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Abstract 

Fasciola hepatica is responsible for substantial economic losses and animal welfare issues 

within the agricultural sector worldwide. The increasing incidence of fasciolosis, coupled with 

the emergence of flukicide resistance, makes vaccination an attractive alternative control 

strategy. Hidden antigens extracted from the gut of blood feeding parasites have proven to be 

excellent vaccine candidates against haematophagous parasites, most notably Haemonchus 

contortus and Rhipicephalus (Boophilus) microplus. Here, as a first step towards a prototype 

liverfluke vaccine an attempt to identify hidden gut antigens in F. hepatica was made. 

Proteomic analysis on extracts of adult F. hepatica was used to identify molecules exclusively 

found within the membrane-bound fraction including four proteases; cathepsin B2, legumain-

2, a putative lysosomal pro-x-carboxypeptidase precursor and a saposin-like protein. 

Histological sections of adult F. hepatica were screened with a panel of 21 lectins to identify 

those with an affinity for glycoproteins on the parasite’s gut and to inform subsequent lectin 

affinity chromatography. Seven lectins showed affinity for the gut region, with peanut (PNA) 

and jacalin (JAC) lectins binding to glycoproteins on either the gastrodermal cells or gut 

lamellae, respectively. PNA and JAC were then used to purify glycoproteins from the crude 

S3 extract by affinity chromatography. The resultant fractions were separated by SDS-PAGE 

and the protein profiles analysed by mass spectrometry. The enriched lectin-binding fractions 

shared a number of proteins but one of note that was exclusively identified in the PNA-

binding fraction was a cathepsin D-like aspartyl protease, which had not previously been 

studied in F. hepatica. The proteolytic activities of three somatic extracts of adult F. hepatica 

were therefore investigated. The ability of the respective fractions to digest haemoglobin, a 

potential food source, was measured in the presence/absence of class-specific enzyme 

inhibitors. These analyses confirmed the presence of cathepsin D-like aspartyl protease 

activity capable of digesting haemoglobin optimally at pH 2 - 2.5. Further characterisation of 

the cathepsin D-like aspartyl (FhCatD) protease revealed it to be highly conserved within 

trematodes, to be localized to the gastrodermis of immature (10 day) and adult fluke, and to be 

more highly expressed, at the RNA level, in the Newly Excysted Juveniles (NEJ) than adult 

stages. Western blot analysis of native somatic extracts, enriched lectin-binding fractions and 

recombinant FhCatD using antisera from naturally infected sheep, showed some recognition of 

the recombinant FhCatD but did not provide clear evidence that the cathepsin D is strongly 

antigenic during natural infection.   
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1 General Introduction 

 

Liver fluke disease or fasciolosis, is an economically important disease of sheep and cattle 

worldwide. It is estimated to cost the global agricultural sector approximately US $2 billion 

(Bennett and Ipjelaar, 2005; McGonigle et al., 2008; Spithill et al., 1999) and within Scotland 

account for losses of around £50 million per annum (Dr G.B. Mitchell, Personal 

communication). These losses are attributable to mortality, reduction in milk and meat 

production, secondary bacterial infections, expensive anthelmintic treatment and 

condemnation of livers at slaughter, Table 1.1 (Garcia et al., 2008; McKenna et al., 2002; 

Schmidt and Roberts, 2005).  

Table 1.1.  Liver condemnation data for Great Britain in 2010 (Data courtesy of The 

organisation for the English Beef and Lamb Executive) 

Liver rejection data 

(fluke) 2010 
Throughput  Liver 

condemnation 
% Liver 

condemnation 
Estimated loss (£) 

from liver 

rejection only*  

England Cattle 1,547,151 306,499 19.81 £1,225,996 

Sheep 8,625,486 700,982 8.13 £ 911,277 

Wales Cattle 135,563 38,126 28.12 £152,504 

Sheep 3,672,596 165,877 4.52 £215,640 

Scotland Cattle 518,461 143,271 27.63 £573,084 

Sheep 1,463,044 128,560 8.79 £167,128 

*sheep liver = £1.30, cattle liver = £4.00 

 

Fasciolosis is an example of an emerging/re-emerging human parasitic disease in the Andean 

countries (Bolivia, Peru, Chile, Ecuador), the Caribbean area (Cuba), northern Africa (Egypt), 

western Europe (Portugal, France and Spain) and the Caspian area (Iran and neighbouring 

countries) (Mas-Coma, 2004). It is spurred on by both environmental changes (warmer, wetter 

climate) and man-made modifications such as an increase in animal movements and 

intensification of livestock farming (Mas-Coma et al., 2005). Over the last decade there has 

been a substantial increase in the number of fasciolosis cases recorded in the UK, (Figure 1.1). 
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Previously the disease was restricted to the wetter western areas of the U.K. but today spreads 

to the Eastern and Northern areas which were previously considered too dry and cold to host 

fluke (Kenyon et al., 2009; Baird, 2010). Climate change has caused a combination of wetter 

summers and milder winters which aids the survival of both the infective stages on pasture and 

the parasite’s intermediate mud snail host (Kenyon et al., 2009; van Dijk et al., 2009; Fox et 

al., 2011). Furthermore, an acute liver fluke warning was issued in January 2009 by the 

Scottish Agricultural College stating that this was the cause of numerous deaths amongst 

sheep in south-west Scotland, despite the routine treatment with flukicides in October 

(Mitchell and Rundle, 2009). 

 

 

Figure 1.1: Recorded fluke outbreaks in Scottish sheep flocks. This illustrates the increase in 

occurrence of outbreaks (red triangle) from those in recorded 1996 (green map) to 2008 (blue 

map). The locations of Scottish Agricultural College (SAC) disease surveillance centres 

(DSCs) in 1996 (blue circle) and 2008 (green circle) are also shown. (Data kindly provided by 

SAC and reproduced by kind permission of Dr G.B. Mitchell) 

 

SAC DSCs  SAC DSCs  

Outbreaks in Sheep 

2008  1996  

Outbreaks in Sheep 
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Figure 1.2:  Adult F. hepatica, A) emerging from the bile duct of an 11 month old lamb and B) 

after removal from the liver 

1.1 Fasciola hepatica 

Fasciolosis is caused when the definitive host (herbivorous mammals or humans) ingest the 

infective metacercarial cysts of digenean trematodes from the genus Fasciola. Two species, 

Fasciola hepatica and Fasciola gigantica are involved. These are leaf-shaped parasitic 

flatworms which infect the liver and bile duct of their host and can be up to 30 mm in length 

(Schmidt and Roberts, 2005), see Figure 1.2. The geographic distribution varies between these 

two species, where F. hepatica is ubiquitous throughout all regions (Mas-Coma et al., 2005) 

and F. gigantica is restricted to equatorial regions (Torgerson and Claxton, 1999). Within the 

U.K., F. hepatica is the causative agent of fasciolosis. 

1.2 Liver fluke Life-cycle 

The life-cycle of F. hepatica is complex and comprises a number of developmental stages, as 

shown in Figure 1.3.  Adult stages of the parasite reside in the liver and bile duct system of 

their definitive hosts, e.g. sheep and cattle. A large proportion of an adult fluke’s body consists 

of reproductive organs (Hanna et al., 2006) and each parasite has the potential to shed up to 

25,000 eggs per day (Happich and Boray, 1969). These are deposited in the host’s faeces onto 

pasture and undergo embryonation in 9 to 10 days given warm (above 10⁰C) and wet 

conditions (Schmidt and Roberts, 2005). The eggs hatch into ciliated, free-living larval stages 

known as miracidia when conditions are wet. Each miracidium actively seeks and penetrates 

an intermediate host, typically molluscs belonging to the genera Lymnaea, Pseudosuccinea, 

A B 



21 

 

Galba and Stagnicola (Rognlie et al., 1994; Shubkin et al., 1992). Within the UK the 

intermediate F. hepatica stages have to date only been detected in Galba (Lymnaea) 

truncatula. However, in Ireland intermediate stages of F. hepatica have been detected in 

molluscs of the Succinea sp. and Radix peregra (Relf et al., 2008). The miracidia respond to 

light, which bring them near the water’s surface increasing their chances of encountering a 

potential intermediate host (Kalbe et al., 1997; Saladin, 1979). High temperatures dramatically 

reduce the miracidium life-span to as little as 6 hours at 25 °C (Smith and Grenfell, 1984). 

However, a miracidium will only successful infect a snail if it locates and penetrates the snail 

within 3 hours of hatching (Kalbe et al., 1997). Once inside the snail, each miracidium 

migrates through the host tissue undergoing metamorphosis and transforming into the next 

larval stage, the sporocyst. This then migrates to the snail’s digestive gland and grows further. 

Within the sporocyst, there are a number of germinal cells which replicate to give rise to the 

next larval stage, the rediae, which are freed when the sporocyst ruptures. The germinal balls 

within the redia also replicate and develop to give rise to the final larval stage, the cercaria. 

Cercarial shedding is initiated by the presence of fresh water (Kendall, 1951; Walton, 1918). 

Cercariae are tadpole-like with a discoidal body, long tail, oral sucker and ventral sucker in the 

centre of the body, similar to that seen in the adult fluke. The cercariae leave the snail by 

migrating through the digestive tissues to the salivary gland. They swim freely in the water 

and become encysted on vegetation then develop into metacercariae, the infective stage. The 

metacercariae are ingested along with vegetation by the definitive host (Acosta et al., 2008; 

Andrews, 1999). The parasite then undergoes excystation into the newly excysted juvenile 

(NEJ) stage in the definitive host’s small intestine (Andrews, 1999). Following this they 

penetrate through the intestinal mucosa into the peritoneal cavity where they browse on the 

available tissue. They then migrate to the liver arriving there 4 to 6 days post-infection 

(Andrews, 1999). The immature fluke burrows through the liver tissue, feeding on available 

tissue and causing extensive haemorrhage and fibrosis before eventually reaching the bile 

ducts around 7 weeks post-infection. They then complete development to sexually mature 

adults, begin to produce eggs and the cycle repeats (Andrews, 1999; Schmidt and Roberts, 

2005). The parasite’s life-cycle is highly prolific and the asexual multiplication within the 

snail host can lead to rapid and extensive contamination of pasture with fluke cysts.  (Schmidt 

and Roberts, 2005).  
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Figure 1.3: The life-cycle of the liver fluke, Fasciola hepatica. Adult flukes in the bile ducts 

of the definitive host (e.g. sheep, cattle) shed eggs in the faeces. Eggs hatch on pasture into 

miracidia. These actively seek and penetrate a suitable snail intermediate host. Once inside the 

snail, they undergo a number of developmental stages through sporocyst, rediae and cercariae. 

The free-swimming cercariae exit the snail host and encyst on vegetation as metacercariae, the 

infective stages. These are then ingested by the mammalian definitive host. The metacercariae 

then excyst into newly excysted juveniles, which make their way to the liver and to the bile 

duct system, developing into egg laying adults and the cycle continues.  
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1.3 Pathogenesis and Clinical Signs 

Infection with F. hepatica comprises two phases: firstly the parenchymal phase, where 

immature flukes migrate through the liver parenchyma, and secondly, the biliary phase, which 

coincides with their maturation into adults residing in the bile ducts. The parenchymal phase 

begins when NEJ flukes penetrate the intestinal wall, following which they then migrate 

within the abdominal cavity and penetrate the liver or other organs (Behm and Sangster, 

1999).  

Clinical signs are closely associated with the severity of the disease which is determined by 

the level of infection, nutritional plane of the animal and also on the individual host species 

and breed (Behm and Sangster, 1999). Fasciolosis can be classified as acute, sub-acute or 

chronic (Osman et al., 1998). 

1.3.1 Acute Fasciolosis 

Acute fasciolosis occurs when large numbers of the immature stages of fluke migrate 

simultaneously through the liver parenchyma of the definitive host. This normally occurs from 

October through to spring after animals become infected in the summer or from late spring 

until early summer if initially infected during winter, Table 1.2 (Ollerenshaw, 1959). 

However, recently within the U.K, acute fasciolosis has been reported throughout the year as 

opposed to the traditional spring and autumn infections (Kenyon et al., 2009; Sargison, 2011). 

The extensive tissue damage caused by the migration of NEJ can result in a reduction of liver 

function and intraperitoneal haemorrhage (Behm and Sangster, 1999; Fetcher, 1983). This is 

often characterised by anaemia, weight loss, diarrhoea and an enlargement of the liver but 

infected animals often show no symptoms of an acute infection (Armour et al., 1970; Fletcher, 

1983; Smith, 1978). Acute infections in dairy herds have been reported to result in significant 

production losses and extended periods between calving (Charlier et al 2007). Acute 

fasciolosis may cause sudden death in sheep and has been reported to cause losses of up to 

25% of the animals within flocks (Behm and Sangster, 1999). Cattle rarely die from the acute 

form of the disease unless very young calves are subject to a large intake of metacercariae 

(Dalton et al., 2003).  
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Table 1.2: The seasonality of fasciolosis within U.K sheep flocks and the developmental 

stages responsible for the type of disease. (Data adapted from Abbott et al., 2009) 

Disease Type    Peak Incidence months       Predominant stage of parasite present  

Acute July – December Immature 

Sub-acute October – January Adult and immature 

Chronic January - April 

 

Adult 

 

 

 

1.3.2 Sub-acute Fasciolosis 

Subacute fasciolosis normally peaks between October and January after a large intake of 

metacercariae but over a more prolonged period than that causing the acute form (Table 1.2). 

Furthermore, both adult and immature flukes can be present simultaneously (Abbott et al., 

2009). Infected animals often develop haemorrhagic anaemia with this type of fasciolosis 

(Smith, 1978).  

 

1.3.3 Chronic Fasciolosis 

Chronic fasciolosis is associated with the establishment of adult stages in the bile duct and the 

shedding of eggs.  This type of disease in sheep is often seen between January and April, 

Table 1.2 (Abbott et al., 2009). It has a number of associated symptoms including weight loss, 

paleness, submandibular oedema (bottlejaw), and wool break in sheep (Behm and Sangster, 

1999; Fletcher, 1983). The liver function of infected animals can be compromised leaving 

them more susceptible to secondary infections such as the bacterium Clostridium novyi, 

resulting in a condition known as Black’s disease (Smith, 1978). Other clinical outcomes such 

as abortions and reduced milk production in lactating animals have also been associated with 

the condition (Fetcher, 1983). There are concerns about the effect of a chronic fluke infection 

on the reliability of the bovine tuberculosis (TB) test, which relies on cell-mediated immune 

responses. Experimental co-infections with F. hepatica and Mycobacterium bovis brought into 
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question the predictive capacity of TB tests (Flynn et al., 2007). Infection with F. hepatica, as 

discussed later, skews the host’s immune response, decreasing interferon γ (INF-γ) production 

(Flynn et al., 2007; Flynn et al., 2009). This compromises the reliability of the bovine TB test 

which relies on an INF-γ response (Flynn et al., 2007). Furthermore, a study involving 3026 

dairy herds found a negative relationship between diagnosis of bTB and exposure to F. 

hepatica (Claridge et al., 2012). Chronic fasciolosis only results in death when animals are 

severely weakened by the infection (Fletcher, 1983; Smith, 1978).   

1.4 Control and treatment of Fasciolosis 

Fasciolosis is difficult to control for a number of reasons, some of which include; 

amplification of the intermediate stages of the parasite within the snail host which rapidly 

creates high levels of infective cysts on pasture, a lack of natural immunity to infection in the 

definitive host and the presence of wildlife reservoirs (Andrews et al, 1999). However, it can 

be controlled by using a combination of strategies in order to reduce heavy pasture 

contamination and to an extent prevent definitive host contact with the infective stages 

(Brunsdon, 1980). 

1.4.1 Pasture management  

The intermediate stages of F. hepatica develop within the mud snail G. trunculata as 

mentioned above. These snails inhabit wet and marshy environments (Kendell, 1949). These 

areas are likely to harbour high levels of the infective metacercariae after they exit the 

intermediate host. Wet areas of fields can be fenced off to prevent contact of the host with 

infective stages or drained to make them less habitable for the snails, thus reducing the number 

of infective metacercariae produced (Osborne, 1967). However, this is a costly method and it 

is not always feasible or practical (Wilson et al., 1982). 

 

1.4.2 Snail control 

Molluscicides, aiming to kill the snail intermediate host, have provided successful short-term 

control of infective stages present on the pasture and have proven cost effective in the past 

(Crossland, 1976; Urquhart et al., 1970). However, they have gained little support and are now 

considered to be environmentally/ecologically unacceptable (Wilson et al., 1982). Despite 

being very effective against the snails they are non-specific and often kill other species 
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including fish and crabs (Roberts and Suhardono, 1996).  In addition, there are now 

regulations (outlined by the Scottish Environmental Protection Agency, SEPA) which restrict 

the use of chemicals such as molluscicides on pastures. Furthermore, their effect is often short-

lived as the snails, being hermaphrodite, have a huge potential for rapid repopulation once 

molluscicides clear from the environment and can therefore repopulate an area in a short time 

(Roberts and Suhardono, 1996). 

There are a number of plants which possess natural mollscicidal activity. These include some 

plants from the Eucalyptus spp. (Hammond et al., 1994; Zhou et al., 1993) and the 

Euphorbiales spp. (Singh and Agarwal, 1988). The leaves of Eucalyptus spp. and the latex 

from Euphorbiales are toxic to snails in situ (Singh and Agarwal, 1988; Hammond et al., 

1994). To date, trials have not been carried out in situ and it is unclear how effective these 

would be at controlling the snails in the field (Torgerson and Claxton, 1999). 

Snails are naturally predated by arthropods, amphibians, reptiles, birds and rodents (Torgerson 

and Claxton, 1999). Normally they exist in equilibrium with their predators, rapidly increasing 

when conditions are favourable (Torgerson and Claxton, 1999). The intensive farming of 

ducks and geese has been shown to eradicate snails from pastures (Levine, 1970) but this 

method is, again, not always feasible. The Sciomyzid fly larvae (Berg, 1953) and the snail-

killing fly Llione albiseta (Germally, 1988) have also been suggested as potential predators of 

G. trunculata and are thus potential biological control species. Introducing other snail species 

which will compete for the same habitat but which do not host intermediate stages of F. 

hepatica, such as Zonitoides nitdus, has also been proposed as a control method to reduce 

pasture contamination of the infective metacercariae (Ximenes et al., 1993).  

1.4.3 Treating infected animals 

Despite a number of available methods to manage fasciolosis, ultimately in domestic livestock 

liver fluke disease is controlled by treating infected animals with anthelmintics, specifically 

fasciolicides or flukicides (Roberts and Suhardono, 2008; Torgerson and Claxton, 1999). 

There is a range of such products available, which typically fall into one of 4 chemical classes; 

benzimidazoles, salicylanilides, nitrophenols and halogenated hydrocarbons. These 

anthelmintics differ in efficacy, price, safety and the stage of parasite which they target, as 

summarised in Table 1.3 (Torgerson and Claxton, 1999). These chemicals leave residues in 
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the meat and milk of treated animals and thus can have lengthy withdrawal periods (up to 65 

days) preventing their sale for human consumption during this time (National Office of 

Animal Health, (NOAH), www.noahcompendium.co.uk/Compendium/Overview/-

41030.html). 

Table 1.3: Currently available flukicides for use in sheep, adapted from Fairweather and Boray 

(1999). 

Chemical Class  Anthelmintic Age of parasite targeted (Weeks) 

Benzimidazole Albendazole >12 

  Triclabendazole 1 

Halogenated phenol Bithionol >12 

 

Hexachlorophene  12 

 

Niclofolan  12 

  Nitroxynil  8 

Salicylanilide Brotianide 12 

 

Closantel 6 to 8 

 

Oxyclozanide 12 

  Rafoxanide 6 

 

The benzimidazole derivative, Triclabendazole (TCBZ), has been the predominant drug of 

choice for treating liver fluke infections for over 20 years (Brennan et al., 2007). This is 

largely because it is effective against early immature and adult stages of the parasite, whereas 

most of the other flukicides only show activity against the later stages as highlighted in Table 

1.3 (Fairweather and Boray, 1999).  

In the 1990s, the first evidence of TCBZ resistant fluke populations was reported in Australia, 

just over a decade after this drug class was introduced (Overend and Bowen, 1995). Resistance 

has since been reported in a number of countries including Ireland (Anon, 2005), U.K. 

(Mitchell et al., 1998; Thomas et al., 2000), The Netherlands (Gaasenbeek et al., 2001) and 

Spain (Alvarez-Sanchez et al., 2006).  The true extent of resistance to TCBZ is currently 

unknown (Fairweather, 1995) and resistance to the salicylanide compound clostantel, another 

extremely important and useful flukicide, has also been reported in Australia (Fairweather and 

Boray, 1999). 
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1.5 Immunology 

1.5.1 The host immune system  

The host immune system protects it from invading pathogens using layers of defence 

mechanisms of increasing specificity. Initially, physical barriers, such as the epithelium, 

prevent the infectious agents from entering the host. If these are breached the hosts’ innate, 

followed by the adaptive, immune system act to try to expel the pathogen. The innate immune 

system is fast acting and uses non-specific defence mechanisms to expel invading bodies. The 

specific acquired immune system is slower acting but highly adaptable (Mulcahy et al., 1999). 

CD4+ T helper cells (Th), B lymphocytes (B cells) and T regulatory (Treg) lymphocytes have 

critical roles in host defence and immunoregulation (Hirahara et al., 2011). T cells are a major 

source of cytokines and bear receptors (TCR) which recognise antigen peptides (T cell 

epitopes) in association with major histocompatibility complex (MHC) presenting cells 

(Bhattacharya and Sinha, 2006). Th cells can be divided into subsets which each differ in 

phenotype and function, e.g. Th1, Th2 and Th17 cells (Hirahara et al., 2011).  

The Th1 cells produce interferon-γ (INF- γ), interleukin-2 (IL-2) and interleukin-3 (IL-3) 

which promote a type 1 immune response (O’Neill et al., 2000). These cytokines promote the 

production of activated macrophages, antibodies, mediate delayed type hypersensitivity 

reactions and inflammatory responses (O’Neill et al., 2000). This response is often elicited 

against invading intracellular organisms (viruses, bacteria and protozoa) but can also be 

effective against extracellular organisms. For example, induced immunity to schistosomiasis 

in mice is mediated by activated macrophages, which can kill larval Schistosoma mansoni in 

vitro (James et al., 1982). 

Th2 cells produce a number of cytokines including interleukin-4 (IL-4), interleukin-5 (IL5), 

interleukin-6 (IL-6) and interleukin-10 (IL10) which promote a type 2 immune response. This 

has been shown to be important in the control of helminth infections (Urban et al., 1995; Else 

et al., 1994; Mulcahy et al., 1999). The cytokines promote B cell proliferation, the secretion of 

immunoglobulins (IgA, IgG1 and IgE) and mediate production / activation of mast cells and 

eosinophils. Eosinophils bind to antibodies on the surface of extracellular organisms, such as 

F. hepatica and release compounds, such as nitric oxide which are toxic to the invading 

pathogen (Anthony et al., 2007; Mulcahy, 1999). 



29 

 

The cytokines released by the different T cell subsets regulate the type of immune response 

generated. For instance, the type 1 cytokine INF- γ suppresses type 2 responses where as IL-4, 

IL-10 and IL-13 inhibit the effects of INF- γ and thus the development of type 1 responses 

(Mulcahy, 1999).  

1.5.2 The host immune response to infection with F. hepatica 

To date, the definitive host’s immune response to infection with F. hepatica is not fully 

understood. Studies show that infection with F. hepatica provokes a Th2 biased response, 

which has been shown to be important in the expulsion of some helminth parasites (Mulcahy 

et al., 1999). The expulsion of helminth parasites by Th2 responses has been demonstrated in 

rodent models with an established infection of Heligmosomoides polygyrus (Urban et al., 

1995), Nippostrongylus brasiliensis (Urban et al., 1998), Trichuris muris (Else et al., 1994) 

and Trichinella spiralis (Ahmad et al., 1992). The importance of the Th2 response has been 

further demonstrated in murine models, where infection of IL-4 deficient mice with the 

gastrointestinal nematode, Trichuris muris results in a patent infection in an inbred mouse 

strain which would normally resist infection (Bancroft et al., 1998). Although the definitive 

host’s immune response toward F. hepatica is thought to be predominately Th2 biased, in the 

early stages of infection Th1 cells are thought to also play a role (Antony et al., 2007; Herbert 

et al., 2004; Moreau & Chauvin, 2010; Rodríguez-Sosa et al., 2002), see Figure 1.4. During 

the migratory phase of the NEJ and immature fluke, Th1 cells produce INF- γ which induces 

classically activated macrophages. These macrophages bind to the parasite and produce nitric 

oxide (Noel et al., 2004), which is toxic to the fluke (Antony et al., 2007; Herbert et al., 2004; 

Moreau & Chauvin, 2010; Rodríguez-Sosa et al., 2002). When the infection proceeds to later 

(chronic) stages the immune response becomes predominately Th2 biased.  

The cytokine IL-4 activates and promotes B cell proliferation to produce antibodies IgE and 

IgG1 (Antony et al., 2007; Moreau & Chauvin, 2010; Urban et al., 1992). IL-4 also stimulates 

IL-5 production which causes rapid proliferation of eosinophils which rapidly migrate to the 

site of infection under the direction of a number of cytokines including IL-4 and IL-3 (Antony 

et al., 2007; Moreau & Chauvin, 2010; Urban et al., 1992). Eosinophils release compounds, 

such as eosinophil secondary granule proteins (ESGPs), which in murine models are toxic to 

the invading F. hepatica and Schistosoma (Antony et al., 2007; Sabin et al., 1996; Behm & 
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Ovington, 2000; Klion & Nutman, 2004). Together, the increased production of IgE, IgG1 and 

IL-5 contribute to the production of antibody-dependent cellular cytotoxicity (ADCC). The 

binding of antibodies, IgE and IgG1, to the surface of the fluke is then recognised by receptors 

present on mast cells, as shown in a rat infection model (Van Milligen et al., 1998). These 

then secrete vasoactive amines and other mediators of inflammation resulting in the 

degranulation of eosinophils which releases toxic chemicals onto the parasites surface, such as 

major basic protein (MBP) and protamine sulphate which can kill the invading NEJ (Duffus, 

1980) and also amplify the Th2 response through the production of cytokines IL-5 (Antony et 

al., 2001; Mulcahy et al., 1999). ADCC is thought to be the principal mechanism in clearing 

helminth infections (Mulcahy et al., 1999). For example, NEJs from immune rats were coated 

with IgG1 antibodies and surrounded by eosinophils which were not observed in naïve 

controls, suggesting that the NEJs are killed by an eosinophil-mediated cytotoxic response 

(Van Milligen et al., 1998), which is also seen in murine models infected with Schistosome 

(Sabin et al., 1996). Finally, the secretion of interleukin-13 stimulates the production of 

alternatively activated macrophages which assist in tissue repair and can result in fibrosis, as 

seen in the bile ducts of chronic fasciolosis in cattle (Moreau & Chauvin, 2010). 
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Figure 1.4: Definitive host immune mechanisms produced against F. hepatica infection. Two 

mechanisms have been proposed to occur against F. hepatica. (a) The initial phase of infection 

involves classically activated macrophages which bind to the parasite and induce nitric oxide 

production, which is harmful to the fluke. This is produced by Th1-type cytokines. (b) During 

the later (chronic) phase, Th2 cells produce the cytokines interlekin-4 (IL-4) and interlekin-5 

(IL-5) which induce antibody and eosinophil production. This in turn evokes antibody-

dependent cellular cytotoxicity (ADCC) which causes the degranulation of eosinophils and 

releases of toxic mediators such as major basic protein, eosinophil cationic protein, and 

reactive nitrogen intermediates toward the parasite. This phase inhibits the production and 

function of Th1 cytokines. Finally, alternative activated macrophages produce molecules that 

are toxic to the fluke and participate in fibrosis and tissue repair (adapted from Antony et al., 

2011). 

 

1.5.3 Parasite evasion of immune attack  

Flukes have evolved a number of mechanisms to evade the immune system and thus survive 

for long periods within their host (Fairweather and Boray, 1999). However, the ways in which 

the parasite evades or modulates the immune system are not fully understood. The final 

residence in the bile ducts is a relatively immunologically ‘safe’ environment from immune 

attack (Hanna, 1982) for the parasite but, to get there, it must evade the immune system as it 
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migrates through the intestinal wall and liver tissue (Haroun and Hillyer, 1986). Only 5-10%  

and 20-25% of the inocula in cattle or sheep, respectively, reach maturity in experimental 

infections, indicating that a large proportion of the NEJ either fail to enter the gut or are killed 

during the migrating phase (Haroun and Hillyer, 1986; Piacenza et al., 1999). 

The tegument of F. hepatica differs from that of related species such as the schistosomes. 

Instead of the schistosomes’ two-lipid bilayer (thin layer composed of two layers of 

hydrophobic molecules) liver flukes have a single surface membrane covered with a tough 

glycocalyx (carbohydrate-based structure) (Threadgold, 1976). This tough tegument protects 

the liver fluke from the immune system in a number of ways. Using surface radio-labelling 

techniques, Dalton and Joyce (1987) showed that the glycoproteins on the surface of the NEJ, 

immature (liver) and the adult (bile duct) stage differed. So, as the parasite develops from a 

NEJ through to the adult stage, the surface composition alters, presenting the immune system 

with a changing target, therefore protecting the parasite from immune recognition by specific 

antibodies (Tkalcevic et al., 1995, 1996). The glycocalyx on the surface is also shed and 

replaced approximately every 3 hours as the parasite migrates to the bile ducts (Hanna, 1980). 

This prevents the definitive host’s immune defense mechanisms, such as the eosinophils, 

making sufficient contact with the fluke to cause damage to their surface (Hanna, 1980). In 

addition to this, the glycocalyx shed from the parasite binds any circulating antibodies, which 

then prevents further upregulation of the host immune response (Duffus and Franks, 1981).  

The tracts made by flukes in the liver tissue are filled with immune effector cells such as T and 

B lymphocytes, macrophages and granulocytes (eosinophils and neutrophils) but these are not 

attached to any of the parasites present (Meeusen et al., 1995). Flukes from a secondary 

infection (where a host which has previously been infected with F. hepatica but the infection 

was cleared and the host reinfected) are never found in cavities generated by flukes in the 

primary infection which indicates flukes may avoid areas where there are high levels of 

immune response mechanisms (Meeusen et al., 1995). Parasites may also modulate short 

range immune responses, this may explain the presence of undamaged flukes in tissues filled 

with immune effector cells (Meuusen et al., 1995). The way in which the parasites do this is 

not fully understood, but they may secrete enzymes such as glutathionine S-transferase to 

deactivate the effector cells (Brophy et al., 1990; Creaney et al., 1995). Carmona et al., (1993) 

identified a cathepsin L protease in NEJ excretory secretory (E/S) material and showed that it 
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can prevent antibody-mediated attachment of eosinophils to this stage, thus evading immune 

detection.  

Furthermore, parasites release immunosuppressive factors to modulate the definitive host’s 

immune system (Sandeman and Howell, 1981; Zimmermann et al., 1983).  As an infection 

proceeds in an ovine host the proliferative capacity of the peripheral blood lymphocytes 

reduces after just 4 weeks of infection, indicating that modulatory effects occur as the parasite 

migrates to the liver tissue (Zimmermann et al., 1993; Mulcahy et al., 1999).  In addition, the 

fluke’s E/S products can block the differentiation and maturation of eosinophils by bone 

marrow cells  in mice (Milboume & Howell, 1990; Milboume & Howell, 1993). A 28kDa 

protein isolated from the E/S fluid can mimic the action of IL-5 (Milboume & Howell, 1993) 

and, thus, direct the definitive host’s immune system to a less effective Type 2 response, 

allowing the host to tolerate the parasite leading to chronic infection (Clergy et al., 1996). 

Furthermore, the F. hepatica E/S proteases, cathepsin L1 and cathepsin L2, can also degrade 

all subclasses of human IgG, which assist the parasite in evading immune attack (Berasain et 

al., 2000). 

1.5.4 Immunity to infection with F. hepatica  

Numerous attempts have been made to raise a natural immunity to infection with F. hepatica 

in sheep using primary homologous infections (where naïve animals are infected with low 

numbers of F. hepatica cysts), infections with metacercariae and inocculating with somatic or 

secreted antigens (Spithill et al., 1999; Spithill and Dalton, 1998). Despite evidence that there 

is a degree of variability between sheep breeds in their resistance to infection with F. hepatica 

(Boyce et al., 1987), there is little evidence to suggest that sheep sensitized to infection of F. 

hepatica (previously infected) develop any protective immunity to reinfection (Boyce et al., 

1987; Sandeman and Howell, 1981; Sinclair, 1971). Sheep are capable of producing an 

antibody response towards experimental infection with F. hepatica which is predominately 

IgG1 and peaks 5 to 6 weeks after a primary infection (Movsesijan, 1974). This has been 

exploited in the development of diagnostic tests which detect circulating antibodies, however, 

this response does not appear to be protective (Mitchell et al., 1981).  

Furthermore, when antibodies from sheep experimentally infected with F. hepatica are 

passively transferred to animals which were subsequently challenged, there was a 64% 
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reduction in the number of flukes recovered from the liver (Mitchell et al., 1981). This 

indicates that the lack of inducible protective immunity in sheep may be related to insufficient 

cellular responses (Mulcahy et al., 1999) or modulation by the parasite to evade immune 

recognition as discussed previously.  

Cattle are more resilient than sheep to infection following previous exposure to the parasite 

suggesting a difference in immune response between the two species (Mulcahy et al., 1999). 

Unlike sheep, fasciolosis is rarely fatal in cattle which often self-cure between 9 and 26 

months after infection (Mulcahy et al., 1999). Firstly, they have substantially larger livers than 

sheep and secondly the chronic infection causes a condition called "pipestem fibrosis", where 

biliary ducts appear white from fibrosis and inflammation. This is rarely seen in sheep 

(Mulcahy et al., 1999). This condition creates a physical barrier between the host and the 

parasite making it difficult for parasites to navigate their way through the liver tissue, thus 

preventing feeding and ultimately killing the fluke (Jones et al., 1997). A number of studies 

have found that cattle previously exposed to infection with F. hepatica were less susceptible 

than naïve animals to reinfection (Doyle, 1971; Ross, 1967). Studies indicate with increasing 

liver fibrosis there is a decrease in the establishment of mature adult parasites, indicating that 

cattle’s protection occurs at the liver capsule (Anderson et al., 1978; Doy and Hughes, 1984). 

In addition, NEJs were still able to migrate through the peritoneal cavity wall (Anderson et al., 

1978; Doy and Hughes, 1984; Mulcahy et al., 1999; Ross, 1967).  

1.5.5 Vaccination 

Vaccination would certainly be a desirable alternative control strategy to treating animals with 

flukicides, due to consumer concerns about chemical residues in food and (Science for 

Environment Policy, 2008) the presence of anthelmintic resistant parasite populations 

(Overend and Bowen, 1995; Anon, 2005; Mitchell et al., 1998; Thomas et al., 2000; 

Gaasenbeek et al., 2001; Alvarez-Sanchez et al., 2006). A commercial vaccine to prevent 

fasciolosis is currently not available (McManus and Dalton, 2006). However, 

immunoprophylactic control of fasciolosis has been attempted in both sheep and cattle using 

injection with either parasite extracts or defined functional parasite antigens which differ in 

protection level elicited (Spithill and Dalton, 1998). These antigens include glutathione S-

transferase (GST), cathepsin L-like cysteine proteases, fatty acid binding protein (FABP), 
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leucine aminopeptidases (LAP) and fluke haemoglobin (Spithill and Dalton, 1998). These will 

each be discussed in turn. 

1.5.5.1 Glutathione S-transferase  

Purified GST from adult F. hepatica was the first defined antigen to induce high levels of 

protection in sheep (Sexton et al., 1990). Vaccination with native GSTs initially failed to 

reduce worm burdens in rats experimentally infected with F. hepatica (Howell et al., 1988), 

although a subsequent challenge trial with sheep receiving multiple injections elicited a 

significant 57% reduction in worm burden at post mortem (Sexton et al., 1990). Protection (as 

measured by percentage reduction in parasite burden to non vaccinated controls) has also been 

elicited in trials with cattle (Estuningsih et al., 1997; Morrison et al., 1996). The level of 

protection (measured by faecal egg count and worm burdens) was shown to be dependent on 

the adjuvant used, with GST in Quil A/Squalene Montanide 80® (Quil A/SM) resulting in a 

69% reduction in worm burden (Morrison et al., 1996; Spithill and Dalton, 1998). GSTs 

belong to a family of isoenzymes which are involved in cellular detoxification, including the 

initial steps of detoxification of xenobiotics and endogenous toxic compounds such as 

anthelmintics (Spithill et al., 1999; Spithill and Dalton, 1998). They have been identified in all 

parasitic helminths (Brophy et al., 1990; Brophy and Pritchard, 1994) and proposed to have an 

important role in the helminth parasite’s homeostasis and survival (Brophy et al., 1990; 

Brophy and Pritchard, 1994). They were chosen as candidate vaccine antigens because 

homologous native GST proteins from the closely-related Schistosoma spp., were shown to 

reduce parasite burden in mice (40-43%) and rats (50-72%) with two vaccinations of GST 

before subsequently being challenged with 15000 cercariae (Balloul et al., 1987; Brophy and 

Pritchard, 1994). Five GST isoenzymes between 23-26.5kDa in size, have been purified from 

adult F. hepatica (Brophy et al., 1990; Howell et al., 1988; Wijffels et al., 1992). 

Immunolocalisation studies, using antisera raised in rabbits against a native F. hepatica GST 

cocktail, showed a widespread distribution of the GST throughout the tissues of the adult fluke 

e.g. within the intestine, the parenchymal cells, the tegument and the adjacent muscle cells 

(Howell et al., 1988; Wijffels et al., 1992). Furthermore, GST was localised to the intestine 

and associated with the lamellar surface (Wijffels et al., 1992). A similar analysis, using the 

NEJ, localised GST to the parenchymal cytoplasm, cytoplasmic extensions of the parenchymal 

cells in the subtegumental area and the excretory ducts and not the intestinal epithelium 

(Creaney et al., 1995). This altered distribution within the intestine of the adult compared to 



36 

 

the juvenile relates to different morphology and functions of the gut at different life-stages 

(Spithill et al., 1999). The juvenile gut contains few lamellae and gut cells have a secretory 

function, which is in contrast to the dual secretory/absorptive role in the adult gut (Bennett and 

Threadgold, 1973). 

In vitro experiments in which anti-GST antibodies from trial sheep (those vaccinated with 

GST) were tested for their ability to inhibit GST activity, found no direct correlation between 

inhibition of GST activity in vitro and fluke burden, suggesting that inhibition of GST 

function by antibody binding is not responsible for the observed protection (Morrison et al., 

1996).  

1.5.5.2 Cathepsin L-like Proteases 

Cysteine endopeptidases are found in many parasitic worms, with an important role in 

host/parasite interactions (McKerrow, 1989; Dalton and Heffernan, 1989; Dalton et al., 2003; 

Williamson et al., 2003). Two gut-associated cysteine endopeptidases have been isolated from 

adult F. hepatica. These have been identified as cathepsin L-like cysteine proteases and 

termed cathepsin L1 (27 kDa, FheCL1) and cathepsin L2 (29.5 kDa, FheCL2), respectively 

(Mulcahy and Dalton, 2001). They have attracted considerable attention due to their 

predominance in the E/S products of adult and juvenile flukes (Dalton et al., 2003). These 

enzymes are homologous to mammalian lysosomal cathepsin L proteases, with the nucleotide 

sequences sharing 45% similarity with mammalian homologues (Tort et al., 1999). In liver 

flukes, cathepsin L-like proteases are secreted into the gut lumen following ingestion of host 

blood and liver tissue and participate in digestion of host tissues (Smith et al., 1993b; 

Yamasaki et al., 1992). Liver flukes have a blind-ending gut and constantly regurgitate their 

gut contents so these secreted enzymes have an additional role in tissue penetration and 

immune evasion (Spithill and Dalton, 1998). For example, in vitro experiments have shown 

that FhCatL1 can cleave immunoglobulin in the hinge region and prevent antibody-mediated 

attachment of eosinophils to NEJ (Carmona et al., 1993; Goose, 1978; Smith et al., 1993a; 

Spithill and Dalton, 1998). FhCatL2 can cleave fibrinogen, in a similar manner to thrombin 

but at unique cleavage sites, to cause the formation of an insoluble blood clot, which can 

prevent the access of immune effector cells to the parasite’s surface (Dowd et al., 1995; 

Spithill and Dalton, 1998). Both cathepsin Ls can cleave intracellular matrix proteins 

including collagen, laminin and fibronectin (Berasain et al., 1997; Howell et al., 1988). 
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Cathepsin B has been identified as a major protease released by juvenile flukes (Wilson et al., 

1998). This protease shows similar properties to those exhibited by cathepsin L in the adult 

stages. For example, it has been localised to the gut epithelium of NEJs (Creaney et al. 1995), 

can aid immune evasion (Carmona et al., 1995; Chapman and Mitchell, 1982; Smith et al., 

1993) and assist migration through host tissues (Wilson et al., 1998). 

The cathepsins have been considered as valuable candidates because of their involvement in 

crucial biological processes and their ability to digest a wide range of host substrates (Spithill 

and Dalton, 1998). A number of vaccine trials have identified their potential as vaccine 

candidates either as native or recombinant proteins (Dalton et al., 1996; Piacenza et al., 1999). 

An initial trial in sheep by Wijffels et al (1994) found that vaccination with a mixture of 

CatL1 and CatL2 did not significantly reduce fluke burdens in comparison to non-vaccinated 

controls. However, the parasites’ egg output was reduced by 69.7 % and those eggs produced 

had an 80% reduction in viability (Wijffels et al., 1994). Trials in cattle have also provided 

promising results. When used individually in vaccination experiments, both the cathepsin L 

molecules significantly reduced worm burdens, egg output and egg fecundity (Dalton et al., 

1996). Cattle were vaccinated three times at 28 day intervals, then challenged with 500 

metacercariae 28 days after final vaccination and killed 16 weeks post challenge. Results from 

vaccinated animals were compared with those from control animals (vaccinated with adjuvant 

only), where the native CatL1 reduced worm burdens by up to 69% (Dalton et al., 1996). 

Although the actual mechanisms which provide protective immunity have not been identified, 

there are two proposed explanations (Spithill et al., 1999; Wijffels et al., 1994). Firstly, the 

inhibition of cathepsin L activity may prevent the parasite digesting food sources and thus 

have secondary consequences including a reduction in egg production. This is supported by 

the observations of Dalton et al (1996), who found adults recovered from CatL1-vaccinated 

cattle were reduced in size. Secondly, it is proposed that a different tissue-located cathepsin L 

is required for egg production but is unable to act because vaccination induces cross-reacting 

neutralising antibodies, thus inhibiting egg production (Spithill et al., 1999). Adult flukes 

recovered from CatL1-vaccinated sheep were found to be normal in size but their fecundity 

was reduced by 67 % (Wijffels et al., 1994). Substrate specificity studies suggest that 

cathepsin L may play a role in processing the vitelline B precursor protein, a major eggshell 

protein of F. hepatica (Spithill et al., 1999). Furthermore, immunolocalisation studies have 
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also localised Cat L to the Mehlis’ gland, an important organ in egg production (Wijffels et 

al., 1994).  

1.5.5.3 Fatty acid binding proteins 

The FABP antigen belongs to a family of proteins involved in binding and transporting a 

range of hydrophobic ligands across membranes (Spithill et al., 1999). FABP was the first 

defined and purified antigen fraction to be tested as a vaccine against fasciolosis (Hillyer et 

al., 1977; Hillyer, 1979). A set of proteins was purified from an extract of adult F. hepatica 

that cross-reacted with antisera raised in mice immunised with soluble proteins from the 

closely-related human blood fluke, S. mansoni (Hillyer et al., 1977). A subset of these F. 

hepatica–derived proteins was termed FhSMIII(M) .  This subset was shown to reduce worm 

burdens of F. hepatica in immunised mice (by 69-78%) (Hillyer, 1985) and calves (55%) 

(Hillyer et al., 1987). The protective antigen in this fraction was identified as a 12kDa protein 

and termed Fh12 (Hillyer et al., 1988). The sequence of this protective antigen was identified 

when polyclonal rabbit antiserum against native Fh12 was used to screen a F. hepatica cDNA 

library (Rodriguez-Perez et al., 1992). Immunoreactive clones were found to encode a 

homologue of the cytoplasmic FABP family known as Sm14, originally isolated from S. 

mansoni (Moser et al., 1991). The Fasciola cDNA encoded a protein of 14.7 kDa and was 

thus termed Fh15 (Spithill et al., 1999). There is still some debate as to whether Fh12 and 

Fh15 represent the same protein, as they are similar in size, however several FABP isoforms 

do exist in F. hepatica (Spithill et al., 1999). Fh15 is not only protective against fasciolosis but 

also cross protects against schistosomiasis (Hillyer et al., 1977; Hillyer et al., 1979; Hillyer et 

al., 1985; Spithill et al., 1999). Vaccination is thought to protect animals by interfering with 

the parasite’s uptake of fatty acids (Spithill et al., 1999).  

