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Abstract(
The mechanisms by which cancer cells hijack the actin cytoskeleton to invade and 

disseminate to distant sites of metastasis remains one of the great frontiers in 

cancer research. Many actin-regulating proteins have been identified to be 

important in cancer cell invasion and metastasis. However the role of a major actin 

assembly promoting complex, Scar/WAVE regulatory complex (WRC) in cancer 

cell invasion is poorly understood.  

 

WRC has a well-known motility-promoting role in 2D planar cell migration, but a 

recent study on human epithelial cancers suggests WRC may be anti-invasive in 

vivo. To investigate the controversy, human epithelial cancer cells with reduced 

WRC expression were tested in multiple 3D cell motility assays. Interestingly, 

WRC demonstrates a robust anti-invasive role in these exciting experiments. 

 

To understand how loss of WRC promotes invasion, the molecular mechanism is 

investigated. N-WASP is the other major actin assembly promoting protein. Unlike 

WRC, N-WASP is interestingly not required for 2D planar cell migration, but is 

important for motility in 3D. The interplay of the two major actin assembly 

promoting proteins has not been explored in 3D cell motility. I report here that loss 

of WRC promotes hyper-activation of focal adhesion kinase that leads to N-WASP 

accumulation and activation at the invasive front. This chain of events results in 

enhanced invasion providing a molecular mechanism of WRC’s anti-invasive 

function.  
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In addition to this FAK-N-WASP core mechanism, I also identified a novel pro-

invasive role of HSPC300 independently of WRC. Loss of WRC possibly releases 

free HSPC300 that could subsequently interact with and regulate N-WASP 

activation during invasion providing a potential direct molecular link between the 

two proteins. Furthermore, WRC also supresses focal adhesion kinase mediated 

cell transformation and tumour formation in vivo. 

 

In this thesis I therefore demonstrate novel anti-invasion and anti-tumourigenesis 

functions of WRC. I also show how a novel WRC binding protein, NHS, could 

negatively regulate WRC function. 
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1.1 Cell(migration(in(biology(
 
Cell motility is a fundamental process in biology. It is required for embryo 

development, wound healing and immunity. At a very early stage of human 

embryo development, invasion and migration of trophoblasts into maternal uterus 

epithelium is critical for blastocyst implantation (Pijnenborg et al., 1983). As 

trophoblasts migrate deeper and across the uterus epithelium, they invade 

maternal spiral arteries and trigger vascular transformation to establish vital feto-

placental blood supply, hence the establishment of pregnancy (Pijnenborg et al., 

2011).  

 

During later stages of development, cell motility is also critical for morphogenesis 

during gastrulation and neurulation, as individual cells and sheets of cells need to 

move into their appropriate positions to form the proper body plan. In Sea Urchin 

embryo gastrulation, cells at the most vegetal mesoderm undergo a process called 

epithelial to mesenchymal transition to become motile. These primary 

mesenchyme cells migrate as single cells towards the blastocoel at the vegetal 

pole to secrete the calcified endoskeleton (Sharma and Ettensohn, 2011). In 

vertebrate embryos, during neurulation, just after the neural tube closure, neural 

crest cells also undergo an epithelial to mesenchymal transition (Duband, 2010) 

and migrate away from the neural tube to from neurons, glia, and melanocytes 

(Bronner-Fraser, 1994).  

 

Healing and immunity is also critically dependent on cell motility. Fibroblasts and 

endothelial cells migrate to wound to secrete collagen and generate new blood 

vessels respectively to regenerate the damaged tissue. Meanwhile, keratinocytes 

migrate and proliferate over the newly produced collagen to generate new 

epithelium to cover the wound. Just shortly after injury, immune cells, namely 

neutrophils and macrophages, move to the site of injury to clean up pathogens 

and debris. While migration of immune cells is required, it is not restricted to 

wound healing. Infection of microbes also triggers inflammatory response. In 

response to the infection, leukocytes originated from bone marrow migrate to the 

site and kill the invading microbes. This innate immunity forms the first line of 

defence against pathogens. While innate immunity provides a quick defence 

mechanism, to establish long-term immunity, dendritic cells migrate from the site 

of infection to lymph nodes to present processed antigen to T cells and B cells. 
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Therefore, as a result of dendritic cell migration long-term adaptive immunity can 

be established.  

 

Cell migration is clearly critical to physiology, however it also contributes to cancer 

malignancy. While solid primary tumours can often be surgically removed, motile 

cancer cells invade surrounding tissue stroma, and can invade to other distal 

organs to establish metastasis. Just like embryonic cells, epithelial cancer cells 

also undergo epithelial to mesenchymal transition to become motile. These motile 

cancer cells now can move through underlying basement membrane, and invade 

deep into surrounding tissues. In order to spread to distant organs, cancer cells 

trans-migrate into nearby blood vessels. Although blood circulation can bring 

cancer cells to distant organs, cancer cells have to migrate out blood vessels to 

establish metastasis. This ability of cancer cells to move to and occupy various 

vital organs, like lungs, liver and brain, contributes to cancer malignancy, as these 

invading cancer cells grow and form a new tumour. 
 

 

1.2(Structures(and(Molecules(of(cell(migration 

1.2.1(Membrane(Protrusions(

1.2.1.1$Lamellipodia$&$Filopodia$
 

Cells make various structures to migrate under different conditions. Cell motility is 

most extensively studied using cultured cells on rigid 2D surfaces. Under such 

conditions cells become polarized and generate distinct membrane protrusions to 

migrate. At the front of a migrating cell, a broad sheet-like membrane protrusion, 

lamellipodium, and spike-like membrane protrusions, filopodia, dominate the 

advancing front. The two kinds of membrane protrusions drive the cell forward by 

extending the membrane at the front. In contrast, stress fibres contract the rear of 

a migrating cell to pull the whole cell body forward resulting in a thin retracting tail 

(Figure 1.1).   
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Figure 1.1 Morphology of a migrating cell 

Confocal micrograph of a GFP-Lifeact (F-Actin) expressing B16F10 mouse 
melanoma cell. 
!
 

1.2.1.2$Invadopodia$&$Podosomes$

 

When cells are trying to invade a layer of soft extra cellular matrix (ECM, eg. 

Gelatin) or native basement membrane, finger like degradative membrane 

protrusions are formed at the ventral surface (Figure 1.2) (Murphy and 

Courtneidge, 2011). In non-cancer cells, including osteoclasts (Zambonin-Zallone 

et al., 1988), macrophages, megakaryocytes, dendritic cells, endothelial cells and 

vascular smooth muscle cells (VSMC) (Gimona et al., 2008), these ventral 

protrusions are known as podosomes, while in many cancer cells similar ventral 

protrusions are known as invadopodia. Although both membrane structures are 

sites of matrix degradation, invadopodia are longer membrane protrusions with 

longer lifetime, and therefore more degradative. ECM is remodelled by 

metalloproteinases at both invadopodia and podosomes to facilitate cell migration 

(Artym et al., 2006, Gawden-Bone et al., 2010, Buccione et al., 2004). For cancer 

cells, the ability to form invadopodia is thought to correlate with the invasive 

potential (Li et al., 2010). On the other hand, podosome formation in VSMC and 

megakaryocytes is required for cell migration in vivo (Quintavalle et al., 2010, 

Sabri et al., 2006).  
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Figure 1.2 Invadopodia and Podosomes 

Cells use specialized membrane protrusions to degrade ECM. When cells are 
cultured on top of fluorescent gelatin (green), depending on the cell type, 
indadopodia or podosomes are formed from the ventral surface (actin puncta). The 
protrusive membrane structures are specifically associated with matrix 
degradation leading to loss of fluorescent gelatin (black holes). These degradative 
protrusions are able to help cell motility by removing unnecessary ECM, which can 
be a physical barrier. Figure adapted from (Murphy and Courtneidge, 2011).    

 

1.2.1.3$Pseudopods$in$3D$
 

Although in 3D cell culture and in vivo, invadopodia or podosomes are hard to 

define, polarized cells generate pseudopods at the cell front to migrate in a 3D 

matrix (Li et al., 2011, Caswell et al., 2007, Friedl and Wolf, 2003). These 

pseudopods are protruding membrane structures therefore can drive cell 

migration. Additionally, pseudopods in 3D also serve as an important platform of 

cell-matrix interaction permitting adhesion and remodelling of the matrix by 

metalloproteinases (Wolf and Friedl, 2009, Friedl and Gilmour, 2009). At the rear 

of a migrating cell in 3D, contraction also pulls the cell body forward, however in 

3D the contraction often generates a rounded cell body at the rear of a migrating 

cell, rather than a thin tail (Figure 1.3).  
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Figure 1.3 Morphology of a moving cell in 3D collagen gel  

Bright field micrograph shows a human retinal pigment epithelial cell (hTERT-
RPE1) in collagen gel. 

(
 

1.2.1.4$Membrane$Blebs$
 

Membrane blebs are rounded and bulky plasma membrane extensions. Unlike 

other membrane protrusions mentioned above, membrane blebs are very dynamic 

structures with a lifetime usually around 1min (Fackler and Grosse, 2008). The 

expansion of membrane blebs is a relative passive process, and actin 

polymerization is not required (Cunningham, 1995). For a membrane bleb to 

expand, uneven hydrostatic pressure within a blebbing cell dives flow of the 

cytoplasmic fluid to inflate the plasma membrane that has detached from the 

underlying actin cytoskeleton (Charras et al., 2005). Although polymerised actin is 

not observed in expanding membrane blebs, the detachment of the plasma 

membrane requires acto-myosin contraction, which generates a hydrostatic 

pressure to tear a small part of the membrane free from the underlying actin cortex 

(Charras et al., 2005) allowing inflation by cytoplasmic fluid. While actin is not 

required for membrane bleb expansion, the retraction of membrane blebs requires 

actin and myosin II. Once the inflation of membrane blebs slows, actin starts to 

polymerise under the plasma membrane in the bleb with simultaneous 
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accumulation of myosin II. As a result, a new cortex is attached to the plasma 

membrane, and cortical contraction leads to membrane bleb retraction (Charras et 

al., 2005, Blaser et al., 2006).  
 

Although membrane blebs are frequently observed during apoptosis (Mills et al., 

1998), cell migration also involves membrane blebing. Most noticeably, Zebrafish 

primordial germ cells predominantly use membrane blebs to migrate (Blaser et al., 

2006). Although cancer cells can also form membrane blebs, the ability of 

membrane blebs to drive cancer cell migration is likely to be cell type dependent. 

For example, certain cancer cells isolated form human malignant melanomas 

generate membrane blebs yet they have impaired cell motility (Cunningham et al., 

1992). In contrast, rat Walker 256 carcinosarcoma cells migrate using a 

combination of membrane blebing and lamellipodia formation (Bergert et al., 

2012).  
 

 

1.2.2(Actin(cytoskeleton(
 
All membrane protrusions required for cell migration mentioned above are based 

on the actin cytoskeleton with the exception of membrane blebs. Actin monomers 

polymerise just under the plasma membrane to push the membrane forward. Actin 

monomer is a polarised globular molecule (G-Actin) that can bind to and hydrolyse 

ATP (Small et al., 1978, Korn et al., 1987) (Figure 1.4A). During actin 

polymerization one ATP bound G-actin is added to the plus or barbed end of 

another G-actin (Figure 1.4B) resulting in a polarised actin filament that consists 

of two twisted helices (Figure 1.4C) (Holmes et al., 1990, Bugyi and Carlier, 

2010). When actin filaments extend at the plus end, ATP is hydrolysed to ADP at 

the minus or pointed end. As ADP bound actin has lower binding affinity to the 

filaments, ADP-bound actin disassociates from the filament. ADP on these G-actin 

monomers is later replaced by ATP in a process called nucleotide exchange to 

become ATP-bound again, and to be available for polymerization again (Figure 
1.4B). As actin plus ends point to plasma membrane, this cycle of polymerization 

and depolymerization drives actin filament growth towards the membrane (Small 

et al., 1978). As a result, the growing actin filaments push the membrane forward 

to drive cell migration.  
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It is thought that actin polymerizes against the plasma membrane to drive 

protrusion, but if the actin plus end were constantly associated with the 

membrane, there would be little room for the addition of actin monomers. In fact 

because of Brownian motion, the relative position of actin plus end and the plasma 

membrane is believed to fluctuate. In this model, when the fluctuation of the 

membrane and actin plus end provides a large enough gap, one actin monomer is 

added to the plus end pushing the membrane forward. Meanwhile, a long enough 

actin filament can bend providing space for actin monomer insertion to the plus 

end. The lengthened actin filament can then apply an elastic force to push the 

membrane forward. (Peskin et al., 1993, Mogilner and Oster, 1996).  

 

While actin polymerisation provides the force needed for membrane expansion, 

the geometry of polymerised actin filaments decides the morphology of the 

membrane protrusions. While highly branched actin filaments generate the sheet-

like lamellipodia, bundled actin filaments generate spike-like filopodia (Pollard and 

Borisy, 2003, Nemethova et al., 2008, Korobova and Svitkina, 2008). One recent 

report demonstrates that side branching from existing actin filaments that are 

parallel to the membrane can initiate lamellipodia.formation (Vinzenz et al., 2012). 

In contrast, one in vitro study suggests filopodia can be formed from the existing 

branched actin network by plus end elongation of actin filaments followed by 

cross-linking to form actin bundles (Vignjevic et al., 2003). Indeed when 

investigated with platinum replica transmission electron microscopy, filopodium 

with bundled actin filaments was found to rise from a branched actin network in a 

mouse melanoma cell (Svitkina et al., 2003). Additionally, filopodia can also form 

independently of the branching actin network, as loss of the branched actin 

network does not prevent filopodia formation (Wu et al., 2012).    
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Figure 1.4 Assembly of actin filaments  

(A) Crystal structure of an actin monomer. The presentation demonstrates actin 
monomer as a polarised globular molecule. A deep cleft split the molecule open at 
the minus end allowing binding of ATP at the center of actin monomer. (B) During 
the formation of actin filaments, ATP-bound actin monomer is added to the plus 
end of another monomer. Meanwhile ATP on the minus end is hydrolysed leading 
to filament disassembly. Growth of actin filaments depends on the balance of the 
two processes. (C) The resulting actin filaments consist of two twisted helices as 
shown by electron micrographs. A,C adapted from Alberts B, Johnson A, Lewis J, 
et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. 
B adapted from http://csls-text.c.u-tokyo.ac.jp/active/06_01.html 
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1.2.2.1$Nucleation$of$actin$polymerization$CCC$Arp2/3$complex$
 
Nucleation is the first step towards building a polymer. Although filamentous actin 

(F-actin) is common in cells, spontaneous nucleation of actin monomers is slow. 

During nucleation, free G-actin monomers only slowly form unstable trimeric 

nuclei. However once formed these nuclei initiate fast actin polymerization 

(Pollard, 1984). During migration, cells generate highly dynamic actin structures, 

therefore the spontaneous slow formation of actin nuclei needs to be speeded up. 

Cells have to overcome this strong kinetic barrier to rapidly produce actin 

filaments. Cells express specialised proteins that act as actin nucleators to speed 

up actin nucleation hence actin polymerisation. While many actin nucleators have 

been identified, Arp2/3 complex is a major nucleator in lamellipodia (Suraneni et 

al., 2012, Lai et al., 2008), invadopodia (Yamaguchi et al., 2005), podosomes 

(Kaverina et al., 2003) and pseudopods (Li et al., 2011). 

 

Arp2/3 complex consists of seven subunits and was first identified as a profilin 

binding complex in Acanthamoeba castellanii (Machesky et al., 1994). Although 

five subunits of Arp2/3 complex, ARPC1-5, are unique in structure, two subunits, 

namely Arp2 and Arp3, are structurally similar to actin monomer (Robinson et al., 

2001) (Figure 1.5A). These two subunits sit side by side in the active Arp2/3 

complex (Boczkowska et al., 2008, Rouiller et al., 2008) (Figure 1.5B) and can 

serve as a readily available actin nucleus for polymerisation to reduce the kinetic 

barrier of actin nucleation. A G-actin monomer binds to the plus end of Arp3 to 

complete a full trimeric nucleus hence promoting rapid actin polymerisation. 

Additionally, as Arp2/3 complex binds to the minus end of a polymerising actin 

filament, it prevents ADP-bound actin monomer dissociating from the growing 

filament (Mullins et al., 1998).  

 

Although Arp2 and Arp3 are critical for actin polymerisation, the other five subunits 

form a platform that binds to the side of an existing actin filament (Figure 1.5B) 
(Rouiller et al., 2008). This association of Arp2/3 complex with a pre-existing actin 

filament (mother filament) is important for the formation of branched actin network 

necessary for lamellipodium formation (Figure 1.6A, B). As new actin filaments 

(daughter filaments) branch at a 70-degree angle from mother filaments (Mullins et 

al., 1998), growing actin network pushes plasma membrane forward and expands 

the membrane laterally to generate the broad lamellipodia. 
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Figure 1.5 Structure of Arp2/3 complex 

(A) Crystal structures show that Arp2 and Arp3 are structurally similar to actin 
monomer. (B) Cartoon shows an active Arp2/3 complex in association with a 
mother actin filament to initiate daughter filament formation. Due to the structure 
similarity, Arp2 & Arp3 are able to bind G-Actin leading to actin polymerisation, 
while ARPC1-5 prevents dissociation of actin from the minus end by forming a 
mother filament-binding platform.  A adapted from (Dion et al., 2010). B adapted 
from (Rouiller et al., 2008)  
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Figure 1.6 Branched actin network in lamellipodium 

(A) Electron micrograph of branched actin network in lamellipodium of a mouse 
fibroblast. Scale bar, 0.1µm. (B) Localization of Arp2/3 complex at the actin branch 
(yellow dot). Figure adapted from (Svitkina and Borisy, 1999)  
 

 

1.2.2.2$Regulation$of$Arp2/3$complex$
 
Arp2/3 complex is a potent actin nucleator. Its activity must be tightly regulated to 

allow controlled actin polymerisation. The fact that purified Arp2/3 complex is 

inactive suggests additional activators are required (Machesky et al., 1999). 

Indeed, a number of nucleation-promoting factors (NPFs) are identified to activate 

Arp2/3 complex. The largest group of NPFs is Wiskott-Aldrich Syndrome Protein 

(WASP)-family proteins (Padrick and Rosen, 2010).  Eight members of this protein 

family have been identified, namely, WASP, neural WASP (N-WASP) and 

Scar/WAVE 1,2,3, WASH, WHAMM, and JMY (Figure 1.7A) (Campellone and 

Welch, 2010). All WASP family members have an Arp2/3 complex activating 

verprolin central acidic domain (VCA or WCA) at the C-terminus (Figure 1.7B). 
Binding of VCA domain to Arp2/3 complex brings Arp2 and Arp3 into proximity to 

potently activate the complex hence promoting actin polymerisation (Rodal et al., 

2005). VCA domain contains three small motifs. WASP-homology 2 motif (V motif 

or WH2) binds to one actin monomer, and brings this actin monomer to Arp3 to 

initiate actin polymerisation. The central C motif and the acidic A motif also 

simultaneously interacts with other Arp2/3 complex subunits to stabilise the active 

complex (Boczkowska et al., 2008).  
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Figure 1.7 Wiskott-Aldrich Syndrome Protein (WASP) family proteins 

(A) Domain structures of various WASP family proteins. (WH1, WASP homology 
1; B, basic region; CRIB, Cdc42 and Rac interactive binding; AI, autoinhibitory 
domain; PRD, proline rich domain; VCA, verprolin central acidic domain; WHD, 
WAVE homology domain; WAHD1, WASH homology domain 1; TBR, tubulin 
binding region; WMD, WHAMM membrane interaction domain; CC, coiled-coil 
region; N, N terminus.) (B) VCA domain on WASP family proteins is used to 
activate Arp2/3 complex. A adapted from (Campellone and Welch, 2010). B 
adapted from http://www.dayel.com/research/arp23-complex/ 
 

 

In contrast, the N-terminus of WASP family proteins are not well conserved. 

Various regulatory domains are found on different WASP family proteins allowing 

different regulation of these proteins (Figure 1.7A). Regulatory domains on N-

WASP and Scar/WAVE proteins are the most studied, while less is known about 

the function of N-terminal domains on other WASP family proteins. N-WASP can 

bind to the active small GTPase Cdc42 or Rac1 via N-terminal CRIB domain 

(Hemsath et al., 2005, Tomasevic et al., 2007). This direct interaction activates 

otherwise inactive N-WASP leading to Arp2/3 complex activation (Rohatgi et al., 

1999). On the other hand, a regulatory protein complex associates with the N-

terminus of Scar/WAVE proteins. Active small GTPase Rac binds to this complex 

removing the inhibitory effect to activate Arp2/3 complex (Eden et al., 2002). As 

small GTPases are important molecular switches in receptor activation, cell 

adhesion and other signalling events, Arp2/3 complex activation is tightly and 

specifically controlled by activation of small GTPases and corresponding WASP 

family proteins to generate unique actin structures.  
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1.2.3(Regulation(and(function(of(NucleationIPromoting(Factors(
 

1.2.3.1$Scar/WAVE$regulatory$complex$

Scar/WAVE (Scar) proteins are the major NPFs responsible for Arp2/3 complex 

activation in lamellipodium during cell migration on rigid surfaces. Human Scar1 

protein was first identified in a yeast two-hybrid screening for Arp2/3 (ARPC3) 

interacting proteins (Machesky and Insall, 1998). Since then two human Scar 

proteins, namely Scar2,3, were also identified (Suetsugu et al., 1999). All Scar 

proteins share the same domain structure with Scar/WAVE Homology domain 

(WHD) at the N-terminus, followed by basic domain, and proline-rich domain 

(PRD), and VCA at the C-terminus (Figure 1.7A).  
 

While purified Scar protein activates Arp2/3 complex in vitro (Machesky et al., 

1999), Scar proteins exist in a pentameric complex consisting of four additional 

subunits, namely, Nap1, Sra1/PIR121, Abi1/2 and HSPC300. This Scar/WAVE 

regulatory complex (WRC) is inactive towards Arp2/3 complex, as Sra1 and the N-

terminus of Scar protein sequester the Arp2/3 activating VCA domain on Scar 

proteins (Chen et al., 2010, Ismail et al., 2009).  

 

A number of factors have been identified to activate WRC. The most noticeable 

ones are the small GTPase Rac1 (Chen et al., 2010, Eden et al., 2002) and 

negatively charged phospholipids (Lebensohn and Kirschner, 2009). Sra1 of WRC 

is believed to mediate the Rac1 binding. In fact, Sra1 was identified as the 

Specifically Rac-1-associated Protein in an attempt of finding novel Rac1 

interacting proteins (Kobayashi et al., 1998). The latest crystal structure shows 

that Sra1 and Nap1 form a positively charged surface on one side of WRC. 

Current model of WRC activation suggests that this positively charged surface can 

interact with negatively charged phospholipids on the plasma membrane. As the 
Rac1 binding site is also located on this surface, simultaneous binding of Rac1 
and negatively charged phospholipids is thought to trigger WRC conformational 
change to expose the VCA domain for Arp2/3 complex activation (Figure 1.8). As 
the opposite side of WRC is negatively charged, the exposed VCA domain faces 
away from the plasma membrane to interact with Arp2/3 complex (Chen et al., 
2010). 
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Although Rac1 can bind to and activate WRC, the affinity of this binding is low 

(Chen et al., 2010). Therefore it is thought that additional factors might be required 

for sufficient WRC activation. In addition to Rac1, another small GTPase, Arf1, is 

also suggested to activate WRC. Using silica beads coated with a lipid bilayer 

(PIP3) to reconstitute actin polymerisation by WRC, Arf1 was identified to be 

required for Rac1 dependent activation of WRC. In this in vitro system Rac1 alone 

or Arf1 alone cannot sufficiently recruit recombinant WRC. However when both 

GTPases are present WRC is effectively recruited and activated. Interestingly, 

Arf1 also binds to the positively charged surface formed by Sra1 and Nap1 

(Koronakis et al., 2011). Therefore, it is proposed that simultaneous binding of 
Rac1, Arf1 and negatively charged phospholipids activates WRC to the full 
potential. However, loss of Arf1 has no impact on lamellipodia formation (Boulay et 
al., 2008), and Arf1 localizes to trans-Golgi network (Anitei et al., 2010), WRC 
activation by Arf1 is possibly not essential in vivo.  
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Figure 1.8 Model of WRC activation 

Sra1 and Nap1 on WRC form a large positively charged surface. Together with 
Rac1 binding via Sra1, WRC interacts with the negatively charged plasma 
membrane. The interaction perhaps triggers WRC conformational change to 
expose Scar VCA to activate Arp2/3 complex. Figure adapted from (Davidson and 
Insall, 2011)    
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1.2.3.2$Biological$functions$of$WRC$subunits$

All five subunits of WRC are required to make a stable complex. Deletion of any 

WRC components destabilises the whole complex leading to disruption of WRC 

function in many biological systems (Derivery et al., 2008, Silva et al., 2009, 

Kunda et al., 2003). It is therefore important to understand the biological function 

of each WRC subunit, so the function of whole WRC can be revealed.    

