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Abstract 
 
  

Mutations in the x-linked myelin proteolipid protein 1 gene (PLP1) cause the 

heterogeneous syndromes of Pelizaeus Merzbacher disease (PMD) and Spastic paraplegia 

type 2(SPG2) in man (Hudson et al., 2004).  A single base change mutation in our 

spontaneous mouse model rumpshaker (Plpjp-rsh)(Ile186Thr) (Schneider et al., 1992) 

generates a misfolded protein resulting in dysmyelination and increased numbers of 

apoptotic oligodendrocytes. The phenotype varies from mild on the original C3H 

background to lethal when backcrossed onto the C57BL/6 mouse strain (Al-Saktawi et al., 

2003). Utilising the more severe variant we sought to ameliorate the lethal phenotype by 

transgenic complementation with wild type Plp1 (Readhead et al., 1994) to normalise the 

levels of proteolipid protein (PLP) and it’s smaller isoform DM20. 

The presence of the wild type protein improves the survival of the mice, decreases 

oligodendrocyte apoptosis and restores normal periodicity to the myelin, however 

hypomyelination remains severe. Although the PLP/DM20 level is restored to normal the 

level of myelin basic protein remains low. In addition the presence of the wild type protein 

does not ameliorate the unfolded protein response induced by the rumpshaker PLP/DM20.  
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1. Introduction 

1.1 Area of study 

The mammalian nervous system can be divided into two distinct regions, the central 

nervous system (CNS) and the peripheral nervous system. The rumpshaker mutation is a 

genetic defect primarily affecting the CNS and therefore our study was confined to this 

area. The CNS itself can be considered as two separate structures, the brain and the spinal 

cord. The cervical spinal cord in particular lends itself well to quantitative assessment and 

thus we chose to focus our study on this area.  

1.2 Spinal Cord Structure 

The spinal cord, although divided along its length into several distinct regions, is 

essentially composed of central grey matter, containing neurones, glia and blood vessels, 

and peripheral white matter which can be subdivided into dorsal, ventral and lateral 

columns (funiculi). The white matter is comprised of myelinated axons interspersed with 

occasional non-myelinated axons and numerous glia. The glial cell types are astrocytes, 

microglia and oligodendrocytes. Many precursor (undifferentiated) glial cells can also be 

found within the white matter. 

1.3 The Glia 

Glia are the non-neuronal cells of the brain. Over a hundred years ago Ramon y Cahal 

observed that, given their close association with neurones, they must do more than fill in 

the spaces. It is only recently that their influence on the functions of the CNS has begun to 

be discovered. 

1.3.1 Glial cell development 

Within the developing mammalian brain in an area of the neural tube known as the 

subventricular zone (SVZ) is found a reservoir of multipotential and lineage restricted 

progenitor cells formed from the neuroepithelium. These cells migrate dorsally and 

laterally from the SVZ to populate and form the white matter tracts of the developing 

spinal cord. Fine control of the migration and differentiation of these progenitor cells is 
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essential, as the more mature forms cannot migrate. Several signalling molecules and 

transcription factors are involved in this control such as sonic hedgehog, bone 

morphogenic protein and the notch pathway (Colognato & ffrench-Constant, 2004))(Barres 

& Barde, 2000). Following initial migration it is thought that dorsal regions develop the 

capacity for oligodendrocyte generation (Baumann & Pham-Dinh, 2001). 

1.3.2 Astrocytes 

Traditionally astrocytes were considered as two main classes, the synapse associated 

protoplasmic astrocytes found in grey matter and those associated primarily with nodes of 

Ranvier, the fibrillary astrocytes of the white matter. Current classifications recognise the 

very heterogeneous phenotype of astrocytes. The astrocyte performs many functions within 

the mammalian CNS, sequestration and/or redistribution of K+ during neural activity, 

removal of glutamate and provision of glutamine for uptake by the neurones, ensheathment 

of blood vessels contributing to the development and maintenance of the blood brain 

barrier being among them. Recently however more important functions have been 

emerging for the astrocyte for example regulation of synaptogenesis and propagation of 

calcium waves as a means of signalling each other and the surrounding neurones 

(Nedergaard et al., 2003). In addition, astrocytes have a role in myelination by promoting 

the adhesion of oligodendrocyte processes to axons (Meyer-Franke et al., 1999). The 

accepted marker for astrocytes, in both healthy and disease states is Glial Fibrillary Acidic 

protein (GFAP). 

