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 Research Background 
 

One of the most important hypotheses in modern economic theory is based on the 

assumption of optimising behaviour, either from a producer or a consumer approach. As 

far as producer behaviour is concerned, economic theory assumes that producers optimise 

both from a technical and economic perspective: 

 

� From a technical perspective, producers optimise by not wasting productive resources. 

� From an economic perspective producers optimise by solving allocation problems 

involving prices. 

 

However, not all producers succeed in solving both types of this optimisation problem 

under all circumstances. In real economic life, it is unlikely that all (or possibly any) 

producers operate at the full efficiency frontier, with failure to attain the efficiency frontier 

implying the existence of technical or allocative inefficiency (Reifschneider and 

Stevenson, 1991).  

 

More precisely, as described in Levitt and Joyce (1987), as well as Worthington (2001), 

respectively, for a producer to be efficient, there are three requirements to hold: 

 

1. The first requirement of technical efficiency is that the maximum possible amount is 

produced with the resources used, or in other words, it must be impossible to reduce 

the volume of any input without reducing the volume of output. Technical efficiency 

may then refer to the physical relationship between the inputs used (i.e. capital, labour 

and equipment) and output. These outcomes may either be defined in terms of 

intermediate outputs or final output. 

2. The second requirement is that the cost of any given level of output is minimized by 

combining inputs in such a way that one input cannot be substituted for another without 

raising the total cost. This is allocative efficiency, where an allocatively efficient 

producer would produce that output using the lowest cost combination of inputs.  

3. The third requirement is that the mix of outputs of different goods and services 

produced form the given resources maximizes the benefit to consumers.  
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For these reasons, it is important to analyse the degree to which producers fail to optimise 

and the extent of any resulting distances from the frontier of full technical and economic 

efficiency, mainly due to the following reasons: 

 

1. First, only by measuring efficiency, and by separating the associated effects from those 

of the operating environment, it is possible to explore hypotheses concerning the 

sources of efficiency, essential to improve performance.  

2. Second, efficiency measures are success indicators by which producers are evaluated 

and the ability to quantify efficiency provides a control mechanism with which to 

monitor the performance of a production unit.  

3. In addition, if policy and planning is to concern itself with the performance of a 

particular economic unit, it is important to know to what level a given producer may be 

expected to increase output by simply increasing efficiency, without absorbing any 

further resources.  

 

Efficiency measures can be defined as relative productivity over time or space, or both. For 

instance, it can be divided into intra- and inter-firm efficiency measures. The former 

involves measuring the use of the firm’s own production potential by computing the 

productivity level over time relative to a firm-specific production frontier, which refers to 

the set of maximum outputs given the different level of inputs. In contrast, the latter 

measures the performance of a particular firm relative to its best counterpart(s) available in 

the industry (Lansink et al, 2001). 

 

More specifically, a measure of evaluating the performance at producer level is productive 

efficiency through production frontier, a concept which compares the transformation 

process of converting input into output. As Reifschneider and Stevenson (1991) declared, 

if the occurrence of inefficiency is not totally random, then it should be possible to identify 

factors that contribute to its existence. In this case, estimating these efficiency measures 

involves estimating the unknown production frontier. Each production process involves a 

production frontier: the current state of technology in the industry, representing the 
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maximum output attainable from each input level is called the efficiency frontier (Coelli et 

al., 2005). A producer operating on the efficiency frontier is productively efficient. 

 

As noted by Greene (2007a) the literature on stochastic frontiers is rapidly growing and a 

great number of methodological innovations in the econometric estimation techniques were 

proposed. The main research assumption is that inefficiency is defined as the extent to 

which producers fail to achieve a theoretical ideal (Greene, 2007a). One important aspect 

of the recent empirical literature on efficiency measurement is the analysis of production 

frontiers, the relationship between input and output and the adjoining sources of efficiency. 

Better understanding of the process of generating efficiency requires studying the deeper 

determinants and factors which explain the differences in efficiency growth. In response to 

this most important research issue, and with the increase in data availability, economic 

literature has shown a resurgence of interest in testing and quantifying various theories of 

explaining efficiency growth and examining the corresponding relationships has attracted a 

lot of interest with the main research questions arising could be summarized into:  

 

1. What are the reasons for diverging efficiency in a production industry?  

2. Which factors contribute to production industries efficiency differences?  

3. How the efficiency of a production industry evolves over time, with respect to 

technical progress and other related determining factors?  

 

One of the application approaches of stochastic frontier analysis is the estimation of 

productive efficiency in manufacturing industries, and specifically medium and high 

technology manufacturing industries. 

 

More recently the role of manufacturing industries to the economy is even more important 

taking into consideration the slowdown in the world economy, and the effects on the 

business environment created by the financial crisis. Thus, medium and high technology 

manufacturing industries have a very important role in creating opportunities making an 

important contribution to economic growth and development (Coviello and McAuley, 

1999). Nonetheless, high technology manufacturing industries have shortages of different 

types of resources necessary to develop and implement their business strategies. These 
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shortages may include financial, marketing, technological and managerial resources, or 

skilled personnel (Buckley, 1989). Overcoming those shortages and increasing productive 

efficiency has become critical for their long term survival and profitability.  

 

However, due to their nature, these industries are characterized by being very 

heterogeneous since they differ in their endowments of resources as well as on the risks 

involved in their productive activities. For this reason, it is of great importance, on the one 

hand to analyze their efficiency level and potential, and on the other hand, to analyze the 

factors which determine their efficiency potential. This analysis is the main aim of this 

thesis. As in Baten et al. (2009), it is generally believed that resources in the manufacturing 

industries are being utilized inefficiently. Recently, there ia a major literature in estimating 

stochastic frontier production and consequently dealing with technical inefficiency in 

manufacturing industries production have been undertaken (Samad and Patwary, 2002, 

2006; Baten et. al. 2006, 2007). Thus, this thesis is expected to provide meaningful insights 

into the level of industry-specific technical efficiency along with factors determining and 

affecting efficiency.  
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 Thesis aim 
 

This thesis focuses on the manufacturing industries and seeks to obtain the empirical 

results by specifying the translog functional form and the model for the technical 

inefficiency effects in the stochastic frontiers. Estimation of technical efficiencies and the 

identification of determinants of technical efficiencies for the model are also of interest 

(Baten et al., 2009). 

 

The research aim of this research is to identify and examine key resources, a conceptual 

framework drawing on the application of stochastic frontier models in obtaining measures 

of efficiency that enable a comparison of performance across industries and countries, 

explaining why, in the same country, some industries achieve superior efficiency 

performance. The important task is to relate efficiency to a number of factors that are likely 

to be determinants, and measure the extent to which they contribute to the presence of 

inefficiency.  

 

More specifically, the first step of this thesis is to review the literature concerned with 

techniques of efficiency estimation. This will facilitate an understanding of both the 

theoretical and application part of the research. The second step of this thesis is to highlight 

the pitfalls of the different relevant models and methodologies. The third and most 

important goal and contribution of this thesis is to suggest a concrete method to estimate 

industrial efficiency, avoiding the inherent problems. Within this framework, the problem 

to be examined in this thesis can be broken down into two major parts:  

 

1. the theoretical part of the study which deals with stochastic parametric frontier 

methodology, 

2. the applied part of the study which focus on examining the magnitude and impact of 

the efficiency in different manufacturing industries.  

 

This thesis considers a European Union perspective efficiency analysis to increase the 

information base and derive broader conclusions about European Union productive 
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performance within selected countries. This issue is of particular research relevance 

because empirical evidence shows that even though European Union industries are widely 

analyzed with respect to performance, yet little attention has been paid to the estimation of 

technical efficiency. In particular, the objective of this thesis is to employ Stochastic 

Frontier Analysis to examine the industry-specific technical efficiency performance for 13 

manufacturing industries in 8 selected European Union countries. The countries selected 

are:  Austria, Denmark, Finland, France, Germany (or Western Germany prior to 1991), 

Italy, Netherlands, Spain, and United Kingdom, in order to create a data set including both 

countries with strong industrial productive base, such as United Kingdom, Germany, 

Netherlands and France, as well as countries with low industrial productive base, such as 

Spain. Within this sample, it is of great importance to examine which determinants are 

significant, however, it is also important, to examine whether the interactions between 

technical progress, ICT investment, ICT investment share, R&D stock and economy 

openness, namely the process of the integration into the world economy, has any 

implications for technical efficiency. Special emphasis is given to the review of two of the 

main heterogeneity determining factors, namely innovation investments (as a proxy of 

knowledge creation) and economy openness (as a proxy of knowledge dissemination).   

 

This thesis tries to fill a gap in the economic literature by exploring and studying various 

dimensions of the interaction between one of the most important economic aspects, namely 

technical change and innovation and the integration into the world economy, namely 

economy openness, and links them to efficiency growth. In particular, this thesis explores 

whether the interactions between these factors have any implications for efficiency growth, 

and whether there are any complementarities between them and fostering technical 

efficiency growth. More specifically, this thesis aims to distinguish between the two main 

factors which affect total factor productivity, namely technical progress and technical 

efficiency, as well as what determines the production frontier itself and what determines 

the inefficiency term (both theoretically and empirically).  
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 Value of Research and Expected Contribution 
 

This thesis contributes with an inter-industry and inter-country approach to estimate 

production inefficiency using the Battese and Coelli (1992, 1995) model, which allows 

technical inefficiency to vary over time, and allows inefficiency to depend on a set of 

covariates (Yu, 2008) and explore the effects of innovation-related investment on 

production, allowing for simultaneous estimation of the parameters of the stochastic 

frontier and the inefficiency model using the one-step, maximum-likelihood estimation 

method.  

 

This thesis empirically examines the implication of the interrelationship and the 

complementarities between value added, capital, labour and technical change and the 

contribution of additional determining factors to technical efficiency and attempts to 

highlight the characteristics of alternative models specification and suggest a concrete 

method to estimate technical efficiency in industrial level, giving emphasis on the 

efficiency convergence among countries.  

 

More specifically, the empirical application of the thesis estimates the Transcendental 

Logarithmic Production Function of manufacturing industries in these selected European 

Union member-states, considering a panel data model for inefficiency effects in stochastic 

production frontiers based on the Battese and Coelli (1992, 1995) models, providing 

translog effects, as well as industry effects. This modeling decomposes productivity 

growth into two components: technological growth (essentially, a shift of production 

possibility frontier, set by best-practice producers) and inefficiency changes (deviations of 

actual output level from the production possibility frontier). That is, modeling 

accommodates not only heteroscedasticity but also allows the possibility that a producer 

may not always produce the maximum possible output, given the inputs (Movshuk, 2004).  

 

The thesis main findings suggest the great importance of the interaction between the 

different determining factors and estimate any implication for productive efficiency. The 

empirical evidence reported in this thesis supports the hypothesis and shows that technical 
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change, ICT investment, ICT investment share, R&D stock and economy openness have a 

positive impact on technical efficiency  in the examined industries, playing a significant 

role  in determining the contribution of innovation in efficiency, productivity and, 

consequently, economic growth.  

 

Over all, the major contribution of this thesis is that it provides a better understanding of 

the contribution of technical change; ICT investment and economy openness to technical 

efficiency taking into account the interrelationships and the complementarities between 

innovation and efficiency. The purpose is to study these countries’ experience in an effort 

to determine the potential productive efficiency determining factors and to investigate 

various aspects of the relationship between productive efficiency and determining factors 

in an attempt to reach a better understanding of the contribution of alternative factors to 

technical efficiency growth. Especially, this thesis aims to:  

 

1. develop a model of efficient producer behaviour and investigate possible types of 

departure from full technical efficiency level 

2. emphasize and discuss the empirical application with special focus on the 

comparability of different structures of models 

3. analyze the level and the development of an industry’s productive  efficiency along 

with the determining factors  

4. distinguish between the two main factors which affect total factor productivity, namely 

technical progress and technical efficiency, as well as what determines the production 

frontier itself and what determines the inefficiency term (both theoretically and 

empirically) 

5. develop an analytical econometric technique for examining the above 

6. demonstrate the obtained results and come to safe conclusions as far as modelling 

producer behaviour (applied production analysis) is concerned.  

 

The findings of this thesis are of value for practitioners, policy makers and the academic 

community: 
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1. For industries the purpose of this thesis is to make recommendations to firms on 

identifying, developing and deploying their resources that may influence their technical 

efficiency, competitiveness and consequently their performance.  

2. For policy makers the value of this thesis stems for a better identification and 

understanding of the key resources to the internationalization of high technology 

industries. This will allow government entities to formulate and implement programs, 

which will leverage areas of high technology industries, which require further 

development.  

3. Last but not least, the value for the academic community mainly lies on an increased 

knowledge about the impacts of different determining factors on technical efficiency 

estimation.  

 

Finally, at policy level, the findings of this thesis suggest the need to establish assistance 

programs to develop the technology-base, at all levels, as well as to augment technology-

base, which are more detailed in the thesis along with the limitations and suggestions for 

further research. 
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 Thesis structure 
 
To achieve the research aims, the thesis was designed to include six core chapters in 

addition to a concluding chapter: 

 

Chapter 1 provides an overview on the definition and alternative approaches of efficiency 

(technical or productive efficiency, allocative or pricing efficiency, scale efficiency, as 

well as economic efficiency). Moreover, Chapter 1 deals with the review of measurement 

of Efficiency, distinguishing between: technical or allocative oriented  approach, the input-

oriented and output-oriented approach, the Parametric and non – parametric approach, the 

Frontier and non – frontier approach.  

 

Chapter 2 studies the alternative methods for productive efficiency estimation which 

served as research base for the model application. More specifically, Chapter 2 analyses 

the alternative estimation methods of efficiency, namely, the Koopmans and Debreu 

methods, the Farrell method, the distance fucntion method, as well as the Data 

Envelopment Analysis method. Moreover, Chapter 2 explores the theory of Stochastic 

Production Frontiers, and alterantive approaches, as the Deterministic Production 

Frontiers, iinvestigating the alternative variants of the Stochastic Frontier Models, focusing 

on the distinction between time varying and time invariant efficiency, fixed and random 

effects, as well as Battese and Coelli (1992, 1995) model specifications.  

 

Chapter 3 examines technical change and it presents the empirical model specification and 

methodology, along with the underlying hypotheses.  

 

Chapter 4 deals with the industrial context of Stochastic Frontier Models and the main 

assumptions on efficiency estimation and analyses the efficiency estimation in industrial 

aggregate and disaggregate level, the inefficiecny and frontier determining factors, as well 

as the industrial and innovation policy context of the European Union.    
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Chapter 5 deals with the Stochastic Frontier Model Application, estimating the Inefficiency 

component. The chapter begins with the model Description and the parameter estimation 

procedure. In the second part, this chapter describes the data set, the variables included in 

the empirical model, as well as the main model assumptions.  

 

Chapter 6 estimates the DEA model and compares the two alternative set of results. 

Chapter 6 applies the deterministic nonparametric approach Data Envelopment Analysis 

(DEA), and extensions to capture specific characteristics of the production process. 

Chapter 6 reports the main findings, which address the research questions and the stated 

specific set of hypotheses, for each research question. 

 

Based on the obtained results, the concluding chapter 7 introduces comparative results, 

leading to improvements in efficiency estimation. The chapter assesses the significance of 

the obtained results and the possible channels of impact and it concludes the thesis, 

highlighting the main findings and stating their academic significance and their policy 

implications. Finally, chapter 7 addresses implications and contributions for academics, 

practitioners and public policy. A presentation of the study's limitations and suggestions 

for further research closes the chapter. 

 

The general overview of the thesis sructure is as follows: 
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Chapter 1 

The Productive Efficiency Theory 

 

Abstract 

A definition of efficiency is that efficiency is the relationship between what an 

organization produces and what it could feasibly produce. In other words, efficiency 

of a production unit represents a comparison between observed and optimal values of 

its output and input. This comparison comes in two forms. The first is the ratio of 

observed to maximum potential output obtainable from a given level of input. The 

second is defined by considering first the given level of input, and is measured as the 

ratio of minimum potential to observed input required producing the given output. By 

the efficiency of a producer, we have in mind a comparison between observed and 

optimal values of its output and input. The optimum is defined in terms of production 

possibilities, and efficiency is technical. This chapter provides the definition and 

characteristics of productive efficiency, a term which is in the core place of this thesis 

analysis. This chapter describes the characteristics and the different aspects of 

production efficiency and gives the distinction between them.  Finally, this chapter 

reviews the main methods of efficiency measurement, distinguishing between 

parametric and non – parametric approaches, as well as between frontier and non 

frontier approaches. More specifically, Chapter 1 provides an overview on the 

definition and alternative approaches of efficiency (technical or productive efficiency, 

allocative or pricing efficiency, scale efficiency, as well as economic efficiency). 

Moreover, Chapter 1 deals with the review of measurement of efficiency, 

distinguishing between: technical or allocative oriented  approach, the input-oriented 

and output-oriented approach, the Parametric and non-parametric approach, the 

frontier and non-frontier approach. Moreover, this chapter also reviews the main 

research approaches on stochastic frontier analysis, analysing Koopmans (1951) and 

Debreu (1951), as well as Aigner, Lovell and Schmidt (1977) and Meeusen and van 

den Broeck (1977) and Farrell (1957), making also an evaluation of these methods. 
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1.1. Introduction 

Stochastic production frontiers indicate the maximum expected output for a given set 

of inputs. They are derived from production theory and are based on the assumption 

that output is a function of the level of inputs and the efficiency of the producer in 

using those inputs. This function defines the output associated with the best practice 

use of the inputs, while also recognizing the stochastic nature of the data arising from 

mis- or un-measured determinants of production.  

The difference between actual output and the potential output is generally attributed to 

a combination of inefficiency and random error (i.e. the stochastic element in 

production). Methods have been developed to separate out the random component 

from the efficiency component, so that a more realistic assessment of potential output 

can be achieved. That is, large levels of output that may have occurred through chance 

rather than as a consequence of normal practice do not overly influence the estimates. 

When one considers productivity comparisons through time, an additional source of 

productivity change, called technical change is possible. This involves advances in 

technology that may be represented by an upward shift in the production frontier. This 

is presented in the following figure by the movement of the production frontier from 

0F0 to 0F1 in period 1: 

Figure 1.1. Production frontiers and Technical Efficiency 
  

 
Source:Based on Coelli et al (2005), p. 6 
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In period 1, all firms can technically produce more output for each level of input, 

relative to what was possible in period 0. When we observe that a producer has 

increased productivity from one period to the next, the improvement need not have 

been from efficiency improvements alone, but may have been due to technical change 

or the exploitation of scale economies, or from some combination of these three 

factors (Coelli et al., 2005). 

 

This chapter provides the definition of productive efficiency, a term which is in the 

core place of this thesis analysis. This chapter begins with analyzing inefficiency 

regarding decomposing productivity into the Production Possibility Frontier and 

(in)efficiency, describing the characteristics and the different aspects of this 

decomposition and providing the distinction between them.  Finally, this chapter 

reviews the main methods of efficiency measurement, distinguishing between 

parametric and non – parametric approaches, as well as between frontier and non 

frontier approaches.  

 

This chapter also reviews the main research approaches on stochastic frontier 

analysis. The chapter reviews the work by Koopmans (1951) and Debreu (1951) who 

were the first to technically combine production inputs with production outputs and to 

introduce the approach of distance function in order to estimate the differences 

between the actual output levels compared to the maximum potential output level. 

This chapter focuses also mainly on the stochastic frontier methodology developed by 

Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977), greatly 

influenced by Koopmans (1951), Debreu (1951) and Farrell (1957), who introduced a 

method to decompose the overall efficiency of a production unit into its technical and 

allocative components, providing the main characteristics of each approach, making 

also an evaluation of each one of these methods. 

1.2. Inefficiency and Frontier Determining Factors 

In the modern knowledge economy, growth depends extensively on the presence or 

the formation of a network and environment favorable to innovation, which is based 

on the endogenous development capabilities. Even though the producer-specific 
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factors are important determinants of innovation activity, technological opportunities 

and favorable entrepreneurial environment have a positive effect on innovation 

activity, as well. Technological change, innovation and technology creation and 

diffusion are an important factor to economic progress1.  

Combining the production functions in order to create and disseminate innovations 

leads to improvements in productivity and efficiency. However, at a given moment of 

time, when technology and production environment are essentially the same, 

producers may exhibit different productivity levels due to differences in their 

production efficiency. Within growth process, therefore, efficiency of production 

resources becomes a critical element in growth, through utilizing the available, yet 

scarce, resources more productively. Within this framework, productivity represents 

the estimation of how well a producer uses the available resources to produce outputs 

from inputs. However, the productivity theory literature has emphasized factors such 

as productive efficiency, mainly through technological spillovers, increasing returns, 

learning by doing, und unobserved inputs (e.g. human capital quality), whereas the 

empirical industrial organization literature has emphasized the degree of openness of 

countries to imports and industry structure (Koop, 2001). 

 

There is a huge literature on factors influencing productive efficiency and 

productivity growth. In this literature, it is widely accepted that decision making units 

are not homogeneous producing units and, therefore, not all units are operating at the 

same level of efficiency (Caves, 1989).  

 

Bos et al. (2010) investigate the sources of output growth for a panel of 

manufacturing industries. They propose a flexible model beyond the division of 

output growth applied in the conventional growth accounting and cross-country 

growth regression literature, as well as the strong assumptions they typically rely 

upon (efficient use of resources, constant returns to scale). Bos et al. (2010) focus on 

the use of technology, the sources of output growth, technology spillovers and catch-

                                                 
1 This topic has been broadly examined in: Kokkinou A. (2010b) Economic Growth, Innovation and 

Collaborative Research and Development Activities. Management & Marketing, Vol. 5, No. 1, pp. 

111-126. 
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up, as well as policy implications. To decrease the aggregation bias that may occur 

when these issues are considered at the country-level (Bernard and Jones, 1996 a,b), 

Bos et al. (2010) focus on manufacturing industries. Traditionally, the growth 

accounting literature has referred to the unexplained part of output growth as the 

‘productivity residual’ or ‘technical change’ (Solow, 1957). This interpretation, 

however, depends, among other things, on the strong assumption that economic units 

(countries or industries) are always efficient. In reality, however, economic units may 

well use the best-practice (frontier) technology with varying degrees of efficiency. If 

this is the case, part of what is measured as technical change is in fact an improved 

use of the best-practice technology. Put differently, inefficient industries increase 

output by becoming more efficient in the use of the best-practice technology, whereas 

efficient industries increase output through technical change. In addition, not 

controlling for possible inefficient use of inputs may also result in underestimating the 

productivity of outputs for the best-practice technology. Bos et al. (2010) account for 

inefficiency and estimate a stochastic production frontier, which is the empirical 

analog of the theoretical production possibility frontier. This modelling strategy adds 

structure to the unexplained residual. Under reasonable assumptions, it disentangles 

the residual into inefficiency and measurement error. Technical change is modelled as 

a shift of the stochastic frontier, whereas efficiency change is a movement towards or 

away from the frontier. This framework decomposes output changes into three types 

of change: technical, efficiency and input change. Empirical literature carries out 

efficiency analyses along lines similar to Bos et al. (2010), although using different 

modelling approaches, considering that output change is also decomposed into 

technical, efficiency, and input change. Even though the attention has largely been at 

decomposing aggregate (country-level) output, a number of studies have investigated 

the role of efficiency in explaining growth differentials for a panel of manufacturing 

industries in the OECD countries (Bos et al., 2010).  

 

As in Consoli (2008), research agrees that: first, strong emphasis is placed on the 

sources and the effects of technological change; second, great attention is paid to the 

dynamics generated by the interaction between business firms and their environment, 

including other firms and key institutional players (Malerba and Orsenigo, 1996; 

Antonelli, 2003; Metcalfe, 2001).  
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The heterogeneity in the inefficiency model can be expressed by a shift in the 

underlying mean of ui or heteroscedasticity. Battese and Coelli (1995) established a 

model where producer-specific attributes are incorporated in the inefficiency 

distribution. Heterogeneity is expressed in the location parameter, the mean, of the 

underlying distribution of inefficiency ui.  

 

This model specification became popular to explain efficiency differences across 

producers. Reifschneider and Stevenson (1991) and Simar et al. (1994) established a 

SFA model incorporating heterogeneity in the variance of ui or vi, allowing for 

heteroscedasticity. Applications of the heteroscedastic SFA model can be found in 

Hadri (1999), Hadri et al. (2003 a,b) and Caudill et al. (1995). 

 

Unobserved heterogeneity means that heterogeneity is not reflected in measured 

variables but expressed in the form of effects (Greene, 2007a). Several models 

attempt to separate unobserved heterogeneity from inefficiency and it became more 

important to model both heterogeneity in the stochastic part and producer-specific 

heterogeneity in the production or cost function of the underlying production process. 

 

Kumbhakar (1991), Polachek and Yoon (1996) and Greene (2005b) have suggested to 

extend the original stochastic frontier model by adding an individual time-invariant 

random or fixed effect. These models are called “true” models because they include 

two stochastic terms for unobserved heterogeneity: one for the time-variant factors 

and one for the producer-specific constant characteristics (Farsi et al., 2003). The 

basic assumption is the existence of producer-specific and time-invariant factors that 

cannot be captured by efficiency explanatory variables due to the variation of the 

latter over time and/or omitted variables.  

 

Unobservable individual effects also play an important role in the estimation of panel 

stochastic frontier models. In contrast to the conventional panel data literature, 

however, studies using stochastic frontier models often interpret individual effects as 

inefficiency (Schmidt and Sickles, 1984), such as technical inefficiency in a stochastic 

production frontier model.  
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Time-invariant inefficiency assumption has been relaxed, as in Kumbhakar (1990) 

and Battese and Coelli (1992). These studies specify inefficiency (uit) as a product of 

two components. One of the components is a function of time and the other is an 

individual specific effect so that uit = f(t)ui. In these models, however, the time-

varying pattern of inefficiency is the same for all individuals, so the problem of 

inseparable inefficiency and individual heterogeneity remains. In all these models, the 

inability to separate inefficiency and individual heterogeneity is likely to limit their 

applicability in empirical studies (Greene, 2005), who argues that the (in)efficiency 

effect and the time-invariant country-specific effect are different and should be 

accounted for separately in the estimation. If, for example, the country-specific 

heterogeneity is not adequately controlled for, then the estimated inefficiency may be 

picking up country-specific heterogeneity in addition to or even instead of 

inefficiency. In this way, the inability of a model to estimate individual effects in 

addition to the inefficiency effect poses a problem for empirical research (Wang and 

Ho, 2010).  

 

As a management tool, stochastic frontier analysis focuses on the variables which are 

under the decision-makers’ control. However, efficiency may be influenced by factors 

beyond the control of the managers. In stochastic frontier model analysis it is 

acknowledged that the estimation of production functions must respect the fact that 

actual production cannot exceed maximum possible production given input quantities.  

 

Consequently, one of the main questions is to investigate the relationship between 

inefficiency and a number of factors which are likely to be determinants, and measure 

the extent to which they contribute to the presence of inefficiency. These factors are 

neither inputs to the production process nor outputs of it but nonetheless exert an 

influence on producer performance. Such factors are widely referred to as efficiency 

explanatory variables2.  

                                                 
2 In many cases, the distinction between decision-maker controlled and efficiency explanatory variables 

is not always distinct. As in McMillan and Chan (2006), efficiency explanatory variables include 

purely exogenous variables as well as producer-specific variables representing production methods and 

output characteristics.  
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In this context, the term ‘efficiency explanatory variables’ is used to describe factors 

that could influence the efficiency of a producer, where such factors are not traditional 

inputs and are not under the control of the producer (Fried et al., 1999). However, 

they may influence productive efficiency. In particular, in order to investigate the 

determinants of the productive efficiency we distinguish between producers or 

industry -specific and efficiency explanatory factors (Caves and Barton, 1990) 3.  

 

Efficiency explanatory factors are not under direct control of the producer, at least in 

the short-run, and they may be industry-affiliated, such as producer location 

characteristics, managerial restrictions, slow adoption to changes of the market 

environment and/or to technological developments, or asymmetric information in the 

labour market, social aspects, geographical or climatic conditions, as well as 

regulatory and institutional constraints, ownership differences (public/private), and 

government regulations (Coelli et al, 1998, Stephan et al. 2008). Producer-specific 

factors, on the other hand, refer to characteristics that can be influenced by the 

producer in the short-run, as producer size, R&D intensity and degree of outsourcing.  

 

This section connects the discussion of theory in the thesis to the empirics. The 

empirical analysis focuses on productive efficiency of industries and national 

economies. In line with the empirical framework based on stochastic frontier analyses 

(SFA) and data envelopment analyses (DEA), productivity is decomposed into the 

production possibility frontier and technical (in) efficiency. For this reason, the 

discussion on theory clearly indicates what should determine the frontier and what 

affects efficiency.   

                                                                                                                                            
 
3 Caves and Barton (1990) and Caves (1992) suggested that several studies have developed a strategy 

for identifying the determinants of efficiency, which can be grouped into three categories (Stephan et 

al. 2008):  

 

1. factors external to the industry ;  

2. factors internal to the industry; and  

3. Ownership structures (e.g. public versus private). 
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Specifically, in line with the empirical framework, based on stochastic frontier 

analyses (SFA) and data envelopment analyses (DEA), productivity is decomposed 

into the production possibility frontier and technical (in) efficiency. For this reason, 

there should be a distinction on what should determine the frontier and what affects 

efficiency. This cannot be satisfactorily achieved by drawing only on theories of 

exogenous and endogenous growth. Both of these relate to production technology, 

which lies in the domain of the frontier. On the other hand, technical efficiency relates 

to neo-Schumpeterian ideas of catching-up with the leaders (technology diffusion and 

absorption) and forge-ahead through investments in R&D (innovation creation). 

However, this cannot be satisfactorily achieved by drawing only on theories of 

exogenous and endogenous growth, both of which relate to production technology, 

which lies in the domain of the frontier. Also, efficiency depends on the effectiveness 

of the institutional environment, which is closely related to evolutionary and 

institutional approaches. Recent contributions to the literature clearly emphasize the 

connection with theory, of empirical models for the production possibility frontier (or 

production function) and efficiency and they are also examined. More specifically, 

contributions to the literature (Kneller and Stevens, 2006, Bhattacharjee et al., 2009, 

and Eberhardt and Teal, 2011) clearly emphasize the connection with theory, of 

empirical models for the production possibility frontier (production function) and 

efficiency.   

 

As stated in Bhattacharjee et al. (2009), the empirical models and inference methods 

can be categorized into two key methodologies: (a) the OLS regression based 

approach and the associated interpretation of the Solow residual as a measure of total 

factor productivity (TFP), and (b) frontier production function estimation where the 

distance from the highest achievable levels of productivity is interpreted as a measure 

of productive efficiency. The OLS approach supports the neoclassical concept of 

exogenous technology and the resulting view that deviations from the production 

frontier, either positive or negative, reflect only idiosyncratic productivity shocks. By 

contrast, negative skewness of the distribution of TFP is consistent with the 

combination of neo-Schumpeterian and neoclassical approaches, where frontier 

technology is viewed as a pool of knowledge accumulated through the innovative 
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action of leaders and available to any productive unit. However the capacity to use 

such technology depends on a costly and time consuming effort to catch up with the 

leaders (Bhattacharjee et al., 2009). In order to present these issues, Bhattacharjee et 

al. (2009) examine the following approaches: 

 

1. Neoclassical growth theory (Bhattacharjee et al., 2009) 

Neoclassical growth models attempt to explain long run economic growth by looking 

at productivity, capital accumulation, population growth and technological progress. 

The neoclassical model of exogenous growth (Solow 1956, 1957; Swan 1956) 

considers the accumulation of physical capital, associated with a permanent flow of 

technical progress, as the driver of economic growth. Neoclassical growth model 

assumes the Cobb-Douglas production function. Growth is considered to be either an 

exogenous process or either achieved through exogenous technical innovations, 

embodied in capital goods (Solow, 1960). (Solow (1956) argued that countries that 

differ in terms of initial productivity levels but not in terms of other aspects 

(population growth and saving propensities) tend to converge towards the same level 

and the same rate of growth of productivity. This is the result of a theoretical 

perspective in which technology is considered as a public good, freely available to 

everyone, and its dynamics is largely unexplained. 

 

Neoclassical growth consider that capital is an immobile factor accumulated through 

an endogenous investment process, while technology is either completely mobile or 

totally endogenous [Temple (2003), Keller (2004)]. Neoclassical growth models also 

assume diminishing returns to capital, constant savings rate and constant growth of 

labour, assumptions which imply a steady state growth rate depending only on the rate 

of exogenous technical progress. Inputs such as human capital or R&D investment 

imply that TFP depends on these factors, which is more in line with endogenous 

growth theory (Romer, 1986, 1990). Technology is assumed to be a private good 

which is produced by dedicated inputs and accumulated by economic systems as a 

stock of ideas. If the accumulation of ideas is not restricted by the law of diminishing 

returns, a steady state growth process can be derived, under which TFP increases at a 

rate depending on the growth of labour force dedicated to innovation and on the 

extent to which labour is used efficiently. 
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Limitations of the model include its failure to take account of entrepreneurship (which 

may be a catalyst behind economic growth) and strength of institutions (which 

facilitate economic growth). In addition, it does not explain how or why technological 

progress occurs. This failing has led to the development of endogenous growth theory, 

which endogenizes technological progress and/or knowledge accumulation. 

 

Alternative models developed by Lucas (1988) assume the existence of a pool of 

exogenous technology combined with different endogenous capacities, dependent on 

the average level of human capital, accumulated either through formal learning or 

through learning-by-doing. On the other hand, the distinction between an exogenous 

technological frontier, at global level, and efficiency, at local level, measured as a 

TFP gap in relation to the frontier is not clearly made, unless by neo-Schumpeterian 

theory of growth.  

 

2. Neo-Schumpeterian theory of growth (Bhattacharjee et al., 2009) 

Even though endogenous growth theory may be used in order to describe diverse 

development processes according distinct divergence levels, the assumption of 

immobile technology in Romer (1986, 1990) and the lack of clear distinction between 

technological frontier and efficiency in Lucas (1988) prevent the consideration of 

technological catching-up through diffusion mechanisms (Keller 2004). On the other 

hand, according to Aghion and Howitt (2006), endogenous growth theory is not 

suitable to derive inferences and policy regarding technical progress, leading to 

growth and convergence attainment. 

 

According to the neo- Schumpeterian approach, economic growth is mainly the 

outcome of a permanent attempt to forge ahead, rather than being driven by factor 

accumulation. This idea is directly related to the concept of an upward moving 

technological frontier, combining the most advanced technical knowledge with best 

practice. However, the assumption of a production possibility frontier which every 

productive unit seeks to achieve (in other words, a ceiling frontier production 

function) is only valid for public good technology. Neo-Schumpeterian theory of 

growth focuses on creative destruction as the basic process leading to the upward 

movement of the technological frontier (Aghion and Howitt, 1992). International 
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flows of technology arise from the attempt to catch-up with the best practices 

(Grossman and Helpman, 1991), a process which depends on the technology and 

innovation absorptive capacity (Abramovitz, 1986; Fagerberg, 1988). 

 

According to Bhattacharjee et al. (2009), the interaction between forging ahead and 

catching up process defines the upward movement of the technological frontier and 

the national, regional or firm heterogeneity, respectively, with respect to the capacity 

to reach the frontier. This interaction  depends on two factors: (i) the levels of 

investment in human capital and R&D activities (Aghion and Howitt, 2006), and (ii) 

the relative importance of codified technology, technology embodied in capital goods 

and tacit knowledge embodied either in individuals or in organizations (Nelson, 

1980).  

 

3. Technology diffusion (Bhattacharjee et al., 2009) 

Technology diffusion involves the dissemination of technical information and know-

how and the subsequent adoption of new technologies and techniques. Diffused 

technologies can be embodied in products and processes. Although classic models of 

technological development suggest a inear relationshop from basic research and 

development to technology commercialization and adoption, in practice technology 

diffusion is a complex process. Technology can diffuse in multiple ways and with 

significant variations, depending on the particular technology, across time, over space, 

and between different industries. Moreover, the effective use of diffused technologies 

frequently requires organizational and technical changes. Technology also diffuses 

through the internal "catch-up" efforts of firms, the transfer and mobility of skilled 

labor, the activities of professional societies and the trade and scientific press, varied 

forms of informal knowledge trading, and such practices as reverse engineering. 

Import of technology embodied in capital goods (Solow, 1960; Caselli and Wilson, 

2004), as well as disembodied technological spillovers are the two main channels 

through which technology diffuses. In both cases, the efficiency of technology 

diffusion depends on the availability of human capital and on the investment in 

specific forms of R&D which enhance the absorptive capacity of productive system 

(Aghion and Howitt, 2006). Coe and Helpman (1995) measure the effect of R&D 

spending of trade partners on the TFP of developed countries, while Funke and 
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Niebuhr (2005) use a model of R&D workforce to measure knowledge spillovers 

across regions. These models are based on the implicit assumption of a constant 

absorptive capacity, informing about how embodied and mobile disembodied 

technology contribute to form a global benchmark frontier. An alternative procedure 

is to assume an invariant capacity to access exogenous technology and measure 

different absorptive capacities.  

 

4. Evolutionary and institutional approaches (Bhattacharjee et al., 2009) 

The evolutionary approach developed by Nelson and Winter (1982) and Dosi et al. 

(1988) considers that innovation creates mainly technological paradigms, rather than a 

universal benchmark, defining a technological frontier. Technological paradigms 

combine a set of established routines with a shared knowledge base, which determines 

the opportunities of future technical advances (Dosi, 1997). Dosi (1997) defines a 

technological paradigm as a set of procedures, or a definition of the relevant problems 

and of the specific knowledge related to their solution. Such paradigms are shared by 

all productive units and provide the basis for the development of specific learning 

processes (Nelson and Winter, 2002). Technological paradigms promote learning 

processes at industrial level, generating industrial trajectories which are both driven 

by specific capacities to absorb, enhance and apply scientific and technical 

knowledge, as well as by changes in demand. Inside each industry, specific firms 

compete with each other, trying to perform better than the common benchmark 

determined by the floor technological standard, forging ahead through innovation.  

 

Evolutionary approach asserts that technology has a strong tacit, private good 

component, it is more reasonable to assume a benchmark level of productivity given 

by a technological floor. Over this base level, each productive unit builds its own 

comparative advantage using proprietary techniques and tacit knowledge. The 

dominance of the public-good or private-good component defines the sign of 

skewness in the distribution of TFP, and thus determines whether the ceiling or the 

floor representation of technology is more appropriate. 

 

Productivity and innovation performance depends on the availability of skilled 

workforce and on the synergies arising from interactions between firms and 
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supporting organizations. On the other hand, entrepreneurial behavior is shaped by the 

combination of social and political factors stressed by the new institutional economics 

(Furobotn and Richter, 1992), such as legal system to ensure property and intellectual 

rights, and the existence of a cultural and institutional framework which lowers 

transaction costs (Williamson, 1996). 

Within this framework, based on Wang (2007), since R&D is one of the most crucial 

elements in promoting growth, it is argued that any production unit that uses R&D 

resources inefficiently may be subjected to a growth penalty in the form of a much 

smaller benefit from R&D investment. If R&D resources are not used effectively, 

additional investment may be of little help in stimulating economic growth. Literature 

has already been devoted to investigating the economic aspects and effects of R&D 

investment. It has been considered that R&D could result in better production 

technology and also raise the productivity as well as the rates of return on investment 

at both the producer and industry levels. Griliches (1986) and Griliches (1990), 

Mansfield (1988), Goto and Suzuki (1989), Meliciani (2000), Timmer (2003) and 

Gonzalez and Gascon (2004) have provided theoretical arguments as well as 

empirical evidence from various industries in many countries. The positive effects of 

R&D investment on productivity as well as on rates of return are clearly identified. In 

addition, there are many other issues related to R&D, such as patenting, patent quality 

and business strategies that have been discussed in the economic literature. Griliches 

(1990), Ginarte and Park (1997) and Penin (2005) examined the economic aspects of 

patents. Patent quality and examination procedures were also discussed in King 

(2003). The relationship between the protection of patents and product standardization 

strategies was explored by Blind and Thumm (2004)4. 

                                                 

4 However, the existing literature has focused primarily on efforts to engage in new investment and 

comparatively little attention has been paid to the effective use of R&D resources once they are in 

place. This is a potentially important omission, since the very conditions responsible for economic 

backwardness may operate through the poor management of the means of engaging in R&D. 

Therefore, knowing the nature of R&D performance by examining its relative efficiency across 

production units is the first required step for designing policies that intend to improve resource 

allocation. 
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Technology and innovation play an important role in economic growth and 

technology has become one of the most important factors in the models of growth 

(Geroski and Machin, 1993, Barro and Sala-i-Martin, 1995, 1997, Freeman and Soete, 

1997, and Sternberg, 2000)5. The role of innovation is multiple: as motive force it 

directs the producers to ambitious and long-term objectives, it leads to the renewal of 

methods of production, supply and distribution, and management and marketing, as 

well as industrial structures and the appearance of new industries of economic 

activity, achieving a wider spectrum of products and services, as well as relative 

markets. Inputs affect the intermediate inputs, which consequently affect and define 

the productivity and competitiveness level. Technological change, innovation and 

technology creation and diffusion are an important factor to economic progress. While 

innovation may lead to divergence between producers or nations, imitation through 

diffusion and dissemination tends to erode differences in technological competencies, 

and hence lead to convergence (Fagerberg and Verspagen, 2002). On the other hand, 

combining the production functions in order to create and disseminate innovations 

leads to improvements in productivity and economic development (Malecki and 

Varaia 1986; Malecki 1991, Fagerberg and Verspagen, 2002)6. 

 

1.3. Technical Efficiency and knowledge creation 

 

Technological change refers to the creation and successful market implementation of 

a new or improved product or production process. Technological change is a term 

                                                 
5 Arrow (1962) was the first to systematically appreciate the importance of innovation and 

technological change in the capital formation and economic growth. He observed that increases in 

income per capita couldn’t be explained by increases in capital to labour ratio, and concluded that the 

power behind the increase in productivity is the acquisition of knowledge and learning experience 

created and acquired during the production procedure. 

 
6 This topic has been broadly examined in: Kokkinou A. (2008) Innovation Policy, Competitiveness, 

and Growth: A Strategy towards Convergence of European Regions, 48th European Congress of the 

Regional Science Association, Liverpool, U.K. 
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which includes the search for, discovery, development, improvement, adoption, 

commercialization of new processes, new products, and new organizational structures 

and procedures and it is a process that involves uncertainty, risk taking, probing, re-

probing, experimenting, and testing (Jorde and Teece, 1989).  

In economic theory, technology is usually represented as a set of factor combinations 

which relate to a certain output level; technological change simply shifts the 

production possibility curve to a higher output level given the same quantity level in 

input factors. The endogenous element of this shift is called innovative activity, an 

activity which we partially attribute to some economic incentive when referring to the 

“market pull” approach, and partially ascribe to the “technology push”, an 

autonomous factor in technology itself. Dosi (1982) defines technology as a set of 

pieces of knowledge, both directly ‘practical’ (related to concrete problems and 

devices) and ‘theoretical’ (but practically, applicable although not necessarily already 

applied), know-how, methods, procedures, experience of successes and failures and 

also, of course, physical devices and equipment (Dosi, 1982). 

According to Mansfield (1968), the main sources of economic growth are:  

1. Increase in the productive base in order to increases the productive possibilities of 

the economy within a time period (as, for example though increases in total work 

force or Gross Fixed Capital formation) 

2. Economies of scale that are related with increase in the factors of production 

3. Technological progress  

However, despite these significant contributions, the systematic analysis and the 

theoretical framework of the effects of innovation on economic efficiency, 

productivity and growth is based on endogenous growth theory developed by Solow 

(1957) and extended by Arrow (1962), Romer (1986, and 1990), Lucas (1990 and 

1993). Endogenous growth theory claimed that not only the accumulation of capital, 

but mainly the development and accumulation of knowledge and technological 

change leads to sustainable growth.  

The main contribution of endogenous growth theory was the incorporation of a 

general concept of technology by broadening the conception of capital or explicitly 
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introducing technology as a production factor, suggesting that there is a three-way 

complementarity between physical capital, human capital, and technical progress.  

 

More specifically, according to Solow (1957) there is a close correlation between 

technological development and productivity, since technological change affects the 

use of inputs engaged in the production process. Innovative capacity is one of the 

main factors which determine the production level [Fagerberg et al. (1997), Freeman 

& Soete (1997)] and technological variables are able to explain a significant part of 

the diverging trends in the economic growth [Fagerberg & Verspagen (1996)] and 

productivity [Abramovitz (1986), Fagerberg (1988 a,b, 1994)].  

 

Endogenous growth theory takes innovation as an endogenous variable which can 

explain the different growth rates. The reason is that the long-run productivity 

decrease is avoided, due to capital accumulation through the qualitative-technological 

improvements of natural and human capital. According to Romer (1986, 1990), 

technological progress is the main engine of economic dynamism and the economy 

grows endogenously through the accumulation and spillover of knowledge. Industry 

growth rate depends on the amount of technological activity within the economy and 

on the ability to exploit external technological achievements (Martin and Ottaviano, 

1999, Grossman and Helpman, 1994, Coe and Helpman, 1995). Increasing returns and 

technical change are incorporated within the production function as determinants of 

the endogenous growth rate (Romer 1986, Lucas 1988, Grossman and Helpman 1994, 

Barro and Sala-i-Martin, 1997) and economic growth is sustained because of the 

continuous creation and diffusion of technological advances. 

 

Developments in the theory of economic growth have renewed the interest for the role 

of innovation in the development process, underlining the interaction between the 

investment in innovative activities, technological change and economic growth. 

Technological change, innovation and technology creation and diffusion are an 

important factor to economic progress, as illustrated in the figure that follows:   
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Figure 1.2. Innovation and Industrial Growth 
 

  
Source: Own elaboration 

 

The economic processes that create and diffuse new knowledge are critical in the 

development process and there are powerful contacts between the investment in 

human capital, technological change and productive efficiency (Acs, Anselin and 

Varga, 2002) 7. The reason is that the new technologies lead to increase of 

productivity of factors of production, contributing in the long-term improvement of 

efficiency (Griliches, 1980). For example, new equipment invested in requires a well-

trained workforce for efficient operation. While human capital in the form of general 

education is a key factor for developing countries, the effect of this is expected to be 

less strong for more developed countries, as they already have relatively high levels of 

general education and the marginal productivity of an additional year of primary-level 

schooling is quite low. For developed economies, human capital is made more 

productive through better skills and in-company training. An increase in the quality of 

workers would allow increased efficiency in capital use and in turn increase output 

                                                 
7 Under this approach, Fagerberg (1987, 1988a,b) created a model of endogenous technological change, 

focusing on the importance of innovation on economic growth. According to Fagerberg (1987, 

1988a,b) economic growth is explained as the combined result of three factors, namely the potential for 

innovation creation, the potential for innovation diffusion and the exploitation of these potentials.  
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growth. Another issue is that some types of capital may matter more than others. 

Some studies have suggested that investment in machinery and equipment is more 

important than investment in buildings and structures, while others have argued that 

investment in infrastructure is an important prerequisite for productivity growth and 

have attributed high payoffs to investment in such capital stock8. 

 

1.4. Technical Efficiency and knowledge 
dissemination 

 

As broadly described in Gallié and Poux (2010), in the last two decades, R&D 

cooperation has attracted a considerable amount of attention. Many empirical studies, 

in economics or in management, have investigated the motives for and potential 

benefits of cooperation as compared to internal R&D. Cooperation enables firms to 

internalize knowledge spillovers, facilitates knowledge transfers between them (in 

particular between firms and universities), helps them gain access to complementary 

knowledge and technologies, generates scale economies of research, enables firms to 

speed the commercialization of new products or technologies, to avoid duplicative 

R&D efforts, to share costs and risk, to gain access to foreign or new markets. Since 

R&D collaboration, cooperation was most often captured as a homogenous object (i.e. 

R&D cooperation vs. internal R&D)9.  

 

At a given moment of time, when technology and production environment are 

essentially the same, producers may exhibit different productivity levels due to 

                                                 
8 This topic has been broadly examined in: Kokkinou A. (2011a) Innovation Policy, Competitiveness, 

and Growth: Towards Convergence or Divergence? in Patricia Ordonez de Pablos, W.B. Lee and 

Jingyuan Zhao (editors) Regional Innovation Systems and Sustainable Development: Emerging 

Technologies, Information Science Reference, Hershey, New York, pp. 187 – 201. 

 
9 This topic has been broadly examined in: Kokkinou A. (2009b) Economic Growth, Innovation and 

Collaborative Research and Development Activities, στο ICBE 2009, 4th edition. 
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differences in their production efficiency10. Within economic growth process, 

therefore, efficiency of productivity of resources becomes a critical element in 

economic growth, through utilizing the available, yet scarce, resources more 

productively.  

Within this framework, productivity represents the estimation of how well a producer 

uses the available resources to produce outputs from inputs. However, the 

productivity theory literature has emphasized factors such as productive efficiency, 

mainly through technological spillovers, increasing returns, learning by doing, und 

unobserved inputs (e.g. human capital quality), whereas the empirical industrial 

organization literature has emphasized the degree of openness of countries to imports 

and industry structure (Koop, 2001)11. 

 

Innovation and technology is an important source of industry competitiveness through 

facilitating cooperation. In particular, they can improve collective processes of 

learning and the creation, transfer and diffusion of knowledge, critical for innovation. 

Such cooperation and the networks that are formed help to translate knowledge into 

economic opportunity, while at the same time building the relationships between 

organizations which can act as a catalyst for innovation.  

 

Following the main findings from literature survey, there are two complimentary sets 

of conditions need to be satisfied for industries to sustain productivity and efficiency 

in competitive environment. The first is that they must have suitable levels of both 

physical infrastructure and human capital. The second is that, in the new knowledge-

based economy, they must have the capacity to innovate and to use both existing and 

new technologies effectively. Industrial and innovation policy is aimed at 

strengthening the competitiveness of producers by promoting competition, ensuring 

access to markets and establishing an environment which is conducive to R&D. As 
                                                 
10 Variation in productivity, either across producers or through time is thus a residual which 

Abramovitz (1956) characterized as ‘a residual of our ignorance’. 

 
11 This topic has been broadly examined in: Kokkinou A. (2009a) Strategy for Entrepreneurship and 

Innovation Activities in the knowledge Economy in Women Participation and Innovation Activities: 

Knowledge Based Economy, Women’s Press, New Delhi, India. 
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recognized, lack of innovative capacity stems not only from deficiencies in the 

research base and low levels of R&D expenditure but also from weaknesses in the 

links between research centers and businesses, and slow take-up of information and 

communication technologies. Knowledge and access to it has become the driving 

force of productivity, much more than natural resources or the ability to exploit 

abundant low-cost labor, have become the major determinants of economic 

competitiveness since it is through these that industries can increase their productive 

efficiency. Innovation, therefore, holds the key to maintaining and strengthening 

efficiency which in turn inessential for achieving sustained economic development.  

These environmental factors are spatially confined externalities with different scales 

of influence. Some factors, such as the legal and cultural framework or large research 

institutes, operate mainly at national level, generating national systems of innovation 

(Lundvall, 1992), other factors, such as skilled labour supply and networks linking 

firms and support institutions have a more limited territorial span, and are the basis of 

regional systems of innovation (Braczyk et al., 1998). 

 

As far as empirical modelling is regarded, estimation of production functions using 

OLS methods correspond closely with the neoclassical approach. Here, all producers 

use the best purpose technology, and any deviation in their output, positive or 

negative, is attributed solely to idiosyncratic productivity shocks. This leads to the 

interpretation of the Solow residual as a measure of TFP (Solow, 1957). By contrast, 

neo-Schumpeterian theory has generated a rich variety of empirical studies that 

attempt to identify both the evolution of the frontier and the catching up capacity of 

different countries and regions. These studies treat investment in physical capital as 

an exogenous process and thus, rather than looking at the dynamics of capital 

accumulation, they are centred on comparative analyses of TFP levels. Neo-

Schumpeterian empirical studies can be divided into two main approaches, according 

to the econometric techniques used: The first approach is inspired by the work of Färe 

et al. (1994), who applied Data Envelopment Analysis (DEA) to a sample of OECD 

countries over a 10-year period. Kumar and Russell (2002) develop a related 

methodology, where the evolution of labour productivity is decomposed into physical 

capital accumulation (movement along the frontier) and increase of TFP; rise in TFP 
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results from a combination of technical progress (upward movement of the frontier) 

and catching up (movement towards the frontier).   

 

The second approach is Stochastic Frontier Analysis (SFA), which decomposes the 

residuals of an estimated production function into an efficiency component, 

corresponding to a negative valued random effect having a skewed distribution, and 

an idiosyncratic zero mean zero skewness random error. SFA is relatively robust to 

random noise arising from measurement errors and erratic variations in the level of 

TFP, and can accommodate idiosyncratic productivity shocks. Further, by explicitly 

modeling departures from the frontier as a combination of inefficiency and 

idiosyncratic shocks, SFA offers unique and useful interpretation combining the neo- 

Schumpeterian and neoclassical approaches.  

 

Because of these advantages, as in Bhattacharjee et al. (2009), SFA has emerged as 

the most popular methodology to study TFP at the firm level, either for crosssection 

comparison of efficiencies (Green and Mayes 1991), or analysis of efficiency 

dynamics using panel data (Tsionas, 2006), or for analyzing spatial influences on the 

efficiency of firms in specific industries (Coelli et al., 1999). SFA has also been 

applied to study TFP at the macroeconomic level, although less frequently. For 

example, Kneller and Stevens (2006), using panel data on manufacturing industries of 

OECD countries, analyzed the skewed component of the error term, representing the 

distance to the technological frontier, as a function of the levels of investment in R&D 

and human capital, which in turn are related to the absorptive capacity of the 

economic system. Neo-Schumpeterian theory applied to SFA implies a negative 

skewness in the distribution of TFP (Carree, 2002), while standard OLS assumes a 

symmetrical distribution. Therefore, the empirical observation in several studies that 

the cross-sectional distribution of TFP is positively skewed (Green and Mayes, 1991, 

Fritsch and Stephan, 2004) casts serious doubts about the validity of the theoretical 

approaches adopted and the consistency of the estimation methods12.  

                                                 
12 These seemingly contradictory results have been explained as arising either from weakness of the 

frontier methodology, mainly concerning the lack of robustness with respect to violation of normality 

and measurement of skewness (Simar and Wilson, 2005), or from a notion of superefficiency (Green 

and Mayes,1991). 
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Bhattacharjee et al. (2009) explore the idea that the productivity enhancing positive 

component captures innovative activity raising certain industries above common 

productivity standards at specific times. In addition, there may be an omitted variables 

problem (Temple, 1999) where common shocks, like the global business cycle or new 

technology developed by the leaders, can drive spillovers across countries or regions. 

In so far as technology transfer depends on technology gap with the leaders (Lucas, 

2000 and Hultberg et al., 2004) which is in turn driven by technological progress in 

leading regions, technology transfer can be characterized by time-specific common 

factors. Moreover, according to Bhattacharjee et al. (2009), more explicit modeling of 

innovation, particularly investment in R&D, human capital, international 

technological spillovers and spatial diffusion are also to be considered.  

 

Even though the vast majority of empirical approaches limit cross-country 

heterogeneity in production technology to the specification of total factor productivity 

(TFP),  Eberhardt and Teal (2011) present two general empirical frameworks for 

cross-country growth and productivity analysis and demonstrate that they encompass 

the various approaches in the growth empirics literature of the past two decades. 

Solow (1956, 1970) makes clear that the stylized facts for which this model was 

developed were not interpreted as universal properties for every country in the world. 

In contrast, the current literature imposes very strong homogeneity assumptions on the 

cross-country growth process as each country is assumed to have an identical 

aggregate production function. (Durlauf et al., 2001). Eberhardt and Teal (2011) 

argue that there are a number of important reasons why the standard cross-country 

growth regression framework needs to be reconsidered. Intuitively, the heterogeneity 

in production technology could be taken to mean that countries can choose an 

‘appropriate’ production technology from a menu of feasible options. Further, the 

cross-country heterogeneity in TFP relates to differences both in the underlying 

processes that make up TFP and in the impact of those processes on output. 

 

Following Mankiw et al. (1992) most empirical studies put this down to the failure to 

account for forms of intangible capital (human capital, social capital) in the regression 

model. This belief has led to a growth empirics literature that for the most part 
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neglects technology-parameter heterogeneity across countries and simplifies 

dynamics. The mainstream literature favours ever more sophisticated statistical 

devices (Sala-i-Martin et al., 2004; Moral-Benito, 2009) and ‘general-to-specific’ 

automatic model selection algorithms (Hendry and Krolzig, 2004; Ciccone and 

Jarocinski, 2008) – to pick out the ‘relevant’ variables in an augmented Solow 

regression model with time-averaged variables, so-called ‘Barro regressions’. At the 

last count no fewer than 145 variables have been investigated in their impact on 

growth (Durlauf et al., 2005) and most were found to matter in at least some studies. 

A number of papers, however, question this paradigm and have integrated 

considerations of parameter heterogeneity into their cross-country empirics, also 

considering the time-series properties of the data, an issue largely ignored in the 

standard cross-country growth regression framework. Their regression results and 

diagnostic tests for variable non-stationarity and parameter heterogeneity confirm 

their importance in the empirical analysis (Pedroni, 2007; Canning and Pedroni, 

2008).  

 

Martin and Mitra (2002) estimate industrial production functions for agriculture and 

manufacturing using Crego et al. (1998) data for 1967 to 1992. Martin and Mitra 

(2002) allow for differential TFP levels and growth rates across countries, modelled 

via country-specific intercepts and linear trend terms in a pooled panel estimation 

using annual data for around 50 countries. TFP growth is captured by the country 

trends and thus assumed to be constant over time and heterogeneous across countries 

(and industries). Martin and Mitra (2002) results indicate considerable variation in 

TFP growth rates between industries and across countries, with TFP growth rates in 

agriculture commonly in excess of those in manufacturing.  

 

Martin and Mitra (2002) address the issue of heterogeneity in TFP levels and growth 

rates in a static pooled fixed effects model, which imposes common technology 

parameters across countries. However, the estimation equations for agriculture and 

manufacturing are static and no investigation of error correlation is undertaken to 

justify this choice. 
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Keeping production technology constant across countries may be seen as a less 

restrictive assumption when investigating more homogeneous sets of economies, such 

as the group of OECD countries. Arnold et al. (2007) empirically compare two rival 

growth models, the human-capital-augmented Solow model with two industries, using 

annual panel data from 21 OECD countries over the 1971–2004 period. Their 

empirical specification allows for flexibility in the short-run dynamics across 

countries, while imposing common long-run production technology. The latter is 

consistent with the idea that the OECD countries have access to common technologies 

and have intensive intra-industry trade and foreign direct investment (Arnold et al., 

2007). Using annual data for 20 Italian regions from 1970 to 2003, Pedroni (2007) 

and Canning and Pedroni (2008) estimate their empirical model by industry, 

comparing results for the heterogeneous parameter group mean. However, given the 

relatively recent emergence of cross-section correlation issues in macro panels only a 

small number of empirical papers combine cross-section correlation in macro panel 

data with heterogeneous production technology, including work by Bhattacharjee et 

al. (2009) and Fleisher et al. (2010) on production in Danish regions and Chinese 

provinces, respectively, as well as work by Cavalcanti et al. (2009) investigating the 

‘natural resource curse’ in a panel of 53 countries. Moreover, Eberhardt and Teal 

(2009a, b) analysed cross-country macro data for the manufacturing (48 countries, 

1970–2002; UNIDO, 2004) and agricultural (128 countries, 1961–2002; FAO, 2007) 

industries, respectively.  

1.5. Reviewing the productive efficiency 

 
A definition of efficiency is that efficiency is the relationship between what an 

organization produces and what it could feasibly produce. In other words, efficiency 

of a production unit represents a comparison between observed and optimal values of 

its output and input. This comparison comes in two forms. The first is the ratio of 

observed to maximum potential output obtainable from a given level of input. The 

second is defined by considering first the given level of input, and is measured as the 

ratio of minimum potential to observed input required producing the given output. By 

the efficiency of a producer, we have in mind a comparison between observed and 

optimal values of its output and input.  
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The optimum is defined in terms of production possibilities, and efficiency is 

technical. It is also possible to define the optimum in terms of the behavioral goal of 

the producer. As in Wang et al. (2002), productivity and efficiency are the two most 

important concepts in measuring performance. However, the terms productivity and 

efficiency have been used frequently interchangeably, even though they are not 

precisely the same things (Coelli et al, 2005). The difference between efficiency and 

productivity can be simply illustrated, as shown in the following figure. As in Coelli 

et al. (2005), to illustrate the distinction between these two terms, it is useful to 

consider a simple production process in which a single input (x) is used to produce a 

single output (y). Points A, B and C refer to three different producers. The 

productivity of point A can be measured by the ratio DA/0D according to the 

definition of productivity where the x-axis represents inputs and the y-axis denotes 

outputs.  

Figure 1.3. Efficiency and Productivity 
 

Source: Wang et al. (2002), p.4 and Coelli et al. (2005), p. 5 

 

In this figure we use a ray through the origin to measure productivity at a particular 

data point. The slope of this ray is y/x and hence provides a measure of productivity. 

If the firm operating at point A were to move to the technically efficient point B, the 

slope of the ray would be greater, implying higher productivity at point B. However, 

by moving to the point C, the ray from the origin is at a tangent to the production 
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frontier and hence defines the point of maximum possible productivity (exploiting 

scale economies). The point C is at the technically optimal scale. Operation in any 

other point of the production frontier results in lower productivity.  

 

Given the same input, it is quite clear that productivity can be further improved by 

moving from point A to point B. The new level of productivity is then given by 

BD/0D. Clearly, productivity can be represented, therefore, by the slope of the ray 

through the origin which joins the specific point under study. The efficiency of point 

A, on the other hand, can be measured by the ratio of the productivity of point A to 

that of point B, i.e., 
DBD

DAD

0/

0/
. 

 

The above efficiency is normally termed Technical Efficiency, and includes output- 

and input-oriented technical efficiencies, i.e., the producer can either improve output 

given the same input (output-oriented, point A to B) or reduce the input given the 

same output (input-oriented, point A to E) by improving technology. The curve 0F in 

the figure is the so-called production frontier. All the points on the production frontier 

are technically efficient, whilst all the points below or lying to the right of the 

efficient frontier are technically inefficient (Wang et al., 2002). 

 

Central to frontier productivity analysis is the determination of the efficient 

production technology, identification of those efficient decision-making producers on 

the technological frontier and of those inefficient producers not on the frontier and, 

for the latter, determination of the degree and sources of their inefficiency. Estimation 

and quantification of efficiency measures is useful for several reasons: Relative 

measures of efficiency facilitate comparisons across similar production units (Lovell, 

1993) 13.  

 

                                                 
13 A wide range of efficiency approaches and frameworks exist in the literature (see Jamasb and Pollitt, 

2001, ; Farsi et al., 2003). 
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As rigorously described in Kumbhakar and Lovell (2000), productive efficiency 

represents the degree of success producers achieve in allocating the inputs at their 

disposal and the outputs they produce, in an effort to meet specific set productive 

objectives. Thus, in order to measure productive efficiency it is first necessary to 

specify producers’ objectives and then to quantify their degrees of success.  

 

Efficiency performance is conventionally judged utilising the concept of economic 

efficiency, which is generally assumed to be made up of two components: technical 

efficiency and allocative efficiency. The former is defined as the capacity and 

willingness of an economic unit to produce the maximum possible output from a 

given bundle of inputs and technology level. The latter concept is defined as the 

ability and willingness of an economic unit to equate its specific marginal value 

product with its marginal cost.  

 

Allocative efficiency reflects the ability of an organization to use these inputs in 

optimal proportions, given their respective prices and the production technology. In 

other words, allocative efficiency is concerned with choosing between the different 

technically efficient combinations of inputs used to produce the maximum possible 

outputs. Since different combinations of inputs are being used, the choice is based on 

the relative costs of these different inputs (assuming outputs are held constant). 

 

Allocative inefficiency is input-oriented and occurs when the mixture of inputs used is 

not the mixture with the lowest possible cost for producing a given amount of outputs.  

 
As analytically described in Kalirajan and Shand (1999), while the concept of 

technical efficiency is as old as neoclassical economics, interest in its measurement is 

not. This is probably explained by the fact that neoclassical production theory 

presupposes full technical efficiency. Then, the question raises as to why should one 

measure technical efficiency. There are two principal arguments for its measurement 

(Bauer, 1990 a,b; Kalirajan and Shand, 1992). Technical efficiency becomes central to 

the achievement of high levels of economic performance at the producer level, as does 

its measurement. The basic concept underpinning the measurement of technical 

efficiency starts with the description of production technology. Production 
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technologies can be represented using isoquants, production functions, and cost 

functions or profit functions. These four models provide four different tools for 

measuring technical efficiency. Although analyses based on these models appear to be 

distinct, they constitute the same basic approach and ideally their results should 

converge: 

 
Figure 1.4. The concepts of technical efficiency, allocative efficiency and economic 

efficiency 
 

Source: Kalirajan and Shand (1999), p. 151 

 

In neoclassical theory, all producers are assumed to operate at potential technical 

efficiency at points along the frontier FF’ . Any inefficiency will be solely allocative. 

Thus, if a producer is operating on its frontier FF’,  its point of economic efficiency 

may be at B, the point of tangency with its price line. If it operates at B, with inputs I1 

and output Q1 there will be maximum profits π1 and no allocative or economic 

inefficiency. It should be noted that, provided producers are operating on their 

technical frontiers, allocative (in) efficiency will be the same as economic (in) 

efficiency (they are used synonymously in the literature) because of the theoretical 

assumption of potential technical efficiency. Thus if a producer is operating at point A 

on its frontier, using I2 inputs and producing Q2 output, its profits may be π2, and its 

allocative / economic inefficiency will be measured as π2/ π1. In practice, with a new 

technology, producers operate at less than potential technical efficiency owing to 
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incomplete knowledge of best technical practices or to other organisational factors 

that prevent it from operating on its technical frontier. Thus, a producer will operate 

on an actual or perceived production function which is below the potential frontier, 

e.g. on AA’. At I2 inputs, it operates at point C, produces Q3 output and earns π3 

profits. On this actual production function, point C is allocatively inefficient. To 

maximise its profits (π4) it would have to operate at point D, use I3 inputs and produce 

Q4 output. At D, however, it would not achieve potential economic efficiency, for by 

definition, potential economic efficiency can only be achieved with potential technical 

efficiency. 

To be consistent with neoclassical production theory, efficiency should only be 

measured in relation to the frontier production function FF’ . Thus if a producer is 

operating at C on its actual or perceived production function, its economic 

inefficiency would be measured in profit terms by the ratio π3/ π1, or in output terms 

by the ratio Q3/Q1. Now, it can easily be seen that this economic inefficiency 

comprises two components, technical and allocative inefficiencies. In profit terms, the 

total loss in economic inefficiency in operating at point C is π1 - π3. Of this, the loss 

from technical inefficiency is π3 - π2, and the loss due to allocative inefficiency is π1 - 

π2. In output terms, the losses are Q2 - Q3 and Q1 - Q2 respectively. The various 

models for measurement that follow are based upon this conceptual framework. 

 

If the analyzed industry exhibits variable returns-to-scale, then another component of 

economic efficiency, scale efficiency, is present. The scale efficiency measure, 

determines how close an observed production unit is from the most productive scale 

size (Førsund and Hjalmarsson, 1979; Banker and Thrall, 1992). A production unit 

may be scale inefficient if it exceeds the most productive scale size (therefore 

experiencing decreasing returns-to-scale) or if it is smaller than the most productive 

scale size (therefore failing to take full advantage of increasing returns-to-scale).  

 

Scale inefficiency of a production unit is defined with respect to those production 

units in the sample which operate where average and marginal products are equal 

(Førsund et al., 1980). The analyzed industry might also exhibit scope efficiency. This 

measure relates to the benefits which are realized by production units that produce 

several products compared to specialized ones (Chavas and Aliber, 1993). 
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Finally, when taken together, allocative efficiency and technical efficiency determine 

the degree of `economic efficiency’ (also known as total economic efficiency). Thus, 

if an organization uses its resources completely allocatively and technically 

efficiently, then it can be said to have achieved total economic efficiency.  

 

Alternatively, to the extent that either allocative or technical inefficiency is present, 

then the organization will be operating at less than total economic efficiency.  

 

1.6. Koopmans (1951) and Debreu (1951) approach 

 
Koopmans (1951) defined a feasible input – output vector to be technically efficient if 

it is technologically impossible to increase any output and /or to reduce any input 

without simultaneously reducing at least one other output and / or increasing at least 

one other input. While Koopmans offered a definition and characterization of 

technical efficiency, it was Debreu who first provided a measure or an index of the 

degree of technical efficiency with his coefficient of resource utilization. When there 

is no such feasible reduction, the production unit is said to be technically efficient 

with score one. In any other case, production unit is characterized as inefficient and 

has a technical efficiency score lower than one.  

