based on a “total” energy density function was

developed by [Dorfmann and Ogden, 2004], wherein the solutions of some basic boundary-

value problems were obtained using two alternative forms of the energy density with differ-

ent independent magnetic vectors; see also [Dorfmann and Ogden, 2005] for the discussion

of further boundary-value problems. This formulation was based on the equations of

nonlinear magnetoelasticity developed by [Dorfmann and Ogden, 2003a], [Brigadnov and

Dorfmann, 2003], and [Dorfmann and Ogden, 2003b]. In the paper by [Otténio et al.,

2008], which was based on the formulation of [Dorfmann and Ogden, 2004], the equations

governing time-independent linearized incremental deformations and magnetic fields su-

perimposed on a static finite deformation and magnetic field were derived. These were then

applied to analyze the effect of the presence of a magnetic field normal to the half-space

boundary on the stability of a deformed magnetoelastic half-space.

Working with the same formulation, Bustamante and coworkers have worked on various

boundary value problems and the variational formulations for obtaining numerical solu-

tions. Static finite deformations of a magnetoelastic tube of finite length was considered

in [Bustamante et al., 2007], a variational formulation to solve the governing equations of

nonlinear magnetoelasticity using numerical methods was developed in [Bustamante et al.,

2008] and [Bustamante, 2009], and [Bustamante and Ogden, 2012] further looked at the

second variations of the energy functionals.

In this thesis, we focus on some boundary value problems concerning wave propagation

in magnetoelastic materials. In particular, we study waves on the surface of a deformed

magnetoelastic half-space and waves propagating in an axisymmetrically deformed mag-

netoelastic tube. Corresponding problems in the case of pure elasticity have been looked

at in the past by various researchers. A general theory for incremental motions in elastic

solid can be seen in [Biot, 1965], while a theory of nonlinear elasticity is presented in texts,

such as those by [Ogden, 1997] and [Holzapfel, 2000]. Study of mechanical waves on the

surface of a half-space goes back more than a hundred years when Lord Rayleigh studied

what are now called ‘Rayleigh waves’. Waves propagating on the surface of a stratified
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half-space with an out-of-plane motion of material particles are called ‘Love waves’. Such

waves, in the context of an incompressible and finitely deformed elastic solid, have been

studied by various researchers, such as [Hayes and Rivlin, 1961], [Dowaikh and Ogden,

1990], [Dowaikh, 1999], and several references therein.

Axisymmetric deformations and incremental motions of a finitely deformed thick-

walled elastic tube have been studied by various researchers in the past. In particular, we

refer to the works of [Wang and Ertepinar, 1972] and [Haughton and Ogden, 1979a, 1979b]

with regards to stability and bifurcations of cylindrical tubes; and [Vaughan, 1979], [Das-

gupta, 1982], [Haughton, 1982], and [Haughton, 1984] on wave propagation in finitely

deformed cylinders and tubes.

Electromagnetic Acoustic Transduction (EMAT) is a technique used to generate me-

chanical waves in magnetoelastic conductors for the purpose of non-destructive testing. A

generic EMAT configuration serves a two-fold purpose, viz., the generation of mechanical

waves using electromagnetic body force and sensing of the existence of mechanical waves

due to changes in the electromagnetic fields. An EMAT configuration, as shown in Fig-

ure 1.2, comprises of an electromagnet that generates a large static magnetic field inside

the magnetoelastic material, and an AC current carrying coil that generates a time-varying

magnetic field. The time changing magnetic field causes eddy currents and a body force in

the magnetoelastic conductor that lead to generation of mechanical waves in the transmit-

ting mode. In the receiving mode, mechanical waves already present in the magnetoelastic

conductor cause a time-varying change in the existing magnetic field. This causes the

generation of a small AC current in the coil which can be measured and used to determine

the existence of such mechanical waves in the bulk material.

EMAT techniques have been greatly used in the recent decades for the purpose of non-

destructive testing in magnetoelastic conductors, see, for example, the works of [Ludwig

et al., 1993], [Ogi, 1997], [Hirao and Ogi, 2003], [Shapoorabadi et al., 2005], and [Saxena,

2009]. However, most of the existing literature still relies largely on a linear theory of

elasticity, and simplistic coupling mechanisms of displacement field with electromagnetic

fields. Very often the samples on which testing is performed are finitely deformed or under

a pre-stress. Moreover, generation of eddy currents in the material causes a change in

temperature due to resistive heating which is rarely taken into account. Such a simplified

theory has many limitations, and its use leads to, for example, a reduction in the efficiency

of EMATs by reducing the “signal-to-noise ratio”.
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I(t)

-

B

Figure 1.2: Schematic showing an EMAT arrangement. A coil carrying alternating current

I(t) placed on a magnetoelastic bulk with an underlying magnetic field B.

Towards the end of this thesis, we have expressed the coupled equations of nonlinear

elasticity taking into account the effects due to electromagnetic fields and changes in

temperature. This is still a work in progress and will form a basis for future research

on theoretical analysis of thermodynamics and electrodynamics in general, and improved

mathematical modelling of EMATs in particular.

1.1 Thesis outline

In this thesis, we consider different boundary value problems in relation to wave propa-

gation in different geometries. In particular, we focus on Rayleigh type, Love type, and

Bleustein-Gulyaev type surface waves on a magnetoelastic half-space, and waves propa-

gating along an infinitely long hollow cylinder. This thesis is divided into seven chapters

(including this one) as follows.

In Chapter 2, we detail the basic equations governing nonlinear magnetoelasticity.

First, using the equations in [Eringen and Maugin, 1990a] and [Ogden, 2009], we write

the equations of electrodynamics in a deformable continua. Then, on the application of a

quasimagnetostatic approximation, the equations are simplified to consider only magnetic

effects in a finitely deformed static solid continuum. We allow for time-dependent incre-

ments on a finite deformation and, using the formulation in [Dorfmann and Ogden, 2004],

define magnetoelastic moduli tensors. For a simple case of homogeneous plane waves,
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following [Destrade and Ogden, 2011], a propagation condition is derived that leads to a

generalized strong ellipticity condition to be satisfied by the moduli tensors.

In Chapter 3, following [Otténio et al., 2008], we specialize the governing equations

and boundary conditions derived in Chapter 2 to two dimensions to consider increments

on the surface of a homogeneously finitely deformed magnetoelastic half-space. The com-

bined effect of the underlying magnetic field and the finite deformation is then studied on

wave propagation for Rayleigh type waves and numerical solutions obtained for a gener-

alized Mooney–Rivlin magnetoelastic solid. We consider three different cases – when the

underlying magnetic field is in the direction of wave propagation, when the magnetic field

is perpendicular to the direction of wave propagation but in the plane of deformation,

and when the magnetic field is out of plane. For the first two cases, we considered dif-

ferent plane strain problems and observed that in general a magnetic field tends to cause

instabilities on the surface of a half-space. The wave speed, in general, reduces on the

application of a high magnetic field and its variation has been demonstrated graphically.

For the static bifurcations, our results converge to those obtained by [Otténio et al., 2008],

while on removing the magnetic field, for the purely elastic case, our results reduce to

those obtained by [Dowaikh and Ogden, 1990]. When the magnetic field is out of plane,

for the energy function considered, it is observed that the magnetic boundary conditions

become incompatible and lead to a trivial solution for the increments in the magnetic field.

Hence, the problem is reduced to a purely mechanical problem.

In Chapter 4, we use the two-dimensional specialization of Chapter 3 but allow for

out-of-plane mechanical displacements. Thus, we analyze Love type waves on the surface

of a layered magnetoelastic half-space and show the existence of Bleustein–Gulyaev type

waves on the surface of a half-space. Bleustein–Gulyaev type waves, that have an out of

plane motion and exist without a layer on a half-space, require an out-of-plane underly-

ing magnetic field to be present and do not have a counterpart in pure elasticity. The

governing equations and boundary conditions for Love-type waves are transformed to a

secular equation relating wave speed to various deformation parameters. Multiple modes

of wave propagation are observed and we illustrate the wave propagation characteristics

for different principal stretches and different directions of the underlying magnetic field.

Numerical results are obtained for a Mooney–Rivlin type and a neo-Hookean type mag-

netoelastic material. In the absence of a magnetic field, our results converge to those

obtained by [Dowaikh, 1999] for the purely elastic case.
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In Chapter 5, we specialize the governing equations and boundary conditions from

Chapter 2 to cylindrical coordinates and consider finite deformations and motions of a

cylindrical tube. In the presence of an internal pressure, axial stretch, and an underlying

magnetic field (in either the axial or azimuthal direction), the tube undergoes a finite

deformation. We obtain numerical solutions for static finite deformations for two energy

density functions – a Mooney–Rivlin type magnetoelastic solid, and a generalization of

Ogden-type elastic solid to magnetoelasticity. Axially homogeneous magnetic field in the

axial direction is not possible for a tube of finite length due to the boundary conditions that

need to be satisfied at the ends. A problem concerning non-homogeneous axial magnetic

field has been solved numerically by [Bustamante et al., 2007]. Hence to consider an

axially homogeneous magnetic field, we take an infinitely long tube for this problem. An

azimuthal magnetic field tends to increase the total internal pressure and generates an

extensional or compressional axial loading depending on the inflation. An axial magnetic

field, on the other hand, has no effect on the internal pressure and generates an extensional

axial loading in all the cases.

Superimposed on the finite deformation, we allow for axisymmetric incremental mo-

tions while considering two different cases of an axial magnetic field or an azimuthal

magnetic field. It is observed that the equations governing incremental motions in the az-

imuthal direction are decoupled from the equations governing incremental motions in the

axial and radial directions, hence we consider these two sub-cases separately. We finally

obtain higher order ODEs in each case which are non-dimensionalized and converted to a

system of first order ODEs to be solved numerically. An algorithm described by [Haughton

and Ogden, 1979b] is used to obtain numerical solutions in Matlab for a Mooney–Rivlin

type magnetoelastic solid. For the case of radial and axial displacements, only a purely

elastic solution is possible by taking the incremental magnetic fields to be zero. For az-

imuthal displacements, we obtain multiple modes of wave propagation and the dependence

of the wave speed on other deformation parameters is illustrated graphically. On neglect-

ing the magnetic effects and considering only pure elasticity, our equations converge to

those obtained by [Haughton and Ogden, 1979b] and [Haughton, 1984].

In Chapter 6, doing away with the quasimagnetostatic approximation used in Chapters

2–5, we use the dipole-current circuit model of [Pao, 1978] to consider the governing equa-

tions of electrodynamics in solid continua. We consider a temperature-dependent elastic

response of a finitely deformed pre-stressed conductor in the presence of an electric and
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a magnetic field. The equations derived in this chapter are useful for understanding and

mathematically modelling EMATs. Numerical solutions using Finite Element Methods of

these equations for a specified geometry are planned to be undertaken as a future work of

this research.

Key results and the conclusions of this thesis are summarized in Chapter 7. Some side

calculations are detailed in Appendices A–C.

Results from Chapter 3 have been published in the International Journal of Applied

Mechanics [Saxena and Ogden, 2011] and presented at the 2nd International Conference

on Material Modelling in Paris, France. Results from Chapter 4 have been published in

Zeitschrift für Angewandte Mathematik und Physik [Saxena and Ogden, 2012]. Further

results from Chapter 5 are in preparation for submission for publication, and have been

presented at the 8th European Solid Mechanics Conference in Graz, Austria.



Chapter 2

Theory of Nonlinear

Magnetoelasticity

In this chapter we first summarize the basic equations governing electrodynamics of a

solid continua based on [Eringen and Maugin, 1990a] and [Ogden, 2009]. Then, using

the constitutive formulation developed in [Dorfmann and Ogden, 2004], we define the

mangetoelastic moduli tensors and obtain the generalized strong ellipticity condition as

given in [Destrade and Ogden, 2011].

A body B is a set of points from which we can define a mapping θ to a Euclidean space

E as shown in Figure 2.1. The region of E given by θ(B) is called a configuration of the

body. The undeformed stress-free reference configuration of a continuous body is denoted

by Br and its boundary by ∂Br. Let Bt, the current configuration, be the region occupied

by the body at time t and ∂Bt its boundary. Elements of B are called material points and

are identified by the position vector X in Br which becomes the position vector x in Bt.

2.1 Basic equations

2.1.1 Kinematics

The time-dependent deformation (or motion) of the body is described by an invertible

mapping χ that maps points from Br to points in Bt such that x = χ(X, t). The function

χ and its inverse are assumed to be sufficiently regular in space and time. The velocity v

and acceleration a of a material particle at X are defined by

v(x, t) = x,t =
∂

∂t
χ (X, t) , a(x, t) = v,t = x,tt =

∂2

∂t2
χ (X, t) , (2.1)

9
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Y

B
Body set

θr

X = θr(Y )

θt

χ

x = χ(X, t) = θt(Y )

Br

Lagrangian configuration

Bt

Eulerian configuration

χ + χ̇

x + ẋ

Incrementally deformed
configuration

1

Figure 2.1: Body set B, the Lagrangian configuration Br, the Eulerian configuration Bt,
and the incrementally deformed configuration.

where the subscript t following a comma denotes the material time derivative.

Throughout this thesis, grad, div, and curl denote the standard differential operators

with respect to x; and Grad, Div, and Curl denote the corresponding operators with

respect to X.

The deformation gradient tensor is defined as F = Gradχ(X, t) and its determinant

is denoted by J = det F, with J > 0. For an incompressible material the constraint

J ≡ det F = 1, (2.2)

has to be satisfied. Incompressibility also imposes the condition div v = 0. Associated

with F are the left and right Cauchy–Green tensors, defined by

b = FFT, c = FTF, (2.3)

respectively.

Let Γ = gradv denote the velocity gradient, tr and T the trace and transpose of a

second-order tensor, respectively, 0 the zero vector, and O the second-order zero tensor.

Then the following standard kinematic identities are noted (see, for example, [Ogden,

2009]) which will be useful for switching between Eulerian and Lagrangian descriptions:

F,t = ΓF,
(
F−1

)
,t

= −F−1Γ, J,t = J trΓ = J divv,

Div
(
JF−1

)
= 0, div

(
J−1F

)
= 0, Curl

(
FT
)

= O, curl
(
F−T

)
= O. (2.4)
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In this thesis, we follow the convention that differentiation operates on the first index

of the following tensor. In the index notation

(div F)α =
∂Fjα
∂xj

, (Curl FT)αi = εαβγ
∂Fiγ
∂Xβ

, (2.5)

where εαβγ is the alternating symbol.

Let a = a(x, t) be an Eulerian vector with a Lagrangian counterpart A = A(X, t).

Then from the above kinematic identities, we obtain

Div(JF−1a) = Jdiv a, Curl(FTa) = JF−1curl a, (2.6)

div(J−1FA) = J−1Div A, curl(F−TA) = J−1F Curl A. (2.7)

For the divergence identities to be equivalent, we require a and A to be connected by

the relation a = J−1FA. While, for the curl identities to be equivalent, we require the

connection a = F−TA.

Let a = J−1FA and V = F−1v, then the material time derivative of a gives

a,t =
∂a
∂t

+ (grad a)v, (2.8)

⇒ J−1FA,t =
∂a
∂t

+ (grad a)v − Γa + (div v)a, (2.9)

⇒ J−1FA,t =
∂a
∂t
− curl(v × a) + (div a)v, (2.10)

⇒ JF−1∂a
∂t

= A,t + Curl(V ×A)− (Div A)V. (2.11)

Here, to obtain the last equation, we have used the relation from (2.6)2

curl(v × a) = J−1F Curl[FT(v × a)], (2.12)

along with the relation FT(v×a) = V×A which can be obtained by the standard vector

identities.

2.1.2 Equations of electromagnetism

Let E, D, B, H, J, K, ρe, and σe be the electric field, electric displacement, magnetic

induction, magnetic field, volume electric current density, surface electric current density,

volume electric charge density, and surface electric charge density, respectively. It should

be noted that the volume current density J is different from J = det F defined in the above

subsection. We work within the non-relativistic framework, with Maxwell’s equations of

electromagnetism given in Eulerian form by

curlE = −∂B
∂t
, curlH =

∂D
∂t

+ J, divD = ρe, divB = 0, (2.13)
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with the boundary conditions

n× JE + v ×BK = 0, n · JDK = σe,

n× JH− v ×DK = K− σevs, n · JBK = 0, (2.14)

on ∂Bt, where n is the unit outward normal to ∂Bt, vs is the value of v on ∂Bt, and surface

polarization is not included. Here JaK represents the jump in vector a across the boundary

in the sense JaK = ao − ai, where the superscripts ‘o’ and ‘i’ signify ‘outside’ and ‘inside’,

respectively.

Lagrangian forms of the physical quantities in (2.13) are defined by (see, for example,

[Maugin, 1988], [Ogden, 2009])

Dl = JF−1D, El = FTE, Hl = FTH, Bl = JF−1B,

JE = JF−1 (J− ρev) , ρE = Jρe. (2.15)

Substituting (2.15)2 in (2.13)1 and using (2.15)4 with (2.11) gives

curl(F−TEl) = −J−1FBl,t − J−1F Curl(V ×Bl) + J−1(Div Bl)FV, (2.16)

which can be further simplified to obtain

Curl(El + V ×Bl) = −Bl,t. (2.17)

Using the process described above, we can re-write all the four Maxwell’s equations in

the Lagrangian form as

Curl(El + V ×Bl) = −Bl,t, DivDl = ρE, (2.18)

Curl(Hl −V ×Dl) = Dl,t + JE, DivBl = 0, (2.19)

along with the boundary conditions

N× JEl + V ×BlK = 0, N · JDlK = σE, (2.20)

N× JHl −V ×DlK = Kl − σEVs, N · JBlK = 0, (2.21)

on ∂Br. The transformation from (2.14) to (2.20) and (2.21) requires use of Nanson’s

formula nda = JF−TNdA connecting reference and current area elements dA and da,

where N is the unit outward normal to ∂Br. Here each term is evaluated on ∂Br, Vs is

the value of V on the boundary, Kl is the surface current density per unit area of ∂Br
given by Kl = F−1Kda/dA and σE = σeda/dA is the surface charge density per unit area

of ∂Br.
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2.1.3 Continuum electromagnetodynamic equations

In Eulerian form, the linear momentum balance equation may be written as

divτ + ρf = ρa, (2.22)

where ρ is the mass density, f is the mechanical body force density per unit mass and τ

is the so-called total Cauchy stress tensor, which incorporates the electromagnetic body

forces. In Lagrangian form, the equation of motion is

DivT + ρrf = ρra, (2.23)

where T is the total nominal stress tensor and ρr is the reference mass density, and we

note the connections

τ = J−1FT, ρr = ρJ. (2.24)

The transformation from (2.22) to (2.23) is effected by use of (2.4)5.

If there are no intrinsic mechanical couples, which is assumed to be the case, then, by

virtue of the definition of the total stress, the electric and magnetic couples are absorbed

in such a way that τ is symmetric. The angular momentum balance equation is then

expressed in either of the equivalent forms

τT = τ , (FT)T = FT. (2.25)

On any part of the boundary ∂Br where the traction is prescribed, the boundary

condition may be given as

TTN = tA + tM, (2.26)

where tA and tM are the mechanical and magnetic contributions to the traction per unit

area on the boundary ∂Br in the reference configuration. The above equation in Eulerian

form can be written as

τn = ta + tm, (2.27)

where ta and tm are the Eulerian representations of the mechanical and magnetic contri-

butions to the traction per unit area on the boundary ∂Bt.

2.2 Incremental equations

On the initial motion x = χ(X, t), we superimpose an incremental motion given by

.x = .
χ(X, t), (2.28)
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where here and henceforth incremented quantities are denoted by a superimposed dot.

The Eulerian counterpart of .x is given by the displacement u(x, t) = .x(X, t). Then, an

increment in the velocity v is given by

.v = .x,t = u,t. (2.29)

We define L = gradu and then obtain the useful relations

.
F = LF,

.
F,t = (grad .v) F, (2.30)

which supplement those in (2.4).

For an incompressible material, the constraint J = 1 leads to divv = 0 and as a linear

approximation, we get

divu = 0, div .v = 0. (2.31)

The governing equations (2.18) and (2.19) are also satisfied by the incremented quan-

tities (El +
.
El), (Bl +

.
Bl), (V +

.
V), (Dl +

.
Dl), (Hl +

.
Hl), (JE +

.
JE), and (ρE + .

ρE).

Substituting them in the governing equations gives the incremental forms of the Lagrangian

Maxwell’s equations as

Curl(
.
El + V ×

.
Bl +

.
V ×Bl) = −

.
Bl,t, Div

.
Dl = .

ρE, (2.32)

Curl(
.
Hl −V ×

.
Dl −

.
V ×Dl) =

.
Dl,t +

.
JE, Div

.
Bl = 0, (2.33)

and similarly from the mechanical balance equations (2.23) and (2.25), we have

Div
.
T + ρr

.
f = ρru,tt, LFT + F

.
T = TTFTLT +

.
T

T
FT, (2.34)

wherein use has been made of (2.30)1.

Analogously to Equation (2.15), we define updated (i.e. pushed-forward to the Eulerian

configuration) forms of the increments
.
T,

.
Bl,

.
Dl,

.
El,

.
Hl as

.
T0 = J−1F

.
T,

.
Bl0 = J−1F

.
Bl,

.
Dl0 = J−1F

.
Dl,

.
El0 = F−T

.
El,

.
Hl0 = F−T

.
Hl, (2.35)

where the subscript 0 is used to indicate the push-forward operation. We use these push-

forward forms to update the incremented governing equations to obtain

curl(
.
El0 + v ×

.
Bl0 + .v ×B) = −

.
Bl,t0, div

.
Dl0 = .

ρE0, (2.36)

curl(
.
Hl0 − v ×

.
Dl0 − .v ×D) =

.
Dl,t0 +

.
JE0, div

.
Bl0 = 0, (2.37)
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and

div
.
T0 + ρr

.
f = ρru,tt, Lτ +

.
T0 = τLT +

.
T

T
0 . (2.38)

It should be noted that the push-forward and material time derivative operations do not

commute in general. However, in the special case of v = 0, we have

.
Bl0,t = (J−1F

.
Bl),t = J−1F

.
Bl,t + J−1ΓF

.
Bl,t − J−1(div v)F

.
Bl,t,

= J−1F
.
Bl,t,

=
.
Bl,t0, (2.39)

and similarly
.
Dl0,t =

.
Dl,t0.

2.2.1 The quasimagnetostatic approximation

We now consider the initial configuration to be purely static and subject only to magnetic

and mechanical effects, i.e. E = 0, D = 0, v = 0 and no mechanical body forces (f = 0).

We assume that there are no volume or surface charges or currents, so that ρe = σe = 0

and J = 0, while H and B are independent of time. Additionally, we consider a non-

conducting material so that
.
Jl0 = 0. The updated incremented governing equations then

specialize to

curl(
.
El0 + .v ×B) = −

.
Bl0,t, div

.
Dl0 = 0, (2.40)

curl
.
Hl0 =

.
Dl,t0, div

.
Bl0 = 0, (2.41)

and

div
.
T0 = ρru,tt. (2.42)

We now focus on the magnetoacoustic (or quasimagnetostatic) approximation of the

equations, which allows the incremental electric field and displacement to be neglected. It

can be shown that they are of order v/c (� 1) times the retained terms in the equations,

where c is the speed of electromagnetic waves in vacuo and v is a typical magnitude of

the acoustic wave speed. After the approximation is applied, the remaining equations,

coupling magnetic and mechanical effects, are

curl
.
Hl0 = 0, div

.
Bl0 = 0, div

.
T0 = ρru,tt. (2.43)

These are the equations we use for the interior of the material in Chapters 3–5.

Outside the material, which may be vacuum (or a non-magnetizable and non-polarizable

material) we use a superscript ∗ to indicate field quantities. Thus, H∗ and B∗, respectively
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are the magnetic field and magnetic induction, which follow the simple constitutive relation

B∗ = µ0H∗, where µ0 is the magnetic permeability of vacuum. Then the magnetostatic

equations are

divB∗ = 0, curlH∗ = 0, (2.44)

and in the quasimagnetostatic approximation their incremental counterparts are

div
.
B
∗

= 0, curl
.
H
∗

= 0, (2.45)

with
.
B
∗

= µ0

.
H
∗
.

Henceforth, we use the notations B and ∂B for the (time-independent) initial deformed

configuration upon which the infinitesimal motion is superimposed.

2.2.2 Incremental boundary conditions

The boundary condition (2.14)4 for the magnetic induction is written (B−B∗) ·n = 0 on

∂B. Since there is no deformation outside the material (in the case that it is a vacuum,

which we assume henceforth) there is no physical meaning attached to a Lagrangian form

of the magnetic induction, so when the boundary condition is expressed in Lagrangian

form it becomes

(Bl − JF−1B∗) ·N = 0 on ∂Br. (2.46)

On taking an increment of the above equation, and then updating and using the incom-

pressibility condition (2.31)2 we obtain the incremental boundary condition

(
.
Bl0 −

.
B
∗

+ LB∗) · n = 0 on ∂B. (2.47)

The boundary condition (2.14)3 for the magnetic field, with K = 0, now becomes

(H−H∗)× n = 0 on ∂B, and in Lagrangian form

(Hl − FTH∗)×N = 0 on ∂Br. (2.48)

On incrementing this and updating we obtain the incremental boundary condition

(
.
Hl0 − LTH∗ −

.
H
∗
)× n = 0 on ∂B. (2.49)

In order to arrive at the corresponding incremental traction boundary condition we

need to define the Maxwell stress outside the material, denoted by τ ∗. This is symmetric

and given by

τ ∗ = µ−1
0

[
B∗ ⊗B∗ − 1

2 (B∗ ·B∗) I
]
, (2.50)
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where I is the identity tensor. The incremental Maxwell stress is then obtained as

.
τ ∗ = µ−1

0

[ .
B
∗ ⊗B∗ + B∗ ⊗

.
B
∗ −

( .
B
∗ ·B∗

)
I
]
. (2.51)

The Lagrangian form of the Maxwell stress is JF−1τ ∗, which is defined only on the

boundary Br, and the magnetic contribution tM to the traction on Br in (2.26) is given by

tM = Jτ ∗F−TN on ∂Br. (2.52)

On taking an increment of this equation, we obtain

.
tM = J

.
τ ∗F−TN− Jτ ∗F−T

.
F

T
F−TN + J(divu)τ ∗F−TN, (2.53)

which on pushing forward and using the incompressibility condition (2.31)2, gives

.
tM0 = .

τ ∗n− τ ∗LTn on ∂B. (2.54)

When there is also a mechanical traction tA, with increment
.
tA, the incremental trac-

tion boundary condition is written

.
T

T
0 n =

.
tA0 +

.
tM0 (2.55)

at any point of ∂B where the traction is prescribed.

2.3 Constitutive relations

Following [Dorfmann and Ogden, 2004], we consider a magnetoelastic material for which

the constitutive law is given in terms of a total potential energy density function, Ω =

Ω (F,Bl), defined per unit reference volume. This yields the simple formulas

T =
∂Ω
∂F

, Hl =
∂Ω
∂Bl

, (2.56)

for the total nominal stress and the Lagrangian magnetic field. Their Eulerian counterparts

are

τ = J−1F
∂Ω
∂F

, H = F−T ∂Ω
∂Bl

. (2.57)

In the case of an incompressible material, we have the constraint J = 1 and the above

equations for the stresses are modified to

T =
∂Ω
∂F
− pF−1, τ = F

∂Ω
∂F
− pI, (2.58)
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where p is a Lagrange multiplier associated with the constraint and I is again the identity

tensor.

For an isotropic magnetoelastic material, Ω can be expressed in terms of six indepen-

dent scalar invariants of c = FTF and Bl ⊗Bl (see, for example, [Steigmann, 2004]).

One possible set of invariants, used by [Dorfmann and Ogden, 2004], is

I1 = trc, I2 =
1
2

[(trc)2 − tr(c2)], I3 = det c = J2, (2.59)

I4 = Bl ·Bl, I5 = (cBl) ·Bl, I6 =
(
c2Bl

)
·Bl. (2.60)

We adopt these here and confine attention to isotropic magnetoelastic materials.

The total nominal stress and the Lagrangian magnetic field can then be expanded in

the forms

T =
∑
i∈I

Ωi
∂Ii
∂F

, Hl =
∑
i∈J

Ωi
∂Ii
∂Bl

, (2.61)

where Ωi = ∂Ω/∂Ii, i = 1, ..., 6, I is the set {1, 2, 3, 5, 6}, or {1, 2, 5, 6} for an incompress-

ible material, and J the set {4, 5, 6}. The derivatives of the Ii with respect to F and Bl

are given in Appendix A in component form. Explicitly we calculate the expressions for

τ for an incompressible material and H as

τ = −pI + 2Ω1b + 2Ω2

(
I1b− b2

)
+ 2Ω5B⊗B + 2Ω6 (B⊗ bB + bB⊗B) , (2.62)

and

H = 2
(
Ω4b−1B + Ω5B + Ω6bB

)
, (2.63)

where I3 ≡ 1 and we recall that b = FFT is the left Cauchy-Green tensor.

2.3.1 Magnetoelastic moduli tensors

By taking the increments of (2.56) we obtain the linearized equations

.
T = A

.
F + C

.
Bl,

.
Hl = CT

.
F + K

.
Bl, (2.64)

where the magnetoelastic ‘moduli’ tensors are defined by

A =
∂2Ω
∂F∂F

, C =
∂2Ω
∂F∂Bl

, CT =
∂2Ω
∂Bl∂F

, K =
∂2Ω

∂Bl∂Bl
, (2.65)

the products in (2.64) are defined by

(A
.
F)αi = Aαiβj

.
Fjβ, (C

.
Bl)αi = Cαi|β

.
Blβ,

(CT
.
F)β = Cβ|αi

.
Fiα, (K

.
Bl)α = Kαβ

.
Blβ, (2.66)
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and we note the symmetries

Aαiβj = Aβjαi, Cαi|β = Cβ|αi, Kαβ = Kβα, (2.67)

which reflect the commutativity of the partial derivatives. The vertical bar between the in-

dices on C is a separator used to distinguish the single subscript from the pair of subscripts

that always go together.