1.5.5.4 Leucine Aminopeptidase 

Aminopeptidases catalyse the removal of amino acids from the N-termini of peptides and 

proteins. They are found in tissues and cells in both membrane-associated and soluble forms 

(Acosta et al., 2008; Piacenza et al., 1999). Leucine aminopeptidases (LAP) have not fully 

been characterised in helminths but there is evidence to support their participation in vital life-

cycle processes. Within the human blood fluke, S. mansoni, the enzyme is localised to the gut 

and tegument. Furthermore, egg hatching is inhibited by bestatin, a LAP inhibitor (McCarthy 
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et al., 2004; Xu and Dresden, 1986). Amongst many functions, aminopeptidases participate in 

terminal degradation of proteins, protein maturation and regulatory processes of cellular 

metabolism (Bachmair et al., 1986).  An enzyme capable of cleaving a leucine 

aminopeptidase- specific substrate, leucine-7-amino-4-methylcoumarin (NHMec), was 

identified from soluble F. hepatica extracts and termed FhLAP (Acosta et al., 2008). FhLAP 

has been associated with the epithelial cells that line the parasite’s digestive tract and proposed 

to function in the final stages of the catabolism of peptides generated by the degradation of 

host tissue by endoproteases such as the cathepsin L proteases (Acosta et al., 2008).  

Vaccination of sheep with native FhLAP induces the highest levels of protection reported to 

date (Piacenza et al., 1999). Sheep immunised with FhLAP alone had 89% reduced fluke 

burdens and, when used in combination with the native cathepsin L1 and L2, fluke burdens 

were reduced by 76 % against challenge infection in sheep (Acosta et al., 2008; Piacenza et 

al., 1999). More recently, a recombinant form, rFhLAP, has protected rabbits from infection 

with F. hepatica (Acosta et al., 2008). Vaccinated rabbits were immunised twice with rFhLAP 

in Freund’s adjuvant (control rabbits with PBS and Freund’s complete adjuvant) at 4 week 

intervals then challenged orally with 50 metacercariae two weeks after the final immunisation. 

Animals were slaughtered 20 weeks after the first immunisation and the number of flukes 

present in the liver and bile ducts counted. Worm burdens in rFhLAP vaccinated rabbits were 

reduced by 79 % in comparison to the non-vaccinated controls (Acosta et al., 2008). However, 

despite the early promise of the native and recombinant LAP, a vaccine based on this antigen 

has still not reached commercial reality. 

1.5.5.5 Fluke Haemoglobin 

Haemoglobin (Hb) was isolated from F. hepatica E/S material (McGonigle and Dalton, 1995) 

and has been shown to provide protection when used as a vaccine antigen alone or in 

combination with the cathepsins (Dalton et al., 1996). Cattle which were vaccinated with Hb 

combined with CatL2 in Freund’s complete adjuvant had a reduction in fluke burdens of 72 % 

in vaccinated compared to control animals (Dalton et al., 1996). If these levels of protection 

could be reproduced, this could form the basis of a viable vaccine (Spithill et al., 1999). 

Furthermore, the reduction in fluke burden was accompanied by a reduction in egg viability of 

30 – 75 %. Dalton et al (1996) suggested that the oxygen storage properties of Hb may be vital 

in areas of low oxygen tension, for example, in the bile duct. Thus, since egg production by F. 
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hepatica requires oxidative metabolism, its egg development may be compromised by 

immunisation with Hb (Spithill et al., 1999). Cattle immunised with Hb alone, Hb/Cat L1 and 

Hb/CatL2 had reduced worm burdens (43.8 %, 51.9 % and 72.4 %, respectively) and reduced 

egg viability (30-75%, 0-80%, 0.7%, respectively) in comparison to non-vaccinated controls 

(Dalton et al., 1996). The anti-fecundity component of the vaccine is an attractive attribute and 

would help to reduce pasture combination (Taylor et al., 1994). 

1.5.6 Vaccination against helminth parasites: Conventional and “Hidden” antigens 

Although helminth infections can be controlled to an extent by the use of anthelmintics and 

pasture management, the occurrence of drug-resistant populations has spurred an interest into 

developing vaccines (Anon, 2005; Mitchell et al., 1998; Thomas et al., 2000; Gaasenbeek et 

al., 2001; Alvarez-Sanchez et al., 2006). The first commercial vaccine to be developed against 

a helminth parasite was “Dictol”, an attenuated live vaccine against the bovine lungworm, 

Dictyocaulus viviparus (Jarrett et al., 1955; Jarrett and Sharpe, 1963). Unfortunately, the 

success of using attenuated larvae to immunise against infection with D. viviparus has not 

extended to other helminths (Smith, 1999). Vaccination of sheep with a recombinant GST 

antigen (GST-45W) protected against infection with the cestode Taenia ovis (Johnson et al., 

1989). However, despite eliciting high level of protection (up to 98% reduction in cestode 

burdens) in small and large scale field trials the vaccine never reached commercial availability 

(reviewed in Rickard et al., 1995). Sheep can develop a natural immunity to infection with the 

gastrointestinal nematode, Teladorsagia circumcincta, with a continued trickle infection of 

infective larvae (Smith et al., 1984; Stear et al., 1999). However, the mechanisms of naturally 

acquired immunity are not fully understood but appear to be complex, involving a 

combination of local hypersensitivity, cell mediated, antibody and inflammatory responses 

(Halliday et al., 2007; Halliday et al., 2009; Halliday et al., 2010; Stear et al., 1999; Smith et 

al., 1984; Smith, 1999). The complicated development of natural immunity and the lack of 

available helminth vaccines highlight how difficult it is to develop an effective parasitic 

vaccine.   

Targeting secreted antigens released by parasites has been a popular starting point for vaccine 

studies (Smith, 1999). This method has identified antigens which have elicited protective 

immunity against a number of parasites including F. hepatica, as previously discussed. These 

antigens are termed “natural” or “conventional” antigens as they are recognised by the host 
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during the course of a natural infection (Smith, 1999). An alternative approach is to target 

antigens which are not exposed to the host’s immune system during a natural infection, i.e. “ 

hidden” antigens. This approach proved successful with the cattle tick, Rhipicephalus 

(Boophilus) microplus.  This vaccine, termed TickGARD™, was a antiparasite vaccine and 

reached commercial viability. The active component in the TickGARD vaccine was a 

recombinant form of the Bm86 antigen but, due to a reduction in demand, this product is no 

longer commercially available (Willadsen et al., 1995). A reduction in worm burdens and egg 

output has also been elicited against the blood-feeding gastrointestinal nematode, Haemonchus 

contortus by immunising with “hidden” antigens from the parasite’s gut (Smith et al., 1994; 

Smith et al., 2000).  Native intestinal antigens have been purified, characterised and shown 

repeatedly to reduce both egg counts and worm burdens (Knox and Smith, 2001; Knox et al., 

2003; Smith et al., 1999; Smith et al., 1994; Smith et al., 2000). The most effective of these 

antigens identified by this approach was a proteolytic enzyme complex termed Haemonchus 

galactose-containing glycoprotein or H-gal-GP, which is involved in digesting the blood meal 

(Murray and Smith, 1994). Similarly, mice who were immunised three times with the 

hookworms aspartyl protease cathepsin D (Ac-APR-1), then challenged with Ancylostoma 

duodenale, had a reduction in the small intestine worm burden of 69 % (Ghosh & Hotez, 1999; 

Williamson et al., 2002; Williamson et al., 2004). The vaccinated animals were also protected 

from anaemia, with haemoglobin levels within a normal range (12.45 g/dl), compared with 

non-vaccinated dogs which exhibited anaemia (9.5 g/dl) indicating Ac-APR-1 disrupted the 

parasite’s ability to feed (Loukas et al., 2005). Immunoglobulins from the vaccinated animals 

also neutralised the catalytic activity of the Ac-APR-1, indicating the vaccination inhibited the 

parasites ability to feed (Loukas et al., 2005).  

This approach takes advantage of the fact that these parasite’s are blood-feeders. Thus, for 

TickGARD™, the intestinal antigens from H. contortus and Ac-APR-1 success relies on 

parasites ingesting a blood meal in order to be exposed to the circulating antibodies for the 

vaccine to be effective.  

Targeting “hidden” antigens could prove to be a novel and successful strategy for vaccinating 

against F. hepatica. The adult liver fluke lives in a highly vascularised environment and feeds 

on surrounding tissue. The adult flukes ingest haemoglobin and their branched gut is often 

found filled with partially digested blood, see Figure 1.5 (Smyth and Halton, 1983). 
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Furthermore, blood will most certainly be ingested, whether deliberately or not, by the 

juvenile fluke migrating through the liver (Oslen, 1986). Some animals infected with F. 

hepatica exhibit severe levels of anaemia. This may be related to blood loss from tissue 

damage caused as the parasite migrates but could also be the result of blood ingestion by the 

parasites (Sandeman and Howell, 1981; Vengust et al., 2003).  

1.5.7 The gut of Fasciola hepatica 

The fluke’s gut changes as the parasite develops from a NEJ through to the adult stage 

(Dawes, 1962). The gut of the fluke can be separated into two distinct regions; the foregut 

(mouth, pharynx and oesophagus) and the paired intestinal caeca. The intestinal caeca are 

highly branched, blind-ending and embedded within the body tissues of the fluke making them 

difficult to dissect out, see Figure 1.5. This is in contrast to some nematodes e.g H. contortus, 

which possess a through gut lined with microvilli which form a brush border (Knox and 

Smith, 2001). The cells of the NEJ digestive system are different to those of the adults as they 

have no structural features associated with digestive function (Gallagher and Threadgold, 

1967). They have few lamellae which are small and irregular where as the lamellae of the 

mature adults are numerous, long and regular in shape (Gallagher and Threadgold, 1967). The 

caeca elongate as the parasite develops and only become branched when the immature fluke 

enters the liver, around 8 to 10 days post infection (Dawes, 1962; Sukhdeo and Sukhdeo, 

2002). The gut cells of the NEJ are all in a secretory phase, containing a large number of dense 

secretory vesicles. These contain hydrolytic enzymes which aid the digestion of tissue as the 

juvenile migrates through the gut wall and liver tissue (Bennett and Threadgold, 1973). The 

epithelial cells of the fully developed gut consist of a single continuous layer of cells of one 

basic type, varying in height (Robinson and Threadgold, 1975).  Unlike the NEJ, the cells 

lining the gut differ from the adult fluke in their functional state, switching between an 

absorptive (Gress and Threadgold, 1959) and secretory phase (Müller, 1923; Dawes, 1962). 

The cells possess lamellae, which help amplify the gut surface area (Gress and Threadgold, 

1959; Robinson and Threadgold, 1959; Fairweather et al., 1999). These are analogous to the 

microvilli that line the nematode gut. Neighbouring gut cells are generally in different phases 

of the cycle so that absorption and digestion are occurring simultaneously and thus 

continuously (Fairweather et al., 1999).   
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Figure 1.5: Adult F. hepatica showing A) the branched gut system spread throughout the 

parasite’s entire body (green arrow), and B) a Haematoxylin and Eosin (H&E) stained cross-

section of the gut region (black arrow). 

Cells in the secretory phase possess dense secretory vesicles, abundant and active Golgi 

complexes and an extensive network of cytoplasmic organelles arranged in a random manner 

(Thorsell and Björkman, 1965) see Figure 1.6. The secretory activity of cells was studied 

using radioactively labelled amino acids over a time course (Hanna, 1975). This indicated that 

molecules enter the cell at the baso-lateral membrane followed by secretion at the apical 

membrane (Hanna, 1975). Cells in the absorptive phase have no secretory bodies but possess 

mitochondria and endoplasmic reticulum which are arranged in structured parallel rows, see 

Figure 1.6. Further, experiments by Thorsell and Björkman (1965) and Pantelouris and 

Gresson (1959) confirmed that epithelial cells were capable of absorption using radiolabelled 

amino acids and iron, respectively.  

Initially, digestion is proposed to occur extracellularly in the lumen and is completed within 

the gut cells (Fairweather et al., 1999). The fluke diet alters as the parasite develops, the 

immature flukes feeding on hepatic cells and also ingesting blood as they migrate through the 

liver tissue (Dalton et al., 2004). Finally, as an adult, resident in the bile duct, the fluke’s diet 

200 µM  
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consists largely of blood and in some cases bile duct epithelium (Dalton et al., 1994; Smyth 

and Halton, 1983).  

 

 

Figure 1.6: The secretory cell phases of F. hepatica gut cells, (Picture kindy provided by 

Professor Ian Fairweather).  
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The exact repertoire of enzymes possessed by each developmental stage and how they 

function is not yet completely understood. However, the enzymes used by each developmental 

stage do differ, with only a small number shared throughout development. For example, three 

cysteine proteases have been isolated from NEJ flukes (CL 3, CL 4, CL 6),of which only CL3 

is present in the adult stages (Cancela et al., 2010; Fairweather et al., 1999; McGinty et al., 

1993). A summary of reported proteases is shown in Table 1.4. The different digestive 

enzymes allow the developing parasite to adjust to the different environments encountered as 

it progresses through the liver. For example, predominant cathepsin L3 in the NEJ has 

collagenase activity, which is essential for the invasion process (Corvo et al., 2009), where as 

the adult cathepsin L1 is involved in haemoglobin degradation (Robinson et al., 2008). The 

initial step of digestion is proposed to occur at the lining of the lamellae, with the digestion 

products then being endocytosed and further digested inside the cell (Fairweather et al., 1999). 

Proteases from the E/S products of adults have been shown to be capable of digesting 

haemoglobin and host immunoglobulins (Carmona et al., 1993; Smith et al., 1993b; Yamasaki 

et al., 1992). This indicates a dual role for the enzymes, in both nutrient acquisition and 

immune evasion as discussed earlier (Fairweather et al., 1999).  

Table 1.4: Digestive proteases identified in the newly excysted juveniles (NEJ), immature (3-5 

weeks) and adult stages of F. hepatica. 

Protease Stage Reference 

cathepsin D Adult, NEJ Unpublished (ABJ97285.1) 

cathepsin L1 Adult, Immature Dalton and Heffernan, 1989, Smith 

et al., 1993; Carmona et al 1993 

cathepsin L2 Adult, Immature Dalton and Heffernan, 1989Dowd et 

al., 1994; Carmona et al 1993 

cathepsin L3 NEJ, Adult Cancela et al., 2004 

cathepsin L4 NEJ Cancela et al., 2004 

cathepsin L6 NEJ Cancela et al., 2010 

cathepsin B1 NEJ Cancela et al., 2004 

cathepsin B2 NEJ Cancela et al., 2004 

cathepsin B3 NEJ Cancela et al., 2004 

legumain Adult, NEJ Unpublished (CAC85636.1) 

leucine 

aminopeptidase 

Adult Acosta et al., 2008; Piacenza et al., 

1999 
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1.5.8 Project Aims 

Given the huge economic burden of fasciolosis on the world-wide agricultural industry 

(Bennett & Ijpelaar, 2005) and the occurrence of fluke populations resistant to available 

anthelmintics (Overend and Bowen, 1995; Anon, 2005; Mitchell et al., 1998; Thomas et al., 

2000; Gaasenbeek et al., 2001; Alvarez-Sanchez et al., 2006) vaccination against F. hepatica 

would be an additional option in the control of fasciolosis. However, as mentioned above, 

animals show little or no protective immunity following infection and current vaccine 

candidates have yet to reach commercial availability. As a novel approach in F. hepatica, the 

project aims to focus on identifying novel hidden and/or gut-associated proteins in a similar 

approach to the work which led to the identification of protective gut antigens in H. contortus 

(Knox and Smith, 2001).  

It is evident that the lead “hidden” antigen candidates currently identified from H. contortus 

are enzymatically active glycoprotein complexes obtained from detergent soluble extracts 

(Knox and Smith, 2001).  These were initially identified, characterised and, ultimately, 

purified from Triton X-100 soluble parasite extracts (Smith et al., 1994). Thus, the objectives 

of this project are as follows; 

1. The protein components of three somatic extracts generated from adult F. hepatica (water-

soluble, membrane-associated and membrane-bound, respectively) will be investigated to 

identify proteins which are enriched within the membrane-bound fraction. Furthermore, Laser 

Capture Micro-dissection (LCM) will be attempted to identify if transcripts of any of these 

proteins are within the parasite’s gut.  

2. A panel of lectins will be used to screen sections of adult fluke to identify those with an 

affinity for glycoproteins present on the parasite’s gut. Gut-specific lectins will be 

subsequently used to enrich the membrane-bound extract for gut specific glycoproteins.  

3. The membrane bound fraction will be investigated for evidence of proteolytic enzymes. The 

pH range of activity, ability to digest ovine haemoglobin and class of enzyme activity will be 

characterised. 
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4. Any candidates of interest will then be compared with homologous proteins in other 

parasite species, the expression characterised over the different life stages of F. hepatica, 

localised within the parasite and screened with definitive ovine host antibodies raised towards 

a natural fluke infection to assess whether they are “hidden” antigens. 
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2  Application of proteomics to identify proteins enriched within a 

membrane-bound fraction of adult Fasciola hepatica 

2.1 Introduction 

Identifying vaccine candidates for parasite control has historically involved vaccinating host 

animals with crude extracts or whole organisms before fractionating these to identify the 

protective components. This is a costly and lengthy method often taking decades to complete 

(Knox, 2000; Knox 2010).  

Crude somatic extracts of parasites can be prepared in a number of ways. One approach is to 

homogenise parasites in a series of extraction buffers, starting with phosphate buffered saline 

(PBS) alone, then in PBS with Tween-20 and finally PBS with Triton X-100 (as described in 

Smith et al 1994). Proteins solubilised at each step can be loosely described as water-soluble, 

membrane-associated and membrane-bound, respectively (Smith et al., 2000). Proteins within 

the membrane-bound fraction (Triton X-100 extract) have been a rich source of protective 

antigens against the blood feeding nematode, H. contortus (Smith et al., 2000). The highly 

protective H-gal-GP complex was identified within this fraction (Smith et al., 2000). 

Furthermore, proteases have, historically, made good vaccine candidates against helminth 

parasites. For example, the lead vaccine candidates, to date, against infection with F. hepatica 

are the proteases, cathepsin L1 and L2 (Dalton et al., 1996; Mulcahy and Dalton, 2001) and 

leucine aminopeptidase (LAP) (Acosta et al., 2008; Brophy and Pritchard, 1999). LAP has 

elicited the highest protection to date of a single antigen against F. hepatica, where 

immunising sheep reduces worm burden by up to 89 %, or when used in combination with the 

cathepsin L1 and L2, up to 76 % (Acosta et al., 2008). Proteases have also proved to be 

successful vaccine candidates against the blood-feeding Schistosoma spp., A. caninum, 

Necator americanus, H. contortus and B. microplus (Dalton, 2001). Therefore, any protease 

which is exclusive to the membrane bound-fraction would be of particular interest as a 

potential vaccine antigen.  

In this Chapter, a proteomic approach was used to identify proteins present in each of the three 

fractions and to identify those exclusive to the membrane-bound fraction. Proteomics was first 

used to describe the protein complement of a genome by Wasinger et al., (1995). A combined 

approach of amino acid composition analysis and peptide mass fingerprinting was used to 
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identify novel functional proteins within Mycoplasma genitalium (Wasinger et al., 1995). The 

proteome of organisms is dynamic and changes in response to the demands of both the 

external and internal environment (Barrett, 2009). Proteins are often the targets for therapeutic 

agents (Barret et al., 2000). The amino acid sequence of proteins has been determined by 

Edman sequencing since 1950 (Edman et al., 1950). However, the ability to separate proteins 

on two dimensional (2D) gels in combination with the development of mass spectrometry 

analysis allowed a rapid increase in proteomic opportunities during the 1990s (Graves and 

Haystead, 2002).  

 

Mass spectrometry (MS) accurately determines the molecular mass of peptides and can be 

coupled to other instruments to allow sensitive and fast peptide sequencing (Ashton et al., 

2001). Liquid chromatography – Electron spray ionisation - Tandem mass spectrometry (LC-

ESI-MS/MS) groups these three techniques to produce very sensitive analysis of peptides. 

Firstly, the sample is separated by high performance liquid chromatography (HPLC) at a very 

slow flow rate to produce small sample volumes for the ESI. The sample is then sprayed 

through a fine needle and a high voltage applied. This ESI step removes any solvents and 

produces small universally charged droplets of the sample in a gaseous phase which are then 

swept into a dual MS. The first MS fragments individual peptides with argon to release ions 

which are separated and detected in a Time-of-flight (ToF) MS. The ToF is determined by the 

ion’s mass to charge ratio (mz), as ions are accelerated through an electric field and the time 

taken to travel a known distance to the detector is measured (ToF). As all the ions have the 

same charge, as an ion’s size increases, so will the time to travel. The ToF can then be used to 

calculate the mass to charge ratio of the ion. This can then be used to determine the amino 

acid, and thus the sequence of the peptide (Roepstorff, 1997). Mascot is a search engine which 

can be used to identify the protein identity from the mass spectrometry data yielded from the 

peptides (Perkins et al., 1999). Mascot uses a probability based scoring algorithm MOlecular 

Weight SEarch (MOWSE) which was first described by Pappin et al., (1993). The significance 

of the MOWSE score depends on the size and complexity of the database searched.   

Unlike a proteome, a genome is static containing all an organism’s hereditary information 

(Barrett et al., 2009). To date the only completed genome of a parasitic helminth is that of S. 

japonicum (Berriman et. al., 2009) and the proteomes of many parasite helminths are still 

incomplete. To date, there is little known about the genome of F. hepatica. Currently, there are 
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only 3055 adult F. hepatica expressed sequence tags (EST) and 1677 newly excysted juvenile 

(NEJ) ESTs publically available (January 2012, NCBI, 

http://www.ncbi.nlm.nih.gov). Jefferies et al (2001) was the first to use basic proteomic 

techniques to identify major proteins in the E/S material from adult F. hepatica, despite an 

incomplete genome. Since then, a number of studies on F. hepatica have used proteomic 

analysis to help understand drug resistance to triclabendazole (Chemale et al., 2010), to study 

stage-specific expression and for the classification of cathepsin L (Robinson et al., 2008; 

Morphew et al., 2011) and other vaccine candidates, including GST (Chemale et al., 2006), to 

study proteins expressed by different developmental stages (Hernández-González et al., 2010) 

or organ systems, such as the tegument (Ashton et al., 2001; Wilson et al., 2011) within F. 

hepatica.   

In silico (computer-generated) bioinformatic analysis of an organism’s genome can identify 

genes with various features such as function, motif signatures and cellular location. 

Proteomics can complement this genomics/bioinformatic approach because a viable vaccine 

candidate has to be expressed (Zagursky and Anderson, 2008). Gene expression cannot be 

determined by the genomic/bioinformatic approach, but proteomics can detect proteins which 

are actually expressed by the organism, for example, at different developmental stages or 

under different selection pressures (Grandi, 2001; Grandi 2002). One of the major proteomic 

techniques which have been used to assist the identification of potential candidates is two 

dimensional (2D) gel electrophoresis, which enables the construction of proteome maps and 

mass spectrometry (Grandi, 2001; Zagursky and Anderson, 2008; Barrett et al., 2000). 2D gel 

electrophoresis allows comparison of proteins expressed by different developmental stages or 

in response to stimuli, for example probing with immune sera (Barrett et al., 2000), or after 

exposure to drug treatment (Cooper et al., 2004). The individual protein spots which are 

unique, for example to a developmental stage, can then be identified and analysed by matrix-

assisted laser desorption/ionisation Time of flight (MALDI-ToF) analysis. In this study, using 

proteomic techniques, proteins exclusive to the membrane-bound fraction were sought  and 

classified according to their biological function. The aim was to identify any proteases which 

are unique to the membrane-bound (S3) fraction. Homologies to exclusively membrane-bound 

proteases in other species will help indicate if they have a role in nutrient acquisition. 

 

http://www.ncbi.nlm.nih.gov/
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Although proteomic techniques can help identify peptides exclusive to the membrane-bound 

fraction, the tissue location of these can only be predicted by looking at homologues in other 

species. Using this in addition to other tools such as laser capture microscopy (LCM) will help 

identify if any of the identified proteins are represented by transcripts in the gut. LCM is a 

novel technique which allows the precise targeting and extraction of cells from tissues of 

interest (reviewed in Jones et al., 2004). It is proposed to be a relatively simple technique 

where the biggest challenge is preparing the specimen in such a way as to preserve the cells 

for subsequent analysis and interpretation (Lee et al., 2003; Scheidl et al., 2002). In a 

parasitology context, LCM has the potential to analyse specific aspects of the host-parasite 

interaction; for example, it can be used to enable identification of parasites within host tissues 

by molecular means, analyse tissue-specific transcriptomes and allow living cells to be 

extracted for manipulation and subculturing (Jones et al., 2004). These approaches are 

facilitated by the range of downstream analysis platforms which can be used on the captured 

cells, which include: DNA genotyping, RNA transcript profiling, cDNA library construction 

and proteomics (Fuller et al., 2003). LCM has been used successfully to extract cells from the 

intestines of the hookworms, A. caninum and N. americanus. The mRNA from the extracted 

cells was used to generate tissue-specific cDNA libraries (Ranjit et al., 2006). The hookworm 

gut is easily distinguished and separated from other tissues by the pseudocoelom, making it 

ideal for this technique (Jones et al., 2007). In contrast, the gut of F. hepatica spreads 

extensively throughout the body of the parasite and is easily identified due to its branch-like 

structure thus makes it suitable for LCM, although to date it has not been attempted.  

 

In conclusion, the work in this chapter aimed to identify proteins, ideally gut-derived, that 

were exclusive to the membrane-bound fraction of F. hepatica using a combination of 

proteomic analysis and LCM.   
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2.2 Materials and Methods 

2.2.1 Analysis of somatic extracts by Liquid Chromatography - Electron Spray 

Ionisation -Tandem Mass Spectrometry (LC - ESI - MS/MS) 

2.2.1.1 Parasite material 

Live adult F. hepatica were retrieved from the bile ducts of naturally infected sheep from 

either ScotBeef Abattoir, Dunblane or Firth Mains farm, Penicuik. Parasites were washed 

twice with 1 x Phosphate buffered saline (PBS) (see Appendix 1) and frozen at -80⁰C until 

required.  

2.2.1.2 Somatic extracts 

The frozen flukes were thawed on ice and homogenised using an Ultra-turrax® T25 (IKA® – 

Labortechnik) with 5 ml of homogenizing buffer (HB) 1 (see Appendix 1) and centrifuged at 

20,000 g for 20 min at 0
o
C. The supernatant (S1) was retained. The pellet was resuspended 

and hand homogenized in a Dounce homogeniser in HB 2 (see Appendix 1) then centrifuged 

at 16, 500 g for 20 min at 2
o
C. The supernatant (S2) was retained. The HB2 extraction was 

repeated, the supernatant discarded and the pellet was then resuspended and hand-

homogenised using a Dounce homogeniser in buffer HB 3 (see Appendix 1) then mixed end-

over-end for 30 min at 4
o
C. This extract was then centrifuged at 50,500 g for 30 min at 4

o
C 

and the supernatant (S3) retained. This resulted in the production of three crude somatic 

fractions representing water soluble proteins (S1), membrane-associated proteins (S2) and 

membrane-bound proteins (S3), respectively.  

2.2.1.3 Protein determination 

Protein concentrations of each extract were estimated using the bicinchoninic acid (BCA) ™ 

Protein Assay Kit (Pierce). Briefly, 11 Bovine Serum Albumin (BSA) standards were prepared 

by diluting a stock solution of 2000 µg/ml BSA in 1 x PBS (see Appendix 1)  to 

concentrations ranging from 0-2 mg/ml. Extracts were diluted in 1 x PBS. Into a 96-well plate, 

25 µl aliquots of each standard/extract were dispensed in triplicate into individual wells. A 

BCA mix was then prepared by mixing BCA reagent A with BCA reagent B (50:1 ratio). 200 

µl of BCA mix was dispensed into each well, then plates incubated at 37ºC for 30 min. 

Absorbance was measured at 562 nm on a 96-well plate reader. A standard curve was plotted 

using the BSA standards and the protein concentration of the extracts determined from this. 
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2.2.1.4 Sample preparation 

 10 μg of each somatic extract (S1, S2 and S3) were loaded into sample wells of a Bis/Tris 

SDS-PAGE mini gel (4 -12 %, Invitrogen) and separated at 200V for 45 – 50 min. Resolved 

proteins were visualised using SimplyBlue Safe Stain ™ (Invitrogen). The MRI proteomics 

facility carried out the following procedures on the resolved gel. The stained gel lanes were 

excised and then sliced horizontally from top to bottom to yield 25 equal gel slices of 2.5mm 

depth. Each of the resulting 25 gel slices was then subjected to standard in-gel destaining, 

reduction, alkylation and trypsinolysis procedures (Shevchenko et al., 1996). 

2.2.1.5  

Samples were transferred to HPLC sample vials and stored at +4
o
C until required for LC-ESI-

MS/MS analysis. Liquid chromatography was performed using an Ultimate 3000 nano-HPLC 

system (Dionex) comprising a WPS-3000 well-plate micro auto sampler, a FLM-3000 flow 

manager and column compartment, a UVD-3000 UV detector, an LPG-3600 dual-gradient 

micropump and an SRD-3600 solvent rack controlled by Chromeleon chromatography 

software (Dionex: http://www.dionex.com). A micro-pump flow rate of 246 µl/min
-1

 was used 

in combination with a cap-flow splitter cartridge, affording a 
1
/82 flow split and a final flow 

rate of 3 µl/min
-1

 through a 5 cm x 200 m ID monolithic reversed phase column (Dionex-LC 

Packings) maintained at 50 C. Samples of 4 l were applied to the column by direct injection.  

Peptides were eluted by the application of a 15 min linear gradient from 8-45% of solvent  

(80% acetonitrile, 0.1% (
v
/v) formic acid) and directed through a 3 nl UV detector flow cell.  

LC was interfaced directly with a 3-D high capacity ion trap mass spectrometer (Esquire 

HCTplus
TM

, Bruker Daltonics) via a low-volume (50 l/min
-1

 maximum) stainless steel 

nebuliser (Agilent, cat. no.G1946-20260) and ESI. Raw chromatography data were processed 

and Mascot compatible files created using DataAnalysisTM 3.2 software (Bruker Daltonics) 

with the following parameters: compounds (autoMS) threshold 1000, number of compounds 

500, retention time windows were 2.0 min for C18 (30 min gradient) and 0.8 min for 

monolithic and C18 (9 min gradient) as described by Batycka et al., (2006). 
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2.2.1.6 Database Mining 

The MASCOT compatible files generated in section 2.1.1.7 were submitted to two databases. 

First, data were submitted via the in-house MASCOT server and searched against an annotated 

F. hepatica expressed sequence tag (EST) database, kindly provided by Professor Peter 

Brophy (University of Wales, Aberystwyth) using the MASCOT search algorithm. Secondly, 

the MS/MS data were sent to Dr Neil Young (University of Melbourne, Australia) and 

searched against an annotated adult F. hepatica EST dataset. The presentation and 

interpretation of MS/MS data were performed in accordance with published guidelines (Taylor 

and Goodlett, 2005). To this end, fixed and variable modifications selected were 

carbamidomethyl (C) and oxidation (M), respectively, and mass tolerance values for MS and 

MS/MS were set at 1.5Da and 0.5 Da, respectively. Molecular weight search (MOWSE) 

scores obtained for individual protein identifications were inspected manually and considered 

significant only if; a) two unique peptides were matched for each protein and, b) each peptide 

contained an unbroken “b” or “y” ion series of a minimum of four amino acid residues.The 

trypsin digest breaks the protein into peptides. These are then fragmented under high energy 

dissociation conditions to create a series of fragments which are deemed ions. These are 

referred to as “b” (if the charge is retained on the N-terminus) or ”y” ions (if the charge is 

maintained on the C-terminus).  

 Protein identifications were confirmed further as a MOWSE score of 29 or higher was 

statistically significant at the 95 % confidence level when searching against both datasets.  

2.2.1.7 Analysis of data 

Proteins which met the criteria outlined in section 2.2.1.6 were sorted to assess those which 

were; (i) shared between all the fluke extracts, (ii) shared between two of the extracts  and (iii) 

unique to a single extract. S3-unique proteins were sorted into functional groups by a 

combination of information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and 

critical review of the associated background literature. 

http://en.wikipedia.org/wiki/N-terminus
http://en.wikipedia.org/wiki/C-terminus
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2.2.2 Laser capture microscopy 

2.2.2.1 Preparation of material 

Adult parasites were collected from the bile ducts of sheep as described in Section 2.2.1.1, 

immediately placed onto a small disc of solid 10% gelatin (see Appendix 1) and snap frozen in 

liquid nitrogen-chilled isopentane. The frozen flukes were then wrapped in aluminium foil and 

stored at -80ºC until further required. 

2.2.2.2 Transportation of material 

The frozen blocks of parasites were transported to the Rowett Institute, Aberdeen in dry ice 

and placed immediately at -80ºC upon arrival.  

2.2.2.3 Tissue preparation for Laser capture microdissection 

The cryostat and tools for sectioning were cleaned to ensure that they were free of RNAses. 

The parasite material was warmed to -19ºC in the cryostat for around 10 min then fixed onto 

the chuck using Tissue-Tek OCT Compound (Agar scientific).  8 µm sections were cut and 

mounted on untreated slides (Thermo Shandon) which had been baked at 200ºC for a 

minimum of 2 hours. Slides were then kept on dry ice before warming to room temperature 

and immersion in a series of alcohols; 100% ethanol (1 min), 95% ethanol (30 sec), 75% 

ethanol (30 sec) and 50% ethanol (30 sec). 100 µl of Histogene ™ LCM frozen section stain 

(Arcturus) was pipetted onto the section on each slide and incubated for 1 min with gentle 

rocking. Slides were then immersed in 50% ethanol (30 sec) 75% ethanol (30 sec) 95% 

ethanol (30 sec), 100% ethanol (30 sec), and Xylene (1 min). Excess xylene was drained off 

and the slides dried in a desiccator for a minimum of 15 min.  

2.2.2.4 Laser capture 

The gut region of the parasite was identified visually and microdissected using the PixCell 11 

Laser-capture Microdissection System (Arcturus) and captured on Capsure MacroLCM caps 

(Arcturus). Briefly, slides were placed, section up, on the microscope platform and kept in 

place under vacuum. The microscope was focussed on the 10 x objective and the gut brought 

into view. The LCM cap was then placed over the area of interest. The laser was focussed on 

the spot size of 7.5 µM. The 15 µM spot size was then selected and the power setting adjusted 

to 30 mW and the duration of pulse to 5 msec. Microdissection of gut cells was then 

http://www.fishersci.com/ecomm/servlet/fsproductdetail?tab=Items&siteName=FisherSci&productId=4755275&fromSearch=0&storeId=10652&langId=-1&catlogId=-1
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performed by pulsing with the laser under these conditions. This was repeated until all the gut 

in view had been captured. The polymer end of the cap was then inserted into a 500 µl 

Eppendorf tube containing 100 µl of lysis buffer (Absolutely RNA Microprep kit, Agilent). 

The RNA was then extracted using the Absolutely RNA Microprep kit (Agilent) according to 

the manufacturer’s instructions. A 5 µl sample was taken for analysis of integrity and quantity 

and the remainder was frozen at -80ºC.  

RNA quality and quantity were estimated using a Nanodrop™2000 (Thermo-Scientific). 1 µl 

of RNA was used to measure the A260 and A280 values and calculate the A260:A280 ratio 

for each sample, in triplicate. RNA quality was also assessed by running each sample on an 

Agilent 2100 Bioanalyser (Agilent) using an Agilent RNA 6000 Pico chip (Agilent) as 

described by the manufacturer.  

2.2.2.5 RNA amplification  

RNA captured from the LCM was amplified using the RIBO Amp HS plus High sensitivity kit 

(Arcturus), according to the manufacturer’s instructions (www3.appliedbiosystems.com/cms/ 

groups/mcb.../cms_085206.pdf). Two rounds of amplification were conducted and the process 

was stopped in the second round after the cDNA purification step, thus yielding double 

stranded cDNA. The Nanodrop™2000 (Thermo-Scientific) was used to assess if RNA 

amplification had been successful as described in section 2.2.1.7.  

2.2.2.6 Transformation of competent cells with ligated cDNA 

To enable ligation into the vector, an A-tail was added to the cDNA. Briefly, on ice the cDNA 

was mixed with dATP (0.2 mM), Taq DNA polymerase 10 x reaction buffer (Advantage ® 

cDNA PCR kit, Clontech) and Taq (5units, Advantage ® cDNA PCR kit, Clontech). This was 

incubated at 70ºC for 30 minutes then stored at -20ºC. 

This was ligated into the pGEM®-T cloning vector (Promega) according to manufacturer’s 

instructions. The ligated vector was then used to transform Escherichia coli JM 109 (Promega) 

competent cells, as per manufacturer’s instructions. The transformed cells were spread on 

LB/IPTG/X-GAL/Ampicillin agar plates (see Appendix 1) and incubated overnight at 37 ⁰C. 

White colonies were picked and checked for inserts by colony PCR. Briefly, a sample of each 

colony was mixed with 5µl of dH2O. On ice, this was mixed with 15 µl Biomix (Bioline), 5 µl 

of forward primer (T7 primer, 5’-TAATACGACTCACTATAGGG-3’) and reverse primer 
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(SP6, 5’-ATTTAGGTGACACTATAG-3’) at 5 µM. This was then amplified as follows in a 

thermal cycler (Applied Biosystems 2070): 1min at 95ºC (1 cycle); 30 sec at 95ºC, 30 sec at 

55.4 ºC, 60 sec at 72ºC (25 cycles); 5 min at 72ºC. 5 µl of each reaction was mixed with 1 µl 

loading dye and separated on a 1% agarose gel with gel red (see Appendix 1) by 

electrophoresis, then viewed under a UV transilluminator.  

2.2.2.7 Purification of plasmids for sequencing 

Colonies with an insert were grown in LB broth containing ampicillin (See Appendix 1) 

overnight at 37ºC with shaking (250rpm). Plasmids were then purified using the Wizard ® 

Plus SV minipreps DNA purification system (Promega) according to manufacturer’s 

instructions using the centrifugation protocol. The concentration of DNA was measured using 

the Nanodrop™2000 (Thermo-Scientific) and plasmids at an appropriate concentration were 

sent for automated sequencing (MWG).  

2.2.2.8 Analysis of sequences 

Sequencing results were assembled where possible into contigs using DNAstar® 

(http://www.dnastar.com/). Contigs (overlapping DNA fragments) or single nucleotide 

sequences were analysed by the BLASTx [Basic local alignment search tool, (Altschul et al, 

1990)] programme on the National Centre for Biotechnology Information (NCBI, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi). This programme compares the users nucleotide/protein 

sequences with those of known proteins or genes in the non-redundant database and calculates 

the statistical significance of the match to allow identities to be assigned to nucleotide/protein 

sequences submitted. 

  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.3 Results 

2.3.1 Somatic extracts from adult F. hepatica 

The protein profiles of the somatic extracts (S1, S2, and S3) were visualised by SDS-PAGE, 

see Figure 2.1. Protein concentrations were estimated at 3709 µg/ml, 1052 µg/ml and 708 

µg/ml for the S1, S2 and S3 extracts, respectively. From this, the volume needed to load 10µg 

of protein per lane was calculated to ensure consistency between samples for subsequent 

analysis by LC-ESI-MS/MS.   

 

Figure 2.1 Somatic extracts from adult Fasciola hepatica. Soluble (S1), membrane associated 

(S2) and membrane-bound proteins (S3) shown in respective lanes. Grid to the right illustrates 

where the lanes were sliced for further analysis by LC-ESI-MS/MS 
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2.3.2 LC- ESI-MS/MS 

Each lane as shown in Figure 2.1 was divided into 25 slices, as illustrated by the grid, for the 

LC-ESI-MS/MS analysis. The MS/MS results generated from searching against the two F. 

hepatica EST datasets were combined to provide the best coverage possible of data generated 

from the three somatic extracts. In total, 5153 peptides were matched against the datasets. In 

turn, these were matched against 1248 contigs, where each contig had two or more significant 

peptides with a consecutive sequence of 4 ‘b’ or ‘y’ ions. However, 165 (13.2 %) of the 

contigs identified were classified as “of unknown function”.  The number of contigs unique to, 

or shared between, the three fractions is outlined in Figure 2.2. Although a large proportion of 

these contigs were shared between the extracts, there were considerable numbers of unique 

contigs within each fraction, namely S1 (254), S2 (240) and S3 (246).  

 

Figure 2.2: The significant contig hits in the three somatic extracts from adult F. hepatica 

from proteomic analysis. Overlapping areas indicate the number of shared contigs between 

fractions. 
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2.3.2.1 Unique S3 contigs and their functional classification 

The annotated contigs unique to the S3 extracts were further characterised according to their 

function by KEGG analysis. Those contigs unique to this fraction are of particular interest as 

they are likely to be membrane-bound and thus would not be excreted or secreted by the 

parasite and may therefore represent true “hidden antigens”. All the results are outlined in 

Appendix 2 and a subset of these appears in Table 2.1.  The resultant hits were divided into a 

number of functional classes which includes; proteolytic, metabolic, transport, inhibition, 

cytoskeleton, transcription, gut-associated, signalling, gene transcription, heat shock and 

chaperone, ribosomal and any other function. The metabolic category had the largest 

proportion of hits, with 28% of the total divided into 7 different sub-classes. The databases 

searched were composed of contigs with assigned protein identities and often the same protein 

was represented by a number of different contigs. Although there were 246 contigs unique to 

the S3 fraction, some of the proteins that were identified were represented in other fractions. 

Therefore, the protein identities of each S3 contig (excluding hypothetical and unknown 

proteins) were searched against proteins present in the S1 and S2 fraction to confirm that the 

protein identity was truly unique to the S3 fraction.  Ultimately, 111 contigs were identified 

that represented proteins exclusive to the S3 fraction. This encompassed 6 proteolytic, 36 

metabolic, 20 transport, 2 inhibition, 5 cytoskeleton, 11 transcription, 0 gut-associated, 19 

signalling, 1 gene transcription, 4 heat shock and chaperone and 1 ribosomal protein(s). 

Out of the 111 contigs exclusive to the S3 fraction, and of particular interest, were the 

proteolytic enzymes specifically, cathepsin B2, Legumain-2 (both cysteine proteases), and a 

putative lysosomal pro-x-carboxypeptidase precursor (a serine/carboxypeptidase) as shown in 

Table 2.1. Proteases were of particular interest as they have historically made good vaccine 

candidates and also may have a vital role in nutrient acquisition by the parasite. In addition to 

these, secreted saposin-like protein, SAP-3, was also of interest as it is a gut-associated 

enzyme in the hookworm A. caninum (Don, 2007). Of these proteolytic enzymes, cathepsin B, 

cathepsin L and leucine aminopeptidase, were also represented in the other two fractions, S1 

and S2. So, although the peptides were assigned to contigs which were unique to the S3 

fraction, the protein identity of the contig was also represented in the S1 and S2 fractions and 

was, therefore, not exclusively S3.  
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The number of unique peptides for each contig is shown in Table 2.1, confirming that each 

contig met the minimum criteria of 2. The coverage of the full length protein sequence by the 

assigned unique peptides is shown under the percentage coverage. The protein (MOWSE) 

score is shown and all scores are above the threshold of 29, so scores are significant at the 

95% confidence level. 
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Table 2.1: The proteolytic enzymes identified in the S3 fraction of Fasciola hepatica from searching two F. hepatica EST databases 

Protein description 
S3 

Unique? 
Species 

No. 