 

Debreu (1951) introduced distance functions into economics. Distance functions 

introduce the distance from some observed input – output combination to the frontier 

of technology (Fried et al, 2008). Distance functions allow one to describe a 

production technology without the need to specify a behavioural objective (such as 

cost – minimisation or profit – maximisation). Distance functions describe technology 

in a way that makes it possible to measure efficiency and productivity. The concept of 

a distance function is closely related to production frontiers. The basic idea 

underlying distance functions involves radial contractions and expansions in defining 

these functions. Distance functions are functional representations of multiple-output, 

multiple-input technology that require only quantity data of those inputs and outputs. 

Thus, distance functions allow modelling the production frontier as well as deviations 



 32 

from it. Those deviations represent technical inefficiency while shifts in the frontier 

represent technological change (Grosskopf, 1993).  

 

Debreu (1951) and Koopmans (1951) were concerned mainly with the measurement 

of efficiency and although they produced careful measurements of some, or all, of the 

inputs and outputs used in the production process of a decision-making unit, they 

failed to combine these measurements into any satisfactory estimate of efficiency.  

 

In the following years, applications using distance functions [Shephard (1970)] have 

begun to be very usual [Färe et al. (1993), Simar et al. (1994), Coelli and Perelman 

(1996) or Grosskopf et al. (1997)]. In turn, it is only required to assume that technical 

efficiency be time invariant (Schmidt and Sickles, 1984). On the other hand, 

Cornwell, Schmidt and Sickles (1990), Kumbhakar (1991), Battese and Coelli (1992) 

and Lee and Schmidt (1993) have proposed time-varying technical efficiency panel 

data models. The first of these models allows for producer specific patterns of 

temporal change in technical efficiency and it models technical efficiency through the 

intercept of the production frontier. The rest of these models adopt a different 

approach in that they model technical efficiency through an error component but 

assume that efficiency change is the same for all producers. 

 

The advantages of these quantity-based functions over value-based functions are that 

they do not require either input prices or output prices in their construction, and they 

do not rely on assumptions regarding economic behaviour, such as revenue 

maximization or cost minimization (Zofio and Lovell, 2001).  

 

1.7. Farrell (1957) approach 

 
Farrell (1957) extended the work initiated by Koopmans (1951) and Debreu (1951) by 

noting that production efficiency has a second component reflecting the ability of 

producers to select the right technically efficient input- output vector in light of 

prevailing input and output prices. This led Farrell (1957) to define overall productive 

efficiency as the product of technical and allocative efficiency.  
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Farrell (1957) first obtained a partial decomposition of efficiency into technical and 

allocative components and he also proposed indexes of technical, allocative and 

overall efficiency14. However, Farrell (1957) reminds of the empirical necessity of 

treating Koopmans definition of technical efficiency as a relative notion, relative to 

the best observed practice in the reference set or comparison group. This provides a 

way of differentiating efficient from inefficient production states, but it offers no 

guidance concerning either the degree of inefficiency of an efficient vector or the 

identification of an efficient vector or combination of efficient vectors with which to 

compare an efficient vector. If the theoretical arguments as to the relative efficiency 

of different economic systems are to be subjected to empirical testing, it is essential to 

be able to make some actual measurements of efficiency. Equally, if economic 

planning is to concern itself with particular industries, it is important to know how far 

a given industry can be expected to increase its output by simply increasing its 

efficiency, without absorbing further resources.  

 

Farrell (1957) proposed that the economic efficiency of a producer consists of two 

components: technical or productive efficiency, (which reflects the ability of a 

producer to produce maximum output from a given set of inputs), and allocative or 

pricing efficiency (which reflects the ability of a producer to use the inputs in optimal 

proportions, given their respective prices and production technology)15. When a 

producer is technically efficient, the maximum output is generated from a given level 

of inputs. An allocatively efficient producer would produce that output using the 

lowest cost combination of inputs. Therefore, technical efficiency illustrates a 

comparison of actual output and the maximum output, while allocative efficiency 

deals with the relationship between the minimum cost and actual cost bundles of 

inputs. Together they help to identify the potential for reducing the costs of producing 

a given level of output. 

                                                 
14 However, Farrell (1957) confined his attention to a single – output production technology having 

strong scale, monotonicity and curvature properties, and these properties rule out the possibility of 

structural inefficiency. 
15 A detailed treatment on efficiency measurement and the related concepts is provided by Färe, 

Grosskopf and Lovell, 1985, 1994 and Lovell, 1993. 
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Moreover, Farrell (1957) was the first to measure productive efficiency empirically. 

In measuring technical efficiency, Farrell (1957) assumed inputs to be strongly 

(freely) disposable and that the technology exhibits constant returns to scale. 

Moreover, his use of linear programming techniques influenced the development of 

data envelopment analysis (DEA) by Charnes, Cooper and Rhodes (1978). The basic 

ideas underlying the Farrell (1957) approach to efficiency measurement are illustrated 

in Figure (1.5):  

Figure 1.5. Farrell Efficiency Measures 
 

 
Source: Farrell (1957), p. 254 

 

This diagram shows the efficient unit isoquant (EUI) for a group of producers 

constructed from the input bundles of producers I, J, and K which use the least 

amounts of inputs to produce a unit of output. These producers constitute the 

technically efficient subset in this group and the remaining producers (L and P) are 

deemed technically inefficient. Farrell proposed that EUI should provide a set of 

standards for measuring both allocative and technical efficiency.  

 

The technical efficiency (TE) standard for producer P is that point on EUI which uses 
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unit of output and this suggests that overall economic efficiency is highest at point S 

on EUI. Note that point R has the same level of costs as S.  

 

Farrell proposed that overall economic efficiency (OE) be measured as OR/OP. These 

measures are input-based in so far as they measure differences in input use between 

producers for standardised (unit) output. This defines the TE standard as a point on 

EUI having identical input proportions to the producer whose efficiency is being 

measured and allows a simplified cost interpretation of the AE measure. Farrell also 

proposed an output-based measure which focuses on differences in output between 

producers when input levels are standardised. 

 

Farrell (1957) argued that the measurement of productive efficiency is of theoretical 

and practical importance, a satisfactory efficiency measure allows both empirical 

testing of theoretical arguments and economic planning to improve the productivity of 

particular industries. He first developed a better-founded theoretical method for 

measuring efficiency, the so-called efficiency frontiers, which have been widely used 

in applied studies. In this approach, it is necessary to create a standard or benchmark 

for the measurement of efficiency. Defining the standard against which to measure 

efficiency is at the core of every study related to measuring productive efficiency. 

Farrell (1957) focused this discussion by defining a simple or partial measure of 

producer efficiency that could be readily extended to multiple inputs.  

 

From the description of Farrell’s method it should be clear that the technique involves 

constructing a frontier from the observed best practice in the sample. Thus the 

efficient unit isoquant will only depend on a subset of the full sample of observations. 

In this sense the technique may be described as inefficient because it does not make 

full use of all the information available, the main consequence of this being that it will 

be sensitive to measurement errors and extreme observations.  

 

Of greater significance in the present context is the influence Farrell’s work exerted 

on Aigner and Chu (1968), Seitz (1970), Timmer (1970), Afriat (1972) and Richmond 

(1974), for it was the work of these writes that led directly to the development of 

Stochastic Frontier Analysis models (Kumbhakar and Lovell, 2000).  
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The pioneering work of Farrell (1957) focused attention on the concept of productive 

efficiency and the consequences of its recognition for the modelling of production 

processes. Moreover, a considerable volume of applied work has been undertaken 

since the original studies by Farrell (1957), Farrell and Fieldhouse (1962), Aigner and 

Chu (1968) and Afriat (1972) pioneered the work on frontier production functions, 

while Seitz (1970) and Timmer (1970) are examples of specific efficiency studies.  

Aigner, Lovell, and Schmidt (1977); Schmidt and Lovell (1979); Meeusen and van 

den Broeck (1977); and Greene (1980) introduced refinements of the frontier 

approach and the modelling of production processes explicitly recognizing the 

existence of productive inefficiency.  

1.8. Aigner et al. (1977) and Meeusen and van den 
Broeck (1977) approach 

 

Aigner et al. (1977) and Meeusen and van den Broeck (1977) developed a statistically 

and theoretically sound method for measuring efficiency, known as stochastic frontier 

analysis. In this case, a stochastic frontier is defined as the production of best 

performing agents within a data set. The other data points of the other producers are 

located "below" this estimated frontier. The relative distance measured between this 

best performance and the other data points is interpreted as inefficiency16. Following 

Farrell (1957), researchers applying frontier estimation techniques represent 

technology by a bounding function that reflects best-practice production, defined in 

terms of the maximum real output technologically possible to produce given available 

inputs (Førsund, Lovell, and Schmidt, 1980; Varian, 1985; Bauer, 1990 a,b).  

 

The stochastic frontier model pioneered by Aigner, Lovell and Schmidt (1977) and 

Meeusen and van den Broeck (1977) has attracted a great deal of attention in the 

literature since its introduction (Bera and Sharma, 1999), Førsund, Lovell and 

Schmidt (1980), Schmidt (1986), Bauer (1990 a,b), and Greene (1993). Within this 

framework, several models for estimating technical efficiency have been 

                                                 
16 This is true if random noise is ignored. The innovativeness of the Stochastic Frontier Analysis is the 

separation of noise from inefficiency. 
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progressively developed, extending the stochastic frontier methodology to account for 

different theoretical and empirical issues (Coelli et al., 1998; and Kumbhakar and 

Lovell, 2000), who suggested the basic frontier statistical models, based on an 

econometric specification of a production frontier.  

 

If the frontier has a functional form, that is, if a parametric model for the frontier can 

be formulated, then several parametric approaches have been developed in the 

literature for obtaining measurement of efficiency. The type of parametric technique 

employed will depend on whether the frontier model is deterministic (no random error 

in the model) or stochastic (random error in the model). However, it has been clearly 

established that stochastic frontier models are superior to deterministic frontier 

models (Aigner, Lovell and Schmidt, 1977, Fried et al, 1993; Kumbhakar and Lovell, 

2000; Jacobs, Smith and Street, 2006). 

 

Following Aigner, Lovell and Schmidt (1977), a stochastic frontier model can be 

formulated in terms of a general production function for the ith production unit. This 

function defines a production relationship between inputs, x, and an output y, where, 

for any given x, the observed value of y, must be less or equal to f(x).The basic model 

includes a composite error term that sums a two-sided error term, measuring all 

effects outside the producer's control, and a one-sided, non-negative error term, 

measuring technical inefficiency. A producer can lie on or within the frontier, and the 

distance between actual output and the frontier output represents technical 

inefficiency. 

 

According to Battese and Coelli (1995), the stochastic frontier production function 

postulates the existence of technical inefficiencies involved in producing a particular 

output. The stochastic production frontier model allows: technical inefficiency and 

input elasticities to vary over time in order to detect changes in the production 

structure; and inefficiency effects to be a function of a set of explanatory variables the 

parameters of which are estimated simultaneously with the stochastic frontier. The 

approach is stochastic and producers may be off the frontier because they are 

inefficient or because of random shocks or measurement errors. Efficiency is 

measured by separating the efficiency component from the overall error term. 
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1.9. Input-oriented and output-oriented efficiency 

 
Measures of efficiency can be input-oriented or output-oriented. When input 

quantities are fixed so that output varies across producers, the efficiency measure is 

output-oriented because the objective of producers is to maximize output. When 

output quantities are fixed so that inputs vary across producers, the efficiency measure 

is input-oriented because the objective of producers is to best allocate input quantities 

and minimize input usage. 

As analytically described in Herrero and Pascoe (2002), these concepts can be 

illustrated graphically using a simple example of a two input (x1, x2)-two output (y1, 

y2) production process. Efficiency can be considered in terms of the optimal 

combination of inputs to achieve a given level of output (an input-orientation), or the 

optimal output that could be produced given a set of inputs (an output-orientation). 

Figure 1.6. Input oriented efficiency 

 

Source: Herrero and Pascoe (2002), p. 3  
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the isoquant associated with the minimum level of inputs required to produce (y1
*, 

y2
*). The input-oriented level of technical efficiency (TEI(y,x)) is defined by 0B/0A.  

However, the least-cost combination of inputs that produces (y1
*, y2

*) is given by 

point C.  

To achieve the same level of cost (i.e. expenditure on inputs), the inputs would need 

to be further contracted to point D. The cost efficiency (CE(y,x,w)) is therefore 

defined by 0D/0A. The input allocative efficiency (AEI(y,w,w)) is subsequently given 

by CE(y,x,w)/TEI(y,x), or 0D/0B (Kumbhakar and Lovell 2000).  

The production possibility frontier for a given set of inputs is illustrated in the above 

figure (i.e. an output-orientation): 

Figure 1.7. Output oriented efficiency 

 

Source: Herrero and Pascoe (2002), p. 3  
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order to maximise revenue. To achieve the same level of revenue as at point C while 

maintaining the same input and output combination, output of the producer would 

need to be expanded to point D. Hence, the revenue efficiency (RE(y,x,p)) is given by 

0A/0D. Output allocative efficiency (AEO(y,w,w)) is given by RE(y,x,w)/TEI(y,x), or 

0B/0D in the above figure (Kumbhakar and Lovell 2000). 

1.10. Efficiency Estimation: Parametric and non – 
parametric approach 

Approaches to efficiency measurement are broadly divided between: parametric 

analysis, which involves econometric analysis, and nonparametric analysis, which 

employs mathematical programming methods17. An alternative distinction is that by 

Grosskopf (1993) who divided productivity measurement approaches into two 

primary different categories: a) non-frontier and b) frontier18. The flowchart in the 

following figure shows the main efficiency measuring methods under these two 

approaches.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
17 For a broad overview, see del Hoyo et al. (2004) and Kortelainen (2008). 

 
18 Even though the measurement of productivity growth and of the various efficiency types can be 

implemented with various approaches: non-frontier and frontier, econometric and nonparametric, 

frontier approaches strictly dominate non-frontier ones due to their ability to differentiate technological 

change from producer’s inefficiency.  
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Figure 1.8. Alternative Efficiency Estimation Approaches 

 
 

Source: Own elaboration, based on Mahadevan (2002), p. 6 and Sarafidis (2002), p. 3. 
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frontier, which consists of the best performing producers19. Therefore, random 

fluctuation in production, for example due to climatic conditions, may lead one to 

underestimate the technical efficiency20.  

 

Parametric models (regarding Deterministic Frontier Analysis and Stochastic Frontier 

Analysis), initially developed by Aigner et al. (1977) and Meeusen and van den 

Broeck (1977), which are analytical functions with an a priori fixed number of 

parameters. In this case, the frontier is represented through a functional form (i.e. a 

Cobb-Douglas or a Translog function), derived with econometric techniques (Greene, 

1993). The first approach examined was the construct of the deterministic statistical 

frontier (Barrow, 1991; Cubbin & Zamani, 1996). Using statistical techniques, a 

deterministic frontier is derived such that all deviations from this frontier are assumed 

to be the result of inefficiency. That is, no allowance is made for noise or 

measurement error. Parametric approaches, assume a functional approximation to the 

underlying technology. By this assumption, they derive parameters for the model21. 

The parametric approach relies on a parametric specification of the production 

function that fits to the data (i.e. Førsund et al., 1980; Bauer, 1990a). Parametric 

specification of the production function is mostly performed by the Stochastic 

Frontier Analysis (SFA), which accounts for both inefficiency and random noise 

                                                 
19 Thus, no (direct) accommodation is made for the types of bias resulting from producer heterogeneity, 

external shocks, measurement error, and omitted variables. Consequently, the entire deviation from the 

frontier is assessed as being the result of inefficiency. This may lead to either an understatement or an 

overstatement of the level of inefficiency and, as a non-stochastic technique, there is no possible way in 

which probability statements of the shape and placement of this frontier can be made (Battese and 

Coelli, 1992; Coelli and Battese, 1996). 

 
20 Thus, it is essential to use a time series or panel data that contains observations for a few numbers of 

years, in order to eliminate annual random effects and to estimate actual producer efficiency and 

productivity (Fraser and Hone, 2001). 

 
21 For a survey on the theoretical literature see e.g. Cooper et al. (2004) for the nonparametric and 

Kumbhakar and Lovell (2000) for the parametric approaches. For the theoretical background for 

production, cost and distance function derivation see Chambers (1988). 
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effects. Parametric frontier models are particular analytical functions with an a priori 

fixed number of parameters.  

 

1.11. Efficiency Estimation: Frontier and non-frontier 
approach 

 

A quite important distinction between these approaches lies in the definition of the 

‘frontier’. A frontier refers to a bounding function, or more appropriately, a set of 

best obtainable positions.  

 

Thus, a production frontier traces the set of maximum outputs obtainable from a 

given set of inputs and technology, and a cost frontier traces the minimum 

achievable cost given input prices and output. The production frontier is an 

unobservable function that is said to represent the ‘best practice’ function as it is a 

function bounding or enveloping the sample data.  

 

According to frontier approach, observed output and potential output might differ 

due to the presence of technical inefficiency in productive processes. This implies 

the adoption of a new perspective with respect to non-frontier methodologies, since 

estimated TFP will now explicitly result from a decomposition of productivity 

growth in technological change and efficiency change.  

 

Figure (1.9) represents a simple production process. A single input (x) is used to 

produce a single output (y). The production frontier is OF showing the relationship 

between input and output, namely the maximum output attainable from each input 

level, regarding the state of technology. 
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Figure 1.9. Production frontiers and Technical Efficiency 
  

 
Source:Based on Coelli et al (2005), p. 4 

 

The feasible production set is the set of all input- output combinations which are 

feasible. It consists of all points between production frontier OF and the x-axis. The 

production frontier is a graph of maximum feasible output producible given fixed 

resources. Hence a production frontier envelopes producer outputs from above. If 

what a producer actually produces is less than what it could feasibly produce than it 

will lie below the frontier. The distance by which a producer lies below its production 

frontier or above its cost frontier is a measure of the producer’s inefficiency (Bera and 

Sharma, 1999). The further below the production frontier a producer lies, the more 

inefficient it is. The points along the production frontier define the efficient sub-set of 

this feasible production set and they show the technically efficient combinations of 

input and output. On the other hand, the points beneath the production frontier show 

the non-technically efficient combinations, respectively. In this figure, e.g. point (A) is 

inefficient; points (B) and (C) are efficient points.  
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production frontier. If a producer's actual production point lies on the frontier it is 

perfectly efficient. If it lies below the frontier then it is technically inefficient, with the 

ratio of the actual to potential production defining the level of efficiency of the 

individual producer (Herrero and Pascoe, 2002). 

Technological progress is assumed to push the frontier of potential production 

upward, while efficiency change will change the capability of productive units to 

improve production with available inputs and technology. The following figure (1.10) 

illustrates this idea: 

 
Figure 1.10. The frontier and non-frontier TFP growth measure 

 
Source: Mahadevan (2002), p. 7 
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Technical Progress 
B

F2 

F1 
C 

A 

Technical inefficiency 

Output 

Input 



 46 

only made up of the movement from B to C, which represents technical progress due 

to technological improvements incorporated in inputs. Hence technical progress and 

TFP growth are used synonymously when the non-frontier approach is used. Unlike 

the non-frontier approach, the frontier approach is able to decompose output growth 

not just into input growth and TFP growth; it goes a step further to decompose TFP 

growth into various efficiency components such as technical progress and gains in 

technical efficiency.  

 

The frontier TFP growth measure, on the other hand, consists of outward shifts of the 

production function resulting from technical progress as well as technical efficiency 

related to movements toward the production frontier. The frontier approach to total 

factor productivity (TFP) measurement makes it possible to distinguish between shifts 

in technology from movements towards the best-practice frontier. By estimating the 

best-practice production function (an unobservable function) this approach calculates 

technical efficiency as the distance between the frontier and the observed output. 

However, a different technique has also been used to measure technical efficiency 

under the frontier approach that differs in the assumptions imposed on the data: 

nonparametric linear programming technique or Data Envelopment Analysis (DEA).  

 

The main disadvantage of the non-frontier approach is that all deviations in the 

observed ratio of inputs / outputs of an agent from the production frontier are 

exclusively due to inefficiency assuming that all the errors in the measurement of the 

variables or random fluctuates in the luck of agents are captured as part of the 

inefficiency term. This assumption can produce upward biased estimations of the 

inefficiency. However, this is not to say that the non-frontier TFP growth measure 

would always be lower than the frontier TFP growth measure as gains in technical 

efficiency may well be negative and cause the frontier TFP growth measure to be 

lower (Mahadevan and Kalirajan, 2000). 

 

One feature shared by the frontier and non-frontier approach is that they can both be 

estimated using either the parametric or the non-parametric method. The parametric 

technique is an econometric estimation of a specific model and since it is based on the 

statistical properties of the error terms, it allows for statistical testing and hence 
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validation of the chosen model. However, the choice of the functional form is crucial 

to model the data as different model specifications can give rise to very different 

results. The non-parametric technique, on the other hand, does not impose any 

functional form on the model but has the drawback that no direct statistical tests can 

be carried out for validation. The main weakness of the first class of techniques is due 

to the fact that they are solely based on input and output data and to their deterministic 

nature, which implies that any discrepancy between actual and potential output is 

attributed to inefficiency. Any other feasible sources of technical inefficiency, i.e., 

omitted variables; unobserved measurement errors and stochastic noise are neglected, 

resulting in a possible upward bias of inefficiency scores (Førsund et al., 1980). 

 

Last, but not least, it may be helpful to broadly distinguish between the different types 

of efficiency measures. Measures of efficiency can be input-oriented or output-

oriented. When input quantities are fixed so that output varies across producers, the 

efficiency measure is output-oriented because the objective of producers is to 

maximize output. When output quantities are fixed so that inputs vary across 

producers, the efficiency measure is input-oriented because the objective of producers 

is to best allocate input quantities and minimize input usage.  

 

1.12. Concluding Remarks 

 

This chapter defines the two main approaches on which this thesis analysis is based, 

namely efficiency and productivity. More specifically, this chapter provides the 

definitions of these two terms, the main categories in which they are divided, along 

with the main distinctions between them.  Moreover, this chapter reviews the main 

methods of efficiency measurement, distinguishing between parametric and non – 

parametric approaches, as well as between frontier and non-frontier approaches. The 

selection of any particular approach is likely to be subject to both theoretical and 

empirical considerations. The emphasis here is not on selecting a superior theoretical 

approach, since different approaches provide different mathematical programming 

and econometric approaches, which address different questions, serve different 

purposes, and have different informational requirements. If the frontier has a 
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functional form, then several parametric approaches have been developed in the 

literature for obtaining measurements of efficiency. The type of parametric technique 

employed will depend on whether the frontier model is deterministic (no random error 

in the model) or stochastic (random error in the model). Data Envelopment Analysis 

(DEA) as a nonparametric approach and Stochastic Frontier Analysis (SFA) as a 

parametric framework are the most commonly used. The nonparametric method of 

Data Envelopment Analysis determines the reference technology by means of linear 

programming methods whereas the parametric method of Stochastic Frontier Analysis 

assumes a functional relationship for the production process and determines the 

reference technology based on econometric methods. These methods are broadly 

analysed in the next chapter.   

 

 

 

 



 49 

 Chapter 2 

 Productive Efficiency: Estimation Methods 

 

Abstract 

 

The empirical estimation of production functions had begun arguably with Cobb and Douglas (1928). 

However, until the 1950s, production functions were largely used as devices for studying the functional 

distribution of income between capital and labor at the macroeconomic level. Consequently, until 

1950s, efforts were made to measure efficiency by interpreting the average productivity of inputs. 

However, this method suffered from no allowance for random noise in measurement and little or no 

knowledge about the functional form of production and the values of the parameters of the underlying 

technology. In the 1950s, economists found that this method of measuring efficiency was 

unsatisfactory as it ignored other inputs used in the process of production. The historical discussion 

concerning the measurement of productivity and efficiency in the economic literature started with 

contemporaneous papers by Debreu (1951) and Koopmans (1951). Koopmans (1951) and Debreu 

(1951) made the first systematic efforts in the investigation of efficiency and its measurement. 

However, the standard efficiency measurement literature was started by Farrell (1957), built upon 

Debreu (1951) and Koopmans (1951). Farrell (1957) proposed to measure the efficiency of a 

productive unit in terms of the realized deviations from an idealized frontier isoquant. The empirical 

identification of such a benchmark is the main issue of the literature on efficiency measurement. Farrell 

(1957) extended this work in an attempt to operationalize the measurement of productivity and 

efficiency. From Farrell's work, we define the productivity of an economic agent as the scalar ratio of 

outputs to inputs used by the agent in its production process. Finally in the 1970's, with the seminal 

papers of Aigner et al. (1977) and Meeusen and van den Broeck (1977), econometricians developed a 

statistically and theoretically sound method for measuring efficiency, a method now known as 

stochastic frontiers. In this case, a stochastic frontier is defined as the locus of best performing agents 

within a data set. The other data points of the other producers are located "below" this estimated 

frontier. The relative distance measured between this best performance and the other data points is 

interpreted as inefficiency. 

 

Chapter 2 studies the alternative methods for productivity estimation which served as research base for 

the application of stochastic frontier analysis. This chapter reviews these main research approaches on 

stochastic frontier analysis and introduces the approach of distance function in order to estimate the 

differences between the actual output levels compared to the maximum potential output level. The 

analysis of distance functions was the basis of Data Envelopment Analysis, as a major approach of 

efficiency measurement, which is also analysed. Then, the chapter provides the main characteristics of 
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Deterministic and Stochastic Frontier Analysis. Finally, Chapter 2 provides a detailed analysis of the 

main approaches in estimating efficiency in frontier analysis making also an evaluation of these 

approaches – methods. This chapter analyses the deterministic and the stochastic frontier approach and 

explains the reasons for which the stochastic frontier approach is the most comprehensive analytical 

and estimation method, providing the main features which characterise this method, as well as the main 

hypotheses related. 
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2.1. Introduction 

 

The empirical estimation of production functions had begun arguably with Cobb and 

Douglas (1928). However, until the 1950s, production functions were largely used 

mainly as devices for studying the functional distribution of income between capital 

and labor at the macroeconomic level. Consequently, until 1950s, efforts were made 

to measure efficiency by interpreting the average productivity of inputs. However, 

this method suffered from no allowance for random noise in measurement and little or 

no knowledge about the functional form of production and the values of the 

parameters of the underlying technology. In the 1950s, economists found that this 

method of measuring efficiency was unsatisfactory as it ignored other inputs used in 

the process of production.  

 

The historical discussion concerning the measurement of productivity and efficiency 

in the economic literature started with contemporaneous papers by Debreu (1951) and 

Koopmans (1951). Koopmans (1951) and Debreu (1951) made the first systematic 

efforts in the investigation of efficiency and its measurement22. However, the standard 

efficiency measurement literature was started by Farrell (1957), built upon Debreu 

(1951) and Koopmans (1951).  

 

Farrell (1957) proposed to measure the efficiency of a productive unit in terms of the 

realized deviations from an idealized frontier isoquant. The empirical identification of 

such a benchmark is the main issue of the literature on efficiency measurement23. 

Farrell (1957) extended this work in an attempt to operationalize the measurement of 

productivity and efficiency. From Farrell's work, we define the productivity of an 

economic agent as the scalar ratio of outputs to inputs used by the agent in its 

production process.  

 

                                                 
22 Both only studied technical inefficiency.  

 
23 Introductions to this literature are provided by Fried, Lovell and Schmidt (1993) and Coelli, Rao and 

Battese (1998). 
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Finally in the 1970's, with the seminal papers of Aigner et al. (1977) and Meeusen and 

van den Brock (1977), econometricians developed a statistically and theoretically 

sound method for measuring efficiency, a method now known as stochastic frontiers. 

In this case, a stochastic frontier is defined as the locus of best performing agents 

within a data set. The other data points of the other producers are located "below" this 

estimated frontier. The relative distance measured between this best performance and 

the other data points is interpreted as inefficiency. 

 

2.2. Output and Input Distance functions 

 

Output Distance Functions characterize a production technology by looking at the 

maximum proportional expansion of outputs given the input vector. An input distance 

function characterises the production technology by looking at a minimal proportional 

contraction of the input vector, given an output vector. An output distance function 

considers a maximal proportional expansion of the output vector, given an input 

vector (Coelli et al, 2005).   

 

The Input Distance Function characterizes a production technology by looking at the 

maximum proportional contraction of the input vector given the output vector. An 

output distance function takes an output – expanding approach to the measurement of 

the distance from a producer to the boundary of production possibilities. It gives the 

minimum amount by which an output vector can be deflated and still remain 

producible with a given input vector (Kumbhakar and Lovell, 2000).  

 

The following figure illustrates the input and output distance functions. On the left 

side, the output distance function is presented. The production possibility set is 

bounded from above by the production possibility frontier and the y1 and y2 axis. The 

value of the output distance function of producer A is estimated by the ratio δ=0A/0B. 

In the case of producer B, the value of the output distance function is equal to one. 

The output distance function is the inverse of the factor by which the production of all 

output quantities could be increased while still remaining within the feasible 
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production possibility set of a given input level24. On the right hand side of the figure, 

the input distance function is represented. The input set is the area bounded from 

below by the frontier of L(y). The value of the input distance function for producer A, 

is δ = 0Α/0Β, while producer B, has a value of input distance function equal to one.  

 

Figure 2. 1. Output Distance function 
 

 

)](/,0|inf[),( xPtyyxDt δδδ >≡  

 

Properties:  

1. Non-increasing in y and increasing in x; Linearly homogeneous in y;  

2. If y belongs to the input set of x (i.e. y∈ Pt (x)), then Dt
0 (x, y) ≤ 1 

3. Distance is equal to unity (i.e. Dt
0 (x, y) = 1) if y belongs to the ‘frontier’ of the output set. (Coelli 

et al., 1998) 

 

Figure 2.2. Input Distance function 
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24 This factor is actually the measure of the Farrell output-oriented technical efficiency. 
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Properties: 

1. Non-increasing in x and increasing in y; Linearly homogeneous in x;  

2. If x belongs to the input set of y (i.e. x∈ Lt (y)), then Dt
i (x, y) ≥ 1; 

3. Distance is equal to unity (i.e. Dt
i (x, y) =1) if x belongs to the ‘frontier’ of the input set. (Coelli et 

al., 1998) 

 

Source: Own elaboration, based on Coelli et al. (2005), p. 48 and 50  

 

The input distance function is the inverse of the factor by which all input quantities 

could be decreased while still remaining within the feasible input set for the given 

output level25. Additionally, if technology exhibits global constant returns to scale, 

then the input distance function is the reciprocal of the output distance function. 

2.3. Data Envelopment Frontiers (DEA) 

 
As described in Coelli et al. (2005), the piece – wise – linear convex hull approach to 

frontier estimation, proposed by Farrell (1957), Shephard (1970) and Afriat (1972) 

who suggested mathematical programming methods that could achieve frontier 

estimation, but the method did not receive wide attention until the paper by Charnes, 

Cooper and Rhodes (CCR) (1978), in which the term DEA was first presented. 

Charnes, Cooper and Rhodes (1978) proposed a model that had an input orientation 

and assumed constant returns to scale (CRS). Subsequently, Färe and Logan (1983) 

and Banker, Charnes and Cooper (BCC) (1984) proposed variable returns to scale 

(VRS). The term DEA and the CCR model were first introduced in 1978 (Charnes et 

al, 1978) and were followed by a phenomenal expansion of DEA in terms of its 

theory, methodology and application over the last few decades (Førsund and 

Sarafoglou, 2003, Seiford (1996), Charnes et al (1994). 

 

As in Wang et al. (2002), DEA can be roughly defined as a nonparametric method of 

measuring the efficiency of a Decision Making Unit (DMU) with multiple inputs 

and/or multiple outputs. DEA is concerned with the efficiency of the individual unit, 

which can be defined as the Decision Making Unit (DMU) (Charnes et al, 1978) that 

                                                 
25 This factor is actually the measure of the Farrell input-oriented technical efficiency. 
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is responsible for controlling the process of production and making decisions at 

various levels including daily operation, short-term tactics and long-term strategy. 

DEA is used to measure the relative productivity of a DMU by comparing it with 

other homogeneous units transforming the same group of measurable positive inputs 

into the same types of measurable positive outputs.  

 

Apart from the DEA CCR model and BCC model are the other two DEA models that 

are widely studied and applied. The main difference between these two models is that 

the former allow variable returns-to-scale to be assumed, while the latter is limited 

solely to a constant returns-to-scale assumption. Accordingly, the production frontiers 

in these models are different. The basic information derived from the above three 

DEA models, i.e. the CCR model, the BCC model, is whether or not a DMU can 

improve its performance relative to the set of DMUs to which it is being compared. 

The different set of DMUs is likely to provide different efficiency results because of 

the possible movement of the production frontier. 

 

Charnes et al. (1978) and Banker et al. (1984) extended Farrell’s ideas by imposing 

returns to scale properties. The nonparametric approach relies on a production frontier 

defined as the geometrical locus of optimal production plans (Simar and Wilson, 

1998, 2007). The production frontier can be estimated non parametrically from a set 

of observed production units, based on different envelopment techniques. A Common 

nonparametric measure is the Data Envelopment Analysis (DEA)26. Nonparametric 

DEA shows how one can apply simulation methods, to conduct statistical inference to 

obtain more reliable and robust results.  

 

In DEA the inefficiency is defined as the distance from the frontier of a convex 

envelope of the data; therefore, due to the convexity assumption, a company might be 

compared to an unobservable and fictitious linear combination of efficient 

observations (Coelli et al., 2005). Thus, the efficiency score is the point on the frontier 

                                                 
26 All nonparametric calculations in this dissertation are presented using an input orientation assuming 

that the outputs are fixed and the inputs must be minimized to be efficient.  
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characterized by the level of inputs that should be reached to be efficient (Simar and 

Wilson, 1998, Simar and Wilson, 2007).  

 

Many studies have further developed the DEA methodology, including those by Färe, 

Grosskopf and Lovell (1985). Data Envelopment Analysis (DEA) is, in fact, a 

mathematical programming approach for the construction of production frontiers and 

the measurement of efficiency relative to the constructed frontiers. The basic idea of 

this approach consists of enveloping the data (the observed input-output 

combinations) in order to obtain an approximation of the production frontier (best-

practice frontier) and using this to identify the contribution of technological change, 

technological catch-up, and inputs accumulation to productivity growth.  

 

DEA can be used to measure efficiency when there are multiple inputs and outputs, 

but there are no generally acceptable weights for aggregating inputs and aggregating 

outputs. DEA permits the use of multiple inputs and outputs, but does not impose any 

functional form on the data, nor does it make distributional assumptions for the 

inefficiency term DEA overcomes some of the specific weaknesses of the other 

methods, such as a particular functional form for technology, particular assumptions 

on market structure, and the hypothesis that markets are perfect. DEA is usually 

handled with linear programming techniques. The analysis assumes that there is a 

frontier technology (in the same spirit as the stochastic frontier production model) that 

can be described by a piecewise linear hull that envelopes the observed outcomes. 

Some (efficient) observations will be on the frontier while other (inefficient) 

individuals will be inside. The technique produces a deterministic frontier that is 

generated by the observed data, so by construction, some individuals are efficient.  

 

On the other hand, DEA is based on a concept of efficiency very similar to the 

microeconomic one; the main difference is that the DEA production frontier is not 

determined by some specific functional form, but it is generated from the actual data 

for the evaluated producers. As a consequence, the DEA efficiency score for a 

specific productive unit is not defined by an absolute standard, but it is defined 

relative to the other units in the specific data set under consideration. This feature 

differentiates DEA from the parametric approaches, which require a specific pre-
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specified functional form of the modelled production or cost function (Charnes, 

Cooper, Lewin & Seiford 1994, Cooper, Seiford & Tone 2000, Cooper, Seiford & 

Zhu 2004). This could be a limitation in some contexts because it is possible that all 

producers in a sample may be technically inefficient to some extent when compared 

with a conceptual frontier, and even the best practice producers in a sample may still 

be some distance from being ‘fully efficient’.  

 

It should be noted, however, that DEA identifies two or more producers that represent 

the best practice of a set of entities. This means that it will always choose a couple or 

more producers as being 100 per cent technically efficient. This could be a limitation 

in some contexts because it is possible that all producers in a sample may be 

technically inefficient to some extent when compared with a conceptual frontier, and 

even the best practice producers in a sample may still be some distance from being 

‘fully efficient’. With DEA, the best practice producers are defined only relative to 

other producers in the given dataset, and do not necessarily produce output at the 

potential production frontier27.  

 

One important feature related to DEA, is slack variables. DEA method, projects the 

points of inefficient production units to the production frontiers and by doing so, it 

suggests a combination of inputs that maximize the technical efficiency of the specific 

producer.  

 

The problem of slack variables arises from the fact that a part of the production 

frontier is parallel to the axis. Because the DEA method calculates the distance of a 

producer from the production frontier supposing equiproportional decrease of all 

inputs, it is possible that a production unit may lie upon the part of the production 

frontier that is parallel to the axis. In this case, the production unit is technically 

efficient according to Farrell, but not Pareto efficient. The latter, demands that, 

keeping output level constant, there is no feasible reduction of any input without the 

increase of at least one other input.  

                                                 
27 DEA (Farrell, 1957; Charnes et al., 1978) can be seen as an attempt to overcome some of the specific 

weaknesses of the growth accounting approach: a particular functional form for technology, particular 

assumptions on market structure, and the hypothesis that markets are perfect. 
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Looking at the following figures, producer F, can decrease input x2 keeping output 

level constant: 

Figure 2.3. Input Efficiency Slacks 
 

 
 
Source: Based on Coelli et al. (2005), p. 165 
 
 

 
Figure 2.4. Output Efficiency slacks 

 

 
 
Source: Based on Coelli et al. (2005), p. 181 
 
Producers A and C, could equiproportionately decrease their inputs until they reach 

points A’ and C’ respectively. But again, it is possible to reduce inputs x1 and x2 

respectively, keeping output level constant. So, only the equiproportionate reduction 

of producer B inputs (reaching point B’) is enough to satisfy both the Farrell and 

Pareto criteria. Equiproportionate reduction of inputs in the case of producers A, C 

y2 

y1 

0 

 
 

 
A’  

B 

C F 

A 

B’ 

E 

C’ 

D 

X1  

X2 
0 

I’  
 

I A 

B 

C 

F 

D 

E 

A’  

C’ 

B’ 



 59 

and F can satisfy only the Farrell criterion. In those cases, slack variables are called 

input slacks.  

 

DEA is used to obtain efficiency measures based on the aggregated, or ‘virtual’, 

inputs and outputs. As described in McMillan and Chan (2006), let there be n 

producers using varying amounts of inputs to produce outputs. There are s inputs xi (i 

= 1, …, s) and m outputs yr (r = 1, …, m). For each producer, such as producer  j (j = 

1, …, k, …, n), the problem is to: 
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where urj is the weight assigned each unit of output r from producer j and vij is the 

weight assigned each unit of input i used by producerj. That is, solutions are sought to 

maximize the ratio of weighted output to weighted input for each producer (the ratio 

of virtual output to virtual input). By normalization, the efficiency scores range from 

zero to one. The same weights (virtual multipliers) that maximize hj for producer j are 

applied to the inputs and outputs of all producers in the solution to the problem for 

producer j. This solution process is repeated for each producer. Hence, because the 

weights can vary for each solution, the efficiency scores determined are those most 

favourable to each producer. 
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As far as the DEA characteristics are concerned, DEA can be specified as either an 

output-maximizing problem or an input-minimizing problem. Input models measure 

efficiency in terms of the potential (proportional) reduction in input use while output 

models measure efficiency in term of the potential (proportional) output increase. 

While the efficient and inefficient units do not change, the efficiency scores can differ 

between the two orientations in the variable returns to scale case28: 

 

Table 2.1.The basic DEA models 
 

Orientation Constant Returns to Scale Variable Returns to Scale 
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Source: Own elaboration 

The input based measure considers how inputs may be reduced relative to a desired 

output level. The output-based measure indicates how output could be expanded given 

the input levels. There is also a non-orienting DEA measure in which the frontier 

output and various concepts of technical and economic efficiency may be determined 

without being conditional on input or output levels being held constant.  

The variable returns to scale (VRS) approach assumes that scale inefficiencies in the 

industry are present (Banker et al., 1984 first allow for VRS). Within the VRS 

                                                 
28 McMillan and Datta (1998) comparisons of input-oriented and output-oriented DEA analyses 

suggested that the results were not sensitive to orientation.  
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assumption we can distinguish between decreasing returns to scale (DRS), increasing 

returns to scale (IRS), non-increasing returns to scale (NIRS), and non-decreasing 

returns to scale (NDRS), modifying the restrictions in the linear optimization problem 

(see Cooper et al., 2006, for a summary of assumptions). All calculations can also be 

done using an output-orientation (Simar and Wilson, 2007)29.  

 

Before assessing each industry’s efficiency, DEA compares the relative efficiency 

among industries. Since efficiency evaluation in DEA is based on the concept of 

Pareto optima, there may be more than one industry judged as efficient. In DEA, 

efficiency is computed on the basis of the envelope or efficient frontier, formed by all 

values near the original point 0: 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

                                                 
29 In empirical application it is necessary to investigate the statistical properties of the DEA estimators. 

First it can be shown that both are biased by construction (Simar and Wilson, 2007). Considering the 

consistency of the estimators we note that in the nonparametric framework it is often difficult to prove 

convergence and derive the rate of convergence (Simar and Wilson, 2002, 2007). Korostelev et al. 

(1995) provide the first systematic analysis of the convergence properties of DEA estimators for one 

input and multiple outputs. They find that incorporating the convexity constraint improves the rate of 

convergence if the true set is convex; otherwise the DEA-VRS estimator is inconsistent. They also find 

that the rates of convergence depend heavily on the dimensionality of the problem (the number of 

outputs in his analysis). It can be shown that if the number of outputs increases, a much larger sample 

size is required to obtain precise results; otherwise the imprecision arises in large bias, large variances 

and large confidence intervals for the individual efficiency scores (Simar and Wilson, 2007).  
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Figure 2.5. DEA efficiency values 

 

Source: Chen (2011) 

 

DEA involves the use of linear programming methods to construct a non – parametric 

piece – wise frontier over the data, so as to be able to calculate efficiencies relative to 

this surface. The two principal model options are:  

 

1. Standard CRS and VRS DEA model which involve the calculation of technical 

and scale efficiencies (where applicable) (Färe et al., 1994).  

2. Panel data DEA model which refers to calculating indices of TFP change: 

technological change, technical efficiency change, and scale efficiency change 

(Färe, Grosskopf, Norris and Zhang, 1994).  

 

DEA is based on either constant returns to scale (CRS), also called CCR for Charnes, 

Cooper, and Rhodes (1978), or variable returns to scale (VRS), also called BCC for 

Banker, Charnes, and Cooper (1984). Charnes, Cooper and Rhodes (1978) proposed a 

model which had an input orientation and assumed CRS. Banker, Charnes and Cooper 

proposed a VRS model. In each case a linear programming problem is solved to 

envelop the data in a convex area bounded by straight lines. Under CRS, only as 

many DMUs as outputs can be efficient. Under VRS, many DMUs can be efficient. 

Under VRS, scale efficiency refers to operating at the scale of operation, or linear sum 

of outputs, which maximizes the ratio the linear sum of outputs to the linear sum of 

inputs. An economically efficient business is both technically efficient and scale 
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efficient. Under CRS, output-oriented technical efficiency and input-oriented 

technical efficiency are the same, but under VRS, they are different, because the 

efficient frontier is not just one line (or hyperplane) emanating from the origin.  

 
Figure 2.6. Output – oriented technical and scale efficiency 

 
Notes:  
 
CRS: Constant returns to scale 
NIRS: Nonincreasing returns to scale 
VRS: Variable returns to scale 
SE: Scale efficiency 
 
Source: SpringerImages (2011) 

 

The above figure presents hypothetical one-input one-output production processes 

with three different technologies: Constant returns to scale (CRS), Variable returns to 

scale (VRS) and Nonincreasing returns to scale (NIRS). The vertical distance from an 

observation (either (xi ,yi) or (xj ,yj) to the CRS/VRS/NIRS best-practice frontier 

stands for output-oriented technical efficiency under CRS/VRS/NIRS assumptions, 

respectively. Scale efficiency in DEA is calculated as in Banker et al. (1984): 
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sum of inputs. The set of weights for a DMU is computed in DEA with the objective 

to give the highest possible relative efficiency score for the DMU, while keeping the 

efficiency scores of other DMUs in the range of 0 to 1 under the same set of weights. 

Efficient DMUs have the score of 1; the other DMUs which score less than 1 are 

considered as inefficient. Graphically, efficiency is obtained from the ratio between 

the distance from the original point to the relative point of the envelope and the 

distance from the original point to the observation point (optimal value=1).  

 

Coelli et al. (2005) declare that input and output oriented DEA models estimate 

exactly the same frontier and identify the same set of producers as being efficient. It is 

only the efficiency measures associated with the inefficient producers that many differ 

between the two methods. In applied research, the choice of input or output 

orientation has both theoretical and practical implications. Generally, input-orientated 

DEA models are commonly used. This is because many producers have particular 

orders to fill, so it seems that the input quantities are of main importance. However, a 

producer’s objective may be the maximization of output subject to a fixed level of 

inputs. In such cases, output-orientated DEA models would be more appropriate. 

Essentially, one should select the orientation according to which quantities (inputs or 

outputs) the managers have most control over. An important point to mention is that 

the output- and input-orientated models will estimate exactly the same frontier and 

therefore by definition, will identify the same set of producers as efficient. It is only 

the efficiency measures associated with the inefficient producers that may differ 

between those two methods.  

2.4. Deterministic Production Frontiers  

 

In deterministic frontiers analysis, it is assumed that each of N producers faces the 

same production technology represented by the conversion of a vector X of inputs into 

a single output y. For simplicity, and following Aigner and Chu (1968), assume that 

efficient production can be represented by a Cobb–Douglas production function with 

two inputs: 
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21
21
ββ xAxy =  (2.3) 

                                                                                                              

This production function, showing the maximum output from given input usage, will 

serve as the basis for efficiency measurement. Allowing inefficiency, production 

function becomes:  

 

uxAxy 21
21
ββ=  (2.4) 

 

where 1≤u represents inefficiency. Models that seek to estimate u are considered 

deterministic because measurement error and other statistical noise are assumed away. 

 

In addition, it is generally regarded as a disadvantage that the distribution of the 

technical inefficiency has to be specified (i.e., half-normal, normal, exponential, log-

normal, etc.). Ideally, this would be based on knowledge of the economic forces that 

generate such inefficiency, although in practice this may not be feasible.  

 

One method for estimating a production frontier is to envelop the data points using a 

function. Aigner and Chu (1968) considered a Cobb-Douglas production frontier at 

the form30:  

 
Iiuxy iii ,...2,1,ln =−= β  (2.5) 

 
where yi  is the output of the ith producer, xi is a (kx1) vector containing the 

logarithms of inputs, β is a vector of unknown parameters, and ui is a non – negative 

random variable associated with technical inefficiency. Technical efficiency of the i-

th observational unit is the ratio of observed output to maximum feasible output: 

 

( )β,i

i
i xf

yTE =  (2.6) 

 

                                                 
30 Deterministic frontiers fall into two categories -- either non-parametric (e.g., Farrell 1957) or 

parametric, and in the latter case, either non-statistical (e.g., Aigner and Chu 1968, and Timmer 1970) 

or statistical (e.g., Afriat 1972, and Richmond 1974).  
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If the observed output yi reaches its maximum obtainable value f(xi, β) then TEi = 1. 

That is, the producer is operating at the frontier of production and is 100% efficient. 

Values of TEi < 1 measure the shortfall of observed output from maximum feasible 

output. Note that this model is deterministic (contains no statistical noise). Letting: 

 

{ } 0,exp ≥−= iii uuTE                                                                                                                           (2.7) 

 
will ensure that 0 ≤ TEi ≤ 1 and that observed output yi for the i-th producer will lie 

below the frontier f(xi, β) that is yi ≤ f(xi, β).  

 

Equation Iiuxy iii ,...2,1,ln =−= β  can then be rewritten as: 

 
{ } 0,exp)( ≥−= iiii uuxfy β  (2.8) 

 
where ui represents the shortfall of output from the frontier for each observational 

unit. If productive technology takes a log-linear Cobb- Douglas form. 

 

This production frontier is deterministic insofar as yi  is bounded from above by the 

non –stochastic (deterministic) quantity exp(xi β). Therefore, any shortfall in output yi 

from maximum feasible output f(xi, βi) is solely attributable to the inefficiency of the 

producer. The goal is to estimate the unknown parameters of the model31.  

 

Nevertheless, in this case, no account is taken of any measurement errors and any 

statistical noise (all deviations from the frontier are assumed to be the result of 

technical inefficiency. Introducing a random variable representing statistical noise, the 

resulting frontier is a stochastic production frontier.  

 
In a deterministic production frontier model, output is bounded from above by a 

deterministic production function. Any deviation from the best performance is 

imputed to inefficiency, which means random noise is not accounted for.  

 

                                                 
31 Aigner and Chu (1968) used linear programming in estimating the unknown parameters of the 

model. 
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However, the possible influence of measurement errors and other statistical noise 

upon the shape and positioning of the estimated frontier is not accounted for. More 

specifically, deterministic models assume that any deviation from the frontier is solely 

due to inefficiency, since they do not accommodate for stochastic shocks to 

production. 

2.5. Stochastic Production Frontiers 

Stochastic production frontier may be seen as an answer to the deterministic 

parametric frontier models, where deviations of a producer from the theoretical 

maximum are allocated exclusively to inefficiency. The type of efficiency that can be 

measured using a production frontier is technical efficiency. At this stage, the main 

advantage of the stochastic frontier is that it can decompose the deviation from the 

frontier into stochastic noise and technical inefficiency in production. The maximum 

output which producers can obtain is determined by two parts: the production function 

as well as random external factors. Thus, deviations from the production frontier 

might not be completely under the control of producer (Greene, 2007a).  

The following figure presents the inputs and outputs of two producers A and B. The 

deterministic component of the frontier model has been drawn to reflect the existence 

of diminishing returns to scale. Values to the input are measured along the horizontal 

axis and outputs are measured on the vertical axis. Producer A uses the input level xA 

to produce the output qA, while Producer B uses the input level xB to produce the 

output qB. if there where no inefficiency effects (if uA = 0 and uB = 0), then  the so-

called frontier outputs for producers A and B would be:  

 
)lnexp(* 10 AAA vxq ++= ββ  (2.9) 

                   

 
)lnexp(* 10 BBB vxq ++= ββ  (2.10) 
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Figure 2.7. The stochastic production frontier 
 

Source: Coelli et al (2005), p. 244. 

 

It is clear that the frontier output for producer A lies above the deterministic part of 

the production frontier only because the noise effect is positive (vA > 0), while the 

frontier output for producer B lies below the deterministic part of the frontier because 

the noise effect is negative (vB < 0). It can also been seen that the observed output of 

producer A lies below the deterministic part of the frontier because the sum of the 

noise and inefficiency effects is negative (vA – uA < 0)32.  

As it has already reviewed, the original model specification involves a production 

function with an error term incorporating two components, one to account for random 

effects (vi) and one to capture the unobservable inefficiency factor (ui)
33. This model 

can also be expressed in the following form:  

                                                 
32 These features of the frontier model generalise to the case of several inputs. Specifically, unobserved 

frontier outputs tend to be evenly distributed above and below the deterministic part of the frontier. 

However, observed outputs tend to lie below the deterministic part of the frontier. Indeed, they can 

only lie above the deterministic part of the frontier when the noise effect is positive and larger than the 

inefficiency effect (q* i > exp(xi’β) iff εi = vi – ui >0). Much of stochastic frontier analysis is directed 

towards the prediction of the inefficiency effects. 
33 In this model specification, there are two ways to estimate technical efficiency (Kumbhakar and 

Lovell, 2000). The first is to hypothesize that vi=0 and estimate a non-stochastic parametric production 

Inefficiency 
effect 

Noise 

Deterministic 
frontier 

Noise 

Inefficiency 
effect 

q*A = 
exp(β0 +β1lnxA +vA) 

q*B = 
exp(β0 +β1lnxb +vB) 

qB = 
exp(β0 +β1lnxB+vB -uB) 

qA = 
exp(β0 +β1lnxA+vA –uA) 

y

X
 X

 
X
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)( ittiitit UVxY −+= β                                                                                                                            (2.11) 

 
where:  

 

� i=1,….,  N,  t = 1, …., T                                                 

� Y it is (the logarithm of) the production of the ith producer in he tth time period 

� X it is a k×1 vector of input quantities of the ith producer in the tth period 

� β is a vector of unknown parameters 

� V it are the random variables which are assumed to be iid. ),0( 2
vσΝ  and 

independent of the ( )( )( )TtUU iit −−= ηexp       

� Ui are non – negative random variables which are assumed to account for 

technical inefficiency in production, and assumed to be iid. as truncations at zero 

of the ),( 2
uσµΝ . 

The prediction of the technical efficiencies is based on its conditional expectation, 

given the observable value of (Vit-Uit), as in Jondrow et al. (1982) and Battese and 

Coelli (1988). Technical efficiency index is equal to one if the producer has an 

inefficiency effect equal to zero and it is less than one otherwise. The errors ui are 

assumed to be negative and are due to truncation of the normal distribution with zero 

mean and positive variance 2uσ  represents a producer’s technical efficiency of 

production. Errors vi are assumed to have normal distribution with zero mean and 

positive variance 2
vσ , representing measurement error associated with uncontrollable 

factors related to the production process. Thus an industry that operates on the frontier 

is said to produce its potential or maximum output by following the best practice 

techniques, given the technology. In the stochastic frontier model, the error term, 

which is composed of two parts, vi and ui, allows the statistical noise to be 

distinguished from inefficiently. The random error vi is associated with measurement 

errors, other statistical noise and random factors (weather, industrial actions, etc.) not 

                                                                                                                                            
function through maximum likelihood estimation method. The second is to allow that vi≠0 and estimate 

a stochastic production function, using the maximum likelihood estimation method.        
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under the control of industry, whereas, ui captures technical inefficiency and is 

associated with industry – specific factors.  

 

Statistical noise arises from the unintended omission of relevant variables from the 

vector xi, as well as from measurement errors and approximation errors associated 

with the choice of functional form. The model is called stochastic frontier production 

function because the output values are bounded from above by the stochastic 

(random) variable exp (xi β + vi). The random error vi can be positive or negative and 

so the stochastic frontier outputs vary about the deterministic part of the model, exp(xi 

β). The component (v) is a symmetric normally distributed error term that represents 

factors that cannot be controlled by production units, measurement errors, and left-out 

explanatory variables. On the other hand, the component (u) is a one-sided non-

negative error term representing the stochastic shortfall of producer i’s output from 

the production frontier due to technical inefficiency. In the stochastic frontier model, 

the error term, composed of vi and ui, allows the statistical noise to be distinguished 

from inefficiency. The random error vi is associated with measurement errors, other 

statistical noise and random factors (whither, industrial actions, etc.) not under the 

control of industry, whereas, ui captures technical inefficiency and is associated with 

industry-specific factors.  

 

In this context, technical efficiency reveals the maximum amount by which output can 

be increased using the same level of inputs and technological conditions. The most 

common output – oriented measure of technical efficiency is the ratio of observed 

output to the corresponding stochastic frontier output: 
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where β are the production function parameters and TE is technical efficiency 

( 1),(0 ≤< ii xyTE ).  Technical efficiency is defined as: 
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and is measured using the conditional expectation of: 

 
)exp( iu−  (2.14) 

 
given the composed error term.  

 

The parameter ui>0 is a measure of technical inefficiency, thus, 

iii TETEu −≈−= 1ln , where iu
i eTE −= . The Jondrow et al. (1982) estimator of 

E[u|v-u] is the standard estimator. This is:  

 

[ ] 








Φ
+





+

=
)(

)(

1
|

2
i

i
iii z

z
zuE

φ
λ

σλ
ε  (2.15) 

 

where: 
  

σ
λε i

iz
−

=  (2.16) 

 
and  
 

uv±=ε  (2.17) 

 
 

This is an indirect estimator of u, as it is not possible to estimate ui directly from any 

observed sample information.  

 

This measure of technical efficiency takes a value between zero and one. It measures 

the output of the ith producer relative to the output that could be produced by a fully – 

efficient producer using the same input vector. The first step in predicting the 

technical efficiency TEi, is to estimate the parameters of the stochastic production 

frontier model.   

 

Estimation of u
i 
is the central focus of the analysis. With the model estimated in 

logarithms, u
i 
would correspond to 1-TE

i
. Individual specific efficiency is typically 
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estimated with )ˆexp( iu− . Alternatively, iû  provides an estimate of proportional 

inefficiency.  

 

Inefficiency, as a measure of the magnitude of sub-optimal performance, is 

represented by the asymmetric error term in the stochastic frontier model. The model 

assumes that each vi is distributed independently of each ui and that both errors are 

uncorrelated with the explanatory variables in xi. In addition, it is assumed that:  

 

� E(vi) = 0 (zero mean) 

� E(vi
2) = σn

2 (homoskedastic) 

� E(vivj) = 0 , for all i ≠ j (uncorrelated) 

� E(ui
2) = constant 

� E(uiuj) = 0, for all i ≠ j (uncorrelated) 

 

A large number of variants of the stochastic frontier model with regard to the 

distributional specifications of the inefficiency component ui have been proposed: the 

truncated-normal (Stevenson, 1980), the exponential and the gamma (Greene, 1990). 

An extensive survey of the different models appears in Kumbhakar and Lovell (2000) 

who also provide the likelihood functions for estimation purposes. The main purpose 

of the stochastic frontiers is the analysis of technical inefficiency. It is an essential 

result that the inefficiency component is observed indirectly (Greene, 2007a) since the 

data and estimates only deliver estimates of the combined error term i = vi − ui. 

Jondrow et al. (1982) establishes a conditional mean estimator to disentangle the 

inefficiency component from the combined error term, which is largely used to 

determine the (in) efficiency levels (Kim and Schmidt, 2000). 

2.6. Estimating Efficiency  

 

The stochastic frontier model postulates that the error term εi is made up of two 

independent components εi = vi - ui, where ui measures technical inefficiency in the 

sense that it measures the shortfall of output yi from its maximal possible value. 

However, when a model of this form is estimated, one readily obtains residuals 
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( )βε ˆˆ −−= iii xgy , which may be regarded as estimates of the error terms εi 

(Jondrow et al., 1982). The average technical inefficiency (the mean of the 

distribution of the ui) is easily calculated. Average technical inefficiency can be 

estimated by the average of theiε̂ . But it is also clearly desirable to be able to estimate 

the technical inefficiency ui for each observation. Indeed this was Farrell’s (1957) 

original motivation for introducing production frontiers and the ability to compare 

levels of efficiency across observations remains the most compelling reason for 

estimating frontiers. Intuitively, this should be possible because εi = vi - ui can be 

estimated and it obviously contains information on ui. However, Jondrow et al. (1982) 

proceeded by considering the conditional distribution of ui given εi . In other words, 

E[u|ε] is the mean productive efficiency. Under each of the assumed possible 

distributional forms for the inefficiency term in a model, this mean that this 

distribution contains whatever information εi yields about ui. This section describes 

the stochastic frontier production functions of Battese and Coelli (1992, 1995) and 

notes the cases of these formulations which can be estimated (and tested for).  

2.6.1. The Battese and Coelli (1992) specification 

Even though, stochastic frontier approach originated with the pioneer papers by 

Meeusen and van den Broeck (1977) and Aigner, Lovell and Schmidt (1977), the 

stochastic frontier production model methodology was developed by Battese and 

Coelli (1992). They defined a stochastic frontier production function model for panel 

data, in which technical efficiencies of producers may vary over time, with a simple 

exponential specification of time – varying producer effects34. The model may be 

expressed as: 

                                                 
34 Alternative time-varying models for producer effects have been proposed by Cornwell, Schmidt and 

Sickles (1990) and Kumbhakar (1990). Cornwell, Schmidt and Sickles (1990) assumed that the 

producer effects were a quadratic function of time, in which the coefficients varied over producers 

according to the specifications of a multivariate distribution. Kumbhakar (1990) assumed that the non-

negative producer effects, Uit, were the product of a deterministic function of time, γ(t) and non-

negative time-invariant producer effects, Ui. Löthgren (1997) extend the stochastic frontier analysis by 

introducing a stochastic ray frontier model to accommodate the case of multiple outputs.  
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)( ittiitit UVxY −+= β  (2.18) 

 
     

)exp();( ittiitit UVxfY −= β  (2.19) 

 
and  

 

iiitit UTtUU ]}({exp[ −−== ηη  (2.20) 

 

where:  

 

� i=1, …., N, t = 1, …., T  

� Y it is (the logarithm of) the production of the ith producer in he tth time period 

� X it is a k×1 vector of input quantities of the ith producer in the tth period 

� β is a vector of unknown parameters, where βk stands for the output elasticity with 

respect to the k-th input 

� V it are the random variables which are assumed to be iid N(0, σ v
2 ), and 

distributed independently of the Uit which are non – negative random variables, 

accounting for technical inefficiency in production and has the specification:  

( )( )( )TtUU iit −−= ηexp  

� Ui is a non-negative random variable which is assumed to account for technical 

inefficiency in production and are assumed to be iid as truncations at zero of the 

N(µ,σµ
2) distribution  

� η is a parameter to be estimated and  

� the panel of data need not be complete (i.e. unbalanced panel data). 



 75 

The model utilised the parameterization of Battese and Corra (1977) who replaced 

2
Uσ  and 2

Vσ  with 222
UV σσσ +=  and ( )222 / UVU σσσγ += . This is done with the 

calculation of the maximum likelihood estimates.  The parameter, γ, must lie between 

0 and 135.   

The predictions of individual producer technical efficiencies from the estimated 

stochastic production frontiers are defined as: 

 
TEit= exp(-Uit)= E[exp(-Uit)Ei] = 
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[ ] 
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where Ei represents the (Ti x 1) vector of Eit ‘s associated with the time periods 

observed for the i th producer, where Eit = Vit - Uit.   

 

If the producer effects are time invariant, then the technical efficiency is obtained by 

replacing ηit = 1 and η = 0. This model is such that the non-negative producer effects, 

Uit, decrease, remain constant or increase as t increases, if η > 0, η = 0 or η < 0, 

respectively36. If η >0, the inefficiency term, Uit, is always decreasing with time, 

whereas η <0 implies that Uit is always increasing with time. If η = 0, then the level of 

inefficiency remain constant. That could be one of the main problems when using this 

model, technical efficiency is forced to be a monotonous function of time37.  In order 

                                                 
35 The log-likelihood function of this model is presented in the appendix in Battese and Coelli (1992). 

 
36 The model assumed for the producer effects, Ui, was originally proposed by Stevenson (1980) and is 

a generalization of the half-normal distribution which has been frequently applied in empirical studies. 

 
37 As described in Coelli (1995), the imposition of one or more restrictions upon this model formulation 

can provide a number of the special cases of this particular model which have appeared in the 

literature. Setting η to be zero provides the time – invariant model set out in Battese, Coelli and Colby 

(1989). Furthermore, restricting the formulation to a full (balanced) panel of data gives the production 

function assumed in Batesse and Coelli (1988). The additional restriction of µ equal to zero reduces the 

model to model One in Pitt and Lee (1981). 
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to permit greater flexibility in the nature of technical efficiency, a two-parameter 

specification would be required. An alternative two-parameter specification, which is 

being investigated, is defined by: 

 
2

21 )()(1 TtTtit −+−+= ηηη  (2.22) 

 
where η1 and η2 are unknown parameters. This model permits producer effects to be 

convex or concave, but the time-invariant model is the special case in which η1 = η2 = 

0. In the Battese and Coelli (1992) model, the last period (t=Ti) for producer i 

contains the base level of inefficiency for that producer (Uit = Ui) and the efficiencies 

are measured relative to a frontier that may be regressing over time.  

2.6.2. The Battese and Coelli (1995) specification 

Battese and Coelli (1995) propose a model which is equivalent to the Kumbhakar, 

Ghosh and McGukin (1991) specification, with the exceptions that allocative 

efficiency is imposed, the first-order profit maximizing conditions removed, and panel 

data is permitted.  The Battese and Coelli (1995) approach models both the stochastic 

and the technical inefficiency effects in the frontier, in terms of observable variables, 

and estimating all parameters by the method of maximum likelihood, in a one-step 

analysis38.  

 

                                                                                                                                            
One may add a forth restriction of T = 1 to return to the original cross sectional, half - normal 

formulation of Aigner, Lovell and Schmidt (1977). Obviously, a large number of permutations exist. 

For example, if all these restrictions excepting µ = 0 are imposed, the model suggested by Stevenson 

(1980) results. Furthermore, if the cost function option is selected, we can estimate the model 

specification in Schmidt and Lovell (1979) specification, which assumed allocative efficiency.  

 

These latter two specifications are the cost function analogues of the production functions in Battese 

and Coelli (1988) and Aigner, Lovell and Schmidt (1977), respectively.   

 
38 Battese and Coelli (1995) suggested that under the assumption of truncated normal one-sided error 

term, the mean of the truncated normal distribution could be expressed as a function of certain 

covariates, a closed form likelihood function can be derived, and the method of maximum likelihood 

may be used to obtain parameter estimates, and provide inefficiency measures. 
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According to Battese and Coelli (1995), the explanatory variables can include 

intercept terms or any variables in both the frontier and the model for the inefficiency 

effects, provided the inefficiency effects are stochastic. Battese and Coelli (1995) also 

suggested that under the assumption of truncated normal one-sided error term, the 

mean of the truncated normal distribution could be expressed as a function of certain 

covariates, a closed form likelihood function can be derived, and the method of 

maximum likelihood may be used to obtain parameter estimates, and provide 

inefficiency measures39. The Battese and Coelli (1995) model also overcomes the 

contradiction of the ‘two – step’ models and allows the simultaneous estimation of the 

parameters of the stochastic frontier and the inefficiency model (Puig-Junoy, 2001)40. 

 

The original Battese and Coelli’s (1995) specification involved a production function 

with an error term incorporating two components, one to account for random effects 

(vi) and one to capture the unobservable inefficiency factor (ui).  

The model consists of two equations, one to represent the production frontier and a 

second to measure technical inefficiency: 

 
)exp( ittiitit UVxY −+= β  (2.23) 

 
and  
 
 (2.24) 

 

                                                 
39 As in Movshuk (2004), while early stochastic frontier models were devised form cross – sectional 

data, Battese and Coelli (1995) model is formulated for panel data, which may also be unbalanced. The 

model not only estimates inefficiency levels of particular industries, but also explains their inefficiency 

in terms of potentially important explanatory variables, decomposing TFP growth into two 

components: technological growth: a shift of production possibility frontier set by best – practice 

industries, and inefficiency changes: deviations of actual output level form the production possibility 

frontier.  

 
40 The two-stage analysis of explaining levels of technical efficiency (or inefficiency) was criticized by 

Battese and Coelli (1995) as being contradictory, in the assumptions made in the separate stages of the 

analysis. 
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where: 

 

� i =1, …., N, t = 1, …., T  

� Yit is (the logarithm of) the production of the i th producer in the tth time period.  

� xit is a k×1 vector of input quantities of the i th producer in the tth period 

� β is a vector of unknown parameters 

� Vit are random variables which are assumed to be iid. N(0, σ V
2 ) and independent 

of the Ui which are non – negative random variables which are assumed to account 

for technical inefficiency in production, and assumed to be iid. as truncations at 

zero of the N(µ, σ U
2 ) distribution δtit zim =  where: 

� zit is a p×1 vector of variables which may influence the efficiency of a producer, 

and  

� δ is a 1×p vector of parameters to be estimated.  

 

The parameterisation used in this model form is the one by Battese and Corra (1977) 

who replaced 2
Uσ  and 2

Vσ  with 222
UV σσσ +=  and ( )222 / UVU σσσγ += .  

 

In the first equation, Yit represents output of the i-th producer at time t. Xijt is a vector 

of productive inputs and indicator variables for the i-th producer at time t.  

Following Battese and Coelli (1995), the Uits are assumed non-negative random 

variables that represent the stochastic shortfall of outputs from the most efficient 

production. It is assumed that Uit is defined by truncation of the normal distribution 

with mean: 

 

∑+=
=

J

j
jitjit Z

1
0 δδµ  (2.25) 

 

and variance, 2σ , where Zjit is value of the j-th explanatory variable associated with 

the technical inefficiency effect of country i in year t; and 0δ and jδ  are unknown 

parameters to be estimated. 
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The output-based measure of technical efficiency may be estimated as41: 

 

)exp()exp(
)exp(),(

ititit
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 (2.26) 

 

To obtain an observation – specific estimate of technical inefficiency (u), we use the 

Jondrow et al. (1982) result; that is, estimate u from ( )uvuEu −= |ˆ  in which ( )uv−  

is replaced by the residuals of the production function. Because estimation procedures 

yield merely the residuals ε rather than the inefficiency term u, this term in the model 

must be observed indirectly (Greene, 1993, Cullinane and Song, 2003). Jondrow et al. 