For an incompressible material (2.64)1 is replaced by

.
T = A

.
F + C

.
Bl − .

pF−1 + pF−1
.
FF−1, (2.68)

and, subject to det F = 1, (2.64)2 is unchanged.

On updating the incremented constitutive equations (2.64) and (2.68), we obtain

.
T0 = A0L + C0

.
Bl0,

.
Hl0 = CT

0 L + K0

.
Bl0. (2.69)

and
.
T0 = A0L + C0

.
Bl0 − .

pI + pL, (2.70)

respectively, where A0,C0 and K0 are defined in component form by

A0piqj = A0qjpi = J−1FpαFqβAαiβj = J−1FpαFqβAβjαi, (2.71)

C0ij|k = C0k|ij = FiαF
−1
βk Cαj|β = FiαF

−1
βk Cβ|αj , (2.72)

K0ij = K0ji = JF−1
αi F

−1
βj Kαβ, (2.73)

which, for an incompressible material, apply with J = 1. Explicit formulas for these

components for an isotropic magnetoelastic material referred to the principal axes of the

left Cauchy–Green tensor b are given in Appendix B.

On substituting (2.69)1 and (2.70) into (2.38) in turn, we obtain

A0L + Lτ = (A0L)T + τLT, C0

.
Bl0 = (C0

.
Bl0)T (2.74)

and

A0L + pL + Lτ = (A0L)T + pLT + τLT, C0

.
Bl0 = (C0

.
Bl0)T, (2.75)

respectively.

Writing Equation (2.75)2 in component form gives

C0ij|k
.
Bl0k = C0ji|k

.
Bl0k. (2.76)
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The above equality holds for all the values of
.
Bl0 while C0 is a material constant.

Hence, we obtain the symmetry

C0ij|k = C0ji|k. (2.77)

Equation (2.75)1, when written in component form, gives

A0ijklLlk + pLij + Likτkj = A0jiklLlk + pLji + τikLjk, (2.78)

⇒A0ijklLlk + pδilδjkLlk + δilLlkτkj = A0jiklLlk + pδjlδkiLlk + δjlτikLlk, (2.79)

where δij is the Kronecker delta. The above equality holds for all the values of the dis-

placement gradient Llk = ul,k. Hence, we deduce the symmetries

A0ijkl + δil(τkj + pδjk) = A0jikl + δjl(τik + pδki), C0ij|k = C0ji|k, (2.80)

which are additional to (2.67). Here p = 0 in the case of an unconstrained material.

Henceforth we restrict attention to incompressible materials. We now use the constitu-

tive equations (2.69)2 and (2.70) together with (2.43) to arrive at the governing equations

curl(CT
0 L + K0

.
Bl0) = 0, div

.
Bl0 = 0, divu = 0, (2.81)

div(A0L + C0

.
Bl0)− grad .

p+ LTgradp = ρu,tt. (2.82)

If the underlying configuration is homogeneous so that p, A0, C0, and K0 are uniform,

then in Cartesian component form, equations (2.81) and (2.82) become

εijk(C0pq|kup,qj + K0kp

.
Bl0p,j) = 0,

.
Bl0i,i = 0, ui,i = 0, (2.83)

A0piqjuj,pq + C0pi|q
.
Bl0q,p − .

p,i = ρui,tt. (2.84)

We note here that alternatively we can define the energy density function in terms of

F and Hl that gives a different set of magnetoelastic moduli tensors. This is detailed in

Chapter 5 to work on a boundary value problem in cylindrical geometry.

2.4 Homogeneous plane waves

We now consider infinitesimal homogenous plane waves propagating with speed v in the

direction of unit vector n in the form

u = mf (n · x− vt) ,
.
Bl0 = qg (n · x− vt) , .

p = P (n · x− vt) , (2.85)
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where m and q are constant (polarization) unit vectors in the directions of the incremental

displacement and magnetic induction, respectively, and f , g and P are appropriately

regular functions of the argument n ·x−vt. Substituting these expressions into Eq. (2.83)

and Eq. (2.84), we obtain

n× {R(n)Tmf ′′ + K0qg′} = 0, q · n = 0, m · n = 0, (2.86)

Q(n)mf ′′ + R(n)qg′ − P ′n = ρv2mf ′′, (2.87)

where Q(n), the acoustic tensor, and R(n), the magneto-acoustic tensor, are given by

[Q(n)]ij = A0piqjnpnq, [R(n)]ij = C0ip|jnp, (2.88)

and a prime signifies differentiation with respect to the argument n · x − vt. Note that

Q(n) is symmetric but in general R(n) is not.

Let Î(n) = I − n ⊗ n denote the symmetric projection tensor onto the plane with

normal n. Then, following [Destrade and Ogden, 2011], we define the notations

Q̂(n) = Î(n)Q(n)̂I(n), R̂(n) = Î(n)R(n)̂I(n), K̂0(n) = Î(n)K0(n)̂I(n), (2.89)

which are the projections of Q(n), R(n), and K0(n), respectively, onto the plane normal

to n.

Using (2.86)3 we obtain from (2.87)

P ′ = [Q(n)m] · nf ′′ + [R(n)q] · ng′, (2.90)

and substitution of this back into (2.87) enables the latter to be written as

Q̂(n)mf ′′ + R̂(n)qg′ = ρv2mf ′′. (2.91)

Similarly, from (2.86)1 we deduce that

R(n)Tmf ′′ + K0qg′ = {[R(n)Tm] · nf ′′ + [K0q] · ng′}n, (2.92)

which can be written more compactly as

R̂(n)Tmf ′′ + K̂0qg′ = 0. (2.93)

As in [Destrade and Ogden, 2011] we assume that K̂0 is non-singular as an opera-

tor restricted to the plane normal to n and also positive definite in view of its inter-

pretation as the inverse of the incremental permeability tensor. We then obtain qg′ =
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−K̂
−1
0 R̂(n)Tmf ′′, and substitution into (2.91) and elimination of f ′′ 6= 0 yields the prop-

agation condition for acoustic waves under the influence of a magnetic field, explicitly

P̂(n)m ≡ Q̂(n)m− R̂(n)K̂
−1
0 R̂(n)Tm = ρv2m, (2.94)

wherein the generalized acoustic (or Christoffel) tensor P̂ is defined as Q̂(n)−R̂(n)K̂
−1
0 R̂(n)T,

which is symmetric. This is a generalization of the propagation condition for homogeneous

plane waves in an incompressible elastic solid in the absence of a magnetic field. This

prompts a corresponding generalization of the strong ellipticity condition in the form

m · [P̂(n)m] > 0, (2.95)

for all unit vectors m and n such that m · n = 0, as given in [Destrade and Ogden, 2011].

This guarantees that homogeneous plane waves have real wave speeds. In component form,

which will be useful later, the generalized strong ellipticity inequality (2.95) can be written

as (
A0piqj − C0ip|kK̂−1

0klC0jq|l
)
mimjnpnq > 0. (2.96)



Chapter 3

Surface Waves on a Half-Space:

In-Plane Motion

In this chapter, Rayleigh type surface waves propagating in an incompressible isotropic

half-space of nonconducting magnetoelastic material are studied for a half-space subjected

to a finite pure homogeneous strain and a uniform magnetic field. We first specialize

the equations obtained in the previous chapter to two dimensions corresponding to a

homogeneously deformed half-space. The combined effect of the finite deformation and

the underlying magnetic field is then studied on wave propagation for different directions

of the magnetic field.

Analysis and results in this chapter have been published in [Saxena and Ogden, 2011]

and are being reproduced here in greater detail.

3.1 Two-dimensional specialization

Let the initial deformation of the material be given by the pure homogeneous strain

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (3.1)

where the principal stretches λ1, λ2, λ3 are uniform. The component matrix [F] of the de-

formation gradient is then [F] = diag(λ1, λ2, λ3). We also assume that the initial (uniform)

magnetic induction has components (B1, B2, 0) in the material and (B∗1 , B
∗
2 , 0) outside.

In this chapter, we study two-dimensional motions in the (1, 2) plane and seek solutions

depending only on the in-plane variables x1 and x2 such that u3 =
.
Bl03 =

.
B∗l03 = 0. The

third component of the equation of motion (2.84) and the first two components of (2.83)1

23
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are then satisfied trivially, and the remaining equations are

A01111u1,11 + 2A01121u1,12 +A02121u1,22 +A01112u2,11

+ (A01122 +A01221)u2,12 +A02122u2,22 + C011|1
.
Bl01,1

+ C021|1
.
Bl01,2 + C011|2

.
Bl02,1 + C021|2

.
Bl02,2 − .

p,1 = ρu1,tt, (3.2)

A01211u1,11 + (A01221 +A01122)u1,12 +A02221u1,22

+A01212u2,11 + 2A01222u2,12 +A02222u2,22 + C012|1
.
Bl01,1

+ C022|1
.
Bl01,2 + C012|2

.
Bl02,1 + C022|2

.
Bl02,2 − .

p,2 = ρu2,tt, (3.3)

C011|2u1,11 + (C021|2 − C011|1)u1,12 − C021|1u1,22

+ C012|2u2,11 + (C022|2 − C012|1)u2,12 − C022|1u2,22

+ K012

.
Bl01,1 − K011

.
Bl01,2 + K022

.
Bl02,1 − K012

.
Bl02,2 = 0. (3.4)

Elimination of .
p from (3.2) and (3.3) by cross differentiation and subtraction yields

A01211u1,111 + (A01221 +A01122 −A01111)u1,112 + (A02221 − 2A01121)u1,122

−A02121u1,222 +A01212u2,111 + (2A01222 −A01112)u2,112

− (A01122 +A01221 −A02222)u2,122 −A02122u2,222 + C012|1
.
Bl01,11

+ (C022|1 − C011|1)
.
Bl01,12 − C021|1

.
Bl01,22 + C012|2

.
Bl02,11

+ (C022|2 − C011|2)
.
Bl02,12 − C021|2

.
Bl02,22 = ρ(u2,1 − u1,2),tt. (3.5)

The corresponding equations in (2.45) outside the material may be written as

.
B∗1,1 +

.
B∗2,2 = 0,

.
B∗2,1 −

.
B∗1,2 = 0. (3.6)

Since
.
Bl0 and u satisfy the equations (2.83)2,3 and

.
B
∗

satisfies Equation (3.6)1, we can

define potentials ψ, φ, and ψ∗ such that

.
Bl01 = ψ,2,

.
Bl02 = −ψ,1, u1 = φ,2, u2 = −φ,1,

.
B∗1 = ψ∗,2,

.
B∗2 = −ψ∗,1. (3.7)
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Substituting these expressions into the governing equations (3.5), (3.4), and (3.6)2, we

obtain the two coupled equations

αφ,1111 + 2δφ,1112 + 2βφ,1122 + 2εφ,1222 + γφ,2222

+ aψ,111 + bψ,112 + cψ,122 + dψ,222 = ρ (φ,11 + φ,22),tt , (3.8)

aφ,111 + bφ,112 + cφ,122 + dφ,222 + K011ψ,22 + K022ψ,11 − 2K012ψ,12 = 0, (3.9)

for φ and ψ in the material, where, for compactness of representation, we have introduced

the notations

α = A01212, 2β = A01111 +A02222 − 2A01122 − 2A01221, γ = A02121, (3.10)

δ = A01222 −A01211, ε = A01121 −A02221, a = C012|2, (3.11)

b = C022|2 − C011|2 − C012|1, c = C011|1 − C022|1 − C021|2, d = C021|1. (3.12)

Outside the material we have the single equation

ψ∗,11 + ψ∗,22 = 0. (3.13)

When there is no time dependence and B1 = 0, equations (3.8) and (3.9) reduce to

equations given in Section 5.2 of [Otténio et al., 2008], but partly in different notation.

3.2 Surface waves

In this section we consider two separate cases: first, B1 = 0 with B2 6= 0; and second,

B1 6= 0 with B2 = 0. The material forms a half-space X2 < 0 in the reference configu-

ration, with unit outward normal N to its boundary X2 = 0 having components (0, 1, 0).

Under the deformation (3.1), the material occupies the half space x2 < 0 in the deformed

configuration and the unit outward normal n to its boundary x2 = 0 has components

(0, 1, 0).

3.2.1 Magnetic induction components (0, B2, 0)

In this first example we take the initial magnetic induction to be perpendicular to the sur-

face of the half-space so that the components of B are (0, B2, 0). The boundary condition

B · n = B∗ · n applied to x2 = 0 then gives B∗2 = B2. It follows from (2.50) and (2.51)
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that the matrix representations of τ ∗ and .
τ ∗ are, respectively,

[τ ∗] =
B2

2

2µ0


−1 0 0

0 1 0

0 0 −1

 , [ .τ ∗] =
B2

µ0


−

.
B∗2

.
B∗1 0

.
B∗1

.
B∗2 0

0 0 −
.
B∗2

 . (3.14)

Incremental equations and boundary conditions

For the given values of F and B, many of the components of the moduli listed in Appendix

B vanish, and equations (3.8) and (3.9) simplify to

αφ,1111 + 2βφ,1122 + γφ,2222 + bψ,112 + dψ,222 = ρ (φ,11 + φ,22),tt , (3.15)

bφ,112 + dφ,222 + K011ψ,22 + K022ψ,11 = 0. (3.16)

Using the values of τ ∗ and .
τ ∗ from (3.14) and assuming there is no incremental

mechanical traction on x2 = 0 the components of the incremental traction are obtained

from (2.54) with
.
T

T
0 N =

.
tM0 as

.
T021 −

B2

µ0

.
B∗1 −

B2
2

2µ0
u2,1 = 0,

.
T022 −

B2

µ0

.
B∗2 +

B2
2

2µ0
u2,2 = 0 on x2 = 0, (3.17)

with
.
T023 = 0 satisfied identically. From the boundary conditions (2.47) and (2.49) we

obtain
.
Bl02 −

.
B∗2 +B2u2,2 = 0,

.
Hl01 −

B2

µ0
u2,1 −

.
H∗1 = 0 on x2 = 0. (3.18)

By substituting the updated incremented constitutive equations (2.70) and (2.69)2,

appropriately specialized, into the incremental boundary conditions (3.17) and (3.18)1

and making use of the connection

A01221 + τ22 + p = A02121, (3.19)

which comes from (2.80)1, we obtain

(A02121 − τ22 −
B2

2

2µ0
)u2,1 +A02121u1,2 + C021|1

.
Bl01 −

B2

µ0

.
B∗1 = 0, (3.20)

A01122u1,1 + (A02222 + p+
B2

2

2µ0
)u2,2 + C022|2

.
Bl02 − .

p− B2

µ0

.
B∗2 = 0, (3.21)

C012|1u2,1 + C021|1u1,2 + K011

.
Bl01 −

B2

µ0
u2,1 −

1
µ0

.
B∗1 = 0, (3.22)

each holding on x2 = 0.

Next, we differentiate (3.21) with respect to x1 and make use of (3.2) to eliminate .
p,1.

We then introduce the potentials φ, ψ, and ψ∗ into the resulting equation and equations
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(3.18), (3.20), and (3.22) and use the notations (3.10)–(3.12). We also note that if there

is no mechanical traction applied on the boundary x2 = 0 in the underlying configuration

then the normal stress τ22 in the material must balance the Maxwell stress τ∗22 on x2 = 0,

which gives

τ22 = τ∗22 =
B2

2

2µ0
. (3.23)

The boundary conditions can then be written as

(γ − 2τ∗22)φ,11 − γφ,22 − dψ,2 +
B2

µ0
ψ∗,2 = 0, (3.24)

(2β + γ)φ,112 + γφ,222 + (b+ d)ψ,11 + dψ,22 −
B2

µ0
ψ∗,11 − ρφ,2tt = 0, (3.25)

B2φ,12 + ψ,1 − ψ∗,1 = 0, (3.26)

d(φ,11 − φ,22)− K011ψ,2 −
B2

µ0
φ,11 +

1
µ0
ψ∗,2 = 0, (3.27)

which apply on x2 = 0.

Hence, the problem is reduced to solving the governing equations (3.15), (3.16) in

x2 < 0 and (3.13) in x2 > 0, and applying the boundary conditions (3.24)–(3.27) on

x2 = 0 and appropriate decay behaviour as x2 → ±∞.

Surface wave propagation

We now study two-dimensional surface waves propagating in the x1 direction with the

increments having non-zero components lying in the (1, 2) plane. We consider harmonic

solutions of the form

φ = P exp (skx2 + ikx1 − iωt) , ψ = kQ exp (skx2 + ikx1 − iωt) in x2 < 0, (3.28)

ψ∗ = kR exp (s∗kx2 + ikx1 − iωt) in x2 > 0, (3.29)

where P , Q, R are constants, k is the wave number, ω is the angular frequency, and s and

s∗ are to be determined subject to the requirements Re(s) > 0 and Re(s∗) < 0 needed for

decay of the surface wave amplitude away from the boundary. Substituting these solutions

into the governing equations (3.13), (3.15), and (3.16) we obtain

[α− 2βs2 + γs4 + ρv2(s2 − 1)]P + (ds2 − b)sQ = 0, (3.30)

(ds2 − b)sP + (K011s
2 − K022)Q = 0, (3.31)
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and s∗2 = 1, where the wave speed is v = ω/k. For the solution ψ∗ to decay as x2 → ∞,

we necessarily take s∗ = −1. For non-trivial solutions for P and Q from (3.30) and (3.31),

we set the determinant of coefficients to be zero and obtain a cubic equation for s2, namely

(γK011 − d2)s6 + [K011(ρv2 − 2β)− γK022 + 2bd]s4

+ [K022(2β − ρv2) + K011(α− ρv2)− b2]s2 + (ρv2 − α)K022 = 0. (3.32)

We denote by s1, s2, s3 the three solutions satisfying the requirement Re(s) > 0. The

general solutions of the equations that satisfy the decay conditions are now given by

φ = (P1es1kx2 + P2es2kx2 + P3es3kx2)ei(kx1−ωt), (3.33)

ψ = k(Q1es1kx2 +Q2es2kx2 +Q3es3kx2)ei(kx1−ωt), (3.34)

ψ∗ = kRe−kx2+i(kx1−ωt). (3.35)

For each i, Qi is related to Pi by equation (3.31), which we re-write here as

Qi =
(b− ds2i )si

K011s2i − K022
Pi, i = 1, 2, 3. (3.36)

Next, we substitute the general solutions (3.33)–(3.35) into the boundary conditions

(3.24)–(3.27) to obtain

(γ − 2τ∗22)ΣjPj + γΣjs
2
jPj + dΣjsjQj +

B2

µ0
R = 0, (3.37)

(2β + γ − ρv2)ΣjsjPj − γΣjs
3
jPj + (b+ d)ΣjQj − dΣjs

2
jQj −

B2

µ0
R = 0, (3.38)

B2ΣjsjPj + ΣjQj −R = 0, (3.39)

dΣj(s2j + 1)Pj + K011ΣjsjQj −
B2

µ0
ΣjPj +

1
µ0
R = 0, (3.40)

where Σj indicates summation over j from 1 to 3.

We now have seven linear equations in P1, P2, P3, Q1, Q2, Q3, and R, and for a non-

trivial solution the determinant of coefficients must vanish. The result is the secular

equation relating the wave speed v to the initial deformation, the material properties and

the initial magnetic induction B2, and we note that, by (3.23), the stress τ∗22 depends on

B2.



Chapter 3. Surface Waves on a Half-Space: In-Plane Motion 29

Pure elastic case

Here we take the magnetic field to vanish in order to reduce our results to known results

in the purely elastic case. For this purpose we set C = 0, Qi = 0, i = 1, 2, 3, and R = 0.

Equation (3.32) reduces to a quadratic for s2, namely

γs4 − (2β − ρv2)s2 + α− ρv2 = 0, (3.41)

from which we deduce that the solutions s21 and s22 satisfy

γ(s21 + s22) = 2β − ρv2, γs21s
2
2 = α− ρv2. (3.42)

For a surface wave we take s1 and s2 to be the solutions satisfying Re(s) > 0, and, as

discussed in [Dowaikh and Ogden, 1990], we require γ > 0 and ρv2 ≤ α.

The boundary conditions (3.24)–(3.27) reduce to the two equations

(γ − τ22)φ,11 − γφ,22 = 0, (2β + γ − τ22)φ,112 + γφ,222 − ρφ,2tt = 0 on x2 = 0, (3.43)

where, for comparison with the results of [Dowaikh and Ogden, 1990], we have assumed

that there is a normal mechanical traction τ22 on x2 = 0 in the underlying configuration.

The general solution for φ can be rewritten as

φ = (P1es1kx2 + P2es2kx2)ei(kx1−ωt). (3.44)

Substitution into the boundary conditions then yields

(γ − τ22 + γs21)P1 + (γ − τ22 + γs22)P2 = 0, (3.45)

(2β + γ − τ22 − ρv2 − γs21)s1P1 + (2β + γ − τ22 − ρv2 − γs22)s2P2 = 0, (3.46)

from which, on use of (3.42), the explicit secular equation is obtained as

γ(α− ρv2) + (2β + 2γ − 2τ22 − ρv2)
√
γ(α− ρv2) = (γ − τ22)2. (3.47)

Apart from some minor differences of notation, this agrees with the formula (5.17) obtained

by [Dowaikh and Ogden, 1990].

Application to a Mooney–Rivlin magnetoelastic material

For purposes of illustration we now consider the energy function of a Mooney–Rivlin

magnetoelastic material as used by [Otténio et al., 2008]. This has the form

Ω =
1
4
µ(0)[(1 + ν)(I1 − 3) + (1− ν)(I2 − 3)] + lI4 +mI5, (3.48)
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where µ(0) is the shear modulus of the material in the absence of magnetic fields. Ac-

cording to the convention in literature, the shear modulus µ is a function of the invariants

I4, I5, I6 in general (as has been used in Chapter 4). For this particular energy function,

we consider it to be a constant µ(0). To avoid a conflict of notation, we use l, m, ν, re-

spectively, in place of the α/µ0, β/µ0, γ used by [Otténio et al., 2008]. Note that lµ0, mµ0

and ν are dimensionless, with ν restricted to the range −1 ≤ ν ≤ 1, as for the classical

Mooney–Rivlin model.

For this model, from Equation (2.62), the total stress τ reduces to

τ = −pI +
1
2
µ (0) (1 + γ) b +

1
2
µ (0) (1− γ)

(
I1b− b2

)
+ 2mB⊗B, (3.49)

while from Equation (2.63), H is given as

H = 2lb−1B + 2mB. (3.50)

If l = 0 then the magnetic constitutive equation is unaffected by deformation while

if m = 0 then the the total stress is unaffected by the magnetic field. Thus, a two-way

coupling require inclusion of both the constants.

It can be seen from the above equations that the parameter l has no effect on the

total stress. On the other hand, m, if positive, stiffens the material in the direction of the

magnetic field which is consistent with the experimental results obtained by [Jolly et al.,

1996]. Hence we require m to be positive. If m = 0 and there is no initial deformation,

i.e. b = I, then from the magnetic constitutive equation, for H and B to be in the same

direction we require l to be positive.

The relevant non-zero components of the magnetoelastic tensors are easily calculated

from the formulas in Appendix B as

A01111 =
1
2
µ(0)λ2

1[1 + ν + (1− ν)(λ2
2 + λ2

3)], (3.51)

A02222 =
1
2
µ(0)λ2

2[1 + ν + (1− ν)(λ2
1 + λ2

3)] + 2mB2
2 , (3.52)

A01212 =
1
2
µ(0)λ2

1[1 + ν + (1− ν)λ2
3], A02121 = λ2

2λ
−2
1 A01212 + 2mB2

2 , (3.53)

A01122 = −2A01221 = µ(0)(1− ν)λ2
1λ

2
2, (3.54)

C022|2 = 2C012|1 = 4mB2, (3.55)

K011 = 2(m+ λ−2
1 l), K022 = 2(m+ λ−2

2 l), (3.56)
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from which we deduce, using the notation defined in (3.10)–(3.12), that

2β = α+ γ, b = d. (3.57)

With these values, Equation (3.32) factorizes in the form

(s2 − 1)
{

(γK011 − d2)s4 − [γK022 + (α− ρv2)K011 − d2]s2 + (α− ρv2)K022

}
= 0. (3.58)

Let the solutions with positive real part be denoted s1 (= 1), s2 and s3. Then,

s22 + s23 =
γK022 + (α− ρv2)K011 − d2

γK011 − d2
, s22s

2
3 =

(α− ρv2)K022

γK011 − d2
. (3.59)

Note that when v = 0 the bi-quadratic in (3.58) factorizes easily to give the equation

(s2 − λ4)[(µ0K011 + 4lmB2
2)s2 − µ0K022] = 0, (3.60)

as shown by [Otténio et al., 2008], although there is a slight error in their equation (112),

wherein their α and β should be replaced by 2α and 2β, respectively. This has only minor

repercussions for their subsequent results. We also note in passing that for v 6= 0, in the

special case λ = 1, the bi-quadratic factorizes as (s2 − 1)[(γK011 − d2)s2 −K011(α− ρv2)].

Now, by specializing the generalized strong-ellipticity condition (2.96) to the present

constitutive model and setting n1 = 1, n2 = 0,m1 = 0,m2 = 1 we obtain γK011 − d2 > 0.

Then, following the same argument as used in the purely elastic case, we require s22s
2
3 ≥ 0

and we therefore conclude that

ρv2 ≤ α. (3.61)

For the considered model, this upper bound is identical to that in the purely elastic case

and hence independent of the magnetic field.

We now use s1 = 1 and the expressions (3.59) in the boundary conditions (3.37)–(3.40)

and set the determinant of coefficients to zero to obtain the secular equation. The resulting

equation is too lengthy to reproduce here, and we obtain the solutions numerically. For

this purpose, we use the standard value 4π × 10−7 N A−2 of µ0 together with the value

2.6 × 105 N m−2 of µ(0) that was adopted by [Otténio et al., 2008] based on data for an

elastomer filled with 10% by volume of iron particles from [Jolly et al., 1996]. We also

use a series of values of l and m consistent with the values of the magnetoelastic coupling

constants used in [Otténio et al., 2008].

First, we consider the underlying deformation to be one of plane strain in the (1, 2)

plane, and we take λ1 = λ, λ2 = λ−1, λ3 = 1. In this case the results are independent of
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Figure 3.1: Plot of ζ = ρv2/µ(0) vs λ1 = λ with λ3 = 1 for B2 = 0, 2, 4, 6, 8, 10 T (curves

reading from left to right): (a) µ0l = 2, µ0m = 1; (b) µ0l = 0.1, µ0m = 1.

the parameter n in the Mooney–Rivlin model and the upper bound (3.61) is µ(0)λ2. Let

ζ = ρv2/µ(0). Then we plot the variation of ζ with λ for a selection of values of l and

m and a range of values of B2 in Figures 3.1 and 3.2. We also consider a deformation

for which λ1 = 1, λ2 = λ, λ3 = λ−1 and we use the value n = 0.3 in the Mooney–Rivlin

model. Then, the upper bound (3.61) is µ(0)(0.65 + 0.35λ−2). Results for this case are

plotted in Figure 3.3 for two representative pairs of values of l and m and a range of values

of B2.

Figures 3.1 and 3.2 relate to a plane strain deformation in which the half-space is

subject to compression or extension parallel to its boundary. The result for B2 = 0

corresponds to the purely elastic case and provides a point of reference. The B2 = 0 curve

cuts the λ axis at λ = λc ' 0.5437, which agrees with the classical result for the critical

value of λ corresponding to loss of stability of the half-space under compression for the

neo-Hookean model (for which n = 1); see [Biot, 1965] and [Dowaikh and Ogden, 1990] for

details. By referring to the ζ = 0 axis in Figure 3.1 and Figure 3.2(b) it can be seen that

the magnetic field destabilizes the material, i.e. instability occurs at a compression closer

to the undeformed configuration where λ = 1. For each value of B2 there is a critical value

of λ beyond which a surface wave exists, and the wave speed increases with λ consistently

with the upper bound (3.61). Note, in particular, that the undeformed configuration λ = 1
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Figure 3.2: Plot of ζ = ρv2/µ(0) vs λ1 = λ with λ3 = 1: (a) µ0l = 2, µ0m = 0.2 with

B2 = 1, 0, 2, 3, 4, 5 T; (b) µ0l = 0.2, µ0m = 0.2 with B2 = 0, 1, 2, 3, 4, 5 T (curves reading

from left to right in each case).

becomes unstable as B2 increases. In Figure 3.2(a) the situation is slightly different since

for small values of B2 the half-space is initially stabilized as B2 increases (i.e. the critical

value of λ decreases below the classical value λc), but then as B2 is increased further

stability is lost again. Note that the B2 = 0 and B2 = 1 curves cross over in this case.

These results are consistent with the stability analysis of [Otténio et al., 2008].

When there is no compression or extension parallel to x2 = 0 in the sagittal plane

but there is extension (or compression) normal to the boundary and a corresponding

compression (or extension) normal to the sagittal plane the effect of the magnetic field is

different. Figure 3.3 illustrates this case.

Now there is instability for λ > 1, at λ ' 3.4 for B2 = 0, and the critical value of

λ decreases with increasing B2, i.e. the magnetic field again has a destabilizing effect.

The wave speed increases as λ decreases, again consistently with the upper bound (3.61).

