
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Steven, Stacy (2012) The pharmacology of the 5-HT2A receptor and the 
difficulty surrounding single taret models. MSc(R) thesis. 
 
 
 
 
 
http://theses.gla.ac.uk/3636/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/3636/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The pharmacology of the 5-HT2A receptor and the 

difficulty surrounding functional studies with single 

target models 

 

A thesis presented for the degree of Master of Science by research 

Stacy Steven April 2012 

 

 

 



Treatment of many disorders can be frequently problematic due to the relatively non 
selective nature of many drugs available on the market. Symptoms can be complex and 
expansive, often leading to symptoms representing other disorders in addition to the 
primary reason for treatment. In particular mental health disorders fall prey to this 
situation. Targeting treatment can be difficult due to the implication of receptors in more 
than one disorder, and more than one receptor in a single disorder. In the instance of 
GPCRs, receptors such as the serotonin receptors (and in particular the 5-HT2A for the 
interest of this research) belong to a large family of receptors, the GPCR Class A super 
family. Around 50% of the drugs now commercially available target GPCR receptors 
(Wise et al 2004, Katugampola & Davenport.,2003) and drugs with action at serotonin 
receptors are used in the treatment of many disorders, particularly psychotic disorders 
such as schizophrenia. Inability to target single receptors selectively means that the 
therapeutic values of the drugs are much lower than desired.  
 
In this study, the 5-HT2A receptor was incorporated into a stable, inducible cell line using 
HEK 293 cells and the Flp-in T-REx system, allowing receptor expression to be under 
the control of the antibiotic doxycycline and hence allow pharmacology to be explored. 
There is a variation when looking at the potency of agonists in relation to calcium 
mobilisation and IP-one accumulation, although following the same order of potency the 
values differ between each experiment type. The order of potency for the majority of the 
antagonist ligands is very different when looking at IP-one and Ca2+ experiments, as are 
the values obtained for affinity. This was surprising due to the both lying downstream of 
the IP3 pathway. The most closely relating results to the published IUPHAR values stem 
from binding experiments.  
 
Understanding the pharmacology of the single receptor by several methods is essential 
when screening drugs for effectiveness at the receptor. Here the data exploring the 
pharmacology of the 5-HT2A receptor demonstrated the difficulty surrounding functional 
studies using single target models. 
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1. Introduction 

Overview 

Mental disorders as we know them, span wide ranging categories, including anxiety, mood 

and psychotic disorders, and exhibit an extensive list of symptoms. Sufferers of such 

disorders often suffer co-morbid conditions on top of their main condition as a result of 

many over lapping symptoms. Therapeutics based on ligand biased activity target cardinal 

symptoms, activating only specific pathways associated with therapeutic benefits. In the 

instance of GPCR however, for families such as the serotonin receptors which belong to 

the GPCR Class A super family, this is often  difficult to achieve , due to many ligands 

being generally non selective for one receptor sub type specifically over another. The drug 

market today has now shifted its focus slightly towards multi target therapy, in order to 

treat a variety of symptoms, lessening the impact of such disorders. The notion of 

polypharmacology of antipsychotic drugs focuses on the treatment of psychotic disorders, 

with drugs targeting multiple receptors, in order to produce drugs with greater therapeutic 

value. Several serotonin receptors are known already to be involved in cognitive functions, 

one key player being 5-HT2A. 

 

1.1 Cellular communication 

Cellular communication is undoubtedly an integral process in the existence of life forms. 

This communication occurs via a system of receptors and messengers, which elicit many 

different types of cellular signals and effects to modulate all body systems. 4 main receptor 

classes are: 

1) Ligand-gated ion channels 

2) G protein-coupled receptors 

3) Kinase-linked receptors 

4) Nuclear receptors  
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These receptors contribute to virtually all physiological processes and hence dysregulation 

can result in a multitude of disease states. 

 

1.2 G protein-coupled receptors 

G protein-coupled receptors (GPCRs) are the largest and most versatile group of cell 

surface receptors, and detect a diverse array of chemical signals in a highly selective way 

(Hill, 2006). 

GPCRs constitute  a super family, with each and every GPCR containing the characteristic 

7 transmembrane (7TM) spanning hydrophobic domain. 

Some 865 genes in man encode GPCRs (Milligan and Kostensis, 2006).  

 

1.21 Classification of GPCRs 

There are 2 main classification systems of GPCR families. The A-F classification system, 

proposed by Kolakowski in 1994, in which Class A: Rhodopsin-like, with over 80% of all 

GPCRs in humans; Class B: Secretin-like; Class C: Metabotropic glutamate receptors; 

Class D: Pheromone receptors; Class E: cAMP receptors; and the smallest Class F: 

Frizzled/smoothened family. The second classification system is the GRAFS classification 

system, proposed by Fredricksson et al.,2003. The system is based on common ancestry, 

taking into account things such as chromosomal positioning.  

 

1.22 GPCR families in more detail 

There are 5 main families of GPCR. 

Class A- Rhodopsin like: This is the largest family of GPCRs and is known to contain 

around 670 human proteins. The rhodopsin family of GPCRs is highly heterogenous when 

both primary structures and ligand preference are considered (Langerstrom and Schioth, 

2008).  This group of receptors are most targeted by drugs of a clinical nature, containing 

at least 18 important drug targets: The histamine receptors 1 and 2, the dopamine receptors 
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1 and 2, the serotonin receptors 1A, 1D and 2A, the adrenoceptors 1A, 2A, B1 and B2, the 

muscinarinic receptor 3, the prostanoid receptors TP,EP,EP3,IPI and  FP, and the 

cannabinoid receptor 1 (Langerstrom and Schioth,2008).   

 

Class B- Secretin like receptor: All receptors in this class have extracellular hormone 

binding domains and bind peptide hormones. Examples of these are the corticotrophin 

releasing hormone receptors (CRHR1 and CRHR2), the glucagon receptor and the secretin 

receptor. Hormone treatments targeting these receptors are for clinical conditions such as 

diabetes and osteoporosis. 

 

Class C- glutamate like receptor: a family of 22 proteins, including glutamate receptors 

and sweet and umani taste receptors. 

 

The adhesion receptors :  This is the 2nd biggest super family, consisting of 33 members 

and divided into 8 sub-groups. De orphanised adhesion GPCRs have recently been shown 

to suppress melanoma metastasis and tumour growth. The majority of adhesion GPCRs are 

still orphans meaning that their endogenous ligands remain unknown. Owing to the present 

limitation of ligands to these receptor proteins, no drugs are targeted against these GPCRs 

(Langerstrom and Schioth,2008).   

 

Frizzled/taste2 receptors:  Frizzled and smoothened receptors are grouped together, and 

contain 10 frizzled and 1 smoothened receptor. These play key roles in development and 

they are thought to be potential anti cancer targets, although as yet no clinical drugs are 

available. Taste 2 receptors are present in humans as 25 functional genes, and these 

receptors allow the detection of bitter tastes. 
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All GPCRs in the class A family share homology with Rhodopsin,comprising of a single 

serpentine polypeptide chain with 7 transmembrane helices linked by 3 extracellular and 3 

intracellular loops and with an amino terminal which is extracellular, and a 

carboxyterminal which is intracellular (Eglen,2005). 

 

1.23 GPCR structure 

Each of the 7 TM domain is composed of 20-27 amino acids. The N terminal and the C 

terminal vary substantially in size in different GPCRs. N terminal segment is between 7-

595 amino acids long whilst the C terminus ranges between 12-359 amino acids. There are 

also variation in particular in the intracellular loops (5-230 amino acids), these variations 

are an indication of their diverse structures and functions (Ji et al., 1998).  

7 TM structures characteristically have N and C terminals which span opposite membranes 

(figure 1.1), allowing for 1 extra cellular and 1 intracellular. 7 TM’s provide a sufficient 

size and versatility to offer a prodigious number of specificities, regulatory mechanisms 

and contact sites for G proteins and other signalling molecules (Ji et al., 1998). 

 

 

 

Figure 1.1 Representation of the typical GPCR structure, containing 7 transmembrane 
spanning domains ,with the N terminus in the extracellular domain and the C terminus 
spanning the intracellular domain. 
 

Arrangement of the 7 transmembrane helices is a closed loop system, which follows a 

counter clockwise direction from transmembrane domain1 to transmembrane helix 7. The 

 

 

     
 

  

  
 

 

 



 14 

orientation of TMs imposes a stereo- and geometric specificity on ligands entry into, and 

binding to the TM core (Ji et al., 1998). 

 

1.24 Rhodopsin 

Rhodopsin is a GPCR which has been studied in thorough detail, and is used as an example 

when describing the 7TM structure of all GPCRs.  Bovine rhodopsin was the first GPCR 

for which an atomic level crystal structure was obtained (Palczewski et al., 2000). This 

breakthrough allowed insight into the location of its integral ligand retinal. However the 

covalent link of retinal is distant from other GPCR ligands and made designing ligands 

based on this model alone inadequate (Mustafi and Palczewski 2008). 

Rhodopsin itself is a light photo receptor protein, present in the rod cells. When activated 

by light, this initiates the signalling pathway that leads to vision. The 7TM portion of  

Rhodopsin is known as opsin (Palczweski et al., 2000). Opsin is linked covalently to the 

ligand11-cis-retinal through Lys 296. When 11-cis-retinal absorbs a photon this causes 

isomerisation to all-trans, leading to a conformational change of the protein moiety from 

the inactive  to active (R*) state (Mustafi and Palczewski 2008). A cascade of reactions is 

then initiated. Absorption of a single photon results in the activation of hundreds of G 

protein molecules (Fung et al., 1980). Crystalisation confirmed the presence of an 8th helic 

running parallel to the plasma membrane and terminated by a pair of palmitoylated 

cysteine residues, Other identified key micro domains include the DRY motif, Helix III, 

the NPXXY domain connecting transmembrane helix VII and cytoplasmic helix VIII. The 

NPXXY domain has been seen to play an essential role in the switching of 5-HT2C receptor 

between active and inactive conformational states (Weinstein et al, 2002).  The Ballesteros 

group put in place a numbering system :The Ballesteros-Weinstein numbering system 

which would allow easy location of amino acid residues. The numbering system uses a 50 

decimal point to signify the location of the most conserved residue (Ballesteros and 

Weinstein,1995). The reference residue amongst the most conserved residues will always 
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be numbered 50, eg in tm 4 there is a tryptophan which is most conserved and so this is 

referenced 4.50. There is a serine residue 5 amino acids after this tryptophan, and so its 

location is 4.55 (Ballesteros and Weinstein,1995). This is much easier and quicker  to use 

than counting in ascending order the entire length of the receptor to find a particular 

residue, eg the proline in TM6 is 267 amino acids along. Several residues are conserved 

among Class A GPCRs, The conserved residues are in helix I (Gly and Asn), helix II (Leu 

and Asp), helix III (Cys and AspArgTyr), helix IV (Trp and Pro), helix V (Pro and Tyr), 

helix VI (Phe, Trp, and Pro), and helix VII (Asn, Pro, and Tyr of the NPXXY motif) 

(Mirzadegan et al.,2003). The tyrosine residue  tyr 5.58 on tm 5 is 80% conserved amongst 

class A GPCRs (Ballesteros and Weinstein,1995). 

 

The molecular size of rhodopsin is intermediate in comparison to other members of the 

family, so therefore contains all the essential functionally important components. 

This groundwork in x-ray  crystallography studies paved the way for the emergence of 

other high resolution crystal structures for various GPCRs, including the human β2 

adrenergic receptor (Cherezov et al.,2007),  β1 adrenergic receptor (Warne et al.,2008),  

and the human A2A adenosine receptor (Jaokda et al.,2008).  A 4th structure materialised in 

2008, that of the squid rhodopsin (Murakami and Kouyama 2008). Recognition of G 

protein Gαq appears to occur as a result of extended helices V and VI into the cytoplasmic 

medium, along with 2 cytoplasmic helices. The early crystallised structures were captured 

in the inactive form, having been crystallised in the presence of  inverse agonists or 

antagonists. However recently  All contain 7TM helices and an 8th parallel to intracellular 

membrane. These emerging structures highlight structural differences between GPCRs of 

the class A receptor family, which result in differences in various processes such as ligand 

recognition and activation, including ability to alternate between activation states. 
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1.25 The D(E)RY Motif  

The only structural common feature of GPCRs is the 7TM spanning domains, with 3IC and 

3EC loops, an amino acid terminus to the extracellular side and a carboxyterminus on the 

intracellular side. However, major subfamily the rhodopsin contain a highly conserved 

sequence homology for the Asp/Glu-Arg-Tyr D(E)RY motif , between TM2 and 

intracellular loop C2. It functions as a regulatory body in receptor conformational states, 

and consequently the activation of associated G proteins because it provides an ionic lock 

which stabilises the inactive form of the receptor (Rovati et al.,2007, Mirzadegan et 

al.,2003, Mustafi and Palczewski 2008). This domain can influence ligand binding 

characteristics, depending on whether residues which follow are of an acidic or basic 

nature. Basic residue ( 34% Lys, 19 % Arg) results in peptide ligand binding, Acidic 

residue ( Asp, Glu) will allow binding of biogenic amine ligands (Mirzadegan et al.,2003). 

The big picture derived from rhodopsin crystalisation studies indicate arginine 3.50 

interacts with aspartic acid or glutamic acid, which are the amino acids at position 3.49, 

and a Glu residue on helix 6 position 6.30, forming salt bridges (Ballesteros et al., 1998, 

Palczewski et al., 2000). Disruption of these bridges (Asp/Glu 3.49, Arg 3.50 and Glu 

6.30) is thought to induce activation of receptor as they are stabilizing structures forcing 

the receptor to remain in the inactive state, as predicted in various mutagenesis 

experiments (Ballesteros et al.,2001, Rovati.,2007), with arginine (a basic residue) in 

particular playing an important role in receptor stabilisation (Flanagan et al.,2005) 2005). 

Mutational analysis of the highly conserved D(E)RY motif of the thromboxane A2 

receptor α (TP2α) highlight an alternate role in GPCR, implying that arginine is essential 

to the process of G protein coupling (Capra et al.,2004). Highlighted in β2 adrenergic 

rececptor studies is the importance of a rotamer “toggle switch” located  on helix 6. It is 

thought to be important, alongside the ionic lock for agonist binding and promotion of 

receptor activation (Shi et al.,2002). 

1.3 Receptor activation and the ternary complex 
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GPCR activation and signalling was originally described by the 2 state model. This model 

suggests that the receptor can switch between a resting state (R) and an active state (R*) 

(Rang ,2006). Even in the absence of a ligand a conformational equilibrium exists between 

R and R* resulting in a degree of constituitive activity. Agonists have a higher affinity, 

preferential for R* over R.  

A more appropriate  and commonly used model for describing the activation of GPCRs is 

the ternary complex model. Analysis of radioligand binding studies was used in order to 

develop this theory. The ternary complex model has 3 constituents : 1) the receptor (R) , 2) 

agonist (A) and 3) the G protein (G). 