(1982) suggest the conditional expectation of uit, conditioned on the realized value of 

the error term εit = (vit-uit) as an estimator of uit and, in other words, E[uit|εit] is the 

conditional mean productive inefficiency for the ith industry at any time t. Measures 

of technical efficiency (TEi) for each producer can be calculated as42:  

 
( )[ ]iii uETE ε|exp=  (2.27) 

 
so that 
 

10 ≤≤ iTE  (2.28) 

Here, Zit is a vector of demographic and socioeconomic characteristics that might be 

correlated with inefficiency and which might vary over time. The inefficiency model's 

                                                 
41 Jondrow et al. (1982) provided an initial solution by deriving the conditional distribution of [-u i| (vi – 

ui)]  which contains all the information (vi – ui) contains about  ui. This enabled to derive the expected 

value of this conditional distribution, from which they proposed to estimate the technical efficiency of 

each producer: 
( )[ ]{ }{ } 1|ˆexp),(ˆ 1

0 ≥−−= −
iiiii uvuEyxET

, which is a function of the MLE 

parameter estimates. Later, Batesse and Coelli (1988) proposed to estimate the technical efficiency of 

each producer from: 
( ){ } 1]|}ˆ[exp{),(ˆ 1

0 ≥−−= −
iiiii uvuEyxET

, which is slightly different 

function of the same MLE parameter estimates.  

 
42 The Batesse and Coelli  model (1992, 1995) is modelling the time varying inefficiency in which time 

trend is specified to inefficiency term written as u(i,t)=exp(eta(t-T)| u(i)|.  
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random component, w, is not identically distributed nor is it required to be non-

negative (Battese and Coelli, 1995) 43, 44.   

 

A crucial issue concerning the model being estimated is what comprises the vector z. 

The results obtained suggest that efficiency levels in different industries were not 

always the result of homogeneous influences. Factors that influence efficiency include 

scale effects, foreign – ownership, plant age, the proportion of workers in non – 

manual occupations, capital intensity and population density. The emphasis is on 

modelling inter-industry differences in (relative) efficiency. Typically, variables are 

included to reflect competitive factors in the industry such as market share and 

profitability (Caves, 1990, Hay and Liu, 1997), investment in new technology, 

industry dynamics and product differentiation, as well as the importance of scale 

economics (Harris, 1993). The distribution in efficiency across time is considered, as 

is the question of whether efficiency levels were converging over time.  

Battese and Coelli (1995) model has become popular thanks to its computational 

simplicity as well as its ability to examine the effects of various producer-specific 

variables on technical efficiency in an econometrically consistent manner, as opposed 

to a traditional two-step procedure, which is inconsistent with the assumption of 

independently and identically distributed technical inefficiency effects in the 

stochastic frontier.  

                                                 
43 As referred to Coelli (1996), this model specification also encompasses a number of other model 

specifications as special cases. If we set T = 1 and zit contains the value one and no other variables (i.e. 

only a constant term), then the model reduces to the truncated normal specification in Stevenson 

(1980), where δ0 (the only element in δ) will have the same interpretation as the µ parameter in 

Stevenson (1980). It should be noted, however, that the two above mentioned models are not special 

case one to each other. Thus these two model specifications are non – nested and hence no set of 

restrictions can be defined to permit a test of one specification versus the other.   

 
44 This model specification also encompasses a number of other model specifications as special cases.  

Particularly, the model of Stevenson (1980) is a particular case of the Battese and Coelli (1995) model 

that can be obtained for the cases in which T is equal to 1 (for cross-sectional data). 
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The main advantage of this technique over the two-stage technique is that it 

incorporates producer specific factors in the estimation of the production frontier 

because these factors may have a direct impact on efficiency.  

2.6.3. Time invariant versus time varying efficiency 

Early panel data models were based on the assumption of time – invariant efficiency. 

Eventually this assumption was relaxed (Cornwell, Schmidt, Sickles (1990), 

Kumbhakar (1991) and Battese and Coelli (1992)). If efficiency varies across 

producers or through time, it is natural to seek determinants of efficiency variation, in 

order to estimate stochastic frontiers and predict producer-level efficiencies using 

these estimated functions, and then regress the predicted efficiencies upon producer -

specific variables (such as managerial experience, ownership characteristics, etc) in an 

attempt to identify some of the reasons for differences in predicted efficiencies 

between producers. Studies adopted a two – stage approach, in which efficiencies are 

estimated in the first stage and estimated efficiencies are regressed against a vector of 

explanatory variables in a second stage.  

Kumbhakar et al (1991), Reifschneider and Stevenson (1991), Huang and Liu (1994) 

and Battese and Coelli (1995) have adopted a single-stage approach in which 

explanatory variables are incorporated directly into the inefficiency error component. 

In this approach, either the mean or the variance of the inefficiency error component 

is hypothesised to be a function of the explanatory variables.  

 

The most early panel data models related to efficiency measurement were based on 

the assumption of time – invariant efficiency (Pitt and Lee, 1981; Schmidt and 

Sickles, 1984; Kumbhakar, 1987, 1988; Battese and Coelli, 1988). These papers adopt 

a two-stage approach, in which the first stage involves the specification and 

estimation of the stochastic frontier production function and the prediction of 

technical inefficiency effects, under the assumption that these inefficiency effects are 

identically distributed. The second stage involves the specification of a regression 

model for the predicted technical inefficiency effects, which contradicts the 

assumption of identically distributed inefficiency effects in the stochastic frontier. 

However, the two-stage estimation procedure is unlikely to provide estimates which 
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are as efficient as those that could be obtained using a single-stage estimation 

procedure (Coelli, 1996). A problem with the two-stage procedure is the 

inconsistency in the assumptions about the distribution of the inefficiencies. In the 

first stage, the inefficiencies are assumed to be independently and identically 

distributed (iid) in order to estimate their values. However, in the second stage, the 

estimated inefficiencies are assumed to be a function of a number of producer specific 

factors, and hence are not identically distributed unless all the coefficients of the 

factors are simultaneously equal to zero (Coelli et al., 1998). 

 

Several SFA models for panel data have been proposed in the literature. Early models 

define the random or fixed effect as the inefficiency component, meaning that the 

models deduce the efficiency estimates from the individual producer-specific effects. 

Schmidt and Sickles (1984) propose a fixed effects SFA model that does not require 

the assumption that the producer-specific effects are uncorrelated with the input 

variables. If the assumption of independence is fulfilled, then a random effects SFA 

model is preferred for precision and efficiency of the estimates. Pitt and Lee (1981) 

established the model framework for the random effects SFA widely applied in the 

literature. In contrast to the fixed effects SFA model it allows time invariant producer-

specific attributes entering in the econometric model. A fundamental question 

concerns the modeling of inefficiency over time. In the first models the individual 

inefficiency effects were modeled time-invariant. Extensions have been proposed by 

Lee and Schmidt (1993), Battese and Coelli (1992) and Kumbhakar (1990) that 

incorporate the variation of efficiency over time as a deterministic function that is 

similar across producers. However, the random component is still time-invariant, 

which remains a substantive restriction. 

 

As broadly described in Wang and Schmidt (2002), it is widely agreed that the first 

step of the two-step procedure is biased if x and z are correlated (Kumbhakar and 

Lovell, 2000, Caudill and Ford, 1993).  

 

Basically, the first-step regression that ignores z suffers from an omitted variables 

problem, since E(y | x, z) depends on z but the first-step regression does not allow for 
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this. Standard econometric theory for least squares regression says that the estimate of 

β will be biased by the omission of z, if z affects y and if z and x are correlated45.  

 

We now proceed to calculate the usual estimate of u, namely u* = E(u | ε = e), as in 

Jondrow et al. (1982) or Battese and Coelli (1988). This is a “shrinkage” estimator, 

where shrinkage is toward the mean, and this is intuitively reasonable because large 

positive ε will on average contain positive noise v, and should be shrunk downward 

toward the mean, while large (in absolute value) negative ε on average contain 

negative noise v, and should be shrunk upward toward the mean. The precise nature of 

the shrinkage depends on the distribution of u, and more importantly on the relative 

variances of v and u.  

 

Once again this is a shrinkage estimator, and ignoring the dependence of 2uσ  on z 

leads to estimates that are under dispersed. So a second-step regression of some 

function of r*  on z will suffer from the same downward bias as was discussed in the 

previous paragraph. This bias in the second-step regression, due to under dispersion in 

the estimates of u that do not take into account the effect of z on u, does not seem to 

be systematically discussed in the literature (Kumbhakar and Lovell, 2000)46. 

 

Two-step procedures to estimate the determinants of technical inefficiency suffer 

from a fundamental contradiction. In the first stage, a deterministic or a stochastic 
                                                 
45 As pointed out by Caudill and Ford (1993), the direction of the bias depends on the direction of the 

effect of z on u, and on the sign of the correlation between h(z, δ) and x. For example, if z is positively 

related to u (inefficiency), and if h(z, δ) is positively correlated with x, then neglecting z will cause the 

coefficient of x to be biased downward. Larger z will, other things equal, be associated with lower y 

and higher x, and thus the effect of x on y, not controlling for z, will appear smaller (less positive, or 

more negative) than it would if we controlled for z. A second and less widely recognized problem is 

that the first-step technical efficiency measures are likely to be seriously under dispersed, so that the 

results of the second-step regression are likely to be biased downward. This is true regardless of 

whether x and z are correlated.). To explore this point more precisely, suppose that x and z are 

independent, so that the first-step regression is unbiased. Thus, loosely speaking, the residual e is an 

unbiased estimate of the error ε = v−u.  

 
46 This discussion, as broadly described in Wang and Schmidt (2002), regarding the bias of the two-

step estimator is described in Wang and Schmidt (2002). 
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frontier is estimated and then, in the second stage, producer technical efficiency 

elements are regressed on the relevant exogenous factors. The two-stage formulation 

presumes that the elements of Zi are uncorrelated with the elements of the input 

vector for this procedure to be consistent in its assumption that the inefficiency effects 

are independent in the two stages. The second stage involves the specification of a 

regression model for the predicted technical inefficiency effects which contradicts the 

identical distribution assumption of the first stage. In the first step, one estimates the 

stochastic frontier model and the producers’ efficiency levels, ignoring z. In the 

second step, one tries to see how efficiency levels vary with z, perhaps by regressing a 

measure of efficiency on z. However, such a two – step procedure is both 

econometrically inefficient and is known to contradict the assumption of identically 

distributed technical inefficiency effects that is required to obtain predictions for their 

unknown values  (Harris, 1999), assuming a common technology/frontier 

encompassing every sample observation. This may be inappropriate in the sense that 

the estimated technology is not likely to represent the “true” technology for all 

observations. Thus, the estimate of the underlying technology may be biased. In 

addition, as unobserved heterogeneity was not accounted for in the econometric 

models, parameter estimates also may have been biased. Moreover, since all time 

invariant heterogeneity was covered by the inefficiency part, these models show a 

tendency to underestimate a producer’s performance (Farsi et al., 2003; Filippini et 

al., 2008). Hence, the modeling of heterogeneity in stochastic frontier function models 

has become increasingly important. 

 

Eventually this assumption was also relaxed with the contribution of the papers by 

Cornwell, Schmidt, Sickles (1990), Kumbhakar (1991) and Battese and Coelli (1992), 

who were the first to propose a stochastic production frontier model with time varying 

technical efficiency. Finally, technical efficiency of production has been modeled by 

applying a time varying stochastic error components approach (Kumbhakar et al. 

1991, Reifschneider and Stevenson 1991, Battese and Coelli 1995, Kumbhakar and 

Lovell 2000) using the flexible functional form of a translog production function.  

 

For this reason, subsequent researchers allowed the technical efficiency to vary over 

time, but they model efficiency as a systematic function of time (Kumbhakar, 1990; 
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Cornwell, Schmidt and Sickles, 1990; Battese and Coelli, 1992; Lee and Schmidt, 

1993). The assumption maintained in time – invariant stochastic efficiency models 

(Fried et al. 1993, Greene 1993) that efficiency is constant through time is a relatively 

unrealistic modeling restriction with respect to a competitive production environment. 

None of these models is formulated in a dynamic framework thereby meaning that an 

inefficient producer is not allowed to correct its inefficiency from the past. The 

problem with this approach is that, in most econometric models using time series data, 

technical change is also specified as an explicit function of time. As a result, in these 

models, one cannot distinguish between technical change and efficiency change. A 

number of studies have also attempted to estimate time-varying inefficiency. 

Cornwell, Schmidt and Sickles (1990) replaced the firm effect by a squared function 

of time with parameters that vary over time. Kumbhakar (1990) allowed a time-

varying inefficiency measure assuming that it was the product of the specific firm 

inefficiency effect and an exponential function of time (Coelli, Rao and Battese 

1998). We used a time-varying inefficiency effects measure assuming truncated at 

zero of normal distribution by Battese and Coelli (1992).  

 

More specifically, Cornwell, Schmidt and Sickles (1990) were the first to propose a 

generalization of the Schmidt and Sickles (1984) model to account for time-varying 

inefficiency effects within a stochastic frontier panel data framework. The model used 

in their paper can be specified as: 
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where β0t indicates the common production frontier intercept to all cross sectional 

productive units in period t and βit = β0t - uit is the intercept of unit i in period t. 

Cornwell, Schmidt and Sickles (1990) model the intercept parameters for different 

cross-section productive units at different time periods as a quadratic function of time 

in which the time variables are associated to producers’ specific parameters. This 

yields the following specification for the technical inefficiency error term: 

 
2

321 ttu iiiit βββ ++=  (2.30) 

 



 86 

where the βs represent cross-section producer specific parameters. Moreover, several 

estimation strategies, including a fixed-effect approach and a random-effects approach 

are described in Cornwell, Schmidt and Sickles (1990) and again the jump from fixed 

effects approaches to random-effects approaches is made on the basis of allowing for 

the inclusion of time-invariant regressors.  

 
On the other hand, if independence and distributional assumptions are available, 

Maximum Likelihood techniques can also be applied to the estimation of stochastic 

frontier panel data models where technical inefficiency depends on time. Kumbhakar 

(1990) suggests a model in which the technical inefficiency effects assumed to have a 

half-normal distribution vary systematically with time according to the following 

expression: 

 

( )[ ] uittutu iit

12exp1)(
−

++== ργδ  (2.31) 

 

where   γ and ρ are unknown parameters to be estimated.  

 

According to Kumbhakar (1991) efficiency measurement in the panel data models 

often fails to distinguish technical inefficiency from producer specific effects, 

especially when technical inefficiency is assumed to be time – invariant. Most of 

these models also ignore time – specific effects separate from exogenous progress. 

Consequently, determinants of technical inefficiency are introduced by allowing its 

mean to be a function of exogenous variables that can explain technical inefficiency.  

 

The model of Kumbhakar (1991) considers estimation of production function 

parameters and technical inefficiency for each producer using panel data. The 

distinguishing features of the model are:  

 

1. technical inefficiency is separated from producer-specific and time-specific effects 

2. determinants of technical inefficiency is introduced by allowing its mean to be a 

function of exogenous variables that explain the deterministic components of 

technical inefficiency, and  
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3. estimation methods are developed to accommodate either fixed or random 

treatment of producer – and time – specific effects.  

 

This issue was addressed mainly by Kumbhakar et al. (1991) and Reifschneider and 

Stevenson (1991) who propose stochastic frontier models in which the inefficiency 

effects (ui) are expressed as an explicit function of a vector of producer-specific 

variables and a random error. Kumbhakar et al (1991), Reifschneider and Stevenson 

(1991), Huang and Liu (1994) and Battese and Coelli (1995) have adopted a single-

stage approach in which explanatory variables are incorporated directly into the 

inefficiency error component. In this approach, either the mean or the variance of the 

inefficiency error component is hypothesised to be a function of the explanatory 

variables. The parameters of the stochastic frontier and the inefficiency model are 

estimated simultaneously, given appropriate distributional assumptions associated 

with cross-sectional data on the sample producers. A one-step model specifies both 

the stochastic frontier and the way in which u depends on z, and can be estimated in a 

single step. This is in contrast to a two-step procedure, where the first step is to 

estimate a standard stochastic frontier model and the second step is to estimate the 

relationship between (estimated) u and z (Wang and Schmidt, 2002).  

 

Specifically, Kumbhakar et al. (1991) proposed a model for the technical inefficiency 

effects where the parameters of the stochastic frontier and technical inefficiencies are 

estimated simultaneously given the appropriate distributional assumptions. 

Kumbhakar et al. (1991) first raised concerns about the two-stage process in the 

stochastic frontier context. Instead, they incorporate the estimation of the 

determinants of inefficiency with estimation of the production frontier. In their 

composed error term (ek = uk + vk), they make the one-sided inefficiency component 

a function of z and w such that uk(z,w) = zδ + wk where z is a vector of determinants 

of producer efficiency, δ is the vector of parameters to be estimated, and w is the 

random error of the inefficiency component u. As before, v is the random error of the 

composed error term47.  

                                                 
47 Wang and Schmidt (2002) compare one-step and two-step procedures for a stochastic model and 

found the two-step procedure led to biased results, and therefore recommend against that approach. 
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To avoid the estimation problem, the stochastic frontier and inefficiency effects may 

be estimated simultaneously in a one-step procedure (Wang and Schmidt, 2002), 

namely, all of the parameters are estimated in one step. Model used simultaneously 

determines the causes of inefficiency, rather than using a second-step procedure 

whereby efficiency estimates (obtained from step-one) are then regressed on a set of 

determinants48. As a result, the two stage approach has been dismissed as inconsistent 

when technical inefficiencies are used as a dependent variable in the second stage 

analysis49. This is in favour of the one stage approach where the parameters of the 

stochastic frontier and technical inefficiencies are estimated simultaneously. The 

inefficiency effects are defined as a function of the producer specific factors (as in the 

two-stage approach) but they are then incorporated directly into the MLE50.  

 

Lee and Schmidt (1993) propose an alternative formulation, in which the technical 

inefficiency effects for each productive unit at a different time period are defined by 

the product of individual technical inefficiency and time effects: 

 

itit uu δ=  (2.32) 

 
where the δts are the time effects represented by time dummies and the ui can be 

either fixed or random producer-specific effects.  

 

                                                 
48 Wang and Schmidt (2002) then provide a lengthy argument why conventional estimators of the 

production parameters and the JLMS estimates of ui will be seriously biased. The same arguments 

apply to estimates of TEi = exp(-ui). 

 
49 However, using the estimated technical inefficiencies and parameters of the model to compute a 

measure of efficiency and then using it as dependent variable in the second stage analysis as used by 

Reinhard et al. (1999) is consistent. 

 
50 Although it is widely recognized that two-step procedures are biased, there seems to be little 

evidence on the severity of this bias. For example, Caudill and Ford (1993) provide evidence on the 

bias of the estimated technological parameters, but not on the efficiency levels themselves or their 

relationship to the explanatory variables z.  
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This is possible following the maximum likelihood estimation methodology proposed 

by Coelli et al. (1998). When the explanatory variables for the technical inefficiency 

effects model are producer-specific variables only, this results to Battese and Coelli 

(1995) production frontier model, but when both inputs and producer-specific 

variables are included as explanatory variables for the technical inefficiency effects 

model, this results to production frontier model originally proposed by Huang and Liu 

(1994). 

 

2.6.4. Fixed and Random Effects 

The central feature of the Battese and Coelli estimator is a fixed effects linear 

regression model. It is argued that this approach brings gains in statistical efficiency 

while obviating assumptions about the distribution of technical inefficiency.  

 

However, heterogeneous production environments, which are not under the 

producer’s control, may influence the production process and incurred costs. These 

differences when observed or measured by observed proxies, can be incorporated in 

the estimation methods. One of the most important issues in stochastic frontier models 

is adjusting for the unobserved heterogeneity among producers functioning in 

different production environments. Individual producers face different external factors 

that could influence their production costs but are not under their control. Some of 

these factors are observed and can be controlled for in the analysis. However, in many 

cases the data are not available for all these variables. Moreover, the relevant factors 

are often too complex to be quantified by simple indicators. In panel data where an 

individual producer is observed several times, the producer-specific unobserved 

variations can also betaken into account through fixed or random effects51.  

 

The first use of panel data models in stochastic frontier models goes back to Pitt and 

Lee (1981) who interpreted the panel data random effects as inefficiency rather than 

heterogeneity. This tradition continued with Schmidt and Sickles (1984) who used a 

                                                 
51 Panel data may have group effects, time effects, or both. These effects are either fixed effect or 

random effect. Consequently, panel data are analyzed to investigate group and time effects using fixed 

effect and random effect models. 
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similar interpretation applied to a panel data model with fixed effects. The basic panel 

data formulation, introduced by Schmidt and Sickles (1984), is a model in which the 

producer-specific stochastic term is interpreted as inefficiency. This term can be 

alternatively identified as a fixed intercept for each producer (FE model) or as an iid 

random term (RE model). In case where the unobserved heterogeneity is correlated 

with some of the explanatory variables, while the random effects estimators can be 

biased the fixed effects model may overestimate inefficiency scores.  

 

A main shortcoming of these models is that any unobserved, time-invariant, producer-

specific heterogeneity is considered as inefficiency. In more recent papers random 

effects model has been extended to include time-variant inefficiency (Cornwell, 

Schmidt and Sickles, 1990, Battese and Coelli, 1992). However, in both these models 

producer-specific effects are considered as inefficiency. Another problem arises when 

the producer-specific effects are correlated with the explanatory variables. A common 

feature of all these models is that they do not fully separate the sources of 

heterogeneity and inefficiency at the producer level. An alternative approach is to 

consider two separate stochastic terms for efficiency and producer-specific 

heterogeneity.  

 

Basically, there are two methods of estimation in the literature. In the first, the 

estimation of the parameters of the production frontier is done conditionally on fixed 

values of the ui’s  which leads to the fixed effects model and the within estimator of 

the frontier coefficients. In the second, the estimation is carried out marginally on the 

producer specific effects uit’s which leads to the random effects model and either the 

Generalised Least Squares (GLS) or the LM estimation of the parameters (Puig-

Junoy, 2001)52.  

                                                 
52 As described in Coelli (1996), the imposition of one or more restrictions upon this model formulation 

can provide a number of the special cases of this particular model which have appeared in the 

literature. Setting η to be zero provides the time – invariant model set out in Battese, Coelli and Colby 

(1989). Furthermore, restricting the formulation to a full (balanced) panel of data gives the production 

function assumed in Batesse and Coelli (1988). The additional restriction of µ equal to zero reduces the 

model to model One in Pitt and Lee (1981). One may add a forth restriction of T = 1 to return to the 

original cross sectional, half - normal formulation of Aigner, Lovell and Schmidt (1977). Obviously, a 

large number of permutations exist. For example, if all these restrictions excepting µ = 0 are imposed, 
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A fixed effect model (Schmidt and Sickles, 1984) examines if intercepts vary across 

groups or time periods, whereas a random effect model (Pitt and Lee, 1981) explores 

differences in error variances53. The fixed effect model asks how group and/or time 

affect the intercept, while the random effect model analyzes error variance structures 

affected by group and/or time. Slopes are assumed unchanged in both fixed effect and 

random effect models. The following table compares the fixed effect and random 

effect models: 

 

Table 2.2. Fixed Effect and Random Effect Models 
 
 Fixed Effect Model Random Effect Model 

 

Functional form 

 

( ) ititiit vXy +++= βµα '  ( )itiitit vXy +++= µβα '  

Intercepts Varying across groups and/or times Constant 

 

Error variances Constant Varying across groups and/or times 

 

Slopes Constant Constant 

Estimation LSDV, within effect method GLS, FGLS 

 

Hypothesis test Incremental F test Breusch-Pagan LM test 

 

 
Notes:  
 
1. The parameter estimate of a dummy variable is a part of the intercept in a fixed effect model and a 

component of error in the random effect model. Slopes remain the same across groups or time 

periods.  

                                                                                                                                            
the model suggested by Stevenson (1980) results. Furthermore, if the cost function option is selected, 

we can estimate the model specification in Schmidt and Lovell (1979) specification, which assumed 

allocative efficiency. These latter two specifications are the cost function analogues of the production 

functions in Battese and Coelli (1988) and Aigner, Lovell and Schmidt (1977), respectively.   

 
53 In both cases, inefficiency effects are assumed to be time invariant. 
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2. ( )2,0~ vit iidv σ   indicates that errors are independent identically distributed 

 

Source: Park (2009), p. 2 

 

Group effect models create dummies using grouping variables (e.g., country, 

producer, and race). A one-way model includes only one set of dummy variables (e.g., 

producer), while a two – way model considers two sets of dummy variables (e.g., 

producer and year). If one grouping variable is considered, it is called a one-way fixed 

or random group effects model. Two-way group effect models have two sets of 

dummy variables, one for a grouping variable and the other for a time variable.  

 
This variation has two important restrictions. First, any time invariant heterogeneity 

will be pushed into α
i 

and ultimately into iû . Second, the model assumes that 

inefficiency is time invariant. For short time intervals, this may be a reasonable 

assumption. But, this is to be questionable. Both of these restrictions can be relaxed 

by placing country specific constant terms in the stochastic frontier model – we call 

this a ‘true’ fixed effects model: 

 

itititit uvxy −++= βα '  (2.33) 

 

where u
it 

has the stochastic specifications noted earlier for the stochastic frontier 

model.  

 

In the fixed effects, the production function is denoted: 

 

iititit uvxy −++= βα  (2.34) 

 
where y

it 
is the (log of the) output of the system, x

it 
is (logs of) the set of inputs, v

it 
is 

the random component representing stochastic elements as well as any country (and 

time) specific heterogeneity, u
i 
is the inefficiency in the system, and i and t denote 

country and year, respectively. 

 

Assuming that u
i 
> 0, the equation is rewritten: 
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ititiititiit vxvxuy ++=++−= βαβα '')(  (2.35) 

 
 

Assuming that v
it 

has the familiar stochastic properties of a regression model and is 

uncorrelated with other components of the model, the parameters can be estimated by 

least squares, using the “within,” or dummy variable estimator. The country specific 

constants embody the technical inefficiency. The inefficiencies are estimated in turn 

by shifting the function upward so that each constant term is measured as a deviation 

from the benchmark level: 

 
0ˆ)ˆ(maxˆ ≥−= iiiiu αα  (2.36) 

 
The narrow assumption of half normality is viewed as significant drawback in this 

model. This feature leads to the extension of the model to a truncated normal model 

by allowing the mean of U
i 
to be nonzero (Stevenson, 1980). The major shortcoming 

here is that the strict assumption suppresses individual heterogeneity in inefficiency 

that is allowed, for example, by the fixed effects formulation.  

 

Superficially, this amounts simply to adding a full set of country dummy variables to 

the stochastic frontier model. The model is still fit by maximum likelihood, not least 

squares.  

 

The true fixed effects model places the unmeasured heterogeneity in the production 

function: with a loglinear model, it produces a neutral shift of the function, specific to 

each country. One might, instead, have the heterogeneity reside in the inefficiency 

distribution. This could be accomplished with the formulation: 

  
δδµ '

0 iii h+=  (2.37) 

 
that is, by placing the country specific dummy variables in the mean of the truncated 

normal distribution, rather than in the production function. Once again, in a moderate 

sized sample, this is a minor reformulation of the familiar model.  
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Although the fixed effects models have the advantage of following correlation 

between the inefficiency term and the independent variables, and of allowing no 

distributional assumption on efficiency, the results should be interpreted carefully. 

The possibility that the producer – specific effects would include the influence of 

variables that vary across producers but are invariant over time may be not ruled out. 

Simar (1992) has shown that the fixed effects model appears to provide a poor 

estimation of the intercepts and of the slope coefficients of frontier production 

functions and consequently unreasonable measures of technical efficiency. 

 

On the other hand, as referred in Greene (2003 a,b), the random effects model is 

obtained by assuming that u
i 
is time invariant and also uncorrelated with the included 

variables in the model: 

 
( )itiitit vXy +++= µβα '  (2.38) 

 
 

In the linear regression case, the parameters are estimated by two step generalized 

least squares (Greene, 2003 a,b). Random effects model has a significant drawback: 

there is no implied estimator of inefficiency in this model, that is, no estimator of TE
i 

as in the fixed effects case.  

 

Pitt and Lee (1981) showed how the time invariant composed error model could be 

extended to a panel data version of the stochastic frontier model. The direct extension 

would be of limited usefulness here, first because of the assumption of 

uncorrelatedness of u
i 
and x

i 
and, because of the assumption of time invariance of the 

inefficiency. The first of these can be remedied in the same fashion as suggested 

earlier. Estimation of the random effects model with heterogeneity in E[U
i
] is 

straightforward.  

 

The heterogeneity may also enter the distribution of u
it 

which can, as before, have 

mean µ
i 
or, in principle, even µ

it 
with time variation in the covariates. Country specific 

estimates of inefficiency are computed using the Jondrow et al. (1982) formulation, 
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though simulation methods are needed to integrate out the unmeasured random 

effects.  

 

In the random effects model, the stochastic nature of the efficiency effects is explicitly 

taken into account in the estimation process. The GLS estimation provides consistent 

and unbiased estimates of the parameters, if the regressors xit are not correlated with 

the technical efficiency effects uit. A relative major advantage of the GLS estimator 

relative to the within estimator is its flexibility to include the time – invariant 

regressors. In the fixed effects model, the coefficients of time – invariant regressors, 

even though they may vary across producers, cannot be estimated because these time 

– invariant regressors will be eliminated in the within transformation, as shown in the 

equation: 

 

itiitiit vxxyy ′+−′=− )()( β
 (2.39) 

 
In this case, the producer – specific technical efficiency effects will include the 

influence of all variables that are time – invariant at the producer level within the 

sample. This would make technical efficiency comparisons difficult unless the 

excluded fixed regressors influence all producers in the sample equally (Kumbhakar, 

1987).  

 
Summarising, with fixed effects models, all statistical inference can only be made on 

the cross – section unit used for estimation. In other words, the findings from a fixed 

effects model cannot be generalised. An alternative is the random effects model, in 

which the error components are assumed to be random variables drawn from a normal 

distribution and independently and identically distributed, with the assumption that 

these error components are uncorrelated with the explanatory variables.  

 

In the RE framework, it is assumed that the producer-specific effects are uncorrelated 

with the explanatory variables in the model. Therefore, all the extensions of the RE 

model are prone to heterogeneity bias due to such correlation. However, the 

refinement of the model to separate different sources of heterogeneity may improve 

the performance of the model, especially regarding the inefficiency estimates.  
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The core difference between fixed and random effect models lies in the role of 

dummy variables. If dummies are considered as a part of the intercept, this is a fixed 

effect model. In a random effect model, the dummies act as an error term. A fixed 

group effect model examines group differences in intercepts, assuming the same 

slopes and constant variance across entities or subjects. Since a group (individual 

specific) effect is time invariant and considered a part of the intercept,  ui is allowed to 

be correlated to other regressors.  

 

A random effect model, by contrast, estimates variance components for groups (or 

times) and errors, assuming the same intercept and slopes. u i is a part of the errors 

and thus should not be correlated to any regressor; otherwise, a core OLS assumption 

is violated. The difference among groups (or time periods) lies in their variance of the 

error term, not in their intercepts.  

 

A random effect model is estimated by generalized least squares (GLS) when the Ω 

matrix, a variance structure among groups, is known. The feasible generalized least 

squares (FGLS) method is used to estimate the variance structure when Ω is not 

known. A typical example is the groupwise heteroscedastic regression model (Greene 

2003 a,b). There are various estimation methods for FGLS including the maximum 

likelihood method and simulation (Baltagi and Cheng 1994). 

 
Fixed effects models are not without their drawbacks. The fixed effects models may 

frequently have too many cross-sectional units of observations requiring too many 

dummy variables for their specification. Too many dummy variables may sap the 

model of sufficient number of degrees of freedom for adequately powerful statistical 

tests.  

 

Moreover, a model with many such variables may be plagued with multicollinearity, 

which increases the standard errors and thereby drains the model of statistical power 

to test parameters. If these models contain variables that do not vary within the 

groups, parameter estimation may be precluded. Although the model residuals are 

assumed to be normally distributed and homogeneous, there could easily be country-

specific (groupwise) heteroskedasticity or autocorrelation over time that would further 

plague estimation (Yaffee, 2003).  
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The one big advantage of the fixed effects model is that the error terms may be 

correlated with the individual effects. If group effects are uncorrelated with the group 

means of the regressors, it would probably be better to employ a more parsimonious 

parameterization of the panel model. 

Conventional panel data models such as fixed-effects or random-effects models can be 

employed to account for unobserved heterogeneity (Pitt and Lee, 1981; Schmidt and 

Sickles, 1984). A major limitation of these models is the treatment of the inefficiency 

term as time-invariant, which raises a fundamental identification problem. Not only 

must the model distinguish noise from the inefficiency effects, but also the 

unobserved, time-invariant, producer-specific heterogeneity becomes difficult to 

distinguish from the inefficiency component (Greene, 2005). Some authors have 

extended the random-effects model to include time-variant inefficiency (Cornwell 

et al., 1990; Battese and Coelli, 1992, 1995). However, a drawback in these models is 

that the producer-specific effects are still considered as inefficiency, which may result 

in biased estimates (Greene, 2005). Moreover, when producer-specific effects are 

correlated with the explanatory variables, the random-effects estimators are affected 

by heterogeneity bias. As pointed out by Greene (2002b), while fixed-effects 

estimators are still consistent with regard to the production frontier slopes, 

inefficiency variations are overestimated. Thus, an obvious drawback of all these 

models is their inability to separate fully the sources of heterogeneity and inefficiency 

at the producer level.  

In a recent development, Greene (2005) demonstrated how a stochastic frontier model 

can be extended to panel data models by including a random effect in the model. He 

refers to this extension as the ‘true’ random-effects model.  

The ‘true’ random-effects model is basically a random-constant frontier model that is 

obtained by combining a conventional random-effects model with a skewed stochastic 

term representing inefficiency.  

However, since most of the unobserved factors, in particular those relating to 

efficiency explanatory conditions, are most likely to be correlated with the output and 
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some of the explanatory variables, the ‘true’ random-effect estimators of the 

production function coefficients could still be biased.  

2.7. Concluding Remarks 

 

The discussion concerning the measurement of productivity and efficiency in the 

economic literature started with contemporaneous papers by Debreu (1951) and 

Koopmans (1951). Koopmans (1951) and Debreu (1951) made the first systematic 

efforts in the investigation of efficiency and its measurement. However, the standard 

efficiency measurement literature was started by Farrell (1957), built upon Debreu 

(1951) and Koopmans (1951). Farrell (1957) proposed to measure the efficiency of a 

productive unit in terms of the realized deviations from an idealized frontier isoquant. 

The empirical identification of such a benchmark is the main issue of the literature on 

efficiency measurement. Farrell (1957) extended this work in an attempt to 

operationalize the measurement of productivity and efficiency. From Farrell's work, 

we define the productivity of an economic agent as the scalar ratio of outputs to inputs 

used by the agent in its production process. Finally in the 1970's, with the seminal 

papers of Aigner et al. (1977) and Meeusen and van den Brock (1977), 

econometricians developed a statistically and theoretically sound method for 

measuring efficiency, a method now known as stochastic frontiers. In this case, a 

stochastic frontier is defined as the locus of best performing agents within a data set. 

The other data points of the other producers are located "below" this estimated 

frontier. The relative distance measured between this best performance and the other 

data points is interpreted as inefficiency. 

 
The approach to frontier estimation, proposed by Farrell (1957), was also considered 

by Shephard (1970) and Afriat (1972) who suggested mathematical programming 

methods that could achieve frontier estimation, but the method did not receive wide 

attention until the paper by Charnes, Cooper and Rhodes (CCR) (1978), in which the 

term DEA was first presented. Charnes, Cooper and Rhodes (1978) proposed a model 

that had an input orientation and assumed constant returns to scale (CRS). 

Subsequently, Färe and Logan (1983) and Banker, Charnes and Cooper (BCC) (1984) 

proposed variable returns to scale (VRS). The term DEA and the CCR model were 
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first introduced in 1978 (Charnes et al, 1978) and were followed by a phenomenal 

expansion of DEA in terms of its theory, methodology and application over the last 

few decades (Førsund and Sarafoglou, 2003, Seiford (1996), Charnes et al (1994). 

 

Charnes et al. (1978) and Banker et al. (1984) extended Farrell’s ideas by imposing 

returns to scale properties. The nonparametric approach relies on a production frontier 

defined as the geometrical locus of optimal production plans (Simar and Wilson, 

1998, 2007). The production frontier can be estimated non parametrically from a set 

of observed production units, based on different envelopment techniques. A Common 

nonparametric measure is the Data Envelopment Analysis (DEA). Nonparametric 

DEA shows how one can apply simulation methods, to conduct statistical inference to 

obtain more reliable and robust results. In DEA the inefficiency is defined as the 

distance from the frontier of a convex envelope of the data; therefore, due to the 

convexity assumption, a company might be compared to an unobservable and 

fictitious linear combination of efficient observations (Coelli et al., 2005). Thus, the 

efficiency score is the point on the frontier characterized by the level of inputs that 

should be reached to be efficient (Simar and Wilson, 1998, Simar and Wilson, 2007). 

Then the analysis proceeds on deterministic, where deviations of a producer from the 

theoretical maximum are allocated exclusively to inefficiency, and stochastic 

production frontiers, where the deviation from the frontier is decomposed into 

stochastic noise and technical inefficiency in production. Chapter 2 analyses the 

Deterministic and Stochastic Production Frontiers and explains the reasons for which 

the stochastic frontier approach is the most comprehensive analytical and estimation 

method, providing the main features which characterise this method, as well as the 

main hypotheses related. Then, Chapter 2 deals with the literature survey on 

Stochastic Frontier Models and the main assumptions on efficiency estimation and 

analyses the Battese and Coelli (1992) specification as opposed to the Battese and 

Coelli (1995) specification. More specifically, as far as the stochastic frontier models 

are concerned, this chapter focuses on the Battese and Coelli (1992) and Battese and 

Coelli (1995) models, providing a detailed analysis of the specifications of these two 

approaches. Then, this chapter analyses the characteristics and differences between 

time invariant and time varying efficiency, as well as the related fixed and random 

effects analysis.   
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Chapter 3 

 

Empirical Model Specification and Methodology 

Abstract 

In stochastic frontier analysis, early models were based on the assumption of time – invariant 

efficiency. Eventually this assumption was relaxed (Cornwell, Schmidt, Sickles (1990), Kumbhakar 

(1991) and Battese and Coelli (1992)). If efficiency varies across producers or through time, it is 

natural to seek determinants of efficiency variation, in order to estimate stochastic frontiers and predict 

producer-level efficiencies using these estimated functions, and then regress the predicted efficiencies 

upon producer-specific variables (such as managerial experience, ownership characteristics, etc) in an 

attempt to identify some of the reasons for differences in predicted efficiencies between producers. 

Studies adopted a two-stage approach, in which efficiencies are estimated in the first stage and 

estimated efficiencies are regressed against a vector of explanatory variables in a second stage. The 

assumption maintained in time-invariant stochastic efficiency models (Fried et al. 1993, Greene 1993) 

that efficiency is constant through time is a relatively unrealistic modeling restriction with respect to a 

competitive production environment. A number of studies have also attempted to estimate time-varying 

inefficiency. Cornwell, Schmidt and Sickles (1990) replaced the firm effect by a squared function of 

time with parameters that vary over time. Kumbhakar (1990) allowed a time-varying inefficiency 

measure assuming that it was the product of the specific firm inefficiency effect and an exponential 

function of time (Coelli, Rao and Battese 1998). Later papers adopted a two-stage approach, in which 

the first stage involves the specification and estimation of the stochastic frontier production function 

and the prediction of technical inefficiency determinants, under the assumption that these inefficiency 

effects are identically distributed. The second stage involves the specification of a regression model for 

the predicted technical inefficiency effects, which contradicts the assumption of identically distributed 

inefficiency effects in the stochastic frontier. However, the two-stage estimation procedure is unlikely 

to provide estimates which are as efficient as those that could be obtained using a single-stage 

estimation procedure (Coelli, 1996).  

 

Chapter 3 provides an overview of alternative empirical model specifications and different sets of 

methodologies and instruments available allowing a justification to the chosen methodology. Then it 

conducts a comparison between the one-step versus two-step estimation procedure and concludes with 

the main Hypotheses tests and the case of panel data within the Stochastic Frontier Models. Finally, 

Chapter 3 analyses the empirical model and the underlyimg assumptions, it describes the econometric 

analysis methofdology and the related hypotheses testing.  
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3.1. Introduction 

In stochastic frontier models, output is assumed to be bounded from above by a 

stochastic production function. Therefore, the error term in stochastic frontier models 

has two parts: the first representing randomness or statistical noise, and the second 

representing technical inefficiency. In this case, each producer faces a production 

frontier which is randomly due to stochastic shocks outside the producer's control. 

Moreover, this method enables to distinguish between shifts in technology from 

movements towards the best-practice frontier. On the other hand, frontier approaches 

provide a technology frontier constructed by the best-performing producers of the 

industry. The performance of all producers is then compared against that frontier, 

which enables the analyst to evaluate each producer’s behavior. A frontier function 

represents a best-practice technology, against which the efficiency of the producers 

within the industry can be measured (Coelli, 1995). If a producer belongs to the 

frontier, it is efficient. If a producer is beneath the efficiency frontier, then it is 

inefficient and further analysis identifies the sources and extent of the inefficiency. 

There are different alternative methods, in order to estimate this frontier function, as 

well as to estimate any deviations from it. Literature distinguishes between parametric 

and nonparametric efficiency measurement and considers the characteristics of each 

method. Parametric estimation concepts involve strong assumptions about the 

functional forms describing the production process or the distribution functions of the 

stochastic part in the model. Nonparametric approaches assume no parametric 

restrictions for any features of the probability model and the frontier is not described 

by a specific analytical function (Simar and Wilson, 2007). One of the main 

approaches of parametric econometric approach of efficiency measurement is 

stochastic production frontier. Then, this chapter aims to employ a translog 

production frontier model following Battese and Coelli (1992, 1995) stochastic 

production frontier model, by including a time variable in the deterministic kernel of 

the stochastic production frontier to capture the effect of technical progress, as the 

translog function is a flexible function, presenting both linear and quandratic terms 

with the ability of using more than two factor inputs. The translog model assumes that 

there are no technical inefficiencies hence excludes ui from the regression equation, 

estimating the level of output of a technically efficient industry, also imposing the 
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symmetry restriction is imposed a priori to be able to identify the coefficients (βij = 

βji). 

 

 

Provided the inefficiency effects are stochastic, the model permits the estimation of 

both technical change in the stochastic frontier and time-varying technical 

inefficiencies. A base model is estimated, using the traditional input and output 

variables, and then variations are added to this model. The base models include labor, 

capital and time (as the proxy for technical change) as inputs, and value added as 

output. In the extended models, additional input variables are introduced: ICT 

investment, ICT investment share, R&D stock and economy openness.  

3.2. Empirical model 

 
This chapter considers a panel data stochastic model for inefficiency effects in 

stochastic production frontier based on the Battese and Coelli (1992, 1995) models, 

providing translog effects, as well as industry effects54.  

 

The estimated model accommodates not only heteroscedasticity but also allows the 

possibility that an industry may not always produce the maximum possible output, 

given the inputs available.  

 

We estimate efficiencies as industry specific fixed effects. Technical inefficient 

component is treated as time – varying hence a time – varying decay model is 

estimated. Our model is a stochastic frontier model of one output (value added) and 

three inputs (capital, labour, time). Following Battese and Coelli (1992, 1995), a 

stochastic frontier production function is defined for panel data on industries, in 

which the non-negative technical inefficiency effects are assumed to be a function of 

producer-specific variables and time.  

                                                 
54 In our analysis we will use a panel-data approach because we have a small number of countries 

available and by pooling industry and country data in a multi-country panel our data have a sufficient 

size of observations. 
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The inefficiency effects are assumed to be independently distributed as truncations of 

normal distributions with constant variance, but with means which are a linear 

function of observable variables. We model both the stochastic and the technical 

inefficiency effects in the frontier, in terms of observable variables, and estimating all 

parameters by the method of maximum likelihood, in a one-step analysis55, as 

developed by Battese and Coelli (1992, 1995)56.  

 

A range of functional forms for the production function frontier are available, with the 

most frequently used being a translog function, which is a second order (all cross-

terms included) log-linear form57. We use a translog function, which is a second order 

                                                 
55 Battese and Coelli (1995) suggested that under the assumption of truncated normal one-sided error 

term, the mean of the truncated normal distribution could be expressed as a function of certain 

covariates, a closed form likelihood function can be derived, and the method of maximum likelihood 

may be used to obtain parameter estimates, and provide inefficiency measures. 

 
56 When employing regression analysis in the second step to explain the variation of the efficiency 

scores, it is likely that the included explanatory variables fail to explain the entire variation in the 

calculated efficiencies and the unexplained variation mixes with the regression residuals, adversely 

affecting statistical inference. The use of a stochastic frontier regression model allows for the 

decomposition of the variation of the calculated efficiencies into a systematic component and a random 

component.  

 
57 Some literature focused on stochastic frontier model with distributional assumptions by which 

efficiency effects can be separated from stochastic element in the model and for this reason a 

distributional assumption has to be made. Among others, an exponential distribution (Meeusen and van 

den Broeck 1977); a normal distribution truncated at zero (Aigner, Lovell and Schmidt 1977); a half-

normal distribution truncated at zero (Jondrow et al. 1982) and a two-parameter Gamma or Normal 

distribution (Greene 1990). However, these are computationally more complex, there are no priori 

reasons for choosing one distributional form over the other, and all have advantages and disadvantages 

(Coelli, Rao and Battese 1998). There are no a priori reasons for choosing one distributional form over 

the other, and all have advantages and disadvantages (Coelli, Rao and Battese, 1998). For example, the 

exponential and half-normal distributions have a mode at zero, implying that a high proportion of the 

producers being examined are perfectly efficient. The truncated normal and two-parameter gamma 

distribution both allow for a wider range of distributional shapes, including non-zero modes. However, 

these are computationally more complex (Coelli, Rao and Battese, 1998). Empirical analyses suggest 

that the use of the gamma distribution may be impractical and undesirable in most cases. Ritter and 
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(all cross-terms included) log-linear form. This is a relatively flexible functional 

form58, as it does not impose assumptions about constant elasticities of production nor 

elasticities of substitution between inputs. It thus allows the data to indicate the actual 

curvature of the function, rather than imposing a priori assumptions59. 

 

We adopt the standard flexible translog functional form to represent technology, 

including the time variable time in order to account for technical change effects60 used 

as a regressor along with the input variables, in order to capture evolution and 

differences in technical progress (Oh et al. 2009). To do so the model is extended by 

adding the term βT, where βT denotes an industry specific parameter and t is a time 

trend, t = 1, …Ti allowing for industry – specific (linear) changes in productive 

efficiency over time (Kumbhakar, Heshmati and Hjalmarsson, 1999). The parameter 

βT indicates whether a producer’s efficiency increases (βT >0) or decreases (βT <0) 

with time t. All of the variables are as defined before except for time and time2, which 

controls for the linear and quadratic time trends, respectively. Technical change may 

be biased towards a particular input. A positive (negative) value of βi implies that 

                                                                                                                                            
Simar (1997) found that the requirement for the estimation of two parameters in the distribution may 

result in identification problems, and several hundreds of observations would be required before such 

parameters could be determined. Further, a maximum of the log-likelihood function may not exist 

under some circumstances. Bhattacharyya et al. (1995), however, offer one approach for selecting the 

distribution to reflect technical inefficiency; they suggest the use of a data generating process. 

 
58 As broadly described in Khalil (2005), the translog function is an attractive flexible function. This 

function has both linear and quadratic terms with the ability of using more than two factor inputs.  

59 In terms of output y and inputs X, this can be expressed as: 

∑ ∑∑ +−++=
i

jtjt
k

jktjitik
i

jitiit vuXXXy lnln
2

1
lnln 0 βββ   where yj,t  is the output 

the industry j in period t and Xj,i,t  and Xj,k,t  are the variable and fixed inputs (i,k) to the production 

process. As noted above, the error term is separated into two components, where vj,t  is the stochastic 

error term and uj,t   is an estimate of technical inefficiency. 

60 The translog function has become more prevalent because the Cobb-Douglas functional form 

imposes severe restrictions on the technology by restricting the production elasticities to be constant 

and the elasticities of input substitution to be unity.  

 



 106 

technical change is relatively ith  input – using (saving). A zero value of βi indicates 

that technical change is not biased towards any particular input, i.e. technical change 

is neutral (Kumbhakar and Hjalmarsson, 1995, Kumbhakar and Hesmati, 1996, and 

Oh et al., 2009).  

 

Our analysis is based on industry data61 regarding estimating productive efficiency at 

industry level of selected countries within European Union, during 1980 – 2005.   

 
Our model is a stochastic frontier model of one output (value added: lnva) and three 

inputs (capital: cap, labour: lab, time: time). We model both the stochastic and the 

technical inefficiency effects in the frontier, in terms of observable variables, and 

estimating all parameters by the method of maximum likelihood, in a one - step 

analysis, as developed by Battese and Coelli (1992, 1995) 62: 
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(3.1) 

 

where:  

���� inputit equals either capital, labor or time 

���� α0 is the intercept of the constant term 

���� βK, βL, βT are first derivatives 

���� βKK, βLL, βTT are own second derivatives 

���� βKL, βKT, βLT are cross second derivatives63 

                                                 
61 Industry level data are today more easily available (see reviews by Caves, 1998, Harris, 1999, 2001, 

2005).  

 
62 This topic has been broadly examined in: Kokkinou A. (2010e) A note on Theory of Productive 

Efficiency and Stochastic Frontier Models, European Research Studies Journal, Vol. XIII, Issue 4, 

2010. 

 
63 Alternative specifications of the production function can be examined by testing various restrictions 

on the parameters of the general translog function (Jaforullah and Whiteman, 1999). The translog is 
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For this analysis, the output is the dependent variable while the explanatory variables 

are the factors of production which are inputs into the production process. We also 

impose symmetry restriction on parameters: 

 

βKL =βLK  

βKT = βTK 

βTL = βLT 

(3.2) 

 

For constant returns to scale, we impose the following restriction: 

K +L + T =1 

βKK + βLK + βTK = 0 

βKL + βLL + βTL = 0 

βKT + βLT + βTT = 0  

(3.3) 

 

And for weak separability, we check whether the linear separability restrictions are 

satisfied: 

 

βLT = βTK = 0 (3.4) 

 

Technical efficiency TEi,t of the ith industry in year t equals the ratio of observed 

output level to estimated frontier output:  

 

)exp(
));(exp( ,

,

,
, ti

ti

ti
ti u

Xf

Y
TE −==

β
 (3.5) 

                                                                                                                                            

homogeneous if 0=+ LKLL ββ  and 0=+ LKKK ββ . If in addition, 1=+ KL ββ , the translog is 

linearly homogeneous. Alternatively, the production function is a (homogeneous) Cobb – Douglas 

function if 0=== LKKKLL βββ . 
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To obtain an observation – specific estimate of technical inefficiency (u), we use the 

Jondrow et al. (1982) result; that is, estimate u from ( )uvuEu −= |ˆ  in which ( )uv−  

is replaced by the residuals of the production function64: 

 

( )[ ]iii uETE ε|exp=  (3.6) 

so that                                                                                                 

10 ≤≤ iTE  (3.7) 

 

The information on the technical inefficiency (efficiency) of production units 

(contained in the compound disturbance term) can be obtained using the predictor 

developed by Jondrow et al. (1982) which is based on the conditional distribution of u 

given ε2. We estimate efficiencies as producer-specific fixed effects as proposed by 

Schmidt and Sickles (1984)65. Following Movshuk (2004), the model not only 

estimates inefficiency levels of particular producers, but also explains their 

inefficiency in terms of potentially important explanatory variables.  

                                                 
64 The model can be estimated using standard ML techniques. Maximum likelihood estimation (MLE) 

is a popular statistical method used for fitting a mathematical model to real world data.  The concept of 

maximum likelihood (ML) estimation is underpinned by the idea that a particular sample of 

observations is more likely to have been generated from some distributions than from others. The 

maximum likelihood estimate of an unknown parameter is defined to be the value of the parameter that 

maximizes the probability (or likelihood) of randomly drawing a particular sample of observations. ML 

approach requires distributional assumptions about the disturbances v and u. to assess the sensitivity of 

our estimates to the choice of distributional assumptions; we consider two alternative specifications for 

the one – sided variable u:  

 

1. a one – parameter exponential distribution 

2. a half – normal distribution 

 

The random term v is unbounded, so we assume that it is normally distributed with zero mean and 

constant variance. The industry-specific estimates of technical efficiency are estimated from the 

conditional mean of u, given v – u, as in Jondrow et al. (1982).  
65 However, several studies focus either on industry characteristics (e.g. Roudaut, 2006) or size effects 

(e.g. Oczkowski and Sharma, 2005; Söderbomand  and Teal, 2004). 

 



 109 

 

Because estimation procedures yield merely the residuals ε rather than the 

inefficiency term u, this term in the model must be observed indirectly (Greene, 1993, 

Cullinane and Song, 2003). Jondrow et al. (1982) suggest the conditional expectation 

of uit, conditioned on the realized value of the error term εit = (vit-uit) as an estimator 

of uit and, in other words, E[uit|εit]  is the conditional mean productive inefficiency for 

the i th industry at any time t. Measures of technical efficiency (TEi) for each producer 

can be calculated as66:  

 

( )[ ]iii uETE ε|exp=  (3.8) 

 

so that 

 

10 ≤≤ iTE  (3.9) 

 

The estimated coefficients of a translog production function can be more readily 

interpreted in the form of output elasticities for individual inputs calculated from the 

frontier production function coefficients estimation. Nevertheless, the estimates of the 

first order coefficients of the variables in the translog function cannot be directly 

interpreted as elasticities67. Thus, we may build a system of equations from 

                                                 
66 The Batesse and Coelli  model (1992, 1995) is modelling the time varying inefficiency in which time 

trend is specified to inefficiency term written as u(i,t)=exp(eta(t-T)| u(i)|.  

 
67 In a translog frontier model, output elasticities can be calculated from the translog estimates using 

the formula:  ∑
≠

++=
∂
∂

=
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jijiii
i

yi xx
x

y
lnln

ln

ln
2 βββε . These estimates can also be expressed 

as: βλε ˆ
jyi =  where β̂  is the full vector of the ML estimators of the parameters and jλ  is a row 

vector of the same dimension, which has zero entries everywhere except when corresponding to the 

elements of β  involving βj and βjh. The reported standard errors of the elasticities are: 

( ) ( ) jjj VV 'ˆˆˆˆ λβλβλ =  , where ( )β̂V̂  is the estimated covariance matrix forβ.  The sum of the 

elasticities of output with respect to the three inputs generates an estimated scale elasticity which 
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differentiating the translog production function with respect to capital and labour 

factor inputs, as well as time, as follows: 

 

∑
≠

++++=∂∂
ji

jijKTKLKKK xtimelabcapcapva lnlnlnlnln βββββ  (3.10) 

and 
 

timecaplablabva LTKLLLL ββββ +++=∂∂ lnlnlnln  (3.11) 

 
and 

timecaplabtimeva TTKTLTT ββββ +++=∂∂ lnlnlnln  (3.12) 

 

Under perfect competition assumption, output elasticity with respect to input equals to 

the cost share of that input, so: 

� βK represents the average cost share of capital 

� βL represents the average cost share of labour 

� βKK, βKL, βKT  represent constant capital share elasticity with respect to capital 

� βLL, βLK, βLT  represent constant labour share elasticity with respect to labour, and  

� βLT, βKT, βTT  represent constant elasticity with respect to capital, labour, and time.  

Output elasticities are estimated by substituting all input values at their variable 

sample means68. More specifically, as far as the time variable is concerned, output 

                                                                                                                                            
indicates the presence of increasing or decreasing returns to scale at all output deciles. The elasticity of 

scale (returns to scale) is defined as: ∑= ),( txk ii ε .                                                                                             

 

 
68 Boisvert (1982) shows that for non-homogeneous functions such as the translog, the function 

coefficient is not invariant with respect to initial input levels. The function coefficient, ε, is the sum of 

the elasticities: ∑ ∑∑∑
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calculated at the mean, from the MLEs and used to test for returns to scale. The function coefficient 

may also be expressed as:  
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elasticity with respect to time indicates technical progress. Moreover, as in Becchetti 

et al. (2003), since any industry may have in principle a different production function 

we add to the specification m-1 intercept dummies for the industries aggregated. More 

specifically, the model is extended in order to include industry specific effects (by 

employing industry composite dummies), so as to examine differences in efficiency 

level among different industries. For this reason, our model is estimated including the 

industry – specific composite dummies, as created above:   

 

∑
−

=

−+++++=
1

1
3210 *

m

j
itititititjjit uvtimelabcapIndY βββαα  (3.13) 

 

We therefore estimate the model including the products of industry dummies, as well 

as the first input products with the industry dummies, multiplying the first products by 

the industry dummies69. However, this solution is not completely satisfactory as 

industry production functions may also differ in input marginal productivities. We 

therefore estimate the model including the cross products of industry dummies, as 

well as the first input products with the industry dummies. So the model becomes:  
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We multiply the first and the cross – products by the industry dummies. In order to 

allow for industry – specific effects in the computation of the output elasticity for 

inputs, we have provided for the industry dummies to interact with the first – order 

terms. There are two goals, first to account for different industry production function 

(ind1 – ind12), and second to account for different marginal input productivities (cross 

                                                                                                                                            
Then  ε minus unity, is divided by the square root of the covariance, which is calculated as 

')()( λθλε VV =  in order to give 
)(

1

ε

ε

V
S

−
=  which has a t distribution. If this value is 

significantly smaller than unity, then there are decreasing returns to scale (DRS) and if significantly 

greater, there are increasing returns to scale (IRS). 

 
69 In order to allow for industry – specific effects in the computation of the output elasticity for inputs, 

we have provided for the industry dummies to interact with the first – order terms. 
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– products with industry dummies). The ind1 – ind12 dummies actually enter the 

equation by multiplying lncap to time by these variables and then entering these 

composite dummies to investigate whether factor inputs differ by industry. 

Furthermore, in order to analyze the determinants of productive efficiency, we relate 

the estimated productive efficiency to a number of explanatory variables70. 

 

As described in Coelli et al. (2005), the ability of a producer to convert inputs into 

outputs is often influenced by exogenous variables which characterize the 

environment in which production takes place. When accounting for these variables, it 

is useful to distinguish between non stochastic variables that are observable at the 

time key production decisions are made, and unforeseen stochastic variables which 

can be regarded as sources of production risk.  

 

Furthermore, one of the underlying objectives is to examine how efficiency 

explanatory performance of the industries has an impact on the industry’s technical 

efficiency. It is therefore important to explore what happens to the estimated model in 

the presence of efficiency explanatory performance dummy variables. In order to 

analyze the determinants of productive efficiency, we relate the estimated productive 

efficiency to a number of explanatory variables and this is achieved when efficiency 

explanatory performance dummy variables are included in the estimation. Under this 

model specification, we estimate different variations, so to investigate alternative 

model specifications.  

 

Moreover, as in Becchetti et al. (2003), since any industry may have in principle a 

different production function we add to the specification m-1 intercept dummies for 

the industries aggregated. More specifically the model is extended in order to include 

industry specific effects (by employing industry composite dummies), so as to 

examine differences in efficiency level among different industries. For this reason, 

our model is estimated including the industry – specific composite dummies. We 

therefore estimate the model including the products of industry dummies, as well as 

                                                 
70 This topic has been broadly examined in: Kokkinou A. (forthcoming) Productive Efficiency: An 

Industry Approach through Stochastic Frontier, International Journal of Economic Research. 
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the first input products with the industry dummies, multiplying the first products by 

the industry dummies71. The two goals, first to account for different industry 

production function (ind1 – ind12), and second to account for different marginal input 

productivities (the ind1 – ind12 dummies actually enter the equation by multiplying 

lncap to time by these variables). Furthermore, in order to analyze the determinants of 

productive efficiency, we relate the estimated productive efficiency to a number of 

explanatory variables72.  

 

Under these model specifications, we estimate three different model variations, so to 

investigate alternative model specifications73: 

 
1. Time-invariant technical efficiency  

2. Time-variant technical efficiency (Battese and Coelli, 1992), with only time as 

efficiency explaining variable 

3. Time-variant technical efficiency (Battese and Coelli, 1995), with alternative 

factors as efficiency explaining variables 

 

Time invariant inefficiency models are restrictive, since we would expect industries to 

learn from experience and for their technical efficiency levels to change 

systematically over time and would expect these changes to become more noticeable 

as time gets larger. For these reasons, we need to impose some structure on the 

inefficiency effects and consider time – varying technical efficiencies, incorporating 

‘learning-by doing’ behaviour (e.g. Pitt and Lee, 1981, Schmidt and Sickles, 1984, 

                                                 
71 In order to allow for industry – specific effects in the computation of the output elasticity for inputs, 

we have provided for the industry dummies to interact with the first – order terms. 

 
72 This topic has been broadly examined in: Kokkinou A. (forthcoming) Productive Efficiency: An 

Industry Approach through Stochastic Frontier, International Journal of Economic Research. 

 
73 A relevant topic has been broadly examined in: Kokkinou A. (2009f) Stochastic frontier analysis: 

empirical evidence on Greek productivity, 4th Hellenic Observatory PhD Symposium on 

Contemporary Greece & Cyprus, LSE, London. 
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Kumbhakar, 1987, Battese and Coelli, 1988, Cornwell, Schmidt and Sickles, 1990, 

Kumbhakar, 1990, Lee and Schmidt, 1993, Battese and Coelli, 1992)74.  

 

a. A first method (standard model) for dealing with observable efficiency explanatory 

variables is to allow them to directly influence only the stochastic component of the 

production frontier (Kumbhakar, Ghosh and McGuckin, 1991): 

 

ittiitit uvxY −+= β  (3.15) 

 

and  

( )2,~ uitti zNu σγ  (3.16) 

 

b. A second method (extended model) to account for non-stochastic efficiency 

explanatory variables is to incorporate them directly into the non-stochastic 

component of the production frontier:  

 

ittiititit uvzxY −++= γβ  (3.17) 

 

and  

( )2,~ uitti zNu σγ  (3.18) 

 

where zit is a vector of efficiency explanatory variables and γ is a vector of unknown 

parameters.  

 

To conclude, these two primary model specifications considered are an error 

components specification with time-varying efficiencies permitted (Battese and 

Coelli, 1992), and a model specification in which the producer effects are directly 

influenced by a number of variables (Battese and Coelli, 1995).  Furthermore, we 

                                                 
74 This topic has been broadly examined in: Kokkinou A. (2010f) Productive efficiency differentials: 

An empirical approach across industries. European Network on Industrial Policy International 

Conference (EUNIP), 2010, Spain. 
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distinguish between two variable groups used in the econometric analysis, following a 

value added approach: a) core input variables, b) optional efficiency determining 

variables75, as explained in the  methodology analysis which follows. 

3.3. Methodology 

In order to take the efficiency determining variables into consideration, we have to 

accommodate them into the stochastic frontier model. There are several methods for 

this. One method suggests the efficiency comparison of a producer with those 

producers in the sample that have equal or less value of the efficiency explanatory 

variable. In order to be able to apply this method, the efficiency explanatory variable 

should be ordered from the least to the most detrimental effect upon efficiency 

(categorical variable) (Coelli et al., 1998). An alternative method can also be used to 

include the efficiency explanatory variables, directly into the stochastic frontier model 

formulation. The efficiency explanatory variables may be included either as inputs, 

outputs or neutral variables and they may be assumed to be discretionary (under the 

control of the manager) or not (see Coelli et al, 1998, pps. 168-170, for further 

discussion). Finally, the two-stage method can be applied. This method involves the 

computation of a stochastic frontier problem in the first-stage analysis, involving only 

the traditional inputs and outputs. In the second-stage analysis the efficiency scores 

from the first-stage are regressed upon the efficiency explanatory variables. The sign 

of the coefficients of the efficiency explanatory variables indicate the direction of the 

influence, and standard hypothesis tests can be used to assess the strength of the 

relationship (Coelli et al., 1998). One disadvantage of the two stage method is that if 

the variables used in the first-stage are highly correlated with the second-stage 

variables, then the results are likely to be biased due to multicollinearity. Another 

disadvantage is that it is only considers radial inefficiency and ignores the slacks76.  

                                                 
75 This topic has been broadly examined in: Kokkinou A. (2010g) Inside to the Productive Efficiency: 

Theory and Models, European Asian Economics, Finance, Econometrics and Accounting Science 

Association, 2010, Beijing. 

 
76 Despite of these disadvantages, Coelli et al. (1998), recommend the two-stage method in most cases, 

because:  

(a) It can accommodate more than one variable;  
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Analyzing the sign and magnitude of technical change is parametrically accomplished 

by including a time indicator in the time varying frontier model. By linking the 

stochastic approach to a time trend specification we are able to disentangle the effect 

of technical change from that of technical efficiency change (Kumbhakar 1990, 

Battese and Coelli 1992). In the literature a Hicks neutral technical change 

specification is differentiated from a non – neutral or biased technical change model 

specification.  

 

The latter allows for the specification investigation of the assumption that technical 

change is biased in favor of certain input(s) with respect to a single output production 

framework. By following this non – neutral modeling specification we consequently 

include beside first and second order time related terms time and time2 also terms 

involving the interactions of the variable inputs and time. As in Helvoigt and Adams 

(2009), the inclusion of time and time2 in the production function is intended to 

measure the rate of neutral technical change over the data.  

 

Likewise, the coefficients on the interaction terms between time and each of the 

inputs in the frontier production function are intended to measure the rate of biased 

technical change. Helvoigt and Adams (2009) also assert that, whereas, the time 

variable in the frontier production function captures technical change over time (i.e., 

shifting of the production frontier), in the inefficiency equation the time variable is 

intended to capture inefficiency change (i.e., changes in the distance from the industry 

production frontier). The negative (positive) sign on the coefficient of the time 

variable in the inefficiency equation indicates that the distance of the typical 

production unit from the technical frontier decreased (increased).  

 

                                                                                                                                            
(b) It can accommodate both continuous and categorical variables;  

(c) It does not make prior assumptions regarding the influence direction of the categorical variable;  

(d) Hypothesis tests may be applied to see if the variables have a significant influence upon 

efficiencies;  

(e) It is simple and therefore transparent. 
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Nevertheless, there are other competing specifications with respect to the 

measurement of technical change and total factor productivity available (Baltagi et al. 

1995, Kumbhakar and Heshmati 1996, Kumbhakar et al. 2000, Baltagi and Rich, 

2003, Baltagi et al., 2005, Kumbhakar 2004), which are based on Baltagi and Griffin 

(1988).  

 

Later, Kumbhakar (2004) extended this general index specification by adding the 

definition of TFP growth as an additional equation to be simultaneously estimated 

with the production system. Kumbhakar (2004) explicitly included the square term of 

the index α(time2) corresponding to the second order approximative nature of the 

translog production function.  

 

In the parametric specification of technology using production/cost/profit functions, a 

widely used practice has been to use quadratic function of time trend to represent 

technical change. Baltagi and Griffin (1988) has shown that if a panel data set is 

available, we could estimate a time specific parameter referring to the state of 

technology (general index of technical change) instead of using time trend.   

 

The popularity of time trend model comes from the fact that it is adequate in revealing 

long-run trends in technical change (which may be caused by economy wide, 

industry-specific or producer -specific product or process innovations and demand or 

supply shocks). In both approaches technical change is modeled entirely in terms of 

time and they fail to account for determinants of technological change and 

productivity growth. If two producers have the same inputs then their technical 

change will also be the same. In a general index model determinants of technical 

change are not directly used in the model. These are used in a second stage regression, 

therefore fails to take into account their direct or interactive effects with the 

traditional inputs. In an attempt to remedy the above limitations, our model is 

concerned with specification and estimation of technical efficiency.  

 

The results obtained suggest that efficiency levels in different industries were not 

always the result of homogeneous influences. The distribution in efficiency across 
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time is considered, as is the question of whether efficiency levels were converging 

over time.  

 

Thus, our approach undertakes a (one-step) estimation of the stochastic frontier model 

in conjunction with the parameters of the variables included to explain efficiency, 

allowing for balanced panel data, as developed by Battese and Coelli (1993, 1995), 

which is the only model allowing for one-step analysis77.  

 

The inefficiency effects are defined as a function of the producer specific factors (as 

in the two-stage approach) but they are then incorporated directly into the MLE. 

Consequently, in this approach, either the mean or the variance of the inefficiency 

error component is hypothesised to be a function of the explanatory variables. More 

specifically, the model decomposes TFP growth into two components: technological 

growth (essentially, a shift of production possibility frontier, set by best-practice 

enterprises) and inefficiency changes (i.e., deviations of actual output level from the 

production possibility frontier). That is, the model accommodates not only 

heteroscedasticity but also allows the possibility that a producer may not always 

produce the maximum possible output, given the inputs78.  

 

In our model, factors that influence efficiency include ICT capital effects, ICT capital 

share effects, as well as economy openness, Research and Development stock, and 

capital intensity effects. To analyze these effects, we assume a standard stochastic 

                                                 
77 Bhattacharyya et al. (1997) pointed out that when employing regression analysis in the second step to 

explain the variation of the efficiency scores, it is likely that the included explanatory variables fail to 

explain the entire variation in the calculated efficiencies and the unexplained variation mixes with the 

regression residuals, adversely affecting statistical inference. They propose the use of a stochastic 

frontier regression model, which allows for the decomposition of the variation of the calculated 

efficiencies into a systematic component and a random component.  