Figure 3.4 shows plots of the dimensionless squared wave speed as a function of B2 for

the undeformed configuration λ = 1 for (a) a fixed value of m and a series of values of l,

and (b) a fixed value of l and a series of values of m. For B2 = 0 the curves cut the ζ

axis at the classical Rayleigh value (' 0.9126). As B2 increases then, depending on the

values of the parameters l and m, the wave speed either increases or decreases initially but
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in each case subsequently decreases to zero with further increase in B2. This emphasizes

that the undeformed configuration is destabilized at a critical value of B2 dependent on

the material parameters. From Figure 3.4(a), for the selected value of m, it can be seen

that increasing the value of l has a stabilizing effect, while from Figure 3.4(b) the reverse

is true for increasing m at a fixed value of l.

3.2.2 Magnetic induction components (B1, 0, 0)

The initial deformed configuration is considered to be the same as in Section 3.2.1, but

now we take the magnetic induction B to have components (B1, 0, 0). The corresponding

magnetic field H is given by (2.63) and has components (H1, 0, 0), with

H1 = 2(Ω4λ
−2
1 + Ω5 + Ω6λ

2
1)B1, (3.62)

which, for the model (3.48), reduces to H1 = 2(lλ−2
1 + m)B1. The magnetic boundary

conditions on x2 = 0 require that H∗1 = H1, so that B∗1 = µ0H
∗
1 = 2µ0(lλ−2

1 +m)B1.

From (2.50) and (2.51), the components of Maxwell stress and its increment in x2 > 0

are given by

[τ ∗] =
B∗21

2µ0


1 0 0

0 −1 0

0 0 −1

 , [ .τ ∗] =
B∗1
µ0


.
B∗1

.
B∗2 0

.
B∗2 −

.
B∗1 0

0 0 −
.
B∗1

 . (3.63)

Incremental equations and boundary conditions

For the present situation, equations (3.8) and (3.9) reduce to

αφ,1111 + 2βφ,1122 + γφ,2222 + aψ,111 + cψ,122 = ρ(φ,11 + φ,22),tt, (3.64)

aφ,111 + cφ,122 + K022ψ,11 + K011ψ,22 = 0, (3.65)

for x2 < 0, while again (3.13) holds for x2 > 0.

Using the values of τ ∗ and .
τ ∗ from (3.63) and assuming there is no incremental

mechanical traction on x2 = 0 the components of the incremental traction are obtained

from (2.54) with
.
T

T
0 N =

.
tM0 as

.
T021 −

B∗1
µ0

.
B∗2 +

B∗21

2µ0
u2,1 = 0,

.
T022 +

B∗1
µ0

.
B∗1 −

B∗21

2µ0
u2,2 = 0 on x2 = 0, (3.66)

with
.
T023 = 0 satisfied identically. From (2.47) and (2.49) we obtain

.
Bl02 −

.
B∗2 +B∗1u2,1 = 0,

.
Hl01 −H∗1u1,1 −

.
H∗1 = 0 on x2 = 0. (3.67)
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Next, we substitute the updated incremented constitutive equations (2.69) and (2.70)

into equations (3.66) and (3.67) and use (3.19) and the boundary condition τ22 = τ∗22, where

τ∗22 = −B∗12/2µ0, and follow the same procedure as in the previous section to eliminate .
p.

This yields

(γ − 2τ∗22)φ,11 − γφ,22 + aψ,1 −
B∗1
µ0
ψ∗,1 = 0, (3.68)

(2β + γ)φ,112 + γφ,222 − ρφ,2tt + cψ,12 −
B∗1
µ0
ψ∗,12 = 0, (3.69)

B∗1φ,11 + ψ,1 − ψ∗,1 = 0, (3.70)

(c+ a− B∗1
µ0

)φ,12 −
1
µ0
ψ∗,2 = 0, (3.71)

each of which holds on x2 = 0.

Surface waves in a Mooney–Rivlin magnetoelastic half-space

We again study surface waves as in Section 3.2.1, with solutions of the form (3.28) and

(3.29). Substituting these solutions into equations (3.64), (3.65) and (3.13), we obtain

[γs4 − (2β − ρv2)s2 + α− ρv2]P + i(cs2 − a)Q = 0, (3.72)

i(cs2 − a)P + (K011s
2 − K022)Q = 0, (3.73)

and s∗2 = 1, where the wave speed is again given by v = ω/k.

For the solution ψ∗ to decay as x2 → ∞, we take s∗ = −1. For non-trivial solutions

for P and Q, we set the determinant of coefficients to zero and obtain a cubic equation in

s2:

γK011s
6 − [K011(2β − ρv2) + γK022 − c2]s4

+ [K011(α− ρv2) + K022(2β − ρv2)− 2ac]s2 − K022(α− ρv2) + a2 = 0. (3.74)

For the Mooney–Rivlin magnetoelastic material given by (3.48), the non-zero compo-

nents of the magnetoelastic tensors are obtained from the general formulas in Appendix

B as

A01111 =
1
2
µ(0)λ2

1[1 + ν + (1− ν)(λ2
2 + λ2

3)] + 2mB2
1 , (3.75)

A02222 =
1
2
µ(0)λ2

2[1 + ν + (1− ν)(λ2
1 + λ2

3)], (3.76)

A02121 =
1
2
µ(0)λ2

2[1 + ν + (1− ν)λ2
3], A01212 = λ2

1λ
−2
2 A02121 + 2mB2

1 , (3.77)

A01122 = −2A01221 = µ(0)(1− ν)λ2
1λ

2
2, (3.78)
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C011|1 = 2C012|2 = 4mB1, (3.79)

K011 = 2(m+ λ−2
1 l), K022 = 2(m+ λ−2

2 l), (3.80)

from which, using the notation defined in (3.10)–(3.12), we obtain

2β = α+ γ, c = a. (3.81)

Substitution of these values in (3.74) yields the factorization

(s2 − 1){γK011s
4 − [γK022 + (α− ρv2)K011 − a2]s2 + (α− ρv2)K022 − a2} = 0. (3.82)

We note in passing that the second factor in the above equation can be factorized in simple

form in two cases: for v = 0 we obtain (s2− λ4)(γK011s
2− γK022− 4lmλ−2B2

1); for λ = 1,

the result is (s2 − 1)[γK011s
2 + a2 − K011(α− ρv2)].

Let s1 = 1, and let s2 and s3 be the solutions of the second factor with positive real

part. As in the previous section we require s22s
2
3 ≥ 0, which, after noting that γ > 0,

K011 > 0 and K022 > 0, and specializing the generalized strong ellipticity condition as in

Section 3.2.1, gives

ρv2 ≤ α− a2/K022, (3.83)

the right-hand side of which is positive. As distinct from (3.61) the upper bound in (3.83)

does in general depend on the magnetic field.

We again take the solutions for φ, ψ and ψ∗ as (3.28) and (3.29). Substituting these

into the boundary conditions (3.68)–(3.71), we obtain

(γ − 2τ∗22)ΣjPj + γΣjs
2
jPj − iaΣjQj + i

B∗1
µ0
R = 0, (3.84)

(2β + γ − ρv2)ΣjsjPj − γΣjs
3
jPj − icΣjsjQj − i

B∗1
µ0
R = 0, (3.85)

B∗1ΣjPj − iΣjQj + iR = 0, (3.86)

(c+ a− B∗1
µ0

)ΣjsjPj − i
1
µ0
R = 0, (3.87)

along with the connection between Qi and Pi from (3.73):

Qi =
i(a− cs2i )

K011s2i − K022
Pi, i = 1, 2, 3. (3.88)

Again, Σj signifies summation over j from 1 to 3.

As in the previous section, we have seven linear equations in P1, P2, P3, Q1, Q2, Q3

and R, and the solution follows the pattern therein. The results for λ1 = λ, λ2 = λ−1,



Chapter 3. Surface Waves on a Half-Space: In-Plane Motion 38

0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) (b)

ζ

λ

B1 = 0 B1 = 0.12

ζ

λ

B1 = 0 B1 = 0.12

Figure 3.5: Plot of ζ = ρv2/µ(0) vs λ1 = λ with λ3 = 1 for B1 = 0, 0.03, 0.06, 0.09, 0.12 T

(curves reading from left to right): (a) µ0l = 2, µ0m = 1; (b) µ0l = 1, µ0m = 1.

1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0(a) (b)

ζ

λ

B1 = 0.12 B1 = 0

ζ

λ

B1 = 0.12 B1 = 0

Figure 3.6: Plot of ζ = ρv2/µ(0) vs λ2 = λ with λ1 = 1 for B1 = 0, 0.03, 0.06, 0.09, 0.12 T

(curves reading from right to left): (a) µ0l = 2, µ0m = 1; (b) µ0l = 2, µ0m = 0.2.
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λ3 = 1 and λ1 = 1, λ2 = λ, λ3 = λ−1 are shown in Figures 3.5 and 3.6, respectively. The

results are broadly similar to those shown in Figures 3.1 and 3.3 except that the effect

of B1 is significantly stronger than that for B2. Indeed, much smaller values of B1 than

B2 are required to produce comparable effects. The upper bound (3.83) depends on the

magnitude B1 but the values of ζ shown do not reflect this because of the relatively small

values B1 used.

3.3 Out-of-plane considerations

3.3.1 Magnetic induction components (0, 0, B3)

The initial and deformed configurations are considered to be the same as in Section 3.2.2

except that the magnetic induction is taken to have components (0, 0, B3). The incremental

quantities are as in the previous sections, i.e. we consider only incremental motions and

magnetic induction components within the (1, 2) plane. In fact, the full three-dimensional

equations decouple in this case and the out-of-plane motion can be considered separately,

as discussed in [Maugin and Hakmi, 1985].

From equations (3.8) and (3.9), with the components of the moduli tensors appropri-

ately specialized, we obtain

αφ,1111 + 2βφ,1122 + γφ,2222 = ρ (φ,11 + φ,22),tt , (3.89)

K022ψ,11 + K011ψ,22 = 0, (3.90)

which apply in x2 < 0, and again (3.13) holds in x2 > 0.

The boundary conditions for the underlying configuration require that H∗3 = H3. Thus,

B∗3 = µ0H3 = 2µ0(lλ−2
3 + m). If we assume there are no mechanical tractions, then

τ22 = τ∗22. The normal components of the Maxwell stress are τ∗22(1, 1,−1), where τ∗22 =

−B∗32/2µ0. The incremental boundary conditions reduce to
.
T021 = −τ∗22u2,1,

.
T022 =

−τ∗22u2,2,
.
T023 = µ−1

0 B∗3
.
B∗2 ,

.
Bl02 =

.
B∗2 and

.
Hl01 =

.
H∗1 . Note, in particular, the appearance

of the out-of-plane shear traction term. After differentiating the
.
T022 condition with

respect to x1, substituting for .
p,1 from an appropriately specialized form of (3.2) and then

substituting for the potentials φ, ψ and ψ∗, we obtain (on dropping the factor γ 6= 0 from

the first equation)

φ,11 − φ,22 = 0, (2β + γ)φ,112 + γφ,222 − ρφ,2tt = 0 on x2 = 0, (3.91)
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mψ,1 = (l +mλ−2
3 )ψ∗,1, ψ,1 = ψ∗,1, K011ψ,2 = µ−1

0 ψ∗,2 on x2 = 0. (3.92)

Except in the very special case for which l = 0 and λ3 = 1 the latter equations are in-

compatible unless there is no incremental magnetic field. Thus, the problem reduces to

a purely mechanical problem for the potential φ. For the considered model none of the

moduli components depend on B3, so the magnetic field has no effect on the propagation

of elastic surface waves. More generally, however, for the considered underlying deforma-

tion and magnetic field, equation (3.89) and the boundary conditions (3.91) apply for an

arbitrary form of isotropic energy function Ω and therefore the coefficients then do involve

B3.



Chapter 4

Surface Waves on a Half-Space:

Out of Plane Motion

In this chapter, the propagation of Love-type waves in a homogeneously and finitely de-

formed layered half-space of an incompressible non-conducting magnetoelastic material in

the presence of an initial magnetic field is analyzed. The equations and the boundary con-

ditions obtained in Chapter 2 are used to study the problem for different directions of the

initial magnetic field for two different magnetoelastic energy functions. Bleustein–Gulyaev

type waves, which can exist in a half-space without a layer in the presence of a magnetic

field, are discussed briefly at the end of the chapter.

Analysis and results in this chapter have been published in [Saxena and Ogden, 2012]

and are being reproduced here in further detail.

4.1 Two-dimensional specialization

Consider a magnetoelastic material that is deformed homogeneously and the deformation

is given by

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (4.1)

where the principal stretches λ1, λ2, λ3 are uniform. The component matrix of the deforma-

tion gradient is then given by [F] = diag(λ1, λ2, λ3). The initial uniform magnetic induc-

tion vector is taken to have either components (B1, B2, 0) in the material with (B∗1 , B
∗
2 , 0)

outside the material, or (0, 0, B3) in the material with (0, 0, B∗3) outside the material. Note

that the boundary condition (2.14)4 requires that B∗2 = B2.

41
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For such a configuration, the in-plane displacement components u1 and u2 are cou-

pled with each other in the governing equations, and are independent of the out-of-plane

component u3. In this chapter we seek solutions depending on the in-plane variables x1

and x2 such that u1 = u2 = 0 and u3 depends on (x1, x2, t). The problem concerning

the displacement components u1 and u2 is discussed in the previous chapter. The incre-

mental incompressibility condition divu = 0 is then automatically satisfied, and with all

incremental quantities independent of x3, ṗ,3 = 0 and, from (2.81)2 we obtain

Ḃl01,1 + Ḃl02,2 = 0. (4.2)

On expanding the governing equations (2.81)1 and (2.82) in component form, we obtain

A01113u3,11 + (A01123 +A02113)u3,12 +A02123u3,22 + C011|1Ḃl01,1 + C011|2Ḃl02,1

+ C011|3Ḃl03,1 + C021|1Ḃl01,2 + C021|2Ḃl02,2 + C021|3Ḃl03,2 − ṗ,1 = 0, (4.3)

A01213u3,11 + (A01223 +A02213)u3,12 +A02223u3,22 + C012|1Ḃl01,1 + C012|2Ḃl02,1

+ C012|3Ḃl03,1 + C022|1Ḃl01,2 + C022|2Ḃl02,2 + C022|3Ḃl03,2 − ṗ,2 = 0, (4.4)

A01313u3,11 + 2A01323u3,12 +A02323u3,22 + C013|1Ḃl01,1 + C013|2Ḃl02,1 + C013|3Ḃl03,1

+ C023|1Ḃl01,2 + C023|2Ḃl02,2 + C023|3Ḃl03,2 = ρu3,tt, (4.5)

(C013|3u3,1 + C023|3u3,2 + K013Ḃl01 + K023Ḃl02 + K033Ḃl03),2 = 0, (4.6)

(C013|3u3,1 + C023|3u3,2 + K013Ḃl01 + K023Ḃl02 + K033Ḃl03),1 = 0, (4.7)

C013|2u3,11 +
(
C023|2 − C013|1

)
u3,12 − C023|1u3,22 + K012Ḃl01,1 + K022Ḃl02,1

+ K023Ḃl03,1 − K011Ḃl01,2 − K012Ḃl02,2 − K013Ḃl03,2 = 0. (4.8)

Associated boundary conditions will be considered in the specializations that follow.

From here on, we consider two separate cases, for which the underlying magnetic field

is, first, parallel to the (1, 2) plane and, second, normal to the plane.

We consider a half-space of magnetoelastic material for which X2 < 0 in the unde-

formed configuration (x2 < 0 in the deformed configuration). A layer of a different mag-

netoelastic material of thickness h in the deformed configuration is attached on top of the

half-space as shown in Figure 4.1. The layer occupies the region 0 < x2 < h. Quantities

in the half-space are distinguished by a prime (′); those in the layer are unprimed.
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Figure 4.1: Layer–Half-space configuration for Love-type wave propagation.

4.2 In-plane magnetic field: B = (B1, B2, 0)

Here we take B3 = B∗3 = 0 so that the Maxwell stress and its increment are obtained in

component form from equations (2.50) and (2.51) as

[τ ∗] =
1
µ0


1
2(B∗21 −B∗22 ) B∗1B

∗
2 0

B∗1B
∗
2

1
2

(
−B∗21 +B∗22

)
0

0 0 1
2(−B∗21 −B∗22 )

 , (4.9)

and

[τ̇ ∗] =
1
µ0


Ḃ∗1B

∗
1 − Ḃ∗2B∗2 Ḃ∗1B

∗
2 + Ḃ∗2B

∗
1 Ḃ∗3B

∗
1

Ḃ∗2B
∗
1 + Ḃ∗1B

∗
2 Ḃ∗2B

∗
2 − Ḃ∗1B∗1 Ḃ∗3B

∗
2

Ḃ∗3B
∗
1 Ḃ∗3B

∗
2 −

(
Ḃ∗1B

∗
1 + Ḃ∗2B

∗
2

)
 , (4.10)

respectively.

Equations (4.3)–(4.8) simplify to

C011|1Ḃl01,1 + C021|1Ḃl01,2 + C021|2Ḃl02,2 + C011|2Ḃl02,1 − ṗ,1 = 0, (4.11)

C012|1Ḃl01,1 + C012|2Ḃl02,1 + C022|2Ḃl02,2 + C022|1Ḃl01,2 − ṗ,2 = 0, (4.12)

A01313u3,11 + 2A01323u3,12 +A02323u3,22 + C013|3Ḃl03,1 + C023|3Ḃl03,2 = ρu3,tt, (4.13)(
C013|3u3,1 + C023|3u3,2 + K033Ḃl03

)
,2

= 0, (4.14)
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(
C013|3u3,1 + C023|3u3,2 + K033Ḃl03

)
,1

= 0, (4.15)

K022Ḃl02,1 + K012Ḃl01,1 − K012Ḃl02,2 − K011Ḃl01,2 = 0. (4.16)

Equations (4.14), (4.15) and the assumption of independence of x3 imply that Ḣl03

depends only on t and hence we take Ḣl03 = f(t). We also observe that Ḃl01 and Ḃl02

are coupled through equations (4.2), (4.11), (4.12), and (4.16) and are independent of u3,

while u3 is coupled with Ḃl03 through equations (4.13), (4.14), and (4.15). Since we are

only interested here in u3 it suffices to take Ḃl01 = Ḃl02 = 0 in both half-space and layer.

Indeed, in general Ḃl01 and Ḃl02 are overdetermined by equations (4.2), (4.11), (4.12), and

(4.16). It follows from (2.69)2 and the components of C0 and K0 given in Appendix B that

Ḣl01 = Ḣl02 = 0.

The governing equations now reduce to

A01313u3,11 + 2A01323u3,12 +A02323u3,22 + C013|3Ḃl03,1 + C023|3Ḃl03,2 = ρu3,tt, (4.17)

C013|3u3,1 + C023|3u3,2 + K033Ḃl03 = f(t), (4.18)

in the layer, while in the half-space they are

A′01313u
′
3,11 + 2A′01323u

′
3,12 +A′02323u

′
3,22 + C′013|3Ḃ

′
l03,1 + C′023|3Ḃ

′
l03,2 = ρ′u′3,tt, (4.19)

C′013|3u
′
3,1 + C′023|3u

′
3,2 + K′033Ḃ

′
l03 = f ′(t), (4.20)

where f ′(t) is the counterpart of f(t) for the half-space.

The boundary conditions (2.47) and (2.49) reduce to

Ḃ∗2 = Ḃl02 = 0, (4.21)

Ḃ∗1 = µ0Ḣ
∗
1 = µ0Ḣl01 = 0, (4.22)

Ḣ∗3 = Ḣl03 = f(t), (4.23)

on x2 = 0, and hence we may take Ḃ∗1 = Ḃ∗2 = 0 outside the material.

From the boundary condition (2.55) applied at the layer–vacuum boundary the only

non-trivial component is Ṫ023 = τ̇∗23, which yields

A02313u3,1 +A02323u3,2 + C023|3Ḃl03 = 0 on x2 = h, (4.24)

and at the layer–half-space interface Ṫ023 = Ṫ ′023, which leads to

A02313u3,1 +A02323u3,2 + C023|3Ḃl03 = A′02313u
′
3,1 +A′02323u

′
3,2 + C′023|3Ḃ

′
l03, (4.25)
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on x2 = 0. Additionally, the displacement must be continuous at the interface, i.e.

u3 = u′3 on x2 = 0. (4.26)

The problem is therefore reduced to solving equations (4.17) and (4.18) in 0 < x2 < h

and equations (4.19) and (4.20) in x2 < 0 using the boundary conditions (4.24), (4.25),

and (4.26).

4.2.1 Wave propagation

On the basis of the above equations and boundary conditions we now study Love-type

waves propagating in the x1 direction. We consider harmonic solutions of the form

u3 = P exp[i (skx2 + kx1 − ωt)], 0 < x2 < h, (4.27)

Ḃl03 = Q exp[i (skx2 + kx1 − ωt)], 0 < x2 < h, (4.28)

u′3 = P ′ exp(s′kx2 + ikx1 − iωt), x2 < 0, (4.29)

Ḃ′l03 = Q′ exp(s′kx2 + ikx1 − iωt), x2 < 0, (4.30)

with the condition Re (s′) > 0 for the wave to decay away from the surface of the half-space.

As defined earlier, i =
√
−1, k is the wave number, and ω is the angular frequency.

Substitution of (4.27) and (4.28) into the governing equation (4.18) yields

[i(C013|3 + sC023|3)Pk + K033Q]ei(skx2+kx1−ωt) = f(t), (4.31)

which is satisfied non-trivially only when f(t) = 0. Similarly, we obtain f ′(t) = 0. Now

using Equation (4.17), and defining the wave speed v = ω/k we have the two equations

(
ρv2 −A01313 − 2sA01323 −A02323s

2
)
Pk + i

(
C013|3 + sC023|3

)
Q = 0, (4.32)

i
(
C013|3 + sC023|3

)
Pk + K033Q = 0. (4.33)

For non-trivial solutions for P and Q, the determinant of coefficients must vanish,

which yields a quadratic equation for s, which we write compactly as

As2 + 2Bs+ C − ρv2 = 0, (4.34)

where we have introduced the notations

A = A02323 −
C2

023|3

K033
, B = A02313 −

C013|3C023|3

K033
, C = A01313 −

C2
013|3

K033
. (4.35)
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Let s1 and s2 be the two solutions of this quadratic. Then the general solution of the

considered form is

u3 =
(
P1eis1kx2 + P2eis2kx2

)
exp[i(kx1 − ωt)], (4.36)

Ḃl03 =
(
Q1eis1kx2 +Q2eis2kx2

)
exp[i (kx1 − ωt)]. (4.37)

The coefficients Pj and Qj , j = 1, 2, are related by either one of the equations (4.32) or

(4.33) as

Qj = −
ik(C013|3 + sjC023|3)

K033
Pj , j = 1, 2. (4.38)

Substituting the solutions (4.29) and (4.30) into equations (4.19) and (4.20), we obtain

a similar quadratic for s′, namely

A′s′
2 + 2iB′s′ + ρ′v2 − C ′ = 0, (4.39)

where the coefficients are defined by

A′ = A′02323 −
C′2023|3

K′033

, B′ = A′02313 −
C′013|3C′023|3

K′033

, C ′ = A′01313 −
C′2013|3

K′033

. (4.40)

This has at most one solution satisfying the requirement Re(s′) > 0. Equation (4.30) also

yields the connection

k(iC′013|3 + s′C′023|3)P ′ + K′033Q
′ = 0. (4.41)

From the generalized strong ellipticity condition (2.95), we deduce that

A > 0, C > 0, A′ > 0, C ′ > 0, (4.42)

and hence that there is a solution for s′ with positive real part provided

A′(C ′ − ρ′v2)−B′2 > 0. (4.43)

Substituting the solutions (4.29), (4.30), (4.36), and (4.37) into the boundary condi-

tions (4.24), (4.25), and (4.26), we obtain

ik(A02313 + s1A02323)P1eis1kh + ik(A02313 + s2A02323)P2eis2kh

+ C023|3

(
Q1eis1kh +Q2eis2kh

)
= 0, (4.44)

ik(A02313 + s1A02323)P1 + ik(A02313 + s2A02323)P2 + C023|3 (Q1 +Q2)

= k(iA′02313 + s′A′02323)P ′ + C′023|3Q
′, (4.45)

P1 + P2 = P ′. (4.46)
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We may then use the relations (4.38) and (4.41) to eliminate Q1, Q2, and Q′ to obtain

(s1A+B) eis1khP1 + (s2A+B) eis2khP2 = 0, (4.47)

(s1A+B)P1 + (s2A+B)P2 +
(
is′A′ −B′

)
P ′ = 0, (4.48)

P1 + P2 − P ′ = 0. (4.49)

The three linear equations for P1, P2, and P ′ have non-trivial solutions provided the

determinant of their coefficients vanishes. This gives rise to the secular equation

[(s1A+B)(s2A+B) + (is′A′ −B′)B](eis2kh − eis1kh)

+ (is′A′ −B′)A(s2eis2kh − s1eis1kh) = 0, (4.50)

where s1 and s2 are the solutions of equation (4.34) and s′ is the solution of (4.39) with

positive real part.

4.2.2 Pure elastic case

We now take the magnetic field to vanish in order to reduce our results to the purely

elastic case. For this purpose we take B = 0,C = O, and Q1 = Q2 = Q′ = 0. Under this

specialization, the governing equations (4.17) and (4.19) reduce to

A01313u3,11 +A02323u3,22 = ρu3,tt, A′01313u
′
3,11 +A′02323u

′
3,22 = ρ′u′3,tt, (4.51)

in the layer and half-space, respectively. The relations (4.34) and (4.39) become

s2 =
ρv2 −A01313

A02323
, s′

2 =
A′01313 − ρ′v2

A′02323

. (4.52)

For these simplifications, the secular equation (4.50) becomes

tan(skh) =
s′A′02323

sA02323
, ρv2 > A01313, (4.53)

where s > 0 and we note that to qualify for a surface wave the inequality ρ′v2 < A′01313

must be satisfied and that there are no real solutions for the wave speed if s2 < 0. The

above equation is equivalent to Equation (3.12) in [Dowaikh, 1999]. Note, however, the

result (3.17) in [Dowaikh, 1999] corresponding to s2 < 0 is incorrect. Thus,

A01313/ρ < v2 < A′01313/ρ
′. (4.54)

For the isotropic linear elastic case, A01313 = A02323 = µ(0), A′01313 = A′02323 =

µ′(0), where µ(0) and µ′(0) are the shear moduli of the layer and the half-space, respec-

tively. If the transverse wave speed is denoted by vT = (µ(0)/ρ)1/2 in the layer and
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v′T = (µ′(0)/ρ′)1/2 in the bulk, then the above secular equation reduces to

tan

[(
v2

v2
T

− 1
) 1

2

kh

]
=
µ′

µ

[
1− (v/v′T)2

] 1
2

[(v/vT)2 − 1]
1
2

, vT < v < v′T, (4.55)

thus recovering the well-known dispersion relation for Love waves in linear elasticity (see,

for example, [Achenbach, 1975]).

4.2.3 Application to a Mooney–Rivlin magnetoelastic material

To illustrate the results, we now consider the energy function of Mooney–Rivlin type

magnetoelastic material as defined in Equation (3.48). We note that if the underlying

magnetic induction is either parallel or perpendicular to the boundary, i.e. either B =

(B1, 0, 0) or B = (0, B2, 0), then A01323 = 0 = C013|3C023|3 (C013|3 = 0 if B1 = 0 and

C023|3 = 0 if B2 = 0). Hence B = 0 and similarly B′ = 0. Equations (4.34) and (4.39)

then simplify to

s2 = (ρv2 − C)/A, s′2 = (C ′ − ρ′v2)/A′. (4.56)

We require s′2 > 0 for a surface wave to exist. By taking account of the strong ellipticity

condition (2.95) this requirement imposes the conditions

C < ρv2 < ρC ′/ρ′ (4.57)

on the wave speed, and these inequalities also impose certain restrictions on the energy

functions used and the deformations in the layer and the half-space for the existence of

Love-type waves.

The secular equation (4.50) reduces to

tan (skh) =
s′A′

sA
. (4.58)

We now analyze this equation numerically by plotting the non-dimensionalized squared

wave speed ζ = ρv2/µ(0) against the dimensionless wave number kh. We take the following

values of the material constants in order to obtain some representative solutions:

lµ0 = 2, l′µ0 = 1.7, mµ0 = 2, m′µ0 = 0.7, ν = 0.3, ν ′ = 0.8,

µ0 = 4π × 10−7 N/A2, µ(0) = 2.6× 105 N/m2, µ′(0)/µ(0) = 2, ρ′/ρ = 1/3.(4.59)

We assume the initial deformations in the layer and the half-space to be the same,

i.e. λ1 = λ′1, λ2 = λ′2, λ3 = λ′3. An infinite number of propagation modes are obtained
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Figure 4.2: Dispersion curves ζ = ρv2/µ(0) vs. kh for various mode numbers n satisfying

equation (4.58), illustrated for (a) B2 = 0 = B3, B1 = 0.1 T, λ1 = 0.7 = λ−1
2 , λ3 = 1,

n = 1 to n = 11; (b) B1 = 0 = B3, B2 = 0.5 T, λ1 = 1.4 = λ−1
2 , λ3 = 1, n = 1 to n = 9.

due to the dispersive nature of Equation (4.58). Multiple modes of wave propagation

corresponding to Equation (4.58) are illustrated in Figure 4.2 for two sets of representative

values (B1 = 0.1 T, λ1 = 0.7 = λ−1
2 ) and (B2 = 0.5 T, λ1 = 1.4 = λ−1

2 ). For other values of

the parameters the pattern of the higher-order modes is similar and we therefore show only

the lowest mode henceforth from (4.58) for each of a selection of values of the magnetic

induction and deformation.