Receptor activation depends on its ability to bind to and form a complex with a G protein. 

This receptor-G protein complex is an active conformation. Agonists can bind with high 

affinity in the active state, however, when the receptor is uncoupled the conformation is 

inactive, and there is low affinity for the agonist. 

An agonist (A) can bind to either free receptor (R) or to a receptor coupled to a G protein 

(RG). The G protein binds to the free receptor or receptor coupled to an agonist. A ligand, 

in the ternary complex model, causes a shift in equilibrium, to favour the state for which it 

has greater affinity (Park et al.,2008). 

This means that agonists promote activation of a receptor (active state being of higher 

affinity). Full agonists will exert a greater effect of shifting the equilibrium in favour of the 

active state than a partial agonist. 
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1.4 G proteins 

GPCRs function along side G proteins. These proteins derive their names from their 

behaviours, interacting with guanine nucleotides of GTP + GDP, and hence are known as 

‘G’ proteins. G proteins are derived from 35 genes, 16 encoding α subunits, 5 β subunits 

and 14 γ subunits. Each of the subunits function as guanine nucleotide exchange on /off 

switches, and are mechanistically similar to other proteins that are enzymatic GTPases 

(Milligan and Kostensis, 2006 ). The total number of GPCRs far exceeds the number of G 

proteins in humans, and thus each member of the Gα subfamilies must be able to interact 

with many GPCRs (Kostensis et al ., 2005). 

G proteins are classified in accordance to amino acid similarities of the α subunit. 4 

classes/sub families have been identified: Gαs, Gαi/o, Gαq/11 and Gα12/13. Activation of 

the Gαs sub family leads to stimulation of members of the membrane associated adenylyl 

cyclase enzyme , which in turn stimulates the production of cyclic AMP . This 

subsequently activates protein kinase A, generating a host of down stream processes. 9 

isoforms of mammalian adenylyl cyclase have been identified and cloned to date (Hur and 

Kim, 2002). It is known that all 9 isoforms are susceptible to stimulation by the Gαs 

subfamily. 

 

Activation of the Gαi subfamily causes the opposite to occur, and results in the 

inactivation of adenylyl cyclase and therefore an inhibition of cyclic AMP production. 

With regards to Gαi/o , only certain isoforms of the adenylyl cyclase are sensitive to 

inhibition, and it has also been established that each of the different isotypes are regulated 

by different Gβ/γ subunits. The Gαi subfamily also regulate a number of other effectors. 

Of great relevance  is central nervous system function are a group of Ca2+ and K+ channels 

which control neuronal excitability. 
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Gαq/11: both regulate the efflux of calcium from intracellular stores, Gαq once stimulated 

by a ligand+GPCR complex, functions to stimulate phospholipase Cβ and generate the 

second messengers IP3 (inositol 1,4,5-trisphosphate) and DAG (diacylglycerol), 

controlling protein kinase c stimulation. 

 

Gα12/13 is involved in Rho GTPase signalling cell migration, blood vessel development 

and metastasis, with particular emphasis in the early stages of breast cancer (Kerry et 

al.,2006). 

 

It is now well established that β/γ complexes mediate at least as many functions as the α 

subunits (Milligan and Kostensis, 2006). Once activated, the β/γ subunit is free to bind to, 

and exert effect on a variety of effector molecules such as adenylyl cyclase, voltage 

sensitive ion channels and proteins of MAPK pathway. 

Many G proteins may be lipidated in order to be able to associate with inner leaflet of the 

plasma membrane. G α subunits are modified by combinations of fatty acid whilst γ 

subunits become post-translationally modified by the addition of isoprenil groups. 

 

1.41 The activation of a G protein 

GPCRs are sensitive to activation by a variety of ligands including hormones, peptide and 

non peptide neurotransmitters and growth factors, as illustrated in Figure 1.2. 
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Figure1.2 Represents the diverse range of ligands which bind to GPCR’S and subsequent 
signalling pathways activated and second messengers generated as a result of ligand 
binding (Marinissen and Gutkind.,2001). 
 

When a GPCR couples to a G protein generation of intracellular signals occurs, stimulated 

by a ligand/receptor interaction which occurs at cell surface level. 

The GPCR and the G protein trimer, until the GPCR becomes ligand bound, are found 

separately on the membrane. The α subunit of this G protein is GDP bound, and once the 

GPCR becomes occupied by a ligand (agonist), then a conformational change occurs in the 

GPCR, and the GPCR has heightened affinity for the αβγ trimer of the G protein.  At the 

point of association with the GPCR, displacement of GDP occurs and it is replaced by 

GTP. At this point the generally held view is that the trimer also dissociates and the αβγ 

trimer subunits separate and diffuse into the membrane. It is at this stage that the G protein 

is active. 

The switching on/ switching off process is self limiting , and the α subunit restores GDP to 

the binding site via GTPase activity. The trimer subunits again re-unite on the membrane, 

dissociated once again from the GPCR 
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1.5 Ligand Binding 

Ligands can be classified according to whether they have either agonistic or antagonistic 

properties. The words agonist and antagonist come from the Greek Agonistes (combatant) 

and Antagonistes (rival) (Park et al.,2008). Agonists binding to promotes cellular responses 

with either full efficacy (full agonist) or with less than maximal efficacy (partial 

agonist).Antagonists oppose the action of agonists and in the case of competitive 

antagonists this occurs by blocking the binding of an agonist to the receptor, thereby 

preventing the cellular response (Park et al.,2008). 

In addition there are Inverse agonists and they function to reduce basal activity. The 

concept of constitutive activity was first put forward by Andre Delean and co workers in 

1980 (DeLean et al., 1980), when they suggested an extended ternary complex model. By 

studying the beta-adrenergic receptor the looked to describe affinity states and intrinsic 

activity. In the frog erythrocyte system they found there to be high levels of basal activity 

for adenylate cyclase, and spontaneous complex formation between R and G = RG , a 

collision which is normally agonist initiated. An equilibrium exists between the active and 

inactive confirmations, and the active confirmation can modulate cellular events in the 

absence of a ligand (Aloyo et al.,2009). This phenomenon could not be accounted for in 

the basic ternary complex model. In 1989 Costa & Herz (Costa & Herz 1989) carried out a 

series of experiments to test this hypothesis, and in doing so established a new concept of 

inverse agonism. 

 

The ability to study detailed pharmacological properties of GPCRs by definition relies on 

the availability of compounds that can selectively agonise and antagonise responses 

mediated by a particular GPCR (Hill,2006). 
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1.51 Radioligand binding studies 

Throughout the decades of the 1960’s and 1970’s, radioligand binding studies were 

introduced and developed. These studies provided a means by which new insights into the 

molecular identity and properties of GPCRs were achieved (Hill, 2006). 

The 1st study was carried out in 1965 by William Paton and Humphrey Rang (Paton and 

Rang, 1965), looking at binding of tritiated atropine to muscarinic receptors of the guinea 

pig ileum. 

Binding studies using radiolabelled agonist and antagonists to GPCRs then began to follow 

on from this. An emerging feature of many studies of this nature was that displacement of 

radiolabelled antagonist binding to cell membranes by an agonist produced data consistent 

with the agonist binding to sites with high and low affinity components, characteristically 

consistent with only a single receptor state. By contrast antagonists displaced the binding 

of radiolabelled antagonists. 

 

1.6 GPCR regulation 

There are several regulatory mechanisms in place with regards to GPCRs. 

Desensitisation is a short term mechanism of regulation adopted by the cell, in response to 

repeated exposure to a specific stimulus. Two types of desensitisation can occur 1) 

Homologous : decrease of response to an agonist after repeated/prolonged exposure of the 

same agonist 2) Heterologous : phosphorylation is mediated by second messenger kinases. 

Repeated exposure of one agonist leads the cell to have diminished responsiveness to a 

host of other agonists (Gray and Roth,2001). GRKs and arrestins are thought to be 

responsible for homologous desensitisation (Allen et al.,2001, Gray and Roth,2008). 

Agonists promote the interaction of a receptor with GRKs , phosphorylating specific 

Ser/The residues,  and recruit arrestins with high affinity. G protein-coupled receptor 

kinases GRK2 + GRK3 regulate the desensitisation process, by uncoupling the G protein 
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from the receptor, an essential process to ensure G protein signalling does not occur 

continuously. Three steps occur in the desensitisation regulatory process: 

Desensitisation occurs first. This involves the uncoupling of the receptor/effector complex 

once agonist binds and receptor phosphorylation occurs, followed by sequestration, where 

the agonist activated receptor is removed from the cell surface and into an intracellular 

compartment and then finally down regulation occurs, resulting in a reduction in protein 

synthesis and lysosomal degradation. These stages occur consecutively. This allows for 

uncoupling of receptor from its G protein bound complex , and removal from membrane 

for either degradation or recycling. Phosphorylated and desensitised receptors are gathered 

in clathrin coated pits where dynamindependant endocytosis occurs, leading to 

internalisation of the receptor in a clathrin coated vesicle. These vesicles then transport the 

receptor to endosomes. Various types of endosomes exist, early endosomes being the 

receptors first port of call, and sorting of receptors occurs here, determining whether the 

receptor goes onto the recycling endosomes to allow resensitisation and return to the 

plasma membrane to take place, or alternatively the GPCR may relocate into late 

endosomes for degradation or a slow recycling process. These steps are regulated by the 

Rab/Ras family of GTPases. 

 

Fig 1.3 Diagram taken from Louis M. Luttrell Mol Biotechnol ( 2008). Desensitization, 
sequestration, and recycling of GPCRs. 
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1.61 GPCRs and the dimeric state 

The concept of GPCRs existing in a dimeric state was first broached in the late 1990’s 

(Milligan, 1998). however at the time analysis was challenging as a little range of 

techniques were vailable to address the questions.. In the last decade dimerisation has 

become a topic of considerable debate within the subject of GPCRs (Milligan, 2003 , 

Milligan, 2004 , Milligan, 2006 , Milligan, 2007, Park and Palczewski ,2004, Kunishima et 

al.,2000, Lee et al 2004 ). 

For many years GPCRs were thought to exist only as monomers. The latest technologies 

have paved the way for a greater understanding of this subject and the existence of both 

homodimers and heterodimers. Based on the application of techniques involving 

fluorescence energy transfer (FRET) and bioluminescence transfer (BRET), in particular 

time resolved FRET which allows detection of dimers trafficked successfully to the cell 

surface (Milligan, 2007), formation of dimers is known to occur during synthesis in the 

endoplasmic reticulum, and for some receptors is a requirement for passing control points 

during synthesis (Bulenger,2005). 

Subsequent to demonstration of homodimerisation , it became apparent that certain GPCRs 

displayed an ability to heterodimerise when co-expressed together (Milligan,2006 a,b). 

Heterodimerisation has been reported to have effects on cellular trafficking, cell surface 

delivery, pharmacology and signalling (Milligan,2006, Bulenger,2005 ). An example of 

this the enhancement of cell surface expression of the mouse 71 olfactory receptor when in 

the presence of the β2-adrenergic receptor, an event inefficient at occurring when 

expressed independently (Hague et al.,2004).  It is thought that prospects of GPCR 

heterodimers may be novel drug targets if heterodimer specific ligands, expanding on 

already established therapeutic targets. Dopamine is a neurotransmitter whose dysfunction 

is involved in disorders such as schizophrenia and Parkinsons disease. Recently it has been 

discovered in the lab of Susan George that dopaminergic signalling can occur via Gαq11. 

This is generally not associated with any single dopamine receptor subtype. However in 



 25 

cells co-expressing D1 and D2 receptors ,the two subtypes showed to be able to 

heterodimerise, coactivating the receptors leads to signalling via this pathway (Lee et 

al.,2004,Rashid et al., 2007 a.b). These complexes have been linked to an elevation of 

BDNF (Brain-derived neurotrophic factor) expression and neuronal growth (Hasbi et 

al.,2009) and exist in a unique population of neurones expressing both neuropeptides DYN 

(dynamin) and ENK(enkephalin)( Perreault et al.,2010) D1 and D2 receptors are 

coexpressed and colocalising in both human and rodent brain within the nucleus 

accumbens and striatum (Rashid et al.,2007b), and the D1/D2 complex has now been 

confirmed as a physical entity by 3 distinct approaches: immunocytochemistry, confocal 

FRET and co-immunoprecipitation  (Hasbi et al.,2009). PLC activity and calcium 

signalling associated with Gαq/11 coupling appears to be present in tissue systems 

coexpressing this D1/D1 complex as opposed to heterologous expression systems 

expressing either one or the other (Lee et al.,2004).  In vivo work by the George group in 

2010 implicated this heteromer in reward pathways, and an upregulation of sensitivity of 

the D1/D2 complex in rat striatum following chronic administration of amphetamine has 

linked the heteromer to other disorders associated with elevated dopamine transmission 

(Perreault et al.,2010). Since discovering the existence of this complex this group has 

managed to demonstrate the separation and reformation of this cell surface heteromer, 

finding also that D1 homo-oligomers were present within the same cell systems.  

 

Another recent advancement has been the discovery of a serotonin/glutamate receptor 

complex, which is thought to be implicated in psychosis (Maeso et al., 2008). Uniquely 

this complex formation is between 2 receptors from different subclasses. Targeting the 

complex with hallucinogenic drugs which action at the 5-HT2A receptor (a class A 

rhodopsin family GPCR) then activates mGluR2 (a family C GPCR) consequently 

abolishes hallucinogenic signalling and behaviour (Gonzalez-Maeso et al.,2008). It is 



 26 

hoped that multi target therapy such as this hetromer can be aimed at treating a larger scale 

of symptoms than traditional single target models. 

 

1.7 Serotonin (5-HT) and the serotonin receptors 

Serotonin is a neurotransmitter of the brain and periphery which can be found in the blood, 

the CNS and wall of the intestine (aiding gastrointestinal motility). In the CNS serotonin is 

an important transmitter, and is known to exert control over a variety of functions 

including appetite, sleep, mood, hallucinations, behaviour, pain perception and even 

vomiting. Modification in serotonin function can lead to development of health problems 

including migraines and mental health and mood disorders. 

The precursor of serotonin is the amino acid tryptophan (an essential amino acid), not 

produced by the body, but instead obtained as a dietary source. In mammals less than 1% 

of the dietary tryptophan is converted to 5-Hydroxytryptamine (5-HT), and only 10% of 

that conversion occurs in the brain (Russo et al., 2009). Synthesis of the neurotransmitter 

occurs via the enzyme tryptophan hydroxylase , a rate limiting stage in the process being:  

 

L-Tryptophan + Tetrahydrobiopterin + O2                5- Hydroxytryptophan (5-HTP) + 4a-

hydroxytetrahydrobiopterin 

 

5-hydroxytryptophan (5-HTP) is an intermediate in the synthesis of serotonin. This 5-HTP 

is subject to decarboxylation by another enzyme – decarboxylase, to create serotonin ( see 

fig1.4.). 