 
78 However, several studies focus either on industry characteristics (e.g. Roudaut, 2006), or size effects 

(e.g. Oczkowski and Sharma, 2005; Söderbomand and Teal, 2004). However, using the stochastic 

possibility frontier approach at an industry level gives a better understanding of inefficiencies emerging 

from inefficiencies in using factor inputs. 
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frontier model in which the distribution of technical inefficiency may depend on 

exogenous variables79, examining the following alternative variations80: 

 

Table 3.1. Models with alternative variables in inefficiency effects 
 
Model  Efficiency determinants  Model  

a. Time invariant   

 none [1] 

b. Battese and Coelli (1992)   

 time [2] 

c. Battese and Coelli (1995)   

 ICT capital [3] 

 Economy Openness [4] 

 Capital Intensity [5] 

 R&D stock [6] 

 time, ICT capital [7] 

 time, Economy Openness [8] 

 time, Capital Intensity [9] 

 time, R&D stock [10] 

                                                 
79 Regarding panel data, in contrast to other stochastic frontier frameworks, the major advantage of this 

approach is that it does not require any a priori assumption regarding the distribution of efficiency 

across decision making units, as in the approach followed by Stephan et al. (2008)79. Unlike most 

studies, we estimate efficiencies as producer-specific fixed effects as proposed by Schmidt and Sickles 

(1984). 

 
80 Empirical evidence shows that accounting for heterogeneity has substantial impacts on the measured 

efficiency levels. The traditional models tend to underestimate the efficiency as the time-invariant 

unobserved factors are pushed into the inefficiency component of the model. However, later models 

treat most of the time-invariant factors as unobserved heterogeneity in the producer-specific random or 

fixed effect. Greene (2007a) notes that the truth lies somewhere between the two extremes. Farsi et al. 

(2006) note that the specification of inefficiency and heterogeneity relies on non-testable assumptions. 

In summary, there is no conclusive evidence in favor of either specification leading to the conclusion 

that alternative panel data models (the traditional and the more recent models accounting for 

heterogeneity) can be used to obtain approximate lower and upper bounds for producers’ efficiency 

scores (Farsi et al., 2006). 
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 ICT capital and  Economy Openness [11] 

 ICT capital, Economy Openness, and Capital Intensity [12] 

 time, ICT capital, and Capital Intensity [13] 

 ICT capital, Economy Openness [14] 

 Capital Intensity, ICT capital [15] 

 Economy Openness, R&D Stock [16] 

 

Source: Own elaboration 

 

In Battese and Coelli (1992) time - varying inefficiency model, a monotonic time 

trend is specified to inefficiency term. In Battese and Coelli (1995) model considers 

the possible impact of producer – specific factors in the variances of inefficiency 

(heteroskedasticity). The translog production frontier used in this study follows 

Battese and Coelli (1995) stochastic production frontier model by including a time 

variable in the deterministic kernel of the stochastic production frontier to capture the 

effect of technical progress. According to Battese and Coelli (1995), the explanatory 

variables can include intercept terms or any variables in both the frontier and the 

model for the inefficiency effects, provided the inefficiency effects are stochastic81.  

According to Coelli et al. (2005) it is convenient for estimation purposes, a problem 

with assuming uit are independently distributed. However, for many industries the 

independence assumption is unrealistic – all other things being equal, it is expected 

that efficient producers to remain reasonably efficient from period to period and it is 

suggested that inefficient producers improve their efficiency levels over time. On the 

other hand, time invariant inefficiency models are somewhat restrictive, we would 

expect managers to learn from experience and for their technical efficiency levels to 

change systematically over time and would expect these changes to become more 

noticeable as time gets larger. For these reasons, we need to impose some structure on 

the inefficiency effects and consider time – varying technical efficiencies 

(incorporating ‘learning – by doing’ behaviour). Consequently, the stochastic 

production frontier model is extended to allow data to be modeled over time with time 

                                                 
81 Battese (1998) further notes that the non-neutral models have important bearing upon the estimation 

of the elasticity of the mean output with respect to an input variable, which is also an explanatory 

variable for the inefficiency effects. 
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– invariant technical efficiency (e.g. Pitt and Lee, 1981, Schmidt and Sickles, 1984, 

Kumbhakar, 1987, Battese and Coelli, 1988) or time – varying technical efficiency 

(e.g. Cornwell, Schmidt and Sickles, 1990, Kumbhakar, 1990, Lee and Schmidt, 

1993, Battese and Coelli, 1992)82.  

 

The parameters of the stochastic frontier model and the inefficiency effects model are 

estimated using maximum likelihood estimation (MLE), which is the preferred 

estimation technique whenever possible (Coelli, Rao and Battese 1998, Battese and 

Coelli, 1993)83. The parameters estimated include β, λ and σ2 where ( )vu σσλ =  

and ( )222
vu += σσ .  Moreover, the model estimation results provide the joint 

probability density function (pdf) also known as the likelihood function. The 

likelihood function expresses the likelihood of observing the sample observations as a 

function of the unknown parameters β and σ2. The maximum likelihood (ML) 

estimator of β is obtained by maximizing this function with respect to β84. 

Specifically, the maximum likelihood estimator can be shown to be consistent and 

asymptotically normally distributed with variances that are no larger than the 

variances of any other consistent and asymptotically normally distributed estimator 

(i.e. the ML estimator is asymptotically efficient).  

3.3.1. Existence of Technical Efficiency: The parameter λλλλ  

A main instrument to measure the inefficiency component of the model is the 

parameterλ:   

 
                                                 
82 Coelli et al.(2005) classify different structures according to whether they are time – invariant or time 

– varying and provide a broad analysis of time – invariant inefficiency models, as well as time – 

varying inefficiency models. 

 
83 According to Battese and Coelli (1995), the explanatory variables can include intercept terms or any 

variables in both the frontier and the model for the inefficiency effects, provided the inefficiency 

effects are stochastic.  

 
84 Thus, in the special case of the classical linear regression model with normally distributed errors, the 

ML estimator for β is identical to the OLS estimator. 
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σ
σ

λ =  (3.19) 

 

The statistical significance of λ obtained from the ML estimates indicates the 

existence of a stochastic frontier function (Schmidt and Lin, 1984)85. If λ is 

statistically different from zero, it implies that the difference between the observed 

and the frontier production is dominated by technical inefficiency86. If λ is not 

statistically significant from zero, it implies that any difference in the production is 

attributed solely to symmetric random errors. In other words, industries operating on 

the frontier are accepted to be technically efficient and except for random 

disturbances, are receiving maximum output response for the combinations of the 

inputs used.  

 

In addition to testing hypotheses concerning the variable parameters, stochastic 

frontier analysis is interested in testing for the absence of inefficiency effects (Coelli 

et al., 2005). If the model has been estimated using the method of ML, we can test 

such a hypothesis using a simple z – test (because unconstrained ML estimators are 

asymptotically normally distributed).  

3.3.2. Measurement of Technical Efficiency: The parameter γγγγ 

Technical efficiency can be measured using a variance ratio parameter denoted by γ as 

follows (Battese and Corra, 1977):  

 

2

2

σ
σ

γ u=  (3.20) 

                                                 
85 If the parameter λ is significant, this indicates that the use of the frontier production function is 

appropriate.  

 
86 The parameter λ is an indication that the one sided error term u dominates the symmetric error v, so 

variation in actual production comes from differences in industries management practice rather than 

random variability.  
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where 222
vu σσσ +=  , ( ) 2

1
22
vu σσσ +=  and 10 ≤≤ γ .  

 
 

Using the composed error terms of the stochastic frontier model, γ defines the total 

variation in output from the frontier level of output attributed to technical efficiency87 

indicating the ratio of the unexplained error and the total error of the regression 

(Aigner, Lovell, Schmidt, 1977). The variance parameter γ captures the total output 

effect of technical efficiency, suggesting the percentage (%) of the residual which is 

due to inefficiency. Considering the variance parameter γ lies on the interval [0,1], if 

the estimate is close to 1 and significant, this indicates that most of the total variation 

in output is attributable to technical efficiency. In case of γ, there are two alternative 

hypotheses tested: 

 

� Under the null hypotheses the inefficiency effects are not present (H0: γ=0) 

implying that industries are fully efficient. The model is equivalent to the 

traditional average response function without the technical inefficiency effects 

term, u (Coelli at el., 1998).  

� The alternative hypothesis, (H1: γ>0), implies that inefficiency effects are present 

and hence u is included in the estimation. 

 

The parameters of the stochastic frontier model are mainly estimated using maximum 

likelihood estimation (MLE) and is the preferred estimation technique whenever 

possible (Coelli, Rao and Battese 1998). Using the composed error terms of the 

stochastic frontier model (1), the total variation in output from the frontier level of 

output attributed to technical efficiency is defined by: 

 

( )22

2

vu

u

σσ
σγ

+
=  (3.21) 

In the truncated and half-normal distribution, the ratio of industry specific variability 

to total variability, γ, is positive and significant, implying that industry specific 

                                                 
87 The value of e.g.  γ = 0.12 implies that 12% of the discrepancies between the observed and frontier 

values of output is due to technical inefficiencies. 
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technical efficiency is important in explaining the total variability of output produced. 

This is done with the calculation of the maximum likelihood estimates for the 

parameters of the stochastic frontier model.  

 

3.3.3. Measurement of Technical Efficiency: The LR – test parameter  

 

Before proceeding with the estimation of the SF models, it is important to ascertain 

statistically whether technical inefficiency effects are indeed present in the model. 

The model for inefficiency effects can only be estimated if the inefficiency effects are 

stochastic and have a particular distributional specification. Hence, there is growing 

interest to test the null hypotheses that the inefficiency effects are not stochastic; the 

inefficiency effects are not present and the coefficients of the variables in the model 

for the inefficiency effects are zero. These null hypotheses are tested through 

imposing restrictions on the model and using using the generalized likelihood ratio 

statistic (LR - test) to determine the significance each of the restrictions (Greene, 2003 

a,b, Coelli, 1998).  

 

A series of formal hypothesis tests are conducted to determine the distribution of the 

random variables associated with the existence of technical inefficiency and the 

residual error term. These are tested through imposing restrictions on the model and 

using the generalized likelihood-ratio statistic to determine the significance of the 

restriction.  

 

The generalized likelihood ratio statistic (LR - test) is given by88:  
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88 Various tests of null hypotheses for the parameters in the frontier production functions and in the 

inefficiency models are performed using the generalised likelihood-ratio test statistic.  
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where [ ])(ln 0HL and [ ])(ln 1HL are the values of the log-likelihood function for the 

frontier model under the null and alternative hypotheses. The LR - test indicates the 

ratio of standard deviation attributable to inefficiency relative to the standard 

deviation due to random noise. A straightforward implication of LR - test →0 is that 

either σu
2 goes to zero or σv

2 goes to infinity. Hence, no inefficiency exists and all 

deviations are due to random noise. Likewise, for LR - test →∞ we note that either 

σu
2 →∞ or σv

2 →0, which implies that all deviation are explained by inefficiency. 

Then, inefficiency is deterministic and resembles approaches excluding random 

noise89, such as DEA (Koetter, 2006).  

 

The LR - test statistic is non-negative, and follows 2
rχ distribution under the null 

hypothesis, where r denotes the number of restrictions. However, if the null 

hypothesis is true, the LR - test has approximately chi – square (or mixed square) 

distribution with degrees of freedom equal to the difference between the parameters 

estimated under H1 and H0, respectively. If the null hypothesis involves γ =0, namely 

the inefficiency effects are absent from the model, as specified by the null hypothesis, 

H0: γ=δ0=δi=0, then LR - test is approximately distributed according to a mixed chi-

square distribution with i+1  degrees of freedom, the number of degrees of freedom 

given by the number of restrictions imposed (Coelli, 1995) because γ =0 is a value on 

the boundary of the parameter space for γ. Here the log-likelihood ratio of the half-

normal model is that of the null hypothesis, while the log-likelihood ratio of truncated 

normal model is that of the alternative hypothesis. In this case, critical values for the 

generalized likelihood-ratio test are obtained from Table 1 of Kodde and Palm (1986). 

 

3.4. Hypothesis Testing  

 
To test the general hypotheses that inefficiency effects are either absent or present, or 

have a simpler distribution than we have assumed, we use one – sided generalized 

likelihood – ratio tests. Results from these tests provide evidence to reject/accept the 

                                                 
89 An insignificant estimate of LR - test means that no inefficiency prevails and all of the error is due to 

random noise and specification of a stochastic frontier model is inappropriate. 
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hypotheses: that inefficiency effects are absent, that observed inefficiencies have no 

random component and that the efficiency explanatory (socioeconomic) 

characteristics of industries are not jointly significant in explaining observed patterns 

of inefficiency. If we reject, it means that inefficiencies are present, that these 

inefficiencies have a stochastic component, and that the non – stochastic component 

of these inefficiencies is systematically related to certain characteristics of the 

observed industries. We also estimate the information criteria for each estimated 

model, namely, the Akaike information criterion, the Bayesian Schwarz information 

criterion and the Hannan – Quinn criterion (model selection criteria). These criteria 

attempt to answer the question regrading the overall model fit. The criteria differ in 

how each of these aspects is measured and weighted.  
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The Akaike information criterion (AIC) is estimated as: 
n

kML 2)(ˆln2 +− β  .  

 

The Bayesian Schwarz information criterion (BIC) is estimated as: 

n

knML )ln()(ˆln2 +− β .  

 

The Hannan – Quinn criterion (HQIC) is estimated as: 

)ln(ln2ln nk
n

RSS
nHQIC +







= ,  

 

where k is the number of parameters and n is the sample size90. Information criteria 

are often used as a guide in model selection (Aznar Grasa 1989). Information criteria 

are often used as a guide in model selection. The notion of an information criterion is 

to provide a metric that strikes a balance between goodness of fit and a small number 

of parameters. The most accurate models in stochastic frontier estimation present the 

lowest value of each of these criteria (i.e. minimize the criteria).  

 

As far as the inefficiency effects presence, in this estimation, we use the λ - 

parameterization of Aigner, Lovell and Schmidt (1977), 0:0 =λH  and 0:1 >λH . 

The test statistic is: )1,0(,
)(

N
se

z
λ

λ
=  , where λ is the ML estimator of λ and 

)(λse is the estimator for its standard error.  

 

The statistical significance of λ obtained from the ML estimates indicates the 

existence of a stochastic frontier function (Schmidt and Lin, 1984). If  λ is statistically 

different from zero, it implies that the difference between the observed and the 

frontier production is dominated by technical inefficiency. If λ is not statistically 

significant from zero, this implies that any difference in the production is attributed 

                                                 
90 In general, the more variables included in the regression, the smaller will be the RSS. But if a 

variable only contributes marginally to the reduction of the RSS, it should not be included.  
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solely to symmetric random errors. In other words, industries are operating on the 

frontier, are technically efficient and except fro random disturbances, are receiving 

maximum output response for the combinations of the bundle of inputs used.  

 

The ratio of industry specific variability to total variability, γ, shows the degree in 

which industry specific technical efficiency is important in explaining the total 

variability of output produced. The value of γ estimates the percentage of the 

discrepancies between the observed and the maximum frontier values of output is due 

to the shortfall of realized output from the frontier is primarily due to factors that are 

within the control of the industry. In other words, γ measures total variations in output 

from the frontier attributable to technical efficiency91. 

 

One can also test whether any form of stochastic frontier production function is 

required at all by testing the significance of the γ parameter.92  If the null hypothesis, 

that γ equals zero, is accepted, this would indicate that 2
uσ  is zero and hence that the 

Uit term should be removed from the model, leaving a specification with parameters 

that can be consistently estimated using ordinary least squares.  

3.5. Concluding Remarks 

The objective of this chapter is to estimate the Transcendental Logarithmic 

Production Function of manufacturing industries in selected E.U. economies, 

considering a panel data model for inefficiency effects in stochastic production 

frontiers based on the Battese and Coelli (1992, 1995) models, providing translog 

effects, as well as industry effects.  

                                                 
91 One can also test whether any form of stochastic frontier production function is required at all by 

testing the significance of the γ parameter.91  If the null hypothesis, that γ equals zero, is accepted, this 

would indicate that 2
uσ  is zero and hence that the Uit term should be removed from the model, leaving 

a specification with parameters that can be consistently estimated using ordinary least squares.  

 
92It should be noted that any likelihood ratio test statistic involving a null hypothesis which includes the 

restriction that γ is zero does not have a chi-square distribution because the restriction defines a point 

on the boundary of the parameter space.  In this case the likelihood ratio statistic has been shown to 

have a mixed chi-square distribution.  For more on this point see Lee (1993). 
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More specifically, this chapter estimates stochastic parametric frontiers for which the 

producer effects are first an exponential function of time, followed by the estimation 

of producer effects as an exponential function of time and related exogenous variables 

(efficiency explanatory factors). The model decomposes technical efficiency into two 

components: technological growth (essentially, a shift of production possibility 

frontier, set by best-practice industries) and inefficiency changes (i.e., deviations of 

actual output level from the production possibility frontier). The estimated model 

accommodates not only heteroscedasticity but also allows the possibility that an 

industry may not always produce the maximum possible output, given the inputs 

available.  

 

Our analysis presents different alternative models for technical efficiency estimations, 

as well as their empirical results. The alternative models are being compared 

according to their results regarding the evolution of technical change during 1980 - 

2005, the estimation of technical efficiency, as well as the distribution of technical 

efficiency.  The chapter begins with a description of the model specifications, the data 

set, and the definition of the variables, along with their descriptive statistics. Then the 

empirical model is formed with estimation results for different alternative model 

specifications, providing the industry -level estimates of technical efficiency using the 

time-varying inefficiency model within a composite error framework. Further, factors 

that determine variations of technical efficiency are established and a comparison of 

technical efficiency is made, both before and after accounting for different 

explanatory variables in the inefficiency term. This includes reporting the estimated 

technical efficiency of an industry, the discussion of causes of variations in efficiency 

explanatory efficiency and discussion of the conditional efficiency.  

 

More specifically the model is extended in order to include industry specific effects 

(by employing industry composite dummies), so as to examine differences in 

efficiency level among different industries. For this reason, our model is estimated 

including the industry – specific composite dummies. The results include reporting 

the estimated technical efficiency and the related explanatory variables. 
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 Chapter 4 
 

 Stochastic Frontier Models: Industrial Context 

Abstract 

In stochastic frontier model analysis it is acknowledged that the estimation of production functions 

must respect the fact that actual production cannot exceed maximum possible production given input 

quantities. Consequently, one of the main questions is to investigate the relationship between 

inefficiency and a number of factors which are likely to be determinants, and measure the extent to 

which they contribute to the presence of inefficiency. Overall, these determining factors characterize 

the process of technological change. Stochastic frontier models assume that producers operate under 

the same production technology and that the inefficiency distribution across individuals and time are 

homogeneous. Estimation of technical efficiency has been the subject of research in many empirical 

studies on industrial productivity, contributing to the theoretical development and empirical application 

of SFA at both the firm and industry levels, with the purpose of screening out the external effects and 

statistical noise from the producer’s performance and achieving a more accurate efficiency measure 

(Wang, 2000). Following these fundamental approaches, there has been a rapid increase in the volume 

of research on analysis of efficiency in production, both in theoretical and empirical research. Most of 

the literature focused mainly on stochastic frontier model with distributional assumptions by which 

efficiency effects can be separated from stochastic element in the model and for this reason a 

distributional assumption has to be made. Unobservable individual effects also play an important role 

in the estimation of panel stochastic frontier models. In contrast to the conventional panel data 

literature, however, studies using stochastic frontier models often interpret individual effects as 

inefficiency (Schmidt and Sickles, 1984), such as technical inefficiency in a stochastic production 

frontier model.  

 

Chapter 4 focuses on reviewing the stochastic frontier analysis literature regarding estimating 

inefficiency it industrial level, as well as explaining producer heterogeneity along with the relationships 

with productive efficiency level. The chapter begins with a general overview of the main research 

papers on estimating productive efficiency in different industries, both in aggregate and disaggregate 

level, providing the main hypotheses and results of each case. Then, the chapter continues with 

explaining producer heterogeneity, as well as the main determining factors towards efficiency 

differentiations.  

 

Moreover, this chapter analyses the institutional context of the thesis, which lies within European 

industry and science and technology, where an important focus of policy and research interest has a 

significant role of innovation creation and diffusion and trade openness. Since all of these issues are 

important for the thesis, this chapter discusses the institutional context regarding the thesis research. 
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More specifically, this chapter also presents a discussion of the environment, institutions and policy 

issues, to adequately place the thesis research application within this institutional context, focusing on 

the institutional setting, namely European countries and industries, as well as literature relating to 

innovation and industrial policy and practice in European Union. 

 

This chapter also provides an overview of the specific innovation policies that are implemented at 

European level, highlighting, where possible, the connections between these policies and productive 

efficiency. More specifically, Chapter 4 describes the main kinds of policy interventions that are 

implemented, providing at the same time some useful elements in order to understand the assumptions 

and theories which underpin them. This chapter also presents a brief survey of the choices concerning 

industrial and innovation policy regarding technical efficiency enhancement, describing the 

instruments, the actors involved in their preparation, the actions undertaken – both those explicitly 

identified as ‘industrial’ and ‘innovation policy’ and those that, although promoted in the context of 

other policies, affect the same channels or pursue similar aims.  

 



 133 

4.1. Introduction 

 

As analysed in the previous two chapters, in the standard stochastic frontier model it 

is acknowledged that the estimation of production functions must respect the fact that 

actual production cannot exceed maximum possible production given input quantities. 

The central question of the efficiency methodology is the following: first one has to fit 

the data to a specific frontier and from it compute the producer’s efficiency 

measurements comparing the observed values with the optimum values defined by the 

estimated frontier. A question of interest is whether inefficiency occurs randomly 

across producers, or whether some producers have predictably higher levels of 

inefficiency than others. If the occurrence of inefficiency is not totally random, then it 

should be possible to identify factors that contribute to the existence of inefficiency 

(Reifschneider and Stevenson, 1991). The important task is to relate inefficiency to a 

number of factors that are likely to be determinants, and measure the extent to which 

they contribute to the presence of inefficiency. 

 

Estimation of technical efficiency has been the subject of research in many empirical 

studies on industrial productivity (Hesmati and Kumbhakar, 2010). Aigner, Lovell, 

and Schmidt (1977), Battese and Coelli (1992, 1995), Coelli (1995), Kumbhakar and 

Lovell (2000), and Ahn, Lee, and Schmidt (2001) contributed to the theoretical 

development and empirical application of SFA at both the producer and industry 

levels. Moreover, Fried, Schmidt, and Yaisawarng (1999) and Fried, Lovell, Schmidt, 

and Yaisawarng (2002) have proposed various methods, which involve the use of 

SFA for the purpose of screening out the external effects and statistical noise from the 

producer’s performance and achieving a more accurate efficiency measure (Wang, 

2000). Following these foundamental approaches, there has been a rapid increase in 

the volume of research on analysis of efficiency in production, both in theoretical and 

empirical research.  

 

Empirical attention to production functions at a disaggregated level is a literature that 

began to emerge in the 1960s, i.e. Hildebrand and Liu (1965) and Zellner and 

Revankar (1969). Since early, stochastic frontier production analysis was employed 
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by researchers in order to estimate industry and producer efficiency and stochastic 

frontier models have been applied and modified in industrial research (e.g. Bagi and 

Huang, 1983; Battese and Corra, 1977; Kalirajan, 1981; Tyler and Lung-Fei (1979); 

Waldman, 1984;  Färe et al., 1985; Kirkley et al., 1995; Coelli et al., 1998). Cornwell 

et al. (1990) and Kumbhakar (1991) were among the first to propose a stochastic 

production frontier model with time varying technical efficiency. Stochastic frontier 

approach has found wide acceptance within the industrial settings (Battese and Coelli, 

1992; Coelli and Battese, 1996), because of their consistency with theory, versatility 

and relative ease of estimation and there have been numerous studies of the frontiers 

literature including Førsund et al. (1980), Greene (1993, 1997), Bauer (1990 a,b), 

Battese (1992), Schmidt (1985), Cornwell and Schmidt (1996), Kalirajan and Shand 

(1999), Murillo-Zamurano (2004), Baten et al. (2009), Kumbhakar and Lovell (2000), 

Coelli, Rao and Battese (1998) and Fried et al. (2008). 

 

Most of the literature focused mainly on stochastic frontier model with distributional 

assumptions by which efficiency effects can be separated from stochastic element in 

the model and for this reason a distributional assumption has to be made (Bauer 1990 

a,b), i.e.: exponential distribution (Meeusen and van den Broeck 1977); normal 

distribution truncated at zero (Aigner, Lovell and Schmidt 1977); a half-normal 

distribution truncated at zero (Jondrow et al. 1982) and two-parameter Gamma or 

Normal distribution (Greene 1990). However, these are computationally more 

complex, there are no priori reasons for choosing one distributional form over the 

other, and all have advantages and disadvantages (Coelli, Rao and Battese 1998).  

 

This chapter focuses on reviewing the stochastic frontier analysis literature regarding 

estimating inefficiency it industrial level, as well as explaining producer heterogeneity 

along with the relationships with productive efficiency level. The chapter begins with 

a general overview of the main research papers on estimating productive efficiency in 

different industries, providing the main hypotheses and results of each case. Then, the 

chapter continues with explaining producer heterogeneity, as well as the main 

deterring factors.  
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4.2. Heterogeneity and Aggregation 

The empirical methods of frontier and non-frontier production functions were 

primarily developed to be used for analyses of efficiency mainly across different 

producers, and not across industries and countires using aggregate data. Such an 

aggregation across industries and countries may create significant problems because 

of heterogeneity within the industry or the country. For example, while the production 

technology can perhaps be assumed to be similar witin a given industry, this is not the 

case when data for different regions, and particularly industries, are pooled. What it is 

important is to acknowledge the potential problems which it generates and attempt to 

address these through the empirical methiods and framework. Recent contributions 

include Eberhardt and Teal (2011) and Oh (2012), who demonstrate the serious 

implications of such aggregation for estimation both of the frontier and efficiency. 

Empirical estimation should take into consideration that there is likely to be some 

form of aggregation bias. As also becomes apparent from the analysis by Oh (2012), 

if SFA approach is used for the same industries and countries, but in one case 

aggregate industry-level data is used, and in another firm-level data is used, the results 

will be different. This is meant to show the impacts of aggregation bias, on the basis, 

that firm-level data adds up to the industry-level but smooths out firm-level 

heterogeneity.      

 

Eberhardt and Teal (2011) present two general empirical frameworks for cross-

country growth and productivity analysis and demonstrate that they encompass the 

various approaches in the growth empirics literature of the past two decades. 

Eberhardt and Teal (2011) argue that there are a number of important reasons why the 

standard cross-country growth regression framework needs to be reconsidered. 

Intuitively, the heterogeneity in production technology could be taken to mean that 

countries can choose an appropriate production technology from a menu of feasible 

options. Further, the cross-country heterogeneity in TFP relates to differences both in 

the underlying processes that make up TFP and in the impact of those processes on 

output. 
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4.3. Estimating Efficiency at industrial aggregate level 

Estimation of technical efficiency has been the subject of research in many empirical 

studies on industrial productivity, contributing to the theoretical development and 

empirical application of SFA at industry levels, with the purpose of screening out the 

external effects and statistical noise from the producer’s performance and achieving a 

more accurate efficiency measure. Empirical literature based on aggregate data, uses 

empirical models that are very similar to the work in this thesis, and are concerned 

with efficiency measurement for countries or regions in the European Union. Since 

the specific context of this thesis is on aggregate production functions and efficiency 

of industries/countries, relevant literature is that of western economies using 

aggregate rather than firm-level data, drawing reference to a recent literature that has 

spawned from Kumar and Russell (2002) using DEA and Kneller and Stevens (2006) 

using SFA. Other recent empirical contributions based on aggregate cross-country or 

cross-region data include: Koop (2001), Angeriz et al. (2006), Halkos and Tzeremes 

(2009), Ezcurra et al. (2009) and Bos et al. (2010), most of which focus on EU 

regions and countries. In addition, there are studies based on aggregate data focusing 

on specific EU countries: the UK (Driffield and Munday, 2001), Spain (Alvarez, 

2007; Puig-Junoy and Pinilla, 2008) and Denmark (Bhattacharjee et al., 2009). All of 

these articles are based on aggregate data, use empirical models that are very similar 

to the work in this thesis, and are concerned with efficiency measurement for 

countries in the EU. This chapter, exploring the theory of Stochastic Production 

Frontiers, especially discusses thoroughly the literature on aggregate data and 

efficiency measurement for countries, drawing links to the theory used in later 

chapters to discuss how the results in the thesis are new or different, and thereby 

highlight where the contribution of the thesis truly lies.  

 
.  
The process of output growth-either within countries or within industries within 

countries is still imperfectly understood. Standard economic models imply that the 

level of output by an economic entity should depend only on the inputs used. The new 

growth theory literature has emphasized factors such as technological spillovers, 

increasing returns, learning by doing, and unobserved inputs (e.g., human capital), 

whereas the empirical industrial organization literature (e.g., Caves and Barton 1990) 
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has emphasized the degree of openness of countries to imports and industry structure. 

Another aspect of efficiency measurement literature focuses on estimating productive 

efficiency at aggregate data level. Since this thesis focuses on aggregate data level, 

this literature is rather important, both for estimations using Data Envelopment 

Analysis (DEA) and Stochastic Frontier Analysis (SFA). 

 

An enormous body of research has attempted to explain why some countries or 

industries produce more with their inputs than do others. The empirical economic 

growth literature [Levine and Renelt (1992), and Persson and Tabellini (1994)] 

typically carried out cross-country regressions that attempt to explain economic 

growth using different sets of explanatory variables, both usimg DEA and SFA 

analysis.  

 

The seminal paper that applied DEA to the aggregate economy was Färe et al. (1994). 

Fare et al. (1994) use data envelopment analysis (DEA) to examine country-specific 

inefficiency in a subset of the OECD countries. In this paper, the aforementioned 

decomposition into the two components, noted above, is used to examine productivity 

growth in 17 Organization of Economic Cooperation and Development (OECD) 

countries in the post-war period. What is more, Färe et al. (1994) first applied 

production-frontier methods to empirical international economic growth. 

 

Koop, Osiewalski, and Steel (1999) carry out a similar efficiency analysis. However, 

neither article includes data on different industries within a country, and thus they are 

unable to approach the issues raised by this article. Furthermore, these articles assume 

a common world production frontier for real GDP. Given the large differences in the 

composition of GDP across countries, this assumption is at best a crude 

approximation. Caves and Barton (1990) use industrial data for manufacturing 

industries within the United States, but do not allow for ties between industries or for 

cross-country comparisons. Bernard and Jones (1996) use industrial data for OECD 

countries that are similar to those used in this thesis. The focus of Bernard and Jones 

(1996) article is on convergence of productivity and it is worth noting that the authors 

find striking differences across industries. The assumption of a common frontier is, in 

principle, testable (Durlauf and Johnson, 1995). But given the paucity of data and the 
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flexible specification adopted, such tests would have little power in the present case. 

From an economic point of view, the frontier is deterministic. However, factors such 

as measurement error exist and hence add an error term to the model. The addition of 

this error term makes the frontier stochastic, and the latter terminology is adopted to 

distinguish such models from those which assume that measurement error does not 

exist.  

 

Empirical contributions based on aggregate cross-country or cross-region data, most 

of which focus on EU regions and countries, include Koop (2001) who relates to 

aggregate production functions and efficiency of industries/ countries. Koop (2001) 

uses data from 11 countries for 19 years to investigate the forces driving output 

change in 6 manufacturing industries. A flexible model is adopted that allows for the 

decomposition of output changes into three types of change: technical, efficiency, and 

input. This framework allows, among other things, for the investigation of: 

 

� the relative roles of the three components of output growth in each industry,  

� the manner in which efficiency change moves over the business cycle, and  

� potential technical spillovers from one industry to another.  

 

The use of industrial data implies that Koop (2001) article has a different focus. Koop 

(2001) develops a modeling strategy and presents empirical evidence that sheds light 

on some of the points raised in both these literatures. A structural methodology is 

adopted that allows for the decomposition of output change into efficiency, technical, 

and input change using data on 6 manufacturing industries for 11 OECD countries. 

All these countries reasonably can be assumed to have access to the same technology 

in each industry, so for each industry, each country can be thought of as fac-ing the 

same production frontier. Koop (2001) considers a model that assumes independence 

across industries, but the general modeling strategy advocated allows for the 

possibility that production frontiers in the 6 industries move together. For the latter 

case, the degree to which technical change in one industry spills over to another 

industry can be measured. Data from 1970-1988 are available and examine patterns of 

efficiency change and technical change over time. 
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Koop (2001) aims to shed light on issues such as convergence and catch up and 

answer important questions such as, "What is driving output growth in an industry?" 

"What happens to efficiency over the business cycle?" "Is openness to trade an 

important factor in forcing economic efficiency?". Empirical results indicate: (1) non 

constant returns to scale seem to be present, (2) the marginal product of capital tends 

to be lower than the marginal product of labor, (3) technological change involves the 

marginal products of capital and labor changing over time, and (4) the various 

industries exhibit completely different production technologies. With regard to the 

decomposition, on average, positive technical change is found to play a key role in 

explaining output growth in all industries. Negative input change plays an important 

part in the stagnation of textiles and metals industries. On average, efficiency change 

has little role to play. However, these cross-country averages hide many interesting 

special cases that are discussed in detail.  

 

Koop (2001) article begins with a stochastic production frontier model where 

industrial output Y is a function of capital K and labor L and then seeks to determine 

what insights can be gained through the use of careful statistical techniques. In 

statistical terms, interest in this article centers on the conditional distribution of 

industrial Y given K and L, and economic theory guides the construction of the 

distribution. In other words, Koop (2001) imposes economic regularity conditions and 

assume inefficiency to have a one-sided distribution. The decomposition of output 

growth into components due to input, technical, and efficiency growth provides a 

convenient way of thinking about model extensions. For any new possible 

explanatory variable, one can ask whether it should affect: (1) the input component 

and thus should enter as an input, (2) the technical change component and thus should 

affect the frontier parameters directly, or (3) the efficiency component, in which case 

it should enter the efficiency distribution. This approach is in contrast to the cross-

sectional regression articles that consider a myriad of possible additional explanatory 

variables. Statistically, this translates into consideration of the distribution of Y 

conditional on K, L, and many other variables. However, the investigation of such a 

complicated distribution typically involves select-ing only a few out of a potentially 

enormous number of conditioning variables. Given the restrictiveness of such a 

statistical model and the lack of robustness in cross-country growth regressions (see 
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Levine and Renelt 1992), Koop (2001) argues that the present approach is, at the very 

least, a reasonable alternative. It is worth noting that the present approach can be 

thought of as using economic theory to move one step away from reduced-form 

regression approaches. The existence of a best practice technology that is non 

decreasing in inputs is the only economic theory used. Some theories of industrial 

organization (see Caves and Barton 1990), for example, imply that increased 

openness to imports should increase efficiency in an industry. This means that the 

openness variable should enter the efficiency distribution and not the production 

frontier itself.  

 

However, much of the empirical economic growth literature assumes constant returns 

to scale. For instance, the growth accounting literature typically imposes constant 

returns to scale and sets the marginal products of labor and capital equal to their 

shares in total income (Barro and Sala-I-Martin, 1995). Econometric approaches with 

constant returns to scale (Romer, 1994) also exist. A rough summary of the findings 

of both these approaches is that they impose constant returns to scale and find the 

marginal product of capital to be around 0.4, at least for the OECD countries (Barro 

and Sala-I-Martin, 1995). Furthermore, Koop, Osiewalski, and Steel (1999, 2000), 

using different data sets and models, find results that are consistent with those of 

Koop (2001).  

 

Koop (2001) is related to the growth accounting literature (Maddison 1987), which 

decomposes output growth into two parts: one explained by input changes and the 

other the unexplained residual, or "technical change." Growth accounting techniques 

have been used in a wide variety of empirical studies, and many of these articles have 

increased the understanding of economic growth. However, the interpretation of the 

unexplained residual as technical change is unreasonable unless it is assumed that all 

industries in all countries are producing on their frontiers. In contrast, by making 

some reasonable assumptions, the model of this article allows me to give a structural 

interpretation to the unexplained residual. Koop (200d1) interprets this residual as a 

combination of inefficiency and measurement error. Technical change is associated 

with the movement of the best-practice production frontier.  
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To conclude, Koop (2001) article is intended to be an empirical study of 

manufacturing output growth in OECD countries. However, it is also intended to 

develop and motivate new models and econometric techniques for working with 

industrial data. However, it is relevant to digress briefly to discuss more general 

modeling issues that might be relevant in other data sets. 

 

Koop (2001) explores the driving forces of output growth in six manufacturing 

industries during the 1970s and 1980s, while Kneller and Stevens (2006) investigate 

the sources of inefficiency in nine industries over the same period.  With the 

exception of Koop (2001), who estimates six frontiers for six industries, these studies 

all benchmark industries (countries) against a common production frontier. However, 

it may well be the case that not all industries share a single common frontier. Recent 

theoretical and empirical contributions (Basu and Weil, 1998; Los and Timmer, 2005) 

have stressed the ‘appropriateness’ of technology as industries (countries) choose the 

best technology available to them, given their input mix. Industries are members of 

the same technology club if their marginal productivity of labor and capital (the 

technology parameters that characterize the efficient production frontier) are the same 

for a given level of inputs. In other words, their input/output combinations can be 

described by the same production frontier (Jones, 2005). With the exception of a 

handful of studies that accommodate these technology clubs, therefore, allowing for 

parameter heterogeneity when estimating frontier or conventional production 

functions, the empirical (frontier) literature has largely ignored this issue.  

 

Bos et al. (2010) investigate the forces driving output growth in a panel of 

manufacturing industries over the period 1980–1997. Relevant past studies typically 

assume that: (i) industries use resources efficiently and (ii) the underlying production 

technology is the same for all industries. Technical change is a crucial component for 

growth for industries, while input (capital, in particular) growth plays an important 

role. Policy makers generally agree that higher R&D spending is desirable and are 

willing to subsidize and/or give tax credits to industries that engage in R&D. 

According to results, the effects of an increased R&D effort depend on the allocation 

of R&D tax credits/subsidies. Bos et al. (2010)  also find some evidence of a positive 

relationship between R&D and efficiency. Therefore, a preliminary conclusion can be 
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that increasing the R&D effort facilitates the absorption of existing technologies. 

However, increases in R&D effort do not always lead to increased technical growth.  

 

Bos et al. (2010) allow for different production technologies, differing from past 

attempts, which mainly relied on ex ante divisions to classify industries into different 

technology clubs, by endogenizing the technology club allocation, augmenting the 

stochastic frontier production model with a latent class structure. A logit model is 

used to condition group membership probabilities on technological effort as measured 

by R&D. As a result, technology parameters depend on the effect of the technological 

effort on club membership probabilities. Production function parameters differ across 

clubs and are estimated simultaneously with membership probabilities. Based on 

club-specific production parameters, Bos et al. (2010) identify technical, efficiency 

and input growth for endogenously determined technology clubs, introducing further 

flexibility to the model by permitting industries to switch between technology clubs 

overtime. The efficiency of industries in different technology clubs is estimated 

simultaneously, but relative to each club’s specific frontier. Thus, the latent class 

stochastic frontier model avoids the imposed assumption of a common production 

function for all industries, while still yielding results that are comparable across 

industries at a given point in time.  

 

Kumar and Russell (2002) suggest that economic growth convergence can be 

considered as the movements of countries toward a world production frontier. In 

Kumar and Russell (2002) analysis, the world production frontier is constructed using 

deterministic methods requiring no specification of functional form for the 

technology, nor any assumption about market structure or the absence of market 

imperfections. Then, using DEA analysis, they analyze the evolution of the cross-

country distribution of labor productivity, decomposing labor-productivity growth.  

More specifically, Kumar and Russell (2002) used production-frontier methods to 

analyze the evolution of the distribution of labor productivity in terms of 

decomposition into three components; technological change, technological catch-up, 

and capital accumulation. Labour-productivity growth is decomposed into 

technological change, technical efficiency change and a capital accumulation effect, 

and then they analyse the contribution of these components to convergence.  
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This approach originally employed by Kumar and Russell (2002) enables 

decomposing the growth of labor productivity growth into some components to 

empirically analyze economic growth, namely into efficiency change, technological 

change and capital deepening (Yamamura and Inyong, 2007): 

 

� technological catch-up (movements toward or away from the frontier): 

technological catch-up does not seem to have been a force for convergence as 

relatively rich as well as poor countries have benefited from catch-up. 

� technological change (shifts in the world production frontier): Technological 

change has not been neutral, apparently benefiting rich countries more than poor. 

� capital accumulation (movement along the frontier): It is primarily capital 

deepening, as opposed to technological change or catch-up, that has contributed 

the most to both growth and bipolar international divergence of economies. 

 

Kumar and Russell (2002) conducted not only regression analysis but also distribution 

hypothesis tests for examining the relative contribution of components of productivity 

changes to changes in the distribution of labor productivity. Through regression 

analysis, they examined how the initial output per worker has an effect upon these 

components. By using Penn World data, Kumar and Russell (2002) decomposed 

labor-productivity growth into the three components to construct a cross section 

dataset. They conduct a very simple regression model in which independent variables 

are the output per worker in 1965 and the dependent variables are the percentage 

change between 1965 and 1990 in output per worker, technology change, efficiency 

index, and the capital accumulation index. In spite of their long term analysis 

covering over 25-year period, the analysis of Kumar and Russell (2002) conducted a 

very simple regression model devoid of international time specific, countries’ 

specific, and any socioeconomic variables. Since the lack of these variables results in 

the omission of variable bias, they are generally included or controlled for in the 

micro economic analysis to reduce the bias. Kumar and Russell (2002) also 

recognized that there are caveats; potentially important variables (e.g., human capital 

and natural resources) are omitted, and long-run analysis has not taken short-run 

economic fluctuations into account. Kumar and Russell (2002) concluded that 
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technological change is decidedly non neutral and that both growth and bipolar 

international divergence are driven primarily by capital deepening. However, the 

major contribution of Kumar and Russell (2002) was that they built a bridge between 

the two streams of literature: macroeconomic convergence and technology frontier 

estimation. One of the main conclusions of their study was that: It is primarily capital 

deepening, as opposed to technological catch-up, that has contributed the most to both 

growth and bipolar international divergence of economies93.  

 

A major drawback of the Kumar and Russell (2002) work is that the results of their 

estimations are biased because they omitted country specific variables such as human 

capital, natural resources and the year specific variables capturing international time 

trends. The empirical results through a fixed effects regression model show that the 

initial level of productivity has a negative effect on the contribution of efficiency to 

productivity growth, which implies that technological catch-up has done much to 

cause economic convergence among countries. Moreover, they ignored the 

unobservable individual or time effects and did not pay attention to the possibility that 

their estimators suffered from an omission bias. Further, Badunenkoy and Zelenyukz 

(2004) found that, if year dummy variables are incorporated, the relation between the 

initial level of productivity and the change in capital accumulation is not negative but 

positive. These results are contrary to the assertion of Kumar and Russell (2002). 

 

Using data envelopment analysis, Angeriz et al. (2006) calculate indices of total factor 

productivity (TFP), efficiency and technological change for the manufacturing 

industries  of 68 European NUTS1 regions over the period 1986–2002. They 

subsequently examine these indices using exploratory spatial data analysis techniques, 

before considering tendencies towards convergence in both TFP and technical 

efficiency levels. While the analysis reveals significant spatial autocorrelation, the 

convergence analysis uncovers no tendency for regions with initially lower TFP to 

                                                 
93 During the period Kumar and Russell (2002)  studied, between 1965 to 1990, fast growing countries 

(e.g. Asian Tigers) which have undergone heavy capital accumulation (Mankiw et al., 1992). 

Noteworthy, the effect of computers on economic growth during that time was found to be negligible, 

but quite considerable during the 90's (Brynjolfsson and Hitt, 2000). 
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catch up with regions with initially higher TFP. However, convergence is found in 

levels of technical efficiency, although towards a relatively lower average level. 

 

Stochastic frontier studies often employ aggregate data to analyse the productivity and 

technical efficiency of regions. According to Oh (2012), a stochastic frontier model is 

run on plant-level data and region-level aggregate data. Comparisons of estimated 

coefficients and characteristics of regional production based on estimation outcomes 

suggest that an empirical model employing regional-level data can provide misleading 

results concerning the production function faced by a representative plant in a region. 

 

Stochastic Frontier Analysis (SFA) is in most of the literature based on the micro 

concept of production function representing the maximum output attainable at a given 

quantity of inputs for a representative plant. This implies that the use of plant-level 

data instead of aggregate data can be adequate. However, empirical studies assessing 

aggregate production function often employ aggregate data to track changes in 

productivity and efficiency of the macro unit. SFA of the regional production function 

employing regional statistics of income and product accounts, aiming at analysing 

productivity growth at the regional level, can be examples of this (Beeson and Husted, 

1989; Chandra, 2002). Researchers were concerned that employing an inadequate data 

set can introduce a potentially serious problem of aggregation bias. Figueiredo et al. 

(2009) investigated the relation between localization and establishment size in 

Portugal with a random utility model and reported that the estimated coefficients 

using aggregate data were significantly different from those using plant-level data. In 

an attempt to bridge the micro and macro approaches to Romanian regional output 

growth, Altomonte and Colantone (2008) found that aggregations across industries 

(e.g. within a region) were problematic. More specifically, the existence of 

aggregation bias has been reported in SFA. For example, Puig-Junoy (2001) 

empirically measured the size of the contribution of public capital to private 

performance and found that results varied across levels of aggregation. The existing 

literature provides possible explanations for how aggregation bias can occur in non 

micro level SFA: a production model is susceptible to aggregation bias when the 

estimation model is specified by a loglinear function and correlations between log-

inputs are not ignorable (Lewbel, 1992), and/or marginal rates of substitution and 
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marginal rates of transformation are inconsistent across micro unit observations 

within the macro unit (ten-Raa, 2005). Opposing evidence also exists. With caution 

concerning aggregation bias, Tyler and Lee (1979) compared the estimates of a 

Columbian aggregated production function with those of a plant-level one but found 

few differences between the two. Oh (2012) empirically examine aggregation bias in 

SFA on six manufacturing sectors distributed across fourteen regions in Korea and 

demonstrates the presence of aggregation bias associated with employing regional-

level data. The empirical exercise is carried out in terms of estimating a production 

frontier function for the two different levels of data sets: plant-level data and regional-

level data. Aggregation bias is defined as disparities in parameter estimates, input 

elasticity and Returns to Scale (RTS) in each manufacturing sector, using region-unit 

data as opposed to plant-unit data. Empirical results indicate that the estimated SFA is 

sensitive to the chosen unit of observation, and an estimation of SFA employing 

regional-level data can provide misleading results concerning the production function 

faced by a representative plant in a region. Oh (2012) test the existence of aggregation 

bias in the parameter estimates of the SFA employing regional-level data and the 

characteristics of production frontier within a region computed by the estimation 

outcomes and regional-level data. The empirical exercise is carried out in terms of 

estimating a production frontier function for two different level data sets: plant level 

versus regional levels (regional sum and regional mean). Empirical results indicate 

that characterizing production function faced by a representative plant in a region with 

regional-level data can misrepresent its actual features. 

 

The estimation of aggregate production functions is common in regional economics. 

Regional production functions have been used to study different topics including, 

among others, the existence of agglomeration economies, the evolution of 

productivity, the effect of knowledge spillovers and the existence of catching-up to 

the technological frontier. One methodological issue that has not been widely 

discussed in this literature is whether it is best to estimate average production 

functions (where the random term has zero mean) or frontier production functions 

(where the random term follows a one-sided distribution). De la Fuente (1998) has 

questioned the use of stochastic frontiers. De la Fuente (1998) contends that by using 

the frontier method we are assuming that different regions use the same kind of 
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technology in each time period. The most common alternative in the literature is to 

use the opposite assumption, namely that the efficiency differences are small and 

uncorrelated with the other explanatory variables (and can therefore be 

accommodated in the error term), as well as allowing for level differences between 

the regional production functions which are interpreted as indicators of the level of 

technological development of each economy.  

 

Therefore, the point is whether there could be (separately) identified two 

unobservable phenomena for each region: “technical characteristics” and “productive 

efficiency”. Under a given set of assumptions, both effects can be identified. In 

particular, assuming that the technical characteristics are time invariant and hence can 

be modelled as a fixed effect, efficiency can be modelled, following the stochastic 

frontier tradition, as a one-sided error component. This model, which was first 

suggested by Kumbhakar and Hjalmarsson (1993), has not been applied much in the 

empirical literature, most likely because the estimation by generalized least squares in 

its original formulation was very complicated. However, Greene (2002) has 

developed a maximum likelihood estimator which greatly simplifies its estimation.  

 

Alvarez (2007) implement a new model which combines the two parametric 

approaches most commonly used in the productivity literature: fixed effects and 

stochastic frontiers, discussing whether it is better to use average or frontier functions 

to estimate regional productivity. Alvarez (2007) estimated total factor productivity 

change for 17 Spanish regions between 1980 and 1995. Alvarez (2007) calculated and 

decomposed total factor productivity growth for the Spanish regions. The results show 

that TFP has increased in all regions during the sample period. The decomposition of 

TFP growth suggests that technical change is the most important component of 

productivity change. The model implemented in Alvarez (2007) incorporates time-

invariant individual effects jointly with a composed error specification (fixed-effects 

stochastic frontier). The model allows splitting unobserved heterogeneity into two 

components: “technical characteristics” and “productive efficiency”. Alvarez (2007) 

found that both are important elements in explaining the economic performance of 

Spanish regions, with the higher flexibility of this model over the classical fixed-

effects or the standard stochastic frontier models makes it a good candidate for 
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empirical applications in regional economics given the considerable amount of 

unobserved heterogeneity that generally exists across regions. 

 

Green and Mayes (1991) examined technical inefficiency of manufacturing industry 

in the United Kingdom, based on data for 19,023 establishments in 151 industries, to 

estimate technical inefficiency in each industry by fitting translog stochastic frontier 

production functions and decomposing the residuals into two components: one 

measuring inefficiency and the other unobservable random factors.  The need for 

comparability among countries and the confidentiality of the data meant that cases 

where there were problems with the quality of explanation could not be pursued. As a 

result it has not been possible to estimate fully satisfactory measures of inefficiency 

for all 151 industries. Nevertheless, this unique access to data at the establishment 

level across the whole of manufacturing industry will help fill part of the gap between 

the aggregate analysis of Caves and Davies (1986) and Oulton and O'Mahoney (1990) 

on the one hand and the detailed interplant comparisons on the other.  

 

Differences in productivity growth rates are seen solely as a function of how far a 

region is from its own steady state. The further productivity is below the steady-state 

level, the faster the growth of the capital–labour ratio and hence the faster 

productivity growth. But to emphasize again, this assumes that all regions have access 

to the same blueprint of technology and all are equally efficient (Mankiw et al., 

1992). 

 

The related neoclassical growth-accounting approach explicitly includes the growth of 

capital and hence the growth of total factor productivity (TFP) reflects, apart from 

measurement errors, the rate of technological change. Thus, disparities in TFP levels 

can be interpreted as due to regions being on different production functions. 

Nevertheless, the approach still requires regions to be technically efficient (Hulten 

and Schwab, 1984; Melachroinos and Spence, 2001). 

 

One advantage of this approach is that it enables a decomposition of TFP growth into 

changes in technical efficiency and changes in technology. A second important 

benefit of the method is that it allows for technical inefficiency and does not assume a 



 149 

specific underlying functional form for technology (Färe et al., 1994a). The technique 

has been widely used in microeconomic studies of productivity change and in 

estimating TFP growth in agriculture (see Coelli and Rao, 2003). 

 

Henderson and Zelenyuk (2004), meanwhile, extend this strategy by dividing the 

sample into two groups (developed and developing countries) and analysing catch-up 

effects not only for the whole sample, but also within and between these two groups. 

They also analyse the consistency in the DEA or technical efficiency scores obtained 

both by dividing and not dividing the sample and by applying bootstrap techniques to 

combat the criticism that DEA methods are overly sensitive to outliers.  

 

The same as Kumar and Russell (2002), Badunenkoy and Zelenyukz (2004) take 

Jones's (1997) suggestion that GDP per worker would be most appropriate definition 

of welfare, and hence income, once developing countries are included into analysis. 

Badunenkoy and Zelenyukz (2004) research is an extension to study of Kumar and 

Russell (2002), which they complement in two ways: they considering a more recent 

period (the 90's instead of 1965-90) and, as a result, they include data on transitional 

economies. In contrast to study by Kumar and Russell (2002), which concluded that 

the capital deepening was the major force of growth and of changing the world 

income distribution over 1965-1990, Badunenkoy and Zelenyukz (2004) analysis 

shows that, during the 90's, this major force was technological change, whereas 

capital accumulation played the minor role. Badunenkoy and Zelenyukz (2004) 

investigate the same sources of labor productivity growth and evolution of world 

distribution as in Kumar and Russell (2002), using their methodology, but now with 

data for 90's. More specifically, Badunenkoy and Zelenyukz (2004) investigate three 

sources of economic growth and evolution of world income distribution during the 

90's94:  

� technological change,  

� efficiency change (the catching-up) and  

� capital deepening 

                                                 
94 Badunenkoy and Zelenyukz (2004) apply this estimator to sample of 73 countries over the period 

1992-2000.  
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As in Kumar and Russell (2002), Badunenkoy and Zelenyukz (2004) identified 

further divergence in GDP per worker among countries in the sense that the richer the 

countries, the greater was the growth. Second, most importantly and opposite to 

period of 1965-90, Badunenkoy and Zelenyukz (2004) found that the technological 

change was the largest driving force of growth and of changing the distribution of 

income per worker in the world, causing further divergence. Both the poor and the 

rich countries have benefited from the technological change, but the richer the country 

the more was the benefit, again suggesting about the divergence, now driven by the 

technological change. Finally, the capital accumulation and efficiency change effects, 

on average, were a negligible source of change in the world distribution of income per 

worker. 

 

To obtain unbiased estimators, first based on the Penn World data, Yamamura and 

Shin (2007) use the same method as Kumar and Russell (2002) to construct a panel 

dataset consisted of 57 countries from 1965 to 1990. Second, using this dataset 

Yamamura and Shin (2007) conduct re-estimations through a fixed effects model to 

reduce the omitted variable bias caused by time invariant countries’ features. 

Yamamura and Shin (2007) also incorporate the year dummies into this model to 

capture the time specific effect that is individually invariant. 

 

Kumbhakar and Wang (2005) used a stochastic production frontier approach to 

estimate the world production frontier. Henderson and Russell (2004) have applied 

similar methodology as Kumar and Russell (2002) to similar data but with human 

capital and found that part of the effect identified by Kumar and Russell (2002) is in 

fact due to human capital accumulation.  

 

Griffith et al. (2004) find that both R&D and human capital affect the rate of 

convergence in a model of total factor productivity (TFP) growth, whereas Kneller 

(2005) also for a sample of OECD industries, finds that the effect of human capital is 

quantitatively more important than that of R&D on absorptive capacity, and that the 

latter matters only for the smaller OECD countries. Koop, Osiewalski and Steel 
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(1999, 2000) has previously questioned the results from the use of this two-stage 

modelling approach from a statistical perspective. 

Using SFA, Kneller and Stevens (2006) examine the three facets of technology: its 

creation, dispersion and absorption95. They investigate whether differences in 

absorptive capacity help to explain cross-country differences in the level of 

productivity. They utilize stochastic frontier analysis to investigate two potential 

sources of this inefficiency – differences in human capital and R&D – for nine 

industries in 12 Organization for Economic Co-operation and Development (OECD) 

countries over the period 1973–91. Kneller and Stevens (2006) find that inefficiency 

in production does indeed exist and it depends upon the level of human capital of the 

country’s workforce. Evidence that the amount of R&D an industry undertakes is also 

important is less robust96. 

 

Kneller and Stevens (2006) investigate whether absorptive capacity helps to explain 

cross country differences in the level of technical efficiency. These differences have 

been identified as key to understanding the evolution of the world income distribution 

(Prescott, 1998). Absorptive capacity, as discussed by Arrow (1969), captures the idea 

that the implementation of new technologies depends on the ability and effort applied 

to this task (Griffith, Redding and Van Reenen, 2003, 2004; Xu, 2000). Two factors 

have been suggested which determine the capacity to absorb and implement new 

technology: human capital (Abromovitz, 1986; Cohen and Levinthal, 1989) and 

domestic innovation (Fagerberg, 1994; Verspagen, 1991).  

                                                 
95 Although Koop (2001) has used SFA in the decomposition of growth rates for a similar sample, 

Kneller and Stevens (2006) stress the mechanism whereby technical inefficiency occurs and use a less 

restrictive set of efficiency determinants. 

 
96 Kneller and Stevens (2006) complement Griffith et al. (2004) and Kneller (2005). Griffith et al. 

(2004) find that both R&D and human capital affect the rate of convergence in a model of total factor 

productivity (TFP) growth, whereas Kneller (2005) also for a sample of OECD industries, finds that the 

effect of human capital is quantitatively more important than that of R&D on absorptive capacity, and 

that the latter matters only for the smaller OECD countries. Koop, Osiewalski and Steel (1999, 2000) 

has previously questioned the results from the use of this two-stage modelling approach from a 

statistical perspective. 
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A country that has a lower ability or applies less effort to absorbing new technology 

will produce less output than the one operating with the best available technical 

know-how, ceteris paribus. This deficiency, evident in the distance of the country 

from the production frontier, is technical inefficiency. Kneller and Stevens (2006) 

examine the effect of human capital and research and development (absorptive 

capacity) on efficiency for a panel of nine manufacturing industries in 12 

Organization for Economic Co-operation and Development (OECD) countries over 

the period 1972–91 using stochastic frontier analysis (SFA). SFA allows the study of 

absorptive capacity in a framework that closely matches the idea of a technical 

frontier found in growth theory. In their framework, each industry faces the same 

production frontier – the maximum output for a given level of inputs. Kneller and 

Stevens (2006) consider three assumptions regarding the international transfer of 

technology: 

 

� First, they remain consistent with the existing literature on absorptive capacity and 

follow early models of economic growth in assuming that technology is global 

(Solow, 1956).  

� To place this in perspective, they then adopt the other extreme position of no 

cross-border flows of knowledge, before taking the more realistic position that 

technology transfer is incomplete.  

� Following Keller (2001, 2002) they investigate the impact of knowledge 

dissemination via the effect of physical distance on productivity. 

 

The model outlined is estimated for a sample of nine manufacturing industries in 12 

countries over the period 1973–91. The total number of available observations is 

1,731. The output (value added), capital stock and employment data are all taken from 

the OECD ISDB database. The sample countries are: Canada, Belgium, Denmark, 

France, Germany, Japan, Norway, Sweden, UK, US, Italy and the Netherlands. The 

absorptive capacity effect of R&D is measured using the flow of R&D investment 

made in each period from the OECD EBRD data set for the period 1973–92. 

Estimates of the stock of R&D in each country, necessary for the construction of the 

stock of frontier knowledge in each industry, are generated by accumulating R&D 
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expenditures. The estimated efficiency scores also provide evidence on whether 

national factors or industry–country factors are more important for determining 

efficiency scores. There is evidence for both. For some countries there is considerable 

variation in the ranking of countries across industries. For example, the UK has the 

lowest average efficiency score in the basis metals industry and other manufacturing 

but the highest in the food industry. Similarly, Germany is ranked as high as second 

(chemicals, machinery and equipment, other manufacturing) and as low as eighth 

(basis metals, food and textiles). There are however also some countries that suggest 

that national factors are important: some countries rank consistently near the top of 

the efficiency rankings and some consistently near the bottom. For example, France 

and the Netherlands never have an efficiency ranking that is lower than fourth, 

whereas Japan never has an efficiency ranking better than seventh. Finally, a number 

of countries experience steady increases in their average efficiency across industries. 

Most notably, Italy and Finland experience rises in efficiency from around the 70% up 

to almost 90%. Sweden and the UK have fairly steady levels of technical efficiency 

until the early 1980s when both begin a period of steadily increasing efficiency. 

 

Kneller and Stevens (2006) have found that the notion of absorptive capacity provides 

a useful explanation of differences in productivity. There is strong evidence that 

countries differ in the efficiency with which they use frontier technology. They have 

investigated two mechanisms which might determine a country’s absorptive capacity 

and hence its technical efficiency: human capital and research and development. 

Kneller and Stevens (2006) have found that human capital plays a significant and 

quantitatively important role in explaining these differences in efficiency. Moreover, 

there is clear evidence that human capital affects production both directly and through 

its indirect effect on technical efficiency. This is in direct contrast to Benhabib and 

Spiegel’s (1994) conclusion that human capital does not enter the production function 

directly. R&D is found to have only an insignificant effect on inefficiency. The results 

in the paper also conclude that rather than as an avenue through which a country can 

absorb new knowledge, the effect of R&D on production is primarily through its 

contribution to the stock of frontier knowledge itself in each industry. 
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A regional application is Karadag et al. (2005), who use the technique to examine 

changes in manufacturing TFP in the Turkish private and public industries. In 

particular, using data for the period 1986–2002, Angeriz et al. (2006) analyses TFP 

change and its components for the manufacturing industries of 68 European NUTS1 

regions. Angeriz et al. (2006) chose manufacturing because, while it now only 

accounts, on average, for around 20 per cent of regional output, its role is still seen as 

crucial in explaining regional economic growth. It remains a large component of 

inter-regional exports and the competitiveness (both price and nonprice) of a region’s 

exports is crucial to its overall prosperity (McCombie and Thirlwall, 1994). Following 

a description of the data, the paper then analyses the results of the DEA. Specifically, 

the results are tested for evidence of spatial autocorrelation at both the global and 

local levels, which is akin to testing for geographical clustering at both levels. 

Following this, the paper looks at the question of cross-regional convergence with 

respect to levels of TFP and technical efficiency.  

 

The above analysis, however, does not indicate anything as regards systematic 

tendencies towards convergence between the NUTS1 regions. However, especially 

for the EU, the issue of cross-sectional convergence in income per capita and 

productivity levels has been one of the most widely researched in the last two decades 

of spatial economics.  

 

Last decades have seen the publication of a great deal of studies on spatial disparities 

in the European Union (EU) using a variety of different approaches (e.g. Barro & 

Sala-i-Martin, 1991; Neven & Gouyette, 1995; Quah, 1996; Rodrıguez-Pose, 1999; 

Le Gallo, 2004; Corrado et al., 2005; Ezcurra et al., 2005a). Among them, it is worth 

mentioning the major advances in economic growth theory, coinciding with the 

introduction of endogenous growth models in the mid-1980s. The assumptions 

underlying these models ultimately allow for the reversal of the neo-classical 

prediction of convergence, and lead to the conclusion that the faster growth of rich 

economies causes territorial imbalances to increase over time (Barro & Sala-i-Martin, 

1995). In fact, the self-sustained and spatially selective nature of economic growth has 

been stressed by the models of the “new economic geography” (Ottaviano & Puga, 

1998). According to these theories, the increasing returns and the agglomeration 
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economies would explain the accumulation of activity and income in the more 

dynamic areas, which would lead in the final instance to spatial divergence. 

 

On the other hand, the increasing relevance of this topic in the EU has much to do 

with the strong emphasis placed on achieving economic and social cohesion in the 

context of the current economic integration process, especially since the signing of the 

Single Act and the Maastricht agreements. This directly raises the need to reduce the 

differences in terms of development across the European regions (European 

Commission, 2001, 2004). Thus, important contributions to the EU convergence 

literature have been made by, inter alia, Armstrong (1995), Canova and Marcet 

(1995), Fingleton and McCombie (1998) and Barro and Sala-i-Martin (2004). 

However, with the exception of Fingleton and McCombie (1998), the focus in all of 

these studies has been on convergence at the level of the aggregate economy rather 

than within the manufacturing industry. Furthermore, none of these studies has 

examined tendencies towards convergence in separate measures of TFP and technical 

efficiency. That is, none has applied convergence techniques to the results of a DEA 

exercise.  

 

The literature on regional disparities within the EU has mainly focused on the 

possible presence of convergence in per capita gross domestic product (GDP) or 

labour productivity, ignoring the degree of efficiency with which the various regions 

use their resources in the productive process. This may be particularly relevant since, 

as pointed out by Grosskopf (1993) and Taskin and Zaim (1997), the omission of the 

phenomenon of inefficiency may cause convergence analysis to offer biased results. 

However, despite its potentially important implications, as far as we are aware this 

issue only has been examined to date in the EU case by Angeriz et al. (2006) and 

Enflo and Hjertstrand (2006). Thus, Angeriz et al. (2006) use the Malmquist total 

factor productivity change index to calculate the efficiency scores for the 

manufacturing industries of 68 NUTS-1 regions in the EU. Nevertheless, when 

assessing the findings obtained by these authors, one should not lose sight of the 

substantial reduction experienced by industrial activities in the EU during the last 

decades (Rodrıguez-Pose, 1998), to the point that manufacturing nowadays accounts 

only for around 23% of regional output. In turn, Enflo and Hjertstrand (2006) estimate 
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the aggregate efficiency levels of 69 NUTS-1 and NUTS-2 regions by combining a 

non-parametric frontier approach with bootstrap techniques. However, the sample 

used in this study covers only five EU member states: Germany, Spain, France, 

Ireland and Italy. 

 

The estimation of aggregate production functions is common in regional economics. 

Regional production functions have been used to study several different topics, such 

as the evolution of productivity, the role of infrastructures or human capital on 

income, or the existence of catching-up to the technological frontier, among many 

others. While initial studies used to estimate a Cobb-Douglas aggregate production 

function with productive capital and labor as explanatory variables, other inputs such 

as human capital (e.g., de la Fuente, 1995) or public capital (e.g., Aschauer, 1989; 

Munnell, 1990; Puig-Junoy, 2001) are commonly considered. Other variables have 

also been used in order to control for regional heterogeneity: Evans and Karras (1994) 

use the composition of public capital, García- Milà and McGuire (1992) and Munnel 

(1990) use the business cycle, Álvarez, Arias and Orea (2006) use a specialization 

index. In fact, the list of potential sources of regional heterogeneity can be fairly long, 

ranging from those already mentioned to differences in climate, and natural resources 

and even within-country differences in culture and institutions, as recently 

documented by Acemoglu and Dell (2009). Some of this heterogeneity embedded in 

regional data is unobservable for the analyst, and the failure to take it into account can 

lead to biased estimates, hence the importance to account for it. There are mainly two 

different approaches to this problem, (i) modelling heterogeneity as an individual 

effect or (ii) letting the model estimate different technologies in the sample (i.e., 

random parameters models, latent class models, nonparametric estimation). 

 

Most empirical situations present differences across observations not reflected in the 

data. This information is referred to as unobserved heterogeneity. When that 

information is not important or is not correlated with the explanatory variables, it 

accommodates in the error term. However, if unobserved heterogeneity is relevant 

and correlated with the explanatory variables, the estimated parameters will be biased 

(Griliches, 1957). A frequent case occurs when the information not included in the 

model can be considered time-invariant, e.g., location or orography. If panel data are 
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available, the problem is solved modeling heterogeneity as an individual effect (see 

Mundlak, 1961). Several papers have used the “within” or “random” effects 

estimators in order to estimate aggregate production functions using regional data. For 

instance, García-Milà, McGuire and Porter (1996), Evans and Karras (1994) or Holtz-

Eakin (1994) used data from the U.S. states. Mas et al. (1996) or Moreno et al. (1997) 

used data from Spanish regions. 

 

However, although traditional panel data techniques assume that individual effects are 

time invariant, Schmidt and Sickles (1984) suggest that this assumption is less valid 

as the panel becomes longer. For instance, some regional characteristics, such as its 

economic structure, abundance of natural resources or productive efficiency, may 

vary over time. In this situation, it is preferable to use models that can account for 

time varying unobserved heterogeneity. Cornwell, Schmidt and Sickles (1990) 

developed an extension to the traditional fixed effects model in which individual 

effects are allowed to vary over time. Wu (1996) used this model to study total factor 

productivity growth, technological progress and technical efficiency change in post 

reform China. The stochastic frontier models (Aigner, Lovell and Schmidt, 1977) are 

another approach capable of modelling time-varying unobserved heterogeneity. The 

main characteristic of these models is their composed error term. Specifically, an 

asymmetric error term is added to the traditional symmetric error term, the former 

representing technical inefficiency while the latter is supposed to engage random 

shocks and measurement errors. Several authors have used stochastic frontier models 

to estimate aggregate production functions. For instance, Puig-Junoy (2001) estimated 

technical efficiency indexes for the 48 contiguous U.S. states. More recently, 

Mastromarco and Woitek (2006) studied the link between public infrastructure 

investment and efficiency in the Italian regions, while Delgado and Álvarez (2004) 

and Arias and Rodriguez- Vález (2004) estimated this model using Spanish datasets. 

Recently, Greene (2005) proposed a “true fixed effects model” which is able to 

estimate not only individual effects but also an inefficiency term. This model was 

recently used by Álvarez et al. (2007) in order to decompose the productivity growth 

of Spanish regions. 
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Ezcurra et al. (2009) aim to investigate further existing disparities in technical 

efficiency levels, paying particular attention to the role played in this context by 

spatial interactions and geographical location. Ezcurra et al. (2009) use aggregate data 

for the whole range of economic activities corresponding to 196 NUTS-2 regions in 

15 EU countries (EU-15) over the period 1986–2002. Furthermore, this is the first 

time that the role played by different factors is examined in explaining the changes in 

technical efficiency experienced by the EU regions over the sample period. 