For the pure elastic problem (no magnetic field) with a finite initial deformation the

results are shown in Figure 4.3 for different values of initial stretch for the first mode. It

is noted from Figures 4.3(a) and 4.3(b) that for the linear elastic case (λ1 = λ2 = λ3 = 1),

the curves intersect the ζ axis at µ′(0)ρ/µ(0)ρ′, which agrees with the classical solution

(obtained by taking the limit kh→ 0 in Equation (4.55)) and is equal to 6 for the values

adopted here.

The effect of the magnetic field without a finite deformation on the wave propagation

characteristics is illustrated in Figure 4.4. It is noted that as kh → 0, a magnetic (in-

duction) field B2 perpendicular to the boundary has no effect while that parallel to the

boundary (B1) changes the wave speed significantly. Either B1 or B2 tends to increase
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Figure 4.3: First mode dispersion curves ζ = ρv2/µ(0) vs. kh under finite deformation

in the absence of a magnetic field: (a) λ1 = 0.5, 0.7, 1, 1.3, 1.6, λ2 = λ−1
1 , λ3 = 1; (b)

λ1 = 1, λ2 = 0.5, 0.7, 1, 1.3, 1.6, λ3 = λ−1
2 .

the wave speed.

The effect of the magnetic field when there is an initial finite deformation is illustrated

in Figure 4.5 for two different values of λ1: 0.7 and 1.4. The character of the results is

similar qualitatively to the situation when there is no initial stretch.

4.3 Out-of-plane magnetic field: B = (0, 0, B3)

We now consider the case when the magnetic field is out of the plane, i.e. in the same

direction as the mechanical displacement. The initial and deformed configurations are

considered to be the same as in the previous section. For this value of the underlying

magnetic induction, using equations (2.50) and (2.51), the components of the Maxwell

stress and its increment are given by

[τ ∗] =
B∗23

2µ0


−1 0 0

0 −1 0

0 0 1

 , (4.60)
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Figure 4.4: First mode dispersion curves ζ = ρv2/µ(0) vs. kh for the linear elastic case

in the presence of a magnetic field: (a) B2 = 0, B1 = 0.1, 0.2, 0.3, 0.4, 0.5 T; (b) B1 = 0,

B2 = 0.1, 0.2, 0.3, 0.4, 0.5 T.

[τ̇ ∗] =
1
µ0


−Ḃ∗3B∗3 0 Ḃ∗1B

∗
3

0 −Ḃ∗3B∗3 Ḃ∗2B
∗
3

Ḃ∗1B
∗
3 Ḃ∗2B

∗
3 Ḃ∗3B

∗
3

 , (4.61)

respectively.

The governing equations (4.3)–(4.8) reduce to ṗ,1 = 0, ṗ,2 = 0, Ḃl03,1 = 0, and Ḃl03,2 =

0 along with (4.2) and

A01313u3,11 +A02323u3,22 + C013|1Ḃl01,1 + C023|2Ḃl02,2 = ρu3,tt, (4.62)(
C023|2 − C013|1

)
u3,12 + K022Ḃl02,1 − K011Ḃl01,2 = 0, (4.63)

for the layer, and similarly for the half-space. In this case u3, Ḃl01 and Ḃl02 are coupled

with each other through equations (4.62) and (4.63). Clearly, since there is no dependence

on x3, we may infer that Ḃl03 is a function of t which may be taken to be zero as for f(t)

in Section 4.1.1.

Let u3 = φ. Since the pairs {Ḃl01, Ḃl02}, {Ḃ′l01, Ḃ
′
l02} and {Ḃ∗l01, Ḃ

∗
l02} satisfy equation

(4.2), we may define potentials ψ,ψ′, and ψ∗ such that

Ḃl01 = ψ,2, Ḃl02 = −ψ,1, Ḃ′l01 = ψ′,2, Ḃ′l02 = −ψ′,1, Ḃ∗1 = ψ∗,2, Ḃ∗2 = −ψ∗,1. (4.64)
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Figure 4.5: First mode dispersion curves ζ = ρv2/µ(0) vs. kh for the material under finite

deformation and magnetic field satisfying equation (4.58): (a) λ1 = 0.7, λ2 = λ−1
1 , λ3 = 1,

B1 = 0, B2 = 0.1, 0.2, 0.3, 0.4, 0.5 T; (b) λ1 = 1.4, λ2 = λ−1
1 , λ3 = 1, B1 = 0, B2 =

0.1, 0.2, 0.3, 0.4, 0.5 T; (c) λ1 = 0.7, λ2 = λ−1
1 , λ3 = 1, B2 = 0, B1 = 0.1, 0.2, 0.3, 0.4, 0.5 T;

(d) λ1 = 1.4, λ2 = λ−1
1 , λ3 = 1, B2 = 0, B1 = 0.1, 0.2, 0.3, 0.4, 0.5 T.
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Substituting these potentials in the governing equations, we obtain

A01313φ,11 +A02323φ,22 + C013|1ψ,12 − C023|2ψ,12 = ρφ,tt, (4.65)(
C023|2 − C013|1

)
φ,12 − K011ψ,22 − K022ψ,11 = 0, (4.66)

in the layer, while for the half-space we obtain

A′01313φ
′
,11 +A′02323φ

′
,22 + C′013|1ψ

′
,12 − C′023|2ψ

′
,12 = ρ′φ′,tt, (4.67)(

C′023|2 − C′013|1

)
φ′,12 − K′011ψ

′
,22 − K′022ψ

′
,11 = 0, (4.68)

and outside the material

ψ∗,11 + ψ∗,22 = 0. (4.69)

4.3.1 Incremental boundary conditions

From the boundary conditions (2.47), (2.49), and (2.55) the only non-trivial remaining

components are

Ṫ023 = τ̇∗23, Ḃl02 = Ḃ∗2 , Ḣl01 − u3,1H
∗
3 − Ḣ∗1 = 0, (4.70)

which, in terms of φ and the potential functions, yield, at the layer–vacuum interface

x2 = h,

A02323φ,2 − C023|2ψ,1 + ψ∗,1H
∗
3 = 0, (4.71)

ψ,1 − ψ∗,1 = 0, (4.72)(
C013|1 −H∗3

)
φ,1 + K011ψ,2 −

1
µ0
ψ∗,2 = 0, (4.73)

and at the layer–half-space interface x2 = 0,

φ = φ′, (4.74)

A02323φ,2 − C023|2ψ,1 = A′02323φ
′
,2 − C′023|2ψ

′
,1, (4.75)

C013|1φ,1 + K011ψ,2 = C′013|1φ
′
,1 + K′011ψ

′
,2, (4.76)

ψ,1 = ψ′,1, (4.77)

the first of which corresponds to continuity of displacement.

Hence the problem is reduced to solving equations (4.65) and (4.66) in 0 < x2 < h,

equations (4.67) and (4.68) in x2 < 0, and equation (4.69) in x2 > h using the boundary

conditions (4.71), (4.72), and (4.73) at x2 = h, and (4.74), (4.75), (4.76), and (4.77) at

x2 = 0.
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4.3.2 Wave propagation

We again study Love-type waves in the same form as in the previous section and consider

harmonic solutions of the form

φ = P exp[i (skx2 + kx1 − ωt)], 0 < x2 < h, (4.78)

ψ = Q exp[i (skx2 + kx1 − ωt)], 0 < x2 < h, (4.79)

φ′ = P ′ exp
(
s′kx2 + ikx1 − iωt

)
, x2 < 0, (4.80)

ψ′ = Q′ exp
(
s′kx2 + ikx1 − iωt

)
, x2 < 0, (4.81)

ψ∗ = R exp (s∗kx2 + ikx1 − iωt) , x2 > h, (4.82)

with the conditions Re(s′) > 0 and Re(s∗) < 0 for the solutions to decay as x2 → −∞ and

x2 →∞, respectively.

Substituting the solutions (4.80) and (4.81) in equations (4.67) and (4.68), we obtain(
−A′01313 + s′2A′02323 + ρ′v2

)
P ′ + is′

(
C′013|1 − C′023|2

)
Q′ = 0, (4.83)

is′
(
C′023|2 − C′013|1

)
P ′ +

(
K′022 − s′2K′011

)
Q′ = 0. (4.84)

For non-trivial solutions of P ′ and Q′, the determinant of the coefficients of the above

equations should be zero which gives

A′02323K
′
011s

′4 + {K′011

(
ρ′v2 −A′01313

)
− K′022A′02323 +

(
C′023|2 − C′013|1

)2
}s′2

−K′022

(
ρ′v2 −A′01313

)
= 0. (4.85)

Let s′1 and s′2 be the two solutions satisfying the condition Re(s′) > 0, then we note that

the condition s′21 s
′2
2 ≥ 0 gives an upper bound on the wave speed, which we express in the

form

ρ′v2 ≤ A′01313. (4.86)

With the two possible values of s′, the relevant general solutions for φ′ and ψ′ are

φ′ =
(
P ′1es

′
1kx2 + P ′2es

′
2kx2

)
exp[i (kx1 − ωt)], (4.87)

ψ′ =
(
Q′1es

′
1kx2 +Q′2es

′
2kx2

)
exp[i (kx1 − ωt)], (4.88)

where P ′j and Q′j are related by (4.84) as

Q′j =
−is′j

(
C′023|2 − C′013|1

)
(
K′022 − s′2j K′011

) P ′j , j = 1, 2. (4.89)
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Substituting the solutions (4.78) and (4.79) into equations (4.65) and (4.66), we obtain

(
−A01313 − s2A02323 + ρv2

)
P − s

(
C013|1 − C023|2

)
Q = 0, (4.90)

s
(
C013|1 − C023|2

)
P +

(
K011s

2 + K022

)
Q = 0. (4.91)

For non-trivial solutions for P and Q, the determinant of the coefficients should be

zero, which gives

A02323K011s
4 + {K011

(
A01313 − ρv2

)
+A02323K022 −

(
C013|1 − C023|2

)2}s2
+K022

(
A01313 − ρv2

)
= 0. (4.92)

Let the solutions of this equation be s1, s2, s3, and s4. Then the general solutions for

φ and ψ may be written in the form

φ =
(
P1eis1kx2 + P2eis2kx2 + P3eis3kx2 + P4eis4kx2

)
exp[i (kx1 − ωt)], (4.93)

ψ =
(
Q1eis1kx2 +Q2eis2kx2 +Q3eis3kx2 +Q4eis4kx2

)
exp[i (kx1 − ωt)], (4.94)

where Pj and Qj are related by (4.91) as

Qj =
−sj

(
C013|1 − C023|2

)(
K011s2j + K022

) Pj , j = 1, 2, 3, 4. (4.95)

Substituting the solution (4.82) into equation (4.69), we obtain s∗2 = 1, and to satisfy

the condition Re(s∗) < 0, we take s∗ = −1. Hence

ψ∗ = R exp (−kx2 + ikx1 − iωt) . (4.96)

Substituting the modified solutions (4.87), (4.88), (4.93), (4.94), and (4.96) into the

boundary conditions (4.71), (4.72), and (4.73) at x2 = h, and (4.74), (4.75), (4.76), and

(4.77) at x2 = 0, we obtain

A02323

4∑
j=1

Pjsjeisjkh − C023|2

4∑
j=1

Qjeisjkh +H∗3Re−kh = 0, (4.97)

4∑
j=1

Qjeisjkh −Re−kh = 0, (4.98)

i
(
C013|1 −H∗3

) 4∑
j=1

Pjeisjkh + iK011

4∑
j=1

Qjsjeisjkh +
1
µ0
Re−kh = 0, (4.99)

4∑
j=1

Pj −
2∑
j=1

P ′j = 0, (4.100)
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iA02323

4∑
j=1

Pjsj − iC023|2

4∑
j=1

Qj −A′02323

2∑
j=1

P ′js
′
j + iC′023|2

2∑
j=1

Q′j = 0, (4.101)

iC013|1

4∑
j=1

Pj + iK011

4∑
j=1

Qjsj − iC′013|1

2∑
j=1

P ′j − K′011

2∑
j=1

s′jQ
′
j = 0, (4.102)

4∑
j=1

Qj −
2∑
j=1

Q′j = 0. (4.103)

Using the relations (4.89) and (4.95) between Pj–Qj and P ′j–Q
′
j , we can modify the

above equations to

4∑
j=1

[
A02323 +

C023|2
(
C013|1 − C023|2

)
K011s2j + K022

]
sjeisjkhPj +H∗3R e−kh = 0, (4.104)

4∑
j=1

sj

(
C013|1 − C023|2

)
K011s2j + K022

eisjkhPj +R e−kh = 0, (4.105)

i
4∑
j=1

[
C013|1 −H∗3 − s2j

K011

(
C013|1 − C023|2

)
K011s2j + K022

]
eisjkhPj +

1
µ0
R e−kh = 0, (4.106)

4∑
j=1

Pj −
2∑
j=1

P ′j = 0, (4.107)

4∑
j=1

[
A02323 +

C023|2
(
C013|1 − C023|2

)
K011s2j + K022

]
sjPj

+ i
2∑
j=1

A′02323 −
C′023|2

(
C′013|1 − C′023|2

)
K′011s

′2
j − K′022

 s′jP ′j = 0, (4.108)

4∑
j=1

K022C013|1 + s2jK011C023|2

K011s2j + K022
Pj +

2∑
j=1

K′022C′013|1 − s′2j K′011C′023|2

K′011s
′2
j − K′022

P ′j = 0, (4.109)

4∑
j=1

(
C013|1 − C023|2

)
K011s2j + K022

sjPj − i
2∑
j=1

(
C′013|1 − C′023|2

)
K′011s

′2
j − K′022

s′jP
′
j = 0. (4.110)

These are seven equations for the seven constants P1, P2, P3, P4, P
′
1, P

′
2, and R. For

non-trivial solutions, the determinant of the matrix formed by their coefficients should be

zero. This condition gives the secular equation for the problem. We now illustrate the

results for particular constitutive laws.
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4.3.3 Application to a Mooney–Rivlin magnetoelastic material

In the underlying configuration, the boundary conditions require that H∗3 = H3 = H ′3.

Thus B∗3 = µ0H3, B3 = 0.5λ2
3H3/(l + mλ2

3), B′3 = 0.5λ′23H3/(l′ + m′λ′23). Also, we have

C023|2 = C013|1 = 2mB3. Hence the governing equations (4.62) and (4.63) reduce to

A01313u3,11 +A02323u3,22 = ρu3,tt, (4.111)

K022ψ,11 + K011ψ,22 = 0. (4.112)

On substituting the harmonic solutions (4.78) and (4.79) in the above equations we

get one value of s2 for each of the mechanical and magnetic equations, say s21 and s22,

respectively, i.e.

s21 =
ρv2 −A01313

A02323
, s22 = −K022

K011
. (4.113)

Since the equations are decoupled these need not be the same, although in general there

will be a coupling of the mechanical and magnetic effects through the boundary conditions.

When the mechanical and magnetic fields are combined the general solution may be

written

φ =
(
P+eis1kx2 + P−e−is1kx2

)
exp[i (kx1 − ωt)], 0 < x2 < h, (4.114)

ψ =
(
Q+eis2kx2 +Q−e−is2kx2

)
exp[i (kx1 − ωt)], 0 < x2 < h, (4.115)

φ′ = P ′ exp
(
s′1kx2 + ikx1 − iωt

)
, x2 < 0, (4.116)

ψ′ = Q′ exp
(
s′2kx2 + ikx1 − iωt

)
, x2 < 0, (4.117)

ψ∗ = R exp (−kx2 + ikx1 − iωt) , x2 > h, (4.118)

where

s′
2
1 =
A′01313 − ρ′v2

A′02323

, s′
2
2 =

K′022

K′011

. (4.119)

After substituting these into the seven boundary conditions (4.71)–(4.77) we find that

P+ + P− = P ′, Q+ +Q− = Q′, Q+eis2kh +Q−e−is2kh = Re−kh, (4.120)
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Figure 4.6: First mode of the dispersion curves ζ = ρv2/µ(0) vs. kh for a Mooney–Rivlin

type material in the presence of an out-of-plane magnetic field B3. λ = λ1 = 1/λ2, λ3 = 1.

(a) λ1 = 0.7, B3 = 0.01, 0.1, 0.14 T; (b) B3 = 0.01 T, λ1 = 0.3, 0.5, 0.7.

and the remaining four boundary conditions expressed in terms of P+, P−, Q+, Q− are

s1A02323(P+ − P−) + iA′02323s
′
1(P+ + P−) + (C′023|2 − C023|2)(Q+ +Q−) = 0, (4.121)

(C013|1 − C′013|1)(P+ + P−) + K011s2(Q+ −Q−) + iK′011s
′
2(Q+ +Q−) = 0, (4.122)

s1A02323(P+eis1kh − P−e−is1kh)− C023|2(Q+eis2kh +Q−e−is2kh)

+H∗3 (Q+eis2kh +Q−e−is2kh) = 0, (4.123)

(C013|1 −H∗3 )(P+eis1kh + P−e−is1kh) + K011s2(Q+eis2kh −Q−e−is2kh)

−iµ−1
0 (Q+eis2kh +Q−e−is2kh) = 0. (4.124)

We plot the variation of the non-dimensionalized wave speed ζ = ρv2/µ(0) against the non-

dimensionalized wave number kh in Figure 4.6 to study the effects of magnetic field and

deformation. Values of the material constants listed in (4.59) are used for the numerical

calculations. In general, the wave speed decreases with an increase in the wave number and

in the magnetic field B3. Considering a plane strain deformation (λ3 = 1), a compression

represented by the stretch λ1 parallel to the surface in the direction of wave propagation

tends to increase the wave speed.

Equation (4.111) is the same as that obtained for the pure elastic case in Section 4.2.2,

and if the incremental magnetic field vanishes the problem reduces to a purely mechanical
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problem to solve for u3. However, in the presence of a magnetic field vanishing of the

incremental magnetic field (so that Q+ = Q− = 0) in general forces u3 = 0. There is

an exception to this if both coefficients C013|1 − H∗3 and C013|1 − C′013|1 vanish. For the

considered material we have

C013|1 −H∗3 = −2lλ−2
3 B3, C013|1 − C′013|1 = (lm′λ′3

2 − l′mλ2
3)H3. (4.125)

Thus, for a purely mechanical wave to propagate in the presence of a magnetic field we

must have l = 0 and either l′ = 0 or m = 0. If both l and m vanish then the layer is not a

magnetic material. In either case it is easy to show that the wave speed does not depend

on the value of the magnetic field since, for the considered model, A01313 and A02323 are

independent of B3.

Similarly, if u3 = 0, i.e. P+ = P− = 0, then in general a purely magnetic wave cannot

exist except when both C023|2 − C′023|2 and C023|2 − H∗3 are zero. For the Mooney–Rivlin

model we have

C023|2 −H∗3 = 2lλ−2
3 B3, C023|2 − C′023|2 =

(
mλ2

3

l +mλ2
3

− m′λ′23
l′ +m′λ′23

)
H3. (4.126)

If we take the deformation in the layer and the bulk half space to be the same, i.e. λ3 = λ′3,

then for a purely magnetic wave to propagate we must have l = 0 and either l′ = 0 or

m = m′ = 0. Vanishing of both l and m will make the layer non-magnetic.

In order to consider the case in which there is coupling through the equations we

specialize the constitutive law to a version of the neo-Hookean solid.

4.3.4 Application to a neo-Hookean type magnetoelastic material

We consider a generalization of the neo-Hookean energy function for the magnetoelastic

case which is a slight modification of the one used in [Dorfmann and Ogden, 2005] and

given by

Ω =
µ(0)

2
(1 + αI4)(I1 − 3) + lI4 +mI5 + qI6, (4.127)

where µ(I4) = µ(0) × (1 + αI4) is a shear modulus that varies with the magnetic field,

and α, l,m, and q are magnetoelastic coupling parameters. For this function, the relevant
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Figure 4.7: First mode dispersion curves ζ = ρv2/µ(0) vs. kh for a neo-Hookean type

material in the presence of an out-of-plane magnetic field B3 = 0.03 T: (a) λ3 = 1, λ−1
2 =

λ1 = 0.7, 0.8, 0.9, 1.1, 1.2; (b) λ1 = 1, λ−1
2 = λ3 = 0.7, 0.8, 0.9, 1.1, 1.2.

components of the moduli tensors are

A01313 = µ(0)λ2
1 (1 + αI4) + 2λ2

1B
2
3q, A02323 = µ(0)λ2

2 (1 + αI4) + 2λ2
2B

2
3q,

C013|1 = 2B3[m+ (λ2
1 + λ2

3)q], C023|2 = 2B3[m+ (λ2
2 + λ2

3)q],

K011 = λ−2
1 [µα(I1 − 3) + 2l] + 2m+ 2qλ2

1,

K022 = λ−2
2 [µα(I1 − 3) + 2l] + 2m+ 2qλ2

2. (4.128)

For this model, we use equations (4.104)–(4.110) to study the variation of the non-

dimensionalized wave speed ζ = ρv2/µ(0) with the underlying magnetic field and de-

formation. We use the following values of the material parameters for the numerical

calculations:

µ(0) = 2.6× 105 N/m2, µ′(0) = 2µ(0), ρ′ = 2ρ, α = 2, α′ = 0.7,

lµ0 = 2, l′µ0 = 1.7, mµ0 = 2, m′µ0 = 0.7, qµ0 = 2, q′µ0 = 0.1.(4.129)

The equations are dispersive and we obtain an infinite number of wave modes. We

plot ζ against the non-dimensionalized wave number kh for the first modes in Figures 4.7

and 4.8.

In general the wave speeds decrease with increasing wave number and a higher magnetic

field tends to increase the wave speed for the material described by the generalized neo-
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Figure 4.8: First mode dispersion curves ζ = ρv2/µ(0) vs. kh for a neo-Hookean type

material in the presence of an out-of-plane magnetic field B3. λ1 = 0.7 = λ−1
2 , λ3 = 1;

B3 = 0.03, 0.06, 0.09, 0.12, 0.15 T.

Hookean model. Considering an underlying deformation of plane strain (λ3 = 1), a larger

stretch λ1 parallel to the surface in the direction of wave propagation tends to increase

the wave speed. When a plane strain in the plane perpendicular to the wave propagation

direction is considered (λ1 = 1), a larger principal stretch λ3 in the out-of-plane direction

tends to decrease the wave speed.

4.4 Shear horizontal surface waves without a layer

We now consider a magnetoelastic half-space without a layer and seek the possibility of

waves with an out-of-plane displacement component. Waves of this type, first described

in [Parekh, 1969a, 1969b], are similar to the Bleustein–Gulyaev waves in electroelasticity

(see, for example, [Bleustein, 1968]) and do not have a counterpart in pure elasticity. We

consider the two cases of in-plane and out-of-plane directions of the underlying magnetic

induction.

4.4.1 B = (B1, B2, 0)

The relevant governing equations are (4.13), (4.14), and (4.15) in x2 < 0 with the boundary

condition (4.24) at x2 = 0. We consider solutions of the type (4.29) and (4.30) and
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substitute into the boundary conditions to obtain

(is′A′ −B′)P ′ = 0. (4.130)

This cannot be satisfied since for a non-trivial wave we must have P ′ 6= 0, but also, since A′

and B′ are real, and, by strong ellipticity A′ > 0 the real part of s′ must vanish. Therefore

such a mode of wave propagation does not exist when the underlying magnetic field is

in-plane.

4.4.2 B = (0, 0, B3)

In this case, we consider the governing equations (4.67) and (4.68) in x2 < 0, and equation

(4.69) in x2 > 0 to solve with the boundary conditions (4.71), (4.72), and (4.73) at x2 = 0.

We consider solutions similar to (4.87), (4.88), and (4.96). Substituting into the boundary

conditions we obtain

A′02323(s′1P
′
1 + s′2P

′
2)− iC023|2(Q′1 +Q′2) + iH∗3R = 0, (4.131)

Q′1 +Q′2 −R = 0, (4.132)

i(C013|1 −H∗3 )(P ′1 + P ′2) + K011(s′1Q
′
1 + s′2Q

′
2) + µ−1

0 R = 0, (4.133)

while Equation (4.84) gives the relations

is′1
(
C′023|2 − C′013|1

)
P ′1 +

(
K′022 − s′21 K′011

)
Q′1 = 0, (4.134)

is′2
(
C′023|2 − C′013|1

)
P ′2 +

(
K′022 − s′22 K′011

)
Q′2 = 0, (4.135)

Here s′1 and s′2 are the solutions of Equation (4.85) satisfying the criterion Re(s′) > 0.

For non-trivial solutions for P ′1, P
′
2, Q

′
1, Q

′
2, and R, the determinant of their coefficients

should be zero which gives an equation to solve for the wave speed. We therefore illustrate

the results in Figure 4.9 by considering again the modified neo-Hookean energy function

defined in (4.127). The non-dimensionalized wave speed ζ = ρ′v2/µ′(0) is plotted against

the underlying axial stretch for different values of the underlying magnetic field.

For a plane strain deformation (λ3 = 1) illustrated in Figure 4.9(a), it is observed that

a stretch parallel to the direction of wave propagation λ1 tends to increase the wave speed.

A higher underlying magnetic field also increases the wave speed.

For the plane strain deformation when there is no compression or extension parallel

to the wave propagation direction (λ1 = 1) as shown in Figure 4.9(b), a critical value
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Figure 4.9: Variation of ζ = ρ′v2/µ′(0) with the underlying deformation and the underlying

magnetic field for a Bleustein–Gulyaev type wave in a neo-Hookean type solid. B3 =

0.6, 0.7, 0.8, 0.9, 1 T; (a) λ = λ1 = λ−1
2 , λ3 = 1; (b) λ1 = 1, λ3 = λ−1

2 = λ.

of λ3 = λc is observed at which the wave speed becomes independent of the underlying

magnetic field B3. The critical stretch λc depends on the parameters of the energy function

used. When λ3 < λc the wave speed decreases with an increase in B3 while in the region

λ3 > λc the wave speed increases with an increase in B3. For large values of compression

(small λ3) ζ goes to zero which coincides with the onset of instability in the material. The

wave speed increases with an increase in λ3 and reaches an asymptotic value dependent

on the underlying magnetic field B3.

When there is no underlying deformation, for the considered model we have C′013|1 =

C′023|2 and K′011 = K′022. Equation (4.85) can be factorized to obtain the roots s′21 =

1 − ρ′v2/A01313 and s′22 = 1. This results in (4.135) becoming identically zero and hence

the above procedure yields no solution for the wave speed. So in this case we consider the

solutions

φ′ = P ′ exp
(
s′1kx2 + ikx1 − iωt

)
, x2 < 0, (4.136)

ψ′ = Q′ exp
(
s′2kx2 + ikx1 − iωt

)
, x2 < 0, (4.137)

ψ∗ = R exp (−kx2 + ikx1 − iωt) , x2 > 0, (4.138)

where the boundary conditions are (4.71)–(4.73), applied on x2 = 0. These yield R = Q′
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and

A′02323s
′
1P
′ + i(H∗3 − C′023|2)Q′ = 0 (4.139)

−i(H∗3 − C′013|1)P ′ + (µ−1
0 + s′2K

′
011)Q′ = 0, (4.140)

Requiring a non-trivial solution yields the following explicit formula for the wave speed:

ρ′v2 = A′01313 −
(H∗3 − C′013|1)4

(µ−1
0 + K′011)2A′01313

. (4.141)

The value of the wave speed thus obtained for the linear elastic case is consistent with

those illustrated in Figure 4.9.

The Mooney–Rivlin type energy function requires special treatment, and we follow the

procedure as above for the linear elastic case and obtain an explicit formula of the wave

speed

ρ′v2 = A′01313 −
(H∗3 − C′013|1)4

(µ−1
0 +

√
K′011K

′
022)2A′02323

, (4.142)

When the specific forms of the Mooney–Rivlin constants are substituted (for the case

ν = 1 for illustration), we get

ρ′v2/µ′(0) = λ2
1 −

16l4λ−8
3 B4

3

[µ−1
0 + 2

√
(m+ lλ−2

1 )(m+ lλ−2
2 )]2λ2

2µ
′(0)2

. (4.143)

The above formula suggests that there is an upper bound on the underlying magnetic field

for the wave speed to be real. When evaluated for no underlying deformation this reduces

to

ρ′v2/µ′(0) = 1− 16l4B4
3

[µ−1
0 + 2(l +m)]2µ′(0)2

. (4.144)



Chapter 5

Finite Deformation and

Axisymmetric Motions of a

Cylindrical Tube

In this chapter, we specialize the equations of nonlinear magnetoelasticity to cylindrical

coordinates to consider deformations and motions of a thick-walled tube. In the presence

of an internal pressure, axial force, and an underlying magnetic field in the azimuthal or

axial directions, the tube undergoes a finite deformation. Nonlinear static deformation of

the tube and its dependence on the intensity of the applied magnetic field are analyzed

for two different kinds of energy density functions. Thereafter we study the axisymmetric

motions of the said finitely deformed tube and their dependence on the applied magnetic

field, internal pressure, and axial stretch.