 

Fig 1.4.Conversion of tryptophan to serotonin. 
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Serotonin is incapable of crossing the blood brain barrier. Synthesis within the CNS is is 

heavily dependant upon the availability of L-Tryptophan within the CNS (Birdsall, T.C., 

1998). 

 

1.71 Early discoveries 

Gaddum and Picarelli in 1957 (Gaddum and Picarelli, 1957), embarked upon the initial 

classification of serotonin receptors. They found that although 5-HT could cause 

contraction of guinea pig ileum, the response occurred via 2 different pathways as 

application of antagonists caused different results for different tissue preparations. 

Their experiments were carried out on the basis of previous observations of drugs 

antagonising the 5-HT receptor by both Gaddum and Hameed in 1954 (Gaddum and 

Hameed,1954 ), and Cambridge and Holgate in 1955 (Cambridge and Holgate,1955), 

where both partnerships found concentrations of known drugs (0.1µg/ml LSD in the case 

of Gaddum, and 0.01µg/ml Atropine in the case of Cambridge) diminished the response of 

5-HT by 50%, however, further increases of atropine lead to a plateau effect, and at 100x 

greater concentration the observation was that it had no more effect than that of the smaller 

administered dose. Further experiments carried out by Gaddum and Picarelli (Gaddum and 

Picarelli ,1957), lead to the proposal of the D and M type receptors, thought to be muscular 

tissue receptors and nervous tissue receptors respectively. Drugs seen to act at and block 

the D type receptors antagonised the effect of 5HT at smooth muscle receptors in 

experiments on the rat uterus, rabbit ear and guinea pig ileum, whilst the presence of the M 

type receptor effected the nerve ganglia and fibres. From such studies it was then inferred 

two types of 5-HT receptor could co-exist in the same tissue, with distinct sensitivities for 

different drugs. 
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This important landmark in the 5-HT receptor history spurned further experimental work, 

giving rise to the definite conclusion that more than one type of serotonin receptor exists, 

opening the door for future discoveries. 

 

There are currently 15 known G-protein-coupled serotonin receptors, split into 7 families 

(5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5 , 5-HT6 AND 5-HT7) with several families 

containing multiple members (e.g. 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F) (Kroeze and 

Roth,1998, Roth et al.,2004).  The 5-HT7 receptor was first discovered in the 80s and 

initially was classified as 5-HT1 (Fenuik et al.,1983), however after cloning and 

recharacterisation some 10 years later it was reclassified as 5-HT7 (To et al.,1995).One of 

the most newly discovered serotonin receptors is 5-HT6. This receptor was discovered in 

1993 by 3 separate groups, Monsma, Plassat and Ruat (Monsma et al., 1993, Plassat et al., 

1993 and Ruat et al.,1993). They cloned this receptor from the rat striatal cDNA. Cloning 

of the 1st human 5-HT6 receptor occurred In 1996 by Kohen and colleagues (Kohen et 

al.,1996).  The majority of serotonin receptors are implicated in psychosis and 

antipsychotic drug action, including 5-HT1A, 5-HT2A, 5-HT2C, 5-HT3, 5-HT6 and 5-HT7 

(Meltzer and Nash.,1991). 

As cloning strategies confirmed the existence of multiple, distinguishable serotonin 

receptors, it became obvious that a system must be put in place for the classification and 

nomenclature of all the various serotonin receptor types and subtypes. What also had to be 

taken into account was the physiological relevance of newly identified gene products. It 

should be realised that these two issues cannot be dealt with independently, and are, in fact 

intimately related (Hoyer & Martin,1996). 

Hoyer and Martins efforts, alongside other members of the serotonin nomenclature 

committee, in constructing a system where by present discoveries and needs are taken care 

of, but is also open to and anticipates future requirements, led to the development of a well 

structured and thought out classification system(www.iuphar.org), which is know to 
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scientists today. Particular attention was paid to the newly emerging gene products so that 

the nomenclature could be easily expanded. Criteria for naming a receptor focussed on 3 

characteristics-its operational, structural and transductional characteristics. Nomenclature 

for all newly described recombinant receptors followed the guidelines of NC IUPHAR 

(www.iuphar.org). 

All serotonin receptors with the exception of 5-HT3 (Kroeze and Roth,1998) which is a 

ligand gated ion channel containing 4 transmembrane regions conform to the classic 7 

Transmembrane spanning α-helical region architecture of GPCRs, with an extracellular N 

terminus and intracellular C terminus with the exception of 5-HT3 (Kroeze and Roth,1998) 

which is a ligand gated ion channel containing 4 transmembrane regions. Serotonin 

receptors contain several conserved residues, many within the transmembrane helices. 

TMII has, TMIII has 4, TMVI has five and TMVII has seven ( Kroeze and Roth,1998). 

 

1.72 The 5-HT2A receptor 

The 5-HT2A receptor belongs to a group of receptors which includes 5-HT2A, 5-HT2B and 

5-HT2C. It was not until the late 1980s that that the Rat 5-HT2A was successfully cloned by 

Pritchett and colleagues in 1988 (Pritchett et al.,1988) and 2 years later in 1990, Julius and 

colleagues (Julius et al.,1990), marked the identification of the human receptor. Homology 

between the rat and human receptor is some 87%, and chromosomal mapping of human 5-

HT2A has located the receptor to chromosome 13,13q14-q21 (Hsieh et al., 1990). 

Distribution of 5-HT2A receptor in the human brain was studied using light microscopic 

audioradiography techniques by Pazos and colleagues in 1987 (Pazos et al.,1987). They 

observed high levels were 

localized over layers III and V of several cortical areas, including the frontal, parietal, 

temporal and occipital lobes and the hypothalamus. Intermediate concentrations were 

found over the hippocampus, the caudatus, putamen and accumbens nuclei among other 
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structures and an observation of low levels in the brain stem, thalamus, cerebellum and 

spinal cord. 

The distribution of 5-HT2A-immunolabeled soma/dendrites was characterized in cerebral 

cortex, olfactory system, septum, hippocampal formation, basal ganglia, amygdala, 

diencephalon, cerebellum, brainstem, and spinal cord of the adult rat (Cornea-Herbert et 

al.,1999).  

 

The 5-HT2A receptor is one of the main excitatory serotonin receptors and it mediates 

processes such as neuronal excitation, behavioural effects, learning and anxiety. It is 

coupled to the Gq/11 pathway, and in the majority of tissues stimulates the activation of 

PLC and causes an increase of inositol phosphates and elevation of calcium levels (Roth et 

al., 1994).. It is not only PLC which is activated, but also other phospholipases, PLA2 for 

example. Another pathway linked to the 5-HT2A receptor is that of the ERK MAP Kinase 

pathways in contractile cells, such as vascular smooth muscle (Watts, 1998).  

 

1.73 Phosphoinositides and calcium signalling 

Many studies emerged in the 1980’s, drawing focus to calcium signalling in the 

endoplasmic reticulum and, in particular pinpointing inositol 1,4,5-trisphosphate (IP3)as 

being the key messenger in the induction of calcium signalling in a host of cell lines and 

native tissues (Burgess et al.,1984, Irvine et al.,1984, Ueda et al.,1986). Calcium signalling  

appeared to occur specifically via inositol trisphosphate as opposed to other 

phosphoinositides (Berridge et al 1984a,b). 

Michael J.Berridge spent a lot of time evaluating already established but unfinished 

theories involving the incorporation of lithium ion into experiments to aid understanding of 

the IP response, as lithium acts in an inhibitory manner, preventing the hydrolysis of 

inositol monophosphate into inositol  (Fig 1.5). A model was formed detailing the exact 
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sequence of events along with the proposal that IP3 might be the diffusible messenger that 

coupled receptor activation to mobilisation of internal calcium. 

 

Figure 1.5 Diagram (taken from Berridge., 2008) , detailing the inositol pathway based on 
findings from previous research. Introduction of lithium causes response to halt at IP1 and 
accumulation of IP1 to occur. 
 

A second pathway linked to the 5-HT2A receptor via activation of phospholipase C (PLC) 

is the production of of diacylglycerol (DAG) which results in the stimulation of protein 

kinase C (PKC), and also the generation of arachadonic acid (AA).  

 

           5-HT2A            PLC           PIP2          DAG          PKC 

                                                                                           Monoacylglycerol          arachadonic acid 

                                                                         IP3              CA2 

Fig 1.6 Diagram detailing a second pathway in which the inositol’s signals through. 
Hydrolysis of  Phosphatidylinositol 4,5-bisphosphate (PIP2)  results in signalling via 
calcium,  protein kinase C and arachadonic acid accumulation. 
 

PLC signalling: PLA2 activation and 2-arachidonylglycerol release 

5-HT2A receptor mediated release of PLA2-AA (phospholipase A2 mediated arachidonic 

acid)  and PLC-IP (phospholipase C mediated inositol phosphate) accumulation  occurs 

independently of one another (Kurrasch-Orbaugh et al 2003). These studies supported 

previous work by Berg and colleagues (Berg et al.,1998)  in which they established that 

efficacies of agonists differed depending on which signal transduction pathway was being 

measured. A phenomenon not seen in linked pathways (calcium and inositol phosphate). 

What the Kurrasch-Orbaugh group wanted to know was if structurally distinct ligands 
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could preferentially activate PLA2-AA over PLC-IP accumulation, or vice versa. Initial 

studies established that PLA2-AA and PLC-IP release could occur both through stimulation 

of NIH3T3 cells heterologously expressing the 5-HT2A receptor with endogenous ligand 

serotonin. The 5-HT2A specific antagonist ketanserin was used to ensure mediation of these 

responses occurred solely through the 5-HT2A  receptor and indeed abolished both 

responses. Inhibitors were used at various steps in both signalling pathways in order to 

establish the roles of PLC and PLA2 in AA release and IP accumulation, and the cross talk 

that may occur between these pathways. 

The group also established that coupling to each of the pathways did not occur in an equal 

manner, and by use of an alkylating agent phenoxybenzamine (PBZ) to inactivate the 5-

HT2A receptor and various functional studies they found PLA2 to have a larger receptor 

reserve. A much higher concentration was required to prevent PLA2-AA release upon 

stimulation by the endogenous ligand 5-HT, only partially inhibiting its release. Another 

phenomenon which could be seen was that some agonists preferentially activated PLA2 

over PLC with as great as a 10fold difference in potency, mimicking the noted observation 

of receptor reserve differences. 

 

1.74 5-HT2A and psychosis 

Over recent years the 5-HT2A receptor has been the main focus of investigations into the 

nature of antipsychotic drugs, and has been classified as the principal binding site of 

hallucinogens acting on the central nervous system. Ismaiel and colleagues (Ismaiel et al., 

1993) undertook investigations using selective 5-HT2A antagonists in order to block the 

stimulant effects of hallucinogenic compounds which are structurally related to LSD, and 

successfully blocked this phenomenon with these antagonistic compounds. A few years 

later, sites on the 5-HT2A receptor were pin pointed which were important to 

hallucinogenic binding (Roth et al., 1997)  Other  findings by Roth and colleagues 

highlighted several conserved aromatic residues ( W76, W200, F340, W367 and Y370) 
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which were important in the binding of hallucinogens (Roth et al., 1993, Roth et al., 1995 , 

Roth et al., 1997), with 1 residue in particular (F340) being responsible for the binding of 

the compound 4-methoxy-2,5-di-methoxyphenylisopropylamine (DOI) which is 

structurally related to LSD. Atypical antipsychotics act as potent 5-HT2A receptor 

antagonists. These drugs were developed as a new generation of drug with enhanced 

therapeutic and limited side effect potential, unlike the first generation typical 

antispychotics. Drugs such as mianserin and ritanserin acting at this receptor have been 

found to beneficially effect both positive and negative symptoms of schizophrenia such as 

disordered thoughts, delusions and inability to experience pleasure, making the 5-HT2A 

receptor a therapeutic target for the treatment of psychotic disorder. 

 

1.75 5-HT2A antagonist functional states and trafficking 

In 2009 Brea et al looked at the ability of the 5-HT2A receptor to form homodimers based 

on previous research findings where recombinant human 5-HT2A receptor lacking 

constitutive activity was subject to competition binding by an antagonist producing 

biphasic curves (Lopez Gimez et al., 2001). There had been little information on 5-HT2A 

dimerisation, and so the group set out to gain more insight into the possibility of this. 

Initial studies by Brea and colleagues (Brea et al.,2009) observed the ability of the receptor 

to form homo-complexes by co-expressing N terminally c-myc and Flag tagged 5-HT2A 

receptors, immunoprecipitating with anti Flag antibodies and immunoblotting with c-myc 

antibodies. A polypeptide of 55kDa, the anticipated receptor size was observed. Controls 

of cells expressing each construct individually and then mixed together could not replicate 

any results (bands), FRET studies were employed and a specific FRET signal could be 

detected for 5HT2ACFP + 5-HT2AYFP ,  indicating two forms of the receptor have to be co-

expressed to result in co-immunoprecipitation. 

The group explored the possibility of a homodimers ability to adopt multiple active states. 

Antipsychotic drugs are known to work in a variety of means,  some targeting the receptor 
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with high and low affinities (biphasic) while competing with radio labelled antagonists, 

whilst others displayed monophasic binding patterns. The Brea group (Brea et al.,2009) 

proposed biphasic curves bore no relation to the possible presence of another receptor 

species, due to application of selective liagnds for the 5-HT2A receptor (Lopez-

Gimenez,2001). They proposed that dimerisation occurred and ligand binding to the dimer 

resulted in negative co-opperativity.  By assessing functional behaviour via second 

messenger systems (IP and AA release) which has previously been seen to occur 

independently of one another, they explored effects of different ligands on these pathways. 

Clozapine mediates receptor function in a pathway specific manner. For the IP pathway 

every antagonist bound in a monophasic manner however all antagonists that displayed 

signs of negative co-opperativity (possible homodimerisation) in binding assays also 

antagonised 5-HT induced AA release in a biphasic manner with the exception of 

haloperidol and mesguline. This  taken together with the previous FRET studies was 

thought to indicate homo dimer existence. 

Many drug profiling studies have led to the common indication that the 5-HT2A receptor is 

a target of antagonistic agents acting as anti-psychotics. The 5-HT2A has wide CNS 

distribution, and is targeted by many anti-psychotic drugs. The hallucinogen LSD is an 

agonist at the 5-HT2A receptor and early discoveries showed LSD to exert pyschomimetic 

effects. This ligand is structurally related to serotonin. Studies involving hallucinogens at 

the 5-HT2A receptor revealed they provoke symptoms that mirror those of schizophrenia. 

These effects include perceptual disturbances, sensory processing, cognition, changes in 

brain metabolism and self representation (Gonzalez-Maeso and S. Sealfon, 2009). In 

animal models schizophrenia-like symptoms caused by hallucinogens can be mirrored and 

observed by monitoring head twitch responses. It is now known that the reason for some 

compounds being hallucinogenic, and other structurally related and very similar 

compounds being non hallucinogenic is due to receptor trafficking different pathways. 

Gonzalez-Maeso and colleagues (Gonzalez-Maeso et al., 2003) proposed that structurally 
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similar compounds targeting this receptor can signal through different pathways due to 

alteration of receptor conformation, which occurs specifically in relation to each pathway. 