(

((

1.2.3.2.1(Nap1(

 

Nap1 (Nck associated protein 1) was first identified as a binding protein of Nck, 

which is an SH2 and SH3 domain containing adapter protein (Kitamura et al., 

1996). This interaction between Nap1 and Nck is believed to help WRC activation 

by Rac1 (Eden et al., 2002, Kitamura et al., 1997). In vivo, loss of Nap1 prevents 
mouse anterior visceral endoderm cell migration that is important for specification 
of the anterior-posterior body axis in animals (Rakeman and Anderson, 2006). 
However, surprisingly, Nap1 is not expressed in actively migrating mouse neurons, 

and pre-mature expression of Nap1 suppresses cell migration in vivo (Yokota et 

al., 2007). In contrast, Nap1 is required for lamellipodia formation in cultured 

mammalian cells (Steffen et al., 2004) and for cell migration in Dictyostelium cells 

(Ibarra et al., 2006). Thus, apart from mouse neurons, Nap1 is required for 

lamellipodia formation and cell motility in multiple systems reflecting its role as part 

of WRC. 
 

1.2.3.2.2(Sra1/PIR121(

 

Sra1 is another important component of WRC required for complex activation 

(Figure 1.8) (Chen et al., 2010, Kobayashi et al., 1998). PIR121 is 88% identical 

to Sra1 and the Rac1 binding domain is conserved between the two proteins, so 

PIR121 may play a similar function as Sra1 in WRC. In cultured cells, Sra1 and 

Nap1 co-localizes to the leading edge to promote cell migration (Kunda et al., 

2003, Steffen et al., 2004). However Sra1 is recently reported to act as an invasion 

suppressor in many human epithelial cancers (Silva et al., 2009). Therefore the 

impact of Sra1 on cell motility may be context dependent. In addition to cell 

migration, Sra1 and PIR121 are also involved in the biogenesis of clathrin-AP1 
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coated cargo transport at the trans-Golgi network presumably in the context of 

WRC, as Rac1, Arf1 and actin are involved in this process (Anitei et al., 2010).     
 

Sra1/PIR121 are also known as CYFIP1/2 (cytoplasmic FMR1-interacting protein 

1/2) respectively. They can interact directly with FMRP that is responsible for the 

fragile X mental retardation (Schenck et al., 2001). Sra1 (or CYFIP1) binds directly 

to both FMRP and the translation initiation factor eIF4E to inhibit translation 

initiation (Napoli et al., 2008). However in the crystal structure of WRC, eIF4E 

cannot fit to the putative binding site when Sra1 is in WRC suggesting Sra1 may 

regulate translation independently of WRC. 

 

1.2.3.2.3(Abi(proteins(

 

Abi (Abelson interactor) proteins were first identified to interact with Abl tyrosine 

kinase (Dai and Pendergast, 1995, Shi et al., 1995). In Bcr-Abl induced leukemia, 

Abi1 is an important mediator of Bcr-Abl mediated cell transformation, as loss of 

Abi1 blocks Src kinase (Lyn) activation (Yu et al., 2008). However Abi1 is also an 

important component of WRC required for the formation and activation of WRC 

(Innocenti et al., 2004). Indeed, the latest crystal structure of WRC shows that the 

two helices at the N-terminus of Abi protein contribute to the core of WRC (Chen 

et al., 2010).  

 

Interestingly, the SH3 domain at the C-terminus allows Abi1 to interact with N-

WASP at a very high affinity as well (Innocenti et al., 2005). It is suggested that 

Abi1 modulates N-WASP activity during endocytosis and vesicle trafficking, as well 

as participates in WRC to regulate cell migration.  As a result, despite being 

structurally important to WRC, Abi proteins are involved in distinct protein 

complexes to regulate different actin based processes. Nonetheless, loss of Abi1 

in mouse embryos leads to migration and adhesion defects resulting in impaired 

vasculogenesis, angiogenesis and chorio-allantonic fusion (Dubielecka et al., 

2011, Ring et al., 2011). 
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1.2.3.2.4(HSPC300(

 

HSPC300 (haematopoietic stem cell protein 300) also known as Brick1 in plants 

was first identified to function with Scar protein and the Arp2/3 complex to regulate 

cell shape in Arabidopsis (Djakovic et al., 2006, Le et al., 2006). HSPC300 is the 

smallest subunit (9KD) of WRC consisting of only a short helix. However 

HSPC300 is crucial for the assembly of the whole WRC. Recent biochemical 

studies and crystal structures show that HSPC300 exists as homotrimers (a 

bundle of three HSPC300 helices) independently of the WRC. The structure of 

HSPC300 homotrimers resembles the core triple helices (one helix from 

HSPC300, one from Scar protein, and one from Abi protein) found in fully 

assembled WRC. HSPC300 homotrimers serve as a platform for WRC assembly 

where two of the HSPC300 helices are gradually replaced by one helix from Abi 

and one helix from Scar. The assembly is completed when Sra1 and Nap1 are 

recruited to the core through their direct interactions with Scar and Abi (Derivery et 

al., 2008, Linkner et al., 2011, Chen et al., 2010).   

 

As part of the WRC, HSPC300 is required for generation of membrane protrusions 

(Derivery et al., 2008, Escobar et al., 2010). HSPC300, together with other WRC 

subunits, controls axonal and neuromuscular junction growth in Drosophila neuron 

system (Qurashi et al., 2007). Loss of HSPC300 in Dictyostelium cells leads to 

loss of Scar protein and migration defects suggesting a biological role of HSPC300 

within WRC (Pollitt and Insall, 2009). However in mouse embryos loss of 

HSPC300 also triggers apoptosis in addition to migration defect implying 

HSPC300 also regulates cell survival (Escobar et al., 2010).   
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1.2.3.2.5(Scar(proteins(

 

Scar proteins are the subunit of WRC responsible for Arp2/3 complex dependent 

actin nucleation (Chen et al., 2010). There are three Scar proteins in mammalian 

cells. Interestingly, Scar1, Scar2 and Scar3 are found to localize differently in 

growth cones of cultured neural cells. In these cells, Scar1 localizes exclusively to 

the leading edge of lamellipodia, while Scar2/3 can also localise to tips of filopodia 

suggesting differential regulation or activation of WRC varieties (Figure 1.9) 
(Nozumi et al., 2003). 
 

 

Figure 1.9 Differential localization of Scar proteins 

(A) All three Scar proteins localizes to lamellipodia of neuronal growth cones. (B) 
Unlike Scar2&3, Scar1 does not localize to tip of filopodia tips. Scar proteins are 
GFP labelled (green). Actin is shown as rhodamine phalloidin staining (red). Figure 
adapted from (Nozumi et al., 2003). Scale bar 1µm. 

 

In vivo, Scar2 is widely expressed in all tissues, low Scar3 expression is detected 

in many tissues and the expression is highest in brain (Sossey-Alaoui et al., 2002). 

Scar1 expression is however limited to adult human and mouse central nervous 

system (CNS) (Dahl et al., 2003). Although Scar1 is expressed in the entire mouse 

embryo at the early stage of development (all human fetal tissues too), as the 

embryo matures, Scar1 expression is restricted to CNS. Scar1 knockout mice do 
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not have anatomical abnormities but the cerebral cortex is reduced suggesting 

Scar1 is only required for early CNS development. However neurons without 

Scar1 have normal morphology with polarized apical dendrites (Dahl et al., 2003). 

Similarly, Scar1 knockout mouse embryonic fibroblasts are also able to generate 

normal membrane protrusions and migrate normally, but Scar2 is required for 

membrane protrusion formation and migration in the same cells (Figure 1.10) 
(Suetsugu et al., 2003). Scar2 knockout in mouse is embryonic lethal despite 

Scar1 expression suggesting a non-redundant role of Scar2 during development. 

Although Scar3 localizes to lamellipodia (Stovold et al., 2005, Nozumi et al., 2003), 

it is the least studied Scar protein and the exact function of Scar3 remains to be 

explored.  
 

 

Figure 1.10 Lamellipodia formation requires Scar2 

Scar2, not Scar1, is required for lamellipodia formation in mouse embryonic 
fibroblasts. Figure adapted from (Suetsugu et al., 2003). Scale bar 10µm. 
 

1.2.3.3$WASP$&$NCWASP  

 

WASP was first identified as a novel gene mutated in immunodeficiency disorder 

Wiskott-Aldrich Syndrome (WAS) (Derry et al., 1994). WASP expression is 

hematopoietic specific. WASP was found to be important for podosome formation 

in human marcrophages (Linder et al., 1999), and in megakaryocytes (Sabri et al., 

2006). Marcrophages isolated from most WAS patients have no functional WASP, 

and cannot form podosomes (Linder et al., 1999). In contrast, WASP homolog N-

WASP (Neural WASP) was first identified in a screening for Ash/Grb2 binding 

proteins (Miki et al., 1996). Despite being highly enriched in brain (hence the 

name), N-WASP is ubiquitously expressed. Similar to WASP, N-WASP also 

localises to podosomes in macrophages, however N-WASP does not contribute to 
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podosome formation. Instead, loss of N-WASP renders podosomes non-

degradative, as one major metalloprotease, MT1-MMP, is no longer recruited 

(Nusblat et al., 2011). N-WASP is also involved in intra-cellular motility of many 

microbes (Suzuki et al., 1998, Dodding and Way, 2009), and clathrin mediated 

endocytosis (Benesch et al., 2005). Although N-WASP was reported to be 

required for filopodia formation (Miki et al., 1998), recent studies suggest 

otherwise. As Arp2/3 complex is not required for filopodia formation (Suraneni et 

al., 2012, Steffen et al., 2006), the role of N-WASP mediated Arp2/3 complex 

activation in filopodia formation remains controversial. 

 

WASP and N-WASP share the same domain structure (Figure 1.7A). Both 

proteins are auto-inhibited. The intramolecular interaction between VCA domain 

and CRIB domain leads to auto-inhibition of the proteins (Figure 1.11).  The 

surface of CRIB domain interacts with the C motif of VCA, hence reducing 

WASP/N-WASP VCA’s affinity towards Arp2/3 complex. The N-terminal basic 

region on N-WASP also interacts with the acidic VCA domain contributing to the 

auto-inhibition of N-WASP. The X-ray crystal structure of inactive N-WASP shows 

that the inactive molecule is folded on itself preventing the VCA from interacting 

with Arp2/3 complex. (Kim et al., 2000, Miki et al., 1998).  

 

This intramolecular auto-inhibition can be relieved by interaction with active Cdc42 

(Figure 1.11) (Kolluri et al., 1996). Binding of Cdc42 to the CRIB domain activates 

WASP and N-WASP by causing a dramatic conformational change hence the 

release of VCA domain (Kim et al., 2000). Additionally, the basic region can also 

interact with negatively charged phospholipid, PIP2, on the plasma membrane 

(Figure 1.11). This interaction with PIP2 greatly enhances Cdc42 dependent 

activation of N-WASP (Higgs and Pollard, 2000). Interestingly, using purified 

autoinhibited human WASP and N-WASP, Rac1 was identified to exclusively 

activate N-WASP. This N-WASP activation by Rac1 is more potent than Cdc42 

activation of N-WASP. It is therefore suggested that Cdc42 is the major activator 

of WASP, while Rac1 activates N-WASP (Tomasevic et al., 2007).  

 

N-WASP is phosphorylated at multiple residues to sustain its activation. Src family 

kinases (Fyn) bind to and phosphorylate N-WASP at Tyr256 (Tyr291 on WASP), 

which lies just after the CRIB domain (Banin et al., 1996). However the 
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phosphorylation can only happen after N-WASP activation by Cdc42, i.e. when the 

folded molecule is open. In this open (active) confirmation, the tyrosine residue is 

exposed to Src family kinases leading to phosphorylation (Cory et al., 2002). 

Interestingly, once phosphorylated, even when Cdc42 activation is terminated, 

pTyr291 WASP remains activated towards Arp2/3 complex, as this 

phosphorylation introduces negative charge to CRIB domain region blocking auto-

inhibition of N-WASP (Suetsugu et al., 2002, Banin et al., 1996). As a result N-

WASP phosphorylation by Src family kinases sustains the activation status by 

preventing auto-inhibition (Torres and Rosen, 2003).  Similarly, focal adhesion 

kinase (FAK) also binds to N-WASP directly leading to N-WASP phosphorylation 

at Tyr256 to enhance N-WASP activities and N-WASP membrane localisation (Wu 

et al., 2004).             

 

In addition to Cdc42 activation of N-WASP, the Nck adapter protein is reported to 

activate N-WASP independently of Cdc42 (Figure 1.11). Nck SH3 domains bind 

directly to the proline rich motif of WASP/N-WASP (Rivero-Lezcano et al., 1995, 

Rohatgi et al., 2001). In the presence of PIP2, Nck activates N-WASP to promote 

Arp2/3 dependent actin polymerisation. All three SH3 domains of Nck are required 

for maximum activation of N-WASP (Rohatgi et al., 2001). This multivalent 

interaction has recently been shown to promote N-WASP-Nck polymer formation, 

which triggers Arp2/3 complex activation in vitro. In cells with the help of a 

transmembrane protein nephrin, N-WASP-Nck complex is organised into a 

platform that resembles N-WASP-Nck polymer under the plasma membrane to 

activate Arp2/3 complex (Li et al., 2012).   
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Figure 1.11 Model of N-WASP activation 

Before activation CRIB (Cdc42 and Rac interactive binding) domain and the basic 
region (B) bind to N-WASP or WASP VCA preventing Arp2/3 complex binding.  
The protein is now autoinhibited in a folded conformation. Interaction with Cdc42 
or Rac1 to CRIB domain relieves the inhibitory effects through conformational 
change that opens up the protein allowing VCA binding to Arp2/3 complex. This 
process is greatly enhanced by PIP2 binding via the basic region. Alternatively, 
together with PIP2 multiple Nck adaptor proteins bind to N-WASP proline rich 
region (PRD) to promote N-WASP activation.  Finally, N-WASP or WASP 
activation is also sustained by phosphorylation that prevents CRIB domain binding 
to VCA. WH1, WASP homology 1; VCA, verprolin central acidic domain.   
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1.3(Adhesion(and(cell(migration(
 

When actin polymerisation pushes the plasma membrane forward to drive cell 

migration, small cell-ECM adhesions are formed at the leading edge. They are the 

first adhesions to anchor the advancing membrane to the substrate. Otherwise, 

without adhesion, the protruding membrane folds back to the dorsal surface of the 

cell resulting in membrane ruffles without productive forward cell movement (Borm 

et al., 2005). As the cell moves, these adhesions mature into bigger adhesions 

and are now located towards the rear of a moving cell. Large, mature adhesions 

are usually associated with strong contracting actin stress fibres. As a result, 

mature adhesions can serve as traction points for cell translocation. However 

effective cell migration requires proper coordination of adhesion formation and 

disassembly. Old strong adhesions must be disassembled when cell body 

contracts to release the moving cell from the substrate.  Collectively, when new 

adhesions are formed at the front, old mature adhesions are disassembled at the 

rear of a migrating cell releasing the contracting tail, and allowing the translocation 

of the cell body. 

 

Depending on the size, stability and location, various cell-ECM adhesions are 

found in motile cells, including nascent adhesions, focal complexes and focal 

adhesions (Parsons et al., 2010). Nascent adhesions are small short-lived 

adhesions formed just behind the lamellipodium leading edge (Choi et al., 2008). 

As the leading edge moves forward, nascent adhesions mature into slightly bigger 

focal complexes, which now localise at the lamellum of the advancing 

lamellipodium. Both nascent adhesions and focal complexes serve to anchor the 

advancing lamellipodium to ECM. As a result, expanding membrane is stabilised 

at the front of a migrating cell.  

 

Cell-ECM adhesions also conduct forces required for cell migration. In migrating 

Goldfish fin fibroblasts, small nascent adhesions near the leading edge apply 

strong traction force to drive cell migration. Focal complexes can further mature 

into bigger, and more stable focal adhesions, which are associated with large 

stress fibres (Rottner et al., 1999). Although the propelling force increases briefly 

at the initiation of focal adhesion maturation, the force eventually decreases to a 

basal level in migrating cells (Beningo et al., 2001). In contrast, in stationary cells, 
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the strength of traction force is correlated with the size of focal adhesions. The 

strong force associated focal adhesions in this case can deform an elastomeric 

substrate (Balaban et al., 2001, Fraley et al., 2010). 

 

At least in fish keratinocytes, migrating cells generate about 40nN force (Prass et 

al., 2006, Oliver et al., 1995). It is thought that this force is far greater than the 

actual force required for cell migration. Cells may therefore use the extra force for 

other functions. When cells migrate on a 2D elastic surface, the excessive force 

causes deformation of the soft substrate suggesting the force could be used for 

ECM remodelling. This is particularly important for cells migrating in 3D matrices 

where active remodelling of the ECM matrix is required to achieve effective motility 

(Ehrbar et al., 2011, Friedl and Wolf, 2009, Fraley et al., 2010). Fibroblasts deform 

surrounding matrix when embedded in polyethylene glycol hydrogel.  Interestingly, 

in this 3D environment, strong traction force is associated with long membrane 

extensions, while the cell body exert less force (Legant et al., 2010). It is therefore 

suggested that cells could probe and remodel surrounding matrix through strong 

traction forces near the tip of long membrane extensions (Legant et al., 2010). In 

cancer cells, depending on cell types, high traction forces could contribute to 

better invasion in collagen gels (Koch et al., 2012). In tissue, traction forces 

exerted by fibroblasts are required for collagen remodelling during wound healing 

leading to increased tissue stiffness and wound contraction (Tomasek et al., 

2002). Finally, focal adhesions are recently observed in cells cultured in 3D 

collagen gel (Kubow and Horwitz, 2011). It is likely that focal adhesions could 

conduct the traction force in 3D.  
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1.3.1(Adhesion(Formation(

 

All cell-ECM adhesions are integrin based. Integrin family proteins are a group of 

heterodimeric (α and ! subunit) trans-membrane proteins. Structural sturdies 

reveal that inactive integrin heterodimers exist in a ‘bent’ or close conformation. In 

this conformation, the extracellular ligand binding domains face toward the plasma 

membrane making ligand binding unfavourable. In this close conformation 

cytoplasmic tails of α and ! integrins interact between membrane proximal regions 

to stabilize the heterodimer in an inactive low affinity state (Beglova et al., 2002, 

Takagi et al., 2002, Takagi et al., 2001). Mutations that disrupt the cytoplasmic tail 

interaction at membrane proximal regions activate integrins (O'Toole et al., 1994). 

Talin is believed to play an important role in integrin activation, as it binds to the 

membrane proximal regions of integrin cytoplasmic tails leading to cytoplasmic tail 

separation. Consequently, transmembrane domains of the heterodimer are 

unclasped leading to extension of the extracellular ligand binding domains in a 

switchblade-like fashion. In this extended conformation, integrin heterodimers 

have high ligand binding affinity. Subsequent ligand binding leads to full activation 

of integrins. (Tadokoro et al., 2003, Banno and Ginsberg, 2008, Carman and 

Springer, 2003). Once activated, the exposed cytoplasmic tail interacts directly 

with many adhesion proteins (typically vinculin and α-actinin, in addition to talin) 

that link integrin to actin cytoskeleton hence the formation of actin based cell-ECM 

adhesions (Figure 1.12) (Vicente-Manzanares et al., 2009).  

 

During expansion of lamellipodium, integrins are first engaged with ECM at the 

leading edge. Short-lived nascent adhesions form just under the expanding 

lamellipodium. These early adhesions are not associated with contractile actin 

stress fibres and their formation is independent of myosin II, hence little 

contraction can occur. However Arp2/3 complex mediated actin polymerisation is 

required for nascent adhesion formation (Choi et al., 2008).  

 

As the lamellipodium expands, nascent adhesions either disassemble when actin 

depolymerises or mature into focal adhesions at the back of the lamellipodium. 

Maturation of nascent adhesions depends on actin cross-linking activity of α-

actinin and myosin II, and is associated with formation of actin stress fibres. 

Although the mechanism of nascent adhesion maturation is not completely known, 

it is thought that myosin II bundles actin causing accumulation of α-actinin and 
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other adhesion molecules (e.g., talin, vinculin) that link integrin to actin fibres. The 

clustering of adhesion proteins therefore leads to elongation and growth of 

nascent adhesions into focal adhesions (Choi et al., 2008). These mature focal 

adhesions can now serve as traction points as associated actin stress fibres 

contract under the control of myosin II. As a result of the contraction, the cell body 

is pulled forward.  

 

Figure 1.12 Integrin based adhesion 

Integrin links ECM to Arp2/3 complex polymerised actin filaments at adhesion sites 
via actin binding adaptor proteins, talin, vinculin and α-actinin. Adhesion regulatory 
protein, focal adhesion kinase (FAK) is also recruited through multiple interactions 
with the adhesion assembly. Figure adapted from (Vicente-Manzanares et al., 
2009) 
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1.3.2(Adhesion(Signalling(

(

Cell-ECM adhesions physically anchor cells to the substrate and provide part of 

the mechanical force for cell migration. These adhesions are also important sites 

of active signalling where external signals are conducted into cell to regulate cell 

proliferation, survival, growth and motility. Meanwhile, internal signals are also 

transmitted to integrins to regulate adhesion affinity and dynamics (Ginsberg et al., 

2005). Upon clustering and activation of integrin dimers, talin and α-actinin binds 

directly to !-integrin tails and actin filaments to establish the structural core of focal 

adhesions (Liu et al., 2000).  Adaptor proteins, vinculin and paxillin, and signalling 

proteins, focal adhesion kinase and Src kinases are then recruited to early 

adhesions. This process of adhesion formation triggers conformational changes in 

many adaptor proteins leading to exposure of protein binding sites, which then 

lead to extensive protein-protein interactions (Wozniak et al., 2004, Petit and 

Thiery, 2000). At the same time, focal adhesion kinase and other kinases are also 

recruited and activated upon adhesion formation resulting in phosphorylation of 

multiple proteins (Parsons et al., 2000). Collectively, adaptor proteins and 

adhesion-associated kinases initiate important signalling events upon integrin 

activation and adhesion formation to control various aspects of cell biology, 

including cell proliferation, cell survival, and cell migration. (Zaidel-Bar et al., 2007, 

Schwartz and Assoian, 2001, Stupack and Cheresh, 2002, Vicente-Manzanares et 

al., 2009).  
 

1.3.3(Focal(Adhesion(Kinase(Signalling(

 

While many adaptor proteins and signalling proteins are important to adhesion 

signalling, focal adhesion kinase (FAK) is one of the major mediators of integrin 

signalling in the regulation of cell migration, invasion, proliferation and survival 

(Schlaepfer et al., 1999, Wozniak et al., 2004). FAK consists of five major 

domains, namely, FERM domain, kinase domain, two proline rich domains 

(PR2&3), and focal adhesion targeting (FAT) domain (Figure 1.13).  As a 

cytoplasmic tyrosine kinase, the kinase domain is critical to the kinase activity of 

FAK, while FERM domain and FAT domain are important sites for protein-protein 

interactions (Mitra et al., 2005). 
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FAK is auto-inhibited. Clustering of FAK at adhesion sites triggers auto-

phosphorylation of FAK at Tyr397, which activates the otherwise auto-inhibited 

FAK (Toutant et al., 2002). This auto-phosphorylation of FAK at Tyr397 

(pY397FAK) creates a high-affinity binding site for Src family kinases. Binding of 

Src kinases to pY397FAK also promotes and enhances Src kinase activation. 

Within the transient FAK-Src kinase complex, active Src kinase can further 

phosphorylate FAK at the activation loop of kinase domain (Tyr576 and Tyr577), 

and at the FAT domain (Tyr861 and Tyr925). These Src dependent 

phosphorylations enhance FAK kinase activity to the maximum and promote 

signalling transductions via various protein-protein interactions (Figure 1.13) 
(Mitra et al., 2005).  

 

 

Figure 1.13 Focal adhesion kinase activation 

FAK is activated by auto-phosphorylation that is thought to happen upon integrin 
clustering.  Phosphorylation of FAK Tyr397 relieves the inhibitory effects of FAK 
FERM domain on the kinase domain, and creates a binding site for Src kinase, 
which can further phosphorylate FAK at multiple sites. Collectively, these 
phosphorylated tyrosines on FAK provide multiple docking sites for additional 
protein interactions. FERM, 4.1 protein, Ezrin, Radixin, Moesin; PR, proline rich; 
FAT, focal adhesion targeting. 
 