5.1 Constitutive relations

For specialization to cylindrical geometry, it is useful to consider Hl as an independent

variable of the energy density function rather than Bl (see [Dorfmann and Ogden, 2005]

for details). The two different energy functions are related by the Legendre transformation

as

Ω(F,Hl) = Ω∗(F,Bl)−Bl ·Hl. (5.1)

The above equation when combined with the constitutive relations (2.56) yields

T =
∂Ω
∂F

, Bl = − ∂Ω
∂Hl

, (5.2)

65
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for the total nominal stress and the Lagrangian magnetic induction vector. If the material

is incompressible, then the first of above equations becomes

T =
∂Ω
∂F
− pF−1, (5.3)

where p is a Lagrange multiplier associated with the constraint of incompressibility. The

above equations when written in Eulerian form, become

τ = J−1F
∂Ω
∂F

, B = −J−1F
∂Ω
∂Hl

, (5.4)

for compressible materials, while for incompressible materials the first of the above equa-

tions becomes

τ = F
∂Ω
∂F
− pI. (5.5)

For an incompressible isotropic magnetoelastic material, the energy function can be

expressed in terms of five scalar invariants which we choose to be

I1 = tr c, I2 =
1
2
(
I2
1 − tr

(
c2
))
,

K4 = Hl ·Hl, K5 = (cHl) ·Hl, K6 =
(
c2Hl

)
·Hl, (5.6)

where c = FTF is the right Cauchy-Green tensor. We use K4,K5,K6 above instead of

I4, I5, I6 to maintain consistency as the latter are used in Chapter 2 to define invariants

in terms of Bl, and I3 = det c is unity in the present case of incompressibility. Hence, the

constitutive relations (5.2)2 and (5.3) can be expanded to be written in the form

T =− pF−1 + 2Ω1FT + 2Ω2

(
I1FT − cFT

)
+ 2Ω5Hl ⊗ FHl

+ 2Ω6 (Hl ⊗ FcHl + cHl ⊗ FHl) , (5.7)

and

Bl = −2
(
Ω4Hl + Ω5cHl + Ω6c2Hl

)
, (5.8)

where Ωk = ∂Ω/∂Ik for k = 1, 2 and Ωk = ∂Ω/∂Kk for k = 4, 5, 6. In the Eulerian form

the above equations are

τ = −pI+2Ω1b+2Ω2

(
I1b− b2

)
+2Ω5bH⊗bH+2Ω6

(
bH⊗ b2H + b2H⊗ bH

)
, (5.9)

and

B = −2
(
Ω4bH + Ω5b2H + Ω6b3H

)
, (5.10)

where b = FFT is the left Cauchy–Green tensor.
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On incrementing the equations (5.2)2 and (5.3), we get

.
T =

∂2Ω
∂F∂F

.
F +

∂2Ω
∂F∂Hl

.
Hl − .

pF−1 + pF−1
.
FF−1, (5.11)

.
Bl = − ∂2Ω

∂Hl∂F
.
F− ∂2Ω

∂Hl∂Hl

.
Hl. (5.12)

Using the relations in Equation (2.35) with J = 1, we update the above equations to

get
.
T0 = FA

.
F + FC

.
Hl − .

pI + pL,
.
Bl0 = −FCT

.
F− FK

.
Hl, (5.13)

where we have used the notations

A =
∂2Ω
∂F∂F

, C =
∂2Ω

∂F∂Hl
, CT =

∂2Ω
∂Hl∂F

, K =
∂2Ω

∂Hl∂Hl
, (5.14)

which now redefine the magnetoelastic moduli tensors. The updated magnetoelastic ten-

sors, A0,C0 and K0 can be defined in component form as

A0ipjq = A0jqip = FiαFjβAαpβq,

C0ij|k = C0ji|k = FiαF
−1
βk Cαj|β,

K0ij = K0ji = F−1
αi F

−1
βj Kαβ. (5.15)

It is worth noting that the magnetoelastic moduli tensors above are different from those

used in Chapter 2 and elaborated in Appendix B. Here they are defined in terms of the

magnetic field vector Hl while earlier they were defined in terms of the magnetic induction

vector Bl. These are substituted in the updated incremented constitutive equations above

to give
.
T0 = A0L + C0

.
Hl0 − .

pI + pL,
.
Bl0 = −CT

0 L−K0

.
Hl0. (5.16)

On substituting the above forms of constitutive equations in the governing equations

(2.43)2,3 (assuming no mechanical body forces) we get

div
(
CT

0 L + K0

.
Hl0

)
= 0, (5.17)

div
(
A0L + C0

.
Hl0 + pL

)
− grad .

p = ρu,tt. (5.18)

Using (5.16)1, and from the symmetry of the total stress tensor in incremental form

(2.38)2, we obtain the identities

A0ipjq + δiq (τjp + pδjp) = A0pijq + δpq (τij + pδij) , C0ij|k = C0ji|k, (5.19)

the first of which can be used to obtain the useful relation

p = A01313 −A01331 − τ11 = A01212 −A01221 − τ11. (5.20)
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5.2 Specialization to a cylindrical geometry

We consider an infinite circular cylindrical tube made of an incompressible non-conducting

magnetoelastic material. We work in terms of cylindrical polar coordinates, which in the

reference configuration Br are denoted by (R,Θ, Z) and in the deformed configuration B
by (r, θ, z). In the reference configuration, let the internal and external radii of the tube

be given by A and B, respectively.

The tube is deformed by inflating and stretching in the radial and axial directions,

respectively, and then by the application of a magnetic field in the azimuthal and the axial

direction to maintain axisymmetry. After the deformation, the new inner and outer radii

are a and b such that a ≤ r ≤ b. The deformation assumes the form

r =
[
a2 +

1
λz

(
R2 −A2

)] 1
2

, z = λzZ, θ = Θ, (5.21)

where the first relation is due to incompressibility and λz is the (uniform) axial stretch.

Let e1, e2, e3 denote the basis vectors corresponding to the r, θ, z coordinates and

λ1, λ2, λ3 be the corresponding principal stretches. From here onwards, we will take (1, 2, 3)

to correspond to (r, θ, z). Hence the underlying magnetic field is given as H = (0, H2, H3).

Using the constraint of incompressibility λ1λ2λ3 = 1, the principal stretches in the az-

imuthal, axial, and radial directions are given by

λ2 = λ =
r

R
, λ3 = λz, λ1 = λ−1λ−1

z , (5.22)

respectively, wherein the notation λ is introduced.

From Equation (5.9), we obtain

τ11 = −p+ 2Ω1λ
2
1 + 2Ω2λ

2
1

(
λ2

2 + λ2
3

)
,

τ22 = −p+ 2Ω1λ
2
2 + 2Ω2λ

2
2

(
λ2

1 + λ2
3

)
+ 2Ω5λ

4
2H

2
2 + 4Ω6λ

6
2H

2
2 ,

τ33 = −p+ 2Ω1λ
2
3 + 2Ω2λ

2
3

(
λ2

1 + λ2
2

)
+ 2Ω5λ

4
3H

2
3 + 4Ω6λ

6
3H

2
3 . (5.23)

The equilibrium equation div τ = 0 gives

dτ11

dr
=

1
r

(τ22 − τ11) , (5.24)

which on substituting the values of τ11 and τ22 becomes

dτ11

dr
=

1
r

{
2Ω1

(
λ2

2 − λ2
1

)
+ 2Ω2λ

2
3

(
λ2

2 − λ2
1

)
+ 2Ω5λ

4
2H

2
2 + 4Ω6λ

6
2H

2
2

}
. (5.25)
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Boundary conditions on the lateral surfaces of the cylinder (r = a, b) are given by the

balance of traction (2.27) as

τ11 = τ∗11 − Pin at r = a, and τ11 = τ∗11 − Pout at r = b. (5.26)

Here, Pin and Pout are the mechanically applied internal and external pressures, respec-

tively, while τ∗11 obtains the value −µ0(H2
2 +H2

3 )/2 from Equation (2.50).

We note here that in the case of a tube of finite length, the magnetic boundary condi-

tions at the two ends of the tube are easily satisfied if the magnetic field is in azimuthal

direction. For an axial magnetic field, a detailed analysis for a tube of finite length has

been done by [Bustamante et al., 2007].

Since the independent parameters of the deformation process are λ, λz, Hl2, and Hl3,

we can write the energy function as

Ω(F,Hl) = Ω̂(λ, λz, Hl2, Hl3). (5.27)

The scalar invariants can be then written in the form

I1 = λ2 + λ2
z + λ−2λ−2

z , I2 = λ−2 + λ−2
z + λ2λ−2

z ,

K4 = H2
l2 +H2

l3, K5 = λ2H2
l2 + λ2

zH
2
l3, K6 = λ4H2

l2 + λ4
zH

2
l3, (5.28)

using which we write

∂Ω̂
∂λ

= Ω1
∂I1
∂λ

+ Ω2
∂I2
∂λ

+ Ω5
∂K5

∂λ
+ Ω6

∂K6

∂λ
, (5.29)

=
2
λ

(
Ω1 + Ω2λ

2
z

)
(λ2 − λ−2λ−2

z ) + 2Ω5λH
2
l2 + 4Ω6λ

3H2
l2, (5.30)

which gives
dτ11

dr
=
λ

r

∂Ω̂
∂λ

, (5.31)

where use has been made of (5.25).

We also mention the following useful relations for a finitely deformed tube, which are

derived in Appendix C and can be seen in, for example, [Haughton and Ogden, 1979b]

r
dλ

dr
= λ(1− λ2λz), (5.32)

A−2B2
(
λ2
bλz − 1

)
= λ2

aλz − 1 = R2A−2(λ2λz − 1),
∂λb
∂λa

=
λaA

2

λbB2
. (5.33)

Here λa = λ|r=a and λb = λ|r=b.
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On integrating Equation (5.25) using the boundary conditions (5.26), we obtain∫ b

a

1
r

{
2Ω1

(
λ2

2 − λ2
1

)
+ 2Ω2λ

2
3

(
λ2

2 − λ2
1

)
+ 2Ω5λ

4
2H

2
2 + 4Ω6λ

6
2H

2
2

}
dr

= Pin − Pout +
µ0

2
(
H2

2 |a −H2
2 |b
)
, (5.34)

using which along with (5.21)1, we can evaluate the inner and outer radii (a, b) of the tube

after deformation for a given pressure difference and magnetic field. (The contributions

due to H3 in the above formula cancel out.) We now use the above calculated value of

the inner radius a to evaluate the value of τ11 as a function of r by integrating Equation

(5.25) as

τ11 = −µ0

2
(
H2

2 +H2
3

)
|a − Pin

+
∫ r

a

1
r

{
2Ω1

(
λ2

2 − λ2
1

)
+ 2Ω2λ

2
3

(
λ2

2 − λ2
1

)
+ 2Ω5λ

4
2H

2
2 + 4Ω6λ

6
2H

2
2

}
dr. (5.35)

The above process can be equivalently repeated by using Equation (5.31) instead of

(5.25) depending on the requirements of the energy density function used.

In the following subsections we study the total pressure and the axial force gener-

ated in the tube due to static nonlinear axisymmetric deformations in the presence of an

underlying magnetic field.

5.2.1 Total internal pressure in the tube

We define the net total internal pressure PT as the difference between the surface traction

per unit area on the inside and on the outside of the tube.

PT = (Pin − τ∗11|a)− (Pout − τ∗11|b) (5.36)

=
(
Pin +

µ0

2
(H2

2 +H2
3 )a
)
−
(
Pout +

µ0

2
(H2

2 +H2
3 )|b
)
. (5.37)

On integrating Equation (5.31) using the boundary conditions (5.26), we get

PT =

b∫
a

λ

r

∂Ω̂
∂λ

dr. (5.38)

which is slightly more general than the formula (127) given in [Dorfmann and Ogden,

2005]. We use Equation (5.32) to change the variable of integration from r to λ

PT =
∫ λa

λb

1
(λ2λz − 1)

∂Ω̂
∂λ

dλ. (5.39)
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On differentiating this with respect to λa and using Equation (5.33)1, we get

(λ2
aλz − 1)
λa

∂PT
∂λa

=
1
λa

∂

∂λ
Ω̂(λ, λz, Hl2, Hl3)|λ=λa −

1
λb

∂

∂λ
Ω̂(λ, λz, Hl2, Hl3)|λ=λb

. (5.40)

This is a generalization of the formula (15) obtained by [Haughton and Ogden, 1979b]

in the context of pure elasticity. It is evident from the above equation that a necessary

condition for the pressure turning points to exist is

∂

∂λ

(
1
λ

∂

∂λ
Ω̂(λ, λz, Hl2, Hl3)

)
= 0, for at least one λ ∈ (λb, λa) . (5.41)

For rubber-like solids it is observed experimentally (at least for thin-walled tubes) that

as λ increases, the internal pressure increases up to a maximum, then decreases until it

attains a minimum and then again increases monotonically until rupture. We can predict

a similar behaviour for the total pressure PT if the above condition is satisfied. To show

this we use a generalization of the energy function used in [Haughton and Ogden, 1979b]

to the magnetoelastic context.

Ω = Ω̂(λ, λz, Hl2, Hl3) =
3∑
r=1

µr
αr

(
λαr + λαr

z + λ−αrλ−αr
z − 3

)
+ qK5, (5.42)

where the last term is K5 = (λ2H2
l2 + λ2

zH
2
l3). Here, µr’s are material constants with the

dimensions of stress, αr’s are dimensionless constants while q is a magnetoelastic coupling

parameter with q/µ0 being dimensionless. Following the terminology in [Haughton and

Ogden, 1979b], we call it a three-term magnetoelastic energy function.

The non-dimensionalized total internal pressure P̂T = PT/µ calculated for this energy

function is plotted in Figure 5.1 for different values of the underlying magnetic field and

the following values of the energy function parameters (as used by [Haughton and Ogden,

1979b]):

α1 = 1.3, α2 = 5, α3 = −2, µ1 = 1.491µ, µ2 = 0.003µ,

µ3 = −0.023µ, µ = 2.6× 105 N/m2, q = µ0/2 = 2π × 10−7 N/A2. (5.43)

The ratio of the internal radius to the external radius is taken as A/B = 0.6, while we

plot for two values of the axial stretch, viz. λz = 2 and λz = 0.7. The axial magnetic field

H3 has no effect on the internal pressure for this energy function due to the nature of the

expressions in (5.30) and (5.39). A reference value H0 is taken for the azimuthal magnetic

field so that at a radius r, H2 is given by

H2(r) = H0B/r. (5.44)
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Figure 5.1: Plot of the non-dimensionalized total internal pressure P̂T against the stretch

λa for different values of an underlying azimuthal magnetic field for the three-term mag-

netoelastic energy function; A/B = 0.6. (a) λz = 2; (b) λz = 0.7. (i) H0 = 0; (ii)

H0 = 1× 105 A/m; (iii) H0 = 2× 105 A/m.

The plot starts from the value of λa that corresponds to zero internal mechanical pressure

and λa is then increased quasi-statically.

At the starting point when there is no internal pressure, an underlying magnetic field

tends to inflate the tube when λz = 2, and it tends to deflate the tube when λz = 0.7.

A larger underlying magnetic field creates higher total internal pressure while stretching

(increasing λz) the tube in the axial direction decreases P̂T . The behaviour of a rubber-

like material is captured from the graphs since it is observed that as λa increases, the

internal pressure first rises, then falls and then increases monotonically. This agrees with

the results in [Haughton and Ogden, 1979b] for the purely elastic case.

We now analyze this problem for a different form of magnetoelastic material defined

by a Mooney–Rivlin magnetoelastic energy function given as

Ω =
µ

4
[(1 + γ)(I1 − 3) + (1− γ)(I2 − 3)] +mK5, (5.45)

similar to the one defined in Equation (3.48) but with a different term corresponding to

energy of the magnetic field. Here µ is the shear modulus of the material in the absence

of a magnetic field, γ is a dimensionless parameter in the range −1 ≤ γ ≤ 1, and m is

a magnetoelastic coupling constant such that m/µ0 is dimensionless. The total internal
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Figure 5.2: Plot of the non-dimensionalized total internal pressure P̂T against the stretch

λa for different values of an underlying azimuthal magnetic field for a Mooney–Rivlin

magnetoelastic model; A/B = 0.6. (a) λz = 2; (b) λz = 0.7. (i) H0 = 0; (ii) H0 = 1× 105

A/m; (iii) H0 = 2× 105 A/m.

pressure calculated using this energy function is plotted in Figure 5.2 for different magnetic

fields and the following values of the material parameters:

µ = 2.6× 105 N/m2, γ = 0.3, m = µ0/2. (5.46)

The axial magnetic field H3 has no effect on the internal pressure for this energy

function and therefore we consider dependence only on H2. For this function, unlike for

the previous one, the total internal pressure increases monotonically as a function of λa.

However, the effect of the magnetic field and the axial stretch is qualitatively the same as

before, i.e. a larger magnetic field tends to increase while a larger axial stretch tends to

decrease the total internal pressure.

5.2.2 Total axial load on the cylinder

The principal stress in the axial direction is given as

τ33 = λ3
∂Ω
∂λ3
− p, (5.47)

which on using Equation (C.18) from Appendix C can be rewritten as

τ33 =
1
2

(
2λz

∂Ω̂
∂λz
− λ∂Ω̂

∂λ

)
+

1
2r

d

dr

(
r2τ11

)
. (5.48)
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This can also be expressed in terms of the scalar invariants defined in Equation (5.6)

and their derivatives using Equation (C.19) as

τ33 = Ω1(3λ2
3 − I1) + Ω2(I2 − 3λ2

1λ
2
2)

+ Ω5

(
2λ4

3H
2
3 − λ4

2H
2
2

)
+ 2Ω6

(
2λ6

3H
2
3 − λ6

2H
2
2

)
+

1
2r

d

dr

(
r2τ11

)
. (5.49)

The total axial force on the cylinder is given as

N =

2π∫
0

b∫
a

τ33 r dr dθ, (5.50)

which on using the value of τ33 from Equation (5.48) can be rewritten as

N = π

b∫
a

(
2λz

∂Ω̂
∂λz
− λ∂Ω̂

∂λ

)
rdr + π

(
a2Pin − b2Pout

)
− πµ0

2
H2

3

(
b2 − a2

)
, (5.51)

which is similar to the formula (128) obtained by [Dorfmann and Ogden, 2005]. Using

Equation (5.32), we can change the variable of integration in the first term from r to λ to

get

N = πA2
(
λ2
aλz − 1

) λa∫
λb

λ

(λ2λz − 1)2

(
2λz

∂Ω̂
∂λz
− λ∂Ω̂

∂λ

)
dλ

+π
(
a2Pin − b2Pout

)
− πµ0

2
H2

3

(
b2 − a2

)
. (5.52)

Alternatively, we can use Equation (5.49) to write the expression for τ33 in terms of

the invariants and their derivatives

N =π

b∫
a

[Ω1(3λ2
3 − I1) + Ω2(I2 − 3λ2

1λ
2
2) + Ω5

(
2λ4

3H
2
3 − λ4

2H
2
2

)
+ 2Ω6

(
2λ6

3H
2
3 − λ6

2H
2
2

)
]r dr + π

(
a2Pin − b2Pout

)
− πµ0

2
H2

3

(
b2 − a2

)
, (5.53)

which on changing the variable of integration from r to λ, gives

N = πA2
(
λ2
aλz − 1

) λa∫
λb

λ

(λ2λz − 1)2
[Ω1(3λ2

3 − I1) + Ω2(I2 − 3λ2
1λ

2
2)

+Ω5

(
2λ4

3H
2
3 − λ4

2H
2
2

)
+ 2Ω6

(
2λ6

3H
2
3 − λ6

2H
2
2

)
] dλ

+π
(
a2Pin − b2Pout

)
− πµ0

2
H2

3

(
b2 − a2

)
. (5.54)

We now study the dependence of the axial load N on the underlying magnetic fields

H2 and H3, the axial stretch λz, and the inflation given by the stretch λa. The numerical
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Figure 5.3: Plot of the non-dimensionalized axial force N̂ against the stretch λa for the

three-term magnetoelastic energy function. (a) λz = 2; (i) H0 = 0, (ii) H0 = 5×105 A/m,

(iii) H0 = 1×106 A/m. (b) λz = 0.7; (i) H0 = 0, (ii) H0 = 2×105 A/m, (iii) H0 = 5×105

A/m.

calculations are done for the values A/B = 0.6, Pin = 0.2µ, and Pout = 0. We consider

a tube of finite length in the presence of azimuthal magnetic field and take two values of

axial stretch λz = 0.7 and λz = 2. In the presence of an axial magnetic field, we consider

a tube of infinite length and consider only an extensional axial stretch λz = 2.

We plot the variation of the non-dimensionalized axial load N̂ = N/µ with λa for the

three-term magnetoelastic energy function in Figure 5.3. Increasing the radius of the tube,

keeping λz fixed, causes an increase in the axial load N̂ . In the absence of magnetic field,

as expected, there is a positive (extensional) N̂ for λz > 1 and a negative (compressional)

N̂ for λz < 1. An underlying magnetic field tends to create a compressional loading in the

axial direction and hence reduces N̂ .

Results for the Mooney–Rivlin type magnetoelastic energy function are plotted in

Figure 5.4. Similar to the previous case, N̂ increases with an increase in λa keeping λz

constant. However, there exists a value of λa (say λc) depending on λz such that when

λa < λc, an underlying magnetic field decreases N̂ while it increases N̂ for λa > λc.

An underlying magnetic field in the axial direction tends to cause an extensional loading

and hence a higher magnetic field increases N̂ . Similar behaviour is observed for both the

kinds of materials as shown in Figure 5.5.
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Figure 5.4: Plot of the non-dimensionalized axial force N̂ against the stretch λa for the

Mooney–Rivlin type magnetoelastic material. (a) λz = 2; (b) λz = 0.7. (i) H0 = 0, (ii)

H0 = 5× 105 A/m, (iii) H0 = 1× 106 A/m.
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Figure 5.5: Plot of the non-dimensionalized axial force N̂ against the stretch λa in the

presence of an axial magnetic field H3 (in A/m). λz = 2. (a) Three-term magnetoelastic

material; (i) H3 = 0, (ii) H3 = 1× 105 A/m, (iii) H3 = 2× 105 A/m. (b) Mooney-Rivlin

type magnetoelastic material; (i) H3 = 0, (ii) H3 = 5× 105 A/m, (iii) H3 = 7× 105 A/m.
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5.3 Incremental motions

We now consider time-dependent increments in the displacement and the magnetic field on

top of the underlying finite deformation. Consider a small increment u in the deformation

such that u = {u1, u2, u3}. The constraint of incompressibility requires u to satisfy the

condition div u = 0. We consider only axisymmetric motions so that there is no depen-

dence on θ and the components of the displacement gradient and the increment in the

deformation gradient are given in matrix form by

[L] = [grad u] =


u1,1 −u2/r u1,3

u2,1 u1/r u2,3

u3,1 0 u3,3

 , (5.55)

[
.
F] = [Grad u] = [LF] =


λ−1λ−1

z u1,1 −λu2/r λzu1,3

λ−1λ−1
z u2,1 λu1/r λzu2,3

λ−1λ−1
z u3,1 0 λzu3,3

 , (5.56)

where here and henceforth we use the subscript i followed by a comma to denote a deriva-

tive with respect to the ith coordinate, i ∈ {1, 3}.
In vacuum, the governing equations (2.45) can be written in component form as

.
H∗1,1 +

.
H∗1
r

+
.
H∗3,3 = 0, (5.57)

.
H∗1,3 −

.
H∗3,1 = 0, (5.58)
.
H∗2,3 = 0, (5.59)

.
H∗2,1 +

.
H∗2
r

= 0, (5.60)

while the incremental incompressibility constraint (div u = 0) is given as

u1,1 +
u1

r
+ u3,3 = 0. (5.61)

Boundary conditions on the curved faces (n = e1 for outer surface and n = −e1 for

inner surface) of the cylindrical tube are H2 = H∗2 , H3 = H∗3 , and given by equations
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(2.47), (2.49), and (2.55) as
.
T011

.
T012

.
T013

 =


.
τ∗11

.
τ∗21

.
τ∗31

−


τ∗11L11 + τ∗12L12 + τ∗13L13

τ∗21L11 + τ∗22L12 + τ∗23L13

τ∗31L11 + τ∗32L12 + τ∗33L13

 , (5.62)

.
Bl01 −

.
B∗1 +B∗2L12 +B∗3L13 = 0, (5.63)

.
Hl02 −

.
H∗2 −H2L22 −H3L32 = 0, (5.64)

.
Hl03 −

.
H∗3 −H2L23 −H3L33 = 0. (5.65)

In the case of a tube of finite length L (and in the absence of H3), boundary conditions

at the ends (z = 0, λzL and n = ±e3) for the incremental magnetic fields are given as

.
Hl01 −

.
H∗1 −H2u2,1 = 0, (5.66)

.
Hl02 −

.
H∗2 −H2u1/r = 0, (5.67)

.
Bl03 −

.
B∗3 = 0. (5.68)

Boundary conditions for increments in the deformation and traction at the ends of the

cylinder are given later in the sections that follow. We now consider the two cases of the

underlying magnetic field being in the axial and in the azimuthal directions separately.

5.4 Axial magnetic field: H = (0, 0, H3)

In this first case, we consider an infinite tube with a uniform initial magnetic field in the

axial direction. From the boundary condition (2.14)3, we note that H3 = H∗3 at the lateral

surfaces r = a, b. The Maxwell stress and its increment are given in component form by

[τ ∗] =
B∗23

2µ0


−1 0 0

0 −1 0

0 0 1

 , [ .τ ∗] =
B∗3
µ0


−

.
B∗3 0

.
B∗1

0 −
.
B∗3

.
B∗2

.
B∗1

.
B∗2

.
B∗3

 . (5.69)

In the presence of an axial magnetic field, the non-zero components of the magnetoe-

lastic tensors are A0iiii, A0iijj , A0ijij , A0ijji, C0ii|3, C0i3|i, K0ii for i, j ∈ {1, 2, 3} and i 6= j.

Expanding the incremental governing equations (2.43)1, (5.17), and (5.18) in component

form, we obtain
.
Hl02,3 = 0,

.
Hl02,1 +

.
Hl02

r
= 0, (5.70)

.
Hl01,3 −

.
Hl03,1 = 0, (5.71)



Chapter 5. Finite Deformation and Axisymmetric Motions of a Cylindrical Tube 79

1
r

{
r
(
C013|1(u1,3 + u3,1) + K011

.
Hl01

)}
,1

+
(
C011|3u1,1 + C022|3u1/r + C033|3u3,3 + K033

.
Hl03

)
,3

= 0, (5.72)

1
r

{
r
(

(A01111 + p)u1,1 +A01122u1/r +A01133u3,3 + C011|3
.
Hl03

)}
,1

−1
r

(
A01122u1,1 + (A02222 + p)u1/r +A02233u3,3 + C022|3

.
Hl03

)
+
(
A03131u1,3 + (A03113 + p)u3,1 + C013|1

.
Hl01

)
,3
− .
p,1 = ρu1,tt, (5.73)

1
r

[{
r
(
A01212u2,1 − (A01221 + p)

u2

r

)}
,1
−A02121u2/r + (A01221 + p)u2,1

]
+
{
A03232u2,3 + C032|2

.
Hl02

}
,3

= ρu2,tt, (5.74)

1
r

{
r
(
A01313u3,1 + (A01331 + p)u1,3 + C013|1

.
Hl01

)}
,1

+
{
A01133u1,1 +A02233u1/r + (A03333 + p)u3,3 + C033|3

.
Hl03

}
,3
− .
p,3 = ρu3,tt. (5.75)

If we consider the purely elastic case (neglecting
.
Hl0 and C) and only quasi-static

bifurcations (no dependence on time), then the equations (5.73) and (5.75) reduce to

equations (47) and (48) of [Haughton and Ogden, 1979b] after taking into account the

differences in notation. We can eliminate .
p from equations (5.73) and (5.75) to get

−1
r

{
r
(
A01313u3,1 + (A01331 + p)u1,3 + C013|1

.
Hl01

)}
,11

+
1
r2
{r (A01313u3,1

+(A01331 + p)u1,3 + C013|1
.
Hl01

)}
,1

+
1
r
{r ((A01111 + p)u1,1 +A01122u1/r

+A01133u3,3 + C011|3
.
Hl03

)}
,13
− (A01133u1,1 +A02233u1/r + (A03333 + p)u3,3

+C033|3
.
Hl03

)
,13

+
{
A03131u1,3 + (A01331 + p)u3,1 + C031|1

.
Hl01

}
,33

−1
r

{
A01122u1,1 + (A02222 + p)

u1

r
+A02233u3,3 + C022|3

.
Hl03

}
,3

= ρ(u1,3 − u3,1),tt. (5.76)

It can be seen from the equations above that u2 and
.
Hl02 are coupled with each other

and are independent of u1, u3,
.
Hl01, and

.
Hl03 which are related to each other. We now

consider both these cases separately.

5.4.1 Displacement in the (r, z) plane

We now work only with the equations that have incremental motion in the radial and the

axial directions. Considering that the magnetoelastic moduli tensors are uniform along



Chapter 5. Finite Deformation and Axisymmetric Motions of a Cylindrical Tube 80

the z direction, we can rewrite Equation (5.76) as

A1u1,3 +A2u1,13 +A3u1,113 +A4u3,1 +A5u3,11 +A6u3,111 +A7u3,133 +A8u3,33

A9u1,333 +A10

.
Hl01 +A11

.
Hl01,1 +A12

.
Hl01,11 +A13

.
Hl03,3 +A14

.
Hl03,13

−A12

.
Hl01,33 = ρ (u1,3 − u3,1),tt , (5.77)

where

A1 = −(A01331 + p),11 +
1
r

(A01122 −A02233 −A01331 − p),1 +
1
r2

(A01331 +A02233

−A02222), A2 = (A01111 − 2A01331 −A01133 − p),1 +
1
r

(A01111 −A01331 −A02233),

A3 = A01111 −A01313 −A01133, A4 = −A01313,11 −
A01313,1

r
+
A01313

r2
,

A5 = −A01313

r
− 2A01313,1, A6 = −A01313, A7 = A01133 −A03333 +A01331,

A8 = (A01133 −A03333 − p),1 +
A01133 −A02233

r
, A9 = A03131,

A10 =
C013|1

r2
−
C013|1,1

r
− C013|1,11, A11 = −

C013|1

r
− 2C013|1,1, A12 = −C013|1,

A13 =
(
C011|3 − C033|3

)
,1

+
C011|3 − C022|3

r
, A14 = C011|3 − C033|3. (5.78)

Equation (5.72) gives(
C013|1,1 +

C013|1

r

)
u3,1 +

(
C013|1,1 +

C013|1 + C022|3

r

)
u1,3 +

(
C013|1 + C011|3

)
u1,13

+C013|1u3,11 + C033|3u3,33 +
(

K011,1 +
K011

r

)
.
Hl01 + K011

.
Hl01,1 + K033

.
Hl03,3 = 0, (5.79)

while from the boundary conditions (5.62)–(5.65), we get

A01111u1,1 +A01122
u1

r
+A01133u3,3 + C011|3

.
Hl03 − .

p+ pu1,1

= −µ0H3

.
H∗3 +

µ0H
2
3

2
u1,1, (5.80)

A01313u3,1 +A01331u1,3 + C013|1
.
Hl01 + pu1,3 = µ0H3

.
H∗1 −

µ0H
2
3

2
u1,3, (5.81)

− C013|1 (u1,3 + u3,1)− K011

.
Hl01 − µ0

.
H∗1 + µ0H3u1,3 = 0, (5.82)

.
Hl03 −H3u3,3 −

.
H∗3 = 0, (5.83)

at r = a and r = b.