Peptides 
% Coverage 

Protein 

score 
Protein mass (Da) 

1. Proteolytic enzymes 

1.1 Cysteine proteases 

Cathepsin B2 Y T. szidati 2 2.9 60 55648 

Cathepsin B N (1/2) S. japonicum 4 7.1 111 49694 

Calpain B N (1/2) S. japonicum 2 6.2 34 44322 

Cathepsin B N (1/2) F. gigantica 4 7.1 55 46424 

Cathepsin L N (1/2) F. hepatica 2 2.5 32 39516 

Legumain-2 Y F. gigantica 4 10.1 41 36523 

Legumain-2 Y F.gigantica 8 26.8 100 21886 

Legumain-2 Y F. gigantica 4 10.9 31 40793 

1.2 Aminopeptidases 

Leucine aminopeptidase N (1/2) F. hepatica 2 15.4 49 15564 

1.3 Serine / Carboxypeptidase 

Lysosomal Pro-X carboxypeptidase precursor Y S. japonicum 3 3.7 41 70862 

 

Footnote: The full genus names are Taenia szidati, Schistosoma japonicum, Fasciola gigantica, Fasciola hepatica, Clonorchis sinensis. Although the proteases were identified from  F. 

hepatica EST databases, some of the ESTs have been assigned identities by homology with proteins from other species.  Although the peptides were assigned to a EST contig 

unique to the S3 fraction, the protein identity of the contig was sometimes represented in other fractions by different contigs. ‘S3 unique’ indicates whether these proteases are 

unique to the S3: Yes (Y) or No (N). If no, which other fraction it was also present in, S1(1) or S2(2), is also shown. 
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2.3.3 Transcripts located within the gut of Fasciola hepatica 

2.3.3.1 Laser capture 

Images were taken of the sections before and after laser capture and on the cap. These 

images are displayed in Figure 2.3. Gut tissue was excised successfully from the 

sections as illustrated by the before, after and cap shots shown in Figure 2.3.  

2.3.3.2 RNA analysis 

RNA extracted from the tissue captured from the gut could not be measured accurately 

with the Nanodrop (results not shown). Analysis of the laser captured gut tissue with 

the Bioanalyser also indicated that there was insufficient amounts of RNA or that the 

RNA extracted was degraded.  
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Figure 2.3: Images from laser capture microscopy. The gut (G) is illustrated by the 

white arrows before laser capture microscopy in panel A, C, E and after capture in B, 

D, F where the gut structure has been removed. Panel G illustrated the gut structure on 

the cap after it has been removed from the section. 
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2.3.3.3 cDNA synthesis and ligation into competent cells 

Despite the low amount of RNA, an attempt was made to generate cDNA, which was 

then ligated into a vector for propagation in competent cells. Successful ligation was 

visualised initially by selecting white colonies, from blue/white screening. A colony 

PCR confirmed that these colonies did indeed have short insert sequences, see Figure 

2.4. The pGEM®-T  vector without any insert would be approximately 126bp in size.  

If the colony PCR product was larger it indicated that cDNA had been successfully 

ligated into the vector. 

 

 

Figure 2.4: Colony Polymerase Chain Reaction (PCR) of cDNA generated from RNA 

extracted from laser captured F. hepatica gut cells after ligation into the pGEM®-T  

vector, lanes 1-13. The vector amplicon size without any inserts should be ~126bp in 

size, lane 4.  

 

Colonies were sequenced (MWG, http://www.eurofinsdna.com) and searched against 

the NCBI non-redundant database using BLAST. The BLAST search found either no 

significant identities or identified the sequences as cloning vector fragments. Manually 

looking at the sequences indicated the fragments were ‘junk’ with repetitive sequences 

of bases, often with one base repeated in a row for 10-15 bases. So although the 

colonies appeared to contain cDNA inserts from RNA captured using LCM from F. 

hepatica gut, the cDNA could not be identified. This indicated RNA suitable for 

downstream analysis had not been captured using LCM.  

http://www.eurofinsdna.com/
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2.4 Discussion 

With advances in proteomics it is now possible to use this method to study aspects of host-

parasite interaction, drug resistance to flukicides e.g. triclabendazole (Chemale et al., 2010), 

protein expression by different developmental stages (Hernández-González et al., 2010) or 

organ systems, such as the tegument (Ashton et al., 2001; Wilson et al., 2011) within F. 

hepatica. Here proteomics was employed to identify proteins, specifically proteases, which 

were exclusive to a membrane-bound fraction generated from adult F. hepatica.  The 

membrane-bound fraction (S3) has been a rich source of protective antigens such as H11 and 

H-gal-GP against H. contortus and proteases have historically made good vaccine targets in a 

number of parasite species (McKerrow, 1989; Williamson et al., 2003; Knox, 2010). For 

example, cathepsin D-like aspartyl proteases identified from the canine hookworm A. 

caninum, have elicited protection in immunised dogs, reducing worm burdens and worm 

fecundity (Loukas et al., 2005; Williamson et al., 2003). Vaccinating with cysteine proteases 

such as cathepsin L, which have a critical role in F. hepatica tissue invasion (Smith et al., 

1993b) and immune evasion (Smith et al., 1993), reduces the worm burden of F. hepatica in 

immunised sheep and cattle (Mulcahy and Dalton, 2001).  Here, proteolytic enzymes 

exclusive to the adult F. hepatica S3 fraction, and thus of interest included; cathepsin B2, 

legumain-2 and putative lysosomal pro-x-carboxypeptidase precursor. In addition to these, 

saposin-like protein SAP-3, was also of interest. Each of these will be discussed in turn. 

Cathepsin B2, a cysteine protease, has been localised to the gut and tegument of F. gigantica 

and S. mansoni (Dalton et al., 2006; Grevelding, 2006). Cathepsin B2 is expressed by the 

juvenile stages of F. gigantica, facilitating digestion of definitive host tissues and allowing 

migration through the liver parenchyma (Meemon et al., 2004). The somatic extracts used here 

were prepared from adult stages of F. hepatica, indicating that cathepsin B2 is also expressed, 

at some level, in the adult stages of F. hepatica. However, cathepsin Bs have been identified in 

the E/S products of NEJ of F. hepatica (Wilson et al., 2008). Here, cathepsin B was identified 

as exclusive to the membrane-bound fraction and thus is potentially “hidden”. However, 

further analysis would be needed to confirm this. 

Legumain is an cysteine protease originally identified from the leguminous plant, Canavalia 

ensiformis. Orthologues of this enzyme have also been identified in a number of species of 

helminth parasite, including S. mansoni, S. japonicum, H. contortus and F. hepatica (Sajid and 
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McKerrow 2002; Caffery et al., 2000; Oliver et al., 2006). It is proposed to have a role in the 

activation of cysteine proteases by cleaving the pro-enzyme form to activate the mature 

enzyme product (Knox et al., 2003). Within Schistosoma spp., legumain (SM32) has been 

shown to play a role in the digestion of haemoglobin by activating the endopeptidases 

involved in this process (Dalton and Brindley, 1996; Caffrey et al., 2000). Legumain has also 

shown potential as a diagnostic antigen against both Schistosoma (El-Sayed et al., 1998) and 

the Chinese liver fluke, Clonorchis sinensis (Jung-Won et al., 2009). It was also identified in 

the E/S products of C. sinensis and contains a signal peptide (Jung-Won et al., 2009), which 

would indicate it is excreted by these species and thus not “hidden”. As with cathepsin B2, 

although legumain was exclusive to the F. hepatica S3 (membrane-bound) fraction, further 

analysis would be required to confirm that it is genuinely membrane bound, as in other species 

it appears to be excreted and so not “hidden”. 

Pro-x-carboxypeptidase (prolylcarboxypeptidase) is a lysosomal protease which belongs to the 

S28 family of serine proteases (Tan et al., 1993). It exhibits optimal activity at acidic pH and 

has been identified in the helminths, Caenorhabditis elegans (Geier et al., 1999), H. contortus 

(Geldhof and Knox, 2008), S. japonicum, C. sinensis and in whole extracts of adult and 

immature stages of F. hepatica (Robinson et al., 2009). Pro-x-carboxypeptidases have been 

implicated as anticoagulants in H. contortus (Geldhof and Knox, 2008) and F. hepatica 

(Robinson et al., 2009).   

 

Saposin-like proteins, which include SAP-1, SAP-2 and SAP-3, have been shown to be 

expressed at different life stages in F. gigantica (Grams et al., 2006). SAP-1 is expressed by 

the NEJ and is involved in the lysis of hepatic cells while  SAP-2 and SAP-3 proteins, 

expressed by the adult stages, lyse erythrocytes and peripheral blood mononuclear cells 

(PMBC; Grams et al., 2006). This has also been reported for clonorin, a saposin-like protein, 

isolated from the Chinese liver fluke, C. sinensis (Lee et al., 2002).  Erythrocyte lysis is likely 

to be required to initiate haemoglobin digestion and, hence, saposins may also be good vaccine 

candidates. 

Proteomic screening for proteins exclusive to the S3 extract yielded some candidates of 

interest as outlined above. Although a large number of the proteins identified from the screen 

were assigned identities, there were a considerable number of peptides which were not. The F. 

hepatica genome remains incomplete and, to date, there are only 3055 adult F. hepatica ESTs 

http://en.wikipedia.org/wiki/Peripheral_blood_mononuclear_cell
http://en.wikipedia.org/wiki/Peripheral_blood_mononuclear_cell
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publically available (February 2012. NCBI, http://www.ncbi.nlm.nih.gov). This may explain 

why many peptides were not assigned a function. The genome of the closely related helminth  

S. mansoni encodes at least 11,809 genes (Berriman et al., 2009). If the F. hepatica genome 

were completed and annotated a much larger number of the peptides in the current study 

would have been assigned an identity leading to the identification of more potential 

candidates.  

The aim of this Chapter was to identify potential “hidden” antigens derived from the gut of F. 

hepatica. Obviously, the proteomic approach directed at the putatively membrane-bound S3 

fraction cannot determine the precise tissue or sub-cellular compartment from which such 

proteins are extracted (or in which such proteins reside).  In an attempt to identify which, if 

any, of these were present in the gut region, LCM was carried out. As discussed earlier LCM 

allows the precise targeting and extraction of cells from tissues of interest. The gut was 

visualised and extraction of gut tissue successful, as illustrated in Figure 2.3. However, 

subsequent steps in analysis were unsuccessful.  The RNA appeared to be either of poor 

quality and/or too low a concentration to make cDNA for subsequent analysis. This was 

concluded as BLAST searches of inserts identified these as plasmid vector or with no 

significant hit. 

Laser capture microscopy is a relatively novel method which is still being optimised for 

different requirements and applications. The method used to capture gut tissue here was first 

published by Nilaweera et al., (2009) and developed to isolate neurons from sections of 

hamster brain tissue. The LCM performed in this study was carried in collaboration with The 

Rowett Institute, Aberdeen, where the protocol by Nilaweera et al., (2009) has been optimised 

for brain tissue. Here, this methodology failed to produce viable RNA and this could reflect 

subtle methodological differences.  The protocol used here also differs from that used by 

Ranjit et al., (2006) to explore the gut of the hookworms, Necator americanus and 

Ancylostoma caninum. Ranjit et al., (2006) snap froze worms in Optimal Cutting Temperature 

(OCT, Tissue-tek), the slides were then washed with diethylpyrocarbonate (DEPC) water to 

remove OCT before being fixed and stained as described here. Furthermore, Ranjit et al., 

(2006) dried slides in a fume hood for over 2 hours which was longer than the 15 min drying 

time here. The method used here also differed to that of Gobert et al., (2009), who used LCM 

to study tissue-specific gene profiles in S. japonicum, who also washed slides with DEPC 

http://www.ncbi.nlm.nih.gov/
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treated water to remove OCT. The methods by Ranjit et al., (2006) and Gobert et al., (2009) 

may have been more suitable for use with F. hepatica and further studies with LCM could 

warrant using these approaches. However, the most likely explanation is that the RNA could 

have been degraded prior to LCM. The parasites were extracted around two hours after the 

liver was removed from the ovine host at post-mortem. The gut of F. hepatica is an enzyme-

rich environment and may start to degrade almost immediately. Additionally, the parasite 

material was transported from MRI, Edinburgh to the Rowett Research Institute, Aberdeen on 

dry ice and, then the extracted RNA was transported back to Edinburgh in the same manner. 

Therefore, taking into consideration all the factors above, it is probable that poor starting 

material and transportation could be responsible for the poor yield of the RNA.  

If this was to be repeated subsequently with F. hepatica, several factors would need to be 

addressed. Ideally, there would be a minimal distance between sample storage and processing 

for LCM/RNA extraction. Secondly, parasites for sectioning and LCM should be snap frozen 

alive to reduce any possibility of degradation. Unfortunately, MRI does not maintain the liver 

fluke life-cycle in house and samples were retrieved from naturally infected ovine hosts from 

abattoirs. It was often not possible to process livers on site and thus they had to be transported 

back to MRI. Working closely with groups who do have access to the parasite life-cycle and 

the necessary LCM and auxiliary facilities would thus be hopefully circumvent this problem.    

The aims of this chapter were to identify exclusively membrane-bound proteases and to 

determine if transcripts of these were present in the parasite’s gut. A subset of 4 F. hepatica 

proteases that reside within the membrane bound S3 fraction was successfully catalogued, 

which previously has not been carried out for F. hepatica. A large number of the proteins were 

shared between fractions, and these 4 proteases would warrant further investigation to identify 

where they are expressed and what role they have in haemoglobin digestion. Unfortunately, 

for technical/logistical reasons, the LCM approach could not be used to identify which, if any, 

of these, were expressed within the gut of F. hepatica. As membrane-bound gut antigens from 

F. hepatica could not be identified using the proteomic/LCM approach, in the next chapter, 

conjugated lectins will be used as an alternative method for enriching gut associated 

membrane-bound proteins. 
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3 Exploiting lectins to purify gut antigens from somatic extracts of 

Fasciola hepatica 

3.1 Introduction 

Fascioliosis in domestic livestock is traditionally controlled using fasciolicidal drugs. 

Triclabendazole has been the predominant drug of choice for treating liver fluke infections for 

over 20 years because of its efficacy against both juvenile and adult fluke (Brennan et al., 

2007). However, the emergence of resistant parasites has spurred an interest in developing 

vaccines as an alternative means of control. Several promising F. hepatica vaccine candidates 

have been isolated to date, including glutathione-S-transferase (GST; Sexton et al., 1990), 

cathepsin L-like proteases (CatL; Dalton et al., 2003) and leucine aminopeptidase (LAP; 

Acosta et al., 2008). GST was selected because of parallels with the human blood flukes, 

where homologous native GST proteins from Schistosoma spp., were shown to reduce parasite 

burden in immunised mice (40-43 %) and rats (50-72 %) (Balloul et al., 1987; Brophy and 

Pritchard, 1994),  CatLs due to their prominence in the excretory/secretory (E/S) products of 

adult and juvenile F. hepatica (Dalton et al., 2003) and LAP on the basis that it is associated 

with the epithelial cells which line F. hepatica’s digestive tract (Acosta et al., 2008). The F. 

hepatica LAP study, the recent progress in vaccination against Haemonchus as well as 

positive outcomes in vaccination against the blood-feeding tropical cattle tick, Rhipicephalus 

(Boophilus) microplus, which led to the development of the first commercially available 

subunit vaccine, TickGARD™ (Willadsen et al., 1995), all indicate that targeting proteins 

expressed on the luminal surface of the intestine of haematophagous parasites could be a rich 

source of effective vaccine candidates. F. hepatica lives in a highly vascularised environment 

within the liver system, feeding on surrounding tissue and blood (Dalton et al., 2004; Oslen, 

1986). Furthermore, blood is ingested, whether deliberately or not, by the juvenile fluke 

migrating through the liver parenchyma (Oslen, 1986). Thus F. hepatica may be vulnerable to 

the gut antigen approach to vaccination. 

 

Note: Published, McAllister H.C., Nisbet, A.J., Skuce, P.J., Knox, D.P. (2011) Using lectins to identify hidden 

antigens in Fasciola hepatica. The Journal of Helminthology 85, 121-127 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22McAllister%20HC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nisbet%20AJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Skuce%20PJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Knox%20DP%22%5BAuthor%5D
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Most of the candidate “hidden” or gut antigens identified to date have been isolated from  

membrane-bound fractions and have glycosylated components, for example, H-gal-GP 

isolated from H. contortus (Smith et al., 1994). Initial studies investigating H. contortus gut 

proteins involved physically dissecting out the parasite’s gut then extracting the proteins. 

However, as discussed in Chapter 2, the F. hepatica gut is embedded in tissues and is very 

difficult to dissect out. Therefore, other means have to be used to extract and purify F. 

hepatica gut proteins. Lectins have proven to be valuable tools for separating glycosylated 

antigens from protein-rich extracts (Smith et al., 1994). Lectins are carbohydrate-binding 

proteins derived from plants, animals and micro-organisms, with specificity for terminal or 

sub-terminal carbohydrate residues (Leathem and Brooks, 1998). In H. contortus, the major 

vaccine candidates isolated from the intestine have all been localised to the microvillar surface 

of the intestinal cells (Knox and Smith, 2001), the equivalent structure to the gut lamellae in F. 

hepatica. This chapter aims to exploit the differential carbohydrate binding properties of 

lectins, in an attempt to identify those which bind specifically to the gut of adult F. hepatica. 

As described in Chapter 2, proteins in the membrane-bound extract are of particular interest as 

this has been a rich source of antigens in other helminth parasites (Smith et al., 1994). By 

identifying lectins with specificity for the gut region, it may be possible to enrich the crude 

membrane-bound extract to subsequently isolate intestinal integral membrane proteins.  

To identify the protein components of the enriched fractions, LC-ESI-MS/MS will be used, as 

described in Chapter 2. This will identify proteins which have been enriched by the selected 

lectins, which can then be classified by protein function. Again, proteases will be of particular 

interest as, historically, these have made very effective vaccine candidates (Dalton, 2001). For 

example, H-gal-GP identified from the membrane-bound fraction (Triton X-100 extract) of H. 

contortus reduces the egg counts and worm burdens of immunised sheep by 86 % - 93 % and 

52 % - 75 %, respectively (Smith et al., 2000). Furthermore, lead vaccine candidates to date 

against infection with F. hepatica are the proteases, cathepsin L1 and L2 (Dalton et al., 1996; 

Mulcahy and Dalton, 2001) and LAP (Acosta et al., 2008; Brophy and Pritchard, 1999). 
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3.2 Materials and methods 

3.2.1 Parasites 

3.2.1.1 Retrieval of parasites 

Flukes from naturally infected ovine livers were obtained, at post mortem, from several 

sources; Professor Neil Sargison (RDSVS, Edinburgh), Professor Ian Fairweather (Queen’s 

University, Belfast), Mr. S. Stevenson [Duncan Stevenson (Meats) Ltd, Dunblane], Scotbeef 

(Dunblane) and Dr Fiona Kenyon (Moredun). The parasites were recovered live from the gall 

bladder (if still intact) or from the bile ducts by slicing through the liver mass. 

3.2.1.2 Storing parasites for somatic extract preparation 

Parasites were washed in phosphate buffered saline (PBS) three times and frozen at -80
o
C. 

3.2.1.3 Processing parasites for paraffin wax sectioning 

Parasites were washed three times in 1 x PBS (see Appendix 1) for 5 min, and fixed at room 

temperature in 4 % paraformaldehyde for 24-48 hours. They were then processed into paraffin 

wax blocks for histological sectioning using an automated processor. This took the fixed 

parasites through a series of alcohol washes as follows; 80% ethanol for 45 min; 95% ethanol 

for 75 min; 99% ethanol for 3×75 min; isopropanol for  2×90 min; isopropanol/xylene [1:1 

v:v] for 90 min; xylene for 2×90 min; paraffin wax for 2×105 min. The dehydrated parasites 

were then placed in cassettes and embedded in wax. The blocks were stored at 4ºC until 

sectioned.  

Wax sections were cut using a rotary microtome. 5 µm thick sections were then cut and 

floated in a 45ºC water bath. Sections were mounted on glass slides (Superfrost® Plus glass 

slides, Thermo Scientific). Slides were dried overnight at 45
o
C and stored at 4

o
C until 

required. 

3.2.2 Lectin Screen on histological sections 

3.2.2.1 Preparing wax sections for lectin staining 

Mounted sections were dewaxed using an automated processor. This took slides through a 

series of washes as follows: xylene 3 min; xylene 1.5min; 2 x 74 OP 1.5 min; 74 OP/dH2O 
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[1:1 v:v] 30 sec; dH2O 1.5min. Slides were then kept immersed in dH2O. Five minutes prior to 

staining, slides were immersed in lectin wash buffer (LWB), see Appendix 1. 

3.2.2.2 Conjugated Lectins 

Sixteen fluorescently labelled lectins of differing carbohydrate specificities (Vector 

Laboratories, UK) as listed in Table 3.1, were used to screen the mounted histological 

sections. Lectins were diluted to a working concentration of 5 μg/ml in LWB, see Appendix 1.  

3.2.2.3 Haemotoxylin and Eosin (H/E) staining of sections  

For reference, several mounted sections of adult flukes were stained with haemotoxylin and 

eosin by the following automated procedure: xylene, 180 sec; xylene, 90 sec; 74OP, 60 sec; 

74OP, 90 sec; 74OP/water, 30 sec; water, 90 sec; haemotoxylin (nuclear stain), 360 sec; 

running water, 150 sec; acid alcohol [1% HCl in 70% ethanol], 1 sec; water, 60 sec; Scots Tap 

Water Substitute (S.T.W.S.) (see Appendix 1), 60 sec; water, 120 sec; eosin, 90 sec; water,150 

sec; 70% alcohol, 60 sec; 95% alcohol, 45 sec; 90 sec; 3 x 74OP, 90 sec; 2 xylene, 120 sec; 

xylene. 

3.2.2.4 Lectin probing of histological sections 

Mounted sections of adult flukes were de-waxed by an automated procedure (Xylene, 90sec; 

xylene 165 sec; 74 OP 2x 90 sec; 74OP + dH2O, 60 sec; dH2O, 90 sec) and then probed with 

one of the panel of 16 lectins listed in Table 3.1. To do this, slides were placed horizontally in 

a dark moist chamber; 500μl of diluted lectin solution were pipetted directly onto the section 

and incubated for 2 hours at room temperature. Slides were then washed in darkness three 

times for 5 minutes with LWB. A negative control was prepared in the same way, replacing 

the lectin with an equal volume of LWB alone. Slides were mounted with a coverslip using 

Prolong® antifade with DAPI (Invitrogen) and stored at 4°C in the dark until viewed on an 

Axiovert 200 fluorescent microscope (Carl Zeiss Microimaging). The staining within the 

following organ systems was noted: gut lamellae, gastrodermal cells, tegumental syncytium, 

tegumental muscle layer, subtegumental cells, tegumental spines, egg shell material, eggs, 

vitelline follicles, Mehlis’ gland, testis follicles, testis membrane, cirrus, ventral sucker, oral 

sucker and parenchyma. 
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Table 3.1 :  Conjugated lectins used for screening histological sections of adult F. hepatica and/or Western blots of adult F. hepatica somatic extracts S1, 

S2 and S3 

Lectin 

Used for Histological sections(H) and/or 

Western Blots (W) 

Common name of 

source plant Abbreviation Glycan specificity 

Canavalia ensiformis H and W Jack bean Con A αMan> αGlc 

Triticum vulgaris H and W Wheat Germ  WGA β-GlcNAc 

Lens culinaris agglutinin H and W Lentil LCA αMan> αGlc 

Pisum sativum agglutinin H and W Pea PSA αMan 

Arachis hypogaea H and W Peanut  PNA Galβ1-3GalNAc 

Artocarpus heterophyllus H and W Jackfruit (Jacalin) JAC αGal 

Lycopersicon esculentum lectin H and W Tomato LEL βGlcNAc 

Glycine max H Soybean  SBA GalNAc or Gal 

Vicia villosa lectin H Hairy Vetch VVL GalNAc 

Solanum tuberosum lectin H Potato STL βGlcNAc  

Erythrina cristagalli lectin H Coral tree ECL Galβ1-4GlcNAc 

Ricinus communis agglutinin I  H Castor bean RCA I βGal, βGalNAc 

Dolichos biflorus agglutinin  H Horse gram DBA Terminal αGalNAc 

Sophora japonica agglutinin H Pagoda tree SJA βGal, βGlcNAc 

Ulex europaeus agglutinin I H Gorse UEA I α-L-Fuc 

Datura stramonium lectin H Thorn Apple DSA βGal, Galβ1-4GlcNAc, (GlcNAc1-4)n 
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3.2.3 Preparation of somatic extracts from F. hepatica 

Water-soluble (S1), membrane associated (S2) and membrane bound (S3) extracts were 

prepared exactly as described in Section 2.2.1.2. 

3.2.3.1 Measurement of protein concentrations 

Protein concentrations of each extract were measured using the BCA™ Protein Assay Kit 

(Pierce) as described 2.2.1.3. 

 

3.2.4 Lectin probing of somatic extracts 

3.2.4.1 SDS PAGE gel electrophoresis 

Sodium dodecyl sulphate polyacrylamide electrophoresis (SDS PAGE) was used to 

separate extracts, S1-S3, by molecular mass, as described in section 2.2.1.4. Precast 

NuPAGE® Novex Bis-Tris 4-12% gels (Invitrogen) were used and stained with 

Simplyblue® (Invitrogen). 

3.2.4.2 Western blotting  

Extracts S1-S3 were separated on 4-12% polyacrylamide gels at 200V for 50 minutes as 

outlined in section 3.2.4.1. Instead of staining, the gels were blotted on to nitrocellulose 

membrane using the X Cell II Invitrogen system (Invitrogen) according to the 

manufacturer’s instructions. The nitrocellulose membrane was then divided into lanes and 

blocked in TNTT (see Appendix 1) overnight at 4ºC. 

3.2.4.3 Probing Western blots with biotinylated lectins 

Biotinylated lectins, as outlined in Table 3.1; ConA, WGA, LCA, PSA, PNA, JAC and 

LEL (Vector Laboratories), were prepared at a 1:1000 dilution (except ConA 1:2000) in 

TNTT. Electroblotted lanes of extracts were then incubated with one of the lectins for 1 

hour at room temperature on a rotary shaker. After incubation, strips were washed 3 times 

in TNTT then incubated in Streptavidin-HRP (Thermoscientific, UK) at 1:1000 in TNTT 

for 1 hour and washed as before. Strips were developed with Sigmafast™ DAB with metal 

enhancer (Sigma-Aldrich, UK). 
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3.2.5 Lectin affinity purification 

3.2.5.1 Peanut agglutinin and Jacalin agarose affinity column preparation  

Affinity columns for both peanut agglutinin (PNA) and jacalin (JAC) lectins were prepared 

as follows. A 150 mm long x 10 mm diameter empty column apparatus was assembled 

according to the manufacturer’s guidelines (Bio-rad) and washed thoroughly with dH2O at 

room temperature to clean and check for any blockages or leaks. The column was then 

plugged with a stopper and 1 ml of 1 x LWB dispensed into the bottom of the column. 2 ml 

of the lectin-bound agarose beads were then dispensed into the column and the stopper 

removed. The column was packed by continually washing for 30 min with 1 x LWB, being 

careful not to allow the column to run dry.  Once the column was packed, the stopper was 

replaced and the column filled very carefully with 1 x LWB, to create a positive meniscus. 

The top of the column was assembled ensuring no air bubbles were trapped. All the 

columns were then equilibrated and packed in LWB by washing overnight, at a flow rate of 

6 mls per hour at 4ºC. 

3.2.5.2 Lectin affinity chromatography of S3 Extract 

1 ml of extract at 1 mg/ml was diluted four-fold in LWB. The diluted extracts were 

individually fractionated on either a JAC or PNA lectin-agarose column at 4ºC. First, the 

sample was loaded onto a fresh column at 6ml/hour ensuring any unbound protein was 

collected. The column was then washed with 5 x column volumes in LWB. Bound proteins 

were then eluted by washing the column with either 0.8M or 0.5M galactose in LWB for 

JAC and PNA, respectively, ensuring the eluates were collected. Bound and unbound 

proteins were buffer exchanged into 10mM Tris, pH7.4 by passing through a Sephadex G-

25 column to remove detergents and sugars, which may interfere in later assays. Samples 

were then concentrated by ultracentrifiltration in Ultracel 10K concentrators (Amicon).  

The protein concentration for each sample was then estimated using a BCA™ Protein 

Assay Kit (Pierce) as described in section 3.2.3.1 and samples stored at -80ºC. To visualise 

purified fractions, samples were separated by SDS-PAGE (4-12%) and silver stained using 

Silverquest
TM 

silver staining kit (Invitrogen).   

3.2.5.3 Liquid chromatography-electrospray ionisation-tandem mass spectrometry 

(LC-ESI-MS/MS) of lectin-enriched fractions 

The LC-ESI-MS/MS and database mining were carried out exactly as described in section 

2.2.14 to section 2.2.1.6. Data were analysed as outline in section 2.2.1.7 
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3.3 Results 

3.3.1 Lectin probing of histological sections 

Seven of the lectins bound to the gut region of F. hepatica, as shown in Table 3.2. 

However, none of these lectins bound exclusively to the gut. Many of the organ systems 

within tissue sections of the adult flukes were labelled by one or more of the panel of 

lectins screened.  There were some examples of tissue–specific localisation as shown in 

Figure 3.1, panels A-D.  The lectins STL, DBA and SJA bound exclusively to 

glycoproteins located on the testes membrane, the testes follicles and the subtegumental 

cells, respectively. These were the only lectins to show single tissue specificity but the 

intensity of staining in each of these cases was relatively low. Two lectins, UEA-1 and 

DSL, showed no affinity for any organ systems within the parasite. ConA bound intensely 

to all tissues throughout the parasite, with the exception of the tegumental spines. A similar 

pattern was seen with the lectins WGA, LCA and PSA but the staining intensity varied 

between the organ systems.  JAC and LEL bound to molecules on the gut lamellae but not 

the gastrodermal cells whereas, conversely, PNA bound to carbohydrates on the 

gastrodermal cells and not the lamellae. This indicates tissue specificity to either the gut 

lamellae or gastrodermal cells as shown in Figure 3.2, panels A and B. Lectins of particular 

interest, i.e. those binding to the gut of F. hepatica identified from the screen of adult 

sections with fluorescently conjugated lectins were, therefore, ConA, WGA, LCA, PSA, 

PNA, JAC and LEL.  
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Figure 3.1:  Lectin binding within the tissues of F. hepatica. Panel A shows the binding of 

concanavalin A to many tissues throughout the parasite, including the gut lamellae (GL), 

gastrodermis (GD) and vitelline cells (VC). Panel B shows the binding of Lens culinaris 

agglutinin to the presumed S1/S2 cells (arrows) of the Mehlis’ gland. The selective binding 

of Lycopersicon esculentum lectin to the male tissues, for example, the testes (T) is shown 

in Panel C and of Erythrina culinaris agglutinin I to the female tissues, for example, the 

vitelline follicles (V) are shown in Panel D. 

 



79 

 

 

Figure 3.2 Selective lectin binding within the gut tissues of F. hepatica. Panel A shows the preferential binding of jacalin lectin to the gut lamellae (GL). 

Panel B shows the preferential binding of peanut agglutinin lectin to the gastrodermal cells (GD) 
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Table 3.2 Summary of  lectin binding within the gut and other organ systems of adult F. hepatica.  Other organ systems noted include; Syncytium (S), 

Muscle layer (M), Subtegumental cells (ST), Tegumental spines (T), Eggs (E),Vitelline follicles (VF), Mehlis’ Gland (MG), Testes (T), Cirrus (C), 

Ventral sucker (VS), Oral sucker (OS), Parenchyma (P) 

 

 

 

 

 

Staining in the gut? Staining in other organ systems? (+/-) 

Lectin Gut Lamellae Gastrodermis S M ST TS E VF MG T TM C VS OS P 

                Con A +++ +++ + + + - + + + + + + + + + 

WGA ++ ++ + + + - + + + + + + + + - 

LCA ++ ++ + + + - + + + + + + + + + 

PSA ++ ++ + + + - + + + + + + + + + 

PNA - + + + + - + + + + + + - + + 

JAC +++ - + + + - + + + + + + + + + 

LEL ++ - + + + - - - - - + + + + + 

SBA - - - - - - + + - - + - - - - 

VVL - - - - - - + + + + + - + + - 

STL - - + - + - - - - - + - - - - 

ECL - - + - + - + + - - - - - + - 

RCA I - - + - - - - - - - - - - - - 

 DBA - - - - - - - - - - + - - - - 

 SJA - - - - - - + - - - - - - - - 

 UEA I - - - - - - - - - - - - - - - 

 DSL - - - - - - - - - - - - - - - 
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3.3.2 Lectin probing of somatic extracts 

 

Figure 3.3 shows the Western blots of the S3 extract incubated with the panel of lectins 

which reacted with the gut material on histological sections, as identified above; ConA, 

WGA, LCA, PSA, PNA, JAC and LEL. Each of the lectins tested reacted with proteins in 

the S3 extract and there was a difference in the staining patterns depending on the lectin 

used. The possibility that differential lectin binding could be used to enrich for different 

subsets of gut-specific membrane proteins was then tested by comparing the profiles of the 

glycoproteins which specifically bound JAC and PNA lectins.   

 

Figure 3.3. Lectin probing of F. hepatica membrane bound (S3) extract with the respective 

biotinylated lectins. Lane M, Markers. Lane 1, Con A. Lane 2, WGA. Lane 3, LCA. Lane 

4, PSA. Lane 5, PNA. Lane 6, JAC. Lane 7, LEL. Lanes 1-7 were then incubated in 

strepdavidin-Horseradish peroxidise (HRP) and developed with Sigmafast™ DAB. Lane 8 

is an example of a negative control, where the S3 was probed with Con A lectin then 

developed with DAB (no incubation in strepdavidin-HRP). Biotinylated lectins WGA, 

LCA, PSA, PNA, JAC and LEL and strepdavidin-HRP were prepared at a 1:1000 dilution 

in TNTT, ConA  was diluted at 1:2000 in TNTT.  
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3.3.3 Lectin-affinity purification 

The S3 extract was applied to JAC or PNA affinity columns and the respective unbound 

and bound fractions separated using SDS-PAGE and visualized by silver staining (Figure 

3.4).  Both lectins appeared to exhibit selectivity and bound relatively few proteins 

compared to the original extract.  The eluate from the PNA affinity column contained a 

number of polypeptides over a broad size range but, nonetheless, clearly represented a 

subset of the original crude fraction. By contrast, JAC appeared to be more selective, the 

eluate containing only two faint bands around 62-65 kDa.  

 

Figure 3.4: Enrichment of a crude detergent-soluble fraction (S3) by lectin affinity 

chromatography. The unbound fraction (UB) from the peanut agglutinin (PNA) and jacalin 

(JAC) columns are shown alongside the eluted (E) protein fraction from PNA and JAC. 

Arrows highlight the faint protein bands in the JAC eluate. 
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3.3.4 Proteomic analysis of JAC- and PNA- enriched fractions 

The enriched fractions were analysed using LC-ESI-MS/MS to identify proteins which 

were present in the respective lectin-enriched fractions. Despite the fractions appearing 

relatively “simple”, the sequences of the peptides identified from the S3 enriched JAC and 

PNA fraction identified 270 and 194 EST contigs in the Professor Peter Brophy EST 

database, respectively. From the identified ESTs, 160 and 113 represented proteins unique 

(not represented in the other lectin enriched fraction) to either JAC and PNA enriched 

fractions, respectively. A large proportion of the identified proteins from JAC and PNA 

were classed as hypothetical or unknown. This accounted for 42% and 30% of the 

identified EST contigs in the JAC and PNA enriched fractions. The protein identities were 

sorted based on functional class, as shown in Appendix 3 for the JAC fraction and 

Appendix 4 for the PNA enriched fractions. The proteases enriched from the S3 by JAC 

and PNA lectins are highlighted in Table 3.3.  

For the purposes of identifying a putative gut antigen(s), proteolytic enzymes identified 

within the lectin-enriched fractions were of particular interest. There were 3 proteolytic 

enzymes identified from the JAC-enriched fraction, namely; cathepsin L, legumain – 2 and 

leucine aminopeptidase. In addition to these, the gut protein “secreted saposin-like 

protein”, SAP-3, was also of interest as it is a gut-associated protein in the hookworm 

A.caninum (Don, 2007).  Within the PNA enriched fraction, four proteolytic enzymes were 

identified, namely; cathepsin L1, legumain-1, putative lysosomal Pro-X carboxypeptidase 

precursor and cathepsin D-like aspartyl protease. Additionally, as with the JAC-enriched 

fraction, SAP-3 was also identified and of particular interest. 
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Table 3.3: Proteases identified from the PNA and JAC enriched S3 fraction from adult  F. 

hepatica. 

Lectin 
Fraction 

Database 
Accession 
Number 

Protein Description 
Mowse 
Score 

No. of 
unique 

peptides 

     
JAC fhep00187|2 cathepsin L 283.4 5 

 
fhep00889|1 cathepsin L 94.6 2 

 
fhep00344|1 cathepsin L protein 361.2 8 

 
fhep03421|1 cathepsin L protein 311.2 7 

 
fhep00577|1 cathepsin L protein 262.4 6 

 
fhep00623|2 cathepsin L protein 163.2 3 

 
fhep00739|1 cathepsin L1D 131.5 4 

 
fhep04385|1 cathepsin L1D 90.8 2 

 
fhep02273|1 cathepsin L-like protein 282.1 7 

 
fhep03629|1 secreted cathepsin L 1 203.8 5 

 
fhep02735|1 cathepsin L-like protein 246.9 5 

 
fhep02461|1 cathepsin L-like protein 209.5 5 

 
fhep42601|1 secreted cathepsin L2 272.6 6 

 
fhep00458|1 legumain-2 47.2 2 

 
fhep00030|1 leucine aminopeptidase 560.5 8 

     

     
PNA fhep00344|1 cathepsin L1 protein 118.6 2 

 
fhep01124|1 legumain-1 47.2 2 

 
fhep00076|1 

putative Lysosomal Pro-X 
carboxypeptidase precursor 

38.6 2 

 
fhep43071|1 

cathepsin D-like aspartyl 
protease 

154.8 3 

 
fhep01837|1 

cathepsin D-like aspartyl 
protease 

317.4 7 
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3.4 Discussion 

Here, lectin binding to tissue sections and extracts has been used in an attempt to facilitate the 

isolation of gut-specific glycoproteins from adult F. hepatica. Seven of the lectins tested, 

namely Con A, WGA, LCA, PSA, PNA, JAC, and LEL bound to the gut lamellae or to the 

gastrodermal cells. In addition, they also bound to elements within other tissues and organ 

systems but the intensity of staining differed depending on the tissue and lectin in question. 

For example, ConA lectin stained almost every anatomical region with equally bright intensity 

while others (LEL, ECL, JAC, PNA) bound selectively to male (LEL) and female (ECL) 

reproductive tissues. Similarly, JAC bound to the gut lamellae but not the gastrodermal cells 

while, conversely, PNA bound to the gastrodermal cells but not the lamellae (Figure 3.1; 

Panels A to F).When membrane-bound protein extracts were further fractionated using PNA 

or JAC affinity chromatography (Figure 3.2, panels A and B), it became clear that lectins did 

offer a means to isolate distinct, and simplified, protein sub-sets from detergent-soluble 

extracts of adult fluke.  

Lectins have previously been used with considerable success for isolating candidate vaccine 

antigens by affinity chromatography as shown in the preparation of the gut-associated 

protective antigens H11 and H-gal-GP, from the parasitic nematode, H. contortus, (Knox and 

Smith, 2001; Smith et al., 1994; Smith et al., 2000a; Smith et al., 2000b). The gastrodermal 

cells of F. hepatica contain several known vaccine candidates for fluke, including cathepsin 

L1 and GST (Collins et al., 2004; Creaney et al., 1995). However, the gut cannot be dissected 

out to identify which proteins reside here. Thus, lectins were used to screen sections of adult 

F. hepatica which indicated that JAC had some specificity for the gut lamellae and PNA 

showed some specificity for the gastrodermis.  While the Western blots described here 

confirmed that the selected lectins bound to glycosylated molecules within the S3 somatic 

fraction (Figure 3.3), these blots did not indicate that binding was particularly selective with, 

for example, the PNA and JAC binding profiles being almost indistinguishable. When used as 

affinity ligands, these lectins selected smaller subsets of glycoproteins in comparison to those 

of the original S3 protein fraction. A number of proteins identified by PNA and JAC were 

shared. The eluate from PNA contained a series of bands undoubtedly less complex than the 

original sample and the JAC eluate contained two faint protein bands around 62-65kDa in 
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size.  The brush border in H. contortus has proven to be a rich source of antigens and both 

JAC and PNA have been used to purify protective antigens from somatic fractions of H. 

contortus (Knox and Smith, 2001; and Smith, 2001; Knox et al., 2003; Smith et al., 2000).  

The proteomic analyses of the lectin-enriched fractions revealed differences between the 

respective lectins’ affinity for different glycoproteins. The JAC-enriched fraction contained 

three proteolytic enzymes (cathepsin L, Legumain – 2 and LAP) and a gut-associated protein 

(SAP-3). The PNA-enriched fraction contained four proteolytic enzymes and a gut-associated 

protein; cathepsin L1, legumain-1, putative lysosomal Pro-X carboxypeptidase precursor, 

cathepsin D-like aspartyl protease and the SAP-3 protein. Proteolytic enzymes or gut-

associated proteins identified uniquely in the S3 dataset in the previous chapter included 

cathepsin B, Legumain-, a putative pro-X-Carboxypeptidase precursor and the SAP-3 protein. 

Additionally, cathepsin L1 was also identified in the S3 fraction but was not unique to this 

fraction as it was also identified in S1 and S2 fractions.  CatL1 has been extensively studied 

and characterised in F. hepatica. It is secreted by all developmental stages within the 

definitive host and facilitates migration by digesting tissue, immune evasion and feeding 

(Mulcahy and Dalton, 2001). Native cathepsin L1  has been trialled as a vaccine candidate 

where it protected immunised animals from infection in both sheep (72 % reduction in parasite 

burden) and cattle (79 % reduction in parasite burden) when administered with Freund’s 

adjuvant (Mulcahy and Dalton, 2001).  

One protein which was not previously identified in the S3 fraction, but was enriched by the 

PNA lectin in the current study, is the cathepsin-D like aspartyl protease. Vaccination of dogs 

with recombinant cathepsin D-like aspartyl proteases (Ac-APR-1) has been shown to protect 

against infection, reducing egg output of A. caninum in comparison to non-vaccinated controls 

by 70 % (Loukas et al., 2005). The cathepsin D aspartyl proteases identified from the canine 

hookworm, A. caninum (Ac-APR-1) and the human hookworm N. americanus (Na-APR-1), 

have been localised to the parasites’ gut and shown to have a role in digesting host 

haemoglobin. This latter trait was also thought to be associated with host specificity. Although 

both forms of the cathepsin D were enzymatically active against canine and human 

haemoglobin but the rates of digestion were considerably higher against their own respective 

host blood samples (Williamson et al., 2002). Further to this, hookworm cathepsin D has been 
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shown to be most active in acidic environments (Williamson et al., 2002) and thus would be 

expected to function efficiently in the gut lumen of F. hepatica which is slightly acidic ~ pH 

5.5 (Dalton et al., 2006; Halton et al., 1997). Blood-feeding parasites use a number of 

proteolytic enzymes which act in a cascade to facilitate haemoglobin digestion, whereby the 

action of one allows the next to act and so forth (Williamson et al., 2003). The initial step of 

haemoglobin digestion is proposed to be performed by the aspartyl proteases, followed then by 

cysteine proteases, metalloproteases and finally the exopeptidases, in that order (Williamson et 

al., 2003). The disruption of just one of these steps, especially an early and possibly rate-

limiting step, could have a profound effect on the ability of the parasite to digest haemoglobin, 

thus causing it to starve. Cathepsin D has been identified in a number of blood-feeding 

parasites including Schistosomes (Brindley et al., 2001), A. caninum and N. americanus 

(Brown et al., 1995). The traits which have been associated with cathepsin D from studies in 

other parasites, include the ability to digest host haemoglobin (Williamson et al., 2003), 

localisation to the gut and activity in acidic environments (Loukas et al., 2005; Williamson et 

al., 2003) make the cathepsin D identified in this study a very compelling gut antigen 

candidate in F. hepatica and worthy of further investigation. The next steps would be to 

characterise this protein and assess whether F. hepatica cathepsin D is localised to the gut and 

has the ability to digest host haemoglobin under acidic condition as proposed to occur within 

the F. hepatica gut lumen (Dalton et al., 2006; Halton et al., 1997). 