 
 
While it is well known that phosphorylation on Tyr397 and Tyr576/577 activates 

FAK, the precise mechanism of FAK auto-inhibition and activation has only been 

recently explored (Lietha et al., 2007). In auto-inhibited FAK, the FERM domain 

interacts with the kinase domain directly preventing auto-phosphorylation of 

Tyr397. Binding of an activator protein can trigger a conformational change in the 

FERM domain leading to the exposure of Tyr397. However the activator has yet to 
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be investigated. It is speculated that the direct interaction of FERM domain with 

the cytoplasmic tail of ! integrins (Guan and Shalloway, 1992, Schaller et al., 

1992) or growth factors (Sieg et al., 2000) could mediate the conformational 

change. Nonetheless, once the FAK FERM domain is released from the kinase 

domain, FAK Tyr397 is exposed and rapidly auto-phosphorylated. Src mediated 

phosphorylation of Tyr576/577 on the activation loop of the kinase domain then 

leads to further exposure of the catalytic centre resulting in full activation of FAK. 

Phosphorylation of Tyr576/577 also prevents the FERM domain from binding to 

the kinase domain, thereby blocking autoinhibition (Lietha et al., 2007). 
 

1.3.3.1$Migration$and$Invasion$

 

The now fully phosphorylated FAK controls a number of signalling pathways. Src 

phosphorylation of FAK at Tyr861 (Calalb et al., 1996) increases the SH3 domain 

mediated binding of p130Cas docking protein to the FAK proline rich domains 

(PR2&3) (Lim et al., 2004), allowing tyrosine phosphorylation of p130Cas by Src 

kinase (Sharma and Mayer, 2008) (Figure 1.14). To regulate cell migration, 

phosphorylated p130Cas triggers Rac activation by forming a complex with 

adapter protein Crk and Rac guanine nucleotide exchange factor (GEF) DOCK180 

at the adhesion sites (Sakai et al., 1994, Cote and Vuori, 2007). This localised 

activation of Rac promotes lamellipodial extension and cell migration presumably 

through activation of WRC. In addition to cell migration, FAK-p130Cas has also 

been recently shown to promote formation of degradative focal adhesions, where 

metalloprotease MT1-MMP is recruited to adhesion sites by FAK-p130Cas (Wang 

and McNiven, 2012). The finding of degradative focal adhesions therefore 

provides a mechanistic explanation for the pro-invasive role of FAK and p130Cas 

(Cunningham-Edmondson and Hanks, 2009).   

!

1.3.3.2$MAPK/Erk$pathway$

 

Src phosphorylation of FAK at Tyr925 also leads to binding of SH2-domain 

containing adaptor protein Grb2 (Schlaepfer et al., 1994, Schlaepfer and Hunter, 

1996) (Figure 1.14). While the Grb2 SH2 domain interacts with the phospho-

tyrosine on FAK, the two SH3 domains bind to SOS, which is a Ras GEF. 
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Activated SOS now removes GDP from Ras small GTPase allowing Ras binding 

to GTP and subsequent Ras activation. The protein kinase activity of Raf kinase is 

then activated by active Ras leading to initiation of the mitogen activated protein 

(MAP) kinase cascade (Howe et al., 1992, Pearson et al., 2001).  

 

At the end of the cascade, a member of the conserved family of MAP kinases 

(MAPK), Erk1/2, is phosphorylated and activated. Erk1/2 can then interact with 

and activate ribosomal protein S6 kinases (RSKs). Activation of RSKs 

subsequently leads to cell proliferation, cell survival, cell migration and invasion 

either by subsequent interactions with eukaryotic translation initiation factors in the 

cytosol, or through interactions with transcriptional factors in the nucleus (Hauge 

and Frodin, 2006, Doehn et al., 2009). Alternatively, active Erk1/2 can enter the 

nucleus to regulate more transcription factors, for example, Myc is stabilized by 

phosphorylation, and resulting in change of gene expression (Sears et al., 1999, 

Sears et al., 2000). Erk1/2 can also regulate translation by phosphorylating and 

activating MAPK interacting kinase (MNK)1/2 which regulates the eukaryotic 

translation initiation factor 4E (eIF4E) (Fukunaga and Hunter, 1997, Walsh and 

Mohr, 2004). Consequently, adhesion induced activation of Erk1/2 through FAK 

and MAP kinase cascade is important for cell proliferation, survival and motility.  
 

1.3.3.3$PI3K/Akt$pathway$

 

Integrin dependent FAK activation also controls cell viability pathways and cell 

migration through PI3K/Akt (Figure 1.14). Auto-phosphorylation of FAK on 

Tyrosine 397 upon integrin clustering leads to direct interaction with the p85 

subunit of PI3K. This direct interaction then leads to increased tyrosine 

phosphorylation of the p85 subunit (Chen and Guan, 1994, Xia et al., 2004). 

Phosphorylation of the p85 subunit activates the p110 catalytic subunit of PI3K 

leading to production of PI(3,4,5)P3 and PI(3,4)P2 on the plasma membrane 

(Klippel et al., 1994, Yu et al., 1998, Cuevas et al., 2001). Phosphoinositide 

dependent kinase 1 (PDK1) is then activated by these inositol phospholipids. 

PDK1 later activates Akt by direct phosphorylation leading to the activation of 

PI3K/Akt pathway (Cantley, 2002). Similar to MAPK/Erk pathway, PI3K/Akt 

pathway is also well known to regulate cell proliferation, survival (Franke et al., 

2003) and cell migration (Kim et al., 2001, Enomoto et al., 2005). Collectively, fully 
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activated FAK plays an important role on regulating various aspects of cell biology 

by the activation of MAPK and PI3K/Akt pathways.  

 
 

 

 

 

Figure 1.14 FAK mediated signalling cascades 

Active FAK serves as a scaffold to interact with many signalling proteins to 
regulate various aspects of cell biology. Docking of PI3K on phospho-Y397 leads 
to subsequent activation of Akt and Rac. Similarly, phospho-Y861 mediated 
interaction with p130Cas leads to MT1-MMP recruitment to focal adhesions and 
Rac activation. MAPK signalling cascade is otherwise initiated by phosphorylation 
on FAK Y925. Together all the FAK mediated signalling events regulate cell 
proliferation, cell survival, migration and invasion. FERM, 4.1 protein, Ezrin, 
Radixin, Moesin; PR, proline rich; FAT, focal adhesion targeting.   
 

 

1.3.3.4$Adhesion$Disassembly$
 

FAK also regulates the disassembly of focal adhesions through FAK dependent 

signalling pathways. Active FAK is believed to regulate focal adhesion turnover, as 

FAK knockout cells have large stable peripheral adhesions (Webb et al., 2004). It 

is also known that microtubule targeting to focal adhesions is required for 

adhesions disassembly (Kaverina et al., 1999, Kaverina et al., 1998). A 

microtubule associated large GTPase, dynamin, is required in this process to 

remove integrins from adhesions by endocytosis (Obar et al., 1991, Maeda et al., 

1992, Ezratty et al., 2005). Interestingly, active FAK is involved in this microtubule 
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dependent process by recruiting dynamin to focal adhesions. However the 

interaction between FAK and dynamin is not direct, adaptor protein Grb2 binds to 

phosphorylated Try925 on FAK and to dynamin, therefore bridging active FAK to 

dynamin (Ezratty et al., 2005). 
 

 

1.4(Arp2/3(complex,(NPFs,(and(Adhesions(
 

1.4.1(Arp2/3(complex(and(adhesion(

 

Although it is known that lamellipodia are important for the formation of new 

adhesions, the coupling of molecular mechanisms that control membrane 

expansion and adhesion formation is not well studied. The major driving force of 

membrane expansion at the leading edge is Arp2/3 complex mediated actin 

polymerisation. While Arp2/3 complex mostly localises to the leading edge, it also 

transiently localises to new adhesions (Figure 1.15) (DeMali et al., 2002). It is 

known that active Rac induces formation of nascent adhesions at the leading edge 

(Nobes and Hall, 1995). As Rac leads to Arp2/3 complex activation through WRC, 

it is possible that Arp2/3 complex dependent actin polymerisation is required for 

proper adhesion assembly. Indeed, loss of Arp2/3 complex leads to altered 

adhesion assembly and disrupted global adhesion alignment. Importantly, in cells 

without Arp2/3 complex the haptotaxis response to various ECM concentrations is 

abolished, as these cells are now unable to sense ECM gradient through their 

adhesions. These findings suggest that Arp2/3 complex mediated actin 

polymerisation is required for proper adhesion assembly and proper integrin 

signalling during cell migration (Wu et al., 2012).  
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Figure 1.15 Arp2/3 complex localizes to new adhesions  

(A) Arp2/3 complex as labelled by ARPC5 localizes mostly to the leading edge of 
lamellipodia. (B) However Arp2/3 complex also transiently localizes to vinculin 
labelled adhesions. B adapted from (DeMali et al., 2002) 
 

 

On the other hand, adhesions can also actively regulate Arp2/3 complex. Rac is 

locally activated at adhesions in response to integerin activation by 

FAK/p130Cas/Crk/DOCK180, and alternatively by FAK/PI3K (Figure 1.14). This 

active Rac could locally activate Arp2/3 complex. In fact, Rac activated Arp2/3 

complex is reported to interact with vinculin (a focal adhesion protein that interacts 

with talin, α-actinin and actin) directly (DeMali et al., 2002). This recruitment of 

active Arp2/3 complex to early adhesions can perhaps promote local actin 

assembly leading to maturation of nascent adhesions.  

 

Additionally, FAK interacts with Arp2/3 complex directly via its FERM domain 

(Serrels et al., 2007). This interaction is necessary for normal cell spreading and 

actin polymerisation, as disruption of FAK/Arp2/3 complex leads to lack of 

membrane protrusions. FAK also moderately promotes Arp2/3 complex activation 

directly through its FERM domain. Notably, FAK only interacts directly with Arp2/3 

complex in an auto-inhibited status, as FAK auto-phosphorylation at Tyr397 

disrupts Arp2/3 complex binding to FAK FERM domain (Serrels et al., 2007). 

Therefore there are two possible ways that FAK can regulate Arp2/3 activation. 
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Firstly, auto-inhibited FAK directly promotes Arp2/3 complex activation prior to 

FAK auto-phosphorylation that can subsequently lead to the release of active 

Arp2/3 complex. Secondly, fully activated FAK regulates Arp2/3 complex indirectly 

through Rac activation. Collectively, both mechanisms can lead to Arp2/3 complex 

dependent membrane protrusion formation, or subsequent active Arp2/3 complex 

binding to vinculin to promote adhesion formation. FAK therefore couples 

membrane protrusions to adhesion dynamics. 
 

1.4.2(WRC(and(adhesion(

 

While Arp2/3 complex interacts with adhesion molecules, surprisingly little 

research has been done on the nucleation promoting factors that could activate 

these adhesion associated Arp2/3 complexes. As adhesions signal to Rac to 

promote Arp2/3 complex activation, WRC is believed to be involved. Recent 

research on Drosophila WRC in vivo shows the complex colocalizes with integrin 

and talin in the wing epithelium (Figure 1.16). Loss of WRC and Arp2/3 complex 

leads to mild adhesion defects of the wing epithelium. It is therefore concluded that 

WRC is involved in the maintenance of stable cell-ECM adhesion (Gohl et al., 

2010).  
 

 

Figure 1.16 Drosophila WRC localizes to integrin based adhesions 

(A) Cartoon shows the cross-section of a Drosophila pupal wing. (B) WRC (green) 
co-localizes with integrin (red) and actin (blue) in the Drosophila pupal wing. 
Figure adapted from (Gohl et al., 2010)   
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In cultured mammalian cells, similar colocalization of WRC and adhesion 

molecules is controversial. However, loss of WRC in many cell types leads to 

altered focal adhesion structure that phenocopies FAK knockout and β1-integrin 

knockout cells. In both cultured human mammary epithelial cells and human 

keratinocytes, loss of WRC results in large focal adhesions at the cell periphery 

(Silva et al., 2009). The same enlarged focal adhesion phenotype has also been 

reported in cancer cells with reduced WRC expression (Escobar et al., 2010). 

Although cells without WRC eventually form large focal adhesions, early adhesion 

to various substrates is delayed (Silva et al., 2009). Many reports therefore 

suggest WRC is required for normal regulation of cell-ECM adhesions.  
 

1.4.3(NIWASP(and(adhesion(

 

N-WASP interacts with FAK, and FAK can regulate N-WASP activities, therefore it 

is thought that N-WASP is the ideal candidate to regulate Arp2/3 complex at 

adhesions. However N-WASP null keratinocytes have normal focal adhesions and 

can adhere normally to ECM (Lefever et al., 2010). This is in direct contrast to 

WRC deficient keratinocytes where focal adhesions are enlarged (Silva et al., 

2009). In addition, mice lacking N-WASP expression in skin keratinocytes have 

normal epidermis, where keratinocytes established normal integrin based 

adhesions with basement membrane in vivo (Lefever et al., 2010). Hence at least 

in keratinocytes, N-WASP has no obvious function in cell-ECM adhesion.  
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1.5(Aim(of(thesis(
 

Cancer cell invasion and metastatic development involves cell migration/invasion 

in complicated 3D environments making standard 2D migration assays less 

representative. Therefore it is necessary to reinvestigate the role of major motility 

regulators in a 3D environment. WRC drives lamellipodia assembly via Arp2/3 
complex and cell migration across 2D substrates, WRC function in 3D cell motility 

is however not clear. The major aim of this thesis is to investigate the role of WRC 

and regulated proteins in 3D cell migration. 

 

HSPC300 is the least studied subunit of WRC. Recent biochemical studies 

demonstrate HSPC300 can exist independently of WRC, however the biological 

function of this free pool of HSPC300 is not known. The other aim of this thesis is 

to explore possible roles of HSPC300 in 3D cell motility.  

 

The mechanism of WRC activation is extensively studied. How WRC activation is 

negatively regulated is not known. A putative negative regulator of WRC, NHS, 

was recently identified. The mechanism by which NHS negatively regulates WRC 

is also investigated in this thesis.     



! ! !57!

Chapter(2:(Materials(and(methods(

 (
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2.1(Materials(
 

Materials are listed by technique. All chemicals are from Sigma-Aldrich unless 

otherwise stated. All laboratory plastics are from Nunclon, Thermo Scientific, 

unless otherwise stated. Pre-designed primers are all ordered from Qiagen. 
 

2.2(Cell(culture(

2.2.1(Cell(lines(

 

A431 cells and B16F10 cells were kindly provided by Dr. Kurt Anderson (Beatson 

Institute for Cancer Research, Glasgow, UK). MCF7 cells and hTERT-RPE1 cells 

were kindly provided by Dr. Jing Bi and Dr. Nick Gilbert (Edinburgh Cancer 

Research Centre, Edinburgh, UK).  
 

2.2.2(Tissue(culture(

 

A431, MCF7 and B16F10 cells were cultured in DMEM (Dulbecco’s modified eagle 

medium, Gibco, Invitrogen) supplemented with 10% foetal bovine serum (FBS, 

Autogen Bioclear), 2mM Glutamine and 1% penicillin and streptomycin (Gibco, 

Invitrogen). For hTERT-RPE1 cells, DMEM/F-12 medium (1:1) (Gibco, Invitrogen) 

supplemented with 10% FBS, 2mM Glutamine and 1% penicillin and streptomycin. 

All cell lines were maintained in a humidified atmosphere at 37oC and 5% CO2. 
 

2.2.3(Cell(passaging(and(counting(

 

For all cell types, subconfluent cells were first washed in phosphate buffer saline 

(PBS, 3.3mM KCl, 170mM NaCl, 1.8mM Na2HPO4 and 10.6mM H2PO4). Cells 

were then detached using an appropriate volume of 1X Trypsin (Invitrogen) and 

incubated at 37℃ for up to 15min. Cell detachment was checked, before adding 

full growth media to inactivate Trypsin. The suspended cells were then carefully 

mixed by gentle pipetting. 400µl of well suspended cells were then diluted in 20ml 

PBS before counting with a CASY cell counter (Roche). Once counted, 1x106 cells 

were seeded to make a fresh culture. Otherwise, a desired number of cells was 

used for subsequent experiments.     
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2.2.4(Cryopreservation(and(cell(recovery(

 

For all cell types, subconfluent cells were detached using trypsin and re-

suspended as described above. Cell suspension was then centrifuged at 1,000rpm 

for 5min. Cell culture media was then discarded. Cell pellet was then re-

suspended in 4ml freezing mix (10% DMSO (dimethyl sulphoxide) in FBS). The 

mixture was then aliquoted to cryovial tubes (Nuncleon, Fisher Scientific) at 1ml 

each. Aliquots were frozen immediately at -80℃ before being transferred to liquid 

nitrogen storage. 

 

To recover cells from liquid nitrogen storage, cells were quickly defrosted in a 

37℃ waterbath. Cells were then pelleted by centrifugation at 1,000rpm for 5min. 

After centrifugation, the upper freezing mix was removed and cells were re-

suspended in warm fresh cell culture medium. Re-suspended cells were then 

plated and allowed to recover for at least 2 days before use.  

 

2.2.5(Transfection(

 

All cells were transfected by nucleofection using Amaxa Nucleofection Kit (Lonza). 

For A431 cells Kit T was used. For B16F10 and MCF7 cells Kit V was used. Cells 

were transfected according to manufactures’ instructions. Briefly, 1x106 A431 cells, 

2x106 B16F10 or MCF7 cells were pelleted by centrifugation and re-suspended in 

100µl room temperature appropriate Nucleofector solution. Appropriate amount of 

DNA or RNA was then added to the mixture. For transfection of all GFP 

constructs, 2ug plasmid DNA was used. For siRNA transfections 10ul of the 20µM 

siRNA stock was used. The mixture was then transferred to a cuvette and 

transfected on a Nucleofector device using an appropriate programme for each 

cell type. Cells were subsequently re-plated and allowed to recover for at least 24 

hours before next experiments. For transient known down experiments with 

siRNAs, cells were transfected again 48 hours after the initial transfection to 

achieve the best effects of RNAi. Fusion protein constructs and siRNAs used are 

listed below (Table 2.1&2.2). 
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Table 2.1 List of fusion protein constructs 

 
 
 
 
 

 
 
Table 2.2 List of siRNAs 

All siRNAs are human specific.  
 (
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2.2.6(Stable(cell(line(selection(

 

To establish cell lines stably expressing shRNA, all shRNA plasmids were first 

transfected into cells. Transfected cells were first cultured in normal cell culture 

media for two days before being selected with puromycin (InvivoGen) containing 

cell culture media. For selection of A431 stable cell lines, 3µg/ml puromycin was 
added to the cell culture media. For MCF7 stable cell line selection, 1µg/ml 
puromycin was used in the cell culture media. Once stabilized, cells were 

maintained in the same selection culture media. shRNAs used are listed below 

(Table 2.3).    
 

 

Table 2.3 List of shRNAs 

All shRNAs are human specific.   

(

2.2.7(Soft(agarose(growth(assay(

 

To set up soft agarose growth assay or anchorage independent growth assay, 2ml 

1% hot agarose in water was first added to each well of a 6-well plate. Agarose 
was then allowed to set at room temperature for 30min. Meanwhile, 0.3% hot soft 
agarose was prepared and maintained in 37℃ water bath. Then 10000 cells were 
suspended in 1.5ml 0.3% soft agarose and added to each well of the plate with set 
agarose. The agarose-cell mixture was allowed to set at room temperature for 
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30min. Cells were then cultured in 2ml cell culture medium for indicated times to 
form colonies in a humidified atmosphere at 37oC and 5% CO2. 1µM FAK inhibitor 
(PF-562271) from Symansis in DMSO was added to both agarose and cell culture 
medium in this assay to suppress FAK activation. 
 

2.2.8(Cell(growth(assay(

 

On day 0, 5x105 A431 cells were plated in each well of 6-well plate. The number of 

cells was counted every day for 5 days with a CASY cell counter (Roche).   

 
 

2.3(Protein(analysis(

2.3.1(Protein(extraction(

 

To extract protein of cells cultured on tissue culture dish, cells were placed on top 

of ice and washed briefly with PBS before being lysed with ice-cold TNE buffer 

(150 mM NaCl, 50mM Tris-HCl ph7.5, 1%Triton X-100 and 1mM EDTA) 

supplemented with fresh Halt protease inhibitor cocktail and Halt phosphatase 

inhibitor cocktail (Pierce). Cells were scraped from tissue culture dishes using cell 

scrapers and lysate was collected into eppendorf tubes. Lysate was incubated on 

ice for about 5min before centrifugation at 13,000rpm for 10min at 4℃. Clear cell 

lysate was then collected for further analysis.  

 

To extract protein of cells cultured in collagen gel, whole gel was first emerged in 

300µl ice-cold TNE buffer with proteases and phosphatase inhibitors in a Precellys 

24 Lysing tube. The sample was then homogenized with an electronic 

homogenizer (Precellys 24, Stretton Scirntific Ltd). The Lysate was incubated on 

ice for 5min before centrifugation at 13,000rpm for 10min at 4℃. Clear cell lysate 

was then collected for further analysis.    
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2.3.2(Protein(concentration((

 

All protein cell lysates were tested for protein concentration before protein 

separation using Prescision red advanced protein assay (Cytoskeleton. Inc,). 

Briefly, 10µl cell lysate was mixed with 1ml Prescision red reagent and protein 

concentration (the absorbance at 600nm X10) was read using a spectrometer. All 

cell lysates were then diluted to equal concentration with appropriate ice-cold lyse 

buffer before protein separation. 

 

2.3.3(Protein(separation((

 

For protein separation by polyacrylamide gel electrophoresis (SDS-PAGE), 

NuPAGE LDS Sample Buffer and NuPAGE Reducing Agent (Invitrogen) were 

added to cell lysate to make a 1X solution and boiled at 90℃ for 10min. Samples 

were then resolved using precast Novex Bis-Tris Mini Gels (10% or 4%-12%, 

Invitrogen) with NuPAGE MOPS SDS Running Buffer (Invitrogen) at 180V for up 

to 80min in a mini gel tank. 10µl Novex Sharp Pre-stained Protein Standard 

(Invitrogen) was used to mark protein sizes.     

 

2.3.4(Western(blotting((

 

For subsequent antibody probing, separated proteins were first transferred from 

the min gel to a methanol activated Hybond-P PVDF membrane (GE Healthcare) 

with NuPAGE Transfer Buffer (Invitrogen) at 250mA for 180 min. The membrane 

was blocked using 5% BSA in TBST (150 mM NaCl, 10mM Tris-HCl, pH 7.4, 

2.7mM KCl, 0.1%Tween 20) for 10min at room temperature. Primary antibodies 

were diluted to a suitable concentration in 5%BSA/TBST (Table 2.4). Blocked 

membrane was then incubated with diluted primary antibody at 4℃ overnight. To 

remove excessive primary antibody, the membrane was washed 3 times in TBST 

with gentle agitation at room temperature. The membrane was then incubated with 

anti-Rabbit or Mouse IgG HRP (horseradish peroxidase) linked secondary 

antibody (Cell Signaling Technology) at a 1:5,000 dilution in 5%BSA/TBST for 1 

hour at room temperature. To remove excessive secondary antibody, the 

membrane was washed 3 times in TBST again. Finally, the membrane was blotted 
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using SuperSignal® West Pico Chemiluminescent Substrate (ECL) (Thermo 

Scientific), and was exposed to X-Ray film (Fuji Film) and developed. 

 

 
Table 2.4 List of primary antibodies used for western blotting 

 
 

2.3.5(Native(protein(complex(extraction(and(separation((

 

All reagents used for native protein complex extraction and separation were from 

Invitrogen unless stated otherwise. 

 

To extract native protein complex from cells cultured on tissue culture dish, cells 

were placed on top of ice and washed briefly with ice-cold PBS before being lysed 

with ice-cold NativePAGE Sample Buffer supplemented with 10% DDM (n-Dodecyl 

β-D-Maltoside) and proteases and phosphatase inhibitors. Cells were then 

scraped and lysate was collected as usual. Native cell lysate was incubated on ice 
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for 5 min then centrifuged at 13,000rpm for 10min at 4℃. Clear cell lysate was 

then collected for immediate protein separation using Blue NativePAGE. Prior to 

separation at room temperature, the protein concentration of native cell lysate was 

tested and equalized as described above. 1µl NativePAGE 5% G-250 Sample 

Additive was added to every 20µl native cell lysate just before protein separation. 

Samples were then resolved using precast NativePAGE Novex 3%-12% Bis-Tis 

Gel. Samples were first allowed to electrophoresis for 10min at 150V with 

NativePAGE Running Buffer at the anode and NativePAGE Running Buffer with 5% 

NativePAGE Cathode Additive at the cathode of the mini gel tank.  The 

electrophoresis was then paused to change the cathode buffer to NativePAGE 

Running Buffer with 0.5% NativePAGE Cathode Additive. Finally the 

electrophoresis was continued for at least 2 hour to resolve native protein 

complexes. Subsequent transfer of separated protein complexes and western 

blotting were performed as usual.    

 

2.3.6(Immunoprecipitation((

 

For immunoprecipitation (IP), at least 3x106 cells cultured on 10cm tissue culture 

dish were lysed as described above. Cell lysates were used immediately for IP. 