We differentiate Equation (5.80) with respect to z and replace .
p,3 using Equation (5.75)

to get

ξ1u1,3 + ξ2u1,13 + ξ3u3,1 + ξ4u3,33 +A6u3,11 + ξ5
.
Hl01 +A12

.
Hl01,1 +A14

.
Hl03,3

+µ0H3

.
H∗3,3 + ρu3,tt = 0, (5.84)
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where

ξ1 =
1
r

(A01122 −A01331 −A02233 − p)− (A01331 + p),1 ,

ξ2 = A01111 −A01331 −A01133 −
µ0H

2
3

2
, ξ3 = −

(
A01313,1 +

A01313

r

)
,

ξ4 = A01133 −A03333 − p, ξ5 = −
(
C013|1,1 +

C013|1

r

)
. (5.85)

Since u1 and u3 satisfy Equation (5.61),
.
Hl01 and

.
Hl03 satisfy Equation (5.71), and

.
H∗1 and

.
H∗3 satisfy Equation (5.58), we can define the potentials φ(r, z, t), ψ(r, z, t), and

ψ∗(r, z, t) such that

u1 =
φ,3
r
, u3 =

−φ,1
r

,
.
Hl01 = ψ,1,

.
Hl03 = ψ,3,

.
H∗1 = ψ∗,1,

.
H∗3 = ψ∗,3. (5.86)

Substituting the potentials and their derivatives in the governing equations, we get

φ,1

(
A4

r2
− 2

A5

r3
+ 6

A6

r4

)
+ φ,11

(
−A4

r
+ 2

A5

r2
− 6

A6

r3

)
+ φ,111

(
−A5

r
+ 3

A6

r2

)
−A6

r
φ,1111 + φ,33

(
A1

r
− A2

r2
+ 2

A3

r3

)
+ φ,133

(
A2

r
− 2

A3

r2
− A8

r
+
A7

r2

)
+φ,1133

(
A3

r
− A7

r

)
+
A9

r
φ,3333 +A10ψ,1 +A11ψ,11 +A12ψ,111 +A13ψ,33

+ (A14 −A12)ψ,133 = ρ

(
φ,33

r
+
φ,11

r
− φ,1
r2

)
,tt

, (5.87)

φ,1

(C013|1,1

r2
−
C013|1

r3

)
+ φ,11

(
−
C013|1,1

r
+
C013|1

r2

)
−
C013|1

r
φ,111

+
(C013|1,1

r
+
C022|3 − C011|3

r2

)
φ,33 +

φ,133

r

(
C013|1 + C011|3 − C033|3

)
+
(

K011,1 +
K011

r

)
ψ,1 + K011ψ,11 + K033ψ,33 = 0, (5.88)

for a < r < b and

ψ∗,11 +
1
r
ψ∗,1 + ψ∗,33 = 0, (5.89)

for r < a and r > b.

The boundary conditions become

A01313

r2
φ,1 −

A01313

r
φ,11 + φ,33

(A01331 + p

r
+
µ0H

2
3

2r

)
+ C013|1ψ,1 − µ0H3ψ

∗
,1 = 0, (5.90)

C013|1

r2
φ,1 −

C013|1

r
φ,11 +

(C013|1 − µ0H3

r

)
φ,33 + K011ψ,1 + µ0ψ

∗
,1 = 0, (5.91)

ψ,3 +
H∗3
r
φ,13 − ψ∗,3 = 0, (5.92)
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φ,1

(
ξ3
r2
− 2

A6

r3

)
+ φ,11

(−ξ3
r

+ 2
A6

r2

)
+
(
−ξ2
r2

+
ξ1
r

)
φ,33 + φ,133

(
ξ2 − ξ4
r

)
−A6

r
φ,111 + ξ5ψ,1 +A12ψ,11 +A14ψ,33 + µ0H3ψ

∗
,33 −

ρ

r
φ,1tt = 0, (5.93)

at r = a and r = b.

Wave propagation solutions

For the above partial differential equations, by separation of variables we consider wave

type solutions of the form

φ = F (r) exp (ikz − iωt) , a < r < b, (5.94)

ψ = G(r) exp (ikz − iωt) , a < r < b, (5.95)

ψ∗ = M1(r) exp (ikz − iωt) , r < a, (5.96)

ψ∗ = M2(r) exp (ikz − iωt) , r > b, (5.97)

which convert the equations to a system of coupled ODEs as follows{
k4

r
A9 − k2

(
A1

r
− A2

r2
+ 2

A3

r3
+
ρω2

r

)}
F

+
{
A4

r2
− 2

A5

r3
+ 6

A6

r4
− k2

(
A2 −A8

r
+
A7 − 2A3

r2

)
− ρω2

r

}
F ′

+
{
−A4

r
− 2

A5

r2
− 6

A6

r3
− k2A3 −A7

r
+
ρω2

r

}
F ′′ +

(
3
A6

r2
− A5

r

)
F ′′′

−A6

r
F ′′′′ − k2A13G+

{
A10 + k2 (A12 −A14)

}
G′ +A11G

′′ +A12G
′′′ = 0, (5.98)

−k2

(C013|1,1

r
+
C022|3 − C011|3

r2

)
F +

(
−
C013|1,1

r
+
C013|1

r2

)
F ′′

+
{
−
C013|1

r3
+
C013|1,1

r2
− k2

r

(
C013|1 + C011|3 − C033|3

)}
F ′ −

C013|1

r
F ′′′ − k2K033G

+
(

K011,1 +
K011

r

)
G′ + K011G

′′ = 0, (5.99)

for a < r < b, and

M ′′1 +
1
r
M ′1 − k2M1 = 0, r < a, M ′′2 +

1
r
M ′2 − k2M2 = 0, r > b. (5.100)

Here and henceforth, a prime denotes a derivative with respect to r. The boundary

conditions reduce to

−k2

(A01331 + p

a
+
µ0H

2
3

2a

)
F +

A01313

a2
F ′ − A01313

a
F ′′

+C013|1G
′ − µ0H3M

′
1 = 0, (5.101)
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−k
2

a

(
C013|1 − µ0H3

)
F +

C013|1

a2
F ′ −

C013|1

a
F ′′ + K011G

′ + µ0M
′
1 = 0, (5.102)

G+
H3

a
F ′ −M1 = 0, (5.103)

−k2

(
− ξ2
a2

+
ξ1
a

)
F +

{
ξ3
a2
− 2

A6

a3
− k2

a
(ξ2 − ξ4) +

ρc2k2

a

}
F ′

+
(
−ξ3
a

+ 2
A6

a2

)
F ′′ − A6

a
F ′′′ − k2A14G+ ξ5G

′ +A12G
′′ − k2µ0H3M1 = 0, (5.104)

at r = a and

−k2

(A01331 + p

b
+
µ0H

2
3

2b

)
F +

A01313

b2
F ′ − A01313

b
F ′′

+C013|1G
′ − µ0H3M

′
2 = 0, (5.105)

−k
2

b

(
C013|1 − µ0H3

)
F +

C013|1

b2
F ′ −

C013|1

b
F ′′ + K011G

′ + µ0M
′
2 = 0, (5.106)

G+
H3

b
F ′ −M2 = 0, (5.107)

−k2

(
−ξ2
b2

+
ξ1
b

)
F +

{
ξ3
b2
− 2

A6

b3
− k2

b
(ξ2 − ξ4) +

ρc2k2

b

}
F ′

+
(
−ξ3
b

+ 2
A6

b2

)
F ′′ − A6

b
F ′′′ − k2A14G+ ξ5G

′ +A12G
′′ − k2µ0H3M2 = 0, (5.108)

at r = b.

Let the governing equations (5.98) and (5.99) be written in the form

p1F + p2F
′ + p3F

′′ + p4F
′′′ + p5F

′′′′ + p6G+ p7G
′ + p8G

′′ + p9G
′′′ = 0, (5.109)

q1F + q2F
′ + q3F

′′ + q4F
′′′ + q5G+ q6G

′ + q7G
′′ = 0, (5.110)

where pi’s and qi’s are the coefficients in (5.98) and (5.99), and let

y1 = F, y2 = F ′, y3 = F ′′, y4 = F ′′′, y5 = G, y6 = G′, y7 = G′′, (5.111)

then the above equations can be written as a system of first order ODEs of the form

Πy′ = g. (5.112)
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Here Π,y′, and g are matrices of size 7× 7, 7× 1 and 7× 1, respectively, and are given by

Π =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 p5 0 0 p9

0 0 q4 0 0 q7 0


, y′ =



y′1

y′2

y′3

y′4

y′5

y′6

y′7



, (5.113)

g =



y2

y3

y4

y6

y7

−p1y1 − p2y2 − p3y3 − p4y4 − p6y5 − p7y6 − p8y7

−q1y1 − q2y2 − q3y3 − q5y5 − q6y6



. (5.114)

Here we have eight boundary conditions but have to solve for nine variables, viz.

y1, ..., y7,M1, and M2. Hence we have infinitely many solutions to this problem and a

unique solution is only possible when H2 = 0. Vanishing of the underlying magnetic field

would cause the increments in magnetic field to be identically zero (G = M1 = M2 ≡ 0)

and only the increments in mechanical displacement F remain. Such purely elastic waves

have already been studied in papers, such as those by, [Vaughan, 1979] and [Haughton,

1984].

5.4.2 Displacement in the azimuthal direction

Now considering the set of equations that contain only u2 and
.
Hl02, the governing equations

(5.70) and (5.74) are written in component form as

−
(A01212,1 − τ11,1

r
+
A02121

r2

)
u2 +

(
A01212,1 +

A01212

r

)
u2,1 +A01212u2,11

+A03232u2,33 = ρu2,tt, (5.115)

.
Hl02,3 = 0,

.
Hl02,1 +

.
Hl02

r
= 0, (5.116)



Chapter 5. Finite Deformation and Axisymmetric Motions of a Cylindrical Tube 85

in a < r < b, along with (5.59) and (5.60) in vacuum. The boundary conditions (5.62)

and (5.64) give

A01212u2,1 −
(
A01221 + p− µ0H

2
3

2

)
u2

r
= 0, (5.117)

.
Hl02 −

.
H∗2 = 0, (5.118)

at r = a and r = b.

Due to (5.70)1, the governing equations for u2 and
.
Hl02 are decoupled. So, equation

(5.115) is of the form what one would normally obtain for a purely mechanical problem

except that the coefficients still depend on H3. The governing equations for
.
Hl02 and

.
H∗2

can be integrated analytically to give
.
Hl02 = c1/r in a < r < b,

.
H∗2 = c2/r in r < a, and

.
H∗2 = c3/r in r > b. The boundary conditions (5.118) at r = a, b require that c1 = c2 = c3.

For the mechanical displacement, if we consider propagating wave type solution of the

form

u2 = F (r) exp (ikz − iωt) , (5.119)

the governing equations and boundary conditions are transformed to(−A01212,1 + τ11,1

r
− A02121

r2
− k2A03232 + ρω2

)
F +

(
A01212,1 +

A01212

r

)
F ′

+A01212F
′′ = 0, (5.120)

for a < r < b, and

A01212F
′ −
(
A01212 − τ11 −

µ0H
2
3

2

)
F

r
= 0, (5.121)

at r = a, b.

The above set of equations can be non-dimensionalized by defining

ζ =
ρω2

k2µ
, r̂ =

r

A
, k̂ = Ak, F̂ (r̂) =

F (r)
A

Â =
A
µ
, τ̂ =

τ

µ
, (5.122)

and are rewritten as{
1

r̂k̂2

(
τ̂ ′11 − Â′01212

)
− Â02121

r̂2k̂2
− Â03232 + ζ

}
F̂ +

(
Â′01212 +

Â01212

r̂

)
F̂ ′

k̂2

+
Â01212

k̂2
F̂ ′′ = 0, (5.123)

for â < r̂ < b̂, and

Â01212F̂
′ −
(
Â01212 − τ̂11 −

µ0H
2
3

2µ

)
F̂

r̂
= 0, (5.124)

at r̂ = â, b̂.
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Figure 5.6: Plot of the non-dimensionalized squared wave speed ζ against the non-

dimensionalized wave number k̂ for the first three modes of wave propagation for λz =

1.5, Pin = 0.2µ,H3 = 1× 105 A/m.

The above equations are converted to a system of two first order ODEs and solved

numerically using the algorithm described in Section 5.5.2. Variation of wave speed with

various deformation parameters is illustrated in the following plots.

We observe existence of more than one mode of wave propagation due to presence of

a finite length scale (B − A) in the problem. These are illustrated in Figure 5.6 for the

Mooney–Rivlin type magnetoelastic material of Equation (5.45) and the following material

and deformation parameters

µ = 2.6× 105 N/m2, γ = 0.3, m = µ0, A/B = 0.6,

λz = 1.5, Pin = 0.2µ, H3 = 1× 105 A/m. (5.125)

Dispersion relations for different magnetic fields are plotted in Figure 5.7 and it is

observed that a large magnetic field tends to increase the speed of wave propagation. In

general, the wave speed decreases with an increasing wave number. Figure 5.8 illustrates

the variation of wave speed with the underlying axial stretch for the deformation param-

eters in Equation (5.125) and k̂ = 1. Stretching the tube in the axial direction causes an
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Figure 5.7: Plot of the non-dimensionalized squared wave speed ζ against the non-

dimensionalized wave number k̂ for an underlying magnetic field in axial direction.

(i) H3 = 0, (ii) H3 = 1× 105 A/m, (iii) H3 = 2× 105 A/m.

increase in the speed of wave propagation.

In Figure 5.9, we consider the effect of the magnetoelastic coupling parameter m

through the underlying magnetic field on the wave speed. Wave speed increases with

an increase in H3 and is also higher for a material with a larger value of m. As H3 tends

to zero, the problem tends to a purely elastic case and m has no effect on ζ. Hence the

three curves in Figure 5.9 converge in that region.

5.5 Azimuthal magnetic field: H = (0, H2, 0)

We now consider an initial magnetic field in the azimuthal direction. Such a field can be

generated by a long current carrying wire placed on the axis of the hollow tube so that

H2 has dependence only on r. From the boundary condition (2.14)3, we have H2 = H∗2 at

the lateral surfaces r = a, r = b. We shall consider the tube to be of infinite length for the

current problem.

For this specialization, the Maxwell stress and its increment are given in the component
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Figure 5.8: Variation of wave speed with axial stretch for Pin = 0.2µ,H3 = 1× 105 A/m.
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Figure 5.9: Variation of wave speed with the underlying magnetic field for different values

of the magnetoelastic coupling parameter m and λz = 1.5, Pin = 0.2µ. H3 is in 105 A/m,

(i) m = µ0/2, (ii) m = µ0, (iii) m = 2µ0.
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form by

[τ ∗] =
B∗22

2µ0


−1 0 0

0 1 0

0 0 −1

 , [ .τ ∗] =
B∗2
µ0


−

.
B∗2

.
B∗1 0

.
B∗1

.
B∗2

.
B∗3

0
.
B∗3 −

.
B∗2

 . (5.126)

To work with the governing equations (5.17) and (5.18) in the presence of an azimuthal

magnetic field, the non-zero components of the magnetoelastic tensors are A0iiii, A0iijj ,

A0ijij , A0ijji, C0ii|2, C0i2|i, K0ii for i, j ∈ {1, 2, 3} and i 6= j. Explicit formulas for these

components for the generalized Mooney–Rivlin magnetoelastic material given by Equation

(5.45) are given below as

A01111 = 2λ2
1

{
Ω1 + (λ2

2 + λ2
3)Ω2

}
, (5.127)

A02222 = 2λ2
2

{
Ω1 + (λ2

1 + λ2
3)Ω2 + λ2

2H
2
2Ω5

}
, (5.128)

A03333 = 2λ2
3

{
Ω1 + (λ2

1 + λ2
2)Ω2

}
, (5.129)

A01122 = 4λ2
1λ

2
2Ω2, A01133 = 4λ2

1λ
2
3Ω2, A02233 = 4λ2

2λ
2
3Ω2, (5.130)

A01212 = 2λ2
1

(
Ω1 + λ2

3Ω2

)
, A02121 = 2λ2

2

(
Ω1 + λ2

3Ω2

)
+ 2λ4

2H
2
2Ω5, (5.131)

A01313 = 2λ2
1

(
Ω1 + λ2

2Ω2

)
, A03131 = 2λ2

3

(
Ω1 + λ2

1Ω2

)
, (5.132)

A02323 = 2λ2
2

(
Ω1 + λ2

1Ω2

)
+ 2λ4

2H
2
2Ω5, A03232 = 2λ2

3

(
Ω1 + λ2

1Ω2

)
, (5.133)

A01221 = −2λ2
1λ

2
2Ω2, A01331 = −2λ2

1λ
2
3Ω2, A02332 = −2λ2

2λ
2
3Ω2, (5.134)

C011|2 = 0 = C033|2, C022|2 = 4λ2
2H2Ω5 = 2C012|1 = 2C032|3, (5.135)

K011 = 2λ−2
1 Ω4 + 2Ω5, K022 = 2λ−2

2 Ω4 + 2Ω5, K033 = 2λ−2
3 Ω4 + 2Ω5. (5.136)

Expanding the incremental governing equations (2.43)1, (5.17), and (5.18) in compo-

nent form, we obtain
.
Hl02,3 = 0,

.
Hl02,1 +

.
Hl02

r
= 0, (5.137)

.
Hl01,3 −

.
Hl03,1 = 0, (5.138)

1
r

[
r
{
C012|1

(
u2,1 −

u2

r

)
+ K011

.
Hl01

}]
,1

+
(
C032|3u2,3 + K033

.
Hl03

)
,3

= 0, (5.139)

1
r

[{
r
(

(A01111 + p)u1,1 +A01122
u1

r
+A01133u3,3 + C011|2

.
Hl02

)}
,1

−
{

(A02222 + p)
u1

r
+A01122u1,1 +A02233u3,3 + C022|2

.
Hl02

}]
+ {A03131u1,3 + (A01331 + p)u3,1},3 −

.
p,1 = ρu1,tt, (5.140)



Chapter 5. Finite Deformation and Axisymmetric Motions of a Cylindrical Tube 90

1
r

[{
r
(
A01212u2,1 − (A01221 + p)

u2

r
+ C012|1

.
Hl01

)}
,1

+ (A01221 + p)u2,1

−A02121
u2

r
+ C012|1

.
Hl01

]
+
(
A03232u2,3 + C032|3

.
Hl03

)
,3

= ρu2,tt, (5.141)

(
A01133u1,1 +A02233

u1

r
+ (A03333 + p)u3,3 + C033|2

.
Hl02

)
,3

1
r

[r {A01313u3,1 + (A01331 + p)u1,3}],1 −
.
p,3 = ρu3,tt, (5.142)

in the material along with the equations (5.57)–(5.60) in vacuum and the constraint of

incompressibility (5.61). We can eliminate .
p from equations (5.140) and (5.142) and use

(5.137)1 to get

A1u1,3 +A2u1,13 +A3u1,113 +A4u3,1 +A5u3,11 +A6u3,111

+A7u3,133 +A8u3,33 +A9u1,333 = ρ(u1,3 − u3,1),tt, (5.143)

where we have assumed that the magnetoelastic moduli tensors are uniform along the axial

z direction and A1, ..., A9 are defined in (5.78).

From the above governing equations, we observe that u2,
.
Hl01, and

.
Hl03 are related

to each other and independent of u1, u3, and
.
Hl02. Hence we analyze these two cases

separately.

5.5.1 Displacement in the azimuthal direction

We now consider the set of equations with u2,
.
Hl01,

.
Hl03,

.
H∗1 , and

.
H∗3 . Since

.
Hl01 and

.
Hl03 satisfy Equation (5.138) while

.
H∗1 and

.
H∗3 satisfy Equation (5.58), we can define the

potential functions ψ and ψ∗ that satisfy equations (5.86)3,4,5,6. On substituting them in

to the governing equations (5.139) and (5.141), we obtain

C012|1,1

(
u2,1 −

u2

r

)
+ C012|1u2,11 + C032|3u2,33 +

(
K011

r
+ K011,1

)
ψ,1

+K011ψ,11 + K033ψ,33 = 0, (5.144)

−
(A02121

r2
+

(A01221 + p),1
r

)
u2 +

(A01212

r
+A01212,1

)
u2,1 +A01212u2,11

+A03232u2,33 +
(

2
C012|1

r
+ C012|1,1

)
ψ,1 + C012|1ψ,11 + C032|3ψ,33 = ρu2,tt, (5.145)

for a < r < b along with Equation (5.57) in vacuum. Boundary conditions are given by

the equations (5.62)–(5.65) as

−
(
A01221 + p+

µ0H
2
2

2

)
u2

r
+A01212u2,1 + C012|1ψ,1 − µ0H

∗
2ψ
∗
,1 = 0, (5.146)
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(
C012|1 − µ0H2

) u2

r
− C012|1u2,1 − K011ψ,1 − µ0ψ

∗
,1 = 0, (5.147)

ψ,3 − ψ∗,3 −H2u2,3 = 0, (5.148)

at r = a and r = b.

5.5.2 Wave propagation solutions

Using separation of variables we assume solutions of the form

u2 = F (r) exp (ikz − iωt) for a < r < b, (5.149)

ψ = G(r) exp (ikz − iωt) for a < r < b, (5.150)

ψ∗ = M1(r) exp (ikz − iωt) for r < a, (5.151)

ψ∗ = M2(r) exp (ikz − iωt) for r > b, (5.152)

with i =
√
−1, k being the wave number, and ω being the frequency.

On substituting these solutions in the governing equations we obtain

−
(C012|1,1

r
+ k2C032|3

)
F + C012|1,1F

′ + C012|1F
′′ − k2K033G

+
(

K011,1 +
K011

r

)
G′ + K011G

′′ = 0, (5.153)

(
−A02121

k2r2
−

(A01221 + p),1
k2r

−A03232 + ρv2

)
F +

1
k2

(A01212

r
+A01212,1

)
F ′

+
1
k2
A01212F

′′ − C032|3G+
1
k2

(
2
C012|1

r
+
C012|1,1

k2

)
G′ + C012|1G

′′ = 0, (5.154)

for a < r < b, and

M ′′1 +
M ′1
r
− k2M1 = 0 for r < a, M ′′2 +

M ′2
r
− k2M2 = 0 for r > b, (5.155)

where we have taken a prime to denote a derivative with respect to r and v = ω/k is the

wave speed. The boundary conditions are

−
(
A01221 + p+

µ0H
2
2

2

)
F

r
+A01212F

′ + C012|1G
′ − µ0H

∗
2M

′ = 0, (5.156)

(
C012|1 − µ0H2

) F
r
− C012|1F

′ − K011G
′ − µ0M

′ = 0, (5.157)

G−H2F −M1 = 0, (5.158)

at r = a, and

−
(
A01221 + p+

µ0H
2
2

2

)
F

r
+A01212F

′ + C012|1G
′ − µ0H

∗
2M

′ = 0, (5.159)
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(
C012|1 − µ0H2

) F
r
− C012|1F

′ − K011G
′ − µ0M

′ = 0, (5.160)

G−H2F −M2 = 0, (5.161)

at r = b.

To obtain numerical solutions, we non-dimensionalize the above governing equations

and boundary conditions. For this purpose we defineH2a = H2|r=a and define the following

non-dimensional quantities (with a superposed hat) in addition to those in (5.122)

Ĉ =
C

H2aµ0
, K̂ =

K

µ0
, Ĝ(r̂) =

G(r)
H2aA

, M̂(r̂) =
M(r)
H2aA

,

M̂1(r̂) =
M1(r)
H2aA

, M̂2(r̂) =
M2(r)
H2aA

. (5.162)

On non-dimensionalization, the governing equations become

−
(
Ĉ′012|1

r̂
+ k̂2Ĉ032|3

)
F̂ + Ĉ′012|1F̂

′ + Ĉ012|1F̂
′′ − k̂2K̂033Ĝ

+

(
K̂′011 +

K̂011

r̂

)
Ĝ′ + K̂011Ĝ

′′ = 0, (5.163)

−
(
Â02121

k̂2r̂2
+
Â′01221 + p̂′

k̂2r̂
+ Â03232 − ζ

)
F̂ +

1

k̂2

(
Â01212

r̂
+ Â′01212

)
F̂ ′

+
Â01212

k̂2
F̂ ′′ +

µ0H
2
2b

k̂2µ

{
−k̂2Ĉ032|3Ĝ+

(
2
Ĉ012|1

r̂
+ Ĉ′012|1

)
Ĝ′ + Ĉ012|1Ĝ

′′

}
= 0, (5.164)

for â ≤ r̂ ≤ b̂ and

M̂ ′′1 +
M̂ ′1
r̂
− k̂2M̂1 = 0 for r̂ < â, M̂ ′′2 +

M̂ ′2
r̂
− k̂2M̂2 = 0 for r̂ > b̂, (5.165)

where a prime now denotes a derivative with respect to r̂. The boundary conditions are

−
(
Â01221 + p̂+

µ0H
2
2

2µ

)
F̂

r̂
+ Â01212F̂

′ +
µ0H

2
2a

µ

(
Ĉ012|1Ĝ

′ − M̂ ′1
)

= 0, (5.166)

(
Ĉ012|1 − 1

) F̂
r̂
− Ĉ012|1F̂

′ − K̂011Ĝ
′ − M̂ ′1 = 0, (5.167)

Ĝ− F̂ − M̂1 = 0, (5.168)

at r̂ = â, and

−
(
Â01221 + p̂+

µ0H
2
2

2µ

)
F̂

r̂
+ Â01212F̂

′ +
µ0H

2
2a

µ

(
Ĉ012|1Ĝ

′ − H2

H2a
M̂ ′2

)
= 0, (5.169)

(
Ĉ012|1 −

H2

H2a

)
F̂

r̂
− Ĉ012|1F̂

′ − K̂011Ĝ
′ − M̂ ′2 = 0, (5.170)
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Ĝ− H2

H2a
F̂ − M̂2 = 0, (5.171)

at r̂ = b̂.

Equations (5.165) are modified Bessel’s equations and the solution not diverging at

r̂ = 0 and r̂ =∞ are M̂1 = e5J0(ir̂/k̂), M̂2 = e6J0(ir̂/k̂), where J0 is the Bessel’s function

of first kind and order zero, and e5 and e6 are scaling parameters. To obtain a numerical

solution of the system of coupled ODEs, we convert them into a system of first order ODEs

by defining

y1 = F̂, y2 = F̂ ′, y3 = Ĝ, y4 = Ĝ′. (5.172)

Let the ODEs be then given by

p1y1 + p2y2 + p3y
′
2 + p4y3 + p5y4 + p6y

′
4 = 0, (5.173)

q1y1 + q2y2 + q3y
′
2 + q4y3 + q5y4 + q6y

′
4 = 0, (5.174)

where pis and qis (i = 1, ..., 6) correspond to the coefficients in the equations (5.163) and

(5.164) respectively.

Hence, we obtain the following system of first order ODEs

Πy′ = g, (5.175)

to be solved for â < r̂ < b̂ where the matrices Π,y′, and g are given by

Π =


1 0 0 0

0 0 1 0

0 p3 0 p6

0 q3 0 q6

 , y′ =



y′1

y′2

y′3

y′4


, (5.176)

g =



y2

y4

−p1y1 − p2y2 − p4y3 − p5y4

−q1y1 − q2y2 − q4y3 − q5y4


. (5.177)

Given the internal pressure, the underlying magnetic field, and the axial stretch, we

first evaluate a using Equation (5.34) and then consider the initial value problem defined

by

yi(a) = δik, i = 1, ..., 4 (5.178)

for each of k = 1, ..., 4, δik being the Kronecker delta. Subject to these initial conditions,

we solve the differential equation described by Equation (5.175) using the ‘ode15s’ solver
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in MATLAB. The four solutions thus generated are denoted by yk (k = 1, ..., 4) and a

general solution to the problem is expressed as

y =
4∑

k=1

ekyk, M̂1 = e5J0(ir̂/k̂), M̂2 = e6J0(ir̂/k̂), (5.179)

where ek (k = 1, ..., 6) are constants. For the solutions to exist, there should be a set of

non-trivial constants {ek}6k=1 such that the general solution (5.179) satisfies the following

boundary conditions.