 

This study also provides valuable information regarding the distribution of carbohydrates 

throughout the parasite’s complex organ systems. It is evident that some carbohydrates are 

shared amongst tissues, whereas others have a more specific tissue distribution. The lectins 

ConA, WGA, LCA, PSA, PNA, JAC and LEL all bound to molecules in gastrodermal tissues 

but have specificity for differing sugars such as α-D-mannose, α –D-glucose, N-

acetylglucosamine, N-acetylgalactosamine, glucose and galactose (Leathem and Brooks, 

1998). The selective binding of JAC to molecules on the gut lamellae and PNA to those on the 

gastrodermal cells indicates that the sugars α-galactosidase and galactosyl (β-1, 3) N-

acetylgalactosamine are present and may be specific to these tissues within the gut region. 

Previous studies have indicated that α-linked acetylgalactosamine sugars, derivatives of 
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galactose, are found on proteins within the gut of F. hepatica (Wuhrer et al., 2004), and this 

would be consistent with the present findings. In addition, the sugars N-acetylglucosamine and 

N-acetylgalactosamine have also been identified in the gut of the blood fluke, S. japonicum 

(Gobert et al., 1998). H-gal-GP, the highly protective antigen identified from the gut of the 

nematode, H. contortus, is a galactose-containing glycoprotein complex (Smith et al., 1999; 

Smith et al., 1994) and is purified using lectins with specificity for N-acetylgalactosamine 

(Smith et al., 1994). This lectin screen indicates that similar glycan moieties are also present 

on glycoproteins in the gut tissues of F. hepatica. 

This lectin screen also highlights the diversity and complexity of glycoconjugates present 

throughout the organ systems of F. hepatica. The significance of the presence or absence of 

certain carbohydrates is not fully understood but the patterns seen here are consistent with 

previous studies in F. hepatica and other homologous trematode species. The aim here was to 

identify any lectins which could selectively isolate glycoproteins from tissues of specific 

interest, in this case the gut. Unfortunately, many carbohydrate molecules which are present 

on these tissues are also shared with other organ systems and no single lectin bound 

exclusively to the gut. Nonetheless, the selective binding of JAC to molecules on the gut 

lamellae was exploited in order to purify a relatively simple subset of proteins from a 

detergent extract of adult fluke. From this, cathepsin D was highlighted as a potential 

candidate for future work because it has many of the hallmarks/characteristics of previously 

successful vaccine antigens. Work in the subsequent chapters will focus on characterising this 

novel protease using enzymatic activity assays and immunohistochemistry.  
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4 Investigation of proteolytic activity in somatic fractions of F. 

hepatica 

4.1 Introduction 

The importance of proteolytic enzymes as protective vaccine antigens has been discussed in 

previous chapters. There are a number of proteins within F. hepatica which possess 

proteolytic properties and provide high levels of protection when used in vaccination 

experiments. These include CatL1, CatL2 (Mulcahy and Dalton, 2001) and LAP (Acosta et 

al., 2008).  

The presence of proteolytic activity in PBS-soluble homogenates of adult F. hepatica was first 

demonstrated by Howell (1966) using azocoll as a substrate. This proteolytic activity was later 

localised to the gut caeca of adult flukes by mounting fresh sections of adult flukes on Ilford 

photographic plates and incubating at 37 ⁰C, then examining plates for evidence of lysis 

(Howell, 1973). Proteases can be divided into a number of functional clans defined on the 

basis of amino acids in the active site that are essential for activity and include the aspartyl-, 

cysteinyl-, glutamyl-, metallo-, asparaginyl-, serine-, and threonine-dependent proteases 

(Rawlings et al., 2010). A clan is divided into a number of families each comprising 

homologous proteolytic enzymes. Therefore, two proteases within a family share a significant 

proportion of their amino acid sequence, specifically with regard to the peptidase subunit 

region (Rawlings et al., 2010). Four protease clans have been identified to date within F. 

hepatica. These include clan AA, CA, DA and MF and account for 29 putative proteases, not 

all of which have been characterised experimentally for their proteolytic properties (Rawlings 

et al., 2010). 

F. hepatica is known to ingest host blood during its migrating stages (Fairweather et al., 1999) 

and as adults in the bile duct (Smyth and Halton, 1983; Dalton et al., 2004). However, the 

mechanism of haemoglobin digestion remains unclear. Recently, it has been proposed that the 

acidic pH of the parasite’s gut relaxes the haemoglobin structure, making it susceptible to 

proteolysis by cathepsin L1 (FheCL1), which is present in and secreted by adult and juvenile 

fluke (Lowther et al, 2009). These authors showed that FheCL1 could degrade haemoglobin to 

small peptides, predominantly of 4-14 residues, but could not release free amino acids. They 
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suggested that haemoglobin degradation was not completed in the gut lumen but that the 

resulting peptides are absorbed by the gut epithelial cells for further processing by intracellular 

di- and aminopeptidases to free amino acids that are distributed through the parasite tissue for 

protein anabolism. In other parasites, namely the malaria agent, Plasmodium spp., the 

hookworms such as N. americanus and A. caninum and the trematodes Schistosoma spp., 

aspartyl proteases are thought to initiate digestion by cleaving the globin backbone with 

subsequent unravelling of tertiary structures which exposes regions of the peptide backbone 

which can then be cleaved by other endopeptidases (Williamson et al., 2003). A protease, 

active at pH 3, was detected in a PBS extract of F.  hepatica and then isolated and partially 

purified (Rupova and Keilova, 1979). The protease cleaved denatured haemoglobin and 

proteolytic activity could be inhibited by Pepstatin A. The authors proposed that the protease 

probably played an important role in helminth nutrition. Despite its potential importance, this 

protease(s) has not been investigated since. Here the proteolytic properties of the PBS-soluble, 

membrane-associated and membrane-bound fractions of adult fluke were examined with a 

particular emphasis on haemoglobin digestion. These proteases may be pivotal in nutrient 

acquisition, thus making them potential vaccine candidates. 

There are a number of assays available to characterise enzymatic activity but these often 

require purified or, at least, simplified extracts. The extracts (S1, S2 and S3) described 

previously, are complex mixtures of proteins as evidenced by the large number of proteins 

identified by the proteomics approach described in Chapter 2 and Appendix 2. Substrate gel 

analysis has been used successfully to characterise proteolytic activity in similar extracts from 

the sheep scab mite, Psoroptes ovis (Kenyon and Knox, 2002), the cattle nematode, Ostertagia 

ostertagi (Geldhof et al., 2000), the blood-feeding nematode, H. contortus (Knox et al., 1993) 

and in F. hepatica E/S (Dalton and Heffernan, 1989).  This technique involves separating the 

respective protein fractions by SDS-PAGE on gel matrices containing a substrate of interest, 

such as gelatin. The separated fractions can then be incubated in a range of buffers to ascertain 

the pH range of active proteases and an approximate molecular weight. 

Substrate degradation can also be measured by reading a change in absorbance at 280 nm. 

This gives a readout for the extent of protein breakdown, as the higher the absorbance, the 

more short peptides and free amino acids (mainly tryptophan, tyrosine and phenylalanine) are 
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present. This technique has successfully been used to evaluate proteases in crude protein 

fractions from P. ovis (Nisbet and Billingsley, 2000). Furthermore, proteases cleave between 

specific residues depending on their functional class. Therefore, synthetic substrates 

containing a fluorescent tag, which is liberated when the substrate is cleaved between specific 

residues can be used to evaluate the presence of certain proteases within a crude fraction over 

a range of pH conditions. The amino acid composition of the substrate can vary, depending on 

the target enzymes which cleave at different sites.  

In this chapter, the three fractions S1, S2 and S3 were investigated to help identify which 

active proteases are present. Subsequent analysis of their ability to digest haemoglobin in the 

presence of class-specific inhibitors was used to identify which classes of proteases are 

involved and highlight those of interest for further study.  
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4.2 Materials and methods 

4.2.1 Somatic fractions 

PBS-soluble (S1), membrane-associated (S2) and membrane-bound (S3) fractions were 

prepared from adult F. hepatica exactly as described in 2.2.1.2. The protein concentration of 

the S1, S2 and S3 was measured as described in 2.2.1.3. 

4.2.2 Analysis of proteolytic activity with substrate gels 

4.2.2.1 Preparation of SDS-PAGE slabs with protein substrates 

Resolving gel solutions were prepared as follows; 

4% Acrylamide: 2.91 ml of dH2O, 1.2 ml of 1.5 M Tris-HCl resolving buffer with SDS at pH 

8.8,  0.64 ml acrylamide (30 % solution). 

12% Acrylamide: 1.63 ml of dH2O, 1.2 ml of 1.5 M Tris-HCl resolving buffer with SDS at pH 

8.8, 1.92 ml acrylamide (30 % solution). 

These volumes of reagents were measured into 50 ml Falcon tubes (Greiner Bio-one CellStar) 

before adding 5 mg of protein substrate and allowing this to dissolve. Finally, 50 µl 

ammonium persulphate (10% w/v) and 5 µl TEMED (N, N, N, N’- 

tetramethylethylenediamine) were added to each. These were then dispensed between two 

glass plates with the aid of a gradient mixer and pump to ensure a continuous gradient of 

decreasing acrylamide concentration. The mixture was overlaid with 100 µl of isopropanol to 

disrupt any air bubbles and flatten the gel top. The gel was left to polymerise for 30 min at 

room temperature. The isopropanol was then removed using blotting paper and the stacking 

gel prepared as follows; 

4% Stacking gel : 5.703 mls of dH2O, 2.35 mls of 0.5 M Tris-HCl stacking buffer with SDS at 

pH 6.8, 1.253 ml acrylamide (30 % solution), 50 µl ammonium persulphate (10% w/v), 5 µl 

TEMED  

As before, these reagents were measured into a Falcon tube, adding the ammonium 

persulphate and TEMED last. This was then carefully poured on top of the resolving gel to the 
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edge of the glass plates and the gel comb inserted gently to avoid the incorporation of air 

bubbles. Any spillages were carefully removed and the gels allowed to polymerise for 30 min 

at room temperature. Gels were used immediately or wrapped in damp tissue paper and stored 

at 4 ⁰C for up to 1 week. 

4.2.2.2  SDS-PAGE for substrate gel analysis 

Protease activity in the three fractions (see Section 4.1.1) was determined by analysis on 

protein substrate gels. Gelatin is a non-specific substrate which can be broken down by all 

classes of proteolytic enzymes including serine, cysteine, aspartyl and metalloproteases. 

Therefore, gelatin was used to ascertain the presence of any proteolytic enzymes.  

Haemoglobin was subsequently used as a substrate as the presence of proteins which can 

digest haemoglobin are of particular interest in a putative blood-feeding parasite. 

4µg of each of the three fractions S1, S2 and S3 were mixed with non-reducing sample buffer, 

see Appendix 1, and fractionated in 4 – 12 % SDS-PAGE gel slabs containing 0.1 % (w/v) 

substrate. The protein substrates used were gelatin and ovine haemoglobin (Sigma-Aldrich). 

Gels were electrophoresed at 200 V for 55 min in a Mini Protean
®
 II Dual Slab Cell (BioRad, 

UK) in chilled SDS-PAGE substrate gel tank buffer, see Appendix 1. The buffer was chilled 

to ensure the proteases were not denatured by heat generated during electrophoresis.  

Following electrophoresis, gels were washed 3 times for 20 min in 2.5% (w/v) Triton X-100 to 

remove the SDS from the gels. The gel slabs were then sub-divided and incubated in 0.1 M 

buffer at a range of pH values [pH 3–5, sodium acetate with and without the addition of 5 mM 

dithiothreitol (DTT); pH 7-9 Tris-HCl] for 16 h at 37 °C. DTT is known to activate cysteine 

proteases, which are generally active at acidic pH levels, so was not added to reactions at pH 

7-9. After incubation, gels were stained with 0.25% Coomassie Blue and destained with 

Destainer, see Appendix 1, at room temperature. Clear/unstained zones of proteolysis were 

visualised using a transilluminator. 

4.2.3 SDS-PAGE determination of the digestion of ovine haemoglobin 

A stock solution of ovine haemoglobin substrate was prepared at a concentration of 2 mg/ml 

in distilled water. The substrate (10 μl) was mixed with 4 μg (3 μl) of either the S1, S2 or S3 
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extract or 3 μl  PBS as a control. 2 µl of either 0.2 M sodium acetate buffer (pH 3-6, Appendix 

1) or 0.2 M Tris-HCl (pH 7-9, Appendix 1) along with 5 mM DTT were then added and the 

samples incubated for 16 h at 37 °C.  

An equal volume of reducing sample buffer (Invitrogen, UK) was then added to the reaction, 

which was heated to 70 ⁰C for 10 min. Samples were then dispensed into wells of a precast  4-

12 % SDS-PAGE gel (Invitrogen, UK) and electrophoresis carried out at 200 V for 45 min, as 

described in Section 2.2.1.4. After electrophoresis, gels were rinsed 3 times for 10 min in 

dH2O, then stained with SimplyBlue ™ SafeStain (Invitrogen, UK) for 2 hr at room 

temperature, then destained with dH2O. Proteolysis of haemoglobin was determined by the 

presence or absence of the haemoglobin doublet (14-15 kDa) in comparison to the control.  

4.2.4 Measuring haemoglobin digestion at 280 nm 

A stock solution of ovine haemoglobin substrate was prepared at a concentration of 2 mg/ml 

in distilled water. The following pH buffers were prepared, as outlined in Appendix 1; 0.2 M 

glycine-HCl (pH 2-3.5), 0.2 M citrate-buffer (pH 4-5), 0.2 M phosphate buffer (pH 6-7) and 

0.2 M Tris-HCl (pH 8-9). The protein concentration of the F. hepatica extracts was adjusted to 

1 mg/ml.  

In a 1.5 ml Eppendorf tube, 175 µl of pH buffer and 50 µl of haemoglobin substrate were 

combined. Finally, 25 µl of extract were added (or dH2O in the control), briefly vortexed and 

incubated at 37⁰C for 5 hours. Reactions were performed in triplicate. Reactions were 

terminated by the addition of 750 µl 15% trichloroacetic acid (TCA) at 4 ⁰C and placed on ice 

for 30 min. These were then centrifuged at 18, 000 x g for 10 min and the absorbance of the 

supernatant at 280 nm was measured.  

4.2.5 Digestion of cathepsin D-specific peptide by F. hepatica extracts  

The aspartyl protease, cathepsin D, preferentially cleaves between hydrophobic amino acids 

such as phenylalanine (phe) residues. The fluorescently labelled peptide substrate, 7-

methoxycourin-4-acetyl-gly-lys-pro-ile-leu-phe-phe-arg-leu-lys(DNP)-D-arg-amide (CatDFS), 

was used to investigate the presence of a cathepsin D-like protease in the three extracts. 

Cleavage between the two phe residues by a cathepsin D will cause release of the fluorescent 
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signal, which is detected using fluoremetry. This was used to calculate the turnover rate of the 

peptide at a variety of pH values as follows: 

In a 10 mm black masking fluorometer cuvette, 2 µl of CatDFS in dH2O (50 µM) were mixed 

with 97 µl of buffer (0.1 M Glycine-HCl, pH 2-3.5 and 0.1 M citrate-phosphate, pH 3–6.5). 

The background absorbance was used to blank the fluorometer and 1 µl of extract (1 mg/ml) 

was added to the mixture and a fluorescence reading initiated. Absorbance readings were 

taken every 5 sec for 150 sec, at excitation wavelength 330 nm and emission wavelength 390 

nm. Each combination of extract/pH was performed in triplicate.  

The fluorescence emission readings were plotted over time. From the linear period of the 

reaction, the turnover rate of the peptide substrate was calculated where: 

Turnover rate = (X1 – X0) / (T1 - T0) 

where, X is the fluorescence reading at the start (0) and end (1) of a linear period,  and T is the 

time (sec) at the start (0) and end (1) of the reaction.  

The higher the turnover rate, the more efficiently the putative cathepsin D is working. This can 

be used to determine if a cathepsin D-like enzyme is present in the fractions and the optimum 

pH at which it functions. 

4.2.6 Class-specific Proteolytic Inhibition 

Class-indicative protease inhibitors were used to ascertain which enzyme classes were active 

in the fractions. These inhibitors were as follows; L-
 
transepoxysuccinyl-leucylamido-[4-

guanidino] butane (E64), a cysteine protease inhibitor (10 μM); Pepstatin A, an aspartyl 

protease inhibitor (10 μM). These were added to the respective S1, S2 and S3 protein extracts 

and incubated for a minimum of 1 hour at room temperature prior to incubation with substrate 

(gelatin substrate gel, ovine haemoglobin) and the appropriate pH buffer during reactions. 

A two sample T-test was used on the quantitative readouts of these assays to establish if the 

class-specific inhibitors significantly reduced the activity of the extracts in comparison to the 

control. 
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4.3 Results 

4.3.1 Substrate gel analysis of protease activity 

Enzyme activity from each extract was characterised using gelatin substrate gel 

electrophoresis. Activity was evident in the S1 and S2 extracts at pH 3, 5, 7 and 9 and in the 

S3 at pH 3 and 5. The addition of 5mM DTT at pH3 and 5 served to enhance proteolysis to 

varying degrees in S1, S2 and S3, as shown in Figure 4.1. 

Proteolytic activity from enzymes in the PBS-soluble (S1) and membrane-associated (S2) 

fractions were similar in respect to the areas of proteolysis visible across the pH range tested. 

Proteolysis was highest at pH 5 following the addition of DTT, where hydrolysis of substrate 

occurred in a zone covering 36 – 148 kDa size range.  At pH 3, proteolysis of gelatin was 

evident at 36, 50-55 and 80-100 kDa. Gelatin proteolysis at pH 7 was evident at 36 and 50-64 

kDa. Finally, at pH 9, gelatin proteolysis was evident at 36 and 50-64 kDa. Proteolysis by the 

membrane-bound (S3) fraction was more restricted than that of S1 and S2 being observed only 

at pH 3 and pH 5. As with the S1 and S2 extracts, most proteolysis in the S3 fraction was 

evident at pH 5 following the addition of 5 mM DTT, where two areas at 36 and 50 kDa were 

evident. At pH 3, proteolysis was evident at 50 and 105 kDa and was enhanced by the addition 

of DTT.  

The addition of the class-specific protease inhibitors was used to ascertain which class(es) of 

proteases was present and, thus, responsible for proteolysis. Here, the addition of two 

inhibitors to block either cysteine (E64) or aspartyl (Pepstatin A) proteases was investigated. 

The addition of E64 reduced hydrolysis at pH 3 (Figure 4.2), pH 5, pH 7 and pH 9 (the latter 

summarised in Table 4.1) in all fractions with this inhibition being complete at all pHs and in 

the presence or absence of DTT.  At pH 3, proteolysis was enhanced by the presence of 

Pepstatin A, both in the presence and absence of DTT, Figure 4.2 and Figure 4.3. This effect 

remained evident at higher pH values although the degree diminished markedly (data 

summarised in Table 4.1).  
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Figure 4.1: Protease activity of the F. hepatica PBS-soluble (S1), membrane-associated (S2) 

and membrane-bound (S3) extracts against the substrate gelatin at pH 3, pH 5, pH 7 and pH 9. 

Buffers used were 0.1 M sodium acetate (pH 3, pH 5) with and without the addition of 5 mM 

dithiothreitol (DTT) and 0.1 M Tris-HCl (pH 7, pH 9). Areas of white against the stained 

background indicate regions of proteolysis of the substrate, and thus the presence of active 

proteases.  
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Figure 4.2: Protease activity of the F. hepatica extracts against gelatin at pH 3 with the 

addition of class-specific inhibitors. The control panel shows proteolysis in the respective 

fractions at pH 3 (0.1 M sodium acetate) in the absence of any class-specific inhibitors. The 

class specific inhibitors, E64 and Pepstatin A, were used at a concentration of 10 µM. 
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Figure 4.3: Protease activity of the F. hepatica extracts against gelatin at pH 3 in the presence 

of 5mM DTT. The control panel shows proteolysis at pH 3 with 5 mM DTT (0.1 M sodium 

acetate) in the absence of any class-specific inhibitors. The class specific inhibitors, E64 and 

Pepstatin A, were used at a concentration of 10 µM 
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Table 4.1: Summary of substrate gel analysis of gelatin proteolysis by soluble (S1), membrane-associated (S2) and membrane-bound (S3) extracts of F. 

hepatica at pH 3-9. 5 mM DTT was added at pH 3 and 5 (+) as it is known to enhance cysteine protease activity at acidic pHs. Low, moderate and high 

levels of proteolysis are indicated by +, ++, +++ respectively, and the areas where activity is evident noted in kDa. The class-specific inhibitors E64 (10 

µM) and Pepstatin A (10 µM) were used to inhibit the action of cysteine and aspartyl proteases respectively. 

 

Size range of proteolysis (kDa) 

pH 3 3 5 5 7 9 

DTT (+/-) - + - + - - 

S1 ++ (36, 50-55, 80-100 ) ++ (36, 50-55, 80-100) +++ (36, 50, 70 – 105 ) +++ (36–148 ) ++(36, 50-64) + (36, 50-64) 

S2 ++ (36, 50-55, 80-100 ) ++ (36, 50-55, 80-100) ++ (36, 50, 70 – 105 ) +++ (36–148 ) ++ (36, 50-64) + (36, 50-64) 

S3 + (50, 105) ++ (36-50,64-105) + (50) +++ (36, 50-64) - - 

S1 + E64 - - - ++ (36-105, 110-140) - - 

S2 + E64 - - - ++ (36-105, 110-140) - - 

S3 +E64 - - - +++ (36-105, 110-140) - - 

S1 + PepA +++(36, 50-55, 64-105) +++ (36, 50-55, 80-100) ++ (36, 50, 70 – 105 ) ++ (36-105, 110-140) + (30-55) + (50-64) 

S2+ PepA +++(36, 50-55, 64-105) +++ (36, 50-55, 80-100) ++ (3-105) ++ (36-105, 110-140) - + (50-64) 

S3+ PepA +(50, 98) ++ (36-50,64-105) + (3-50) + (50-64) - - 
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4.3.2 Haemoglobin substrate gel analysis 

Enzymatic activity against ovine haemoglobin in each extract was characterised initially by 

substrate gel electrophoresis. The S1 extract contained proteases which could digest 

haemoglobin at pH3 and pH5, as shown in Figure 4.4. There was also evidence of weak 

proteolysis from the S2 extract which was most prominent at pH 3 (Figure 4.8) with the 

addition of DTT. The S3 extract did not appear to contain any proteases which were 

capable of digesting haemoglobin in-gel, as shown in Figure 4.4.  
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Figure 4.4: Substrate gel analysis to investigate the presence of proteases in the F. hepatica PBS-soluble (S1), membrane-associated (S2) and membrane-

bound (S3) extracts capable of digesting ovine haemoglobin. Proteolysis was investigated at pH 3, pH 5, pH 7 and pH 9. The addition of 5 mM DTT (+) 

at pH 3 and pH 5 was also investigated. 
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4.3.3 SDS-PAGE analysis of haemoglobin digestion in solution 

Substrate gels may not be the optimum method for investigating this process as the 

medium is static and, optimally, this process would occur in solution in vivo. Therefore, 

haemoglobin digestion was investigated using two further assays which would allow the 

enzymes present to interact with the substrate in solution. In addition, the active site region 

of aspartyl proteases is formed by two separate domains, each of which contributes a 

catalytic aspartate residue to the active site. This structure is disrupted by the SDS 

incorporated into a substrate gel and it is not always restored once the SDS is washed out 

(D.P. Knox, personal communication) 

In order to investigate haemoglobin degradation under more favourable physiological 

conditions, it was decided to conduct the digestion in solution then visualise the breakdown 

of haemoglobin by SDS-PAGE. Haemoglobin digestion was determined by the breakdown 

of the haemoglobin doublet, which migrates at 14-16 kDa, digestion being apparent by the 

appearance of lower molecular weight peptides compared to the control (C). Results are 

shown in Figure 4.7 (S1), Figure 4.6 (S3). 

Substrate digestion by the enzymes within the S1 (see Figure 4.5) and S2 (see Figure 4.6) 

fractions was apparent at pH 3, both with and without the addition of 5mM DTT, and also 

at pH 5 with the addition of 5mM DTT. There was no indication of degradation at pH7 or 

9 or at pH 5 when DTT was absent. These results are consistent with those seen in the 

substrate gel analysis. Proteases within the S3 fraction also digested haemoglobin at pH3 

and pH 5 in the presence of 5mM DTT. Although the addition of DTT enhanced 

proteolysis at pH 5, it did not appear to enhance it at pH 3, see Figure 4.6. In general terms, 

digestion due to the S3 fraction resulted in much more discrete breakdown products 

indicative of specific cleavage sites along the haemoglobin peptide backbone, particularly 

at pH 3.0 where there was an additional peptide present (see arrow, Figure 4.7) 

The addition of inhibitors to the extracts produced equivocal results; these are displayed in 

Figure 4.7. The addition of E64 reduced proteolysis in all three extracts, however it did not 

completely inhibit degradation. The addition of Pepstatin A slightly reduced proteolysis, 

most notably at pH 5. It was difficult to determine the true extent of proteolysis and thus 

another assay was used to further investigate this. 
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Figure 4.5: SDS-PAGE determination of ovine haemoglobin digestion by proteases within 

the PBS-soluble (S1) extract. This was investigated at pH 3, pH 5, pH 7 and pH 9. 5 mM 

DTT (+) was added at pH 3 and 5 as it is known to enhance cysteine protease activity at 

acidic pH. The haemoglobin doublet migrates at 14-15 kDa and is clearly visible, as a 

single broad band, in the control lane (C), where no S1 extract was present. Digestion was 

most prominent at pH3 with the haemoglobin doublet being clearly diminished. Almost 

identical results were obtained  when the S2 extract was tested (data not shown) 
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Figure 4.6: SDS-PAGE determination of ovine haemoglobin digestion by proteases within 

the membrane-bound (S3) extract. This was investigated at pH 3, pH 5, pH 7 and pH 9. 5 

mM DTT (+) was added at pH 3 and 5 as it is known to enhance cysteine protease activity 

at acidic pH. The haemoglobin doublet migrates at 14-15 kDa and is clearly visible in the 

control lane (C), where no extract is present. Arrow indicates an additional peptide not 

present when haemoglobin was digested by the S1 and S2 extracts.  
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Figure 4.7: SDS-PAGE determination of ovine haemoglobin digestion by proteases within 

the respective F. hepatica extracts, PBS-soluble (S1), membrane-associated (S2) and 

membrane-bound (S3) at a range of pH, with/without the addition of class-specific 

inhibitors. Digestion was investigated at pH 3, pH 5, pH 7 and pH 9. 5 mM DTT (+) was 

added at pH 3 and pH 5, as it is known to enhance cysteine protease activity at acidic pHs. 

The haemoglobin doublet migrates at 14-15 kDa and is clearly visible in the control lane 

(C), where no F. hepatica extract was present. E64 specifically inhibits the function of 

cysteine proteases and Pepstatin A the function of aspartyl proteases, respectively.  
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4.3.4 Measurement of ovine haemoglobin digestion at 280 nm 

To ascertain the degree of proteolysis within each fraction, the amount of solubilised 

protein was measured at 280 nm. This estimates the extent of protein breakdown, as the 

higher the absorbance, the more short peptides and free amino acids (mainly tryptophan, 

tyrosine and phenylalanine) are released. Haemoglobin digestion was only evident at acidic 

pH. The results are shown in Figure 4.8. The extracts follow a similar trend to each other in 

terms of digestion, showing two peaks of activity at pH 2.5 and pH 4, respectively.  The 

highest degree of digestion was seen with the S1 and S2 extracts. Although digestion by S3 

was less obvious, proteases capable of digesting ovine haemoglobin were clearly present. 

 

Figure 4.8: Digestion of ovine haemoglobin by the F. hepatica extracts, PBS-soluble (S1), 

membrane-associated (S2) and membrane-bound (S3), as determined by increased 

absorbance at 280nm over a range of pH. Buffers were used at the following 

concentrations; 0.2 M glycine-HCl (pH 2-3.5), 0.2 M citrate-buffer (pH 4-5), 0.2M 

phosphate buffer (pH 6-7) and 0.2 M tris-HCl (pH 8-9). The protein concentration of the 

extracts was 1 mg/ml. Protein hydrolysis (mean ± standard error) was measured at 280 nM 

using a negative control as the blank, which contained substrate and pH buffer but no F. 

hepatica extract (n =15). 
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4.3.5 Class-specific inhibition of proteases 

To elucidate which classes of proteases were responsible for the digestion observed, the 

effects of two class-specific inhibitors were examined. The results for the extracts are 

shown in the following figures, Figure 4.8 (S1), Figure 4.9 (S2) and Figure 4.10 (S3). 

The addition of E64 reduced hydrolysis by all extracts over pH 2-6, as summarised in 

Table 4.2. Focusing on pH 2-4, where haemoglobin hydrolysis was highest, the addition of 

E64 inhibited the hydrolysis of haemoglobin by all extracts from 82 - 100 %. Pepstatin A 

only had marked effects at pH 2 inhibiting proteolysis by all extracts, most notably by the 

S3.  

 

Figure 4.9: Digestion of ovine haemoglobin by the F. hepatica PBS-soluble (S1), extract as 

determined by absorbance at 280 nm over pH 2 - 6. The buffers, inhibitors and extracts 

used were as follows; 0.2 M glycine-HCl (pH 2-3.5), 0.2 M citrate-buffer (pH 4-5) and 

0.2M phosphate buffer (pH 6). E64 (10 µM), pepstatin A (10µM), S1 (1 mg/ml). Protein 

hydrolysis (mean ± standard error) was measured at 280 nM using a negative control as the 

blank, which contained substrate and pH buffer but no extract.  
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Figure 4.10: Digestion of ovine haemoglobin by the F. hepatica membrane-bound (S2), 

extract as determined by absorbance at 280 nm over pH 2 - 6. The buffers, inhibitors and 

extracts used were as follows; 0.2 M Glycine-HCl (pH 2-3.5), 0.2 M Citrate-buffer (pH 4-

5) and 0.2M phosphate buffer (pH 6). E64 (10 µM), Pepstatin A (10µM), S2 (1 mg/ml). 

Protein hydrolysis (mean ± standard error) was measured at 280 nM using a negative 

control as the blank, which contained substrate and pH buffer but no extract.  
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Figure 4.11: Digestion of ovine haemoglobin by the F. hepatica membrane-bound (S3), 

extract as determined by absorbance at 280 nm over pH 2 - 6. The buffers, inhibitors and 

extracts used were as follows; 0.2 M Glycine-HCl (pH 2-3.5), 0.2 M Citrate-buffer (pH 4-

5) and 0.2M phosphate buffer (pH 6). E64 (10 µM), Pepstatin A (10µM), S3 (1 mg/ml). 

Protein hydrolysis (mean ± standard error) was measured at 280 nM using a control as the 

blank, which contained substrate and pH buffer but no extract.  
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Table 4.2: The percentage reduction in digestion of ovine haemoglobin with the addition of class-specific inhibitors by the F. hepatica S1, S2 and S3 

extracts as determined by absorbance at 280 nm over pH 2 - 6. The buffers, inhibitors and extracts used were as follows; 0.2 M Glycine-HCl (pH 2-3.5), 

0.2 M Citrate-buffer (pH 4-5) and 0.2M phosphate buffer (pH 6). E64 (10 µM), Pepstatin A (10µM) 1,10-phenathroline (1 mM),  4-(2-Aminoethyl) 

benzenesulfonyl fluoride hydrochloride (AEBSF) (1mM), S3 (1 mg/ml). Protein hydrolysis was measured at 280nM using a control reaction as the blank, 

which contained substrate and pH buffer but no extract.  

 

Percentage reduction of haemoglobin hydrolysis (estimated by change in absorbance at 280 nm) 

 

 

S1 

 

 

S2 

 

 

S3 

 

pH E64 PepA 

 

E64 PepA 

 

E64 PepA 

2 96.66 62.19 

 

97.57 61.92 

 

92.32 90.47 

2.5 95.72 0.00 

 

95.49 4.84 

 

98.56 17.70 

3 95.50 1.36 

 

94.39 11.81 

 

87.76 23.41 

3.5 93.66 18.69 

 

93.50 24.27 

 

95.51 4.49 

4 95.24 0.00 

 

90.06 0.00 

 

82.33 8.83 

5 94.87 30.04 

 

55.33 20.00 

 

96.27 47.01 

6 95.48 64.97 

 

100.00 0.00 

 

100.00 0 
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4.3.6 Aspartyl protease-specific substrate 

The presence of a cathepsin D-like enzyme was confirmed by the ability of all extracts to 

cleave CatDFS. The average peptide turnover rate for each extract at pH 2 – 6 is shown in 

Figure 4.12. Two buffers, which overlapped at pH 3, 3.5 (citrate and glycine-HCl) were 

used in the experiment to eliminate the possibility that either was having a direct role in the 

cleavage of the CatDFS peptide. As shown in Figure 4.21 the different buffers did not 

affect the cleavage of the substrate. The turnover rate of the peptide was greatest at pH 3 

for S1/S2 and pH 2 for the S3 extract. 

 

 Figure 4.12: Average turnover rate of the cathepsin D-specific peptide 7-methoxycourin-

4-acetyl-gly-lys-pro-Ile-leu-phe-arg-leu-lys(DNP)-D-arg-amide (CatDFS) by the F. 

hepatica PBS-soluble (S1), membrane-associated (S2) and membrane-bound (S3) extracts 

at a range of pH.  Substrate, buffer and extracts were as follows; CatDFS (50 µM), S1 (1 

mg/ml), S2 (1 mg/ml), S3 (1 mg/ml), Citrate buffer pH 3-6 (0.1 M) (shown by square 

markers), Glycine-HCl pH 2-3.5 (0.1 M) (Shown by triangle markers).  Emission was 

measured every 5 sec for 150 sec, at excitation wavelength 330 nm and emission 

wavelength 390 nm to calculate the average turnover rate (± standard error). 
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4.4 Discussion 

Protease activity was evident in all three F. hepatica fractions against the broad-spectrum 

substrate gelatin and also against ovine haemoglobin. Haemoglobin is likely to be part of 

the parasite’s diet (Smyth and Halton, 1983). Class-specific inhibitors also indicated that 

cysteine and aspartyl proteases had some role in haemoglobin digestion within each of the 

three fractions. 

Initially, the presence of active proteases was ascertained using gelatin substrate gel 

electrophoresis at a range of pH from pH 3 to 9. The addition of 5 mM DTT (a cysteine 

protease activator) enhanced hydrolysis indicating the presence of cysteine proteases, 

which is consistent with results from Chapter 2, where such enzymes were identified in the 

extracts by proteomics (see Appendix 2). Cysteine proteases are dominant components of 

the ES products of F. hepatica (Dowd et al., 1994) and have also been shown to be capable 

of digesting host haemoglobin (Tort et al., 1999). The addition of E64 and the apparent 

complete inhibition of substrate hydrolysis could indicate that cysteine proteases play a key 

role in digestion, possibly also initiating hydrolysis or activating other proteases. The 

addition of Pepstatin A did not cause such a profound reduction and, in some instances, 

actually increased hydrolysis of gelatin. A similar phenomenon was observed following the 

addition of EDTA and E64 to a Triton X-100 soluble mite extract from the ectoparasite, 

Psoroptes cuniculi, which resulted in increased hydrolysis of an aspartyl protease substrate 

(Nisbet & Billingsley, 1999). In the study presented here, aspartyl proteases present within 

liver fluke extracts may act to regulate other enzymes, thus their inhibition may serve to 

allow other proteases to act optimally. Furthermore, aspartyl proteases have been proposed 

to initiate haemoglobin hydrolysis in blood feeding parasites such as H. contortus, N. 

americanus and A. caninum (Williamson et al., 2003). 

The digestion of haemoglobin by liver fluke extracts was investigated using several 

different assays. Substrate gel analysis was carried out initially to ascertain the presence of 

enzymes capable of haemoglobin hydrolysis. Proteolysis within the S1 fraction was 

evident at pH 3 and pH 5 and the addition of 5 mM DTT enhanced hydrolysis in both 

cases. Proteolysis within the S2 fraction was evident at pH 3 and the addition of DTT 

enhanced proteolysis at pH 3 and pH 5. There was no evidence of haemoglobin digestion 

within the S3 fraction. Within F. hepatica, cysteine proteases have been shown to be 

capable of digesting host haemoglobin (Tort et al., 1999). Here, cysteine proteases are 

present, as evidenced by the class-specific inhibition and the increase in hydrolysis 
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following the addition of DTT. Although there was evidence of in-gel digestion of 

haemoglobin substrate by S1 and S2, this was not observed in the S3. Therefore, the 

digestion of haemoglobin by the S3 fraction was further investigated by visualising the 

breakdown of the haemoglobin doublet using SDS-PAGE and further measuring 

hydrolysis by the change in absorbance at 280 nm over a range of pH, in an attempt to 

ascertain whether such proteases were active in the S3 fraction. 

Haemoglobin hydrolysis in solution was investigated by visualising its breakdown using 

SDS-PAGE analysis. Hydrolysis was evident in S1 and S2 at acidic pH, which was 

consistent with the initial investigations using haemoglobin substrate gels. In addition, this 

analysis revealed that the S3 fraction also contained proteases capable of breaking down 

haemoglobin. At pH 3, in the S3 fraction there was an additional breakdown peptide which 

was not evident in S1 and S2 extracts. This peptide also disappeared following the addition 

of pepstatin A (see pH 3 Figure 4.6 and Figure 4.7 respectively), indicating that it could be 

the result of aspartyl protease activity.  The addition of class-specific inhibitors, E64 and 

pepstatin A, indicated that cysteine and aspartyl proteases were involved, at least in part, in 

the digestion of haemoglobin.  Inhibition with E64 reduced hydrolysis of haemoglobin by 

the S1, S2 and S3 fractions. The addition of pepstatin A increased hydrolysis by the S1 

extract and decreased hydrolysis of the S3 fraction. As described before, a similar 

phenomenon was seen following the class-specific inhibition of a Triton X-100 extract 

from P. cuniculi (Nisbet & Billingsley, 1999). This highlights the complexity of the 

breakdown of haemoglobin and indicates that a number of enzyme classes may each have a 

role in hydrolysis and may also regulate the action of each other. Haemoglobin is 

hydrolysed by the action of a cascade of enzymes in P. falciparum (Francis et al., 1994) 

and N. americanus (Williamson et al., 2004). The initial step of haemoglobin degradation 

occurs by aspartyl proteases such as the plasmepsins I and II in P. falciparum (Francis et 

al., 1994) and APR-1 and APR-2 in N. americanus, where haemoglobin is cleaved at the 

hinge region causing it to unravel and allow subsequent enzyme classes to act (Francis et 

al., 1994). Haemoglobin is further broken down by enzymes belonging to the cysteine 

protease class, which then allow metalloproteases and endopeptidases to complete 

hydrolysis (Williamson et al., 2003). 

As the results obtained here were subjective, haemoglobin hydrolysis was investigated 

further by estimating the degree of hydrolysed protein by a change in absorbance of 

reaction supernatant at 280 nm. The higher the absorbance, the more short peptides and 
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free amino acids are present (mainly tryptophan, tyrosine and phenylalanine). A more 

extensive analysis of pH effect and inhibitor interaction with the extracts was also 

conducted. The S1, S2 and S3 fractions followed similar digestion profiles. All extracts 

had 2 peaks of activity at pH 2.5 and at pH 4. Hydrolysis was greatest in S1 followed by 

S2 and, finally, S3. There was no digestion evident at alkaline pH. This is consistent with 

previous results within this chapter and from other studies investigating haemoglobin 

digestion by blood-feeding parasites such as P. cuniculi (Nisbet & Billingsley, 2000), R. 

microplus (Mendiola et al., 1996), Ixodes ricinus (Horn et al., 2009), Schistosoma spp, 

Ancylostoma spp., N. americanus and H. contortus (Williamson et al., 2003). A number of 

protease classes have been proposed to function in the digestion of haemoglobin in blood-

feeding parasites (Williamson et al., 2003; Horn et al., 2009). The addition of class-

specific inhibitors in the work presented herein indicated that cysteine and aspartyl 

peptidases both had a role in the hydrolysis of haemoglobin by liver fluke extracts. 

Proteolytic enzymes have been proposed to play a major role in the biology of F. hepatica, 

facilitating tissue invasion, migration (Newport et al., 1988), immune evasion and nutrient 

acquisition (Brindley et al., 1997; Brady et al., 1999) while in the definitive host. The 

major proteins in the adult E/S products have also been identified as cysteine proteases 

(Dalton and Heffernan, 1989). Here, the presence of cysteine proteases in the S1, S2 and 

S3 extracts of adult flukes has also been demonstrated. A number of cysteine proteases 

have been identified from the parasite and listed on MEROPS (Peptidase database) 

(Rawlings et al., 2012), including cathepsin L1, cathepsin L2 (Dowd et al., 1994; Dowd et 

al., 1997; Smith et al., 1993), cathepsin L3 (Hamsen et al., 2004) and cathepsin B (Wilson 

et al., 1998). The zones of enzyme activity seen here by substrate gel analysis correspond 

in approximate molecular weight to previous findings (Smith et al., 1993). Cathepsin L1 

and L2 migrate at ~27 kDa, however, under non-reducing conditions, they migrate as 

multiple bands, each with enzymatic activity over 60 – 90 kDa and over a large pH range 

of 3-8 (Smith et al., 1993), which was evident here. Furthermore, the presence of these 

enzymes was unequivocally demonstrated by peptides representing these proteases were 

identified by the proteomics approach described in Chapter 2 (also see Appendix 2).  

A number of assays was employed here in an attempt to establish which classes of 

proteases were present within the fractions and capable of digesting haemoglobin. 

Substrate gel analysis allows separation of such crude mixtures and visualisation of 

hydrolysis by the extract. Furthermore, an approximate molecular weight can be assigned 
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to the proteases in question. However, the gel matrix medium is static and unlike that of 

the natural situation where the proteases substrate would be in solution. Although the 

results were convincing for gelatin digestion, the haemoglobin substrate proved to be 

difficult to visualise breakdown. Thus, a different method for visualising haemoglobin 

hydrolysis was used, which involved SDS-PAGE and UV absorption as a means of 

measuring lysis. This identified proteolytic activity within all fractions tested, S1, S2 and 

S3, against the haemoglobin substrate.  

Aspartyl proteases have been proposed to act in the initial stages of haemoglobin digestion 

in haematophagous parasites (Williamson et al., 2003). Cathepsin D, an aspartyl protease, 

was identified unequivocally in the PNA-enriched S3 fraction through LC-ESI-MS/MS 

analysis but was not identified in the crude extract; see Chapters 4 and 2, respectively. 

Following demonstration of a reduction of haemoglobin digestion with Pepstatin A (see 

Figure 4.11), the presence of a putative cathepsin D in the extracts (S1, S2 and S3) 

examined herein was confirmed by the ability of each of the extracts to hydrolyse a 

cathepsin D-specific substrate, CatDFS (see Figure 4.12) with greatest hydrolytic activity 

at pH 2-2.5. Cathepsin D has been identified in a number of blood-feeding parasites and 

when used as a vaccine elicited significant levels of protection in both native and 

recombinant forms. Mice immunised three times with recombinant aspartyl protease 

cathepsin D (Ac-APR-1) then subsequently challenged with A. duodenale had a 69 % 

reduction in the small intestine burden (Ghosh & Hotez, 1999; Williamson et al., 2002; 

Williamson et al., 2004). Also, vaccinated dogs were protected from developing anaemia, 

having haemoglobin levels within a normal range (12.45 grams/decilitre (g/dl)), compared 

with non-vaccinated dogs, which became clinically anaemic (9.5 g/dl), indicating 

immunisation disrupts the parasites ability to feed (Loukas et al., 2005). Furthermore, 

vaccinated dogs has a 70 % reduction in worm burden in comparison to non-vaccinated 

controls (Loukas et al., 2005). Mice immunised with the recombinant aspartyl protease, 

Ac-APR-1, also had a reduced intestinal burden of A. caninum (69 %) (Williamson et al., 

2002; Williamson et al., 2004). Mice vaccinated with recombinant S. japonicum cathepsin 

D also have a reduction in worm burdens of 21-38 % but no notable reduction in fecundity 

despite a 20-40 % reduction in the number of female worms (Verity et al., 2004).  

The findings presented here highlight the complexity of the proteases contained within the 

three fractions generated from F. hepatica somatic extracts. Although proteases have been 

shown to digest haemoglobin, the precise ‘place’ of each enzyme within the cascade is 
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unknown. The extracts used here were crude mixtures of proteins, as shown in Appendix 2. 