 

Ezcurra et al. (2009) need to estimate first the levels of technical efficiency of the 

European regions. To do so, as Angeriz et al. (2006), the technical efficiency indices 

are computed by Data Envelopment Analysis (DEA). This methodology offers major 

advantages in the present context, since the non-parametric nature of the technique 

avoids the need to specify beforehand any particular functional form for the 

technology. Furthermore, this approach does not require any assumption about market 

structure or about the absence of market imperfections. Additionally, in order to 

investigate the geographical dynamics of regional efficiency, this paper employs a set 

of methods commonly used in the literature on spatial econometrics (Haining, 1990; 

Anselin, 2001). These techniques provide information about the possible presence in 

this context of spatial autocorrelation and/or spatial heterogeneity, and allow the 

researcher to identify regional clusters characterized by similar efficiency levels 

distinguishing them from the rest of the sample. 

 

Ezcurra et al. (2009) examine the regional distribution of technical efficiency levels 

within the EU, putting particular emphasis on the different patterns of spatial 

association observed. In turn, the econometric estimates performed inform about the 

impact of a set of factors on the changes in technical efficiency experienced by the 

EU regions throughout the study period.  

 

Ezcurra et al. (2009) investigated the spatial distribution of technical efficiency in the 

EU, using data on 196 NUTS-2 regions over the period 1986–2002. To this end, the 

level of technical efficiency of the various regions throughout the study period has 

been estimated by applying DEA methods. The results reveal that inefficiency in the 

use of productive factors to produce regional output is clearly present in the EU, 
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which suggests that this factor should be borne in mind when it comes to explaining 

the patterns of economic growth observed across the European regions. Furthermore, 

it needs to be said that spatial disparities in the levels of technical efficiency are 

relatively important in the EU. Taking into account the major advances that have 

taken place over the last two decades in the economic integration process currently 

underway in Europe, Ezcurra et al. (2009) examined the role played in this context by 

spatial interactions and geographical location. In this respect, the different tests 

performed show the presence of spatial autocorrelation and spatial heterogeneity in 

the distribution under consideration. This implies that technical efficiency levels are 

not randomly distributed across space. On the contrary, physically adjacent regions 

tend on the whole to register similar efficiency indices. Indeed, Ezcurra et al. (2009) 

detected the existence of several spatial clusters formed by regions with similar values 

of the study variable distinguishing them from the neighbouring zones. Specifically, 

the groupings of regions characterized by significantly high levels of technical 

efficiency are located mainly in central and northern Europe. In turn, the clusters 

made up by the worst-practice regions tend to be situated in the southern periphery of 

the Union. It is worth noting that this spatial pattern is consistent with the traditional 

North–South divide identified in the literature on regional disparities in the EU. 

 

In order to complete these results, Ezcurra et al. (2009) analysed the role played by 

different factors in explaining regional efficiency changes throughout the study 

period. To this end, and taking into consideration that the presence of spatial 

autocorrelation affects negatively the results obtained from standard regression 

analysis, Ezcurra et al. (2009) have estimated an econometric model incorporating a 

spatial autoregressive structure in the error term. Ezcurra et al. (2009) show that the 

less efficient regions in 1986 have experienced greater efficiency improvements 

during the ensuing years. Accordingly, a process of regional convergence in terms of 

technical efficiency has taken place in the EU over the sample period. Additionally, 

Ezcurra et al. (2009) found that the initial level of capital per worker and the 

employment share in market services are positively correlated with efficiency growth 

rates. Likewise, they have detected a negative relationship between the employment 

share in non-market regional efficiency in the European Union 1137 services and 

efficiency improvements. Finally, the conclusions of Ezcurra et al. (2009) are 
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potentially interesting from the perspective of EU regional policy. In particular, the 

estimates raise the possibility of improving the relative situation of the less efficient 

regions by means of policies aimed at increasing their capital stocks or modifying 

their industry mix. In any event, the relevance of spatial effects observed suggests that 

policy-makers should not consider the various regions as isolated units when 

designing any public intervention in this context. 

 

Concluding, Ezcurra et al. (2009) examine existing disparities in technical efficiency 

levels across the European regions over the period 1986–2002. The results reveal that 

technical efficiency is not randomly distributed across space in the European setting. 

On the contrary, the different tests performed highlight the presence of positive spatial 

autocorrelation and spatial heterogeneity in the distribution under consideration. In 

fact, Ezcurra et al. (2009) have detected several regional clusters characterized by 

similar efficiency levels distinguishing them from the rest of the sample. 

Nevertheless, the estimates carried out show the existence of a process of regional 

convergence in terms of technical efficiency during the study period. Ezcurra et al. 

(2009) reveal that factors such as the regional stock of capital per worker or the 

patterns of productive specialization are relevant in explaining the changes in 

technical efficiency experienced by the European regions between 1986 and 2002. 

 

Another regional aspect is that of Halkos and Tzeremes (2009) who deal with the 

effects of EMU enlargement (European Economic and Monetary Union) by 

evaluating the economic efficiency of growth policies of the 25 member countries. By 

using Data Envelopment Analysis, Halkos and Tzeremes (2009) measure the policies 

adopted initiating economic growth of the 25 EU members for the time period of 

1995–2005. Different factors reflecting countries’ investment policies have been used 

in order to measure chronically countries’ economic efficiency. The results reveal that 

the old 15 EU members have faced problems reforming their economic policies in 

order to cope with the EU enlargement which in turn had an impact on their economic 

efficiencies. Halkos and Tzeremes (2009) examined the effects of the European 

Economic and Monetary Union (EMU) enlargement by evaluating the economic 

efficiency of growth policies of the 25 member states, for the period 1995-2005, using 

DEA analysis. More specifically, they incorporate a policy evaluation approach 
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regarding European Integration, examining investment policies in order to measure 

country economic efficiency, putting emphasis on the economic advantages and the 

risks associated with the EMU enlargement. In order to measure the effect of EMU 

enlargement on the economic efficiency and to a larger extent to the development of 

the EMU member states, Halkos and Tzeremes (2009) used one output (real GDP 

growth rate) and five inputs (public investment, International Price Competitiveness, 

R&D expenditure, public expenditure on education, and total employment rate by 

highest level of education) which represent key economic and development 

investment policies (in terms of resource allocation). Halkos and Tzeremes (2009) 

concluded that national externalities may lead to inefficient outcomes and that a 

coordination of fiscal policies is needed in order to reduce countries’ externalities or 

macroeconomic spillovers. 

 

In addition, there are studies based on aggregate data focusing on specific European 

Union countries. One of the most representative studies is by Bhattacharjee et al. 

(2009), developing a model of labor productivity as a combination of capital-labour 

ratio, vintage of capital stock, regional externalities, and total factor productivity 

(TFP) for Denmark. Bhattacharjee et al. (2009) apply their empirical model to study 

regional and industrial variation in productivity in the Danish economy. The model is 

applied to annual data from the Danish Local Authorities Research Institute (AKF) 

covering the period 1979–1993. For each year, the paper considers 12 Danish regions 

and 9 industries. The skewness of TFP distribution is related to different growth 

theories. While negative skewness is consistent with the neo-Schumpeterian idea of 

catching up with leaders, zero skewness supports the neoclassical view that deviations 

from the frontier reflect only idiosyncratic productivity shocks. Bhattacharjee et al. 

(2009) argue that positive skewness is consistent with an economy where exogenous 

technology is combined with non-transferable knowledge accumulated in specific 

industries and regions. This argument provides the framework for an empirical model 

based on stochastic frontier analysis. The model is used to analyse regional and 

industrial inequalities in Denmark. Understanding the mechanisms underlying 

economic growth and the explanation of persistent geographical inequalities in levels 

of productivity are issues of key research interest.  
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Bhattacharjee et al. (2009) make three main contributions to literature. First, they 

propose a modeling approach based on stochastic frontier analysis, which draws on a 

combination of neoclassical, neo-Schumpeterian, institutionalist and evolutionary 

ideas and is consistent with a positively skewed cross-sectional distribution of TFP.  

 

Second, Bhattacharjee et al. (2009) develop a model which describes an economy, 

with various regional units and different industries, evolving over time. The model 

enables decomposition of labour productivity into five components: (a) capital 

accumulation, (b) technology embodied in capital goods, (c) public good technology 

available to all industries and regions, (d) technical capabilities arising from region 

specific externalities, and (e) technological forge ahead through innovations in 

specific industries. The above five components are related to different theoretical 

approaches. Components (c) to (e) represent disembodied technology and are the 

determinants of TFP, while (a) to (d) are components of a production function 

describing the base level of labour productivity. The capital labour ratio (a) and 

vintage of capital stock (b) represent the effect of capital accumulation and 

technology embodied in capital goods respectively. Region specific externalities (d), 

stressed by institutionalist approaches, represent technical capabilities shared by all 

productive units located in a given region. The base level of productivity, components 

(a) to (d), is either the ceiling of the neo-Schumpeterian approaches or the floor 

implied by evolutionary theories. Component (e) corresponds to the view of 

technological progress as a permanent attempt to overcome the standard productivity 

conditions. This component can be further divided into two elements. The first is the 

time contingent performance of each industry. It is measured either as inefficiency in 

relation to the technological frontier or as the capacity of each industry to enhance 

productivity, moving ahead of the pattern determined by the floor, which corresponds 

to the evolutionary concept of industry specific technological trajectories. The second 

component is an idiosyncratic random element which moves each particular 

combination of region, industry and time, above or below the average conditions of 

each industry. 

 

Third, Bhattacharjee et al. (2009) conduct an empirical analysis of productivity in the 

Danish economy, using panel data for 15 years (1979 to 1993), on 9 industries and the 
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12 regions of the country. Underlying the study are the computations of capital stock, 

as well as the estimation of the average age (or vintage) of capital stock. Homogeneity 

within Denmark enhances the validity of assuming similar production functions 

across different industries and regions of the country. 

 

Bhattacharjee et al. (2009) empirical results identify several new findings. 

Bhattacharjee et al. (2009) find that positive skewness in the TFP distribution applies 

to the Danish case. Further, Bhattacharjee et al. (2009) detect an important role for 

vintage of capital, while the estimated region region specific externalities are 

consistent with previous literature. Probably, Bhattacharjee et al. (2009) most 

important new findings are in the patterns in technological trajectories across different 

industries. These findings inform substantially about the magnitude and evolution of 

disembodied technology in Danish industry. Further analyses of the drivers of 

technological trajectories and inferences for public policy is an object for future 

research. More explicit modeling of innovation, particularly investment in R&D, 

human capital, international technological spillovers and spatial diffusion are also 

future directions of research. Further, a key feature of Bhattacharjee et al. (2009) 

methodology that offers useful extensions is nonparametric modeling of technological 

trajectories in different industries. While Bhattacharjee et al. (2009) observe several 

interesting patterns in the dynamics of innovative capacity, representing these features 

in terms of appropriate order restrictions will be a challenging research question. 

Finally, developing Bayesian inference, with a priori beliefs on different theoretical 

positions reflected in suitable prior distributions of skewness, will be an exciting 

direction of further work. 

 

The distribution of productivity implied by they estimated production function for 

Danish regions and industries shows evidence of positive skewness, which is 

consistent with the assumption of the floor. Further, the estimates of the production 

function reflect the importance of vintage of capital and region-specific capabilities, 

often omitted in empirical studies. The effect of both the capital labour ratio and 

vintage of capital stock show heterogeneity across the industries. The productivity 

enhancing component shows substantial variation over industry and time, which has 

important institutional explanations. 
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Overall, the base level of productivity, described by capital accumulation, technology 

embodied in capital goods and region-specific externalities, explain half of the total 

variation in labour productivity across industries, regions and time in Denmark. The 

remaining 50% is explained by industry specific technological trajectories and 

idiosyncratic technology shocks. The skewed error variance representing 

technological trajectories explains 11% of the total variation while productivity 

shocks account for the remaining 39%. Understanding the relative contribution of 

externalities affecting performance of regional economies, and industry specific 

effects of capital accumulation (K/L ratio) and vintage of capital, is a bit more 

complicated. This is because these explanatory factors are correlated with each other. 

However, relative importance of these factors can be approximately judged by first 

estimating a production function where only region-specific fixed effects are 

included, and then expanding the model to include the capital-labour ratio and vintage 

of capital. These estimates indicate that region-specific externalities explain about 

11% of the variation in labour productivity, while including industry specific effects 

of capital accumulation into the model increased explained variation to about 48%. 

The estimated effects of capital accumulation show substantial variation across the 

industries, ranging from 0.21 and 0.25 for chemicals and food industry respectively to 

about 0.39 for the metals and engineering and paper and publishing industries. The 

effects of technology embodied in capital goods (vintage of capital) also varies widely 

across the industries, and is significant at 1% level in the chemicals (0.048), food 

(0.042) and textile (0.019) industries, as well as other manufacturing (0.012).  

 

Bhattacharjee et al. (2009) develop a methodology for modeling alternative 

theoretical views on economic growth and inequality, based on the skewness of TFP. 

The framework is extended to include positive skewness patterns which are often 

observed in empirical studies. Second, based on a synthesis of neoclassical, neo-

Schumpeterian, evolutionary and institutionalist ideas, Bhattacharjee et al. (2009) 

develop a stochastic frontier model that is consistent with both positive and negative 

skewness. Positive skewness was discussed by other authors (Green and Mayes 1991; 

Fritsch and Stephan 2004) in similar contexts, but in contrast with this paper, they did 

not provide any adequate explanation. The model is broadly based on the neoclassical 
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tradition of using a Cobb- Douglas production function in intensive form. The model 

defines, for each spatial unit, a benchmark level of productivity generated by the stock 

of capital, technology embodied in capital goods and region-specific externalities, 

which determine different capacities to create and absorb disembodied technologies. 

The standard level of productivity assumed as a technological frontier ceiling or a 

technological floor provides the competitive basis, with each industry attempting to 

forge ahead through quality enhancing innovations. Finally, each individual unit is 

also faced with idiosyncratic movements above or below the standard. 

 

Driffield and Munday (2001) examine how far foreign manufacturing investment in 

UK industries, together with the spatial agglomeration of those industries, affects 

technical efficiency. The paper links research on the estimation of technical 

efficiency, with those literatures demonstrating the economies associated with foreign 

direct investment and spatial agglomeration. The methodology involves estimation of 

a stochastic production frontier with random components associated with industry 

technical inefficiency, and a standard error. Driffield and Munday (2001) also explore 

whether the degree of foreign involvement has a greater impact on technical 

efficiency where the domestic industry industry is characterized by comparatively 

high productivity and spatial agglomeration. The policy implications of the analysis 

are discussed. Driffield and Munday (2001) use three digit industry data from the 

United Kingdom. Alvarez et al. (2007) and Puig-Junoy and Pinilla (2008) investigate 

production efficiency in Spain. Alvarez et al. (2007) review the different approaches 

the literature has used to deal with this problem and, in doing so, they address a recent 

puzzle in growth accounting studies for the Spanish economy, the fact that recent 

observed TFP growth appears to be negative. 

 

Bos et al. (2010) empirical analysis is based on a sample that consists of 

manufacturing industries that are twice as disaggregated as those used in related 

studies (Koop, 2001; Kneller and Stevens, 2006). Bos et al. (2010) apply their 

modelling approach to 21 EU manufacturing industries in six countries over the 

period 1980–1997, with two key questions in mind: (i) do industries use different 

technologies? (ii) Eventually, what drives output growth? The use of a latent class 

structure in the specification of the stochastic frontier model results in identifying two 



 166 

technology clubs (regimes). One technology club appears to be technologically more 

advanced, as industries in that club are characterized by a high R&D spending and a 

high marginal productivity of labor. Bos et al. (2010) find that industries in that club 

exhibit constant returns to scale. In contrast, industries in the other, less 

technologically advanced club exhibit decreasing returns to scale. The driving forces 

of growth are also different across the two clubs. Technical change is a crucial 

component for growth for the technologically advanced club, while input (in 

particular capital) growth plays an important role in both technology clubs. Since Bos 

et al. (2010) permit switching from one club to another and condition membership on 

the technological effort (R&D), Bos et al. (2010) can investigate the existence of 

technological spillovers and catch-up behavior. Regarding the former, they find some 

support within the technologically advanced club. Regarding the latter, they find that 

the distance between the clubs has increased over time. Finally, within the advanced 

club, they also find some evidence of cross-country technological catch-up. Overall, 

Bos et al. (2010) model reveals significant heterogeneity in the growth behavior of the 

manufacturing industries in the sample. Many of the findings could not be obtained 

using traditional approaches (imposing constant returns to scale, ignoring 

inefficiency, assuming a common production function). Their findings are in line with 

other studies that have also adopted flexible modelling approaches. More specifically, 

some evidence of technological catch-up is also documented by Koop (2001), while 

the importance of input growth is also the main finding in Koop et al. (1999), Koop 

(2001) and Kumar and Russell (2002). Bos et al. (2010)  results shed light on 

important policy questions, in particular for the EU (as the Lisbon Strategy sets R&D 

targets for the member states). For instance, does higher R&D spending result in 

better use of the existing best-practice technology and/or the invention of new 

technology? The results corroborate that it matters which industries are ‘targeted’ by 

R&D investment tax credits/subsidies. For industries in the advanced technology club, 

higher R&D spending can both increase the efficiency with which industries absorb 

the best-practice technology and lead to technological improvements. Industries in the 

other, less advanced, club can improve their chances of becoming a member of the 

more advanced club by spending more on R&D97.  

                                                 
97 To identify different technologies, many industry classifications rely on clustering industries a priori 

on the basis of observed R&D expenditure and estimate best-practice frontiers for each cluster 



 167 

   

According to Bos et al. (2010), R&D can affect all parameters in the frontier 

production function, namely the marginal products of inputs, technical and efficiency 

change (Griffith et al., 2004; Kneller and Stevens, 2006). Moreover, it includes 

another element which may determine the parameters in the frontier production 

function, namely the evidence of leader–follower behaviour. Bos et al. (2010) 

decomposition results, and in particular the differences with respect to technical 

growth and efficiency, may shed some light on leader/follower models of technical 

growth. A body of research has examined whether technology spills over across 

countries, via R&D and trade. In these models, all countries have access to the same 

technology and the leader country, ie., the country with the highest TFP growth in an 

industry, develops a new technology while the rest of the countries (followers) can 

imitate the technology (Scarpetta and Tressel, 2002; Griffith et al., 2004; Kneller and 

Stevens, 2006). 

 

Another parameter taken into consideration is the economy openness, which may also 

increase efficiency. It is often argued in both the international economics (Melitz, 

2003) and the industrial organization literature (Caves and Barton, 1990) that 

increased openness to trade should be positively related with increases in productivity 

and/or efficiency. Higher exposure to trade facilitates the imitation of an advanced 

foreign technology and/or places greater pressure on the industries to adopt best-

practice technologies and improve efficiency in order to cope with competition. Bos 

et al. (2010) and Koop (2001) state that openness does not correlate well with 

efficiency. Apparently, openness to trade does not wipe out inefficient industries. This 

result may merely corroborate findings in new international economic theory that 

emphasize the positive effects of openness on firm-level productivity of the very few 

firms that actually account for the major share of trade flows (Helpman, 2006). 

 

Puig-Junoy and Pinilla (2008) investigated the main sources of heterogeneity in 

regional efficiency in developed countries with an application to the Spanish regions, 

                                                                                                                                            
separately (Hatzichronoglou, 1997). However, such a division is to some degree arbitrary since the 

appropriate cut-off levels of R&D remain unclear.  
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given the potential for economic growth by reducing the distance from the best 

practice, estimating a translog stochastic-frontier production function in the analysis 

of Spanish regions in the period 1964-96, to attempt to measure and explain changes 

in technical efficiency. Their results confirm that regional inefficiency is significantly 

and positively correlated with the ratio of public capital to private capital.  

 

According to Puig-Junoy and Pinilla (2008), regional economic growth can be 

decomposed into two main components: increases in factor inputs (capital 

accumulation) and improvements in total factor productivity. The first component 

attributes differences among regions to differences in physical resources, physical 

capital, and labour. Productivity differences, the second component, may also play a 

determinant role in economic growth. Increases in total factor productivity may be 

achieved through technical change (shifts in the production frontier) and through 

reductions in inefficiency in production (movements toward the frontier).  

 

In the long run, it can be hypothesized that technology transfers allow relatively 

homogeneous or similar regions, such as those in a developed country, to grow at a 

common rate. Then, not all differences in total factor productivity need to be 

persistent. That is, regional technology gaps may be expected among regions in 

developed countries to close over time as technology diffuses. If this is the case, 

persistent differences in total factor productivity may be attributed mainly to 

inefficiency in the use of input factors to produce regional output. 

 

On the other hand, the traditional regional production-function approach omits the 

influence of the level and evolution of technical inefficiency on the production 

function, and it precludes measurement of technical inefficiencies by assuming them 

away. Measuring regional inefficiency in production makes it possible to distinguish 

between shifts in technology and movements towards the best-practice production 

frontier. In this context, given regional input factors, differences in economic 

performance could be greatly reduced by improving technical efficiency.  

 

A frontier approach to inefficiency measurement makes it possible to separate 

efficiency change from technical change, rather than simply calculating the 
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contribution of productivity as a residual, as is usually done in growth-accounting 

literature (Puig-Junoy and Pinilla, 2008; Murrillo-Zamorano, 2004). 

 

Puig-Junoy and Pinilla (2008) focus on explaining cross-regional differences in output 

inefficiency levels and on how and why efficiency varies among regions, with a 

specific application to Spanish regions.  

 

There are also a number of papers reporting inefficiency heterogeneity for 

decentralized regions or states in developed countries such as the United States 

(Domazlicky and Weber, 1997), or Italy (Percoco, 2004) and Spain (Maudos et al, 

1998) in the European Union. 

 

Despite the critical importance for regional growth of reducing the distance from the 

best practice, the empirical literature has paid little attention to the sources of regional 

differences in technical efficiency, as a disaggregated component of total factor 

productivity, in decentralized and developed countries.  

 

Boisso et al (2000) used a nonparametric frontier approach and a two-step approach to 

explore factors that may lead to changes in the efficiency index calculated for US 

states, using a panel of forty-eight states over the period 1970-86.  

 

Puig-Junoy (2001) investigated the effects of public capital level and composition on 

the efficiency of the forty-eight contiguous US states in the period 1970-83 using a 

parametric frontier approach. 

 

4.4. Estimating Efficiency at industrial disaggregate 
level 

 

Measurements of inefficiency in industry were first constructed by estimating 

deterministic frontiers and subsequently by using stochastic frontiers. Aigner and Chu 

(1968) were the first researchers to estimate a deterministic frontier using Cobb-

Douglas production function through linear and quadratic programming techniques. 



 170 

They argued that for a given industry producers might differ from each other in their 

production processes.  

 

The distinguishing features among producers could be represented by: 

 

1. attained values for certain technical parameters in an industry production function, 

2. differences in scales of operation, and 

3. various structures in their organization 

 

As far as the efficiency analysis at industrial is concerned, the stochastic frontier 

model is used in a large literature of studies of production, cost, revenue, profit and 

other models of goal attainment. A summary of the main SFA applications are 

presented in the following table: 

 
Table 4.1.Surveys implementing SFA 

 
Application Paper Application Paper 

Wheat Production Ahmad et al. (2002)  World Health 

Organisation 

Hollingsworth and 

Wildman (2002) 

 Kolawole and Ojo (2007)   Richardson et al. 

(2003) 

Fishing Chiang et al. (2004)  Greene (2004b) 

 Herrero (2005)  Lauer et al. (2004) 

 Martinez – Gordero and 

Leung (2004) 

Labour markets Sheldon (2003) 

 Kompas and Che (2007)  Ibourk et al. 

(2004) 

Forestry Otsuki et al. (2002)  Lang (2005) 

 Bi (2004)  Millimet (2005) 

 Hof et al. (2004) Macroeconomics Cherchye et al. 

(2004) 

 Liu and Yin (2004)  Despotis (2005) 

Agricultural and Light 

Manufacturing 

Piesse and Thirtle (2000)   Ravallion (2005) 

Airports Oum and Yu (2004)  Yoruk and Zaim 

(2005) 

 Sarkis and Talluri (2004) Inequality and poverty 

insurance 

Deutsch and Silber 

(2005) 
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 Yoshiba and Fujimoto 

(2004) 

 Greene and Segal 

(2004) 

 Yu (2004)  Cummins et al. 

(2005) 

Air Transport Coelli et al. (2002)  Jeng and Lai 

(2005) 

 Sickles et al. (2002)  Tone and Sahoo 

(2005) 

 Scheraga (2004) 

Duke and Torres (2005) 

Tax administration Serra (2003) 

Banking Davis and Albright (2004) Stocks, mutual funds 

and hedge funds 

Basso and Funari 

(2003) 

 Camanho and Dyson 

(2005) 

 Troutt et al. (2005) 

 Huang and Wang (2002)  Chang  (2004) 

 Kumbhakar and Tsionas 

(2002) 

 Abad et al. (2004) 

 Tsionas and Greene (2003) Financial statement 

analysis 

Chen and Zhu 

(2003) 

 Porembski et al. (2005)  Feroz et al. (2003) 

 Silva Portela and  

Thanassoulis (2005) 

Mergers Ferrier and 

Valdmanis (2004) 

Bankruptcy Prediction Wheelock and Wilson 

(2000) 

 Bogetoft and 

Wang (2005) 

 Becchetti and Sierra 

(2003) 

Elections Obata and Ishii 

(2003) 

 Cielen et al. (2004)  Foroughi et al. 

(2005) 

Health Care Birman et al. (2003) Libraries Shim (2003) 

 Dervaux et al. (2003)  Kao and Lin 

(2004) 

 Jimenez et al. (2003) Military  

 Kirigia et al. (2004)  Brockett et al. 

(2004) 

Credit Risk Evaluation Emel et al. (2003)  Sun (2004) 

 Paradi et al. (2004) Sports Haas (2003) 

Electricity Distribution Agrell et al. (2005)  Lins et al. (2003) 

 Delmas and Tokat (2005)  Fried et al. (2004) 

 Pollitt (2005)  Amos et al. (2005) 



 172 

 Edvardsen et al. (2006) Environment: macro 

applications 

Jeon and Sickles 

(2004) 

 Filippini et al. (2004)   Zaim (2004) 

    

   Henderson and 

Millimet (2005) 

 Giannakis et al., 2005 for 

UK; 

Environment: micro 

applications 

Gang and 

Felmingham 

(2004) 

 Hjalmarson and 

Veiderpass, 1992 for 

Sweden; 

 Wagner (2005) 

 Førsund and Kittelsen, 

1998 for Norway 

 Shadbegian and 

Gray (2005) 

Electricity Generation Arocena and Waddams 

Price (2003) 

 Banhaf (2005) 

 Korhonen and Luptacik 

(2004) 

Internet commerce Wen et al (2003) 

 Atkinson and Halabi 

(2005) 

 Barua et al. (2004) 

 Cook and Green (2005)  Chen et al. (2004) 

Gas Distribution Rossi (2001)  Serrano – Cinca et 

al. (2005) 

 Carrington et al. (2002) Museums  

 Hammond et al. (2002)  Bishop and Brand 

(2003) 

 Hawdon (2003)  Basso and Funari 

(2005) 

Oil And Gas Managi et al. (2006)  Health Evans et al., 

2000a, 2000b 

Aggregate R&D 

Activities 

Wang (2007)   Greene, 2004b; 

 Dhawan and Gerdes 

(1997)  

 Gravelle et al., 

2002a, 2002b; 

Rail Transport Kennedy and Smith (2004)  Hollingsworth and 

Wildman, 2002). 

 Loizides and Tsionas 

(2004) 

Nursing homes Farsi and Filippini 

(2003) 

 Farsi et al. (2004)  Hougaard et al. 
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(2004) 

   Laine et al. (2005) 

 Gathon and  

Perelman (1992)  

Dentistry Buck (2000) 

Public Infrastructure Mamtzakis (2003)  Grytten and 

Rongen (2000) 

   Linna et al. (2003) 

 Paul et al. (2004)  Widstrom et al. 

(2004) 

 Salinas – Jiminez (2004) Physician practices Wagner et al. 

(2003) 

Telecommunications Guedes de Avellar et al. 

(2002) 

 Rosenman and 

Friesner (2004) 

  Education McMillan and 

Chan (2006)  

  Education: primary and 

secondary 

Dolton et al. 

(2003) 

 Resende and Facanha 

(2004) 

 Mayston  (2003) 

Urban Transit De Borger et al. (2002)  Ammar et al. 

(2004) 

 Dalen and Gomez – Lobo 

(2003) 

 Dodson (2004) 

 Odeck (2006) Education: tertiary Bonaccorsi and 

Daraio (2003) 

Water Distribution Corton (2003)  Mensah and 

Werner (2003) 

 Tupper and Resende 

(2004) 

 Guan and Wang 

(2004) 

 Aubert and Reynaud 

(2005) 

 Warning (2004) 

 Cubbin (2005) Accounting, advertising, 

auditing and law  

Banker et al. 

(2005) 

Refuse Collection And 

Recycling 

Bosch et al. (2000)  Wang (2000) 

 Worthington and Dolllery 

(2001) 

 Dopuch et al. 

(2003) 

 Lozano et al. (2004)  Luo and Donthu 

(2005) 
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Ports Clark et al. (2004) Hospitals Chang et al. 

(2004) 

 Lawrence and Richards 

(2004) 

 Gao et al. (2006) 

 Park and De (2004)   

 Cullinane et el. (2003)  Stanford (2004) 

Real Estate Investments Lewis et al. (2003) Hotels Hwang and Chang 

(2003) 

 Anderson et al. (2004)  Chiang et al. 

(2004) 

Fabrics Battese, Rao, and 

Walujadi (2001)  

 Barros (2005) 

   Sigala et al. (2005) 

  Postal services Pimenta et al. 

(2000) 

   Maruyama and 

Nakajima (2002) 

   Borenstein et al. 

(2004) 

 
 
Source: Own elaboration, based on Fried et al. (2008), p. 16-19  
 
 

As far as the research implementing technical efficiency analysis is concerned, there 

is a great number of papers examining technical efficiency through stochastic Frontier 

Approach or Data Envelopment Analysis. 

 

Regarding primary sector, Ahmad et al. (2002) and Kolawole and Ojo (2007) 

examined wheat production. Most specifically, Ahmad et al. (2002) incorporated 

stochastic production frontier analysis in order to estimate efficiency and 

sustainability in wheat production in Pakistan with a production function 

incorporating inefficiency effects, such as: use of fertilizer nutrients, access to more 

reliable irrigation system, proportionate farm area devoted to crop, farm size, access 

to credit, closeness to markets, irrigation and agricultural extension facilities and 

education. The results of efficiency analysis showed that the average technical 

efficiency is about 68 percent and thus an average farmer is producing 32 percent less 
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than the achievable potential output. Kolawole and Ojo (2007) examined the overall 

efficiency of small holder croppers in Nigeria indicating that presence of technical 

inefficiency and allocative inefficiency had effects in the food crop production as 

depicted by the significant estimated gamma coefficient, the generalized likelihood 

ratio test and the predicted technical and allocative efficiencies within the farmers. 

The mean technical, allocative and economic efficiency of 0.733, 0.872 and 0.684 

respectively, indicating that the sample farmers were relatively very efficient in 

allocating their limited resources.  

 

Fishing is one of the most common case studies in the efficiency estimation literature. 

Herrero (2005) compared data envelopment analysis, stochastic production frontiers, 

panel data and distance functions. These different approaches have been applied to the 

Spanish Trawl fishery that operated in Moroccan waters, concluding that, in most 

cases, the multi- versus single-output feature is determinant in producing higher 

differences in the efficiency estimates. Martinez-Gordero and Leung (2004) examined 

the shrimp industry at a global level and in Mexico based on an unbalanced panel of 

semi-intensive shrimp farms containing primary-source information at pond level for 

the period 1994, 1996–1998 in northwest Mexico, using an input distance function 

approach, total factor productivity (TFP) and technical efficiency (TE) using both 

traditional (T) and environmentally adjusted (EA) indicators. Kompas and Che (2007) 

investigated efficiency gains associated with cost reductions from increases in traded 

quota estimated with a stochastic cost frontier for the Australian South East Trawl 

Fishery (SETF). Estimation of this frontier also provides key information on the 

relative importance of input costs in the SETF, returns to scale, variations in costs as a 

result of trade in quota and the economic performance of each fishing vessel, year to 

year. Final estimations indicate that increases in the volume of quota traded have 

resulted in considerable efficiency gains and cost reductions in the SETF, ranging 

from 1.8 to 3.5 cents per kilogram for surveyed vessels for every 1% increase in the 

volume of quota traded, or 1-2.4% of total variable costs, with considerable gains also 

accruing to crew and skipper in the form of larger share payments. Mean vessel 

efficiency is relatively high in the SETF, estimated at over 90%, and increases further 

to 92% over the sample period with increased trades in quota. 
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In forestry, Otsuki et al. (2002) examined the effects of the Brazilian governments’ 

title granting policies on the efficiency of agricultural and timber production in the 

Brazilian Amazon. A two-stage procedure is used that combines Data Envelopment 

Analysis (DEA) and a Tobit regression, finding that the main determinants of 

increasing technical efficiency seemed to be: the provision of private land titles, 

governmental expenditures, expenditures to secure property rights, and land-granting 

policies. Furthermore, Hof et al. (2004) reported the methodology and results of a data 

envelopment analysis (DEA) that attempts to identify areas in the country where there 

is maximum potential for improving the forest and rangeland condition, based on 12 

indicator variables. The primary variables are measures of human activity and 

indicators of forest and rangeland condition in place of the traditional economic inputs 

(costs) and outputs. It is concluded that, based on this analysis, there are opportunities 

to improve the forest and rangeland condition without reducing the amount of human 

activity, but not over large areas, only for some indicators, and typically not for a 

large number of indicators in the same place. This means that large-scale 

improvements in environmental condition across many indicators may often not come 

about without a reduction in human activity. 

 

Moreover, in agricultural and light manufacturing, Piesse and Thirtle (2000) 

incorporated translog stochastic frontiers with inefficiency effects to a panel of 

producer level data for 117 agricultural producers and 43 producers in the light 

manufacturing industry that technological regression dominates, giving negative 

productivity change. The inefficiencies are explained by overcapitalization, subsidies 

and excessive management costs, while producers that had established export markets 

were more efficient. 

 

Stochastic frontier approach has also found wide acceptance within industrial settings 

(Battese and Coelli, 1992; Coelli and Battese, 1996). A number of studies examined 

the technical efficiency of manufacturing industries in developing countries 

(Nishimizu and Page, 1982; Abdulkhadiri and Pickles, 1990; and Chuang, 1996, 

Harris 1993, Sheehan 1997) and steel production Wu (1996). Efficiency analysis has 

also played a crucial role in defining regulatory policies in industries. Examples are 
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telecommunication (Uri, 2001), energy (Jamasb and Pollitt, 2001), schooling (Mizala 

et al., 2002) and hospitals (Steinmann and Zweifel, 2003). Efficiency analysis is also 

increasingly applied to other industry-specific analysis, banking (Fare et al., 2004), or 

the cement industry (Tsekouras and Skuras, 2005). In the electricity industry, 

technical efficiency analysis has played a particularly important role in the 

liberalization process towards a competitive  industry structure and market-orientated 

regulation, both in electricity transmission and electricity distribution. Many authors 

concentrate on scale effects, and the optimal size and relative efficiency of producers, 

following a benchmarking approach. Jamasb and Pollitt (2001) give an extensive 

comparison of international efficiency studies for the electricity industry, stressing the 

importance of the proper variable choice. In a subsequent paper, Jamasb and Pollitt 

(2003) perform an international benchmarking study of 63 utilities from six European 

countries comparing several SFA and DEA specifications. 

 

Mahmood et al. (2007) examine the efficiency of the large scale manufacturing 

industry of Pakistan using the stochastic production frontier approach. A stochastic 

production frontier is estimated for two periods, 1995-96 and 2000-01, for 101 

industries. The results show that there has been some improvement in the efficiency 

of the large scale manufacturing industry, though the magnitude of improvement 

remains small.  

 

Taymaz and Saatci (1997) analyse the extent and importance of technical progress 

and efficiency in Turkish manufacturing industries. The rate and direction of technical 

change in three industries (textiles, cement, and motor vehicles) are estimated by 

using panel data on plants for the period 1987-92, using Cobb-Douglas, and translog 

stochastic frontier production functions. In addition to traditional inputs like labour, 

raw materials, energy and capital inputs etc., other factors like sub-contracting, 

advertising intensity, ownership type are also included in the analysis. The results 

show that there are significant inter-industrial differences in the rates of technical 

change and the factors influencing technical efficiency at the plant level.  

 

Ikhsan-Modjo (2006) examines the patterns of total factor productivity growth and 

technical efficiency changes in Indonesia’s manufacturing industries over the period 
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1988-2000. The study uses the data incorporating both the liberalisation years and the 

crisis/post crisis years sourced from an annual panel survey of manufacturing 

establishments. Gross output is regressed on inputs like the cost of capital, wages, 

intermediate inputs and energy, and the study finds that technical progress is the most 

important factor in explaining TFP growth in the Indonesian manufacturing industry.  

 

Tripathy (2006) examines efficiency gap between foreign and domestic firms in 

eleven manufacturing industries of India during 1990-2000. Two different techniques, 

i.e. stochastic frontier and data envelopment analysis are used to measure efficiency 

of the firms. The study assumes a Cobb-Douglas technology and estimates stochastic 

production and cost frontier in each industry to measure technical efficiency and cost 

efficiency of each firm as well as to obtain some inference on allocative efficiency.  

 

Alvarez and Crespi (2003) explore differences in technical efficiency in Chilean 

manufacturing firms. The authors use plant survey data and apply nonparametric 

frontier Data Envelopment Analysis. A stratified random sample is employed and 

firms are classified according to ISIC (3-digits) classification. It is found that the 

average efficiency of the sample is 65 percent with a large heterogeneity among 

industries, and that the professional and scientific equipment industry exhibits 91 

percent efficiency, while agro-industries and textiles have much lower efficiency 

levels at 49 percent and 34 percent respectively. 

 

Pandya (2011) aims at estimating the Deterministic and Stochastic Production 

Frontiers toanalyze the Technical Efficiency of Indian Plastic Industry. The study 

includes estimation of Deterministic and Stochastic Production Frontiers for the 

Plastic Industry. The Cobb-Douglas Production Function is used for this purpose 

since it has been found to be the most appropriate form for Indian Industries from 

several research studies. Productive Capacity Realization Ratios have been obtained 

using the Frontier Estimates and thereby the efficiency levels in the PVC Plastic 

Industry are evaluated.  

 

Njikam (2003) assesses the effects of trade reform on firm-specific technical 

efficiencies in Cameroon manufacturing using firm-level balanced panel data for the 
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period from 1988-89 to 1997-98. A Cobb–Douglas stochastic production frontier is 

estimated for each industrial industry. Results indicate that relative average technical 

efficiency increased in six of eight industries and in total manufacturing. The study 

concludes that the trade reform provided an enabling environment for improving firm-

level technical efficiency. 

  

Parameswaran (2002) analyses the performance of the manufacturing firms in some 

selected industries in terms of their technical efficiency against the background of the 

industrial and trade policy reforms introduced in India since 1991. A stochastic 

frontier production function and an associated inefficiency model are used to measure 

time varying firm specific technical efficiency. We define technical change as the 

shift of the best practice production frontier and technical inefficiency change as the 

movement within the best practice technology. The results show that all the industries 

considered registered a higher rate of technical progress in the post reform period 

along with a decline in the level of technical efficiency. The effect of change in the 

policy environment on technical efficiency varies among industries. The study also 

found that firms’ involvement in the international trade through export and import of 

raw materials and technology has a positive effect on technical efficiency. To measure 

the technical efficiency of firms over time and to test for the effect of firm's import 

and export activities on their technical efficiency, Parameswaran (2002) uses a 

stochastic frontier production function, along with an inefficiency model as proposed 

by Battese and Coelli (1995). Parameswaran (2002) assumes that the frontier 

production function is of translog form. For the analysis Parameswaran (2002) uses 

firm level panel data of four industries, namely electrical machinery, electronics, non-

electrical machinery and transport equipment. These industries belong to the segment 

of capital goods industries that faced greater reduction in trade protection in 1990s 

along with industrial policy reform. Hence, an analysis of these four industries 

assumes significance. The use of panel data allows to have not only more number of 

observations, but also enables to look into the pattern of distribution of technical 

efficiency among firms and its change over time.   

 

Regarding aviation industry, Oum and Yu (2004) investigated the effects of different 

forms of price regulation on airport efficiency, taking into account the interaction 
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between concession profits and price regulations. Their results showed that while 

regulation may lead to over-investment in capacity, price-cap regulation is prone to 

under-investment, concluding that dual-till regulation would be better than the single-

till regulation in terms of economic efficiency, especially for large and busy airports. 

Sarkis and Talluri (2004) investigated performance evaluation and process 

improvement of airlines and air carriers. Their study evaluated the operational 

efficiencies of 44 major US airports across 5 years using multi-criteria non-parametric 

models. These efficiency scores are treated by a clustering method in identifying 

benchmarks for improving poorly performing airports. Efficiency measures are based 

on four resource input measures including airport operational costs, number of airport 

employees, gates and runways, and five output measures including operational 

revenue, passenger flow, commercial and general aviation movement, and total cargo 

transportation. Yoshiba and Fujimoto (2004) examined efficient public investment, 

especially in the transportation infrastructure, arguing that some of the small regional 

airports are indeed suffering the issue of overinvestment. This paper attempted to 

verify the validity of such criticism by statistically measuring the efficiency of 

Japanese airports and conducting comparative analysis. For this objective, the paper 

employed two distinct methods namely data-envelopment analysis and endogenous-

weight TFP methods. The results from these methods consistently indicates that the 

efficiency of regional airports in mainland Japan are lower than others, and that those 

airports constructed in the 1990s are relatively inefficient. Oum and Yu (2004) 

compared the performance of productivity and efficiency of airport management and 

operation, as well as the relationships between various performance measures and 

airport characteristics in order to better understand the observed differences in airport 

performance. This paper extracted from the benchmarking report focuses on 

measuring and comparing operating efficiency performance of the world’ s major 

airports, after removing the effects of the variables beyond managerial control. Coelli 

et al. (2002) also examined aviation industry, focusing on the measurement of the 

contribution of unused capacity, along with measures of technical inefficiency, and 

allocative inefficiency. The paper concludes with an empirical illustration, involving 

data on 28 international airline companies. The empirical results indicate that these 

airline companies achieve profit levels which are on average 70% below potential 

levels, and that gap may be attributed to unused capacity. Sickles et al. (2002) 



 181 

examined the productive performance of a group of three East European carriers and 

compare it to thirteen of their West European competitors during the period 1977-

1990 with a stochastic distance frontier using recently developed semi-parametric 

efficient methods. Both semi- and nonparametric methods indicate significant slack in 

resource utilization in the East European carriers relative to their Western 

counterparts, and limited convergence in efficiency or technical change between 

them. Scheraga (2004) examined a sample of 38 airlines from North America, 

Europe, Asia and the Middle East to investigate whether relative operational 

efficiency implied superior financial mobility. Data envelopment analysis was utilized 

to derive efficiency scores for individual airlines. It was found that the traditional 

framework developed in the literature still provided reasonable explanatory power for 

realized relative operational efficiency. However, the second stage of the analysis 

found that relative operational efficiency did not inherently imply superior financial 

mobility. As such, airlines that had chosen relatively efficient operational strategies 

found themselves in positions of vulnerability with regard to financial mobility. A 

similar approach has been also followed by Duke and Torres (2005), who highlighted 

the importance of controlling costs in the industry, and enhancing productivity. 

 

Using a sample of 44 Indian pharmaceutical companies for the period 1992 to 2000, 

Saranga and Phani (2004) attempt to investigate whether internal efficiencies have 

any role to play in the growth of companies in a constantly changing dynamic 

environmental context. Companies are grouped according to three different criteria 

including the type of ownership, type business, and firm size. The purpose is to see 

how the companies in different categories fare in terms of efficiency ratings. Inputs 

selected are cost of production and selling, cost of material, and cost of manpower 

whereas outputs are profit margin, net sales, and exports. The results show that size of 

a company does not dictate the internal efficiency ratings; however indigenous firms, 

which are in the business of both bulk and formulations, have an edge over MNCs and 

over firms with only formulations business. 

 

Jajri and Rahmah (2006) analyse trend of technical efficiency, technological change 

and TFP growth in the Malaysian manufacturing industry. The authors use Data 

Envelopment Analysis (DEA) to calculate output-oriented Malmquist indices of Total 
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Factor Productivity growth, technological change, and technical efficiency change. 

Technical efficiency change (catch-up) measures the change in efficiency between 

current (t) and next (t+1) periods, while the technological change (innovation) 

captures the shift in frontier technology. Seven industries are chosen viz. food, 

beverages and tobacco; textile, wearing apparel and leather; wood and wood products; 

paper and paper products; chemicals, petroleum, coal, rubber and plastic products; 

non-metallic mineral and iron and steel products industries. Input variables are capital 

and labour whereas value added is used as output. It is found that Total Factor 

Productivity Growth is mainly driven by technical efficiency. The industries that 

experienced high technical efficiency are food, wood, chemical and iron products. 

Analysis by industry shows that there is no positive relationship between capital 

intensity and efficiency, technological change and Total Factor Productivity growth. 

 

Lee and Kim (2006) analyze the effects of research and development (R&D) on Total 

Factor Productivity growth in manufacturing industries, using a sample of 14 OECD 

(Organisation for Economic Cooperation and Development) countries for the years 

1982-1993. With the assumption of constant returns to scale technology, the 

Malmquist Productivity Index and its components are computed using two traditional 

inputs i.e. labour and capital; then the exercise is repeated with the stock of R&D 

capital as an additional input. Inclusion of R&D capital is found to be statistically 

significant and the introduction of R&D capital as an additional input reduces the TFP 

measures on average by 10 percent. It is also found that it is technological progress 

rather than efficiency catch up that is driven by the accumulation of R&D capital. 

Spillovers of R&D capital are tested using regression analysis. Two types of 

spillovers are considered viz. domestic R&D spillovers across industries and 

international spillovers within a single industry. Domestic R&D capital stocks and 

foreign R&D capital stocks for different industries are used for this purpose. It is 

found that productivity gains in manufacturing industries depend significantly on 

R&D spillovers, especially for an economy that is more open to international trade. 

 

Kim et al. (2005) examine the technical efficiency of firms in the iron and steel 

industry and try to identify the factors contributing to the industry’s efficiency 

growth, using a time-varying stochastic frontier model. A firm’s technical efficiency 
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also tends to be positively related to its production level as measured by a share of the 

total world production of crude steel. Another important source of efficiency growth 

identified by our empirical findings is adoption of new technologies and equipment. 

Our findings clearly indicate that continued efforts to update technologies and 

equipment are critical to the pursuit of efficiency in the iron and steel industry. As 

described in Kim et al. (2005), several studies investigated the efficiency of the iron 

and steel industry. They include among others: Ray and Kim (1995) for the U.S. steel 

industry; Jefferson (1990), Kalirajan and Cao (1993), Wu (1996), and Ma et al. (2002) 

for Chinese iron and steel firms. In this study, they consider time-varying 

inefficiency, and base our analysis on the model developed by Battesse and Coelli 

(1995).  

 

Camanho and Dyson (2005) eenhanced cost efficiency measurement methods to 

account for different scenarios relating to input price information in banking industry. 

These consist of situations where prices are known exactly at each decision making 

unit (DMU) and situations with incomplete price information. The assessments under 

price uncertainty are based on extensions to the Data Envelopment Analysis (DEA) 

model that incorporate weight restrictions of the form of input cone assurance regions. 

Huang and Wang (2002) estimated economic efficiency and economies of scale, using 

panel data of 22 Taiwanese commercial banks over the period 1982-97, employing a 

wide range of parametric and non–parametric cost frontiers’ efficiency estimation 

methods to estimate economic efficiency and economies of scale, using the same 

panel data of 22 Taiwanese commercial banks over the period 1982–97. According to 

their empirical implementation, the two methodologies yield similar average 

efficiency estimates, yet they come to very dissimilar results pertaining to the 

efficiency rankings, the stability of measured efficiency over time, the consistency 

between frontier efficiency and conventional performance measures, and the estimates 

of scale economies. Thus, the choice of an estimation approach can result in very 

different conclusions and policy implications regarding cost efficiencies and cost 

economies. These findings suggest that making policy decisions and evaluations relies 

on multiple techniques and specifications.  
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Kumbhakar and Tsionas (2002), within a panel data analysis with rice farming data 

from Philippines, dealt with nonparametric estimation of the technology, risk and risk 

preferences of producers when they face uncertainty in production. Uncertainty is 

modeled in the context of production theory where producers’ maximize expected 

utility of anticipated profit. Tsionas and Greene (2003), within a panel data analysis, 

proposed a stochastic frontier model with random coefficients to separate technical 

inefficiency from technological differences across firms, and free the frontier model 

from the restrictive assumption that all firms must share exactly the same 

technological possibilities. 

 

Silva Portela and Thanassoulis (2005) using parametric and non-parametric methods, 

have been focusing mainly on profit efficiency and to identify the sources of any 

shortfall in profitability (technical and/or allocative inefficiency). The method is 

applied to a set of Portuguese bank branches first assuming long run and then a short 

run profit maximisation objective. In the long run most of the scope for profit 

improvement of bank branches is by becoming more allocatively efficient. In the 

short run most of profit gain can be realized through higher technical efficiency. 

Wheelock and Wilson (2000) use alternative measures of productive efficiency to 

proxy management quality in individual U.S. banks, and find that inefficiency 

increases the risk of failure while reducing the probability of a bank's being acquired. 

Becchetti and Sierra (2003) investigated the determinants of bankruptcy in three 

representative unbalanced samples of Italian firms for the periods 1989–91, 1992–94 

and 1995–97. Two important results are that: (i) the degree of relative firm 

inefficiency measured as the distance from the efficient frontier has significant 

explanatory power in predicting bankruptcy (ii) qualitative regressors such as 

customers’ concentration and strength and proximity of competitors have significant 

predictive power. 

 

Country-wide research in electricity distribution is also wide, with reference to Agrell 

et al. (2005) in Scandinavian countries; Giannakis et al. (2005) for UK; Hjalmarson 

and Veiderpass (1992) for Sweden; Førsund and Kittelsen (1998) for Norway. Delmas 

and Tokat (2005) based on the analysis of 177 U.S. electric utilities from 1998 to 
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2001, our results show that the process of retail deregulation has a negative impact on 

firms' productive efficiency, as measured using Data Envelopment Analysis. Pollitt 

(2005) examined regulation effects on productive efficiency using non-parametric 

methods. Edvardsen et al. (2006) followed a piecewise linear frontier technology, 

reflecting observed best practice, accommodating the multi-output nature of 

distribution utilities is specified calculating shift in frontier technology and change in 

efficiency, for the period 1983 to 1989. Filippini et al. (2004) analyzed the efficiency 

of electricity distribution companies in Slovenia using SFA..   

 

In health care industry, there are numerous papers on estimating technical efficiency, 

using stochastic and non-stochastic methods. To mention several representative 

papers, Birman et al. (2003), Dervaux et al. (2003), Kirigia et al. (2004) and Jimenez 

et al. (2003) examined problems associated with ageing, mental illness, learning 

disability or physical disability. Farsi and Filippini (2003) investigated the nursing 

homes operated by government administration. The results also suggest that a great 

majority of the nursing homes in the sample do not fully benefit from scale 

economies. This implies that efficiency gains can be obtained with larger capacities or 

joint operations. 

 

In electricity generation, Arocena and Price (2003) introduced some novelty in 

modeling efficiency, including three pollutants and declared plant availability as 

outputs, and we test for the effect of environmental regulation in reducing pollutants. 

Korhonen and Luptacik (2004), Cook and Green (2005) and Atkinson and Halabi 

(2005) employed data envelopment analysis (DEA) to measure technical efficiency 

(as the relation of the desirable outputs to the inputs) in electricity plants. In gas 

distribution, Rossi (2001) used a stochastic frontier approach to analyze the technical 

change in the post-privatization period in the gas distribution industry in Argentina, 

finding that there is both a catching up effect and a shift in the frontier, which shows 

that the industry as a whole improved its efficiency not only for the average but also 

for every firm in the sample. Carrington et al. (2002) presented a benchmarking 

analysis, conducted for an Australian regulator that derives measures of efficiency for 

Australian gas distributors relative to U.S. counterparts. Several techniques, such as 
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data envelopment analysis and stochastic frontier analysis, were used to ensure that 

their measures were robust to methodology choice. Hammond et al. (2002) attempted 

an investigation by using Data Envelopment Analysis to estimate the relative 

efficiency of a sample of undertakings under each system, finding that undertakings 

operating under the basic price system were found to be more efficient which suggests 

that incentive regulation was effective in the industry. Hawdon (2003) investigated 

policy developments which affect efficiency of resource use in the gas industry, and 

used data envelopment analysis to measure relative performance at the individual 

country level.  

 

In oil and gas industries, Managi et al. (2006) examined the impact of technological 

change on the production frontier. To address the industry – specific feature, they also 

interdicted environmental variables. 

 

In aggregate R&D activities, Wang (2007) constructed a cross-country production 

model for evaluating the relative efficiency of aggregate R&D activities. R&D capital 

stock and manpower were considered as inputs; patents and academic publications 

were regarded as outputs. Environmental factors that influence R&D performance 

were also taken into account. Dhawan and Gerdes (1997) estimated an index of 

technological change using producer-level data in a stochastic frontier production 

function model that takes into account time-varying technical inefficiency.  

 

In rail transport, Kennedy and Smith (2004) incorporated the efficiency measurement 

techniques (DEA; COLS; SFA) for assessing Railtrack efficiency. Loizides and 

Tsionas (2004) developed a model to represent the cost structure of European 

railways based on a general index of technical change, which allows completely 

general estimation of productivity growth. The estimated model is based on a variable 

cost function for panel data, which allows for heterogeneity in spite of previous 

approaches in the railway economics and general index model literature which adopt 

the assumption of common technical parameters across countries. Farsi et al. (2003) 

examined the issue of cost-efficiency in Switzerland’s nursing homes, with a panel 

data of 17 public and 19 nonprofit nursing homes operating over the 9-year period 
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from 1993 to 2001, in one of the 26 Swiss cantons, Ticino. Several specifications are 

used to study the robustness of the results. The results suggest that the institutional 

form influences the efficiency of the studied nursing homes in that non-profit 

foundations are likely to be more cost-efficient than the nursing homes operated by 

government administration. The results also suggest that a great majority of the 

nursing homes in the sample do not fully benefit from the scale economies. This 

implies that efficiency gains can be obtained with larger capacities or joint operations.  

 

Finally, Gathon and Perelman (1992) created a stochastic frontier for European 

railways using a panel data approach in which technical efficiency is assumed to be 

endogenously determined. 

 

In public infrastructure, Martin et al. (2004) and Paul et al. (2004) examined the 

effects of public infrastructure on productivity in 12 two-digit manufacturing 

industries, which contribute about two thirds to the total output of the manufacturing 

industry. A translog cost function incorporating public capital infrastructure is 

estimated for each industry separately using annual time-series data for 1961-1995. 

The cost-function approach facilitates the investigation of productive effects of public 

capital in terms of both cost-saving and output-augmenting measures. It also enables 

to examine public capital's effects on the input demand and derive the rate of return 

on public investment (pertaining to manufacturing). Salinas – Jiminez (2004) 

analyzed the effect of public infrastructure on private factor productivity and 

efficiency in the Spanish regions. The focus is on the role of investment in public 

infrastructure and on analyzing how the relative endowments of public to private 

capital affect productivity growth. The results obtained indicate that, although public 

investment contributes to enhance private productivity growth, the less productive 

regions are suffering from a relative deficit of private capital. Other variables that 

might condition productivity (i.e., human capital, asymmetries in the economic cycle, 

and the industry structure) are also considered. 

 

In telecommunications industry, Guedes de Avellar et al. (2002) investigate the 

relative efficiency of 34 Brazilian Landline Telephone Service companies using Data 

Envelopment Analysis with weight constraints in the input and output variables. Uri 
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(2004) used several different measures of service quality, to investigate empirically 

whether there has been a decline in service quality between 1991 and 2000. Resende 

and Facanha (2005) reviewed the incentive properties of yardstick schemes with 

special reference to quality performance and to the economic foundations and 

practical applications of data envelopment analysis (DEA) for Brazilian local 

telephony over the period 1998–2002. The evidence indicates substantial quality 

underperformance, with some improvements towards the end of the period. 

 

In urban transit efficiency estimation, De Borger et al. (2002) provided a 

comprehensive survey of the literature on production and cost frontiers for public 

transit operators, and it evaluates the contributions of frontier analysis to the 

performance of the public transport industry. Dalen and Gomez – Lobo (2003) 

estimated a cost frontier model for an eleven-year panel of Norwegian bus companies 

(1136 company-year observations) using the methodology by Battese and Coelli 

(1995), to investigate to what extent different type of regulatory contracts affect 

company performance. The panel model proposed by Battese and Coelli (1995) allow 

for year/company specific efficiency measures to be estimated. Thus, unobservable 

network or other time invariant characteristic of the operating environment can be 

controlled for by analyzing the dynamics of measured productivity across time for 

firms regulated under different types of contracts, rather than relying solely on 

variations across companies during one time period. The main and robust result of the 

paper is that the adoption of a more high-powered scheme based on a yardstick type 

of regulation significantly reduces operating costs. Odeck (2006) used Data 

Envelopment Analysis (DEA) to analyze efficiency differences in the industry to test 

for efficiency and scale differences with respect to ownership, region of operation and 

scope of operation. The results suggest that there is in general a potential for input 

saving in the whole industry of about 28 percent. Nevertheless, while no significant 

differences are found between urban and rural operators with respect to input saving 

and output increasing efficiency scores, rural operators on average have lower mean 

scale efficiency and a higher variance of scale efficiency. 

 

In water distribution, Corton (2003) describes the implementation of a benchmarking 

scheme by the Peru water industry regulatory agency, analyzing alternative measures 
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of efficiency and estimates an efficiency frontier from a regression model of operating 

costs. Management culture and political interference were detected as important 

issues having an impact in this industry. Tupper and Resende (2004) quantify the 

relative efficiencies of state water and sewage companies in Brazil during the 1996–

2000 period. Relative efficiency scores obtained by Data Envelopment Analysis-DEA 

indicate that sub-optimal performance is salient for some utilities. In order to control 

for regional heterogeneities, the complementary between DEA and econometric 

procedures is explored as one controls for network density and water loss factors. To 

measure the impact of regulation on efficiency, Aubert and Reynaud (2005) use a 

stochastic cost frontier approach defining the unobservable efficiency of water utility 

in Wisconsin as a function of exogenous variables. Using a panel of 211 water 

utilities observed from 1998 to 2000, they show that their efficiency scores can be 

partly explained by the regulatory framework. Cubbin (2005) considers the use of 

efficiency measurement in the regulation of the water industry in England, Wales, and 

Scotland.  

 

Clark et al. (2004) investigate the determinants of shipping costs to the United States 

with a large database of more than 300,000 observations per year on shipments of 

products l from different ports around the world. They find that port efficiency is an 

important determinant of shipping costs. Improving port efficiency from the 25th to 

the 75th percentile reduces shipping costs by 12%. In turn, factors explaining 

variations in port efficiency include excessive regulation, the prevalence of organized 

crime, and the general condition of the country’s infrastructure. Reductions in country 

inefficiencies, associated to transport costs, from the 25th to 75th percentiles imply an 

increase in bilateral trade ofaround 25%. Cullinane et el. (2003) investigate the 

efficiency of container terminals within the context of global supply chain 

management. The efficiency and scale properties of 104 of Europe's container 

terminals with annual throughput of over 10,000 TEUs1 in 2003, distributed across 29 

European countries, are derived using data envelopment analysis. The main findings 

are that significant inefficiency pervades most of the terminals under study and that 

large-scale production tends to be associated with higher efficiency. 
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Lewis et al. (2003) used a stochastic frontier methodology that incorporates Bayesian 

statistics, and analyzes the cost efficiency of real estate investment trusts (REITs) by 

observing the deviations of the measured costs of individual REITs from a defined 

efficient cost frontier, using 1995–1997 data. 

 

Battese, Rao, and Walujadi (2001) investigate the technology gap and technical 

efficiencies of firms in the garment industry in different regions of Indonesia. They 

present a met-afrontier production function model for firms in different groups having 

different technologies. The meta-frontier model enables the calculation of comparable 

technical efficiencies for firms operating under different technologies. The model also 

enables the technology gaps to be estimated for firms under different technologies 

relative to the potential technology available to the industry as a whole. 

 

Efficiency of accounting, advertising, auditing and law producers has been examined 

by Banker et al. (2005), Wang (2000), Dopuch et al. (2003) and Luo and Donthu 

(2005). Efficiency of hospitals is investigated by Chang et al. (2004), Gao et al. 

(2006) and Stanford (2004). 

 

In education McMillan and Chan (2006) determined efficiency scores for Canadian 

universities using both data envelopment analysis and stochastic frontier methods. 

There was considerable divergence in the efficiency scores and their rankings among 

methods and specifications. An analysis of rankings, however, revealed that the 

relative positions of individual universities across sets of several efficiency rankings 

(e.g., all the data envelopment analysis and stochastic frontier outcomes) demonstrate 

an underlying consistency. Primary and secondary education efficiency is examined 

by Dolton et al. (2003), Mayston (2003), Ammar et al. (2004) and Dodson (2004). 

Tertiary education is investigated by Bonaccorsi and Daraio (2003), Mensah and 

Werner (2003), Guan and Wang (2004) and Warning (2004). 

 

Internet commerce efficiency is investigated by Wen et al (2003), Barua et al. (2004), 

Chen et al. (2004) and Serrano – Cinca et al. (2005).  Technical efficiency in 

museums is measured by Bishop and Brand (2003) and Basso and Funari (2005).  
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Panel data sets on health care attainment has been used by numerous researchers for 

studying different approaches to efficiency modeling (Evans et al., 2000a, 2000b; 

Greene, 2004b; Gravelle et al., 2002a, 2002b; Hollingsworth and Wildman, 2002). 

Nursing homes technical efficiency is evaluated by Farsi and Filippini (2003), 

Hougaard et al. (2004) and Laine et al. (2005).   

 

Physician practices technical efficiency is measured by Rosenman and Friesner 

(2004). The World Health Organisation technical efficiency has also been a study 

case for Hollingsworth and Wildman (2002), Greene (2004) Lauer et al. (2004). 

 

All lot of these papers suggest that technology and knowledge diffusion might help to 

improve production efficiency. Moreover, specific studies, as Meng and Li (2002), 

showed evidence of ICT industry development and diffusion but also huge gap 

between China and developed nations in this regards as well as digital divide among 

different economic regions. Gao (2004) examined regional industrial development in 

China with emphasis on factors representing sources of regional growth. Gao (2004) 

found that local competition, small size of public sector, better transport system, and 

exports and FDI positively effect on regional industrial growth.   

 

In addition to traditional inputs, Heshmati and Kumbhakar (2010)  incorporate several 

indicators of technology. One such indicator is ICT investment as an infrastructure for 

economic development. Other indicators are human capital and its role in acquisition 

and absorption of new technology, skills and management. Meng and Li (2002) is one 

of few studies which provided some evidence on China’s ICT industrial development 

and diffusion in recent years. Heshmati and Yang (2006) also investigated the 

relationship between TFP growth and ICT investment but at the aggregate national 

level, and, they provided estimation of positive returns to ICT investment in China.  
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4.5. Productive Efficiency and Institutional Context: 

Industrial and Innovation Policy in European Union 
 
As technical efficiency enhancement becomes an increasingly important issue, 

production must draw on a wide range of production ideas, component technologies 

and complementary capabilities.  

 

Within this framework, it is rather difficult for any single industry to incorporate and 

take advantage of the relevant technological advances, as well as the underlying 

industrial and innovation policies. This means that the actions of industries involve 

the targeted development of specialized knowledge assets, that are integrated from a 

wider range of knowledge areas (Kessler, Bierly, and Gopalakrishnan, 2000).  

 

Growth and competitiveness become contingent on the ability of firms to compose, 

establish and maintain external interfaces (Nicholls-Nixon and Woo, 2003), to choose 

the right mode of governance (Fey and Birkinshaw, 2005) and to link these effectively 

to internal knowledge accumulation and capability development. 

 

The relationship between productive efficiency and innovation and industrial policy is 

illustrated in the following figure (4.1):   
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Figure 4.1. Strategic policies flows 
 

 
Source: Own Elaboration 
 

European industrial, technology and innovation policies are no longer exclusively in 

the hands of national authorities: increasingly, national initiatives are supplemented 

by or even competing with regional innovation policies or transnational programmes, 

in particular, the activities of the European Union. At the same time, industrial 

innovation increasingly occurs within international networks. Research, technology 

and innovation policies of European countries clearly reflected the profiles of their 

national (and regional) ‘innovation systems’, understood as the various institutions, 

corporate actors and processes contributing to industrial and societal innovation.  

 

The innovation policies of the European Union (Peterson and Sharp, 1998; Guzzetti, 

1995) played a noticeable, but not yet a dominant role in the national contexts, at least 

not in the bigger member states (Kuhlmann, 2001). The following figure (4.2) 

highlights the interactions among the main policy elements regarding the 

enhancement of technical and productive efficiency.  
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Figure 4.2. Productive Efficiency and Institutional Framework  

  

 
Source: Own elaboration 
 

The spectrum of implemented instruments of research, technology and innovation 

policy is widely differentiated in the meantime, reflecting the scope of institutions and 

interests involved: it stretches from public funding of research institutions over 

various forms of financial incentives to the conducting of research and experimental 

development in public or industrial research labs, up to the design of an innovation-

oriented infrastructure, including the institutions and mechanisms of technology 

transfer. In many European countries, these instruments dominated the practice or 

research and technology policy for the last three decades. As further instruments one 

could mention efforts to guide public demand, measures in education and further 

training and the regulatory possibilities available. In the 21st century, though, the 

national and (regional) innovation systems are experiencing revolutionary 

shockwaves: the growing pull of internationalising economic relationships has mixed 

up traditional regional or national divisions of work between industrial enterprises, 

educational and research institutions as well as administration and politics, and it 

debased many of their traditional strengths. Internationalisation, however, has so far 

not led to a uniformity of the national innovation systems, which would finally mean 

their abolition. The various national and regional innovation cultures and related 

policy arenas react very differently, which partly leads them into crises, partly 
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stabilises, but partly also reveals unexpected, novel chances in a transformed 

international context. At the same time, European transnational innovation policies 

have been entering the stage, increasingly since 1985, nowadays covering the whole 

range of instruments (Kuhlmann, 2001). 

 

4.6. Industrial Policy and Technical Efficiency 

Sustainable development is a key concept within the industrial policy of the European 

Union. The key elements for the sustainable development policy concern the efficient 

use of resources encouraging the development of new productive technologies, 

extending the use of productivity and efficiency enhancement schemes and 

encouraging both innovative and productive activities. Within this context, the main 

role of industrial policy in the European Union is to provide the appropriate 

framework conditions and to make the European Union an attractive place for 

industrial development and employment creation.  

 

One of the core targets of industrial policy is to influence the volume and composition 

of the European Union industrial output, primarily the manufacturing output, aiming 

to increase the volume of production and/or employment (Baldwin and Martin, 2006). 

More specifically, industrial policy refers to structural policies designed to strengthen 

the efficiency, scale and international competitiveness of industrial sectors within a 

country, bringing about economic growth and development (Soete, 2007). 

 

Industrial policy has been a cornerstone of economic policy in European Union. 

During the 1970s and 1990s industrial policy shifted mostly towards support of high-

tech industries. There is also a close relationship between the effectiveness of 

industrial policy and the level of development within an economy. Advanced 

countries have witnessed over the 1990s a major acceleration in the process of 

deindustrialisation with a more rapid growth in services following the diffusion of 

information and communication technologies (Petit and Soete, 2001).  

 

However, the first unitary concept of an industrial policy for the European Union 

appeared after the European Commission‘s proposal from 1990s report ‘Industrial 
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Policy in an Open and Competitive Environment: Guidelines for a Community 

Approach’, as a confirmation on the necessity of adopting industrial policy measures 

in a free trade economy. In 1993, the Commission published the white paper on 

Growth, Competitiveness and Employment, underlining the meaning of the European 

economy‘s competitiveness in the new conditions, and the legal frame for European 

Union industrial policy was settled through the Treaty of Maastricht (Nica and Cuza, 

2010). The incentives for an overal approach over an industrial policy of the European 

Union were the differences registered as compared to the economies of the United 

States and Japan, regarding growth rates, investment rates, R&D and innovation, and 

international trade, as well as the rise of the new competitors from South-East Asia.  