Appropriate amount of primary antibody and corresponding control anti serum was 

added to cell lysates. The mixture was then incubated at 4℃ rotating wheel at 

15rpm for 3 hours. Meanwhile, protein A or G-Sepharose beads were prepared by 

washing twice in 1% BSA/PBS, and three times with TNE buffer with centrifugation 

at 2000rpm at 4℃ after each wash. Beads were then suspended in TNE buffer 

and an appropriate amount of beads were added to cell lysate after the initial 3-

hour incubation. The mixture was incubated at 4℃ rotating at 15rpm overnight. To 

recover the bound protein, beads were collected by centrifugation at 2000rpm at 

4℃. The supernatant was removed and discarded. The beads were washed three 

times with ice-cold TNE buffer with centrifugation at 2000rpm at 4℃ after each 

wash. To release bound protein from beads, suitable amount of TNE buffer 

supplemented with NuPAGE LDS Sample Buffer and NuPAGE Reducing Agent 

was added to beads. The whole mixture was then boiled at 90℃ for 10min. The 

resulting solution was subjected to usual SDS-PAGE and western blotting. 1µg 

Mouse anti-HSPC300 antibody (Alexis Gautreau) and 2µg GFP-trap (Chromotek) 

was used for IP. 
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2.3.7(Effector(domain(pulldown(assay(

 

For effector domain pulldown assay, cell lysate was prepared in the same way as 

for IP. 10µl Glutathione-agarose immobilized GST-PAK1-PBD beads were added 

to the cell lysate. The mixture was incubated at 4℃ rotating at 15rpm for 1 hour. 

Bound active Rac1 and Cdc42 were released from the beads as described above, 

and analysed using SDS-PAGE and western blotting.  

 

2.3.8(Rac1(Activation(Assay(

 

G-LISA Rac1 activation assay biochem kit (luminescence format, Cytoskeleton, 

Inc) was used for quantitative Rac1 activation measurement. The assay was 

performed following manufacture’s protocol. Briefly, spreading cells on collagen-

coated 6-well plates were washed with ice cold PBS and lysed using ice cold lysis 

buffer at indicated time points. Cell lysates were collected with a cell scraper and 

transferred to 1.5ml tubes on ice. The lysate was clarified by centrifugation at 

14,000rpm at 4℃ for 2min. Concentrations of lysates were measured immediately 

using Prescision red advanced protein assay (Cytoskeleton. Inc,). The 

concentrations of cell lysates were then equalized. The Rac1 affinity plate was 

prepared by dissolving the powders in the wells with 100µl ice cold water. 

Meanwhile 30µl ice cold binding buffer was added to 30µl cell lysate. The water 

was then removed from the Rac1 affinity plate before adding 50µl cell lysate mix to 

respective wells. 25µl lysis buffer + 25µl binding buffer mix was used as a blank 

control, and 2ng purified active Rac1 was used as a positive control. The plate 

was then placed on a microplate shaker at 400rpm, 4℃ for 30min. The solution 

was then removed from the plate and washed twice with wash buffer at room 

temperature. 200µl antigen presenting buffer was then added to each well and 

incubated at room temperature for 2min. Wells were then washed three times with 

wash buffer before adding 50µl anti-Rac1 primary antibody (1:250) to each well. 

The plate was then incubated on an orbital microplate shaker 400rpm at room 

temperature for 45min. The primary antibody was removed and wells were 

washed three times with wash buffer at room temperature. 50µl diluted secondary 

HRP-linked antibody (1:200) was added to each well before shaking the plate on a 

microplate shaker 400rpm at room temperature for 45min. The plate was then 

washed three times with room temperature wash buffer before adding 50µl HRP 
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detection reagent to each well. The luminescence signal was detected using a 

microplate luminescence reader.  
 

 

 

2.4(Motility(Assays(

2.4.1(Wound(healing(assay((

 

To set up wound healing assays, a large wound was first created on a monolayer 
of cells cultured on glass bottom dish (MatTek) with a cell scraper. The wounded 
monolayer was then washed twice with fresh cell culture media to remove debris. 
Cells were then subjected to time lapse imaging for 24 hours after wounding using 
a Nikon TE2000 microscope with a Nikon Plan Fluor 10X/0.30 NA objective in a 
37℃ chamber with 5% CO2. 
 

2.4.2(Wound(healing(induced(Matrigel(invasion(assay((

 

A monolayer of cells cultured on glass bottom dish was wounded with a cell 
scraper. Debris was removed by washing with fresh cell culture medium. After the 
last wash, remaining media was carefully removed using an aspirator. 500µl ice-
cold Matrigel (BD Biosciences) mixed with ice-cold PBS (1:1) was immediately 
added atop the wounded monolayer. Matrigel was then allowed to polymerize for 1 
hour at 37℃ before adding 2ml warm cell culture medium. The setup was then 
subjected to time lapse imaging for 24 hours using a Nikon TE2000 microscope 
with a Nikon Plan Fluor 10X/0.30 NA objective in a 37℃ chamber with 5% CO2. 
 

2.4.3(Cell(spreading(assay(

 

Before the spreading assay, glass bottom dishes were first coated with collagen 
Type 1 (BD Biosciences). Collagen was diluted in 0.02M acetic acid at a 
concentration of 3µg/ml. Glass bottom dishes were then coated with diluted 

collagen for 1 hour at 37℃ before washing with PBS to remove excessive acetic 
acid. 1x104 cells suspended in 3 ml warm cell culture medium were then added to 
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the collagen-coated dish. Cell spreading was imaged immediately using a Nikon 
TE2000 microscope with a Nikon Plan Fluor 10X/0.30 NA objective in a 37℃ 
chamber with 5% CO2.     
 

2.4.4(Organotypic(invasion(assay(

 

Organotypic invasion assay was set up as described (Timpson et al., 2011). 
Briefly, collagen type 1 from rat tail tendons was extracted with 0.5M acetic acid at 
4℃ for 48 hour with stirring. Debris were removed by centrifugation at 7,500xg for 
30min. Collagen was precipitated by equal volume of 10% (W/V)NaCl, and 
collected by centrifugation at 10,000xg for 30min. Collagen was re-dissolved in 
0.25M acetic acid at 1:1  with stirring at 4℃ for 24 hours. Collagen solution was 
dialyzed against 17.5mM acetic acid with 6-8 changes at 4℃. The concentration of 
the rat-tail collagen was adjusted to 2mg/ml and stored at 4℃. All subsequent 

collagen-mixing procedures were carried out on ice. 25ml rat-tail collagen was 

mixed with 3ml 10X MEM (Invitrogen) and 3ml 0.22M NaOH to adjust pH of the 

collagen, before mixing with 1X106 primary fibroblasts (Paul Timpson). 2.5ml of 

the fibroblasts containing collagen was added to 35mm plastic tissue culture dish, 

and allowed to set at 37℃ for 30min in a humidified atmosphere with 5% CO2 
before adding 1ml fibroblast growth media (DMEM+10%FBS). To permit gel 
contraction by fibroblasts, collagen gel was detached from the sides of tissue 

culture dish with pipette. The collagen gel was allowed to contract for 8 days. The 

media was changed every other day. Once the gel had contracted to the well size 

of a 24-well plate, the gel was transferred to the 24-well plate. 4x104 cells of 

interest in 1ml cell culture medium were added on top of the collagen gel. The 

cells were then allowed to grow to confluence. Once confluent the gel was moved 

atop a stainless steel grid standing in a 6cm tissue culture dish. Normal cell culture 

medium of the cell of interest was then added to the 6cm tissue culture dish to just 

contact the bottom of the collagen gel creating a liquid/air interface. The interface 

creates a gradient promoting cell invasion. The medium was replaced every two 

days. For A431 cells, cells were allowed to invade for 3 weeks.         
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2.4.5(3D(collagen(gel(invasion(assay(

 

Acid extracted rat-tail collagen 2mg/ml (the same as organotypical assay) was 

mixed with ice-cold 10X MEM and ice-cold 0.22M NaOH at 8:1:1 . 5x105 cells 

were then mixed with the ice-cold collagen mixture in the well of a 96-well tissue 

culture plate. The collagen-cell mix was allowed to set at 37℃ for 1 hour in a 

humidified atmosphere with 5% CO2. The polymerized gel (cell plug) was then 

carefully removed and transferred to a well of a 24-well tissue culture plate with 

1ml ice-cold collagen. The cell plug was placed at the center of the well in 

suspension, so it was not touching the bottom or the sides. Collagen was allowed 

to set at 37℃ for 1 hour in a humidified atmosphere with 5% CO2 before adding 

1ml cell culture media. A431 cells were allowed to invade in this assay for 5 days. 

hTRET-RPE1 cells were allowed to invade for 2 days.       

 

2.4.6(Thick(collagen(gel(invasion(assay(

 

Acid extracted rat-tail collagen or concentrated rat-tail collagen type 1 (BD 

Biosciences) (diluted to 2.2mg/ml with ice-cold PBS before use) was mixed with 

10X MEM and 0.22M NaOH as described above. For visualization of polymerized 

collagen, FITC conjugated Collagen Type 1 was added to the mixture at 1:1000  

when needed. 500µl collagen was added to a well of a 24-well tissue culture plate 

and allowed to set at 37℃ for 1 hour in a humidified atmosphere with 5% CO2 

before adding 2x104 cells in 1ml cell culture media. Cells were then cultured for 3 

days allowing invasion to the top of the thick collagen gel.  
 
 

2.5(Imaging(
 

2.5.1(MatrixIcoated(glass(bottom(dish((

 

For all imaging samples, when required, 14.5µg/ml human fibronectin (BD 

Biosciences) in PBS was used to coat the glass bottom dishes at 37℃ for 1hour. 
Fibronectin-coated dishes were washed once in PBS before use. Alternatively, 

Collagen Type 1 (BD Biosciences) was diluted in 0.02M acetic acid at a 
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concentration of 3µg/ml. Glass bottom dishes were then coated with the diluted 

collagen for 1 hour at 37℃ before washing with PBS to remove excessive acetic 
acid. Collagen coated dishes were washed once in PBS before use. 

 

2.5.2(Cell(derived(matrix(

 

Cell derived matrix (CDM) was prepared by the Beatson Institute Central Services 

as previously described (Cukierman et al., 2001, Bass et al., 2007). Briefly, glass 

bottom dishes were coated with 0.2% gelatin at 37℃ for 1 hour followed by cross-

linking with 1% glutaraldhyde in PBS for 30min at room temperature. After three 

washes with PBS, the cross linker was quenched with 1M glycine in PBS for 

20min at room temperature. After three additional PBS washes, cell culture media 

was added to the dish and incubated 37℃ for 30 min. 5x105 NIH 3T3 fibroblasts 

were then seeded and cultured in DMEM +10% FBS+ 50µg/ml ascorbic acid for 8 

days. The media was change daily. Once the matrix was mature, fibroblasts were 

removed using 1.5ml lysis buffer (20mM NH4OH, 0.5%Triton X-100 in PBS). The 

lysate was removed and dishes were washed carefully with PBS. Residual DNA 

was digested with 10µg/ml DNase I (Roche) at 37℃ for 30min in a humidified 

atmosphere with 5% CO2 before washing with Dulbecco’s PBS containing calcium 

and magnesium. Dishes were washed with PBS before adding 5x104 B16F10 cells 

in 2ml cell culture medium to each dish. 

 

2.5.3(Live(cell(imaging((

 

Live cells expressing fluorescently labelled proteins were imaged with an Olympus 

FV1000 confocal microscope with an Olympus UPanSApo 60x/1.35 NA oil 

immersion objective. TIRF (Total internal reflection fluorescence microscopy) 

imaging of live cells were performed on a Nikon Eclipse TE 2000-U microscope 

equipped with 60X and 100X 1.45 NA Nikon TIRF oil-immersion objectives (Nikon 

Eclipse TE 2000-U TIRF microscope). Glass bottom dishes with live cells were 

kept in a stage heater at 37℃ and supplied with 5% CO2 during imaging. For 

B16F10 cells, 5x104 cells in 2ml cell culture medium were added to fibronectin- or 

collagen- coated 35mm glass bottom dishes one day before live cell imaging.  
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2.5.4(Immunofluorescence((

 

For immunofluorescence (IF), cells cultured in all assays were fixed with 4% 

formaldehyde for 15min at room temperature. Excessive formaldehyde was 

removed and samples were washed three times with PBS before permeablizing 

with 0.1% Triton X-100 in PBS for 15min at room temperature. After washing with 

PBS for three times, primary antibodies diluted in PBS were added to samples and 

incubated at room temperature for 1hour (Table 2.5). Excessive primary 

antibodies were then removed and samples were washed three times with PBS. 

Fluorescently labelled secondary antibodies or rhodamine phalloidin diluted in 

PBS were then added to samples and incubated at room temperature for 1hour 

(Table 2.5). Samples were then washed three times with PBS.  

 

For samples in glass bottom dishes, 1ml PBS was preserved in the dish for 

subsequent imaging with a Nikon Eclipse TE 2000-U TIRF microscope with a 

Nikon Plan Apo TIRF 100x/1.45 NA oil immersion objective or an Olympus 

FV1000 confocal microscope with an Olympus UPanSApo 60x/1.35 NA oil 

immersion objective. For cells invading atop the thick collagen gel assay, prior to 

imaging, the gel was removed from the 24-well cell culture plate, inverted and 

placed gently on a glass bottom dish, so cells were close to the glass. The 

inverted gel was then imaged with an Olympus FV1000 confocal microscope.   
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Table 2.5 List of antibodies and phalloidin used for IF. 
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2.5.5(Fluorescent(gelatin(degradation(assay(

 

Glass bottom dishes were acid washed in 1M HNO3 for 5min. The acid was 

removed with extensive wash by PBS followed by one wash with ethanol. The dish 

was coated with 50µg/ml poly-L-lysine for 15min at room temperature. The dish 

was then washed three times with PBS, and cross-linked with 0.5% glutaraldehyde 

for 15min. Dishes were then coated with Alexa Fluor 488 conjugated gelatin 

(Invitrogen) at 37℃ for 10min. Excessive gelatin was removed and dishes were 

washed three times with PBS. 5mg/ml sodium borohydride was then added to 

quench residue glutaraldehyde for 3min before washing three times with PBS. The 

dish was sterilized in 70% ethanol for 5min followed by incubation in cell culture 

medium for 1hour at 37℃ in a humidified atmosphere with 5% CO2 before use.  

 

For RPE1 cells, 5x104 cells were seeded on the fluorescent gelatin coated dish in 

2ml cell culture medium containing 5µM GM6001 metalloprotease inhibitor. The 

cells were then cultured overnight. GM6001-containing medium was then removed 

and cells were washed carefully in PBS for three times. Fresh normal cell culture 

medium was then added to the dish and cells were allowed to degrade the gelatin 

for 1.5hour before being fixed and processed for imaging. 
 

 

2.6(Xenografts(and(Immunohistochemistry(

2.6.1(Xenograft((

 

All experiments were performed according to UK Home Office regulations. The 

Beatson Institute Animal House Services kindly performed injection of A431 stable 

cell lines into nude mice. 1x106 cells suspended in PBS 100µl PBS were 
subcutaneously injected into the flanks of 5 nude mice per cohort. Tumour 
diameters were measured daily from when tumours first appeared and mice were 
humanely killed when tumour diameter reached 1.5cm. Tumours were then 
excised and processed for histology.  
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2.6.2(Immunohistochemistry((

 

For immunohistochemistry (IHC), formalin fixed paraffin-embedded tumour 

sections were first de-waxed in xylene for 10min, and re-hydrated by washing in 

decreasing concentration of ethanol (100%, 95% and 70%). Antigen was then 

retrieved by cooking the tumour section in 800ml pre-heated citrate buffer pH6.4 

(Dako) in a pressure cooker for 12min in a microwave oven. Samples were left to 

cool at room temperarure for 30 min, and rinsed in water. Samples were 

subsequently blocked in 0.03% hydrogen peroxide (Dako) for 10min followed by 

washing in TBST twice. 5% goat serum in TBST was then used to block the 

sample again for 30min. Samples were then incubated with primary antibody 

diluted with 5% goat serum in TBST at 4℃ overnight. The primary antibody was 

removed by washing in TBST twice. Peroxidase-labelled polymer (EnVision 

Detection Systems Peroxidase/DAB, Rabbit/Mouse, Dako) was then incubated 

with the sample for 30min at room temperature. Following three washes in TBST, 

the staining was visualized with liquid DAB + substrate-chromogen solution (Dako) 

according to manufacture’s introduction. Stained samples were counterstained in 

Meyers Heamatoxylin for about 30 seconds, before being washed in Scott’s tap 

water and dehydrated in increasing concentration of ethanol (70%, 95% and 

100%). Finally samples were washed in xylene for 10min and subjected to mount 

with histomount (National Diagnostics).  

 

2.7(RNA(analysis(

2.7.1(RNA(extraction((

 

Total RNA was extracted from A431 cells using absolutely RNA Miniprep Kit 

(Stratagene) following the manufacturer’s protocol. Briefly, 350µl of lysis buffer 

containing 2.5µl of fresh β-Mercaptoethanol was used to lyse cells cultured in 6-

well plate. Centrifuging through an RNA binding spin cup isolated RNA in the 

lysate. Residue DNA was removed by on-column-digest with DNase I  (Roche) at 

37℃ for 15min. RNA was then eluted in 30µl of elution buffer and collected in a 

1.5ml tube. RNA concentration was measured using a Nanodrop 

spectrophotometer (GE Healthcare). 
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2.7.2(Quantitative(RTIPCR(((

 

Purified RNA samples were subjected to One-step RT-PCR (Qiagen) following the 

manufacturer’s protocol to test and quantify mRNA expression level. 100ng of 

RNA, 7.5µl of SYBR green Master Mix, 0.375µl of a 20µM predesigned QuantiTect 

primer mix (Qiagen), 0.15µl QuantiTect RT-mix, and appropriate amount of 

RNase-free water were mixed in a total reaction volume of 15µl. All RNA samples 

were run in triplicate on a Rotor-Gene RG-3000 (Corbett Research) real time 

cycler using following protocol, 50oC/20min (reverse transcription), 95oC/15min 

(polymerase activation), then 50 cycles of 94oC/15s, 55~60oC/30s (using specific 

annealing temperatures for different primer sets), 72oC/30s and finish at 72oC for 

5min. A standard curve was generated for each primer set using serial dilutions of 

cDNA. Relative expression values were normalized to mRNA level of GAPDH. 

Predesigned QuantiTect primers (Qiagen) were used for NHS detection, and 

GAPDH control.     
 

2.8(Plasmid(Purification(
 

Bacteria glycerol stocks (E.coli, DH5a) of various over expression constructs and 

shRNA constructs were recovered in 200ml Luria Broth (LB) with appropriate 

antibiotics (100µg/ml Ampicillin or 50µg/ml Kanamycin). The culture was 

inoculated for 8 hours at 37℃ with vigorous shaking. Bacteria were collected by 

centrifugation at 5,000rpm at 4℃ for 20min. The bacteria pellet was then 

subjected to plasmid purification with GenElute HP Plasmid DNA Midiprep Kit 

according to manufactures’ protocol. Briefly, the bacteria pellet was re-suspended 

in re-suspension solution and lysed with lysis solution. After neutralization, debris 

in cell lysate was removed by passing the lysate through a filter syringe. Clear cell 

lysate was collected in a DNA binding column that was connected to a vacuum 

scaffold. As the cell lysate aspirated by the vacuum, plasmid DNA bound the DNA 

binding column. The column was then washed twice with the two wash solutions. 

The column was left to try on the vacuum scaffold for 10min. Purified plasmid DNA 

was then dissolved in 500µl elution solution and collected in a 1.5ml tube by 
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centrifugation at 3,000xg for 5min. The plasmid DNA concentration was measured 

using a Nanodrop spectrophotometer (GE Healthcare).    

2.9(Quantification(and(Statistics(
 

Scanned images of western blots were inverted and quantified using histogram 

mean function in Adobe Photoshop CS5.1. A constant area of selection was 

applied to the bands of interest during quantification.  

 

Cell invasion distance and invasion area, area of wound closure, cell area during 

spreading, colony diameter and number in soft agarose assay, focal adhesion size 

and number were measured using ImageJ.  

 

The fluorescence intensities of protein enrichment at pseudopods were measured 

using ImageJ. Pseudopods of invading cells were selected randomly based on 

actin structures. The same area of selection was applied to different channels of a 

multi-channel image. The relative fluorescence intensity was the  of mean 

pseudopod fluorescence intensity to mean cytosolic background.  

 

For fluorescent gelatin degradation assay, the area of degradation was quantified 

using a purpose built Image J plug-in (Manuel Forero-Vargas, unpublished data).  

 

For all quantifications, differences were considered significant when p<0.01 using 
unpaired Students t-test.  
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Chapter(3:(Localization(of(WRC(
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3.1(Introduction(
 
At the leading edge of a migrating cell, WRC promotes Arp2/3 complex activation 

to generate lamellipodia. The localization of WRC at the advancing membrane 

protrusions has been studied in multiple systems. In cultured Drosophila cells, 

endogenous Scar protein localizes to the leading edge of the lamellipodia, and at 

the tips of filopodia. Identical localization of Kette, which is the Drosophila ortholog 

of Nap1, has also been found in cultured Drosophila cells (Kunda et al., 2003). In 

mammalian cells, WRC also localizes to tips of membrane protrusions, as Sra1 

and Nap1 localize to the leading edge of lamellipodia (Steffen et al., 2004). 

However little information is available about the dynamics of WRC in live cells, as 

most studies report endogenous protein localizations in fixed cells. As cell 

migration is a dynamic process, it is important to know the dynamics of WRC in 

motile cells. Additionally, the localization of WRC in cells migrating in a 3D 

environment has not been explored.  
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3.2(Localization(of(WRC(in(live(cells(
 

To study the localization of WRC in live cells, GFP labeled WRC components, 

were expressed in a highly motile mouse melanoma cell line, B16F10. I first tested 

if a GFP WRC probe could be used to accurately represent the complex 

localization. As Scar2 is the major Scar protein expressed in mammalian cells, 

GFP tagged Scar2 construct was used. The localization of the GFP fusion protein 

was tested in B16F10 cells co-expressing RFP-Actin. On fibronenctin (FN) coated 

glass bottom dishes, these B16F10 cells generated large lamellipoida at the cell 

front. Scar2-GFP localized nicely to the leading edge of lamellipoida and the tips of 

filopodia consistent with the reported localization of WRC (Figure 3.1A). Similarly, 

when the same cells were plated on collagen (CO) coated glass bottom dish, 

Scar2-GFP localized to the leading edge of lamellipodia and the tips of filopodia 

too (Figure 3.1B).  

 

Figure 3.1 Localization of Scar2 in B16F10 cells 

All panels show B16F10 cells. Confocal micrographs of Scar2-GFP (green) and 
RFP-actin (red) expressing cells migrating on (A) fibronectin (FN) or (B) collegen 
(CO) coated glass bottom dish. On both substrates Scar2-GFP localized to 
lamellipodia leading edge and filopodia tips. Scale bar A 10µm, B 5µm.   
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To verify the localization of Scar2-GFP, PIR121-GFP was expressed in B16F10 

cells. When PIR121-GFP expressing B16F10 cells were allowed to migrate on FN 

coated glass bottom dish, PIR121-GFP demonstrated identical localization to the 

leading edge of lamellipoida and the tips of filopodia when compared with Scar2-

GFP (Figure 3.2A&B). To confirm Scar2-GFP represented WRC, Abi1-RFP was 

co-expressed with Scar2-GFP in B16F10. When cells were allowed to migrate on 

fibronectin coated glass bottom dish, Abi1-RFP and Scar2-GFP demonstrated 

complete co-localization at the leading edge of lamellipodia (Figure 3.2C). 
Collectively, Scar2-GFP is believed to accurately represent WRC localization in 

live cells. As PIR121-GFP and Abi1-RPF had very low expression levels in 

B16F10 cells, Scar2-GFP was used in subsequent experiments to localize WRC. 
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Figure 3.2 Scar2-GFP represents WRC localization 

Confocal micrographs of cells expressing (A) PIR121-GFP (green) and actin-RFP 
(red), (B) Scar2-GFP (green) and actin-RFP (red), (C) Scar2-GFP (green) and 
Abi1-RFP (red). All fluorescent probes of WRC subunits had leading edge 
localization. All panels show B16F10 cells. Scale bar 10µm. 
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The dynamics of Scar2-GFP in B16F10 cells migrating on fibronectin coated glass 

bottom dish was studied using confocal microscopy. Interestingly, in addition to the 

leading edge, Scar2-GFP also localized to traveling waves at the back of the 

leading edge. While most waves at the back of the lamellipodium moved in a 

random fashion, waves closer to the leading edge moved towards the cell front 

(Figure 3.3A). Kymograph revealed that waves at the cell front traveled at the 

same speed (1.96±0.199µm/min) as the protruding leading edge, however these 

waves never reached the leading edge. When the leading edge collapsed, the 

traveling wave also moved backwards and dispersed (Figure 3.3B). It is reported 

that, at least in human neutrophils, WRC forms propagating waves at the bottom 

of cells. These waves move towards cell periphery to promote lamellipodium 

formation (Weiner et al., 2007). To verify this behavior, the localization of WRC in 

live B16F10 cells was also studied using TIRF microscopy. While propagating 

waves of Scar2-GFP were observed at the cell-glass interface, these waves 

moved randomly beneath the nucleus (Figure 3.3C). Therefore, at least in B16F10 

cells traveling Scar2-GFP waves do not contribute to the formation of 

lamellipodium. They are likely small membrane ruffles generated by WRC at the 

dorsal and ventral surface of migrating cells.    
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Figure 3.3 WRC dynamics in live cells 

(A) Still micrographs of a confocal time lapses movie showing WRC dynamics at 
the leading edge and on the little traveling wave (arrow). Cells co-expressing 
Scar2-GFP as a marker for WRC, and Lifeact-RFP for F-actin were imaged. Still 
micrographs at indicated time points were pseudo-coloured accordingly and 
merged to form an image showing WRC dynamics. Scale bar 3µm. (B) Kymograph 
of Scar2-GFP in a migrating cell. Scale bar 10µm. (C) TIRF micrograph showing a 
travelling wave of Scar2-GFP just under the nucleus. Scale bar 10µm. All panels 
show B16F10 cells. 
 