Further fractionation would help to generate simpler fractions and thus establish optimal 

conditions for the functioning of the respective enzymes. However, within the gut there is 

likely to be a number of proteases being secreted concurrently, so there is also likely to be 

interaction between proteases in nature. 

In conclusion, this chapter has extended studies of haemoglobin digestion is F. hepatica 

and indicates the classes of proteases capable of haemoglobin digestion which are present, 

at least in the adult stage of F. hepatica. The work presented here has identified the 

presence of a novel cathepsin D-like enzyme in the crude S3 extract which was not 

described in Chapter 2 but was enriched by the PNA lectin affinity chromatography 

approach described in Chapter 3. It is thought to function optimally below pH 2 and can 

digest ovine haemoglobin. Further investigation and characterisation of this protease will 

be carried out in the next chapter to determine its full-length amino acid sequence, to 

compare its sequence with those from related parasites and to localise its site of origin 

within the parasite. This should help establish the phylogenetic relationship of this F. 

hepatica cathepsin D to homologues from other species and help determine if it is 

expressed in or on the gut of the parasite. This latter investigation has implications for 

whether this cathepsin D is a hidden antigen or not and whether it could be vulnerable to 

the gut antigen approach to vaccination.  
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5 Characterisation of F. hepatica cathepsin D-like aspartyl 

protease 

5.1 Introduction 

Proteases play a vital role in processes crucial to the fluke’s development and survival. 

These include nutrition (Brindley et al., 1997; Brady et al., 1999), invasion of host tissue 

(Newport et al., 1988) and immunomodulation (Brophy et al., 1990; Creaney et al., 1995; 

Meuusen et al., 1995). These proteases are, therefore potential vaccine candidates because 

they are proteins with a vital role in the parasite’s survival (Smith and Smith, 1996; 

Wijffels et al., 1994).  

Haemoglobin is a potential food source for F. hepatica (Oslen, 1986) although how it is 

digested by the fluke is unclear. Haemoglobin digestion has been proposed to occur 

through the action of a cascade of enzymes within blood-feeding helminths, involving 

distinct classes of proteases in Ancylostoma spp., N. americanus and H. contortus 

(Williamson et al., 2003). Host haemoglobin is proposed to be cleaved initially by aspartyl 

proteases, then into smaller peptides by cysteine proteases and then further hydrolysed by 

metallopeptidases, acting in sequence. Finally, these peptides are broken down into amino 

acids by exopeptidases (Williamson et al., 2003), Figure 5.1. Aspartyl proteases belong to 

the peptidase clan AA (Rawlings et al., 2012, http://merops.sanger.ac.uk/index.htm). These 

proteases possess two catalytic aspartyl acid residues in their active sites which are highly 

conserved, where the sequence of nucleotides or amino acids has changed slightly or not at 

all during evolution (Williamson et al., 2003). The A1 family of the clan AA contains the 

aspartyl protease, cathepsin D, which was enriched from the F. hepatica S3 extract by 

PNA lectin affinity chromatography, as described in Chapter 3. Cathepsin D is a lysosomal 

enzyme and has been identified in a number of protozoan and metazoan parasites, 

including Plasmodium falciparum (Banerjee et al., 2002), schistosomes (Brindley et al., 

2001), A. caninum and N. americanus (Brown et al., 1995). Furthermore, cathepsin D is 

involved in the digestion of host haemoglobin in Plasmodium (Francis et al., 1997) and 

schistosomes (Brindley et al., 2001). Optimal hydrolysis of haemoglobin by cathepsin D 

occurs in a host-specific manner as shown in the hookworms, where the cathepsin D from 

the canine hookworm can digest both canine and human haemoglobin but hydrolyses that 

of the canine host at a higher rate and vice-versa (Williamson et al., 2002). The ability of 

recombinantly-derived versions of  cathepsin D from the dog hookworm, and the human 

hookworm, to degrade host haemoglobin was studied by Williamson et al (2002), who 

http://merops.sanger.ac.uk/index.htm
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found these to be more efficient against their respective  host haemoglobin substrate. 

Within the schistosomes (Brindley et al., 2001), and the hookworms (Williamson et al., 

2001), cathepsin D is expressed by the gastrodermis of the adults.  Localisation of the 

cathepsin D in histological sections of adult male and female schistosomes localised the 

expression to the gastrodermis of both sexes, but the expression was elevated in the 

females as indicated by more intense staining (Brindley et al., 2001). Female schistosomes 

have a higher nutritional requirement than the males due to the demands of egg production. 

This demand, is proposed in part to be facilitated by the elevated expression of cathepsin D 

(Brindley et al., 2001). In the hookworms, cathepsin D cleaves haemoglobin at the hinge 

region (between residue 33 (Phenylanlanine) and 34 (Leucine) on the alpha chain) which 

then allows the haemoglobin structure to ‘unravel’ and allow other proteases to act 

(Williamson et al., 2002).  

 

 

Figure 5.1: The proposed proteolytic cascade for haemoglobin digestion by blood-feeding 

nematodes (adapted from Williamson et al., 2003) 
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One of the aims of this thesis attempted to identify proteins expressed on the surface of the 

gastrodermis which could be important for digestion but were not exposed to the host 

immune system during natural infection – equivalent to the “hidden” antigens of H. 

contortus. Work in the previous chapter provided evidence that a membrane protein extract 

from adult fluke had some aspartyl protease activity capable of contributing to 

haemoglobin digestion and unequivocal evidence of its presence by proteomic analysis of 

the PNA-enriched S3 fraction. In this chapter the F. hepatica cathepsin D, identified as a 

component of the peanut agglutinin lectin enriched S3 extract (Chapter 3), will be 

characterised in terms of its homology to published cathepsin D sequences by multiple 

sequence alignment (MSA) and phylogenetic analysis. Other characteristics of membrane 

proteins will be sought such as transmembrane anchors and glycosylation.  

Glycosylation is a common post translational modification which occurs after the mRNA is 

translated into peptide sequence and the polypeptide has begun to fold (Hart, 1992). 

Glycosylation is important for protein folding and occurs as four types; N-linked, O-linked, 

C-mannosylation and glycophosphatidyl-inositol (GPI) anchor attachment (Hamby and 

Hirst, 2008). N-linked glycosylation is one of the most common and results from the 

addition of a glycan chain to an asparagine amino acid (Hamby and Hist, 2008). The 

sequence motifs required for N-glycosylation are N-x-S or N-x-T (where x is any amino 

acid except proline) (Blom et al., 2004). In addition to this, identifying any possible 

transmembrane domains may help to elucidate whether this protein is stable within a 

membrane and could support the hypothesis that it is a membrane-bound protein as it was 

enriched from a membrane-bound F. hepatica (S3) extract using the PNA lectin (see 

Chapter 3).  Antibodies raised against F. hepatica cathepsin D will be used to identify the 

site of expression within immature and adult stages of the parasite using 

immunolocalisation. The expression site is important in the context of a hidden antigen 

because it is vital that it is accessible to host antibodies, for example located in the gut 

region of the parasite. In addition, recognition, or lack of it, of the protein by sera from 

sheep which are naturally infected with F. hepatica will help to establish whether this 

enzyme is a genuine “hidden antigen” or is exposed to the host’s immune response during 

the course of a natural infection. Finally, reverse transcription PCR will  establish if 

transcripts encoding cathepsin D are present in the NEJ stages as well as adult stages of the 

parasite. This has implications for the range of stages susceptible if cathepsin D were to be 

used as a vaccine candidate. If cathepsin D is required by both NEJ and adult stages to 
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digest haemoglobin, antibodies raised towards cathepsin D may have a detrimental effect 

on the ability of both of these life stages to acquire nutrition. 
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5.2 Materials and Methods 

5.2.1 Parasite material 

Adult parasites were retrieved from the bile ducts of naturally infected sheep from 

ScotBeef Abattoir, Dunblane or Firth Mains, Penicuik. Parasites were washed two times 

with 1 x Phosphate buffered saline for 5 minutes and snap frozen in liquid N2 in a cryovial 

and stored at -80⁰C until required.  

5.2.2 Parasite extracts 

Water-soluble (S1), membrane-associated (S2) and membrane-bound (S3) fractions were 

prepared from adult F. hepatica exactly as described in 2.2.1.2. The protein concentration 

of the S1, S2 and S3 was estimated as described in 2.2.1.3. 

5.2.3 Trizol extraction of Total RNA from adult F. hepatica  

Total RNA was extracted from flukes, stored as described in section 5.2.1, using Trizol 

reagent (Invitrogen), according to the manufacturer’s recommendations. Briefly, parasite 

tissue was placed into a pre-chilled mortar and ground to a fine powder using a pestle, 

adding liquid nitrogen to keep it frozen. 2 ml Trizol was added per 100mg of parasite 

material and ground until a clear red colour. 1 ml aliquots were dispensed into sterile 1.5ml 

Eppendorf tubes and incubated at 15-30 ⁰C for 5 minutes. 

200µl chloroform were added to each aliquot then shaken vigorously for 15 seconds and 

incubated at room temperature for 10 minutes. These were then centrifuged at 12,000 x g 

for 15 minutes at 4⁰C.   The mixture separates into an upper aqueous phase, an interphase 

and a lower red organic phase. The upper aqueous phase, which contains the RNA, was 

carefully removed and dispensed into a clean 1.5ml Eppendorf tube.  

RNA was precipitated by the addition of 500 µl of isopropanol per tube which was 

inverted several times and incubated at room temperature for 10 minutes. Tubes were 

centrifuged at 12000 x g for 10 min at 4⁰C and the supernatant carefully discarded.  

1ml of 75% ethanol was added per tube and vortexed and then centrifuged for 5 min at 

7500 x g 4⁰C. The supernatant was discarded and the pellet briefly air dried. Each pellet 

was resuspended in 50 µl of RNase free dH2O and heated to 60⁰C to dissolve, then pooled 

together. Two 3 µl aliquots were taken for gel electrophoresis and/or spectrophotometric 

analysis and the remainder frozen at -80⁰C. 
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5.2.4 RNA extraction form NEJ using RNAeasy®minikit 

Approximately 150 metacercariae were excysted to NEJ by Ridgeway Research (kindly 

performed by Paula Martin) and preserved in 1 ml of RNAlater ® (Invitrogen) at room 

temperature for transportation, then stored at -80 ⁰C.  

Total RNA was extracted using the RNAeasy ® minikit (Qiagen) protocol for animal 

tissues. Briefly, RNAlater ®-fixed tissue was removed from -80⁰C storage and ground to a 

fine powder using a chilled mortar and pestle, adding liquid nitrogen to keep it frozen. 600 

µl of buffer RLT were added and the mixture ground again. 600 µl aliquots were dispensed 

into clean 1.5 ml Eppendorf tubes and centrifuged at 18 000 x g for 3 min. An equal 

volume of 70% ethanol was added to the lysate and mixed. The mixture was then 

transferred to an RNAeasy spin column and centrifuged for 15 sec 8000 x g, which binds 

RNA to the spin column membrane. The flow-through was discarded and 500 µl of Buffer 

RPE added to the RNAeasy spin column and centrifuged 2 min 8000 x g to wash the RNA. 

The spin column was transferred to a new 1.5 ml Eppendorf tube and centrifuged at 18 000 

x g for 1 min. The spin column was then placed into a 2 ml collection tube and 30 µl of 

RNAse free water pipetted onto the spin column membrane then centrifuged at 8000 x g 

for 1 min which elutes RNA from the membrane into collection tube. 

5.2.5 RNA and PCR product analysis by gel electrophoresis and 

spectrophotometry 

A 1% agarose gel was prepared by mixing 1g of agarose with 100 ml of 1 x TAE buffer  

(see Appendix 1) and heating until dissolved, then allowed to cool for 5 -10 min. 10 µl of 

10,000 x Gel Red (Biotium) were added to the mixture and poured into an appropriate 

mould within a gel tank (Pharmacia Biotech GNA100). Once the gel was set, 1 x TAE 

buffer (see Appendix 1) was poured into the gel tank until the gel was submerged. 4 µl of 

RNA were added to 1 µl of 4 x DNA sample buffer (see Appendix 1) which were then 

loaded into one well of the 1% agarose gel alongside a molecular weight marker and 

separated by electrophoresis at 90V for ~30 min. The gel was removed from the gel tank 

and visualised under UV on a AlphaImager 2200 (Alpha Innotech). 4 µl of RNA were 

analysed using the Nanodrop®, as per manufacturer’s instructions.  

5.2.6 Reverse Transcription- Polymerase Chain Reaction (RT-PCR) 

The putative full-length coding sequence for F. hepatica cathepsin D was amplified by RT-

PCR using the Superscript™One-step PCR kit (Invitrogen). First, forward and reverse 
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primers were designed for the 5’ and 3’ ends of the cathepsin D sequence deposited in the 

publically available GenBank database (accession number ABJ97285). The forward 

primer, 5’ATGAGACCGGTTCTCTTGATCT3’ and reverse primer, 5’TTAAATCAAC 

AAATTCCAAAAGCTTA3’ were produced by Eurofins (http://www.eurofins.co.uk/) and 

10µM stock solutions made for each of these and stored at -20⁰C.  

On ice, a one-step RT-PCR reaction (Invitrogen) was set up by adding 25 µl of 2 x reaction 

buffer, 1 µl of F. hepatica RNA, 1 µl of forward primer at 10 µM, 1 µl of the reverse 

primer at 10 µM and 21 µl of dH2O.  This was briefly mixed and centrifuged. 1 µl of 

RT/Platinum Taq (Invitrogen) was then added to the tube and mixed. PCR was performed 

in a 2720 thermocycler (Applied Biosystems) with the following conditions; 

a. cDNA synthesis: 1 cycle – 30 min at 50⁰C, 2 min at 94⁰C 

b. PCR amplification: 40 cycles – 15 sec at 94⁰C, 30 sec at 55⁰C, 2 min at 70⁰C 

c. Final extension: 1 cycle – 7 min at 72⁰C 

 

3 µl of the reaction were added to 1 µl of DNA sample buffer and separated on a 1% 

agarose gel and visualised under UV as described above. The PCR product was then 

purified using the QIAQuick PCR purification kit (Qiagen), as per manufacturer’s 

instructions.  

 

5.2.7 Transformation of competent cells  

The purified PCR product was ligated into the pGEM®-T cloning vector, as described by 

the manufacturer (Promega). The ligated vector was then used to transform JM 109 

(Promega) competent cells, as per manufacturer’s instructions. The transformed cells were 

spread on LB/IPTG/Ampicillin agar plates (see Appendix 1) and incubated overnight at 37 

⁰C. White colonies were picked and checked insert by colony PCR, as described in Chapter 

2 section 2.2.2.6. Colonies with the insert were then cultured overnight in 10 ml of LB 

broth/Xgal/ampicillin (see Appendix 1). Plasmids were then purified with the Wizard ® 

Plus SV minipreps DNA purification system (Promega) according to manufacturer’s 

instructions using the centrifugation protocol. The concentration of DNA was measured 

using the Nanodrop™2000 (Thermo-Scientific) and plasmids at an appropriate 

concentration were sent for automated sequencing (MWG, http://www.eurofins.co.uk/) 

using SP6 and T7 primers.  

http://www.eurofins.co.uk/
http://www.eurofins.co.uk/
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5.2.8 Multiple Sequence Alignment and identification of glycosylation sites and 

Transmembrane domains in F. hepatica cathepsin D  

The inferred protein sequence of F. hepatica cathepsin D, derived from the RT-PCR 

amplification product (FhCatD) as described in section 5.2.7, was aligned with those from 

other species. Initially, the protein sequences of A. duodenale [FJ172357], N. americanus 

[AJ245459], F. gigantica [JF720347], F. hepatica [ABJ97285], Clonorchis sinensis 

[AAL14708], S. japonicum [CAX72343], H. sapiens [AAH16320], H. contortus 

[AJ577754] H. contortus [AF076608] N. americanus [J245458], Opisthorchis viverrini 

[AAZ39883],  were aligned. This will allow comparison of residues in the active site clefts 

between the parasite species, which are described for cathepsin D in Merops 

(http://merops.sanger.ac.uk/). The sequences were then scanned for the presence of 

possible N-linked glycoslylation sites by identifying the amino acid series NxS or NxT 

(where x is any amino acid) (Blom et al., 2004). 

A second multiple sequence alignment of cathepsin D coding sequences including FhCatD, 

Caenorhabditis elegans [AAB06576], C. sinensis [AAL14708], O. viverrini [AAZ39883], 

Ascaris suum [ADY43078.1], Anisakis simplex [ACY38599], Ancylostoma caninum 

[AAB06575.1], Ancylostoma ceylanicum [AAO22152.1], S. japonicum [CAX79402.1], F. 

hepatica [AC104164.1] ADULT, F. hepatica [ABJ97285] NEJ, F. gigantica [ABJ97285], 

A. duodenale [FJ172357], N. americanus [AJ245459], S.  mansoni [CCD78465],  H. 

contortus [AJ577754], H. contortus [AF076608], N. americanus [J245458] Homo sapiens 

[AAA51922.1] was then conducted using the Clustal W2 programme 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). The guide tree generated from the alignment 

was then used to generate a phylogenetic tree using Tree view 

(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). Including more cathepsin D 

sequences will establish a better relationship of the FhCatD with that of other trematodes 

and nematodes.  

The presence of a signal peptide was identified using Signal P 4.0 (Petersen et al., 2011). 

Furthermore, any potential transmembrane domains (TM) were identified by submitting 

the FhCatD protein sequence to TMpred - Prediction of Transmembrane Regions and 

Orientation (http://www.ch.embnet.org/software/TMPRED_form.html) (Hofmann and 

Stoffel, 1993).  

 

http://merops.sanger.ac.uk/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
http://www.ch.embnet.org/software/TMPRED_form.html
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5.2.9 Purification of F. hepatica aspartyl protease by Pepstatin A affinity 

chromatography 

A 150 mm long x 10 mm diameter empty column apparatus was assembled according to 

the manufacturer’s guidelines (Bio-Rad) and washed thoroughly with dH2O at room 

temperature. The column outlet was stoppered and 1 ml of Pepstatin A (PepA) binding 

buffer (see Appendix 1) dispensed into the column. 2 ml of Pepstatin A-bound agarose 

beads (Pierce) were then dispensed into the column and the stopper removed. The column 

was packed by continually washing with PepA binding buffer, being careful not to allow 

the column to run dry.  Once the bead volume was adequately packed, the stopper was 

replaced and the column filled very carefully with PepA binding buffer, to create a positive 

meniscus. The rest of the column was assembled ensuring no air bubbles were trapped. The 

column was then equilibrated and packed in PepA binding buffer by washing overnight, 6 

ml per hour at 4ºC. 

2 ml of S3 was diluted to 7 ml with PepA binding buffer and loaded onto the column at 10 

ml per hour. PepA binding buffer was washed through the column to remove any unbound 

material. The column was then washed with 20 ml of PepA elution buffer (see Appendix 1) 

and 1 ml fractions collected. The absorbance of fractions at 280 nm was measured. 

Fractions containing protein were pooled and concentrated with Amicon Ultra 10K 

(Millipore) as per manufacturer’s instructions. A 10 µl sample were analysed by SDS-

PAGE as described in section 3.2.4.1.  

5.2.9.1 Matrix assisted laser desorption/ionisation time of flight (MALDI-TOF) 

spectrometric analysis. 

Where stated MALDI-TOF was used to identify the protein identity of protein bands of 

interest. This was performed by Kevin McLean of the Moredun Functional Genomics Unit. 

Briefly, protein bands of interest were excised, destained and reductively alkylated using 

DTT and iodoacetamide. The gel pieces were digested overnight with trypsin at 37 
o
C. 

Digests were then analysed on an Ultraflex II MALDI-ToF-ToF mass spectrometer 

(Bruker Daltonics), scanning the x to y Dalton region in reflectron mode producing 

monoisotopic resolution.  The spectra generated were mass calibrated using known 

standards and the peaks deisotoped. Masses obtained were used for database searching 

with the MASCOT search engine using the in-house F. hepatica cathepsin D database with 

a 50 ppm mass tolerance window.  Significant matches from the Peptide Mass Fingerprint 
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data were confirmed by MS/MS analysis using the search criteria detailed above and an 

MS/MS tolerance window of 0.5 Da. 

5.2.10 Generation of a recombinant cathepsin D 

5.2.11 Generation of recombinant cathepsin D using pET SUMO 

5.2.11.1 Ligation of cathepsin D into pET SUMO vector 

FhCatD PCR product from Section 5.2.6 was added in a 1:1 molar ratio of insert:vector by 

combining the following in an Eppendorf; 1µl cathepsin D PCR product, 1 µl 10 x ligation 

buffer, 2 µl pET SUMO vector (Invitrogen) (25 ng/ µl), 5 µl dH2O, 1 µl T4 DNA ligase 

(4.0 Weiss Units). This was incubated for 24 hours at 15 ⁰C. 

5.2.11.2 Transforming into competent cells 

The construct was transformed into One Shot ® Mach1™ T1®competent cells 

(Invitrogen) as follows. One vial of cells was thawed on ice. 2 µl of ligation reaction were 

added and incubated on ice for 10 min. Cells were heat shocked at 42 ⁰C for 30 sec then 

immediately placed on ice. The transformation reaction was then incubated at 37 ⁰C for 1 

hour, with shaking (200 rpm). After incubation, the transformation reaction was spread on 

LB plates with 50 µg/ml Kanamycin (See Appendix 1) and incubated overnight at 37 ⁰ C.     

10 colonies were picked from plates and checked for inserts by colony PCR using 

SapphireAMP®Fast PCR mix (TaKaRa). A master mix was prepared by combining the 

following; 225 µl 2 x SapphireAMP®Fast PCR mix, 9 µl pET SUMO forward primer (5’ 

AGATTCTTGTACGACGGTATTAG 3’) (10 µM), 9 µl T7 reverse primer (5’ 

TAGTTATTGCTCAGCGGTGG 3’) (10 µM) and 207 µl dH2O. 50 µl aliquots of this 

master mix were dispensed into 9 PCR tubes. Using a clean pipette tip, a swab was taken 

from each colony and mixed with master mix. 

Reaction tubes were placed into a preheated 2720 thermocycler (Applied Biosystems) and 

processed through the following conditions;   

a. Denaturation: 94 ⁰C for 1 Min (1 cycle) 

b. PCR reaction: 98 ⁰C for 5 sec, 55⁰C for 30 sec, 72⁰C for 40 sec (30 cycles) 

c. Extension: 72⁰C for 1 minute, hold at 4⁰C 

Products were examined by agarose gel electrophoresis as described in section 5.2.5.  
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Another swab was taken from the transformants with the cathepsin D insert and added to 

10 ml LB broth/Kanamycin (50 µg/ml). Cultures were incubated overnight at 37 ⁰C with 

shaking (200rpm). The plasmids were purified from the cultures using the Wizard Plus SV 

minipreps DNA purification system (Promega), using the centrifugation protocol. The 

concentration of the plasmid DNA was estimated using the Nanodrop then sent to Eurofins 

(http://www.eurofins.co.uk/) for sequencing. 

Sequences were aligned using DNASTAR Lasergene 8 and translated into protein 

sequence using the sequence manipulation suite website (http://www.bioinformatics.org/ 

sms2/) to check that the sequence was in-frame and capable of producing the correct 

translated product. 

5.2.11.3 Expression of pET SUMO-cathepsin D fusion recombinant protein 

Following transformation of BL21 (DE3) (Invitrogen, UK) competent cells with the pET 

SUMO-cathepsin D construct, the recombinant cathepsin D was expressed. 

10 µg of plasmid from a colony containing the verified insert was added to a vial of 

competent cells BL21(DE3) One Shot (Invitrogen). This was incubated for 30 min on ice 

and heat shocked for 30 sec at 42 ⁰C and placed back on ice. The reaction was added to 

250 µl of 42 ⁰C SOC and incubated at 37 ⁰C for 90 min with shaking. After incubation, the 

reaction was added to 10 ml of LB broth + ampicillin (See Appendix 1) and incubated 

overnight with shaking (200 rpm). 

500 µl of overnight culture were added to two vials of 10 ml of LB broth and ampicillin 

(See Appendix 1). This was incubated for 2 hours at 37 ⁰C with shaking (200 rpm). When 

the OD280 was between 0.4 – 0.9 (ideally 0.6, exponential growth phase) IPTG (1mM) was 

used to induce one culture of transformed competent BL21(DE3) cells. Immediately after 

the addition of IPTG a 1 ml sample (labelled as time = 0) was taken from each culture, 

induced and uninduced. The samples were centrifuged at 3000 rpm for 10 min and the 

supernatant discarded. Pellets were stored at – 20 ⁰C. Cultures were incubated at 37 ⁰C for 

a further 5 hours taking a 1 ml sample from each culture every hour and processing as 

before. 

Pellets were resuspended in 100 µl of binding buffer (see Appendix 1) and frozen at -80 ⁰C 

for 5 min, thawed and vortexed. This was repeated, then 5 µl of 20% Triton X-100 were 

http://www.eurofins.co.uk/
http://www.bioinformatics.org/
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added and incubated on ice for 1 hour. Reactions were centrifuged at 13, 000 rpm for 10 

min. The supernatant (soluble phase) was removed and dispensed into clean Eppendorf 

tubes. The pellet (insoluble) phase was resuspended in 100 µl binding buffer + 8M urea. A 

10 µl  sample from each time point and phase (soluble or insoluble) was taken and added 

to 5 µl Sample buffer and heated to 70 ⁰C for 10 min. Samples were separated by 

electrophoresis on SDS-PAGE (4-12%) alongside molecular weight marker. When it was 

confirmed, by SDS-PAGE, that cathepsin D was successfully being expressed as described 

in section 5.2.5.10, the expression was carried out on a larger scale. A colony expressing 

cathepsin D was used to inoculate a 10 ml LB broth/Kanamycin (50 µg/ml) and grown 

overnight at 37 ⁰C (200 rpm). 750 µl of the culture were used to inoculate 50 ml of LB 

broth which was then incubated at 37 ⁰C for approximately 3 hours with shaking (200 

rpm). When the OD600 was between 0.4 – 0.9 (ideally 0.6, exponential growth phase) a 1 

ml sample was taken and centrifuged at 3000 rpm for 10 min and the supernatant was 

discarded. The remaining pellet was stored at – 20 ⁰C. The culture was then induced to 

express the cathepsin D protein by the addition of IPTG (1mM) and incubating at 37 ⁰C for 

3 hours with shaking (200 rpm). After 3 hours the culture was transferred into a 50 ml 

Falcon tube and centrifuged for 20 min at 3000 x g. The supernatant was discarded and 

pellet stored at -80⁰C. 

5.2.12 Purification of recombinant protein by nickel affinity chromatography 

Nickel affinity chromatography was used to purify the recombinant cathepsin D. The cell 

pellet from section 5.2.11 was thawed and resuspended in 5 ml of binding buffer (see 

appendix 1). On ice, the cell pellet in binding buffer was sonicated for 2 x 20 sec, then 

refrozen at – 80 ⁰C for 10 min. The pellet suspension was thawed and 500 µl of 20 % 

Triton X-100 in binding buffer added. This mixture was then incubated on ice for 30 min 

on a rotary shaker. 1.1 ml aliquots were centrifuged at 18 000 x g for 10 min, supernatant 

discarded and pellets stored at -80⁰C. As the recombinant cathepsin D was present in the 

insoluble fraction, 8 M Urea was added to the buffers to solubilise the protein during the 

subsequent purification process. One pellet was thawed and resuspended in 1 ml of binding 

buffer + 8 M Urea (see Appendix 1) by vortexing for 10 min. The suspension was then 

centrifuged at 14000 rpm for 10 min and the supernatant stored at 4 ⁰C 

Using a peristaltic pump, a 1 ml HisTrap™HP column (Amersham Biosciences) was 

washed with 5 ml dH2O then 5 ml of binding buffer + 8 M Urea. 1ml of the urea 
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solubilised induced protein fraction was applied to the column at 1 ml per minute, retaining 

a subsample for later analysis (sample A). The column was then sealed and incubated for 1 

hour at room temperature on a rotary shaker.  After incubation, 5 ml of binding buffer with 

8 M Urea was passed through the column and the first 1 ml eluted from the column 

collected for later analysis, labelled sample B. 1 ml of elution buffer 1 was applied onto the 

column and the eluate collected  and labelled sample C. 1ml of elution buffer 2 was then 

applied onto the column and the eluate collected, sample D. 1 ml of elution buffer 3 was 

then applied onto the column and the eluate collected, sample E. Finally, 3 ml of elution 

buffer 4 was applied to the column and 1ml samples collected as sample F, G and H. 

Samples A to H were mixed with sample buffer and separated on a 4- 12% Bis/Tris SDS 

PAGE by electrophoresis, at 200 V 50 min, to establish if purification was successful. 

5.2.13 Purification of the recombinant cathepsin D by electro-elution 

Although the protein had a C-terminal poly-histidine tag, it was not possible to purify the 

recombinant F. hepatica cathepsin D by nickel affinity chromatography. Therefore, the 

protein was purified by electro-elution. 1 ml aliquots of the recombinant protein mixture 

were separated by SDS-PAGE alongside SeeBlue®Plus2 Prestained standard (Invitrogen) 

by electrophoresis at 200 V for 45 min. The gel was stained with SimplyBlue™SafeStain 

(Invitrogen) for 1 hour at room temp, on a shaker, then destained with distilled water. After 

destaining, the band(s) representing the recombinant cathepsin D were excised from the gel 

using a clean scalpel blade and cut into small pieces.  

The electro-elution tank (BioRad) was prepared as follows. The outer chambers of the 

electro-elution tank were filled with ½ x electrophoresis tank buffer (Tris glycine SDS), 

see Appendix 1. Dialysis membrane was soaked in water then stretched over the inside 

cups. The cup at the negative electrode was filled with ½ x electrophoresis tank buffer and 

the cup at the positive electrode was filled with ½ x electrophoresis tank buffer without 

SDS. The gel pieces were placed into the cup at the negative electrode. The cup at the 

positive electrode was filled with ½ x electroelution tank buffer until it covered the area 

between the cups, see Figure 5.2. The lid was attached and 50 V applied overnight. This 

causes the protein to migrate from the gel polyacrylamide pieces at the negative electrode 

to the positive electrode. Carefully, the buffer was removed and the blue solution 

(containing protein) at the positive electrode collected. A sample of this was separated by 

SDS-PAGE (as described in 3.2.4.1) alongside a molecular weight marker to confirm that 
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the purified protein was of the correct molecular mass. Multiple samples purified in this 

way were pooled and concentrated by centrifugation at 3500 x g using Amicon ultra10 K 

(Millipore) concentrators and then MALDI-TOF was used to confirm that the protein 

identity was cathepsin D as described in section 5.2.9.1. The recombinant cathepsin D 

generated here will be termed rFhCatD from now on. 

Gel pieces 

 

Figure 5.2 Electro-elution tank setup. The ½ x electrophoresis buffer with SDS is shown in 

blue and without SDS in light blue.  

 

5.2.14 Western blot with immune sera 

Approximately 10 µg of S1, S2, S3, RFhCatD, JAC-enriched S3, PNA-enriched S3, and 

cathepsin L1 (kindly provided by Professor Grace Mulcahy, University College Dublin, 

Ireland) were separated on 4-12% SDS-PAGE and electroblotted onto PVDF membrane as 

described in section 3.2.4.2. This was repeated to generate two replicate blots. 

The PVDF was briefly stained with Ponceau S (see Appendix 1) to visualise lanes and then 

destained by two 5 min washes in 5 % acetic acid, then blocked for 1 hour with TNTT at 

room temp. One blot was incubated with serum taken from sheep 8 weeks after an 

experimental challenge with 500 F. hepatica metacercariae (kindly provided by Professor 

Grace Mulcahy, UCD). The other blot was probed with serum from naïve sheep. Sera were 

used at 1:200 dilution in TNTT and blots incubated for 1 hour at room temperature on a 

rotary shaker. Blots were washed 3 x 5 min in TNTT, then incubated in anti-sheep 

Gel pieces 
Purified protein 
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immunoglobulin- (1:1000 in TNTT) for 1 hour at room temperature. The blot(s) were then 

developed with Sigma fast DAB (Sigma) for 5 min at room temperature. 

5.2.15 Raising antibodies to rFhCatD in mice 

Mice were used to raise antibodies against rFhCatD. The inoculation was prepared by 

combining 90 µl antigen (~125 µg/ml), 50 µl of 1 mg/ml Quil A adjuvant, 80 µl of 1 x 

PBS (see Appendix 1). Two BALB/c mice were inoculated with 100 µl of antigen/adjuvant 

suspension subcutaneously twice at 3 week intervals (by Louise Gibbard of the Moredun 

High Security Unit). Blood was taken prior to inoculation, 1 week after the second 

inoculation and the animals humanely exsanguinated. The serum was separated from other 

blood products by allowing the blood to clot at 4⁰C overnight and pipetting the separated 

liquid from clotted red blood cells into a new tube. This was centrifuged at 1000 x g for 10 

min and 50 µl aliquots of the supernatant stored at -20 ⁰C.   

5.2.16 Immunoblotting of cathepsin D in F. hepatica extracts and protein fractions 

To confirm the antisera generated in section 5.2.16 were capable of recognising rFhCatD, 

ten 10 µl aliquots of rFhCatD were separated on a 4-12 % SDS PAGE gel as described in 

section 3.2.4.1 and electroblotted onto NC as described in section 3.2.4.2. The NC was 

briefly stained with Ponceau S to visualise lanes, which were marked and cut then 

destained by two 5 min washes in 5 % acetic acid, then blocked for 1 hour with TNTT at 

room temperature. Lanes 1 to 5 were incubated for 1 hour at room temperature in 

decreasing concentrations of mouse anti-rFhCatD in TNTT (1: 500, 1000, 2000, 4000, 

5000). Lanes 6 - 10 were incubated for 1 hour at room temp in decreasing concentrations 

of pre-immune mouse sera diluted in TNTT (1: 500, 1000, 2000, 4000, 5000). Lanes were 

washed three times for 5 min in TNTT. All lanes were then incubated in Polyclonal Rabbit 

Anti-Mouse Immunoglobulins/HRP (DAKO, P0260) at 1: 1000 in TNTT for 1 hour at 

room temperature. Lanes were washed three times for 5 min in TNTT. The blot was then 

developed with Sigma fast DAB (Sigma) for 5 min at room temp. 

Once the working dilution of sera was established, 10 µl of S1, S2, S3, rFhCatD, JAC-

enriched S3 and PNA-enriched S3 were separated on a 4-12 % SDS-PAGE gel as 

described in section 3.2.4.1 and the electroblotted onto NC as described in section 3.2.4.2. 

The blot was blocked in 1 x TNTT overnight at 4 ⁰C, then probed with the antisera (1: 

5000) and rabbit anti-mouse HRP (1: 1000), as described above. 
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5.2.17 Immunolocalisation of FhCatD protein 

The antisera generated in section 5.2.15 were used to immunolocalise proteins within 

tissue sections of juvenile and adult F. hepatica. Sections were prepared as described in 

section 3.2.2.1. Sections were dewaxed as described in section 3.2.2.4., then incubated for 

20 min in 3 % hydrogen peroxide in methanol at room temperature with stirring. This 

inactivates any endogenous peroxidases from the sections to prevent non-specific staining. 

Sections were then rinsed with tap water and loaded into Shandon Sequenza slide racks 

(Thermo Scientific). Slides were then rinsed 3 times with immunolocalisation buffer (see 

Appendix 1). Sections were blocked with 100µl of 25% normal goat serum (NGS) in 

immunolocalisation buffer (see Appendix 1) for 30 min at room temperature. The 

histological sections were then incubated in either 100 µl of the pre-immune mouse sera 

(as a negative control) or 100 µl of serum raised against the rFhCatD, both diluted to 

1:10,000 in  25% NGS/ immunolocalisation buffer (see Appendix 1). Slides were 

incubated at 4 ⁰C overnight. Sections were washed 3 x with immunolocalisation buffer 

then incubated with 100 µl HRP-conjugated goat anti-mouse IgG (Envision) 30 min at 

room temperature. Slides were washed 3 x with immunolocalisation buffer. 100 µl of DAB 

(1 ml substrate buffer with 20 µl DAB chromagen, Envision) were dispensed onto each 

slide and incubated for 8 min at room temperature, then washed with dH2O. Sections were 

counterstained as follows; haemotoxylin 5 min, dH2O 5 min, Scot’s tap water substitute 

(STWS) (see Appendix 1) 5 min, dH2O 5 min, 75% ethanol 5 min, 95% ethanol 5 min 

100% ethanol 5 min, xylene 2 x 5 min. Slides were mounted with coverslips using Colsul 

mount (Thermo Scientific, UK) mounting medium and viewed on an Olympus BX50 

microscope. 

5.2.18 NEJ and adult stage expression of cathepsin D using RT-PCR 

5.2.18.1 Primers 

Primers were designed to amplify a fragment of F. hepatica cathepsin D (ABJ97285) (see 

Figure 5.3) and F. hepatica β-tubulin [GenBank accession: HM535959.1] (see Figure 5.4) 

using Primer3 (v. 0.4.0) (http://frodo.wi.mit.edu/primer3) (Rozen and Skaletsky, 2000). 

The final amplified fragments for F. hepatica cathepsin D and β-tubulin are 211 bp and 

174 bp in length respectively. The forward and reverse primers were produced by Eurofins 

(http://www.eurofins.co.uk/) and 10µM stock solutions made for each of these and stored t 

-20⁰C.  

http://frodo.wi.mit.edu/primer3
http://www.eurofins.co.uk/
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GTGCGGGAAACAACTGGGCCAAGGGACATTACACCGAAGGTGCCGAGTTGGTTGACTCAGT

TTTGGATGTGGTTCGCAAAGAAGCTGAGTCATGCGACTGTCTCCAAGGCTTCCAGTTGACT

CATTCACTGGGTGGTGGCACCGGTTCTGGTATGGGTACCTTGCTCATCTCGAAGATCCGGG

AGGAGTATCCTGATCGGATCATGAACACTTTCTCCGTGGTCCCCTCACCCAAGGTATGTCA

AGCCAGGTCCAAATATGTTCATCAATATCTGTTTTATTTAGGTATCCGACACCGTTGTGGA

ACCATATAATGCTACCCTATCCGTACATCAGTTGGTCGAGAACACGGATGAGACGTATTGC

ATCGACAACGAAGCTCTATATGATATCTGCTTCCGCACCTTGAAACTGACCACGCCAACCT

ACGGTGATTTAAACCATTTGGTGAGTGCCACCATGTCCGGTGTGACAACTTGTCTGCGTTT

CCCTGGTCAACTGAATGCTGATCTGCGAAAACTAGCCGTGAACATGGTTCCGTTCCCCCGT

TTGCACTTCTTCATGCCTGGTTTTGCTCCACTAACCAGTCGAGGTAGTCAACAATACCGTG

CTCTGACTGTACCTGAGTTGACTCAACAAATGTTTGATGCGAAGAACATGATGGCCGCTTG

TGATCCGCGTCACGGGCGCTACCTGACAGTTGCCGCCATGTTCCGTGGTCGCATGTCGATG

AAAGAGGTGGACGAGCAAATGTTGAATGTGCAGAACAAAATACAAT 
 

Figure 5.3:  The nucleotide sequence of F. hepatica cathepsin D (ABJ97285). Highlighted 

are the forward (red) and reverse primer binding sites (yellow). The final amplified 

fragment should be 211 bp in length.  

ATGTTTTAAGGATTAAACTACGTCCATTTAAGACGACCCGCCAGGAGCTCAGCGAATATGG

GTCGCTCGACTGGGAATCATCACAACGGCTTTTTGGGAAATATGCAGGAAGAAACGGCTCT

ATTCCGGAGCAGCTAAATAACTATTTGGACGCTCAATATTATGGCGAAATCGGTATTGGAA

CGCCACCACAAACTTTCAAAGTCATTTTTGATACGGGGTCGTCAAACTTGTGGGTCCCGTC

AAAACGCTGCAGCTATCTCAGCTGGGCTTGTTGGCTACACAACAAATATAACTACGCTGCT

TCTTCAACTTATCAAGTTAATGGCACCGCTTTCAGTATTCAGTATGGAACCGGCAGTGTAT

CAGGTTTTATAAGCGTTGATTCATTTGAGGTTGGCGGTGTGGAGGTGAAAGGTCAACCATT

TGGGGAGGCTATCAAAGAACCTGGCATCGTTTTTGTGTTTGCTAAATTCGACGGTATCCTT

GGGATGGGATTTAGAAGCATATCTGTTGGTGGCCTGATTACCGTTTTTGAAAATATGATTG

CTCAAGGTCTAGTACCCGAACCTGTCTTCTCTTTTTACCTCAACAGAAATGCATCCGATCC

TGTGGGTGGCGAGCTTCTTCTCGGAGGGATCGATCCAAATTACTATACTGGTGACATTACC

TATGTGCCGGTCACTCATGAAGCATACTGGCAGTTCAAAGTTGATAAAATCGAGTTTCCTG

GTGTTTCAATTTGCGCTGATGGTTGTCAAGCTATTGCTGATACAGGCACATCCCTCATTGC

CGGCCCGAAGAAGGAAGTTGACGCACTGAATGAGCAAATTGGAGGCACTTGGATGCCTGGA

GGTATCTACGTCGTGAATTGGGACAAGATTGATAATCTTTCTGCTATTACCTTTGTCGTGG

CTGGGAGAAAAATGGTGTTTGAGGCTAAAGACTATC 

Figure 5.4: The nucleotide sequence of F. hepatica β-tubulin [GenBank accession: 

HM535959.1). Highlighted are the forward (green) and reverse primer binding sites 

(yellow). The final amplified fragment should be 174 bp in length 
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5.2.18.2 RT-PCR 

The RT-PCR reaction was set up on ice as outlined in Table 5.1. 

  

Table 5.1: RT-PCR set up for investigating the expression of cathepsin D and β tubulin in 

NEJ and Adult stages of F. hepatica. 

 

2 x Reaction 
Buffer 

µl 

Adult/NEJ 
RNA (µl) 

F CD 
(10 µM) 

µl 

RCD 
(10 µM) 

µl 

F β T 
(10 µM) 

µl 

R β T 
(10 µM) 

µl 

dH2O 
µl 

1 25 NEJ (5) - - 1 1 17 

2. 25 NEJ (5) 1 1 - - 17 

3  25 Adult (1) - - 1 1 21 

4 25 Adult (1) 1 1 - - 21 

5  25 - - - 1 1 22 

6 25 - 1 1 - - 22 

Reactions: 1. NEJ with β-Tubulin, 2. 1. NEJ with cathepsin D, 3. Adult with β-Tubulin, 4. Adult with 

cathepsin D, 5. β-Tubulin control, 6. cathepsin D control. Forward cathepsin D primer (F CD), Reverse 

cathepsin D primer (R CD), Forward β-Tubulin primer (F β T) Reverse β-Tubulin primer (Rβ T). 

 

These were briefly mixed and centrifuged. Then, 1 µl of RT/Platinum Taq (1 Unit) 

(Invitrogen) was added to each tube, mixed. Reaction tubes were placed into a preheated 

2720 thermocycler (Applied biosystems) and processed through the following conditions;   

cDNA synthesis: 1 cycle – 30 min at 50⁰C, 2 min at 94⁰C 

a. PCR amplification: 40 cycles – 15 sec at 94⁰C, 30 sec at 55⁰C, 2min at 68⁰C 

b. Final extension: 1 cycle – 5 min at 68⁰C 

 

5 µl samples were taken every 5 amplification cycles and stored at 4 ⁰C. 3µl of the reaction 

were added to 1µl of DNA sample buffer and separated on a 1% agarose gel and visualised 

as described in section 5.2.5.  
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5.3 Results 

5.3.1 Amplification of cathepsin D and alignment 

The full-length F. hepatica cathepsin D (FhCatD) coding sequence was amplified, using 

primers designed to the respective 5’ and 3’ ends of the sequence, from total RNA 

extracted from adult flukes, by reverse transcription PCR (RT-PCR). RT-PCR yielded a 

product of the expected size (931 bp). This was ligated into a suitable plasmid vector and, 

in turn, transformed into competent cells in order to propagate the plasmid. Colony PCR 

confirmed the presence of the sequence in the vector and these plasmids were purified and 

sent for sequencing (MWG, Eurofins). The inferred amino acid sequence of the rFhCatD 

was aligned with the publically available F. hepatica cathepsin D sequence (ABJ97285) 

for comparison. The sequences shared 99% identity and glycosylation sites, 

transmembrane domains and signal peptides are highlighted in Figure 5.5. 