−
(
Â01221 + p̂+

µ0H
2
2

2µ

)
y1

r̂
+ Â01212y2 +

µ0H
2
2a

µ

(
Ĉ012|1y4 − M̂ ′1

)
= 0, (5.180)

(
Ĉ012|1 − 1

) y1

r̂
− Ĉ012|1y2 − K̂011y4 − M̂ ′1 = 0, (5.181)

y3 − y1 − M̂1 = 0, (5.182)

at r̂ = â, and

−
(
Â01221 + p̂+

µ0H
2
2

2µ

)
y1

r̂
+ Â01212y2 +

µ0H
2
2a

µ

(
Ĉ012|1y4 −

H2

H2a
M̂ ′2

)
= 0, (5.183)

(
Ĉ012|1 −

H2

H2a

)
y1

r̂
− Ĉ012|1y2 − K̂011y4 − M̂ ′2 = 0, (5.184)

y3 −
H2

H2a
y1 − M̂2 = 0, (5.185)

at r̂ = b̂.

This yields a 6 × 6 determinant of the coefficients of ek, vanishing of which gives

the relationship between ζ and other parameters. This solution process is similar to the

numerical routine described by [Haughton and Ogden, 1979b].

5.5.3 Numerical results

We solve the above equations numerically for the Mooney–Rivlin type magnetoelastic

material defined in Equation (5.45). Internal and external radii of the tube are taken to

have the ratio A/B = 0.6, the external pressure is taken to be zero while the material

parameters are taken to have the values as in (5.125). Multiple modes of wave propagation

are obtained as in Section 5.4.2 and we plot only the first modes here.

Dispersion curves are plotted in Figure 5.10 for different values of the underlying

magnetic fields, Pin = 0.2µ, λz = 1.5. Here H0 is the reference value of the magnetic field

as defined in Equation (5.44). It is observed that the non-dimensionalized wave speed ζ
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Figure 5.10: Variation of ζ with k̂ for Pin = 0.2µ, λz = 1.5, A/B = 0.6, (i) H0 = 0; (ii)

H0 = 1× 105 A/m; (iii) H0 = 2× 105 A/m.
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Figure 5.11: Variation of ζ with λz for Pin = 0.2µ, k̂ = 1, H0 = 1×105 A/m, (i) A/B = 0.6;

(ii) A/B = 0.8.
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Figure 5.12: Dependence of ζ on the underlying magnetic field H0 (in A/m) for different

values of the magnetoelastic coupling parameter m. Here, λz = 1.5, Pin = 0.2µ, k̂ = 1, (i)

m = 0.5µ0, (ii) m = µ0, (iii) m = 2µ0.

decreases with an increasing non-dimensionalized wave number k̂. An underlying magnetic

field may increase or decrease ζ depending on k̂ and other parameters.

Influence of the tube thickness (A/B) and the underlying axial stretch λz on the wave

speed is illustrated in Figure 5.11. As λz is reduced, the wave speed decreases eventually

becoming zero which corresponds to an onset of buckling/instability in the tube. The

nearly linear variation of ζ with λz is similar to what is shown by [Haughton, 1984] for the

problem with purely elastic waves. Tube with thinner walls (A/B = 0.8) has waves with

a higher speed than a tube with thicker walls (A/B = 0.6).

We plot the variation of ζ with the magnetic field for different values of the magne-

toelastic coupling parameter m in Figure 5.12. The wave speed ζ first decreases up to a

minimum and then increases with an increasing magnetic field. A small m increases ζ for

small magnetic fields while it decreases ζ for large magnetic fields.

5.5.4 Displacement in the (r, z) plane

We now consider the incremental displacements in the radial and axial directions and

hence deal with the equations involving u1, u3, and
.
Hl02. Since u1 and u3 satisfy Equation
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(5.61), we can define a potential φ that satisfy equations (5.86)1,2 and substitute in the

governing equation (5.143) to get

φ,1

(
A4

r2
− 2

A5

r3
+ 6

A6

r4

)
+ φ,11

(
−A4

r
+ 2

A5

r2
− 6

A6

r3

)
+ φ,111

(
−A5

r
+ 3

A6

r2

)
−A6

r
φ,1111 + φ,33

(
A1

r
− A2

r2
+ 2

A3

r3

)
+ φ,133

(
A2 −A8

r
+
A7 − 2A3

r2

)
φ,1133

A3 −A7

r
+
A9

r
φ,3333 = ρ

(
φ,11 + φ,33

r
− φ,1
r2

)
,tt

. (5.186)

Equations (5.137) govern
.
Hl02 while

.
H∗2 satisfies equations (5.59) and (5.60). The

boundary conditions (5.62)–(5.65) give(
A01111 + p− µ0H

∗2
2

2

)
u1,1 +A01122

u1

r
+A01133u3,3

+C011|2
.
Hl02 + µ0H2

.
H∗2 −

.
p = 0, (5.187)(

A01331 + p− µ0H
2
2

2

)
u1,3 +A01331u3,1 = 0, (5.188)

.
Hl02 −H2

u1

r
−

.
H∗2 = 0, (5.189)

at r = a and r = b. We differentiate Equation (5.187) with respect to z and substitute .
p,3

from Equation (5.142) to get

u1,3

(
1
r

(A01122 −A02233 −A01331 − p)− (A01331 + p),1

)
−A01313u3,11

−u3,1

(A01313

r
+A01313,1

)
+ u1,13

(
A01111 −A01133 −A01331 −

µ0H
∗2
2

2

)
+ (A01133 −A03333 − p)u3,33 + ρu3,tt = 0. (5.190)

Using the definition of φ from Equation (5.86)1,2 in the above boundary conditions, we

get

φ,1

(A01313

r3
− A01313,1

r2

)
+ φ,11

(A01313,1

r
− A01313

r2

)
+
A01313

r
φ,111

+φ,33

{
−

(A01331 + p),1
r

+
1
r2

(
µ0H

2
2

2
+A01122 −A02233 −A01111 +A01133

−p)}+
φ,133

r

(
A01111 +A03333 − 2A01133 −A01331 + p− µ0H

2
2

2

)
−ρ
r
φ,1tt = 0, (5.191)

A01313

(
−φ,11

r
+
φ,1
r2

)
+
(
A01331 + p− µ0H

2
2

2

)
φ,33

r
= 0, (5.192)

.
Hl02 −H2

φ,3
r2
−

.
H∗2 = 0, (5.193)

at r = a and r = b.



Chapter 5. Finite Deformation and Axisymmetric Motions of a Cylindrical Tube 98

5.5.5 Wave propagation solutions

We consider the solutions of the above mentioned differential equations of the form

φ = F (r) exp (ikz − iωt) , a < r < b, (5.194)
.
Hl02 = G(r) e−iωt, a < r < b, (5.195)

.
H∗2 = M1(r)e−iωt for r < a,

.
H∗2 = M2(r)e−iωt for r > b. (5.196)

Substituting these solutions in the governing equations (5.60), (5.137), and (5.186)

gives (
−k2b4 + b7k

4 − ρω2k
2

r

)
F +

(
b1 − k2b5 −

ρω2

r2

)
F ′

−
(
rb1 + k2b6 −

ρω2

r

)
F ′′ + b2F

′′′ + b3F
′′′′ = 0, a < r < b, (5.197)

G′ +
G

r
= 0, a < r < b, (5.198)

M ′1 +
M1

r
= 0, r < a, M ′2 +

M2

r
= 0, r > b, (5.199)

where prime denotes a derivative with respect to r and we have defined

b1 =
A4

r2
− 2

A5

r3
+ 6

A6

r4
, b2 =

−A5

r
+ 3

A6

r2
, b3 = −A6

r
, b7 =

A9

r
,

b4 =
A1

r
− A2

r2
+ 2

A3

r3
, b5 =

A2 −A8

r
+
A7 − 2A3

r2
, b6 =

A3 −A7

r
,

C1 = { 1
r2

(
−A01111 +A01122 +A01133 −A02233 − p+

µ0H
2
2

2

)
−1
r

(A01331,1 + p,1)}, C2 =
(A01313

r3
− A01313,1

r2

)
, C4 =

A01313

r
,

C3 =
1
r

(
A01111 −A01331 − 2A01133 +A03333 + p− µ0H

2
2

2

)
. (5.200)

The boundary conditions (5.191)–(5.193) become

− k2C1F +
(
C2 − k2C3 +

ρω2

r

)
F ′ − rC2F

′′ + C4F
′′′ = 0 at r = a, r = b, (5.201)

− k2

(
C4 +

p

r
− µ0H

2
2

2r

)
F +

C4

r
F ′ − C4F

′′ = 0, at r = a, r = b, (5.202)

G− 1
r2

ikH2F eikz −M1 = 0 at r = a, (5.203)

G− 1
r2

ikH2F eikz −M2 = 0 at r = b. (5.204)

Since the last two boundary conditions apply for all z and considering the fact that

G,M1, and M2 do not depend on z, they can be split into

G = M1 at r = a, G = M2 at r = b, (5.205)
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H2F = 0 at r = a, b. (5.206)

The governing equations for G,M1 and M2 can be integrated analytically to get G =

c1/r in a < r < b, M1 = c2/r in r < a, and M2 = c3/r in r > b. The boundary conditions

(5.205), however, require that c1 = c2 = c3.

The fourth order ODE (5.197), with the boundary conditions (5.201), (5.202), and

(5.206) is overdetermined for non-zero H2, a solution is possible only for H2 = 0 which

reduces the problem to the purely elastic case. A non-trivial solution (for incremental

magnetic field) can be obtained only in a very special case when the parameters C1, ..., C4

obtain values such that two of the boundary conditions become linearly dependent.



Chapter 6

Wave Propagation in a

Finitely-Deformed Pre-Stressed

Conductor

In this chapter, we discard the quasimagnetostatic approximation as used in Chapters 2–5

and work with complete equations of electrodynamics in continua. Specifically, we consider

the equations required to study wave propagation in a magnetized electric conductor with

residual stress. This analysis is useful for an accurate description of the electromagnetic

acoustic transduction process which is an important experimental tool for non-destructive

evaluation techniques (see, for example, the works of [Ludwig et al., 1993] and [Hirao and

Ogi, 2003]). Sections 6.1 and 6.2 are based on the existing literature by, for example, [Pao,

1978] and [Eringen and Maugin, 1990a] and our calculations and analysis is presented in

Section 6.3 onwards.

6.1 Basic equations

The governing equations of Electrodynamics in Continua are given by the Dipole-current

Circuit Model [Pao, 1978] as

div B = 0, curl E +
∂B
∂t

= 0, ε0 div E = ρe − div P, (6.1)

1
µ0

curl B− ε0
∂E
∂t

=
∂P
∂t

+ curl M + J, (6.2)

where we have used the field relations

D = ε0E + P, B = µ0(H + M), (6.3)

100
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P being the electric polarization and M being the magnetization. Here all other terms

have their meanings as defined in Chapter 2.

The first four equations can be used to derive the law of balance of electric charge as

div J +
∂ρe

∂t
= 0. (6.4)

Defining the pushback version of the field variables P and M as

Pl = JF−1P, Ml = FTM, (6.5)

and using Equation (2.15), we rewrite the above Maxwell’s equations in Lagrangian form

as

Div Bl = 0, (6.6)

Curl(El + V ×Bl) = −Bl,t, (6.7)

ε0Div (Jc−1El) = ρE + Div Pl, (6.8)

Curl
(
J−1

µ0
cBl − ε0V × (Jc−1El)

)
− ε0(Jc−1El),t

= Pl,t + Curl(Ml + V ×Pl) + JE, (6.9)

where as defined previously ρE = Jρe and JE = JF−1(J− ρev).

At the boundary, the following conditions need to be satisfied

N× JEl + V ×BlK = 0, (6.10)

N · JBlK = 0, (6.11)

N · JDlK = σE, (6.12)

N× JJ−1µ−1
0 cBl −Ml −V × (ε0Jc−1El + Pl)K = Kl − σEVs. (6.13)

6.1.1 Mechanical balance laws

We consider an elastic body which, in the reference configuration, has a residual stress S.

Hence, the equation of equilibrium is

Div S = 0. (6.14)

After a finite deformation, in the current configuration, the balance of linear momentum

is given by

div τ + fe = ρa, (6.15)



Chapter 6. Wave Propagation in a Finitely-Deformed Pre-Stressed Conductor 102

where τ is the Cauchy stress tensor and the electromagnetic body force is

fe = ρeE + J×B + (grad E)TP + (grad B)TM +
∂

∂t
(P×B) + div[v ⊗ (P×B)]. (6.16)

Balance of angular momentum gives

ετ + Le = 0, (6.17)

where ε is the third order permutation tensor with components εijk and (ετ )i = εijkτjk.

Le is the electromagnetic body couple vector given by

Le = P×E + (M + v ×P)×B. (6.18)

The total stress tensor of [Dorfmann and Ogden, 2004] that incorporates the magnetic

body force and has been utilized in Chapters 2–5 cannot be used here since the above

expressions for electromagnetic body force and electromagnetic body couple have terms

including both electric and magnetic quantities. The above balance equations can be

written in Lagrangian form using the nominal stress tensor T = JF−1τ as

Div T + J fE = ρra, (6.19)

and

ε(FT) + JLE = 0, (6.20)

where fE and LE are Lagrangian counterparts of the corresponding vectors and are given

by

fE = J−1ρEF−TEl + J−2(FJl)× (FBl) + F−T
[
Grad(F−TEl)

]T
(J−1FPl)

+F−T
[
Grad(J−1FBl)

]T (F−TMl) +
∂

∂t

[
J−2 (FPl)× (FBl)

]
+J−1Div

[
J−1V ⊗ {(FPl)× (FBl)}

]
, (6.21)

LE = J−1 (FPl)×
(
F−TEl

)
+ J−1

(
F−TMel

)
× (FBl) . (6.22)

On any part of the boundary where the traction is prescribed, the boundary condition

may be given as

TTN = tA, (6.23)

where tA is the Lagrangian representation of the traction force.
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6.1.2 Energy balance laws

First law of Thermodynamics gives the balance of energy as

ρ
dU

dt
= τ : grad v − div q + q + we, (6.24)

where U is the internal energy, q is the heat flux at the surface, q is the volumetric heat

generation, the symbol : denotes a scalar product between two second order tensors given

in component form as τ : Γ = τijΓji, and we is the electromagnetic power given by

we = Je ·Ee + ρ
d

dt

(
P
ρ

)
·Ee −Me ·

dB
dt
, (6.25)

where for a dynamic problem we have defined the effective field variables as

Je = J− ρev, Ee = E + v ×B, Me = M + v ×P. (6.26)

Let ϑ be the absolute temperature, then we can write the above first law of Thermo-

dynamics as

ρ cp
∂ϑ

∂t
= q + we + τ : grad v − div q. (6.27)

Here cp is the specific heat capacity and ρ is the mass density. On defining the pushback

versions of the physical quantities

ql = JF−1q, ql = Jq, wE = Jwe, ϑl = Jϑ, (6.28)

the above equation can be written in Lagrangian form as

ρrcp
∂

∂t

(
J−1ϑl

)
= T : Grad(FV) + ql + wE −Div ql. (6.29)

Here, the Lagrangian form of electromagnetic power is given as

wE = (FJel) · (F−TEel) + ρr

[
∂

∂t

(
FPl

ρr

)
+ Grad

(
FPl

ρr

)
V
]
·
(
F−TEel

)
−JF−TMel ·

[
∂

∂t

(
J−1FBl

)
+ Grad

(
J−1FBl

)
V
]
. (6.30)

If S is the entropy density, then the second law of Thermodynamics gives

ρ
dS

dt
+ div

(q
ϑ

)
− q

ϑ
≥ 0. (6.31)
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6.2 Constitutive relations

Substituting equation (6.24) to (6.31), we get

ρ

(
dU

dt
− ϑdS

dt

)
+ div q− ϑdiv

(q
ϑ

)
− τ : grad v − we ≤ 0. (6.32)

We consider a free energy Ψ obtained by U through a Legendre transformation of the

form

Ψ = U − ϑS −Ee ·
P
ρ
, (6.33)

using which we can rewrite the entropy inequality as

ρ

(
dΨ
dt

+ S
dϑ

dt

)
+P · dEe

dt
+ div q−ϑdiv

(q
ϑ

)
−τ : grad v +Me ·

dB
dt
−Je ·Ee ≤ 0. (6.34)

We consider the free energy to be dependent on the deformation gradient F, the electric

field, the magnetic field, temperature, and the push-forward residual stress σ = J−1FS;

and is given as Ψ = Ψ(F,Ee,B, ϑ,σ). Considering the pre-stress to be independent of

time, we have
dΨ
dt

=
∂Ψ
∂F

:
dF
dt

+
∂Ψ
∂Ee

· dEe

dt
+
∂Ψ
∂B
· dB
dt

+
∂Ψ
∂ϑ

dϑ

dt
, (6.35)

substituting which in the above entropy inequality gives

ρ

(
∂Ψ
∂ϑ

+ S

)
dϑ

dt
+
(
ρ
∂Ψ
∂Ee

+ P
)
· dEe

dt
+
(
ρ
∂Ψ
∂B

+ Me

)
· dB
dt

+
(
ρ
∂Ψ
∂F
− F−1τ

)
:
dF
dt

+
q
ϑ
· gradϑ− Je ·Ee ≤ 0. (6.36)

For the above inequality to be satisfied for all admissible processes, the following con-

stitutive laws should be satisfied

S = −∂Ψ
∂ϑ

, (6.37)

P = −ρ ∂Ψ
∂Ee

, (6.38)

Me = −ρ∂Ψ
∂B

, (6.39)

τ = ρF
∂Ψ
∂F

, (6.40)

and the entropy inequality reduces to

Je ·Ee −
q
ϑ
· gradϑ ≥ 0. (6.41)

We take the constitutive law relating the heat flow to temperature gradient to be given

by the Fourier’s law of heat conduction as

q = −κ gradϑ, (6.42)
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where κ is a positive definite symmetric tensor quantifying thermal conductivity that, in

general, varies with the underlying electromagnetic fields, deformation and pre-stress. The

above equation is given in Lagrangian form as

ql = −JF−1κF−TGrad(J−1ϑl). (6.43)

The constitutive law relating electric current density to electric field is assumed to be

given by Ohm’s law as

J = ξE, (6.44)

where ξ is a positive definite symmetric tensor quantifying electrical conductivity that

varies with the underlying electromagnetic fields, deformation, and initial stress. The

above equation is given in Lagrangian form as

Jl = JF−1ξF−TEl. (6.45)

Substituting these constitutive equations in the entropy inequality gives

1
ϑ

gradϑ · (κgradϑ) + E · (ξE) + (ξ) E · (v ×B)− ρev ·E ≥ 0. (6.46)

6.2.1 Alternative constitutive formulation

We may rewrite the Equations (6.3) in Lagrangian form using the pushback relations (2.15)

as

Dl = ε0Jc−1El + Pl,
1
µ0J

cBl = Hl + Ml, (6.47)

where we have defined new pushback relations for Pl and Ml as

Pl = JF−1P, Ml = FTM. (6.48)

We may now equivalently consider an energy function Φ that depends on the La-

grangian variables rather than the Eulerian variables. Let Eel = FTEe,Mel = FTMe,

and

Φ(F,Eel,Bl, ϑl,S) = ρrΨ(F,Ee,B, ϑ,σ), (6.49)

such that Φ is energy per unit volume rather than per unit mass. This gives

∂Φ
∂Eel

= ρr
∂Ee

∂Eel

∂Ψ
∂Ee

= −JF−1P,
∂Φ
∂Bl

= ρr
∂B
∂Bl

∂Ψ
∂B

= −FTMe. (6.50)

Thus, we have the constitutive relations

T =
∂Φ
∂F

, Pl = − ∂Φ
∂Eel

, Mel = − ∂Φ
∂Bl

. (6.51)
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6.3 Incremental equations

On the initial motion and underlying electromagnetic fields, we consider an incremental

mechanical motion u(x, t), and increments in electromagnetic fields which are denoted by

a superposed dot.

The incremented forms of the Lagrangian Maxwell’s equations (6.6)–(6.9) are given as

Div
.
Bl = 0, (6.52)

Curl
.
Eel = −

.
Bl,t, (6.53)

ε0 Div
[
J(div u)c−1El + Jc−1

.
El − JF−1(L + LT)F−TEl

]
= .
ρE + Div

.
Pl, (6.54)

µ−1
0 Curl

[
J−1

{
(div u)cBl + 2FTLFBl + c

.
Bl

}]
− ε0Curl

[ .
V × (Jc−1El)

+V ×
{
J(div u)c−1El + Jc−1

.
El − JF−1(L + LT)F−TEl

}]
−ε0

[
J
{
J(div u)c−1El + Jc−1

.
El − JF−1(L + LT)F−TEl

}]
,t

=
.
Pl,t + Curl

.
Mel +

.
JE, (6.55)

which can be updated to Eulerian form using the relations (2.35) to get

div
.
Bl0 = 0, (6.56)

curl
.
Eel0 = [Γ− (div v)I]

.
Bl0 −

.
Bl0,t, (6.57)

ε0div Ê = .
ρE0 + div

.
Pl0, (6.58)

µ−1
0 curl

[
{(1 + div u)I + 2L}

.
Bl0

]
− ε0curl

(
u,t ×E + v × Ê

)
− ε0Ê,t

= curl
.

Mel0 +
.
Pl0,t + [(div v)I− Γ]

.
Pl0+

.
JE0, (6.59)

where

Ê =
.
El0 + (div u)E− (L + LT)E, (6.60)

.
Eel0 = F−T

.
Eel =

.
El0 + v ×

.
Bl0 + (u,t − Lv)×B, (6.61)

.
JE0 = J−1F

.
JE = ξÊ− .

ρE0v − ρe (u,t − Lv) . (6.62)

The incremented momentum and angular momentum balance equations are given as

Div
.
T + J(div u)fE + J

.
fE = ρr

.a, (6.63)
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ε(LFT + F
.
T) + J(div u)LE + J

.
LE = 0. (6.64)

where the increments in electromagnetic body force and moment are given by

.
fE = J−1

{
−(div u)ρEF−TEl + .

ρEF−TEl − ρELTF−TEl + ρEF−T
.
El

}
−J−1LTF−T

[
Grad(F−TEl)

]T
(FPl)

+J−1F−T
[
Grad(−LTF−TEl + F−T

.
El)
]T

(FPl)

+J−1F−T
[
Grad(F−TEl)

]T [−(div u)FPl + LFPl + F
.
Pl

]
+2J−2(div u)(FJl)× (FBl) + J−2

(
LFJl + F

.
Jl
)
× (FBl)

+J−2(FJl)× (LFBl + F
.
Bl)− LTF−T

[
Grad

(
J−1FBl

)]T (F−TMl)

+F−T
[
Grad

(
−J−1(div u)FBl + J−1LFBl + J−1F

.
Bl

)]T
(F−TMl)

+F−T
[
Grad(J−1FBl)

]T (−LTF−TMl + F−T
.

Ml

)
+
∂

∂t

[
2J−2(div u) (FPl)× (FBl) + J−2

(
LFPl + F

.
Pl

)
× (FBl)

+J−2 (FPl)×
(
LFBl + F

.
Bl

)]
− J−1(div u) Div

[
J−1V ⊗ {(FPl × (FBl)}

]
+J−1Div

[
J−1

.
V ⊗ {(FPl)× (FBl)} − J−1(div u)V ⊗ {(FPl)× (FBl)}

+J−1V ⊗
{(

LFPl + F
.
Pl

)
× (FBl) + (FPl)×

(
LFBl + F

.
Bl

)}]
(6.65)

.
LE = −J−1(div u)

{
(FPl)×

(
F−TEl

)
+
(
F−TMel

)
× (FBl)

}
+J−1

(
LFPl + F

.
Pl

)
×
(
F−TEl

)
+ J−1 (FPl)×

(
−LTF−TEl + F−T

.
El

)
+J−1

(
F−TMel

)
×
(
LFBl + F

.
Bl

)
+ J−1

(
−LTF−TMel + F−T

.
Mel

)
× (FBl) . (6.66)

When updated to Eulerian form, the balance equations become

div
.
T0 + (div u)fe +

.
fE0 = ρu,tt, (6.67)

ε(Lτ +
.
T0) + (div u)Le +

.
LE0 = 0, (6.68)

where
.
fE0 and

.
LE0 are the push-forward forms of the incremental body force and moment,
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respectively, and are given by

.
fE0 = −(div u)ρeE + .

ρE0E− ρeLTE + ρe

.
El0 − LT (grad E)T P

+
[
grad

(
−LTE +

.
El0

)]T
P + (grad E)T

[
−(div u)P + LP +

.
Pl0

]
−2(div u) J×B +

(
LJ +

.
Jl0
)
×B + J×

(
LB +

.
Bl0

)
− LT (grad B)T M

+
[
grad

(
−(div u)B + LB +

.
Bl0

)]T
M + (grad B)T

(
−LTM +

.
Ml0

)
+
∂

∂t

[
2(div u)P×B +

(
LP +

.
Pl0

)
×B + P×

(
LB +

.
Bl0

)]
−(div u) div [v ⊗ (P×B)] + div [( .v − Lv)⊗ (P×B)− (div u)v ⊗ (P×B)

+v ⊗
{(

LP +
.
Pl0

)
×B

}
+ P×

(
LB +

.
Bl0

)]
, (6.69)

.
LE0 = −(div u) (P×E + Me ×B) +

(
LP +

.
Pl0

)
×E + P×

(
−LTE +

.
El0

)
+Me ×

(
LB +

.
Bl0

)
+
(
−LTMe +

.
Mel0

)
×B. (6.70)

The heat equation (6.29) can be incremented to give

Div .ql + ρrcp
∂

∂t

[
J−1

.
ϑl − J−1(div u)ϑl

]
= .
ql + .

wE +
.
T : Grad(FV)

+T : Grad(LFV + F
.
V), (6.71)

which when updated to the Eulerian configuration becomes

div .ql0 + ρcp
∂

∂t

[ .
ϑl0 − (div u)ϑ

]
= .
ql0 + .

wE0 +
.
T0 : grad v + τ : grad .v. (6.72)

We have used the push-forward relations .ql0 = J−1F .ql,
.
ϑl0 = J−1

.
ϑl,

.
wE0 = J−1 .

wE , and
.
ql0 = J−1 .

ql to effect the above transformation, and the increments in the electromagnetic

power is given by

.
wE =

(
LFJel + F

.
Jel
)
·
(
F−TEel

)
+ (FJel) ·

(
−LTF−TEel + F−T ·

.
Eel

)
+ρr

[
∂

∂t

(
LFPl + F

.
Pl

ρr

)
+ Grad

(
LFPl + F

.
Pl

ρr

)
V + Grad

(
FPl

ρr

)
.
V

]

·
(
F−TEel

)
+ ρr

[
∂

∂t

(
FPl

ρr

)
+ Grad

(
FPl

ρr

)
V
]
·
(
−LTF−TEel + F−T ·

.
Eel

)
−J

(
(div u)F−TMel − LTF−TMel + F−T

.
Mel

)
·
[
∂

∂t

(
J−1FBl

)
+Grad

(
J−1FBl

)
V
]
− JF−TMel ·

[
∂

∂t
J−1

(
−(div u)FBl + LFBl + F

.
Bl

)
+Grad J−1

{
−(div u)FBl + LFBl + F

.
Bl

}
V + Grad

(
J−1FBl

) .
V
]
. (6.73)
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In the Eulerian form, this gives

.
wE0 =

(
LJe +

.
Jel0

)
·Ee + Je ·

(
−LTEe +

.
Eel0

)
ρ

[
d

dt

(
LP +

.
Pl0

ρ

)
+ grad

(
P
ρ

)
( .v − Lv)

]
·Ee + ρ

d

dt

(
P
ρ

)
·
(
−LTEe +

.
Eel0

)
−
{

(div u)Me − LTMe +
.

Mel0

}
· dB
dt
−Me ·

[
d

dt

{
−(div u)B + LB +

.
Bl0

}
+ (grad B) ( .v − Lv)] . (6.74)

On incrementing the constitutive equations (6.51), we obtain

.
T = A

.
F + B

.
Eel + C

.
Bl + D

.
ϑl, (6.75)

.
Pl = −

(
F

.
F + G

.
Eel + H

.
Bl + I

.
ϑl

)
, (6.76)

and
.

Mel = −
(
K

.
F + L

.
Eel + M

.
Bl + N

.
ϑl

)
, (6.77)

where the moduli tensors are defined as

A =
∂2Φ
∂F∂F

, B =
∂2Φ

∂Eel∂F
, C =

∂2Φ
∂Bl∂F

, D =
∂2Φ
∂ϑl∂F

,

F =
∂2Φ

∂F∂Eel
, G =

∂2Φ
∂Eel∂Eel

, H =
∂2Φ

∂Bl∂Eel
, I =

∂2Φ
∂ϑl∂Eel

,

K =
∂2Φ
∂F∂Bl

, L =
∂2Φ

∂Eel∂Bl
, M =

∂2Φ
∂Bl∂Bl

, N =
∂2Φ

∂ϑl∂Bl
. (6.78)

We note that A and C defined here are different from those in Chapters 2–5 and in

Appendices A and B. Products in (6.75), (6.76), and (6.77) are defined in component form

as

(A
.
F)αi = Aαiβj

.
Fjβ, (B

.
Eel)αi = Bαi|β

.
Eelβ, (C

.
Bl)αi = Cαi|β

.
Blβ,

(F
.
F)i = Fi|αj

.
Fjα, (G

.
Eel)α = Gαβ

.
Eelβ, (H

.
Bl)α = Hαβ

.
Blβ,

(K
.
F)i = Ki|αj

.
Fjα, (L

.
Eel)α = Lαβ

.
Eelβ, (M

.
Bl)α =Mαβ

.
Blβ, (6.79)

and

K = CT, F = BT, L = HT. (6.80)

On updating the incremented constitutive equations (6.75), (6.76), and (6.77), we

obtain
.
T0 = A0L + B0

.
Eel0 + C0

.
Bl0 + D0

.
ϑl0, (6.81)
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.
Pl0 = −

(
BT

0 L + G0

.
Eel0 + H0

.
Bl0 + I0

.
ϑl0

)
, (6.82)

and
.

