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Abstract 

The objectives of The Identification and Prevention of Dietary and Lifestyle Induced Health 

Effects in Children and Infants study (child sample) and the Kenya Adolescent Physical Activity 

study (adolescent sample) conducted in this thesis was firstly, to assess the impact of 

methodological and practical decisions such as the appropriate epoch length and cutpoints to use 

in accelerometry studies involving children and adolescents across the physical activity 

continuum and the reliability of these accelerometer outcomes in predicting habitual physical 

activity. Secondly, the performance of uniaxial ActiTrainer accelerometry with heart rate (HR) 

monitoring was compared to triaxial GT3X accelerometry against indirect calorimetry during 

structured activities in the predominantly active Kenyan adolescent cohort. Similarly, the 

performance of uniaxial ActiTrainer accelerometry with HR monitoring vs. triaxial 3DNX 

accelerometry was compared against DLW under free living conditions in both children and 

adolescent cohorts. Finally, the validated uniaxial ActiTrainer was used to assess the impact of 

physical activity and the environment on energy expenditure and indices of adiposity in the two 

cohorts. The main findings of the thesis were: (a) that 15 s epoch reports significantly higher 

engagement in physical activity compared to a 60 s epoch in both the children and adolescents 

cohorts (b) choice of cutpoints significantly affected classification of physical activity and 

sedentary behaviour in both cohorts (c) a minimum of 6 h for 7 - 9 days in the cohort involving 

children and a minimum of 6 h for 4 - 5 days in the adolescents were required to reliably 

measure physical activity (d) triaxial accelerometry reported better predictive validity compared 

to uniaxial accelerometry during structured activities. In addition, HR monitoring did not 

improve the predictive validity of either accelerometer during structured activities (e) during free 

living activities, however, uniaxial and triaxial accelerometry reported comparable predictive 
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validity. The addition of HR monitoring improved the predictive validity of uniaxial 

accelerometry by approximately 4% in both cohorts (f) in both cohorts, total volume of physical 

activity and patterns (time engaged in light and moderate to vigorous physical activity) were 

significantly associated with energy expenditure (g) physical activity and sedentary behaviour 

were significantly related to indices of adiposity in both cohorts (h) the environment was a 

significant predictor of physical activity and indices of adiposity in the adolescents but not 

children. The findings of this thesis have important implications on strategies to standardise 

accelerometry field protocols and future studies on the validation of accelerometers and the 

association between physical activity, the environment and health. 
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Chapter 1 

 

1.0 General introduction and literature review 

 

1.1 Physical activity and energy expenditure definitions and concepts: 

 

Physical activity is defined as any bodily movement produced by skeletal muscles that result in 

energy expenditure (Caspersen et al., 1985). Sedentary behaviour on the other hand, refers to 

activities that do not increase energy expenditure substantially above the resting level and 

includes activities such as sleeping, sitting, lying down, watching television and other forms of 

screen based entertainment (Pate et al., 2008). Operationally, sedentary behaviour includes 

activities that involve energy expenditure at the level of 1.0 - 1.5 metabolic equivalent units 

(METs). One MET is the energy cost of resting quietly, often defined in terms of oxygen uptake 

(
•

VO 2) as 3.5 ml/kg/min. Light physical activity, which often is grouped with sedentary behaviour 

but is in fact a distinct activity construct, involves energy expenditure at the level of 1.6 - 2.9 

METs expended during activities such as slow walking, sitting and writing, cooking and washing 

dishes (Pate et al., 2008). However, the validity of 3.5 ml/kg/min as the appropriate denominator 

to denote 1 MET for calculating the activity, especially when assessing the energy cost of 

physical activity in individuals has been questioned by several authors (Byrne et al., 2005, 

Kozey et al., 2010a, Kozey et al., 2010b). The concern is that basal metabolic rate (BMR) may 

be influenced by ethnicity, is lower in overweight persons, declines with age, and is lower in 

females than in males (Vander Weg et al., 2004, Henry, 2005, Kozey et al., 2010a).  
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Thus, using a fixed BMR of 3.5 ml/kg/min to denote 1 MET may underestimate the true 

relationship between activity vs. rest in certain populations. It has been recommended that a 

correction factor be used to adjust the MET level on the basis of an estimate of individual BMR, 

which accounts for age, height, weight, and sex (Byrne et al., 2005, Kozey et al., 2010a) 

 

Physical activity is a complex behaviour, including sports as well as non sports activities 

(Caspersen et al., 1985).  Sports are often planned, structured and repetitive, with the objective of 

improving or maintaining physical fitness (Caspersen et al., 1985), whereas non sports activities 

can be subdivided into different categories such as occupational, leisure time and household 

activities (Ward et al., 2005). Furthermore, physical activity includes static and dynamic activity 

(Westerterp, 1999b). Static activity involves static exercise and maintenance of body posture 

(Westerterp, 1999b). However, the impact of static exercise like weight lifting on the total level 

of normal daily physical activity is generally assumed to be negligible for the average subject. 

Similarly, the energy expenditure of maintaining body position per unit of time, is negligible, 

compared to the energy expenditure of dynamic activities but the time spent sitting and standing 

can add up to several hours per day (Westerterp, 1999b), which defines sedentary behaviour.  

 

Physical activity is a complex, multidimensional construct which is difficult to measure (Plasqui 

& Westerterp, 2007). Physical activity parameters include intensity, frequency and duration, 

which together make up the total volume of activity (Corder et al., 2008). The intensity of 

physical activity is used broadly and covers a range of different phenomena, e.g., vertical 

acceleration of the body, heart rate (HR), or the rate of chemical energy expended over and 

above the basal metabolic requirements of the body (Corder et al., 2008). These physical activity 
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intensity variables are expressed in relation to time (e.g., metres/second (m/s2), beats/min) 

(Corder et al., 2008). In addition, physical activity can be expressed based on energy expenditure 

by combination with a measurement of BMR (Plasqui & Westerterp, 2007). As such, average 

total energy expenditure (TEE) is expressed in three components: BMR, diet induced 

thermogenesis (DIT) and activity induced energy expenditure (AEE) (Westerterp, 2003).  BMR 

covers the energetic cost of the processes essential for life. Under most circumstances, the BMR 

of an individual accounts for the largest proportion of TEE and is mainly determined by fat free 

body mass (Westerterp, 2003).  DIT on the other hand, results from the digestion, absorption and 

conversion of food. DIT is about 10% of the TEE in subjects consuming an average mixed diet 

that meets energy requirements (Westerterp, 2003). In addition, AEE is the energy expenditure 

associated with muscular contractions involved in body movements and maintenance of posture 

and is the most variable component of TEE (Westerterp, 2003). AEE is expressed as AEE = 0.9 

x TEE - BMR, assuming the third component of TEE, i.e. DIT, is a constant fraction of 10% of 

TEE (Plasqui & Westerterp, 2007). Depending on body size and physical fitness, a 5 - 20 fold 

increase in metabolic rate can be sustained for a few minutes, while a healthy young adult can, if 

necessary, expend 5 - 8 times BMR over an 8 h working day (Bouchard et al., 1993).  

 

Energy expenditure parameters associated with physical activity such as TEE which is measured 

using doubly labelled water (DLW) in combination with BMR measured using metabolic gas 

analysis are used to estimate AEE, which can be expressed using several indices such as the 

physical activity level (PAL) expressed as: PAL = TEE/BMR (Westerterp, 2003). The PAL 

normally varies from 1.2 - 2.5 (Westerterp, 1998). As a percentage of TEE, AEE varies from 5 in 

a subject with a minimum PAL of 1.2 to 45 - 50 in a subject with a PAL of 2.2 - 2.5 (Westerterp, 
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1998). In addition, AEE is usually one third of TEE when PAL is 1.75, which is the average 

reported level for the general population (Schultz & Schoeller, 1994, Black et al., 1996, 

Westerterp, 1999a, Westerterp, 2003). With the current knowledge of the interaction between 

physical activity and energy expenditure highlighted above, attempts have been made to 

modulate AEE to enhance the health benefits of physical activity. However, the direct effects of 

physical activity interventions on energy expenditure are relatively small when placed in the 

context of total daily energy demands (Speakman & Selman, 2003). It was suggested that 

exercise produces benefits in other components of the daily energy budget, thus generating a net 

effect on energy balance much greater than the direct energy cost of the exercise alone 

(Speakman & Selman, 2003). Moreover, BMR is the largest component of the daily energy 

budget in most human societies (Speakman & Selman, 2003). Therefore, any increase in BMR in 

response to exercise may potentially moderate the energy budget (Speakman & Selman, 2003) 

with important health implications. 

 

1.2 Physical activity assessment: 

 

The current focus on objective assessment of physical activity levels is motivated to achieve a 

better understanding of the dose response relationship between physical activity, sedentary 

behaviour and health outcomes (Wareham & Rennie, 1998, Celis-Morales et al., 2012). Valid 

and reliable objective measures of physical activity are a necessity in studies designed to (a) 

determine the association between physical activity and health outcomes (b) document the 

frequency and distribution of physical activity in defined populations (c) determine the amount 

or dose of physical activity required to influence specific health parameters (d) identify the 
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psychosocial and environmental factors that influence physical activity behaviour (e) evaluate 

the effectiveness of health promotion programmes to increase habitual physical activity in 

individuals, groups and communities (Wareham & Rennie, 1998, Trost, 2007). However, the 

complex nature of physical activity makes it difficult to accurately measure all aspects of 

physical activity and assess the impact on outcome parameters such as energy expenditure and 

body composition (Plasqui & Westerterp, 2007, Corder et al., 2008).  

 

Accurate assessment of physical activity in children and adolescents remains a significant 

challenge (Kohl et al., 2000). This explains the continuous need for validated techniques for 

assessing habitual physical activity and sedentary behaviour not only to quantify accurately the 

relationship between physical activity and health (Celis-Morales et al., 2012) but also to 

effectively monitor secular trends in physical activity and sedentary behaviour. However, the 

greatest obstacle to validating field methods of physical activity assessment in humans has been 

the lack of standardisation of protocols and an inadequate criterion to which techniques may be 

compared. As shown in Table 1.1, previous studies have attempted to validate subjective 

physical activity assessment tools (i.e. parental report and system for observing fitness 

instruction time (SOFIT)) as well as objective methods (i.e. accelerometry and HR monitors) 

against various criterion methods such as DLW and indirect calorimetry. Based on the diverse 

analytical approaches used in these studies as well as the variability of the physical assessment 

methods and the criterion used, the findings have been inconclusive and therefore, it is difficult 

to determine which of these assessment tools is most valid in assessing physical activity. Hence, 

there is a need to continuously look for the ideal physical activity and sedentary behaviour 

assessment tool, which should be suitable to measure physical activity and sedentary behaviour 
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over periods long enough to be representative of normal daily life, with minimal discomfort to 

the subjects and be applicable to epidemiological studies (Westerterp, 1999b, Trost, 2007).  

 

Physical activity assessment methods can be broadly divided into subjective and objective 

methods, which assess different aspects of physical activity and may be combined in any study 

(Corder et al., 2008). Self report instruments and motion sensing are currently the most popular 

methods for the assessment of physical activity in epidemiological research (Corder et al., 2008, 

Reilly et al., 2008). Subjective methods for assessment of physical activity include validated 

questionnaires, self report diaries and direct observation (Kohl et al., 2000, Trost, 2007). 

Objective measures of physical activity on the other hand include, HR monitors, accelerometers, 

pedometers, global positioning devices (GPS) and DLW (Kohl et al., 2000, Sirard & Pate 2001, 

Corder et al., 2008). However, a major limitation of physical activity research to date has been 

the lack of objective, practical and inexpensive tools to measure physical activity and energy 

expenditure on a large scale (Corder et al., 2008).  Currently, DLW  is  considered  the  ‘gold  

standard’  for  the  determination  of  TEE and AEE,  however the   usefulness of DLW  for  

large  scale  population  based  research  is  limited  by  participant  burden  and  cost. 

Furthermore, DLW cannot be used to determine physical activity patterns (Plasqui & Westerterp, 

2007). Other criterion methods such as direct observation are time intensive and impractical on a 

large scale (Trost, 2007).  
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Table 1.1: Validation studies of various physical activity assessment tools in children and adolescents 

 

 
Study    Sample Instrument  Criterion Design  Analysis

 
Results  

   

Murphy et al. 1988  213  Parental report  
•

VO 2   Indirect ANOVA Parental report  
           validation   associated with 
               aerobic fitness 
Rowe et al. 1997  173  SOFIT direct  HR  concurrent Descriptive Mean HR increased 
      observation    validation   with increase in  
                     physical activity  
 
Goran  et al. 1993  30  BM, FFM, BMR DLW   concurrent    Pearson r > 0.86 for TEE, BM, 
      HR     validation correlation/ FFM and BMR 
             Multiple 74% of TEE predicted  
             regression by FFM, 7%  HR and  
               5% BMR (R = 0.86)  
 
Bray et al. 1994  40  CALTRAC  Whole body concurrent Pearson r > 0.8 for TEE  
      accelerometer  calorimeter validation correlation/ systematic bias noted 
             Bland Altman  in TEE estimates 
 
Livingstone et al. 1992 36  HR monitor  DLW  concurrent  Bland Altman  
           validation   mean TEE difference 
               -9.2 - +3.5% MJ/d 
 

Pfeiffer et al. 2006  18  Actical   
•

VO 2  concurrent Pearson  r = 0.89 
      accelerometer    validation correlation/   
             percentage  >70% agreement  
             agreement  
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SOFIT - System for Observing Fitness Instruction Time   

DLW - Doubly labelled water 

HR - Heart rate   

TEE - Total energy expenditure  

FFM - Fat Free Mass 
•

VO 2 - Oxygen uptake   

BMR - Basal metabolic Rate 

 

 

1.3 Subjective methods:  

 

Subjective methods for the assessment of physical activity include questionnaires, interviews, 

activity diaries and direct observation (Kohl et al., 2000, Corder et al., 2008). Direct observation 

is feasible in the assessment of physical activity under controlled conditions and as a validation 

criterion (Trost, 2007). Furthermore, direct observation is the most inexpensive and practical 

criterion measure of physical activity and sedentary behaviour. However, the total observation 

time required to attain acceptable day to day stability is not clear for most observational 

instruments (Kohl et al., 2000). Other drawbacks of direct observation include invasion of study 

participant privacy, the relatively high experimenter burden and the potential reactivity of the 

study participants, which makes direct observation unsuitable for assessment of free living 

activities (Kohl et al., 2000, Sirard & Pate, 2001, Trost, 2007).  

 

Activity diaries have been successfully used in adolescents but not younger children who cope 

less well with this complex task of recording activity type, frequency and duration (Sirard & 

Pate, 2001). On the other hand, self administered questionnaires for the assessment of physical 

activity are commonly used because they are relatively cheap and easy to use in large scale 
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studies (Slootmaker et al., 2009). However, uncertainties exist about which dimension of 

physical activity is being assessed and the degree to which that assessment is valid (Kohl et al., 

2000). In addition, self report instruments for the assessment of physical activity have several 

important limitations. Firstly, the reported levels of physical activity are based on self perception 

of physical activity intensity and duration and are therefore prone to misrepresentation (Trost, 

2007). Secondly, reported levels of physical activity may be skewed to conform to socially 

desirable standards (Prince et al., 2008). Finally, self report instruments rely on ability to recall 

accurately and record type, intensity, frequency and duration of daily physical activity and 

sedentary behaviour which limits their usefulness in young children (Welk, 2002, Adams et al., 

2005, Trost, 2007). The accuracy of information collected by subjective instruments may 

therefore be biased by the opinion and perception of the participant, proxy reporter, or 

investigator (Slootmaker et al., 2009). Given these limitations of self reported physical activity 

assessment tools and the growing interest in valid, reliable and accurate methods for quantifying 

physical activity and sedentary behaviour in children and adolescents, there is a growing interest 

in objective measures for the assessment of physical activity and sedentary behaviour (Trost, 

2001). 

 

1.4 Objective methods:  

 

The complex and highly variable nature of physical activity makes it difficult to assess precisely 

under free living conditions (Plasqui & Westerterp, 2007). This notwithstanding, it remains of 

profound public health interest to accurately and reliably assess free living physical activity and 

sedentary behaviour in order to gain insight into the interaction between habitual physical 
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activity levels, sedentary behaviour and health outcomes (Westerterp, 1999a). Objective methods 

for assessing physical activity involve the measurement of physiological or biomechanical 

parameters and use of the derived information to estimate physical activity outcomes, such as 

instantaneous and daily AEE (Plasqui & Westerterp, 2007). DLW and indirect calorimetry are 

considered the primary standards for assessment of physical activity in children and adolescents 

(Sirard & Pate, 2001, Corder et al., 2008).  

  

1.4.1 Pedometry:  

 

Pedometers are electronic devices used to estimate total distance travelled and the number of 

steps taken over a period of time (Sirard & Pate, 2001). They are generally cheaper than 

accelerometers and thus more feasible for use in large epidemiological studies (Berlin et al., 

2006). Pedometers can be used to count steps and when the step length is known, walking 

distance and thus provide information about total walking activity (Rowland et al., 1997, Berlin 

et al., 2006). Pedometers usually consist of a horizontal spring suspended lever arm that moves 

with the vertical acceleration of the hips during ambulation and counts the number of times a 

certain acceleration threshold is exceeded (mechanical pedometers) or the number of zero 

crossings in the acceleration waveform (pizoelectric pedometers) and sum up these zero 

crossings to give an overall estimate of steps taken (Tudor-Locke et al., 2002). However, many 

models only store the total number of steps (not the time series of step frequency) with no 

additional information on the time over which these were accumulated (Corder et al., 2008). 

Consequently, these pedometers cannot assess intensity, duration, or frequency of activity bouts 

but only provide a value of total ambulatory activity (Berlin et al., 2006).  
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Newer generations of pedometers collect additional information on the time when the sensor was 

in motion, thus allowing more insight into physical activity behaviour (Beighle & Pangrazi, 

2006). This additional information can yield estimates of 
•

VO 2 and energy expenditure using 

estimates of stride length, sex, weight, or age (Corder et al., 2008). For instance, Eston et al. 

(1998) and Louie et al. (1999) reported modest to high correlations (r = 0.62 to 0.93) between 

pedometer step counts and 
•

VO 2 during treadmill locomotion. Despite this high correlation in a 

specific context, the relationship between step frequency and energy expenditure varied between 

walking, running and other biomechanically different activities where r values ranged from 0.46 

to 0.88 (Fogelholm et al., 1998, Gardner & Poehlman, 1998, Leenders et al., 2001). This 

notwithstanding, these findings indicate that several new generation pedometers may be suited 

for population based assessments of physical activity, since they are relatively inexpensive, 

reusable, objective and nonreactive physical activity assessments tools (Foster et al., 2005, 

Corder et al., 2008). Indeed, several large scale studies have successfully used pedometers for 

the assessment of ambulatory physical activity in adolescents (Vincent & Pangrazi, 2002, 

Duncan et al., 2006).   

 

The relatively simple nature of pedometer output (i.e. steps/d) and the limited number of data 

reduction techniques used to summarize data, make these devices suitable for comparing walking 

levels between populations and studies (Berlin et al., 2006, Corder et al., 2008). However, 

pedometers suffer from several important limitations. Firstly, pedometer outputs from different 

pedometer brands are not comparable (Corder et al., 2008). Secondly, pedometer outputs may 

vary across age groups and therefore the data may not be comparable across different age groups 

due to differences in stride length (Berlin et al., 2006). Furthermore, the complex nature of free 
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living physical activity, which may not necessarily be restricted to ambulatory activity, limits the 

applicability of pedometers in assessing free living physical activity (Corder et al., 2008).  

 

1.4.2 Heart rate monitoring:  

 

HR monitoring may be used to assess physical activity intensity and AEE in children and 

adolescents, both in controlled and free living environments (Trost et al., 2005, Plasqui & 

Westerterp, 2007).  Early studies used universal HR intensity cutpoints to assess physical 

activity, irrespective of the large interindividual variation in HR (Armstrong et al., 1990) but 

using HR to estimate AEE in subjects without some form of individual calibration is problematic 

(Corder et al., 2008). HR monitoring may be used to broadly categorize group physical activity 

levels but lacks the specificity needed to estimate physical activity in individuals due to several 

limitations (Armstrong et al., 1990, Sirard & Pate, 2001). Firstly, the relationship between HR 

and instantaneous physical activity is relatively poor at low intensity activity. Secondly, a large 

interindividual variation in HR at different activity intensities means that individual calibration 

of the relationship between HR and physical activity and resultant 
•

VO 2 is required (Ekelund et 

al., 2001).  

 

One approach used to overcome these limitations is use of a flex HR point, defined as the point 

above which the HR and physical activity relationship becomes linear (Trost, 2007). The flex HR 

point is defined based on the lowest HR observed during sedentary activities (Trost, 2007) but 

there is no consensus regarding the definition of flex HR, which is also defined as the average of 

the lowest HR during exercise and the highest HR during rest (Trost, 2001, Valanou et al., 
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2006).  Below the flex HR point, the HR and physical activity or HR and AEE relationship is 

more uncertain because HR can be raised by environmental conditions such as anxiety, stress, or 

increased temperature without a corresponding increase in energy expenditure (Brage et al., 

2004). The flex HR method generally assumes that instantaneous physical activity and AEE are 

equal to rest below the flex point (Livingstone et al., 1992). However, this is unlikely to be the 

case at all times and this assumption introduces an underestimation into the prediction of AEE. 

In contrast, setting the flex point too low introduces positive bias (Corder et al., 2008). For these 

reasons, the flex HR method appears to be reasonably valid for estimating average daily energy 

expenditure on a group but not individual level. In addition, activity estimates using different 

applications of the flex HR method may not be necessarily comparable (Livingstone et al., 

2000).  

 

Practical difficulties associated with HR monitoring include, interference or signal loss, 

especially during free living conditions, although novel electrode technologies may help 

overcome this limitation (Corder et al., 2008). Moreover, HR monitoring is only useful in older 

children and adolescents but difficult in young children (Trost, 2001). Difficulties in children 

include being nervous during calibration tests in unfamiliar environments, especially when a face 

mask is required while measuring 
•

VO 2 which can alter their HR and physical activity or HR and 

AEE relationship (Corder et al., 2008). Additionally, the sporadic nature of physical activity in 

young children, combined with the lag of the HR response to activity, may affect accurate 

physical activity assessment by HR monitoring (Trost, 2001). Novel approaches that combine 

HR with data from motion sensors such as accelerometers may overcome some of the limitations 

of the respective devices/approaches. 
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1.4.3 Global positioning systems (GPS): 

 

A novel and potentially valuable tool for improving the assessment of physical activity involves 

the use of GPS (Maddison & Mhurchu, 2009). Twenty four GPS satellites currently orbit the 

earth and transmit signals to GPS receivers which determine the location, direction and speed of 

the receiver (Maddison & Mhurchu, 2009). This additional information has the potential to 

greatly improve the assessment of physical activity. Recent technological improvements have 

resulted in portable GPS units with adequate memory to store positional data over time, thus 

offering opportunities for obtaining locational information at low cost (Maddison & Mhurchu, 

2009). In terms of free living activity, the most promising avenue for the application of GPS is in 

combination with accelerometer based measurement of physical activity (Terrier et al., 2000, 

Rodriguez et al., 2005).  This approach  potentially  provides  more  information into  the  nature  

of  activity  with  both location and  intensity  variables. Contextual information on where 

physical activity takes place or indeed where people are most sedentary would permit a more 

targeted approach to implementing physical activity initiatives and interventions (Maddison & 

Mhurchu, 2009). Approaches that combine accelerometry with GPS data have recently been 

described by Rodriguez et al. (2005). Therefore, one of the objectives of this thesis was to 

quantify active commuting to school using GPS in combination with accelerometry. 
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1.4.4 Combined sensors: 

 

Newer sensors combining one or more physiological measures with movement sensing are 

continuously being developed (Chen & Basset, 2005, Corder et al., 2008) in the belief that this 

approach will improve further the assessment of physical activity, sedentary behaviour and 

related outcome variables such as AEE. Prototypes including combined HR and motion sensors, 

combined motion and temperature sensors and multi sensor devices to determine the motion of 

multiple body segments are already available but prohibitively expensive for use in large 

epidemiological studies (Chen & Bassett, 2005). Use of multiple monitors attached to different 

body sites may explain more variance in activity than one alone but the extra burden and cost 

may not be worth the marginal increases in accuracy (Trost et al., 2005).  Nevertheless, many of 

these new methods provide comprehensive information on diverse characteristics of physical 

activity which may be particularly applicable to children and certain clinical populations (Chen 

& Basset, 2005, Bonomi & Westerterp, 2011). Thus, the predictive validity of accelerometry in 

combination with HR monitoring was examined in this thesis. 

 

1.4.5 Indirect calorimetry using doubly labelled water technique: 

 

The development of the DLW method originated from the study by Lifson et al. 1949. Using 

stable isotopes of oxygen, Lifson et al. administered 18O labelled water to animals and showed 

that 18O label appeared in expired CO2. The model of Lifson assumes that the total body water 

pool (N) is a homogeneous compartment that remains constant during observation. Further 

assumptions implicit in the model are that the tracer isotopes of hydrogen and oxygen exit the 
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body only as water and carbon dioxide and that dietary and atmospheric sources of water and 

oxygen do not change the background isotope levels (Lifson et al., 1955). The basic 

mathematical equation relating carbon dioxide production to the isotope elimination rates is 

given as: 

rCO2 = (N/2) (kO – kH).  

Where N is the total body water pool, kO is the rate of disappearance of 18O and kH is the rate of 

2H disappearance. After a loading dose of 2H2
18O, 5 - 20% of the tracers are lost from the body 

each day. The product of total body water (TBW) and the deuterium elimination rate (KH) is a 

measure of the rate of water output (rH2O). The product of TBW and the oxygen elimination rate 

(kO) is a measure of the sum of water output and two times carbon dioxide output (rCO2) (Figure 

1.1). Taking the difference between these two equations and rearranging terms yields the 

equations for calculation of rCO2. However, small corrections are required for differences in 

isotope dilution spaces and isotope fractionation (Figure 1.1). 

 

 

Figure 1.1: Indirect calorimetry using doubly labeled water (Schoeller, 1988).  
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The practical application of the method requires the incorporation of isotopic fractionation 

factors to account for fractionation (non equal equilibration) of the isotopes of water and carbon 

dioxide during changes in state. It is well recognized that isotopically labelled water and carbon 

dioxide leave the body at different rates depending on their chemical state, either gas or liquid 

(Schoeller, 1988, Speakman, 1997). Measured isotope fractionation factors for 2H and 18O 

indicate that breath water, non sweat water vapour and expired CO2 are isotopically fractionated 

relative to body water. With this correction, the equation describing the model becomes:  

rCO2 = (N/2 f3) (kO – kH) - rH2OG (f2 – f1)/2 f3.  

Where f1 is the deuterium fractionation factor between water and water vapor, f2 is the 18O 

fractionation factor between water and water vapor, f3 is the 18O fractionation between water and 

carbon dioxide and rH2OG is the rate of water loss via isotopically fractionated routes (Schoeller, 

1988).  

 

The isotope fractionation factors currently used are:  

f1 = 0.941 2H2O (gas) / 2H2O (liquid)  

f2 = 0.992 H2
18O (gas) / H2

18O (liquid)  

f3 = 1.039 C18O2 (gas) / H2
18O (liquid)  

 

The DLW method measures CO2 production which is used to calculate energy expenditure, 

therefore a form of indirect calorimetry (Speakman, 1997). Heat production can be calculated by 

using standard indirect calorimetric relationships. This, however, requires knowledge of the 

metabolic fuel because heat released per litre of CO2 produced differs by 30% between 

carbohydrates and lipids. This information could be obtained through continuous monitoring of 
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respiratory gas exchange but it would defeat the non restrictive character of the DLW method 

(Speakman, 1997). It is more convenient, therefore, to estimate the metabolic fuel mix from 

dietary intake. Black et al. (1986) demonstrated that the respiratory quotient (RQ) is quite similar 

to the food quotient and that the former can therefore be predicted from the latter. The error in 

calculating energy expenditure from the food quotient is less than 3% in most situations, 

although care must be taken to account accurately for alcohol intake. In addition, if energy intake 

differs from energy expenditure, then some adjustment should be made to the food quotient to 

correct for body fat utilization or storage (Speakman & Krol, 2005). This effect on calculated 

heat production is not more than 5% unless the difference between intake and expenditure 

exceeds 20% (Black et al. 1986). Thus, one of the objectives of this thesis was to use the DLW 

method as a validation criterion against uniaxial vs. triaxial accelerometry in the assessment of 

free living energy expenditure in children and adolescents. 

 

1.4.6 Indirect calorimetry using metabolic gases: 

 

Measurements of 
•

VO 2 are used to make judgments about cardiovascular function, predict 

endurance performance, and to estimate energy expenditure at rest and during exercise. Such 

measurements have been made throughout this century, progressing from Douglas bag gas 

collections and chemical gas analyses to integrated metabolic carts that measure 
•

VO 2 and carbon 

dioxide ( CO2) production on a breath-by-breath basis, in addition to ventilation ( E), fraction 

of expired oxygen (FEO2), fraction of expired carbon dioxide (FECO2), and heart rate (HR), do 

the calculations, and print the results. In spite of these developments, most metabolic 

measurements are still made in the laboratory setting using a limited number of exercise modes, 
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primarily walking and running on a treadmill and pedaling a cycle ergometer (McLauglin et al., 

2001). Attempts to collect expired gases in the field for later analysis in the laboratory meant 

using cumbersome equipment that often interfered with the activities under investigation. The 

development of miniaturized metabolic measurement systems has allowed 
•

VO 2 to be measured 

outside the laboratory in a natural environment (Sirard & Pate, 2001). Portable metabolic 

measurement systems have been used to quantify the energy cost of a wide range of activities 

(Bassett et al., 2000, Strath et al., 2000, Trost, 2007). Despite these advances, the equipment is 

still too cumbersome to use under long term free living conditions, especially in young children 

(Sirard & Pate, 2001). One of the objectives in this thesis was therefore, to validate uniaxial 

accelerometry with HR monitoring vs. triaxial accelerometry against indirect calorimetry in 

adolescents. 

 

1.4.7 Accelerometry: 

 

Motion sensors are probably the oldest tools available to measure body movement or physical 

activity. They have evolved from mechanical pedometers to electronic uniaxial and triaxial 

accelerometers (Plasqui & Westerterp, 2007). Accelerometry is now the most commonly used 

objective method of physical activity assessment in children and adolescents and it has greatly 

increased in popularity relative to other objective methods in all age groups (Rowlands, 2007). A 

review of physical activity measurement in preschool children reported that 63% of habitual 

monitoring devices used were accelerometers, mainly the ActiGraph model (Oliver et al., 2007). 

Accelerometers are electronic motion sensors that consist of pizoresistive or pizoelectric sensors 

(Chen & Basset, 2005, Yang & Hsu 2010, Bonomi & Westerterp, 2011). Pizoresistive 
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accelerometers respond to accelerations by a change in resistance of silicon resistors, which is 

then transformed to a voltage proportional to the amplitude and frequency of the acceleration of 

the small mass in the sensor (Chen & Basset, 2005, van Hees et al., 2010). In addition, 

pizoresistive accelerometers require an external power source and respond to a constant 

acceleration such as gravity (De Vries et al., 2006). Pizoelectric accelerometers on the other 

hand, generate an electric charge in response to a mechanical force that induces acceleration (De 

Vries et al., 2006).  Pizoelectric accelerometer do not respond to constant acceleration, their 

major advantage is that no power supply is required, except for data storage, resulting in a 

considerable reduction in size and weight of the device (Chen & Bassett, 2005, Bonomi & 

Westerterp, 2011).  Over the past decades, advances in technology have resulted in the 

development of small and light instruments that are able to collect data at a high frequency and 

store min by min data over several days or weeks (Welk et al., 2000b, Rothney et al., 2008b). 

Uniaxial accelerometers measure accelerations in one direction, usually in the longitudinal plane, 

whereas triaxial accelerometers measure accelerations in the anteroposterior, mediolateral and 

longitudinal direction. Most accelerometer based physical activity monitors use one or multiple 

pizoelectric accelerometers. A pizoelectric acceleration sensor consists of a pizoelectric element 

and a seismic mass, housed in an enclosure (Chen & Bassett, 2005, Bonomi & Westerterp, 

2011). When the sensor undergoes acceleration, the seismic mass causes the pizoelectric element 

to experience deformation or compression. These conformational changes cause displaced 

charge to build up on one side of the sensor, which can generate a variable output voltage signal 

that is proportional to the applied acceleration (Chen & Bassett, 2005, Yang & Hsu 2010). Most 

traditional accelerometer devices only store a summary measure of the raw acceleration signal, 

termed a count (Corder et al., 2008). A count is a unit aimed to be proportional to the average 
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overall acceleration of the human body in a specified period of time, referred to as an epoch. 

However, this proportionality may be challenged by the dynamic range of the accelerometer and 

downstream signal processing, such as frequency filtering (Figure 1.2), implemented with the 

intention to remove components of the signal unrelated to human movements (Tyron et al., 1996, 

Rothney et al., 2008b, van Hees et al., 2010). However, as traditional accelerometers are limited 

in memory and battery capacity to store raw signal data in gravitational (g) units, such data 

processing stages are implemented within the device itself and the process is irreversible once 

the count has been stored in local memory. This irreversible conversion prevents reanalysis of 

the raw accelerometer signal with the latest insights into data processing techniques (Figure 1.2) 

and limits inter brand comparison of accelerometer data.  

 

During assessment of physical activity, a time sampling mechanism allows the capture of 

intensity, frequency and duration information. To ensure that the full range of human motions is 

captured independently, the sampling frequency should fulfil the Nyquist criterion, which 

specifies that the sampling frequency must be at least twice the frequency of the highest 

frequency of movement (Chen & Bassett, 2005). If this criterion is not met, measurements of 

rapid movement will be distorted. The general frequency in normal non impact physical activity 

of the centre of mass in humans is typically below 8 Hz (during running in the vertical direction) 

although the upper limit could be as high as 25 Hz in specific movements of the arms. For this 

reason, the sampling frequency of commercially available physical activity monitors generally 

ranges from 1 to 64 Hz (Chen & Bassett, 2005). This wide range in sampling frequency could be 

a significant determinant of device validity and hence there is a need to empirically determine 
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the validity of several commercially available accelerometers, which is one of the objectives of 

this thesis.  

 

After the data have been sampled, sensor output is filtered using a band pass filter. Band pass 

filtering allows frequencies between a preset low and high frequency limit to pass while all other 

frequencies are attenuated (Figure 1.2). The selection of an appropriate frequency response range 

for a bandwidth filter could be significant (Chen & Bassett, 2005, Yang & Hsu, 2010). An overly 

wide bandwidth would allow noises that are not physiologically related (baseline drift or the 

hardware, vibrations such as operating a motor vehicle, or electrical artefacts) to be included in 

the signals. On the other hand, a narrow bandwidth could cause incomplete data collection of all 

activities (Figure 1.2).  