5.3.2 Multiple sequence alignment and generation of a Phylogenetic tree  

In order to ascertain the similarity of FhCatD to cathepsin D from other species, sequences 

were aligned using multiple sequence alignment to generate a phylogenetic tree. Amino 

acids in the active site clefts between all species were identical. The most closely related 

sequences were those of FhCatD, F. gigantica [JF720347] and F. hepatica [adult 

(ABJ97285) NEJ (AC104164)] sharing 99% identity. This high level of identity indicates 

that they are likely to represent the same cathepsin D gene. FhCatD shared the least 

similarity with H. contortus (AJ577754, AF076608) with only 24 % identity, see Table 

5.2.  

After the initial alignment, FhCatD was then aligned with a larger set of cathepsin D 

protein sequences to acsertain its relationship to cathepsin D of other species as before with 

pairwise alignment by Clustal W2. The subsequent guide tree was then used to generate a 

phylogenetic tree using Treeview (Page, 1996),  this is shown in Figure 5.6. FhCatD was 

placed in a clade with the F. hepatica NEJ, F. hepatica adult and F. gigantica cathepsin D. 

Closely related were the enzymes of the other trematodes, the human blood flukes S. 

japonicum and S. mansoni. The nematode enzymes were also placed together within a 

single but different clade to the trematodes.  

Scanning for transmembrane domains within FhCatD identified 4 significant 

transmembrane helicies which were located between residues; 1-19 (1800), 116- 144 

(610), 177-195 (1309) and 348-374 (1112), see Figure 5.5. The scores for these were 1800, 
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610, 1309 and 1112 respectively where a score greater than 600 is significant. There was 

also a signal peptide identified at residues 1-16 with predicted cleavage between 16 and 17 

(Petersen et al., 2011). 

 

F.hepatica[ABJ97285]      MRPVLLICLLFSAALCDVLRIKLRPFKTTRQELSEYGSLDWESSQRLFGKYAGRNGSIPE 60 

FhCatD                    MRPVLLICLLFSAVLCDVLRIKLRPFKTTRQELSEYGSLDWESSQRLFGKYAGRNGSIPE 60 

                          *************.********************************************** 

 

F.hepatica[ABJ97285]      QLNNYLDAQYYGEIGIGTPPQTFKVIFDTGSSNLWVPSKRCSYLSWACWLHNKYNYAASS 120 

FhCatD                    QLNNYLDAQYYGEIGIGTPPQTFKVIFDTGSSNLWVPSKRCSYLSWACWLHNKYNYAASS 120 

                          ************************************************************ 

 

F.hepatica[ABJ97285]      TYQVNGTAFSIQYGTGSVSGFISVDSFEVGGVEVKGQPFGEAIKEPGIVFVFAKFDGILG 180 

FhCatD                    TYQVNGTAFSIQYGTGSVSGFISVDSFEVGGVEVKGQPFGEAIKEPGIVFVFAKFDGILG 180 

                          ************************************************************ 

 

F.hepatica[ABJ97285]      MGFRSISVGGLITVFENMIAQGLVPEPVFSFYLNRNASDPVGGELLLGGIDPNYYTGDIT 240 

FhCatD                    MGFRSISVGGLITVFENMIAQGLVPEPVFSFYLNRNASDPVGGELLLGGIDPNYYTGDIT 240 

                          ************************************************************ 

 

F.hepatica[ABJ97285]      YVPVTHEAYWQFKVDKIEFPGVSICADGCQAIADTGTSLIAGPKKEVDALNEQIGGTWMP 300 

FhCatD                    YVPVTHEAYWQFKVDKIEFPGVSICADGCQAIADTGTSLIAGPKKEVDALNEQIGGTWMP 300 

                          ************************************************************ 

 

F.hepatica[ABJ97285]      GGIYVVNWDKIDNLSAITFVVAGRKMVFEAKDYIMKLSNMGRTVCVTSFIGIDVPVGPLW 360 

FhCatD                    GGIYVVNCDKIDNLPAITFVVAGGKMVLEAKDYIMKLSNMGRTVCVTSFIGIDVPVGPLW 360 

                          ******* ******.******** ***:******************************** 

 

F.hepatica[ABJ97285]      ILGDVFIGSYYTVFDMGQKRIGFATTKRHSVSKPPLSVPMMGLKPAFRRQEEPRSAPPRN 420 

FhCatD                    ILGDVFIGSYYTVFDMGQKRIGFATTKRHSVSKPPLSVPMMGLKPAFRRQEEPRSAPPRN 420 

                          ************************************************************ 

 

F.hepatica[ABJ97285]      LLSFWNLLI 429 

FhCatD                    LLSFWNLLI 429 

                          ********* 

Figure 5.5: Multiple sequence alignment of FhCatD with adult F. hepatica cathepsin D 

(ABJ97285). Alignment was conducted using ClustalW2 by pairwise alignment 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). * indicates where the amino acid is the same 

in both sequences and the active site clefts are highlighted yellow.  Glycosylation motifs 

(NxS/T) are highlighted in green. Predicted transmembrane domains are highlighted in red 

and signal peptide underlined and in bold.           

 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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Table 5.2: The percentage DNA idenitity of FhCatD with cathepsin D from 18 other 

species.  

 

 Accession number Codon identity (%) 

F. hepatica ACI04164.1 98 

F. gigantica AEE69372.1 98 

F. hepatica ABJ97285.1 98 

O. viverrini AAZ39883 59 

C. sinensis AAL14708 56 

S. mansoni AAB63442 52 

S. japonicum CAX79402.1 51 

H. sapiens AAA51922.1 48 

A. duodenale FJ172357.1 45 

A. suum ADY43078.1 45 

A. ceylanicum AAO22152.1 44 

A. simplex ACY38599.1 42 

A. caninum AAB06575.1 40 

C. elegans AAB06576.1 28 

N. americanus AJ245459 27 

N. americanus J245458 27 

H. contortus AF076608 24 

H. contortus AJ577754 24 
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Figure 5.6: Relationship between selected cathepsin D molecules from eukaryotes, with 

emphasis on helminths. Clustal W2 used pairwise alignment to conduct multiple sequence 

alignment of the protein sequences. A phylogeny was created using the neighbour joining 

method and the subsequent guide tree used to generate a phylogenetic tree using Tree view 

(Page,1996). 
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5.3.3 Generating recombinant F. hepatica cathepsin D using pET SUMO 

Cathepsin D was successfully ligated into the pET SUMO vector. The cathepsinD/pET 

SUMO (CatD-SUMO) construct was then used to transform JM 109 competent cells and 

colonies were checked for insert by colony PCR.  Colonies which contained the insert were 

purified and sent for sequencing at MWG (http://www.eurofins.co.uk). A colony 

containing the insert with the desired sequence was then taken forward for protein 

expression. The CatD-SUMO was used to transform BL21(DE3) (invitrogen) competent 

cells for expression to obtain the recombinantly-derived  protein. Samples were taken at 0, 

1, 2 ,3, 4,  and 5 hours after cells were induced with IPTG. The soluble and insoluble 

protein fractions were prepared from each bacterial pellet. A small sample of these was 

fractionated by SDS-PAGE, as shown in Figure 5.7 

A prominent peptide of approximately 49 kDa, which is the predicted molecular weight for 

the protein encoded by the CatD-SUMO construct, was present in the induced insoluble 

fraction and absent from the non-induced cells. The band was excised from the gel and 

subjected to MALDI-TOF analysis. This confirmed its identity as F. hepatica cathepsin D, 

See Figure 5.8. 

 

Figure 5.7:  Induced expression of CatD-SUMO in BL21 cells. 1 ml samples were taken at 

times (T) 0, 1, 2, 3, 4, 5 hours post-induction with IPTG. Panel A shows the soluble 

fraction from each time point and panel B shows the insoluble fraction. A ~49 kDa band of 

increasing intensity over time is evident in the insoluble fraction as indicated by arrow. 
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Database searched: CathepsinD 

MOWSE Score: 145.0 

MW [kDa]: 48.1 

  

Sequence Coverage [%]: 26.4 

No. of unique Peptides: 14 

 

Figure 5.8: MALDI-TOF analysis of the 49 kDa fragment extracted from bacterial pellets. 

 

 

5.3.4 Purification of recombinant FhCatD 

Protein expression was scaled up by producing soluble and insoluble fractions as described 

in Section 5 2 11 3.  Purification of the rFhCatD was then attempted by nickel affinity 

chromatography. Although the rFhCatD possesses a polyhistidine residue fusion peptide 

(verified by sequencing), it could not be purified by nickel affinity chromatography, result 

not shown. The recombinant cathepsin D was purified directly by electroelution. The 

purified recombinant cathepsin D is shown in Figure 5.9. Bands 1 and 2 were excised from 

the gel and subjected to MALDI-TOF analysis (performed by Kevin McLean of the 

Moredun Functional Genomics Unit) which confirmed these as F. hepatica cathepsin D. 

Band 2 was the correct size (49 kDa), the larger band 1 (Figure 5.9) was also confirmed as 

cathepsin D and is thought to represent a dimer. 
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Figure 5.9: Purification of recombinant cathepsin D by electroelution. Band 1 and 2 were 

analysed by MALDI-TOF which confirmed both their identities as F. hepatica cathepsin D 

aspartyl protease. Band 2 is at the correct estimated size, where band 1 is thought to be a 

dimer which explains the higher molecular weight 

5.3.5 Production of antisera to recombinant cathepsin D 

Antiserum to the recombinant cathepsin D was raised in mice. The resultant sera were used 

to probe FhCatD at serial dilutions, along with pre-immune mouse sera. From this, a 1:500 

dilution was used for future blots, see Panel A Figure 5.10. The sera were then used to 

probe the three F. hepatica extracts (S1, S2 and S3) and the lectin-enriched fractions. 

There was no evidence of cathepsin D in the S1, S2, S3 and JAC-enriched S3 fractions but 

its presence in the PNA enriched S3 was confirmed. This result is consistent with the 

outcome of the proteomic analysis from Chapter 2, but not with the enzymatic analyses in 

Chapter 4. 
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Figure 5.10 Reactivity of pooled mouse serum raised to rFhCatD against F. hepatica 

extracts. Extracts include PBS-soluble (S1), membrane-associated (S2) membrane-bound 

(S3), JAC-enriched S3(J) and PNA-enriched S3 (P). Panel A shows rFhCatD probed with 

sera raised to rFhCatD (+) and preimmune sera (-) at 1:500 dilution. Protein bands evident 

at 49 and 92 kDa represent cathepsin D, where 92 kDa is a cathepsin D dimer.  Panels B 

and D are probed with pre-immune mouse sera at 1:500 dilution in TNTT. Panels C and E 

were probed with mouse anti rFhCatD at 1:500 dilution in TNTT. 
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5.3.6 Western blot of extracts with F. hepatica exposed serum 

The availability of recombinant F. hepatica cathepsin D and PNA lectin-enriched native F. 

hepatica cathepsin D makes it possible to investigate if antibodies from sheep 

experimentally infected with F. hepatica bind both these forms. To address this, 

immunoblots were carried out using a pool of sera from sheep naturally infected with F. 

hepatica and also sera from naïve controls. From the results presented here, panel A Figure 

5.11, it was clear that rFhCatD was bound by antiserum from naturally infected sheep and, 

thus, must be exposed to the host’s immune system during the course of a natural infection. 

In addition, a number of proteins within the three extracts and PNA- and JAC- enriched S3 

fractions were also bound.  

 

Figure 5.11: Reaction of pooled immune sera to the F. hepatica extracts (S1, S2 and S3), 

recombinant cathepsin D (rCD), JAC-enriched S3 (J), PNA-enriched S3 (P) and to 

cathepsin L1 (CL1), a positive control. Negative control lanes CL1 and rCD were probed 

with sera from sheep naïve to fluke infection (1:200 dilution) to confirm that recognition 

was specific. 
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5.3.7 Localisation of recombinant cathepsin D by Immunohistochemistry (IHC) 

Cathepsin D was localised within sections of adult and immature F. hepatica. The anti-

cathepsin D serum was tested at several dilutions and 1: 10,000 deemed the most suitable 

for immune-localisation. Within both stages, cathepsin D was localised to the gastrodermal 

region of the parasite, as shown in panel A Figure 5.12. The negative control had low 

staining in comparison, Panel B Figure 5.12. Within the immature (10 day) stages 

cathepsin D was again localised to the gut of F. hepatica, as shown in Figure 5.13.  
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Figure 5.12: Localisation of cathepsin D in adult histological sections of F. hepatica. Panel 

A was probed with anti-cathepsin D sera, diluted 1: 10 000 in PBST. Panel B was probed 

with pre-immune mice sera as a negative control diluted 1: 10, 000 in PBST. The 

gastrodermal cells (GD), lamellae (L), eggs (E) are labelled accordingly.
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Figure 5.13 Localisation of cathepsin D  in sections of the immature (10 days) stage of F. hepatica. Panel A was probed with pre-immune mouse sera as 

a negative control diluted 1: 10, 000 in PBST and Panel B was probed with anti- cathepsin D sera, diluted 1: 10, 000 in PBST. The gastrodermal cells 

(GD), lamellae (L) are highlighted.
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5.3.8  Expression of cathepsin D in NEJ and adult stages of F. hepatica  

It was evident that the adult stages of F. hepatica expressed cathepsin D as it was from a 

Triton X-100 soluble adult protein fraction (S3) that FhCatD was enriched using the PNA 

lectin, Chapter 2. However,  it remains unclear whether the NEJ stages express cathepsin 

D. Primers were designed to amplify a fragment of  β-tubulin, which was used as a 

housekeeping gene to allow comparison between the two stages. Internal primers were 

used to amplify a fragment of cathepsin D in both the NEJ and adult RNA.  

Both life stages expressed the cathepsin D transcript, as shown in Figure 5.14. β-tubulin 

expression was evident from cycle 25  in the adults and cycle 30 in the NEJ stages. 

However, cathepsin D expression appeared at cycle 25 in the adults and cycle 25 in the 

NEJ stages. By inference, this indicates there is a slightly higher level of cathepsin D 

transcript present in the NEJ stages than that of the adults.  
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Figure 5.14: Expression of cathepsin D transcript by adult and NEJ stages of F. hepatica. The expression of cathepsin D was examined by performing 

RT-PCR with NEJ and adult RNA using internal cathepsin D primers. Expression of beta tubulin was included as an internal/housekeeping gene control 

to allow comparison between the life stages . A 5 µl sample were taken from each reaction at PCR cycle 5, 10, 15 20, 25, 30, 35 and 40. Base pair (bp) 

values from the 1kb plus DNA ladder (Invitrogen) 
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5.4 Discussion 

Previous chapters have explored F. hepatica extracts using proteomics, lectins and enzymatic 

activity. The PNA lectin enriched a cathepsin D aspartyl protease which had previously not 

been identified in the crude fraction. There was also evidence of an aspartyl protease which 

has a possible role in the digestion of haemoglobin. This chapter has further characterised a F. 

hepatica cathepsin D-like aspartyl protease. There was a high level of identity between the 

protein sequence of FhCatD and cathepsin-D sequences from other parasites. Furthermore, the 

expression of FhCatD was localised to the gut of immature (10 day) and adult stages of the 

parasite. RT-PCR indicated that there may be a higher level of transcript in the NEJ compared 

to adult stages of the parasite. Probing native and recombinant versions of FhCatD with serum 

from sheep naturally exposed to F. hepatica did not provide clear evidence that the cathepsin 

D is strongly antigenic during natural infection. 

PCR primers were designed to amplify the full length cathepsin D coding sequence from adult 

F. hepatica cDNA which was subsequently sequenced. This (FhCatD) showed 99% identity 

with an existing F. hepatica cathepsin D sequence (ABJ97285).  The translated protein had 4 

predicted transmembrane regions and carried a predicted signal peptide cleavage site. FhCatD 

was then aligned alongside 10 other cathepsin D enzymes from a range of parasites. There 

were high levels of homology between the cathepsin D proteases (see Table 5.2). This 

emphasises the importance of the cathepsin D structure to the function of the enzyme. It is 

proposed that aspartyl proteases have evolved from a common ancestor (Tang and Wong, 

1987). In regards to the active site clefts, all sequences were identical between species. 

Establishing the relationship of FhCatD with other cathepsin D sequences placed FhCatD in a 

clade with the cathepsin D of F. gigantica and alignment found these shared 99% identity. The 

clade closest to these was composed of the cathepsin D from S. mansoni and S. japonicum. 

Like F. hepatica these are flukes, but they differ in morphology and habitual location (blood 

vessels as opposed to liver) (Schmidt and Roberts, 2005). These groupings were consistent 

with an alignment carried out by Suttiprapa et al., (2009) to characterise Ov-APR-1, an 

aspartyl protease from the carcinogenic liver fluke O. viverrini. Aspartyl proteases have been 

proposed to function as digestive enzymes in some pathogens including Plasmodium 

(Goldberg et al., 1991), A. caninum (Harrop et al., 1996; Williamson et al., 2002, Williamson 

et al., 2003) and S. japonicum (Brindley et al., 2001). The aspartyl protease, cathepsin D is 

http://www.sciencedirect.com/science/article/pii/S0965174805001918#bib16
http://www.sciencedirect.com/science/article/pii/S0965174805001918#bib18
http://www.sciencedirect.com/science/article/pii/S0965174805001918#bib41
http://www.sciencedirect.com/science/article/pii/S0965174805001918#bib42
http://www.sciencedirect.com/science/article/pii/S0965174805001918#bib42
http://www.sciencedirect.com/science/article/pii/S0965174805001918#bib9
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thought to have a key role in haemoglobin proteolysis and host selection in hookworms 

(Williamson et al., 2002). Furthermore, Na-APR-1 and Ac-APR-1 cleave at distinct sites 

within haemoglobin, with Ac-APR-1 preferentially cleaving at aromatic residues such as 

tryptophan and phenalanine and Na-APR-1 cleaving preferentially at hydrophobic, such as 

leucine, alanine and valine   (Williamson et al., 2002). Despite identical residues within the 

active site, subtle changes elsewhere in the protein have resulted in a different folding and 

ultimately different shape of the active site cleft (Williamson et al., 2002). This has resulted in 

the distinct substrate cleavage positions of haemoglobin by cathepsin D from the different 

species and may also participate in substrate and host specificity (Williamson et al., 2002). 

Although it was possible to enrich cathepsin D using the PNA lectin in Chapter 2, the amount 

recovered was very low and a number of other proteins were present. A further attempt to 

purify large amounts of native cathepsin D was made using Pepstatin A affinity 

chromatography, however, this was unsuccessful. Previously, Pepstatin A chromatography 

was used in an attempt to enrich H-gal-GP from H. contortus. However, the complex bound so 

tightly to the Pepstatin A that it could not be eluted (Professor D. P. Knox, personal 

communication), which may explain why it was not possible to enrich FhCatD. Therefore, 

focus switched to generation of a recombinantly-derived version of FhCatD. 

Insoluble rFhCatD was successfully generated using the pET SUMO system. The expressed 

rFhCatD could not, however, be purified by nickel affinity chromatography despite 

sequencing confirming the presence of the requisite poly histidine tag. Therefore, 

electroelution was used to purify the recombinant FhCatD directly from the bacterial proteins. 

The purified rFhCatD was then used to immunise mice and successfully raised cathepsin D-

specific antibodies for immunolocalisation studies.  

Immunohistochemistry localised rFhCatD to the gut of both immature (10 days) and adult 

stages of the parasite. Cathepsin D has also been localised to the gut of the hookworms A. 

caninum and N. americanus (Williamson et al., 2002).  

The main aim of this study was to assess the feasibility of identifying  a ‘hidden antigen’ 

within F. hepatica.  Therefore, to establish whether the FhCatD was genuinely a ‘hidden 

antigen’, Western blots were screened with sera from sheep naturally infected with F. 
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hepatica. Cathepsin L1, present in the E/S products of adult F. hepatica and widely used as a 

diagnostic antigen for infections of F. hepatica in the BIOX ELISA (Muino et al., 2011), was 

used as a positive control. The outcome of these analyses was not clear. Relatively strong 

reactivity to FhCatD was noted, as shown in Figure 5.11  Nonetheless, this very equivocal 

reactivity combined with localisation to the gastrodermis (see below) and its partitioning in a 

PNA lectin-binding fraction of the membrane protein extract, is consistent with properties of 

known hidden antigens derived from H. contortus (Knox and Smith, 2001; Smith et al.,1999; 

Smith et al., 1994; Smith at al., 2003; Smith and Smith, 1996). 

The immolocalisation data here show, clearly, that the cathepsin D is expressed in the 

gastrodermis of adult and juvenile F. hepatica. The parasite has no through-gut and 

regurgitates its gut contents every 2 -3 hours (Spithill and Dalton, 1998). If digestion of the 

haemoglobin took place extracellularly in the gut, these enzymes would be released from the 

parasite every few hours and, hence, may become exposed to the host immune system. The 

expression of S. mansoni cathepsin B, SmCB1 was located on the parasites gut by 

immunolocalisation studies (Sajid et al., 2003), whereas Caffrey et al., (2004) identified its 

presence in the gastrointestinal contents by a novel technique which measures the cleavage of 

a cathepsin B specific fluorgenic substrate. Adult S. mansoni were incubated in the fluorgenic 

substrate and stimulated to regurgitate their gut contents. By detecting fluorescence emission, 

digestion of the substrate could be detected, confirming the presence of SmCB1 in the gut 

contents (Caffrey et al., 2004). This approach could help identify whether cathepsin D is 

present in the gut contents of F. hepatica and confirm if it is a secreted protein. Cathepsin D 

protease is expressed in a diverse range of mammalian cells and tissues but is located 

predominantly in lysosomes (Connor, 1998). It may then be excreted from the lysosomes into 

the gut lumen and then participate in lysis of ingested haemoglobin.  Similarly, the aspartyl 

proteases of A. caninum (Ac-APR-1) and N. americanus (Na-APR-1)  have also been localised 

to the parasite’s gut but are soluble, secreted and function extracellularly (Williamson et al., 

2002), thus are not ‘hidden’ antigens. The two pepsin-like aspartyl proteases identified from 

the integral membrane complex H-gal-GP (Smith et al.., 2003) are considered true ‘hidden’ 

antigens (Smith et al, 1994). H-gal- GP has been localised to the brush border of H. contortus 

(Smith et al., 1999). The FhCatD appears to be more like those of A. caninum and N. 

americanus where it is not an integral membrane and is secreted into the fluke’s gut lumen 

which therefore suggests it is not a genuine “hidden antigen”. However, this does not preclude 

http://www.sciencedirect.com/science/article/pii/S0965174805001918#bib12
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that FhCatD may potentially be a good vaccine candidate as previously proteins from the E/S 

material of F. hepatica  have provided protection from infection with the parasite, for example 

the cathepsin Ls (Dalton et al., 1996; Piacenza et al., 1999). Vaccination with CatL1 and 

CatL2 can reduce the parasites’ egg output by up to 69.7% and, further, those eggs produced 

have an 80% reduction in viability (Wijffels et al., 1994). When used individually in 

vaccination experiments, both the cathepsins significantly reduced worm burdens, egg output 

and egg fecundity (Dalton et al., 1996). A vaccine trial with the FhCatD would identify if it 

confers protection from F. hepatica. 

Expression of cathepsin D within the blood fluke S. japonicum has been demonstrated in the 

eggs, miracidia, and adults (male and female) (Verity et al, 1999). Within the adult stages, it is 

expressed on the parasite’s gut and at higher levels in the females than males indicating that 

this enzyme plays a key role in the proteolysis of haemoglobin for nutrient acquisition to 

facilitate egg production (Brindley et al., 2001). Unfortunately, the life stages of F. hepatica 

available for the project presented here were limited but reverse transcriptase PCR detected 

transcripts of cathepsin D in both the NEJ and the adults (those stages which are within the 

ovine host and of most interest). In contrast to adult F. hepatica, the NEJ do not contain any 

sexual organs (Bennett and Threadgold, 1973) but do have to migrate through the host to the 

liver, evading a number of immune effector mechanisms (Cancela et al., 2010), as discussed in 

Chapter 1.  Semi-quantitative RT-PCR indicated there may be a higher level of FhCatD 

transcript present in the NEJs than in adults and this may relate to the migration and evasion 

facets of the NEJ lifestyle. Cathepsin B is released by juvenile flukes (NEJs) and also similar 

to cathepsin L in the adult stages, facilitates migration and evasion of the host immune 

response (Wilson et al, 1998). Cathepsin B has been localised to the gut epithelium of NEJs 

(Creaney et al. 1995), and is thought to assist immune evasion (Carmona et al., 1995; 

Chapman and Mitchell, 1982; Smith et al., 1993) and migration through host tissues (Wilson 

et al., 1998). Cathepsin D could also assist in these processes if it were excreted by this stage. 

The immature stages also shed and replace their glycocalyx every 3 hours while migrating to 

the bile duct to avoid immune recognition (Hanna, 1980). This will undoubtedly have a high 

metabolic demand and FhCatD may assist in nutrient acquisition to serve such a demand. 

Moreover, as both NEJ and adult stages contain the transcript it is plausible that they would 

both be affected if FhCatD were used as a vaccine. This is desirable, as the NEJ cause 

extensive damage when migrating through the host liver (Andrews et al., 1999).  
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In conclusion, this chapter has characterised a cathepsin D-like aspartyl protease from adult F. 

hepatica which has previously not been published, to my knowledge. To date there is only one 

study which characterises a cathepsin D from a liver fluke, O. viverrini (Suttiprapa et al., 

2010). FhCatD had high levels of similarity with other nematode and trematode cathepsin D 

sequences. It is localised to the gut of both immature (10 day) and adult stages of the parasite, 

which is similar to the aspartyl proteases in H contortus (Smith et al., 2003b) A. caninum, N 

americanus (Williamson et al., 2002) and S. japonicum (Verity et al., 1999). RT-PCR 

experiments suggested that there was a higher level of transcript in the NEJ compared to adult 

stages of the parasite. The NEJ grows rapidly and possibly has to process nutrients more 

rapidly than adults. No clear evidence of antigenicity during natural infection was found, 

consistent with the possibility that this cathepsin D may be a “hidden antigen” although, as 

discussed earlier, this is a very guarded conclusion. Vaccination studies with this protease 

would still be warranted given its localisation and possible function combined the with 

precedent from other blood-feeding parasites. 
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6 General discussion 

Fasciolosis is caused by infection with the pathogenic flatworm F. hepatica. It is a serious 

production-limiting disease in sheep and cattle, responsible for huge losses within the 

livestock sector. Globally, these are estimated to be in excess of US $2 billion annually 

(Spithill et al., 1999).  These losses are attributable to mortality, reduction in milk and meat 

production, secondary bacterial infections, expensive anthelmintic treatment and 

condemnation of livers at slaughter (Garcia et al., 2008; McKenna et al., 2002; Schmidt and 

Roberts, 2005). Traditionally, fasciolosis was a problem in the wetter, milder west of the UK 

and Ireland (Baird, 2010; Kenyon et al., 2009). However, over the last decade there has been 

an increase in the incidence of fasciolosis within the UK, with evidence of disease spreading 

from areas in the west to the east (See Figure 1.1). Control of F. hepatica is complicated by its 

complex life-cycle which involves both a definitive mammalian host and an intermediate mud 

snail host. The developmental stages within the intermediate mud snail host multiply 

asexually, therefore, a single egg shed from the definitive host has the potential to give rise to 

thousands of infective metacercariae (Schmidt and Roberts, 2005). Fasciolosis can be 

controlled to an extent by a combination of pasture management practices and methods to 

control the intermediate snail host populations, but often these approaches are impractical and 

only effective in the short term (Crossland, 1976; Urquhart et al., 1970). Infection with F. 

hepatica is most commonly controlled by treating infected animals with anthelmintics 

(Roberts and Suhardono, 2008; Torgerson and Claxton, 1999), specifically, flukicides. 

Triclabendazole (TCBZ) has been the predominant compound for treating liver fluke 

infections since its introduction in the 1980s (Brennan et al., 2007). This is because TCBZ is 

effective against early, immature and adult stages of the parasite, whereas most of the other 

flukicides only show activity against the adult stages (See Table 1.3) (Fairweather and Boray, 

1999). The first evidence of TCBZ resistant fluke populations was reported in Australia 

(Overend and Bowen, 1995), and has since been reported in Ireland (Anon, 2005), United 

Kingdom (Mitchell et al., 1998; Thomas et al., 2000), The Netherlands (Gaasenbeek et al., 

2001) and Spain (Alvarez-Sanchez et al.,2006). Therefore, controlling fasciolosis by this 

method is unsustainable and alternative methods of control need to be investigated.  
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Vaccinating animals against F. hepatica is a desirable alternative control strategy to treating 

animals with flukicides due to consumer concerns about chemical residues in the food and 

environment (Science for Environment Policy, 2008) as well as the presence of anthelmintic 

resistant parasite populations. However, there has been limited success in developing vaccines 

against helminth parasites. “Dictol”, an attenuated live vaccine against the bovine lungworm, 

Dictyocaulus viviparus was the first vaccine developed against a helminth parasite (Jarrett et 

al., 1955; Jarrett and Sharpe, 1963) but its success has not extended to other helminths. 

Although sheep can develop natural immunity to some helminths, such as T. circumcincta 

(Smith et al., 1984; Stear et al., 1999), the mechanisms are not fully understood and there is 

little evidence to suggest that sheep sensitized to F. hepatica develop any protective immunity 

to reinfection (Boyce et al., 1987; Sandeman and Howell, 1981; Sinclair, 1971). The apparent 

lack of natural immunity and also lack of available helminth vaccines highlight how difficult it 

is to develop an effective fluke vaccine.  However, through targeting secreted (natural) 

antigens released by parasites, protective immunity has been elicited against a number of 

parasites, including F. hepatica (Mulcahy and Dalton, 2001). 

 One of the biggest challenges in developing a vaccine against F. hepatica is the apparent lack 

of natural protective immunity in animals, particularly sheep, which have been exposed to the 

parasite (Spithill et al., 1999; Spithill and Dalton, 1998). However, there are a number of 

antigens which, when purified, have successfully elicited protection against infection with F 

hepatica. Sheep immunised three times with purified F. hepatica GST had a 57% reduction in 

worm burden at post mortem when compared to non- vaccinated controls (Sexton et al., 

1990). Although immunising sheep with a mixture of the cathepsin L proteins (CatL1 and 

CatL2) did not reduce worm burdens, egg output was reduced by 69.7% and the eggs had an 

80% reduction in viability (Wijffels et al., 1994). However, to date the highest level of 

protection elicited by a single antigen is by leucine aminopeptidase (LAP) (Piacenza et al., 

1999). Sheep were immunised with LAP in Freund’s complete adjuvant twice at 4 week 

intervals then subsequently challenged with 500 metacercariae. Vaccinated animals had an 

89% reduction in worm burden compared to non-vaccinated controls (Piacenza et al., 1999).  

Some of these vaccine candidates were identified by investigating antigens which are essential 

for parasite survival including the cathepsin Ls, which have been shown to facilitate tissue and 

haemoglobin digestion (Smith et al., 1993b; Yamasaki et al., 1992) in addition to functioning 
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in immune evasion (Spithill and Dalton, 1998). Others were identified by investigating 

antigens homologous to protective vaccine candidates from other species such as the GSTs. 

These were chosen as candidate vaccine antigens (Sexton et al., 1990) because homologous 

native GST proteins from Schistosoma spp. were shown to reduce parasite burdens in mice 

(40-43%) and rats (50-72%) (Balloul et al., 1987; Brophy and Pritchard, 1994). Finally, other 

antigens were identified by investigating cross-protective antigens between fluke/parasite 

species; for example FABP (Fh12) was identified from a set of F. hepatica proteins which 

cross-reacted with antisera raised in mice to soluble proteins from the closely-related human 

blood fluke, S. mansoni (Hillyer et al., 1988; Hillyer et al., 1977). These antigens were shown 

to reduce F. hepatica worm burdens in immunised mice (by 69-78%) (Hillyer, 1985) and 

calves (by 55%) (Hillyer et al., 1977). 

An alternative approach, which has not yet been explored for the identification of vaccine 

candidates in F. hepatica, is the “hidden” antigen approach, which targets antigens not 

exposed to the host during the course of a natural infection (Munn, 1987). This approach has 

produced high levels of protection (up to 76%) against R. microplus tick infestation in cattle 

vaccinated with the gut-associated antigen BM86 (Willadsen et al., 1995). Also, native 

intestinal antigens from H.contortus have been purified and characterised and shown 

repeatedly to reduce both egg counts and worm burdens (Knox and Smith, 2001; Knox et al., 

2003; Smith et al., 1999; Smith et al., 1994; Smith et al., 2000). Targeting “hidden” antigens 

could prove to be a novel and successful strategy for vaccinating against F. hepatica. Adult 

liver flukes live in a highly vascularised environment and their gut is filled with partially 

digested blood, see Chapter 1 Figure 1.5 (Smyth and Halton, 1983). Furthermore, as it 

migrates through the host the juvenile fluke ingests hepatic cells and haemoglobin (Oslen, 

1986). Although it is not clear if any of the F. hepatica antigens investigated thus far are truly 

hidden, this project aimed to evaluate if it is possible to identify hidden antigens in F. 

hepatica. In attempting to do so, a number of techniques was employed including proteomics, 

exploiting the carbohydrate binding capacity of lectins and analysing the enzymatic activity of 

fractions of liver fluke.  

Initially, a proteomics approach was employed to identify proteins within extracts of adult 

fluke which were exclusively localised to the S3 fraction of adult F. hepatica. Historically, an 

equivalent S3 fraction has been a rich source of gut-associated protective “hidden” antigens 
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from H. contortus e.g. H11 and H-gal-GP (McKerrow, 1989; Williamson et al., 2003; Knox, 

2010). The proteomic analysis identified four proteins of interest which were proteases 

exclusive to the adult F. hepatica S3 fraction; Cathepsin B2, Legumain-2, Lysosomal pro-x-

carboxypeptidase precursor and Saposin-like protein (SAP-3). Cathepsin B2 is secreted by the 

juvenile stages of F. gigantica to facilitate digestion of host tissues and allow migration 

through the liver tissue (Meemon et al., 2004). Legumain is a cysteine protease originally 

identified from the leguminous plant, Canavalia ensiformis and orthologues have been 

identified in S. mansoni, S. japonicum, H. contortus and F. hepatica (Sajid and McKerrow 

2002; Carrey et al., 2000; Oliver et al., 2006) and it is also a potential diagnostic antigen of 

Clonorchis sinensis (Jung-won et al.,2009). Pro-x-carboxypeptidase is a lysosomal protease 

(Tan et al., 1993) and is thought to function as an anticoagulant alongside saposin-like 

proteins to ensure effective lysis of ingested host blood in H. contortus (Geldhof and Knox, 

2008; Oliver et al., 2006). Saposin-like proteins identified from F. gigantica and the Chinese 

liver fluke, C. sinensis have a role in digesting host blood (Grams et al., 2006; Lee et al., 

2002).  

Despite the proteomic analysis being directed at the putatively membrane-bound S3 sub-

fraction, this approach cannot determine the precise tissue or sub-cellular localisation of the 

protein(s) in question, so an alternative approach, Laser Capture Microscopy (LCM), was 

subsequently employed in an attempt to determine whether the transcripts encoding any of 

these molecules were located within the parasite’s gut. This method permits isolation of 

specific tissues, in this case the liver fluke gut, from frozen or paraffin embedded tissue 

sections (reviewed in Jones et al., 2004). Extracted RNA is then reverse-transcribed into 

cDNA and a representative sample cloned and sequenced to identify any tissue-specific 

transcripts. LCM is a relatively novel method which is still being optimised for different 

applications. While the method used in Chapter 2 was first published by Nilaweera et al., 

(2009) unfortunately, it failed to produce viable RNA from liver fluke. This may be due to 

subtle methodological differences in the LCM method previously used to capture gut tissue 

from N. americanus, A.  caninum (Ranjit et al., 2006) and  S. japonicum  (Gobert et al., 2009). 

However, the most likely explanation is that the RNA may have been degraded prior to LCM, 

as the parasites were extracted around two hours after the liver was removed from the ovine 

host at post-mortem.  
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As this thesis aimed to identify antigens derived from the gut of F. hepatica, an alternative 

approach, which sought to identify lectins with an affinity for glycoproteins on the gut of F. 

hepatica, was used. Lectins are carbohydrate-binding proteins derived from plants, animals 

and micro-organisms, with specificity for terminal or sub-terminal carbohydrate residues 

(Leathem and Brooks, 1998). Lectins have previously been used for isolating candidate 

vaccine antigens by affinity chromatography, as shown in the preparation of the gut-associated 

protective antigens H11 and H-gal-GP, from the parasitic nematode, H. contortus, (Knox and 

Smith, 2001; Smith et al., 1994; Smith et al., 2000a; Smith et al., 2000b). Chapter 3 explored 

the potential of using lectins to enrich glycoproteins from the S3 extract. To this end, an initial 

screen of histological sections of adult fluke with a panel of 21 different lectins, identified 

seven with an affinity for the gut of F. hepatica. Two of these lectins, PNA and JAC, 

preferentially bound to carbohydrates on the gastrodermal cells or lamellae, respectively. 

These were then chosen to enrich the membrane-bound S3 fraction, which was subsequently 

analysed by LC-ESI-MS/MS. This analysis revealed that the PNA- and JAC-enriched 

fractions shared a number of proteins. However, exclusive to the PNA lectin enriched S3 was 

a cathepsin D-like aspartyl protease, FhCatD, which had not previously been characterised in 

F. hepatica.  This is a novel and potentially significant finding because immunisation of dogs 

with cathepsin D-like aspartyl proteases has been shown to protect against challenge infection 

by the hookworms, A. caninum and N. americanus (Loukas et al., 2005). Furthermore, 

aspartyl proteases, HcPEP1 and HcPEP2, are key components in the H-gal-GP vaccine 

complex which gives protection against H. contortus (Smith et al., 2003).  

Proteases have, historically, made good vaccine candidates which emphasises the importance 

of further evaluation. The “hidden” antigen, H-gal-GP, comprises a complex of different 

enzyme components, including metallopeptidases and aspartyl proteases, and is involved in 

digesting the blood meal in H. contortus (Smith et al., 2003; Ekoja and Smith, 2011). Thus, 

Chapter 4 aimed to identify which enzyme classes in the S1, S2 and S3 sub-fractions were 

participating in lysis of haemoglobin, a major protein component of host blood. Initially the 

broad substrate gelatin was used to establish the presence of active proteases. Gelatin-substrate 

gel analysis identified proteases which were active over a broad pH (3-9) and size range in all 

extracts. The addition of the reducing agent, DTT, enhanced proteolysis, confirming the 

presence of active cysteine proteases, some of which had previously been identified in the 

proteomic screen described in Chapter 2 (Appendix 2). A number of methods were used to 
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investigate haemoglobin digestion by the respective extracts. Haemoglobin hydrolysis was 

extensively investigated by measuring the amount of solubilised protein at 280 nm, which 

estimates the extent of protein breakdown. This identified two peaks of activity by all three 

extracts at pH 2-2.5 and at pH 4, with no evidence of digestion at alkaline pH. This finding 

was consistent with previous studies investigating haemoglobin digestion by blood-feeding 

parasites such as P. cuniculi (Nisbet & Billingsley, 2000), R. microplus (Mendiola et al., 

1996), Ixodes ricinus (Horn et al., 2009), Schistosoma spp, Ancylostoma spp., N. americanus 

and H. contortus (Williamson et al., 2003). The addition of class-specific inhibitors to the 

haemoglobin lysis reactions (Section 4.1.11, Chapter 4) indicated that both cysteine and 

aspartyl peptidases had a role in the hydrolysis of haemoglobin by liver fluke extracts. Four 

protease classes have been proposed to function in a cascade in the digestion of haemoglobin 

in blood-feeding parasites (Williamson et al., 2003; Horn et al., 2009). Aspartyl proteases, 

such as cathepsin D, are thought to act in the initial stages of haemoglobin digestion 

(Williamson et al., 2003). However, the cathepsin D identified from the PNA-enriched S3 

fraction was not identified by proteomics in the crude S3 extract (see Chapters 3 and 2 

respectively). This does not necessarily imply that cathepsin D was absent from these 

fractions, rather, it most likely reflects the resolution of the proteomic approach employed and 

that cathepsin D is present at a relatively low level.  However, the addition of Pepstatin A 

inhibited haemoglobin hydrolysis at pH 2 in S1, S2 and S3, indicating the presence of an 

aspartyl protease in all three somatic extracts. To confirm that cathepsin D was present in 

these extracts, their ability to hydrolyse a cathepsin D-specific peptide 7-methoxycourin-4-

acetyl-gly-lys-pro-ile-leu-phe-arg-leu-lys(DNP)-D-arg-amide (CatDFS) (see Figure 4.12) was 

examined. The substrate was hydrolysed by proteases from each extract with greatest 

hydrolytic activity at pH 2-2.5. Taken together, these experiments indicated the presence of an 

aspartyl protease active at pH2-2.5 which could hydrolyse a cathepsin D-specific substrate.  

As the work described in Chapter 3 identified a cathepsin D in a PNA-enriched S3 extract and 

that described in Chapter 4 indicated its importance in haemoglobin digestion, Chapter 5 

aimed to further characterise this novel F. hepatica cathepsin D. Cathepsin D is highly 

conserved among many eukaryotic species and is proposed to have evolved from a common 

ancestor (Tang and Wong, 1987). Sequence alignment and phylogenetic analyses 

demonstrated that the cathepsin D identified here shared a high degree of homology with 

previously deposited full coding sequences from F. hepatica NEJ [ABJ97285], F. hepatica 
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adult [AC104164.1] and F. gigantica [ABJ97285] cathepsin Ds, sharing approximately 99% 

identity with each.  Using Pepstatin A affinity chromatography, it was not possible to enrich or 

purify the native FhCatD sufficiently for immunising mice, so a bacterially-derived 

recombinant version (rFhCatD) was generated using the Champion pET SUMO expression 

system. The recombinant protein was subsequently used to immunise BALB/c mice to 

generate antibodies for immunolocalisation studies. FhCatD was localised to the gut of both 

immature (10 day post infection) and adult stages of F. hepatica (see Figure 5.24 and Figure 

5.26), a pattern consistent with the expression of cathepsin D in the hookworms N. americanus 

and A. caninum (Williamson et al., 2002). Furthermore, semi-quantitative RT-PCR indicated 

that there was a higher level of FhCatD transcript in the NEJ stages than in the adult stages of 

F. hepatica. Probing immunoblots of rFhCatD and PNA-enriched S3 fractions with serum 

from sheep naturally exposed to F. hepatica demonstrated immunoreactivity to rFhCatD, 

indicating that it may not be a ‘hidden’ antigen, as antibodies from the serum bound both the 

recombinant and native antigen preparations. The initial steps of haemoglobin digestion by 

blood feeding parasites are proposed to involve aspartyl proteases (Williamson et al., 2003), 

and, in F. hepatica, this is thought to occur at the lining of the lamellae, with the digestion 

products then being endocytosed and further digested inside the gut cell (Fairweather et al., 

1999). F. hepatica has a blind-ending gut and regurgitates its gut contents every 2 -3 hours 

(Spithill and Dalton, 1998). Therefore, if digestion of the haemoglobin took place 

extracellularly in the gut, these enzymes may be secreted by the parasite every few hours and 

thus be exposed to the host’s immune response. 

Ultimately, this thesis investigated whether there are ‘hidden’ antigens in F. hepatica. The 

project focused on a cathepsin D-like aspartyl protease and results from Chapter 5 indicate that 

this antigen maybe exposed to the host during the course of a natural infection. A number of 

hypotheses may possibly explain these findings. As mentioned above, F. hepatica regurgitate 

their gut contents every 2-3 hrs (Spithill and Dalton, 1998). However, to date the presence of 

cathepsin D in any of these extracts has not been documented (Cancela et al., 2010). FhCatD 

appears similar to the aspartyl proteases of A. caninum (Ac-APR-1) and N. americanus (Na-

APR-1) in amino acid sequence and has also been localised to the gut of F. hepatica, see 

Chapter 5 (Williamson et al., 2002). The aspartyl proteases of the hookworms are soluble, 

actively secreted and function extracellularly (Williamson et al., 2002). FhCatD contains a 

signal peptide and aspartyl protease activity was identified in the S1 and S2 fractions (PBS-
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soluble and membrane-associated, respectively) which may suggest that FhCatD is also 

secreted. The two pepsin-like aspartyl proteases identified from the integral membrane 

complex H-gal-GP (Smith et al.., 2003) are considered true ‘hidden’ antigens (Smith et al, 

1994). It may be that for an aspartyl protease to be a true ‘hidden’ antigen that it must form a 

complex with other insoluble membrane-bound components. Thus the aspartyl protease gut-

associated antigens from S. japonicum, N. americanus and A. caninum all appear to be 

secreted, whereas those from the nematode H. contortus are resident and membrane bound. 