Mel0 = −
(
CT

0 L + HT
0

.
Eel0 + M0

.
Bl0 + N 0

.
ϑl0

)
, (6.83)

where the updated moduli tensors are defined as

A0piqj = J−1FpαFqβAαiβj , B0ij|k = J−1FiαFkβBαj|β, C0ij|k = FiαF
−1
βk Cαj|β,

D0ij = FikDkj , G0ij = J−1FiαFjβGαβ, H0ij = FiαF
−1
βj Hαβ,

I0i = FikIk, M0ij = JF−1
αi F

−1
βj Mαβ, N0i = J−1F−1

ki Nk, (6.84)

and
.
ϑl0 = J

.
ϑl.

Incrementing and updating the constitutive equation (6.43), we get

.ql0 = −(div u)κ gradϑ+ 2Lκ gradϑ− κ grad
[ .
ϑl0 − (div u)ϑ

]
, (6.85)

while the updated incremented form of (6.45) is

.
Jl0 = xi

[{
(div u)I− L− LT

}
E +

.
El0

]
. (6.86)

On substituting the incremented updated constitutive equations into the incremented

updated balance equations (6.58), (6.59), (6.67), (6.68), and (6.72), we obtain

ε0 div
[ .
El0 +

{
(div u)I− (L + LT)

}
E
]

= .
ρE0

−div
(
BT

0 L + G0

.
Eel0 + H0

.
Bl0 + I0

.
ϑl0

)
, (6.87)

µ−1
0 curl

[
{(1 + div u)I + 2L}

.
Bl0

]
− ε0curl

(
u,t ×E + v × Ê

)
− ε0Ê,t

= −curl
(
CT

0 L + HT
0

.
Eel0 + M0

.
Bl0 + N 0

.
ϑl0

)
+

.
JE0

− [(div u)I− Γ]
(
BT

0 L + G0

.
Eel0 + H0

.
Bl0 + I0

.
ϑl0

)
−
(
BT

0 L + G0

.
Eel0 + H0

.
Bl0 + I0

.
ϑl0

)
,t
, (6.88)

div
(
A0L + B0

.
Eel0 + C0

.
Bl0 + D0

.
ϑl0

)
+ (div u)fe +

.
fE0 = ρu,tt, (6.89)

ε
(
Lτ + A0L + B0

.
Eel0 + C0

.
Bl0 + D0

.
ϑl0

)
+ (div u)Le +

.
LE0 = 0, (6.90)

div
[
−(div u)κ gradϑ+ 2Lκ gradϑ− κ grad

( .
ϑl0 − (div u)ϑ

)]
= −ρcp

∂

∂t

[ .
ϑl0 − (div u)ϑ

]
+ .
ql0 + .

wE0 + τ : grad u,t

+
(
A0L + B0

.
Eel0 + C0

.
Bl0 + D0

.
ϑl0

)
: grad v, (6.91)

along with (6.56) and (6.57).
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6.4 Application to Electromagnetic Acoustic Transduction

(EMAT) process

We now specialize the equations derived until now for application to EMATs. Let the

magnetoelastic conductor occupy a region B while the current carrying coil occupy the

region P. Let their respective boundaries be denoted by ∂B and ∂P. In the presence of

a bias magnetic field (which is a uniform field B at infinity), the current coil carries an

alternating current I(t) as shown in Figure 1.2.

If the relative electric permittivity and relative magnetic permeability of the current

carrying coil be given by constants εr and µr respectively, then the governing Maxwell’s

equations of the incremental fields to be satisfied in P are

div
.
B = 0, εrdiv

.
E = 0, (6.92)

curl
.
E = −∂

.
B
∂t
,

1
µr

curl
.
B =

.
J + εr

∂
.
E
∂t
. (6.93)

The electric current density J is integrated along the cross-section of the current-

carrying wire to obtain I(t). At the boundary ∂P, the following conditions need to be

satisfied ( .
B−

.
B∗
)
· n = 0,

( .
H−

.
H∗
)
× n = 0, (6.94)

where n is the normal to the boundary and a superscript ∗ represents a quantity in vacuum.

In the magnetoelastic conducting bulk, we consider the material to be incompressible.

This imposes the constraint

div u = 0, (6.95)

and the constitutive law for stress is modified to

T =
∂Φ
∂F
− pF−1, (6.96)

to include the Lagrange multiplier p which is associated with the incompressibility con-

straint. This changes the incremental nominal stress to

.
T0 = A0L + B0

.
El0 + C0

.
Bl0 + D0

.
ϑl0 − .

pI + pL. (6.97)

Normally, in the context of EMATs, the material is magnetized with a bias field. Hence,

we assume that there is no underlying finite electric field or charges. There will, however,

be incremental electric field generated due to secondary effects. For further simplicity we
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take the underlying underlying configuration to be static (v ≡ 0). Then the incremental

governing equations (6.56), (6.57), (6.87)–(6.90) are simplified to

div
.
Bl0 = 0, (6.98)

curl
.
Eel0 = −

.
Bl0,t, (6.99)

ε0 div
.
El0 = −div

(
BT

0 L + G0

.
Eel0 + H0

.
Bl0 + I0

.
ϑl0

)
, (6.100)

µ−1
0 curl

[
(I + 2L)

.
Bl0

]
− ε0

.
El0,t = −curl

(
CT

0 L + HT
0

.
Eel0 + M0

.
Bl0 + N 0

.
ϑl0

)
+

.
JE0 −

(
BT

0 L + G0

.
Eel0 + H0

.
Bl0 + I0

.
ϑl0

)
,t
, (6.101)

div
(
A0L + B0

.
Eel0 + C0

.
Bl0 + D0

.
ϑl0

)
− grad .

p+
.
fE0 = ρu,tt, (6.102)

ε
(
Lτ + A0L + B0

.
Eel0 + C0

.
Bl0 + D0

.
ϑl0 − .

pI + pL
)

+
.
LE0 = 0. (6.103)

div
[
κ grad

.
ϑl0

]
= ρcp

∂

∂t

.
ϑl0 − .

wE0 − τ : grad u,t. (6.104)

For the above-stated simplifications,
.
fE0,

.
LE0, and .

wE0 are reduced to

.
fE0 =

.
Jl0 ×B− LT(grad B)TM +

[
grad(LB +

.
Bl0)

]T
M

+ (grad B)T
(
−LTM +

.
Ml0

)
+
∂

∂t

( .
Pl0 ×B

)
,

=
.
Jl0 ×B− LT(grad B)TM +

[
grad(LB +

.
Bl0)

]T
M

− (grad B)T
(
LTM + CT

0 L + HT
0

.
Eel0 + M0

.
Bl0 + N 0

.
ϑl0

)
+
∂

∂t

[
B×

(
BT

0 L + G0

.
Eel0 + H0

.
Bl0 + I0

.
ϑl0

)]
, (6.105)

.
LE0 = Me ×

(
LB +

.
Bl0

)
+
(
−LTMe +

.
Mel0

)
×B,

= M×
(
LB +

.
Bl0

)
−
(
LTM + CT

0 L + HT
0

.
Eel0

+M0

.
Bl0 + N 0

.
ϑl0

)
×B, (6.106)

.
wE0 = −

{
−LTMe +

.
Mel0

}
· dB
dt
−Me ·

[
d

dt

{
LB +

.
Bl0

}
+ (grad B) u,t

]
,

=
[
LTM + CT

0 L + HT
0

.
Eel0 + M0

.
Bl0 + N 0

.
ϑl0

]
· dB
dt

−M ·
[
d

dt

{
LB +

.
Bl0

}
+ (grad B) u,t

]
. (6.107)



Chapter 6. Wave Propagation in a Finitely-Deformed Pre-Stressed Conductor 113

As a simplification, we take κ = κI, ξ = ξI, I being the identity tensor, and consider

the finite deformation and the initial (residual) stress to be homogeneous. This causes

the moduli tensors to be uniform and hence we can now consider the propagation of bulk

homogeneous waves whose direction of propagation is given by the unit vector n and the

wave speed is given by v. Thus, we seek the solutions of the above incremental equations

of the form

u = m f(n · x− vt),
.
Bl0 = q g(n · x− vt),

.
Eel0 = rh(n · x− vt),

.
p = P (n · x− vt),

.
ϑ = T (n · x− vt), (6.108)

where m,q, and r are unit vectors specifying the polarizations of u,
.
Bl0, and

.
El0, respec-

tively. From equations (6.95) and (6.98), we get

m · n = 0, q · n = 0, (6.109)

while equations (6.99)–(6.104) give

n× rh′ = vg′q, (6.110)

−ε0h′r · n− ε0f ′′vn · (m×B)

= (B0n) : (m⊗ n)f ′′ + G0 : (r⊗ n)h′ + H0 : (q⊗ n)g′ + I0 · nT ′, (6.111)

µ−1
0 n× q g′ − ε0vh′r = −n×

[
CT

0 (m⊗ n)f ′′ + HT
0 rh′ + M0qg′ + N 0T

′]
−ξrh+ ρevf

′m + v
(
f ′′BT

0 (m⊗ n) + h′G0r + g′H0q + T ′I0

)
, (6.112)

(A0(m⊗ n))T nf ′′ + (B0r)T nh′ + (C0q)T ng′ + D0nT ′ − nP ′

+ξhr×B + f ′′(n⊗ n)(B⊗m)M + g′(n⊗ q)M

−vB×
(
BT

0 (m⊗ n)f ′′ + h′G0r + g′H0q + I0T
′) =ρv2mf ′′, (6.113)

{
m×

(
τTn

)
+ ε (A0(m⊗ n)) + pm× n

}
f ′ + +ε (B0rh+ C0qg + D0T )

+M×
(
f ′(m⊗ n)B + gq

)
+ B×

(
f ′n⊗m + f ′CT

0 (m⊗ n) + hHT
0 r

+gM0q + N 0T ) = 0, (6.114)

ρvcpT
′ + κT ′′n · n− vτ : (m⊗ n) + vg′M · q = 0. (6.115)

The above equations should, in theory, yield a propagation condition for bulk homo-

geneous waves similar to that in Equation (2.95). The governing equations (6.98)–(6.104)
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can be solved numerically to analyze wave propagation characteristics in the context of

EMATs. Such analysis has been done, albeit for simpler cases of linear theory, in papers

by [Ludwig et al., 1993], [Ogi, 1997], [Shapoorabadi et al., 2005], [Ribichini et al., 2010] and

many references therein. For the more general problem presented here, our work is still in

progress and we plan to deploy 3-D Finite Element Method for numerical simulations.



Chapter 7

Conclusions

7.1 Summary

Problems concerning electromagnetic and mechanical interactions in a solid continuum

are both mathematically interesting and useful for engineering purposes. In particular,

with the development of various synthetic magneto-sensitive elastomers, a need has arisen

for better mathematical models explaining this phenomena. In this thesis, following the

mathematical models of magnetoelasticity developed by [Dorfmann and Ogden, 2004], we

have studied three boundary value problems concerning nonlinear deformations and wave

propagation in finitely deformed magnetoelastic materials.

The basic governing equations of nonlinear deformations and incremental motions in

magneoelastic solids were detailed in Chapter 2 where we also defined the magnetoelastic

moduli tensors.

Rayleigh type waves on the surface of a finitely deformed magnetoelastic half-space

were considered in Chapter 3. It was shown that magnetic field can have a significant

effect on the speed of surface waves propagating in a half-space of magnetoelastic material

and on the mechanical stability of the half-space. For each of the in-plane directions of

the magnetic field an upper limit on the wave speed is obtained, similar to that obtained

in the purely elastic case but with, in general, dependence on the magnetic field. In the

absence of a magnetic field, the equations reduced to those of the purely elastic case given

by [Dowaikh and Ogden, 1990], and for the purely static problem results on the stability

of a magnetoelastic half-space due to [Otténio et al., 2008] were recovered.

For a Mooney–Rivlin type magnetoelastic material an initial magnetic induction in

the sagittal plane in general destabilizes the material and surface waves exist only for

115
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values of the stretch beyond a certain critical value (which depends on the chosen material

parameters). If the magnetic induction is in the direction of wave propagation, it has a

significantly stronger effect than in the case when it is perpendicular to the direction of

wave propagation within the sagittal plane. For configurations in which the half-space is

stable the dependence of the surface wave speed on both the underlying finite deformation

and the magnitude of the magnetic induction was illustrated graphically.

Love type waves on the surface of a finitely deformed layer magnetoelastic half-space

were considered in Chapter 4. Similar to the previous case of Rayleigh type waves, the

magnetic field can have a significant effect on the wave speed. A secular equation is ob-

tained for the wave speed which is dispersive and multiple modes of wave propagation are

obtained. In the absence of a magnetic field, the equation reduces to that of a purely elastic

case given by [Achenbach, 1975] and [Dowaikh, 1999]. For a Mooney–Rivlin type magne-

toelastic material, upper and lower bounds for wave speed were obtained which depend on

the underlying magnetic field and material parameters in general. This imposes certain

restrictions on the deformation and the admissible parameters of the energy functions of

the layer and half-space for the existence of Love-type waves.

Dependence of wave speed on the finite deformation and in-plane magnetic field for

a Mooney–Rivlin type material is illustrated graphically. For this material the problem

reduces to a purely-elastic one when the underlying magnetic field is out-of-plane and

we then consider a neo-Hookean magnetoelastic material to obtain solutions in this case.

Wave speeds, in general, decrease with an increasing wave number. An in-plane magnetic

field tends to increase the wave speed while an out-of-plane field decreases the wave speed

in general. It is also shown that waves with an out-of-plane displacement can exist in

the presence of an out-of-plane magnetic field without a layer. Such waves, analogous to

Bleustein–Gulyaev waves in piezoelectric materials, do not exist in pure elasticity.

In Chapter 5, we considered finite axisymmetric deformations and motions of a thick-

walled magnetoelastic tube in the presence of an axial and an azimuthal magnetic field.

Variation of the total internal pressure and the axial load with magnetic field was studied

for a Mooney–Rivlin type and a three-term (Ogden type) magnetoelastic energy function.

An azimuthal magnetic field tends to increase the total internal pressure while an axial

magnetic field has no effect for the type of materials considered. For these materials, an

azimuthal magnetic field causes a compressional loading in general; while an axial magnetic

field tends to create an extensional loading.
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Thereafter, we considered axisymmetric waves propagating along the axis of the tube.

When the underlying magnetic field is either in the axial or in the azimuthal direction,

it is observed that the equations governing displacements in the azimuthal direction are

decoupled from the equations governing displacements in the axial and radial directions.

In the latter case, a unique solution is possible only when the underlying magnetic field

vanishes and the problem is reduced to a pure elastic case as considered by [Vaughan,

1979] and [Haughton, 1984]. For azimuthal motions, multiple modes of wave propagation

are obtained and the dependence of wave speed on axial stretch, underlying magnetic

field, and material parameters is illustrated graphically. Numerical solutions obtained for

a Mooney–Rivlin type magnetoelastic material show that, in general, increasing the axial

magnetic field increases the wave speed monotonically, while increasing the azimuthal

magnetic field first decreases and then increases the wave speed.

Finally, using the equations given by [Pao, 1978], we write the general equations of

electrodynamics and thermodynamics in a finitely deformed, electrically conducting con-

tinuum. The equations are then linearized to consider wave propagation with a motivation

to mathematically model EMATs.

7.2 Future work

Chapter 6 of this thesis is written with a motivation to form a basis for future research

towards a general theoretical development of Thermodynamics and Electrodynamics in

continuum solids. In particular, this could lead to development of better models and a

proper understanding of EMATs.

The synthetically developed polymers as discussed in Figure 1.1 in Chapter 1 are, in

general, not just elastic, but viscoelastic. Hence, to get a proper understanding of such

materials and for a proper explanation of the experimental results, a theory of magneto-

(visco)-elasticity that takes dissipation into account is required.



Appendix A

Derivatives of the Invariants

The first and second derivatives of the invariants (2.59) and (2.60) with respect to F and

Bl were given in [Otténio et al., 2008]. We repeat the non-zero ones here for ease of

reference.

∂I1
∂Fiα

= 2Fiα,
∂I2
∂Fiα

= 2(cγγFiα − cαγFiγ),
∂I3
∂Fiα

= 2I3F−1
αi ,

∂I5
∂Fiα

= 2Blα(FiγBlγ),
∂I6
∂Fiα

= 2(FiγBlγcαβBlβ + FiγcγβBlβBlα),

∂I4
∂Blα

= 2Blα,
∂I5
∂Blα

= 2cαβBlβ,
∂I6
∂Blα

= 2cαγcγβBlβ,
∂2I1

∂Fiα∂Fjβ
= 2δijδαβ,

∂2I2
∂Fiα∂Fjβ

= 2 (2FiαFjβ − FiβFjα + cγγδijδαβ − bijδαβ − cαβδij) ,

∂2I3
∂Fiα∂Fjβ

= 4I3F−1
αi F

−1
βj − 2I3F−1

αj F
−1
βi ,

∂2I5
∂Fiα∂Fjβ

= 2δijBlαBlβ,

∂2I6
∂Fiα∂Fjβ

= 2[δij(cαγBlγBlβ + cβγBlγBlα) + δαβFiγBlγFjδBlδ

+ FiγBlγFjαBlβ + FjγBlγFiβBlα + bijBlαBlβ],

∂2I5
∂Fiα∂Blβ

= 2δαβFiγBlγ + 2BlαFiβ,

∂2I6
∂Fiα∂Blβ

= 2FiβcαγBlγ + 2FiγBlγcαβ + 2FiγcγβBlα + 2δαβFiγcγδBlδ,

∂2I4
∂Blα∂Blβ

= 2δαβ,
∂2I5

∂Blα∂Blβ
= 2cαβ,

∂2I6
∂Blα∂Blβ

= 2cαγcγβ.
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Magnetoelastic Tensors

For an isotropic material, A0,C0 and K0 can be expanded in terms of the derivatives of

the invariants as follows, with Ωn = ∂Ω/∂In and Ωmn = ∂2Ω/∂Im∂In:

A0piqj = J−1
∑
m∈I

∑
n∈I

ΩmnFpαFqβ
∂In
∂Fiα

∂Im
∂Fjβ

+ J−1
∑
n∈I

ΩnFpαFqβ
∂2In

∂Fiα∂Fjβ
,

C0ji|k =
∑
m∈J

∑
n∈I

ΩmnFjαF
−1
βk

∂Im
∂Blβ

∂In
∂Fiα

+
6∑

n=5

ΩnFjαF
−1
βk

∂2In
∂Fiα∂Blβ

,

K0ij = J
∑
m∈J

∑
n∈J

ΩmnF
−1
αi F

−1
βj

∂Im
∂Blα

∂In
∂Blβ

+ J
∑
n∈J

ΩnF
−1
αi F

−1
βj

∂2In
∂Blα∂Blβ

.

We recall from Section 2.3 that I = {1, 2, 3, 5, 6} and J = {4, 5, 6}. For an incompressible

material I = {1, 2, 5, 6} and J = 1.

When referred to the principal axes of the left Cauchy–Green tensor b with principal

stretches λ1, λ2, λ3 and components (B1, B2, B3) of the magnetic induction B the compo-

nents of A0,C0 and K0 are given explicitly for a compressible material as, for i 6= j 6= k 6= i,

A0iiii = 2J−1λ2
i [Ω1 + (λ2

j + λ2
k)Ω2 + λ2

jλ
2
kΩ3 + λ2

jλ
2
kB

2
i (Ω5 + 6λ2

iΩ6)]

+ 4J−1λ4
i {Ω11 + 2(λ2

j + λ2
k)Ω12 + (λ2

j + λ2
k)

2Ω22

+ λ2
jλ

2
k[2Ω13 + 2(λ2

j + λ2
k)Ω23 + λ2

jλ
2
kΩ33] + 2λ2

jλ
2
kB

2
i [Ω15 + 2λ2

iΩ16

+ (λ2
j + λ2

k)Ω25 + 2λ2
i (λ

2
j + λ2

k)Ω26 + λ2
jλ

2
kΩ35 + 2I3Ω36]

+ λ4
jλ

4
kB

4
i (Ω55 + 4λ2

iΩ56 + 4λ4
iΩ66)},
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A0iiij = 4BiBjJλ2
i {Ω6 + Ω15 + (λ2

j + λ2
k)Ω25 + λ2

jλ
2
kΩ35

+ (λ2
i + λ2

j )[Ω16 + (λ2
j + λ2

k)Ω26 + λ2
jλ

2
kΩ36]

+ λ2
jλ

2
kB

2
i [Ω55 + (3λ2

i + λ2
j )Ω56 + 2λ2

i (λ
2
i + λ2

j )Ω66]},

A0iiji = 2BiBjJ{Ω5 + (λ2
j + 3λ2

i )Ω6 + 2λ2
i [Ω15 + (λ2

j + λ2
k)Ω25 + λ2

jλ
2
kΩ35]

+ 2λ2
i (λ

2
i + λ2

j )[Ω16 + (λ2
j + λ2

k)Ω26 + λ2
jλ

2
kΩ36]

+ 2J2B2
i [Ω55 + (3λ2

i + λ2
j )Ω56 + 2λ2

i (λ
2
i + λ2

j )Ω66]},

A0iijj = 4J−1λ2
iλ

2
j{Ω2 + λ2

kΩ3 + Ω11 + (I1 + λ2
k)Ω12 + (I2 + λ4

k)Ω22

+ λ2
k[(λ

2
i + λ2

j )Ω13 + (I2 + λ2
iλ

2
j )Ω23 + I3Ω33]

+ λ2
k(λ

2
jB

2
i + λ2

iB
2
j )(Ω15 + λ2

kΩ25) + 2I3(λ2
iB

2
i + λ2

jB
2
j )(Ω26 + λ2

kΩ36)

+ I3(B2
i +B2

j )(2Ω16 + Ω25 + 2λ2
kΩ26 + λ2

kΩ35)

+ I3λ
2
kB

2
iB

2
j [Ω55 + 2(λ2

i + λ2
j )Ω56 + 4λ2

iλ
2
jΩ66]},

A0ijij = 2J−1λ2
i {Ω1 + λ2

kΩ2 +B2
i λ

2
jλ

2
kΩ5 + λ2

jλ
2
k(2B

2
i λ

2
i +B2

i λ
2
j +B2

jλ
2
i )Ω6

+ 2B2
iB

2
j J

2λ2
jλ

2
k[Ω55 + 2(λ2

i + λ2
j )Ω56 + (λ2

i + λ2
j )

2Ω66]},

A0ijji = 2J−1λ2
iλ

2
j{−Ω2 − λ2

kΩ3 + λ2
k(λ

2
jB

2
i + λ2

iB
2
j )Ω6

+ 2B2
iB

2
j J

2λ2
k[Ω55 + 2(λ2

i + λ2
j )Ω56 + (λ2

i + λ2
j )

2Ω66]},

A0iijk = 4BjBkJλ2
i {Ω15 + (λ2

j + λ2
k)(Ω25 + Ω16) + (λ2

j + λ2
k)

2Ω26 + λ2
jλ

2
kΩ35

+ λ2
jλ

2
k(λ

2
j + λ2

k)Ω36 +B2
i λ

2
jλ

2
k[Ω55 + (I1 + λ2

i )Ω56 + 2λ2
i (λ

2
j + λ2

k)Ω66]},

A0ijki = A0ijik = 2BjBkJ{λ2
iΩ6 + 2B2

i J
2[Ω55 + (I1 + λ2

i )Ω56 + (I2 + λ4
i )Ω66]},

A0jiki = 2BjBkJ{Ω5 + I1Ω6 + 2B2
i J

2[Ω55 + (I1 + λ2
i )Ω56 + (I2 + λ4

i )Ω66]},

C0ii|i = 4BiJ{Ω5 + 2λ2
iΩ6 + Ω14 + λ2

iΩ15 + λ4
iΩ16

+ (λ2
j + λ2

k)(Ω24 + λ2
iΩ25 + λ4

iΩ26) + λ2
jλ

2
k(Ω34 + λ2

iΩ35 + λ4
iΩ36)

+ B2
i λ

2
jλ

2
k[Ω45 + λ2

iΩ55 + λ4
iΩ56 + 2λ2

i (Ω46 + λ2
iΩ56 + λ4

iΩ66)]},
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C0ii|j = 4BjJλ2
iλ
−2
j {Ω14 + λ2

jΩ15 + λ4
jΩ16 + (λ2

j + λ2
k)(Ω24 + λ2

jΩ25 + λ4
jΩ26)

+ λ2
jλ

2
k(Ω34 + λ2

jΩ35 + λ4
jΩ36) +B2

i λ
2
jλ

2
k[Ω45 + λ2

jΩ55 + λ4
jΩ56

+ 2λ2
i (Ω46 + λ2

jΩ56 + λ4
jΩ66)]},

C0ij|i = 2BjJ{Ω5 + (λ2
i + λ2

j )Ω6 + 2B2
i λ

2
jλ

2
k[Ω45 + λ2

iΩ55 + λ4
iΩ56

+ (λ2
i + λ2

j )(Ω46 + λ2
iΩ56 + λ4

iΩ66)]},

C0ij|k = 4BiBjBkJλ2
iλ

2
j [Ω45 + λ2

kΩ55 + λ4
kΩ56 + (λ2

i + λ2
j )(Ω46 + λ2

kΩ56 + λ4
kΩ66)],

K0ii = 2Jλ−2
i {Ω4 + λ2

iΩ5 + λ4
iΩ6 + 2B2

i λ
2
jλ

2
k[Ω44 + λ2

iΩ45 + λ4
iΩ46

+ λ2
i (Ω45 + λ2

iΩ55 + λ4
iΩ56) + λ4

i (Ω46 + λ2
iΩ56 + λ4

iΩ66]},

K0ij = 4BiBjJλ2
k[Ω44 + λ2

iΩ45 + λ4
iΩ46 + λ2

j (Ω45 + λ2
iΩ55 + λ4

iΩ56)

+ λ4
j (Ω46 + λ2

iΩ56 + λ4
iΩ66)].

For an incompressible material the above formulas apply with J = 1, I3 = 1 and with

all terms in Ω carrying a subscript 3 omitted.



Appendix C

Some Calculations

Here we list some of the calculations used in Chapter 5 for reference. The derivations can

be seen in, for example, [Haughton and Ogden, 1979b] and [Shams, 2010].

• Change of the variable of integration from r to λ

As given in Equation (5.21)1, due to incompressibility the deformation of the tube is

of the form

r2 = a2 +
1
λz

(
R2 −A2

)
. (C.1)

On differentiating both sides with respect to r, we get

dR

dr
=
rλz
R
, (C.2)

while on differentiating r = λR with respect to r, we obtain

1 = λ
dR

dr
+R

dλ

dr
. (C.3)

Together, the above two equations give

r
dλ

dr
= λ(1− λ2λz). (C.4)

• Stretch relations

We define λa = a/A and λb = b/B. On substituting r = b, R = B in Equation (5.21)1

we get
b2

B2
=

a2

B2
+

1
λz

(
1− A2

B2

)
. (C.5)
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This can be rewritten as

A−2B2(λ2
bλz − 1) = λ2

aλz − 1. (C.6)

On dividing (5.21)1 throughout by R, we obtain

r2

R2
=
a2

R2
+

1
λz

(
1− A2

R2

)
, (C.7)

⇒λ2λz − 1 =
A2

R2

(
λ2
aλz − 1

)
. (C.8)

Hence we obtain the relationship

A−2B2
(
λ2
bλz − 1

)
= λ2

aλz − 1 = R2A−2
(
λ2λz − 1

)
. (C.9)

which gives
∂λb
∂λa

=
λaA

2

λbB2
. (C.10)

Also, Equation (C.9) gives the condition

λb < λ < λa. (C.11)

• Expression of the stress τ33

Equation (5.5) gives the axial component of the principal Cauchy stress as

τ33 = λ3
∂Ω
∂λ3
− p, (C.12)

= λ3
∂Ω
∂λ3
− p+ 2λz

∂Ω̂
∂λz
− λ∂Ω̂

∂λ
−
(

2λz
∂Ω̂
∂λz
− λ∂Ω̂

∂λ

)
, (C.13)

= λ3
∂Ω
∂λ3
− p+ 2λz

∂Ω̂
∂λz
− λ∂Ω̂

∂λ
− 2λz

∂Ω
∂λ3

+ 2λ1
∂Ω
∂λ1

+ λ
∂Ω
∂λ2
− λ1

∂Ω
∂λ1

, (C.14)

= 2λz
∂Ω̂
∂λz
− λ∂Ω̂

∂λ
+ τ11 + τ22 − τ33, (C.15)

=
1
2

(
2λz

∂Ω̂
∂λz
− λ∂Ω̂

∂λ
+ 2τ11 + τ22 − τ11

)
(C.16)

=
1
2

(
2λz

∂Ω̂
∂λz
− λ∂Ω̂

∂λ
+ 2τ11 + r

dτ11

dr

)
(C.17)

=
1
2

(
2λz

∂Ω̂
∂λz
− λ∂Ω̂

∂λ

)
+

1
2r

d

dr

(
r2τ11

)
, (C.18)

where we have used Equation (5.27).
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Writing the above expression in terms of the invariants defined in Equation (5.6) and

their derivatives, we get

τ33 =Ω1(3λ2
3 − I1) + Ω2(I2 − 3λ2

1λ
2
2)

+ Ω5

(
2λ2

3H
2
l3 − λ2

2H
2
l2

)
+ 2Ω6

(
2λ4

3H
2
l3 − λ4

2H
2
l2

)
+

1
2r

d

dr

(
r2τ11

)
. (C.19)
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[Böse et al., 2012] Böse, H., Rabindranath, R., and Ehrlich, J. (2012). Soft magnetorheo-

logical elastomers as new actuators for valves. Journal of Intelligent Material Systems

and Structures, 23(9):989–994.
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