 

 

Figure 1.2: Schematic flow of accelerometer data processing (van Hees et al., 2010) 

 

Although the complete scientific description of a method should include sufficient detail of the 

signal processing scheme used in order to enable replication of empirical evidence, most 

manufacturers of accelerometer devices in use today regard the way in which the raw data is 

processed as proprietary information (Corder et al., 2008, van Hees et al., 2010). Therefore, 

validity of accelerometer devices needs to be independently determined against physiological 
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markers such as 
•

VO 2 and energy expenditure, which is one of the primary objectives of this 

thesis.  

 

There are several commercially available accelerometer based physical activity monitors, such as 

the Actical (Mini Mitter, Bend, OR) 3DNXTM (BioTel Limited, Bristol, UK), ActiGraph 

(ActiGraph LLC, Pensacola, FL, USA), and RT3 (Stayhealthy, Monrovia, CA). Accelerometers 

may be either uniaxial or triaxial. In addition, accelerometers have different sizes and weight. 

There are also differences in sampling rate, sensitivity range and battery life all of which may be 

significant when assessing physical activity (Table 1.2). Of these accelerometers, the most 

studied monitor is the ActiGraph accelerometer, formerly marketed under the Computer Science 

and Application (CSA) and Manufacture Technology Incorporated (MTI) (Rothney et al., 

2008b). Ideally, an accelerometer should be small, light, unobtrusive, sensitive within the right 

frequencies and amplitudes and able to store data over long periods of time (Plasqui & 

Westerterp, 2007, Bonomi & Westerterp, 2011) and thus provides information about the total 

amount, frequency, intensity and the duration of physical activity in daily life (Sirard & Pate 

2001, Plasqui & Westerterp, 2007). The ideal physical assessment tool should be valid, 

affordable, objective and easy to administer, able to measure all physical activity domains, 

nonreactive, feasible in large studies and suitable for use in young children and adults (Table 

1.2). Based on these parameters, accelerometers are indicated for the assessment sedentary 

behaviour and physical activity in children and adolescents. This may explain the increasing use 

of accelerometers in physical activity research. However, accelerometers vary in a number of 

ways (e.g. cost, technological sophistication, sensitivity, and output measure) (Table 1.3). 

Furthermore, it is anticipated that the commercial nature of these instruments will drive an even 
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greater range of features and options in the future such as, ability to record HR and inclination, 

and thus, increase both the opportunities and challenges of objectively assessing physical activity 

(McClain & Tudor-Locke, 2009, Yang & Hsu, 2010). These monitors are based on similar 

accelerometry principles but they differ in their sensitivity to movement as well as in how 

movement is accumulated and processed within the monitor. For these reasons, it is reasonable to 

expect that there may be measurable differences in the validity, reliability and utility of these 

competing products, hence the need to determine the performance of various accelerometers in 

this thesis. The relative position of physical activity assessment tools, in terms of validity and 

feasibility may change as technology and methodologies evolve (dotted line), possibly improving 

validity and (or) feasibility (Figure 1.3). From figure 1.3, Eslinger & Trembly 2007, reported that 

direct calorimetry is the most valid physical assessment tool. However, direct calorimetry does 

not measure external work, for instance Webb et al., (1988) demonstrated that during cycling, 

energy from fuel matched heat loss plus the power measured by the cycle ergometer. During 

walking on the other hand, energy from fuel exceeded that which appeared as heat, meaning that 

work was done, this work energy did not reappear as thermal energy and therefore direct 

calorimetry is not more valid than indirect calorimetry for the assessment of physical activity 

energy expenditure. Thus, as new technologies emerge, their position on the physical activity 

assessment continuum must be established based on research results (Figure 1.3). Based on the 

assessment of validity vs. feasibility, accelerometers score comparatively well relative to other 

physical activity assessment tools (Figure 1.3), hence the need to validate the novel ActiTrainer, 

GT3X and 3DNX accelerometers in this thesis.  
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Figure 1.3: Conceptual illustration of the trade off between validity and feasibility for using 

a variety of physical activity measurement methods (solid line). The relative position of 

these measurement methods may change as technology and methodologies evolve (dotted 

line), possibly improving validity and (or) feasibility. As new technologies emerge, their 

position on the continuum must be established based on research results (e.g., GPS, novel 

accelerometers). SR Quest, self report questionnaire (Eslinger & Trembly 2007)  
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Table 1.2: Summary of key attributes of current methods of measuring physical activity in children and adolescents (Trost, 

2007) 

 
Method Valid Affordability Objective Ease  of 

administration 
Compliance Measure  

PA 
intensity 

Nonreactive* 
Feasible 
in large 
studies 

Suitable 
<10 y 

Suitable 
>10 y 

 
 Questionnaire 

 

 
√ 

 
√√√ 

 
X 

 
√√√ 

 
√√√ 

 
√√ 

 
√√√ 

 
√√√ 

 
X 

 
√√ 

Interview 
 

√√ √ X √√ √√ √√ √√√ √√ √ √√ 

Proxy report 
 

√ √√√ X √√√ √ √√ √√√ √√√ √√√ √ 

Diary 
 

√ √√√ X √√ X √√√ √ √ X √ 

Heart rate 
 

√√ √√ √√√ √ √ √√ √ √ √√√ √√√ 

Accelerometer 
 

√√ √ √√√ √√ √√ √√ √√√ √√ √√√ √√√ 

Pedometer 
 

√√ √√√ √√√ √√ √√ X √ √√ √√√ √√√ 

Observation 
 

√√√ X √√√ √ √√√ √√ √ √ √√√ √√√ 

DLW 
 

√√√ X √√√ √√ √√ X √√ X √√√ √√√ 

 

 

X –Poor/inappropriate  √ - Acceptable  √√ - Good √√√ - Excellent 
* - Does not induce changes in physical activity behaviour as a result of measurement 
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Table 1.3: Comparison of uniaxial and triaxial accelerometer specifications 

 

- Not reported 

 
 
 
 
 
 
 
 
 

Device 

Manufacturer 

GTM1 

ActiGraph  

USA 

ActiTrainer 

ActiGraph 

 USA 

GT3X 

ActiGraph 

 USA 

3DNX 

Biotel 

 UK 

TracmorD 

Philips  

Netherlands 

RT3 

Stayhealthy 

USA 

Size (mm) 53 x 51 x 22 50 x 40 x 15 38 x 37 x 18 54 x 54 x 18 32 x 32 x 5 71 x 56 x 28 

Weight (g) 27 45 27 70 12.5 71.5 

Number of axis 1 1 3 3 3 3 

Sensor placement waist/wrist waist waist/wrist lower back lower back waist 

Sampling rate (Hz) 30 30 0.25 - 2.5 0.2 - 20 - 0.017 - 1 

Sensitivity range (G) 0.25 - 2.50 0.05 - 2.5 0.05 - 2.5 0.11 - 20 - - 

Battery life 14 days 20 days 20 days 21 days 3 weeks 30 days 
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Several reviews have concluded that accelerometers provides an objective, practical, accurate, 

and reliable means of quantifying amount (volume) and intensity of habitual physical activity 

and amount of sedentary behaviour in children and adolescents (Ward et al., 2005, De Vries et 

al., 2006, Rowlands, 2007, Corder et al., 2008, Reilly et al., 2008, Matthews et al., 2012).  

Despite the initial cost and limitations for large scale research applications, accelerometers have 

been used in longitudinal and cross sectional studies with large samples to assess physical 

activity levels in children and adolescents (Corder et al., 2008).  Advances in technology, such as 

the use of multiple accelerometers or their integration with other devices, such as HR monitors or 

GPS devices, has improved field measurement of physical activity, sedentary behaviour and 

AEE (Corder et al., 2008). However, accelerometer use is not without challenges. These include, 

a lack of understanding on exactly how a monitor functions, for instance, proprietary restrictions 

limit disclosure of which algorithms are used to convert raw acceleration into counts, how to 

select the most appropriate instrument, standards of monitor wear and field use, how to interpret 

accelerometer data and how to manipulate and analyse the vast amount of data produced by 

accelerometry (Trost et al., 2005, Ward et al., 2005, Matthews et al., 2012). Additionally, 

accelerometers cannot capture certain highly static categories of activity or complex movement 

patterns that combine dynamic and static movements (Matthews, 2005). This is especially true of 

uniaxial accelerometers, but the addition of HR monitoring may improve the quality of the data 

collected (Corder et al., 2008). Moreover, standardised protocols do not exist for determining the 

number of monitors that participants should wear the optimal placement on the body, the optimal 

number of wearing days, or procedures to ensure participant compliance (Corder et al., 2008). In 

addition, it has been reported that several currently available physical activity monitors are not as 

sensitive to activities that are of less than moderate intensity (Hendelman et al., 2003) and their 
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outputs plateau during vigorous intensity activity (Levine et al., 2001, Fudge et al., 2007). This 

thesis addresses some of these issues.  

 

1.5 Methodological and practical issues in accelerometry:  

 

Accelerometers are increasingly being used in large epidemiological studies (Riddoch et al., 

2004). Despite the widespread use of accelerometers several methodological and practical issues 

remain to be resolved which have implications on all aspects of measurement, processing and 

interpretation of physical activity and sedentary behaviour data (Guinhouya et al., 2006, Corder 

et al., 2008). These include, which monitor to use and its validity, what data sampling frequency 

(epoch length) to use, which cutpoints to use, how many hours and days of monitoring are 

required to obtain valid and reliable physical activity assessment, where to place activity 

monitors and how to reduce the vast amount of accelerometer data generated after days of 

monitoring (Ward et al., 2005, Guinhouya et al., 2006, Corder et al., 2008). Therefore, 

methodological decisions are a compromise between practicality and accuracy in the assessment 

of physical activity and sedentary behaviour (Trost, 2007). Unfortunately, this limits the 

comparability between studies and explains the need to develop standardised accelerometer 

protocols. 
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1.5.1 Sampling frequency (epoch length):  

 

Measurement of physical activity by accelerometry employs rapid sampling of accelerometer 

counts over a preset sampling period, or epoch (Chen & Bassett, 2005). The frequency by which 

the raw signal is captured and the period over which it is summarized (the epoch) are critical 

issues as they may ultimately affect accelerometer outcome variables (Reilly et al., 2008) and 

thus, the accuracy and reliability of physical activity and sedentary behaviour assessment (Chen 

& Bassett, 2005). The epoch length used should ideally be as short as possible, because data can 

always be reintegrated into a longer time frame but not vice versa (Corder et al., 2008). Early 

accelerometer studies used 1 min epoch almost exclusively to optimize the recording and storage 

capacity based on restrictive memory capabilities of earlier devices (Chen & Bassett, 2005). 

However, with greater memory capacities, decision on epoch length should be based more on 

research questions rather than equipment limitations (Ward et al., 2005).  

 

Short epoch durations are particularly important in young children, because of the short duration 

of their activity bouts (Basquet et al., 2007). Choosing a short epoch yields higher resolution of 

bout durations, which may be important if physical activity is accumulated in multiple short 

bouts, such as in young children (Trost et al., 2005) or in highly active cohorts. On the other 

hand, the main drawback of using long epoch durations is that activities of different intensities 

are usually averaged to reflect an intermediate intensity and thus results in misclassification of 

physical activity (Chen & Bassett, 2005, Reilly et al., 2008). Thus, short epochs are clearly better 

than long epoch durations for the assessment of physical activity. Therefore, one of the 

objectives of this thesis was to determine the effect of epoch selection on physical activity 
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classification in predominantly inactive children and active adolescents. For this objective, 

physical activity was accumulated in 1 s epoch which was subsequently integrated to 15 s epoch. 

The selection of 15 s epoch was based on the fact that this was the lowest epoch used in previous 

accelerometer calibration studies in children (Pate et al., 2006). Moreover, 15 s is the lowest 

epoch that allows the ActiTrainer accelerometer to collect HR data, which was used in the 

subsequent validation studies in this thesis.   

 

1.5.2 Physical activity and sedentary behaviour cutpoints: 

 

The conversion of accelerometer counts into an estimate of physiological activity intensity is 

contentious (Puyau et al., 2002, Basquet et al., 2007). This debate makes setting physical activity 

and sedentary behaviour intensity thresholds difficult (Guinhouya et al., 2006). Usually, the 

current research practice involves use of a representative sample of the population of interest, in 

which participants wear accelerometers and another device that can accurately measure energy 

expenditure (i.e. portable metabolic analyser) which is used to provide interpretative count 

cutpoints thresholds (Corder et al., 2008, Reilly et al., 2008). These cutpoints separate movement 

behaviour into levels of exertion (i.e. sedentary, light, moderate and vigorous) physical activity 

(Corder et al., 2008). The current physical activity intensity thresholds for various physical 

activity domains derived specifically for use in children and adolescents vary widely. For 

example, for sedentary activity, they range from 100 - 800 CPM and for MVPA; they range from 

1680 - 3200 CPM (Table 1.4). Using these different thresholds on the same data, it is possible to 

show that the same group of subjects is either inactive or sufficiently active, defined as 
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accumulating at least 60 min of moderate to vigorous physical activity (MVPA) (Corder et al., 

2008, Reilly et al., 2008).  

 

To date, several ActiGraph cutpoints have been independently developed and published in the 

peer reviewed scientific literature (Puyau et al., 2002, Treuth et al., 2004, Pate et al., 2006, 

Evenson et al., 2008) (Table 1.4). Each equation and associated cutpoints attempts to account for 

the influence of growth and development on energy expenditure on accelerometer output. For 

example, the Freedson prediction equations include age as an independent variable in the 

regression model (Freedson et al., 2005). The other equations/algorithms control for age related 

decline in BMR relative to body weight by expressing the energy cost of physical activity as 

multiples of BMR, METs or AEE (Puyau et al., 2002, Harrel et al., 2005). Importantly, the 

methodology used to derive these cutpoints varies considerably from study to study and, this 

may explain the wide variability in these cutpoints. Puyau cutpoints (2002) were derived from 

samples with a large age range, while the Truth cutpoints (2004) were derived from a narrow age 

range. Similarly, the Truth cutpoints (2004) were derived from a single gender group, while the 

Pate (2006), Puyau (2002) and Evenson (2008) cutpoints were derived from both genders. All 

these factors may explain the large discrepancies in accelerometer cutpoints. Thus, one of the 

objectives of this thesis was to determine the effect of published physical activity cutpoints on 

classification of physical activity patterns in children and adolescents. 
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Table 1.4: Published cutpoints for children and adolescents using ActiGraph accelerometer  

 

 

 
Author Sample Activities Cutpoints 

 

Pate et al. 

2006 

N = 29, 3 - 5 y 
Mean Age: 4.4 y 
16 girls, 13 boys 

Structured and free 
living activities such 
as slow walk, brisk 
walk, jogging 

 
MPA ≥ 420/15s 
 

Puyau et al. 

2002 

 

N = 26, 6 - 16 y 
Mean Age: 10.7 y 
12 girls, 14 boys 

Free living 
activities such 
as computer 
games, playing  
toys, aerobics, 
skipping, jump 
rope, soccer 

 

Sed ≤800/min 
LPA ≥ 800/min 
MPA ≥ 3200/min 
VPA≥ 8200/min 

Treuth et al. 

2004 

 

N = 74, 13 - 14 y 
girls only 

Walk, run, free 
living activities such 
as computer 
games, household 
chores, aerobics, 
shooting baskets. 

 

Sed  ≤100/min 
LPA  ≥ 100/min 
MPA ≥3000/min 
VPA ≥ 5200/min 

Evenson et al. 

2008 

 

N = 33 
Range: 5 to 8 y 
Mean Age:7.3 y 
21 girls, 12 boys 

coloring books, 
slow walk, stair 
climb, basketball, 
brisk walk, jumping 
jacks, running. 

Sed  ≤100/min 
LPA  ≥ 100/min 
MPA ≥ 2296/min 
VPA ≥ 4012/min 

TM - Treadmill  

Sed - Sedentary activity  

LPA - Light physical activity  

MPA- Moderate physical activity  

VPA - Vigorous physical activity 
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1.5.3 Monitor placement: 

  

The relative position of the accelerometer on the body is an important consideration. Ideally, the 

accelerometer should be attached as close as possible to the centre of mass of the body. 

However, feasibility and subject burden should be carefully considered (Trost et al., 2005). 

Bouten et al. (1997) investigated the influence of monitor placement on accelerometer output 

and the prediction of energy expenditure during walking (3 - 7 km/h). Using both measured and 

simulated acceleration data, a total of six different body segments were evaluated: lower back, 

lower leg/foot, upper leg, head trunk, lower arm/hand and upper arm. Acceleration output 

recorded at the lower back was the best predictor of energy expenditure (r = 0.92 - 0.97), 

although acceleration data from all sites demonstrated moderate to strong associations with 

observed energy expenditure (0.52 - 0.92). Furthermore, when the authors portioned the 

acceleration output into the kinematic (acceleration due to body movement) and gravitational 

component (the acceleration due to gravitational pull of the earth), the influence of the 

gravitational component was strongest on the limb placements, supporting the utility of trunk 

placements, either on the lower back or hip (Bouten et al., 1997) and arguing against the use of 

the wrist or ankle. Nilsson et al. (2002) examined whether placement of a uniaxial accelerometer 

on the hip or lower back would affect assessment of physical activity in 16 free living 7 y old 

children. Over the 4 d monitoring period, no significant difference emerged between two monitor 

placements in total counts per min. However, when counts were classified as moderate or 

vigorous intensity, the hip placement resulted in higher estimates of moderate physical activity, 

although the difference was significant only when counts were accumulated in 5 s epoch and not 

in 60 s epoch. Furthermore, there was no difference between hip and back placements for 
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estimated time in vigorous and very vigorous physical activity. Yngve et al. (2003) examined 

whether monitor placement on the hip or lower back could influence the assessment of treadmill 

and overland walking and running in healthy adults. Compared to the activity counts from the 

monitor placed on the hip, the counts recorded on the back were significantly lower during 

normal and fast walking and significantly higher during jogging. The magnitude of these 

differences, however were quite small and of questionable practical significance. Welk et al. 

(2000b) examined the issue of monitor placement using three different models of accelerometers 

(ActiGraph, BioTrainer, TriTrac R3D). 42 adults completed three 6 min bouts of walking with 

the monitor positioned in three different locations on the right hip: 1) anterior axillary line (iliac 

crest), 2) midaxillary line and 3) the posterior axillary line. No significant placement effects were 

observed on either the BioTrainer or TriTrac-R3D. However, small but statistically significant 

differences were observed for the ActiGraph device, with significantly higher counts recorded 

for the midaxillary line placement than either anterior or posterior axillary line. The practical 

significance of these findings is uncertain, given that it is unlikely that the average study 

participant would wear their accelerometer on exactly the same site on each monitoring day. 

Studies comparing different placement options indicate that accelerometers are best placed on 

the hip or lower back (Trost et al., 2005). The right side may be most convenient because most 

people are right handed (Corder et al., 2008). Therefore, it is recommended that one side be 

consistently used to standardise accelerometer monitor placement protocols (Ward et al., 2005). 

However, the propensity for waist mounted accelerometers to misclassify static light to moderate 

intensity activities such as folding laundry and sweeping as sedentary remains a legitimate 

concern. Combining accelerometry with other monitoring devices such as thigh mounted 

inclinometers may be a viable solution to this problem (Trost et al., 2011). 
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1.5.4 Monitoring time: 

 

Accelerometer monitoring for 7 consecutive days seems reasonable when assessing habitual 

physical activity and sedentary behaviour. However, as protocol adherence tends to decrease 

with days of wear (Trost, 2007, Corder et al., 2008, Baranowski et al., 2008), it may be more 

feasible to opt for 4 full days with at least 1 weekend day (Trost, 2007, Corder et al., 2008) as 

typically the case in large studies (Riddoch et al., 2004). There is some evidence that between 4 

and 9 full days of monitoring including 2 weekend days are required for a reliable estimate of 

physical activity behaviour in adolescents (Trost et al., 2005). The compromise between 

feasibility and accuracy was demonstrated in a large study of 11 y old children that examined the 

number of days of monitoring required to achieve reliability coefficients of 0.7, 0.8 and 0.9 

(Mattocks et al., 2008a). 3 days of monitoring were required to achieve a coefficient of 0.7, 

irrespective of whether a valid day was counted as 420 or 600 min/day. 5 days were required for 

a coefficient of 0.8 and 11 days were needed to achieve a reliability coefficient of 0.9. In 

addition, the age of the study participants also influences reliability estimates, with younger 

children having less day to day variability than older children.  For instance, Trost et al. (2000) 

reported that 4 - 5 days of monitoring were required to achieve a reliability coefficient of 0.8 in 

young children but between 8 and 9 days may be required for adolescents. Furthermore, 

seasonality due to school terms, school holidays and climate, is also another important factor to 

consider (Corder et al., 2008). For all methods of measurement, seasonal variation means that a 

single measurement of a week may not adequately reflect the subject’s habitual physical activity 

because there may be considerable seasonal intraindividual variation (Baranowski et al., 2008). 

However, it has been suggested that among adults at least 3 - 5 days of monitoring are required 
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to estimate habitual physical activity (Trost et al., 2005). With children and adolescents on the 

other hand, studies have consistently shown that the number of monitoring days ranges from 4 

and 9. Because of the differences between week and weekend days and the balance between 

feasibility and validity, it is recommended that as a minimum, studies in both children and 

adolescents aim for at least 4 full days of monitoring including one weekend day (Corder et al., 

2008, Matthews et al., 2012). Other legitimate considerations when determining period of 

monitoring in paediatric, adolescents and adult studies are, the study population of interest, 

budgetary considerations and the specific research questions being addressed by a given study 

(Trost et al., 2005, Ward et al., 2005).   

 

1.5.5 Valid day:  

 

Among the most important practical decisions in accelerometer studies is determination of what 

constitutes a day (i.e. should it be the waking day, or time periods such as 12, 18, or 24 h?) and 

what percentage of a day must be measured for an individual to have sufficient information to 

call this period a complete day (Ward et al., 2005, Corder et al., 2008). A day varies for 

individuals in different age groups and also may vary depending on whether the physical activity 

and sedentary behaviour are being measured on a weekday or a weekend day (Catellier et al., 

2005, Màsse et al., 2005). Alternatively, a day can be defined by the 70/80 rule that is, the period 

during which at least 70% of the study population has recorded accelerometer data and 80% of 

that observed period constitutes a minimum day for inclusion in data analysis (Catellier et al., 

2005). Currently, there is no single accepted criterion for the identification of how much wear 

time is necessary to constitute a valid day of measurement (Corder et al., 2008, Baranowski et 
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al., 2008, Matthews et al., 2012). Thus, several approaches are used to address validity issues in 

physical activity and sedentary behaviour monitoring. These includes, the use of the Spearman 

Brown prophecy formula and computation of Intra Class Coefficients (ICC) to estimate the 

number of days or repeated observations needed to obtain a specified level of reliability in a 

given sample (Trost, 2007, Baranowski et al., 2008). These approaches attempt to account for 

diurnal/seasonal variation in physical activity and sedentary behaviour and also differences in 

hours of monitoring within the study population and thus better approximate the assessment of 

physical activity and sedentary behaviour. Therefore, one of the objectives of this thesis was to 

determine the optimal monitoring period in children and adolescents. 

 

1.5.6 Accelerometer data reduction:  

 

One of the most challenging aspects of using accelerometers to measure physical activity and 

sedentary behaviour is managing and understanding the vast amount of data collected (Ward et 

al., 2005). With recommendations of multiple days of monitoring and with sampling epochs that 

may be as low as 1 s, the volume of data created from accelerometer measurement may be 

overwhelming (Ward et al., 2005). Therefore, making decisions about how data will be edited 

and analysed even before data collection begins and stating these ‘decision rules’ clearly in 

published articles will facilitate attempts to develop universal accelerometer protocols and thus 

allow for comparison between studies (Ward et al., 2005). Accelerometers record data 

continuously irrespective of whether the monitor is worn or not. Therefore, non wear time needs 

to be identified either using activity diaries, assumption of sleeping time or identifying data 
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segments of continuous inactivity surpassing a length beyond which it is deemed unlikely that 

the monitor could have been worn, e.g. 10 - 60 min (Treuth et al., 2003, Corder et al., 2008).  

 

Other strategies of dealing with missing data include exclusion of the time period (equivalent to 

imputation with the average of remaining data for an individual) to replacement by time of day 

specific values estimated from the remaining data on an individual or group level and various 

averaging schemes using scaling for weekdays and weekend days (Catellier et al., 2005). As a 

result of this diversity in accelerometer data editing and other analytical approaches, 

comparability between studies is often difficult (Rowlands, 2007). Consequently, it has been 

suggested that accelerometers should be worn for 24 h/d (Rowlands, 2007, Matthews et al., 

2012) but this may not be practical due to discomfort during sleep, for example from monitors 

positioned around the waist (Ward et al., 2005). Furthermore, it is important that volunteers are 

encouraged to follow the specified protocol, because if volunteers are instructed to wear 

monitors for 24 h/d but some remove the monitor at night, the data may not be comparable if 

expressed as a mean daily value (Ward et al., 2005). Thus, subject compliance can have dramatic 

effects on the estimates of physical activity and sedentary behaviour (Ward et al., 2005, Corder 

et al., 2007b). Therefore, several strategies to promote protocol adherence have been proposed to 

achieve 24 h monitoring (Ward et al., 2005, Trost, 2007b).  
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1.5.7 Accelerometer validation: 

 

Accelerometry data are usually expressed as ‘movement counts’, an arbitrary value that is often 

not comparable between monitor brands (Reilly et al., 2008). It is therefore necessary to convert 

accelerometer outputs into meaningful physiological parameters such as energy expenditure or 

•

VO 2 associated with specific levels of physical exertion (Corder et al., 2008). Energy expenditure 

is a physiological consequence of physical activity and is directly linked to health and disease 

prevention (Jakicic & Otto, 2005). Therefore, DLW and indirect calorimetry used as criterion 

measures for energy expenditure can also be used as criterion measures for physical activity 

assessment. However, it should be noted that energy expenditure and physical activity are 

distinct constructs, since a significant portion of energy is expended while inactive (i.e. BMR 

and DIT) which may limit attempts to validate physical activity measures against energy 

expenditure (Sirard & Pate, 2001). This notwithstanding, DLW is an excellent method to 

measure TEE in unrestrained humans in their normal surroundings over a time period of 1 - 4 

weeks (Speakman, 1997). Thus, measurement of AEE with DLW has become broadly accepted 

as the reference method for validation of accelerometers. However, accelerometer output 

contribution to the prediction of energy expenditure (∆r2) is highly variable in different studies 

and this may be due to different device specifications (uniaxial vs. triaxial) and the inherent 

variability of the study populations, for instance the Mâsse et al. (2004) study used a uniaxial 

accelerometer to assess AEE in 136 African American and Hispanic women with low reported 

∆r2 of 5%. On the other hand, Plasqui et al. (2005) examined the predictive validity of the triaxial 

Tracmor accelerometer in 29 Dutch subjects (male and female) aged 18 - 40 y and reported ∆r2 

of 33% (Table 1.5). This highly variable ∆r2 between accelerometer validation studies could be 
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due to the inherent differences in the validity of the accelerometer devices used, the difference in 

the study populations, gender, age range and activity profiles (accelerometer counts/day (Cnts/d 

ranging from (83 - 2626 kilocounts/d) of the subjects under study. To date, of the numerous 

accelerometer validation studies involving DLW as the criterion, the Tracmor (Philips Research, 

Eindhoven, Netherlands) triaxial accelerometer has produced the best predictive validity based 

on the reported ∆r2  (Table 1.5). However, most accelerometer validation studies have been done 

in Western adult subjects who are inherently physically inactive. One of the objectives of this 

thesis was to determine the predictive validity of the ActiTrainer uniaxial accelerometer 

(ActiGraph LLC, Pensacola, FL, USA) and the 3DNX triaxial accelerometer (BioTel Limited, 

Bristol, UK) frequently used in studies against DLW in very young European children and 

African adolescents, two cohorts with greatly different physical activity levels. 

 

Table 1.5: Accelerometer validation studies against DLW 

Device  Author   n age  Dependent Independent r2 ∆r2   

 

ActiGraph  Mâsse et al. 2004 136 50±7 AEE  BM  9% 5% 
         Cnt/d  
Tracmor Plasqui et al. 2005 29  18-40 AEE  Age, BM,  81% 33% 

  Cnts/d, H    
 

3DNX  Carter et al. 2008 37 13-30 TEE  H, Cnts/d 73% 27% 

TracmorD Bonomi et al 2010  30 41±11 AEE  BM, Cnts/d 46% 16% 

 

TEE - Total energy expenditure 

AEE -Activity induced energy expenditure 

BM - Body mass 

H - Height 

Cnts/d -Counts per day 
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r2 - Correlation coefficient of the model 
∆r2 - Contribution to the correlation coefficient of the accelerometer output 
 

It is envisaged that multiple accelerometers will be required to produce the highest accuracy in 

terms of predicting AEE (Bonomi & Westerterp, 2011). However, the disadvantage of this 

approach is the discomfort to the subject and the potential to alter the physical activity and 

sedentary behaviour being assessed (Westerterp, 1999b, Strath et al., 2005, Trost, 2005). 

Nevertheless, it has been proposed that using accelerometer data in combination with HR data 

can significantly improve the prediction of energy expenditure (Strath et al., 2000, Strath et al., 

2001). For example, the addition of HR to motion sensing increased the prediction of scaled 
•

VO 2 

in children (Eston et al., 1998) and hence the efficacy of using a combined HR and motion 

sensor approach to estimate free living activity in the two cohorts of children and adolescents 

was also explored in this thesis. 

 

1.6: Physical activity and health: 

 

Physical activity has consistently been associated with improved physiological functioning and 

lower disease risk according to observations drawn from controlled experimental trials and 

population based epidemiological studies (Blair et al., 2004). There is sufficient scientific 

evidence to conclude that physical activity has beneficial effects on adiposity levels, blood 

pressure, plasma lipid and lipoproteins levels and non traditional cardiovascular risk factors 

(inflammatory markers, endothelial function and heart rate variability) in adolescents and adults. 

Moreover, physical activity has beneficial effects on several components of mental health (self 

concept, anxiety and depression) (Strong et al., 2005, Haskell et al., 2007, Warburton et al., 
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2010, CMO, 2011). The benefits of regular physical activity have been clearly set out across the 

life course. In particular, for adults, doing 30 min of at least moderate intensity physical activity 

on at least 5 days a week helps to prevent and manage over 20 chronic conditions including 

coronary heart disease, stroke, type 2 diabetes, cancer, obesity, mental health problems and 

musculoskeletal conditions (WHO, 2010). Furthermore, there is a clear relationship between the 

amount of physical activity people do and all cause mortality (WHO, 2010). On the other hand, 

spending large amounts of time being sedentary may increase the risk of some health outcomes, 

even among people who are active at the recommended levels (Ekelund et al., 2006, Leblanc et 

al., 2012, Santos et al., 2012, Wagner et al., 2012).  

 

Physical inactivity is responsible for 6% of deaths globally - around 3.2 million deaths per year, 

including 2.6 million in low and middle income countries and 670,000 of these deaths are 

premature (WHO, 2011). A recent analysis indicated that reaching the recommended minimum 

level of physical activity (at least 30 min/d) compared with no activity was found to lead to a 

reduction in all cause mortality by 19% and this rose to 24% if an h a day was spent in physical 

activity (Woodcock et al., 2011). Furthermore, there is a 31% lower risk for all cause mortality 

in active individuals (Warburton et al., 2010). This demonstrates a positive dose response - in 

other words, that the benefits of physical activity increase as the amount of the activity increases. 

In adults, the improvements in physical activity are especially pronounced for high risk 

individuals, for example, those who are obese or have high blood pressure (hypertensive) 

(Warbuton et al., 2010). Research has also shown that being physically active daily will reduce 

the chances of mortality associated with cardiovascular disease: 30 min of moderate intensity 
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exercise on most days of the week, equivalent to 4.2 MJ (1000 kcal) a week, was enough to 

reduce cardiovascular related mortality (Paffenbarger et al., 1986).  

 

Physical activity has beneficial effects on blood glucose levels. Gill and Cooper (2008) reviewed 

20 longitudinal cohort studies and revealed that regular physical activity substantially reduces 

risk of type 2 diabetes. Adjustment for differences in BMI between active and inactive adult 

groups attenuates the magnitude of risk reduction but even after adjustment, a high level of 

physical activity was associated with a 20 - 30% reduction in diabetes risk. The data indicated 

that protection from diabetes can be conferred by a range of activities of moderate or vigorous 

intensity and that regular light intensity activity may also be sufficient, although the data for this 

was less consistent. The risk reduction associated with increased physical activity appears to be 

greatest in those at increased baseline risk of the disease, such as the obese, those with a positive 

family history and those with impaired glucose regulation (Gill & Cooper, 2008). Furthermore, a 

clinical trial of ≥8 weeks duration on HbA1c (A1c) and body weight in people with type 2 

diabetes, demonstrated that post intervention, A1c was significantly lower in those who exercised 

than controls (7.65 vs. 8.31%, weighted mean difference -0.66%,). In contrast, post intervention 

body weight did not differ between the exercise and control groups. Meta regression confirmed 

that the beneficial effect of exercise on HbA1c was independent of any effect on body weight. 

Therefore, structured exercise programmes had a statistically and clinically significant beneficial 

effect on glycemic control and this effect was not primarily mediated by weight loss (Sigal et al., 

2006, Yates et al., 2007, Umpierre et al., 2011). A subsequent meta-analysis (Boule´ et al., 2003) 

showed that exercise intensity predicted post intervention weighted mean difference in A1C (r = 

- 0.91, P = 0.002) to a larger extent than exercise volume (r = -0.46, P = 0.26). These results 
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provide support for encouraging type 2 diabetic individuals who are already exercising at 

moderate intensity to consider increasing the intensity of their exercise in order to obtain 

additional benefits in both aerobic fitness and glycemic control. In addition, Fulton-Kehoe 

(2001) carried out a case-control study among Hispanics in Colorado, and showed a 40% 

decrease in the odds ratio of being diabetic in the most active third of the population, whether 

leisure time or occupational physical activity was measured. A study of middle-aged Finnish 

adults showed that at least moderate intensity occupational activity, active commuting or leisure 

time physical activity were each associated with reduced diabetes incidence (Hu et al., 2005). 

The Finnish Diabetes Prevention Study (2001) was a randomised controlled trial of 522 people 

with impaired glucose tolerance (IGT). The intervention included intensive nutritional 

counselling and some endurance exercise advice. The aims were to reduce weight by about 5% 

(achieved by 43% intervention, 13% controls), to reduce total fat intake to around 30% or less 

(47% intervention, 26% controls), and to achieve the moderate physical activity 

recommendations of 30 min/d (increased physical activity 36% intervention, 16% controls). 

Intervention subjects lost around 4.2 kg (compared with 0.8 kg in controls) at 12 months, and 

also showed greater reductions in waist circumference and in blood pressure than controls. 