  



! ! !84!

Lipids and active Rac1 activates WRC on the plasma membrane. Interestingly, 

Scar2-GFP was observed to frequently fall off from the membrane, without 

causing the expanding membrane to retract. A small bud of Scar2-GFP was first 

formed on the membrane. At this point the bud was still tethered to the membrane. 

However in just a few seconds, the bud broke away from the membrane, and 

moved towards the cell body (Figure 3.4). Since this movement of Scar2-GFP 

was against the direction of expanding leading edge, it was likely an active 

process of transporting WRC back to the cytosol. In contrast, no active delivery of 

WRC to the leading edge was observed using the Scar2-GFP probe.   

 

 

Figure 3.4 Internalization of WRC 

Confocal micrograph showing Scar2-GFP labelled WRC (arrow) moving away 
from the leading edge of a B16F10 cell. Scale bar 10µm.  
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To exam WRC localization in live cells in 3D, B16F10 cells expressing Scar2-GFP 

were cultured on cell derived matrix (CDM). Cells generated long membrane 

protrusions on CDM. At the tips of these protrusions, multiple small ruffles were 

formed (Figure 3.5A). WRC localized to the edge of these small ruffles, as shown 

by strong Scar2-GFP localization (Figure 3.5A). Similar to the localization in 2D, 

little Scar2-GFP waves were also observed at the back of the membrane ruffles 

(Figure 3.5B). As the Scar2-GFP rich membrane ruffles moved forward, the whole 

cell migrated (Figure 3.5A). It is possible that WRC promotes extension of long 

protrusions by forming membrane ruffles at pseudopods tips in 3D. 

 

Figure 3.5 WRC localization on CDM 

All panels show B16F10 cells. (A) Confocal micrograph showing WRC localization 
to membrane ruffle (arrow) at the tips of multiple protrusions when Scar2-GFP 
expressing cells were cultured on CDM. Scale bar 50µm. (B) Enlarged view of a 
thin protrusion in CDM. Scar2-GFP (green) and Lifeact-RFP (red) was co-
expressed in cells to visualize WRC and F-actin respectively. Scale bar 10µm.    
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3.3(Discussion(
 
In this study, WRC in live cells was visualized by using Scar2-GFP as a 

fluorescence probe. In live migrating mouse melanoma cells, WRC mostly 

localized to the leading edge of lamelipodia, and the tips filopodia. This 

observation is consistent with the reported localizations of WRC in fixed cells, and 

can be confirmed using other WRC fluorescence probes in live cells.  

 

WRC can also form propagating waves at the dorsal and ventral surfaces of a 

migrating cell as observed with confocal microscopy and TIRF microscopy 

respectively. Similar waves are also observed in human neutrophils, where the 

propagating waves at the ventral surface contributed to the formation of leading 

edge (Weiner et al., 2007). Traveling actin waves also contribute to leading edge 

protrusion in Dictyostelium cells recovering from latrunculin A treatment (Gerisch 

et al., 2004). In contrast, mouse melanoma cells had small propagating waves 

oscillate at the back of advancing lamellipodia or just under the nucleus without 

contributing to the formation of leading edge. The little waves at the back of 

lamallipodium are most likely to be small membrane ruffles formed by WRC. 

Although the waves under nucleus could also be small membrane ruffles formed 

by WRC, the movement of these ruffles is perhaps restricted by focal adhesions at 

the bottom of cells. In contrast, neutrophils and Dictyostelium cells form relatively 

small/weak adhesions potentially allowing WRC generated ruffles to progress into 

propagating waves to form leading edge. 

 

WRC was also observed to fall from the leading edge in migrating mouse 

melanoma cells. This observation is consistent with a recent report where WRC 

undergoes retrograde flow in a Xenopus laevis cell line (Millius et al., 2012). 

Therefore the retrograde movement of WRC is probably a general phenomenon. 

As Arp2/4 complex is frequently observed to undergo retrograde movement too, it 

is suggested that WRC associates with Arp2/3 complex on the membrane first to 

initiate actin nucleation. WRC/Arp2/3 complex is then removed form the 

membrane by actin retrograde flow (Millius et al., 2012).  
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Chapter(4:(Role(of(WRC(in(3D(cell(migration(

 (
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4.1(Introduction(
 
 
It is well known that 2D cell migration on rigid surfaces requires WRC. Recent 

researches using knockout animal models and cancer samples however reveal a 

more complex picture of WRC function in vivo. During embryonic development, 

depending on the specific tissue or cell type, subunits of WRC can be either pro-

migratory or anti-migratory. For example, Nap1 is required for anterior visceral 

endoderm cell migration (Rakeman and Anderson, 2006) but pre-mature 

expression of Nap1 in cortical neurons prevents cell migration (Yokota et al., 

2007). In epithelial cancers, Sra1 and Scar2 suppresses cancer cell invasion 

(Silva et al., 2009), while HSPC300 is required for cancer cells to invade and 

survive (Escobar et al., 2010). It is therefore important to understand the role of 

WRC in 3D cell motility. Although animal studies have high biological fidelity and in 

this case, can reveal physiologically relevant functions of WRC, it is technically 

more difficult to study molecular mechanisms in vivo. Instead, in vitro systems are 

used. However in this study, to mimic the in vivo three-dimensional environment, 

multiple types of collagen gel based 3D cell culture systems were used to study 

WRC function in 3D cell motility. Using these in vitro systems, loss of WRC was 

found to promote 3D cell motility through a novel N-WASP/Arp2/3 complex 

dependent mechanism. 
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4.2(Loss(of(WRC(promotes(invasion(of(epithelial(cells(

4.2.1(Generation(and(characterization(of(stable(WRC(knockdown(cell(lines(

 

To investigate the role of WRC in epithelial cancer cell invasion, I generated stable 

WRC knockdowns in A431 squamous carcinoma cells, where epithelial properties, 

like cell-cell junctions, are still preserved. To effectively reduce the whole complex 

expression and to avoid off target effects, four components of WRC, namely, 

Nap1, Sra1, PIR121(PIR) and Scar2, were first targeted by various shRNAs. 

Among the resulting stable cell lines, I identified three cell lines with substantial 

Nap1 reduction (Figure 4.1A), two cell lines with substantial PIR121 reduction 

(Figure 4.1B), one cell line with substantial Sra1 reduction (Figure 4.1C), and one 

cell line with substantial Scar2 reduction (Figure 4.1C).  
 

It is unknown how WRC subunits protein expression is regulated, but protein 

stability of many WRC components requires intact WRC. (Escobar et al., 2010, 

Innocenti et al., 2005, Silva et al., 2009, Kunda et al., 2003). In order to test the 

whole complex was indeed disrupted, four stable cell lines, namely shNap (Nap1 

shRNA C), shSra1, shPIR (PIR121 shRNA E) and shScar2, were selected to test 

the protein level of all WRC subunits including various isoforms of some 

components (Figure 4.1C). As a result, shNap1 and shSra1 cells demonstrated 

strong reduction of Nap1, Sra1/PIR121, Scar1/2, but modest reduction of Abi1/2 

and HSPC300. In contrast, shPIR cells only had slight reduction of Scar1/2 and 

Abi2. In Scar2 stable knockdown cells, PIR121 was also dramatically reduced, but 

there was only mild reduction for Nap1 and Abi2. There was also slight reduction 

of HSPC300 in Scar2 knockdown cells. Protein levels of Sra1 and Abi1 were not 

affected by Scar2 depletion. Interestingly, Scar1 protein level was increased in 

Scar2 stable knockdown cells. Collectively, these results suggest various subunits, 

and their isoforms contribute differently to WRC stability, Nap1 and Sra1 are 

among the most important ones required to form the complex. 
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Figure 4.1 Characterizations of WRC shRNAs. 

All panels show A431 cells. (A) Western blot shows three working shRNAs 
targeting Nap1, namely, A, B, C. (B) Western blot shows four shRNAs targeting 
PIR121. Only shRNA, D & E mediated sufficient reduction of PIR121. (C) 
Representative western blots for individual subunits of WRC in shCtl, shNap1 
(shRNA C), shSra1, shPIR (shRNA E) and shScar2 stable knockdown cell lines. 
The blot is representative of at least 3 repeats. Antibody specificity to Sra1 or 
PIR121 was verified using GFP labelled proteins, not shown. 
 

 

To further analyze the total WRC level in the stable knock down cell lines, I 

performed Blue NativePAGE (Schagger et al., 1994) to reveal the native complex. 

An anti-HSPC300 antibody (Derivery et al., 2008) was used for immunoblotting of 

the complex separated by Blue NativePAGE. As HSPC300 has no known isoforms 

in human cells and is an essential part of the complex, using HSPC300 as a probe 

should reveal the total WRC protein level. Consistently, the result confirmed strong 

reduction of total WRC level (approx. 400kDa) in Nap1 and Sra1 stable 

knockdown cells (Figure 4.2A). Because of Scar1 over-expression in Scar2 stable 

knockdown cells, there was only a small reduction of the total complex level in 

these cells. When ‘Scar1 complex’ was probed using Blue NativePAGE, loss of 

Scar2 in fact promoted formation of the ‘Scar1 complex’ suggesting compensation 

from Scar1 protein (Figure 4.2B). Loss of PIR121, however, had little impact on 

the stability of the complex, as there was only a slight reduction of the total 

complex level (Figure 4.2A).  
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Figure 4.2 WRC expression level revealed by Blue NativePAGE 

All panels show A431 cells. (A) Representative Blue NativePAGE probed with an 
anti-HSPC300 antibody showing levels of total WRC in various WRC KD cells. 
Numbers on top of the band show the relative level of the remaining complex. The 
blot is representative of at least 3 repeats. (B) Representative Blue NativePAGE 
probed with an anti-Scar1 antibody showing elevation of Scar1 WRC expression in 
cells depleted of Scar2. The blot is representative of at least 3 repeats. 
 

 

Morphology of these knockdown cells correlated nicely with the complex level, as 

Nap1 and Sra1 knockdown cells demonstrated typical blebby membrane 

phenotype with no lamellipodia, while PIR121 and Scar2 knockdown cells 

maintained the ability to generate membrane protrusions and ruffles (Figure 4.3). 
Although PIR121 and Scar2 depleted cells appeared normal when fixed (Figure 
4.3), time-lapse movies demonstrated that these cells were unable to generate 

stable lamellipodia during spreading and spread more slowly and to a lesser 

extent than non-targetting shCtl cells (Figure 4.4A,B). Nap1 and Sra1 stable 

knockdown cells also had severe spreading defects due to strong defects in 

membrane protrusion formation. Nap1 and Sra1 stable depleted cells (WRC KD 

cells) were therefore selected for subsequent experiments, as they gave the most 

robust loss of WRC subunits (Sra1, PIR121, Nap1, Scar1/2) and reduction of total 

complex levels. 
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Figure 4.3 Morphology of various WRC KD cells  

Stable WRC KD cells in DIC and accompanying TIRF micrograph showing 
rhodamine phalloidin labelled filamentous actin. Scale bar 30µm. All panels show 
A431 cells on collagen coated glass bottom dish. 
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Figure 4.4 Cell spreading defects of various WRC KD cells 

All panels show A431 cells. (A) Representative time points of various WRC KD 
cells spreading on collagen-coated glass dishes. Scale bar 10µm. (B) Cell area of 
WRC KD cells was measured at the start and at indicated time points. 4 cells were 
measured from 4 independent time-lapse movies for each cell line. The relative 
cell size reflects the size at indicated time divided by the size at t=0. (Data points 
are means±SEM, n=4. Curves are fitted with nonlinear regression).  
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4.2.2(WRC(suppresses(epithelial(cancer(cell(invasion(
 

Sra1 expression is reduced in some epithelial cancers and its loss can cooperate 

with Ras to promote invasive carcinomas (Silva et al., 2009). Collagen gel based 

invasion assays were used to test the invasiveness of WRC KD cells. Interestingly, 

WRC KD cells invaded at least 4x deeper into collagen gel organotypic assays 

than non-targeting (NT) control cells (shCtl) and showed much higher relative 

invasion area (Figure 4.5).  This invasive phenotype of WRC KD cells was also 

confirmed in 3D collagen gel invasion assay where a cell plug was fully embedded 

in the collagen gel (Figure 4.6A) (Hotary et al., 2006). WRC KD cells invaded 5-

fold more deeply into the collagen from the plug and showed 8 times higher 

relative invasion area (Figure 4.6B,C). 
 

 

Figure 4.5 WRC KD cells are invasive in organotypcal assays 

All panels show A431 cells. (A) H&E-stained sections of shNap1 and shSra1 cells 
invading into collagen gel in a 3D organotypic assay. Scale bar 100µm. (B) 
Quantification of the relative invasion distance in the organotypic assay. (Data are 
means±SEM, n=24 images from 3 independent assays, **p<0.01). (C) 
Quantification of the relative area of invading cells per field in the organotypic 
assay. (Data are means±SEM, n=5 images from 3 independent assays, **p<0.01).  
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Figure 4.6 WRC KD cells are invasive in 3D collagen gel 

All panels show A431 cells. (A) Phase contrast micrograph demonstrate invasion 
of shNap1 and shSra1 cells in a 3D collagen gel invasion assay. Scale bar 100µm. 
(B) Quantification of 3D collagen gel invasion assay shows the relative invasion 
distance and (C) the relative area of invading cells per field  (Data are 
means±SEM, n=9 images from 3 independent assays, **p<0.01). 
 
 
 
In contrast, the same cells migrated up to 70% slower in 2D planar wound healing 

assays (Figure 4.7). To confirm that increased 3D motility of WRC KD cells was a 

unique response to ECM, which can be a barrier for 3D cell migration, a thick layer 

of Matrigel was added on top of the wound healing assay. Cells were thus required 

to migrate through the Matrigel to close the wound (Yu and Machesky, 2012). 

Interestingly, WRC KD cells showed more rapid invasion in this assay as well 

(Figure 4.8A,B). As GM6001, a metalloprotease inhibitor, retarded WRC KD cell 

motility in this assay (Figure 4.8C), the result suggests that WRC is not limiting for 

invasive migration in this assay. Thus, I conclude that while WRC promotes 

motility in 2D, its depletion does not inhibit and can actually promote invasion in 

multiple types of 3D environment.  
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Figure 4.7 Cell migration defects of WRC KD cells 

(A) Still photos from time-lapse of wound healing assay. Scale bar 200µm. (B) 
Relative area of wound closure of control and WRC (Nap1&Sra1) depleted cells. 
(All data are means±SEM, n=3 independent samples **p<0.01). All panels show 
A431 cells. 
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Figure 4.8 Loss of WRC promotes invasion through matrigel 

(A) Still photos from time-lapse of wound healing induced Matrigel invasion assay. 
Scale bar 200µm. (B) Quantification of the matrigel invasion assay (Data are 
means±SEM, n=8 independent samples, **p<0.01). (C) Metalloproteinase 
inhibitor, GM6001, induces sharp reduction of cell invasion in wound healing 
induced matrigel invasion assay (Data are means±SEM, n=9 independent 
samples. **p<0.01). All panels show A431 cells.   
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4.2.3(Arp2/3(complex(is(required(for(invasion(
 
 
Since WRC drives actin assembly via the Arp2/3 complex, I asked whether the 

mechanism of invasion in WRC depleted cells was Arp2/3 dependent. When cells 

were cultured atop of a thick collagen gel (thick collagen gel invasion assay), 

control cells invaded into thick collagen gel with leading edge cells nearly always 

showing long thin protrusions. In contrast, WRC KD cells generated short actin 

rich protrusions when invading into the collagen gel (Figure 4.9).   

 

Figure 4.9 WRC KD cells produce blunt protrusions in collagen gel 

Stable A431 WRC KD cells invading in FITC collagen gel. Confocal micrographs 
show rhodamine phalloidin labelled filamentous actin (red) and collagen (green). 
Scale bar 10µm. 
 

The presence of Arp2/3 complex in the two types of protrusions was then 

analysed. When a GFP Arp2/3 complex probe, p21-Arc-GFP, was expressed in 

cells, the long thin protrusions produced by control cells in collagen gel contained 

only modest enrichment of Arp2/3 complex at their tips. In contrast, the less 

elongated protrusions (pseudopods) in WRC KD cells had a strong enrichment of 

Arp2/3 complex accumulating in a jagged front (Figure 4.10). It is likely that Arp2/3 

complex rich short protrusions promote the invasion of WRC KD cells in collagen 

gel. 
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Figure 4.10 Loss of WRC promotes Arp2/3 complex localization to cell front 
during invasion. 

Control and WRC depleted cells expressing p21-Arc-GFP (Arp2/3 complex 
marker, green) and stained with rhodamine phalloidin (filamentous actin, red) 
invading into thick collagen gels. Scale bar 10µm. All panels show A431 cells and 
confocal micrographs. 
 

 

To study if Arp2/3 complex was required for the invasion of WRC KD cells, Arp2/3 

complex expression was reduced using siRNAs targeting p34-Arc subunit (Figure 
4.11A). When cells were allowed to invade in the 3D collagen gel invasion assay, 

loss of Arp2/3 complex did not promote the invasion of control cells, while the 

invasion of Nap1 and Sra1 stable KD cells was heavly reduced upon loss of 

Arp2/3 complex. Both the invasion distance and the relative invasion area were 

reduced when Arp2/3 complex was removed from these WRC KD cells (Figure 
4.11B,C,D). Thus, depletion of WRC does not prevent accumulation of Arp2/3 

complex at the front of invading pseudopods.  Moreover, cells depleted of WRC 

can actually invade more efficiently than controls. Arp2/3 complex, in contrast, is 

required for invasion in both control and WRC-depleted cells. 
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Figure 4.11 Arp2/3 complex is required for invasion  

(A) Western blot showing p34-Arc (Arp2/3) level and tubulin control of cells treated 
with a p34 siRNA. (B) Phase contrast micrographs of Nap1 and Sra1 knockdown 
cells invading into collagen gels either with control transient siRNA (siNT) or 
knockdown of Arp2/3 complex (sip34, p34-Arc subunit). Scale bar 100µm. (C,D) 
Quantification of invasion into thick collagen gels (Data are shown as 
means±SEM, n=12 images from 3 independent assays, *p=not significant, 
**p<0.01). All panels show A431 cells. 
 
 (
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4.2.4(NIWASP(activates(Arp2/3(complex(
 
 
The strong presence and requirement for Arp2/3 complex in invasive pseudopods 

in WRC depleted cells raised the question of how Arp2/3 complex was being 

activated in the absence of WRC. In addition to WRC, N-WASP also activates 

Arp2/3 complex to promote actin polymerization at the plasma membrane (Kim et 

al., 2000). N-WASP localization was then studied in WRC KD cells using the thick 

collagen gel invasion assay. N-WASP accumulated with Arp2/3 complex to 

pseudopod tips of WRC depleted cells where both N-WASP and Arp2/3 complex 

relative fluorescence intensity was increased by two fold (Figure 4.12A,B). This 

accumulation of N-WASP and Arp2/3 complex was not simply a reflection of 

increased thickness at the invasive front, as GFP labeled Arp2/3 complex localized 

specifically to actin rich structures, while GFP alone did not (Figure 4.12C). 
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Figure 4.12 Without WRC, N-WASP activates Arp2/3 complex 

(A) Confocal micrographs demonstrate co-localization of endogenous N-WASP 
(anti-N-WASP, blue) and Arp2/3 complex (p21-Arc-GFP, green) and filamentous 
actin (rhodamine phalloidin, red) in WRC depleted or control cells during invasion 
into thick collagen gels. Scale bar 10µm. (B) Nap1 and Sra1 depleted cells had 
increased Actin, Arp2/3 (p21-Arc-GFP) and endogenous N-WASP fluorescence 
intensity in pseudopods relative to shCtl cells. (Data are shown as means±SD, 
n=10 for relative intensity, **p<0.01). (C) Confocal micrographs demonstrate 
cytoplasmic GFP (green), endogenous N-WASP (anti-N-WASP, blue) and 
filamentous actin (rhodamine phalloidin, red) in WRC depleted cells. Scale bar 
10µm. Plot of florescent intensity along the doted line shows no cytoplasmic GFP 
accumulation at the actin/N-WASP rich protrusion. All panels show A431 cells. 
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Co-localization and enrichment of N-WASP with Arp2/3 complex and actin at the 

tip of invasive pseudopods suggests N-WASP dependent activation of Arp2/3. 

Indeed, when N-WASP expression was reduced using siRNAs in Nap1 and Sra1 

stable KD cells (Figure 4.13A), depletion of N-WASP triggered loss of Arp2/3 

localization and reduction of actin enrichment (a 60% reduction in relative 

fluorescence intensity for both) at the cell front of WRC depleted cells suggesting 

loss of Arp2/3 complex function (Figure 4.13B,C,D). When cells were tested in 3D 

collagen gel invasion assay, loss of N-WASP prevented invasion of Nap1 and 

Sra1 stable KD cell, and did not promote invasion of control cells (Figure 4.14). 
Collectively, the data demonstrate that N-WASP accumulation at leading edges of 

cells in 3D matrix drives Arp2/3 complex dependent invasion and that this 

increases in WRC knockdown cells. 
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Figure 4.13 N-WASP is required for Arp2/3 complex localization 

(A) Western blots showing N-WASP levels in cells treated with two separate N-
WASP siRNAs with GAPDH level as control. N-WASP siRNA2 was used for major 
experiments due to better reduction of N-WASP. (B) p21-Arc-GFP (green) 
expressing Nap1 and Sra1 stable knockdown cells were treated with control 
siRNAs (siNT) and N-WASP siRNA (siN-WASP2). Cells were fixed and labeled 
with rhodamine phalloidin for actin (red) and examined by confocal microscopy 
during invasion into thick collagen gels. Scale bar 10µm. (C, D) Loss of N-WASP 
reduced both Arp2/3 (p21-Arc-GFP) and actin accumulation in pseudopods. (Data 
are shown as means±SD, n=5 cells, **p<0.01). All panels show A431 cells. 
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Figure 4.14 N-WASP is required for invasion 

(A) Phase contrast micrographs show invasion of Nap1 and Sra1 stable 
knockdown cells in 3D collagen gel invasion assay after control siRNA or siN-
WASP. Scale bar 100µm. (B) Relative invasion distance and (C) relative area of 
invading cells/field from collagen gel invasion assays. (Data are means±SEM, 
n=12 images from 3 independent assays, *p=not significant, **p<0.01). All panels 
show A431 cells. 
 

As strong and dense actin structures are formed at the invasive front of WRC KD 

cells, I thought that these N-WASP generated actin protrusions might be used 

specifically to navigate through ECM barrier. Strikingly, two Nap1 knockdown cell 

lines (A & C) and the Sra1 knockdown cell line showed N-WASP enrichment at 

cell leading edges in the wound healing induced invasion assay (Figure 4.15). 
However, in a regular wound-healing assay, I saw only very subtle enrichment of 

N-WASP or Arp2/3 complex at leading edges suggesting N-WASP was specifically 

involved in WRC depleted cells migrating/invading against an ECM barrier (Figure 
4.16). Notably, this phenotype was not restricted to individual cells, as the entire 

front of invading cells had N-WASP and Arp2/3 complex enrichment when viewed 

at a lower magnification (Figure 4.16B).  
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Figure 4.15 N-WASP and Arp2/3 complex co-localization in Matrigel invasion 

Confocal micrographs show multiple WRC stable knockdown cell lines invading in 
wound healing induced Matrigel invasion assay. Cells were fixed and stained with 
rhodamine phalloidin for actin (red), N-WASP antibody (green) and p16-Arc 
antibody for Arp2/3 complex (blue). Scale bar 10µm. Images are representative of 
at least 3 independent experiments. All panels show A431 cells. 
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Figure 4.16 N-WASP and Arp2/3 complex localization is invasion specific 

N-WASP and Arp2/3 complex is only localized to the invasive front of WRC 
depleted cells. All panels show A431 cells. (A) Confocal micrographs showing N-
WASP and Arp2/3 complex localization in a standard wound healing assay and (B) 
in wound healing induced Matrigel invasion assay. shCtl, shNap1 and shSra1 cells 
were fixed and stained with rhodamine phalloidin for actin (red), endogenous N-
WASP (green) and endogenous p16-Arc for Arp2/3 complex (blue). Images are 
representative of at least 3 independent experiments. Scale bar 50µm.  
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4.2.5(Loss(of(WRC(promotes(invasion(in(normal(epithelial(cells(

 

Epithelial cancer cells are genetically unstable. To test if WRC also suppresses 3D 

cell motility of normal epithelial cells, WRC was transiently reduced in an 

immortalized normal human retinal pigment epithelial cell line, hTERT-RPE1, that 

is naturally invasive when in contact with collagen type-I (Van Aken et al., 2003). 