Hallucinogenic drugs act through the Gq/11 and Gi/o G-protein subtypes, increasing 

expression of 3early genes: erg-1, erg-2 and period 1, as a consequence. These 3 genes 

contribute to the observed head twitch response in animal models (Gonzalez-Maeso et al., 

2003).The structurally similar non hallucinogenic drugs target Gq/11 only.  

 

1.76 5-HT2A receptor agonist binding site and ligand selectivity 

The 5-HT2 receptor family all stimulate PLC, each thought to mediate specific 

physiological functions, however lack of truly specific agonism means that this is not 

definite (Knight et al.,2004).  They are very similar in structural homology for both 

primary and secondary structures (Hoyer et al.,1994) and also in pharmacology (Jerman et 

al.,2001). Knight and colleagues (Knight et al.,2004) studied the agonist preferring, high 

affinity binding site of the 5-HT2 family of receptors (5-HT2A, 5-HT2B and 5-HT2C). They 

set up binding experiments using radiolablled antagonists [3H[ketanserin for 5-HT2A and 

[3H]mesulergine for 5-HT2B + 5-HT2C, which have high affinity for the receptors, and bind 

to a larger population of receptors than the radiolabelled agonists [125I]DOI for 5-HT2A and 

[3H]5-HT for 5-HT2B + 5-HT2C. Competition experiments are used to select for highly 

competitive antagonists to allow study into each receptor subtype. They highlight a lack of 

highly selective agonists for each subset, with DOI displaying at most, a moderate 

selectivity for the 5-HT2A receptor. The locus responsible for selectivity of ligands has 

been determined for 5-HT2A and 5-HT2C (Barbara et al,1996). Looking at both receptor 

subtypes, there was a difference of 1 amino acid residue , an alanine at residue 5.46 on the 

5-HT2A receptor and a serine at residue 5.46 on the 5-HT2C receptor. The group decided to 

carry out site directed mutations at these points, swapping the alanine for a serine in the 5-

HT2A receptor and the serine for an alanine in the 5-HT2C receptor, and then used agonist 

ligands to determine if these residue differences were important to how ligands bind. Some 
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ligands were effected more than others. The indoleamine ligands bind differently to the 

two receptor subtypes, and a change at the 5-HT2A receptor decreased affinity for all the 

indoleamic ligands. This site difference between the two receptor subtypes only occurs in 

humans, with no difference in rat models (Barbara et al.,1996). The 5-HT2A receptor has a 

side chain in which direct interaction with ligands occurs, and is involved in ligand 

selectivity for ergolines.  

 

1.77 5-HT2A receptor regulation 

As previously discussed for GPCRs in general receptors can undergo desensitisation. This 

can occur homologously in an agonist-specific manner and heterologously , which is 

agonist-non specific. 

Kinases : kinases play a role in regulation, specifically PKA and PKC, and are involved in 

heterologous desensitization. A more novel idea surrounding kinase regulation is the 

involvement of p90 ribosomal S6 kinase 2 (RSK2) (Allen et al., 2008). This 

serine/theonine kinase is activated much further downstream than other signalling 

pathways, and plays a role in transcriptional regulation. It is thought that RSK2 directly 

phosphorylates the 5-HT2A receptor. 

Scaffolding proteins: PDZ domains (a protein-protein interaction motif) acts as scaffolding 

at cell membranes to regulate larger molecule complexes. PSD95, classically known to 

interact with proteins including glutamate receptors has been shown to interact also at 5-

HT2A receptors. An enhancement of serotonin induced inositol phosphate accumulation 

could be seen in co-transfection studies with PSD95 (Allen et al., 2008)  

Down regulation by antagonists:  5-HT2A receptors are unusual among GPCRs in that 

prolonged exposure to antagonists can result in down regulation. Many studies have 

studied this phenomenon, including antagonists used as anti depressives (Gray and Roth 

2001). It is thought that a change in gene transcription is responsible, however studies have 

been contradictory. Another mechanism proposed by Gray and Roth (Gray and Roth 2001) 
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is one in which antagonists actually induce receptor internalisation and therefore receptor 

degradation, which would result in the down regulation of the receptor.  A suggestion put 

forth by Willins and colleagues (Willins et al.,1999) was that the therapeutic effect of 

antipsychotics was due to antipsychotic-induced sequestration of the 5-HT2A receptor as 

antipsychotics with no antagonistic relation to 5-HT2A had no effect on either regulation or 

subcellular distribution of this receptor. 

 

1.78 Co-expression of serotonin receptors 

The 5-HT2A receptor in particular has been shown in several studies to be co-expressed and 

co-localise alongside other receptors, such as mu opioid, dopamine and other serotonin 

receptors (Vysokonov et al.,1998, Frederick and Woodruff 1999, Zhukovska and 

Neumaier,2000, Roga et al.,2009, Lopez-Gimenez et al.,2008 and Lorke et al.,2006).  

These studies involved the use of clozapine. Clozapine appears to lack receptor selectivity, 

as highlighted by expression studies looking at 5 clozapine sensitive receptors expressed at 

interneurons and pyramidal neurones , the receptors involved being ( D4, M1, 5-HT2A, 5-

HT2C and 5-HT7) ( Vysokonov et al.,1998). Through single cell RT-PCR profiling of rat 

prefrontal cortex neurones this group were able to detect co-expression of 5-HT2A 

alongside M1 and 5-HT2C
 receptors, each also Gq coupled and regulating intracellular Ca2+ 

metabolism in response to either serotonin or acetylcholine. Clozapine is also implicated in 

the downregulation of 5-HT6 (Frederick and Woodruff,1999, Zhukovska and Neumaier, 

2000). Cat spinal locomotor neurone studies looking at c-fos immunoreactive neurones and 

their co-localisation with various serotonin receptors (5-HT7, 5-HT2A and 5-HT1A) indicate 

that c-fos immunoreactive neurones co-localise with 5-HT7 receptors, a majority of 60-

80% co-localising with 5-HT2A and a more poorly defined 30% or more with 5-HT1A , 

leading to the conclusion that to some degree these receptor subtype can be found together 

(Roga et al.,2009). Co-expression has also been seen between 5-HT2A and 5-HT6 , with 

immunohistochemical methods on brain tissue samples of the prefrontal cortex revealing 
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expression of both in pyramidal and stellate shaped cells in cortical layers (Lorke et 

al.,2006). 

The 5-HT2A receptor has the ability to form a heteromeric unit with other receptors such as 

the dopamine D2 receptor (Borroto-Escuela et al.,2010). Findings suggest that 5-HT2A 

signalling via the Gq/11 pathway is enhanced in the heteromer when co-activation of the 

D2 receptor occurs, however there is a decrease in signalling of the D2 through Gi/o when 

the heteromer counterpart 5-HT2A is activated by 5-HT (Borroto-Escuela et al.,2010). As 

previously outlined there has been the discovery of the  potential schizophrenia target 5-

HT2A-mGluR2 heteromeric complex (Maeso et al., 2008) and at the same time emergence 

of 5-HT2A co-expression with the mu opioid receptor ( Lopez-Gimenz et al.,2008) with 5-

HT2A facilitating the desensitization, internalisation and subsequent down regulation of the 

mu opioid receptor when co-activation occurs. 

 

1.8 Schizophrenia 
 
Schizophrenia was described by the American Psychiatric association in 2000 as a 

“disorder”, however many feel this is looser terminology and prefer the more descriptive 

term “disease”. Those in preference of this terminology include Tandon and colleagues, 

authors of the Science Direct series of Schizophrenia research (2008). They feel it should 

be termed as a disease related to brain abnormalities that are the final common pathway 

caused by an assortment of specific and/or environmental factors. 

The annual incidence of schizophrenia averages 15 per 100,000 (Tandon et al., research 

102, 2008). The development of schizophrenia has been linked to a variety of risk factors 

of environmental and genetic risk factors , however no single factor has been singled out as 

the key cause of developing schizophrenia. 
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1.81 Symptoms 

Schizophrenia is characterised by a mixture of positive , negative, cognitive, mood and 

motor symptoms whose severity varies across patients (Tandon et al., research 110, 2009).  

Positive symptoms: Hallucinations including sight, sound, touch, taste and smell. They are 

perceptions that do not exist. Delusional states are another common key positive symptom 

and are of grandeur or paranoid nature. 

Measuring positive symptoms when evaluating the effectiveness of antipsychotics poses 

difficulties. In animal models agitation, hyperactivity and stereotypical behaviour which 

relate to psychosis can be observed eg. LSD induces visual hallucinations in humans, and 

can cause characteristic head twitching behaviours in mouse models. When DOI (2,5-

dimethoxy-4-iodoamphetamine), another hallucinogenic ligand is administered to animals 

this results in “wet dog shakes”. 

Negative symptoms: These are debilitating symptoms, where the patient loses interest in 

both themselves and the things around them. They seem to lack thought. Speech and 

thought are human characteristics and so therefore indeterminable in an animal model. 

Phenomena such as anhedonia (a decrease in ability to feel pleasure) is another human 

characteristic. Social interaction is the mechanism relied upon to measure exhibition of 

negative symptoms. 

Cognitive deficits: These include an inability to hold attention and working memory 

impairment, simple tasks such as planning and decision making become impossible. 

Depressive symptoms are also commonly displayed, and other anxiety related disorders 

such as OCD can creep through as co-morbid disorders. Suicide attempts and deaths in 

relation to suicide rise in schizophrenic patients. 

‘Approximately one third of individuals with schizophrenia attempt suicide one or more 

times and 5% of individuals die of suicide’ (Tandon et al., research 110 2009). 
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Limitations of animal models: Creating animal models is difficult, partially due to the 

likelihood of symptoms being heterogeneous and shared by other disease states. The most 

obvious problem is a lack of unique behavioural abnormalities found in humans can be 

seen in a mouse model, such as guilt or suicide. Emotional reactivity and social behaviour 

tests lack specificity. Discovery of genes linked to schizophrenia may not be specific to the 

characteristics of this disorder, with variations of genes occurring in a host of disorders 

including schizophrenia, bipolar and autism where there is reported to be a genetic overlap 

involving rare copy number variants as well as common single nucleotide polymorphisms 

which are associated with developmental risk . A number of genes are most likely to be 

implicated (Carrol and Owen 2009).  

The social defeat model: It was proposed that risk of schizophrenia could be increased by 

chronic and long term experience of social defeat, subjecting a rat/animal model to a social 

defeat situation where by introduction of an intruder leads to submissive behaviour and 

stress causing an elevation in dopaminergic hyperactivity, thought to heighten the risk of 

schizophrenia development (Selten and Cantor 2005). Such models have been implicated 

in depression (Nestler and Carlezon 2006) and it has been shown that the model can 

segregate between vulnerable and nonsusceptible populations of mice due to signalling 

adaptations within the mesolimbic dopamine circuit, long lasting social avoidance occurs 

depending upon BDNF signalling in the ventral tegmental regions which are associated 

with reward and emotion (Krishnan et al.,2007). These models have proven difficult to 

ascribe molecular changes to a particular social defeat, as the behaviours mimic more than 

1 disorder symptom. 

 

Learning and memory, when evaluating the effectiveness of antipsychotics can be studied 

in animal models by subjecting them to a variety of tasks such as 1) object recognition- by 

administering rats with antipsychotics and subjecting it to the same object twice, the 

animals show a loss of interest in the familiar object and 2) Morris water maze- rat is 
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placed in a tank with water and an escape platform which is not visible to them. Animals 

must find this platform, and repeated exposure should result in a more rapid performance. 

When considering newly produced antipsychotics for therapy, their ability to induce EPS 

(extra pyramidal symptoms) is important. Classical antipsychotics ie; the typical 

antipsychotic haloperidol provokes EPS with human patients displaying signs of 

Parkinsonism (tremor, rigidity), dystonia (involuntary muscle spasms) and rats display 

related behaviours of purposeless chewing and akathisia (restlessness) causing the rats to 

pace and march on the spot. 

 

1.82 Neurotransmitter involvement 

There are several pathways involved in schizophrenia 

1) The dopamine pathway-over activity has been observed, as seen with neuroimaging 

studies using amphetamines to induce psychosis, whilst antipsychotic drugs 

generally antagonise the dopamine D2. 

2)  The glutamate pathway (NMDA receptors: N-methyl-D-aspartate receptor)-

hypofunction at these receptors results in negative and positive symptoms. Trials 

have -looked at how antagonistic NMDA drugs such as ketamine effect this 

condition. 

3) GABA (Gamma Amino Butyric Acid) receptors appears to have reduced numbers 

along with abnormalities in the distribution of GABAergic neuronsin the pre frontal 

cortex of Schizophrenic patients. 

4) Serotonergic pathways- upregulation of these pathways is known to have a knock 

on effect on the dopaminergic system, resulting in negative symptoms. Many 

antipsychotic drugs target the 5-HT 2A receptor. 
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1.83 The role of serotonin in schizophrenia 

Two key serotonin pathways are involved in schizophrenia, these being projections from 

the dorsal raphe nuclei to the substantia nigra , and projections from the rostal raphe nuclei 

to the cerebral cortex, limbic regions and basal ganglia. Hypofunction of  thedopaminergic 

system occurs as a result of up regulation of these pathways. 

Initial findings by Wooly & Shaw and Gaddum looked at LSD and found it to have psycho 

mimetic effects. LSD is belongs to the ergoline family. It is an agonist by nature at 

serotonin receptors and their activation results in visual hallucinations, in contrast to 

antipsychotic agents.. Serotonin plays a role in a host of behaviours related to the condition 

of schizophrenia, including cognition, perception and attention, mood, pain sensitivity and 

appetite. Particularly the positive and negative symptoms associated with the condition. 

According to Meltzer & Roth ‘functional alterations in the serotonergic system (including 

both pre and post synaptic function) affect multiple neurotransmitter systems’ , and in 

doing so lead to exhibition of various behaviours. They believe that by pharmacologically 

manipulating the serotonergic system , causing exacerbation or reduction in positive and 

negative symptoms and cognitive functions, with ability to modulate extrapyramidal 

function (Roth & Meltzer 1995). 

Many available antipsychotic drugs are aimed at targeting various serotonin receptors, in 

particular 5-HT1A and 5-HT2A, the most studied and known to be the most effective targets, 

but also now it is becoming accepted that 5-HT4 and 5-HT6 are emerging as highly 

therapeutic targets, with interest also surrounding 5-HT2C and 5HT7 (Meltzer et al.,2003, 

Roth.B.L.,2004 and Meltzer et al.,2006). 

 

In my thesis I hope to explore the pharmacology of the 5-HT2A receptor and demonstrate 

the difficulty surrounding functional studies with single target models. 
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2. Materials and methods 

2.1 Reagents and kits 

BDH, Lutterworth, Leicestershire, UK 

22mm cover slips, KOH 

 

CisBio assays (HTRF) , France 

IP-oneTb assay kits 

 

Fisher Scientific UK Ltd, Loughborough, Leicestershire, UK 

CaCl2, D-glucose, ethanol, ethylene glycol, isopropranolol, glycerol, 

glycine, 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), KCl,  

methanol, 3-(N-Morpholino)propanesulfonic acid (MOPS), NaCl, sodium dodecyl sulphate 

(SDS), sucrose, MnCl2. 