These differences could relate to variation in the architecture and/or function of the gut 

between the respective helminth species. 

If a vaccine trial were to be conducted, larger quantities of the native FhCatD would be 

required. This could be facilitated by scaling-up the PNA lectin chromatography and/or by 

attempting different purification techniques. Large numbers of adult F. hepatica can be 

obtained from abattoirs and each adult parasite yields approx 3 mg of S3 extract (data not 

shown) so this could be feasible. Also, dose response trials could be conducted and it may be 

that the vaccine is very protective with very low protein concentrations required. 

Alternatively, vaccination studies with recombinant versions of cathepsin D have provided 

considerable levels of protection. For example, a study by Verity et al., (2001) involved 

immunising mice four times with the bacterially-expressed form of S. japonicum cathepsin D 

(rSjASP-1) on days 0, 14, 56 and 105 then challenging 14 days after the last inoculation with 

36 S. japonicum cercariae. Immunised mice had a reduced total worm burden (by 37.8 %) in 

comparison to non-vaccinated controls (Verity et al., 2001). Mice immunised with the insect 

cell-expressed recombinant version, rSjASP-2 had a reduction in total worm burden of 20.9 % 

and in female worm burden by 29.9 % in comparison to non-vaccinated controls (Verity et al., 

2001). Therefore, it may be possible to use the recombinant form of FhCatD to conduct 

vaccination trials to assess the potential of this particular antigen.  

Initial small scale trials in mice or sheep would be warranted to identify what effect 

vaccinating with FhCatD has on worm burden, egg fecundity and reducing liver damage. 

These trials could evaluate both native (if it proved possible to purify sufficient quantities for 

immunisation) and recombinant forms of FhCatD, which would indicate whether there is a 

difference in the protective capacity of these. Recently the first successful, reproducible 

protection against a helminth infection in sheep using a recombinant antigen cocktail was 
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described (Nisbet et al., 2012). A cocktail of five recombinant immunogenic and three 

putatively immunosuppressive T. circumcincta molecules was used to immunise sheep which 

were then trickle challenged with T. circumcincta infective larvae. Vaccinated animals had an 

overall mean FEC reduction of 72% and 58% in two independent trials (Nisbet et al., 2012).  

Furthermore, vaccinated sheep had 75% and 57% lower burdens of adult worms in the 

abomasal lumen, for trials 1 and 2 respectively, than those in the control groups (Nisbet et al., 

2012). The Human Hookworm Initiative aims to reduce the human suffering caused by 

hookworms through vaccination (Hotez et al., 2003). Currently, the two lead vaccine 

candidates are GST-1 and Na-APR-1 which are used in combination (Hotez et al., 2003). 

Combinations of native F. hepatica antigens (CatL1/L2 and LAP) have provided high levels 

of protection. For example, sheep immunised with a combined vaccine of LAP and CatL1/L2 

had fluke burdens reduced by 76% in comparison to non-vaccinated controls (Acosta et al., 

2008; Piacenza et al., 1999). It would be interesting to evaluate the effect of combining the 

FhCatD identified here with FhGST, FhCatL1/L2 or LAP had on the levels of protection. 

Moreover, identifying whether rFhCatD is enzymatically active, by investigating its ability to 

cleave host haemoglobin and the synthetic cathepsin D substrate (Chapter 5, CatDFS) would 

also be beneficial as it would provide more information on the nature of the recombinant form. 

To assess the specific function of cathepsin D in F. hepatica further, RNA interference 

(RNAi) could be used. RNAi utilises double-stranded (ds) RNA to induce an intracellular 

cascade that ultimately results in the suppression of expression of homologous mRNA 

transcripts. To date, RNAi has been successfully applied in S. mansoni sporocysts (Boyle et 

al., 2003), S. japonicum larvae and schistosomulae (immature stages) (Skelly et al., 2003; 

Cheng et al., 2005) and F. hepatica NEJ (McGonigle et al., 2008). The information yielded 

from suppression of FhCatD would help identify the possible roles of FhCatD in parasite 

development and survival.  For example, suppressing F. hepatica cathepsin B and cathepsin L 

genes reduced the ability of NEJ to penetrate the gut during their migration to the liver, 

suggesting that these genes have an important role in tissue penetration (McGonigle et al., 

2008).  

 

FhCatD could also be further characterised by investigating the expression levels throughout 

the different life-cycle stages of F. hepatica using quantitative real time polymerase chain 

(qPCR). qPCR has been previously used in F. hepatica to compare gene expression levels of 
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legumain 1 and legumain 3 between NEJ and adult stages (Cancela et al., 2010). Here the 

expression levels of FhCatD in eggs, sporocysts, rediae, cercariae, metacercariae, NEJs, 

immature and adult flukes could be compared to identify which stages have the highest levels 

of expression. As with RNAi, this would help yield information regarding the possible roles of 

FhCatD depending on differences in expression levels throughout development. Furthermore, 

it may indicate which life-cycles stages a vaccine would be effective against. The gut of the 

NEJ has a largely secretory role with the dual absorptive/secretory function beginning to 

develop 10 days post-infection when the parasite reaches the liver (Bennett and Threadgold, 

1073). The parasite has a fully functional dual absorptive and secretory gut once it has 

matured to an adult (Bennett and Threadgold, 1973; Wilson et al., 1998; Dalton et al., 2006) 

so it would be interesting to evaluate how the expression pattern of FhCatD changes as the gut 

develops. 

Due to limitations on time and access to appropriate parasite material, only two attempts were 

made to use LCM to investigate the F. hepatica gut. Revisiting the LCM approach and 

optimising the protocol in line with the hookworm studies (as described in Ranjit et al., 2006) 

and S. japonicum (Gobert et al., 2009) may allow RNA of sufficient quantity and quality to be 

extracted from the parasite’s gut. In the hookworm study, parasites were snap frozen in 

Optimal Cutting Temperature (OCT, Tissue-tek) and after sectioning were washed with 

diethylpyrocarbonate (DEPC) water to remove OCT (Ranjit et al., 2006). The method used for 

S. japonicum, described by Gobert et al., (2009), also involved washing slides with DEPC 

treated water to remove OCT, but this was not done here. The availability of gut-specific RNA 

will help yield valuable information about the repertoire of proteins potentially expressed 

within or on the fluke’s gastrodermal cells, which could then be further investigated for their 

potential as ‘hidden’ antigens. It is not altogether clear if cathepsin D is secreted by the fluke 

as, to date, it has not been reported in E/S material from adult F. hepatica (Morphew et al., 

2007). Antibodies from sheep naturally exposed to the parasite bind rFhCatD. As discussed in 

Chapter 5, it would be possible to evaluate whether a cathepsin D-like aspartyl protease (such 

as FhCatD) is present in the E/S material by a novel technique which has previously been used 

to measure the cleavage of a cathepsin B-specific fluorogenic substrate (Caffrey et al., 2004). 

Parasites are incubated in the fluorogenic substrate (specific to that enzyme) and stimulated to 

regurgitate their gut contents. By detecting fluorescence emission, the digestion of the 

substrate could be measured, confirming the presence of that enzyme in the gut contents 

http://www.sciencedirect.com/science/article/pii/S0020751907003803#bib1
http://www.sciencedirect.com/science/article/pii/S0020751907003803#bib22
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(Caffrey et al., 2004). This approach could help identify whether cathepsin D is present in the 

gut contents of F. hepatica and confirm if it is a secreted protein or not. 

In conclusion, the work presented in this thesis has demonstrated unequivocally the presence 

of a cathepsin D-like aspartyl protease in a membrane-bound (S3) fraction of F. hepatica, 

which can be enriched by PNA lectin chromatography. Further characterisation of FhCatD 

demonstrated its involvement in the digestion of haemoglobin, which was optimal at pH 2-2.5 

and confirmed by the cleavage of a cathepsin D-specific substrate. FhCatD was localised to 

the gut surface of both juvenile (10 days) and adult stages of the parasite. However, antibodies 

from sheep naturally exposed to F. hepatica bound rFhCatD indicating that it is unlikely to be 

a genuine “hidden” antigen. This thesis aimed to evaluate the “hidden” gut antigen approach 

to vaccination in F. hepatica. It may be that because of the secretory nature of its gut, that it is 

not feasible to identify such an antigen. Although FhCatD is potentially exposed, it does not 

preclude the possibility that this antigen could be highly protective. The higher transcript 

levels present in the NEJ compared to adult stages may also indicate that any resulting vaccine 

would be more effective against these stages. Ultimately the NEJ stages cause extensive 

damage when migrating through the host to the liver so targeting this stage is desirable. 

However, a vaccine trial would be required to determine if FhCatD is truly protective. 
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Appendix  1 : Standard Buffers and solutions 

A.1  General Solutions and buffers 

A.1.1  1 x Phosphate buffered saline (PBS) 

A 10 x stock solution was prepared by dissolving 80 g sodium chloride, 2 g potassium 

chloride, 11.5 g di-sodium hydrogen orthophosphate and 2g potassium di-hydrogen 

orthophosphate in 1 litre of dH2O. A working solution was prepared by diluting 1 in 10 in 

dH2O 

A.1.2  TNTT 

In a beaker the following was combined; 50 ml 1 M Tris, 146.1 g NaCl, 2.5 ml Tween 20 and 

0.5 g Thimerasol. This was made up to 5 litres with dH2O and the pH adjusted to 7.4 using 

HCl. 

A.1.3 Lectin wash buffer (LWB) 

In a beaker the following was combined; 6.057g Tris, 8.7g NaCl, 0.203g MgCl2, 0.111g CaCl2 

and made up to 500 ml with dH2O. The pH was adjusted to 7.6 using concentrated HCl and 

the final volume made up to 1000 ml. 

A.1.4 Scots tap water 

3.5 g of Sodium bicarbonate and 20g of Magnesium sulphate were added to a beaker and 

made up to 1000 ml. 

A.2 Protein extraction buffers 

A.2.1 Homogenising buffer 1 (HB 1) 

0.148g of EDTA were added to 400mls of 1 x PBS and pH adjusted to 7.4. HB stored at 4ºC 

until required. Immediately prior to using 1 ml of 100mM phenylmethylsulphonyl fluoride 

was added per 100mls of buffer. 
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A.2.2 Homogenising buffer 2 (HB 2) 

0.148g of EDTA and 400ul of Tween 20 were added to 400mls of 1 x PBS and pH adjusted to 

7.4. HB 2 stored at 4ºC until required. Immediately prior to using 1 ml of 100mM 

phenylmethylsulphonyl fluoride was added per 100mls of buffer. 

A.2.3 Homogenising buffer 3 (HB 3) 

4 ml of reduced triton x 100 were added to 200mls of 1 x PBS and pH adjusted to 7.4. HB 3 

stored at 4ºC until required. Immediately prior to using 1 ml of 100mM 

phenylmethylsulphonyl fluoride was added per 100mls of buffer. 

A.3 Laser Capture microscopy materials 

A.3.1 10% Gelatin 

10 g of gelatin were dissolved in 100mls of 1 x PBS by heating and stirring gently. This is 

prepared fresh as required. 

A.3.2 Diethylpyrocarbonate (DEPC) treated water 

1ml of 0.1% Diethylpyrocarbonate (DEPC) was dissolved in 1000ml of dH2O. This was then 

autoclaved at 121ºC for 15mins and allowed to cool prior to use.  

A.4 PCR and cloning 

A.4.1 Tris-acetate-EDTA (TAE) buffer 

A concentrated 50 x solution of TAE was made by combining 242 g Tris base, 57.1 ml Glacial 

acetic acid and 100 ml 0.5M EDTA (pH 8) then made up to 1 litre with dH2O. 

 A.4.2 DNA sample buffer 

A 6 x gel loading buffer was made by combining 0.25 % Bromophenol blue, 0.25 % Xylene 

cyanol FF, 40 % (w/v) Sucrose in water. This was stored at 4°C. 
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 A.4.3 SOC media 

2 g Bacto®-tryptone, 0.5 g Bacto®-yeast extract, 0.05 g NaCl, 1 ml 250 mM KCl was 

dissolved in 100ml of dH2O. This was autoclaved at 121 ºC for 15 mins.  Once cooled 0.5 ml 

filter-sterilised MgCl2 (1.9 g MgCl2 in 10 ml water) and 2 ml filter-sterilised glucose (1.8 g 

glucose in 10 ml water) were added. Aliquots were taken and stored at -20ºC. 

A.4.4 Luria Bertani (LB) medium 

LB medium was prepared by dissolving 10g Bacto-tryptone, 5 g Bacto-yeast and 5 g sodium 

chloride in 1 litre of dH2O. This was autoclaved at 121ºC for 15mins. 

A.4.5  LB agar 

LB agar was prepared by dissolving 15g bacto-agar in 1 litre of LB medium and autoclaving at 

121ºC for 15mins.  

A.4.6 LB agar plates containing IPTG/X-GAL/Ampicillin 

Agar plates were prepared by melting LB agar in a microwave, then cooling to 50ºC in a water 

bath. The following were added to 50ml of molten agar; 250 µl of 0.1 IPTG, 200 ul of 

ampicillin stock (25 µg/ml) and 80 µl of 5-bromo-4-chloro-3-indolyl-beta-D-

galactopyranoside (X-Gal). The agar was mixed and poured into petri dishes and allowed to 

set at room temperature. Petri dishes were stored at 4ºC until required. 

A.4.7 LB plates with 50 µg/ml Kanamycin 

Agar plates were prepared by melting LB agar in a microwave, then cooling to 50ºC in a water 

bath. The following were added to 50ml of molten agar; 50 µl of kanamycin (50 mg/ml) The 

agar was mixed and poured into petri dishes and allowed to set at room temperature. Petri 

dishes were stored at 4ºC until required. 

A.4.8 10 ml of LB broth with ampicillin 

Under a flame, 40 µl of ampicillin (25 µg/ml) were added to 10 ml of LB medium 
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A.4.9 10 ml of LB broth with kanamycin 

Under a flame, 10 µl of kanamycin (50 mg/ml) were added to 10 ml of LB medium 

A.5 Substrate gel electrophoresis materials 

A.5.1 1.5 M Tris-HCl Resolving buffer with SDS, pH 8.8 

90.8 g of tris and 2 g of SDS were added to a beaker and made up to 400 mls with dH2O. This 

was allowed to dissolve with the addition of a low heat. Once dissolved the pH was adjusted to 

8.8 with concentrated hydrochloric acid (HCl).  

A.5.2 0.5 M Tris-HCl Stacking buffer with SDS, pH 6.8 

30.285 g of Tris and 2 g of SDS were added to a beaker and made up to 400 mls with dH2O. 

This was allowed to dissolve with the addition of a low heat. Once dissolved the Ph was 

adjusted to 6.8 with concentrated hydrochloric acid (HCl). 

A.5.3  SDS PAGE non reducing sample buffer 

A 2 x stock of non reducing sample buffer was prepared by dissolving 2 g sucrose, 8 mg 

bromophenol blue and 0.2 g SDS in 17.1 mls of 0.5 M Tris-HCl, pH 6.8. 

A.5.4 2.5% (v/v) Triton X-100 

2.5 ml of Triton X-100 were added to 97.5 ml dH2O and dissolved 

A.5.5 SDS PAGE Tank buffer for substrate gels 

A 10 x stock solution was prepared by dissolving 144 g glycine, 70 g 2-Amino-2-

hydroxymethyl-propane-1,3-diol (tris) and 10g sodium dodecyl sulphate (SDS) in 1 litre of 

distilled water. This solution was diluted to a 1 x solution in distilled water for use. 

A.5.6 0.25% Coomassie Blue stain 
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In a beaker, 2.5 g of coomassie brilliant blue R-250 (BioRad) were dissolved in 450 ml 

Methanol by stirring. Once dissolved, 450 ml dH2O and 100 ml glacial acetic acid were added. 

The mixture was then filtered through whatman paper  

A.5.7 Gel destainer 

In a beaker 450 ml of Methanol, 450 ml of dH2O and 100 ml of Acetic acid were combined. 

A.6 Ph buffers 

A.6.1 0.1 M Sodium acetate pH 3 

4.1 g of sodium were added to 400 ml of dH2O and the pH adjusted to 3 by the addition of 

concentrated acetic acid. 

A.6.2 0.1 M Sodium acetate pH 5 

4.1 g of sodium were added to 400 ml of dH2O and the pH adjusted to 5 by the addition of 

concentrated acetic acid. 

A.6.3 0.1M Tris-HCl pH 7 

6.05g of Tris were added to 400 ml of dH2O and the pH adjusted to pH 7 by the addition of 

concentrated HCl. 

A.6.4 0.1 M Tris-HCl ph 9 

6.05g of Tris were added to 400 ml of dH2O and the pH adjusted to pH 9 by the addition of 

concentrated HCl. 

A.6.5 0.2 M Sodium Acetate pH 3 

8.2 g of sodium were added to 400 ml of dH2O and the pH adjusted to 3 by the addition of 

concentrated acetic acid. 

A.6.6 0.2 M Sodium Acetate pH 4 
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8.2 g of sodium were added to 400 ml of dH2O and the pH adjusted to 4 by the addition of 

concentrated acetic acid. 

A.6.7 0.2M Sodium Acetate pH 5 

8.2 g of sodium was added to 400mls of dH2O and the pH adjusted to 5 by the addition of 

concentrated acetic acid. 

A.6.8 0.2 M Sodium acetate pH 6 

8.2 g of sodium were added to 400 ml of dH2O and the pH adjusted to 6 by the addition of 

concentrated acetic acid. 

A.6.9 0.2 M Tris-HCl pH 7 

12.1 g of Tris were added to 400 ml of dH2O and the pH adjusted to pH 7 by the addition of 

concentrated HCl. 

A.6.10 0.2 M Tris-HCl pH8 

12.1 g of Tris were added to 400 ml of dH2O and the pH adjusted to pH 8 by the addition of 

concentrated HCl. 

A.6.11 0.2 M tris-HCl pH 9 

12.1 g of Tris were added to 400 ml of dH2O and the pH adjusted to pH 9 by the addition of 

concentrated HCl. 

A.6.12 Stock 1 M DTT 

1.5g of DTT were dissolved in 10 ml of dH2O, stored at room temperature. 

A.7 Protein expression and purification 

A.7.1 IPTG solution 
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A 0.1 M solution of isopropyl β-D-1-thiogalactopyranoside (IPTG) was prepared by 

dissolving 238g in 10 ml dH2O, filter sterilized and stored in 500 µl aliquots. 

A.7.2 PepA binding buffer (0.1 M sodium citrate + 0.5 M NaCl, pH3) 

29.412 g of sodium citrate and 2.92 g of sodium chloride were dissolved in 800 ml of dH2O. 

The pH was adjusted to 3 with the addition of concentrated citric acid and the final volume 

made up to 1000 ml with dH2O.  

A.7.3 PepA Washing buffer (0.5 M NaCl) 

2.92 g of sodium chloride were dissolved in 1000 ml of dH2O. 

A.7.4 PepA elution buffer (0.1 M Sodium carbonate + 0.5 M NaCl, pH 8.7) 

8.4 g of Sodium bicarbonate and 2.92 g sodium chloride were dissolved in 800 ml of dH2O. 

The pH was adjusted to 8.7 with concentrated HCl and the final volume made up to 1000 ml 

with dH2O 

A.7.5 Binding Buffer       

20 ml 0.1 M Sodium Phosphate Buffer pH 7.4 were diluted with 80 ml dH2O. To this 2.92 g 

NaCl and 0.136 g Imidazole were added and allowed to dissolve. 

A.7.6 Binding Buffer + 8M Urea  

48 g of Urea were dissolved in 100 ml of Binding Buffer.   

A.7.7 Elution Buffer 1 

20 ml 0.1 M Sodium Phosphate Buffer pH 7.4 were diluted with 80 ml dH2O. To this 2.92 g 

NaCl and 0.34 g Imidazole were added and allowed to dissolve. 
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A.7.8 Elution Buffer 2 

20 ml 0.1 M Sodium Phosphate Buffer pH 7.4 were diluted with 80 ml dH2O. To this 2.92 g 

NaCl and 1.36 g Imidazole were added and allowed to dissolve. 

A.7.9 Elution Buffer 3    

20 ml 0.1 M Sodium Phosphate Buffer pH 7.4 were diluted with 80 ml dH2O. To this 2.92 g 

NaCl and 2.38 g Imidazole were added and allowed to dissolve. 

A.7.10 Elution Buffer 4      

20 ml 0.1 M Sodium Phosphate Buffer pH 7.4 were diluted with 80 ml dH2O. To this 2.92 g 

NaCl and 3.4 g Imidazole were added and allowed to dissolve. 

A.7.11  Elution Buffer Stock (with 8 M urea)           

80 ml 0.1M Sodium Phosphate Buffer, 320 ml dH2O, 11.68 g NaCl and 192 g Urea were 

combined. 

A.7.12 Elution Buffer 1 + 8M Urea     

20 ml 0.1 M Sodium Phosphate Buffer pH 7.4 were diluted with 80 ml dH2O. To this 2.92 g 

NaCl and 0.34 g Imidazole were added and allowed to dissolve 100 ml Elution Buffer Stock 

A.7.13 Elution Buffer 2 + 8M Urea     

1.36 g Imidazole were added to 100 ml Elution Buffer Stock 

A.7.14 Elution Buffer 3 + 8M Urea     

2.38 g Imidazole were added to 100 ml Elution Buffer Stock 

 A.7.15 Elution Buffer 4 + 8M Urea     

3.4 g Imidazole were added to 100 ml Elution Buffer Stock 



174 

 

 

A.7.16 1  x electrophoresis tank buffer with SDS 

A 5 x Stock of electrophoresis was prepared by combining 30.8 g Tris, 144g Glycine, 10g 

SDS in a beaker then made up to 2 litres with dH2O. A 1 x working stock was prepared by 

diluting 200 ml of stock with 800 ml dH2O . 

A.7.17 ½ x electrophoresis tank buffer without SDS. 

In a beaker 1.9 g Tris, 9 g Glycine were dissolved in 250 ml dH2O. 

A.7.18 Ponceau S stain 

1g Ponceau S was added to 50ml acetic acid and made up to 1 litre with dH2O. 

A.7.19 Immunolocalisation buffer 

5  ml of Tween 80 were dissolved in 1000 ml of 1 x PBS.  As required, 1 ml of normal goat 

serum was added to 10 ml of 1 x PBS + 0.5% Tween 80. 
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Appendix 2: Proteins identified as unique to the S3 fraction 

Protein description S3 Unique? Species 

No. 

Peptides 

% 

Coverage 

Protein 

length 

Protein 

score 

Protein 

mass Contig  

1. Proteolytic enzymes 

1.1 Cysteine proteases  

Cathepsin B2 Y T. szidati 2 2.9 491 60 55648 10637 

Cathepsin B N (1/2) S. japonicum 4 7.1 448 111 49694 11829 

Calpain B  N (1/2) S. japonicum 2 6.2 385 34 44322 12814 

Cathepsin B N (1/2) F. gigantica 4 7.1 411 55 46424 14718 

Cathepsin L N (1/2) F. heptica 2 2.5 363 32 39516 22509 

Legumain-2 Y F. gigantica 4 10.1 318 41 36523 11863 

Legumain-2  Y F.gigantica 8 26.8 190 100 21886 12100 

Legumain-2  Y F. gigantica 4 10.9 359 31 40793 18333 

1.2 Aminopeptidases 
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Leucyl aminopeptidase  N (1/2) F. hepatica 2 15.4 143 49 15564 106739 

1.3 Serine /Carboxypeptidase 

Putative Lysosomal Pro-X carboxypeptidase 

precursor Y S. japonicum 3 3.7 626 41 70862 11786 

1.4 Metalloproteases 

Peptidase M16 precursor  Y C. sinensis 3 4.1 581 66 65330 11902 

2. Metabolism                  

2.1 Amino Acid                 

 SJCHGC02362 protein  Y S.japonicum 16 9.3 400 71 44046 12397 

 Pyruvate dehydrogenase   N (2) S.mansoni 15 3 1058 51 116338 201 

 Threonine dehydratase  N (1) S.mansoni 4 5.1 668 32 73723 886 

Glutaminase, putative  Y S.mansoni 6 6.3 574 29 64261 1676 

Arginine n-methyltransferase  Y S. mansoni 7 2.2 464 30 51468 2073 
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Glutamate--cysteine ligase catalytic subunit  Y S.japonicum 6 7.4 609 27 67510 3181 

SJCHGC01355 protein  Y S.japonicum 15 8.6 476 103 53204 9995 

Hadha protein Y D. rerio 30 12.1 281 53 31223 12059 

Hadha Protein Y X. tropicalis 75 11.4 631 113 69060 11598 

Hadha Protein Y X. tropicalis 10 7.9 367 132 39555 12191 

2.2 ATP synthesis/Electron transport  

Ubiquinol-cytochrome c reductase complex 14 

kDa protein N (1/2) 

 

2 8.4 178 28 20184 11878 

 NADH-ubiquinone oxidoreductase sgdh subunit, 

putative Y S. mansoni 3 14.1 270 112 31187 10902 

 NADH-ubiquinone oxidoreductase, putative Y S. mansoni 3 3.2 879 38 96342 12017 

 NADH:ubiquinone reductase 42kD subunit 

precurs  Y S. japonicum 4 11.5 487 156 57153 12128 

NADH dehydrogenase (ubiquinone) Fe-S protein 

2 N (1/2) S. japonicum 3 10.2 502 53 57229 55043 
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 NADP transhydrogenase, putative  Y S. mansoni 4 2.5 1265 68 133084 12159 

 Ubiquinol-cytochrome-c reductase complex core 

protein 2, mitochondrial precursor  N (1/2) S. japonicum 3 10.8 418 59 46393 12806 

 Ubiquitin-protein ligase BRE1, putative N (1/2) S. mansoni 2 1.4 1526 25 174264 4515 

 ATP synthase, subunit d N (1/2) S. japonicum 3 20.1 219 106 25061 11921 

 SJCHGC06640 protein  Y S. japonicum 3 6.6 500 91 55242 11401 

AF303222_1 SNaK1  Y S. mansoni 6 2 1826 40 201910 8926 

SJCHGC07036 protein  Y S. japonicum 2 6.9 216 53 23165 13280 

 tyrosine kinase N(2) S. mansoni 8 0.7 1054 31 114838 2814 

 calcium-transporting atpase 

sarcoplasmic/endoplasmic reticulum type 

(calcium pump) Y 

 

3 3.4 1470 46 162738 288 

 peptidyl-prolyl cis-trans isomerase-like 4. ppil4  Y S. mansoni 9 6.8 487 26 54253 551 

 cell division control protein, putative N (1/2*) S. mansoni 3 3 1029 47 109177 6292 
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 SJCHGC05891 Y S. japonicum 30 2.3 779 27 88749 3698 

 SMDR1  Y S. mansoni 4 3.1 419 30 45119 8316 

 SMDR2  N(1) S. mansoni 6 2.3 1331 54 148168 9153 

 smap1, putative  Y S. mansoni 2 6.6 469 29 52745 916 

 ATP synthase gamma subunit, putative  N (1/2) S. mansoni 3 11.2 330 99 36112 9531 

F-type H+-transporting ATPase subunit f 

(SJCHGC06289 protein ) Y S. japonicum 2 16 200 70 22442 54931 

mitochondrial ATP synthase B subunit N (2) C. sinensis 3 25.5 157 119 17912 47829 

 plasma membrane calcium-transporting atpase, 

putative  N (1) S. mansoni 4 2.7 1079 55 120394 7301 

2.3 Carbohydrate 

  

            

 succinate-Coenzyme A ligase, ADP-forming, 

beta subunit N (1/2) S. japonicum 4 2.1 479 30 53051 2268 

 glycogen phosphorylase, putative Y S. mansoni 6 2.7 1069 33 117962 2897 
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 expressed protein [S. mansoni] Y 

 

10 3.7 753 29 79039 949 

 phosphatidylinositol 4-kinase N (1/2) S. mansoni 6 2.3 1446 28 163894 13262 

 alpha-glucosidase  N (1) S. japonicum 3 5.6 665 101 74247 12094 

2.4 Citric acid cycle  

  

            

 succinate dehydrogenase complex, subunit B, 

iron sulfur N (1/2) S. japonicum 2 6.8 177 48 21099 13003 

 succinate dehydrogenase, putative  N (1/2) S. mansoni 6 12.9 249 42 27562 12353 

 SJCHGC06566 protein Y S. japonicum 4 4.1 242 56 27256 7508 

2. 5 Fatty Acid  

  

          

  PREDICTED: similar to acyl-coa dehydrogenase  Y A. pisum 2 5.2 690 48 76421 12285 

2.6 Glycan 

  

          

  SJCHGC00848 protein  Y S. japonicum 6 12.5 634 202 73361 11988 

 oligosaccharyl transferase, putative Y S. mansoni 2 6.4 597 29 65055 8521 
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 helicase, putative  N (1/2) S. mansoni 6 3.3 1159 27 130461 4877 

 helicase, putative  N (1/2) S. mansoni 6 3.3 1159 27 130461 4877 

 PREDICTED: similar to amylo-1,6-glucosidase, 

4-alpha-glucanotransferase  Y G.gallus 6 2.1 1886 45 207578 476 

2.7 Other 

  

            

 protein kinase  N (1/2) S. mansoni 3 5.5 867 32 93958 3284 

 serine/threonine kinase N (1/2) S. mansoni 3 5.6 593 30 66537 14335 

 serine/threonine kinase N (1/2) S. mansoni 2 2.4 1227 40 132192 1725 

 serine/threonine kinase N (1/2) S. mansoni 4 4.1 591 27 66815 4039 

 serine/threonine kinase N (1/2) S. mansoni 4 4.1 591 27 66815 4039 

 serine/threonine kinase N (1/2) S. mansoni 2 4 505 33 55252 6869 

serine/threonine protein kinase N (1/2) S. mansoni 3 4.9 628 25 68507 c2874 

 tyrosine kinase N (1/2) S. mansoni 4 6.2 838 63 92919 2448 
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 tyrosine kinase N (1/2) S. mansoni 8 3.6 1420 38 156086 4503 

 Tyrosine-protein kinase CSK  N (1/2) S. japonicum 6 1.8 885 26 97380 3900 

 Tyrosine-protein kinase CSK  N (1/2) S. japonicum 6 1.8 885 26 97380 3900 

 cation-transporting atpase 13a1 (G-box binding 

protein), putative  N (1/2) S. mansoni 3 2.3 1416 33 157321 5898 

 sphingomyelin phosphodiesterase  Y C. sinensis 2 9.8 264 98 29512 12098 

PREDICTED: similar to 

Dehydrogenase/reductase (SDR family) member 

1 Y S. purpuratus 16 22.6 106 39 11389 80532 

predicted protein  Y N. vectensis 5 3.1 416 49 44917 55504 

 SJCHGC06250 protein  Y S. japonicum 2 2.6 811 97 92779 7569 

 histidine acid phosphatase, putative  Y S. mansoni 2 19.4 129 37 13970 8437 

Peptidyl--hydroxyglycine--amidating lyase  Y 

 

2 6.5 463 29 52642 c11147 

 defender against cell death, putative  Y S. mansoni 2 8.9 158 48 17841 13142 
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 unknown [Glycine max] Y 

 

2 3 565 38 65800 4404 

3. Transport                 

 PRA1 family protein 3 

 

S. japonicum 2 8.4 262 77 29485 11639 

 phospholipid transport protein  N (2) S. mansoni 2 5.5 326 32 37476 1078 

 sodium/dicarboxylate cotransporter-related  Y S. mansoni 4 4.7 1339 37 150267 1019 

 integral membrane protein  Y S. mansoni 5 14 429 153 48607 11756 

 putative Vesicle-associated membrane protein-

associated protein A ( SJCHGC09425 protein ) Y S. japonicum 2 5.2 636 123 70940 11089 

 ABC transporter, putative  Y S. mansoni 4 7.6 406 37 47051 20770 

 mitochondrial carrier protein, putative N (2) S. mansoni 3 7.5 548 77 60748 12171 

 signal recognition particle 54 kD protein, putative Y S. mansoni 4 6.5 672 29 74916 12550 

 SJCHGC09085 protein  Y S. japonicum 3 5.7 714 47 79507 13548 

 mitochondrial phosphate carrier protein, putative  Y S. mansoni 3 12.6 380 42 42459 20986 
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 exocyst componenet sec8, putative  Y S. mansoni 2 5.3 453 38 50312 2690 

 inositol transporter Y S. mansoni 2 1.3 844 32 93713 270 

 fer-1-related N (1) S. mansoni 3 9.6 552 57 60380 3000 

 Tubulin beta-2C chain N (1/2) S. japonicum 4 4 547 39 61257 3317 

 vacuolar membrane protein pep11, putative  Y S. mansoni 2 3.4 504 26 56427 3405 

 multidrug resistance protein 1 (ATP-binding 

cassette C1), putative  Y S. mansoni 6 11.4 517 29 58247 877 

 adapter-related protein complex 1 gamma subunit 

(gamma-adaptin)  Y S. mansoni 2 2.1 1094 29 119304 1854 

 putative Golgi SNAP receptor complex member 

2 Y S. japonicum 6 11.4 403 37 45916 4383 

 exocyst complex component 1  Y S. mansoni 2 6.6 482 27 53279 1425 

 mitochondrial 2-oxoglutarate/malate carrier 

protein Y S. mansoni 3 11.4 342 48 37597 354 

 translocon-associated protein, delta subunit Y S. mansoni 2 10.4 211 34 23970 12432 



185 

 

 

larval alpha-globin Y H. retardatus 2 12.2 123 31 13288 c76246 

 transmemberane protein, putative  Y S. mansoni 2 4.8 567 69 64904 9563 

 clasp2 protein, putative Y S. mansoni 3 3.2 1204 35 134899 839 

         4. Inhibitors                 

 Phosphatase 2A inhibitor I2PP2A  Y S. japonicum 2 8 387 26 42873 11757 

 rab GDP-dissociation inhibitor, putative  Y S. mansoni 20 4.4 654 27 73002 12018 

5. Cytoskeleton proteins                 

 hypothetical protein TcasGA2_TC013346  Y T.castaneum 5 2.9 2446 41 271821 10 

 actin  N (1/2) T.similis 6 15.7 451 145 50438 16962 

 hypothetical protein BRAFLDRAFT_118210 N (1/2) B. floridae 3 3.2 1205 28 137556 21 

 PREDICTED: axonemal outer arm dynein 

intermediate chain 2  Y C. intestinalis 2 3.5 837 26 91774 225 

 dynein heavy chain, putative  N (1/2) 

 

2 6 548 34 62113 5394 
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 nudix-type motif 6  Y X. laevis 2 4.1 460 26 52201 8129 

 erythrocyte membrane protein, putative  Y S. mansoni 3 4.2 993 29 108608 12243 

 troponin t, invertebrate, putative  Y S. mansoni 3 7.4 568 35 64106 14984 

 actin-related protein 10, arp10  N (1/2) S. mansoni 2 5.4 485 31 55327 4051 

6. Transcription                 

 endonuclease-reverse transcriptase  N (1/2) S. japonicum 3 5.3 472 27 51676 14338 

 chromatin assembly factor I P60 subunit, putative Y S. mansoni 3 2.2 773 33 87098 1656 

 RAB family  N (1/2) S. japonicum 2 6.4 313 37 36440 17352 

 reverse transcriptase  N (1) 

Synthetic 

construct 4 18.2 154 24 17458 19648 

 chromatin regulatory protein sir2, putative  Y S. mansoni 3 6 664 27 74567 2295 

 trimeric G-protein alpha o subunit, putative Y S. mansoni 12 7.7 560 71 63993 408 

 mRNA-capping enzyme, putative Y S. mansoni 4 2.2 760 25 81250 70 
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 splicing factor 3b, subunit 4 (fragment), putative N (1/2) S. mansoni 1 2.4 418 32 48941 7137 

 ccr4-not transcription complex, putative  N (1) S. mansoni 3 4.1 1000 36 112992 7493 

 Homeobox protein ceh-18 Y S. japonicum 2 7.6 368 28 41097 8007 

 flightless-I, putative  Y S. mansoni 4 4.4 1071 31 120864 7861 

 pumilio, putative  Y S. mansoni 2 4.2 780 30 87435 842 

DNA polymerase zeta catalytic subunit  N (1/2) S. mansoni 2 36 89 30 10273 c30321 

heterotrimeric G-protein alpha subunit, GPA1-like 

protein N (1/2) 

Laccaria 

bicolor S238N-

H82 16 17.2 128 27 13958 c88967 

transcription initiation factor tfiid  Y S. mansoni 2 22.9 105 33 12268 c89439 

similar to cyclin K in Homo sapiens  N (1) S. japonicum 2 6.5 154 39 17076 65443 

 reverse transcriptase [synthetic construct] N (1) 

 

2 5.6 372 26 42912 56639 

 serine-rich repeat protein , putative Y S. mansoni 2 3.7 490 27 54027 1268 

 PREDICTED: similar to endonuclease-reverse 

N (1/2) S. purpuratus 2 5.1 447 25 47727 7263 
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transcriptase  

 sphingomyelin phosphodiesterase  Y C. sinensis 2 4.2 625 107 70361 11752 

 sphingomyelin phosphodiesterase Y C. sinensis 2 9.8 264 98 29512 12098 

 PREDICTED: similar to transposase  N (2) S. purpuratus 2 3.1 582 26 63797 881 

7. Gut Proteins                 

 secreted saposin-like protein SAP-3  N (2) F. gigantica 2 12.9 85 66 9803 14594 

8. Signalling                 

 G-protein, beta subunit, putative N (1/2) S. mansoni 2 5.8 640 50 72427 11691 

 SJCHGC05537 protein Y S. japonicum 2 5.4 722 38 81328 10747 

 tubulin beta-2 N (1/2) F. hepatica 4 4.8 495 34 55683 11855 

 glucose transport protein, putative  Y S. mansoni 2 3.4 931 46 101651 11949 

 f-box and wd40 domain protein, putative N(2) S. mansoni 16 5.8 995 31 111060 12038 

 ormdl proteins, putative Y S. mansoni 3 6.1 788 56 87084 12144 
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 pak-interacting exchange factor, beta-pix/cool-1, 

putative  Y S. mansoni 2 2.3 1162 33 128582 1503 

 kalirin, putative  Y S. mansoni 2 2.6 1260 27 139578 1647 

 expressed protein Y S. mansoni 4 2.4 1741 34 192870 2796 

 WD repeat protein 78  Y S. japonicum 3 5.3 928 31 98790 4492 

 protein kinase  N (1/2) S. mansoni 30 4.6 931 27 100920 4683 

 protein kinase  N (1/2) S. mansoni 2 6.1 594 33 65359 4976 

 glycogen synthase kinase 3-related (gsk3) (cmgc 

group III) Y S. mansoni 60 3.7 1250 30 138851 5576 

 TGF-beta signal transducer Smad2, putative Y S. mansoni 24 5.5 1027 48 112863 617 

 PREDICTED: similar to germ cell associated 2 

(haspin) Y T. guttata 3 4.2 984 26 111142 6684 

inositol triphosphate 3-kinase C  Y S. mansoni 6 4.6 411 36 47493 c10001 

transient receptor potential cation channel 

subfamily m member  Y S. mansoni 2 10.3 312 30 36580 c13353 
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SJCHGC09376 protein Y 

 

5 10.2 187 25 21906 c2580 

 histidine acid phosphatase  Y S. mansoni 2 18.7 155 32 16306 c32624 

long-chain-fatty-acid--CoA ligase  N (1) S. mansoni 8 5.8 360 28 41495 c7934 

signal peptidase 25 KDa chain Y C. sinensis 4 9.4 203 49 23072 57790 

 Receptor expression-enhancing protein 5 Y S. japonicum 3 7.7 418 64 47993 11870 

 Gag-Pol polyprotein N (1) S. japonicum 3 6.1 734 27 82722 12662 

 TPA_exp: pol polyprotein N (1) S. mansoni 3 2.2 1291 34 144229 16444 

 TPA_exp: pol polyprotein  N (1) S. mansoni 2 2.9 649 26 74051 1896 

 WD-repeat protein Y S. mansoni 2 4 450 43 48003 21859 

 coatomer protein complex, subunit alpha  N (1/2) Bos taurus 3 1.9 1471 31 166006 4846 

 Ras guanine nucleotide exchange factor Y S. mansoni 4 2.9 799 26 87302 442 

 rgpr-related Y S. mansoni 3 8.4 581 30 65068 9347 
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9. Gene transcrition                 

 lung cancer metastasis-related (lcmr1) protein Y S. mansoni 2 7.5 371 31 41853 5073 

10. Heat shock and chaperon proteins                 

Heat shock protein 67B2 N (1/2) S. japonicum 3 14.1 227 105 25182 10449 

 chaperonin containing t-complex protein 1, theta 

subunit, tcpq, putative  Y S. mansoni 3 6.7 596 160 65611 11923 

 heat shock protein, putative N (1/2) S. mansoni 2 2.5 565 27 64422 12202 

peptidyl-prolyl cis-trans isomerase, cyclophilin-

type family protein Y 

T. thermophila 

SB210 3 27.6 163 141 18253 13035 

 cullin 3 Y S. japonicum 6 5.5 854 33 94542 1172 

 SmIrV1 protein, putative  Y S. mansoni 9 54.3 81 37 9207 9355 

11. Ribosomal proteins                 

 Ribosomal protein L17 (SJCHGC09296) N(1/2) S. japonicum 4 8.3 229 29 25071 11754 

 60S ribosomal protein L13a, putative N(1/2) S. mansoni 4 3.5 231 28 27173 11831 
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 pescadillo-related  Y S. mansoni 12 4 831 33 93063 1404 

 small subunit ribosomal protein S5  N(1/2) S. japonicum 2 5 558 44 60840 4989 

12. Other Function                 

 Serologically defined colon cancer antigen 1  N (1) S. japonicum 3 5.3 664 30 76898 5309 

 PREDICTED: similar to KIAA0174  Y 

H.magnipapillat

a 2 10 201 28 23336 5991 

Progesterone-induced-blocking factor Y S. mansoni 3 9.5 409 32 46126 c7596 

SCAMP family  N (1/2) S. mansoni 2 15.6 147 27 15746 c34708 

putative F./S. cross-reactive protein  Y F. hepatica 2 17.9 168 35 18312 c27650 

AF303222_1 SNaK1  Y S. mansoni 6 3.2 1825 163 204036 8926 

 tetraspanin 

 

S. japonicum 1 1.5 741 42 83621 11957 

 IP15837p  

 

D.melanogaster 3 3.4 861 29 94231 12230 

 Estrogen-regulated protein EP45 precursor 

 

S. japonicum 5 10.8 574 266 65397 12332 
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sortingnexin-related 

 

S. mansoni 3 8.9 483 34 55785 12387 

 tetraspanin-CD63 receptor , putative  

 

S. mansoni 3 12.4 510 55 58080 12848 

 SJCHGC00563 protein 

 

S. japonicum 2 3.6 392 56 44979 12967 

 regulator of chromosome condensation, putative  

 

S. mansoni 3 3 910 27 102856 1378 

 metazoan probable membrane protein, putative  

 

S. mansoni 4 6.2 761 42 84585 1412 

 cornichon, putative 

 

S. mansoni 4 5.7 1310 40 139802 1579 

 tetraspanin, putative  

 

S. mansoni 2 4.5 596 106 67336 3879 

 loss of heterozygosity 11 chromosomal region 2 

gene a protein homolog (mast cell surface antigen 

1) (masa-1), putative  

 

S. mansoni 2 2.4 1094 50 122402 20995 

SJCHGC09145 protein  

 

S. japonicum 2 10.5 143 31 16132 261955 

SJCHGC00713 protein  

 

S. japonicum 2 4 347 28 38238 2509 

 PREDICTED: similar to IQ domain-containing 

protein D 

 

E. caballus 3 3.9 719 37 77549 366 
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 SJCHGC06304 protein  

 

S. japonicum 3 3 1217 62 137090 5407 

yip1-related  Y S. mansoni 2 21.6 153 30 16599 109774 

 polyprotein  

 

S. japonicum 3 15.9 151 30 17173 c3677 

 286 kDa polyprotein   

C. leprosis virus 

C 2 2 1534 32 171152 9607 

13. Hypothetical Proteins                 

 hypothetical conserved protein  

 