 

Within this period, the dominance of the industrial sector within European Union 

remains structurally very different between European member states, such as 

Germany or France, which are still dominated by strong industrial presence. On the 

other hand there are cases of small member states which have witnessed rapid 

deindustrialisation over the 1990s but at the same time, nevertheless witnessed rapid 

growth in the industrial value added, such as Austria or Finland. However, while 

applying certain measures at national level, the actions might become selective by 

aiming certain industies or industrial objectives. Certain industrial sectors are more 

vulnerable internationally, due either to market characteristics, or to the insufficient 

development of the European industry compared to the world level. As a 

consequence, industrial policies were defined, aiming mainly to the competitive 

growth of the European industry, focusing on the following objectives (Nica and 

Cuza, 2010): 

 

� Accelerating the adaptive process of the industry to the structural changes; 

� Developing an environment in the favour of initiative and development of 

enterprises; 

� Encouraging the favourable environment for business cooperation; 

� Favouring the industrial potential of the research, technologic development and 

innovation policies (Dachin, 2006). 
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One of the main aims of industrial policy regards the encouragement of innovation, 

knowledge and research. European Union industrial policy consists a framework 

which aims to encourage private investments in R&D, and insure an optimal use of 

the public resources for industrial research. Furthermore, encouraging investments in 

intangible assets and human capital is crucial, in order to maximize the efficiency of 

the current technology and its effects. Furthermore, supporting entrepreneurship and 

developing industrial sectors is an objective that goes beyond the limits of the 

industrial policy, by joining actions of the educational policies, internal market, 

financial services and tax policy (Nica and Cuza, 2010). Certain fields require specific 

intervention, in order to improve the internal market, such as the financial or services 

markets, where the technical barriers and the legislative differences limit the free 

trade, in order to improve the economic environment, with special attention in areas 

which present the fastest technological progress. However, the development 

objectives set at European level cannot be reached without a tight interconnection of 

the industrial policy measures with those of some complementary policies, such as the 

commercial policy, the single market policy, transport and energy policies, research 

and development policies, competition policy, regional and macroeconomic policies. 

While in these fields the policies are already coordinated, the sustainable development 

requirements, with the three development pillars: economic, social and environmental, 

require supplementary measures for coordinating the industrial policy with the 

associated policies and requirements. Thus, European Union must insure the balance 

between the different policies, and this balance must be followed at national level, 

within the limits of competency of the different member states (Nica and Cuza, 2010). 

On the other hand, cohesion policies amount to an efficiency-based long-run strategy 

of 'catch-up growth', in which the interventions aim to accelerate catch-up growth and 

achieve cohesion policies, rendering industrial policy aims into increased growth and 

employment and the improved international competitiveness of European industrial 

sectors 

 

The nature and intensity of European industrial policy has drastically changed since 

the Rome Treaty (1957). This is due to the deepening of economic integration since 

the 1970s, the widening of its scope and the enlargement of the Union (Pelkmans, 

2006). More specifically, the Rome Treaty (1957) did not have a clear industrial 
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approach (apart from transport policy). Until reaching a unitary concept, the 

approaches on the European industrial policy passed through several stages. In a first 

stage, between 1958-1975, national policies prevailed. Between 1975-1985 a general 

tendency favouring the interventionist policies was observed. The Community 

measures were aiming to encourage the national efforts, and varied from subventions 

for the steel industry until granting funds for research and development projects and 

introducing commercial barriers in the trade with the countries from the rest of the 

world. In 2000, the Lisbon European Council set the objective of transforming the 

European Union in the most dynamic and competitive economy of the world. In 2004, 

EU‘s enlargement through the integration of the Central and Eastern European states 

represented a challenge for the European Union industrial policy, as the newly 

integrated states were to align to the industrial level of the European Union while 

maintaining and increasing the competitiveness of EU at a general level. After the 

first enlargement of the European Union, in 2004, the Commission established the 

main action lines of the industrial policy in the new geopolitical conditions, through 

the communication titled ‘Fostering structural change: an industrial policy for an 

enlarged Europe’ (Nica and Cuza, 2010).  

 

Currently, competition, the efficiency of public and private services, and 

infrastructure are important determinants of industrial competitiveness in European 

member states. In many member states, increasing competition in the network 

industries remains a challenge. Lengthy permitting procedures and public acceptance 

also constitute important obstacles to the development of infrastructure. A stronger 

enforcement of competition rules is necessary to reduce competition distortions98. 

Moreover, today, the competitiveness of European industry crucially depends on the 

quality and efficiency of the energy, transport and communication infrastructure 

services, with the upgrading and modernisation of these networks being rather 

essential. Transport networks need to be improved to overcome any related obstacles 

                                                 
98 The possibility of counterproductive international coordination has been extensively studied in the 
field of international macroeconomics (see Rogoff 1985, Canzoneri and Henderson 1991, and 
Canzoneri et al. 2006). In Canzoneri and Henderson (1991), it is also shown that if only a subset of 
countries (such as the EU) cooperates, then this limited cooperation may be counterproductive. The 
reason is again that coordination among EU members eliminates one distortion. This distortion may 
have actually compensated for another one with another group of countries. One could also apply this 
example to the issue of industrial policies (Baldwin and Martin, 2006). 
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and improve cross-border connections. These improvements will require massive 

investments and the development of innovative financing solutions. According to 

European Commission (2010), a new industrial innovation policy is needed to 

encourage the development of productive processe of goods and services, as well as 

the enhancement of productive efficiency.  

 

Industrial policy of the European Union must offer solutions for industrial 

development. Such challenges concern globalization, the technological and 

organizational changes, the increasing role of innovation and entrepreneurship. 

Strategy framework for industrial policy must put technical efficiency and 

competitiveness of European industry at centre stage (European Commission, 2010): 

 

� to adopt policies that have an impact on the cost, price and innovative 

competitiveness of industrial sectors, such as standardisation or innovation 

policies, or industrial policies targeting e.g. the innovation performance 

� to speed up the adjustment of industry to structural changes 

� to encourage an environment favourable to cooperation and development of firms 

throughout the Union 

� to foster better exploitation of the industrial potential of policies of innovation, 

research and technological development 

� to consider the competitiveness effects of all other policy initiatives such as 

transport, energy, environmental or social and consumer-protection policies 

(European Commission, 2005, Pelkmans, 2006). 

 

European industry must also strengthen the knowledge base to remain competitive, 

investing in research and innovation for a sustainable and inclusive economy. Most 

importantly, science, technology and innovation play a significant role in increasing 

technical efficiency and are a driving force in international competition. Innovation 

policy is a broad concept that contains research and technology policy and often 

overlaps with industrial policy.  
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4.7. Innovation Policy and Technical Efficiency 

 

Innovation policy seeks to help firms or industries to improve their capacity to 

innovate. This includes the provision of scientific infrastructure in research and 

education and direct and indirect support for research and technological development. 

It also includes a wide range of policies which aim to build networks, to make 

markets more conducive to innovation, to facilitate the transfer of technology, to help 

firms to acquire relevant capabilities, and to provide a supporting infrastructure in 

areas such as standards and intellectual property. Public innovation policy aims to 

strengthen the competitiveness of an economy or of selected industries, in order to 

increase societal welfare through economic success (Kuhlmann, 2001). Hence 

European Union has made innovation a top priority through several strategies, 

funding opportunities and assessments. The pressures of globalisation have brought 

innovation to the fore as a key element in increasing productivity along with technical 

efficiency and underpinning industrial competitiveness, taking into consideration the 

under-investment in business R&D and other innovative activities, strongly linked to 

the fragmented condition of European markets.   

 

Innovation policy is essential for European Union productive efficiency and an 

important driver in enabling European Union to enhance competitiveness, increased 

efficiency and growth and consequently to compete on a global scale. However, 

policy-makers also underlined the need for interaction between innovation policy and 

other policy areas to improve the environment for innovative enterprises (Nilsson, 

2004, Chesbrough, 2002, Georghiou, 2006). After the Second World War, and 

increasingly since the 1970s, with the acceleration of high technologies, the 

industrialised countries developed a broad spectrum of technology policy intervention 

measures (Roobeek, 1990, Ergas, 1987). However, neither industrial policy nor 

innovation policy was among the areas covered in the 1957 Treaty of Rome. By the 

early 1980s, however, both had found a place among the European Commission’s 

directorates (Guzzetti, 1995). The first research and technology development (RTD) 

programmes were designed and implemented in the early 1980s (Nelson and Winter, 

1982; Dosi et al., 1988). This included broad programmes such as the European 
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Strategic Programme for Research and Development on Information Technologies 

(ESPRIT) whose main goals were: i) to promote intra-European industrial cooperation 

through pre-competitive R&D; ii) to thereby furnish European industry with the basic 

technologies that it needed to bolster its competitiveness through the 1990s; and iii) to 

develop European standards (European Commission, 1987) and the Basic Research in 

Industrial Technologies (BRITE) programme designed to help the European 

manufacturing industry to become more competitive (Mytelka and Smith, 2001). 

Since the 1980s the Community was trying to foster the creation of strategic 

industries, in line with the individual member states’ efforts to promote national 

champions. In fact, the objective was to foster cooperation, innovation and 

commercialization processes, where the role of Community institutions was mainly to 

enable and coordinate policies rather than dictate their contents (Triulzi, 1999). 

 

Until the middle of the 1980s the Community had a research and technology policy of 

its own that more or less complemented national policymaking with a transnational 

dimension, in order to create a European Research Area (Commission 2000a). The 

rationale behind this approach is that European economic integration, in combination 

with the opportunities associated with the enlargement of the European Union and the 

challenges of economic and technological globalisation, functionally leads to an 

integrated innovation policy approach in European Union. On top of the national and 

regional efforts and in parallel with Europe’s economic and political integration, the 

emergence of a European innovation policy-making system can be traced (Peterson 

and Sharp 1998; Grande 1996; Guzzetti 1995). Its main pillar is the Framework 

Program, the first of which was established in 1984 and concentrated on industrial 

technologies, information technology, telecommunications and biotechnology. Each 

subsequent FP has been broader than its predecessor in its scope of technologies and 

research themes, with correspondingly higher expectations of its impact on the 

economy and society. The Framework Programmes are the instruments through which 

the Commission implements its scientific and technological research policy. The 

system of innovation approach lays emphasis on the interactive process in which 

enterprises in interaction with each other and supported by institutions and 

organisations – such as industry associations, R&D, innovation and productivity 

centres, standard setting bodies, university and vocational training centres, 
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information gathering and analysis services and banking and other financing 

mechanisms – play a key role in bringing new products, new processes and new forms 

of organisation into economic use.  

 

Into the 1990s, Community innovation  RTD programmes sought to promote 

technology transfer across industries and regions in Europe, aiming at achieving 

competitiveness and  productive efficiency. A few years later enhancing innovation 

became a cornerstone of the strategy to meet the target agreed by the European 

Council in Lisbon in March 2000 of the Union becoming the most competitive and 

dynamic knowledge-based economy in the world by the end of the decade, drawing 

attention to the interfaces between industries and financial markets, R&D and training 

institutions, advisory services and technological markets (Nilsson, 2004). The Lisbon 

European Council (2000) was an important milestone for the Community’s approach 

to innovation policy. The so-called Lisbon strategy required the Union to become, by 

2010, “the most competitive and dynamic knowledge-based economy in the world, 

capable of sustainable economic growth with more and better jobs and greater social 

cohesion”. With the Lisbon strategy, innovation gains increasing importance in the 

EU policy framework; the argument that firms’ competitiveness in a globalized 

economy is increasingly dependent on the introduction of new products and services 

is emphasized. Innovation policies, previously framed within the context of research 

policy, begin to be considered as essential components of industrial policy strategies. 

 

In 2002, the Barcelona European Council set a twofold objective requiring the Union 

to reach, by 2010, a level of R&D expenditure equal to 3% of European GDP 

(compared with 1.9% recorded in 2000), within which the level of private funding 

should increase up to two thirds of community R&D investments. Today, innovation 

in EU is distributed right across the system in all European countries. European-level 

networking of key players in the innovation process links national innovation systems. 

On the national level the member states are expected to build national innovation 

strategies. Innovation system was considered to be a measure to build dynamic 

clusters based on technologies with large growth potential. Innovation became a new 

industrial policy along with research policy, industrial policy, energy policy, or labour 

market policy. However, policy-makers also underlined the need for interaction 
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between innovation policy and other policy areas to improve the environment for 

innovation and technical efficiency (Nilsson, 2004). Nowadays, within the European 

Union innovation policy framework, current trends and the resultant emerging 

industrial innovation activities focus mainly on Information and Communication 

Technologies (ICT) related topics. Information and Communication Technologies 

(ICT) enable the development of new services and increase the efficiency of existing 

services. Globalisation and internationalisation of innovative industries is important, 

as is the convergence between the technologically intense sectors and other sectors. 

Maintaining and strengthening Europe’s industrial base is fundamental to securing the 

foundation and transformation of the EU economy and ensuring employment, social 

progress and cohesion (European Commission, 2011b, ETEPS, 2011). 

 

On the other hand, Europe’s national innovation systems differ substantially, as well 

as their innovation performances. Therefore, member states have undertaken great 

efforts to improve their innovation support measures by investing in research and 

implementing new or better instruments in support of innovation. This level of 

financial engagement is at risk in the current global economic crisis and, as a direct 

impact, the innovation gap in the EU is widening again. The implication of this is that 

innovation policy must consider the needs of a wide set of industries – policy 

initiatives need not be confined to a small group of highly innovative sectors. 

European Union is challenged in the global arena by emerging economies when it 

comes to capturing and capitalising on knowledge and technology in the context of 

innovation. In the past few years, the budget for R&D has been increased and several 

initiatives have been launched to strengthen Europe’s competitiveness. So far, 

however, these efforts have not made the EU more competitive. On the contrary, a 

decline can be seen and the EU is recognised as becoming less internationalised 

(Anvret, Granieri, and Renda, 2010). However, the innovation policy of the large 

European member states has not yet taken the step towards a conscious and 

comprehensive international integration and co-ordination of their measures. The 

majority of public initiatives is still mainly developed in national policy arenas, 

offered by national institutions, and addressed to national beneficiaries, borne by the 

implicit assumption that the research institutes, universities and enterprises involved 

carry out their innovation activities entirely or for the most part within national 



 204 

boundaries, or at least with a significant relation to the own economy (Kuhlmann, 

2001).  

 

The majority of public initiatives is still mainly developed in national policiess, 

offered by national institutions. While for the last years member states increasingly 

tended to compete with each other in the field of innovation policy (Porter, 1990; 

Roobeek, 1990), strong industrial or financial capital actors have been appearing more 

frequently on the scene - multinational enterprises, international strategic alliances of 

national enterprises- who act globally and across the national innovation systems 

(Meyer-Krahmer and Reger, 1999). In the member states of EU this policy initially 

took the form of initiatives for stimulating research, improving innovation financing 

and promoting technology absorption and innovation management.  

 

Additional priorities like intensifying the cooperation between research, universities 

and universities, promoting ‘clustering’ and other forms of cooperation among 

enterprises and other organisations involved in the innovation process and 

encouraging the start-up of technology- based companies were added to the national 

innovation policy (Nilsson, 2004).  

 

The following table (4.2.) presents the main priorities regarding the effectiveness of 

innovation and industrial policy implementation:  

 

Table 4.2. Policy Effectiveness Priorities 
 

Priority Means and actions 
• give priority to innovation and 

enterprise 
 
 
• ensure full employment 
 
 
• ensure an inclusive labor market  
 
• connect European Union 
 
• protect the environment 
 

• creating closer links between research institutes and 
industry, developing conditions favorable to R&D, 
improving access to finance and know-how and 
encouraging new business ventures; 

• emphasizing the need to open up employment 
opportunities, to increase productivity and quality at 
work and to promote lifelong learning; 

• reducing unemployment and disparities in access to 
employment; 

• promoting closer integration by improving transport, 
telecommunications and energy networks; 

• stimulation of innovation, and introducing new 
technologies, for example, in energy and transport. 

 
  
Source: Own elaboration 
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The evaluation of the innovation policy demonstrated that despite achieving most of 

the proposed actions, there are still significant obstacles to innovation in the EU. 

These obstacles can be overcome by taking coordinated action at both EU and 

national level (as illustrated in figure 4.3.: 

 
Figure 4.3. Action framework of E.U. policies 

 

 
 
Source: Own elaboration 
 

As part of the Europe 2020 strategy, the Commission launched in 2010 an ambitious 

new industrial policy that highlighted the actions needed to strengthen the 

attractiveness of Europe as a place for investment and production, including the 

commitment to monitor Member States competitiveness policies. The changing nature 

and scope of global innovation activities creates very significant consequences for EU 

innovation policy, requiring a substantial review of the pillars of EU innovation 

policy, involving both the scope and the governance of innovation at the EU and 

national level (Anvret, Granieri, and Renda, 2010). European Union has identified the 

following key areas where the competitiveness of the EU economy could be further 

strengthened in order to make significant progress towards the Europe 2020 goals 

(European Commission, 2011a): 
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� facilitating structural changes in the economy, in order to move towards more 

innovative and knowledge-based sectors that have a higher productivity growth 

and which have suffered less from global competition; 

� enabling innovation in industries, in particular by pooling scarce resources, by 

reducing the fragmentation of innovation support systems and by increasing the 

market focus of research projects;  

� promoting sustainability and resource efficiency, in particular by promoting 

innovation and the use of cleaner technologies, by ensuring fair and undistorted 

pricing of energy and by upgrading and interconnecting energy distribution 

networks; 

� improving the business environment, in particular by reducing the administrative 

burden on businesses and by promoting competition among service providers that 

use broadband, energy and transport infrastructure; 

� benefiting from the single market, by supporting innovative services and by fully 

implementing the Single Market Regulation, in particular the Services Directive;  

� supporting small and medium-sized enterprises (SMEs), in particular by favouring 

access to finance, by facilitating internationalisation and access to markets. 

 

EU industry must accelerate its efforts to adopt these technologies to keep its 

competitive edge in the world with research and innovation driving productivity 

growth and industrial competitiveness. 

 

4.8. Concluding Remarks 

Stochastic frontier models assume that producers operate under the same production 

technology and that the inefficiency distribution across individuals and time are 

homogeneous.  

 

Traditional stochastic frontier models do not distinguish between unobserved 

individual heterogeneity and inefficiency. They thus force all time-invariant 

individual heterogeneity into the estimated inefficiency. Hence, the producers only 

differ by the random noise term. A wide range of models are proposed that 

incorporate other forms of heterogeneity.  
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Most of the literature proposes two important categories: the first concerns the 

distinction between heterogeneity in the production model and heterogeneity in the 

inefficiency model, and the second the distinction between observable and 

unobservable heterogeneity (Greene, 2007a)99. 

 

This chapter analyses the evolution and characteristics of industrial and innovation 

policy as far as the enhancement of productive and technical efficiency is concerned, 

as well as the main effects on the European Union (EU) manufacturing industries over 

the period 1980-2005. Moreover, this chapter provides an assessment of the impact of 

these policies and the implemented programs on the productive and technical 

efficiency of manufacturing industries.  

 

A transition towards a sustainable, resource efficient economy is paramount for 

maintaining the long-term competitiveness of European industries. Overall, European 

member states have made significant progress in defining and implementing 

consistent national legislative frameworks for stimulating efficiency. However, some 

lack the experience and the administrative capacity to do this and for these countries 

the framework legislation at the EU level can provide guidance and support. 

 

The quality and availability of infrastructure (energy, transport, and broadband) make 

an important contribution to an efficiency promoting environment. Industrial sectors 

need a modern public administration, able to deliver efficient and high quality public 

services (European Commission, 2011). Coordinating clusters and networks improve 

industrial competitiveness and innovation by bringing together resources and 

expertise, and promoting cooperation among businesses, public authorities and 

universities. EU industrial and innovation policies should aim to overcome existing 

                                                 
99 Greene (2005) proposes a true fixed-effect stochastic frontier model which, in theory, may be biased 

by the incidental parameters problem. The problem usually cannot be dealt with by model 

transformations owing to the nonlinearity of the stochastic frontier model. Regardless of the source of 

heterogeneity, failure to control for individual effects is likely to bias the estimation results, especially 

when there is correlation between the effect and other explanatory variables in the model.  
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market failures and funding gaps, especially to supply the bridge between technical 

efficiency and productivity enhancement.  

 

European governments are in need of a more coherent, more coordinated approach 

towards industrial technical efficiency support. However, the pressure on public 

budgets adds to the urgency of this matter in different policy areas of industrial and 

innovation policy. The range of explicit innovation policies being applied is very 

much concerned with the supply side and even more with R&D support of various 

types, ranging from funding of science in public institutions through to fiscal 

incentives for firms to increase R&D spend. A comprehensive approach to industrial 

and innovation policy can be achieved by supporting markets for innovative goods 

and services and excellence in research in new technologies, including information 

and communication technologies (ICT), introducing a more focused strategy to 

facilitate the creation of areas for action, and in particular introducing a more focused 

strategy to facilitate the creation and marketing of new innovative products and 

services (European Commission, 2006). Within the domain of industrial and 

innovation policy, regulatory reform is seen to affect innovation indirectly through 

affecting the funds available for investment and market size and structure, and 

directly through its impact upon the promotion of technical efficiency and 

productivity (Lengrand, 2003). 

An open, efficient and competitive business environment is a crucial catalyst for 

growth in a global context. Improving the business environment covers policies in 

areas ranging from improving infrastructure to shortening the time needed to obtain a 

building license. In many cases, better institutional mechanisms need to be 

functioning as a single research area, business environment and innovation system. 

There need to be strategic approaches, which not only promote closer interaction 

among sectors but also among policy-makers (from different policy fields and 

different levels of government). European innovation and industrial policy is therefore 

recommended to develop strategic approaches which integrate R&D, innovation and 

industrial policy along with a more coherent EU strategy for innovative 

competitiveness, giving special attention to ICT in innovation and industrial policy 

(ETEPS, 2011). 
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At the national level, governments could set up agencies funded by public bonds with 

the mission to provide venture capital, investment credits and R&D support to new 

activities in the above fields. Productive efficiency and competitiveness would be 

strengthened by: 

 

� Pooling scarce resources to help to achieve critical mass in bringing innovation to 

the market; and by increasing cooperation in innovation to create large scale 

demonstration projects and pilot test facilities 

� Reducing the fragmentation of innovation support systems, facilitating bringing 

innovative solutions to the market, and increasing the market focus of research 

projects.  

� Developing support for innovative services based on measureable outcomes 

� Facilitating the growth of manufacturing industries by ensuring that regulations do 

not pose obstacles to expansion; by favouring access to appropriate finance; and 

by providing support services for accessing new markets, and publicising these. 

 

A new generation of policies have to overcome the limitations and failures of past 

experiences, such as collusive practices between political and economic power, heavy 

bureaucracy, lack of accountability and entrepreneurship. They have to be creative 

and selective, with decision-making mechanisms that are more democratic and 

inclusive of different social interests. These new approaches to industrial and 

innovation policies could play a key role in pulling Europe out of the current crisis. 

The politics behind such a new departure has to be based on a wide social consensus 

over the distribution of the productivity and efficiency gains deriving from new 

technologies and economic activities (Pianta, 2010).  

Industrial and innovation policy programmes and projects claim to contribute to 

technical efficiency. This implies that policies should concentrate on areas in which 

there is expansion and therefore good prospects for growth, community businesses are 

supposed to become more competitive, and scientific and technological progress is 

expected to offer a medium- or long-term potential for dissemination and exploitation 

(Kuhlmann, 2001). An open, efficient and competitive business environment is a 

crucial catalyst for growth in a global context. Rising to these challenges can improve 

the competitiveness of European manufacturing industries, and the Commission aims 
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to help the member states to use their limited resources efficiently in order to increase 

the global competitiveness of their industries. Addressing these challenges will 

improve the growth prospects of industries. A competitive industry can lower costs 

and prices, create new products and improve quality, contributing thus decisively to 

wealth creation and productivity growth throughout the economy.  

 

A greater coordination of policies at national level can leverage scarce funds to foster 

innovation and growth in times of budgetary austerity. Towards this direction, the 

main measures suggested include (Rossi, 2007): 

 

� Set up an open process of co-ordination on actions in science and technology,  

� Encourage diffusion of “good practice” and transnational cooperation among 

regions regarding research and innovation policies 

� Improve the effectiveness of public actions to promote research and innovation by 

designing policy mixes using in a coherent way various policy instruments 

� Pursue or initiate necessary regulatory and administrative reforms, and support 

measures, to enable public research institutions to develop more effective links 

with industry 

� Promote public research and technology transfer 

� Pursue efforts to create a legal, fiscal and financial environment favourable to the 

creation and development of start-ups 

� Support EU-level initiatives, such as networking and pilot experiments, to 

facilitate transnational technology partnerships, by encouraging clustering or 

integration of resources 

 

The difficult fiscal environment sets limits to policy action, but robust growth will 

reduce the burden of public deficit and debt, in line with the goals of the Stability and 

Growth Pact. For this an environment that favours new ideas and new businesses is 

required. Innovation is the primary driver of a successful and sustainable industrial 

policy. A strong lead in R&D and innovation is Europe’s key competitive advantage 

and of central importance in finding solutions to economic challenges (European 

Commission, 2011b). With increased globalisation, one can only hope that industry 

will be an engine for the spreading of social progress, environmentally friendly 
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technologies and innovations world wide (Soete, 2007). To achieve a truly 

sustainable, positive effect for manufacturing industry and the workforce it employs, 

the EU and its Members States should aim to avoid the relocation of manufacturing 

activities and related services (e.g. R&D, ICT) and support the permanent upgrading 

of European manufacturing industries. 

 

Taking into consideration the underlying industrial and innovation policy framework 

in European Union manufacturing industries, this thesis aims to estimate the level and 

evolution of technical efficiency in selected European Union manufacturing 

industries, providing the links between the policy framework and technical efficiency 

level. Concluding, a framework reliant upon efficiency has become an important 

policy objective in all European countries to promote productive efficiency.  
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Chapter 5 
 
 

Stochastic Frontier Model: Empirical Results 
 

 
 

Abstract 
 
The objective of this chapter is to estimate the Transcendental Logarithmic Production Function of 

manufacturing industries in selected E.U. economies, considering a panel data model for inefficiency 

effects in stochastic production frontiers based on the Battese and Coelli (1992, 1995) models, 

providing translog effects, as well as industry effects. More specifically, this chapter estimates 

stochastic parametric frontiers for which the producer effects are first an exponential function of time, 

followed by the estimation of producer effects as an exponential function of time and related 

exogenous variables (efficiency explanatory factors). The model decomposes technical efficiency into 

two components: technological growth (essentially, a shift of production possibility frontier, set by 

best-practice industries) and inefficiency changes (i.e., deviations of actual output level from the 

production possibility frontier). The estimated model accommodates not only heteroscedasticity but 

also allows the possibility that an industry may not always produce the maximum possible output, 

given the inputs available. Our analysis presents different alternative models for technical efficiency 

estimations, as well as their empirical results. The alternative models are being compared according to 

their results regarding the evolution of technical change during 1980 - 2005, the estimation of technical 

efficiency, as well as the distribution of technical efficiency.  The chapter begins with a description of 

the model specifications, the data set, and the definition of the variables, along with their descriptive 

statistics. Then the empirical model is formed with estimation results for different alternative model 

specifications, providing the industry -level estimates of technical efficiency using the time-varying 

inefficiency model within a composite error framework. Further, factors that determine variations of 

technical efficiency are established and a comparison of technical efficiency is made, both before and 

after accounting for different explanatory variables in the inefficiency term. This includes reporting the 

estimated technical efficiency of an industry, the discussion of causes of variations in efficiency 

explanatory efficiency and discussion of the conditional efficiency. More specifically the model is 

extended in order to include industry specific effects (by employing industry composite dummies), so 

as to examine differences in efficiency level among different industries. For this reason, our model is 

estimated including the industry – specific composite dummies. The results include reporting the 

estimated technical efficiency and the related explanatory variables. This chapter is organized as 

follows: the first section presents the theoretical framework; the second section develops the model 

estimation and in the third section presents the econometric estimation and the related results. Then, 

Chapter 5 estimates and compares the two main alternative Battese and Coelli specifications, also 

comparing the estimation results of time invariant versus time varying technical efficiency.  
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5.1. Introduction 
 

Efficiency frontier analysis in theory of industrial production does not assume that 

every industry is fully efficient. Within growth process, therefore, efficiency of 

production resources becomes a critical element in growth, through utilizing the 

available, yet scarce, resources more productively. Combining the production 

functions in order to create and disseminate innovations leads to improvements in 

productivity and efficiency. However, at a given moment of time, when technology 

and production environment are essentially the same, producers may exhibit different 

productivity levels due to differences in their production efficiency. Within this 

framework, efficiency estimation represents how well a producer uses the available 

resources to produce outputs from inputs.  

 

Consequently, one of the main goals of frontier analysis is the estimation of 

inefficiency, with a major question being whether inefficiency occurs randomly 

across industries, or whether some industries have predictably higher levels of 

inefficiency than others. If the occurrence of inefficiency is not totally random, then it 

should be possible to identify factors that contribute to the existence of inefficiency 

(Reifschneider and Stevenson, 1991). As a result, in order to account for these 

inefficiencies, alternative methods make explicit assumptions of inefficiencies 

between different industries [see for example, DEA (Data Envelopment Analysis; see 

Coelli, Rao, Battese, 1997, Chap. 6 & 7) and frontier approach (ibid. Chap. 8 & 9).  

 

The objective of this chapter is to estimate the Transcendental Logarithmic 

Production Function of manufacturing industries in selected E.U. economies, 

considering a panel data model for inefficiency effects in stochastic production 

frontiers based on the Battese and Coelli (1992, 1995) models, providing translog 

effects, as well as industry effects. More specifically, this chapter estimates stochastic 

parametric frontiers for which the producer effects are first an exponential function of 

time, followed by the estimation of producer effects as an exponential function of 

time and related exogenous variables (efficiency explanatory factors). The model 

decomposes technical efficiency into two components: technological growth 

(essentially, a shift of production possibility frontier, set by best-practice industries) 



 214 

and inefficiency changes (i.e., deviations of actual output level from the production 

possibility frontier). The estimated model accommodates not only heteroscedasticity 

but also allows the possibility that an industry may not always produce the maximum 

possible output, given the inputs available.  

 

The model used in this chapter follows the Battese and Coelli (1992 and 1995) 

approach of modelling both the stochastic and the technical inefficiency effects in the 

frontier, in terms of observable variables, and estimating all parameters by the method 

of maximum likelihood, in a one - step analysis100, in conjunction with the parameters 

of the variables included to explain efficiency, allowing for balanced panel data, 

which is the only model allowing for one – step analysis101. The translog production 

frontier used in this study follows Battese and Coelli (1992, 1995) stochastic 

production frontier model by including a time variable in the deterministic kernel of 

the stochastic production frontier to capture the effect of technical progress. 

Maximum likelihood techniques are used to estimate the frontier and the inefficiency 

parameters. 

 

The chapter is organized as follows: the first section presents the theoretical 

framework; the second section develops the model estimation and in the third section 

presents the econometric estimation and the related results.  

 

                                                 
100 Battese and Coelli (1995) suggested that under the assumption of truncated normal one-sided error 

term, the mean of the truncated normal distribution could be expressed as a function of certain 

covariates, a closed form likelihood function can be derived, and the method of maximum likelihood 

may be used to obtain parameter estimates, and provide inefficiency measures. 

 
101 Bhattacharyya et al. (1997) pointed out that when employing regression analysis in the second step 

to explain the variation of the efficiency scores, it is likely that the included explanatory variables fail 

to explain the entire variation in the calculated efficiencies and the unexplained variation mixes with 

the regression residuals, adversely affecting statistical inference. They propose the use of a stochastic 

frontier regression model, which allows for the decomposition of the variation of the calculated 

efficiencies into a systematic component and a random component.  
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More specifically, the chapter begins with a description of the model specifications, 

the data set, and the definition of the variables, along with their descriptive statistics. 

Then the empirical model is formed with estimation results for different alternative 

model specifications, providing the industry -level estimates of technical efficiency 

using the time-varying inefficiency model within a composite error framework. 

Further, factors that determine variations of technical efficiency are established and a 

comparison of technical efficiency is made, both before and after accounting for 

different explanatory variables in the inefficiency term. This includes reporting the 

estimated technical efficiency of an industry, the discussion of causes of variations in 

efficiency explanatory efficiency and discussion of the conditional efficiency. More 

specifically the model is extended in order to include industry specific effects (by 

employing industry composite dummies), so as to examine differences in efficiency 

level among different industries.  

 

5.2. Empirical Model Data  

The empirical analysis is based on estimating efficiencies as industry - specific fixed - 

effects at industry level of selected member – states within European Union, during 

1980 – 2005102. The European Union member – states selected to be included in the 

model are: United Kingdom, Germany103, the Netherlands, Denmark, Finland, Italy, 

Spain and France. This sample creates a data set including both countries with strong 

industrial productive base, such as United Kingdom, Germany and France, as well as 

countries with low industrial productive base, such as Spain104.  

 

                                                 
102 The choice of European Union member – states and the time period is determined by the availability 

of the data. 

 
103 The data for Germany prior to 1991 refer to former Western Germany. 

 
104 This topic has been broadly examined in: Kokkinou A. (2010a) Estimating Technical Inefficiency: 

An Empirical Approach to E.U. Industries, Regional Science Inquiry Journal, Vol. II (2), 2010, pp 95-

104. 
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The data used is extracted from the EU KLEMS data base of industrial accounts for 

productivity analysis (Timmer et al., 2008), NACE 2 – digit level of industry 

disaggregating, comprising 13 manufacturing industries105. The EU KLEMS Growth 

and Productivity Accounts is the result of a research project, financed by the 

European Commission, to analyze productivity in the European Union at the industry 

level. This database is meant to support empirical and theoretical research in the area 

of economic growth, such as study of the relationship between skill formation, 

investment, technological progress and innovation on the one hand, and productivity, 

on the other.  

 

EU KLEMS Accounts include measures of output growth, employment and skill 

creation, capital formation and multi-factor productivity (MFP) at the industry level 

for European Union member states from 1970 onwards. The input measures include 

various categories of capital (K), labour (L), energy (E), material (M) and service 

inputs (S). A major advantage of growth accounts is that it is embedded in a clear 

analytical framework rooted in production functions and the theory of economic 

growth and that it examines the productivity performance of individual industries and 

their contribution to aggregate growth (EU KLEMS, 2008). 

 

EU KLEMS database provides data on a detailed industry level. In general, data for 

1970-2005 are available for the “old” EU-15 countries and for the US. Series from 

1995 onwards are available for the new EU member states which joined the EU on 1 

May 2004 (EU-10). The variables covered can be split into three main groups: (1) 

basic variables; (2) growth accounting variables and (3) additional variables.  

 

The basic series contain all the data needed to construct single productivity measures, 

such as labour productivity (output per hour worked). These series include nominal, 

volume and price series of output and intermediate inputs, and volumes and prices of 

employment. Finally, additional series are given which have been used in generating 

the growth accounts and are informative by themselves. These include, for example, 

                                                 
105 EU KLEMS stands for EU level analysis of capital (K), labour (L), energy (E), materials (M) and 

service (S) inputs.   
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various measures of the relative importance of ICT-capital and non-ICT capital, and 

of the various labour types within the EU KLEMS classification. 

 

Importantly, EU KLEMS makes a distinction between three ICT assets (office and 

computing equipment, communication equipment and software) and four non-ICT 

assets (transport equipment, other machinery and equipment, residential buildings and 

non residential structures). 

 

 The real investment series are used to derive capital stocks through the accumulation 

of investment into stock estimates using the Perpetual Inventory Method (PIM) and 

the application of geometric depreciation rates. Then capital service flows are derived 

by weighting the growth of stocks by the share of each asset’s compensation in total 

capital compensation. In this way, aggregation takes into account the widely different 

marginal products from the heterogeneous stock of assets. The weights are related to 

the user cost of each asset (EU KLEMS, 2008). The industries included in the model 

are presented in the following table:  

Table 5.1. EU KLEMS industries  
 

EU KLEMS industries 

Electrical and optical equipment 

Food products, beverages and tobacco 

Textiles, textile products, leather and footwear 

Manufacturing nec; Recycling 

Wood and products of wood and cork 

Pulp, paper, paper products, printing and publishing 

Coke, refined petroleum products and nuclear fuel 

Chemicals and chemical products 

Rubber and plastics products 

Other non-metallic mineral products 

Basic metals and fabricated metal products 

Machinery, nec 

Transport equipment 

 
Source: EU KLEMS (2008) database 
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The industries included in the model sample account for a large percentage of each 

economy’s value added. The following table illustrates output of each one of the 

sample manufacturing industries within each country, in terms of value added,, as 

well as the evolution between the first and the last year of the analysis period (1980 – 

2005), respectively:  

 Table 5.2. Value Added per industry and country (actual values) 
 

Country 

Industry Year Denmark Finland France Germany Italy Netherlands Spain United 
Kingdom 

1 1980 5.374 
 

458 
 

10.310 
 

33.420 
 

5.433 
 

2.888 
 

1.303 
 

6.368 
 

 2005 21.511 
 

7.531 
 

21.684 
 

70.692 
 

23.504 
 

3.612 
 

7.134 
 

13.911 
 

2 1980 14.656 
 

857 
 

11.610 
 

21.649 
 

23.504 
 

4.933 
 

3.392 
 

7.693 
 

 2005 30.011 
 

2.334 
 

28.883 
 

40.806 
 

23.486 
 

11.827 
 

16.960 
 

21.202 
 

3 1980 3.838 
 

694 
 

6.134 
 

12.655 
 

8.581 
 

1.073 
 

3.126 
 

4.249 
 

 2005 3.469 
 

529 
 

7.683 
 

9.049 
 

25.546 
 

1.159 
 

6.492 
 

3.989 
 

4 1980 3.270 
 

299 
 

3.892 
 

7.454 
 

3.182 
 

2.046 
 

1.179 
 

1.151 
 

 2005 10.048 
 

720 
 

7.573 
 

11.860 
 

11.519 
 

4.674 
 

6.451 
 

6.281 
 

5 1980 1.635 
 

734 
 

1.271 
 

4.248 
 

1.533 
 

357 
 

741 
 

892 
 

 2005 5.355 
 

1.351 
 

3.318 
 

7.660 
 

5.809 
 

973 
 

2.784 
 

4.269 
 

6 1980 7.142 
 

1.797 
 

6.254 
 

15.411 
 

2.840 
 

3.011 
 

1.534 
 

5.270 
 

 2005 17.039 
 

5.403 
 

16.573 
 

32.613 
 

14.332 
 

7.328 
 

11.347 
 

19.566 
 

7 1980 1.441 
 

274 
 

2.758 
 

7.249 
 

772 
 

913 
 

698 
 

1.963 
 

 2005 112 
 

653 
 

5.101 
 

4.974 
 

5.144 
 

3.611 
 

2.750 
 

2.175 
 

8 1980 7.164 
 

442 
 

7.122 
 

21.649 
 

3.716 
 

3.717 
 

2.503 
 

4.883 
 

 2005 34.390 
 

1.984 
 

20.040 
 

47.598 
 

16.695 
 

9.579 
 

11.598 
 

16.465 
 

9 1980 2.227 
 

240 
 

5.549 
 

8.303 
 

2.058 
 

574 
 

712 
 

2.049 
 

 2005 9.886 
 

1.048 
 

10.303 
 

22.770 
 

9.652 
 

1.889 
 

5.564 
 

7.655 
 

10 1980 3.559 
 

336 
 

2.978 
 

10.357 
 

3.595 
 

1.217 
 

1.736 
 

2.266 
 

 2005 7.576 
 

1.122 
 

8.224 
 

14.546 
 

13.753 
 

1.989 
 

10.159 
 

5.042 
 

11 1980 5.298 
 

759 
 

11.882 
 

32.322 
 

8.141 
 

3.696 
 

5.211 
 

7.461 
 

 2005 19.206 
 

3.919 
 

30.945 
 

60.775 
 

39.345 
 

7.418 
 

21.566 
 

14.509 
 

12 1980 9.044 
 

890 
 

10.237 
 

31.827 
 

6.572 
 

1.696 
 

1.604 
 

5.989 
 

 2005 25.454 
 

3.797 
 

18.352 
 

70.200 
 

32.439 
 

5.890 
 

9.312 
 

12.006 
 

13 1980 3.053 
 

400 
 

7.408 
 

25.146 
 

3.996 
 

1.158 
 

2.421 
 

5.782 
 

 2005 4.369 
 

1.054 
 

21.727 
 

76.407 
 

11.533 
 

2.609 
 

13.477 
 

16.729 
 

Notes: 
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1. Industry 1 = Electrical and optical equipment, Industry 2 = Food products, beverages and tobacco, 

Industry 3 = Textiles, textile products, leather and footwear, Industry 4 = Manufacturing nec; 

Recycling, Industry 5 = Wood and products of wood and cork, Industry 6 = Pulp, paper, paper 

products, printing and publishing, Industry 7 = Coke, refined petroleum products and nuclear fuel, 

Industry 8 = Chemicals and chemical products, Industry 9 = Rubber and plastics products, Industry 

10 = Other non-metallic mineral products, Industry 11 = Basic metals and fabricated metal 

products, Industry 12 = Machinery, nec, Industry 13 = Transport equipment. 

2. For Finland, France, Germany, Italy, Netherlands, and Spain, Gross value added is expressed at 

current basic prices (in millions of Euros). 

3. For Denmark, Gross value added is expressed at current basic prices (in millions of Danish 

Kroner). 

4. For United Kingdom, Gross value added is expressed at current basic prices (in millions of British 

Pounds). 

 
Source: EU KLEMS data base 

 
As it is illustrated in the table (5.2), Denmark moved its specialisation from paper and 

textiles in 1980, making a major shift into high technology and high value – added 

industries in 2005, presenting a high specialisation in Electrical and Optical, as well 

as in Chemicals industries. Finland also moved its specialisation from textiles industry 

in 1980, making a major shift into high technology and high value – added Electrical 

and Optical industry in 2005.  

 

The rest of the manufacturing industries present similar specialisation rate. France 

presents a rather intense enhancement of specialisation in Electrical and Optical and 

Rubber and Plastic industries between 1980 - 2005, making also a major shift into 

high technology and high value – added industries in 2005.  

 

The opposite happened in Metals and Textiles industries which lowered their value 

added share. Germany presents an enhancement of specialisation in almost all the 

industries apart from Food and beverages, Textiles and Manufacturing nec industries 

between 1980 - 2005, making also a rather important shift into high technology and 

high value – added industries in 2005.  
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The highest value added industries are Electrical and Optical, Chemicals and 

Transport equipment. Italy presents a more balanced picture as far as the 

manufacturing industries specialisation is concerned both in 1980 and 2005.  

 

Italy had an increase in valued added in the majority of the industries, mostly in 

Chemicals, Rubber and Plastic and Food and Beverages.  

 

Netherlands presents a significant specialisation shift into manufacturing industries 

between 1980 and 2005, with the most specialized industries being Chemicals and 

Transport equipment.  

 

Spain presents also a relatively balanced picture as far as the manufacturing industries 

specialisation is concerned both in 1980 and 2005. Italy had an increase in valued 

added in the majority of the industries, mostly in Machinery industry.  

 

In addition, United Kingdom presents also a balanced picture as far as the 

manufacturing industries specialisation is concerned both in 1980 and 2005, with the 

most specialised industries being Chemicals and Transport equipment industries.  

 

The same picture becomes apparent if we compare the value added per industry and 

country in relative values considering 1995 as base year (1995=100): 
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Table 5.3. Value Added per industry and country (1995=100) 
 

 Country 

Industry Year Denmark Finland France Germany Italy Netherlands Spain United 

Kingdom 

1 1980 51.5 20 53.8 74.1 58.7 66.9 41.7 50.6 

 2005 166.2 538.9 211.5 137.4 103 99.8 107.2 113.6 

2 1980 76.3 79.8 91.3 113.4 71.5 70.6 70 89.4 

 2005 91.7 148.3 104.3 101.2 90.8 109 103.9 106.3 

3 1980 131.3 214.9 130.8 160.8 82.5 108.3 114.3 118.2 

 2005 56.9 87.7 77.9 80.3 70.2 94 86.6 55.7 

4 1980 80.7 97.9 64.5 130.7 85.8 90.2 79.1 111.8 

 2005 86.4 129.1 117.9 77 97.5 127.1 141.2 105.9 

5 1980 77.6 90.2 43.3 81.6 80.2 71.3 95.7 91.2 

 2005 99.9 154.3 159.9 97.1 106.1 119.7 122.4 92.7 

6 1980 122.6 64.8 100.5 86.1 67.1 68.4 63 72.6 

 2005 107.1 115.7 105.7 97.6 100.5 105.2 145 91.7 

7 1980 338.2 51.5 1.1 1,532.5 136.1 158.8 146.2 77.5 

 2005 22.0 159.6 158.9 51.0 10.8 91.2 90.9 81.6 

8 1980 42.3 61.8 46.5 68.8 48.5 55 55.5 58.4 

 2005 197.7 139.2 110.5 131.6 103.3 145.1 118.3 112.9 

9 1980 70.5 56.3 34.3 59.8 66.1 44.6 56.5 57.4 

 2005 130.3 133.2 249.6 123.1 107.8 124 145.2 89.7 

10 1980 120.4 98.2 114.2 86 84 91.3 62.6 98.7 

 2005 97.4 171.9 113.4 92.8 114.5 92 143 108.5 

11 1980 65.8 52.7 217.5 91.4 69.6 79.9 87.3 94.6 

 2005 99 158.8 104.6 112.6 112.9 114.1 134.7 99.8 

12 1980 85.7 63.8 42.4 100.2 90 64.4 68.1 108.3 

 2005 88.2 147.4 127.4 106.3 104.5 136.5 154 96.2 

13 1980 81.5 92.9 85.9 80.2 96.4 66.8 74.8 92.1 

 2005 74.5 103.3 124.5 136.2 83.9 141.3 127.8 120.2 

 

Notes: 

1. Industry 1 = Electrical and optical equipment, Industry 2 = Food products, beverages and tobacco, 

Industry 3 = Textiles, textile products, leather and footwear, Industry 4 = Manufacturing nec; 

Recycling, Industry 5 = Wood and products of wood and cork, Industry 6 = Pulp, paper, paper 

products, printing and publishing, Industry 7 = Coke, refined petroleum products and nuclear fuel, 

Industry 8 = Chemicals and chemical products, Industry 9 = Rubber and plastics products, Industry 

10 = Other non-metallic mineral products, Industry 11 = Basic metals and fabricated metal 

products, Industry 12 = Machinery, nec, Industry 13 = Transport equipment. 

 

Source: EU KLEMS data base 
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Denmark moved its specialisation from paper and textiles in 1980, presenting a high 

specialisation in Electrical and Optical, as well as in Chemicals industries. Finland 

also moved its specialisation from textiles industry in 1980, making a major shift into 

high technology and high value – added Electrical and Optical industry in 2005. 

France presents a rather intense enhancement of specialisation in Electrical and 

Optical and Rubber and Plastic industries between 1980 - 2005. Germany presents an 

enhancement of specialisation in almost all the industries apart from Food and 

beverages, Textiles and Manufacturing nec industries between 1980 - 2005. Italy 

presents a more balanced picture as far as the manufacturing industries specialisation 

is concerned both in 1980 and 2005. Netherlands presents a significant specialisation 

shift into manufacturing industries between 1980 and 2005, with the most specialized 

industries being Chemicals and Transport equipment. Spain presents also a relatively 

balanced picture as far as the manufacturing industries specialisation is concerned 

both in 1980 and 2005. Italy had an increase in valued added in the majority of the 

industries, mostly in Machinery industry. In addition, United Kingdom presents also a 

balanced picture as far as the manufacturing industries specialisation is concerned 

both in 1980 and 2005, with the most specialised industries being Chemicals and 

Transport equipment industries.  

5.3. Empirical Model Determining Factors 

As Kumbhakar and Lovell (2000) indicated, the main advantage of stochastic 

production frontier models is that the impact on output of shocks due to variation in 

labour, machinery performance, vagaries of the weather, and just plain luck can at 

least in principle be separated from the contribution of variation in technical 

efficiency. However, at a given moment of time, when technology and production 

environment are essentially the same, producers may exhibit different productivity 

levels due to differences in their production efficiency. Therefore, efficiency of 

production resources becomes a critical element in productivity and growth, through 

utilizing the available, yet scarce, resources more productively. 

 

Specifically, in line with this empirical framework, based on stochastic frontier 

analyses (SFA) and data envelopment analyses (DEA), productivity is decomposed 

into the production possibility frontier and technical (in) efficiency. For this reason, 
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there should be a distinction on what should determine the frontier and what affects 

efficiency. On the other hand, technical efficiency relates to neo-Schumpeterian ideas 

of catching-up with the leaders (technology diffusion and absorption) and forge-ahead 

through investments in R&D (innovation creation). However, this cannot be 

satisfactorily achieved by drawing only on theories of exogenous and endogenous 

growth, both of which relate to production technology, which lies in the domain of the 

frontier. Also, efficiency depends on the effectiveness of the institutional 

environment, which is closely related to evolutionary and institutional approaches. 

Recent contributions to the literature clearly emphasize the connection with theory of 

empirical models for the production possibility frontier (or production function) and 

efficiency. More specifically, contributions to the literature (Kneller and Stevens, 

2006, Bhattacharjee et al., 2009, and Eberhardt and Teal, 2011) clearly emphasize the 

connection with theory, of empirical models for the production possibility frontier 

(production function) and efficiency.   

 

Consequently, one of the main questions is to investigate the relationship between 

inefficiency and a number of factors which are likely to be determinants, and measure 

the extent to which they contribute to the presence of inefficiency. These factors are 

neither inputs to the production process nor outputs of it but nonetheless exert an 

influence on producer performance. Such factors are widely referred to as efficiency 

explanatory variables106.  

 

In this context, the term ‘efficiency explanatory variables’ is used to describe factors 

that could influence the efficiency of a producer, where such factors are not traditional 

inputs and are not under the control of the producer (Fried et al., 1999). However, 

they may influence productive efficiency. In particular, in order to investigate the 

determinants of the productive efficiency we distinguish between producers or 

                                                 
106 In many cases, the distinction between decision-maker controlled and efficiency explanatory 

variables is not always distinct. As in McMillan and Chan (2006), efficiency explanatory variables 

include purely exogenous variables as well as producer-specific variables representing production 

methods and output characteristics.  
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industry -specific and efficiency explanatory factors (Caves and Barton, 1990) 107. 

Efficiency explanatory factors are not under direct control of the producer, at least in 

the short-run, and they may be industry-affiliated, such as producer location 

characteristics, managerial restrictions, slow adoption to changes of the market 

environment and/or to technological developments, or asymmetric information in the 

labour market, social aspects, geographical or climatic conditions, as well as 

regulatory and institutional constraints, ownership differences (public/private), and 

government regulations (Coelli et al, 1998, Stephan et al. 2008). Producer-specific 

factors, on the other hand, refer to characteristics that can be influenced by the 

producer in the short-run, as producer size, R&D intensity and degree of outsourcing. 

Regarding productive efficiency, theory literature has mainly emphasized on 

efficiency determining factors such as technological spillovers, increasing returns, 

learning by doing, und unobserved inputs (e.g. human capital quality), whereas the 

empirical industrial organization literature has emphasized the degree of openness of 

countries to imports and industry structure (Koop, 2001). 

 

Underlying our analysis, innovation creation and dissemination are among the main 

factors which determine the production efficiency level [Fagerberg et al. (1997), 

Freeman & Soete (1997)] and technological variables are able to explain a significant 

part of the diverging trends in the economic growth [Fagerberg & Verspagen (1996)] 

and productivity [Abramovitz (1986), Fagerberg (1988 a,b, 1994)]. Industry growth 

rate depends on the amount of technological activity within the economy and on the 

ability to exploit external technological achievements (Martin and Ottaviano, 1999, 

Grossman and Helpman, 1994, Coe and Helpman, 1995). Increasing returns and 

technical change are incorporated within the production function as determinants of 

the endogenous growth rate (Romer 1986, Lucas 1988, Grossman and Helpman 1994, 

                                                 
107 Caves and Barton (1990) and Caves (1992) suggested that several studies have developed a strategy 

for identifying the determinants of efficiency, which can be grouped into three categories (Stephan et 

al. 2008):  

 

4. factors external to the industry ;  

5. factors internal to the industry; and  

6. Ownership structures (e.g. public versus private). 
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Barro and Sala-i-Martin, 1997) and economic growth is sustained because of the 

continuous creation and diffusion of technological advances. 

 

As in Consoli (2008), research agrees that: first, strong emphasis is placed on the 

sources and the effects of technological change; second, great attention is paid to the 

dynamics generated by the interaction between business firms and their environment, 

including other firms and key institutional players (Malerba and Orsenigo, 1996; 

Antonelli, 2003; Metcalfe, 2001).  

 

In the same analysis framework, Bos et al. (2010) investigate the sources of output 

growth for a panel of manufacturing industries. They propose a flexible model beyond 

the division of output growth applied in the conventional growth accounting and 

cross-country growth regression literature, as well as the strong assumptions they 

typically rely upon (efficient use of resources, constant returns to scale). Bos et al. 

(2010) focus on the use of technology, the sources of output growth, technology 

spillovers and catch-up, as well as policy implications. To decrease the aggregation 

bias that may occur when these issues are considered at the country-level (Bernard 

and Jones, 1996 a,b), Bos et al. (2010) focus on manufacturing industries. 

Traditionally, the growth accounting literature has referred to the unexplained part of 

output growth as the ‘productivity residual’ or ‘technical change’ (Solow, 1957). This 

interpretation, however, depends, among other things, on the strong assumption that 

economic units (countries or industries) are always efficient. In reality, however, 

economic units may well use the best-practice (frontier) technology with varying 

degrees of efficiency. If this is the case, part of what is measured as technical change 

is in fact an improved use of the best-practice technology. Put differently, inefficient 

industries increase output by becoming more efficient in the use of the best-practice 

technology, whereas efficient industries increase output through technical change. In 

addition, not controlling for possible inefficient use of inputs may also result in 

underestimating the productivity of outputs for the best-practice technology. Bos et al. 

(2010) account for inefficiency and estimate a stochastic production frontier, which is 

the empirical analog of the theoretical production possibility frontier. This modelling 

strategy adds structure to the unexplained residual. Under reasonable assumptions, it 

disentangles the residual into inefficiency and measurement error. Technical change is 
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modelled as a shift of the stochastic frontier, whereas efficiency change is a 

movement towards or away from the frontier. This framework decomposes output 

changes into three types of change: technical, efficiency and input change. Empirical 

literature carries out efficiency analyses along lines similar to Bos et al. (2010), 

although using different modelling approaches, considering that output change is also 

decomposed into technical, efficiency, and input change. Even though the attention 

has largely been at decomposing aggregate (country-level) output, a number of studies 

have investigated the role of efficiency in explaining growth differentials for a panel 

of manufacturing industries in the OECD countries (Bos et al., 2010).  

5.4. Empirical Model Specification 

Our empirical model is based both on frontier parametric analysis (involving 

Stochastic Frontier Analysis) and non-frontier nonparametric analysis, which employs 

mathematical programming methods (regarding Data Envelopment Analysis) as a 

robustness test for the model results. The level of optimal industry performance is 

determined by constructing an efficiency frontier, which consists of the best 

performing producers. 

 

The type of efficiency we estimate using the production frontier is technical 

efficiency, characterized by the relationship between observed production and some 

ideal or potential production, based upon deviations of observed output from the best 

production or efficient production frontier. We also consider that technological 

progress is assumed to push the frontier of potential production upwards, while 

efficiency change will change the capability of productive units to improve 

production with available inputs and technology (Batesse and Coelli, 1992, 1995).  

The stochastic frontier typically permits assessment of maximal output subject to 

input levels; as such, it appears to be an output-oriented measure. The stochastic 

frontier is, in fact, a base or non-orienting measure. That is, the assessment of 

efficiency is not conditional on holding all inputs or all outputs constant. Utilizing the 

one-stage routine of Battese and Coelli (1993), however, facilitates an assessment of 

maximal output from an input-based perspective. With this approach, the inefficiency 

error term, and subsequently the maximal output, is specified as a function of inputs. 
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Thus, it is possible to consider the input reduction coinciding with a fixed maximum 

or frontier output. Another attractive feature of the stochastic frontier model is the 

separation of the impact of exogenous shocks on output from the contribution of 

variation in technical efficiency. The component (v) is a symmetric normally 

distributed error term that represents factors that cannot be controlled by production 

units, measurement errors, and left-out explanatory variables. On the other hand, the 

component (u) is a one-sided non-negative error term representing the stochastic 

shortfall of producer i’s output from the production frontier due to technical 

inefficiency. In this context, technical efficiency is defined in an output-expanding 

manner and reveals the maximum amount by which output can be increased using the 

same level of inputs and technological conditions (Giannakas, et al., 2003). In 

addition, it is generally regarded as a disadvantage that the distribution of the 

technical inefficiency has to be specified (i.e., half-normal, normal, exponential, log-

normal, etc.).  

Under these assumptions and underlying hypotheses, first, we employ LIMDEP 9.0 

software program to estimate technical efficiency using the Batesse and Coelli (1992, 

1995) model specifications. As in Bhattacharjee et al. (2009), we employed the SFA 

methodology, since it has emerged as the most popular methodology to study TFP at 

the firm level, for analysis of efficiency dynamics using panel data (Tsionas, 2006).  

 

As far as the production function variables are concerned, following a value added 

approach, our analysis comprises: 

 

1. Output (in Gross value added, volume indices, 1995 = 100) 

2. Labour input (in Labour services, volume indices, 1995 = 100) 

3. Capital input (in Capital services, volume indices, 1995 = 100) 

4. Moreover, the model includes a time variable to capture the effect of technical progress. 

 

The efficiency determining variables comprise:  
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1. Information and communication technologies (ICT) Capital services108, as the proportion of 

industry ICT capital services to total industry capital services (in ICT capital services / Total 

capital services, volume indices, 1995 = 100) 

2. Trade openness, as sum of exports and imports over GDP, in constant 1995 prices 

(PENN tables).  

 

The core depended variable of our empirical analysis is the natural logarithm of gross 

value added. The core independent variables are set to be the labour and capital 

services, along with time, denoting technical progress.  The variables are used in the 

model in the logarirthmic form (ln):  

 

1. Output = lnva  

2. Labour = lnlab 

3. Capital = lncap 

4. Information and communication technologies (ICT) Capital services = lnitc  

5. Trade openness = lnopen 

 

The following table presents the model variables, providing a short description of 

each one of the variables, the source from which come the statistical data, as well as 

the symbol used in the model for each one of the variables: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
108 The ICT specification in EU KLEMS (2008) data base,  makes a distinction between three ICT 

assets (office and computing equipment, communication equipment and software) and four non-ICT 

assets (transport equipment, other machinery and equipment, residential buildings and nonresidential 

structures). ICT assets are deflated using a quality-adjusted investment deflator. 
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Table 5.4. Model Variables 
 

Core input variables Symbol Source 
 
1. Output (in Gross value added, volume indices, 1995 = 100) 

lnva  
EU KLEMS 

2. Labour input (in Labour services, volume indices, 1995 = 100 lnlab EU KLEMS  
3. Capital input (in Capital services, volume indices, 1995 = 100) lncap EU KLEMS  
4. Time, to capture the effect of technical progress across countries 

in 1980 – 2005 
 

time  

Optional variables (efficiency determining variables) Symbol Source 
 
1. Information and Communication technologies (ICT) capital 

services (volume indices, 1995 = 100) 

lnict  
EU KLEMS 

   
2. Trade openness, as sum of exports and imports over GDP 

(Exports plus Imports divided by Real GDP per capita (Constant 
Prices: Laspeyres), Share of total trade (imports plus exports) in 
GDP, in constant 1995 prices 

 

lnopen PENN 

 

Source: EU KLEMS, PENN tables 

 

The following table presents the summary descriptive statistics for both the core and 

efficiency determining variables included in the analysis, as described in chapter 

(3.3). They involve the mean value and the standard deviation, together with the 

minimum and maximum values: 

Table 5.5. Descriptive statistics of the core variables 
 

Variable          Mean   Std.Dev. Minimum Maximum 
LNVA  4.55 0.23 3.43 5.52 
LNCAP    4.54 0.26 3.19 5.28 
LNLAB    4.65 0.16 3.68 5.64 
LNICT   4.41      0.90 1.27 6.46 
LNOPEN 3.81 0.40 2.95 4.88 

 
Source:  EU KLEMS, own calculations 
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Provided the inefficiency effects are stochastic, the model permits the estimation of 

both technical change and time-varying technical inefficiencies109.  

 

The variable ‘Trade openness’, as sum of exports and imports over GDP, in constant 

1995 prices is extracted form the PENN tables data base. All the other variables come 

from EU KLEMS database. The sample has 1872 observations in a balanced data set 

(12 industries x 6 countries x 26 years).  

 

The capital data are derived form the EU KLEMS (2008) data base. According to the data base 

specification, the real investment series are used to derive capital stocks through the accumulation of 

investment into stock estimates using the Perpetual Inventory Method (PIM) and the application of 

geometric depreciation rates. Then capital service flows are derived by weighting the growth of stocks 

by the share of each asset’s compensation in total capital compensation as follows: 

∑ ∆=∆
k

tktkt SvK ,, lnln    where tkS ,ln∆  indicates the growth of the stock of asset k and weights 

are given by the average shares of each asset in the value of total capital compensation.  

 

In this way, aggregation takes into account the widely different marginal products from the 

heterogeneous stock of assets. The weights are related to the user cost of each asset. 

 

As far as the labor variable is concerned, according to the EU KLEMS (2008) data 

base specification, it is assumed that the flow of labour services for each labour type 

is proportional to hours worked, and workers are paid their marginal productivities. 

Then the corresponding index of labour services input L is given by: 

∑ ∆=∆
l

tltlt HvL ,, lnln   where tlH ,ln∆  indicates the growth of hours worked by 

labour type l and weights are given by the average shares of each type in the value of 

labour compensation. 

 

Labour input measures in EU KLEMS (2008) take account of changes in the 

composition of the labour force. Capital input measures include the effects of the 

                                                 
109 A relevant topic has been broadly examined in: Kokkinou A. (2009d) Public spending efficiency: 

assessment through stochastic frontier analysis, 49th Annual Congress of the European Regional 

Science Association, Lodz, Poland.  
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rapid shift in investment towards Information and Communications Technology (ICT) 

goods in recent years. The productivity of various types of labour input, such as low- 

versus high-skilled, will also differ. Standard measures of labour input, such as 

numbers employed or hours worked, will not account for such differences. Hence one 

needs measures of labour input which take the heterogeneity of the labour force into 

account in analysing productivity and the contribution of labour to output growth. 

These measures are called labour services, as they allow for differences in the amount 

of services delivered per unit of labour in the growth accounting approach. It is 

assumed that the flow of labour services for each labour type is proportional to hours 

worked, and workers are paid their marginal productivities. Labour service input has 

been measured in a standardised way by distinguishing labour types in terms of 

gender, age and educational attainment. Capital service input has been measured 

using harmonised depreciation rates and common rules to deal with a variety of 

practical problems, such as weighting and rental rates. Importantly, capital input is 

measured as capital services, rather than stocks.  

 

As analytically described in chapter 3.2 - 3.3, our analysis estimates different model 

specifications, starting from a model with no inefficiency effects (a time-invariant 

efficiency model is also estimated, i.e. a model in which technical efficiency is not 

determined by any other variables, including time), estimating a Batesse and Coelli 

(1992) model (technical efficiency is assumed to be a function of time), and finally, 

estimating alternative models for the Batesse and Coelli (1995) model (technical 

efficiency is assumed to be a function of efficiency determining optional variables, 

including time). More specifically, we estimate the following model variations: 
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Table 5.6. Models with alternative variables in inefficiency effects 
 
Model  Efficiency determinants Model 

a. Time invariant   

b. Battese and Coelli (1992) none [1] 

c. Battese and Coelli (1995) time [2] 

d. Battese and Coelli (1995) ICT capital [3] 

e. Battese and Coelli (1995) Economy Openness [4] 

f. Battese and Coelli (1995) Time, ICT capital, Economy Openness [5] 

Source: Own elaboration 

 

These are the model variations in which our empirical analysis is based, regarding 

alternative model specifications, bearing different results. As it is also explained in 

parts 2.6.1. and 2.6.2., one of the main features which characterize Batesse and Coelli 

models is that, by definition, Batesse and Coelli approach incorporates fixed effects. 

For that reason the underlying hypothesis on our model is for fixed effects. Moreover, 

we use translog function with industry dummies, both with and without explanatory 

terms in the inefficiency residuals. Following Battese and Coelli (1992, 1995), 

technical efficiency assumed to be a function of time, hence time-varying. For 

comparison purposes, following Schmidt and Sickles (1984), a time-invariant 

efficiency model is also estimated, i.e. a model in which technical efficiency is not 

determined by any other variables, including time. We use translog function with 

industry dummies, with explanatory terms in the inefficiency residuals. There also 

should be a distinction on what should determine the frontier and what affects 

efficiency. The following table presents the determining variables included in 

production function and inefficiency term of each model: 

 

Table 5.7. Empirical Models Determining Factors 

SF Model What determines Output What determines Inefficiency 

[1] Labour, Capital, Time none 

[2] Labour, Capital, Time time 
[3] Labour, Capital, Time lnict 
[4] Labour, Capital, Time lnopenk 
[5] Labour, Capital, Time time, lnict, lnopenk 

Source: Own elaboration 
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Under the inclusion of the above production function and inefficiency term 

determining factors, we form the above defined five empirical models [(models (1) – 

(5] according to Battese and Coelli (1992 and 1995).  

 

The data set used in the empirical model estimation is panel data. Unlike time series 

data, in which one individual is observed over time, or cross – section data, in which 

multiple individuals are observed for one point in time, panel data models can control 

for both variation across time periods and individuals, or cross – sections, 

simultaneously (Frees, 2004, Hsiao, 2003). An important advantage of using panel 

data in an empirical study is that effects of differences across individuals (individual 

effects) can be distinguished from effects changing over time within individuals. 

Although time-invariant and individual-specific effects are often unobservable, they 

frequently account for an important share of the heterogeneity in data. We will focus 

on static panel data models, in which the dependent variable does not exhibit temporal 

autocorrelation. The translog stochastic frontier function is estimated with the 

maximum likelihood estimation (MLE) technique, which is the preferred estimation 

technique whenever possible (Coelli, Rao and Battese 1998)110. The model estimates 

time – varying technical efficiencies, (incorporating ‘learning – by doing’ behaviour), 

considering industry-specific fixed effects.  According to Coelli et al. (2005) it is 

convenient for estimation purposes, a problem with assuming uit are independently 

distributed. However, for many industries the independence assumption is unrealistic 

– all other things being equal, it is expected that efficient firms to remain reasonably 

efficient from period to period and it is suggested that inefficient firms improve their 

efficiency levels over time.  

 

On the other hand, time invariant inefficiency models are somewhat restrictive, we 

would expect managers to learn from experience and for their technical efficiency 

levels to change systematically over time and would expect these changes to become 

more noticeable as time gets larger.  

                                                 
110 According to Battese and Coelli (1995), the explanatory variables can include intercept terms or any 

variables in both the frontier and the model for the inefficiency effects, provided the inefficiency 

effects are stochastic.  
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For these reasons, we need to impose some structure on the inefficiency effects and 

consider time – varying technical efficiencies. Consequently, the stochastic 

production frontier model is extended to allow data to be modeled over time with time 

– invariant technical efficiency (e.g. Pitt and Lee, 1981, Schmidt and Sickles, 1984, 

Kumbhakar, 1987, Battese and Coelli, 1988) or time – varying technical efficiency 

(e.g. Cornwell, Schmidt and Sickles, 1990, Kumbhakar, 1990, Lee and Schmidt, 

1993, Battese and Coelli, 1992)111.  

 

Kumbhakar (1991), Polachek and Yoon (1996) and Greene (2005b) have suggested to 

extend the original stochastic frontier model by adding an individual time-invariant 

random or fixed effect. These models are called “true” models because they include 

two stochastic terms for unobserved heterogeneity: one for the time-variant factors 

and one for the producer-specific constant characteristics (Farsi et al., 2003). The 

basic assumption is the existence of producer-specific and time-invariant factors that 

cannot be captured by efficiency explanatory variables due to the variation of the 

latter over time and/or omitted variables.  

 

Time-invariant inefficiency assumption has been relaxed, as in Kumbhakar (1990) 

and Battese and Coelli (1992). These studies specify inefficiency (uit) as a product of 

two components. One of the components is a function of time and the other is an 

individual specific effect so that uit = f(t)ui. In these models, however, the time-

varying pattern of inefficiency is the same for all individuals, so the problem of 

inseparable inefficiency and individual heterogeneity remains. In all these models, the 

inability to separate inefficiency and individual heterogeneity is likely to limit their 

applicability in empirical studies (Greene, 2005), who argues that the (in)efficiency 

effect and the time-invariant country-specific effect are different and should be 

accounted for separately in the estimation. If, for example, the country-specific 

heterogeneity is not adequately controlled for, then the estimated inefficiency may be 

picking up country-specific heterogeneity in addition to or even instead of 

                                                 
111 Coelli et al. (2005) classify different structures according to whether they are time – invariant or 

time – varying and provide a broad analysis of time – invariant inefficiency models, as well as time – 

varying inefficiency models. 
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inefficiency. In this way, the inability of a model to estimate individual effects in 

addition to the inefficiency effect poses a problem for empirical research (Wang and 

Ho, 2010).  