 

Flowgen Biosciences Ltd., Nottingham, UK 

Agarose 

 

Invitrogen Ltd., Paisley, UK 

NuPage Novex pre-cast 4-12 % Bis-Tris gels, NuPage MOPS SDS running buffer 

 

Konica Europe, Hohenbrunn, Germany 

X-ray film 

 

Merck Chemicals Ltd., Beeston, Nottingham, UK 

Luria-Bertani (LB)-agar, LB-bouillon 
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New England Biolabs, Herts, Uk 

Prestained Protein Marker, Broad Range (7-175 kDa) 

 

Perbio Science UK Ltd., Cramlington, Northumberland, UK 

Supersignal West Pico chemiluminescent substrate (ECL) 

 

Roche Diagnostics Ltd., Lewes, East Sussex, UK 

Complete EDTA-free protease inhibitor tablets 

 

Sigma-Aldrich Company Ltd., Poole, Dorset, UK 

Ampicillin, BCA solution A, bromophenol blue, bovine 

serum albumin (BSA), deoxycholic acid (sodium salt), dithiothreitol (DTT), 

dimethyl sulfoxide (DMSO), ethylenediaminetetraacetic acid (EDTA),  

ethidium bromide, ethylene glycol, FURA-2AM, glycerol, HCl, 3-isobutyl-1-

methylxanthine (IBMX), 

lithium chloride, MgCl2, RbCl2, Na2HPO4, NaCl, NaF, NaOH, Tween-20, Triton x 100, 

Tris-base 

 

Whatman International Ltd., Maidstone, UK 

Protran® nitrocellulose transfer membrane 

 

2.2 Antibodies and antisera 

Cell signalling technology, Danvers, Ma 

C-myc anti-mouse, C-myc anti rabbit antibodies 
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GE health care Uk and Ireland, Buckinghamshire 

Anti-mouse IgG-horse radish peroxidase (HRP) conjugate from sheep, Anti-rabbit IgG 

(HRP) conjugate from donkey 

 

Sigma-Aldrich Company Ltd., Poole, Dorset, UK 

ANTI-FLAG antibody produced in rabbit, Rabbit anti-goat IgG-HRP conjugate 

GFP antisera and all G protein antisera were produced in-house 

 

2.3 Pharmacological compounds 

Schering-Plough research institute 

Company donated ligands: MDL100.907, Melperone, SB742.457, SB399.885, Spiperone, 

Ziprasidone, WAY257.561 

 

Sigma-Aldrich Company Ltd., Poole, Dorset, UK 

Amoxapine, Chlorpromazine hydrochloride, Clozapine, Dihydroergotamine 

methanesulfanate salt, Mianserin hydrochloride, 5-Benzyloxytryptamine 

 

2.4 Radiochemicals 

Perkinelmer, Cambridgeshire, UK 

Ketanserin Hydrochloride (R41 468), [Ethylene-3H]- 

 

2.5 Tissue culture disposables, reagents and plates 

Costar, Cambridge, MA., USA 
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5 mL, 10 mL and 25 mL pipettes, 75 cm2 vented tissue culture flasks, 6 well plates, 12 well 

plates, 96 well plates 

 

Invitrogen BV, Groningen, The Netherlands 

Blasticidin, Flp-In TREx HEK293 cell line, dialyzed foetal bovine serum (dialyzed FBS), 

L-glutamine (200 mM), Hank’s buffered saline solution (HBSS), new born calf serum 

(NBCS), 100 x, penicillin-streptomycin mix, Versene,  

 

Roche Applied Science, Lewes, East Sussex, UK 

Hygromycin B 

 

Sigma-Aldrich Company Ltd., Dorset, UK 

DMEM (- sodium pyruvate, + L-glutamine, + 4.5 g/L glucose) 0.25 % trypsin-EDTA, 

pertussis toxin, poly-D-lysine 

 

2.6 Buffers and solutions 

Binding buffer 

75 mM Tris 45.4g 

5 mM EDTA 9.30g 

12.5 mM MgCl2  

Make up to 5L with H20 pH 7.4 with conc HCL 

 

Blocking  buffer 

500ml PBS + 0.05% Tween 20, 3-5% Marvel 
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DNA loading buffer (6 x) 10MLS 

1.25ml saturated bromophenol blue, 

4g sucrose 

Dissolved in sterile H20 

 

Laemmli buffer (5 x) pH 6.8 50mls 

1.9g Tris, 25mls Glycerol pH6.8 then on heat stirrer add: 

1.95g DDT , H20 >50mls, pinch of bromophenol blue. 

Buffer was stored at –20 ºC 

 

Microscope buffer 

NaCl 7.6g, KCl 0.373g, Hepes 4.766g, Glucose 1.8g, 1M MgCl2 1ml, make up to 1L H20 

pH 7.2. Buffer was stored at  4 °C 

 

Phosphate buffered saline (PBS) (10 x) 

137 mM NaCl, 2.7 mM KCl, 1.5 mM KH2PO4, 10.2 mM Na2HPO4; pH 7.4. 1 x PBS was 

prepared by diluting the stock 1:10 in H2O 

 

2 x RIPA  

11.9g 100 mM HEPES 

8.8g 300 mM NaCl 

10mls 2 %(v/v) Triton X-100, 

5g1 %(w/v) sodium deoxycholate 

1g 0.2 % (w/v) SDS 

pH 7.4 >500ml H20 

 

1 x RIPA  
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25mls 2x buffer + 25mls H2O – this was supplemented with  

500ml 1M sodium fluoride 

500ml 0.5 M EDTA 

500ml 0.2 M NaPO4 

2.5mls 5 %(v/v) ethylene glycol and 1 x EDTA-free protease inhibitor tablet 

 

Tris-EDTA (TE) buffer 

10 mM Tris-base, 0.1 mM EDTA; pH 7.4. Buffer was stored at 4 °C 

 

Transfer BUFFER 5X 1L 

72g Glycine 

15.5g Tris 

 

Wash buffer 

500ml PBS + 0.05% Tween 20 

 

2.7 Assays and methods 

 

Tissue culture 

Maintenance of Flp-In™ T-REx™ HEK293 inducible cells stably expressing 

Serotonin2A receptor 

Cells were maintained in DMEM (with 4.5 g/L glucose, L-glutamine, - sodium pyruvate). 

The media was supplemented with heat inactivated 10 %(v/v) dialyzed FBS, 1 %(v/v) 

penicillin/streptomycin mix, 1mg/mL blasticidin and 2.2mls hygromycin.Cells were grown 

in a humidified incubator (95 % air/5 % CO2; 37 °C). 
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Passage of cells 

Confluent Flp-In™ T-REx™ HEK293 cells stably expressing Serotinin 2A receptor were 

treated with Sterile 0.25 % trypsin-EDTA solution and flasks were gently rotated to cover 

the monolayer and placed in the incubator (for up to 5 min) until cells became detached. 

Once detached, 7 mL of fresh media was added to inactivate the trypsin and the cells were 

centrifuged at 288 x g (5 min;25 °C). The pellet was resuspended in fresh media and the 

suspension split into Flasks or plates. 

 

Preparations, Assays and Analysis 

Bicinchoninic acid protein quantification 

The protein concentration of samples was quantified using the BCA assay. This assay 

Incorporates bicinchoninic acid (BCA) and copper sulphate solutions. Protein reduces 

Cu(II) ions to Cu(I) ions in a concentration-dependent manner. Reduced Cu(I) can be 

bound by BCA which causes a colour change that has an absorption maximum of 562 nm. 

BSA of known concentrations (0.2-2.2 mg/mL) was used to construct a standard curve, 

which allows the concentrations of unknown samples to be extrapolated. A 1:50 ratio of 

reagent A(1 %(w/v) BCA, 2 %(w/v) Na2C03, 0.16 %(w/v) sodium tartrate, 0.4 % (w/v) 

NaOH, 0.95 %(w/v) NaHCO3; pH 11.25) : reagent B (4 %(w/v) CuSO4) was mixed and 

200 μL of this solution added to 10 μL of protein standard or unknown sample in a 96-well 

ELISA plate. The assay was incubated (30 min; 37 oC) before the absorbance was read at 

600 nm. 

 

Cell harvesting 

Stably transfected Flp-In TREx HEK293 cells were harvested after 16 h doxycycline 

treatment. The media was removed and cells were washed three times in 5 mL ice cold 

PBS. Cells were scraped from the dish using a disposable cell scraper and transferred to a 



 50 

15 mL centrifuge tube and centrifuged (288 x g; 5 min; 4 oC). After discarding the 

supernatant, the cell pellet was frozen at –80 oC until required. 

 

Cell lysates prep 

Cells were grown on 6-well sterile tissue culture plates. 1x radioimmunoprecipitation 

(RIPA) buffer was made fresh on the day of the assay by diluting 2 x RIPA (100 mM 

HEPES, 300 mM NaCl, 2 %(v/v) Triton X-100, 1 %(w/v) sodium deoxycholate, 0.2 % 

(w/v) SDS; pH 7.4) buffer in H2O – this was supplemented with 0.5 M sodium fluoride, 

0.5 M EDTA, 0.2 M NaPO4, 5 %(v/v) ethylene glycol and 1 x EDTA-free protease 

cocktail inhibitor tablet. Cells were washed 3 x 5 min with PBS before the addition of 

200μL 1 x RIPA buffer. The mixture was rocked for 30mins at 4 oC on a plate rocker 

before aliquoting out and centrifugation (max 4 ºC; 15 min) to pellet cellular debris. 

Protein concentration was determined (as above for BCA method). Lysates were stored at 

–20 ºC. When ready for loading into a gel for SDS page(see below) lysates were added 

50/50 with 2xLaemmli buffer and appropriate concentration obtained , loading into wells 

no less than 20µg/ well. 

 

Cell membranes prep 

Harvested pellets were thawed and re-suspended in Tris-EDTA buffer. The cells were 

homogenised (50 passes of a Teflon-in-glass homogeniser) and the resulting suspension 

centrifuged (288 x g; 10 min; 4 °C) to remove unbroken cells and nuclei. The supernatant 

was ultracentrifuged (50,000 x g; 30 min; 4 °C) in an Optima TLX Ultracentrifuge 

(Beckam Coulter, Palo Alto, CA). The resulting pellet was re-suspended in Tris-EDTA 

buffer and passed 10x through a 25-gauge needle. The protein concentration was 

determined as detailed in the BCA  method and the membranes stored at –80 oC until 

required. When ready for loading into a gel for SDS page (see below) lysates were added 
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50/50 with 2xLaemmli buffer and appropriate concentration obtained , loading into wells 

no less than 20µg/ well. 

 

Calcium mobilization (dose response and schild) 

Cells were split, resuspending the pellet in 25-30mls of growth medium, and plated out 

100µls cells/well. Dox induce relevant wells and incubate at 37oc, 5% CO2 over night. On 

the day treat with FURA 2AM (33µl in 11mls of media, and plate out 100µls/well, 

incubating for 45minutes 37oc, 5% CO2. Wash 2x with 100µl/well of microscope buffer. 

Prepare agonist drug plates, and a range of antagonist concentrations in microscope buffer 

during incubation time. Each concentration should be plated out in triplicate. Ec50 values 

could be established once data input into graphpad prism, indicating the ligands potency. 

 

*Dose response curves: stimulate with antagonist for 15minutes then run on the flex station. 

 

*Schild experiments: 4 curves set up in triplicate, first curve being the agonist dose 

response control curve and the other 3 curves for an agonist dose response in the presence 

of set antagonist concentrations. The plate is set up, as above, and a third wash of 

microscope buffer is added to the plate and left to incubate for 15mins. The drug plates 

were set up to contain the relevant combinations of ligand (co-administering the drugs). 

After 15minutes the assay was ran on the flex station. Values from the shift in potency 

(Ec50) were then used in graphpad prism to extrapolate the dose ratio’s and PA2 values. 

 

Cell surface ELISA 

Cells were split, resuspending the pellet in 25-30mls of growth medium, and plated out 

100µls cells/well into a 96well clear plate and  incubate at 37oc, 5% CO2 over night. After 

24hrs dox induce relevant wells and incubate at 37oc, 5% CO2 over night. On the day 

remove media and add agonist to wells in normal media, fresh media only for agonist 
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exempt cells. Remove all media, and treat with antibody in final volume of 50µl in growth 

medium, Anti-Myc 1:500 dilution. Incubate for 30mins 37oc, 5% CO2. Remove media 

completely, wash with DMEM-HEPES (100µl) 1x then treat with secondary antibody + 

hoescht mixture ( Anti-rabbit 1:1000 + hoescht 1:1000, total volume 100µl/cell growth 

medium). Incubate for 30mins 37oc, 5% CO2 in the dark. Warm PBS and TMB substrate 

(100µl/well). Wash 2x with PBS, on second wash perform hoetsch readout then remove 

PBS and dry wells gently, add TMB and cover for 5-10mins, read at 620nm. 

 

IP-ONE tb (cis bio kit)          

This kit is intended for the direct quantitative determination of myo-Inositol 1 phosphate 

(IP1), and has been optimized in order to measure IP1 directly on cultured cells. 

This assay is based on a monoclonal antibody specific for IP1 labeled with Eu Cryptate, 

competing with both native IP1 produced by cells and IP1 coupled to the dye d2. The 

specific signal is inversely proportional to the concentration of IP1 in the calibrator or in 

the cell lysate. As for all other HTRF® assays, data reduction using the fluorescence ratio 

(665nm/620 nm) eliminates possible photophysical interference and means the assay is 

unaffected by the usual medium conditions and colored compounds. 

 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein samples were resolved using SDS-PAGE. Precast NuPage Novex Bis-Tris gels 

with a 4-12 % acrylamide concentration were locked into an XCell Surelock mini-cell gel 

tank and covered in NuPage MOPS SDS buffer. To allow estimation of protein weight, 

samples were compared with the full range molecular weight marker. The gel 

was run at 200 V until the dye front reached the base of the gel. 
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Western blotting 

Following separation of samples by SDS-PAGE proteins were electrophoretically 

transferred onto nitrocellulose using the XCell II blot module. Proteins 

were transferred at 30 V (1 h) in transfer buffer (0.2 M glycine, 25 mM Tris and 20 % (v/v) 

methanol). To block non-specific binding sites, the membrane was incubated on a rotating 

incubator for 1h at room temperature in 5 %(w/v) low-fat milk, PBS+ 0.1 %(v/v) Tween 

20 (PBS-Tween). The membrane was incubated (over night; 4 °C) with primary antibody 

in 5 %(w/v) low fat milk dissolved in PBS-Tween containing the required antibody 

dilution (Table 2-1). The membrane was washed three times for 5 min in PBS-Tween. 