Diabetes incidence was reduced by 58% more among the intervention group than controls, and 

was related to the amount of lifestyle change. It was concluded that for every 22 people with IGT 

who received the intervention, one more case of diabetes might be prevented. Furthermore, the 

Diabetes Prevention Project (DPP group, 2002) was a multi-centre randomised controlled trial in 

the USA with 3234 adults with IGT. There were three trial arms: an intensive 16 session lifestyle 

intervention, a usual care arm, and a pharmacological arm (Metformin). The behavioural 

outcomes showed that 74% achieved their physical activity goal at one year, and also achieved 
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their weight loss goal of around 7% (weight loss of about 7 kg). There was a 58% reduction in 

the incidence of diabetes in the intensive lifestyle intervention group and a 31% reduction in the 

Metformin group, compared with controls. Given the strength of the evidence, the study was 

stopped early, with the behavioural intervention significantly more effective in preventing 

diabetes than Metformin. These trials provide evidence that diabetes can be prevented in those at 

high risk by lifestyle intervention. 

 

The influence of relatively extensive physical exercise on the composition and concentration of 

lipoproteins was clearly exemplified in a large US study (Kraus et al., 2002) in which 

overweight men and women were divided into four groups and monitored for eight months, one 

control group and three exercise groups. Group A exercised (ergometer cycling, jogging) with an 

energy expenditure that corresponded to 32 km jogging/week at 65 - 80% of VO2 max,   group B 

exercised at the same intensity but for a shorter distance (corresponding to an energy expenditure 

of 19 km jogging/week), while group C underwent the same amount of exercise as group B but 

at a lower intensity (corresponding to 40 - 55% of VO2 max). After 8 months of exercise, the 

concentration of HDL cholesterol increased only in group A (+ 9%), together with several other 

beneficial lipoprotein changes. Some changes were also noted in groups B and C (primarily an 

increase in the size of the LDL and VLDL particles) but to a much lower extent (Kraus et al., 

2002). Another cross sectional study was conducted on a representative sample (n = 3110) of 12 

- 19 y old American adolescents that measured cardiorespiratory fitness using a submaximal 

treadmill test. The results indicated that unfit girls, defined as the lowest 20% fit, were 1.89 (95% 

confidence interval: 1.12 - 3.17) times more likely to have hypercholesterolemia and 1.03 (0.74 - 

1.43) times more likely to have a low HDL cholesterol compared to moderately and highly fit 
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girls. Unfit boys were 3.68 (2.55 - 5.31) times more likely to have hypercholesterolemia and 1.25 

(0.79 - 1.95) times more likely to have a low HDL cholesterol compared to moderately and 

highly fit boys (Carnethon et al., 2005). 

 

Several studies indicate a relationship between physical activity and cardiovascular fitness. 

Physical activity causes a reduction of around 3 mm Hg for systolic blood pressure (BP) and 2 

mm Hg for diastolic BP in hypertensive patients. These reductions are particularly evident for 

moderate levels of physical activity, including walking (Fagard, 2001, Kelly et al., 2006). In 

addition, aerobic based interventions also result in significant reductions (~6% to 11%) in 

diastolic blood pressure (Dasgupta et al., 2006). Regular exercise constitutes strong protection 

against the increased risk of cardiac infarction in connection with physical exertion and the risk 

has been estimated to be only 2.5 times greater than at rest for men who exercise regularly (>6 

MET at least 4 - 5 days/week) (Mittleman et al., 1993). For women, the risk of suffering a heart 

attack during and in connection with physical exertion is very small (compared with the risk 

during a randomly selected hour without physical exertion) and the small risk that has been 

reported appears to vanish with regular exercise. For both men and women who exercise 

regularly, the risk of having a heart attack at all (that is at any hour of the day) is less than half of 

that among untrained individuals (Alevizos et al., 2005).  

 

It is known that intense physical exercise in children and adolescents, meaning mechanical 

loading on the skeleton, results in larger, stronger and more mineral dense bones and that this 

effect is more pronounced if the exercise is begun early (Kannus et al., 1995). If the exercise 

starts at an adult age, only small improvements in bone density are achieved. Nevertheless, it has 
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clearly been shown that the risk of a hip fracture is lower among trained individuals, while 

evidence is accumulating (albeit less strong) that exercise at an adult age reduces other types of 

fractures related to osteoporosis (Karlsson, 2002). Interestingly, veteran cyclists with many years 

of training had significantly lower bone density than control persons of the same age and, 

although very physically fit, they had a higher risk of being affected by brittle bones with 

increasing age (Nichols et al., 2003). Among women, intense exercise training such as long 

distance running can also lead to diminished bone density (Balasch, 2003). There is also 

evidence that among adolescents, increased leisure time physical activity (i.e. outside structured 

school programmes) is significantly associated with fewer depressive symptoms (over a two year 

period) and accelerates learning by increasing cognitive processes (e.g. memory functioning) 

(Penedo et al., 2005). In summary, the relationship between physical activity, health related 

fitness and health can be examined and understood by a model (Figure 1.4) by Bouchard & 

Shephard (1994) demonstrating the reciprocity between physical activity, fitness and health.   
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Figure 1.4: The relation between physical activity, fitness and health - Physical activity may 

influence fitness, which in turn may modify the level of physical activity. With increasing 

fitness, people tend to become more active, and the fittest persons tend to be the most 

active. The association between fitness and health is also reciprocal. Fitness influences 

health, but health status also influences both physical activity and fitness.  

 

1.7: Physical activity guidelines: 

 

It is becoming increasingly clear that variations in physical activity and sedentary behaviour are 

of enormous importance to the current and future health of children and adolescents (Strong et 

al., 2005). This is especially the case since it has been observed that several health outcomes 
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related to physical activity, such as obesity tend to track from childhood into adulthood (Twisk et 

al., 1997) and therefore adequate participation in physical activity during childhood and 

adolescence may be critical in the primary prevention of chronic disease (Trost et al., 2006). 

Current interventions are therefore aimed at modifying physical activity and sedentary behaviour 

which in turn would favourably modify the risk profiles of chronic diseases such as type 2 

diabetes, hypertension and cardiovascular disease (CMO, 2011). There is compelling evidence 

that an active and fit way of life has many important health benefits and that sedentary habits are 

associated with an increased risk of numerous chronic diseases and decreased longevity as 

shown in Figure 1.5 (DOH, 2004, Warburton et al., 2010, CMO, 2011). In addition, strong and 

consistent evidence based on experimental studies for several health outcomes indicates that 

participating in 2 - 3 h of moderate to vigorously intense physical activity/week is associated 

with significant health benefits (Janssen & LeBlanc, 2010).  
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Figure 1.5: A hypothetical model of the key stages of disease development throughout the life 

course. The upper line on the graph represents theoretical rates of progression – through growth 

and development, development of risk factors, onset of disease and disorders, and premature 

mortality – for inactive individuals. The lower line represents active individuals. In this model, 

physical inactivity has negative effects at all stages of life in terms of impaired growth and 

development, or high risk factors, with the final expression as disease or early death being seen 

primarily from mid adulthood (DOH, 2004). 
 

Evidence from observational studies also demonstrate dose response relations between physical 

activity and health (Janssen & LeBlanc, 2010), with differences in health risk between the least 

active (or fit) and inactive groups (Figure 1.5). However, continued debate as to how much, what 

type, how often, what intensity and how long the physical activity dose should be and how this 

dose should be quantified and disseminated has led to promulgation of numerous public health 

and clinical recommendations (Blair et al., 2004). Some of the inconsistencies among physical 

activity recommendations are due to incomplete understanding of the principal mechanisms of 

physical activity in enhancing health, augmented by methodological differences in collecting and 

interpreting data, while some are due to a focus on different health outcomes by different groups 

(Blair et al., 2004). It is clear that moderate intensity exercise of at least 30 min/d as described in 
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the consensus public health recommendations (USDHHS, 1996) produces significant 

improvements in health and that exercising at higher intensities has only modest additional 

effects (Blair et al., 2004).  

 

The principal recommendation that persons accumulate ≥30 min of moderate intensity physical 

activity/day was largely directed at 40 - 50 million US adults who are sedentary and who account 

for much of the health burden of chronic disease (USDHHS, 1996). Since these persons are 

unlikely to have the physical capacity to engage in greater quantities of high intensity physical 

activity and because compelling evidence shows health benefits can be accrued with even 

moderate amount of regular exercise (Blair et al., 2004). The Centres for Disease Control 

(CDC)/American College of Sports Medicine (ACSM) consensus report recommended a dose of 

physical activity likely to be achievable by the primary target population and that was supported 

by a large evidence base as being efficacious for disease risk reduction among most persons 

(Blair et al., 2004). For example in the Harvard Alumni study, that examined physical activity in 

16, 936 Harvard alumni showed an inverse relation between all cause mortality and increment of 

reported physical activity. The risk of death in men with an activity index of 3,500 kcal/week 

was less than 50% of that associated with <500 kcal/week. Furthermore, the men in the activity 

index of <2,000 kcal/week had 38% greater risk of death over a 12 y to 16 y follow up period 

than those in the higher activity index ranges (Paffenbarger et al., 1986). The CDC/ACSM report 

also stated that persons meeting the basic recommendations could gain additional benefits by 

doing more exercise including some at higher intensities. Implicit in the ACSM recommendation 

is that exercise is similar to other therapeutic agents with a dose response characteristics of 

which a minimal dose that has proven efficacy and safety is typically prescribed as the initial 
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dose (Blair et al., 2004). Recent evidence reaffirms the dose response relationship between 

physical activity and all cause mortality, since there is typically a risk reduction of around 30% 

for those achieving the recommended levels of at least moderate intensity physical activity on 

most days of the week, compared with those who are inactive (Lee et al., 2001).  

 

A sedentary lifestyle, often adopted during adolescence and continued into adulthood, is a major 

concern for public health (AAP, 2007, USDHHS, 2008, USDHHS, 2010). The dramatic increase 

in the prevalence of overweight and obesity and other lifestyle disorders such as diabetes, cancer, 

hypertension and cardiovascular diseases over the past decades (Trembly et al., 2005, Warbuton 

et al., 2010) is related to, and often ascribed to lower levels of physical activity and increase in 

sedentary behaviour (Jakicic & Otto 2005, Ortega et al., 2007, WHO, 2010). This has resulted in 

the development of physical activity guidelines to promote maintenance of appropriate levels of 

physical activity and sedentary behaviour. Experts advocate promotion of physical activity 

among children and adolescents for health enhancement and to instil lifelong behavioural 

patterns that will result in more active and fit adult populations in the future (Sallis & Patrick, 

1994, Twisk et al., 1997). This rationale rests considerably on two fundamental assumptions: 

first, that there are inherent acute physical and psychological benefits to physical activity among 

children and adolescents and, second, that physical activity behaviours between childhood and 

adulthood are correlated and that physically active children are more likely to grow up to be 

physically active adults compared with their inactive peers (Sallis & Patrick, 1994). These active 

adults will then be healthier by way of a reduced risk to a variety of health conditions (Sallis & 

Patrick, 1994). Although the evidence for tracking of physical activity behaviour is tenuous 

(Malina, 1996), most efforts for physical activity promotion among children and adolescents rely 
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on the assumptions of tracking of physical activity from childhood to adulthood (Kohl et al., 

2000). The United Kingdom Expert Consensus Conference proposed that each child accumulate 

at least 60 min of at least moderate intensity physical activity each day (Cavill et al., 2001, 

CMO, 2011) based on the findings that in general, differences in health outcomes have been 

observed at around 60 min/day in children and young people, whereas such differences have 

been observed at a level of approximately 30 min/d in adults. Thus, the best available evidence 

has been used in determining the level of activity required to benefit health in each specific age 

group (USDHHS, 2008, CMO, 2011).  

 

The 2008 physical activity guidelines for Americans (USDHHS, 2008) recommend that children 

and adolescents should accumulate at least 60 min or more of physical activity daily. Most of the 

60 or more min a day should be either moderate or vigorous intensity aerobic physical activity 

and should include vigorous intensity physical activity at least 3 days a week. As part of their 60 

or more min of daily physical activity, children and adolescents should include muscle 

strengthening physical activity on at least 3 days of the week. In addition, children and 

adolescents should include bone strengthening physical activity on at least 3 days of the week. 

Similarly, the American Academy of Pediatrics (AAP) has published guidelines for enhancement 

of physical activity and limitation of sedentary behaviour in paediatric populations (AAP, 2007). 

It is recommended that television and video time is limited to a maximum of 2 h/d for the 

prevention of paediatric overweight and obesity and resultant comorbidities (AAP, 2007). 

 

In the UK, recent published physical activity guidelines recommend that physical activity should 

be encouraged from birth, particularly through floor based play and water based activities in safe 
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environments. Children of preschool age who are capable of walking unaided should be 

physically active daily for at least 180 min (3 h), spread throughout the day. All under 5s should 

minimise the amount of time spent being sedentary (being restrained or sitting) for extended 

periods (except time spent sleeping). In addition, the 180 min of recommended activity can be of 

any intensity. This aligns with the types of physical activity most naturally occurring during the 

early years, including intermittent and sporadic patterns. Moreover, the recommended 180 min 

of physical activity for preschool children who can walk can include light intensity activity, 

active play and more energetic activities, such as running, swimming and skipping. Furthermore, 

the 180 min of physical activity should be spread throughout the day rather than in one long 

session. For this age group, the amount of physical activity is more important than the intensity. 

In addition, this report recommends reduction of sedentary behaviour such as, time spent in 

infant carriers, car seats, highchairs and TV viewing or other screens based entertainment (CMO, 

2011). Distinct guidelines were also published for children aged 5 - 18 y. It is recommended that 

this age group should engage in moderate to vigorous intensity physical activity for at least 60 

min and up to several h/d, which is similar to the earlier guidelines (Cavill et al., 2001). 

However, the current guidelines also recommend that vigorous intensity activities, including 

those that strengthen muscle and bone, should be incorporated at least three days a week. 

Additionally, all children and young people should minimise the amount of time spent being 

sedentary (sitting) for extended periods. Therefore, the current UK and US physical activity 

guidelines are consistent in recommending at least 60 min of MVPA daily and limitation of 

sedentary time for health promotion in children and adolescents.  
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1.8: Physical activity and the environment:  

 

From an evolutionary perspective, humans are designed for a physically active lifestyle, while 

cultural circumstances permit and reinforce an inactive alternative in industrialised countries 

(Malina & Little, 2008). Throughout human evolution history, the lifestyle of humans included 

physical activity on a regular basis except for the past two or three generations (Malina & Little, 

2008). Consequently, the combined effects of the transition to a sedentary lifestyle and attendant 

dietary changes have resulted first in an epidemic of coronary heart disease and more recently an 

epidemic of overweight/obesity in postindustrial societies (Malina & Little, 2008). Social and 

environmental changes have accompanied the ongoing rapid urbanisation in a number of 

countries during recent decades and therefore, understanding the role of urbanisation in the 

health risk transition is important for health policy development at national and local levels (Lim 

et al., 2009). Urbanisation is recognized as a driver of the globally changing health hazard 

panorama with specific proximate social, economic, environmental and behavioural health risks 

developing in the wake of urbanisation (Ompad et al., 2007). Low participation in health 

enhancing physical activity may be ascribed to urbanisation, which inevitably affects population 

health substantially (Hodge et al., 1995). Urbanisation is a global trend which may be altering 

habitual physical activity and sedentary behaviour of children and adolescents unfavourably but 

there is almost no objectively measured data on physical activity of urban and rural adolescents 

in Sub Saharan Africa. Therefore, one of the objectives of this thesis was to determine the impact 

of urbanisation (i.e. the environment) on physical activity levels, patterns and indices of 

adiposity in Kenyan adolescents. 
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In a study by Riddoch et al (2007) that examined the physical activity profiles of European 

children and adolescents, it was reported that only 2.5% of the 5,595 school children surveyed 

appear to have met recognized physical activity guidelines for children and adolescents. These 

disturbing findings reflect an ongoing decline in physical activity across all age groups during 

the past several decades in Europe (WHO, 2006) based on questionnaire based studies. This 

decline in physical activity may be explained by the mechanisation of work and daily tasks and 

thus, not labour intensive, the increased use of motorised transport instead of walking or cycling 

and increased sedentary behaviour such as inactive leisure pursuits (such as watching television 

and using a computer) (WHO, 2006). These trends are beginning to be replicated in the 

developing world. For example, it is estimated that by 2020 chronic diseases of lifestyle will be 

almost 50% of the burden of disease in Sub Saharan Africa (Kagwiza et al., 2005). Rapid 

urbanisation with changes in lifestyle, such as physical activity patterns could explain at least 

partially, the ongoing epidemiological transition in Sub Saharan Africa (Kagwiza et al., 2005).  

 

1.9: Summary: 

 

The literature review in this chapter has summarised the relationship between physical activity, 

energy expenditure and health. In addition, various approaches aimed at assessing physical 

activity have been described. It is apparent that objective methods are increasing the validity, 

reliability and accuracy of physical activity assessment such that the association between 

physical activity and health outcomes may be improved. Accelerometry is increasing in 

popularity as a method of choice in assessing physical activity and sedentary behaviour. 

However, there are several methodological challenges in using accelerometry such as which 
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epoch and cutpoint to use, how much monitoring is required to obtain reliable estimates of 

physical activity in children and adolescents and the predictive validity of accelerometers need to 

be determined. In addition, the relationship between physical activity, energy expenditure and 

adiposity are explored in inactive and active cohorts. Finally, the impact of the environment and 

gender on physical activity and adiposity is also examined in this thesis. 

 

1.9.1 Objectives: 

 

1. To determine a) the effect of epoch and cutpoint selection on accelerometer counts per 

minute (CPM), sedentary and MVPA time, b) the minimum wear time required to 

achieve reliable estimates of CPM, sedentary and MVPA time in children and 

adolescents (Chapter 3). 

2. To determine the validity of uniaxial ActiTrainer outputs and triaxial GT3X outputs 

against 2 during structured activities in adolescents (Chapter 4).   

3. To examine the validity of uniaxial ActiTrainer with HR monitoring vs. triaxial 3DNX 

accelerometers against DLW criterion method during free living activities in children and 

adolescents (Chapter 5).  

4. To examine the relationship between free living physical activity, TEE, and indices of 

adiposity in children and adolescents (Chapter 6). 

5. To examine the relationship between the environment, physical activity and indices of 

adiposity in children and adolescents (Chapter 7). 

•

VO
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1.9.2: Thesis outline: 

 

The first experimental chapter (Chapter 3) will examine the impact of methodological decisions 

on accelerometer outputs in European children (inactive) and Kenyan adolescents (active). The 

impact of several methodological decisions on processing of accelerometer data will be 

examined. Subsequently, the novel ActiTrainer, GT3X and 3DNX accelerometers will be 

compared against DLW and indirect calorimetry in children and adolescents (Chapter 4 - 5). The 

validated ActiTrainer will then be used in Chapter 6 to examine the relation between physical 

activity levels and patterns and free living energy expenditure and in Chapter 7, to determine the 

relation between the environment, physical activity and indices of adiposity in children and 

adolescents. Finally in Chapter 8, the findings will be put into perspective i.e., the prospects of 

accelerometry being the preferred method of choice in the objective assessment of physical 

activity and energy expenditure in children and adolescents. 
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Chapter 2 

2.0: Materials and Methods: 

 

2.1: Study design, recruitment and methods 
 

 

This chapter is divided into three main parts. In the first part the overall study design is described 

in detail and the field work stage (including methods of recruitment and sample collection) are 

discussed. The second part describes the analytical processes involved in assessing energy 

expenditure using DLW technique. Finally, the third part describes physical activity assessment 

using accelerometers and indirect calorimetry. 

 

2.1.1: The Identification and prevention of dietary and lifestyle induced health 

effects in children and infants (IDEFICS) study.  

 

The IDEFICS study is one of the largest European studies of childhood obesity and includes 11 

countries and approximately 17,000 children aged between 2 - 10 years (Bammann et al. 2006). 

The aim of the IDEFICS study is to investigate the primary factors leading to child obesity by 

assessing the lifestyle patterns of children within the European Union in order to develop suitable 

interventions aimed at countering the obesity epidemic. A number of novel interventions are 

utilised within the IDEFICS study in order to improve health awareness and encourage healthy 

eating and physical activity in children. One of the primary aims of IDEFICS is to validate field 

measures of physical activity (i.e. accelerometry) against criterion measures such as DLW in 

young children. This thesis adressess this objective. On the other hand, accelerometery may have 

limited utility in prediction of energy expenditure in relatively sedentary populations such as 
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European children in IDEFICS. Therefore, there is a need to validate accelerometers in active 

populations  such as in Kenyan children (Larsen et al. 2004, Onywera et al. 2006). 

 

2.1.2: The Kenyan adolescent physical activity study (KAPAS): 

 

Kenyan children provide a model of very active childhood, with some authors reporting that 

Kenyan children from rural areas run up to 20 km to school and are actively engaged in leisure 

time activities and household chores (Larsen et al., 2004, Onywera et al., 2006). Ideally, children 

(IDEFICS) and adolescent (KAPAS) study participants ages should have been matched. 

However, selection of older Kenyan adolescents was made based on practical reasons. 

Accelerometry is a novel technique (even more so in Africa). Older youths compared to very 

young children were therefore selected simply because of compliance issues and concerns over 

loss of devices. Compliance to study protocol becomes a major problem in studies of this nature 

where continuous monitoring for extensive periods is required, especially in very young children. 

This however, was not a problem in IDEFICS. The age differences between the two study 

cohorts was a minor limitation since the primary focus of this thesis was to validate 

accelerometers in two cohorts with distinct physical activity profiles. 

 

2.1.3: Subjects 

 

The fieldwork for the IDEFICS and KAPAS was carried out from October 2008 to July 2009 in 

convenience samples of healthy children (IDEFICS) and adolescents (KAPAS). 96 children aged 

4 - 10 years were recruited from 4 validation centres at the universities of Glasgow (UGLW), 
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Ghent (UGENT), Gothenburg (UGOT) and Zaragoza (UZAZ) for IDEFICS (Figure 2.1). 

KAPAS, on the other hand, recruited 266  adolescents aged 12 - 17 years from the Nandi region 

in Eldoret, Kenya (Figure 2.1) where habitual physical activity levels are thought to be high 

(Larsen et al., 2004, Onywera et al., 2006). The decision for taking convenience samples was 

made because the burden of taking measurements for participating children and adolescents was 

deemed too high for a random sample. All the schools used in the study were day schools, to 

examine the influence of active commuting to school on overall physical activity levels.  

 

IDEFICS Study Area           KAPAS study area 

     

Figure 2.1: Geographic location of the IDEFICS (UK, Belgium, Sweden and Spain) and 

KAPAS (Eldoret, Kenya) study cohorts.  
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2.1.4: Sample size and power calculations: 

 

For the IDEFICS sample size calculations showed that 31 children in each validation centre was 

sufficient for detecting mean differences of 5% between DLW criterion for AEE and 

accelerometer outcomes at a significance level of 0.05, with a statistical power of 80% for 

physical activity assessment methods (Bammann et al. 2011). However, data on which to base a 

sample size calculation for the KAPAS were limited as there have been no previous 

investigations on accelerometry and energy expenditure in Kenyan adolescents. Therefore, 

approximate sample size calculations to determine the required sample size to obtain statistical 

power of 80%, with a modest effective size of 0.33 indicated a minimum sample of 37. This was 

therefore set as the minimum recruitment target. The upper limit for participant numbers was 

determined by participant availability within the data collection time frame. Power calculations 

were completed  using Minitab (version 14, Minitab Inc. Pennsylvania). 
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Figure 2.2: Flow diagram of thesis study design 

Study participants 
European children 4-10 y 

Kenyan adolescent 12-17 y 

European sample (n = 96) Kenyan Sample (n = 266) 
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2.1.5: Ethical approval: 
 

Written informed consent was obtained from parents and the heads/principals of the participating 

schools. Ethical approval for the studies was granted by the respective Ethical Committees of 

each of the four centres for IDEFICS subsequently referred to as children. For KAPAS, 

subsequently referred to as adolescent, informed written consent was obtained from parents and 

the principals of the participating schools. Ethical approval for the studies was granted by the 

Institutional Research Ethics Committee (IREC), Moi University, Eldoret, Kenya. Subjects 

suffering from injury or any condition likely to limit physical activity were excluded from the 

studies. In addition, subjects were required to personally assent to participate in the studies. 

Furthermore, subjects were free to withdraw from the studies at any stage if they felt 

uncomfortable without the need to provide any explanation. However, none of the subjects 

withdrew. 

 

2.1.6: Anthropometrics: 

 

 In all subjects, height was measured to the nearest 0.1 cm using a portable stadiometer 

(Somatometre Model SE V91, Seca, Birmingham, UK). The volunteer was measured barefoot, 

with their back positioned against a fixed backboard and their arms relaxed in the lateral 

position. The head was also positioned against the backboard, with the line of eyesight 

perpendicular to the backboard. Measurement was performed when the volunteer was positioned 

and relaxed, and a moveable headboard was lowered on to the top of the head with light pressure 

allowing hair compression. Body mass (BM) was also measured to the nearest 0.1 kg using 

portable weighing scales (Seca, Model 761, Vogel & Halke, Hamburg, Germany). Subjects were 
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weighed with minimal clothing (e.g. shorts and shirt) without shoes and both feet flat on the 

balance, with arms positioned in the lateral position. BMI relative to International Obesity Task 

Force (IOTF) (Cole et al., 2000) definitions was used to define subjects as overweight or obese, 

and BMI z scores were calculated relative to WHO reference data (WHO, 2007a, WHO, 2007b).  

 

2.1.7: Doubly labelled water: 

 

TEE was measured with DLW according to the Maastricht protocol  (Westerterp et al., 1995) for 

the child cohort and the Aberdeen protocol (Speakman et al., 1997) for the adolescent cohort. In 

short, the Maastricht protocols involves an overnight fast (about 8 h), collection of urine specimens 

before the administration of the isotope dose (day 0). This serves as the baseline isotope 

measurement. Subjects drink a weighed amount of 2H2
18O resulting in an initial excess body 

water enrichment of 150 ppm for deuterium and 300 ppm for oxygen 18. Subsequent urine 

samples are collected from the second voiding in the morning and a subsequent voiding in the 

evening on Days 1, 4, and 8.  Samples were analysed in duplicate for H2O
18 and 2H2O at the 

Department of Human Biology at Maastricht University, Netherlands. The Aberdeen protocol  

on the other hand, involves  collection of baseline urine samples before oral dosing with 0.15 g 

H2O
18 and 0.12 g 2H2O/kg body mass. The following morning, subjects provide two timed urine 

samples (morning and evening). This is repeated over the 7 d urine collection period. Samples 

were analysed in duplicate for H2O
18 and 2H2O at the Energy Metabolism Research Unit in the 

Department of Nutritional Sciences at The University of Aberdeen, Scotland.  

 



 

(i) Urine samples: All urine samples 

aliquoted immediately into smaller plastic tubes (about 5

analysis.  

 

(ii) Analytical Methods: 

All isotope measurements were 

Micromass Inc., Beverly, USA). 

hydrogen gas at 490oC. For the zinc equilibratio

samples using an offline zinc reduction method 

were dispensed into quartz reduction vessel

vessels containing 100 mg of zinc. Samples were frozen with liquid nitrogen, and the vessels 

were evacuated and then sealed. Reduction of the samples was achieved by heating the

500°C for 30 min. The resulting hydrogen gas was introduced into a dual inlet, stable

ratio mass spectrometer (OPTIMA

enrichment. The 18O measurements determine C

of urine was then equilibrated with 10 ml tank CO

oxygen 18 values for the predose (

was subsequently diluted with tap water. The amount 

recorded.  

 

The deuterium and oxygen 18 conten

measured. 

X = [(δpost - δpre)/ δdose - δtap] X 18.02a/WA
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All urine samples were collected in non acidified plastic bottles. The urine was 

aliquoted immediately into smaller plastic tubes (about 5 ml urine) and stored frozen (

were made with an isotope ratio mass spectrometer

). The deuterium measurement use zinc reduction of the water to 

For the zinc equilibration method, hydrogen gas was prepare

line zinc reduction method 3 L of sample (water, diluted dose, or urine) 

were dispensed into quartz reduction vessels over a stream of nitrogen gas into the base of the 

100 mg of zinc. Samples were frozen with liquid nitrogen, and the vessels 

were evacuated and then sealed. Reduction of the samples was achieved by heating the

. The resulting hydrogen gas was introduced into a dual inlet, stable

TIMA, Micromass Inc., Beverly, USA) and analyzed for deuterium 

O measurements determine C18O2 using a H2O-CO2 equilibration system.

uilibrated with 10 ml tank CO2 in a sealed tube. The delta deuterium and 

dose (δpre) and postdose (δpos) were then determined. The DLW dose 

diluted with tap water. The amount of dose diluted and water used wa

18 content of the tap water (δtap) and diluted dose (

] X 18.02a/WA 

acidified plastic bottles. The urine was 

ml urine) and stored frozen (-4°C) until 

made with an isotope ratio mass spectrometer (OPTIMA, 

The deuterium measurement use zinc reduction of the water to 

n method, hydrogen gas was prepared from the 

L of sample (water, diluted dose, or urine) 

s over a stream of nitrogen gas into the base of the 

100 mg of zinc. Samples were frozen with liquid nitrogen, and the vessels 

were evacuated and then sealed. Reduction of the samples was achieved by heating the vessels at 

. The resulting hydrogen gas was introduced into a dual inlet, stable isotope 

A) and analyzed for deuterium 

ibration system. 2 ml 

be. The delta deuterium and 

then determined. The DLW dose 

of dose diluted and water used was 

and diluted dose (δdose) were 
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Where W = amount of water in g used to dilute the dose, A = amount of dose in g administered 

to the subject, a = amount of dose in g diluted for analysis. Linear regression was used to 

calculate the slope and intercept of the linear relationship between the time in days and the 

normalised data for each isotope. The pool sizes NH and NO were derived as the reciprocal of the 

intercept. The intercept of the regression line is the ratio of the pool sizes spaces NH/NO. The 

multipoint data was plotted to inspect for any outliers. Any outliers were reanalyzed. 

 

(iii) Calculation of daily CO2 production: The mean daily CO2 production (rCO2) in mol/d was 

calculated according to the revised equation of Speakman et al. (1993). 

 rCO2 = (N/2.196) x (kO – 1.042 kH) where N = [(NO) + (NH/ 1.0427)]/2. 

 

(iv) Determination of Total energy expenditure: 

The estimate of energy expenditure was calculated from carbon dioxide production assuming 

127.5 kcal/mol carbon dioxide (a typical western diet will produce Respiratory Quotient (RQ) of 

0.85, with 15% of energy from protein oxidation). The use of a general value for conversion of 

CO2 to energy expenditure for a western type diet was found to predict to within 5% of energy 

expenditure in a random sample of individuals (Black et al. 1986). 

 

The Weir Equation uses measured RQ and urinary nitrogen production rate (UN) to calculate 

energy expenditure (Q) was used as shown below. 

Q =3.941 (rCO2/RQ) + 1.106 RCo2 – 2.17 UN  
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(v) Determination of Basal Metabolic Rate, Activity induced Energy Expenditure and 

Physical activity Levels: 

 

The Schofield equations (1985) based on gender, age, height and weight were used to predict 

BMR for the child sample aged 3 - 10 years as described below.  

BMR (kcal/d) = 19.59W + 1.303H + 414.9 (males)  

BMR (kcal/day) = 16.969W + 1.618H + 371.2 (females) 

W is weight in Kg and H is height in cm. 

The predicted BMR above, were subsequently used to predict activity induced energy 

expenditure (AEE). AEE is the energy expenditure associated with muscular contractions 

involved in body movements and maintenance of posture, and is the most variable component of 

TEE and is expressed as = 0.9% x TEE – BMR and Physical activity Level (PAL) expressed as: 

= TEE/BMR (Westerterp, 2003) in the child sample only. Ethnicity may have an impact on 

BMR, as it has been reported that Africans have lower BMR values compared to Caucasians 

(Vander Weg et al., 2004, Henry, 2005). Predictive equations developed for Caucasians may 

therefore lead to significant overestimation of BMR. Therefore, the predictive validity of the 

Schoefield equation in African populations is questionable (Wong et al., 1996, Vander Weg et 

al., 2004, Henry 2005). Currently, there is no conclusive study on the predictive validity of any 

of the multiple published BMR prediction equations that would be appropriate to use in 

adolescents of Sub Saharan African descent.  For the adolescent cohort therefore, PAL and AEE 

were not calculated from any of the published predictive equations as these were deemed to be 

inaccurate based on the fact that an appropriate BMR prediction equation for African adolescents 

is yet to be conclusively determined. Therefore, only measured TEE was reported in this thesis. 
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2.1.8: Accelerometry: 
 

 

The ActiTrainer accelerometer (ActiGraph LLC, Pensacola, FL, USA)  is surrounded in a metal 

shield and packaged into a plastic enclosure measuring 5 x 4 x 1.5 cm, weighs approximately 45 

g including a 3V (2430) coin cell lithium battery, has a sampling range of 0.25 to 2.5 g, a 

sampling frequency of 30 Hz and contains a cantilevered rectangular pizoelectric bimorph plate 

and seismic mass, a charge amplifier, analog bandpass filters, and a voltage regulator to measure 

acceleration in a single plane (Figure 2.3). The filtered acceleration signals (in the vertical plane) 

generate counts that are digitalised and the magnitude is summed over a user specific time (an 

epoch interval). At the end of each epoch the summed value is stored in memory and the 

numerical integrator reset.  

 

                                          

Figure 2.3: Uniaxial ActiTrainer ActiGraph accelerometer 

 

The GT3X accelerometer (ActiGraph LLC, Pensacola, FL, USA) on the other hand, is a triaxial 

accelerometer which may allow for a more comprehensive analysis of activity and movement 

patterns. The GT3X has the same dimensions as the GT1M (ActiGraph LLC, Pensacola, FL, 

USA) (27g, 1.5 x 1.44 x 0.70 cm and records accelerations ranging from 0.5 - 2.5 g's. Its output 

is digitized at a rate of 30 Hz and the magnitude is summed over a user specific epoch (Figure 

2.4).  The data outputs from GT3X are the sum of the three axes = (X +Y+Z), where Y are 
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counts in the vertical plane, X are counts in the anteroposterior plane and Z are counts in the 

mediolateral plane.  

 

 

                                                       

Figure 2.4: Triaxial GT3X ActiGraph accelerometer 

 

The Triaxial 3DNXTM model v3 accelerometer (BioTel Limited, Bristol, UK: www.biotel.co.uk) 

on the other hand, is also sensitive to movements in three planes: X (anteroposterior), Y 

(mediolateral) and Z (vertical). The unit measures 54 x 54 x 18 mm, and weighs 70 g including a 

3.6 v lithium battery (Saft Ltd., UK) with a life of ~21 days collecting data at 5 s epoch (Figure 

2.5). The unit contains two ADXL321 biaxial microelectromechanical (MEMS) sensors (Analog 

Devices Ltd., Surrey, UK) positioned orthogonally to measure acceleration in three movement 

planes. The sample frequency of the 3DNX is 100 Hz with a low pass filter set at 0.2 Hz and a 

high pass filter set at 20 Hz which ensures that most non human movement, such as vibration, is 

not registered. Once the digital signal is filtered, it is fully rectified and integrated over one 

second. The 1 s integrals are summed depending on the epoch selected by the user (currently 

between 5 and 60 s) to produce an arbitrary ‘counts’ value. Approximately 42 days of data can 

be stored when collecting at 5 s intervals. All raw accelerometer data were downloaded using 
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dedicated software (Biotel Limited, Bristol, UK) and imported into a spreadsheet where the 15 s 

epoch accelerometer counts from X, Y and Z axes were summed.  