 

The heterogeneity in the inefficiency model can be expressed by a shift in the 

underlying mean of ui or heteroscedasticity. Battese and Coelli (1995) established a 

model where producer-specific attributes are incorporated in the inefficiency 

distribution. Heterogeneity is expressed in the location parameter, the mean, of the 

underlying distribution of inefficiency ui. This model specification became popular to 

explain efficiency differences across producers. Reifschneider and Stevenson (1991) 

and Simar et al. (1994) established a SFA model incorporating heterogeneity in the 

variance of ui or vi, allowing for heteroscedasticity. Applications of the 

heteroscedastic SFA model can be found in Hadri (1999), Hadri et al. (2003 a,b) and 

Caudill et al. (1995). 

 

Unobserved heterogeneity means that heterogeneity is not reflected in measured 

variables but expressed in the form of effects (Greene, 2007a). Several models 

attempt to separate unobserved heterogeneity from inefficiency and it became more 

important to model both heterogeneity in the stochastic part and producer-specific 

heterogeneity in the production or cost function of the underlying production process. 

Unobservable individual effects also play an important role in the estimation of panel 

stochastic frontier models. In contrast to the conventional panel data literature, 

however, studies using stochastic frontier models often interpret individual effects as 

inefficiency (Schmidt and Sickles, 1984), such as technical inefficiency in a stochastic 

production frontier model.  

 

5.5. Empirical Results   

 
The econometric software programs used in our empirical analysis are LIMDEP 9.0 

and STATA 10.0.  The two packages, Limdep 9.0 (Greene, 2007) and Stata 10.0 

(StataCorp, 2007), even though they differ slightly in their computations details, 

however, they yield, in most of the cases, almost similar or even marginally different 
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results. LIMDEP program has first developed by Greene (1980), initially to provide 

an easy to use tobit estimator - hence the name, ‘LIMited DEPendent variable 

models112. LIMDEP 9.0 is an integrated program for estimation and analysis of linear 

and nonlinear models, with cross section, time series and panel data. LIMDEP has 

provided innovations including cutting edge techniques in panel data analysis, frontier 

and efficiency estimation and discrete choice modelling. LIMDEP 9.0 has also been 

recognized for years as the standard software for the estimation and manipulation of 

discrete and limited dependent variable models. STATA 10.0 is a general-purpose 

statistical software package created in 1985 by StataCorp113. Stata's capabilities 

include data management, statistical analysis, graphics, simulations, and custom 

programming, integrating statistics with graphics and data management. In this 

analysis, STATA 10.0 is used in order to estimate technical efficiency in a non-

stochastic context, so to be able to compare results regarding stochastic context, 

respectively.  

 

First, we proceed in estimating the input elasticities in each one of these alternative 

models. Apart from the information provided by the elasticity estimation (as 

explained in chapter 3.3), elasticities are also a tool in order to check whether our 

model works properly, as well as a tool in order to estimate technical change and 

economies to scale.  

 

                                                 
112 Greene, W. H. (2007), Limdep 9.0, Econometric Software, Inc., Plainview, NY. and Greene, W. H. 

(2007) LIMDEP 9.0 User’s Guide, Student version, Econometric Software, Inc., 1986 – 2007, 

Plainview, NY. 

 
113 Statacorp (2007) Stata Statistical Software: Release 10, College Station, TX: StataCorp LP. 
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In order to implement the input elasticities estimation, a flexible (translog) production 

function is used to represent the underlying production technology. The coefficients 

βit are transformed into output elasticities with respect to inputs and the sum of them 

∑= ),( txk ii ε  provides the elasticity of scale, which indicates the returns to scale, 

i.e. the presence of increasing or decreasing returns to scale.  

 

As far as the time variable is concerned, output elasticity with respect to time 

indicates technical progress. The input elasticities estimation is presented in the 

following table:  

 

Table 5.8. Estimation of input elasticities for standard models 

 

SF 
Model 

Inefficiency 
Determinants 

capva lnln ∂∂  labva lnln ∂∂  timeva lnln ∂∂  TC RTS 

[1] none 0.148 0.395 0.017 1.71% 0.544 
[2] time 0.150 0.479 0.001 0.10% 0.629 
[3] lnict   0.031 0.459 0.013 1.30% 0.490 
[4] lnopenk 0.142 0.375 0.015 1.50% 0.516 
[4] time,lnict,lnopenk 0,217 0,348 0,023 2.30% 0,588 

 

Notes: 

1. SF: Stochastic Frontier 

2. TC: Technical change 

3. The elasticity timeva lnln ∂∂ shows technical change 

4. RTS: Returns to Scale 

5. Returns to scale = sum of output elasticities 

 

Source: Own estimation 

 

As illustrated in the above table, capital and labour elasticities are both positive in 

every one of the different model specifications. In Model [1], with no inefficiency 

effects, capital elasticity is approximately 0.15, labor elasticity is 0.40, whereas, 

technical change is 1.71%.  In Model [2], with time as inefficiency determining 

variable, capital elasticity is approximately 0.15, labor elasticity is 0.48, whereas, 

technical change is 0.10%.  In Model [3], with ICT investment as inefficiency 

determining variable, capital elasticity is approximately 0.031, labor elasticity is 0.46, 

whereas, technical change is 1.30%. In Model [4], iwith economy openness as 
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inefficiency determining variable, capital elasticity is approximately 0.42, labor 

elasticity is 0.37, whereas, technical change is 1.50%.  In Model [5], with  all the three 

inefficiency determining variables, capital elasticity is approximately 0.21, labor 

elasticity is 0.35, whereas, technical change is 2.30%. All the five models seem to 

work properly, as far as the estimated input elasticities are concerned, presenting the 

expected signs and results. On the other hand, it becomes apparent the significance of 

the time dimension, denoting the effect of technical change, onto the production 

output.    

 

A second model fitness control in order to predict whether the model specifications fit 

to the data set is the estimation of log likelihood and AIC information criterion (as 

described in chapter 3.4): 

 

Table 5.9. Diagnostic Tests – standard models 

SF Model Inefficiency Determinants Log Likelihood Diagnostic       AIC 

[1] none 4350.433             -4.19875 
[2] time 4272.647      -4.51565     
[3] lnict   4122.787      -4.35554     
[4] lnopenk 4062.332      -4.29095     
[5] time, lnict, lnopenk 4272.585      -4.51345     

 

Source: Own estimation 

 
AIC criterion and Log Likelihood are both ways of assessing the relative goodness of 

fit of our alternative model specifications. Regarding the model relative fit criteria, we 

report only the AIC criterion, because the other two alternative tests (BIC, HQIC), 

also referred and described in chapter (3.4.), are both consistent and give the same 

results with the AIC criterion (as explained in chapter 3.4.). Reference to the 

diagnostic test is estimated in order to reinforce which model we adopt. The smaller 

the AIC criterion is, the better the relative goodness of fit of the model is. Comparing 

our models, both regarding log likelihood and AIC criterion, we conclude that all the 

models are relatively fitted well, respectively. This issue provides a first hint that the 

production function and efficiency determining variables seem to work well with our 

model specifications, implying that it has significant effect on technical efficiency 

estimation.  
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In conclusion, comparing the different AIC criterion values for each one of the 

alternative models, it becomes apparent that the two best working models are those 

with the lowest AIC criterion values. In this case the two best working models are: 

Model [2], with the variable ‘time’ in the inefficiency term, implying that technical 

efficiency is attributed to technical change, and Model [5] with the variables ‘time, 

ICT and economy openness’ in the inefficiency term, implying that technical 

efficiency is attributed to technical change, ICT investment level, as well as the 

degree to which an economy is open to imports and exports.   To sum up, the models 

which include only time (as a proxy for technical change), as well as time, ICT 

investment and economy openness as inefficiency effects determining variables, 

present the best criteria, considering that they provide a good fit. 

 

Next, we estimate the technical efficiency determining variables within the five 

different model forms.  

Table 5.10. Estimation of Inefficiency Effects 

SF Model Inefficiency 
Determinants 

time lnict   lnopenk 

[1] none - - - 
[2] time -0.157 (0.008)   
[3] lnict   - -0.782 (0.077)  - 
[4] lnopenk - - 0.587 (0.131)  

[5] time,lnict,lnopenk -0.176 (0.023)  0.108 (0.142)  0.131 (0.366)  

 
Notes:   
 
1. Standard errors in parentheses 

 
Source: Own estimation 
 

It is apparent that in each one of the different model specifications (Models [2] – [5]), 

which include specific efficiency determining variables, these variables are 

statistically significant, having a statistically significant effect on efficiency. The 

variables with negative sign denote the negative relationship with inefficiency, e.g. 

inefficiency is decreasing, as the variable input is increasing. This effect is present 

when the time dimension variable and ICT investment variable are concerned, 

exercising a negative effect on inefficiency.    

For each one of the models, we also estimate the efficiency variance parameters for 

each one of the models, as described in chapter 3.3. The parameters of the stochastic 
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frontier model and the inefficiency effects model are estimated using maximum 

likelihood estimation (MLE). The statistical significance of λ obtained from the MLE 

estimates indicates the existence of a stochastic frontier function (Schmidt and Lin, 

1984). If λ is statistically different from zero, it implies that the difference between 

the observed and the frontier production is dominated by technical inefficiency. If λ is 

not statistically significant from zero, it implies that any difference in the production 

is attributed solely to symmetric random errors. Lamda is the ratio of variance of u 

( uσ ) over variance of v ( vσ ) and is an indication that the one sided error term u 

dominates the symmetric error v, so variation in actual production comes from 

differences in industries production practice rather than random variability.  

Table 5.11. Estimation of Efficiency Variance Parameters for standard models 

 
Note:  
 
1. Standard errors in parentheses 
 
Source: Own estimation 

SF Model Inefficiency 
Determinants 

22
vu σσλ =  uσ  22 σσγ u=  

 
[1] none 4.584 (.032) .102 (.000) 0.006 
[2] time 4.837 (.069)  .112 (.000) 0.979 
[3] lnict   15.390 (.011) .395 (.010) 0.999 
[4] lnopenk .0757 (.052)  .002 (.000) 0.997 
[5] time,lnict,lnopenk 2.234 (.533) .051 (.000) 0,834 
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Technical efficiency is measured using the variance ratio parameter γ. Using the 

composed error terms of the stochastic frontier model, γ defines the total variation in 

output from the frontier level of output attributed to technical efficiency indicating the 

ratio of the unexplained error and the total error of the regression (Aigner, Lovell, 

Schmidt, 1977), in other words, the variance parameter γ captures the total output 

effect of technical efficiency, suggesting the percentage (%) of the residual which is 

due to inefficiency.  

 

Large value of parameter γ highlights the importance of inefficiency effects in 

explaining the total variance in the model. Considering the variance parameter γ lies 

on the interval [0,1], if the estimate is close to 1 and significant, this indicates that 

most of the total variation in output is attributable to technical efficiency.  

 

In Model [1], with no efficiency explanatory variables, the variation which is 

attributable to inefficiency effects is practically zero. In Models [2] – [4], which 

include efficiency determining variables, total variation in output from the frontier 

level of output attributed to technical efficiency is 97.9%, 99.9%, or 99.7% 

respectively, indicating the total output effect of technical efficiency, suggesting the 

percentage (%) of the residual which is due to inefficiency, in the models in which 

time, ICT, or economy openness variables are included. In Model [5], total variation 

in output from the frontier level of output attributed to technical efficiency is 83.4%, 

 

As in Coelli et al. (2005), in addition to testing hypotheses concerning the variance 

parameters, stochastic frontier analysis is interested in testing for the absence of 

inefficiency effects. Lamda is the ratio of variance of u ( uσ ) over variance of v ( vσ ) 

and is an indication that the one sided error term u dominates the symmetric error v, 

so variation in actual production comes from differences in industries production 

practice rather than random variability. Finally, the large value of parameter γ 

highlights the importance of inefficiency effects in explaining the total variance in the 

model.  
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The following tables present the estimation results calculated according to each one of 

the alternative estimated stochastic frontier models.  

 

For each one of the two best working models, we also estimate the related efficiency 

effects determining variables and the efficiency variance parameters for each one of 

the models, as described in chapter 3.3.  

 

The parameters of the stochastic frontier model and the inefficiency effects model are 

estimated using maximum likelihood estimation (MLE): 

 

 

 Table 5.12. Empirical Model [2]: Efficiency Estimation 

Model  Variances  

Log likelihood function        4272.647     Sigma-squared(v)       .00054    

Info. Criterion: AIC       -4.51565     Sigma-squared(u)       .01273    

Finite Sample: AIC         -4.51438     Sigma(v)         .02332    

Info. Criterion: BIC       -4.37964     Sigma(u)         .11281    

Info. Criterion:HQIC       -4.46554     Sigma = Sqr[(σ2(u)+σ2(v)]       .11519    

Stochastic Production Frontier, e=v-u. 

Time varying u(i,t)=exp[eta*z(i,t)]*|U(i)| 

 

Source: Own estimation 

 

As becomes apparent from the estimation results, the statistical significance of λ 

obtained from the MLE estimates indicates the existence of a stochastic frontier 

function (Schmidt and Lin, 1984), since λ is statistically different from zero. 

 
The time dimension variable, as a determinant of the inefficiency effect, is statistically 

significant with a negative sign, implying that it has a negative effect on inefficiency 

level, by 15.75%.  

 



 243 

 Table 5.13. Empirical Model [2]: Coefficient Estimation 

|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 

Primary Index Equation for Model 

Constant|     4.29675191       .97032174     4.428   .0000 
 LNCAP   |     .52266804       .32995187     1.584   .1132   4.53813827 
 LNLAB   |    -.94672093       .18290314    -5.176   .0000   4.64818191 
 TIME    |    -.00974744       .01263264     -.772   .4403   13.5000000 
 LAB2    |     .53520349       .05878035     9.105   .0000   10.8158946 
 CAP2    |     .31500076       .07110208     4.430   .0000   10.3307444 
 TIME2   |     .00045271       .00020044     2.259   .0239   119.250000 
 LABCAP  |    -.32426713       .08318463    -3.898   .0001   21.0930324 
 LABTIME |     .01990003       .00354828     5.608   .0000   62.3692144 
 CAPTIME |    -.01638246       .00300150    -5.458   .0000   62.8256562 
 LNCAPD1 |    -.40088057       .04688821    -8.550   .0000    .37753423 
 LNLABD1 |     .27745558       .03852795     7.201   .0000    .38837574 
 TIMED1  |     .03077261       .00226402    13.592   .0000   1.12500000 
 LNCAPD2 |     .18624047       .03679873     5.061   .0000    .37617450 
 LNLABD2 |    -.13011486       .03220976    -4.040   .0001    .38535840 
 TIMED2  |    -.01845507       .00173244   -10.653   .0000   1.12500000 
 LNCAPD3 |    -.15924141       .05037117    -3.161   .0016    .38133607 
 LNLABD3 |     .19167868       .04250873     4.509   .0000    .38972613 
 TIMED3  |    -.01317418       .00231969    -5.679   .0000   1.12500000 
 LNCAPD4 |    -.82724007       .03591286   -23.035   .0000    .37960654 
 LNLABD4 |     .81331706       .02948446    27.585   .0000    .38383682 
 TIMED4  |     .00525235       .00167908     3.128   .0018   1.12500000 
 LNCAPD5 |    -.04904778       .06658107     -.737   .4613    .38112430 
 LNLABD5 |     .02690744       .05852509      .460   .6457    .38450072 
 TIMED5  |     .00256154       .00282981      .905   .3654   1.12500000 
 LNCAPD6 |    -.15564014       .03719988    -4.184   .0000    .37286709 
 LNLABD6 |     .16122972       .03084875     5.226   .0000    .38400415 
 TIMED6  |    -.00211754       .00181209    -1.169   .2426   1.12500000 
 LNCAPD8 |     .29927706       .06131773     4.881   .0000    .38079571 
 LNLABD8 |    -.34022610       .05168456    -6.583   .0000    .39087342 
 TIMED8  |     .00539822       .00262452     2.057   .0397   1.12500000 
 LNCAPD9 |     .17637302       .04272857     4.128   .0000    .37480414 
 LNLABD9 |    -.21729386       .03073691    -7.069   .0000    .38228242 
 TIMED9  |     .00791660       .00296996     2.666   .0077   1.12500000 
 LNCAPD10|    -.30706039       .06975794    -4.402   .0000    .37896495 
 LNLABD10|     .28619911       .06079022     4.708   .0000    .38765447 
 TIMED10 |     .00254864       .00352055      .724   .4691   1.12500000 
 LNCAPD11|    -.32802639       .04965664    -6.606   .0000    .38435061 
 LNLABD11|     .34046247       .04595183     7.409   .0000    .38898708 
 TIMED11 |    -.00679019       .00168480    -4.030   .0001   1.12500000 
 LNCAPD12|     .26778303       .07324738     3.656   .0003    .38044290 
 LNLABD12|    -.24516886       .06841212    -3.584   .0003    .38900706 
 TIMED12 |    -.00963988       .00258669    -3.727   .0002   1.12500000 
 

Variance parameters for compound error 

Lambda  |    4.83756520       .06991360    69.193   .0000 
Sigma(u)|     .11280724       .00051277   219.997   .0000 
---------+Coefficients in u(i,t)=[exp{eta*z(i,t)}]*|U(i)| 
TIME    |    -.15753435       .00894748   -17.607   .0000 

 

Source: Own estimation 
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 Regarding the second best working model, it is Model [5] with time, ICT 

investment and economy openness as inefficiency determining variables.  

 

 Table 5.14. Empirical Model [5]: Efficiency Estimation 

Model  Variances  

Log likelihood function        4272.585     Sigma-squared(v)       .00054   

Info. Criterion: AIC       -4.51345     Sigma-squared(u)       .00269   

Finite Sample: AIC         -4.51207     Sigma(v)         .02322   

Info. Criterion: BIC       -4.37153     Sigma(u)         .05188   

Info. Criterion:HQIC       -4.46116     Sigma = Sqr[(σ2(u)+σ2(v)]       .05683   

    

Stochastic Production Frontier, e=v-u. 

Time varying u(i,t)=exp[eta*z(i,t)]*|U(i)| 

 

Source: Own estimation 

Model [5] presents time variant inefficiency. As becomes apparent from the 

estimation results, the statistical significance of λ obtained from the MLE estimates 

indicates the existence of a stochastic frontier function (Schmidt and Lin, 1984), since 

λ is statistically different from zero, so variation in actual production comes from 

differences in industries production practice rather than random variability. Technical 

change is statistically significant and negatively associated with technical inefficiency 

levels (as expected by the literature, with coefficient 0.1762). However, ICT 

investment and economy openness variable are not statistical significant, in this model 

specification even though this is not that case when they are estimated in models as 

sole inefficiency determining variables.  
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 Table 5.15. Empirical Model [5]: Coefficient Estimation 

 

|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 

Primary Index Equation for Model 

Constant|    4.22338155      1.04570858     4.039   .0001 
 LNCAP   |     .57458818       .33663804     1.707   .0879   4.53813827 
 LNLAB   |    -.96246364       .20778210    -4.632   .0000   4.64818191 
 TIME    |    -.01101349       .01209198     -.911   .3624   13.5000000 
 LAB2    |     .54231036       .05944439     9.123   .0000   10.8158946 
 CAP2    |     .30787795       .07541348     4.083   .0000   10.3307444 
 TIME2   |     .00046059       .00022503     2.047   .0407   119.250000 
 LABCAP  |    -.32863457       .08851120    -3.713   .0002   21.0930324 
 LABTIME |     .02015502       .00362739     5.556   .0000   62.3692144 
 CAPTIME |    -.01638387       .00334272    -4.901   .0000   62.8256562 
 LNCAPD1 |    -.39886408       .05156847    -7.735   .0000    .37753423 
 LNLABD1 |     .27540973       .04293267     6.415   .0000    .38837574 
 TIMED1  |     .03076592       .00239183    12.863   .0000   1.12500000 
 LNCAPD2 |     .19029024       .03698026     5.146   .0000    .37617450 
 LNLABD2 |    -.13380496       .03219683    -4.156   .0000    .38535840 
 TIMED2  |    -.01855293       .00178089   -10.418   .0000   1.12500000 
 LNCAPD3 |    -.15657938       .05003347    -3.129   .0018    .38133607 
 LNLABD3 |     .18929632       .04168132     4.542   .0000    .38972613 
 TIMED3  |    -.01326200       .00238188    -5.568   .0000   1.12500000 
 LNCAPD4 |    -.83434550       .03954290   -21.100   .0000    .37960654 
 LNLABD4 |     .81930851       .03274724    25.019   .0000    .38383682 
 TIMED4  |     .00550838       .00179628     3.067   .0022   1.12500000 
 LNCAPD5 |    -.05044662       .07098990     -.711   .4773    .38112430 
 LNLABD5 |     .02811536       .06331817      .444   .6570    .38450072 
 TIMED5  |     .00261260       .00269061      .971   .3315   1.12500000 
 LNCAPD6 |    -.15162061       .04041641    -3.751   .0002    .37286709 
 LNLABD6 |     .15771536       .03399381     4.640   .0000    .38400415 
 TIMED6  |    -.00225326       .00191245    -1.178   .2387   1.12500000 
 LNCAPD8 |     .30156467       .06375379     4.730   .0000    .38079571 
 LNLABD8 |    -.34228923       .05327100    -6.425   .0000    .39087342 
 TIMED8  |     .00533496       .00277888     1.920   .0549   1.12500000 
 LNCAPD9 |     .18188197       .04724075     3.850   .0001    .37480414 
 LNLABD9 |    -.22219146       .03459398    -6.423   .0000    .38228242 
 TIMED9  |     .00776839       .00302413     2.569   .0102   1.12500000 
 LNCAPD10|    -.30447447       .06560259    -4.641   .0000    .37896495 
 LNLABD10|     .28376994       .05907700     4.803   .0000    .38765447 
 TIMED10 |     .00249030       .00326177      .763   .4452   1.12500000 
 LNCAPD11|    -.32488532       .05209067    -6.237   .0000    .38435061 
 LNLABD11|     .33765525       .04860678     6.947   .0000    .38898708 
 TIMED11 |    -.00688089       .00176665    -3.895   .0001   1.12500000 
 LNCAPD12|     .27007461       .07298551     3.700   .0002    .38044290 
 LNLABD12|    -.24718002       .06682091    -3.699   .0002    .38900706 
 TIMED12 |    -.00971771       .00272355    -3.568   .0004   1.12500000 

Variance parameters for compound error 

 Lambda  |    2.23449218       .53331910     4.190   .0000 
 Sigma(u)|     .05187668       .00023930   216.787   .0000 

Coefficients in u(i,t)=[exp{eta*z(i,t)}]*|U(i)| 

TIME    |    -.17624961       .02369534    -7.438   .0000 
LNICT   |     .10812426       .14275688      .757   .4488 
LNOPENK |     .13190578       .36600687      .360   .7186 
 

Source: Own estimation 
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5.6. Estimation of Technical Efficiency  

Førsund, Lovell and Schmidt (1980) asserted that the main weakness of the stochastic 

frontier model is that it is not possible to decompose individual residuals into their 

two components, and so it is not possible to estimate technical efficiency by 

observation. The best that one can do is to obtain an estimate of mean inefficiency 

over the sample. However, Jondrow et al (1982) proposed either the mean or the 

mode of the conditional distribution [u i | vi-ui]  to provide estimates of the technical 

inefficiency of each producer in the sample. The possibility of obtaining producer – 

specific estimates of efficiency has greatly enhanced the appeal of stochastic frontier 

analysis. Within this framework, several models for estimating technical efficiency 

have been developed, extending the stochastic frontier methodology to account for 

different theoretical and empirical issues (Coelli et al (1998), Greene (1999), 

Kubhakar and Lovell (2000)). However, another possible weakness with the approach 

is that in order to distinguish the two error components it is also necessary to make 

some strong distributional assumptions. In stochastic frontier models the symmetric 

error v has been assumed to be iid normal but a variety of different assumptions have 

been made about the distribution of technical inefficiency. However, different 

distributional assumptions can lead to different results in terms of estimated 

efficiencies.  

 

In order to define the inefficiency determinants variables effects, we compare the 

inefficiency effects in best working Model [5] with the inefficiency estimation when 

no inefficiency determinants are included in the model function.   

 

To begin with, within this framework, Model [1] has no inefficiency effects and since 

technical efficiency is considered to be time-invariant in this model specification, it 

remains the same for the whole period 1980-2005114.  

 

                                                 
114 The inefficiency levels (E[u|e]) per industry and country for the period covering 1980-2005 are 

presented in the Appendix. 
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Table 5.16. Inefficiency Analysis per Industry and country – Without inefficiency determinants 

 France Germany Italy Netherlands Spain United Kingdom       Average 
Electrical - Οptical 0.018 0.025 0.161 0.119 0.232 0.192 0,1245 

 
Food - Beverages 0.081 0.016 0.138 0.148 0.122 0.096 0,1002 

 
Textiles 0.032 0.073 0.225 0.021 0.075 0.087 0,0855 

 
Manufacturing nec 0.123 0.060 0.126 0.016 0.172 0.125 0,1037 

 
Wood 0.157 0.277 0.111 0.208 0.012 0.153 0,1530 

 
Paper 0.017 0.074 0.141 0.079 0.115 0.111 0,0895 

 
Chemicals 0.066 0.026 0.094 0.030 0.076 0.100 0,0653 

 
Rubber - Plastics 0.186 0.051 0.141 0.021 0.030 0.104 0,0888 

 
Non-metallic 0.027 0.045 0.057 0.039 0.083 0.065 0,0527 

 
Metals 0.012 0.172 0.273 0.204 0.154 0.163 0,163 

 
Machinery 0.175 0.019 0.119 0.077 0.081 0.043 0,0857 

 
Transport 0.109 0.016 0.066 0.085 0.170 0.168 0,1023 

 
Average  0.084 

 
0.071 
 

0.137 
 

0.087 
 

0.110 
 

0.117 
 

0,1010 
 

Source: Own estimation 
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Model [1] presents time invariant inefficiency, which is the same inefficiency level 

for each one of the years in analysis. The table above presents the inefficiency levels 

estimation for each one of the industries and countries included in our estimation. On 

average, Germany, France, and Netherlands are the best performer countries, since 

they have the lowest average inefficiency levels, whereas Italy, Spain and United 

Kingdom seem to be the worst performer countries, since they have the highest levels 

of inefficiency. As far as the industry inefficiency is concerned, the best performing 

industries, on average, are the non- metallic, the chemicals and textiles industries, 

whereas, the worst performing industries are those of wood, electrical/optical and 

metals.  

 

Among the best performing industries are the industries of paper in France, Metals in 

France and Transport Equipment in Germany. On the other hand, the worst 

performing industries are those of wood in Germany and Netherlands, as well as 

metals industry in Italy and Netherlands.       

 

The detailed inefficiency analysis per industry and country for the rest of the time 

variant inefficiency models ([2]-[4]) is illustrated in the Appendix. It is apparent that 

the inefficiency level decreases over time in the vast majority of the industries and 

countries115. Even though there is a general trend that inefficiency decreases over 

time, however, there are significant differences, both in inter-industry and inter-

country level.  

 

                                                 
115 Model [3] presents time variant inefficiency. The inefficiency level decreases over time in all the 

industries and countries, even though certain industries and countries have mixed increases and 

decreases in inefficiency levels, such as the wood industry, or the non – metallic industry in Spain or 

the machinery industry in France. However, the general trend of the inefficiency shows that 

inefficiency levels decrease over time.  Model [4] presents also time variant inefficiency. Even though 

the inefficiency level decreases over time in all the industries and countries, the decrease rate is rather 

small. The countries which present the highest levels of inefficiency are Italy, Spain and France.  
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Table 5.17. Inefficiency Analysis per Industry and country – With inefficiency determinants 

 

 France Germany Italy Netherlands Spain United Kingdom       Average 

Electrical - Οptical 0.0221 0.0157 0.0220 0.0159 0.0430 0.0140 0.0221 

Food - Beverages 0.0060 0.0203 0.0031 0.0190 0.0098 0.0225            0.0135 

Textiles 0.0138 0.0369 0.0052 0.0119 0.0024 0.0200 0.0150 

Manufacturing nec 0.0722 0.0548 0.0369 0.0372 0.0178 0.0006 0.0366 

Wood 0.0190 0.0064 0.0226 0.0082 0.0046 0.0050 0.0110 

Paper 0.0220 0.0180 0.0208 0.0227 0.0351 0.0212            0.0233 

Chemicals 0.0101 0.0127 0.0137 0.0074 0.0065 0.0207 0.0119 

Rubber - Plastics 0.0021 0.0271 0.0054 0.0774 0.0304 0.0065 0.0248 

Non-metallic 0.0154 0.0142 0.0135 0.0061 0.0135 0.0233 0.0143 

Metals 0.0138 0.0199 0.0089 0.0088 0.0019 0.0872 0.0234 

Machinery 0.0140 0.0139 0.0106 0.0067 0.0072 0.0148 0.0112 

Transport 0.0067 0.0188 0.0090 0.0180 0.0174 0.0026 0.0121 

Average  0.0181 0.0216 0.0143 0.0200 0.0158 0.0200 0.0183 

Source: Own estimation 
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Model [5] presents time variant inefficiency included inefficiency term with 

determining variables. Regarding the inefficiency gap variations by country and 

industry, the table above presents the inefficiency levels estimation for each one of the 

industries and countries included in our estimation. On average, Italy, Spain are the 

best performing countries, since they have the lowest average inefficiency levels, 

whereas Germany seems to be the worst performer country, since it has the highest 

levels of inefficiency. As far as the industry inefficiency is concerned, the best 

performing industries, on average, are the non- metallic and chemicals industries, 

whereas, the worst performing industries are those of manufacturing nec and 

rubber/plastics. In more detail, the industries with the lowest inefficiency levels are 

rubber/plastics in France and Italy, as well as the manufacturing nec industry in 

United Kingdom. As far as the industries with the highest inefficiency levels are 

concerned, these are the metals industry in United Kingdom and manufacturing nec in 

France.  

 

However, the inefficiency gap does not seem to follow a rather constant pattern as far 

as country-wise and industry-wise, meaning that different countries present best and 

worst performances in different sectors and there is no a single country with best 

performance in every industry, or a single industry with best or worst performance in 

every country.  

 

On the other hand, the following table (5.15) presents the parameters of the 

distribution of productive efficiency scores calculated according to each one of the 

alternative estimated stochastic frontier models.   

 
Table 5.18. Estimated varying production efficiencies )]ˆ[( ituExp −   

 
SF Model Inefficiency DeterminantsMean Standard Deviation Min. Max. 

[1] none 0. 983 0. 289509E-01   0.758 0.999   
[2] time 0. 982 0. 285662E-01   0. 716 0.999 
[3] lnict   0. 990 0. 171634E-01   0. 711 0.999    
[4] lnopenk 0. 984 0. 124007E-01   0. 920 0.998 
[5] time,lnict,lnopenk 0.982      0. 283101E-01   0. 721   0.999          

Source: Own estimation 

It is apparent that efficiency levels are rather high in all model specifications. In the 

first model specification, in which there are no inefficiency effects, the efficiency 
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levels range from 0.758 to 0.999. In the second model specification, in which 

inefficiency effects are attributed solely to time, efficiency levels range from 0.758 to 

0.999. On model [5] with time, ICT investment and economy openness as inefficiency 

term determinants, efficiency levels range from 0.716 to 0.999. 

 

On the other hand, apart from the discussion on inefficiency levels by industry and 

country, it is also important to estimate the effect of each one of the inefficiency term 

determining variables in the model. The following table presents the estimated 

coefficients in efficiency determining variables. In model [1] with no inefficiency 

effects, the variable eta, which is statistically significant, presents the inefficiency 

level (18.44%).  

 

Table 5.19. Estimated coefficients in efficiency determining variables 
 

Model Variable Coefficient St. Error b/St.Er. P[|Z|>z]| 

[1]        
 Eta   -.1844        .0122    -15.092    .0000 
      

[2] time -.1575       .0089    -17.607    .0000 
 

      
      

[3] lnict   -.7821 .0778    -10.041    .0000 
      
      

[4] lnopenk .5870 .1310      4.480    .0000 
      
      

[5] time -.1762 .0236     -7.438    .0000 
 lnict .1081 .1427      .757    .4488 
      
 lnopenk .1319 .3660       .360    .7186 
      

 

Notes: 

1. For Model [1], Eta parameter for time varying inefficiency 

2. For Models [2] – [5], coefficients in u(i,t)=[exp{eta*z(i,t)}]*|U(i)| 

 

Source: Own Estimation 

 

The models [2] – [4] all have statistical significant efficiency determining variables 

(time, ICT investment and economy openness). From the models estimation, it 

becomes apparent that the variables time, ICT investment and economy openness 
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have a significant impact on technical efficiency in the model in which they are 

included. All the three variables are statistically significant, bearing the negative sign, 

as expected by the theory, meaning that an increase in those variables decreases the 

inefficiency level. However, in model [5], in which all the three efficiency 

determining variables are included, it is only time variable which is statistically 

significant.  

 

As far as Kernel Density Estimates are concerned, they present the estimated mean 

inefficiencies for each one of the estimated models, illustrating the form of the 

distribution of the estimated efficiency: 



 253 

Figure 5.1. Kernel Estimators  
Model [1] 
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As it is illustrated in the Kernel density estimates (Figure 5.1), the distribution of 

productive efficiency is centered implying that most industries are clustered close to the 

mean. The reason for the peak in the distribution at the maximum level is from the 

hypothesis that at least one producer in each industry is fully efficient.  

 

The following part refers to the underlying policy implications, presents what measures 

and initiatives are suggested in order to close the inefficiency gap across counties and 

industries, and what are the relative policy implications.    

  

5.7. Policy Implications 

There is a huge literature on factors influencing productive efficiency and productivity 

growth. In this literature, it is widely accepted that decision making units are not 

homogeneous producing units and, therefore, not all units are operating at the same level of 

efficiency (Caves, 1989). Within this framework, productivity represents the estimation of 

how well a producer uses the available resources to produce outputs from inputs. However, 

the productivity theory literature has emphasized factors such as productive efficiency, 

mainly through technological spillovers, increasing returns, learning by doing, und 

unobserved inputs (e.g. human capital quality), whereas the empirical industrial 

organization literature has emphasized the degree of openness of countries to imports and 

industry structure (Koop, 2001). Currently, output and employment are expanding fast in 

high-technology industries such as computers and electronics, as well as in knowledge-

based services such as financial and other business services and more resources are spent 

on the production and development of new technologies, in particular on information and 

communication technology. 

 

The developments in the theory of productive efficiency have renewed the interest for the 

role that the innovation plays in the development process, underlining the interaction 

between the investment in innovative activities, the technological change and productive 

efficiency growth. Innovation and technology is an important source of industry 

competitiveness through facilitating productive efficiency. In particular, they can improve 

collective processes of learning and the creation, transfer and diffusion of knowledge, 

critical for innovation. Such cooperation and the networks that are formed help to translate 

knowledge into economic opportunity, while at the same time building the relationships 

between organizations which can act as a catalyst for innovation.  
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The productive processes that create and diffuse the new knowledge are critical in 

production and there are powerful contacts between the investment in the human capital, 

the technological change and finally, technical efficiency. As a motive force, it prompts the 

enterprises to long-term development objectives and the advancement of productive 

structures, so that they maintain the elements of efficiency and competitiveness. From an 

economic analysis point of view, the theoretical framework of the effects of innovation on 

the economic efficiency, productivity and growth is based on endogenous growth theory, 

claiming that not only the accumulation of capital, but mainly the development and 

accumulation of knowledge and technological change leads to increased and sustainable 

growth. Investments in new technologies aim to the modernisation of productive process 

and the qualitative upgrade of products. The reason is that the new technologies lead to 

increase of productivity of factors of production, contributing in the long-term 

improvement of competitiveness. 

 

Furthermore, innovation process requires cooperation and collaboration of a great number 

of different actors, which, to a large extent, incorporates high transaction cost and high 

uncertainty level. According to this view, economic success and competitiveness result 

from the combination of favorable entrepreneurial environment, network systems and 

innovative behavior and the establishment of new combinations of factors of production is 

a process that will become the engine that drives economic development. On the other 

hand, as mentioned before, due to information asymmetries, uncertainty and high cost 

features of innovation, entrepreneurship becomes more important in a modern economy, 

since it may provide one of the mechanisms by which new economic knowledge is 

disseminated into different networks. Entrepreneurship generates growth because it serves 

as a link between innovation and change. Thus, by serving as a vehicle for knowledge 

transmission and spillover, entrepreneurship plays a key role in the link between 

knowledge and growth.  

 

Within this framework, measuring efficiency is a quite important task in economic 

analysis. First only by measuring efficiency and by separating their effects from those of 

the general economic environment, can we explore hypotheses concerning the sources of 

efficiency or productivity differentials, as well as effectiveness of private practices and 

public policies designed to improve productive performance.  
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Following the empirical results of our model, the significance of the time dimension 

(which denotes technical change) regarding inefficiency estimation, and technical change, 

facilitated by a favourable institutional framework become more of an issue in technical 

efficiency analysis. Innovative actions are considered to be rather important to technical 

efficiency enhancement. Firstly, they stimulate investments which introduce new 

commodities and processes, which improve the living standards of the society. Moreover, 

they lead to new developments, which increase the comparative advantage of an economy 

and affect positively the trade performance and competitiveness of a country worldwide. 

These effects result in a greater level of economic growth. 

 

 

Discussion in more specific terms vis-à-vis our empirical results, suggests that there are 

specific underlying policy implications, measures and initiatives in order to close the 

inefficiency gap across counties and industries.  

 

Since, nowadays, competition has shifted the comparative advantage of countries and 

industries towards the factor of knowledge and innovation, where productivity based on 

endogenous development capabilities plays a rather important role, as far as efficiency and 

competitiveness enhancement are concerned. Within this framework, technical change as a 

productive efficiency determinant consist two of the core subjects both in economic 

analyses. Respectively, there is an increasing interest in the contribution of knowledge in 

productive efficiency, taking into consideration the need of enterprises to import 

technological innovations that increase productivity and competitiveness. 

 

What does this mean for productivity and competitiveness? Regarding productivity 

enhancement, economies increase their efficiency in two ways—micro and macro. 

Microeconomic gains take place within an enterprise as it invests, trains workers, innovate 

and compete. Macroeconomic gains occur when the overall economy reorganizes and 

shifts resources so they produce more than before. Within this micro and macro 

framework, technical efficiency has a leading role in using productive resources 

efficiently.  

 

On macro-level, two complimentary sets of conditions need to be satisfied. The first is the 

existence of suitable endowment of both basic infrastructure (in the form of efficient 

transport, telecommunications and energy networks and environmental facilities and so on) 

and a labor force with appropriate levels of skills and training, strengthening of both 



 

 257 

physical and human capital, together with improvements in institutional support facilities 

and the administrative framework in place. The second set of conditions, which directly 

relates to the factors of competitiveness which are important in the knowledge-based 

economy, is that innovation should be accorded high priority, that information and 

communication technologies (ICT) should be widely accessible and used effectively and 

that development should be sustainable in environmental terms.; a business culture which 

encourages entrepreneurship; and the existence of cooperation networks and clusters of 

particular activities. European cohesion policy makes a major contribution to these 

objectives, especially in those countries where there is unused economic and employment 

potential which can be realized through targeted cohesion policy measures. From a policy 

perspective, for national development to be sustained requires favorable conditions being 

established at the national level, in particular a macroeconomic environment conducive to 

growth, employment and stability and a tax and regulatory system which encourages 

business and job creation. 

 

In European Union there is an increasing interest in the contribution of productive 

efficiency in the sustainable long-term economic growth, taking into consideration the 

need that competition forces technological innovations, that increase productivity, renewed 

the interest for the role of innovation in the development process, underlining the 

interaction between investment in innovative activities, technological change and 

sustainable economic growth. 

 

European Union industrial and innovation policy is aimed at strengthening the 

competitiveness of European Union producers by promoting competition, ensuring access 

to markets and establishing an environment which is conducive to R&D across the Union. 

Knowledge and access to it has become the driving force for growth in advanced 

economies like the European Union known-how and intellectual capital, much more than 

natural resources or the ability to exploit abundant low-cost labor, have become the major 

determinants of economic competitiveness since it is through these that economies can not 

only increase their productive efficiency but also develop new products. Productive 

efficiency, therefore, holds the key to maintaining and strengthening competitiveness 

which in turn inessential for achieving sustained economic development. To achieve both 

sets of conditions requires an effective institutional and administrative framework to 

support development. The cost of not pursuing a vigorous cohesion policy to tackle 

disparities is, therefore, measured in economic terms, as a loss of the potential real income 

and higher living standards. Given the interdependencies inherent in an integrated 
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economy, these losses are not confined to the less competitive states but affect every state 

in the Union. 

 

By securing a more balanced spread of economic activity across the European Union, it 

will reduce the risk of imbalances and divergence, making it easier to sustain the European 

model of economic growth and cohesion. In policy terms, the objective is to help achieve a 

more balanced development by reducing existing disparities, avoiding regional imbalances, 

by making policies more coherent, improving integration and encouraging cooperation 

between states and regions. Among other development factors, countries or industries 

facing lags in productive efficiency face also a lag in growth. Lagging countries or 

industries in European Union has been one of the main objectives of the European strategy. 

Development problems are more intense in lagging regions or industries which present 

major differences in level of economic performance, output, productivity and employment. 

These disparities arise due to structural deficiencies in factors, which restrain economic 

activities and overall development.  

 

These disparities cannot be ignored, since they affect the overall competitiveness of the 

European Union economy. Covering costs of congestion or treating the consequences of 

disparities implies a sub-optimal allocation of resources, as well as a lower level of 

efficiency and economic competitiveness than could potentially be attained. To combat 

disparities and achieve a more balanced pattern requires some coordination of innovation 

and industrial policies if they are to be coherent and consistent with each other116. 

 

However, the answer to closing the inefficiency gap is also micro-related, suggesting 

perhaps cutting off the rail of more inefficient plants, or moving the distribution for all the 

plants in a specific industry. As companies become more efficient, the economy reallocates 

resources to more productive uses, either in existing companies or new ones. On the other 

hand, efficiency may be improved primarily through innovation and technological 

progress, better developed in a collaborative environment.  

 

On micro-level, a firm which undertakes R&D programmes in order to enhance technical 

efficiency levels, acquires new information and knowledge to embody in the new 

commodities, as well as new production and marketing processes, ready to be employed in 

                                                 
116 This issue has been broadly reviewed in Kokkinou A. (2011) Innovation Policy, Competitiveness, and 
Growth: Towards Convergence or Divergence? in Patricia Ordonez de Pablos, W.B. Lee and Jingyuan Zhao 
(editors) Regional Innovation Systems and Sustainable Development: Emerging Technologies, Information 
Science Reference, Hershey, New York, pp. 187 – 201. 
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product and process innovation. As a result, through innovation, a company is able to 

develop directly new products and processes and bring them to the market acquiring an 

advantage over its competitors. Furthermore, it can enhance the ability of the firm to 

develop and maintain capabilities to absorb and expand technology information available 

by external sources, and identify, assimilate and exploit new knowledge and technology. 

 

However, productive efficiency enhancement depends extensively on the presence or the 

formation of a network and environment favourable to innovation, which is based on the 

endogenous development capabilities. Even though the firm specific factors are important 

determinants of innovation activity, technological opportunities and favourable 

entrepreneurial environment have a positive effect on innovation activity, as well. This 

could also be related to country-level institutional reform or restructuring, or it could be 

mainly focused on measures and initiative actions in order to increase overall Research and 

Development expenditure and innovation investments, and/or promoting exporting 

activities. These actions should also be linked not only to different country-level programs, 

in order to tackle any inefficiency features found in different countries and industries, but 

also linked to European Union structural plans for innovation and growth.     

 

It is also useful, in order to enhance technical efficiency that firms cooperate in order to 

bring technological advances and access, create and diffuse technological knowledge, 

trying to exploit the benefits from cooperative manufacturing and commercialising of 

research, to gain large-scale operation benefits and to take advantages of sharing the 

associated risks. These alliances are characterised ‘strategic’ because they aim to provide a 

competitive advantage to participating firms against their competitors by making them able 

to respond more effectively and dynamically to technological competition, organizing 

innovation in such a way that can successfully act in response to market conditions, by 

generating, coordinating, and controlling technology, since they are able to achieve a more 

efficient outcome, avoiding spillovers and unnecessary duplication of effort problems, and 

permitting the smooth dissemination of technology and information, beneficial for 

industries and countries. Co-operation and exchange of technology among firms and/or 

other research organisations can take place at a given point of R&D and/or 

commercialisation process, or cover the process as a whole and it may refer to the creation 

or just acquisition and use of knowledge.  

 

Synergies may increase the rate of innovation, decrease the costs of knowledge diffusion 

and enhance the efficiency of the investment, due to effective pooling of resources and 
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exploitation of research results having positive effects on costs. This development 

establishes favourable incentives to participants to combine their expertise and assets and 

engage in collaborative research activities. 

 

 

Moreover, in Europe 2020 strategy, European Union has identified the following key areas 

in order to promote productivity and competitiveness of the European Union economy 

(European Commission, 2011a): 

 

� facilitating structural changes, to move towards more innovative and knowledge-based 

sectors; 

� enabling innovation in industries, in particular by pooling scarce resources, by reducing 

the fragmentation of innovation support systems and by increasing the market focus of 

research projects;  

� promoting sustainability and resource efficiency, in particular by promoting 

innovation; 

� improving the business environment; 

� benefiting from the single market, by supporting innovative services. 

 

Through these five core pillars, industrial and technological policy should move towards a 

new path to build economic effectiveness and stimulate economic growth, supporting both 

basic science and strategically oriented research. In addition to the creation of new 

technologies, particular consideration should be dedicated to the diffusion of existing 

knowledge and innovations focusing on the ability of the firms to locate, access, adapt, and 

use new technologies. This development could be of collective nature, incorporating 

industries, government authorities, universities, and research institutes, through interactive 

relationships, to assist the authorities to engage in the needed technology policy goals. 

 

To conclude, efficiency enhancement, mainly through innovation creation and 

dissemination, is a complex phenomenon that involves not only technological, economic, 

and social activity, but also research and development investment, production, and 

application, with the relationship between innovation and efficiency being a core analysis 

point.  

 

Economies and industries should directly point towards the new challenges and focus on 

the newly raised prospects, recognising that government can play a major role in 
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developing and reaping the benefits of productive efficiency promotion. There is excess 

need for active policies directed on science and technology crucial to today’s business 

economy, which would be able to create a secure business environment in which 

innovation investments may have the expected results.  

 

Concluding, it is believed that such an approach will result in more efficient production 

levels, and can be rather beneficial for the business units and the overall economy. The 

suggestion made could be summarised in the view that cooperation activities should be 

treated as a core mechanism, accompanied by special policy considerations concerning any 

problems and drawbacks which may arise in their application. 

 

5.8. Concluding remarks 

This chapter analyses and discusses the empirical findings of the technical efficiency of 

European Union industries in selected member-states. More specifically, this main research 

aim is twofold: first to estimate and analyze technical efficiency in European Union 

manufacturing industries, and second to compare the results of parametric and non – 

parametric methods of technical efficiency estimation.  

 

This chapter proposes a model for technical inefficiency effects in a stochastic frontier 

production function for panel data. Provided the inefficiency effects are stochastic, the 

model permits the estimation of both technical change in the stochastic frontier and time-

varying technical inefficiencies (Battese and Coelli, 1992, 1995). As has been already 

broadly described into previous chapters, this original specification has been extended to 

include a wide array of assumptions and specifications, including panel data analysis117 

                                                 
117 Stochastic frontier approach has found wide acceptance within the agricultural economics literature and 

industrial settings (Battese and Coelli, 1992; Coelli and Battese, 1995), because of their consistency with 

theory, versatility and relative ease of estimation.  

 

Some literature focused on stochastic frontier model with distributional assumptions by which efficiency 

effects can be separated from stochastic element in the model and for this reason a distributional assumption 

has to be made. Among others, an exponential distribution (Meeusen and van den Broeck 1977); a normal 

distribution truncated at zero (Aigner, Lovell and Schmidt 1977); a half-normal distribution truncated at zero 

(Jondrow et al. 1982) and a two-parameter Gamma or Normal distribution (Greene 1990).  
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first by Schmidt and Sickles (1984) who modeled technical inefficiency as time-invariant, 

then by Battese & Coelli (1992) who modeled the technical inefficiency as time variant. 

Battese and Coelli (1995) followed, using a stochastic frontier production function for 

panel data concluding that a model of technical inefficiency effects is a significant 

component of the stochastic frontier production function. 

 

The analysis and estimation in this chapter investigates whether there is evidence of 

technical inefficiency in manufacturing industries in European Union selected member – 

states, and whether factors such as ICT investment (as a proxy of knowledge creation) and 

economy openness (as a proxy for knowledge transfer and dissemination) exert any 

influence on to technical efficiency growth. The chapter begins with a description of the 

model used, the data set used in the analysis and the definition of the variables, along with 

their descriptive statistics. Then the empirical model is formed with estimation results for 

different alternative model specifications.  

 

This chapter presents a range of different stochastic model approaches based on alternative 

hypotheses, discussing and comparing them in detail. First, this chapter applies a stochastic 

translog production function to examine the underlying causes of technical inefficiency for 

13 manufacturing industries in European Union over the period 1980 – 2005. The results 

indicate that inefficiency was present in production and the relevant technical efficiency 

determining variables contribute to it. From our model analysis, it is evident that the 

manufacturing industries in our research sample are not fully efficient. The inefficiency 

observed is endogenous to the firm since the technical inefficiency is largely associated 

with the firms’ choice of ICT investments and openness achievement. Even though there is 

a notable improvement in technical efficiency after accounting for variations, technical 

inefficiency remains significant which calls for further investigation of the variations 

regarding to the alternative explanatory variables. Conclusions and policy implications 

may be drawn from this model analysis.  

 

Specifically, in line with the empirical framework, based on stochastic frontier analyses 

(SFA), we decomposed productivity into the production possibility frontier and technical 

(in) efficiency, investigating the role of efficiency in explaining growth differentials for a 

                                                                                                                                                    
However, there are no priori reasons for choosing one distributional form over the other, and all have 

advantages and disadvantages (Coelli, Rao and Battese 1998).  
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panel of manufacturing industries in selected European Union countries (Bos et al., 2010). 

We also accept that decision making units are not homogeneous producing units and, 

therefore, not all units are operating at the same level of efficiency (Caves, 1989), with one 

of the main questions being to investigate the relationship between inefficiency and a 

number of factors which are likely to be efficiency explanatory variables.  

 

As in Bos et al. (2010), we accounted for inefficiency and estimate a stochastic production 

frontier, which is the empirical analog of the theoretical production possibility frontier. 

This modelling strategy adds structure to the unexplained residual. Under reasonable 

assumptions, it disentangles the residual into inefficiency and measurement error. 

Technical change is modelled as a shift of the stochastic frontier, whereas efficiency 

change is a movement towards or away from the frontier. As in Bos et al. (2010), our 

models focus on the use of technology, the sources of output growth, technology spillovers 

and catch-up. To decrease the aggregation bias that may occur when these issues are 

considered at the country-level (as in Bernard and Jones, 1996 a,b), Bos et al. (2010) focus 

on manufacturing industries. Even though the producer-specific factors are important 

determinants of innovation activity, technological opportunities have a positive effect on 

efficiency enhancement. Technological change, innovation and technology creation and 

diffusion are an important factor to economic progress (Koop, 2001). In order to 

investigate the determinants of the productive efficiency we distinguish between producers 

or industry -specific and efficiency explanatory factors (as the methodology followed by 

Caves and Barton, 1990).  

 

Our analysis followed the methodology by Kneller and Stevens (2006), who used panel 

data on manufacturing industries of OECD countries, estimating the distance to the 

technological frontier, as a function of the levels of investment in R&D and human capital, 

which in turn are related to the absorptive capacity of the economic system. Of great 

influence is also the methodology by Bhattacharjee et al. (2009) who explored the idea that 

the productivity enhancing positive component captures innovative activity raising certain 

industries above common productivity standards at specific times. Moreover, according to 

Bhattacharjee et al. (2009), more explicit modeling of innovation, particularly investment 

in R&D, human capital, international technological spillovers and spatial diffusion are also 

to be considered 

 

As in Kumbhakar (1991), Polachek and Yoon (1996) and Greene (2005b) we extended the 

original stochastic frontier model by adding an individual time-invariant fixed effect. In 
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our modelling, heterogeneity is not reflected in measured variables but expressed in the 

form of effects (Greene, 2007a). As in Consoli (2008), we placed strong emphasis on the 

sources and the effects of technological change, namely technology creation and 

technology dissemination.  

 

Last, the results included reporting the estimated technical efficiency and the related 

explanatory variables. This chapter provided the industry-level estimates of technical 

efficiency using alternative model specifications under time-invariant and time-varying 

efficiency assumption. Further, factors that determine variations technical efficiency were 

estimated and a comparison of technical efficiency is made, both before and after 

accounting for different explanatory variables in the inefficiency term. 
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Chapter 6 
 
 

Data Envelopment Model: Empirical Results 
 

 
 

Abstract 
 
The objective of this chapter is to estimate the Transcendental Logarithmic Production Function of 

manufacturing industries in selected E.U. economies, considering a panel data model for inefficiency effects 

in production frontiers, providing translog effects, as well as industry effects. In addition, this chapter also 

applies the deterministic nonparametric approach Data Envelopment Analysis (DEA), in order to compare 

the two approaches and investigate whether, despite the different underlined assumptions and specifications, 

they produce comparable (similar or not) results regarding technical efficiency estimation.  

 
Contrary to the Stochastic Frontier Analysis approach (SFA), which requires a functional form to estimate 

the frontier production function and is based on the idea that the data is contaminated with measurement 

errors and noise (Bauer. 1990), Data Envelopment Analysis (DEA) approach uses linear programming 

techniques and cannot discriminate between inefficiency and noise. Thus, it tends to produce overestimated 

inefficiency measures, a fact which is the most important disadvantage of DEA in comparison to SFA 

(Bauer. 1990). This chapter proposes a slack-based DEA which allows a full evaluation of inefficiency in an 

industry’s performance. The model estimated in this chapter is a DEA variant called slack-based measure, 

which is able to deal directly with the input excesses and the output shortfalls of the industry under 

evaluation (Tone, 2001). Estimated slacks are invariant to the units of measurement and are monotone 

decreasing with respect to each input and output slack. By using slack-based efficiency measure, we obtain 

different frontier levels and more appropriate performance benchmarks for inefficient industries. The 

production assumptions in DEA are that all actual observed inputs and outputs of any industries are feasible 

for all industries, as are linear combinations of observed inputs and outputs.  

 

Comparing the outcomes of the two different approaches (between parametric and non-parametric method) 

for the period 1980-2005, regarding the efficiency progress, within an output-oriented stochastic function, 

there are different outcomes regarding the estimation of the technical efficiency values. On the other hand, 

the common results produced are that technical efficiency changes over time (time-varying technical 

efficiency) and that the estimated parameter γ is close to (1), and it is statistical significant, showing the 

existence of technical efficiency. However, similar results are produced regarding scale efficiency and 

returns to scale.  
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6.1. Introduction 

Data Envelopment Analysis involve the use of linear programming methods to construct a 

piecewise linear surface or frontier over the data and measures the efficiency for a given 

unit relative to the boundary of the convex hull of the input-output vectors. The individual 

efficiencies of the firms relative to this production frontier are then calculated by means of 

distance functions and they can be interpreted as the proportional reduction of the inputs to 

become technically efficient by a projection onto the efficient boundary, the production 

frontier. The efficiency score is the point on the frontier characterized by the level of inputs 

that should be reached to be efficient (Simar and Wilson, 1998). 

 

The main merit of these approaches is that it can deal with the case of multiple input and 

outputs as well as factors outside the control of individual managements, treating them as 

fixed inputs (Levitt and Joyce, 1987). There is also no need to make restrictive 

assumptions about either the technology representing the production process or the 

distribution of the component of the residuals which represent inefficiency, since they 

place no restrictions on the functional form of the production relationship and makes no a 

priori distinction between the relative importance of any combination of outputs or inputs.  

 

As in Kalirajan and Shand (1999), the data envelopment analysis does not require 

imposition of any distributional assumption of producer – specific effects ui’s. 

Supplementary, DEA can accommodate multiple inputs and multiple outputs 

simultaneously. One of the principal disadvantages is that DEA can be extremely sensitive 

to variable selection and data errors. Another limitation is that DEA efficiency measures in 

small samples are sensitive to the difference between the number of firms and the sum of 

inputs and outputs (Seiford, 1996).  

 

DEA permits the use of multiple inputs and outputs, but does not impose any functional 

form on the data, nor does it make distributional assumptions for the inefficiency term 

DEA overcomes some of the specific weaknesses of the other methods, such as a particular 

functional form for technology, particular assumptions on market structure, and the 

hypothesis that markets are perfect. DEA is usually handled with linear programming 

techniques. The analysis assumes that there is a frontier technology (in the same spirit as 

the stochastic frontier production model) that can be described by a piecewise linear hull 

that envelopes the observed outcomes. Some (efficient) observations will be on the frontier 
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while other (inefficient) individuals will be inside. The technique produces a deterministic 

frontier that is generated by the observed data, so by construction, some individuals are 

efficient. Many studies have further developed the DEA methodology, including those by 

Färe, Grosskopf and Lovell (1985).  

 

Data Envelopment Analysis (DEA) is, in fact, a mathematical programming approach for 

the construction of production frontiers and the measurement of efficiency relative to the 

constructed frontiers. The basic idea of this approach consists of enveloping the data (the 

observed input-output combinations) in order to obtain an approximation of the production 

frontier (best-practice frontier) and using this to identify the contribution of technological 

change, technological catch-up, and inputs accumulation to productivity growth.  

 

However, the DEA approach, by being non-stochastic, does not distinguish data noise and 

inefficiency (Lovell, 1993; Coelli, 1995). It should be noted here that stochastic DEA 

models, which eliminate such problems, have been developed in the literature (e.g. Desai 

and Schinnar, 1987 and Sengupta, 1987). However, empirical applications of those models 

are extremely difficult due to strict data requirements. In addition to the inputs and outputs 

data, they demand information about the expected values of all variables, variance-

covariance matrices for all variables, and probability levels at which feasibility constraints 

are to be satisfied (Lovell, 1993). Another problem that might occur in DEA models refers 

to the dimensionality of the input/output space relative to the number of observations in the 

cross-section. 

 

 The dimensionality problem arises when the number of observations is relatively small 

compared with the number of inputs and outputs used. A negative consequence of this 

problem is that many of the analyzed producers will be rated as "efficient" and therefore lie 

on the production frontier (Leibenstein and Maital, 1992).  

 

Fernandez-Cornejo (1994) argued that the ratio between the number of observations and 

number of inputs and outputs that will enable the DEA model to discriminate efficient 

producers from inefficient should exceed five. Smith (1997), after conducting a simulation 

study, found that even in cases when the number of observations exceeded the number of 

factors by more than thirteen times, DEA can still overestimate true efficiency by 27 

percent. Due to this limitation, many producers may be seen to be efficient, even though 

they are not. 
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6.2. DEA results analysis 

Following our analysis under stochastic frontier model specification, as in Kuah, et al. 

(2010), this chapter aims to develop a model to assess efficiency of industries by using 

Data Envelopment Analysis (DEA), since DEA provides an opportunity to evaluate and 

cross-check the results obtained by the stochastic frontier analysis.  

 

Towards this method, there have been several studies that have analyzed data with both 

DEA and parametric, deterministic frontier estimators. Coelli (1995) presented a review of 

both parametric and non-parametric techniques used in efficiency measurement, including 

their limitations, strengths, and applications in agricultural production. Although his 

review indicated that parametric approaches were used more frequently than DEA, neither 

model appears to have dominant advantages above the other.  

 

However, Bjurek, Hjalmarsson and Førsund (1990) used the stochastic frontier analysis 

and data envelopment analysis techniques to study the Swedish social insurance system. 

Førsund (1992) also did a similar analysis of Swedish ferries. In both studies, the authors 

do not observe radical differences in the results across the various procedures. On the same 

path, Ray and Mukherjee (1995) using data on U.S. electricity generation found a good 

agreement between DEA and stochastic frontier based estimates. Likewise, Murillo-

Zamorano and Vega-Cervera (2001) found similar results for a sample of U.S. electricity 

generators. Cummins and Zi (1998) also found concordance in their analysis of the U.S. 

insurance industry. Finally, Chakraborty, Biswas and Lewis (2001) analyzed public 

education in Utah in which the empirical results using the various techniques were largely 

similar.  

 

However, these studies do stand in contrast to Ferrier and Lovell (1990) who found major 

differences between DEA and stochastic frontier based inefficiency estimates in a large 

sample of American banks. Bauer et al. (1998) likewise found substantial differences 

between parametric and nonparametric efficiency estimates for a sample of U.S. banks.  

 

Sharma et al (1999) studied swine producers in Hawaii and their study the Stochastic 

Frontier Analysis (SFA) and the Data Envelopment Analysis were used to estimate 

technical efficiencies. They found that, on average, the estimated technical efficiencies 

were significantly higher in the SFA compared to the DEA under the assumption of 

constant returns to scale (CRS). Under the assumption of variable returns to scale (VRS) 



 

 269 

however, the measures were quite similar. The efficiency ranking of the producers 

following both approaches was positively correlated,indicating that the two approaches 

assess relative efficiency to the same producers.  

 

Wadud and White (2000) compared DEA (both VRS and CRS) and stochastic frontier 

methods while estimating producer household efficiency of rice producers in two villages 

in Bangladesh. Mean technical efficiency obtained from the stochastic frontier was 0.79 

and from CRS and VRS DEA, 0.79 and 0.86. respectively. The efficiency rankings were 

highly positively correlated under a Spearman rank correlation test. Similar to the results of 

Sharma et al. (1999), the variability of technical efficiency scores obtained by DEA models 

was greater than that obtained by the stochastic frontier model. Hjalmarsson et al. (1996) 

provided results obtained from the stochastic frontier model and DEA models. Similarity 

and dissimilarity depended upon the inclusion of the control variables in the stochastic 

frontier and sequential or intertemporal specification in the DEA frontier. Lovell (1996) 

attempted to evaluate DEA SFA and DFA (Deterministic Frontier Approach), relative to 

their abilities to exploit the panel nature of the data in order to provide evidence about the 

sources of productivity change among producers. Despite its flexibility, DFA approach 

appeared to be heavily burdened by being both deterministic and parametric.  

 

The SFA approach has the great advantage of being the only stochastic approach among 

the three, but its parameterization has been a major problem, and it has not yet oriented 

itself toward productivity measurement. Johansson (2005) estimated technical, allocative, 

and economic input efficiency scores for an unbalanced panel of Swedish dairy producers, 

using data envelopment analysis (DEA) and the stochastic frontier approach (SFA). By 

comparing the results it was concluded that DEA measures for technical and economic 

efficiency were significantly higher than the corresponding SFA measures. Serrao (2003) 

examined the differences in agricultural productivity growth among eighteen countries and 

five regions in the European Union from 1980 to 1998. Findings indicate that the mean 

TFP scores are higher under DEA than under SFA because DEA fits a tighter (i.e. more 

flexible) frontier. Hence, Serrao (2003) warned against the subjective choice of a particular 

approach and suggested the use and comparisons of more than one approach. DEA reports 

all deviations from the frontier as inefficiency, and thus should report lower efficiency 

scores compared to SFA. However, misspecification of the functional form by the SFA 

method would possibly cause lower efficiency scores relative to DEA methods.  
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In conclusion, in summary, the evidence is mixed, but it does appear that quite frequently, 

the overall picture drawn by DEA and stochastic frontier based techniques are similar. For 

this reason, we also employ the DEA analysis in our model in order to check whether they 

produce similar and comparable or quite different results and incomparable results. 

 

We employed the variable returns model of Data Envelopment Analysis (DEA), 

proposing a slack-based DEA. As described in chapter (2.3), the model chosen for this 

approach is the DEA variant called slack-based measure, which is able to deal directly 

with the input excesses and the output shortfalls of the industry under evaluation (Tone, 

2001).  

 

Slack-based measure is invariant to the units of measurement and is monotone decreasing 

with respect to each input and output slack. By using slack-based efficiency measure, we 

obtain different frontier levels and more appropriate performance benchmarks for 

inefficient industries118.   

 

First, we estimate the technical efficiency levels by country and industry under two 

different assumptions regarding the returns to scale. that is why we estimate technical 

efficiency under constant returns to scale and variable returns to scale.  

 

As far as the comparability of the results is concerned, DEA analysis evaluates the 

industries as having increasing returns to scale, whereas in the stochastic frontier analysis, 

the results showed decreasing returns to scale. The production assumptions in DEA are 

that all actual observed inputs and outputs of any industries are feasible for all industries. 

as are linear combinations of observed inputs and outputs.  

 

The estimation is input-oriented, meaning that efficiency is relative to the amount of input 

needed. as opposed to being output-oriented, meaning that efficiency is relative to the 

amount of output that could be produced. Each industry is evaluated by itself. 