Secondary antibody linked to horseradish peroxidase was diluted in 5 %(w/v) low fat milk 

dissolved in PBSTween and incubated with the membrane at room temperature for 1 h. 

The membrane was washed three times for 5 min in PBS-Tween followed by incubation 

with ECL solution for 5 min and exposure to blue Kodak film. 

 

Antibody treatments for western blotts  

Primary antibody Secondary antibody 

α cMYC 1:1000 α Rabbit 1:2000 

α GFP (sheep) 1:5000 α Goat 1:10000 

Pp44/42 phospho 1:1000 α Mouse 1:5000 

P44/42 kinase total 1:1000 α Rabbit 1:5000 

 

Table 2.1 Western blot antibody treatment dilutions. 

 

Radioligand binding studies 

*Specific: specific radioligand binding over a range of concentrations. Triplicate mixtures 

containing 24µg protein and a range of radioligand concentrations from 0.2nM to 10nM , 

including  a zero radioligand tube. Non specific binding was determined by addition of 10-
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4M mianserin (final concentration 10-5M). Samples were added to tubes which had been 

chilling over ice.  

 

Each tube contains a total of 500 ml:  

300ml binding buffer(ice cold) 

50ml non specific ligand or buffer 

50ml radio ligand or buffer 

100ml membranes 

 

Incubate for 1hour at 25°C. 

 

Filter paper was pre soaked in the buffer prior to filtration on the brandel. After harvesting 

the filters were allowed to dry briefly, and then the filter discs were placed inside a tube 

with 3mls scintillant and vortexed before radioactivity was measured on the top counter 

(Beckman Ls6500 multi purpose scintillation counter). 

Specific binding was determined by subtracting non specific counts from total counts, 

plotting against radioligand concentration. Graphpad prism was used to determine receptor 

expression (Bmax) and Kd (dissociation constant) was also calculated. 

 

*Competition: Triplicate reaction mixtures set up to contain 24µg protein, radioligand at 

Kd equivalent concentration 10x, so 11.2 nM [3H] Ketanserin and a range of 

concentrations of cold ligand ranging from 10-11M to 10-4M, including a zero. Non specific 

triplicates were also included to contain 10-5M Mianserin. 

 

Each tube contains a total of 500 µl:  

300µl binding buffer(ice cold) 

50µl cold ligand/ non specific ligand/ buffer 
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50µl radio ligand  

100µl membranes 

 

Incubate for 1hour at 25°C. 

 

Filtration occurred as with the specific binding above. Graphs were then plotted to 

determine an EC50(equivalent to IC50) value using non linear regression constraints, and 

then the Ki of the cold ligand was calculated using the Cheng-Prusoff equation. 
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3. Results 

3.1 Receptor expression and internalisation studies 

The human 5-HT2A receptor was expressed stably in cell lines by Juan F Lopez-Gimenez, a 

post doctoral fellow in the lab. He modified the receptor so that it contained a cMyc 

epitope in the N-terminal domain and a CFP fluorescent tag linked to the C-termial tail. 

The receptor construct was then cloned into an inducible Flp-IN-TRex 293 cell line, 

allowing generation of a stable cell population in which receptor expression can be 

controlled by application of the antibiotic tetracycline or its analogue doxycycline (Lopez-

Gimenez, et al 2008, González-Maeso,et al 2008). As the receptor is linked to the cMyc 

epitope at the N terminal, it is possible to detect expression with anti-Myc antibodies and 

performing Western blots. Expression of the receptor would be identified as a band on the 

gel at a size anticipated to be 59.6kDa due to the anti-body binding to the cMyc epitope, if 

present. If no receptor expression occurs then no anti-Myc reactivity should be detected. 

 

3.1.1 Receptor expression using Western blotting 

Firstly it had to be ensured that receptor expression only occurred when induced by 

addition of doxycycline. In order to do so cell lysates were generated and SDS-PAGE 

performed. It can clearly be seen in Figure 3.1a that expression of the 5-HT2A receptor only 

occurs when induced by doxycycline.  

Subsequently various concentrations of doxycycline were used to assess how this would 

impact receptor expression (Fig 3.1b). With zero as a control the concentrations of 

doxycycline ranged from 1ng/ml to 1µg/ml. Figure 3.1b shows that over this range of 

concentrations of doxycycline there was not a substantial impact on the amount of receptor 

expressed. 
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I also assessed if receptor expression was influenced by cell passage number. Various 

passages of the cells were harvested including/excluding doxycycline, and SDS-PAGE and 

immunoblotting used to observe potential variation in expression. It can clearly be seen 

that over the range used for subsequent studies the passage of cells did not greatly impact 

on receptor expression (Fig 3.2). 

 

 

 

 

 

                   

 

 

 

 

                   Fig.3.1a                                               Fig.3.1b 

 
Fig 3.1a Flp-IN-TRex cells harbouring c-Myc-5-HT2A-CFP were maintained without 
doxycycline and induced with doxycycline(1µg/ml) and a control (+ve) expressing c-Myc. 
Lysates were prepared and Western blotting carried out. Detection by primary antibody 
anti-myc(rabbit) and secondary antibody (rabbit). 
Fig 3.1b Cells induced with varying concentrations of doxycycline , lysates prepared and 
Western blot carried out. Detection by primary antibody anti-myc (rabbit) and secondary 
antibody (anti-rabbit). 
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Fig.3.2 Effect of cell passage on expression of c-Myc-5-HT2A-CFP in both +doxycycline 
and – doxycycline cells. Detection using primary antibody: anti-GFP (sheep) and 
secondary antibody (anti-Goat). 
 

3.1.2 Receptor internalisation assessed using cell surface ELISA  

Cell surface ELISA was performed to observe what effect applying agonist ligands had on 

cell surface levels of the 5-HT2A receptor construct (Fig 3.3). 

 

In the absence of receptor induction some level of anti-Myc binding was observed. Basal 

levels appear to not be at zero, and instead are slightly elevated, indicating non specific 

interaction. Treatment with doxycycline resulted in approximately a 3 fold increase in 

signal. This difference represents cell surface c-Myc-5-HT2A-CFP. On application of  EC80 

concentrations (derived from calcium experiments , representing the concentration of 

ligand which gives maximal response) of 4 agonist ligands (5-HT, DOI, quipazine and 5-

benzyloxytryptamine) , the cell surface expression of  5-HT2A  was reduced to similar 

levels by each agonist, although basal level was never achieved.  
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Fig.3.3 The effect of 5-HT2A ligands on internalisation of c-Myc-5-HT2A-CFP expressed in 
Flp-IN TREx 293 cells. P= 0.033 between – doxycycline and + doxycyline. No significant 
difference could be established between +doxycline cells and application of agonist 
ligands. 
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3.2 Radioligand binding studies  

 

Radiolabelled ligands can provide both a direct measurement of the presence of a receptor 

and the affinity of interaction between the two.  A series of such experiments was carried 

out using the tritiated radioligand, [3H]ketanserin which is reported to bind selectively and 

with high affinity to the 5-HT2A receptor.  

 

3.2.1[3H]ketanserin saturation binding assays 

Radioligand saturation binding allows the establishment of 2 parameters. Firstly the Bmax 

can be determined. This is the density of receptors present. Secondly the KD which reflects 

the affinity of the radioligand for the receptor can be established (Davenport and Russell, 

1996).  From the cells described in 3.1, cell membranes were prepared after treatment with 

or without 1µg/ml doxycycline for 24hours to express the 5-HT2A receptor before 

harvesting.  Experiments were established using increasing concentrations of 

[3H]ketanserin (Fig3.4a).  Ketanserin is a selective ligand for the receptor, however, even 

such a selective ligand may bind to other sites apart from the receptor of interest. 

Application of a high concentration of a non-radioactive, competitive inhibitor (mianserin) 

occupies the specific receptor sites otherwise available for [3H]ketanserin to bind to, and 

therefore any binding of [3H]ketanserin in the presence of mianserin reflects such non-

specific binding. Non specific binding is linear [3H]ketanserin and subtracted from total 

binding to give the specific binding. From such studies a Bmax (489.5fmol/mg) and KD 

(1.4nM) could be defined (Fig 3.4b).   

Without doxycycline there was no specific binding, which indicates a lack of receptor 

expression. This reconfirms previous expression studies, Figure 3.1.  
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                     Fig.3.4a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Fig.3.4b 
 
Fig.3.4a The binding of varying concentrations of  [3H]ketanserin was assessed in 
membranes of Flp-In TREx 293 cells either untreated, or  induced to express the 5-HT2A 
receptor in the presence (non specific binding) and absence (total binding) of a fixed 
concentration of mianserin (10-5M).(3.4b) specific binding of  [3H]ketanserin is shown in 
each case. Bmax value: fmol/mg protein, KD value: nM. 
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3.2.2 [3H]Ketanserin competition binding studies  

Also known as displacement binding studies, experiments of this form allow the affinity of 

non-traceable (non-radiolabelled) ligands to be assessed by analyzing their competition 

with the traceable radioligand. 

Flp-In TREx 293 cell membranes were prepared after inducing the cells with 1µg/ml 

doxycycline to express the 5-HT2A receptor before harvesting. Each antagonist ligand was 

used in a concentration dependent manner to compete with [3H]ketanserin for the 5-HT2A 

binding sites. From this inverse sigmoidal curves were generated (Fig 3.5(a-k)) and 

inhibition values were obtained. The inhibition values (IC50) are the half maximal (50%) 

inhibitory concentration of competitor which is used to define the concentration of ligand 

required to inhibit the specific binding of  [3H]ketanserin . The Cheng-Prusoff equation 

was then used (see equation 1) in order to define absolute affinity values, known as Ki 

(Table 3.1).  

In the majority of experiments the competition binding worked very well, and produced 

some curves of the expected characteristics. The results obtained are fairly consistent with 

the published values on the International Union of Basic and Clinical Pharmacology 

Committee on Receptor Nomenclature and Drug Classification (IUPHAR) website 

(www.iuphar.org). Each of the antagonist ligands were seen to compete with the 

radioligand to occupy the receptor site, therefore reducing the binding of  [3H]ketanserin in 

a concentration dependent manner, represented by an inverted sigmoidal curve. With 

regards to the amoxopine curve, the dose range is not adequate to cover a concentration 

dependant curve, and instead shows inhibition to occur immediately after only a low 

concentration of antagonist is added, and perhaps experimental error has occurred here 

during sample preparation. 

 
 
 

http://www.iuphar.org/
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     Fig.3.5i                                        Fig.3.5j       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Fig.3.5k 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
Fig.3.5(a-k) Competition binding curves in Flp-In TREx 293 cell membranes induced to 
express the 5-HT2A receptor assessed using various ligands; amoxapine (a), clozapine (b), 
chlorpromazine (c), dihydroergotamine  (d), MDL100,907(e), melperone (f), mianserin (g), 
SB399,885 (h),  ziprasidone (i), spiperone (j) and SB742,457 (k) using 11.2 nM 
[3H]ketanserin ,each taking into account non-specific binding determined by 10-5M 
Mianserin. pKi values were determined and are shown in table 2.1 to follow. Data are 
means ± SEM, n=3. 
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Ligand  Affinity (pKi)  Std. 
Error   
S.E.M  

Amoxapine  nd nd 

Chlorpromazine 10.0  1.12 

Clozapine  8.9  0.23  

Dihydroergotamine  9.0  0.76  

Mianserin  9.7  0.30  

MDL100,907  9.2  0.17  

Melperone  6.4  0.09  

SB-742,457  7.8 0.05  

SB-399,885  9.6 0.06  

Spiperone  8.7  0.24  

Ziprasidone  nd  nd  

 
Table 3.1 Affinity values (pKi) derived from competition binding experiments using 
[3H]Ketanserin, Data are means ± SEM, n=3. Amoxapine and ziprasidone could not be 
determined. 
 
 
Antagonist order of affinity: Chlorpromazine > Mianserin > SB399,885 > MDL100,907 > 
Dihydroergotamine  > Clozapine > Spiperone > SB742,457 > Melperone 
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3.3 Calcium mobilisation experiments 
 
 
The serotonin 5-HT2A receptor is an important and well known class A receptor which 

couples, at least in part to the Gq11 pathway, stimulating Phospholipase C. This results in a 

marked increase of inositol phosphate production and elevated calcium levels (Burgess et 

al.,1984,Roth et al.,1994).  Therefore an appropriate means to investigate the 

pharmacology of this receptor is based on calcium mobilisation experiments. This was 

achieved by using a calcium sensitive dye (FURA 2AM) in these experiments to assess 

calcium mobilisation.  

 

3.3.1 Concentration-response experiments 

A series of concentration-response experiments was performed using a number of agonist 

and antagonist ligands. The presence in the cell medium of doxycycline turns on receptor 

expression. The antagonist ligands were added in varying concentrations alongside a single 

concentration of 5-HT (10-6M), equating to the concentration of 5-HT which alone 

produced EC80 response.  

Agonists cause elevation of [calcium] in cells expressing the 5-HT2A receptor (Fig.3.6(a-

c)). A rank order of potency could be observed for both agonist and antagonist ligands. 

EC50 and IC50  values from these studies are detailed in Fig.3.6 (a-c) and Fig.3.7 (a-l) and 

the corresponding tables 3.2 and 3.3. 

DOI was the most potent agonist of the group followed by the endogenous ligand 5-HT, 

slightly less potent but still a full agonist. Quipazine appeared to be a partial agonist at the 

5-HT2A receptor, not able to generate maximal response values, and 5-

benzyloxytryptamine was a weak but full agonist, with a lower EC50 than the endogenous 

ligand. 
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A rank order of potency was also determined for the antagonists, based upon their ability to 

reduce the response of the 5-HT stimulation from maximal to basal from (Fig.3.7(a-l)  and 

table 3.3). 

 

 
 
 
 
  Fig.3.6a                       Fig.3.6b 
 
 
 
  
  
 
 
 
 
 
                
 
 
 
  Fig.3.6c 
 
   
 
 
 
 
 
 
 
 
  
 
 
 
 
 
Fig.3.6(a-c). Calcium mobilisation experiments were performed using the ligands 5-
benzyloxytryptamine (a), DOI (b) or quipazine (c). The endogenous ligand 5-HT in each 
case was employed as an internal reference. Data are means ± SEM, n=3. 
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Table 3.2 Potency values for the agonist ligands in calcium mobilisation experiments.   
Data are means ± SEM, n=3. 
 