 

                                                             

Figure 2.5: Triaxial 3DNX Biotel accelerometer. 

 

Prior to testing of each subject, activity monitors were calibrated by the manufacturers, tested 

and fully charged. The accelerometers were placed in a small nylon pouch and firmly adjusted at 

the right hip of the subject by an elastic belt. Activity diaries were also completed by each 

subject or their parent(s)  

 

Figure 2.6: Child and adolescent subjects wearing accelerometers and HR monitors. 
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(i) Accelerometer data editing and analysis: Accelerometer data were analysed using 

algorithms developed in R (version R 2.9.0. R Foundation for Statistical Computing, Vienna, 

Austria: http://www.R-project.org). A very large number of statistical analyses are implemented 

as add on packages to R, most of them are freely available from public repositories 

(Comprehensive R Archive Network = CRAN, http://cran.r-project.org/, Bioconductor 

www.bioconductor.org) and very easily installable from within R. Implementing the software for 

accelerometer data analysis within a widely used statistical environment such as R has an 

important advantage over the already existing computing infrastructure (e.g., for handling dates 

and times, computing summary statistics, and making custom high quality plots). The advanced 

data analysis capabilities of R can easily automate any complex analyses. These functions allows 

R: to read in raw data files (currently different versions of ActiGraph and 3DNX raw files but 

new file types can be easily added as required), apply simple data cleaning algorithms (e.g., filter 

out implausible data, find non wear periods such as 20 or any other number of minutes of 

consecutive zeros), calculate summary statistics (wear time, counts per minute, time in activity 

intensity zones using unlimited number of different cutpoints, time in MVPA bouts) by any 

period (usually day or hour but potentially also periods like 30 min or 2 days) and make 

corresponding diagrams in any graphics format supported by R (e.g., pdf, eps, jpeg, png, etc). R 

also allows customisation of automatic tasks, such as producing feedback to the participants in 

the form of tables, figures and texts. For the child and adolescent studies, a set of add on 

functions to R were developed which allowed R to automatically read in the accelerometer raw 

files, reintegrate data collected in 1 s epoch to 15 s,  30 s and 60 s, edit the data for excluding the 

likely non wearing periods and compute daily summary statistics. Two rules were used for 

excluding data: (a) all negative counts were replaced by missing data code and (b) periods of 20 
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min or more consecutive zero counts were replaced by missing data code prior to further analysis 

as recommended by Treuth et al. (2003) who found this period of inactivity to be inconsistent 

with monitor wear. The output generated by R included, CPM, HR data, total monitoring time, 

number of min spent in each physical activity intensity for each cutpoint and percentage of 

overall time spent in the specified activity level. 

 

2.1.9: Heart rate assessment: 

 

All subjects in the child and adolescent studies were fitted with a HR transmitter belt (Suunto t6, 

Suunto Oy, Vantaa, Finland) on the chest to record HR continuously on the ActiTrainer 

accelerometer. HR data can be added to the list of ActiTrainer accelerometer output parameters 

to record average, peak and instantaneous beats/min. Before wearing the HR monitor, the 

electrodes were moistened with running water. The chest strap was securely attached to the chest 

to create a unique coded communication link with the ActiTrainer accelerometer. To ensure 

trouble free HR monitoring, subjects were instructed not to wear HR monitors where 

electromagnetic disturbances (computers, mobile phones and cars) would interfere with signal 

transmission. An explorative approach was used to test the relationship between energy 

expenditure and HR indices. The HR indices tested were mean HR, median HR, flex HR 

(defined as the average of the lowest HR during exercise and the highest HR during rest (Trost, 

2001). In addition, accelerometer data was used to define HR in all the activity domains 

(sedentary, light, moderate and vigorous) using the Evenson cutpoints (2008). In addition, the 

difference in HR during vigorous and sedentary activity, moderate and sedentary activity and 

light and sedentary activity was examined. None of the HR parameters examined were 
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significantly associated with energy expenditure except the difference in HR during moderate 

and sedentary activity which was defined as (∆HRacc), hence ∆HRacc was the only HR parameter 

subsequently used in energy expenditure prediction equations in this thesis. 

 

2.2.0 Global positioning system (GPS): 

 

Subjects were fitted with either a Timex trainer V 1.3.36 (Timex Group, USA) or GPSports 

Team AMS Release 1.2.1.12 (Fyshwick, Australia) GPS devices during their travel from home 

to school to obtain daily distance travelled to school (active commuting) in the adolescent sample 

only. The position of a GPS receiver is calculated by measuring the distance between itself and 

three or more GPS satellites. Each satellite is equipped with an atomic clock.  When  first 

powered on, GPS devices undergo an  initialization period, during which  they  acquire  signals  

from  the  satellites,  and  synchronize  the  GPS  clock  with  the satellite’s  atomic  clock. GPS 

devices constantly  receive  and  analyze  radio  signals from  the  satellites,  calculating  precise  

distance  (range)  to  each  satellite  being tracked by using trilateration, a mathematical 

technique used  to determine user position, speed, and elevation (Maddison & Mhurchu, 2009). 

 

2.2.1: Metabolic gas analysis: 

 

Expired respiratory gases were collected and 
•

VO 2 measured by an online breath by breath system 

using a portable gas analyzer (Cosmed K4b2, Rome, Italy) in the adolescent sample only. This 

portable indirect calorimetry system was worn on the back using a harness. The unit is light 

weight (approximately 1.5 kg) and is specifically designed to measure 
•

VO 2 in non laboratory 
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settings (Trost et al., 2006). A flexible facemask (Hans Rudolf, Kansas City, MO, USA) held in 

place by a nylon head harness covered the participant’s nose and mouth. The mask was attached 

to a bidirectional flow meter to measure the volume of inspired and expired gases. A sample line 

running from the turbine to the analyzer unit delivered expired air for the determination of O2 

concentration (Figure 2.7). The Cosmed K4b2 has been shown to provide valid measures of 
•

VO 2 

over a range of exercise intensities in children and adults (McLaughlin et al., 2001, Eisenmann et 

al., 2004, Trost et al., 2006). The Cosmed K4b2 was calibrated immediately before each test 

according to the manufacturer’s guidelines. The guidelines consisted of a four step calibration 

process: ambient air calibration, reference gas calibration, delay calibration, and turbine 

calibration. The ambient air calibration was automatically run before tests to correct for 

atmospheric values. Subsequently, a reference gas calibration was then done using reference 

gases of known composition (5.5% CO2, 15.9% O2, and 78.6% N). A delay calibration was then 

performed to compensate for the time lag between the expiratory flow measurement and the gas 

analyzers. The final calibration step, the turbine calibration, included setting the flow meter with 

a 3 L syringe (Hans Rudolph, Kansas City, MO, USA) to ensure accurate volume measurements.  
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Figure 2.7: Subject wearing Cosmed K4b
2
 gas analyser.

  

 

2.3: Statistical analysis: 

 

Data were analyzed using SPSS (version 17), R (version R 2.9.0., R Foundation for Statistical 

Computing, Vienna, Austria, http://www.R-project.org) and Minitab v. 15. Prior to analysis, 

quantitative data were tested for normality using the Shapiro Wilk normality test and appropriate 

statistics employed. Specific statistical analyses used are described in detail in the method 

section of each chapter. 
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Chapter 3: 

 

3.0: Impact of methodological decisions on accelerometer outcome variables 

in children and adolescents. 

 

 

3.1 Introduction: 

 

Objective assessment of physical activity in children and adolescents by accelerometry is 

considered valid, precise and reliable when assessed in a number of different populations 

(Rowlands & Eston, 2007, Trost, 2007, Stone et al., 2009). However, there is considerable 

inconsistency in accelerometry methodology as different studies use different epoch and 

cutpoints for physical activity classification (Guinhoya et al., 2006, Reilly et al., 2008). 

Furthermore, accelerometer data may not be measured in uniform periods each day (Corder et 

al., 2008) and therefore, it is imperative that accelerometer studies determine what constitutes 

reliable estimates of habitual physical activity and sedentary time. 

 

A significant impediment to the universal application of accelerometer derived outcome 

variables in comparative studies is the lack of concordance in the preanalytical and analytical 

processing protocols employed in different accelerometer studies (Esliger et al., 2005, Colley et 

al., 2010). It has been reported that small methodological inconsistencies such as use of different 

epochs and cutpoints can have a profound influence on accelerometer outcome variables 

(Rowlands et al., 2006, Reilly et al., 2008). Furthermore, different authors use different decision 

rules to define, how many hours constitutes a valid days’ recording, how many consecutive 
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zeroes define a period when monitor was not worn and how many days of monitoring are 

required to achieve reliable estimates of habitual physical activity levels (Màsse et al., 2005, 

Ward et al. 2005). Consequently, it has been recommended that protocols for use in paediatric 

and adolescents accelerometer studies should be standardised to eliminate this potential source of 

variability in accelerometer studies (Trost et al., 2005, Ward et al. 2005, Reilly et al. 2008) and 

thus assess physical activity and sedentary behaviour levels accurately and reliably between and 

within populations. 

 

The most appropriate choice of accelerometer epoch and cutpoint for physical activity 

assessment in children and adolescents is currently equivocal (Stone et al., 2009) as relatively 

few studies have addressed this and only within a narrow range in terms of age and settings 

(Nilsson et al., 2002, Penpraze et al., 2006b, Rowlands et al., 2006, McClain et al., 2008, Dorsey 

et al., 2009, Edwardson and Gorely, 2010). Recent evidence suggests that choice of epoch and 

cutpoints may interact and influence physical activity classification in an unexpected manner. 

For example, McClain et al (2008) reported increased MVPA time with 60 s epoch compared to 

5 s epoch, but attributed this finding to the brief monitoring time of physical activity and the use 

of the Freedson cutpoints. Edwardson and Gorely (2010) observed the opposite trend, that is, 

decrease in observed MVPA time with shortening of epoch duration. Furthermore, Reilly et al 

(2008) reanalysed data using different epochs and cutpoints for sedentary time and MVPA and 

found values ranging from 180 - 501 min of sedentary time per day and 28 - 266 min of MVPA 

per day for the same periods and individuals. Thus some authors report a pronounced effect of 

epoch on physical activity and sedentary time (Reilly et al., 2008), where as other authors report 

a modest epoch effect (Dorsey et al., 2009). 
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Several studies have examined the number of days of physical activity monitoring needed to 

obtain a reliable estimate of habitual physical activity (Trost et al., 2000, Penpraze et al., 2006, 

Baranowski et al., 2008). The objective of these studies has been to identify the minimum 

number of days needed to measure physical activity to minimize participant burden. This is 

usually done using the intraclass correlation coefficient (ICC) with values ranging from 0.7 - 0.9 

being considered acceptable reliability. However, the results of these studies are highly 

dependent on the variability of the data. Recent studies have reported a wide range of criteria for 

selecting a valid day (i.e., an accurate estimate of a single day’s physical activity) from as few as 

6 h/d (Penpraze et al., 2006) and up to 16 h/d (Slootmaker et al., 2009). On the other hand, there 

are a variety of criteria for selecting the number of h/d one should wear an accelerometer to 

reflect daily free living physical activity (Catellier et al., 2005, Troiano et al., 2007, Matthews et 

al., 2008, Slootmaker et al., 2009, Matthews et al., 2012). Slootmaker et al. (2009) used an 

assumption that people sleep 8 h/d and therefore restricted valid days to persons with more than 

16 h of monitoring. This clearly would not apply to young children such as in IDEFICS since 

they may sleep for more than 8 h in a day and their sleeping patterns may be intermittent. 

Another approach that has been used to determine accelerometer wear time is to normalize each 

person’s total minutes of daily activity to a 12 h/d to balance different amounts of wear time 

(Young, et al., 2009). However, this approach may create an over or underestimation of actual 

movement time. A common approach, including that used in U.S. National Health and Nutrition 

Examination Survey (NHANES) accelerometer analyses, is to require 10 or more h/d of 

accelerometer wear time to be considered a valid measurement day (Troiano et al., 2007, 

Matthews, et al., 2008). On the other hand, Catellier et al. (2005) recommended use of the 70/80 
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rule. This rule provides a sample specific recommendation based on 70% of the sample having 

accelerometer data. A valid day is then defined as 80% of that observed period.  

 

It is therefore apparent that practical and analytical methodologies used in accelerometry studies 

are inconsistent and thus it is reasonable to expect that this would have a profound impact on 

accelerometer outcome variables to varying degrees. The aim of this study therefore was to 

examine how the classification of CPM, sedentary and MVPA time varies according to epoch 

length when assessed using different published physical activity intensity cutpoints. A secondary 

aim was to examine the reliability of accelerometer outcome variables (CPM, sedentary and 

MVPA time) over several hours and days of measurement in a cohort of young European 

children and Kenyan adolescents. 

 

3.2 Methods 

 

3.2.1 Subjects: 

 

 96 children (50 female, 46 male) aged between 4 - 10 years were recruited from 4 validation 

centres at the universities of Glasgow (UGLW), Ghent (UGENT), Gothenburg (UGOT) and 

Zaragoza (UZAZ) and 266 Kenyan adolescents (132 boys, 134 girls) aged between 12 - 17 y 

were also recruited (see section 2.1.3 for details).  
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3.2.2 Physical activity assessment:  

 

Free living sedentary and physical activity times were objectively assessed using the ActiTrainer 

uniaxial accelerometer (ActiGraph, Pensacola, FL, USA). The monitor was set to record physical 

activity in a 1 s epoch. Following collection, data were reintegrated to 15 s, 30 s and 60 s epochs. 

Subjects wore the accelerometer for seven consecutive days between January and April 2009 

during school term time. Accelerometers were mounted on the right hip of each subject by an 

elastic belt and adjusted to ensure close contact with the body. Parents were also asked to 

complete a daily activity or ‘non wear’ diary during the 7 day monitoring period with 

instructions to record the time the accelerometer belt was attached and removed. Subjects were 

required to wear the accelerometer from the moment they woke up in the morning until bed time 

in the evening so that a full day of physical activity and sedentary time could be assessed. Data 

were analysed using previously published cutpoints (Puyau et al., 2002, Reilly et al., 2003a, 

Sirard et al., 2005, Pate et al., 2006, Evenson et al., 2008). For sedentary activities these were: 

Sirard: <398 counts/15 s, Reilly: <1100 counts/min, Puyau <800 counts/min, Evenson: <100 

count/min and for MVPA these were Sirard: >890 counts/15 s, Pate: >420 counts/15 s, Puyau: 

>3200 counts/min and Evenson: >2296 counts/min. Specific cutpoints were either divided down 

or multiplied up for data reintegrated to 15 s, 30 s and 60 s epochs to calculate time spent 

sedentary and in MVPA.  

 

 

 

 



 
 

107

3.2.3 Reliability of accelerometer variables over several days of measurement:  

 

Previous studies have recommended a minimum of at least 6 days including at least 1 weekend 

day of valid recording of at least 360 min of continuous monitoring per day (Trost et al., 2000, 

Penpraze 
et al., 2006a). The reliability of these inclusion criteria as well as various other 

inclusion criteria was assessed in this study. Reliability coefficients for accelerometer outcome 

variables (CPM, sedentary and MVPA time) over several days and hours of monitoring were 

computed using the ICC defined below.  

 

(1)  ICCs = σb
2 (σb

2/ (σb
2 + σw

2)  

 

Where σb
2 is the between subject variance component and σw

2 is the within subject variance 

component. 

 

Reliability was also predicted using the Spearman Brown Prophecy formula (Trost et al., 2005) 

which uses ICC as a measure of reliability as defined below. 

 

(2) N = [ICCt/ (1 - ICCt)] [1 – ICCs/ICCs]  

 

Where N is the number of measures or days needed, ICCt is the desired level of reliability 

(typically 0.7 to 0.9) and ICCs is the single day reliability (Trost et al., 2005, Baranowski et al., 

2008).   
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3.2.4 Data analysis:   

 

Data were expressed as mean (standard deviation (SD)) or median [range] following a Shapiro 

Wilk test for normality. CPM and time classified as sedentary was normally distributed. 

Statistical analysis to determine differences in the classification of CPM and sedentary time 

across the different epochs was carried out using Generalised Linear Model approach (repeated 

measures ANOVA). Mauchly’s test was used to test the assumption of sphericity and if violated 

degrees of freedom were corrected using Greenhouse Geisser estimates of sphericity if epsilon 

<0.75 or the Huynh Feldt correction if epsilon >0.75, followed by Bonferroni post hoc test. 

Significance was set at P<0.05.  Time classified as MVPA was not normally distributed and 

therefore the Kruskal Wallis test followed by Mann Whitney U tests was used to test for group 

differences. Significance was set at P<0.05. All statistical analysis was completed using the 

software package SPSS, Version 17.0 (SPSS, inc., Chicago, IL). 

 

3.3 Results:  

 

Descriptive characteristics of the child and adolescent subjects are shown in Table 3.1 and Table 

3.2 
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Table 3.1: Descriptive characteristics of child subjects (mean± SD). 

 

 
    All   Females  Males 

 

 

Centre 

 

UGENT   38   25   13  

UGLW   19   7   12 

UGOT    10   3   7  

UZAZ    29   15   14 

All    96   50   46 

 
Height (m)   1.22 ± 0.1  1.19 ± 0.1  1.25 ± 0.1 
 
Weight (kg)   25.8 ± 7.9  24.9 ± 7.2   26.8 ± 7.9 
  
BMI (kg/m2)   17.2 ± 3.9  17.3 ± 3.2  16.9 ± 4.0 
 
Monitoring time (min) 697 ± 111  678 ± 81  712 ± 110  
 

 

 

 

Table 3.2: Descriptive characteristics of adolescent subjects (mean±SD). 

 

 
    All   Females  Males 

 

 

Subjects   266   134   132 
 
Height (m)   1.60 ± 0.1  1.61 ± 0.1  1.65 ± 0.1 
 
Weight (kg)   44.0 ± 7.0  43 ± 6.3   42 ± 7.5 
  
BMI (kg/m2)   18.0 ± 3.0  16.2 ± 2.5  15.0 ± 2.0 
 
Monitoring time (min) 685 ± 72  750 ± 177  620 ± 94  
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In children, subject adherence remained above ≥90% for the first 6 days of the week long study 

period (Table 3.3). The compliance fell to 52% on day 7 as, for practical reasons, accelerometers 

were collected from children at the UZAZ centre when children completed the time consuming 

final body composition and had to remove the accelerometer. If final day data from UZAZ are 

removed from the adherence analysis, compliance on the final day remained high at 75% (Table 

3.3). In adolescents on the other hand, subject compliance systematically declined with 

increasing monitoring period. Compliance fell to only 12% for the 7 day monitoring protocol 

(Table 3.3). 
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Table 3.3: Subjects with ≥6 h of data during the 7 day monitoring period for the child and adolescent cohorts 
 

 
             Children             Adolescents 

 

   1 d 2 d 3 d 4 d 5 d 6 d 7 d  1 d 2 d 3 d 4 d 5 d 6 d 7 d 

  

 
Subjects  96 92 90 87 87 86 50  266 266 235 204 127 106 32 

       

% Compliance  100 96 94 91 91 90 52  100 100 88 77 48 40 12 
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3.3.1 Reliability of accelerometer variables over several hours and days of 

measurement in children and adolescents:  

 

Table 3.4 shows the reliability coefficients of accelerometer variables over several hours of 

monitoring in children and adolescents. Single day ICC for a minimum of 6 h of monitoring in 

children for CPM was 0.32, 0.33 for sedentary time and 0.35 for MVPA. Therefore, in children, 

the number of days (including at least 1 weekend day) required to obtain 80% reliability for 

average CPM, sedentary and MVPA was 8.5 days, 8.1 days and 7.4 days, respectively. On the 

other hand, single day ICC for a minimum of 12 h of monitoring for CPM was 0.17, 0.16 for 

sedentary time and 0.13 for MVPA. The number of days (including at least 1 weekend day) 

required to obtain 80% reliability for average CPM, sedentary and MVPA was 19.5 days, 21 

days and 26.8 days, respectively (Table 3.5). In adolescents on the other hand, single day ICC for 

CPM for a minimum 6 h monitoring was 0.47, for sedentary time it was 0.48 and finally for 

MVPA it was 0.44 (Table 3.4). 80% reliability for CPM was calculated as 4.5 days, for sedentary 

time was 4.4 days and for MVPA it was calculated as 5 days (Table 3.5). On the other hand, 

single day ICC for a minimum 12 h monitoring for CPM was 0.37, for sedentary time was 0.38 

and for MVPA was 0.38. The predicted number of days of monitoring to obtain 80% reliability 

was therefore calculated to be 6.5 - 6.8 days (Table 3.5). In both the child and adolescent cohorts 

a minimum of 6 h of monitoring was sufficient to reliably estimate habitual physical activity. 

Therefore, subjects without a minimum of 6 h monitoring were not included in the subsequent 

analysis in this thesis. 
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Table 3.4: Reliability of accelerometer outcome variables over several hours and days of measurement for child and adolescent 

cohorts 

 

 
  ICC

a
 Children        ICC

a
 Adolescents 

 

  6 h  8 h  10 h  12 h   6 h  8 h  10 h  12 h 
   

 
  

CPM  0.32  0.32  0.28  0.17   0.47  0.44  0.39  0.37 
 
Sedentary 0.33  0.29  0.21  0.16   0.48  0.45  0.4  0.38 
 
MVPA  0.35  0.29  0.24  0.13   0.44  0.45  0.4  0.38 

  

 
 
 

ICC Intraclass correlation coefficient (intraindividual/total variation). 
a Based on 6 days (defined here as ≥6 h, ≥8 h, ≥10 h and ≥12 h) of monitoring including at least 1 weekend day. 
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Table 3.5: Number of days required to obtain 80% reliability in child and adolescent cohorts 
 

 
 

                                     Days of Measurement
b 

Children                                                       Days of Measurement
b 

Adolescents 
 

  6 h  8 h  10 h  12 h   6 h  8 h  10 h  12 h 
   

 
  

CPM  8.5  8.1  10.1  19.5   4.5  5.1  6.3  6.8 
 
Sedentary 8.1  9.8  15  21   4.3  4.9  6  6.5 
 
MVPA  7.4  9.8  12.7  26.8   5.1  4.9  6  6.5 

  

 
 

b  Predicted by Spearman Brown Prophecy formula.   
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3.3.2 Variation in accelerometer outcome variables across epochs for different 

cutpoints 

 

In children, choice of epoch had no significant effect on average CPM (F (1, 582) = 0.05, 

P=0.78) for 15 s, 30 s and 60 s epoch (577 ± 193, 576 ± 193 and 578 ± 196, respectively. 

Similarly, for adolescents, choice of epoch had no significant effect on average CPM F (11, 

2846) = 1.57, P = 0.79) for 15 s, 30 s and 60 s epoch (785 ± 226, 788 ± 234 and 791 ± 241, 

respectively. 

  

Sedentary time: Choice of epoch and cutpoints had a significant effect on sedentary time (F 

(1.3, 763) = 254.7, P<0.05) for children. Post hoc analysis revealed significantly (P<0.05) less 

sedentary time per day using Reilly cutpoints when comparing 15 s vs. 30 s and 15 s vs. 60 s 

epochs: 570 ± 91 min vs. 579 ± 93 min and 570 ± 91 min vs. 579 ± 94 min, respectively (Table 

3.6). In contrast, Puyau cutpoints revealed significantly (P<0.05) more sedentary time per day 

when comparing 15 s vs. 30 s and 15 s vs. 60 s epochs, respectively (Table 3.6). In addition, 

Evenson cutpoints revealed more sedentary time per day when comparing 15 s vs. 30 s and 15 s 

vs. 60 s epochs, respectively (Table 3.6). There was no significant (P = 0.07) difference for 

Sirard cutpoints across all the 3 epochs evaluated. However, Sirard cutpoints reported 

significantly (P<0.05) more sedentary time compared to Reilly, Puyau and Evenson cutpoints 

using 15 s, 30 s and 60 s epoch (Table 3.6).  Similarly, for adolescents, choice of epoch had a 

significant effect on sedentary time (F (1.7, 277) = 843.8, P<0.05. Post hoc analysis revealed 

significantly (P<0.05) less sedentary time per day using Reilly cutpoints when comparing 15 s 

vs. 30 s and 15 s vs. 60 s epochs: 621 ± 106 min vs. 619 ± 108 min and 621 ± 106 min vs. 619 ± 
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109 min, respectively (Table 3.7). In contrast, Puyau cutpoints revealed significantly (P<0.05) 

more sedentary time per day when comparing 15 s vs. 30 s and 15 s vs. 60 s epochs, respectively 

(Table 3.7). In addition, Evenson cutpoints revealed more sedentary time per day when 

comparing 15 s vs. 30 s and 15 s vs. 60 s epochs, respectively (Table 3.7). On the other hand, 

there was no significant (P = 0.10) difference for Sirard cutpoints across all the 3 epochs 

evaluated. However, Sirard cutpoints reported significantly (P<0.05) more sedentary time 

compared to Reilly, Puyau and Evenson cutpoints using 15 s, 30 s and 60 s epoch (Table 3.7). 

 

Moderate to vigorous intensity physical activity (MVPA): Choice of epoch and cutpoints had 

a significant effect on MVPA time (Kruskal Wallis, P<0.001) for children. Mann Whitney U 

analysis revealed significantly more MVPA time using Pate, Sirard, Puyau and Evenson 

cutpoints when comparing 15 s vs. 30 s and 15 s vs. 60 s epochs (Table 3.6). When comparing 

different cutpoints, the Pate cutpoints reported significantly more MVPA time compared to 

Sirard, Puyau and Evenson cutpoints (P<0.05) across all the epochs (Table 3.6). Similarly, for 

adolescents, choice of epoch and cutpoints had a significant effect on MVPA time (Kruskal 

Wallis, P<0.05). Mann Whitney U analysis revealed significantly more MVPA time using Pate, 

Sirard, Puyau and Evenson cutpoints when comparing 15 s vs. 30 s and 15 s vs. 60 s epochs 

(Table 3.7). When comparing different cutpoints, the Pate cutpoints reported significantly more 

MVPA time compared to Sirard, Puyau and Evenson cutpoints (P<0.05) across all the epochs 

(Table 3.7). 
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Table 3.6: Time in minutes in sedentary and MVPA across all epochs as determined using 

Sirard, Puyau, Reilly, Pate and Evenson cutpoints in children. Data presented as mean 

(SD) for sedentary time and median [range] for MVPA. 

 

 
Sedentary  15   30   60   
 

 
Sirard   616 ± 94c,h,i  620 ± 95c,h,i  624 ± 97c,h,i  
 
Puyau   548 ± 90c,I,k  541 ± 91a,c,I,k  536 ± 92b,c,i,k 

 
Reilly   570 ± 91g,h,i,k  579 ± 93a,g,h,i,k  579 ± 94b,g,h,I,k 

 
Evenson  387 ± 56c,h  345 ± 51a,c,h  305 ± 59b,c,h 

 

 
MVPA   15   30   60 
    

 
Sirard   18 [1 - 80]e,f,j   12 [0 - 70]a,e,f,j  9 [0 - 71]b,e,f,j   
 
Puyau    24 [1 - 100]d,e,g,j  18 [0 - 93]a,d,e,g,j 13 [0 - 84]b,d,e,g,j 
  
Pate   78 [4 - 197]d,f,g,j 72 [3 - 202]a,d,f,g,j 66 [1 - 201]b,d,f,g,j 

 
Evenson  53 [19 - 98]d,e,f,g, 48 [15 - 81]a,d,e,f,g 40 [10 - 83]b,d,e,f,g 

 

a and b: indicate significant difference from 15 s and 30 s epoch, respectively. 

c: indicates significant difference between Reilly vs. Sirard, Puyau and Evenson cutpoints. 

d: indicates significant difference between Sirard vs. Puyau, Pate, and Evenson cutpoints. 

e: indicates significant difference between Pate vs. Sirard Puyau and Evenson cutpoints. 

f: indicates significant difference between Puyau vs. Sirard and Pate and Evenson cutpoints. 

g: indicates significant difference between Sirard vs. Pate, Puyau and Evenson cutpoints. 

h: indicates significant difference between Puyau vs. Sirard and Reilly and Evenson cutpoints. 

i: indicates significant difference between Evenson vs. Sirard, Puyau and Reilly cutpoints 

j: indicates significant difference between Evenson vs. Sirard, Puyau and Pate cutpoints 

k: indicates significant difference between Sirard vs. Puyau, Reilly and Evenson cutpoints 
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Table 3.7: Time in minutes in sedentary and MVPA across all epochs as determined using 

Sirard, Puyau, Reilly, Pate and Evenson cutpoints in adolescent. Data presented as mean 

(SD) for sedentary time and median [range] for MVPA. 
 

 
Sedentary  15   30   60   
 

 
Sirard   655 ± 102c,h,i  658 ± 103c,h,i  662 ± 104c,h,i  
 
Puyau   655 ± 102c,i,k  658 ± 103a,c,i,k  662 ± 104b,c,i,k 

 
Reilly   621±106h,i,k  619±108a,h,i,k  619±109b,h,i,k  
 
Evenson  376 ± 69c,h,k   350 ± 75a,c,h,k  325 ± 72b,c,h,k 

 

 
MVPA   15   30   60 
    

 
Sirard   18 [1 - 80]e,f,j   12 [0 - 70]a,e,f,j  9 [0 - 71]b,e,f,j   
 
Puyau    24 [1 - 100]d,e,g,j 18 [0 - 93]a,d,e,g,j 13 [0 - 84]b,d,e,g,j 
  
Pate   107 [33 - 264]d,f,g,j 100 [32 - 261]a,d,f,g,j 96 [26 - 257]b,d,f,g,j 

 
Evenson  85 [28 - 223]d,e,f,g, 78 [22 - 222]a,d,e,f,g 66 [17 - 205]b,d,e,f,g  
 

a and b: indicate significant difference from 15 s and 30 s epoch, respectively. 

c: indicates significant difference between Reilly vs. Sirard, Puyau and Evenson cutpoints. 

d: indicates significant difference between Sirard vs. Puyau, Pate and Evenson cutpoints. 

e: indicates significant difference between Pate vs. Sirard Puyau and Evenson cutpoints. 

f: indicates significant difference between Puyau vs. Sirard and Pate and Evenson cutpoints. 

g: indicates significant difference between Sirard vs. Pate, Puyau and Evenson cutpoints. 

h: indicates significant difference between Puyau vs. Sirard and Reilly and Evenson cutpoints. 

i: indicates significant difference between Evenson vs. Sirard, Puyau and Reilly cutpoints 

j: indicates significant difference between Evenson vs. Sirard, Puyau and Pate cutpoints 

k: indicates significant difference between Sirard vs. Puyau, Reilly and Evenson cutpoints 
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3.4 Discussion:  

 

In the current study, subject compliance declined with increasing monitoring period for both 

child and adolescent samples (Table 3.3) which has also been observed in previous studies 

(Màsse et al., 2005, Colley et al., 2010) i.e. a decline in protocol adherence with extensive 

monitoring which in turn may compromise the reliability of accelerometer outcome variables. 

Several strategies have been proposed to promote protocol adherence such as asking study 

participants to complete an activity monitoring log and provision of incentives contingent on 

compliance such as money or gifts (Trost et al., 2005). However, ethical issues may arise on 

inducing subject participation through monetary gain. Thus, subject compliance remains a 

significant practical issue in accelerometry since it is critical in achieving good reliability. 

Seasonality due to school terms, school holidays and climate is another important factor to 

consider when estimating habitual physical activity and sedentary time in children and 

adolescents (Corder et al., 2008). Therefore, determining reliability estimates for accelerometer 

outcome variables is necessary to assess the robustness of these variables over several days of 

monitoring in specific populations. Reliability analysis of accelerometer outcome variables 

indicated that a minimum of 6 h for 7 - 9 days of monitoring and including at least 1 weekend 

day was required to achieve 80% reliability in the children (Table 3.4). The predicted number of 

days required to reliably assess physical activity and sedentary time in the present study was 

somewhat higher than the 3 - 5 days previously suggested for children (Reilly 
et al., 2008). 

However, compliance rates tend to fall with increasing days of monitoring (Table 3.3) and 

therefore, there needs to be an optimal balance between retaining sufficient subject numbers for 
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longitudinal analysis and achieving good reliability which ranges from 70 - 90% (Corder et al., 

2008).  

 

Reliability analysis of accelerometer outcome variables in adolescents indicated that a minimum 

of 6 h for 5 days of monitoring and including at least 1 weekend day was sufficient to achieve 

80% reliability (Table 3.4). The calculated ICC values in the current study were proximate to 

those observed by Mattocks and colleagues (2008a) in a large epidemiological study. 

Furthermore, the predicted number of days which should include at least 1 weekend day required 

to reliably monitor physical activity and sedentary behaviour in adolescents is consistent with the 

previously recommended 4 - 9 days of monitoring protocol previously recommended for 

adolescents (Trost et al., 2005, Corder et al., 2008). The finding that wearing a monitor for 

longer hours reduces reliability (Table 3.4) is counterintuitive, as one would expect that longer 

monitoring periods would produce better reliability. However, this is based on the assumption 

that subject compliance remains constant throughout the monitoring period which is not the case 

(Table 3.4). Penpraze et al. (2006) found that the estimated reliability for 7 consecutive days of 

measurement for 13 h/d was only 52% compared with 80% for 10 h/d of monitoring per day in 

children. These authors also found that the reliability of physical activity measured remained 

relatively stable from as little as 3 h/d up to 10 h/d of monitoring, however reliability declined 

for >10 h/d of monitoring (Penpraze et al., 2006). Thus, it can be concluded that with constant or 

even reduced daily periods of monitoring, higher reliabilities are possible if the number of days 

of monitoring is increased (Penpraze et al., 2006). Therefore, the number of days of monitoring 

is more important to reliability than the number of hours which is consistent with the findings of 

this study. 
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 A calculation of ICC is promising in attempting to accurately and reliably assess physical 

activity and sedentary behaviour levels across a variety of samples and measurement protocols. 

However, applying any of these target number of days to all studies of physical activity and 

sedentary behaviour in children and adolescents may have inherent limitations (Baranowski & 

De Moor, 2000). The sample specific nature of the ICC has been demonstrated in a number of 

physical activity studies (Baranowski & De Moor, 2000, Trost et al., 2000, Baranowski et al., 

2008) which is consistent with the variable ICC values observed in the child and adolescent 

samples in this study. This is because the magnitudes of intra and interindividual variances in 

physical activity are specific to the sample in which they are collected, and the factors that 

influenced physical activity in the days that were sampled in the monitoring period. Furthermore, 

the Spearman–Brown formula assumes the ICC remains the same when additional monitoring 

days are added which may not be the case. For instance, if days with smaller day to day variation 

in physical activity are sampled (e.g. only weekdays monitored), the observed intraindividual 

variability is likely to be smaller, resulting in a higher ICC. Moreover, if a sample containing 

participants with greater interindividual variation in physical activity was used, the ICC would be 

increased (Baranowski & De Moor, 2000, Ridley et al., 2009). Furthermore, accelerometer data 

may not be measured in uniform periods each day (Catellier et al., 2005). Therefore, the most 

important decision rule in accelerometry is to determine what constitutes a valid day. A day 

varies for individuals in different age groups and may also vary depending on whether physical 

activity is being measured on a weekday or a weekend day (Catellier et al., 2005, Màsse et al., 

2005, McClain & Tudor-Locke, 2009). The accelerometer data reduction decision rules and 

strategies to improve reliability of data collection highlighted above may therefore introduce 

selection bias, either due to days dropped or days retained, both of which would result in 
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inaccurate representation of habitual physical activity (Catellier et al., 2005, Baranowski et al., 

2008).  In addition, measurement error may result from large intraindividual variability in daily 

physical activity and sedentary behaviour habits, making it difficult to measure the true 

accelerometer outcome variables (Baranowski & De Moor, 2000, Baranowski et al., 2008). 