After knockdown of Nap1 and Sra1, hTERT-RPE1 showed heavy loss of Nap1, 

Sra1 and Scar2 indicating loss of WRC (Figure 4.17A). Indeed, these cells did not 

generate any lamellipodia-like protrusions after the siRNA treatment, when grown 

on standard tissue culture dish (Figure 4.17B). The result therefore confirms loss 

of WRC function in these treated hTERT-RPE1 cells. These cells were then tested 

for their ability to invade in collagen gel. Consistent with the result obtained from 

A431 cells, WRC depleted hTERT-RPE1 cells invaded deeper into collagen gel in 

the 3D collagen gel invasion assay, and more cells were invading (Figure 
4.17C,D,E). Therefore, WRC loss leads to higher 3D cell motility in various 

epithelial cell lines.  
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Figure 4.17 Loss of WRC promotes invasion of a normal human epithelial 
cell line. 

All panels show hTERT-RPE1 cells. (A) WRC subunit levels in Nap1 and Sra1 
depleted cells using corresponding siRNA. (B) Phase contrast micrographs show 
morphology of WRC KD hTERT-RPE1 cells. Scale bar 20 µm. (C) Phase contrast 
micrographs show 3D collagen gel invasion assay using Nap1, Sra1, and N-
WASP depleted cells. Scale bar 100 µm. (D) Quantification of 3D collagen gel 
invasion assay shows the relative invasion distance and (E) the number of 
invading cells per field (Data are shown as means±SEM, n=12 images from 3 
independent assays. **p<0.01).  
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N-WASP and Arp2/3 complex localization in WRC KD hTERT-RPE1 cells were 

also tested. Consistent with the observation in A431 cells, N-WASP and Arp2/3 

co-localized and enriched at the tips of invasive pseudopods (Figure 4.18A). 
Interestingly, loss of WRC in hTERT-RPE1 cells increased the ability of cells to 

form pseudopods (Figure 4.18B,C), perhaps due to high N-WASP activities. Loss 

of N-WASP in hTERT-RPE1 cells also led to loss of pseudopods when cells were 

cultured in collagen gel (Figure 4.18B,C). Consequently, invasion into the 

collagen gel was also inhibited upon loss of N-WASP (Figure 4.17C,D,E). These 

data suggest N-WASP promotes formation of invasive pseudopod in hTERT-RPE1 

cell too.   
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Figure 4.18 N-WASP promotes pseudopods formation in 3D  

All panels show hTERT-RPE1 cells. (A) Confocal micrographs demonstrate 
localization of endogenous N-WASP (anti-N-WASP, green) and filamentous actin 
(rhodamine phalloidin, red) in control (siNT), siNap1, siSar1, and siN-WASP cells 
during invasion into collagen. Scale bar 10µm. (B,C) Phase contrast micrographs 
show in thick collagen gel invasion assay, depletion of Nap1 and Sra1 promoted 
N-WASP dependent formation of invasive pseudopods (Data are means±SD, n=3 
independent assays. **p<0.01). Scale bar 30µm.   
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4.2.6(Rac1(and(Cdc42(activation(status(in(the(absence(of(WRC(

 

N-WASP is activated by Cdc42 and reportedly by Rac1 as well (Tomasevic et al., 

2007). Due to the predominant N-WASP localization to the invasive front in WRC 

KD cells, the activation status of both small GTPases was tested in Nap1 and Sra1 

stable KD cells. To measure small GTPases activation when cells were actively 

trying to make membrane protrusions, cells were first cultured in suspension then 

they were allowed to spread on collagen-coated dishes. Rac1 activation status at 

multiple time points of spreading cells was tested using a quantitative Rac1 G-

LISA assay. Control cells cultured in serum free medium were used to mark the 

basal Rac1 activation level. Rac1 was properly activated in the first 10min of 

spreading (Figure 4.19A) when all cell lines had reach the maximum spreading 

size (Figure 4.4). However Rac1 activation in Nap1 and Sra1 stable KD cells was 

not sustained after spreading, as Rac1 activity dropped quickly to the basal level. 

In contrast, control cells maintained Rac1 activation over 120min, despite a small 

drop just after spreading (Figure 4.19A).   
 

Rac1 activity showed the largest difference 60min after spreading where Rac1 

activation in Nap1 and Sra1 stable KD cells had already dropped to the basal level 

(Figure 4.19A). To test if WRC KD cell lines had similar Cdc42 activation 

deficiency, Cdc42 and Rac1 activity was detected using a PAK1-PBD effector 

domain pull-down assay at the 60min time point after spreading. Consistently, 

Rac1 activation was reduced in WRC KD cells, however Cdc42 activation was not 

changed in WRC KD cells at the same time point (Figure 4.19B). As a result, 

WRC is not required for Rac1 or Cdc42 activation, and the two small GTPase may 

not be responsible for the enhanced N-WASP activity in WRC KD cells. 
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Figure 4.19 Rac1 and Cdc42 activation status in WRC KD cells 

(A) Rac1 activation status in control (shCtl) and WRC KD cells during spreading 
on collagen at indicated time points. (Data are means±SEM at each point, n=3 
independent assays. **p<0.01). (B) Western blots of PAK1-PBD effector domain 
pull-down assay showing Rac1 and Cdc42 activation 60min into spreading on 
collagen. All panels show A431 cells.   
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4.3(Discussion(
 

Loss of complex subunits destabilizes WRC, as WRC cannot be properly 

assembled (Derivery et al., 2008). In mammalian cells due to various isoforms of a 

subunit, proteins of WRC contribute differently to the complex stability. Loss of 

Nap1 or Sra1 in A431 cells resulted in nearly complete loss of the WRC as shown 

by Blue NativePAGE (Figure 4.2). The result agrees with the crystal structure 

(Chen et al., 2010) where Nap1 and Sra1 are the two largest subunits of the 

complex. Given Sra1 and PIR121 are 88% identical, it is interesting that loss of 

PIR121 had very little impact on the total WRC level (Figure 4.1&4.2). It is unlikely 

that PIR121 would be dramatically different from Sra1 in terms of structure. 

Therefore it is possible that the ‘Sra1 complex’ is the dominant WRC in cells, while 

the ‘PIR121 complex’ is expressed at a much lower level. Consequently, removal 

of the ‘PIR121 complex’ will only have a minor impact on the total amount of WRC.  

 

On the other hand, Scar1 compensated the loss of Scar2 by forming more ‘Scar1 

complexes’. It is interesting that in control cells, despite Scar1 expression, little 

‘Scar1 complex’ was detected. Only when Scar2 was reduced, Scar1 formed more 

complexes. Perhaps loss of Scar2 protein made Scar1 protein more accessible to 

other complex subunits resulting in more effective formation of Scar1 complex. 

This burst of ‘Scar1 complex’ formation may also stabilize Scar1 protein making 

Scar1 appeared to be slightly over expressed (Figure 4.2A&B). Nonetheless, 

Scar1 did not fully compensate for the loss of Scar2, as the total WRC level was 

still reduced.  

 

Loss of WRC is known to reduce lamellipodia formation (Silva et al., 2009). In Hela 

cells, depletion of WRC also promotes membrane blebbing (Derivery et al., 2008). 

Similarly, complete loss of WRC (Nap1 and Sra1) reduced lamellipodia formation 

and promoted membrane blebbing in A431 cells (Figure 4.3). These WRC KD 

cells had spreading defects and 2D migration defects (Figure 4.4&4.7), as they 

were unable to produce membrane protrusions. Apparently, membrane blebs were 

unable to help spreading and migration, although Nap1 and Sra1 stable 

knockdown cells were blebby when culture on dishes.  
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To move in a complex 3D environment, cells mostly use actin based membrane 

protrusions to navigate through extracellular matrix (mesenchymal), although an 

alternative actin independent membrane bleb based mechanism is also observed 

(amoeboid) (Friedl and Wolf, 2009, Sanz-Moreno et al., 2008, Pinner and Sahai, 

2008). WRC is the major regulator of actin-based membrane protrusions. Although 

complete loss of WRC promoted formation of membrane blebs when cells were 

cultured on dishes, actin-based protrusions were generated when cells (A431 and 

hTERT-RPE1) were moving in 3D collagen gel. Loss of WRC function surprisingly 

promoted N-WASP dependent Arp2/3 activation, which then contributed to the 

invasive pseudopods formation. Thus loss of WRC in the two tested cell types did 

not promote amoeboid cell migration in collagen gel.     

 

N-WASP localization is clearly enhanced when WRC is not functional. It is 

important to understand how N-WASP activation is enhanced in WRC KD cells. 

Although Cdc42 is the established activator of N-WASP, Cdc42 activation was not 

changed in WRC KD cells suggesting extra factors may be required for high N-

WASP activity in WRC KD cells. It is also likely that Cdc42 localizes to the tips of 

invasive pseudopods to specifically recruit and activate N-WASP without elevating 

global Cdc42 activation. On the other hand, Rac1 is reported to activate N-WASP 

too (Tomasevic et al., 2007). However N-WASP activation by Rac1 is not well 

established in vivo, and in WRC KD cells Rac1 activation is not persistent. 

Therefore, Rac1 is unlikely to enhance N-WASP activation in WRC KD cells.  

 

It is interesting that N-WASP did not compensate for the 2D migration defect of 

WRC KD cells. In the wound healing assay N-WASP did not enrich at the moving 

wound edge. Only when a layer of Matrigel was added, N-WASP and Arp2/3 

complex accumulated at the entire wound edge and promoted invasion of WRC 

KD cells. Furthermore, loss of N-WASP effectively suppressed invasion. N-WASP 

is therefore specifically required for cells to move through ECM by making 

pseudopods protruding into the ECM. Indeed N-WASP is known to be required for 

the formation of invadopodia, which are specialized actin rich membrane 

protrusions extending into ECM from the ventral surface of cells cultured atop of 

the ECM (Desmarais et al., 2009). I therefore propose that N-WASP is the primary 

NPF used by cells to invade ECM barrier, while WRC mediates planar cell 

migration.     
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To conclude, disruption of WRC function promotes cell motility in 3D collagen gel. 

The invasive behaviour demonstrated by WRC KD cells supports a study on 

human tumour samples where loss of Sra1 (CYFIP1) is frequent in invasive 

epithelial cancers (Silva et al., 2009). This enhanced motility in collagen gel is 

driven by N-WASP dependent Arp2/3 complex mediated actin polymerization at 

the invasive front. The two major actin assembly promoting proteins WRC and N-

WASP therefore play opposing roles in the invasion of epithelial cells. 
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Chapter(5:(Focal(adhesion(kinase(is(required(for(

invasion(and(cell(transformation(
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5.1(Introduction(
 

In addition to cell migration, formation of membrane protrusions is also important 

for cell-ECM adhesion, and vice versa. During cell migration expansion of 

membrane protrusions often precedes adhesion formation, therefore molecules 

involved in regulating membrane protrusions can also impact on adhesion 

formation (DeMali and Burridge, 2003). WRC localizes to the leading edge of a 

migrating cell to regulate lamellipodia formation and dynamics. Loss of WRC 

abolishes lamellipodia formation, so it is likely that WRC also indirectly regulates 

cell-ECM adhesion.  

 

Although how protrusions and adhesions are coupled molecularly remains poorly 

understood, expanding lamellipodia create new adhesion sites close to the leading 

edge (Choi et al., 2008). Adhesions once formed also contribute to the stability of 

membrane protrusions (Borm et al., 2005). Additionally, adhesions at the back of 

the leading edge are sites of active signaling. Engagement of integrins at these 

sites initiates ‘outside in’ signal cascades (Legate et al., 2009) to many effector 

proteins including Rac1 small GTPase that directly regulates WRC, and hence the 

dynamics of lamellipodia.  

 

Although many proteins are involved in conducting integrin initiated signalling, 

focal adhesion kinase (FAK) is a major player in this process. FAK is both a 

cytoplasmic tyrosine kinase and a large adaptor protein. However before 

activation, FAK is folded preventing the kinase activity and protein interactions. 

Autophosphorylation of FAK at Y397 opens up FAK allowing kinase activation. 

FAK is then phosphorylated by Src kinases that bind to pY397 creating multiple 

high affinity binding sites for other signalling proteins (Figure 1.13) (Toutant et al., 

2002, Lietha et al., 2007). FAK can subsequently activate Rac1 through interaction 

with PI3K (Chen and Guan, 1994) or p130Cas/DOCK180 (Sakai et al., 1994, Cote 

and Vuori, 2007) possibly leading to indirect regulation of WRC and lamellipodia. 

Alternatively, FAK can indirectly activate WRC via Erk that is activated by 

phosphorylation at the end of FAK initiated MAP kinase cascade (Pearson et al., 

2001). Activated Erk then phosphorylates Scar2 and Abi1. This Erk dependent 

phosphorylation is required for Arp2/3 complex and actin binding of WRC leading 

to WRC activation (Mendoza et al., 2011). Collectively, it is reasonable to 
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speculate that FAK is capable of using multiple signalling pathways to regulate 

WRC dependent membrane protrusions. 

 

While FAK can possibly modulate WRC activity, it is not known if WRC also affects 

FAK activities. FAK is clearly important for both adhesion and membrane 

protrusions. Loss of FAK leads to loss of membrane protrusions and enlarged 

focal adhesions (Schober et al., 2007). Interestingly, in many cell types loss of 

WRC also leads to the same phenotype suggesting WRC also regulates focal 

adhesions (Silva et al., 2009, Escobar et al., 2010). It is likely that WRC also 

modulates adhesions and FAK activities, so the interplay of the two proteins can 

coordinate membrane protrusions and adhesions.  

 

Additionally, FAK and many other adhesion molecules play important roles in 

cancer cell invasion, cell proliferation and survival (McLean et al., 2005). FAK 

promotes matrix degradation through degradative focal adhesions to facilitate 

invasion (Wang and McNiven, 2012). Abnormal adhesion may contribute to the 

invasive phenotype observed in WRC KD cells. Interestingly, FAK is reported to 

interact directly with N-WASP. This interaction leads to N-WASP phosphorylation 

at Tyr256 by FAK leading to prolonged N-WASP activation (Wu et al., 2004).   

 

To explore the possibility that loss of WRC alters FAK activation contributing to the 

invasive phenotype, focal adhesions and the status of FAK activation were 

investigated in WRC KD cells. As a result, I discovered over activation of FAK in 

WRC KD cells. This high FAK activity is required for N-WASP/Arp2/3 complex 

mediated invasion. Unexpectedly, loss of WRC also promoted FAK mediated cell 

transformation.  
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5.2(Focal(adhesion(kinase(promotes(NIWASP(dependent(invasion(

5.2.1(Loss(of(WRC(alters(cellIsubstrate(adhesion(

 

A431 WRC KD cells demonstrated enhanced adhesion strength to standard tissue 

culture dishes, as cells were resistant to dispase digestion, which cleaves ECM 

without affecting cell-cell junctions (Figure 5.1A). Similarly, loss of WRC in 

hTERT-RPE1 cells also led to enhanced adhesion when cells were cultured on 

glass (Figure 5.1B). These observations suggest cell-substrate adhesions are 

strengthened upon loss of WRC.  

 

 

Figure 5.1 Loss of WRC enhances cell-substrate adhesion 

(A) Dispase resistance in A431 WRC KD cells (6mg/ml dispase in PBS for 30min). 
Scale bar 0.5cm. (B) Enhanced adhesion to glass upon loss of WRC in hTERT-
RPE1 cells. Scale bar 500 µm.   
 

 
In fact, when A431 WRC KD cells were plated on collagen coated glass bottom 

dishes, WRC KD cells formed stable focal adhesions, as most adhesions in WRC 

KD cells had a lifetime longer than 20min. In contrast, most adhesions in control 

cells had a lifetime shorter than 10min (Figure 5.2A,B). Additionally, WRC KD 

cells had larger but fewer focal adhesions (Figure 5.2A,B). Thus, loss of WRC 

affected focal adhesion dynamics, an effect that has been hinted at previously 

(Yamazaki et al., 2005, Silva et al., 2009, Ryu et al., 2009) but not previously 

measured. 
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Figure 5.2 Loss of WRC alters focal adhesion dynamics 

All panels show A431 cells. (A) TIRF micrographs of Paxillin-GFP expressing cells 
demonstrate change of focal adhesion dynamics in shCtl cells, Nap1 and Sra1 
stable knockdown cells, and FAK knockdown cells (siFAK). Scale bar 10µm. (B) 
Quantification of independent TIRF micrographs from each cell line shows a shift 
of focal adhesion dynamics (Data are shown as means±SEM, n=3 cells, **p<0.01). 
(C) Quantification of focal adhesions imaged with TIRF microscope shows 
dramatic increase of focal adhesion size (Data are shown as Min-Max, n=158, 
**p<0.01) but reduced focal adhesion number (D) (Data are shown as Min-Max, 
n=20 cells, **p<0.01) as labelled by Paxillin antibody in WRC and FAK (siFAK) 
knockdown cells.  
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5.2.2(Focal(adhesion(kinase(is(over(activated(without(WRC(
 

As loss of WRC in A431 cells had caused significant change in adhesion 

dynamics, and multiple adhesion molecules could respond to this change, I 

surveyed the levels of candidate adhesion molecules in WRC knockdown cells. 

While the gross overall expression levels of a5 integrin, paxillin, vinculin, Erk, and 

phosphor-Erk (pErk), remained unchanged (not shown), total FAK expression 

levels were increased in A431 cells, but even more strikingly, the basal levels of 

FAK phosphorylation at Y397, which is often used to report FAK activity, was also 

increased by at least twofold, indicating that the additional FAK is active (Figure 
5.3A,B). Importantly, the same increase in FAK expression and activation was 

also detected in cells cultured in 3D collagen gel suggesting the change of 

adhesion regulation and signalling was altered in 3D as well (Figure 5.3C,D).  
 

 

Figure 5.3 Over activation of FAK in WRC KD cells 

(A) Western blot showing pY397FAK level and total FAK level in control and WRC 
KD cells. (B) Relative protein levels of total FAK and pY397FAK (Data are shown 
as means±SEM, n=5 experiments, **p<0.01). (C) Western blot showing 
pY397FAK and total FAK level in 3D collagen gel. (D) Relative protein levels of 
pY397FAK and total FAK in 3D collagen gel (Data are shown as means±SEM, n=3 
experiments, **p<0.01. *p=NS). All panels show A431 cells. 
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Although it is thought that loss of FAK or WRC lead to similar phenotypes, the 

comparison was made across studies using different cellular systems from various 

research groups. To check if FAK and WRC indeed have a similar regulatory role 

on focal adhesions in the same cell type, FAK was reduced in A431 cells using 

RNAi. When these FAK reduced A431 cells were plated on collagen coated glass 

bottom dishes, stable focal adhesions were formed. FAK KD cells also had larger 

but fewer focal adhesions (Figure 5.2). Notably, loss of FAK also prevented 

lamellipodia formation in spreading A431 cells and in hTERT-RPE1 cells (Figure 
5.4), despite intact WRC in these two cell types suggesting FAK might actually be 

required for WRC mediated lamellipodia formation. Therefore FAK could be more 

activated to compensate the loss of WRC.  

 

 

Figure 5.4 FAK is required for lamellipodia formation 

Phase contrast micrographs show morphology of (A) A431 cells on collagen 
coated dish and (B) hTERT-RPE1 cells on plastic upon loss of FAK (siFAK). Scale 
bars 20µm. Stable A431 WRC KD cells (shSra1 and shNap1) and hTERT-RPE1 
cells transiently reduced WRC (siSra1 and siNap1) are shown as comparisons.  
 
 
 

5.2.3(Focal(adhesion(kinase(promotes(NIWASP(dependent(cell(invasion(

 

As FAK is a major driver of cancer invasion (Brunton and Frame, 2008, Frame et 

al., 2011), enhanced FAK signalling in WRC depleted cells might also contribute to 

their increased invasiveness. When Nap1 and Sra1 knockdown cells were treated 

with FAK siRNA, invasion in 3D collagen gels was severely impaired (Figure 5.5). 
Thus, FAK is required for the invasion of WRC KD cells. 
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Figure 5.5 FAK is required for invasion 

(A) Phase contrast micrographs show reduction of FAK (siFAK) inhibited invasion 
of Nap1 and Sra1 stable knockdown cells into thick collagen gels. Scale bar 
100µm. (B) Relative invasion distance and (C) the relative area of invading 
cells/field. (Data are means ±SEM, n=12 images, 3 independent assays, *p=NS, 
**p<0.01). All panels show A431 cells. 
 

 

As N-WASP localizes to the tips of invasive pseudopods to promote invasion, the 

localization of active FAK (pY397FAK) was also tested. Interestingly, pY397FAK 

also co-localized with GFP-N-WASP to the invasive pseudopods in a thick 

collagen gel invasion assay (Figure 5.6A).  While patches of pY397FAK frequently 

localised along the long protrusions of control cells, the relative fluorescence 

intensity of pY397FAK doubled in WRC depleted cells. GFP-N-WASP and actin 

were also co-enriched at these sites (Figure 5.6B).  
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Figure 5.6 FAK co-localizes with N-WASP 

(A) Confocal micrographs show GFP-N-WASP (green) expressing A431 control or 
Nap1 and Sra1 knockdown cells invading in thick collagen gels. Cells were fixed 
and labelled with rhodamine phalloidin for actin (red), and pY397FAK antibody for 
active FAK (blue). Scale bar 10µm. (B) pY397FAK was enriched at pseudopods of 
Sra1 and Nap1 depleted cells with GFP-N-WASP and actin. (Data are shown as 
means±SD, n=6 cells, **p<0.01). 
  



! ! !126!

FAK is known to interact directly with N-WASP to enhance N-WASP activation by 

phosphorylation at Try256 (Wu et al., 2004). The co-localization of pY397FAK and 

N-WASP at the invasive pseudopod tips implicates that FAK may interact with N-

WASP at these sites to regulate N-WASP activity. Indeed, depletion of FAK in 

shNap1 or shSra1 cells triggered the loss of N-WASP and Arp2/3 complex and the 

reduction of actin at the front of cells in thick collagen gel invasion assays (Figure 
5.7A-E). However, N-WASP phosphorylation at Tyr256 (pY256N-NWASP) was 

not changed in WRC KD cells cultured on dish (Figure 5.8A). In collagen, loss of 

WRC, promoted accumulation of pY256N-NWASP to the tips of invasive 

pseudopods (Figure 5.8B,C). Therefore FAK recruits and enriches active N-

WASP and Arp2/3 complex to the invasive front to promote invasion. 
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Figure 5.7 FAK is required for N-WASP and Arp2/3 complex localization 

(A) Western blot showing total FAK level, pY397FAK and GAPDH control of cells 
treated with FAK siRNA (siFAK) or non-targeting siRNA (siNT). (B) Confocal 
micrographs show p21-Arc-GFP (green) expressing shNap1 and shSra1 cells. 
Cells were treated with FAK or NT siRNAs. Cells invading in thick collagen gels 
were fixed and stained with rhodamine phalloidin for actin (red) and N-WASP 
antibody (blue). Scale bar 10µm. (C,D,E) FAK depletion reduced N-WASP, Arp2/3 
(p21-Arc-GFP) and actin relative fluorescence intensity relative to NT. (Data are 
shown as means±SD, n=6 cells, **p<0.01). All panels show A431 cells. 
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Figure 5.8 N-WASP is phosphorylated at the invasive pseudopods  

(A) Western blot showing total N-WASP level, pY256N-WASP and GAPDH 
control. (B) Confocal micrographs show shCtl, shNap1 and shSra1 cells invading 
in thick collagen gels. Cells were fixed and stained with rhodamine phalloidin for 
actin (red) and pY256 N-WASP antibody (green). Scale bar 10µm. (C) pY256N-
WASP was enriched at pseudopods of Sra1 and Nap1 depleted cells. (Data are 
shown as means±SD, n=6 cells, **p<0.01). All panels show A431 cells. 
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5.2.4(Focal(adhesion(kinase(promotes(cell(transformation(

 

In addition to invasion, FAK also contributes to cell transformation and 

tumourigenesis. To test cell transformation, WRC KD A431 cells were cultured in 

soft agarose assay, where cells survive through anchorage independent growth. 