 

Agonist order of potency: DOI > 5HT > quipazine > 5-benzyloxytryptamine 
 

 

 

 

 

 

 

 

 

 

 

Ligand  pEC50  Std. Error   
S.E.M  

5-HT  8.2  0.21 

Quipazine  7.1  0.25  

DOI  11.4  0.24  

5 Benzyloxytryptamine  6.4  0.17  
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 Fig.3.7c                                                                           Fig.3.7d  
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  Fig.3.7e                    Fig.3.7f 
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  Fig.3.7i                    Fig.3.7j 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  Fig.3.7k                                                                         Fig.3.7l 
                                                                                                      
              
 
 
 
 
 
 
 
 
 
 
 
Fig.3.7 (a-l) Effect of a series of antagonist ligands on 5-HT(10-6M) stimulated calcium 
mobilisation ; amoxapine (a), clozapine (b), chlorpromazine (c), dihydroergotamine (d), 
MDL100,907(e), melperone (f), mianserin (g), SB742,457 (h),  SB399,885 (i), spiperone 
(j), ziprasidone (k) and WAY-257(l). The endogenous ligand 5-HT in each case was 
employed as an internal reference. Data means ± SEM, n=3. 
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Ligand  pIC50  Std. Error   
S.E.M  

Amoxapine  6.7  0.04 

Chlorpromazine 6.5  0.14  

Clozapine  8.6  0.14 

Dihydroergotamine  7.7  0.72 

Mianserin  7.0  0.14 

MDL100,907  8.2  0.11  

Melperone  4.5  0.06  

SB-742,457  6.6  0.51  

SB-399,885  6.7  0.47  

Spiperone  8.9  0.63  

Ziprasidone  9.5  0.25  

 
Table.3.3 Corresponding pIC50 potency values of the antagonists in the Ca2+ mobilisation 
experiments from Fig.3.7(a-k). Data are means ± SEM, n=3. 
 
 
 
 
 
 
Antagonist order of potency: Ziprasidone > Spiperone > Clozapine > MDL100,907 > 
Dihydroergotamine > Mianserin > Amoxapine > SB399,885 > SB742,457 > 
Chlorpromazine > Melperone 
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3.3.2 Calcium mobilisation: Schild regression experiments 
 
The calcium mobilisation studies were used to generate Schild regression data for the 

antagonists. Surprisingly this generated data indicating that they were acting in an 

apparently non-competitive and insurmountable fashion (Fig.3.8). This however was 

considered unlikely based on various literature searches. In these studies cells were pre-

incubated with an antagonist then signal measured immediately upon agonist addition. This 

may not allow for maximal response generation, possibly due to non-equilibria reflecting 

slow antagonist off rates. The prospect of hemi-equilibrium had to be explored. 

 

‘A traditional hallmark of competitive antagonism in functional assays is the ability of the 

antagonist to produce parallel dextral shifts of the agonist concentration response curve, 

with no change in the maximum agonist response’ (Christopoulos et al.,1999). The 

Christopoulos group were exploring muscinarinic M1 acetylcholine receptor antagonists 

(atropine and pirenzepine), and found them to exhibit insurmountable antagonism of 

receptor-mediated Ca2+ mobilisation in CHO cells, in the presence of the agonists 

carbachol and xanomeline. Maximal response of the agonist was unobtainable, and 

rightward shifted in a concentration- dependent manner in relation to the antagonist. The 

underlying problem stemmed from the desired state of equilibrium not being achieved, due 

to the relative slower association-dissociation kinetics of the ligands.  

 

Fig.3.8 is an example of initial experiments in which an agonist pre-incubation step was 

included, and clearly maximal response of agonist was not obtained in this situation. Hemi-

equilibrium appears to occur when there is pre incubation with an antagonist, and once the 

agonist is applied the equilibrium shift is to slow to be detected before or during response 

measurement. 
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To potentially overcome this phenomenon the experiments were then adapted such that the 

antagonist and agonist ligands were co-administered (Fig 3.9 a-k). 

 
 
 
 

 

 

 

 

 

 

 

 

 

 
Fig.3.8 The ability of varying concentrations of  5-HT to elevate [Ca2+] was assessed in 
Flp-In TREx 293 cells induced to express the 5-HT2A receptor. Such experiments were 
performed in the presence of varying concentrations of different antagonists (a) 
chlorpromazine, (b) SB-399,885, (c) mianserin, (d) clozapine. Each curve should display a 
rightward shift, and maximal response of agonist should always be achieved even if at the 
highest concentration of antagonist if the antagonist is acting in a competitive manner. 
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Fig.3.9a      Fig.3.9b 

 

 

 

 

 

 

 

 

 

Fig.3.9c                                                                         Fig.3.9d 

        

 

 

 

 

 

 

 

Fig.3.9(a-d) The ability of varying concentrations of  5-HT to elevate [Ca2+] was assessed 
in Flp-In TREx 293 cells induced to express the 5-HT2A receptor. The effect of of 
increasing concentrations of  (a) amoxapine, (b) clozapine, (c) mianserin and (d) 
dihydroergotamine on this is shown. Data are means ± SEM, n=3. 
 

 



 77 

0.0

0.5

1.0

1.5

-10 -8 -6 -4

5-HT
SB399,885 10-6.5M
SB399,885 10-6M
SB399,885 10-5.5M

0
Log M[5-HT]

FU
RA

 2
 R

AT
IO

(3
40

nm
/3

80
nm

)

SB399,885 regression

-7.0 -6.5 -6.0 -5.5 -5.0

0.0

0.5

1.0

1.5

Best-fit values
Slope
Y-intercept when X=0.0
X-intercept when Y=0.0
1/slope

0.9304 ± 0.1015
6.231 ± 0.6107
-6.697
1.075

Log [M] SB399,885

Lo
g(

DR
-1

)

0.0

0.5

1.0

1.5

2.0

-10 -8 -6 -4

5-HT
Melperone 10-6M
Melperone 10-5M
Melperone 10-4.5M

0
Log M[5-HT]

FU
RA

 2
 R

AT
IO

(3
40

nm
/3

80
nm

)

Melperone regression

-6.5 -6.0 -5.5 -5.0 -4.5 -4.0

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Best-fit values
Slope
Y-intercept when X=0.0
X-intercept when Y=0.0
1/slope

0.4049 ± 0.2133
3.671 ± 1.110
-9.067
2.470

Log [M] Melperone

Lo
g(

DR
-1

)

0.0

0.5

1.0

1.5

2.0

-10 -8 -6 -4

5-HT
MDL100,907 10-6M
MDL100,907 10-5M
MDL100,907 10-4M

0
Log M[5-HT]

FU
R

A 
2 

R
AT

IO
(3

40
nm

/3
80

nm
)

MDL100,907 regression

-6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5

0.0

0.5

1.0

1.5

2.0

Best-fit values
Slope
Y-intercept when X=0.0
X-intercept when Y=0.0
1/slope

0.5801 ± 0.2851
3.954 ± 1.445
-6.817
1.724

Log [M] MDL100,907

Lo
g(

D
R

-1
)

0.0

0.5

1.0

1.5

-10 -8 -6 -4

5-HT
Chlorpromazine 10-6M
Chlorpromazine 10-5M
Chlorpromazine 10-4M

0
Log M[5-HT]

F
U

R
A

 2
 R

A
T

IO
(3

40
n

m
/3

80
n

m
)

Chlorpromazine regression

-6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5

0.0

0.5

1.0

1.5

Best-fit values
Slope
Y-intercept when X=0.0
X-intercept when Y=0.0
1/slope

0.3076 ± 0.05502
2.536 ± 0.2787
-8.244
3.251

Log [M] Chlorpromazine

L
o

g
(D

R
-1

)

These experiments (Fig 3.9a-d) worked well, however the results to follow are all results i 

would class as being poor quality data. 
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Fig.3.9i      Fig.3.9j 

 

 

 

 

 

 

 

 

 

Fig.3.9k 

 

 

 

 

 

 

 

 

 

Fig 3.9(a-k) Agonist and antagonist ligands co-administered. The ability of varying 
concentrations of  5-HT to elevate [Ca2+] was assessed in Flp-In TREx 293 cells induced to 
express the 5-HT2A receptor. Such experiments were performed in the presence of varying 
concentrations of different antagonists; chlorpromazine (e), melperone (f), 
MDL100,907(g), SB399,885 (h), SB742,457 (i),  spiperone (j) and ziprasidone (k ). Data 
are means ± SEM, n=3. 
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These experiments allowed for the generation of pA2 values, which in a functional 

experiment is a measure of affinity (table3.4) and a rank order of affinity derived. 

Ligand  pA2  Std. Error  
S.E.M  

Amoxapine 5.7 
(slope: 0.79)  

0.23 
(0.13)  

Chlorpromazine 5.8 
(slope:0.31)  

0.38 
(0.05)  

Clozapine  5.6 
(slope: 0.64)  

0.96 
(0.05)  

Dihydroergotamine 6.1 
(slope: 0.50)  

0.92 
(0.11)  

Mianserin  6.4 
(slope: 0.77)  

0.30 
(0.13)  

MDL100,907  5.8 
(slope:0.51)  

0.38 
(0.28)  

Melperone  7.1 
(slope:0.41)  

0.69 
(0.21)  

SB-742,457  8.8 
(slope:0.53)  

0.58 
(0.10)  

SB-399,885  -6.4 
(slope: 0.93)  

0.23 
(0.10)  

Spiperone  6.3 
(slope: 0.63)  

0.36 
(0.08)  

Ziprasidone  5.0 
(slope: 0.46)  

1.07 
(0.16)  

 
Table 3.4 Affinity values derived from Schild plots for antagonist ligands, measured via 
Ca2+ mobilisation. The highlighted ligands are the ligands which work well (Fig 3.9a-d). 
Slope should be equal to or as close to 1 as possible to indicate competitive antagonism. 
These experiments allowed for the generation of PA2 values which in a functional 
experiment is a measure of affinity Data are means ± SEM, n=3. 
 

Antagonist order of affinity: Mianserin > SB399,885 > Amoxapine > Clozapine  
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3.4 IP1 accumulation assay 

 

IP1 accumulation measured using HTRF technology (homogeneous time resolved 

fluorescence), encompassing fluorophores conjugated to antibodies. The assay kit contains 

an antibody specific to IP-1 which is labelled with Cryptate (linked to the rare earth 

element Terbium) and it is the emission of this which is measured. This antibody competes 

with native IP1 produced by cells and IP1 coupled to the dye d2. An essential component 

of this particular assay is the inclusion of Li+ in the stimulation buffer, which allows the 

IP1 being produced to accumulate rather than breaking down into myo Inositol. The effect 

of lithium interference in the breakdown of IP1 by inhibiting the enzyme inositol 

monophosphatase was explored in great detail by Berridge ( Berridge et al.,1984).  
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Time resolved FRET (Tr-FRET) overcomes several drawbacks of Resonance Energy 

Transfer techniques, such as low signal to noise ratios, where the signal you observe may 

not be much above the interference background noise signal (possibly due to 

autoflourescence of cells) (Maurel et al.,2008). The combination of europium cryptate as 

the donor and d2 as the acceptor fluorophore increases the signal to noise ratio due to the 

extension of emission from the cryptate, increasing the stability of the assay, allowing for 

all other signals to be reduced down before readings are taken. 

 

A brief time course experiment was set up to look at 1P-1 accumulation in relation to 

constitutive activity which has been previously shown to occur at the 5-HT2A receptor. 

Should constitutive activity be present then there would be significant activity in the cells 

minus agonist. However from Figure 3.10 you can see that this was not to be the case. 

 

Agonist concentration response curves set up in triplicate, included a 5-HT control in order 

to observe the effect of the agonists in comparison to the endogenous ligand (Fig 3.11 a-c). 

The presence of doxycycline turns on the receptor expression. 

Antagonist curves were set up in the presence of a control curve of 5-HT to allow maximal 

and basal values to be determined, and then separate curves of antagonist alone and the 

antagonist ligand in the presence of EC80 concentration of  5-HT, which allows the ligands 

antagonistic or inverse agonism properties to be seen (Fig 3.12a-k) and inhibition values 

gathered. 

Several details could be extrapolated from these experiments, including both the potency 

of ligands and affinity results (see tables 3.6 and  3.7) which are comparable with the 

calcium mobilisation results (tables 3.3  and 3.4).These pathways lie in close proximity to 

one another downstream of receptor activation and should in effect provide similar values. 

Interestingly the results obtained for potency differed from that of the calcium mobilisation 

experiments (Fig 3.7a-l). 
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A correction was then applied based on the IC50 and Hill slope values of these competition 

curves in order to produce an approximation of PKB (table 3.7), see equation 2. PKB is a 

functional measure of affinity, differing from PA2 values obtained from Schild and Ki 

values from binding studies (tables 3.4 and 3.1 ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.10 Time course experiments exploring the possibility of constitutive activity. Cells 
either untreated or induced with doxycycline to turn on 5-HT2A receptor expression for 
comparison. 
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Fig.3.11a        Fig.3.11b 

 

 

 

 

 

 

 

Fig.3.11c 

 

 

 

 

 

 

 

 
 
Fig 3.11 (a-c). Agonist IP-one accumulation experiments measured in Flp-In TREx 293 
cells induced to express the 5-HT2A receptor and using the ligands 5-benzyloxytryptamine 
(a), DOI (b) or quipazine (c). The endogenous ligand 5-HT in each case was employed as 
an internal reference. Data are means ± SEM, n=3. 
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Table 3.5 Potency values for the agonist ligands in IP-one accumulation experiments 
(Fig.14a-c), Data are means ± SEM, n=3. 
 

 

 

 

 

Agonist order of potency: DOI > 5HT > Quipazine > 5-Benzyloxytryptamine 
 

 

 

 

 

 

Ligand  Potency (pEC50) Std. Error 

S.E.M 

5-Hydroxytryptamine  8.6  0.30 

Quipazine  6.1  0.85 

DOI  10.0  0.36 

5 Benzyloxytryptamine  5.4  0.13 
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Fig.3.12g      Fig.3.12h 
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Fig 3.12 (a-k). Effect of a series of antagonist ligands on 5-HT(10-6M) stimulated IP-one 
accumulation; amoxapine (a), clozapine (b), chlorpromazine (c), dihydroergotamine (d), 
MDL100,907(e), melperone (f), mianserin (g), SB742,457(h),  SB399,885(i), spiperone (j) 
and  ziprasidone (k). The endogenous ligand 5-HT in each case was employed as an 
internal reference . Data are means ± SEM, ,n=3. 
 
*Several compounds are known to be “inverse agonists” (clozapine, chlorpromazine and 
mianserin) however based on the lack of constitutive activity in this assay shown in 
Fig.3.10 looking at IP-one accumulation all of these compounds appear to only act as 
antagonists. 
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Ligand  Affinity 
(pIC50)  

Std. Error 
 
S.E.M 
  

Amoxapine  5.9  0.06 

Chlorpromazine 5.3 0.19 

Clozapine  5.5  0.30 

Dihydroergotamine  nd  nd 

Mianserin  5.6  0.14 

MDL100,907  8.1  0.69 

Melperone  5.2  0.29 

SB-742,457  nd  nd  

SB-399,885  6.3  0.16 

Spiperone  6.1  0.37 

Ziprasidone  nd  nd 

 

Table 3.6 Potency values for the antagonist ligands in IP-one accumulation experiments 
(Fig.15a-k), Data are means ± SEM, n=3. Dihydroergotamine, SB-742,457 and 
Ziprasidone could not be determined. 
 