Moreover, the variation in daily activity patterns caused by weekend/weekday and seasonal 

effects result in systematic variations, as all subjects experience weekdays, weekends and 

changes in season, no matter how a sample is selected (Ridley et al., 2009). Therefore, activity 

measured on a single day is likely to be a poor estimate of activity over a week, a month or a 

year (Ridley et al., 2009). In addition, accelerometer data screening needs to be carried out to 

ensure biological plausibility and to eliminate/minimize the influence of spurious data (such as 

consecutive zeroes inconsistent with monitor wear) on reported outcome variables (Cliff et al., 

2009). This is identified either using activity diaries, assumption of sleeping time or identifying 

data segments of continuous inactivity surpassing a length beyond which it is deemed unlikely 

that the monitor could have been worn, e.g., 10 - 60 min (Treuth et al., 2003). Periods of 20 min 

or more consecutive zero counts are reported to be inconsistent with monitor wear (Treuth et al., 

2003). 

 

Accelerometer data inclusion criteria are mainly determined by a balance between retaining 

sufficient samples sizes for longitudinal studies and good reliability in a given study population 

(Corder et al., 2008, Mattocks et al., 2008b) and are therefore a potential source of significant 

variation within and between study populations (Màsse et al., 2005). Thus, comparisons between 

studies are not only difficult but could also result in significant inconsistencies in reported 
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sedentary time and physical activity outcome variables within a given study population (Màsse et 

al., 2005, Colley et al., 2010) as reported in this study.  

 

In support of the current debate on the most appropriate epoch length for accurate assessment of 

sedentary time and physical activity in paediatric and adolescent studies, the present findings 

indicate that lower epoch (15 s) durations reveal significantly less sedentary time using Sirard 

and Reilly cutpoints and more MVPA time across all the four cutpoints evaluated in children and 

adolescents. This is consistent with the finding that high frequency sampling of physical activity 

appears more accurate and reliable in quantifying physical activity in children (Dorsey 
et al., 

2009). In children, choice of epoch had a significant effect on the time spent engaged in 

sedentary activity (Table 3.6) with shorter (15 s epoch) vs. longer (60 s epoch) resulting in 

significantly lower sedentary time using both Sirard and Reilly cutpoints (Table 3.6). However, 

using Puyau cutpoint the opposite was found, with significantly higher sedentary time for a 15 s 

vs. 60 s epoch (Table 3.6). This finding is in contrast to a previous study by Reilly et al. (2008) 

who reported no significant epoch effect on classification of sedentary time. However, the 

present study involved higher subject numbers compared to the previous study (96 vs. 32 

subjects) which may explain this discrepancy. Similarly, for adolescents, epoch selection had a 

significant effect on the time spent engaged in sedentary activities (Table 3.7). This similarly 

contradicts the Reilly et al., 2008 study. Furthermore, choice of epoch has more pronounced 

effects in more active cohorts, for instance using Evenson cutpoints, 15 s epoch reported 19 min 

more MVPA time in adolescents compared to 60 s epoch. In children on the other hand, 15 s 

epoch reported 13 min more MVPA compared to 60 s epoch (Table 3.6, Table 3.7).   
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Epoch selection had a significant influence on reported MVPA time using all four cutpoints for 

both children and adolescents, with approximately 10 - 19 min more MVPA time with 15 s 

epoch compared to 60 s epoch (Table 3.6, Table 3.7). These findings may be physiologically 

significant. The lower Pate cutpoint threshold for moderate intensity activity resulted in subjects 

being classified as more active than the higher moderate intensity physical activity thresholds 

such as the Puyau and Sirard cutpoints. Previous studies reported similar trends, that is, a 

decrease in reported MVPA time as epoch length increased (Nilsson et al., 2002, Reilly et al., 

2008). In contrast, Edwardson & Gorely (2010) reported the opposite trend in their adolescent 

sample, where shorter epoch durations were associated with less MVPA time. However, these 

authors also reported a non significant increase in MVPA time with decrease in epoch length in 

younger children aged 7 - 11 y. These authors suggested that choice of epoch is less important if 

the aim of a study is to measure MVPA but in this study epoch length was significantly 

associated with time spent in MVPA in both child and adolescent samples depending on which 

cutpoint was selected. This discrepancy between studies may be due to the use of age adjusted 

cutpoints in the Edwardson & Gorely (2010) study, or due to sample specific differences 

between these two studies. Differences in published activity thresholds are too large to allow 

meaningful comparison between studies (Guinhoya 
et al., 2006). In contrast, the accelerometer 

outcome variable CPM was relatively independent of cutpoint selection and choice of epoch in 

both children and adolescent cohorts. Therefore, this measure of physical activity may allow 

greater ease of comparison between studies. 
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In summary, this study has clearly demonstrated the effect that both epoch and cutpoints have on 

sedentary and MVPA classification in young children and adolescents. Even though it is clear 

from the results presented that cutpoints and epoch have a significant effect on reported 

sedentary time and MVPA levels, the actual physiological significance of the modest differences 

observed when sampling at 15 s vs. 60 s epoch across the different cutpoints has yet to be 

determined (Roberts & Freedson, 2007). For example, it is unclear if these relatively small 

differences in MVPA measured using shorter epochs actually contribute to the suggested health 

benefits of achieving 60 min MVPA per day (Cavill et al., 2001, CMO, 2011). Epoch and 

cutpoints have a significant effect on sedentary and MVPA classification, but the effect varies 

depending on the cutpoints and epoch selected. It is emphasized that for ease of comparison 

between studies, consensus should be achieved on the choice of epoch and cutpoints used to 

assess physical activity and sedentary time in children and adolescents. The existence of multiple 

sets of intensity related cutpoints for children and adolescents has significantly hindered research 

efforts to quantify, understand, and intervene on children and adolescent physical activity 

behaviour. Indeed, the lack of consensus on cutpoint selection and the widespread practice of 

deriving new calibration equations/cutpoints for a single population group or single study has 

created a cutpoint conundrum (Trost, 2007). In a recent study, Trost and colleagues (2011) 

examined the classification accuracy of five sets of independently developed ActiGraph 

cutpoints using energy expenditure measured by indirect calorimetry as a criterion reference 

standard in children and adolescents. These authors reported that only the Evenson cutpoints 

provided acceptable classification accuracy for sedentary behavior and physical activity intensity 

among children and adolescents (Trost et al., 2011). Therefore, the Evenson cutpoint expressed 

in 15 s epoch is recommended for future physical activity studies using ActiGraph 
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accelerometers in children and adolescents.  Furthermore, at least 6 h for 7 - 9 days of 

monitoring and including at least 1 weekend day would appear to be necessary to assess reliably 

physical activity and sedentary time in young children. For adolescent studies on the other hand, 

at least 6 h for 5 days of monitoring and including at least 1 weekend day is necessary to assess 

reliably physical activity.  
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Chapter 4 

 

 

4.0: Validity of uniaxial and triaxial accelerometer outputs during 

structured activities in adolescents: 

 

4.1 Introduction:  

 

Accelerometry is a useful technique in the assessment of free living physical activity and may 

also be used to predict energy expenditure and 
•

VO
2
 (Welk et al., 2000, Chen & Bassett, 2005, 

Fudge et al. 2007) or METs (Freedson et al., 1998), which can be computed by normalizing 

energy expenditure to BMR. The assessment of energy expenditure in free living subjects is 

central to a complete understanding of the aetiology of obesity, malnutrition, coronary heart 

disease, and osteoporosis (Schoeller & Racette, 1990, Jakicic & Otto, 2005). Therefore, the 

translation of arbitrary accelerometer counts to caloric expenditure benefits epidemiological 

studies of disease and physical activity because energy expenditure is theorized to be 

physiologically related to mechanisms of diabetes, cancer, and other chronic conditions (Troiano, 

2006). Several accelerometer models have been subjected to validation and calibration against 

DLW or indirect calorimetry as the criterion measure resulting in a number of different energy 

expenditure prediction equations (Rothney et al., 2008a, Rothney et al., 2008b). Some of these 

equations have been further used to develop cutpoints, which serve to discriminate physical 

activity intensities. Unfortunately, all of these equations are specific to a particular accelerometer 

device (Rothney et al., 2008a, Rothney et al., 2008b) and may also be sample/population 
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specific.  In spite of this, accelerometry has become the method of choice for objective 

assessment of habitual physical activity in children and adolescents (Trost, 2001).  

 

Irrespective of accelerometer device, the raw acceleration signal is usually measured using 

proprietary algorithms that translate it into an arbitrary unit called accelerometer count which is 

not comparable across accelerometer monitor brands and probably across accelerometer 

generations. As such, there is need to convert counts to more meaningful indicators of physical 

exertion (Corder et al., 2008). Therefore, the current research focus is aimed at validating 

accelerometers in field settings and across different populations. Furthermore, the development 

of novel and technically improved devices implies a need to validate these devices. This is 

typically done using mechanical oscillators (Rothney et al., 2008b) or structured activities in 

humans (Kozey et al., 2010c) and evaluating accelerometer outputs generated from theoretically 

identical acceleration signals.  

 

The ActiGraphTM line of accelerometers is among the most frequently used activity monitors in 

the physical activity research field (Rothney et al., 2008b). Several generations of these 

accelerometers are concurrently is use in paediatric and adolescent studies (Rothney et al., 

2008b). Extensive work has been dedicated to the development of correlations between 

ActiGraph data and physiological criteria, such as 
•

VO 2 during walking and jogging in a 

laboratory setting (Melanson et al., 1995, Freedson et al., 1998). Researchers have expanded 

these studies to include field data using portable indirect calorimeters as the validation criterion 

(Bassett et al., 2000, Crouter et al., 2006, Hendelman et al., 2000, Welk, 2005, Pober et al., 

2006).  Despite the widespread use of the ActiGraph (De Vries et al., 2006), considerable 
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uncertainty exists about how to relate its output to 
•

VO 2, energy expenditure or estimates of 

physical activity intensity (Trost, 2001) or how to relate outputs across different accelerometer 

generations, since only the earlier generations of these accelerometers have been validated in 

children and adolescents against criterion measures (Freedson et al., 1998, Brage et al., 2003, 

Welk, 2005). Recent studies indicate that outputs from different generations of ActiGraph 

accelerometers may be comparable and are valid in the assessment of physical activity (Kozey et 

al., 2010c, John & Bassett, 2010). However, the validity of the latest ActiTrainer and GT3X 

(ActiGraph, LLC, Pensacola, FL, USA) accelerometers remains to be determined. The purpose 

of this study therefore was firstly; to determine the validity of uniaxial ActiTrainer (longitudinal 

axis) and triaxial GT3X (i.e. sum of X, Y and Z axes) accelerometer outputs during structured 

activities in adolescents and secondly, to determine the predicitve validity of ActiTrainer outputs 

against DLW determined TEE in adolescents. 

 

4.2 Material and methods:  

 

4.2.1 Subjects: 

 

Volunteers were recruited and screened as detailed in section 2.1.5. Specific inclusion criteria are 

defined in section 2.1.6. As such, 30 adolescents were recruited from a rural Kenyan school, in 

the District of Nandi, Kenya. However, only 22 adolescents (11 females and 11 males) had 

complete accelerometer, HR and 
•

VO 2 data (Table 4.1) and were used in the final data analyses.  

This study design involved the portable K4b2 gas analyser which was deemed to be too 

cumbersome for use in the child sample, furthermore the incremental running protocol was 
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considered to be unsuitable for young children. Therefore, validation of accelerometers against 

indirect calorimetry was not replicated in the child sample. 

 

4.2.2: Validation of the K4b
2
 gas analyser: 

 

The portable K4b2 (COSMED, Rome, Italy) was designed to measure breath by breath 

pulmonary gas exchange in the field. In a previous study, Fudge and colleagues determined that 

an older generation of the K4b2 was valid for measuring 
•

VO 2  during treadmill running indoors, 

however during outdoor running the K4b2 systematically underestimated 
•

VO 2 (Fudge et al., 

2008). An automated periodical recalibration was introduced in the later generation of the K4b2 

in an attempt to correct the systematic underestimation in 
•

VO 2 previously reported (Fudge et al. 

2008). A recent study by Ross et al. (2011) validated the latest generation of the K4b2 (which 

was used in the current study) in 19 Caucasian endurance trained individuals and 30 Kenyan 

adolescents. Subjects completed maximal incremental running tests. Tests involved 3 min 

exercise bouts at running speeds between 8 to 22 km/h in 2 km/h increments. Gas exchange 

parameters were recorded throughout. The Douglas bag method was used as the criterion for 

comparison. K4b2 measurements were not significantly different for 
•

VO 2 throughout all 

submaximal and maximal running speeds when compared to Douglas bag method: 

corresponding to a K4b2 mean bias: -31 ml/min with limits of agreement -430 to 492 ml/min for 

all running speeds. K4b2 test retest reliability was also demonstrated with no significant 

differences found in all measured gas exchange variables throughout all submaximal and 

maximal running speeds: corresponding to a K4b2 mean bias -31 ml/min with limits of 

agreement -535 to 473 ml/min for all running speeds. This study concluded that the introduction 
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of an automated calibration in the K4b2 device improved its validity and reliability for 

assessment of 
•

VO 2 during submaximal and maximal running velocities outdoors (Ross et al., 

2011).  

 

4.2.3 Protocol:  

 

Subjects performed structured activities while simultaneously fitted with two commercially 

available accelerometers, the uniaxial ActiTrainer and the triaxial GT3X accelerometers worn on 

the right hip and secured by an elastic belt and a GPS unit (GPSports Team AMS Release 

1.2.1.12, Fyshwick, Australia) which was used to obtain the exact running speeds. In addition, 

subjects were harnessed with the K4b2 gas analyser and a HR transmitter belt (Suunto t6, Suunto 

Oy, Vantaa, Finland) on the chest to record HR continuously on the ActiTrainer accelerometer. 

The accelerometers were synchronized to begin data collection utilising an external timepiece. 

All the ActiGraph devices were calibrated by the manufacturer prior to commencement of the 

study. The accelerometers counts were expressed in a 15 s epoch. The K4b2 was calibrated 

immediately before each test according to the manufacturer’s guidelines. The guidelines 

consisted of a four step calibration process: ambient air calibration, reference gas calibration, 

delay calibration, and turbine calibration as detailed in section 2.2.1. The uniaxial and triaxial 

accelerometer outputs were determined over the same time frame as the 
•

VO 2 and HR values and 

used to assess the validity of the accelerometer outputs and accuracy in physical activity 

assessment during the structured activities defined below. In addition, TEE was measured over 7 

days in the same subjects under free-living conditions using the DLW technique (Speakman, 

1997) as described in section 2.1.7. Baseline urine samples were collected before oral dosing 
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with 0.15 g 2H2 O
18 and 0.12 g 2H2O per kg BM. The following day, subjects provided two timed 

urine samples (morning and evening). This was repeated over the 7 day urine collection period. 

Urine samples were stored at -4°C in cryogenically stable tubes until analysis by isotope ratio 

mass spectrometry. Samples were analyzed in duplicate for H2O
18 (Speakman et al. (1990)) and 

2H2O (Speakman and Krol (2005)). Carbon dioxide production rate was estimated from the 

differential disappearance of the 2 isotopes based on multi-point elimination curves (Djafarian et 

al. 2010) and the dilution space evaluated from the back-extrapolated intercept using equation 

A6 of Schoeller et al. (1986) and was converted to energy expenditure using the Weir equation 

(1949) assuming an average diet resulting in a respiratory exchange ratio of 0.85 (Black et al. 

1986). Free-living daily physical activity levels and patterns were quantified using the 

ActiTrainer uni-axial accelerometer (ActiGraph LLC, Pensacola, FL, USA) with the recording 

epoch set at 15 s. Subjects wore the accelerometer for the same 7 consecutive days during school 

term time, during which DLW measurements took place. The mean accelerometer wear times 

was 807 ± 46 min, range [698 - 876 min] and mean nonwear time was 633 ± 46 min; range (562 

- 742 min). 

 

4.2.4 Structured activities: 

 

For the purpose of comparing accelerometer outputs, lying quietly, sitting quietly, standing on 

the spot (were defined as sedentary activities). Jumping on the spot was used to define 

longitudinal acceleration with minimal anteroposterior and mediolateral displacements. Walking 

at 6 km/h, jogging 8 - 10 km/h, running at 12 - 14 km/h, and fast running 16 - 18 km/h (i.e. 

walking and running activities were selected to define acceleration in the longitudinal, 
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anteroposterior and mediolateral vectors). These target activities represent body acceleration 

typical of free living sedentary and physical activities in adolescents.  Furthermore, these 

activities were selected to provide graded increase from sedentary to vigorous intensity physical 

activity and to cover the broad range of locomotor activities that span the majority of the 

subjects’ daily activities. All subjects performed these activities under the supervision of the 

investigators. 

 

(a)  Sedentary behaviour (lying, sitting, standing): 

 

 Subjects were instructed to lie quietly in a well ventilated and lighted room for 5 min. 

Subsequently, subjects were instructed to sit quietly for 5 min. Then subjects were 

instructed to stand still for 5 min. The K4b2, HR belt and both accelerometers were worn 

during these sessions.  

 

(b)  Jumping on the spot:  

 

Subjects were instructed to jump on the spot for 5 min while fitted with the K4b2, HR belt 

and both accelerometers. Participants were provided with verbal encouragement to reach 

their maximum jump height throughout the test. 
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(c)  Walking: 

 

Subjects were fitted with the K4b2 unit, the ActiTrainer and GT3X accelerometers, HR belt 

and a GPS unit. A researcher paced the subjects for 5 min at 6 km/h speed as they walked on 

level track field using a bicycle fitted with a digital speedometer (Timex Group, Connecticut, 

USA). The subjects were instructed to remain by the researcher’s side throughout each test to 

maintain steady speed during the testing protocol. Throughout the testing process, each 

subject was verbally encouraged to maintain the pace and complete the 5 min of activity. The 

average GPS speed (4.9 ± 0.6 km/h) was used to classify walking. 

 

(d)  Discontinuous incremental running protocol: 

 

 Subjects were instructed to run at 8 km/h around a flat running track for 3 min 

interspersed with a 3 min walking interval at 6 km/h (active recovery), then subject ran at 

10 km/h for 3 min with active recovery for 3 min. The running speed was discontinuously 

increased at 2 km/h interval to 18 km/h or to volitional exhaustion. Subjects were 

instructed to stay by the researchers’ side who paced them using a bicycle fitted with a 

digital speedometer (Timex Group, Connecticut, USA) throughout each test speed.  

Throughout the tests, subjects were verbally encouraged to maintain the pace and 

complete the test activity. If the subject could not keep up with the pace, the test was 

stopped. All the subjects were able to complete the running protocol up to 16 km/h. 

However, none of the subjects could complete the running protocol at 18 km/h and 

therefore this speed was excluded from the analysis. Due to practical limitations subjects 
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were unable to run at exact incremental running speeds specified in the protocol. 

Therefore, the average GPS speeds were used in the analysis. These were walking: 4.9 ± 

0.6 km/h and jogging: 8 ± 0.3 km/h and 9.1 ± 0.5 km/h, running at 11.9 ± 0.3 km/h, 13.1 

± 0.5 km/h and 15.5 ± 0.4 km/h. 

 

4.2.5 Statistical analysis:  

 

Accelerometer, HR and K4b2 data were averaged from the last 30 s of each test.  Data were 

expressed as mean (standard deviation (SD) or median [range] following a Shapiro Wilk test for 

normality. Accelerometer outputs during all the structured activities were normally distributed 

except for sedentary activities. Simple linear regression analysis was used to examine the 

relationship between ActiTrainer and GT3X accelerometer outputs and 
•

VO 2. Paired t-tests were 

used to test for differences in R2 between ActiTrainer and GT3X outputs. In addition, the 

predictive validity of the ActiTrainer accelerometer was also examined against DLW determined 

energy expenditure.  To get an approximate 24 h measure for TEE from the 
•

VO 2 based measure, 

the average counts for the wear time for each subject was used to calculate the 
•

VO 2 associated 

with this number of counts from the ActiTrainer regression line (
•

VO 2 = 0.024*ActiTrainer 

counts/15 s + 5.694) ml/kg/min. 
•

VO 2 values were then transformed into caloric values assuming 

the standard constants (1 L O2 = 4.8 kcal) (McLaughlin et al., 2001). The energy expenditure 

values were then multiplied by the accelerometer wear time to get total energy expenditure for 

wear time. For non wear time, 
•

VO 2 for sedentary activities were multiplied by non wear time to 

obtain total energy expenditure for non wear time. Finally, TEE was calculated as the sum of 
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energy expenditure during wear and non wear times. The Bland & Altman method (1986) was 

used to compare the mean difference between the DLW determined TEE and the ActiTrainer 

predicted TEE, and 95% limits of agreement as the mean difference (1.96 SD). The mean error 

scores were graphically illustrated by a solid horizontal line and the limits of agreement (±1.96 

SD from the mean) were shown as dashed horizontal lines.  To estimate the degree of agreement, 

the difference between each set of two consecutive TEE measurements was determined, and the 

mean difference (bias) was calculated. The mean bias represents the degree of systematic 

difference between methods of measurement and was determined by summing the differences 

between paired measurements and dividing by the number of paired measurements. The limits of 

agreement (bias ±1.96 SD) defined the concordance interval, which encompassed 95% of the 

differences between each set of two consecutive TEE measurements. A tight prediction interval 

around zero is deemed comparable. Data points below zero signify an overestimation, while 

points above zero signify an underestimation (Bland & Altman, 1986). Paired t-tests were used 

to test if the differences in TEE were statistically significant. Statistical computations were 

performed using the software package SPSS, Version 17.0 (SPSS, inc., Chicago, IL, USA). 

Significance was declared at P<0.05.  

 

4.3 Results: 

 

4.3.1 Descriptive statistics:  

 

Physical characteristics of study participants are shown in Table 4.1 
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Table 4.1: Physical characteristics of the study participants. 

 

   All    Females  Males 

             

 
Subject  22    11   11 
Age (yrs)  14.1 ± 1.4   13.8 ± 1.5  14.3 ± 1.2 
Weight (kg)  41.6 ± 9   42.8 ± 9.1  40.5 ± 9.2 
Height (cm)  157.8 ± 10.9   156 ± 9.7  159.4 ± 12 
BMI (kg/m2)  16.5 ± 2.1   17.4 ± 2.4  15.7 ± 1.4 
 

 

 

Both ActiTrainer and GT3X accelerometer outputs peaked during jumping (3858 ± 600 and 

4824 ± 821 Cnts/15 s for ActiTrainer and GT3X counts respectively). All accelerometer outputs 

increased linearly from walking (4.9 ± 0.6 km/h) to running, but then plateaued for the 

ActiTrainer at running speeds of  9.1 ± 0.5 km/h (1728 ± 408 Cnts/15 s) (Table 4.2). Conversely, 

GT3X outputs did not plateau at the peak running speed of 15.5 ± 0.4 km/h (3573 ± 639 Cnts/ 

15s) (Figure 4.1).  
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Figure 4.1: Accelerometer outputs, heart rate and oxygen uptake during structured 

activities in adolescents 
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Table 4.2:
•

VO 2 (ml/min/kg), HR and accelerometer outputs (Cnts/15s) during structured 

activities (Mean ± SD).  

 

 

Activity  
•

VO 2  HR   ActiTrainer  GT3X   

          

 
Sedentary activities 5.3 ± 1.4 82 ± 15 0 [0 - 10]   0 [0 - 65] 

Jumping  33.6 ± 5.7 143 ± 19 3879 ± 642  3943 ± 553 

4.9 ± 0.6 km/h  21.0 ± 4.5 131 ± 15 1245 ± 219  2292 ± 178  

8.0 ± 0.3 km/h  36.6 ± 5.2 150 ± 15 1677 ± 312  2793 ± 591  

9.1 ± 0.5 km/h  42.8 ± 6.3 162 ± 15 1641 ± 423  2934 ± 429  
11.9 ± 0.3  51.7 ± 6.1 178 ± 15 1728 ± 408  3192 ± 708  

13.1 ± 0.5 km/h 59 ± 6  191 ± 14 1726 ± 344  3363 ± 606  
15.5 ± 0.4 km/h 65 ± 5.9 196 ± 11 1782 ± 267  3573 ± 639 
 

 

Mean ± SD  
Median [range]  

•

VO 2 -Oxygen uptake 
HR - Heart rate 
Cnts/15s - Accelerometer counts per 15 s 
 

 
 

4.3.2 Relation between accelerometer outputs, oxygen uptake, heart rate and 

physical activity intensity in adolescents: 

 

In contrast to accelerometer outputs, mean 
•

VO 2 increased systematically from lying down 5.3 ± 

1.4 ml/kg/min to peak uptake of 64.5 ± 6.1 ml/kg at running speeds >15 km/h rather than during 

jumping (mean 
•

VO 2  33.6 ± 5.7) (Figure 4.1). Similarly, mean HR increased from sedentary 

activities to peak running speeds (82 ± 15 vs. 195 ± 11 beats/min) for sedentary vs. running at 

peak speed respectively (Figure 4.1). Furthermore, in all subject, the triaxial GT3X reported 

significantly (P<0.05) better fitting regression models compared to uniaxial ActiTrainer (Table 
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4.3). In addition, when jumping was excluded form the menu of activities, the fit of the 

regression models improved for both ActiTrainer and GT3X accelerometers (Table 4.4). As 

such, 40% of the variation in 
•

VO 2 could be predicted by ActiTrainer (P < 0.05) compared to 55% 

for the GT3X when jumping was included in the structured activities protocol (Figure 4.2, Figure 

4.3). On the other hand, when jumping was excluded, the fit of the regression improved to 76% 

and 80% for the ActiTrainer and GT3X accelerometers respectively (Figure 4.4, Figure 4.5). 

However, addition of any of the HR derivatives (mean HR, maximal HR, resting HR or ∆HRacc) 

was not a significant predictor of 
•

VO 2.  
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Table 4.3: The relation between ActiTrainer vs. GT3X accelerometer outputs and oxygen 
uptake during structured activities (sedentary, jumping, walking and running) in 

adolescents 

 

 
Subject                              ActiTrainer                                           GT3X 
 

  Gradient Intercept R
2
  Gradient Intercept R

2
 

      

 
1  y = 0.008 19.42  0.31  y = 0.010 16.51  0.40 

2  y = 0.008 14.05  0.49  y = 0.008 13.84  0.50 

3  y = 0.013 15.15  0.45  y = 0.012 15.77  0.43 

4  y = 0.012 18.39  0.45  y = 0.013 14.43  0.55 

5  y = 0.010 15.52  0.42  y = 0.011       10.12  0.62 

6  y = 0.009 14.56  0.44  y = 0.010 11.75  0.54 

7  y = 0.012 15.49  0.54  y = 0.012 11.22  0.67 

8  y = 0.011 13.71  0.52  y = 0.011 9.57  0.67 

9  y = 0.020 9.06  0.61  y = 0.015 9.32  0.64 

10  y = 0.011 16.52  0.34  y = 0.014 9.28  0.63 

11  y = 0.010 21.11  0.18  y = 0.014 12.63  0.42 

12  y = 0.012 20.38  0.27  y = 0.014 12.61  0.50 

13  y = 0.013 17.52  0.31   y = 0.016 8.73  0.55 

14  y = 0.015 12.24  0.58  y = 0.015 9.77  0.70 

15  y = 0.012 16.22  0.35  y = 0.014 9.93  0.58 

16  y = 0.011 16.87  0.33  y = 0.013 8.82  0.55 

17  y = 0.014 14.64  0.43  y = 0.014 8.33  0.61 

18  y = 0.013 13.67  0.41  y = 0.014 11.67  0.58 

19  y = 0.011 15.71  0.29  y = 0.012 12.84  0.41 

20  y = 0.008 16.54  0.35  y = 0.009 11.73  0.49 

21  y = 0.021 13.93  0.43  y = 0.021 11.38  0.54 

22  y = 0.024 10.18  0.39  y = 0.019 12.13  0.52 

Mean     y = 0.013 15.49  0.40  y = 0.013 11.47  0.55 
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Table 4.4: The relation between ActiTrainer vs. GT3X accelerometer outputs and oxygen 

uptake during structured activities (sedentary, walking and running)
†. 

 

 
Subject                              ActiTrainer                                           GT3X 
 

  Gradient Intercept R
2
  Gradient Intercept R

2
 

      

 
1  y = 0.022 4.67  0.69  y = 0.022 3.75  0.74 

2  y = 0.015 5.78  0.78  y = 0.015 4.43  0.82 

3  y = 0.024 4.62  0.80  y = 0.024 3.78  0.82 

4  y = 0.026 4.73  0.86  y = 0.022 5.21  0.83 

5  y = 0.022 4.74  0.85  y = 0.018 2.87  0.72 

6  y = 0.020 4.01  0.88  y = 0.016 4.01  0.89 

7  y = 0.023 4.72    0.94  y = 0.018 4.23  0.81 

8  y = 0.020 5.73  0.83  y = 0.018 4.44  0.80 

9  y = 0.028 5.33  0.87  y = 0.021 3.32  0.80 

10  y = 0.023 8.04  0.65  y = 0.019 4.90  0.84 

11  y = 0.031 6.91  0.53  y = 0.025 3.00  0.72 

12  y = 0.030 7.94  0.64  y = 0.024 2.91  0.83 

13  y = 0.027 6.54  0.70  y = 0.021 3.90  0.79 

14  y = 0.025 4.42  0.81  y = 0.019 4.42  0.80 

15  y = 0.025 6.46  0.80  y = 0.021 3.93  0.82 

16  y = 0.027 6.94  0.70  y = 0.020 2.82  0.86 

17  y = 0.029 5.23  0.71  y = 0.021 2.21  0.71 

18  y = 0.028 7.51  0.77  y = 0.021 2.72  0.82 

19  y = 0.025 5.54  0.72  y = 0.026 4.02  0.75 

20  y = 0.023 5.17  0.72  y = 0.020 4.31  0.85 

21  y = 0.023 4.82  0.72  y = 0.029 4.82  0.86 

22  y = 0.023 5.41  0.76  y = 0.020 4.02  0.80 

Mean     y = 0.024 5.69  0.76  y = 0.021 3.82  0.80 

 
† - Excluding jumping on the spot 
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Figure 4.2: Relation between ActiTrainer counts and oxygen uptake in adolescents during 

structured activities (sedentary, jumping, walking and running) 
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Figure 4.3: Relation between ActiTrainer counts and oxygen uptake in adolescents during 

structured activities (sedentary, walking and running) 
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Figure 4.4: Relation between GT3X counts and oxygen uptake in adolescents during 

structured activities (sedentary, jumping, walking and running) 
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Figure 4.5: Relation between GT3X counts and oxygen uptake in adolescents during 

structured activities (sedentary, walking and running). 

 

 

The predictive validity of the 
•

VO 2 regression equation derived from the relationship between 

ActiTrainer outputs and 
•

VO 2 during structured activites (i.e. 
•

VO 2 = 0.024 (ActiTrainer counts) + 

5.694)) was examined against DLW derived TEE during free living activites in the same 

subjects. The Bland-Altman plot for calculated TEE from DLW and predicted TEE from 

ActiTrainer counts had a mean bias of (-1.1) MJ/d and 95% prediction interval of (-6.8, 4.6) 

MJ/d. This difference was statistically significant (paired t-test, P=0.04; Figure 4.6).  
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Figure 4.6: Bland-Altman plot showing difference against mean TEE (MJ/d) assessed by 

DLW (TEE) and ActiTrainer accelerometer (TEE_Pred). Error (TEE - TEE_Pred) TEE 

plotted against mean outputs of the two measurements. The mean error scores are 

illustrated by a solid horizontal line and the limits of agreement (±1.96 SD from the mean) 

are shown as dashed horizontal lines.    
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4.4 Discussion:  

 

This study examined the validity of the novel ActiTrainer and GT3X accelerometer outputs 

during structured activities in adolescents.  Accelerometer outputs were highest during jumping 

activity (Figure 4.1). However 
•

VO 2 did not peak in tandem with accelerometer outputs during 

jumping. This finding is significant, since it may explain the lower fit of the accelerometer count 

prediction of 
•

VO 2 (Figure 4.2, Figure 4.3). Furtheremore, exclusion of jumping from the protocol 

of activities significantly improved the fit of the regression models for both ActiTrainer and 

GT3X accelerometer (Figure 4.4, Figure 4.5). On the other hand, during the incremental running 

protocol, ActiTrainer and GT3X outputs rose with increasing running speeds and plateaued at an 

average speed of 9.1 ± 0.5 km/h for the ActiTrainer, which is lower than the levelling off speed 

of 10 - 12 km/h reported of the uniaxial CSA ActiGraph accelerometer (Fudge et al. 2007). The 

differences in peaking of uniaxial accelerometer outputs could be attributed to differences in 

running protocols. The Fudge et al. 2007 study was conducted using treadmill running compared 

to overland running protocol in this study. On the other hand, the triaxial GT3X accelerometer 

outputs did not level off at the peak running speed tested (Figure 4.1).  

 

The peaking of the ActiGraph accelerometer outputs with increasing running speeds/acceleration 

has been observed in previous studies (Fudge et al., 2007, Rothney et al., 2008b, John & Bassett, 

2010). This has been attributed to the device’s amplitude and bandpass filtering limitations of 

these devices. However, to accurately estimate energy expenditure and 
•

VO 2, accelerometer 

outputs must demonstrate a systematic increase whether (linear, curvilinear, exponential) in 

activity counts with increasing exercise intensity because energy expenditure/
•

VO 2  regression 
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equations are based on the theory that activity counts increase with increasing intensity of 

exercise (John & Bassett, 2010). Therefore, it is expected that GT3X outputs may approximate 

better energy expenditure/
•

VO 2 associated with fast running activities since they demonstrate 

increased outputs at fast running speeds of (15.4 ± 0.5 km/h). GT3X accelerometer reported 

higher R2 compared to uniaxial ActiTrainer (Figure 4.2, Figure 4.3). These differences, if 

biologically meaningful might reflect that GT3X has higher validity for measurement of physical 

activity even if it does not have any meaningful advantage over the ActiTrainer in prediction of 

•

VO 2   

 

The present study suggests that the novel ActiTrainer and GT3X ActiGraph accelerometers are 

valid for the assessment of 
•

VO 2 associated with physical activity during structured activities in 

adolescents (R2 = 76 - 80%) for the ActiTrainer and GT3X accelerometer respectively. 