Interestingly, the number of visible colonies was sharply increased in WRC 

depleted cells by day 14 in soft agarose assay (Figure 5.9A,D). Additionally, WRC 

depleted cells generated larger (7-8 fold) colonies than the control cells, indicating 

anchorage independent proliferation hence cell transformation (Figure 5.9B,E). 
However, WRC depleted cells grew at the same rate as controls in standard 2D 

culture conditions on plastic (Figure 5.9G), indicating that they are capable of 

adhering to a rigid 2D substrate and growing normally in an anchorage-dependent 

manner. FAK inhibitor (1 µM PF-562271) treatment potently inhibited proliferation 

of WRC depleted and control cells in soft agarose (Figure 5.9B,E), as did FAK 

siRNA, which reduced the colony size by at least 50% (Figure 5.9C,F). FAK was 

also required for adhesion dependent growth in A431 cells, as FAK inhibitor and 

FAK depletion both reduced cell proliferation on tissue culture dishes (Figure 
5.9H,I). Thus, WRC depletion enhances anchorage independent growth and this 

effect is FAK dependent. Consistently, when WRC was transiently removed from 

Hela cells, active FAK was also increased and more colonies were formed in the 

soft agarose assay suggesting enhanced cell transformation upon loss of WRC 

(Figure 5.10). 
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Figure 5.9 Loss of WRC promotes FAK dependent cell transformation 

(A) The number of visible colonies in soft agarose was increased in Nap1 and 
Sra1 depleted cells by day 14. Scale bar 1cm. (B) Colonies formed by shCtl, 
shNap1, and shSra1 cells in soft agarose assay in the presence of FAK inhibitor or 
DMSO (vehicle). Scale bar 500µm. (C) FAK dependence of colony formation in 
shCtl, shNap1 and shSra1 cells treated with siNT or siFAK. Scale bar 500µm. (D) 
Colony number from (A) (Data are means±SD, n=3, **p<0.01). (E) Colony size 
from (B) (Data are means±SEM, n=30, **p<0.01). (F) Colony size from (C) (Data 
are means±SEM, n=30, **p<0.01). (G) Growth curves of shCtl cells (black), Nap1 
stable knockdown cells (red), Sra1 stable knockdown cells (blue) cultured on dish. 
(H) Growth curves of cells treated with FAK inhibitor and (I) with FAK siRNAs on 
standard tissue culture dish. Growth curve is presented in Log2 scale. (Data are 
means±SD at each time point, n=3). (G1~3) All panels show A431 cells.  
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Figure 5.10 Hela cells are transformed upon loss of WRC 

(A, B) Immunoblots and quantifications show increased pY397FAK level in WRC 
depleted Hela cells. (Data are shown as means±SEM, n=3 experiments, 
**p<0.01). (C,D) Loss of Nap1 and Sra1 in Hela cells increased the number of 
colonies formed in soft agarose. Scale bar 500µm. (Data are shown as 
means±SD, n=3 independent assays. **p<0.01). All panels show Hela cells. 
 

 

Because of cell transformation upon loss of WRC, the ability of WRC depleted 

cells to form tumours and grow in vivo was then tested. Nude mice injected 

subcutaneously with stable WRC knockdown cells were sacrificed at early time 

points as these tumours have grown rapidly and quickly reached the maximum 

allowed size (1.5cm in diameter) resulting a low survival rate. In contrast, most 

nude mice injected with control cells did not develop large tumours, and survived 

over more than six weeks (Figure 5.11A,B). Immunohistochemical staining of 

tumour sections with pY397FAK antibody revealed that the pY397FAK level was 

substantially increased in vivo (Figure 5.11C). Consistently, WRC depleted cells 
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cultured in 3D collagen gel also had much higher pY397FAK level (Figure 
5.3C,D). Thus, loss of WRC promotes FAK activation and tumour growth in vivo. 

 
 

 

Figure 5.11 Loss of WRC promotes tumour formation in vivo 

(A) Tumours formed by control (shCtl) and WRC KD cells (shNap1 and shSra1). 
(B) Survival curve of subcutaneous injected nude mice, which were sacrificed 
when tumour researches 1.5cm in diameter. (p<0.01, Logrank test for trend) (C) 
Immunohistochemistry of the tumour sections with pY397FAK antibody showing 
shCtl and WRC subunit depleted as indicated. Scale bar 200µm. 
 

  



! ! !133!

FAK promotes proliferation and survival, often through activation of PI3K/Akt or 

MAP kinase pathways (Igishi et al., 1999, Bouchard et al., 2007). As might be 

predicted (Ashton et al., 2010, Sonoda et al., 1999, Yamamoto et al., 2003), 

phospho-Akt (S473) (pAkt) level was increased by more than 5-fold in the stable 

WRC knockdown cells cultured in 3D collagen gel (Figure 5.12A,B). High Akt 

activation was also observed in the same cells grown on dish (Figure 5.12C,D). In 

contrast, phospho-ERK remained unchanged (Figure 5.12E), suggesting that the 

Ras/MAP kinase pathway was not hyper-activated by WRC loss. Similarly, Hela 

Nap1 and Sra1 knockdown cells also had high pY397FAK (Figure 5.10A,B) and 

phospho-Akt level (Figure 5.12F,G). These Hela WRC depleted cells were also 

more transformed (Figure 5.10). As the PI3K/Akt pathway promotes cell 

proliferation and survival, these results collectively indicate that loss of WRC 

promotes hyper-activation of FAK and the PI3k/Akt pathway, which in turn 

promotes increased anchorage independent growth and tumour growth in vivo. 
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Figure 5.12 Loss of WRC promotes Akt activation 

(A,B) Immunoblots and quantifications show increased pAkt level in WRC depleted 
A431 cells in 3D collagen gel (Data are shown as means±SEM, n=3 experiments, 
**p<0.01. *p=NS). (C,D) Immunoblots and quantifications show increased pAkt 
level in WRC depleted A431 cells cultured on dish. (Data are shown as means 
±SEM, n=5 experiments, **p<0.01). (E) pErk and total Erk level as indicated in 
A431 cells. (F,G) Immunoblots and quantifications show increased pAkt level in 
WRC depleted Hela cells. (Data are shown as means±SEM, n=3 experiments, 
**p<0.01).  
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5.3( Loss( of( WRC( promotes( formation( of( degradative( focal(

adhesions(
 

To achieve efficient invasion, cells actively remodel the surrounding matrix using 

metalloproteinases that degrade ECM.  Active FAK has recently been reported to 

be required for the formation of degradative focal adhesions to facilitate matrix 

degradation (Wang and McNiven, 2012). High active FAK levels in WRC depleted 

cells might therefore stimulate matrix degradation to promote invasion. While A431 

cells were not amenable to various types of degradation assays (not shown), 

hTERT-RPE1 cells generated degradative invadopodia on the fluorescent gelatin 

degradation assay (Figure 5.13A). While most control hTERT-RPE1 cells formed 

invadopodia identified by classical centrally located puncta (Gimona et al., 2008), 

an invadopodia/adhesion marker, α-actinin (Schoumacher et al., 2010), and 

correlating gelatin degradation, most WRC depleted hTERT-RPE1 cells formed 

large degradative focal adhesions, as labeled by strong actin stress fibers and α-

actinin (Figure 5.13A,C). The formation of degradative focal adhesions also led to 

a two-fold increase in degradation area in WRC depleted hTERT-RPE1 cells 

(Figure 5.13D).  
 

As hTERT-RPE1 WRC KD cells also had high active FAK level (Figure 5.13E,F), 
FAK was thought to promote the formation of degradative focal adhesions.  

Depletion of FAK in these WRC KD cells prevented degradative focal adhesions 

formation (Figure 5.13B). As a result, the degradation area was heavily reduced 

too (Figure 5.13D). Thus loss of WRC promoted FAK dependent matrix 

degradation by the formation of degradative focal adhesions, which could 

contribute to the increased invasiveness of cells in various 3D assays. 
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(
 
Figure 5.13 Loss of WRC promotes matrix degradation through FAK 
dependent degradative focal adhesions. 

All panels show hTERT-RPE1 cells. (A) Cells were treated with control siRNA 
(siNT), Nap1 siRNA (siNap1) and Sra1 siRNA (siSra1), (B) or FAK siRNA (siFAK) 
in indicated cells. All samples were subjected to fluorescent gelatin degradation 
assay. Confocal micrographs show fluorescent gelatin (green), actin (rhodamine 
phalloidin, red), and α-actinin (anti-α-actinin, blue). Scale bar 10µm. (C) 
Percentage of cells with degradative focal adhesions (Data are means±SEM, n=3 
independent assays, **p<0.01). (D) Relative area of degradation per cell (Data are 
means±SEM, n=57, **p<0.01). (E) Increased pY397FAK level in cells cultured in 
collagen gel. (F) Quantifications of pY397FAK level E. (Data are shown as 
means±SEM, n=3 experiments, **p<0.01). 
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5.4(Discussion(
 

Cell-ECM adhesions and membrane protrusions at the cell front must be tightly 

coordinated to allow effective cell migration. It is therefore not surprising that loss 

of WRC leads to altered adhesion strength and focal adhesion dynamics. Cell-

ECM adhesions are tightly linked to the actin cytoskeleton through integrin 

cytoplasmic tail, talin, vinculin and α-actinin (Vicente-Manzanares et al., 2009). 

Nascent adhesions are first formed within the lamellipodia where WRC drives 

extensive actin polymerisation. Formation of nascent adhesions is dependent on 

actin polymerisation. Then, maturation of these nascent adhesions happens when 

α-actinin cross-links polymerized actin within the lamellipodia (Choi et al., 2008). 

Loss of WRC abolishes actin polymerisation needed for lamellipodia formation and 

alters nascent adhesion formation. As a result, cells have to use alternative ways 

to form and to mature adhesions leading to global change of adhesion dynamics.  

 

Loss of WRC leads to formation of large stable focal adhesions suggesting 

adhesion turnover is disrupted. Focal adhesion stability was addressed using 

video microscopy (20min) in this study. However FRAP based assays should also 

be used. By using various fluorescence probes, the dynamics of many adhesion 

proteins could be studied. The adhesion protein that is affected most by WRC loss 

could also be identified. Nonetheless, focal adhesion turnover is dependent on 

FAK, which recruits microtubule associated dynamin to adhesion sites to promote 

adhesion turnover by endocytosis. Interestingly, this is a process dependent on 

microtubule targeting to focal adhesions. Stable growth of microtubule towards 

focal adhesions is therefore required (Ezratty et al., 2005). Acetylation is an 

important marker for microtubule stabilization (Takemura et al., 1992). Loss of 

microtubule acetylation in WRC deficient cells is reported in the literature (Yokota 

et al., 2007), so it is possible that loss of WRC leads to unstable microtubules 

leading to defective focal adhesion turnover by dynamin.  

 

WRC depleted cells and FAK depleted cells have identical defects in focal 

adhesion dynamics and membrane protrusion formation (Figure 5.2&5.4). Loss of 

WRC in many cell types promoted FAK activation suggesting FAK may try to 

compensate WRC loss by over activation. Alternatively, a large number of FAK 

proteins can cluster on these large focal adhesions in WRC KD cells leading to 
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excessive FAK auto-activation. However activated FAK is not able to promote 

focal adhesion turnover possibly due to defective actin and microtubule 

cytoskeletons. Nonetheless, further investigations are needed to understand the 

mechanism of FAK over activation upon loss of WRC. 

 

WRC KD cells use N-WASP and Arp2/3 complex to move in 3D collagen gel. It is 

therefore interesting that active FAK also co-localized with N-WASP and Arp2/3 

complex in the invasive pseudopods of WRC KD cells. As N-WASP and Arp2/3 

complex localization was FAK dependent and FAK is present in pseudopods 

(Figure 5.6&5.7), it is possible that FAK recruits N-WASP hence Arp2/3 complex 

through the direct protein interaction to pseudopods. Consequently, cells are 

forming FAK containing structures related to focal adhesions at the leading edges 

that recruit N-WASP and Arp2/3 complex to trigger actin assembly and invasion.  

 

To activate FAK, an activator protein is required to trigger FAK FERM domain 

dissociation from the kinase domain before FAK Tyr397 can be auto-

phosphorylated (Lietha et al., 2007). However this activator protein has yet to be 

identified. FAK interacts with Arp2/3 complex in the inactive dephosphorylated 

form. Interestingly, Arp2/3 complex binds directly to FAK FERM domain, and this 

interaction is abolished when FAK is active (Serrels et al., 2007). Although this 

interaction is reported to mildly activate Arp2/3 (Serrels et al., 2007), it is also 

possible that Arp2/3 complex can be the activator protein to open up FAK by 

dissociating FAK FERM domain from the kinase domain allowing FAK auto-

phosphorylation. Therefore co-localization of FAK and Arp2/3 complex in the 

invasive pseudopods may enhance FAK activation too, which then recruits N-

WASP to activate Arp2/3 complex completing a positive feed back loop. 

 

As additional effects of FAK activation, cell transformation and tumour growth are 

also promoted in the absence of WRC. In a normal epithelium, cells attach to the 

underlying basement membrane through integrins, which then initiate FAK 

mediated survival signals to the epithelial cells (Stupack and Cheresh, 2002). Loss 

of anchorage to basement membrane leads to FAK inactivation and anoikis of 

epithelial cells, a specific form of apoptosis (van de Water et al., 1999, Kim et al., 

2003, Frisch and Francis, 1994). However high FAK activation bypasses anoikis 

resulting in cell transformation (Frisch et al., 1996, Ma et al., 2008). Loss of WRC 
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in cells promoted FAK dependent cell survival and proliferation in soft agar. It is 

possible that high FAK activation in WRC KD cells leads to anoikis resistance. 

However this speculation needs to be confirmed using specific anoikis assays, 

where cells are cultured in suspension and apoptosis markers are tested.  

 

In contrast to 2D cell migration, invasion in a 3D matrix required 

metalloproteinases that actively remodel ECM to facilitate cell motility. FAK play a 

role in collagen gel remodelling (Fraley et al., 2010). Matrix remodelling usually 

requires metalloproteinase activities in addition to mechanical forces. FAK can 

form a complex with p130Cas and MT1-MMP, a major metalloproteinase, to 

promote matrix degradation through focal adhesions. Loss of WRC in hTERT-

RPE1 cells promoted FAK dependent degradative focal adhesion formation 

(Figure 5.13). Therefore invading WRC KD cells can form FAK containing 

structures related to degradative focal adhesions at the tips of invasive 

pseudopods to enhance matrix remodelling leading to more aggressive invasion.      

 

To conclude, loss of WRC leads to changes in focal adhesion dynamics and FAK 

over activation. High FAK activation subsequently promotes N-WASP mediated 

invasion and enhanced matrix degradation through large focal adhesions. As an 

additional effect of FAK activation, loss of WRC also promoted cell transformation 

and tumour genesis in vivo.     
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Chapter(6:(HSPC300(is(unique(
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6.1(Introduction(
 

HSPC300 is the smallest and least studied subunit of WRC. Loss of HSPC300 

protects Von Hippel-Lindau patients from clear cell renal cell carcinoma (ccRCC) 

(Cascon et al., 2007). Further investigation shows that HSPC300 is required for 

ccRCC cell proliferation, migration, and invasion. Hence loss of HSPC300 is 

protective towards clear cell renal cell carcinoma (Escobar et al., 2010). This is in 

direct contrast to the function of Sra1 in epithelial cancers where loss of Sra1 

promotes invasive tumors (Silva et al., 2009). These unique functions suggest 

HSPC300 can function independently of WRC. In fact, HSPC300 is known to exist 

as free homotrimers (Derivery et al., 2008). Although free HSPC300 serves as 

templates for WRC assembly, it is unknown if this pool of free HSPC300 proteins 

could have other important biological functions. Through this study, free HSPC300 

is suggested to cooperate with N-WASP to promote invasion independently of 

WRC.  
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6.2(HSPC300(is(required(for(invasion(independently(of(WRC(

6.2.1(HSPC300(is(required(for(invasion(of(WRC(depleted(cells((

 

WRC KD cells have very little total complex expression, but a considerable 

amount of HSPC300 remained in these cells. Quantification of the various 

Western blots showed about 60% HSPC300 remaines in WRC KD cells (Figure 
6.1A). While when HSPC300 expression was reduced in A431 cells, loss of 

HSPC300 resulted in heavy loss of WRC, as major complex subunits were no 

longer expressed (Figure 6.1B). The observation confirms that HSPC300 is 

critical for complex formation, yet can exist independently of WRC (Derivery et al., 

2008).  

 

Figure 6.1 HSPC300 is stable without WRC 

(A) Quantification of various western blots showing relative levels of HSPC300 
remaining in WRC KD cell. (Data are shown as means±SEM, n=5 experiments, 
**p<0.01). (B) Western blots showing protein levels of individual subunits of 
Scar/WAVE complex in HSPC300 knockdown cells demonstrating complete loss 
of WRC. All panels show A431 cells. 
 

 

To investigate if the remaining HSPC300 is required for invasion, HSPC300 was 

reduced in control and WRC KD A431 cells using siRNAs. Cells were subjected to 

a 3D collagen gel invasion assay. Interestingly, loss of the remaining HSPC300 in 

WRC KD cells potently inhibited invasion of WRC KD cells without promoting 

invasion of control cells (Figure 6.2A,B,C,D). To exclude the possibility that the 

invasion suppression phenotype upon loss of HSPC300 was due to removal of 

residue complex in WRC KD cells, double Nap1/Sra1 knockdown cells were tested 
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in 3D collagen gel invasion assay, where the double Nap1/Sra1 knockdown cells 

invaded as well as Sra1 stable knockdown cells (Figure 6.2E). Collectively, these 

data strongly suggest HSPC300 is required for invasion independently of WRC.  
 

 

Figure 6.2 Free HSPC300 is required for invasion 

(A) Western blots showing HSPC300 protein level after HSPC300 siRNA 
treatment. (B) Phase contrast micrographs of shCtl, shNap1 and shSra1 cells 
treated with HSPC300 siRNA (siHSPC300) or siNT as indicated and invaded into 
thick collagen gels. Scale bar 100µm. (C) Relative invasion distance and (D) 
relative area of invading cells per field from (B). (n=9 images from 3 independent 
experiments). (E) Phase contrast micrographs of shSra1 cells treated with Nap1 
siRNA (siNap1) or siNT invading into collagen gels. Scale bar 100µm. All panels 
show A431 cells.  
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6.2.2(HSPC300(is(required(for(NIWASP(and(Arp2/3(complex(localization(((

 

WRC KD cells use N-WASP and Arp2/3 complex dependent mechanisms to 

invade. HSPC300 might be required in this N-WASP mediated process to promote 

invasion. To test this possibility, N-WASP and Arp2/3 complex localization was 

tested in HSPC300 reduced cells in thick collagen gel invasion assay. Unlike the 

loss of other WRC subunits, loss of HSPC300 in control cells did not promote N-

WASP and Arp2/3 complex localization to the invasive front. In WRC KD cells, 

loss of the residual HSPC300 surprisingly inhibited N-WASP and Arp2/3 complex 

localization to the invasive pseudopods (Figure 6.3). Similarly, loss of HSPC300 in 

hTERT-RPE1 cells inhibited invasion and prohibited formation of pseudopods in 

collagen gel (Figure 6.4). A phenotype that was identical to N-WASP loss. In 

contrast, loss of Nap1 promoted formation of N-WASP rich pseudopods (Figure 
6.4). Therefore HSPC300 is required for N-WASP and Arp2/3 complex mediated 

invasion of WRC KD cells. This is a strikingly different phenotype in cells depleted 

of HSPC300 than in cells depleted of Sra1 or Nap1 indicating that HSPC300 has a 

pro-invasive role outside of the WRC. 
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Figure 6.3 HSPC300 is required for N-WASP and Arp2/3 complex localization 

(A) Confocal micrographs of WRC KD cells treated with siNT and siHSPC300 
expressing p21-Arc-GFP (green). Cells invaded into collagen gels were fixed and 
stained with rhodamine phalloidin for actin (red), and N-WASP antibody (blue). 
Scale bar 10µm. (B,C,D) Loss of HSPC300 reduced N-WASP, Arp2/3 (p21-Arc-
GFP) and actin relative fluorescence intensity. (Data are shown as means±SD, 
n=6 cells, **p<0.01). All panels show A431 cells. 
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Figure 6.4 HSPC300 promotes invasion and pseudopods formation  

All panels show hTERT-RPE1 cells. (A) Phase contrast micrographs of cells 
treated with control siRNA (siNT) and HSPC300 siRNA (siHSPC300) invading in 
3D collagen gel invasion assay. Scale bar 100µm. (B) Quantification of the 3D 
invasion assay shows the relative invasion distance and (C) the number of 
invading cells per field (Data are shown as means±SEM, n=12 from 3 independent 
assays. **p<0.01). (D) Confocal micrographs demonstrate localization of 
endogenous N-WASP (anti-N-WASP, green) and filamentous actin (rhodamine 
phalloidin, red) in control (siNT), siHSPC300, siN-WASP and siNap1 cells during 
invasion into thick collagen gel. Scale bar 10µm. (E) Loss of HSPC300 reduced 
the number of cells with pseudopods in thick collagen gel invasion assay. (Data 
are means±SD, n=3 independent assays. **p<0.01).    
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6.2.3(HSPC300(interacts(with(NIWASP(((

HSPC300 appears to cooperate with N-WASP directly to promote invasion, as 

both proteins robustly co-immunoprecipitated from control, and WRC depleted 

cells (Figure 6.5A). This interaction was also confirmed in GFP-N-WASP 

expressing Nap1 depleted cells (Figure 6.5B). HSPC300 could thus promote 

invasion together with N-WASP at the cell front through this interaction.This link 

between HSPC300 and N-WSP provides a potential molecular mechanism for how 

loss of WRC can be pro-invasive and explains how HSPC300 can be pro-invasive 

(Escobar et al., 2010) separately from its involvement in WRC.   

 

 

Figure 6.5 HSPC300 interacts with N-WASP 

(A) Endogenous HSPC300 and N-WASP coimmunoprecipitation in A431 cells. 
Arrows in A,B indicate N-WASP.  (B) Endogenous HSPC300 and GFP-N-WASP 
coimmunoprecipitation in GFP-N-WASP expressing A431 Nap1 depleted cells.  
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6.3(Discussion(
 

Recent publications suggest that HSPC300 may be pro-invasive (Cai et al., 2009, 

Cascon et al., 2007, Escobar et al., 2010, Maranchie et al., 2004), while I clearly 

find that WRC suppresses invasion. It is therefore speculated that HSPC300 might 

have a pro-invasive activity that was independent of its role in WRC. Indeed, by 

using cells with nearly no WRC expression, HSPC300 was demonstrated to 

promote invasion independently of WRC (Figure 6.2). This study hence reveals a 

novel pro-invasive function of free HSPC300.     

 

Free HSPC300 may cooperate with N-WASP in WRC KD cells to promote 

invasion. N-WASP and Arp2/3 complex localization requires HSPC300. HSPC300 

interacted with N-WASP even when WRC was absent suggesting this interaction 

was not dependent on WRC (Figure 6.5). Without further analysis, it is not clear if 

the interaction is direct. However the possibility that Abi1 mediates the HSPC300-

N-WASP interaction independently of WRC cannot be excluded. As Abi1 

expression was not significantly affected by the loss of WRC, Abi1 could link 

HSPC300 to N-WASP through direct interactions with both proteins.  

 

Abi1 interacts with and activates N-WASP through a C-terminal SH3 domain, but 

the N-WASP activating ability of Abi1-SH3 domain alone is 45-fold weaker than 

the full Abi1 protein suggesting Abi1 N-terminus is also required for N-WASP 

activation (Innocenti et al., 2005). Interestingly, HSPC300 structurally resembles 

the longer helix of the two helices at Abi N-terminus (Linkner et al., 2011), so free 

HSPC300 may activate N-WASP directly as well. HSPC300 and helices of Abi1 

are buried at the center of WRC, only when WRC is disassembled HSPC300 is 
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released to promote invasion. Therefore WRC could be an important check on the 

pro-invasive function of HSPC300.  

 

 (
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Chapter(7:(NHS,(a(novel(WRC(binding(protein(

 (



! ! !151!

7.1(Introduction(
 

Scar/WAVE homology domain (WHD) is a defining feature of all Scar proteins. 

Until recently the three Scar proteins were the only WHD containing proteins 

thought to exist in human cells. However, in Drosophila, a novel protein called 

guanylate kinase holder (GUKH) was identified to have a region with similarity to 

WHD of Drosophila Scar1 and WHD of mouse Scar1 (Mathew et al., 2002). The 

Human GUKH gene was later identified as Nance-Horan syndrome (NHS) gene 

(Katoh and Katoh, 2004). Interestingly NHS protein also contains WHD at the N-

terminus (Figure 7.1A). In contrast to Scar proteins, the VCA domain that is 

required for Arp2/3 complex activation is not present in NHS so NHS may be 

unable to initiate actin polymerization (Brooks et al., 2010).  