Antagonist order of potency: MDL100,907 > SB399,885 > Spiperone > Amoxapine > 
Mianserin > Clozapine > Chlorpromazine > Melperone 
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Table 3.7 Afinity values for the antagonist ligands in IP-one accumulation experiments  
corresponding to Fig 3.12 (a-k),  after correction factor (equation 2) applied , Data are 
means ± SEM, n=3. Dihydroergotamine, SB-742,457 and Ziprasidone could not be 
determined. 
 

Antagonist order of affinity: MDL100,907 > Spiperone >  Mianserin  > Clozapine > 
SB399,885 > Chlorpromazine > Amoxapine >  Melperone 
 

 

 

Ligand  Affinity 
(pKB)  

Std. 
Error 
S.E.M 

Amoxapine  8.4  0.06 

Chlorpromazine 8.4  0.19  

Clozapine  9.2  0.30  

Dihydroergotamine nd  nd 

Mianserin  9.4  0.13  

MDL100,907  11.2   0.69  

Melperone  8.3  0.06  

SB-742,457  nd  nd 

SB-399,885  9.1  0.16  

Spiperone  9.8  0.37  

Ziprasidone  nd  nd 
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Fig 3.13 Comparison chart of potency of agonist ligands 5-HT, DOI, quipazine and 5-
benzyloxtryptamine at Ca2+ mobilisation and IP-one accumulation assays assessed using 
Flp-In TREx 293 cells induced to express the 5-HT2A receptor. 
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Fig 3.14 Comparison chart of  potency of antagonist ligands amoxapine, clozapine, 
chlorpromazine , MDL100,907, melperone, mianserin, SB742,457,  SB399,885, spiperone 
and ziprasidone at  Ca2+ mobilisation and IP-one accumulation assays assessd using Flp-In 
TREx 293 cells induced to express the 5-HT2A receptor 
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Fig 3.15 Comparison chart of  affinity of antagonist ligands amoxapine, clozapine, 
chlorpromazine, MDL100,907, melperone, mianserin, SB742,457,  SB399,885, spiperone 
and ziprasidone in radioligand binding, Ca2+ mobilisation and IP-one accumulation assays 
assessed in Flp-In TREx 293 cells induced to express the 5-HT2A receptor. 
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               Rank order of potency for agonists and antagonists 

 

 

 

 

 

 

 

Table 3.8 Ranks the order of potency of each agonist ligand in both Ca2+ mobilisation and 
IP-one accumulation assays 
 

 

 

 

 

 

 

 

 

 

 

Table 3.9 Ranks the order of potency of each antagonist ligand in both Ca2+ mobilisation 
and IP-one accumulation assays. 
 

Rank 
Order of 
potency 

Calcium 
experiments 

IP-One experiments 

1 DOI DOI 

2 5-HT 5-HT 

3 Quipazine Quipazine 

4 5-
Benzyloxytryptamine 

5-
Benzyloxytryptamine 

Rank Order of 
potency 

Calcium 
experiments 

IP-One experiments 

1 Ziprasidone MDL100,907 

2 Spiperone SB-742,457 

3 Clozapine Ziprasidone 

4 MDL100,907 SB-399,885 

5 Dihydroergotamine Spiperone 

6 Mianserin Amoxapine 

7 Amoxapine Mianserin 

8 SB-399,885 Clozapine 

9 SB-742,457 Chlorpromazine 

10 Chlorpromazine Melperone 

11 Melperone  
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                 Rank order of affinity for agonists and antagonists 

 

 

 

 

 

 

 

 

 

 

Table 3.10 Ranks the order of affinity of each antagonist ligand in radioligand binding, 
Ca2+ mobilisation and IP-one accumulation assays 
 

 

 

 

 

 

 

 

 

Rank 
Order of 
Affinity 

Binding (Ki) Schild PA2 IP-one PKB 

1 Chlorpromazine Mianserin MDL100,907 

2 Mianserin SB-399,885 Spiperone 

3 SB-399,885 Amoxapine Mianserin 

4 MDL100,907 Clozapine Clozapine 

5 Dihydroergotamine  SB-399,885 

6 Clozapine  Chlorpromazine 

7 Spiperone  Amoxapine 

8 SB-742,457  Melperone 

9 Melperone   
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           IUPHAR published values, taken from the IUPHAR website 

                                                       

 

 

 

 

 

 
 
Table 3.11 Published values taken from the IUPHAR website, detailing the potency of the 
agonist ligands at the 5-HT2A receptor .                                                                                     
 

 

 

 

 

 

 

 

 

 

Table 3.12 Published values taken from the IUPHAR website, detailing previously 
reported affinity of the antagonist ligands at the 5-HT2A receptor.  Dihydroergotamine, 
SB399,885 and SB742,457 have not been listed as having any effect at the  5-HT2A 
receptor.                         
 

 

Agonist Ligand IUPHAR  Potency 
values 

5-Hydroxytryptamine -6 .0  -  -8.4 

Quipazine  -6.9 

DOI  -9.0  -  -9.3 

5 Benzyloxytryptamine Data not available 

Antagonist Ligand IUPHAR Affinity 
values 

Amoxapine -9.0 

Chlorpromazine -8.7 

Clozapine -7.6 - -9.0 

Mianserin -7.4  -  -9.6 

MDL100,907 -6.5  -  -9.3 

Melperone -7.1 

Spiperone -7.8  -  -9.4 

Ziprasidone -8.8  -  -9.5 
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Equations 

 

1)Cheng-Prusoff correction IC50 = KB  ([A*]/KD + 1) 

 

2) PKB  correction factor : Anti log PKB = -IC50/((2+([A]/EC50)n)1/n – 1) 
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4. Discussion 

The spectrum of human diseases treated by GPCR drug targets is extremely broad, ranging 

from pain and asthma to cognitive dysfunction and cardiovascular disease. Receptors have 

two primary functions 1) the recognition and binding of ligands 2) the generation of 

downstream responses. There are more than 200 known receptors transducing a 

physiological process and are the targets of around 50% of the drugs now commercially 

available, with at least another 150 orphan GPCRs expected to exist from the human 

genome (Wise et al 2004, Katugampola & Davenport.,2003). From the 35000-60000 

human genes that have been identified from private and public databases roughly 1000 

encode GPCRs (Katugampola & Davenport 2003). Drugs with action at 5-HT2A receptors 

are used in the treatment of many disorders. The identification of an activating ligand 

occurs by initiation of an intracellular cascade ie: IP1 or Ca2+ . 

Several compounds used (clozapine, mianserin and chlorpromazine) were listed as inverse 

agonists at the 5-HT2A receptor but showed no such behaviour in functional studies such as 

IP-one (Figures 3.10 and 3.12). 5-HT2A constitutive activity in vitro is weak without either 

mutating the receptor (Teitler et al.,2002) or by over expressing G proteins (Weiner et 

al.,2001). However constitutive activity at the 5-HT2A receptor has been shown to have 

substantial effects in vivo (Welsh et al.,1998),Harvey et al.,1999,). To be sure constitutive 

activity did not occur over a period of time, a time course experiment was also carried out 

for the 5-HT2A receptor and IP-one accumulation measured (Fig.3.10). 

As discussed previously the 5-HT2A receptor was incorporated into a stable, inducible cell 

line using HEK 293 cells and the  Flp-in T-REx system, allowing receptor expression to be 

under the control of the antibiotic doxycycline. It could be seen clearly that expression of 

the receptor was nice, and clear only when dox was applied (Fig.3.1), no appropriate band 

could be observed in wells in which the cell preparations had no prior application of 
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doxycycline. Cell age did not have a major impact either on the expression of the receptor, 

and did not cause a decline as the cells progressed in age. The binding experiments also 

confirmed that expression was good, and inducible only if doxycycline was present 

(Fig.3.4b). 

Agonist potency 

There is a variation when looking at the potency of agonists in relation to calcium 

mobilisation and IP-one accumulation (tables 3.2 and 3.5)(Fig.3.13). The endogenous 

ligand would appear to be close in potency values for each, with EC50 values of -8.2M and 

-8.6M respectively, however the other agonist values are 1 log value less potent in IP-one 

experiments. As the pathways occur sequentially, both downstream of IP3, it is not 

possible to suggest agonist directed trafficking as a reason for this (Berg et al.,1998), a 

phenomenon by which agonist binds to receptor and promotes agonist specific receptor 

conformation, stimulating pathways preferentially. The pathways would be completely 

separate entities, existing in their own right independent of one another such as arachidonic 

acid and inositol phosphate (Berg et al.,1998), unlike IP-one and Ca2+. The agonists follow 

the same order of potency for each of the experiments (table 3.8). 

Antagonist potency 

Several antagonistic compounds, when looking at the comparison chart (Fig.3.14) have 

EC50 values which lie in close proximity to one another. These compounds include 

amoxapine, chlorpromazine, MDL100,907, melperone, mianserin, SB399,885 and 

SB742,457. Clear differences can be seen for clozapine, spiperone and ziprasidone, with 

more than a 2 degree difference in potency (tables 3.3 and 3.6). 

The order of potency for the majority of ligands is very different when looking at IP1 and 

Ca2+ experiments (table 3.9). 

The SB compounds are not regarded as being an antagonist at the 5-HT2A receptor in any 

literature, but they display a very clear antagonistic tendency at this receptor, with 

moderate potency and affinity values (tables 3.1, 3.3 and 3.6). 
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Antagonist affinity  

Binding experiment values (table 3.1) and IP1 PKB values (table 3.7) are more closely 

related to the published IUPHAR affinity values (table 3.12) and each other for several 

ligands including clozapine, mianserin, spiperone and ziprasidone (Fig.3.15) These ligands 

lie in close proximity to each other in the comparison chart, as do the SB compounds. 

There are a few obvious discrepancies including amoxapine and melperone. 

The PA2  values generated for calcium Schild experiments (table 3.4) do not sit closely to 

the IUPHAR values (table 11), IP1 PKB values (table 3.7) or the binding ki values (table 

3.1) (fig.3.15), for all except 2 antagonists, mianserin and SB399,885. Many of the graphs 

display extremely badly fitting regression lines, with unacceptable or unexplainable 

negative values, no slopes being close to 1.0 to indicate competitive antagonism. In the 

case of ziprasidone there is no shift in curve, indicating that this acts very weakly at the 5-

HT2A receptor. The Ki values of the binding experiments follows a similar order to that of 

the published literature (IUPHAR website), for chlorpromazine, mainserin, MDL100,907 

and spiperone. The exceptions here are clozapine and ziprasidone, and non determinable 

amoxpaine. 

For both the Ca2+ and IP1 experiments there is a lot of variation between the two with 

regards to rank order of affinity (table 3.10). Discounting the additional ligands 

SSB399,885, SB742457 and dihydroergotamine , the ligands are binding with different 

affinities at each pathway and also differing from the Ki values. A reason for this could be 

the formation of complexes with other proteins, allowing downstream complexes to have 

their own pharmacology (Baker & Hill.,2007) Scaffolding of GPCRs, G proteins, effectors 

and down stream elements are all thought to play a pivotal role in downstream signalling, 

with intracellular domains interacting with cellular proteins involved in each signalling 

cascade independent of the g protein (Brady and Limbird, 2001). 

A clear cause for thought at this point would be the use of calcium assays in 

pharmacological measurements and comparisons. 
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Another aspect to look at had there been more time, would have been receptor reserve. As 

these pathways both have the same starting point, branching off upon IP3 breaking down it 

would be interesting to know what occurs between this point and the formation of each 

biological product.  

Antagonists at 5-HT2A not only inhibit agonist induced and constitutive activities but could 

be responsible for the deactivation of GPCR responses in a pathway specific manner (Brea 

et al.,2009). Antagonist induced receptor internalisation can result in the activation of 

extracellular signal-regulated kinase mitogen activated protein kinase occurring via β-

arrestin signalling. β arrestins act as scaffolding proteins and can activate a subset of signal 

networks (ERK1/2) independent of G protein signalling (Wisler et al.,2007). 

5-HT2A receptor antagonists can induce internalisation of the receptor (Willins et al.,1999, 

Gray and Roth 2001). It is possible that this then stimulates the ERK1/2 pathways, and 

time permitting could have been a way to look at receptor reserve. 

The validity of using calcium assays as a measure of potency and affinity 

Another consideration is the assay type itself. Particularly with regards to the calcium 

assay where there is reliance on a light signal which is not stable for a prolonged period of 

time. Fura-2AM being a ratiometric dye, has a less bright emittance than other available 

single length indicators. Typical assay set up involves moving from low to high 

concentrations, but due to the nature of the plate reader on the flex station, where upon it 

reads a well at a time in order from row 1 to row 12, the entire plate read out takes 

45minutes, perhaps having an impact on the readout. Particularly with the Schild 

experiments this seemed to be problematic as the larger concentrations of  antagonist was 

applied to the receptor for over 1 hour when the pre incubation step was included initially, 

upsetting the off rate of antagonist and the agonists ability to compete and knock off the 

antagonist. 

Calcium is released from the endoplasmic reticulum upon stimulation of the inositol 1,4,5-

trisphosphate (InsP3) receptor by IP3 (Foskett.J.K.,et al 2007).   
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Calcium signal generation is rapid and complex and therefore unlikely to reflect 

equilibrium binding conditions (Charlton and Vauquelin,2010). Schild analysis assumes 

that equilibrium for binding is reached, but this however is not the case. There is a short 

time lapse between the addition of the agonist and the peak response being measured, 

which is not favourable of equilibrium establishment. Equilibrium is achieved for the 

antagonist by pre incubating with the ligand, however true equilibrium is not achieved for 

the agonist and a reduced maximal response is generated, even in situations where the 

antagonist is fully surmountable in other assays. The antagonist dissociation is slow and 

results in only part of the receptor being available for occupancy by the agonist at point of 

administration. It is not possible to allow for complete equilibrium to occur due to the 

speed and sensitive nature of the calcium experiments (Charlton and Vauquelin,2010). In 

the case where antagonists appear insurmountable , co stimulation is a favoured method, 

although still not entirely favouring the equilibrium requirements.  

Apparent insurmountable antagonism 

Surmountable antagonists produce a parallel rightward shift of agonist dose response 

curves without an effect on the maximal response. Insurmountable antagonists however 

depress the maximal response. Insurmountable antagonism is not only drug related and it 

may also depend on the tissue, species and experimental design (Vauquelin et al.,2002). 

The generation of a biphasic curve in experiments in which the dose response of 

antagonists were being looked at would be an indicator of partial insurmountable 

antagonism (Vauquelin et al.,2002).  As said previously , in a Schild experiment antagonist 

concentrations should shift the agonist response curve parallel to the right. The degree of 

shift is then measured for each antagonist concentration in comparison to the control 

agonist only curve and the logarithm plotted. The regression slope should not differ greatly 

from 1 for the antagonist to be competitive. A widely used technique, thought to be flawed 

and leading to error in the estimation of antagonist affinity (Hill and Langmead, 2010).  
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Calcium assays, due to their sensitive nature are favourable when initially screening 

ligands to determine coupling to GαQ but require careful consideration when using for 

absolute values for compounds. 
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