Therefore, triaxial GT3X outputs was a better predictor of 
•

VO 2 associated with structured 

activities compared to uniaxial ActiTrainer.  These findings are broadly consistent with Plasqui 

and colleagues (2005) who reported that for a variety of activities, triaxial accelerometry is better 

at predicting energy expenditure than uniaxial. Thus, the use of the sum of all three axes 

improves the accuracy of energy expenditure/
•

VO 2 estimation, since acceleration recorded in the 

different axes can contribute to enhance the prediction, furthermore, energy expenditure could 

relate differently to acceleration components in other axes, depending on the type and nature of 

the activity (Chen & Bassett, 2005). A known limitation with uniaxial accelerometers is that they 

underestimate non ambulatory activities that do not involve vertical movement of the trunk 

(when waist mounted) such as cycling (Corder et al., 2007a). Additionally, the plateau of 

uniaxial accelerometer outputs at fast running speed limits its usefulness in assessment of 
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vigorous activities. However, use of the ActiTrainer outputs to predict energy expenditure during 

free living activities indicated improved validity with the difference in TEE derived form DLW 

and ActiTrainer outputs tending towards nonsignificance (P<0.05). 

 

In summary, the GT3X triaxial accelerometer reports significantly higher accelerometer count 

outputs and better fitting regression models compared to the uniaxial ActiTrainer. These higher 

outputs may approximate better human movement which typically involves simultaneous 

movement in the vertical, mediolateral and anteroposterior planes and probably the 
•

VO 2 

associated with these movements. This is further supported by previous studies that indicate that 

physical activity related energy expenditure during sedentary as well as during physically 

intensive activities correlates better with the sum of body acceleration in all three dimensions 

rather than with the longitudinal displacement of the body, as monitored by uniaxial 

accelerometers (Plasqui et al., 2005).  
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Chapter 5 

 

5.0: Evaluation of free living energy expenditure using uniaxial 

accelerometry with heart rate monitoring versus triaxial accelerometry in 

children and adolescents: 

 

5.1 Introduction: 

 

Physical activity is a complex behaviour that varies with age, gender, season, week day and time 

of the day and is also influenced by biological, sociological, psychological and environmental 

factors (Bammann et al., 2006). Dietary changes may account for the secular trends in obesity 

(Appelhans et al., 2012, de Castro et al., 2012, Rouhani et al., 2012, Steinsbekk et al., 2012). For 

instance, in a large cross sectional study, the National Health and Nutrition Examination Surveys 

(1988 - 1994, n = 28, 663) reported that energy intake was the primary contributor of BMI (Song 

et al., 2012). On the other hand, a decline in physical activity has been identified as a possible 

contributory factor in childhood obesity (Reilly, 2008) but is difficult to quantify precisely as 

few studies utilize the same methods of assessment and limited objective data exist (Bammann et 

al., 2006, Reilly, 2008).  Physical activity is generally considered to be a central factor in the 

aetiology, prevention and treatment of childhood obesity (Jakicic & Otto, 2005) and thus, the 

quantification of energy expenditure and daily physical activity has gained considerable interest 

(Chen & Sun, 1997). However, accurate assessment of physical activity and sedentary behaviour, 

especially in children and adolescents remains a significant challenge (Bammann et al., 2006). 

Consequently, validated techniques of estimating habitual physical activity are needed to study 
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the relationship between free living physical activity and obesity (Westerterp, 2009). These 

methods should be suitable to measure physical activity over periods long enough to be 

representative for normal daily life, with minimal discomfort to the subjects, and applicable to 

large study populations (Westerterp, 2009). The ability to accurately track energy expenditure  

using objective methods is crucial (Crouter et al., 2006b), especially in studies that aim to assess 

the trends in energy expenditure over time.  DLW is the only technique available to accurately 

measure TEE over prolonged periods in daily life (Bonomi et al., 2010a). When this technique is 

combined with a measure of BMR, AEE or PAL can be calculated (Plasqui et al., 2005). On the 

other hand, accelerometers provide a means by which researchers can examine the intensity, 

frequency, and duration of physical activity bouts that individuals are performing over extensive 

periods of time (Chen & Bassett, 2005). By validating an accelerometer against DLW derived 

energy expenditure, prediction models can be developed to predict TEE, AEE, or PAL from 

accelerometer counts and other physical characteristics, such as age, sex, height, and body mass 

(Plasqui et al., 2005). Thus, improvement of the accuracy of accelerometers in predicting TEE, 

AEE, and PAL has been the focus of several studies (Chen & Sun, 1997, Plasqui & Westerterp, 

2007, Bonomi et al., 2009). 

 

Uniaxial accelerometers measure accelerations in one axis (usually longitudinal), where as 

triaxial accelerometers measure accelerations in the anteriorposterior, mediolateral, and 

longitudinal directions (Chen & Bassett, 2005). Although uniaxial accelerometers are accurate in 

prediction of energy expenditure during walking, triaxial accelerometers are more suitable when 

a variety of different activities are involved (Bouten et al., 1994, Welk et al., 2000b, Leenders et 

al., 2001, Plasqui et al., 2005). A number of studies have reported improved accuracy to predict 
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physical activity and energy expenditure when combining accelerometry with HR monitoring. 

For example, Heskell et al. (1993) reported an R2 value improvement from 0.69 to 0.82 when 

arm motion, as assessed by accelerometry, was combined with HR monitoring during arm 

ergometer exercise. Subsequent validation studies have therefore explored the utility of 

combining accelerometry wih HR monitoring (Treuth et al., 1998, Rennie et al., 2000, Strath et 

al., 2001, Strath et al., 2002, Brage et al., 2003, Brage et al., 2004) but the results have been 

equivocal. Therefore combining accelereometry and HR needs further exploration.  

 

The most widely used and extensively validated accelerometer for assessment of physical 

activity among children is the ActiGraph (ActiGraph LLC, Pensacola, FL, USA) accelerometer 

(Freedson et al., 2005, Crouter et al., 2006b). The ActiTrainer simultaneous collects activity 

counts and HR data.  On the other hand, the capability of the 3DNXTM (BioTel Limited, Bristol, 

UK) accelerometer to predict energy expenditure in free living adult and adolescent cohorts has 

also been examined using the DLW method as a criterion measure (Carter et al., 2008). These 

authors did not find any association between 3DNX outputs and PAL or AEE/kg, which are 

parameters directly related to physical activity (Carter et al., 2008). The purpose of this study 

therefore, was to examine the validity of uniaxial accelerometry with HR monitoring vs. triaxial 

accelerometry against DLW criterion during free living activities in young children and 

adolescents. 
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5.2 Materials and methods: 

 

5.2.1 Subjects:  

 

49 children (25 female, 24 male) aged between 4 - 10 years (mean age 7 ± 2 years: Table 5.1) 

from the initial child sample (see section 2.1.3 for details) fulfilled the inclusion criteria for final 

data analysis i.e. at least 6 weekdays including at least 1 weekend day of valid recording of at 

least 360 min of continuous monitoring per day as determined in Chapter 3. Furthermore, 

subjects were required to have concurrent ActiTrainer, HR and 3DNX recording. Additionally, a 

subsample of 30 rural Kenyan adolescents (15 male, 15 female), mean age 14 ± 1 y form the 

initial adolescent cohort were recruited to participate in this study (see section 2.1.3 for details). 

All subjects fulfilled the inclusion criteria for data analysis i.e. at least 4 weekdays of monitoring, 

including 1 weekend day of valid recording of at least 360 min of continuous monitoring per day 

as determined in Chapter 3. In addition, subjects were required to have corresponding  

ActiTrainer and HR data.   

 

5.2.2 Calorimetry:  

  

Following the collection of a base line urine sample (Day 0), subjects drank a weighed amount of 

2H2
18O resulting in an initial excess body water enrichment of 125 - 150 ppm for deuterium and 

250 - 300 ppm for oxygen 18. Subsequent urine samples were collected from the second voiding 

in the morning and a subsequent voiding in the evening on Days 1, 4, and 8 for the child sample 

and daily for the adolescent sample as detailed in section 2.1.7. Urine samples were stored at -
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4°C in cryogenically stable tubes until analysis by isotope ratio mass spectrometry. Samples 

were analyzed in duplicate for H2O
18 and 2H2O as detailed in section 2.1.7. Carbon dioxide 

production rate was estimated from the differential disappearance of the 2 isotopes based on the 

multipoint elimination curves and converted to energy expenditure as detailed in section 4.2.3 for 

both child and adolescent cohorts. In addition, the Schofield equations (1985) based on gender, 

age, height and weight were used to predict BMR for the child cohort as described in section 

2.1.7. 

 

5.2.3 Accelerometry:  

 

Free living daily physical activity levels were objectively assessed using the uniaxial ActiTrainer 

and triaxial 3DNX accelerometers (see Section 2.1.8 for description) in the child sample. The 

adolescent sample wore the ActiTrainer only. Data were recorded continuously and downloaded 

to a computer after each experiment. In both devices, signal processing happens onboard, that is, 

the raw signal is first filtered by firmware, then integrated over the 15 s sampling period used in 

this study. For the child cohort, the data from ActiTrainer and 3DNX devices could not be 

exactly aligned because 3DNX accelerometer is started manually by pressing a button and 

therefore the exact start time cannot be preset unlike the case with the ActiTrainer. The resulting 

difficulty was not foreseen when the study was carried out: otherwise, one could have manually 

started the 3DNX exactly at the time when ActiTrainer was initialized. Retrospectively, the only 

thing that could be done was to summarize the data by longer periods (in this case, 30 min 

bouts), and keep only those periods that have complete data for both devices. Thus, 34545 h (in 

30 min bouts) were initially matched. Subsequently, only 11791 h remained after deletion of non 
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compliant periods (≥20 min consecutive zeroes as recommended by Treuth et al., (2003) (i.e. 

where some non wear time was detected by at least one of the monitors). Median wear time was 

668 min, interquartile range: 76. On the other hand, median of wear time was 818 min, 

interquartile range: 72 for the adolescent sample. Accelerometer outputs included CPM and, time 

spent sedentary and in physical activities of different intensities based on Evenson cutpoints 

(2008) and HR data (minimal HR, maximal HR, mean HR). In addition a ∆HRacc was also 

computed as described in section 2.1.9. 

    

5.2.4 Physical activity assessment:  

 

Subjects wore the accelerometers for 7 consecutive days between January and April 2009 during 

school term time simultaneous with the DLW measurements. Accelerometers were mounted on 

the right hip of each subject on the same elastic belt and adjusted to ensure close contact with the 

body. In addition, all subjects were fitted with a HR transmitter belt (Suunto t6, Suunto Oy, 

Vantaa, Finland) on the chest to record HR continuously. The subjects were required to wear the 

accelerometers and HR transmitter belts from the moment they woke up in the morning until bed 

time in the evening so that a full day of physical activity could be assessed. In addition, 

accelerometers and HR transmitter belts had to be removed for aquatic activities.  

 

5.2.5 Data analysis:  

 

Descriptive statistics included means, standard deviation or (range) following a Shapiro Wilk test 

for normality. In order to identify the relationship between total volume of physical activity (as 
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evaluated by CPM (uniaxial and triaxial) and TEE, AEE and PAL, hierarchically nested 

regression models were used. The regression models for TEE, AEE and PAL included BM, CPM 

ActiTrainer, ∆HRacc and CPM 3DNX (uniaxial and triaxial) as independent variables. Non linear 

models were also explored (i.e., square of body mass, square of CPM). Significance was set at 

P<0.05.  All statistical analysis was completed using the software package SPSS, Version 17.0 

(SPSS, inc., Chicago, IL) and R version 2.14.1 (R Development Core Team, 2011). 

 

5.3 Results 

  

Descriptive statistics of the child and adolescent subjects are presented in Table 5.1. Measured 

TEE and calculated AEE and PAL are presented in Table 5.1 for both children and adolescents. 

In children, none of the CPM ActiTrainer, CPM 3DNXz or CPM ∑3DNXxyz was significantly 

correlated with TEE (P>0.05). However, CPM ActiTrainer (r = 0.4, P < 0.05) and CPM 3DNXz 

(r = 0.3, P < 0.05) were significantly correlated with AEE (Figure 5.1). Similarly, CPM 

ActiTrainer, CPM 3DNXz and CPM ∑3DNXxyz were significantly (P<0.05) correlated with PAL 

(r = 0.47, r = 0.42 and r = 0.38, for CPM ActiTrainer, CPM 3DNXz and CPM ∑3DNXxyz 

respectively) (Figure 5.3). On the other hand, in the adolescents, CPM ActiTrainer was not 

significantly correlated with TEE (Figure 5.2).  
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Table 5.1: Descriptive characteristics of the child and adolescent subjects 
 

 
       Children        Adolescents 

 

    Mean ± SD  [Range]    Mean ± SD  [Range] 

  

 
Subject (M/F)  24/25        15/15  

Age (yrs)   6.9 ± 1.5  [4 - 10]    14 ± 1    [10 - 17] 

Weight (kg)   25 ± 7   [14 - 48]    41 ± 9    [25 - 57] 

Height (cm)   121 ± 10  [101 - 140]    157 ± 11  [132 - 175] 

BMI (kg/m2)   16.6 ± 3.0  [13.1 - 26]    16 ± 2    [14 - 22] 

BMI z score   0.45 ± 1.7  [-6.34 - 5.39]    -1.76 ± 3.96   [-3.29 - 0.45] 

BMR (MJ/day)  4.27 ± 0.57  [3.23 - 6.04]    -    - 

TEE (MJ/day)   6.6 ± 1.17  [3.94 - 10.3]    12.2 ± 3.5   [7 - 20.7] 

AEE (MJ/day)   1.63 ± 0.6  [0.32 - 3.36]    -    - 

PAL    1.5 ± 0.14  [1.2 - 1.8]    -    - 

CPM (ActiTrainer)   566 ± 122  [310 - 857]    1165 ± 244   [811 - 1845] 

CPM (3DNX)   816 ± 114  [562 - 1104]    -   - 

  

 
† -Significantly different (P<0.05) 
BMI - Body mass index 

BMR - Basal metabolic rate 

TEE -  Total energy expenditure 

AEE - Activity related energy expenditure 

PAL  - Physical activity level 

CPM - Accelerometer counts per minute 

- Not determined 
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TEE vs. CPM ActiTrainer: r = 0.23, P>0.05  TEE vs. 3DNXz: r = 0.12, P >0.05 

†AEE vs. CPM ActiTrainer: r = 0.40, P<0.05  †AEE vs. 3DNXz: r = 0.3, P < 0.05 

† - Significant association (P<0.05) 

 

Figure 5.1: The relationship between ActiTrainer and 3DNX accelerometer outputs with 

total energy expenditure (TEE) and activity induced energy expenditure (AEE) (with linear 

regression lines and 80% prediction confidence ellipses) in children. Under bivariate 

normality, the percentage of observations falling inside the ellipse should closely agree with 

the specified confidence level. The confidence ellipse collapses diagonally as the correlation 

between two variables approaches 1 or -1. The confidence ellipse is more circular when two 

variables are uncorrelated. 
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TEE vs. CPM ActiTrainer: r = 0.23, P > 0.05  TEE vs. ∑3DNX: r = 0.02, P > 0.05 

†AEE vs. CPM ActiTrainer: r = 0.40, P < 0.05  AEE vs. ∑3DNXz: r = 0.21, P < 0.05 

† - Significant association (P<0.05) 

 

Figure 5.1: The relationship between ActiTrainer and 3DNX accelerometer outputs with 

total energy expenditure (TEE) and activity induced energy expenditure (AEE) (with linear 

regression lines and 80% prediction confidence ellipses) in children. Under bivariate 

normality, the percentage of observations falling inside the ellipse should closely agree with 

the specified confidence level. The confidence ellipse collapses diagonally as the correlation 

between two variables approaches 1 or -1. The confidence ellipse is more circular when two 

variables are uncorrelated. 
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TEE vs. CPM ActiTrainer: r = 0.15, P > 0.05 

 

Figure 5.2: The relationship between ActiTrainer accelerometer outputs with total energy 

expenditure (TEE) (with linear regression lines and 80% prediction confidence ellipses) in 

adolescents. Under bivariate normality, the percentage of observations falling inside the 

ellipse should closely agree with the specified confidence level. The confidence ellipse 

collapses diagonally as the correlation between two variables approaches 1 or -1. The 

confidence ellipse is more circular when two variables are uncorrelated.   
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†PAL vs. CPM ActiTrainer: r = 0.47, P<0.05  PAL vs. ∑3DNXz: r = 0.42, P<0.05 

† - Significant association (P<0.05) 

 

Figure 5.3: The relation between ActiTrainer and 3DNX accelerometer outputs with PAL 

(with linear regression lines and 80% data ellipses) in young children. Under bivariate 

normality, the percentage of observations falling inside the ellipse should closely agree with 

the specified confidence level. The confidence ellipse collapses diagonally as the correlation 

between two variables approaches 1 or -1. The confidence ellipse is more circular when two 

variables are uncorrelated. 
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5.3.1 TEE prediction models in children and adolescents using uniaxial and 

triaxial accelerometer outputs:  

 

In children, 86% of the variance in TEE could be predicted by a model combining BM (Partial r2 

= 71%, P<0.05), CPM ActiTrainer (Partial r2 = 11%, P<0.05) and ∆HRacc (Partial r2 = 4%, 

P<0.05) (Table 5.2).  Similarly, 79% of the variance in TEE could be predicted by a model 

combining BM (Partial r2 = 71%, P<0.05) and CPM ∑3DNXxyz (Partial r2 = 8%, P<0.05) (Table 

5.2). However, a model examining the predictive validity of the individual 3DNX axes indicated 

that 81% of the variance in TEE could be predicted by BM (Partial r2 = 71%, P<0.05) and 

3DNXz (Partial r2 = 10%, P<0.05). Addition of 3DNXx and 3DNXy improved the model R2 by 

3% which was not significant (P>0.05) (Table 5.2). The SEE of TEE estimate for ActiTrainer 

and 3DNX models ranged from 0.44 - 0.74 MJ/d or approximately 6 - 11% of the average TEE 

(Table 5.2). Height, age and gender and other HR variables were not significant predictors of 

TEE in children. In adolescents on the other hand, 39% of the variance in TEE could be 

predicted by BM (Partial r2 = 19%, P<0.05), CPM ActiTrainer (Partial r2 = 15%, P<0.05) and 

∆HRacc (Partial r2 = 5%, P<0.05) (Table 5.3). The S. E of TEE estimate for ActiTrainer models 

ranged from 3.2 - 5.5 MJ/d or approximately 26 - 45% of the average TEE (Table 5.3). Height, 

age and gender and other HR variables were not significant predictors of TEE in adolescents. 
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Table 5.2: Comparison of the accuracy of total energy expenditure (TEE) prediction models using body mass plus uniaxial 

accelerometry with heart rate vs. triaxial accelerometry in children 

 

    
Model             R

2  ∆r
2   SEE   

   

 

TEE = 0.15[BM] + 2.76 MJ/d         71%    0.37   

TEE = 0.16[BM] + 0.003[ActiTrainer] + 0.72 MJ/d      82%  11%   0.49   

TEE = 0.15[BM] + 0.003[ActiTrainer] + 0.04[∆HRacc] + 0.38 MJ/d   86%  15%  0.44   

TEE = 0.17[BM] + 0.009[3DNXz] + 0.03 MJ/d      81%  10%  0.64   

TEE = 0.16[BM] + 0.01[3DNXz] - 0.003[3DNXx] + 0.31 MJ/d    81%  10%  0.71   

TEE = 0.16[BM] + 0.02[3DNXz] - 0.004[3DNXx] - 0.006[3DNXy] + 0.61 MJ/d  83%  12%  0.71   

TEE = 0.18[BM] + 0.003[∑3DNXxyz ] + 0.13 MJ/d      79%  8%  0.74   

 
CPM ActiTrainer - Counts per min of uniaxial ActiTrainer accelerometer contribution to the regression coefficient 

CPM 3DNXz - Counts per min of Z-axis (longitudinal) contribution to the regression coefficient  

CPM 3DNXx - Counts per min of X-axis (anteroposterior) contribution to the regression coefficient   

CPM 3DNXy - Counts per min of Y-axis (mediolateral) contribution to the regression coefficient 

CPM ∑3D NXxyz - Counts per min of triaxial sum of 3DNX accelerometer contribution to the regression coefficient 

∆HRacc - difference in HR during sedentary and moderate activities determined by accelerometry 

R2 - Regression coefficient 

∆r2 - change in R2 relative to the first model containing body mass as the single predictor 

TEE - Total energy expenditure 

BM - Body mass 

SEE - Standard error of estimate 
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Table 5.3: Comparison of the accuracy of total energy expenditure (TEE) prediction models using body mass plus uniaxial 

accelerometry with heart rate monitoring in adolescents  

 

    
Model            R

2  ∆r
2   SEE   

  

 

TEE = 0.19[BM] + 4.45 MJ/d        19%    3.2    

TEE = 0.26[BM] + 0.006[ActiTrainer] - 5.34 MJ/d     34%  15%   5.2   

TEE = 0.26[BM] + 0.006[ActiTrainer] - 0.14[∆HRacc] - 2.36 MJ/d   39%  20%  5.5   

 
CPM ActiTrainer - Counts per min of uniaxial ActiTrainer accelerometer contribution to the regression coefficient 

∆HRacc - difference in HR during sedentary and moderate activities as determined by accelerometry 

R2 - Regression coefficient 

∆r2 - change in R2 relative to the first model containing body mass as the single predictor 

TEE - Total energy expenditure 

BM - Body mass 

SEE - Standard error of estimate 
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5.3.2 AEE prediction models in children using uniaxial and triaxial 

accelerometer outputs: 

 

61% of the variation in AEE could be explained by BM (Partial r2 = 35%, P<0.05), CPM 

ActiTrainer (Partial r2 = 20%, P<0.05) and ∆HRacc (Partial r2 = 4%: P<0.05) (Table 5.4). 

Similarly, 51% of the variance in AEE could be predicted by BM (Partial r2 = 35%, 

P<0.05) and CPM ∑3DNXxyz (Partial r2 = 16%, P<0.05) (Table 5.4). However, a model 

examining the predictive validity of individual 3DNX axes indicated that 55% of the 

variance in AEE could be predicted by BM (Partial r2 = 35%, P<0.05), and 3DNXz 

(Partial r2 = 20%, P<0.05). Addition of 3DNXx and 3DNXy improved the model R2 by 

3% but this contribution was not significant (P>0.05).  The S.E of AEE estimates ranged 

from 0.28 - 0.57 MJ/d or 17 - 35% of the average AEE for the CPM ActiTrainer and 

CPM ∑3DNXxzy respectively (Table 5.4). Height, age and gender were not significant 

predictors of AEE in children.  
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Table 5.4: Comparison of the accuracy of activity induced energy expenditure (AEE) prediction models using body mass plus 

uniaxial accelerometry with heart rate vs. triaxial accelerometry in children. 

    
Model             R

2  ∆r
2   SEE   

   

 

AEE = 0.06[BM] + 0.25 MJ/d        35%    0.28  

AEE = 0.06[BM] + 0.002[ActiTrainer] - 1.24 MJ/d      57%  22%   0.40   

AEE = 0.06[BM] + 0.002[ActiTrainer] + 0.02[∆HRacc] - 1.42 MJ/d    61%  26%  0.38   

AEE = 0.07[BM] + 0.006[3DNXz] - 1.76 MJ/d      55%  20%  0.50   

AEE = 0.06[BM] + 0.008[3DNXz] - 0.002[3DNXx] - 1.6 MJ/d    56%  21%  0.56   

AEE = 0.06[BM] + 0.01[3DNXz] - 0.002[3DNXx] - 0.003[3DNXy] -1.42 MJ/d  58%  22%  0.57   

AEE = 0.07[BM] + 0.002[∑3DNXxyz] - 1.76 MJ/d      51%  16%  0.56   

CPM ActiTrainer - Counts per min of uniaxial ActiTrainer accelerometer contribution to the regression coefficient 

CPM 3DNXz - Counts per min of Z-axis (longitudinal) contribution to the regression coefficient  

CPM 3DNXx - Counts per min of X-axis (anteroposterior) contribution to the regression coefficient   

CPM 3DNXy - Counts per min of Y-axis (mediolateral) contribution to the regression coefficient 

CPM ∑3DNXxyz - Counts per min of triaxial sum of 3DNX accelerometer contribution to the regression coefficient 

∆HRacc - difference in HR during sedentary and moderate activities as determined by accelerometry 

R2 - Regression coefficient 

∆r2 - change in R2 relative to the first model containing body mass as the single predictor 

AEE - Activity induced energy expenditure 

BM - Body mass 

SEE - Standard error of estimate 



 
 

168

Table 5.5: Comparison of the accuracy of physical activity level (PAL) prediction models using body mass plus uniaxial 

accelerometry with heart rate vs. triaxial accelerometry in children. 

 

    
Model             R

2  ∆r
2   SEE   

            

 
PAL = 0.006[BM] + 1.38         8%    0.07   

PAL = 0.007[BM] + 0.001[ActiTrainer] + 1       37%  29%   0.1   

PAL = 0.006[BM] + 0.001[ActiTrainer] + 0.004[∆HRacc]     40%  32%  0.1   

PAL = 0.009[BM] +0.002[3DNXz] + 0.86       37%  29%  0.1   

PAL = 0.008[BM] + 0.002[3DNXz] - 0.0004[3DNXx] + 0.9     37%  29%  0.15   

PAL = 0.008[BM] + 0.003[3DNXz] - 0.001[3DNXx] - 0.001[3DNXy] + 0.94  40%  32%  0.15   

PAL = 0.009[BM] + 0.001[∑3DNXxyz] + 0.86      31%  23%  0.15   

 

CPM ActiTrainer - Counts per min of uniaxial ActiTrainer accelerometer contribution to the regression coefficient 

CPM 3DNXz - Counts per min of Z-axis (longitudinal) contribution to the regression coefficient  

CPM 3DNXx - Counts per min of X-axis (anteroposterior) contribution to the regression coefficient   

CPM 3DNXy - Counts per min of Y-axis (mediolateral) contribution to the regression coefficient 

CPM ∑3DNXxyz - Counts per min of triaxial sum of 3DNX accelerometer contribution to the regression coefficient 

∆HRacc - difference in HR during sedentary and moderate activities as determined by accelerometry 

R2 - Regression coefficient 

∆r2 - change in R2 relative to the first model containing body mass as the single predictor 

PAL - Physical activity level  BM - Body mass  SEE - Standard error of estimate 
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5.3.3 PAL prediction models in children using uniaxial and triaxial 

accelerometer outputs: 

 

40% of the variation in PAL could be explained by BM (Partial r2 = 8%, P<0.05), CPM 

ActiTrainer (Partial r2 = 29%, P<0.05) and ∆HRacc (Partial r2 = 3%: P<0.05) (Table 5.5). 

Similarly, 31% of the variance in PAL could be predicted by BM (Partial r2 = 8%, 

P<0.05) and CPM ∑3DNXxyz (Partial r2 = 23%, P<0.05) (Table 5.5). However, a model 

examining the predictive validity of individual 3DNX axes indicated that 37% of the 

variance in PAL could be predicted by BM (Partial r2 = 8%, P<0.05), and 3DNXz (Partial 

r2 = 29%, P<0.05). Addition of 3DNXx and 3DNXy improved the model R2 by 3% but 

this contribution was not significant (P>0.05).  The S.E of PAL estimates ranged from 

0.07 - 0.15 or 5-10% of the average PAL for the CPM ActiTrainer and CPM ∑3DNXxyz 

respectively (Table 5.5). Height, age and gender were not significant predictors of PAL in 

the children.  

 

5.4 Discussion: 

 

Energy expenditure can be estimated by measuring body acceleration (Yang & Hsu, 

2010). The DLW and indirect calorimetry are regarded as the gold standard references of 

energy expenditure assessment (Yang & Hsu, 2010). Though accurate, gas analyzers for 

indirect calorimetry are expensive and they require specialized skills to operate (Yang & 

Hsu, 2010). Therefore, accelerometers provide an alternative method of estimating 

energy expenditure in a free living environment (Yang & Hsu, 2010). In children, 
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ActiTrainer with HR monitoring and 3DNX reported comparable model prediction 

accuracy for free living TEE and AEE with similar models obtained with the TracmorD 

accelerometer in adults (Bonomi  et al., 2010) based on reported SEE and partial r2 

values. In addition, there was significant positive association between both ActiTrainer 

and 3DNX outputs and PAL (Figure 5.3) which contradict the findings of Carter et al., 

(2008) and is probably due to the fact that they used an earlier generation of the 3DNX 

accelerometer, lower subject numbers i.e. 37 compared to 49 in the current study or 

sample specific differences between the two studies. Furthermore, uniaxial ActiTrainer 

and 3DNXz reported comparable validity relative to ∑3DNXxyz accelerometer and 

3DNXx + 3DNXy + 3DNXz. For the triaxial 3DNX accelerometer therefore, addition of 

the anteroposterior and mediolateral axes to the longitudinal axis did not significantly 

contribute to the energy expenditure model prediction in children. In adolescents on the 

other hand, a model combining BM with actiTrainer outputs predicted 34% of the 

variance in TEE compared to 82% in children. However, the relative contribution of the 

ActiTrainer outputs to the model prediction was 11% and 15% for children and 

adolescent subjects respectively. Thus, BM was the principal determinant of TEE in 

children. In adolescents however, BM and ActiTrainer count were equally important 

determinants of TEE, which may reflect the fact that accelerometry may have better 

utility in assessing energy expenditure in the more active adolescent sample compared to 

the relatively inactive child sample. In both cohorts, addition of ∆HRacc monitoring to 

ActiTrainer outputs in the energy expenditure prediction models improved the prediction 

accuracy by 3 - 5%. This is consistent with the observation that addition of HR to 

accelerometry improves energy expenditure prediction (Heskell, 1993).  



 
 

171

However, the relationship between HR and instantaneous AEE is approximately linear 

during moderate to vigorous activity intensities but not at low intensity activity and while 

sedentary (Livingtone et al., 1992), Therefore, to avoid the problems associated with use 

of HR at low physical activity intensities to predict energy expenditure it has been 

suggested that HR monitoring should only be used to assess time spent in moderate and 

vigorous intensity activity in children (Riddoch et al., 1995). This may explain why use 

of ∆HRacc- a variant of HR reserve (Corder et al., 2008), defined in this thesis as the 

difference between moderate HR and sedentary HR, and which incorporates some level 

of individual calibration by the using sedentary HR was significantly associated with 

energy expenditure. 

  

The ActiTrainer ActiGraph accelerometer outputs were a significant predictor of energy 

expenditure in children and adolescents. Furthermore, addition of HR monitoring 

improved the predictive validity of the ActiTrainer.   This contradicts the finding that 

activity measured using ActiGraph accelerometers is not related to AEE and PAL and 

thus ActiGraph accelerometers may not be useful in predicting AEE in children 

(Krishnaveni et al., 2009) but is supported by the findings of Ekelund et al., (2001).  

Examination of the validity of the models combining accelerometer outputs (CPM) and 

anthropometric measures to predict TEE, AEE and PAL consistently indicated that 

uniaxial ActiTrainer outputs combined with HR monitoring were comparable to triaxial 

3DNX outputs in children. However, comparison of these findings with previous 

prediction models is difficult because of differences in the activity profiles between study 

groups, different independent variables included in the regression such as Fat Free Mass 
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and Sleeping metabolic rate, different age groups (Bonomi  et al., 2010), different 

devices used in other studies and other sample specific differences. This notwithstanding, 

use of accelerometer outputs to predict energy expenditure shows significant promise if 

accelerometer prediction accuracy of energy expenditure is improved by addressing 

specific issues related to accelerometer based measurements of physical activity, such as 

intraindividual variability in AEE (Bonomi et al., 2009), interindividual variability in 

accelerometer outputs in subjects performing standardized activities (Welk, 2005) and 

lack of comparability between accelerometer counts from different manufacturers (Chen 

& Bassett, 2005). However, recently van Hees and colleagues (2011) used a GENEA 

(Unilever Discover, UK) accelerometer that has capability to record raw accelerometer 

data in g units and therefore this device may be practical in attempts to standardize 

accelerometer outputs. Most devices however, such as the ActiTrainer and 3DNX used in 

this study do not have sufficient memory to store several days worth of raw data in g 

units. Furtheremore, the raw data are already processed into counts using proprietary 

algorithims and technically there is no way of converting counts back to the original g 

units, hence inter device comparison of counts may not be feasible.      

 

According to Trost et al. (2005) evidence indicates that some accelerometers may 

perform better than others under certain conditions, but the reported differences are not 

consistent or sufficiently compelling to single out one brand or type of accelerometer as 

being superior to the others. When it comes to selecting an accelerometer, issues of 

affordability, product reliability, monitor size, technical support, and comparability with 

other studies may be equally as important as the relative validity and reliability of an 
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instrument. It is necessary to begin systematically evaluating the absolute and concurrent 

validity of these instruments under a variety of conditions such as in children and 

adolescent cohorts used in this study. This can be accomplished only by comparing 

multiple instruments under the same conditions and against a suitable ‘gold standard’ 

(Welk et al., 2000) since the relative validity and interinstrument reliability of a given 

accelerometry product is of primary importance. Furthermore, accelerometer validation 

studies should report both r2 and SEE values for comparison of device validity.  

  

Uniaxial accelerometry with HR monitoring and triaxial accelerometry were comparable 

in the assessment of free living energy expenditure in young children. This is consistent 

with previous studies (Welk et al., 2000, Puyau  et al., 2002) but contradicts the findings 

of Plasqui et al. (2005) in adults who reported that to measure the wide variety of daily 

life activities triaxial accelerometers are more suitable than uniaxial. Intuitively, it is 

expected that the sum of body accelerations in the three axes would be a better predictor 

of energy expenditure associated with motion. Therefore, triaxial accelerometers in 

general clearly provide more information which could provide marginal improvements in 

validity in other samples (e.g., older children, more active, more diverse/complex 

activities besides occasional walking). However, this was not the case for the 3DNX 

accelerometer in the child cohort, since only the longitudinal axis was a significant 

predictor of energy expenditure.   

 

To conclude, uniaxial ActiTrainer with HR monitoring and triaxial 3DNX accelerometry 

have comparable validity in assessing free living energy expenditure in young children. 
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Furthermore, ActiTrainer outputs were valid for assessing energy expenditure in active 

adolescents. However, there is a wide array of activity monitors which have yet to be 

properly validated and therefore accuracy of most remains to be determined. In addition, 

there is a need to explore further the relationship between energy expenditure and 

physical activity intensity/patterns rather than just physical activity volume (as assessed 

by CPM).   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

175

Chapter 6 

 

6.0: The relation between free living physical activity, energy 

expenditure and indices of adiposity in children and adolescents 

 

6.1 Introduction:  

Western societies have experienced an obesity epidemic over the past 40 years (Wang & 

Lobstein, 2006, Flegal et al., 2010, Onis et al., 2010) with over 25% of the population of 

many such societies currently classed as obese (body mass index BMI >30) and an 

additional 40 - 45% overweight (BMI >25) (Wang & Lobstein, 2006, Flegal et al., 2010, 

Onis et al., 2010). Obesity is a problem caused by prolonged energy imbalance where 

energy intake exceeds energy expenditure (Tappy et al., 2003). Whether this has been a 

consequence of elevated food consumption, or reduced physical activity remains a matter 

of debate. Over the time course of the epidemic there have been large changes in our 

physical activity patterns. Sedentary leisure time activities such as TV viewing and 

computer use have increased enormously relative to the 1950s (Dollman et al., 2005). 