 

Mutations in NHS gene cause Nance-Horan syndrome, which is an X-linked 

developmental disorder characterized by bilateral congenital cataratcs, dental 

anomalies, facial dysmorphism and mental retardation (Burdon et al., 2003). 

Interestingly, loss of NHS gene exon1, which encodes NHS WHD, leads to typical 

features of Nance-Horan syndrome suggesting the importance of NHS WHD 

(Brooks et al., 2004). The NHS gene is alternatively spliced resulting in a number 

of NHS isoforms (Figure 7.1B). Only NHS-1A and NHS-A proteins (NHS A 

proteins) contain a WHD suggesting they are responsible for the Nance-Horan 

syndrome caused by NHS gene exon1 deletion (Brooks et al., 2010).  
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Figure 7.1 NHS contains WHD 

(A) Proteins sequences of NHS and Scar (WAVE) 1,2,3 aligned showing WHD 
homology. (B) Isoforms of HNS protein due to alternative splicing of NHS gene. 
Red box highlights WHD on NHS A proteins. Figure adapted from (Brooks et al., 
2010) 

 
 

Little is known about the cell biology of the two NHS A proteins. Expression of 

GFP-NHS-A shows protein localization at cell-cell junctions. This localization is 

NHS WHD dependent, as deletion of NHS WHD renders the protein cytoplasmic 

highlighting the significance of WHD in NHS protein function  (Sharma et al., 2008, 

Sharma et al., 2006). NHS-A was later identified to interact with the tight junction 

marker ZO-1, and localizes to tight junctions (Sharma et al., 2009). However the 

biological function of NHS at cell-cell junctions are not known.      
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Although the exact function of NHS A proteins is unknown, it is clear NHS WHD is 

important. In Scar proteins, WHD is required for direct interactions with Abi 

proteins (Innocenti et al., 2004) and HSPC300 (Chen et al., 2010). This interaction 

allows the assembly of WRC. It is likely that NHS WHD can interact with WRC 

subunits forming a WRC-like complex. However due to the lack of VCA on NHS-A 

proteins, this putative complex should be defective towards Arp2/3 and could have 

a dominant negative effects on WRC. This is an interesting perspective, as the 

mechanism of WRC activation has been explored extensively (Linkner et al., 2011, 

Ismail et al., 2009, Steffen et al., 2004), but very little is known about how WRC is 

switched off.  In this chapter, NHS is demonstrated to interact with subunits of 

WRC directly. While the putative ‘NHS complex’ is hard to identify, NHS negatively 

regulates Rac1 activation leading to suppression of WRC activation.     
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7.2(NHSI1A(is(a(putative(negative(regulator(of(WRC(

7.2.1(NHSI1A(interacts(with(WRC(subunits(((

 

To identify if NHS WHD is functional, a direct protein interaction with HSPC300 

was tested. As demonstrated by Brooks and colleagues using yeast two-hybrid 

screening, HSPC300 interacts with NHS WHD directly. This interaction was also 

confirmed by co-immunoprecipitation (Brooks et al., 2010). To test if this direct 

binding of NHS-1A allows interactions with other WRC subunits, GFP-NHS1A was 

immunoprecipitated from MCF7 breast cancer cells using GFP-trap and various 

WRC subunits were probed. As expected, the interaction with Nap1, Sra1, Scar2 

and Abi1 was readily detected (Figure 7.2A). Therefore NHS-1A can interact with 

the whole WRC through a direct interaction with HSPC300.  

 

Due to interactions with WRC subunits, NHS was proposed to form a WRC like 

‘NHS complex’. To test this idea, Myc-NHS-1A was over expressed in MCF7 cells 

and subjected to Blue NativePAGE to resolve possible complexes. However when 

an Sra1 antibody was used, only WRC was detected with or without NHS-1A over 

expression. Stable Sra1 MCF7 knockdown cells were used as a control for WRC 

detection on the NativePAGE (Figure 7.2B). In contrast, when NHS-1A containing 

complex was probed with a Myc antibody, a smearing blot was obtained on 

NativePAGE above the band for WRC (Figure 7.2B). As a result, NHS-1A may 

not form a WRC like complex, but unique complexes containing NHS-1A are 

possible.  
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Figure 7.2 NHS interacts with multiple proteins 

(A) GFP-NHS-1A is expressed in MCF7 cells and subjected to GFP trap. Proteins 
interactions are probed as indicated. (B) Blue NativePAGE shows intact WRC in 
MCF7 cells over expressing Myc-NHS-1A, and putative NHS complex as detected 
by an anti-Myc antibody.    
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7.2.2(NHSI1A(localizations(((
 

Having established the link between NHS-1A and WRC, the localization of GFP-

NHS-1A was studied in various cell types. The localization and dynamics of WRC 

was tested and established in B16F10 melanoma cells (Chapter 1), so GFP-NHS-

1A was expressed in migrating B16F10 cells and imaged as the cell migrated. 

GFP-NHS-1A was observed to behave similarly to WRC in migrating B16F10, 

where GFP-NHS-1A localized to leading edge of the expanding lamellipodium 

(Figure 7.3).  

 

Figure 7.3 NHS-1A localization at the leading edge in a mouse melanoma cell 
line 

GFP-NHS-1A was expressed in a migrating B16F10 mouse melanoma cell on 
fibronectin coated glass bottom dish. Still images at indicated time points were 
pseudo-coloured accordingly and merged to show GFP-NHS-1A dynamics and 
localization. Scale bar 10µm. 
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When GFP-NHS-1A was expressed in MCF7 human breast cancer cells, the GFP 

tagged protein also localized nicely to the cell edge (Figure 7.4A). However in 

MCF7 cells, GFP-NHS-1A also localized strongly to cell-cell junctions. Notably, in 

cells with strong GFP-NHS-1A expression, the cell edge localization was not 

observed but cell-cell junction localization was not affected (Figure 7.4B). As 

WRC was reported to localize at cell-cell junctions in A431 cells, co-localization of 

NHS-1A with WRC was investigated. NHS-1A was found to co-localize with WRC 

at cell-cell junctions in A431 cells (Figure 7.5A). Similarly, in MCF7 cells, Abi1 and 

NHS-1A co-localized at cell-cell junction (Figure 7.5B), however loss of WRC in 

MCF7 cells did not abolish NHS1A localization to cell-cell junction (Figure 
7.5C,D). Collectively, these data demonstrate that NHS-1A is able to localize to 

cell edge and cell-cell junctions. 

 

 

Figure 7.4 NHS-1A localization at the leading edge and cell-cell junction in a 
human epithelial cell line 

(A) Confocal micrographs showing NHS-1A localization at the leading edge and 
(B) at cell-cell junctions. Live MCF7 cells co-expressing Lifeact-RFP (Actin, red) 
and GFP-NHS-1A (NHS-1A, green) were imaged. Scale bar 10µm. 
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Figure 7.5 Co-localization of WRC and NHS-1A at cell-cell junctions 

(A) Confocal micrographs showing WRC (Sra1) and NHS-1A localisation. A431 
cells expressing Myc-NHS-1A were fixed and stained with an Sra1 antibody for 
Sra1 (red), and a Myc antibody for Myc-NHS-1A (green). (B) Epifluorescence 
micrographs (TIRF microscope) of GFP-NHS-1A (NHS-1A, green) and Abi-RFP 
(Abi1, red) expressing live MCF7 cell showing co-localization of WRC and NHS-
1A. (C) Western blots showing sufficient reduction of WRC in MCF7 shNap1 cells. 
(D) Myc-MHS-1A expressing control (shCtl) and Nap1 stable knockdown MCF7 
cells (shNap1) were fixed and labelled with a Myc antibody for Myc-NHS-1A and 
examined by confocal microscopy. Scale bar 10µm.    
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7.2.3(NHSI1A(is(not(required(for(cellIcell(junction(
 

Because of the predominant localization of NHS1A at cell-cell junctions, the 

function of NHS-1A on cell-cell adhesion was explored. The Drosophila NHS 

ortholog, GUKH, interacts with Dlg and Scribble at Drosophila synapses. The 

proper synaptic localization of Drosophila Scribble requires GUKH (Mathew et al., 

2002). Human Scribble (hScrib) however localizes to cell-cell junctions in an E-

cadherin dependent fashion (Navarro et al., 2005). Together with human Dlg 

(hDlg), hSrcib also directs basolateral membrane formation hence setting up the 

apical/basal polarity in the epithelium (Zhan et al., 2008, Dow et al., 2003).  As 

NHS-1A also localizes to cell-cell junctions, the interaction with hScrib and hDlg 

was tested. Interestingly, by using GFP trap, NHS-1A was identified to interact 

with both hScrib and hDlg. Its interaction with ZO-1 was also confirmed (Figure 
7.2).  
 

NHS-1A was speculated to regulate apical/basal polarity due to the interaction with 

hScrib and hDlg. To test this idea, four stable NHS knockdown MCF7 cells lines 

(a-d) were generated. While there was no antibody for NHS available, mRNA level 

of these stable cell lines were tested using QRT-PCR (Figure 7.6A). Stable cell 

lines b & d were selected for subsequent experiments as they had sufficient 

reduction of NHS mRNA. As shRNAs used were not specific to NHS-1A, so all 

NHS isoforms were reduced. Disruption of hScrib and hDlg localization is enough 

to trigger loss of cell polarity leading to mammary tumorigenesis (Zhan et al., 

2008, Gardiol et al., 2006, Watson et al., 2002). hScrib and hDlg localization in 

NHS KD cells was then studied. However loss of NHS proteins did not cause mis-

localization of hScrib or hDlg, and the actin cytoskeleton at cell-cell junctions was 

not changed (Figure 7.6B,C). As a result, despite all the interactions, NHS-1A has 

no obvious function on hScrib or hDlg localization at cell-cell junctions.       
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Figure 7.6 NHS is not required for cell-cell junctions 

(A) Quantitative RT-PCR shows reduction of NHS mRNA level in various NHS 
stable known down cell lines (shNHSa-d). (B,C) shCtl and shNHS cells were fixed 
and stained with rhodamine phalloidin for actin (red), and endogenous hScrib (B) 
or hDlg (C) (green) using corresponding antibodies. Samples were examined by 
confocal microscopy. All panels show MCF7 cells. Scale bar 10µm.   
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7.2.4(NHSI1A(is(a(negative(regulator(of(Rac1(

 

Although NHS has little function at cell-cell junctions, loss of NHS in MCF7 cells 

promoted cell spreading on collagen coated dishes. During spreading control cell 

(shCtl) generated polarized membrane protrusions, while cells without NHS had 

large broad lamellipodia around the cell. In fact, because of the large protrusions 

the cell area was increased by at least 2-fold in NHS KD cells (Figure 7.7A,C). As 

WRC is required for making membrane protrusions, this phenotype suggests WRC 

might be hyper active without NHS.  

 

Rac1 is required for WRC activation. Despite the direct interaction of NHS-1A with 

WRC via HSPC300, NHS-1A might also regulate Rac1 activation through the 

interaction with hScrib, which is also involved in the regulation of Rac1 and Cdc42 

activation with a guanine nucleotide exchange factor (GEF), βPIX (Audebert et al., 

2004, Nola et al., 2008, Momboisse et al., 2009, Osmani et al., 2006). Indeed, 

stable reduction of hScrib in MCF7 cells led to spreading defects similar to loss of 

WRC, as minimum membrane protrusions were produced and cell were smaller 

(Figure 7.7A,B,C).  
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Figure 7.7 Loss of NHS promotes spreading on collagen 

(A) Phase contrast micrographs of control and various stable cells lines as 
indicated during spreading on collagen coated glass bottom dishes. Scale bar 
50µm. (B) Western blot showing hScrib level in control and stable hScrib KD cells 
(shScrib). (C) Quantification of the relative cell area in A. (Data are means±SEM, 
n=22, **p<0.01). All panels show MCF7 cells 
 

 

Localization of WRC was subsequently studied in NHS stable knockdown cell lines 

during spreading on collagen. In control cells, WRC, as labelled by Abi1 and Scar2 

staining, localized specifically to the leading edge of polarised lamellipodia. WRC 

however localized around NHS KD cells with little polarisation. In contrast, little 

localization of WRC was observed in hScrib KD cells (Figure 7.8). Collectively, 

loss of NHS may permit WRC mediated membrane extension, while loss of hScrib 

reduced WRC mediated membrane extension. 
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Figure 7.8 Loss of NHS promotes WRC localization during spreading 

Confocal micrographs demonstrate localization of endogenous Abi1 (anti-Abi1, 
red) and Scar2 (anti-Scar2, green) and filamentous actin (rhodamine phalloidin, 
red) in control cells and indicated stable knockdown cell lines during spreading. All 
panels show MCF7 cells. Scale bar 10µm. 
 

 

NHS may regulate WRC activity by modulating Rac1 activation. Indeed, loss of 

NHS promoted a large increase in Rac1 activation during cell spreading on 

collagen. In contrast, loss of WRC in MCF7 cells reduced Rac1 activation 

(consistent with the observation in WRC KD A431 cells) (Figure 7.9A). As Rac1 

activation reached near maximum 20min after initiation of spreading, Rac1 

activation in hScrib KD cells was also tested at the time point. As expected, loss of 

hScrib supressed Rac1 activation during spreading (Figure 7.9B). NHS is thus 

concluded to negatively regulate Rac1 activation, possibly by supressing 

hScrib/βPIX function.     
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Figure 7.9 Loss of NHS promotes Rac1 activation 

(A) Rac1 activation status in control (shCtl) and NHS KD cells during spreading on 
collagen at indicated time points. (Data are shown as means±SEM, n=3 
experiments at each time point, **p<0.01). (B) Western blots of PAK1-PBD effector 
domain pull-down assay showing Rac1 activation 20min upon spreading on 
collagen of NHS and hScrb stable knockdown cell lines. All panels show MCF7 
cells. 
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7.3(Discussion(
 

NHS is the first non-Scar protein identified to have WHD expressed by human 

cells. During NHS gene identification, two paralogous genes namely NHS-like1&2 

(NHSL1&2) were so identified (Brooks et al., 2004, Brooks et al., 2010). NHSL 

proteins also contain WHD, so the three NHS proteins are classified as members 

of the new NHS protein family (Brooks et al., 2010). The presence of WHD and the 

lack of VCA on these proteins initiated the idea of NHS being a negative regulator 

of WRC by forming non-functional ‘WRC’ like complexes. Although a direct 

interaction between NHS WHD and HSPC300 was identified, and interactions with 

other WRC subunits were also confirmed (Figure 7.2A), the existence of NHS 

centered ‘WRC’ like complex remains uncertain. NHS is a large protein (~160 KD). 

The putative WRC like ‘NHS complex’ should be about 100 KD larger than WRC 

when resolved using a NativePAGE. When an HSPC300 antibody or an Sra1 

antibody was used as a probe, the only complex identified was WRC on the 

NativePAGE (Chapter 3 and Figure 7.2B). Therefore, ‘NHS complex’ may not 

exist in vivo. Alternatively, protein expression level of NHS might be low in tested 

cells lines, so ‘NHS complex’ was too little to detect. Only WRC was revealed on 

NativePAGE even when NHS was over expressed, while over expressed NHS-1A 

perhaps forms large unstable complexes (smearing blot) without WRC 

components. Collectively, NHS may not negatively regulate WRC by competing for 

WRC subunits and forming a defective WRC like complex.  

 

NHS-1A localized to leading edges of lamellipodia and cell-cell junctions. NHS 

WHD is required for NHS-1A localization to cell-cell junctions and possibly for 

leading edge localization as well, as loss of WHD renders NHS-1A cytoplasmic 

(Sharma et al., 2008). However loss of WRC did not stop NHS-1A localizing to 

cell-cell junctions (Figure 7.5), the interaction between WRC and NHS WHD 

therefore is not required for junction localization. Given the large size of NHS WHD 

(219 aa vs 116aa of Scar2 WHD), other unidentified protein-protein interactions 

could lead to NHS-1A junction localization.  

 

Like GUKH the Drosophila ortholog, NHS also interacted with hScrib and hDlg 

(Figure 7.2A). Unlike Drosophila Scribble, hScrib localization to cell-cell junction 

was not NHS dependent, and the over all structure of cell-cell junctions remained 
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intact without NHS (Figure 7.6). NHS is thus concluded to have minimum 

functions on cell-cell junctions despite interactions with WRC, hScrib and hDlg.       

 

Loss of NHS however promoted cell spreading on collagen. With reduced NHS 

expression, cells generated large lamellipodia with WRC decorating the edge. 

Further investigation revealed that NHS negatively regulated Rac1 activation 

during spreading. As hScrib was required for cell spreading and Rac1 activation 

(Figure 7.7&7.9), NHS could use the interaction with hScrib to control Rac1 

activation. hScrib anchors βPIX to plasma membrane to promote Rac1 activation 

(Audebert et al., 2004). It is possible that WRC is activated as a result of 

hScrib/βPIX mediated Rac1 activation, as loss of hScrib prevented membrane 

extension and Rac1 activation (Figure 7.8). Although further investigation is 

required, NHS may interfere with hScrib/βPIX binding leading to disruption of βPIX 

membrane localization hence reduced Rac1 activation.    

 

As a result, the functional significance of NHS-WRC interaction and NHS-hScrib 

interaction requires further investigation, but NHS can negatively regulate WRC 

through Rac1.   
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Chapter(8:(Summary(and(future(directions(

 (
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8.1(Summary(
 

Localization of WRC at the leading edge of lamellipodia was demonstrated using 

multiple fluorescent probes (Chapter 3). Loss of WRC resulted in defects in 

lamellipodia formation, and migration defects on rigid substrates highlighting the 

important role of WRC in 2D planar cell migration. However when cell motility was 

tested in multiple 3D collagen gel or Matrigel based invasion assays, WRC 

surprisingly suppressed cell invasion (Chapter 4). Further Investigations revealed 

that loss of WRC promoted N-WASP/Arp2/3 complex activity in 3D collagen gels 

leading to N-WASP mediated invasion. I therefore discovered that the two major 

actin assembly promoting proteins WRC and N-WASP play opposing roles in 3D 

epithelial cell migration.   

 

Loss of WRC altered focal adhesion structure and dynamics leading to high FAK 

activation (Chapter 5). Interestingly, N-WASP/Arp2/3 activity and invasion was 

FAK dependent, and active FAK co-localized with N-WASP at the invasive cell 

front in 3D. As active FAK interacts directly with N-WASP and enhances N-WASP 

activation, FAK can promote N-WASP activity leading to enhanced cell motility in 

3D without WRC. Active FAK also promoted matrix degradation via degradative 

focal adhesions providing an additional mechanism for the invasive phenotype 

displayed by cells without WRC. Unexpectedly, WRC disruption promoted FAK 

dependent cell transformation and tumour formation in vivo. Consequently, WRC 

is an important check on FAK activity in 3D. Loss of WRC promotes FAK mediated 

invasion and cell transformation. 

 

Since loss of WRC promoted N-WASP dependent invasion, the interplay between 

the two proteins was explored.  Surprisingly, free HSPC300 was required for N-

WASP mediated invasion independently of WRC, and HSPC300 was able to 

interact with N-WASP (Chapter 6). During WRC formation, HSPC300 is 

cooperated to the center of the complex, so its interaction with N-WASP would be 

unfavorable. Additionally as HSPC300 homotrimers are templates for WRC 

assembly, in normal cells, HSPC300 would prefer WRC formation. It is therefore 

possible that loss of WRC releases HSPC300 to interact with N-WASP hence 

promoting N-WASP activity and invasion in 3D. 
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A putative negative regulator of WRC was also investigated in this thesis. NHS is a 

recently identified WHD containing protein that lacks VCA. It is proposed that NHS 

can negatively regulate WRC by completing for WRC subunits. However my data 

suggests an indirect mechanism where NHS suppresses Rac1 activation leading 

to reduced WRC activation (Chapter 7).   
 

 

8.2(Future(directions(
 

N-WASP is activated by Cdc42 (Kolluri et al., 1996) or Rac1 (Tomasevic et al., 

2007). Enrichment of N-WASP and Arp2/3 complex at the invasive pseudopods of 

cells invading in 3D collagen gel indicates specific activation of N-WASP. Although 

there is no global change on Cdc42 activation upon loss of WRC (Figure 4.19B), it 
is necessary to test Cdc42 activation status at the invasive pseudopods using a 

biosensor. In WRC depleted cells, Cdc42 could be locally activated at invasive 

pseudopods leading to N-WASP activation. Likewise, localized Rac1 activation 

also needs to be tested at the invasive pseudopods, although local Rac1 activation 

is most likely reduced due to the global reduction of Rac1 activation in cells 

without WRC (Figure 4.19A). 
 

Loss of WRC promoted FAK activation in a number of cell types. FAK over 

expression and activation is involved in cancer (McLean et al., 2005). Expression 

of a WRC subunit, Sra1, is also reduced in human epithelial cancers (Silva et al., 

2009). The data in this thesis support WRC as a tumour suppressor through FAK. 

However, to further investigate the link between WRC and FAK in cancer, it is 

necessary to correlate WRC expression with FAK expression/activation in real 

human epithelial cancers.  

 

HSPC300 is shown to be stable without WRC, and is required for N-WASP 

mediated invasion. This surprising function puts HSPC300 in a similar position as 

FAK, which also regulates N-WASP activity in WRC deleted cells. Loss of 

HSPC300 in RPE1 cells cultured in collagen gel led to heavy reduction of active 

FAK (pY397FAK) (Figure 8.1). Once again this change in FAK activation is in 

direct contrast to WRC loss induced FAK over activation. Therefore free HSPC300 

may control FAK activation when WRC is absent providing a molecular link 
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between FAK and WRC. Mouse embryos lacking HSPC300 are known to have 

apoptotic cells, and HSPC300 loss suppresses cell transformation perhaps due to 

low FAK activation in these cells (Escobar et al., 2010). Although the theory needs 

to be further tested, HSPC300 may play a role in FAK activation hence cell 

transformation and tumorigenesis.   

 

 

Figure 8.1 HSPC300 is required for FAK activation  

Western blot showing reduced pY397FAK level upon loss of HSPC300 in RPE1 
cell. 
 
 

HSPC300 is required for N-WASP function in the invasive pseudopods. Co-

immunoprecipitation shows that HSPC300 can interact with N-WASP (Figure 6.4). 
However it is not clear if this interaction is direct. For further investigations, it is 

essential to address this question using purified proteins. In addition, the potential 

N-WASP activating ability of HSPC300 may also be tested using purified proteins 

in an actin polymerization assay.    

 

Finally, NHS negatively regulates Rac1 activation in tested cells (Figure 7.9), but 

the mechanism is not clear. Due to the interaction with hScrib, I propose NHS 

regulates Rac1 activation through negative regulation of hScrib/βPIX complex. 

βPIX is recently reported to activate Rac1 at nascent adhesions promoting 

lamellipodia formation and to prevent adhesion maturation (Kuo et al., 2011). Over 

expression of βPIX results in reduced focal adhesion size, while loss of βPIX 

increases focal adhesion size (Kuo et al., 2011). Interestingly, in addition to high 

Rac1 activation, loss of NHS also resulted in loss of focal adhesions, a phenotype 

that resembles βPIX over expression (Figure 8.2). This preliminary data reinforces 

the idea of NHS being a negative regulator of βPIX. Although the interaction 

between NHS and hScrib can be detected using co-immunoprecipitation, the 

interaction needs to be verified using purified proteins. Likewise, the interaction of 

NHS with βPIX needs to be identified.      
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Figure 8.2 Loss of NHS reduces focal adhesions 

(A) TIRF micrographs showing reduction of focal adhesion (pY397FAK) numbers 
in NHS depleted MCF7 cells. Scale bar 10µm. (B) Quantification of A. (Data are 
shown as means±SEM, n=30, **p<0.01). 
  



! ! !172!

8.3(Conclusions(

To conclude, I addressed the aims of this thesis by revealing the novel role of 

WRC as an invasion suppressor in 3D. I demonstrated a FAK/N-WASP/Arp2/3 

complex mediated invasion mechanism and a previously unknown function of free 

HSPC300 in cell invasion. I therefore conclude that loss of WRC activates FAK 

and releases HSPC300 leading to enhanced N-WASP activity and invasion. 

Through FAK, WRC also controls matrix degradation, cell transformation and 

tumor formation, while NHS suppresses WRC by negatively regulating Rac1 

activation. Collectively WRC is concluded to exert potential tumor suppressor 

function/activity (Figure 8.3). 
 

 

 
Figure 8.3 Graphic summary 

Schematic diagram summarizing major findings in this thesis. While NHS 
negatively regulates WRC through suppression of Rac1 activation, loss of WRC 
promotes N-WASP dependent cell invasion by FAK over activation and releasing 
of free HSPC300. Active FAK also contributes to matrix degradation and cell 
transformation.  
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