S. mansoni 3 13.7 277 28 31722 13352 

 hypothetical protein  

 

S. japonicum 3 4.8 888 38 102566 150 

 hypothetical protein  

 

S. mansoni 2 2.8 740 30 83683 1614 

 conserved hypothetical protein 

 

Salinispora 

arenicola CNS-

205 2 8 387 30 43668 19968 

 hypothetical protein BRAFLDRAFT_118210 

 

B. floridae 3 3.2 1205 28 137556 21 

 conserved hypothetical protein 

 

S. mansoni 3 2.4 1689 33 192527 2577 
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 hypothetical protein  

 

S. mansoni 2 4 521 28 58700 2978 

 hypothetical protein 

 

S. mansoni 2 4.3 350 48 39613 7914 

 hypothetical protein  

 

S. mansoni 2 4.2 569 26 64948 8174 

 conserved hypothetical protein  

 

S. mansoni 2 4.7 666 29 74581 1782 

 hypothetical protein  

 

S. mansoni 3 5 899 33 96320 1020 

 hypothetical protein BRAFLDRAFT_74627  

 

B. floridae 3 6.2 801 41 88402 10495 

 hypothetical protein 

 

S. mansoni 3 9.3 496 44 53905 11814 

 hypothetical protein  

 

S. mansoni 3 10.2 401 29 40006 11886 

 hypothetical protein  

 

S. japonicum 3 6.5 415 38 46155 11910 

 hypothetical protein  

 

S. mansoni 3 2 1280 33 143372 122 

SJCHGC05740 protein 

 

S. japonicum 2 12.6 206 28 22983 14838 

 hypothetical protein 

 

S. mansoni 3 19 231 31 26344 c17628 
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hypotheticial protein  

 

S. japonicum 1 8.3 192 41 22524 c27899 

hypothetical protein 

 

S. mansoni 2 11.1 144 27 15696 c67014 

 hypothetical protein 

 

S. mansoni 2 12.2 123 50 13832 85108 

 hypothetical protein 

 

S. mansoni 2 8.6 152 41 16820 62259 

 hypothetical protein 

 

Coprinopsis 

cinerea 

okayama 2 23.8 122 43 13238 89766 

 hypothetical protein 

 

S. japonicum 3 2.6 794 45 92812 4390 

 hypothetical protein 

 

S. mansoni 2 2.4 757 25 85943 607 

 hypothetical protein 

 

S. mansoni 3 8.1 445 27 49725 6601 

12. Unknown                 

expressed protein 

 

S. mansoni 3 4.3 1189 41 131579 10076 

CAZ318 

  

18 7.3 717 44 80860 12911 

Unknown 

  

3 6.7 477 119 53467 11847 
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Unknown 

  

2 8.4 405 39 44747 11319 

 expressed protein  

 

S. mansoni 5 4.7 1077 58 121488 11056 

CA 

  

2 11.7 188 60 21194 12453 

   

4 4.3 1363 32 154400 1485 

15153 

  

2 9.6 374 29 42413 15153 

16524 

  

2 6.8 146 25 16244 16524 

1738 

  

2 14.3 189 38 21093 1738 

 expressed protein 

 

S. mansoni 2 3.6 583 25 63592 1909 

21880 

  

2 9.7 319 33 36109 21880 

 expressed protein  

 

S. mansoni 3 16.5 266 141 29309 21911 

22198 

  

2 6.7 267 39 29497 22198 

 expressed protein  

 

S. mansoni 2 2.9 690 32 76475 2271 
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 expressed protein  

 

S. mansoni 2 8.2 291 26 32448 2299 

232 

  

2 5.7 598 27 67436 232 

2325 

  

2 3 880 38 93147 2325 

2496 

  

2 7.5 199 25 22328 2496 

2710 

  

3 4.4 996 48 109936 2710 

 SJCHGC04075 protein 

 

S. japonicum 3 3.9 1084 41 118502 283 

 expressed protein  

 

S. mansoni 2 6.9 320 40 35696 3009 

308 

  

2 1.8 896 33 99766 308 

 expressed protein 

 

S. mansoni 3 3.2 1100 32 122615 3104 

 expressed protein  

 

S. mansoni 2 5.4 350 27 39953 3289 

3401 

  

2 3 434 27 47856 3401 

 expressed protein 

 

S. mansoni 2 2.3 731 39 81664 3575 
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3785 

  

3 2.4 710 29 80577 3785 

 expressed protein 

 

S. mansoni 2 2.4 916 31 102745 381 

4030 

  

2 6.7 375 30 40956 4030 

427 

  

2 6.4 423 29 46022 427 

430 

  

3 10.6 417 34 48036 430 

 SJCHGC09036 protein  

 

S. japonicum 7 16.9 449 187 50350 404 

462 

  

3 8.1 421 31 45155 462 

 expressed protein 

  

2 5.3 380 52 43596 4508 

5195 

  

2 3.8 524 27 57629 5195 

 expressed protein 

 

S. mansoni 2 3.6 675 35 74533 5282 

 expressed protein  

 

S. mansoni 4 2.7 1923 35 220165 548 

5529 

  

2 4.3 470 27 53193 5529 
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6013 

  

2 12.6 253 27 29585 6013 

 expressed protein 

 

S. mansoni 2 11.6 292 25 33119 7384 

 expressed protein 

 

S. mansoni 1 1.1 796 27 89114 7663 

 expressed protein 

 

S. mansoni 3 2.1 1274 35 141025 779 

c13893 

  

2 10.5 143 27 15824 c13893 

c162320 

  

2 11.9 135 28 15635 c162320 

c169 

  

2 2.8 714 30 77689 c169 

c170809 

  

1 7.8 128 27 14086 c170809 

c17567 

  

2 6.8 281 43 30992 c17567 

8568 

  

2 18.1 215 28 24275 8568 

 SJCHGC03581 protein 

 

S. japonicum 2 9.3 226 35 25152 862 

889 

  

2 1.9 890 51 98428 889 
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9007 

  

2 14.3 189 86 20985 9007 

c105196 

  

2 17.2 134 39 14147 c105196 

c109127 

  

2 22 123 26 13984 c109127 

c11023 

  

2 4.2 522 26 56164 c11023 

c18606 

  

2 17.1 146 32 16339 c18606 

c20788 

  

2 10.9 201 31 22219 c20788 

c24695 

  

2 35.2 71 31 8127 c24695 

c25920 

  

3 12.5 176 33 19799 c25920 

c2836 

  

3 11.7 412 25 44205 c2836 

c35383 

  

2 21.4 154 30 17223 c35383 

c68013 

  

2 18.1 144 34 15259 c68013 

c69832 

  

2 21.9 151 24 16931 c69832 
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c72475 

  

2 14.6 144 30 15084 c72475 

c80338 

  

2 13.3 158 35 17410 c80338 

c84817 

  

2 11.3 239 27 26848 c84817 

c8673 

  

2 17.5 114 30 12087 c8673 

c9468 

  

3 16.9 189 31 22327 c9468 

unknown  

 

S. japonicum 2 3.9 690 59 76281 54913 

predicted protein  

 

Laccaria 

bicolor S238N-

H82 2 17.8 118 89 12344 76963 

polyprotein 

 

S. japonicum 2 15.6 135 32 14994 76358 

67810 

  

2 26.4 110 25 12035 67810 

64522 

  

2 7.5 174 27 19564 64522 

65198 

  

2 9.3 150 26 16064 65198 

 SJCHGC08978 protein  

 

S. japonicum 2 16.7 126 82 13928 69652 



203 

 

 

 SJCHGC02303 protein 

 

S. japonicum 2 7.1 524 31 58846 1132 

 SJCHGC09134 protein 

 

S. japonicum 5 13 461 142 53149 11795 

 

 

 

 

 

 

 

 

 



204 

 

 

Appendix 3  : Proteins identified from JAC agglutinin affinity chromatography enriched  

 

Accession Protein MW (kDa) Mowse Scores No. of Peptides 

1. Proteolytic enzymes           

1.1 Cysteine protease fhep00187|2 Cathepsin L 194.1 283.4 5 

 

fhep00889|1 Cathepsin L 66.4 94.6 2 

 

fhep00344|1 cathepsin L protein 193.9 361.2 8 

 

fhep03421|1 cathepsin L protein 103.6 311.2 7 

 

fhep00577|1 cathepsin L protein 52.5 262.4 6 

 

fhep00623|2 cathepsin L protein 93.5 163.2 3 

 

fhep00739|1 cathepsin L1D 178.6 131.5 4 

 

fhep04385|1 cathepsin L1D 57.3 90.8 2 

 

fhep02273|1 Cathepsin L-like protein 100.1 282.1 7 

 

fhep03629|1 secreted cathepsin L 1 47.9 203.8 5 
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fhep02735|1 RecName: Full=Cathepsin L-like protein 85.6 246.9 5 

 

fhep02461|1 RecName: Full=Cathepsin L-like protein 48.7 209.5 5 

 

fhep42601|1 secreted cathepsin L2 76.9 272.6 6 

1.2 Aminopeptidase fhep00458|1 legumain-2 119.7 47.2 2 

 

fhep00030|1 leucyl aminopeptidase 148.7 560.5 8 

      2. Metabolism           

      2.1 Amino Acid fhep07024|1 14-3-3 protein 61.2 127.1 4 

 

fhep01036|1 adenylate kinase 128.3 192.2 3 

 

fhep00922|1 Aldolase 71.0 90 2 

 

fhep00054|1 fructose-16-bisphosphatase-related 133.9 46.3 2 

 

fhep01092|1 fructose-bisphosphat 172.5 626.4 9 

 

fhep05385|1 fructose-bisphosphate aldolase 57.0 243.7 3 
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fhep00365|1 hemoglobin F2 60.7 339.4 6 

 

fhep04489|1 hemoglobin F2 82.8 314.8 5 

 

fhep40916|1 hemoglobin F2 42.4 233.8 4 

 

fhep17472|1 Hydroxyacyl dehydrogenase 37.7 171.5 3 

 

fhep02757|1 hydroxyacyl-Coenzyme A dehydrogenase 65.7 42.6 2 

 

fhep11982|1 PREDICTED: Gag-Pol polyprotein 66.5 53.8 3 

 

fhep17681|1 PREDICTED: Gag-Pol polyprotein 29.1 35.2 2 

 

fhep28249|1 PREDICTED: similar to endonuclease 20.5 34.2 2 

2.2 ATP synthesis/ Electron transport fhep00563|1 acetyl-CoA carboxylase; methylc 218.8 1900 30 

 

fhep01948|1 ATP synthase alpha subunit mitosis 61.0 381.7 5 

 

fhep01951|1 ATP synthase, H+ transporting, mito 78.9 784.2 12 

 

fhep40820|1 ATP:ADP antiporter 84.6 353.8 7 

 

fhep09076|1 ATP:ADP antiporter 48.5 384.1 6 
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fhep01654|1 branched chain ketoacid dehydrogenase 67.5 85.6 2 

 

fhep00533|1 ferritin-like protein 81.4 77.2 2 

 

fhep06472|1 glycine cleavage system H protein 30.0 161.9 3 

 

fhep23828|1 GTP:AMP Phosphotransferase 58.3 270.3 3 

 

fhep41156|1 mitochondrial ATP synthase B subunit 79.2 89.9 2 

 

fhep14046|1 NADP-dependent malic enzyme 33.7 304.8 7 

 

fhep00031|1 NADP-dependent malic enzyme 67.4 336.8 6 

 

fhep00755|1 NADP-dependent malic enzyme 49.4 115.5 3 

 

fhep00221|1 ornithine aminotransferase 154.7 923.8 16 

 

fhep00109|1 PREDICTED: Methylmalonyl-CoA 57.8 335.8 5 

 

fhep00640|1 prohibitin 106.6 59 2 

 

fhep40677|1 propionyl-CoA carboxylase beta 9.9 88.7 2 

 

fhep01734|1 Propionyl-CoA carboxylase beta  65.1 715.6 9 
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fhep00451|1 propionyl-CoA carboxylase beta  73.1 38.9 2 

 

fhep07002|1 RecName: Full=Fatty acid-binding protein 39.9 217.6 5 

 

fhep01997|1 RecName: Full=Fatty acid-binding protein 97.8 622.4 10 

 

fhep39473|1 ubiquitin ligase E3 alpha-related 154.6 51.1 3 

 

fhep39850|1 UDP-glucose 4-epimerase 64.8 71.3 2 

2.3 Carbohydrate fhep00825|1 1-aminocyclopropane-1-carboxylate 140.3 191.4 3 

 

fhep00877|1 1-aminocyclopropane-1-carboxylate 131.9 120.6 2 

2.4 Citric Acid Cycle fhep00235|1 2-oxoglutarate dehydrogenase 120.5 75.1 2 

 

fhep20509|1 4a-hydroxytetrahydrobiopterin 28.6 155 2 

 

fhep01474|1 mitochondrial acetate:succinate CoA 78.9 257 4 

 

fhep02110|1 mitochondrial acetate:succinate CoA 66.6 208.8 2 

 

fhep04674|1 mitochondrial acetate:succinate CoA 60.5 588.8 10 

 

fhep39656|1 propionyl Coenzyme A carboxylase 27.2 299.5 4 
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2.6 Glycan fhep02568|1 glucosamine-fructose-6-phosphat 105.8 31.7 2 

 

fhep02468|1 glutamate dehydrogenase 50.0 292 4 

 

fhep01294|1 glutamate dehydrogenase 101.1 1907.3 25 

 

fhep15603|1 glutamate dehydrogenase 85.5 1626.9 18 

 

fhep01196|1 glutamate dehydrogenase 1 134.3 1054.9 13 

 

fhep16197|1 glutamine-oxaloacetic transaminase 12.5 109.7 2 

 

fhep00463|1 glyceraldehyde 3-phosphate dehydrogenase 97.2 378.7 7 

 

fhep01437|1 glycerol kinase 66.1 32.8 2 

 

fhep21967|1 succinate dehydrogenase 31.7 309.5 7 

 

fhep00654|1 succinate dehydrogenase 51.4 360.2 6 

 

fhep39237|1 succinate dehydrogenase 52.4 247 5 

 

fhep04582|1 succinate dehydrogenase iron-sulfur 50.1 367.8 7 

 

fhep23326|1 succinate dehydrogenase iron-sulfur 18.8 216.8 3 
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fhep14323|1 succinate-CoA ligase 65.1 264.2 6 

 

fhep26819|1 succinyl-CoA synthetase beta 30.8 162.4 4 

 

fhep00887|1 sugar ABC transport system 113.0 55.9 2 

2.7 Other fhep10435|1 dihydrolipoamide dehydrogenase 20.8 85.2 2 

 

fhep31296|1 dipeptidylpeptidase 3 12.9 45.1 2 

 

fhep00161|1 Fatty acid-binding protein 50.9 425.5 8 

 

fhep00817|1 Fatty acid-binding protein 50.6 402.1 7 

 

fhep02802|1 gelsolin 63.6 201.4 5 

 

fhep00225|1 Glutathione S-transferase 58.9 337.5 6 

 

fhep00210|1 Glutathione S-transferase 65.8 636.6 11 

 

fhep00725|1 glutathione transferase 71.7 731.6 12 

 

fhep01298|1 leucine-rich repeat family protein 110.4 34.1 2 

 

fhep00498|1 phospholipase d-related 176.7 181.2 4 
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fhep03989|1 phosphorylase, putative 62.7 41.6 2 

 

fhep42010|1 protein disulfide-isomerase 108.2 97.9 2 

 

fhep00776|1 Protein disulphide isomerase 144.9 156.4 4 

 

fhep37375|1 putative Golgi SNAP receptor comple 19.2 41.2 2 

 

fhep01655|1 SmIrV1 protein 89.5 128.6 4 

 

fhep02579|1 SmIrV1 protein 120.9 61.9 2 

      3. Transport           

      

 

fhep00078|1 cytochrome oxidase subunit 1 1220.3 178.4 2 

 

fhep00045|1 cytochrome oxidase subunit 1 1232.6 178 2 

 

fhep00305|1 dihydrolipoamide branched chain 52.1 57 2 

 

fhep00745|1 RecName: Full=Probable dynein 41.9 120.1 3 

 

fhep00051|1 tubulin alpha-5 76.4 38 2 
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      5. Cytoskeleton Proteins           

      

 

fhep01365|1 23 kDa integral membrane 73.3 350.7 4 

 

fhep01772|1 actin 125.3 999.9 19 

 

fhep01899|1 Actin 5C 86.5 736 13 

 

fhep02440|1 cyln2 (cytoplasmic linker protein 97.9 33.6 2 

 

fhep00648|1 transmemberane protein 94.7 151.3 3 

      6. Transcription           

      

 

fhep09950|1 CDC5 cell division cycle 5-like 87.3 58.5 2 

 

fhep00767|1 DNA topoisomerase type I 66.6 35.7 2 

 

fhep31527|1 endonuclease-reverse transcriptase 17.0 51.9 2 

 

fhep19709|1 Reverse transcriptase 59.1 40.4 2 
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fhep39086|1 glycyl-tRNA synthetase 65.1 33.8 2 

 

fhep14374|1 helicase 19.0 43.9 2 

 

fhep01907 KH domain-containing, RNA-binding 91.6 36.1 2 

 

fhep20867|1 PREDICTED: transcription factor 47.1 33.8 2 

 

fhep09770|1 TPA: endonuclease-reverse transcriptase 19.2 40.6 2 

 

fhep40455|1 TPA: endonuclease-reverse transcription 35.7 34 2 

 

fhep00484|1 trans-golgi protein gmx33-related 92.2 41.6 2 

      7. Gut Proteins           

      

 

fhep04647|1 secreted saposin-like protein SAP-3 51.7 386.5 6 

 

fhep00672|1 secreted saposin-like protein SAP-3 57.9 316.9 6 

 

fhep04797|1 secreted saposin-like protein SAP-3 81.8 355.1 5 

 

fhep00865|2 secreted saposin-like protein SAP-3 125.9 314.6 5 
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fhep04159|1 secreted saposin-like protein SAP-3 55.5 312.1 5 

 

fhep02977|1 secreted saposin-like protein SAP-3 57.9 241.8 5 

 

fhep05537|1 secreted saposin-like protein SAP-3 21.5 258 4 

      8. Signalling           

      

 

fhep00933|1 beta-actin 60.0 509.8 8 

 

fhep06667|1 beta-actin 13.7 135.6 2 

 

fhep00178|1 Calcium-binding protein 83.8 164.3 4 

 

fhep38850|1 Gag-Pol polyprotein 44.3 30.4 2 

 

fhep00886|1 Lymphocyte cytosolic protein 1 68.4 218.2 4 

 

fhep00400|1 Lymphocyte cytosolic protein 1 70.8 156.3 3 

 

fhep00475|1 malate dehydrogenase 98.0 54.7 3 

 

fhep01631|1 mitochondrial malate dehydrogenase 64.4 567.1 9 
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fhep12583|1 mitochondrial malate dehydrogenase 75.1 930 14 

 

fhep03618|1 mitochondrial phosphate carrier 48.7 210.8 4 

 

fhep40049|1 mitochondrial phosphate carrier 36.0 198.9 4 

 

fhep00377|1 monomeric Kunitz-type 28.6 267.4 4 

 

fhep00210|2 mu-glutathione transferase 61.8 548.5 8 

 

fhep21916|1 PREDICTED: similar to zinc finger 52.4 59.7 3 

 

fhep42252|1 PREDICTED: similar to zinc fingers 58.1 40.9 2 

 

fhep01048|1 zinc binding dehydrogenase 54.0 130.2 3 

 

fhep39190|1 zinc finger transcription factor 18.5 38.2 2 

      10. Heat shock and chaperone proteins         

      

 

fhep20201|1 heat containing protein 40.2 40 2 

 

fhep05300|1 thioredoxin peroxidase 61.7 291.9 5 
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      11. Ribosomal Proteins           

      

 

fhep03071|1 39S ribosomal protein L15 99.9 125.9 2 

      12. Other           

      

 

fhep02298|1 Amoebapore-like protein 153.7 190.1 5 

 

fhep38625|1 annexin 59.9 498.7 7 

 

fhep02287|1 annexin 78.0 215.1 4 

 

fhep01504|1 Annexin A13 (Annexin XIII) 59.3 445.2 8 

 

fhep01016|1 ARL2BP-like protein 78.5 37.7 2 

 

fhep05735|1 carboxypeptidase regulatory 54.9 35.1 2 

 

fhep00401|1 Chain A, Fasciola Hepatica Sigma Class 136.5 297.8 5 

 

fhep04938|1 Chain A, Fasciola Hepatica Sigma Class 60.7 110.3 2 
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fhep00634|1 conserved hypothetical protein 64.7 32.4 2 

 

fhep41127|1 conserved hypothetical protein 20.6 32.1 2 

 

fhep01679|1 conserved Plasmodium protein 118.7 37.3 2 

 

fhep23090|1 ErfK/YbiS/YcfS/YnhG family protein 20.0 31 2 

 

fhep02067|1 Fh-KTM=6.751 kda monomeric Kunitz-type 27.4 230.6 3 

 

fhep00762|1 four and A half lim domains 138.9 85.6 2 

 

fhep04395|1 LOC613054 protein 75.8 764.3 13 

 

fhep00099|1 maturase K 99.9 37.8 2 

 

fhep27028|1 methylmalonic aciduri 60.2 78.9 2 

 

fhep42157|1 microrchidia 2a 76.8 57 3 

 

fhep00515|1 Negative cofactor 2 beta 56.6 34.9 2 

 

fhep00277|1 PREDICTED: similar to Annexin 33.0 166.6 3 

 

fhep01764|1 PREDICTED: similar to ENSANGP00 63.5 241.7 7 



218 

 

 

 

fhep01062|1 PREDICTED: similar to Mal 71.3 252.7 4 

 

fhep01893|1 PREDICTED: similar to methylmal 140.5 125.3 4 

 

fhep25431|1 putative tetraspanin similar 37.0 73.3 2 

 

fhep22626|1 pyruvate carboxylase 30.2 230.3 5 

 

fhep00190|1 radixin 84.6 93.4 2 

 

fhep16370|1 sco1-related 76.4 73.8 2 

 

fhep00381|1 similar to Branched 90.6 512.7 9 

 

fhep05707|1 SJCHGC00820 protein 56.9 112.8 3 

 

fhep12956|1 SJCHGC01083 protein 50.9 46.3 2 

 

fhep16071|1 SJCHGC01281 protein 63.2 322.8 6 

 

fhep43835|1 SJCHGC01487 protein 59.9 46.8 2 

 

fhep40230|1 SJCHGC01836 protein 50.4 50.7 2 

 

fhep01243|1 SJCHGC01960 protein 54.1 331.5 6 
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fhep01386|1 SJCHGC02792 protein 65.5 638.4 10 

 

fhep02839|1 SJCHGC03264 protein 56.6 56.3 2 

 

fhep00942|1 SJCHGC04324 protein 67.7 158.8 4 

 

fhep08325|1 SJCHGC06332 protein 60.6 64.6 2 

 

fhep01248|1 SJCHGC06566 protein 52.8 186.5 6 

 

fhep41433|1 SJCHGC06640 protein 54.3 184.4 3 

 

fhep00534|1 SJCHGC06703 protein 66.4 91.2 2 

 

fhep04589|1 SJCHGC09036 protein 52.8 132.7 4 

 

fhep11643|1 SJCHGC09036 protein 23.2 135.1 2 

 

fhep20324|1 SJCHGC09134 protein 29.2 143.4 2 

 

fhep06912|1 SJCHGC09380 protein 59.6 216.5 3 

 

fhep41308|1 SJCHGC09717 protein 29.0 50.4 2 

 

fhep07054|1 Tektin-3, putative 67.7 37.9 2 
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fhep12673|1 uracil phosphoribosyltransferase 1  58.6 38.2 2 

      13. Unknown           

      

 

fhep01032|1 hypothetical protein 93.9 397.4 6 

 

fhep02235|1 hypothetical protein 127.2 245.4 6 

 

fhep00340|1 hypothetical protein 143.8 197.2 5 

 

fhep24235|1 hypothetical protein 38.3 162.6 3 

 

fhep28022|1 hypothetical protein 17.6 105.6 3 

 

fhep01810|1 hypothetical protein 99.0 53.8 3 

 

fhep09189|1 hypothetical protein 70.0 52.3 3 

 

fhep00537|1 hypothetical protein 129.5 145.9 2 

 

fhep10701|1 hypothetical protein 80.9 56.5 2 

 

fhep00324|1 hypothetical protein 92.8 51.2 2 
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fhep01077|1 hypothetical protein 38.1 51 2 

 

fhep18375|1 hypothetical protein 19.4 42 2 

 

fhep23497|1 hypothetical protein 46.0 36.5 2 

 

fhep00816|1 hypothetical protein 57.1 35.8 2 

 

fhep27421|1 hypothetical protein 18.4 35.5 2 

 

fhep01746|1 hypothetical protein 66.7 35.3 2 

 

fhep19990|1 hypothetical protein 51.7 34.6 2 

 

fhep11108|1 hypothetical protein 66.9 34.6 2 

 

fhep19687|1 hypothetical protein 64.0 33.3 2 

 

fhep07433|1 hypothetical protein 18.5 31.6 2 

 

fhep00920|1 hypothetical protein CUS_0203 101.5 33.6 2 

 

fhep03953|1 hypothetical protein ECEG_02466 51.3 220.8 5 

 

fhep04848|1 hypotheticial protein 64.5 62 2 
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fhep44011|1 unknown protein 13.3 41.7 2 

 

fhep00759|1 No hits found 70.1 56.3 3 

 

fhep04999|1 No hits found 66.1 50.1 3 

 

fhep39094|1 No hits found 46.7 49.3 3 

 

fhep16349|1 No hits found 20.0 51.9 2 

 

fhep38387|1 No hits found 18.0 49 2 

 

fhep40890|1 No hits found 60.3 46.4 2 

 

fhep17533|1 No hits found 14.3 46 2 

 

fhep28204|1 No hits found 19.6 45.3 2 

 

fhep14579|1 No hits found 19.3 44.8 2 

 

fhep30344|1 No hits found 20.0 44.5 2 

 

fhep38260|1 No hits found 12.9 44.3 2 

 

fhep41263|1 No hits found 77.6 43 2 
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fhep17611|1 No hits found 27.5 41.8 2 

 

fhep16517|1 No hits found 57.7 40.8 2 

 

fhep14838|1 No hits found 64.4 40.5 2 

 

fhep22783|1 No hits found 20.6 40.2 2 

 

fhep32990|1 No hits found 15.8 39.6 2 

 

fhep12534|1 No hits found 88.7 38.9 2 

 

fhep08634|1 No hits found 36.1 38.7 2 

 

fhep20969|1 No hits found 69.2 38.3 2 

 

fhep40378|1 No hits found 50.1 38.1 2 

 

fhep00212|1 No hits found 56.6 38 2 

 

fhep07471|1 No hits found 33.9 37.6 2 

 

fhep43756|1 No hits found 51.6 37.1 2 

 

fhep03509|1 No hits found 80.2 36.8 2 
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fhep40833|1 No hits found 65.6 36.7 2 

 

fhep09319|1 No hits found 53.0 36 2 

 

fhep07240|1 No hits found 74.5 36 2 

 

fhep10397|1 No hits found 45.3 36 2 

 

fhep00968|1 No hits found 33.1 35.8 2 

 

fhep14145|1 No hits found 60.8 35.7 2 

 

fhep41397|1 No hits found 50.5 35.6 2 

 

fhep21767|1 No hits found 18.8 35.4 2 

 

fhep03570|1 No hits found 69.0 35.3 2 

 

fhep02292|1 No hits found 65.2 35.1 2 

 

fhep39677|1 No hits found 59.5 35 2 

 

fhep02563|1 No hits found 58.8 34.4 2 

 

fhep27784|1 No hits found 18.8 34.4 2 
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fhep33503|1 No hits found 20.0 34.4 2 

 

fhep17865|1 No hits found 20.8 34.1 2 

 

fhep17046|1 No hits found 20.4 33.7 2 

 

fhep12698|1 No hits found 64.9 33.4 2 

 

fhep36682|1 No hits found 19.7 33.4 2 

 

fhep39591|1 No hits found 62.6 33.3 2 

 

fhep29531|1 No hits found 9.1 33.3 2 

 

fhep41698|1 No hits found 17.0 33.1 2 

 

fhep07714|1 No hits found 61.9 32.7 2 

 

fhep38361|1 No hits found 51.7 31.9 2 

 

fhep04461|1 No hits found 46.1 31.9 2 

 

fhep40422|1 No hits found 31.5 31.6 2 

 

fhep35742|1 No hits found 20.2 31.5 2 
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fhep06454|1 No hits found 17.7 31.2 2 

 

fhep19223|1 No hits found 20.4 30.3 2 

 

fhep00829|1 PREDICTED 63.6 39.7 2 

 

fhep00068|1 predicted protein 52.6 102.7 4 

 

fhep05559|1 predicted protein 48.7 58.3 3 

 

fhep13884|1 PREDICTED: hypothetical protein 47.7 30.8 2 

 

fhep29778|1 Temporarily Assigned Gene name 21.6 108.9 2 

 

fhep01141|1 unknown 142.1 236.6 4 

 

fhep00259|1 unknown 61.5 44 2 
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Appendix 4 : Proteins identified from PNA agglutinin affinity chromatography enriched  

 

Accession Description 
Mowse 
Score Scores No. of Peptides 

1. Proteolytic enzymes           

1.2 Cysteine protease fhep00344|1 cathepsin L1 protein  193.9 118.6 2 

 

fhep01124|1 legumain-1  65.0 47.2 2 

1.3 Serine /Carboxypeptidase fhep00076|1 
putative Lysosomal Pro-X carboxypeptidase 
precursor 137.2 38.6 2 

1.1 Aspartyl proteases fhep43071|1 cathepsin D-like aspartic protease 52.5 154.8 3 

 

fhep01837|1 cathepsin D-like aspartic protease  120.4 317.4 7 

 

 

    2. Metabolism            

2.1 Amino Acid fhep01196|1 glutamate dehydrogenase 1  134.3 898 12 

 

fhep00045|1 cytochrome oxidase subunit 1  1232.6 85.8 2 
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fhep01750|1 glutamine synthetase 1 2 (gluta... 65.5 40.6 2 

 

fhep01339|1 Triosephosphate 106.6 42.3 2 

 

fhep42010|1 protein disulfide-isomerase er-... 108.2 182.2 4 

2.2 ATP synthesis/Electron transport fhep02189|1 plasma memebrane H+-ATPase 32.1 38.3 2 

 

fhep39473|1 ubiquitin ligase E3 alpha-relat... 154.6 36.1 2 

 

fhep38669|1 Ubiquitin-protein ligase BRE1  56.6 32.8 2 

 

fhep40715|1 mitochondrial carrier protein  32.6 52.2 2 

 

fhep02352|1 PREDICTED: similar to sirtuin type... 68.4 33.5 2 

 

fhep20205|1 Tetraspanin-1 (Tspan-1)  16.5 94.3 2 

 

fhep01846|1 ATP-binding cassette protein  220.4 64.1 3 

 

fhep03618|1 mitochondrial phosphate carrier... 48.7 177 3 

 

fhep02715|1 tetraspanin 3  88.5 175.4 3 

 

fhep01948|1 ATP synthase alpha subunit mito... 61.0 128 4 
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fhep04674|1 mitochondrial acetate:succinate CoA-. 60.5 196.4 4 

 

fhep40049|1 mitochondrial phosphate carrier... 36.0 198.8 4 

 

fhep40820|1 ATP:ADP antiporter  84.6 276.2 6 

 

fhep01951|1 ATP synthase, H+ transporting, mito.. 78.9 463.2 8 

2.3 Carbohydrate fhep19796|1 alpha-glucosidase  23.3 76.4 2 

 

fhep00699|1 alpha-amylase  63.0 81.3 3 

 

fhep00563|1 acetyl-CoA carboxylase 218.8 232.1 7 

2.4 Citric Acid Cycle fhep23326|1 succinate dehydrogenase iron-sulfur p. 18.8 63.7 2 

 

fhep04582|1 succinate dehydrogenase iron-sulfur p. 50.1 191.7 3 

 

fhep00654|1 succinate dehydrogenase  51.4 240 5 

 

fhep21967|1 succinate dehydrogenase  31.7 244.8 7 

2.6 Glycan fhep00054|1 fructose-16-bisphosphatase-rela... 133.9 117.7 2 

2.7 Other fhep01349|1 cubilin (intrinsic factor-cobalamin . 96.3 41 2 
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fhep01378|1 dolichyl-diphosphooligosacchari... 69.0 125.6 2 

 

fhep22574|1 podoplanin, isoform CRA_b  28.7 34.9 2 

 

fhep02298|1 amoebapore-like protein  153.7 117.2 3 

 

fhep39656|1 propionyl Coenzyme A carboxylase, b.. 27.2 194.8 3 

 

fhep01734|1 propionyl-CoA carboxylase beta ... 65.1 240.8 4 

 

fhep22626|1 pyruvate carboxylase  30.2 286.4 6 

 

 

    3. Transport           

 

fhep21916|1 PREDICTED: similar to zinc fing... 52.4 49.3 2 

 

fhep20177|1 PREDICTED: similar to zinc fing... 102.4 35.8 2 

 

fhep00599|1 protein SpAN precursor  70.2 100.1 2 

 

fhep39488|1 transmembrane transport protein... 73.1 121.2 2 

 

fhep40261|1 oxalate:formate antiporter  28.9 136.4 2 
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fhep00304|1 cd63 antigen-like  78.7 129.7 3 

 

fhep38434|1 choline transporter-like protein 4 ... 34.5 136.9 3 

 

fhep02512|1 lysosome-associated membrane gl... 118.0 95 3 

 

fhep02802|1 gelsolin  63.6 207 4 

 

fhep32250|1 CDW92 antigen  24.0 295.2 5 

 

fhep00648|1 transmemberane protein  94.7 285.1 6 

 

 

    5. Cytoskeleton           

 

fhep01772|1 actin  125.3 470.5 11 

 

fhep02671|1 copii-coated vesicle membrane p... 68.4 92.3 2 

 

fhep00063|1 tubulin alpha-2  185.5 73.6 2 

 

 

    6. Transcription           
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fhep28302|1 reverse transcriptase  19.6 71 2 

 

fhep08525|1 PREDICTED: similar to endonucle 28.0 32 2 

 

fhep06086|1 PREDICTED: similar to endonucle... 20.5 34.5 2 

 

fhep28249|1 PREDICTED: similar to endonucle... 20.5 36.5 2 

 

fhep01918|1 thioredoxin-glutathione reductase  189.4 40.1 2 

 

fhep00193|1 nep1  58.5 55.2 2 

 

fhep01221|1 nuclear autoantigenic sperm pro... 64.5 33.5 2 

 

fhep00660|1 peptidyl-prolyl cis-trans isome... 67.4 40.5 2 

 

fhep40917|1 prohibitin  90.3 199.6 5 

 

fhep42350|1 integrin beta subunit  37.6 316.2 6 

 

fhep00640|1 prohibitin  106.6 325.4 7 

 

fhep41948|1 Carbonic anhydrase 5B 125.6 422.9 8 
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7. Gut Proteins           

 

fhep00865|2 secreted saposin-like protein SAP-3  125.9 103.2 3 

 

 

    8. Signalling           

 

fhep05642|1 signal recognition particle 68 ... 88.6 30.1 2 

 

fhep15978|1 Gag-Pol polyprotein  40.8 46.7 2 

 

fhep30616|1 pol  64.6 33.2 2 

 

fhep08375|1 putative protein affecting Mg2+/Co2.. 32.4 38.1 2 

 

fhep07174|1 TPA: TPA_exp: pol polyprotein  60.3 32.2 2 

 

fhep41142|1 fasciclin I-like protein  54.6 188 3 

 

 

    9. Gene Transcription           

 

fhep42502|1 Ankyrin repeat domain-containing  92.6 39.1 2 
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    10. Heat shock  and Chaperon 
proteins         

 

fhep00786|1 heat shock protein 70  163.3 161.6 3 

 

 

    11. Ribosomal Proteins           

 

fhep00845|1 39S ribosomal protein L51 66.3 50.2 2 

 

fhep02068|1 40S ribosomal protein S3  78.4 40.6 2 

 

fhep19104|1 MGC84751 protein  46.9 43.6 2 

 

 

    12. Other           

 

fhep00318|1 acidic fibroblast growth factor 66.5 31.6 2 

 

fhep39707|1 Breast cancer metastasis-suppre... 60.5 30.2 2 
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fhep00330|1 Chain A, X-Ray Structure Of Fasciola 133.7 30.2 2 

 

fhep00634|1 conserved hypothetical protein  64.7 31.3 2 

 

fhep08659|1 conserved hypothetical protein ... 58.5 33.1 2 

 

fhep00867|1 SJCHGC01027 protein  102.8 31.8 2 

 

fhep01574|1 SJCHGC02721 protein  124.0 61 2 

 

fhep15534|1 SJCHGC02820 protein  34.3 33.2 2 

 

fhep24110|1 SJCHGC02821 protein  18.8 65.7 2 

 

fhep40771|1 SJCHGC03127 protein  83.8 42.7 2 

 

fhep15256|1 SJCHGC03776 protein  64.7 57.7 2 

 

fhep20531|1 SJCHGC06900 protein  31.6 34.2 2 

 

fhep11643|1 SJCHGC09036 protein  23.2 93.9 2 

 

fhep10785|1 SJCHGC09144 protein  68.6 32.8 2 

 

fhep15031|1 PREDICTED: polyprotein-like  22.2 31.3 2 
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fhep17397|1 putative Fasciola/Schistosoma cross-r. 30.9 55.7 2 

 

fhep29633|1 GH11701  32.3 34.5 2 

 

fhep00207|1 PREDICTED: cytosolic phosphoeno 94.6 47.4 2 

 

fhep00230|1 PREDICTED: dentin matrix acidic... 92.5 41.3 2 

 

fhep26636|1 PREDICTED: similar to predicted... 14.8 65.9 2 

 

fhep20513|1 putative Cell division protein kina.. 46.1 41.5 2 

 

fhep25431|1 putative tetraspanin similiar to ur.. 37.0 171.2 2 

 

fhep16370|1 sco1-related  76.4 43.8 2 

 

fhep01040|1 Y box binding protein  87.2 43.5 2 

 

fhep01802|1 Minor tail protein H  92.0 41 2 

 

fhep38980|1 basigin related  73.6 138.1 3 

 

fhep20857|1 SJCHGC09595 protein  73.0 165.9 3 

 

fhep15871|1 DM9 domain-containing protein  48.4 117.3 3 
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fhep42177|1 Immunoglobulin-like domain-containi.. 28.1 154.9 3 

 

fhep20324|1 SJCHGC09134 protein  29.2 296.5 4 

 

fhep00942|1 SJCHGC04324 protein  67.7 220.6 5 

 

fhep04395|1 LOC613054 protein  75.8 433.8 8 

 

fhep01386|1 SJCHGC02792 protein  65.5 617.2 9 

 

 

    13. Unknown           

 

fhep20342|1 hypothetical protein  97.3 110.2 2 

 

fhep20607|1 hypothetical protein  72.3 40.3 2 

 

fhep01668|1 hypothetical protein  80.9 48.3 2 

 

fhep24174|1 hypothetical protein  57.8 42.2 2 

 

fhep32773|1 hypothetical protein  17.3 64.5 2 

 

fhep01171|1 hypothetical protein  30.0 33.8 2 
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fhep20462|1 hypothetical protein  25.9 119.7 2 

 

fhep17269|1 hypothetical protein  41.5 44.3 2 

 

fhep14703|1 hypothetical protein  101.6 51.4 2 

 

fhep37777|1 hypothetical protein  16.5 37.6 2 

 

fhep05671|1 hypothetical protein  58.3 36.2 2 

 

fhep02635|1 hypothetical protein  107.4 34.7 2 

 

fhep00450|1 hypothetical protein  70.6 33.8 2 

 

fhep15357|1 hypothetical protein  110.4 57.7 2 

 

fhep26109|1 hypothetical protein  34.1 53.8 2 

 

fhep00300|1 hypothetical protein  110.3 38.1 2 

 

fhep00779|1 hypothetical protein  64.6 39.1 2 

 

fhep42032|1 hypothetical protein  55.5 40.1 2 

 

fhep00416|1 hypothetical protein  93.4 35 2 
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fhep13265|1 No hits found 113.7 93.1 2 

 

fhep29584|1 No hits found 16.6 81.4 2 

 

fhep23542|1 No hits found 15.1 55.1 2 

 

fhep17161|1 No hits found 22.9 54.7 2 

 

fhep02545|1 No hits found 46.7 50.6 2 

 

fhep10454|1 No hits found 18.8 50.5 2 

 

fhep18899|1 No hits found 20.2 50.2 2 

 

fhep23156|1 No hits found 14.0 49.2 2 

 

fhep43197|1 No hits found 14.5 47.9 2 

 

fhep25351|1 No hits found 32.6 47.8 2 

 

fhep26955|1 No hits found 14.3 45.8 2 

 

fhep26945|1 No hits found 30.1 45.6 2 

 

fhep29949|1 No hits found 19.8 45.5 2 
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fhep17533|1 No hits found 14.3 44.5 2 

 

fhep19525|1 No hits found 22.5 44 2 

 

fhep14686|1 No hits found 52.6 43.6 2 

 

fhep17611|1 No hits found 27.5 43.2 2 

 

fhep42172|1 No hits found 38.1 43.2 2 

 

fhep20969|1 No hits found 69.2 43 2 

 

fhep13645|1 No hits found 18.3 42.7 2 

 

fhep18344|1 No hits found 71.3 42.6 2 

 

fhep38360|1 No hits found 72.8 42.4 2 

 

fhep19272|1 No hits found 15.3 42 2 

 

fhep07090|1 No hits found 9.5 40.9 2 

 

fhep18645|1 No hits found 18.0 40.6 2 

 

fhep04312|1 No hits found 53.4 40.3 2 
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fhep26908|1 No hits found 19.3 39.5 2 

 

fhep02679|1 No hits found 20.5 39.5 2 

 

fhep20868|1 No hits found 15.9 39.1 2 

 

fhep00315|1 No hits found 103.8 38.6 2 

 

fhep22071|1 No hits found 19.8 38.2 2 

 

fhep21820|1 No hits found 17.6 37.4 2 

 

fhep15336|1 No hits found 17.7 37.1 2 

 

fhep34957|1 No hits found 15.0 35.8 2 

 

fhep29268|1 No hits found 34.9 35.5 2 

 

fhep00422|1 No hits found 79.6 35.2 2 

 

fhep18437|1 No hits found 20.3 34.7 2 

 

fhep03924 No hits found 56.7 34.6 2 

 

fhep06753|1 No hits found 52.3 34.2 2 
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fhep06192|1 No hits found 19.9 34 2 

 

fhep30063|1 No hits found 38.7 33.8 2 

 

fhep31171|1 No hits found 8.5 33.7 2 

 

fhep11486|1 No hits found 19.5 33.3 2 

 

fhep37883|1 No hits found 10.2 33 2 

 

fhep06755|1 No hits found 65.6 32.7 2 

 

fhep00911|1 No hits found 7.3 32.5 2 

 

fhep08271|1 No hits found 19.8 31.8 2 

 

fhep41694|1 No hits found 28.2 30.8 2 

 

fhep41267|1 unnamed protein product  71.2 41.8 2 

 

fhep03647|1 PREDICTED: hypothetical protein XP_... 61.9 33.1 2 

 

fhep00340|1 PREDICTED: hypothetical protein... 143.8 67.3 2 

 

fhep42290|1 predicted protein  95.2 32.3 2 
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fhep25409|1 hypothetical protein  48.4 89.1 3 

 

fhep08824|1 No hits found 29.3 56.7 3 

 

fhep07319|1 No hits found 36.0 54.9 3 

 

fhep02902|1 No hits found 43.0 47.5 3 

 

fhep02563|1 No hits found 58.8 47.4 3 

 

fhep00876|1 PREDICTED: hypothetical protein 74.2 73.7 3 

 

fhep01684|1 hypothetical protein  61.4 197 4 

 

fhep11734|1 No hits found 45.1 216.1 4 

 

fhep02234|1 No hits found 58.8 191.8 4 

 

fhep42569|1 unknown  25.0 203.1 4 

 

fhep00972|1 hypothetical protein  50.2 174.9 5 

 

fhep22091|1 No hits found 17.1 378.9 5 

 

fhep01475|1 hypothetical protein  73.9 419.4 8 
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