However, whether these trends in activity have been sufficient to impact on energy 

expenditure is uncertain. There has apparently been no reduction in the level of energy 

expenditure between the 1980s and the present day in adults in western societies 

(Westerterp & Speakman, 2008), and estimates of the gap between intake and 

expenditure necessary to drive the epidemic suggest that this can be entirely accounted 

for by differences in food consumption rather than expenditure (Swinburn et al., 2009, 

Hall, 2010). Moreover, measurements of energy demands in rural communities that are at 
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a lesser stage of economic development that may precede a potential epidemic indicate 

no significant difference to those of western societies (Westerterp & Speakman, 2008, 

Luke et al., 2009), despite the suggested higher levels of physical activity of individuals 

in such communities.  

One reason why expenditures in rural communities may not be significantly higher than 

in western societies is that our impressions of the levels of expenditure may be overly 

influenced by observations of occasional periods of vigorous activity. Such periods, 

however, may be compensated for by increases in the time spent in low levels of activity 

at other times of day. In addition, although we have certainly increased the time we spend 

watching TV, this shift may have occurred in a time slot in the early evening where it 

may have only displaced other sedentary pursuits such as reading or listening to the radio. 

On the other hand, a recent systematic review on the trends of energy expenditure in 

children and adolescents over time indicated that absolute TEE had declined, but this was 

only evident after adjusting for the increasing body mass which had occurred over the 

period of the review (Malina & Little, 2008). In addition, another review on the trends of 

physical activity over the past 50 years in US adults indicated a decline in occupational 

related energy expenditure which would account for increased body weights in men and 

women (Church et al., 2011).  

Previous studies on Kenyan adolescents living in rural areas indicated a highly physically 

active lifestyle, with subjects reporting that they walked or ran on average for 3 h/d and 

also spent an average of 40 min/d working in the fields (Larsen et al., 2004, Onywera et 

al., 2006). This high level of reported activity would be expected to lead to high levels of 

TEE compared to levels observed in European children living in industrialised countries. 
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The aim of the current study was therefore, to determine the energy demands of a rural 

population of Kenyan adolescents and young urbanised European children using the 

DLW technique at the same time as determining the relationship between adiposity, 

physical activity levels and patterns and energy expenditure in both cohorts.  

 

6.2 Material and methods: 

 

6.2.1 Subjects:  

 

A subsample of 60 children (32 female, 28 male) from the initial child cohort fulfilled the 

inclusion criteria for analysis i.e. at least 6 weekdays including at least 1 weekend day of 

valid recording of at least 360 min of continuous monitoring/d as determined in Chapter 

3. Additionally, a subsample of 30 rural Kenyan adolescents (15 male, 15 female), mean 

age 14 ± 1 y from the initial adolescent cohort were recruited to participate in this study 

(see section 2.1.3 for details). All subjects fulfilled the inclusion criteria for data analysis 

i.e. at least 4 weekdays of monitoring, including at least 1 weekend day of valid recording 

of at least 360 min of continuous monitoring/d as determined in Chapter 3.   
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6.2.2 Calorimetry:  

 

TEE was measured over 7 day under free living conditions using the DLW technique in 

children and adolescents as outlined in section 5.2.2  

 

6.2.3 Accelerometry:  

 

Free living daily physical activity levels and patterns were objectively quantified using 

the ActiTrainer uniaxial accelerometers in both cohorts as outlined in section 5.2.3. In 

addition, for the adolescent sample, subjects were simultaneously fitted with either a 

Timex trainer V 1.3.36 (Timex Group, USA) or GPSports Team AMS Release 1.2.1.12 

(Fyshwick, Australia) GPS devices during their travel from home to school to obtain 

daily distance travelled to school. Physical activity was expressed as total volume of 

physical activity (average CPM) over the monitoring period. To convert accelerometry 

output to estimates of sedentary time and activities of different physical activity 

intensities, the recently validated Evenson cutpoints (2008) for children and adolescents 

using ActiGraph accelerometers were used. These are: sedentary, ≤100 CPM, light, >100 

and <2296 CPM, moderate, >2296 and <4012 CPM, and vigorous physical activity, 

≥4012 CPM. In addition, moderate to vigorous activity (MVPA) was calculated by 

combining moderate and vigorous categories (i.e. >2296 CPM).  
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6.2.4 Statistical analysis: 

 

Descriptive statistics included calculations of means, standard deviation and range 

following a Shapiro Wilk test of normality. Time spent sedentary and in vigorous 

activities was not normally distributed. Differences between child and adolescent samples 

in physical characteristics and energy expenditure measurements were tested by General 

Linear Modelling.  To identify the factors that may be associated with TEE and 

objectively measured physical activity and sedentary time in the present study, total 

amount of physical activity (as evaluated by CPM), sedentary time and physical activity 

intensity (time in light, moderate, vigorous and MVPA) were assessed by hierarchical 

nested regression analysis. The regression models for TEE included BM and physical 

activity parameters as independent variables. In addition, the relationship between indices 

of adiposity (i.e. BMI and BMI z score) and TEE or distance to school (active 

commuting) was examined by regression analysis. Statistical computations were 

performed using the software package SPSS, Version 17.0 (SPSS, inc., Chicago, IL).  

 

6.3 Results: 

 

Descriptive characteristics including anthropometrics and TEE values for both children 

and adolescents are summarized in Table 6.1. Adolescent subjects spent 49% of the 

monitored time engaged in light, moderate and vigorous activities compared to 45% in 

children. Similarly, adolescent subjects engaged in significantly (P<0.05) higher volumes 

of physical activity compared to children: 1148 ± 244 vs. 567 ± 118 CPM, for adolescent 
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and child cohorts, respectively. Similarly, adolescent subjects engaged in significantly 

(P<0.05) more moderate, vigorous and MVPA compared to children (Table 6.2). 

Furthermore, adolescents travelled for and average distance of 7.5 ± 3 to school daily 

(Table 6.2).  

 
 

6.3.1: Relationship between physical activity, energy expenditure and 

indices of adiposity: 

 

In children, 71% of the variance in TEE could be predicted by BM (P<0.05). A model 

combining BM and CPM predicted 82% of the variance in TEE (P<0.05). In addition, a 

model combining BM, CPM and time spent engaged in MVPA predicted 85% of the 

variance in TEE (P<0.05) (Table 6.3). The S. E of TEE estimate ranged from 0.37 - 049 

MJ/d or 6 - 7% of the average TEE. In adolescents on the other hand, 22% of the variance 

in TEE could be predicted by BM (P<0.05). A model combining BM and CPM predicted 

34% of the variance in TEE (P<0.05). In addition, a model combining BM, CPM and 

time engaged in light activities predicted 42% of the variance in TEE (P<0.05) (Table 

6.4). The standard error (S.E.) of TEE estimates for the models ranged from 2.8 – 6.4 

MJ/d or 21 – 50% of the average TEE (Table 6.4). Furthermore, in adolescents, there was 

no association between variation in distance travelled to school (active commuting) and 

TEE. On the other hand, there was moderate negative correlation between BMI z scores 

and CPM (r = -0.6, P = 0.001), vigorous activities (r = -0.53, P = 0.03) and MVPA (r = -

0.57, P = 0.01). In contrast, there was no association between BMI z scores and active 

commuting (P >0.05). Similarly, in children, there was no association between physical 
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activity and BMI z scores. However, there was a weak association between time engaged 

in sedentary activities and BMI z scores (r = 0.27, P<0.05). 
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Table 6.1: Descriptive characteristics of the child and adolescent subjects 
 

 
       Children        Adolescents 

 

    Mean ± SD  [Range]    Mean ± SD  [Range] 

  

 
Subject (M/F)  28/32        15/15  

Age (yrs)   6.9 ± 1.5  [4 - 10]    14 ± 1†   [10 - 17] 

Weight (kg)   25 ± 7   [14 - 48]    41 ± 9†   [25 - 57] 

Height (cm)   121 ± 10  [101 - 140]    157 ± 11†   [132 - 175] 

BMI (kg/m2)   16.6 ± 3.0  [13.1 - 26]    16 ± 2    [14 - 22] 

BMI z score   0.45 ± 1.7  [-6.34 - 5.39]    -1.76 ± 3.96   [-3.29 - 0.45] 

TEE (MJ/day)   6.6 ± 1.2  [3.9 - 10.3]    12.2 ± 3.5†   [7 - 20.7] 

 

 
† -Significantly different (P<0.05) 
- Not determined 
BMI - Body mass index 
BMR - Basal metabolic rate 
TEE -  Total energy expenditure 
AEE - Activity induced energy expenditure 
PAL -  Physical activity level 
CPM - Accelerometer counts per minute 
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Table 6.2: Physical activity parameters in children and adolescents  
 

 
             Children                           Adolescents 

 

    Mean ± SD  [Range]    Mean ± SD  [Range] 

  

 
CPM    567 ± 118    [313 - 931]    1148 ± 244†    [809 - 1843] 

Sedentary (min)  394 ± 53   [298 - 502]    406 ± 63   [328 - 561] 

Light (min)   275 ± 46   [160 - 402]    244 ± 56   [132 - 354] 

Moderate (min)  40 ± 12  [16 - 69]    75 ± 18†  [43 - 113] 

Vigorous  (min)  15 ± 7   [1 - 32]    82  ± 30†   [32 - 153]  

MVPA (min)   55 ± 18  [19 - 98]    156 ± 33†  [109 - 234] 

% time sedentary    54   [40 - 73]    50   [39 - 67] 

% time light   38   [24 - 52]    30   [17 - 42] 

% time moderate  5   [2 - 9]     9   [5 - 17] 

% time vigorous   2   [0 - 5]     10   [4 - 19] 

% time MVPA  8   [3 - 13]    19   [14 - 30] 

Distance to school (km)  -    -     7.5 ± 3   [0.8 - 13.4] 

 

 
CPM - Counts per minute 
MVPA - Moderate to Vigorous Physical activity 
† - significantly different (P<0.05) 

 

 



 
 

184

Table 6.3: Total energy expenditure (TEE) prediction models using body mass plus physical activity levels and patterns in 

children 

 

    
Model         R

2
   ∆r

2
   

 
SEE   

  

     

 

TEE = 0.15[BM] - 2.76 MJ/d      71%      0.37     

TEE = 0.16[BM] + 0.003[CPM] + 0.72 MJ/d   82%   11%   0.49     

TEE = 0.15[BM] + 0.85[MVPA] + 5.29 MJ/d   74%   3%   0.39    

TEE = 0.15[BM] + 0.003[CPM] + 0.85[MVPA] + 5.28 MJ/d 85%   14%   0.47    

 

 

BM - Body mass 
CPM - Average accelerometer counts per minute 
MVPA - Time spent engaged in moderate to vigorous activities 
SEE - Standard Error of Estimate 
TEE - Total energy expenditure 
R2 - Regression coefficient 
∆r2 - change in R2 relative to the first model containing body mass as the single predictor 
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Table 6.4: Total energy expenditure (TEE) prediction models using body mass plus physical activity levels and patterns in 

adolescents 

 

    
Model           R

2
  ∆r

2
  

 
SEE    

      

 

TEE = 0.19[BM] + 4.45 MJ/d        22%    2.8     

TEE = 0.25[BM] + 0.005[CPM] - 4.2 MJ/d      34%  12%  4.6    

TEE = 0.24[BM] +16.8[ Light] - 2.6 MJ/d       30%  8%  4.9    

TEE = 0.32[BM] + 0.006[CPM] + 21.1[Light] - 14.5 MJ/d    42%  20%  6.1     

 

 

BM – Body mass 

CPM – Average accelerometer counts per minute 

Light – Time spent engaged in Light activities 

SEE – Standard Error of Estimate 

TEE - Total energy expenditure 

R2 - Regression coefficient 

∆r2 – change in R2 relative to the first model containing body mass as the single predictor 
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6.4 Discussion: 

 

This study objectively assessed sedentary behaviour, physical activity volumes and 

patterns in relation to TEE and its components in a sample of European children and 

Kenyan adolescents. The results from the present study indicate that adolescents had 

higher engagement in physical activity compared to children. Habitual physical activity 

in Kenyan adolescents was very high compared to levels previously reported in Western 

children using the Evenson cutpoints (Kwon et al., 2011). Examination of the activity 

time budget indicated that Kenyan adolescents spent approximately 49% of the 

monitored time engaged in light, moderate and vigorous intensity physical activities 

compared to 45% in children. However, engagement in vigorous activity was 2% and 9% 

of the monitored time for the child and adolescent samples respectively. Thus, 

engagement in vigorous intensity physical activity contributes minimally to the activity 

time budget in both cohorts. This finding is consistent with previous findings in other 

populations in children and adults (Westerterp, 2001, Montgomery et al., 2004). 

Although adolescents spent relatively little time in vigorous intensity physical activity 

(75 min per day on average) this was still substantially higher than levels observed in 

European children or those previously reported in a free living American cohort using the 

Evenson cutpoints (Kwon et al., 2011). 

 

All adolescents were lean, this notwithstanding, their absolute TEE was comparable to 

levels observed in obese European adolescents, primarily because of the high BMR 
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observed in these obese subjects (Ekelund et al., 2002). Furthermore, Kenyan adolescents 

had a mean TEE of 12.2 MJ/d, which was comparable to the published average value of 

11.2 MJ/d for adults in affluent societies (Black et al. 1996) in spite of the larger BM and 

hence BMR of adult subjects. It may therefore be inferred that AEE is a highly significant 

component of TEE in lean Kenyan adolescents. Therefore, the role of reduced energy 

expenditure in fuelling the obesity epidemic needs to be examined more closely.   

 

Recent evidence indicates that levels of habitual physical activity of children and 

adolescents earlier in the century (preindustrial) were greater compared with 

contemporary youth in postindustrial societies (Malina & Little, 2008) which is 

consistent with the study findings comparing the postindustrial child cohort vs. the 

preindustrial adolescent cohort. Physical inactivity is implicated in the recent worldwide 

obesity epidemic (WHO, 2000).  In fact, it has been previously reported that active 

commuting (a proxy of physical activity) is inversely related to obesity and has been 

suggested to explain the differences in global obesity prevalence rates (Bassett  et al., 

2008). However, there was no association between active commuting and either energy 

expenditure or indices of adiposity in the adolescent sample. Conversely, indices of 

physical activity (i.e. CPM and time in vigorous and MVPA) were negatively correlated 

with indices of adiposity in adolescent but not in the child sample.  

 

In traditional poor societies whose economy is based on human labour, basic needs such 

as food are satisfied through investment in occupational physical activity (Bénéfice et al., 

2001). Furthermore, active commuting to school is the principal mode of transport in 
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rural Kenyan school children (Larsen et al., 2004, Onywera et al., 2006). Therefore, it 

was anticipated that variations in TEE would be largely the result of variations in 

physical activity. However, volume of physical activity (CPM) and time spent engaged in 

light activities were the only significant predictors of TEE. On the other hand, time 

engaged in moderate, vigorous and MVPA were not significant predictors of TEE. 

Conversely, in the child sample, which was a relatively sedentary cohort compared to 

adolescents in this study, CPM and time engaged in MVPA were significant predictors of 

TEE. It was anticipated that higher intensity physical activities would be more strongly 

associated with energy expenditure in active adolescents compared to inactive children 

based on the findings that adolescents engaged in significantly more high intensity 

physical activities compared to children. However, the post hoc statistical power 

calculations indicated that we needed a sample size of at least 37 (see section 2.1.4) but 

due to practical limitations we could only managed to sample 30 subjects, coupled with 

the wide variability in physical activity and energy expenditure parameters in the 

adolescent sample, significant associations may have been masked between physical 

activity patterns and energy expenditure. Therefore, associations between physical 

activity patterns and energy expenditure should be explored further in a much larger 

sample of free living active populations.  
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In conclusion, objectively assessed physical activity indicates that Kenyan adolescents 

are very active and have high TEE values compared to levels observed in European 

children and adolescents which may be a likely reflection of the active lifestyles these 

subjects engage in. Furthermore, physical activity was a significant predictor of TEE in 

both children and adolescents. However, there was no association between active 

commuting and TEE or indices of adiposity in Kenyan adolescents.  
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Chapter 7 

 

 

 

7.0: The relation between the environment, physical activity and 

indices of adiposity in children and adolescents 

 

7.1 Introduction 

 

In a recent review it was estimated that by 2010 the European Union can expect the 

numbers of overweight and obese children to rise by approximately 1.3 million 

children/y, of which over 0.3 million/y will be obese (Jackson-Leach & Lobstein, 2006). 

In an attempt to counter this obesity epidemic in European children, IDEFICS study aims 

to enhance the knowledge of the impact of lifestyle related factors, such as physical 

activity, on children’s health (Bammann et al., 2006). It is therefore essential to classify 

the current physical activity profiles of children in order to develop effective intervention 

programs that will enhance physical activity and reduce the risk of childhood obesity 

(Reilly, 2008).  

 

Physical activity has a range of health related benefits for children and adolescents 

(Strong 
et al., 2005, USDHHS, 2008, Warbuton et al., 2011) with recommendations that 

at least 60 min of MVPA should be accumulated daily (USDHHS, 2008, CMO 2011). 

Guidelines also exist which recommend that children and adolescents restrict the amount 

of time they spend in sedentary behaviour, a separate construct from physical activity 
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(AAP, 2007, CMO, 2011). Increased childhood sedentary behaviour has been proposed 

as a likely explanation for the increased secular trend in childhood obesity in the West 

(Rolland-Cachera et al., 1984, Bammann et al., 2006, Reilly, 2008). 

 

Similarly, Sub Saharan Africa is known to be undergoing the ‘epidemiological transition’ 

as demonstrated by a reduction in childhood mortality due to communicable diseases and 

under nutrition (Omran, 2005). These changes may be explained by rapid urbanisation 

and adoption of Westernised lifestyles (Popkin, 2001). Urbanisation is often associated 

with extreme changes in dietary habits and habitual physical activity (Yamauchi et al., 

2001), which may explain the observed differences in prevalence of lifestyle disorders 

such as obesity, hypertension and diabetes between rural and urban populations in Africa 

(Sobngwi et al., 2002). Rapid urbanisation has occurred in Kenya in recent years (Otiso 

& Owusu, 2008) but the extent to which urbanisation has affected habitual physical 

activity, sedentary behaviour and indices of adiposity in Kenyan adolescents is unknown.  

 

There is mounting evidence that physical activity in particularly defined contexts, such as 

active transport, school physical education, and organised sport is waning in urbanised 

children in the West (Dollman & Norton, 2005). However, it remains to be determined 

whether these trends are replicated in urban areas in Africa, since it has been previously 

reported that Kenyan and Ethiopian children from rural areas run up to 20 km to school 

daily, and are also engaged in physically active leisure time activities and household 

chores (Scott et al., 2003, Larsen et al., 2004, Onywera et al., 2006). However, objective 

assessment of habitual physical activity levels using accelerometry in these populations 
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remains to be determined. The primary purpose of the present study, therefore, was to 

compare habitual physical activity levels in children from urban areas and adolescents 

from rural and urban areas (environmental influence) using objective measures (i.e. 

accelerometry). A secondary aim was to test for relationships between objectively 

measured physical activity, sedentary behaviour and adiposity in children and adolescents 

in light of recent recommendations that at least 60 min of MVPA should be accumulated 

daily to maintain healthy weight (USDHHS, 2008, CMO, 2011). 

 

7.2 Material and methods 

 

7.2.1 Subjects:  

 

A subsample of 60 children (32 female, 28 male) from the initial child cohort and a sub 

sample of 200 apparently healthy adolescents aged 12 - 16 y from the initial adolescent 

cohort fulfilled the inclusion criteria as determined in Chapter 3. Subjects from the child 

sample were from urbanised areas in the UK, Spain and Belgium (Figure 2.1). For the 

adolescent sample, the participants from rural areas were 97 (50 female and 47 male) and 

from urban areas 103 (52 female and 51 male) (see Table 7.1 and 7.2 for physical 

characteristics). Adolescent subjects were recruited from Eldoret Town Council (urban 

group) and Wareng County Council (rural group). Adolescent subjects were assigned to 

the urban group if they lived within the municipal boundaries of Eldoret town and were 

served at home with mains electricity and piped water. Eldoret is a town (2100-2700 m 

above sea level) in western Kenya and the administrative centre of Uasin Gishu District 
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of Rift Valley Province with a population of 193,830 in 1999 (census) (GOK, 1999). In 

contrast, subjects were assigned to the rural group if the subjects lived in small and 

remote villages in the Nandi region of Kenya without access to mains electricity and 

piped water at home (Figure 2.1). Habitual physical activity levels were assessed by 

uniaxial ActiTrainer using Evenson cutpoints (2008) as described previously in Chapter 

6. A physical activity diary was also used in the adolescent cohort to determine mode of 

transport to school, time taken to get to school and engagement in specific physical 

activities such as playing football, running, cattle herding, playing netball, swimming, 

fetching water from streams and fetching firewood. 

  

7.2.2: Protocol and indices of weight status: 

 

Habitual physical activity was monitored by accelerometry for the child cohort as 

detailed in Chapter 6. For the adolescent cohort, subjects were monitored for 4 

consecutive school days and 1 weekend day as determined in Chapter 3. Prior to testing 

of each subject, activity monitors were tested and fully charged. The accelerometer was 

placed in a small nylon pouch and firmly adjusted at the right hip of the subject by an 

elastic belt. Activity diaries were completed by each subject or their parent(s). BMI was 

determined relative to International Obesity Task Force (IOTF) (Cole et al., 2000) which 

developed definitions of overweight and obesity based on BMI centile curves that passed 

through the adult cutoff points of BMI 25 and 30. The resulting set of age and gender 

specific BMI cutoff points for children and adolescents was then used to define subjects 
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as overweight or obese, and BMI z scores were calculated relative to WHO reference 

data (WHO, 2007a, WHO, 2007b) for children and adolescents.  

 

7.2.3: Statistical analysis:  

 

Descriptive statistics included calculations of means, standard deviation and test of group 

differences following a Shapiro Wilk test for normality. Differences between genders and 

between children and adolescent cohorts in physical characteristics and indices of 

adiposity were tested by Generalised Linear Models.  Compliance to published public 

health guidelines for appropriate physical activity levels of accumulating at least 60 min 

of MVPA daily (CMO, 2011) was also assessed. Multiple stepwise regression analysis 

was conducted to assess the effect of environment (Centre for child sample) or (rural vs. 

urban for adolescent sample) on main study outcomes (i.e., time sedentary, total physical 

activity in CPM, time in MVPA and BMI z score) controlling for age, gender, and 

environment. In addition, Generalised linear regression models were also explored with 

environment (Centre for child sample) or (rural vs. urban for adolescent sample), sex and 

age as covariates to determine whether there was an effect of environment, independent 

of physical activity, on adiposity in children and adolescents. Compliance to published 

public health guidelines for appropriate MVPA levels was also assessed using binary 

logistic regression analysis, with MVPA compliance (coded as 0: <60 min, 1: >60 min) 

as the dependent variable. The predictors were environment and sex, and their 

interaction. Statistical significance was declared at P<0.05. All statistical analysis was 

completed using the software package SPSS, Version 17.0 (SPSS, inc., Chicago, IL). 
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7.3 Results 

 

7.3.1 Descriptive data:  

 

Descriptive characteristics including anthropometric and key physical activity variables 

are shown in Table 7.1 and Table 7.2. Adolescent subjects engaged in significantly 

(P<0.05) higher volumes of physical activity compared to children: average CPM 753 ± 

237 vs. 581 ± 118 for adolescent and child subjects respectively (Table 7.1, Table 7.2). 

Similarly, adolescent subjects engaged in significantly more MVPA compared to 

children: 75 ± 29 vs. 55 ± 18, for adolescent vs. children respectively (Table 7.1, Table 

7.2). However, there was no significant difference in time spent sedentary between 

adolescents and children: 379 ± 68 vs. 394 ± 53, for adolescent vs. children respectively. 

 

In adolescents, analysis of the physical activity diaries of rural subjects revealed that all 

97 individuals reported either walking (n = 39 or 40%) or running (n = 58 or 60%) to 

school, covering distances ranging from <1 km to >7 km. Forty eight % (n = 47) of rural 

subjects reported taking less than 30 min to get to school, 21% (n = 20) between 30 min 

to 1 h to get to school, while the remaining 31% (n = 30) of these subjects reported taking 

more than 1 h to get to school. On the other hand, 50% (n = 52) of the urban subjects 

reported that they travelled to school by car while 41% (n = 42) walked to school. Only 

about 9% (n = 9) of the urban subjects reported running to school. All the urban subjects 

who either walked or ran to school reported that it took them less than 30 min to get to 

school (Table 7.2). All 200 adolescent subjects reported that they were involved in 
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household chores and leisure time was spent doing active physical activity such as 

running, jumping, skipping, playing football or netball, swimming and sedentary 

activities such as study, watching television or listening to the radio. In addition, rural 

adolescents typically reported engaging in activities not reported often by the urban 

adolescents: gardening, fetching water from streams, fetching firewood and cattle 

herding.  
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Table 7.1: Descriptive characteristics of child participants (mean ± SD). 

 

            

    Males   Females  All 
 

 

UGENT   11   11   22 

UGLW    9   7   16 

UZAZ    10   12   22  

All    30   30   60 

 

Age (y)    6.7 ± 1.6  7.3 ± 1.3  6.9 ± 1.5ϕ  

Height (m)   1.19 ± 1.0  1.24 ± 0.8  1.21 ± 0.1ϕ 

Weight (kg)   24.4 ± 7.6  25.1 ± 5.4   24.7 ± 6.6ϕ 

BMI (kg/m2)   16.9 ± 3.1  16.2 ± 2.8  16.6 ± 3.0 

BMI z score   0.3 [-0.7 - 4.2]  0.7 [-0.3 - 5.4]   0.5[-0.3 - 5.4]ϕ 

CPM    624 ± 98  543 ± 122†  581 ± 118ϕ 

Sedentary (min)   396 ± 51  393 ± 56  394 ± 53 

Light activities (min)  268 ± 43  281 ± 49  275 ± 46 

Moderate activities (min) 46 ± 12   34 ± 9†  40 ± 12  

Vigorous activities (min) 18 [9 - 32]  12 [1 - 31]†  15 [1 - 32]ϕ 

MVPA (min)   64 ± 15   46 ± 15†  55 ± 18ϕ 

% Sedentary   54 [40 - 66]  55 [41 - 73]  55 [40 - 73]  

% Light    37 [27 - 47]  39 [24 - 52]  38 [24-52] 

% Moderate   6 [4 - 9]   5 [2 - 7]   5 [2 - 9] 

% Vigorous   3 [1 - 5]   2 [0 - 4]   2 [0 - 5]   

% MVPA   9 [5 - 13]  6 [3 - 10]  8 [3 - 13] 

% Complaince   50   20†   35ϕ 

 

CPM - Counts per min 

† - Significant difference between males and females 

ϕ - Significant difference between child and adolescent cohorts 

BMI - Body mass Index 

MVPA - Moderate to Vigorous Physical Activity 

% Compliance to published guidelines for appropriate MVPA levels, i.e. an accumulation 

of a minimum of 60 min MVPA daily 

UGENT - University of Ghent UGLW - University of Glasgow   

UZAZ - University of Zaragoza  
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TABLE 7.2: Descriptive characteristics of adolescent participants (mean ± SD). 

 

 
All    Rural      Urban   

  

Male  Female   Male  Female  

 
Subjects   200    47  50    52  51 
Age (years)   13.0 ± 1.0   13.3 ± 0.7 13.3 ± 0.6   13.0 ± 1.0 12.8 ± 0.7 
Height (m)   1.60 ± 0.1   1.65 ± 0.1 1.61 ± 0.1   1.57 ± 0.1 1.58 ± 0.1 
Weight (kg)   45.0 ± 9.0   41 ± 8.5 42.1 ± 7.3   48.1 ± 8.5 50.0 ± 6.3 
BMI (kg·m-2)   18.0 ± 3.0   15.0 ± 2.0 16.2 ± 2.5   19.4 ± 2.8* 20.0 ± 2.0‡ 
BMI z score   -0.5[-3.9- 7.5]   -1.4 [-3.8-1] -1.3 [-3.9-0.7]   0.1[-0.8-7.5]* 0.3[-0.8- 2.8]‡ 
Transport to school  26/41/34   0/19/81 0/40/60   50/39/12 51/43/6 
(% car/walk/run) 
CPM    753 ± 237   956 ± 143 915 ± 161   626 ± 151* 537 ± 150‡ 
Sedentary (min)  379 ± 68   335 ± 42 342 ± 59   391 ± 59* 433 ± 60‡ 
Light activities (min)  181 ± 45   206 ± 40 199 ± 42   171 ± 44 154 ± 33 
Moderate activities (min) 49 ± 19   65 ± 16 60 ± 17   41 ± 15 34 ± 9 
Vigorous activities (min) 26 ± 14   35 ± 13 30 ± 12   25 ± 11 18 ± 13 
MVPA (min)   75 ± 29   101 ± 21 90 ± 26   66 ± 22* 52 ± 19‡  
% Sedentary   60    53  55    63  68 
% Light   28    31  31    27  24 
% Moderate   8    10  9    6  5 
% Vigorous   4    6  5    4  3 
% MVPA    12    16  14    10  8 
% Compliance   67    100  96    48  24 
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‡ Significant difference between rural and urban females 
* Significant difference between rural males and urban males 
BMI: Body mass Index 
MVPA: Moderate to Vigorous Physical Activity 
CPM: Average count per min 
% Compliance to published guidelines for appropriate MVPA levels, i.e. an accumulation of a minimum of 60 min MVPA daily 
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7.3.2 Comparison of physical activity levels and sedentary behaviour in 

European children and Kenyan adolescents from rural and urban areas:  

 

In children, total physical activity assessed as average CPM was significantly higher in 

male vs. female subjects (624 ± 98 vs. 543 ± 122 CPM, respectively, P<0.05). Similarly, 

males spent more time in MVPA compared to the females (64 ± 15 vs. 46 ± 15 min, 

respectively, P<0.05) (Table 7.1). There was no significant environmental influence on 

physical activity in children. In adolescents on the other hand, average CPM was 

significantly higher in rural male vs. urban male subjects (956 ± 143 vs. 626 ± 151 CPM, 

respectively, P<0.05) (Table 7.2). Similarly, average CPM was significantly higher in 

rural female vs. urban female subjects (915 ± 161 vs. 537 ± 150 CPM, respectively, 

P<0.05) (Table 7.2). With regard to patterns of activity and sedentary behaviour, urban 

males spent significantly more time sedentary than rural males (391 ± 59 vs. 335 ± 42 

min, respectively, P<0.001) (Table 7.2). Similarly, rural males spent more time in MVPA 

compared to the urban males (101 ± 21 vs. 66 ± 22 min, respectively, P<0.05) (Table 

7.2). Similar patterns of activity and sedentary behaviour as those reported in males were 

found in females. As such, there were significant differences in the daily time spent in 

sedentary behaviour between rural female vs. urban females (342 ± 59 vs. 433 ± 60 min, 

respectively, P<0.001) (Table 7.2), rural females spent more time in MVPA compared to 

urban females (90 ± 26 vs. 52 ± 19 min, respectively, P<0.05) (Table 7.2).  
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In the child sample, mean BMI z scores was 0.5 [-0.3 - 5.4], median [range]. However, 

mean BMI z scores were significantly (P<0.05) lower in males compared to female 

subjects (0.3 [-0.7 - 4.2] vs. 0.7 [-0.3 - 5.4] for males vs. females respectively, P<0.05) 

(Table 7.1). Furthermore, 2 male and 2 female subjects were overweight and 2 male and 

4 females subjects were classified as obese according to the IOTF definitions (Cole et al., 

2000). The prevalence of overweight/obesity was therefore estimated as approximately 

17% (i.e. 10 out of 60) in children. In the adolescents on the other hand, mean BMI z 

score was significantly (P<0.05) lower in rural male compared to urban male subjects (-

1.4 [-3.8 - 1 vs. 0.1 [-0.8 - 7.5] for rural vs. urban males respectively, P<0.05) (Table 7.2). 

Similarly, BMI z scores were significantly (P<0.05) lower in rural female compared to 

urban female subjects (-1.3 [-3.9 - 0.7] vs. 0.3 [-0.8 - 2.8] for rural vs. urban females 

respectively, P<0.05) (Table 7.2). Furthermore, none of the rural adolescents in the 

present study were classified as either overweight or obese according to the IOTF 

definitions (Cole et al., 2000). On the other hand, 3 male and 6 female urban subjects 

were classified as overweight and 1 urban male was classified as obese. The prevalence 

of overweight/obesity in adolescent subjects was therefore estimated as 5% (i.e. 10 out of 

200). 

 

7.3.3 The relation between physical activity, sedentary behaviour and BMI 

z scores in children and adolescents: 

 

In children, BMI z score was positively related to time engaged in sedentary activities (r 

= 0.27, P< 0.05). However, there was no association between time engaged in either 
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light, moderate, vigorous or MVPA and BMI z score. In adolescents on the other hand, 

BMI z score was negatively correlated with sedentary time (r = - 0.18, P<0.05) but 

positively correlated with time engaged in light (r = 0.16, P< 0.05), moderate (r = 0.18, 

P< 0.05), vigorous (r = 0.17, P< 0.05) and MVPA (r = 0.2, P, 0.05).  