 
 
 
 
                                                 
118 This topic has been broadly examined in: Kokkinou A. (2010c) A study in theory and models of Data 

Envelopment Analysis, The Journal of World Economic Review, Vol. 5, No. 1, pp. 1 -12. 
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Table 6.1. DEA technical efficiency estimation by country 
 

 CRS_TE VRS_TE SCALE RTS 
France 

Electrical - Οptical 0.729 0.916 0.797 irs 

Food - Beverages 0.721 0.913 0.790 irs 

Textiles 0.740 0.918 0.807 irs 

Manufacturing nec 0.738 0.924 0.799 irs 

Wood 0.739 0.929 0.797 irs 

Paper 0.759 0.927 0.820 irs 

Chemicals 0.721 0.925 0.781 irs 

Rubber - Plastics 0.744 0.922 0.807 irs 

Non-metallic 0.727 0.912 0.798 irs 

Metals 0.728 0.912 0.799 irs 

Machinery 0.739 0.917 0.807 irs 

Transport 0.710 0.907 0.784 irs 

Germany 

Electrical - Οptical 0.739 0.915 0.808 irs 

Food - Beverages 0.725 0.918 0.791 irs 

Textiles 0.722 0.919 0.786 irs 

Manufacturing nec 0.723 0.930 0.778 irs 

Wood 0.712 0.939 0.760 irs 

Paper 0.729 0.912 0.799 irs 

Chemicals 0.732 0.897 0.817 irs 

Rubber - Plastics 0.723 0.900 0.803 irs 

Non-metallic 0.730 0.923 0.791 irs 

Metals 0.710 0.905 0.785 irs 

Machinery 0.730 0.921 0.793 irs 

Transport 0.726 0.909 0.799 irs 

Italy 

Electrical - Οptical 0.727 0.907 0.801 irs 

Food - Beverages 0.717 0.909 0.789 irs 

Textiles 0.738 0.918 0.802 irs 

Manufacturing nec 0.723 0.918 0.791 irs 

Wood 0.709 0.899 0.790 irs 

Paper 0.724 0.898 0.807 irs 

Chemicals 0.706 0.897 0.788 irs 

Rubber - Plastics 0.714 0.908 0.787 irs 

Non-metallic 0.722 0.916 0.790 irs 

Metals 0.670 0.902 0.741 irs 

Machinery 0.704 0.904 0.779 irs 

Transport 0.731 0.926 0.791 irs 

Netherlands 

Electrical - Οptical 0.720 0.905 0.797 irs 

Food - Beverages 0.735 0.916 0.801 irs 

Textiles 0.732 0.924 0.793 irs 

Manufacturing nec 0.743 0.920 0.808 irs 
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Wood 0.728 0.914 0.797 irs 

Paper 0.721 0.914 0.789 irs 

Chemicals 0.744 0.928 0.803 irs 

Rubber - Plastics 0.558 0.897 0.610 irs 

Non-metallic 0.725 0.911 0.796 irs 

Metals 0.709 0.902 0.787 irs 

Machinery 0.715 0.908 0.788 irs 

Transport 0.733 0.920 0.797 irs 

Spain 

Electrical - Οptical 0.712 0.908 0.784 irs 

Food - Beverages 0.701 0.915 0.766 irs 

Textiles 0.738 0.914 0.808 irs 

Manufacturing nec 0.759 0.924 0.821 irs 

Wood 0.709 0.906 0.782 irs 

Paper 0.723 0.910 0.795 irs 

Chemicals 0.734 0.916 0.801 irs 

Rubber - Plastics 0.742 0.925 0.802 irs 

Non-metallic 0.730 0.910 0.802 irs 

Metals 0.723 0.916 0.790 irs 

Machinery 0.754 0.928 0.812 irs 

Transport 0.750 0.927 0.810 irs 

United Kingdom 

Electrical - Οptical 0.729 0.904 0.807 irs 

Food - Beverages 0.745 0.924 0.807 irs 

Textiles 0.733 0.932 0.787 irs 

Manufacturing nec 0.729 0.919 0.794 irs 

Wood 0.856 0.959 0.889 irs 

Paper 0.719 0.908 0.791 irs 

Chemicals 0.728 0.927 0.787 irs 

Rubber - Plastics 0.724 0.924 0.783 irs 

Non-metallic 0.720 0.913 0.789 irs 

Metals 0.733 0.926 0.793 irs 

Machinery 0.725 0.914 0.792 irs 

Transport 0.719 0.911 0.790 irs 

 

Source: Own estimation 
 

Technical efficiency estimation is higher under variable returns to scale assumption, 

compared to industry efficiency under constant returns to scale assumption. United 

Kingdom, Netherlands and France present the higher levels of technical efficiency across 

industries. As far as the technical efficiency per industry is concerned, Manufacturing nec 

and transport equipment present the higher levels of technical efficiency compared to the 

rest of the industries in our model. 
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Table 6.2. DEA technical efficiency estimation by industry 
 

 CRS_TE VRS_TE SCALE RTS 
Electrical - Οptical 

 France 0.729 0.916 0.797 irs 

Germany 0.739 0.915 0.808 irs 

 Italy 0.727 0.907 0.801 irs 

Netherlands 0.720 0.905 0.797 irs 

Spain 0.712 0.908 0.784 irs 

United Kingdom 0.729 0.904 0.807 irs 

Food - Beverages 

 France 0.721 0.913 0.790 irs 

Germany 0.725 0.918 0.791 irs 

 Italy 0.717 0.909 0.789 irs 

Netherlands 0.735 0.916 0.801 irs 

Spain 0.701 0.915 0.766 irs 

United Kingdom 0.745 0.924 0.807 irs 

Textiles 

 France 0.740 0.918 0.807 irs 

Germany 0.722 0.919 0.786 irs 

 Italy 0.738 0.918 0.802 irs 

Netherlands 0.732 0.924 0.793 irs 

Spain 0.738 0.914 0.808 irs 

United Kingdom 0.733 0.932 0.787 irs 

Manufacturing nec 

 France 0.738 0.924 0.799 irs 

Germany 0.723 0.930 0.778 irs 

 Italy 0.725 0.918 0.791 irs 

Netherlands 0.743 0.920 0.808 irs 

Spain 0.759 0.924 0.821 irs 

United Kingdom 0.729 0.919 0.794 irs 

Wood 

 France 0.739 0.929 0.797 irs 

Germany 0.712 0.939 0.760 irs 

 Italy 0.709 0.899 0.790 irs 

Netherlands 0.728 0.914 0.797 irs 

Spain 0.709 0.906 0.782 irs 

United Kingdom 0.856 0.959 0.889 irs 

Paper 

 France 0.759 0.927 0.820 irs 

Germany 0.729 0.912 0.799 irs 

 Italy 0.724 0.898 0.807 irs 

Netherlands 0.721 0.914 0.789 irs 

Spain 0.723 0.910 0.795 irs 

United Kingdom 0.719 0.908 0.791 irs 

 
 

Chemicals 
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 France 0.721 0.925 0.781 irs 

Germany 0.732 0.897 0.817 irs 

 Italy 0.706 0.897 0.788 irs 

Netherlands 0.744 0.928 0.803 irs 

Spain 0.734 0.916 0.801 irs 

United Kingdom 0.728 0.927 0.787 irs 

Rubber - Plastics 

 France 0.744 0.922 0.807 irs 

Germany 0.723 0.900 0.803 irs 

 Italy 0.714 0.908 0.787 irs 

Netherlands 0.558 0.897 0.610 irs 

Spain 0.742 0.925 0.802 irs 

United Kingdom 0.724 0.924 0.783 irs 

Non-metallic 

 France 0.727 0.912 0.798 irs 

Germany 0.730 0.923 0.791 irs 

 Italy 0.722 0.916 0.790 irs 

Netherlands 0.725 0.911 0.796 irs 

Spain 0.730 0.910 0.802 irs 

United Kingdom 0.720 0.913 0.789 irs 

Metals 

 France 0.728 0.912 0.799 irs 

Germany 0.710 0.905 0.785 irs 

 Italy 0.670 0.902 0.741 irs 

Netherlands 0.709 0.902 0.787 irs 

Spain 0.723 0.916 0.790 irs 

United Kingdom 0.733 0.926 0.793 irs 

Machinery 

 France 0.739 0.917 0.807 irs 

Germany 0.730 0.921 0.793 irs 

 Italy 0.704 0.904 0.779 irs 

Netherlands 0.715 0.908 0.788 irs 

Spain 0.754 0.928 0.812 irs 

United Kingdom 0.725 0.914 0.792 irs 

Transport 

 France 0.710 0.907 0.784 irs 

Germany 0.726 0.909 0.799 irs 

 Italy 0.731 0.926 0.791 irs 

Netherlands 0.733 0.920 0.797 irs 

Spain 0.750 0.927 0.810 irs 

United Kingdom 0.719 0.911 0.790 irs 

 
Source: Own estimation 

 

Estimating also technical efficiency by industry, under both assumptions of constant and 

variable returns to scale, it is evident that ‘variable returns to scale’ assumption bears 
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higher efficiency levels. Industries present, also in this case, increasing returns to scale. As 

far as the relative efficiency per industry and country is concerned, the results are reported 

in the following table: 

 
Table 6.3. Relative Analysis per Industry and country 

 
Country 
Industry 

France Germany Italy Netherlands Spain United 

Kingdom 

1 0.956 0.962 0.929 0.935 0.935 0.927 

2 0.974 0.981 0.965 0.954 0.967 0.967 

3 0.980 0.978 0.939 0.986 0.979 0.974 

4 0.940 0.987 0.936 0.969 0.952 0.964 

5       

6 0.990 0.972 0.958 0.980 0.976 0.968 

8 0.965 0.979 0.963 0.977 0.969 0.953 

9 0.901 0.942 0.935 0.946 0.944 0.922 

10 0.979 0.970 0.974 0.973 0.967 0.970 

11 0.944 0.904 0.879 0.901 0.907 0.914 

12 0.934 0.969 0.954 0.975 0.976 0.965 

13 0.949 0.970 0.959 0.958 0.948 0.953 

 
 
Notes: 

1. Industry 1 = Electrical and optical equipment. Industry 2 = Food products. beverages and tobacco. 

Industry 3 = Textiles. textile products. leather and footwear. Industry 4 = Manufacturing nec; Recycling. 

Industry 5 = Wood and products of wood and cork. Industry 6 = Pulp. paper. paper products. printing 

and publishing. Industry 7 = Coke. refined petroleum products and nuclear fuel. Industry 8 = Chemicals 

and chemical products. Industry 9 = Rubber and plastics products. Industry 10 = Other non-metallic 

mineral products. Industry 11 = Basic metals and fabricated metal products. Industry 12 = Machinery. 

nec. Industry 13 = Transport equipment. 

 
Source: Own Estimation 
 

As far as the relative efficiency per industry is concerned, it is apparent that industries such 

as Food – Beverages, Textiles, Paper, Chemicals and non metallic products experience the 

highest efficiency levels among the manufacturing industries in our sample. Even though 

the pricture changes for each industry, however, Germany is experiencing the highest level 

of technical efficiency among the other countries, followed by the Netherlands. 

 

In addition, the following table presents the output-oriented DEA estimates of the 

production function under constant returns to scale (CRS) and variable returns to scale 

(VRS).  
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The value indicates whether the DMU is operating in an area of increasing or decreasing 

RTS. This may be determined by running an additional DEA problem with non- increasing 

returns to scale (NIRS) imposed.  

 

The nature of the scale inefficiencies (i.e. due to increasing or decreasing returns to scale) 

for a particular DMU can be determined by seeing whether the NIRS TE score is equal to 

the VRS TE score. If they are unequal, then increasing returns to scale exist for that DMU. 

If they are equal. then decreasing RTS apply.  

 
Table 6.4. DEA VRS frontier per Industry and country 

 
Electrical - Οptical 

 Frontier (-1:drs) (0:crs) (1:irs)   
               CRS_TE VRS_TE NIRS_TE SCALE RTS 
 France  0.951 0.955 0.971 0.995 0.846 

Germany  0.953 0.961 0.964 0.992 0.923 

 Italy  0.923 0.929 0.939 0.993 1.000 

Netherlands  0.930 0.934 0.962 0.996 0.884 

Spain  0.918 0.934 0.954 0.982 1.000 

United Kingdom  0.917 0.927 0.941 0.989 0.884 

Food - Beverages 

 Frontier (-1:drs) (0:crs) (1:irs)   

               CRS_TE VRS_TE NIRS_TE SCALE RTS 

 France  0.965 0.973 0.981 0.991761 -0.69231 

Germany  0.977 0.980 0.987 0.997149 -0.76923 

 Italy  0.958 0.965 0.974 0.992824 -0.61538 

Netherlands  0.949 0.953 0.962 0.995598 -0.61538 

Spain  0.955 0.966 0.985 0.987814 -0.53846 

United Kingdom  0.956 0.966 0.982 0.989826 -0.65385 

Manufacturing nec 

 Frontier (-1:drs) (0:crs) (1:irs)   

               CRS_TE VRS_TE NIRS_TE SCALE RTS 

 France  0.931 0.938 0.952 0.993 0.538 

Germany  0.953 0.972 0.978 0.980 0.423 

 Italy  0.932 0.935 0.955 0.996 1.000 

Netherlands  0.958 0.968 0.981 0.990 0.462 

Spain  0.932 0.951 0.955 0.981 0.269 

United Kingdom  0.954 0.964 0.967 0.990 0.962 

 
 

Paper 
 Frontier (-1:drs) (0:crs) (1:irs)   

               CRS_TE VRS_TE NIRS_TE SCALE RTS 

 France  0.982 0.986 0.989 0.996 0.462 
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Germany  0.963 0.972 0.978 0.991 0.654 

 Italy  0.953 0.958 0.967 0.995 1.000 

Netherlands  0.967 0.970 0.975 0.997 0.615 

Spain  0.961 0.976 0.976 0.985 0.192 

United Kingdom  0.963 0.968 0.980 0.995 1.000 

Chemicals 

 Frontier (-1:drs) (0:crs) (1:irs)   

               CRS_TE VRS_TE NIRS_TE SCALE RTS 

 France  0.963 0.965 0.971 0.998 0.731 

Germany  0.978 0.979 0.986 0.999 0.885 

 Italy  0.961 0.963 0.968 0.998 0.846 

Netherlands  0.973 0.976 0.979 0.997 0.731 

Spain  0.956 0.969 0.980 0.987 0.923 

United Kingdom  0.948 0.953 0.966 0.994 0.962 

Rubber - Plastics 

 Frontier (-1:drs) (0:crs) (1:irs)   

               CRS_TE VRS_TE NIRS_TE SCALE RTS 

 France  0.895 0.901 0.906 0.993 0.846 

Germany  0.938 0.941 0.949 0.997 0.962 

 Italy  0.933 0.935 0.943 0.998 0.808 

Netherlands  0.943 0.946 0.962 0.997 0.962 

Spain  0.936 0.944 0.970 0.992 0.692 

United Kingdom  0.915 0.921 0.933 0.993 0.654 

Non-metallic 

 Frontier (-1:drs) (0:crs) (1:irs)   

               CRS_TE VRS_TE NIRS_TE SCALE RTS 

 France  0.974 0.978 0.979 0.996 -0.038 

Germany  0.966 0.970 0.969 0.995 0.423 

 Italy  0.965 0.973 0.974 0.991 0.000 

Netherlands  0.968 0.973 0.975 0.995 0.462 

Spain  0.958 0.967 0.965 0.991 0.385 

United Kingdom  0.963 0.970 0.972 0.993 -0.231 

Metals 

 Frontier (-1:drs) (0:crs) (1:irs)   

               CRS_TE VRS_TE NIRS_TE SCALE RTS 

 France  0.974 0.978 0.979 0.996 -0.038 

Germany  0.966 0.970 0.969 0.995 0.423 

 Italy  0.965 0.973 0.974 0.991 0.000 

Netherlands  0.968 0.973 0.975 0.995 0.462 

Spain  0.958 0.967 0.965 0.991 0.385 

United Kingdom  0.963 0.970 0.972 0.993 -0.231 

 
 

Machinery 
 Frontier (-1:drs) (0:crs) (1:irs)   

               CRS_TE VRS_TE NIRS_TE SCALE RTS 

 France  0.933 0.934 0.937 0.999 0.769 
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Germany  0.965 0.969 0.972 0.997 0.808 

 Italy  0.949 0.954 0.957 0.995 0.962 

Netherlands  0.961 0.974 0.976 0.986 0.846 

Spain  0.957 0.975 0.970 0.982 0.462 

United Kingdom  0.962 0.964 0.968 0.998 0.462 

Transport equipment 

 Frontier (-1:drs) (0:crs) (1:irs)   

               CRS_TE VRS_TE NIRS_TE SCALE RTS 

 France  0.944 0.948 0.964 0.995 0.731 

Germany  0.965 0.969 0.986 0.995 0.923 

 Italy  0.956 0.959 0.969 0.996 0.615 

Netherlands  0.953 0.957 0.963 0.996 0.885 

Spain  0.933 0.948 0.960 0.985 0.962 

United Kingdom  0.938 0.952 0.971 0.985 0.962 

 
Source: Own estimation 
 
 

It is clear that all the manufacturing industries operate in increasing returns to scale with 

the electrical – optical industry presenting the higher increasing returns to scale rate. 

However, the causes for the technical inefficiency levels can be identified and estimated by 

the slack variables obtained, presenting also potential improvement in capital and labour 

production functions.   

 

Consequently, according to the analysis of DEA slacks in chapter 2.3,  the following table 

(6.5) illustrates the input slacks for each industry in each country, as well as the input 

slacks evolution over time. The slack variables of inefficient industries are not equal to 

zero, so the result of slack analysis can be adopted to improve the input or output items. In 

DEA. non-zero input and output slacks are very likely to present after the radial efficiency 

score improvement.  

Often, these non-zero slack values represent a substantial amount of inefficiency. 

Therefore, in order to fully measure the inefficiency in industry’s performance. it is very 

important to also consider the inefficiency represented by the non-zero slacks in the 

context-dependent DEA (Hiroshi Morita. Koichiro Hirokawa and Joe Zhu. 2005).  
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The number of resources reduced is the value of slack variable in the input construct. 

suggesting aspects in which efficiency of a producer can be improved in terms of resource 

input119. 

 

Table: 6.5. Average slacks 

 
Industry Slacks France Germany Italy Netherlands Spain United 

Kingdom 
Electrical - 
Οptical 

Capital  
    0.133       0.059 

       
0.057        0.155 0.073     0.058 

 Labour  0.008 0.032 0.019 0.018 0.064 0.055 
Food - 
Beverages 

Capital  
0.122 0.042 0.134 0.087 0.186 0.155 

 Labour  0.000 0.000 0.000 0.000 0.009 0.012 
Textiles Capital  0.045 0.016 0.072 0.073 0.067 0.129 
 Labour  0.000 0.000 0.000 0.000 0.000 0.000 
Manufacturing 
nec 

Capital  
0.136 0.050 0.173 0.172 0.143 0.056 

 Labour  0.000 0.000 0.000 0.025 0.077 0.024 
Wood Capital  0.098 0.030 0.125 0.031 0.160 0.088 
 Labour  0.000 0.000 0.000 0.000 0.000 0.000 
Paper Capital  0.037 0.026 0.089 0.049 0.037 0.091 
 Labour  0.000 0.010 0.000 0.000 0.001 0.000 
Chemicals Capital  0.031 0.014 0.007 0.010 0.080 0.045 
 Labour  0.001 0.031 0.026 0.004 0.038 0.057 
Rubber - 
Plastics 

Capital  
0.009 0.000 0.001 0.000 0.022 0.001 

 Labour  0.073 0.024 0.029 0.039 0.119 0.089 
Non-metallic Capital  0.006 0.002 0.012 0.000 0.001 0.011 
 Labour  0.000 0.000 0.000 0.000 0.000 0.000 
Metals Capital  0.034 0.040 0.084 0.096 0.114 0.121 
 Labour  0.000 0.000 0.004 0.000 0.018 0.021 
Machinery Capital  0.065 0.007 0.042 0.089 0.011 0.054 
 Labour  0.000 0.004 0.018 0.000 0.010 0.000 
Transport Capital  0.138 0.189 0.094 0.063 0.164 0.156 
 Labour  0.002 0.004 0.002 0.002 0.048 0.064 
 
Source: Own estimation 
 
The slack estimation results show that electrical and Optical industry presents significantly 

high capital and labor slacks, showing that there are major technical efficiency 

improvement prospects. Food – Beverages industry presents also significantly high capital 

slacks; whereas the labor slacks are more limited. Slacks are also present in technical 

progress, showing that there are major technical efficiency improvement prospects. 

Manufacturing nec industry presents also significantly high capital slacks; whereas the 

labor slacks are more limited. Slacks are also present in technical progress, showing that 

there are major technical efficiency improvement prospects. 

                                                 
119 For inefficient DMUs, specific suggestions can be provided, so that the composition of input and output 

items can be properly adjusted to achieve higher efficiency. 
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Textiles industry presents also significantly high capital slacks; whereas the labor slacks 

are limited. Slacks are also present in technical progress, showing also an increasing trend. 

Similarly, wood industry presents also significantly high capital slacks; whereas the labor 

slacks are limited. Slacks are also present in technical progress, showing also an increasing 

trend. Paper industry presents also significantly high capital slacks; whereas the labor and 

technical progress slacks are limited.  

 
 
Chemicals industry presents also significantly high capital and labor slacks; whereas the 

technical progress slacks are more limited. increasing only to the last years in analysis, 

2000 – 2004. Rubber – Plastics industry presents also significantly high labor slacks; 

whereas it also experienced an increase in capital and technical change slacks. Non-

metallic industry presents also significantly high capital and technical progress slacks; 

whereas the labor slacks are more limited. Slacks present in capital and technical progress 

show that there are major technical efficiency improvement prospects. 

 
As in non-metallic industry, metals industry presents also significantly high capital and 

technical progress slacks; whereas the labor slacks are more limited. Slacks present in 

capital and technical progress show that there are major technical efficiency improvement 

prospects. Machinery industry presents also significantly high capital slacks. Labor and 

technical progress slacks were limited; however, they increased in the last years in 

analysis, 2000 – 2004, showing that there are major technical efficiency improvement 

prospects. Transport equipment industry presents high slacks in capital, labor and technical 

progress, showing that there are major technical efficiency improvement prospects. 

 
As far as the relative efficiency per industry is concerned, we concluded that industries 

such as Food – Beverages, Textiles, Paper, Chemicals and non metallic products 

experience the highest efficiency levels among the manufacturing industries in our sample. 

Even though the picture changes for each industry, however, Germany is experiencing the 

highest level of technical efficiency among the other countries, followed by the 

Netherlands. We also found that all the manufacturing industries operate in increasing 

returns to scale with the electrical – optical industry presenting the higher increasing 

returns to scale rate. Manufacturing nec industry presents also significantly high capital 

slacks; whereas the labor slacks are more limited.  
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Regarding frontier and data envelopment data methods, in summary, it does appear that the 

overall picture drawn by DEA and stochastic frontier techniques are quite different120.  The 

results derived from DEA application are different with those regarding stochastic frontier 

analysis. Taking into consideration that we followed the same approach for both methods, 

namely we estimated technical inefficiency levels per industry and per country, 

incorporating the same data set, with the same assumptions and hypotheses, our results are 

considered comparable. Even though the results are different, the comparison between the 

results derived from Stochastic Frontier Approach and Data Envelopment Analysis is quite 

important since it provides a cross-check of our model and our empirical application and it 

also creates a safety span for the robustness of our obtained results.    

  

Comparing the outcomes of the two different approaches (between parametric and non-

parametric method) for the period 1980 – 2005, regarding the efficiency progress, within 

an output-oriented stochastic function, there are different outcomes regarding the 

estimation of the technical efficiency values.  

 

To begin with, as far as the DEA results are concerned, regarding relative efficiency per 

industry, we concluded that industries such as Food – Beverages, Textiles, Paper, 

Chemicals and non metallic products experience the highest efficiency levels among the 

manufacturing industries in our sample. Even though the picture changes for each industry, 

however, Germany is experiencing the highest level of technical efficiency among the 

other countries, followed by the Netherlands. We also found that all the manufacturing 

industries operate in increasing returns to scale with the electrical – optical industry 

presenting the higher increasing returns to scale rate. Manufacturing nec industry presents 

also significantly high capital slacks; whereas the labor slacks are more limited.  

 

The slack estimation results show that electrical and Optical industry presents significantly 

high capital and labor slacks, showing that there are major technical efficiency 

improvement prospects. Food – Beverages industry presents also significantly high capital 

slacks; whereas the labor slacks are more limited. Slacks are also present in technical 

progress, showing that there are major technical efficiency improvement prospects. 

                                                 
120 This topic has been broadly examined in: Kokkinou A. (2011b) Technical Efficiency through Stochastic 

Frontiers: an Analysis of Manufacturing Sector in E.U., 5th Biennial Hellenic Observatory PhD Symposium, 

LSE, London. 
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Manufacturing nec industry presents also significantly high capital slacks; whereas the 

labor slacks are more limited. Slacks are also present in technical progress, showing that 

there are major technical efficiency improvement prospects. 

 

Textiles industry presents also significantly high capital slacks; whereas the labor slacks 

are limited. Slacks are also present in technical progress, showing also an increasing trend. 

Similarly, wood industry presents also significantly high capital slacks; whereas the labor 

slacks are limited. Slacks are also present in technical progress, showing also an increasing 

trend. Paper industry presents also significantly high capital slacks; whereas the labor and 

technical progress slacks are limited.  

 
 
Chemicals industry presents also significantly high capital and labor slacks; whereas the 

technical progress slacks are more limited. increasing only to the last years in analysis, 

2000 – 2004. Rubber – Plastics industry presents also significantly high labor slacks; 

whereas it also experienced an increase in capital and technical change slacks. Non-

metallic industry presents also significantly high capital and technical progress slacks; 

whereas the labor slacks are more limited. Slacks present in capital and technical progress 

show that there are major technical efficiency improvement prospects. 

 
As in non-metallic industry, metals industry presents also significantly high capital and 

technical progress slacks; whereas the labor slacks are more limited. Slacks present in 

capital and technical progress show that there are major technical efficiency improvement 

prospects. Machinery industry presents also significantly high capital slacks. Labor and 

technical progress slacks were limited; however, they increased in the last years in 

analysis, 2000 – 2004, showing that there are major technical efficiency improvement 

prospects. Transport equipment industry presents high slacks in capital, labor and technical 

progress, showing that there are major technical efficiency improvement prospects. 

 

As far as the SFA results are concerned, it is apparent that in every one of the different 

model specifications (Models [2] – [4]), which include specific efficiency determining 

variables, these variables are statistically significant and have a statistically significant 

effect on efficiency with the expected sign, e.g. inefficiency is decreasing, as the variable 

input is increasing.  

 
However, as far as the two best working models in SFA are concerned, in Model [1], on 

average, Germany, France, and Netherlands are the best performer countries, since they 
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have the lowest average inefficiency levels, whereas Italy, Spain and United Kingdom 

seem to be the worst performer countries, since they have the highest levels of inefficiency. 

As far as the industry inefficiency is concerned, the best performing industries, on average, 

are the non- metallic, the chemicals and textiles industries, whereas, the worst performing 

industries are those of wood, electrical/optical and metals. Among the best performing 

industries are the industries of paper in France, Metals in France and Transport Equipment 

in Germany. On the other hand, the worst performing industries are those of wood in 

Germany and Netherlands, as well as metals industry in Italy and Netherlands.       

 
In Model [5], on average, Italy, Spain are the best performing countries, since they have 

the lowest average inefficiency levels, whereas Germany seems to be the worst performer 

country, since it has the highest levels of inefficiency. As far as the industry inefficiency is 

concerned, the best performing industries, on average, are the non- metallic and chemicals 

industries, whereas, the worst performing industries are those of manufacturing nec and 

rubber/plastics. In more detail, the industries with the lowest inefficiency levels are 

rubber/plastics in France and Italy, as well as the manufacturing nec industry in United 

Kingdom. As far as the industries with the highest inefficiency levels are concerned, these 

are the metals industry in United Kingdom and manufacturing nec in France. 

 
 
From the models analysis, it becomes apparent that ICT investment variable has a 

significant impact on technical efficiency in the model specification in which it is included. 

This becomes rather apparent, for example in model (3), in which ICT is introduced as the 

only technical efficiency determining factor. Economy openness has also an important 

impact on technical efficiency in the models in which it is included as a technical 

efficiency certain industries and certain countries. The results indicate that inefficiency was 

present in production and the relevant technical efficiency determining variables contribute 

to it. From our model analysis, it is evident that the manufacturing industries in our 

research sample are not fully efficient. The inefficiency observed is endogenous to the firm 

since the technical inefficiency is largely associated with the firms’ choice of ICT 

investments and openness achievement. ICT investment and economy openness have been 

modelled as productive inputs and as variables which affect efficiency. This research found 

that the ICT investment and economy openness are both positively associated with 

technical efficiency in European Union manufacturing.  

 

On the other hand, the common results produced are that technical efficiency changes over 

time (time-varying technical efficiency) and that the estimated parameter γ is close to (1), 
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and it is statistical significant, showing the existence of technical efficiency. However, 

similar results are produced regarding scale efficiency and returns to scale.  

 

However, both sets of results have common conclusions regarding policy implications and 

institutional context towards the technical efficiency obtained results. As it has been 

asserted above, globalization and worldwide competition has shifted the comparative 

advantage of corporations and economies towards the factor of knowledge and innovation, 

where entrepreneurship based on the endogenous development capabilities plays a rather 

important role, as far as the growth, productivity and competitiveness enhancement are 

concerned.  

 

In order to promote innovation activities and technological opportunities entrepreneurship 

enhancement seems to have a significant importance not only to business success, but also 

to the long run performance of the economy as a whole. Under this perspective, growth 

policies should focus on creating favorable environment for the co-operation between 

firms and institutions that support the development and exploitation of knowledge and 

innovation.  

 

Furthermore, policies should promote the entrepreneurial relations between firms and 

institutions, fostering the development and dissemination of the expertise, the mobility of 

human and physical capital and the enhancement of the relationships between business and 

research entities. Specifically, they should encourage actions such as, promoting 

innovation, technology transfer and interactions between firms and higher education and 

research institutes, networking and industrial co-operation and support for research and 

technology supply infrastructure.  

 

As it has already been mentioned, innovation and technology is an important source of 

regional competitiveness through facilitating cooperation between the various parties 

involved in both the public and private sectors. In particular, they can improve collective 

processes of learning and the creation, transfer and diffusion of knowledge and transfer, 

which are critical for innovation. Such cooperation and the networks that are formed help 

to translate knowledge into economic opportunity, while at the same time building the 

relationships between people and organizations which can act as a catalyst for innovation. 

Such actions should extend to all the policy areas relevant for economic, scientific and 

social development and should ideally establish a long-term policy horizon. This, however, 

needs to happen not just in central parts where productivity and employment are highest 
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and innovative capacity most developed but throughout the Union. Countries and regions 

need assistance in overcoming their structural deficiencies and in developing their 

comparative advantages. This means, among others, that encouraging the development of 

knowledge-based economic activities and innovation and that particular attention needs to 

be given to: 

 

1. developing new innovation promotion policies which focus much more on the 

provision of collective business and technology services to groups of firms which can 

affect their innovative behaviour, rather than direct grants to individual firms which 

tend only to reduce costs temporarily. 

 

2. developing new policies to strengthen the capacity of SMEs to innovate through 

business networks and clusters and improving their links with the knowledge base, 

including with universities and research centres. 

 

3. encouraging the development of the indigenous R&D potential of weaker regions and 

their capacity to adapt technological advances made elsewhere to local circumstances 

and needs. 

 

4. facilitating access of researchers, businesses and others in less favoured regions to 

international networks of excellence, sources of new technology and potential R&D 

partners. 

 

These conditions are largely related to economic competitiveness and include, among 

others, the capacity of a regional economy to generate, diffuse and utilize knowledge and 

so maintain an effective regional innovation system. Furthermore, policies should promote 

the entrepreneurial relations between firms and institutions, fostering the development and 

dissemination of the expertise, the mobility of human and physical capital and the 

enhancement of the relationships between business and research entities. Specifically, they 

should encourage actions such as, promoting innovation, technology transfer and 

interactions between firms and higher education and research institutes, networking and 

industrial co-operation and support for research and technology supply infrastructure. Such 

cooperation and the networks that are formed help to translate knowledge into economic 

opportunity, while at the same time building the relationships between people and 

organizations which can act as a catalyst for innovation. Such actions should extend to all 
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the policy areas relevant for economic, scientific and social development and should 

ideally establish a long-term policy horizon.  

 

Under this perspective, growth policies should focus on creating favorable environment for 

the co-operation between firms and institutions that support the development and 

exploitation of knowledge and innovation. Furthermore, policies should promote the 

entrepreneurial relations between firms and institutions, fostering the development and 

dissemination of the expertise, the mobility of human and physical capital and the 

enhancement of the relationships between business and research entities. Specifically, they 

should encourage actions such as, promoting innovation, technology transfer and 

interactions between firms and higher education and research institutes, networking and 

industrial co-operation and support for research and technology supply infrastructure. 

These conditions are largely related to economic competitiveness and include, among 

others, the capacity of a regional economy to generate, diffuse and utilize knowledge and 

so maintain an effective regional innovation system, contributing into a sustainable 

economic growth path. 

 

However, the main concern of an industry or country in its innovation policy should be to 

have the optimal combination of business activities in various stages of the innovation 

cycle. Countries, industries, or firms concerned primarily with activities of the innovation 

takeoff stage may find themselves lacking sufficient economic resources to exploit these 

activities through improvement-related innovations. Countries, industries, or firms 

dominated by activities of the maturation stage, such as limitation and improvement of 

given technologies, incremental innovation, diversification of products, exploitation of 

scale economy, extension of vertical integration, and automation of production processes, 

will lose their advantage with respect to dynamic efficiency and experience stagnation 

(Haustein, et al., 1981). Without knowing the needs of and possibilities offered by the 

economic environment, one cannot understand the mechanism of technological change 

towards productivity enhancement. A crucial task to improve innovation policy at the 

national and industrial levels is to provide information about fields of innovation, which 

are dependent on factors which fall into three categories: 

 

1. Urgency of demand for the innovation 

2. Existence of scientific and technological advancements 

3. Existence of a socio-economic environment which allows productive efficiency 

enhancement through scientific and technological feasibilities 
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Successful producers will probably be those able to respond effectively in these fields. 

Once the right direction is chosen, success depends on managing the factors that influence 

innovative activities towards efficiency enhancement. 

 

6.3. Concluding remarks 

Contrary to the Stochastic Frontier Analysis approach (SFA), which requires a functional 

form to estimate the frontier production function and is based on the idea that the data is 

contaminated with measurement errors and noise (Bauer. 1990), Data Envelopment 

Analysis (DEA) approach uses linear programming techniques and cannot discriminate 

between inefficiency and noise. Thus, it tends to produce overestimated inefficiency 

measures, a fact which is the most important disadvantage of DEA in comparison to SFA 

(Bauer. 1990). This chapter proposes a slack-based DEA which allows a full evaluation of 

inefficiency in an industry’s performance. The model estimated in this chapter is a DEA 

variant called slack-based measure, which is able to deal directly with the input excesses 

and the output shortfalls of the industry under evaluation (Tone, 2001). Estimated slacks 

are invariant to the units of measurement and are monotone decreasing with respect to each 

input and output slack. By using slack-based efficiency measure, we obtain different 

frontier levels and more appropriate performance benchmarks for inefficient industries. 

The production assumptions in DEA are that all actual observed inputs and outputs of any 

industries are feasible for all industries, as are linear combinations of observed inputs and 

outputs.  

 

The nonparametric approach relies on a production frontier which is defined as the 

geometrical locus of optimal production plans (Simar and Wilson, 1998). The individual 

efficiencies of the firms relative to this production frontier are calculated by means of 

distance functions employing DEA and involving the use of linear programming methods 

to construct a piecewise linear surface or frontier over the data and measures the efficiency 

for a given unit relative to the boundary of the convex hull of the input-output vectors. 

 

Comparing the outcomes of the two different approaches (between parametric and non-

parametric method) for the period 1980 – 2005, regarding the efficiency progress, within 

an output-oriented stochastic function, there are different outcomes regarding the 

estimation of the technical efficiency values. On the other hand, the common results 
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produced are that technical efficiency changes over time (time-varying technical 

efficiency) and that the estimated parameter γ is close to (1), and it is statistical significant, 

showing the existence of technical efficiency. However, similar results are produced 

regarding scale efficiency and returns to scale.  

 

However, there is an on-going debate among researchers about the applicability and 

usefulness of the DEA approach vs. the stochastic frontier approach. Data Envelopment 

Analysis (DEA) methodology offers major advantages, since the non-parametric nature of 

the technique avoids the need to specify beforehand any particular functional form for the 

technology. Furthermore, this approach does not require any assumption about market 

structure or about the absence of market imperfections. Unlike stochastic production 

frontier, however, it does not require imposing any particular functional form of the 

production frontier on the data, and it is able to analyse both single and multiple outputs.  

The data required for a DEA analysis are the same types of data required for SFA. With 

DEA, however, multiple output technologies may be examined more easily. There is no 

need to aggregate outputs, and producer-specific capacity measures are possible. Like the 

SPF approach, multiple inputs can also be incorporated in the analysis if available (Färe, 

Grosskopf and Kirkley, 2000). 

A recognized limitation of using the DEA to assess technical efficiency is that 

recommendations for decreasing input usage or expanding output levels are in terms of 

scalar valued ratios which are held constant (i.e., recommendations are in terms of fixed 

proportions). This limitation, however, is partially mitigated by considering changes in 

terms of slack variables. In this case, it is possible to determine decreases in inputs or 

increases in outputs relative to the slack variables; changes are not restricted to constancy 

of the input or output mixes. Another option to avoid the problem of constant mix ratios is 

to consider either an economic cost approach or an economic revenue approach. With the 

economic DEA approaches, prices on inputs or on outputs are all that are required. 

Changes to achieve technically and allocatively efficient levels are determined and are not 

restricted to constant input or output mixes.  
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Chapter 7 
 

Conclusions and Policy Implications 
 

Abstract 

The issue of estimating technical efficiency in industrial and national level is thought to be of particular 

research interest because empirical evidence shows that even though European Union industries are widely 

analyzed with respect to performance, yet little attention has been paid to the estimation of technical 

efficiency. The basic aim of this thesis is the estimation of industrial technical efficiency and benchmark 

industries regarding technical efficiency attainment levels. Our research is focused on manufacturing 

industries in selected European Union countries, since they constitute one of the major productive units in 

European economy,. in terms of value added. The methods employed are the Stochastic Frontier Analysis 

and the Data Envelopment Analysis, in order to compare the estimated results under alternative theoretical 

hypotheses and conclude to safe results as well as the estimation of technical efficiency and the allocation of 

technical efficiency in national and industrial level is concerned.  

 

Our analysis considered a European Union perspective efficiency analysis to derive broader conclusions 

about European Union productive performance within selected countries. Our analysis is based on estimating 

efficiencies as industry - specific fixed - effects at industry level of selected member – states within European 

Union. during 1980 – 2005, employing the econometric software program LIMDEP 9.0 and STATA 10.0.  

The European member – states selected to be included in the model are Germany, France, United Kingdom, 

Denmark, Finland, Netherlands, Italy and Spain), in order to create a data set including both countries with 

strong industrial productive base, such as United Kingdom, Germany and France, as well as countries with 

low industrial productive base, such as Spain. Based on the obtained results, the concluding chapter 7 

introduces comparative results, leading to improvements in efficiency estimation. The chapter assesses the 

significance of the obtained results and the possible channels of impact and it concludes the thesis, 

highlighting the main findings and stating their academic significance and their policy implications. Finally, 

chapter 7 addresses implications and contributions for academics, practitioners and public policy. A 

presentation of the study's limitations and suggestions for further research closes the chapter.  

 

This thesis tried to fill a gap in the economic literature by exploring and studying various dimensions of the 

interaction between technical change and innovation and links to efficiency growth. In particular, this thesis 

explored whether the interactions between these factors have any implications for efficiency growth, and 

whether there are any complementarities between them and fostering technical efficiency growth, providing 

the industry -level estimates of technical efficiency using the time-varying inefficiency translog model. 

Further, factors that determine variations technical efficiency are established and a comparison of technical 

efficiency is made, both before and after accounting for different explanatory variables in the inefficiency 

term, presenting a range of different stochastic model approaches based on alternative hypotheses. discussing 

and comparing them in detail.  
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7.1. Concluding remarks 
 

Explaining the course of technical efficiency and determining factors which might affect it, 

have been for a long time, and continue to be, one of the most important topics of 

economic literature. The work of Farell (1957) first attempted to answer questions about 

the sources of differences in technical efficiency across producers and after six decades, 

this enquiry into the sources of differences in efficiency levels across industries. or over 

time within the same industry, is still as important as used to be. In response to this most 

important question, and with the increase in data availability, economic literature has 

shown a resurgence of interest in testing and quantifying various theories of economic 

growth and explaining technical efficiency growth.  

 

This dissertation considers a European perspective within efficiency analysis to increase 

the information base and derive broader conclusions about European performances. A 

framework more reliant upon efficiency has become an important policy objective in all 

European countries to promote efficiency. effectiveness and competitiveness121. We have 

shown that upon this background efficiency analysis plays an important role for the 

determination of technical efficiency. The aim is to investigate various aspects of the 

relationship between ICT investment. innovation activities and economy openness in an 

attempt to reach a better understanding of the contribution of these determining factors to 

technical efficiency growth. empirically examining the implication of the interrelationship 

and the complementarities between them and their contribution to technical efficiency. 

 

The basic aim of this thesis is the estimation of industrial technical efficiency and 

benchmark industries regarding technical efficiency attainment levels. The related 

challenge is to define robust and reliable models for empirical implementation. confronting 

with the academic diversity of approaches and definimg the most adequate and reliable 

methods to put into practice. Within this framework, we summarized and applied 

                                                 
121 The topic of regional innovation and productivity differences has been broadly examined in: Kokkinou A. 

(2010d) Innovation Convergence And Regional Development: Goal Or Reality?, The Cyprus Journal of 

Sciences, Vol. 8, 2010/pp. 89 – 104 and in: Kokkinou, A. and Korres, G. (2010) Innovation and Convergence 

Process: An empirical benchmarking analysis of European regions, European Network on Industrial Policy 

International Conference (EUNIP), 2010, Spain. 
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deterministic nonparametric approach like the Data Envelopment Analysis (DEA), as well 

as stochastic frontier methods (SFA).   

 

Our research is focused on manufacturing industries in selected European Union countries. 

since they constitute one of the major productive units in European economy, in terms of 

value added. The methods employed are the Stochastic Frontier Analysis and the Data 

Envelopment Analysis, in order to compare the estimated results under alternative 

theoretical hypotheses and conclude to safe results as well as the estimation of technical 

efficiency and the allocation of technical efficiency in national and industrial level is 

concerned.  

 

This thesis analyzes the technical efficiency performance of manufacturing industries in a 

selected sample of European Union countries. The purpose is to study these countries’ and 

these industries’ technical efficiency evolution in an effort to determine the potential 

determinants, in order to increase the technical efficiency information base and derive 

broader conclusions about European Union manufacturing industries performance. This 

thesis attempts to answer questions about the sources of differences in technical efficiency 

across the selected countries and industries, as well as the sources of differences in 

efficiency levels over time. The aim of this thesis is to investigate various aspects of the 

relationship between technical efficiency determining factors in an attempt to reach an 

understanding of the contribution of these factors to technical efficiency growth. In 

particular, this thesis empirically examines the implication of the interrelationship and the 

complementarities between these factors and estimates their contribution to technical 

efficiency. This thesis aimed to show that efficiency analysis plays an important role for 

the determination of technical efficiency and productivity and that a framework more 

reliant upon efficiency has become an important policy objective in all European countries 

to promote efficiency, effectiveness and competitiveness.  

 

This issue is of particular importance because empirical evidence shows mainly that 

European Union countries are widely analyzed with respect to productivity. yet little focus 

has been put on efficiency analysis. Explaining the course of technical efficiency and 

determining factors which might affect it, have been for a long time, and continue to be, 

one of the most important topics of economic literature. However, this thesis does not 

claim to identify any single “best practice” for academic benchmarking. Mainly, the 

challenge is to define a robust and reliable model for empirical implementation. Within this 

framework, this thesis summarizes and applies alternative deterministic nonparametric 
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approaches like the Data Envelopment Analysis (DEA), as well as stochastic approaches, 

like the Stochastic Frontier Analysis (SFA).  

 

More specifically, our analysis considered a European Union perspective efficiency 

analysis to derive broader conclusions about European Union productive performance 

within selected countries. Our analysis is based on estimating efficiencies as industry - 

specific fixed - effects at industry level of selected member- states within European Union, 

during 1980 – 2005, employing the econometric software program LIMDEP 9.0 and 

STATA 10.0.  The European member-states selected to be included in the model are 

Germany, France, United Kingdom, Denmark, Finland, Netherlands, Italy and Spain. in 

order to create a data set including both countries with strong industrial productive base, 

such as United Kingdom, Germany and France, as well as countries with low industrial 

productive base, such as Spain. 

 

Our main research hypothesis is that stochastic frontier analysis assumes that industries 

operate under the same production technology and that the inefficiency distribution across 

individuals and time are homogeneous. For that reason, there is no distinction between 

unobserved individual heterogeneity and inefficiency, which therefore forces time-

invariant individual heterogeneity into the estimated inefficiency. Hence, the industries 

only differ by the random noise term. However, modern stochastic frontier models 

(Batesse and Coelli. 1992, 1995) incorporate heterogeneity proposing the distinction 

between heterogeneity in the production model and heterogeneity in the inefficiency 

model. Provided the inefficiency effects are stochastic, our model permitted the estimation 

of both technical change in the stochastic frontier and time-varying technical inefficiencies 

(Battese and Coelli. 1992, 1995). We also extended the original specification of the models 

by Batesse and Coelli (1992, 1995) to include a wide array of assumptions and 

specifications, including panel data analysis and modeling technical inefficiency as time 

variant. We attempted to identify and examine the application of stochastic frontier models 

in obtaining measures of efficiency that enable a comparison of performance across 

manufacturing industries in European Union member states, explaining the determining 

factors due to which, in the same country, some industries achieve superior efficiency 

performance. Then, the main task was to relate efficiency to a number of determining 

factors and measure the extent to which they contribute to efficiency level. 
 

This thesis also examined and applied Data Envelopment Analysis (DEA) as a 

nonparametric approach and Stochastic Frontier Analysis (SFA) as a parametric 

framework. The nonparametric method of Data Envelopment Analysis has been included 

mostly as a robustness check, determining the reference technology by means of linear 
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programming methods whereas the parametric method of Stochastic Frontier Analysis 

assumes a functional relationship for the production process and determines the reference 

technology based on econometric methods.  

 

The thesis empirically examined the implication of the interrelationship and the 

complementarities between value added. Capital, labour and technical change and the 

contribution of additional determining factors to technical efficiency and attempted to 

highlight the characteristics of alternative models specification and suggested a concrete 

method to estimate technical efficiency in national and industrial level. 

 

Within this framework, the theoretical part of the study dealt with stochastic parametric 

frontier methodology and the applied part of the study focused on examining the impact of 

the efficiency in different industries and industries. More specifically, this thesis examined 

whether the interactions between technical progress. ICT investment and economy 

openness, namely the process of the integration into the world economy, had any 

implications for technical efficiency, reviewing two of the main heterogeneity determining 

factors. namely innovation investments (as a proxy of knowledge creation) and economy 

openness (as a proxy of knowledge dissemination). 

 

7.2. Results 

 

In empirical application, this thesis contributed with an inter – industry and inter – country 

approach to estimate production inefficiency using the Battese and Coelli (1992, 1995) 

model, which allows technical inefficiency to vary over time, and allows inefficiency to 

depend on a set of covariates and explore the effects of innovation – related investment on 

production, allowing for simultaneous estimation of the parameters of the stochastic 

frontier and the inefficiency model using the one – step, maximum – likelihood estimation 

method. More specifically, the empirical application of the thesis estimated the 

Transcendental Logarithmic Production Function of manufacturing industries in these 

selected European Union member – states,  considering a panel data model for inefficiency 

effects in stochastic production frontiers based on the Battese and Coelli (1992, 1995) 

models, providing translog effects. as well as industry effects. 
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The depended variable of our empirical analysis is the natural logarithm of the product 

(lnva), namely, value added. The independent variables are set to be the labour and capital 

services, along with time, denoting technical progress. 

 

To confirm the presence of inefficiencies or inefficiency component in the model, we also 

report the results of γ. The results indicate that the vast majority of the residual variation is 

due to inefficiency effect (ui) and that the random error, vi. is approximately zero. That is 

the estimated γ is significantly different from zero, suggesting that the technical 

inefficiency equation plays an important role in the estimation of the production frontier.  

 

The results show that based on the likelihood – ratio (LR) test, the stochastic frontier is 

statistically different from the OLS estimation. That is the estimated γ is significantly 

different from zero, suggesting that the auxiliary equation (the technical inefficiency 

equation) plays an important role in the estimation of the production frontier. Moreover, 

Kernel Density Estimates present the estimated mean inefficiencies for each one of the 

estimated models, illustrating the form of the distribution of the estimated efficiency of the 

models. The distribution of productive efficiency is centered implying that most industries 

are clustered close to the mean. The reason for the peak in the distribution at the maximum 

level is from the hypothesis that at least one producer in each industry is fully efficient. 

Symmetry, as well as skeweness of the distribution of productive efficiency largely 

coincides with the normal distribution.   

 

First, it is specified the technical efficiency in terms of purely exogenous factor (time 

trend) and exogenous economic technology shifter factors. Second, we use panel data 

methodology and flexible functional form in which we control for effects on technical 

efficiency. In addition, technical efficiency is modeled via exogenous factors and the 

production function specification is enriched by the introduction of non-traditional 

production factor inputs. These determining factors are investment in information and 

communication technology. economic openness, Research and Development stock and 

capital intensity. 

 

This chapter provides the industry-level estimates of technical efficiency using alternative 

model specifications under time-invariant and time-varying efficiency assumption. Further, 

factors that determine variations technical efficiency are established and a comparison of 
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technical efficiency is made, both before and after accounting for different explanatory 

variables in the inefficiency term.  

 

 The empirical analysis presents a range of different stochastic model approaches based on 

alternative hypotheses, discussing and comparing them in detail. First, this chapter applies 

a stochastic translog production function to examine the underlying causes of technical 

inefficiency for 13 manufacturing industries in European Union over the period 1980 – 

2005. The results indicate that inefficiency was present in production and the relevant 

technical efficiency determining variables contribute to it. From our model analysis, it is 

evident that the manufacturing industries in our research sample are not fully efficient. The 

inefficiency observed is endogenous to the firm since the technical inefficiency is largely 

associated with the firms’ choice of ICT investments and openness achievement. Even 

though there is a notable improvement in technical efficiency after accounting for 

variations, technical inefficiency remains significant which calls for further investigation 

of the variations regarding to the alternative explanatory variables.  

 

Apart from the stochastic frontier analysis, the empirical analysis also employed Data 

Envelopment Analysis (DEA) and the slack variable analysis to evaluate the operating 

efficiency. The SFA approach requires a functional form to estimate the frontier 

production function and is based on the idea that the data is contaminated with 

measurement errors and noise (Bauer, 1990). The DEA approach uses linear programming 

techniques and cannot discriminate between inefficiency and noise. Thus, it tends to 

produce overestimated inefficiency measures. a fact which is the most important 

disadvantage of DEA in comparison to SFA (Bauer, 1990). This section proposes a slack-

based DEA which allows a full evaluation of inefficiency in an industry’s performance. 

The model chosen for this study is a DEA variant called slack-based measure, which is 

able to deal directly with the input excesses and the output shortfalls of the industry under 

evaluation (Tone, 2001).  

 

Conclusions and policy implications may be drawn from this model analysis. First, ICT 

investment and economy openness have been modelled as productive inputs and as 

variables which affect efficiency. This research found that the ICT investment, capital 

intensity and economy openness are both positively associated with technical efficiency in 

European Union manufacturing. The analysis and evidence in this chapter investigates 

whether there is evidence of technical inefficiency in manufacturing industries in European 

Union selected member – states. and whether factors such as ICT investment (as a proxy of 
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knowledge creation) and economy openness (as a proxy for knowledge transfer and 

dissemination) exert any influence on to technical efficiency growth.  

 

While usually used to measure technical efficiency (i.e. maximum output from available 

inputs), both the SF and the DEA methods can be used to derive allocative efficiency (the 

least-cost input combination yielding the output) and, thus, overall efficiency measures. 

The efficiency scores from both econometric and programming approaches are often 

subject to second-stage regression analysis to help determine the impact upon efficiency of 

efficiency explanatory factors beyond decision maker control. The success of both 

approaches relies on some common factors, including that all inputs and outputs are 

homogeneous across productive units, are measurable, are measured accurately, are 

included, and that productive units are relatively alike and employ a common technology. 

 

Comparing the outcomes of the two different approaches (between parametric and non-

parametric method) for the period 1980 – 2005, regarding the efficiency progress, within 

an output-oriented stochastic function. there are different outcomes regarding the 

estimation of the technical efficiency values. The two approaches also give different results 

as far as the industries or countries technical efficiency benchmarking is concerned. In 

addition, the common results produced are that technical efficiency changes over time 

(time-varying technical efficiency) and that the estimated parameter γ is close to (1) and it 

is statistical significant, showing the existence of technical efficiency. However, similar 

results are produced regarding scale efficiency and returns to scale.  

 

In our results. the inefficiency level decreases over time in all the industries and countries, 

even though certain industries and countries have mixed increases and decreases in 

inefficiency levels, such as the wood industry, or the non – metallic industry in Spain or 

the machinery industry in France. However, the general trend of the inefficiency shows 

that inefficiency levels decrease over time, with Italy and France presenting the higher 

efficiency improvement. Technical inefficiency has significantly increased in all countries 

and industries. converging into low levels of inefficiency.  

 

The inefficiency observed is endogenous to the industries, since technical inefficiency is 

largely associated with the industries choice of ICT investments, economic openness. 

Research and Development stock, and capital intensity. Industries could improve their 

technical efficiency by enhancing their investments in ICT, providing incentives in 

facilitating exports activities, as well as increasing the Research and Development stock 
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and capital intensity. Even though there is a notable improvement in technical efficiency 

after accounting for variations in technical efficiency, technical inefficiency remains 

significant, which calls for further investigation of the variations by including other 

technological determining variables. 

 

Central to this view is the appreciation of the ways in which organizations, industries and 

industries change and adapt in the presence of new opportunities and constraints. 

Accordingly, our research studies how changing configurations of the knowledge base 

combined with the emergence and adaptation of institutional structures stirred a paradigm 

of service innovation in an information-intensive industry like manufacturing industries in 

our sample. In particular, the case study presented here discloses a dual evolutionary 

process: the growth in ICT investment in the industry and the emergence of knowledge 

communication across countries. In doing so it highlights the coordinating role of ICT 

technologies investment,, economy openness, R&D stock and capital intensity  in enabling 

the technical efficiency enhancement (Nelson and Sampat, 2001; Nelson, 2002, 2005).  

 

Following our main research questions on what are the reasons for diverging efficiency in 

a production industry, which factors contribute to production industries efficiency 

differences; and how the efficiency of a production industry evolves over time, with 

respect to technical progress and other related determining factors. the thesis main findings 

suggest the great importance of the interaction between the different determining factors 

and estimate any implication for productive efficiency. The results indicate that 

inefficiency was present in production and several relevant explanatory variables vastly 

contribute to it, such as ICT investment and economy openness. This research found that 

the ICT investment and economy openness are both positively associated with technical 

efficiency in European Union manufacturing. The empirical evidence reported in this 

thesis supports the hypothesis and shows that technical change, ICT investment and 

economy openness have a positive impact on technical efficiency  in the examined 

industries, playing a significant role  in determining the contribution of innovation in 

efficiency, productivity and, consequently, economic growth. Even though there is a 

notable improvement in technical efficiency after accounting for variations, technical 

inefficiency remains significant which calls for further investigation of the variations 

regarding to the alternative explanatory variables.  
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7.3. Policy implications 

 
Nowadays, the role of manufacturing industries to the economy is even more important 

taking into consideration the slowdown in the world economy, and the effects on the 

business environment created by the financial crisis. Thus, manufacturing industries have a 

very important role in creating opportunities making an important contribution to 

economic growth and development. However, due to their nature, manufacturing industries 

are characterized by being very heterogeneous since they differ in their endowments of 

resources as well as on the risks involved in their productive activities. For this reason, it is 

of great importance, on the one hand to analyze their efficiency level and potential, and in 

addition, to analyze the factors which determine their efficiency potential. Thus, this thesis 

provided insights into the level of industry-specific technical efficiency along with factors 

affecting inefficiency, focusing on manufacturing industries and seeks to obtain the 

empirical results by specifying the translog functional form and the model for the technical 

inefficiency effects in the stochastic frontiers.  

 

The key factors influencing the competitiveness of the EU manufacturing industry are 

access to innovation, R&D and international trade. The main recommendations revolve 

around three key areas innovation and research and strengthening networks and clusters; 

responsible use of natural resources; and the need for open world markets with fair 

competition. Clustering, collaboration and the formation of strategic alliances are 

becoming increasingly important. Continuous R&D and innovation efforts are essential 

elements into guaranteeing the long-term competitiveness of Europe’s manufacturing 

industries. European research, technical development and innovation policies should focus 

on developing the framework conditions that stimulate innovation. entrepreneurship and, 

thus, growth and employment. Innovation for sustainable manufacturing requires paying 

attention to the interfaces between R&D policies with other critical policy fields. Strong 

emphasis needs to be placed upon the management of the interfaces between R&D policy 

and other policy realms competition policy, intellectual property rights, standardization, 

education and training, environmental policy, labour market, employment and social 

policy, to facilitate the creation of a sustainable European manufacturing industry 

environment, along with fiscal instruments and incentives.  Understanding future 

challenges and issues is important on future developments in manufacturing. Industrial 

change driven by new technological opportunities will impact on the manufacturing 
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structures in European Union. contribute to sustainable growth and improve technical 

efficiency122.  

 

Finally, technical progress is another major determinant as new technologies allow the 

automation of production processes that have led to many new and improved products. 

allow for better and closer links between firms. and can help improve information flows 

and organization of production. At the same time, technical progress can be embodied in 

new equipment and trained workers can only be fully productive if they have the 

appropriate equipment with which to work. Increases in physical capital are clearly 

necessary as there are spillovers from capital investment to productivity growth. Thus it is 

not appropriate to consider physical capital, human capital and technology as separate 

factors since their contributions are closely linked. It is the combination of these three 

factors and the way in which they are organized and managed within the industry that will 

determine the extent of productivity growth. For sustained output growth, it is also 

important that a balance between the three main factors be maintained123.  

 

The potential for technical efficiency enhancement is considered to a large extent to 

depend on the EU’s capability to transform the economy towards one that makes more 

productive use of its resources. Much will depend on the capacity of markets to facilitate 

the reallocation of resources to industries that show rapid productivity growth. However, it 

is difficult to predict which industries will be the most productive in the future, as 

technology and innovation trends are inherently difficult to forecast. For now, a productive 

use of a larger input from skilled employment and the exploitation of ICT investments in 

manufacturing industries appear the most successful policy avenues for a European 

productivity revival124. 
                                                 
122 This topic has been broadly examined in: Alexiadis, S., Kokkinou, A. and Ladias C. (2011) Sustainable 

Growth and Adoption of Innovation, International Conference on Integrated Information - IC-ININFO, 2011, 

Kos Island, Greece.  

 
123 This issue has been investigated in Korres, G. M., Tsobanoglou, G. O. and  Kokkinou, A. (2011) 

Innovation Geography and Regional Growth in European Union, SAGE Open published online 17 June 2011, 

DOI: 10.1177/2158244011413142, the online version of this article can be found at: 

http://sgo.sagepub.com/content/early/2011/06/15/2158244011413142 

 
124 This topic of regional divergence and convergence has been broadly examined in: Kokkinou A. (2006b) 

Innovation and Productivity: A story of convergence and divergence process in E.U. countries, 46th 

European Congress of the Regional Science Association, Volos, Greece, in: Korres, G.M., Tsobanoglou, 
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Promoting technical and productive efficiency into the European Union has resulted in a 

growing challenge for policymakers. Productive and regional disparities and inequalities 

are an increasing issue for the European Union to consolidate, as a result policy makers 

have to adapt the policy agenda considering industrial and innovation policy in order to 

enhance technical and productive efficiency capabilities.  

 

Moreover, efficiency and policy planning is a major matter which due to the wide 

interpretations and implications should have a clear mix of principles and priorities, mainly 

focusing on the effectiveness of the related EU policies. EU industrial and innovation 

policy should aim to bridging the technical efficiency gaps, both in industrial and country 

level, benefiting for economic cohesion, allowing members states with a backwards 

economy or backwards industries to modernise and thus compete in European and 

international markets, promoting convergence, competitiveness and cooperation. 

Infrastructure, innovation and investments should be among the main goals.   

 

As it has been asserted above, globalization and worldwide competition has shifted the 

comparative advantage of corporations and economies towards the factor of knowledge 

and innovation, where entrepreneurship based on the technical efficiency enhancement 

plays a rather important role, as far as the growth, productivity and competitiveness 

enhancement are concerned. In order to promote innovation activities and technological 

opportunities entrepreneurship enhancement seems to have a significant importance not 

only to business success, but also to the long run performance of the economy as a whole. 

Under this perspective, growth policies should focus on creating favorable environment for 

the co-operation between firms and institutions that support the development and 

exploitation of knowledge and innovation and technical efficiency. Furthermore, policies 

should promote the entrepreneurial relations between firms and institutions, fostering the 

development and dissemination of the expertise, the mobility of human and physical 

capital and the enhancement of the relationships between business and research entities. 

Specifically, they should encourage actions such as, promoting innovation, technology 
                                                                                                                                                    
G.O. and Kokkinou A. (2006) Technological and Industrial Policies in Europe. Lessons for Asia in 

Measuring the Effects on Growth and Sustainability, Congress on Social, Political and Economic Transition 

of the Turkic Republics of Caucasus and Central Asia in the 21st Century, Kocaeli University, Turkey., and 

Kokkinou A. (2006a) Productivity, Innovation and Regional Growth, 10th International Conference of the 

Economic Society of Thessaloniki “The Challenges of a Wider European Union”, Thessaloniki, Greece. 
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transfer and interactions between firms and higher education and research institutes, 

networking and industrial co-operation and support for research and technology supply 

infrastructure. 

 

As it has already been mentioned, innovation and technology is an important source of 

regional competitiveness through facilitating cooperation between the various parties 

involved in both the public and private sectors. In particular, they can improve collective 

processes of learning and the creation, transfer and diffusion of knowledge and transfer, 

which are critical for innovation. Such cooperation and the networks that are formed help 

to translate knowledge into efficiency opportunities. Such actions should extend to all the 

policy areas relevant for economic, scientific and social development and should ideally 

establish a long-term policy horizon. 

 

This, however, needs to happen not just in central parts where productivity and 

employment are highest and innovative capacity most developed but throughout the Union. 

Countries and regions need assistance in overcoming their structural deficiencies and in 

developing their comparative advantages. This means, among others,  that encouraging the 

development of knowledge-based economic activities and innovation and that particular 

attention needs to be given to: 

 

• developing new innovation promotion policies which focus much more on the 

provision of collective business and technology services to groups of firms which can 

affect their innovative behaviour, rather than direct grants to individual firms which 

tend only to reduce costs temporarily. 

• developing new policies to strengthen the capacity of SMEs to innovate through 

business networks and clusters and improving their links with the knowledge base, 

including with universities and research centres. 

• encouraging the development of the indigenous R&D potential of weaker regions and 

industries and their capacity to adapt technological advances made elsewhere to local 

circumstances and needs. 

• facilitating access of researchers, businesses and others in less favoured regions to 

international networks of excellence, sources of new technology and potential R&D 

partners. 
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These conditions are largely related to productive and technical efficiency and include, 

among others, the capacity of a regional economy to generate, diffuse and utilize 

knowledge and so maintain an effective production system. 

 

Towards this direction, our expected contribution is considered providing a better 

understanding of the contribution of technical change; ICT investment, innovation 

activities and economy openness to technical efficiency taking into account the 

interrelationships and the complementarities between innovation and efficiency. This thesis 

investigated various aspects of the relationship between productive efficiency and 

determining factors in an attempt to reach a better understanding of the contribution of 

alternative factors to technical efficiency growth. Industries should investigate and act 

towards identifying, developing and deploying their resources that may influence their 

technical efficiency, competitiveness and consequently their productivity performance, 

with better identification and understanding of the key resources, mainly increased 

knowledge about the impacts of different determining factors on technical efficiency.  

7.4. Further research 

The issue of estimating technical efficiency in industrial and national level is thought to be 

of particular research interest because empirical evidence shows that even though 

European Union industries are widely analyzed with respect to performance, yet little 

attention has been paid to the estimation of technical efficiency.  

 

This thesis tried to fill a gap in the economic literature by exploring and studying various 

dimensions of the interaction between technical change and innovation and links to 

efficiency growth. In particular, this thesis explored whether the interactions between these 

factors have any implications for efficiency growth and whether there are any 

complementarities between them and fostering technical efficiency growth, providing the 

industry -level estimates of technical efficiency using the time-varying inefficiency 

translog model. Further, factors that determine variations technical efficiency are 

established and a comparison of technical efficiency is made, both before and after 

accounting for different explanatory variables in the inefficiency term. presenting a range 

of different stochastic model approaches based on alternative hypotheses, discussing and 

comparing them in detail.  

 



 

 304 

Regarding further research. special focus should be put on the appreciation of the ways in 

which organizations, industries and industries change and adapt in the presence of new 

opportunities and constraints. Accordingly, future research could study how changing 

configurations of the knowledge based economy combined with the emergence and 

adaptation of institutional structures in an technology - intensive industry like 

manufacturing industries, especially these of high technology and high value added. In 

particular, a dual evolutionary research could be undertaken regarding the growth in ICT 

investment in the industry and the emergence of knowledge communication across 

countries. In doing so, it highlights the coordinating role of ICT technologies and economy 

openness in enabling the innovative potential opened up by new technologies and 

innovation activities. 
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Appendix 
 

The appendix includes the graph presenting the results regarding the inefficiency analysis 
(estimation and trends) per industry and country for each one of the alternative estimated 
models.  
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Figure A1. Inefficiency Analysis per Industry and country – Model 2 
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Source: Own estimation 

 
Model (2) presents time variant inefficiency. The inefficiency level decreases over time in all the industries and countries. with Italy and 

France presenting the higher efficiency improvement.  
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Figure A2. Inefficiency Analysis per Industry and country – Model 3 
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Source: Own estimation 
Model (3) presents time variant inefficiency. The inefficiency level decreases over time in all the industries and countries. even though certain industries 

and countries have mixed increases and decreases in inefficiency levels. such as the wood industry. or the non – metallic industry in Spain or the 

machinery industry in France. However. the general trend of the inefficiency shows that inefficiency levels decrease over time.  
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Figure A3. Inefficiency Analysis per Industry and country – Model 4 
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Source: Own estimation 

 

Model (4) presents also time variant inefficiency. Even though the inefficiency level decreases over time in all the industries and countries. the 

decrease rate is rather small. The countries which present the highest levels of inefficiency are Italy. Spain and France.  
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Figure A4. Inefficiency Analysis per Industry and country – Model 5 
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Source: Own estimation 

 
Model (5) presents time variant inefficiency. The inefficiency level decreases over time in all the industries and countries. with Spain. Italy 

and France presenting the higher efficiency improvement. starting also from the highest inefficiency level.  
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Figure A5. Inefficiency Analysis per Industry and country – Model 6 
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Source: Own estimation 

Model (6) does not produce any reliable results.  
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Figure A6. Inefficiency Analysis per Industry and country 7 
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Source: Own estimation 

 
Model (7) presents also time variant inefficiency. The inefficiency level decreases over time in all the industries and countries. with Italy and 

France presenting the higher efficiency improvement.  
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Figure A7. Inefficiency Analysis per Industry and country – Model 8 
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Source: Own estimation 

Model (8) presents also similar picture with time variant inefficiency and the inefficiency level decreasing over time in all the industries and 

countries. 
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Figure A8.  Inefficiency Analysis per Industry and country – Model 9 
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Source: Own estimation 

 

Model (9) presents also similar picture with time variant inefficiency and the inefficiency level decreasing over time in all the industries and 

countries with Italy. France and Spain presenting the higher efficiency improvement.  
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Figure A9. Inefficiency Analysis per Industry and country – Model 10 
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Source: Own estimation 
 

Model (10) presents time variant inefficiency. The inefficiency level decreases over time in all the industries and countries. with almost all the 

countries and industries experience inefficiency decreasing progress.  
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Figure A10. Inefficiency Analysis per Industry and country – Model 11 
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Source: Own estimation 

 

Model (11) presents time variant inefficiency. The inefficiency level decreases over time in all the industries and countries. with United 

Kingdom. Italy and France presenting the higher efficiency improvement.  
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Figure A11. Inefficiency Analysis per Industry and country – Model 12 
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Source: Own estimation 

 

Model (12) presents time variant inefficiency. Even though not rather smooth. the inefficiency level decreases over time in all the industries 

and countries. 
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Figure A12. Inefficiency Analysis per Industry and country – Model 13 
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Source: Own estimation 
 

Model (13) presents time variant inefficiency. The inefficiency level decreases over time in all the industries and countries. with Italy and 

France presenting the higher efficiency improvement.  
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Figure A13. Inefficiency Analysis per Industry and country – Model 14 
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Source: Own estimation 
 

Model (14) presents time variant inefficiency. Even though with some inefficiency increases present in certain year and industries. the 

inefficiency level decreases over time in all the industries and countries. presenting overall higher efficiency improvement.  
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Figure A14. Inefficiency Analysis per Industry and country – Model 15 
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Chemicals Rubber - Plastics Metals 
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Source: Own estimation 
 

Similarly. model (15) presents time variant inefficiency. Even though with some inefficiency increases present in certain year and industries. 

the inefficiency level decreases over time in all the industries and countries. presenting overall higher efficiency improvement. 
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Figure A15. Inefficiency Analysis per Industry and country – Model 16 
Electrical - Οptical Food - Beverages Textiles 

Electrical - Optical

0

0.2

0.4

0.6

0.8

1

19 80
19 82
19 84
19 86
19 88
19 90
19 92
19 94
19 96
19 98
20 00
20 02
20 04

 France Germany  Italy Netherlands Spain United Kingdom
 

Food - Beverages

0

0.2

0.4

0.6

0.8

1

19 80
19 82
19 84
19 86
1988
19 90
19 92
1994
19 96
19 98
20 00
20 02
20 04

 France Germany  Italy Netherlands Spain United Kingdom
 

Textiles

0

0.2

0.4

0.6

0.8

1

19 80
19 82
19 84
19 86
19 88
19 90
19 92
19 94
19 96
19 98
20 00
20 02
20 04

 France Germany  Italy Netherlands Spain United Kingdom
 

Manufacturing nec Wood Paper 

Manufacturing nec

0

0.2

0.4

0.6

0.8

1

19 80
19 82
19 84
19 86
19 88
19 90
19 92
19 94
19 96
19 98
20 00
20 02
20 04

 France Germany  Italy Netherlands Spain United Kingdom
 

Wood

0

0.2

0.4

0.6

0.8

1

19 80
19 82
19 84
19 86
19 88
19 90
19 92
19 94
19 96
19 98
20 00
20 02
20 04

 France Germany  Italy Netherlands Spain United Kingdom
 

Paper

0

0.2

0.4

0.6

0.8

1

19 80
19 82
19 84
19 86
19 88
19 90
19 92
19 94
19 96
19 98
20 00
20 02
20 04

 France Germany  Italy Netherlands Spain United Kingdom
 

 
Chemicals 

 
Rubber - Plastics 

 
Metals 



 

 403 

Chemicals

0

0.2

0.4

0.6

0.8

1

19 80
19 82
19 84
19 86
19 88
19 90
19 92
19 94
19 96
19 98
20 00
20 02
20 04

 France Germany  Italy Netherlands Spain United Kingdom
 

Rubber - Plastics

0

0.2

0.4

0.6

0.8

1

19 80
19 82
19 84
19 86
19 88
19 90
19 92
19 94
19 96
19 98
20 00
20 02
20 04

 France Germany  Italy Netherlands Spain United Kingdom
 

Metals

0

0.2

0.4

0.6

0.8

1

1 980
1 982
1 984
1 986
1 988
1 990
1 992
1 994
1 996
19 98
20 00
20 02
20 04

 France Germany  Italy Netherlands Spain United Kingdom
 

Non-metallic Machinery Transport equipment 

Non metallic

0

0.2

0.4

0.6

0.8

1

1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004

 France Germany  Italy Netherlands Spain United Kingdom
 

Machinery

0

0.2

0.4

0.6

0.8

1

1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004

 France Germany  Italy Netherlands Spain United Kingdom
 

Transport

0

0.2

0.4

0.6

0.8

1

1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004

 France Germany  Italy Netherlands Spain United Kingdom
 

 
Source: Own estimation 
Model (16) does not produce any reliable results. 