 

7.3.4 Multivariate analysis of the impact of environment, physical activity 

and sedentary behaviour on indices of adiposity in children and 

adolescents:  

 

In order to identify the factors that may be associated with BMI z score, objectively 

measured physical activity, sedentary behaviour and the environment in the present 

study, total volume of physical activity (as evaluated by average CPM) and intensities of 

physical activity and sedentary behaviour (time sedentary,  time in MVPA) were assessed 

by multivariate regression analysis. The regression model included environment (centre -

for child sample) (urban vs. rural - for adolescent sample), gender and age. In children, 

BMI z score was significantly (P<0.05) influenced by sedentary time (adjusted R2 = 0.06) 

with a total model R2 of 0.07. However, when sedentary time was controlled, only gender 

was significantly associated with BMI z scores F (7, 54) = 1.05, P<0.05). Furthermore, 

environment was not associated with BMI z scores (P>0.05).  In addition, environment 

was not significantly associated with sedentary time or MVPA (P>0.05). In adolescents 

on the other hand, BMI z score was significantly (P<0.05) influenced by environment 

(adjusted R2 = 0.51) with a total model R2 of 0.47. Similarly, total volume of physical 

activity was significantly (P<0.05) influenced by environment (adjusted R2 = 0.58) with a 
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total model R2 of 0.59. In addition, time sedentary was influenced significantly (P<0.05) 

by environment (adjusted R2 = 0.60) with a total model R2 of 0.61. Furthermore, time in 

MVPA was significantly (P<0.05) influenced by environment (adjusted R2 = 0.30) with a 

total model R2 of 0.31.  In addition, BMI z score was significantly influenced by 

environment independent of sedentary time, F (5, 194) = 35.17, P<0.05), total volume of 

activity (CPM) F (5, 194) = 35.09, P<0.05) or time engaged in MVPA F (5, 194) = 34.97, 

P<0.05). Thus, in children, gender had an effect on BMI z score regardless of 

environment, physical activity levels and age. In adolescents on the other hand, 

environment had a clear effect on BMI z score, regardless of physical activity, gender and 

age.  
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7.3.5 Compliance with recommended MVPA levels in children and adolescents: 

 

In adolescents, approximately 67% (i.e. 134 out of 200) of all subjects met the current public 

health guidelines for MVPA, defined as  an average of >60 min per day of MVPA over the days 

of monitoring compared to only 33% (i.e. 20 out 60) in children. However, a greater percentage 

of rural males (100% or 47 out of 47) compared to urban males (48% or 25 out of 52) fulfilled 

this recommendation. Similarly, a greater percentage of rural females (96% or 48 out of 50) 

compared to urban females (24% or 12 out 51) fulfilled this recommendation. Thus, in 

adolescents, environment was the only significant predictor of MVPA compliance (odds ratio = 

50.6 (95% CI 18.1 - 185, P<0.05). On the contrary, gender was not a significant predictor, nor 

was there significant gender by environment interaction (P>0.05). However, in children, gender 

was the only significant predictor of MVPA compliance (odds ratio = 71.4 (95% CI 21.1 - 108, 

P<0.05), environment and age were not significant predictors of MVPA compliance (P>0.05). 
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7.4 Discussion 

 

In the present study there were marked differences in habitual total volume of physical activity 

(CPM), MVPA, sedentary time and weight status (reflected here as BMI and BMI z score) 

between children and adolescents and between rural and urban adolescents studied. In children, 

sedentary time partially explained the differences in BMI z scores. However, when sedentary 

time was controlled, gender was the principal determinant of BMI z scores. In adolescents on the 

other hand, there were differences in indices of adiposity that were significantly explained by 

differences in engagement in sedentary and physical activities of different intensities but were 

not explained by differences between the urban and rural groups in other variables such as age 

and gender. However, when differences in physical activity profiles between rural and urban 

subjects were controlled, the differences in indices of adiposity persisted. This is consistent with 

the idea that some of the rural vs urban differences in BMI may result from differences in 

nutrition or any other relevant factors beyond physical activity, age and gender.  

 

Previous studies on Kenyan adolescents from rural areas which utilised subjective measures of 

physical activity indicated a highly active lifestyle with subjects reporting that they walked on 

average for 3 h/d and also spent an average of 40 min/d working in the field (Larsen et al., 2004, 

Onywera et al., 2006). Rural adolescents consistently reported spending part of their ‘leisure 

time’ (defined here as time away from school), engaged in physically active household chores. 

For example, subjects reported activities such as fetching water from distant streams and fetching 

firewood, gardening, and running involved in cattle herding. In contrast, the urban sample 

studied either did not report such activities or reported these activities very infrequently. The 
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urban adolescent subjects reported that they spent their leisure time pursuing largely sedentary 

activities such as studying, watching television and listening to the radio. The differences in 

reported physical activity profiles between rural and urban adolescents are an indication of the 

distinct socioeconomic and built environments between these two groups.  

 

Rural areas in Kenya do not have modern amenities such as mains electricity or piped water and 

schools are located remotely from villages which may help explain the more active lifestyle in 

the rural group in the present study. On the other hand, urban schools and households are served 

with modern necessities such as piped water and mains electricity with accessible roads and 

frequent motorised transportation. Consequently, urban adolescents might be expected to spend 

less of their leisure time engaged in such physically active chores. Previous studies which relied 

on subjective evaluation of physical activity in Kenyan adolescents (Larsen et al., 2004, 

Onywera et al., 2006) also suggested that urban vs. rural differences might exist in Kenya. While 

the significant differences between urban and rural groups in the objectively measured physical 

activity in the present study might have been ‘expected’ based on the aforementioned studies and 

the lifestyle differences recorded in the diaries, differences in subjectively measured habitual 

physical activity and sedentary behaviour are not always supported by objective measures. In the 

UK for example, studies which use subjective methods consistently find socioeconomic 

differences in child and adolescent physical activity and sedentary behaviour which are 

consistently not found when physical activity is measured objectively (Kelly et al., 2006).  

 

Direct comparisons of urban vs. rural differences in objectively measured habitual physical 

activity and sedentary behaviour in adolescents especially from Sub Saharan Africa are rare and 
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therefore there are no directly comparable studies. Only one study appears to have measured 

habitual physical activity objectively in Sub Saharan children and adolescents and compared this 

with levels in Portuguese children and adolescents (Prista et al., 2009). It was found that 

Mozambican children and adolescents had higher levels of vigorous physical activity compared 

to their Portuguese counterparts (31 and 46% respectively for boys and girls from Portugal, and 

57 and 64% respectively for boys and girls from Mozambique. However, the Portuguese group 

engaged in significantly higher frequency and duration of MVPA bouts compared to the 

Mozambican group. These observed differences in physical activity parameters were attributed 

to environmental influences (Prista et al., 2009). On the other hand, Kelly and colleagues (2005) 

found increased sedentary behaviour and gender differences in rural Irish children aged 4 - 5 y 

with boys significantly more active than girls (824 vs. 628 CPM) which was higher than levels 

observed in urbanised children in this study: boys and girls (624 vs. 543 CPM) respectively. On the 

other hand, Kenyan adolescents from rural areas had higher levels of physical activity and were 

less sedentary compared to the Irish and European children in this study but showed similar 

gender differences with boys significantly more active than girls (956 vs. 915 CPM).  

 

In the present study the prevalence of overweight/obesity in children was estimated to be 17% 

compared to 5% in adolescents. However, considering the influence of the environment on 

overweight/obesity status in adolescents, 10% of urban adolescents were overweight/obese 

where as none of the rural subjects were overweight/obese. Similarly , an earlier study reported 

the prevalence of overweight/obesity in young children in urban areas in Kenya to be twice that 

found in rural areas (6.2% vs. 3.2%, respectively) suggesting that overnutrition of young children 

could be an emerging phenomenon in urban Kenya (CBS, MOH & ORC Macro, 2004). 
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Similarly, prevalence of overweight and obesity was much higher in the urban adults (38% vs. 

only 18% in the rural adults) (CBS, MOH & ORC Macro, 2004). Therefore, urban populations in 

Kenya are affected by the nutrition transition (FAO, 2010), but the present study suggests that 

the influence of the nutrition transition on Kenyan adolescents needs to be explored further.  

 

In children, 33% of subjects met current recommendations of appropriate MVPA levels. In 

addition, males had a higher compliance compared to females (50% vs. 20%) which was 

consistent with findings in adolescents. Though, current public health guidelines for physical 

activity in children and adolescents were not intended specifically for the developing world, it 

was of interest to assess compliance with the recommendation that adolescents accumulate at 

least 60 min of MVPA daily. In the present study, a higher percentage of rural adolescents 98% 

(95 out of 97) averaged 60 min of MVPA per day compared to only 34% (17 out of 103) of the 

urban sample (Table 7.2). Interestingly, urban Kenyan adolescent compliance levels were similar 

to compliance observed in the urbanised European children in this study. This differences are 

consistent with the significant differences in objectively measured habitual physical activity 

between the groups noted above and supportive of the lifestyle differences (such as differences in 

active commuting to school) which were revealed by the activity diaries, anecdotal reports of 

rapid urbanisation of rural Kenya and the increasing trend towards sedentary behaviour in 

children and adolescents especially from urban areas.  
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The use of accelerometry permitted objective and precise measurement of habitual physical 

activity and sedentary behaviour over long periods of time, and this has been rare in studies of 

very young children and adolescents in developing countries to date. Testing for associations 

between objectively measured physical activity and sedentary behaviour and indices of adiposity 

especially in Sub Saharan Africa has been even less common. However, the cross sectional study 

design makes it uncertain that lower levels of physical activity and/or higher levels of sedentary 

behaviour in the urban group actually caused higher adiposity. On the other hand, a previous 

study suggested that differences in energy intake and not physical activity levels may primarily 

explain observed differences in adiposity in adults (Westerterp & Speakman, 2008) but dietary 

intake was not measured in the present study. Generalised linear modelling suggested that other 

factors beyond physical activity and age were important predictors of adiposity and therefore the 

impact of energy intake needs to be determined in both cohorts. Secondly, it was impossible to 

account for possible seasonal variation in habitual physical activity levels and sedentary 

behaviour in children and adolescents in the present study, yet seasonal variation might either 

increase or decrease habitual physical activity and sedentary behaviour differences between 

groups. In summary, the present study found marked differences in daily physical activity 

volumes and intensities between children and adolescents and also between rural and urban 

adolescents in Kenya, with much lower levels of physical activity and higher levels of sedentary 

behaviour in the urban groups. In addition, rural adolescents had much lower indices of adiposity 

compared to urban adolescents, and higher adiposity was associated with both lower levels of 

physical activity and higher levels of sedentary behaviour. On the other hand, controlling for 

differences in physical activity and sedentary behaviour in children and adolescent indicated that, 
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in children gender, whereas in adolescent environment were significant determinants of 

adiposity.  
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CHAPTER 8 

 

8.0 General Discussion 

 
 

This thesis was designed to examine physical activity in two distinct cohorts with greatly 

different physical activity levels. Through the chapters of this thesis, a number of research 

questions have been considered relating to assessing the impact of methodological issues in 

acclerometry, validating uniaxial and triaxial accelerometers and application of validated 

accelerometer methodology to assess the impact of physical activity and the environment on 

energy expenditure and indices of adiposity in subjects from very distinct environments (i.e. 

European children and Kenyan adolescents). Firstly, the impact of choice of epoch and cutpoint 

selection on accelerometer outcome variables was determined. In addition, the reliability of 

accelerometer outcome variables over several days and hours of measurement was also assessed 

in children and adolescents. Secondly, the predictive validity of uniaxial and triaxial 

accelerometers was examined during structured activities in adolescents against indirect 

calorimetry and also during free living activities in children and adolescents against DLW. 

Finally, the validated uniaxial accelerometer (The ActiTrainer (ActiGraph LLC, Pensacola, FL, 

USA)) was used to assess the impact of variable engagement in physical activity on energy 

expenditure and adiposity in children and adolescents. Furthermore, the impact of the 

environment on physical activity and adiposity was also assessed. The main findings described in 

this thesis are: (a) that 15 s epoch reports significantly higher engagement in physical activity 

compared to a 60 s epoch in both the children and adolescents cohorts (b) choice of cutpoints 

significantly affected classification of physical activity and sedentary behaviour in both cohorts 

(c) a minimum of 6 h for 7 - 9 days in the cohort involving children and a minimum of 6 h for 4 - 

5 days in the adolescents were required to reliably measure physical activity (d) triaxial 
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accelerometry reported better predictive validity compared to uniaxial accelerometry during 

structured activities. In addition, HR monitoring did not improve the predictive validity of either 

accelerometer during structured activities (e) during free living activities, however, uniaxial and 

triaxial accelerometry reported comparable predictive validity. The addition of HR monitoring 

improved the predictive validity of the uniaxial accelerometry by approximately 4% in both 

cohorts (f) in both cohorts, total volume of physical activity and patterns (time engaged in light 

and moderate to vigorous physical activity) were significantly associated with energy 

expenditure (∆r2 ranging from 14 - 20%) (g) physical activity and sedentary behaviour were 

significantly related to indices of adiposity in both cohorts (adjusted R2 ranging from 0.06 - 0.6) 

(h) the environment was a significant predictor of physical activity and indices of adiposity in the 

adolescents but not in children. The findings of this thesis have important implications on 

strategies to standardise accelerometry field protocols and future studies on the association 

between physical activity, the environment and health outcomes.  

  

Recent progress in accelerometer processing, such as the ability to sample physical activity data 

using 1 s epoch for extensive periods of time, combination of accelerometers with other 

physiological parameters such as HR offer promise for increased accuracy of physical activity 

estimates from body worn accelerometers, precision that could potentially improve the ability to 

observe significant relationships with health outcomes beyond those observed in the current 

studies (Gabriel et al., 2010). However, several issues on epoch length still remain unclear. 

Firstly, it is not known which epoch length produces the most accurate estimate of actual 

physical activity performed. To address this issue, comparison of time spent in rest, light, 

moderate, vigorous and MVPA against a criterion measure such as direct observation needs to be 
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examined (Edwardson & Gorely, 2010). However, direct observation of free living subjects for 

extensive periods of time is a challenge that remains to be surmounted. A possible approach 

would be to combine accelerometry with closed circuit television (CCTV) surveillance cameras 

for extensive monitoring.  In support of the current debate on the most appropriate epoch length 

for accurate assessment of sedentary behaviour and physical activity in paediatric and 

adolescents studies, the findings (chapter 3) indicated that using 15 s epoch reported 8 - 82 min 

in children and 7 - 51 min in adolescents more time in sedentary activity compared to 60 s epoch. 

Similarly, using a 15 s epoch reported 9 - 13 min in children and 9 - 19 min in adolescents more 

time in MVPA compared to 60 s epoch using several published cutpoints. These findings could 

be interpreted to indicate that lower epoch durations are more appropriate for optimal assessment 

of physical activity. This is consistent with the finding that high frequency sampling of physical 

activity appears more accurate and reliable in quantifying physical activity (Dorsey et al., 2009 

and therefore, underestimation of time spent in high intensity activities when sampling physical 

activity using long epochs might mask the relationship between physical activity and health 

(Turner & Robling, 2003, Rowlands et al., 2006).  

 

The imprecise detection of true physical activity levels by using longer epoch durations increases 

the risk for non differential misclassification, which can result in a reduction in the strength of 

association between physical activity and health outcomes of interest (Gabriel et al., 2010). It is 

intuitive that capturing activity in shorter epochs would result in a more precise measurement of 

overall physical activity based on the findings that 15 s epoch reported more time in sedentary 

activity and MVPA (Chapter 3). However, the actual physiological significance needs to be 

determined. Therefore, the optimal epoch length to use in the assessment of physical activity 
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would appear to be 15 s. On the other hand, intensity thresholds for moderate and vigorous 

intensity physical activity derived specifically for use in young people vary from between 615 - 

3200 counts/min, even with the same accelerometer model (Puyau et al., 2002, Basquet et al., 

2007, Metallinos-Katsaras et al., 2007). Using these different thresholds on the same data, it is 

possible to show that the same group of subjects are either inactive or sufficiently active (Reilly 

et al., 2008) defined as accumulating at least 60 min of MVPA per day (CMO, 2011). Recently, 

Trost and colleagues (2011) assessed the ability of several published accelerometer cutpoints for 

children and adolescents to correctly classify sedentary, lifestyle, and ambulatory activities. 

These authors recommend use of the Evenson ActiGraph cutpoints to estimate time spent in 

sedentary, light, moderate, and vigorous intensity activity in children and adolescents (Trost et 

al., 2011). Incidentally, the Evenson cutpoints indicated the greatest difference in reported time 

in sedentary and MVPA when comparing 15 s vs. 60 s epoch compared to all the other cutpoints 

(Chapter 3).  Therefore, the current evidence indicates that the Evenson cutpoint are the most 

appropriate to use in accelerometer studies using ActiGraph accelerometer. 

 

Minimum daily wear time is a critical data reduction issue, because it affects the proportion of 

files that can be included in analyses (Table 3.3). In children and adolescents subject compliance 

declined with increased monitoring period. This was more drastic in active Kenyan adolescents 

compared to European children (i.e. 52% vs. 12%) in children vs. adolescents, respectively.  The 

poor compliance in Kenyan adolescents was mainly due to the novelty of accelerometry in 

Africa and the remoteness of some of the villages which made it difficult to supervise subject 

compliance. The minimum must be high enough to eliminate days when the monitor was clearly 

not worn long enough to accurately depict physical activity but low enough to prevent too many 
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days from being eliminated, which would bias the sample and reduce sample size and statistical 

power (Colley et al., 2010). Calculation of wear time is complicated by the fact that inactivity is 

part of normal behaviour. Therefore, instead of simply deleting zero count values from the 

dataset, it is necessary to apply a decision rule that allows for a certain number and pattern of 

consecutive zeros throughout the day in order to capture and assess true inactivity. This is 

referred to as the ‘allowable interruption period’ and ranges from 10 to 60 minutes (Màsse et al., 

2005, Colley et al., 2010). In this thesis, the allowable interruption periods was ≥20 min of 

consecutive zeroes as determined by Treuth et al (2003) who observed that this period of 

inactivity was not compatible with monitor wear in children and adolescents. In addition, a 

calculation of reliability estimates of accelerometer outcome variables is indicated in attempting 

to assess the robustness of these variables over several days of monitoring in specific samples. In 

children 7 - 9 days, whereas in adolescent 4 - 5 day including at least one weekend day were the 

minimum required to reliably assess physical activity. Seven days of continuous monitoring 

seem logical but because protocol adherence tends to decrease with days of wear, it may be more 

practical to balance reliability with feasibility (Matthews et al., 2012). Monitor malfunctions can 

and do occur. Therefore, it is essential that researchers continually check the reliability of the 

measurement tool itself (Colley et al., 2010). Regular calibration is typically required to achieve 

optimum performance in most devices used for scientific measurement. This ensures that 

measurements both within and between devices are consistent over the course of many 

experiments. Thus, before commencement of the studies in this thesis all accelerometer devices 

were sent to the manufacturers for recalibration. However, few studies have examined the 

technical reliability of accelerometers, largely because of the lack of commercially available 

calibration units (Colley et al., 2010). Therefore screening spurious data is always warranted to 
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ensure that the various outcome variables are not contaminated by extreme values such as 

negative counts that are likely a result of faulty units (Esliger et al., 2005). On the other hand, the 

spurious data threshold of 15,000 CPM (recommended for the ActiGraph) is too low (Colley et 

al., 2010). For instance, high performance runners or children engaged in jumping games such as 

playing on the trampoline could legitimately accumulate accelerometer counts close to 20,000 

CPM (Colley et al., 2010). Unless such data are captured, the level of activity of these 

participants would be underestimated (Colley et al., 2010). Therefore, the threshold for defining 

spurious data must be low enough to exclude incorrect high values (for example, monitor 

aberrations) but high enough to include legitimate values that reflect vigorous activity (Colley et 

al., 2010). In comparison to the 3DNX (BioTel Limited, Bristol, UK) the actiGraph 

accelerometers have been extensively used in physical activity research because of their small 

size, non intrusion in free living conditions, and good evidence of validity and acceptability for 

long term use in other populations (Rothney et al., 2008b). Collectively, ActiGraph monitors 

have been in use for more than a decade and have undergone several hardware and software 

revisions (Rothney et al., 2008b). These monitors have the greatest body of consistent and high 

quality evidence to support their use (De Vries et al., 2006, Reilly et al., 2008). In Chapter 4, the 

novel ActiTrainer and GT3X ActiGraph accelerometers were found to be valid for the 

assessment of physical activity and 
•

VO 2 based on the linear increase in accelerometer outputs 

with increasing physical activity intensity and 
•

VO 2.  Furthermore, 40 - 55% of the variance in 
•

VO 2 

could be explained by ActTrainer and GT3X outputs respectively. In addition, when jumping 

was not included in the protocol of activities, the fit of the regression models increased 

significantly (P<0.05) to 76% and 80% for the ActiTrainer and GT3X accelerometer respectively 

(Chapter 4). However, a known limitation with uniaxial (vertical) accelerometers is that non 
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ambulatory activities that do not involve vertical movement of the trunk (when waist mounted) 

such as cycling are underestimated (Corder et al., 2007b), which may not be a problem in 

cohorts that do not spend significant amounts of time cycling such as the adolescent cohort in 

this thesis.  Additionally, the plateau of uniaxial accelerometer outputs at fast running speed 

limits its usefulness in assessment of vigorous activities. This however, may not be a limitation 

in more sedentary cohorts such as in European children who spent only 2% of the monitored 

time in vigorous activity compared to 10% in adolescents. Triaxial GT3X accelerometer on the 

other hand, had a distinct advantage over uniaxial ActiTrainer, since GT3X outputs did not 

plateau at peak running speed and it generated better fitting regression models (R2 = 40% vs. 

55%) for the uniaxial ActiTrainer vs. triaxial GT3X accelerometer during structured activities 

(Chapter 4). In addition, ∆HRacc was not associated with energy expenditure during structured 

activities but was associated with energy expenditure during free-living activities, this may be 

due to the time frameof observarion. The improvement of fit when HR was added to the model 

was approximately 4% - this may require a longer period of observation to be noticeable. The 

choice of activities when calibrating activity counts against energy expenditure likely affects the 

ability of a prediction equation to estimate accurately energy expenditure under free living 

conditions (Nilsson et al., 2008). In Chapter 4 for instance, removal of jumping activities from 

the menu of activities used in the prediction equations significantly improved the predictive 

validity of accelerometers, based on the finding that the relationship between accelerometer 

outputs and 
•

VO 2 was significantly skewed during jumping activity. However, accelerometer 

validity improved markedly in assessing ambulatory activities in Kenyan adolescents. Thus, the 

derived regression equation from the relationship between ActiTrainer outputs and 
•

VO 2 during 

structured activities (excluding jumping) was used to examine the predictive validity the 
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ActiTrainer accelerometer during free living activities. ActiTrainer outputs modestly 

underestimated average TEE by 1.1 MJ/d in comparison to DLW determined TEE (Chapter 4).  

Therefore, the chosen mixture of activities during calibration will definitely affect the slope and 

intercept of the regression line for the relationship between activity counts and 
•

VO 2 and therefore 

limit the overall utility of the prediction equations generated to a narrow range of applications. 

During validation of accelerometer outputs it is important to account for variability in outputs in 

subjects performing physical activity of the same intensity. For instance, Welk (2005) when 

examining the reliability of ActiGraph accelerometer counts during a standardised treadmill 

protocol found that for a standardised bout of activity, counts can vary by 20% for participants 

wearing the same monitor and performing the same absolute workload. Furthermore, differences 

in step frequencies have been reported to explain 11% and 40% of the speed adjusted variance in 

ActiGraph output in walking and running, respectively (Brage et al., 2003). Therefore, the 

variability in accelerometer outputs among people doing a certain level of physical activity, 

likely reflects differences across people in gait, stride length and frequency, positioning of the 

accelerometer, and technical issues associated with accelerometers (Jago et al., 2007, Moeller et 

al., 2008) which in the end will contribute to an increased random variation in the field and 

consequently limit the accuracy of 
•

VO 2 prediction models in this thesis.  

 

During free living activities in children, uniaxial actiTrainer reported comparable validity to 

triaxial 3DNX (Chapter 5). Furthermore, addition of ∆HRacc monitoring significantly improved 

the model prediction accuracy by approximately 3 - 5% in both child and adolescent cohorts. 

However,  maximum HR and mean HR were not significantly related to energy expenditure in 

both cohorts. Estimating energy expenditure using accelerometers has been reviewed 
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systematically by Plasqui & Westerterp (2007), it was reported that the Tracmor and ActiGraph 

accelerometers correlate reasonably well with DLW measured energy expenditure. However, the 

relationship between accelerometer outputs and energy expenditure still remains of topical 

interest based on the large number of accelerometers that have yet to be properly validated. 

Therefore, the evaluation of the relative validity of accelerometer outputs, that is longitudinal 

acceleration (uniaxial) and triaxial accelerometer outputs during structured and free living 

activities in relation to energy expenditure associated with physical activity and sedentary 

behaviour is useful in determination of the optimal accelerometer outputs associated with 

physiological outcomes. However, the results from accelerometer validation studies are not 

always obvious. Theoretically, the highest accuracy for the prediction of energy expenditure is 

achieved by triaxial accelerometry. However, the study in Chapter 5 indicates that this may not 

necessarily be the case. For instance the uniaxial ActiTrainer reported comparable predictive 

validity during the assessment of TEE, AEE and PAL as the triaxial 3DNX based on the 

observed ∆r2 and SEE values. In general, no one monitor is superior to another and selection 

depends primarily upon the research interest (Garatachea et al., 2010). However, evaluation of 

the validity of the ActiTrainer, GT3X and 3DNX accelerometers (Chapter 4 and 5) indicated that 

these devices were valid for assessment of physical activity in predominantly inactive children 

and relatively active adolescents based on the ∆r2 and SEE values observed in both cohorts 

(Chapter 4 and 5). In addition, uniaxial and triaxial accelerometer outputs were significant 

predictors of AEE and PAL in children. It would have been interesting to study the relationship 

between accelerometer outputs and AEE and PAL in adolescents as well. However, the accuracy 

of most published BMR prediction equation in Africans of Sub Saharan descent has been 

questioned (Vander Weg et al., 2004), since most of these equations fail to account for 
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differences in ethnicity and body fat in the predictions. Therefore, there is an urgent need to 

validate BMR prediction equations in Africans, which would enhance future studies calorimetry 

studies in Africans. Therefore, the performance of uniaxial ActiTrainer with HR monitoring, 

triaxial GT3X and 3DNX observed in this thesis needs to be confirmed in other free living 

populations. 

 

Particular physical activity patterns may be beneficial to health. For example, subjects with the 

same physical activity level (CPM) might accumulate their physical activity in very different 

combinations of intensity, duration, frequency and type (Mattocks et al., 2008b). Furthermore, 

there is also developing interest in the concept of ‘sedentariness’ (Ekelund et al., 2006). It is now 

increasingly accepted that sedentary behaviour is not simply a lack of physical activity but is an 

independent behaviour (TV/computer use, reading, homework, etc.), which constitutes a 

potential risk to health irrespective of physical activity level (Ekelund et al., 2006) which is 

consistent with findings in Chapter 6, indicating that sedentary behaviour was independently 

associated with BMI z scores in children and adolescents. For instance, in children time spent in 

sedentary activities was negatively correlated with BMI z scores (r = 0.27, P<0.05). However, 

there was no association between time engaged in either light, moderate, vigorous or MVPA and 

BMI z score.  Moreover, total volume of physical activity (CPM) and time spent engaged in light 

or MVPA were significantly associated with energy expenditure in relatively inactive children 

compared to relatively active adolescent cohorts, respectively (Chapter 6). Increased physical 

activity, along with the achievement and maintenance of energy balance, has emerged as an 

important personal health goal for the 21st century (Andre & Wolf, 2007). Consequently, 

objective assessment of physical activity has gained considerable interest. Thus, easy to wear 
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monitors such as the ActiTrainer, GT3X and 3DNX accelerometers that provide both the patient 

and the health care providers with objective information about the wearer’s lifestyle offer many 

possibilities to improve the treatment and management of lifestyles diseases (Andre & Wolf, 

2007).  

 

The quantitative differences revealed by objective measurement of physical activity in Chapter 7 

between children and adolescents (urban vs. rural) groups may therefore reflect marked lifestyle 

differences which remain between rural and urban subjects. All the rural adolescents in Chapter 

7 engaged in active transport to school (i.e. ran or walked to school) where as 50% of the urban 

adolescents used motorised transport to get to school. In children, BMI z score was significantly 

influenced by sedentary time. In adolescents, on the other hand, time in sedentary activities as 

well as in light, moderate, vigorous and MVPA were associated with BMI z score. These 

findings are broadly consistent with recent systematic reviews on the association between 

physical activity, sedentary behaviour and adiposity in adolescents (Rey-Lópezet al., 2008, 

Jiménez-Pavon et al. 2010). However, there was no association between active commuting and 

adiposity as reported by Bassett et al. (2008) and therefore this association needs to be studied 

further using objective methods of assessing commuting distance such as GPS as used in this 

thesis. Lower levels of objectively assessed physical activity were associated with higher indices 

of adiposity in Chapter 7. Similarly, studies among Western children have shown inverse 

associations between physical activity and adiposity and other cardiovascular risk markers 

(Ekelund et al., 2004, Andersen et al., 2006). Thus, current evidence suggests that contemporary 

changes in transport, occupations, domestic tasks, and leisure activities have had negative effects 

on the activity level (Banomi et al., 2010).  
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In Kenyan adolescents, there were distinct differences in physical activity and indices of 

adiposity between rural vs. urban adolescents. For instance, a greater percentage of rural males 

(100% or 47 out of 47) compared to urban males (48% or 25 out of 52) fulfilled the current 

physical activity recommendation of accumulating at least 60 min of MVPA daily (CMO, 2011). 

Similarly, a greater percentage of rural females (96% or 48 out of 50) compared to urban females 

(24% or 12 out 51) fulfilled this recommendation. In addition, none of the rural adolescents in 

the present study were classified as either overweight or obese according to the IOTF definitions 

(Cole et al., 2000). On the other hand, 3 male and 6 female urban subjects were classified as 

overweight and 1 urban male was classified as obese. The prevalence of overweight/obesity in 

rural adolescent subjects was therefore estimated as 0% compared to approximately 10% (i.e. 10 

out of 103) in urban adolescents. A number of studies on the ‘nutrition transition’ have suggested 

that subjectively measured physical activity, sedentary behaviour, or ‘proxies’ for physical 

activity and sedentary behaviour (such as reported TV viewing, mode of transport to school and 

physically intensive chores), tend to change unfavourably with development and urbanisation in 

the developing world (Popkin, 2001, Yamauchi et al., 2001, Sobngwi et al., 2002). Furthermore, 

the diets of the developing world are shifting rapidly, particularly with respect to fat, caloric 

sweeteners and animal source foods (Popkin, 2001). This nutritional transition is closely related 

to and may explain the current demographic and epidemiologic transitions seen in developing 

countries, with individuals increasingly consuming diets which are higher in energy but low in 

fibre. These changes are reflected in nutritional outcomes, such as changes in average stature, 

body composition, and morbidity (Popkin & Gordon-Larsen, 2004). Multivariate analysis in 

Chapter 7 indicated that when differences in physical activity profiles between rural vs. urban 
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subjects was controlled, differences in adiposity between the two cohorts persisted, suggesting 

that there may be meaningful differences in caloric intake between these two groups. 

 

In summary, this thesis has found that accelerometry provides an objective, practical, accurate, 

and reliable means of quantifying amount (volume) and intensity of habitual physical activity 

and amount of sedentary behaviour in inactive children versus active adolescents.  Despite the 

initial cost and limitations for large scale research applications, accelerometers have been used in 

longitudinal and cross sectional studies with large samples to assess physical activity levels in 

children and adolescents (Corder et al., 2008). Advances in technology, such as the use of 

multiple axes accelerometers or their integration with other devices, such as HR monitors or GPS 

devices, improved field measurement of physical activity and sedentary behaviour in children 

and adolescents. However, accelerometer use is not without its challenges. These include a lack 

of understanding on exactly how a monitor functions. For example, proprietary restrictions limit 

disclosure of which algorithms are used to convert raw acceleration into counts, how to select the 

most appropriate instrument, standards of monitor wear and field use, how to interpret 

accelerometer data and how to manipulate and analyse the vast amount of data produced by 

accelerometry (Trost et al., 2005, Ward et al., 2005). Additionally, accelerometers cannot 

capture certain highly static categories of activity or complex movement patterns that combine 

dynamic and static movements (Matthews, 2005). This is especially true of uniaxial 

accelerometers, but the inclusion of HR monitoring improved the quality of the data collected 

during free living activities. Moreover, standardised protocols do not exist for determining the 

number of monitors that participants should wear the optimal placement on the body, the optimal 

number of wearing days, or procedures to ensure participant compliance (Corder et al., 2008). 
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This thesis addressed some of these issues and results highlight the increasing need for accurate 

and objective physical activity field assessment tools such as validated accelerometers. The use 

of these validated accelerometers continues to show promise in physical activity research based 

on observed advantages over more traditional physical assessment tools such as questionnaires. 

Furthermore, it is anticipated that the commercial nature of these instruments will drive an even 

greater range of features and options in the future, increasing both the opportunity and the 

challenge of objectively assessing physical activity in children and adolescents (McClain & 

Tudor-Locke, 2009). Refinements in accelerometry such as combination of motion sensing with 

other physiological parameters may improve their accuracy for measuring physical activity as 

seen in Chapter 5, where accelerometry was combined with HR monitoring. Thus, as physical 

activity monitoring moves into the future, it is incumbent on researchers to be open to new 

technologies, such as multi sensor arrays, as well as integrating familiar sensors into new devices 

(Chen et al., 2007). Approaches that utilize diverse sensors in a single accelerometer provide 

more activity information and may be expected to improve the accuracy in physical activity 

monitoring (Chen et al., 2007). Altimeters (pressure sensors) have been used along with an 

accelerometer to identify movements with altitude changes, such as walking up/downstairs. The 

ability to classify inclined walking may enhance the accuracy in energy expenditure estimation 

during physical activity (Yang & Hsu, 2010). Furthermore, the measurements of human heat 

dissipation, skin temperature and conductivity have also been used in a commercial 

accelerometer based activity monitor for accurate energy expenditure and metabolism rate 

assessments (Yang & Hsu, 2010). Accelerometry data obtained from wearable accelerometers 

can also be synchronised with the activity of daily living (ADL) data recorded by such 

monitoring systems to better describe the information of human mobility, physical activity, 
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behavioural pattern and functional ability that encompass the important parameters regarding the 

overall health status of an individual (Yang & Hsu, 2010). Thus, the innovation of integrating 

physiological measurements with accelerometry may enhance energy expenditure prediction, 

particularly in sedentary conditions, low intensity activities, activities with limited body 

movements (e.g. resistance exercise) and even under variable environmental conditions 

(temperature changes) (Chen et al., 2007, Yang & Hsu, 2010). The physical assimilations of 

multi sensor arrays into portable wireless systems are being achieved in devices such as the 

Actiheart and SenseWear (BodyMedia). In fact, several cell phone manufacturers are already 

building activity monitors (accelerometers, gyroscopes, etc.) into cell phones (Chen et al., 2007) 

which may also enhance subject compliance, a major limitation of multi sensor arrays. However, 

other than a few small studies done with specific activity types and selected populations (such as 

in children and adolescent during free living activities in this thesis), there have not been 

significant improvements over their predecessors single accelerometers (as seen in adolescent 

during structured activities in Chapter 4) and thus more sensors may not necessarily mean better 

precision (Chen et al., 2007). This area needs to be explored further in future studies. 
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In conclusion, the findings of this thesis are as follow: 

  

a) 15 s epoch using Evenson cutpoints would appear to be the best for use in accelerometer 

studies in children and adolescents. 

b) Reliability of accelerometer variables over several days of measurement is age specific, 

for young children, at least 7 days and for adolescents, at least 4 days including at least 1 

weekend day are required to reliably monitor physical activity. 

c) Triaxial GT3X ActiGraph accelerometer was more valid than uniaxial ActiTrainer 

ActiGraph accelerometer (i.e. R2 = 48% vs. 34%) for assessment of 
•

VO 2 during structured 

activities in adolescents. However, addition of HR monitoring did not improve predictive 

validity of accelerometry during structured activities 

d) Uniaxial ActiTrainer and triaxial 3DNX accelerometers report comparable validity 

during free living activities in children. Furthermore, addition of HR monitoring, 

improved predictive validity of accelerometry during free living activities in children and 

adolescents. 

e) Total volume of physical activity (i.e. CPM) and physical activity patterns (time in 

MVPA or light activities) were important determinants of free living energy expenditure 

in children and adolescents, respectively. 

f) Physical activity and sedentary behaviour are associated with indices of adiposity in 

children and adolescents. 

g) The environment and gender are important determinants of physical activity, sedentary 

behaviour and adiposity in children and adolescents 
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h) Further studies are required to determine the consistency of these findings in other 

populations 
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