1.3.3 Microglia 

Microglia account for around 10% of CNS glia but unlike the other glial cells derive from 

mesenchymal tissue rather than the neuroepithelium. They serve as the immune cells of the 

CNS and in response to injury  phagocytose cellular debris as well as eliciting an 

inflammatory response (Stevens, 2003). They are the endogenous macrophages of the CNS 

and during an insult their numbers can increase due to recruitment from the circulating 

monocytes. Indeed, endogenous microglia and recruited monocytes are indistinguishable.  

1.3.4 Oligodendrocytes 

Oligodendrocytes are the myelin-forming cells of the CNS. Each oligodendrocyte produces 

several processes each of which contacts and wraps around an axonal segment eventually 

condensing to expel all but a small pocket of cytoplasm at the axonal surface. 
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1.3.4.1 Oligodendrocyte classification  

There have been several methods adopted for the classification of oligodendrocytes. Rio 

Hortega classified them into 4 categories according to the number of processes (Baumann 

& Pham-Dinh, 2001). Butt (Butt et al., 1995) also described 4 classes according to their 

morphology and the size and thickness of myelin sheath formed and Mori and Leblond 

described 3 types, light, medium and dark, a description of the cytoplasmic density as 

viewed using electron microscopy (Mori & Leblond, 1970). More recently, an 

understanding of the various developmental stages in oligodendrocyte lineage has been 

possible with the discovery of specific biochemical markers and a range of antibodies 

against them. 

1.3.4.2 Oligodendrocyte differentiation 

Oligodendrocyte differentiation occurs in a spatial/temporal manner. Early 

oligodendrocyte progenitor cells (OPCs) migrating from the subventricular zone express 

platelet derived growth factor receptor α (PDGFαR) and the sulphated proteoglycan NG2. 

They migrate and proliferate to populate the white matter tracts of the CNS. Late OPCs no 

longer migrate but still divide. In addition to NG2 and PDGFαR they express 04 and CD9. 

A few days before myelination the late OPCs differentiate into premyelinating 

oligodendrocytes, which begin to extend multiple processes. They no longer express NG2 

or PDGFαR but do express galactocerebroside (GalC), myelin-associated glycoprotein 

(MAG), 2’,3’-cyclic nucleotide 3’ phosphodiesterase (CNP), myelin basic protein (MBP) 

and DM20 (the minor isoform of proteolipid protein (PLP)). During final differentiation to 

a myelinating oligodendrocyte the cell becomes polarised and directs myelin proteins to 

specific membrane domains. MAG is localised to the periaxonal membrane, CNP to non-

compact regions of the myelin internode, MBP and the newly expressed PLP are targeted 

to the compact myelin. However, if the oligodendrocyte should fail to myelinate an axon 

then it is programmed to die. It has been estimated that as many as 50% of new 

oligodendrocytes die (Trapp et al., 2004).   

1.4 Myelination 

Myelination is a process that occurs at varying times in the developing CNS. In the mouse 

it begins just before birth in a rostrocaudal direction in the spinal cord (caudorostrally in 

brain) (Schwab & Schnell, 1989) and is not complete in the brain until 45-60 days 

postnatally. The newly matured oligodendrocytes, upon contact with axons, elaborate sheet 
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like extensions of their plasma membrane, which spirally wrap the axon and eventually 

compact to form the myelin sheath. The principal function of this sheath is to allow rapid 

saltatory conduction of action potentials from the neuronal cell body along the length of 

the axon. Depending on its location a single oligodendrocyte can enwrap up to 40 

segments of axon (Coman et al., 2005), although adjacent myelin sheaths on any given 

axon are never formed by the same oligodendrocyte.  

1.4.1 Myelin morphology 

The mature myelin sheath has a distinct periodic structure, with alternating electron light 

and dense layers. The light layer, the intraperiod line, is formed by the close apposition of 

the extracellular face of the plasma membrane, whilst the dark layer, the major dense line, 

is formed by the fusion of the cytoplasmic surfaces of the membrane.  The periodicity of 

the lamellae is ~12nm and each segment of a myelinated axon or internode is 150-200µm 

in length. Between each internode there is an area of axon lacking a myelin sheath known 

as the node of Ranvier. Both the thickness of the myelin sheath and the internodal length 

are positively related to the axonal diameter. Where the myelin lamellae end, at the node of 

Ranvier, paranodal loops containing oligodendrocyte cytoplasm can be found, this area is 

called the paranode. Each of these anatomically distinct regions is formed by specific 

interactions between the axon and the myelinating oligodendrocyte (Baumann & Pham-

Dinh, 2001). 

1.4.2 Myelin composition 

CNS white matter consists of 40-50% myelin by dry weight; it is the major constituent of 

the white matter. Myelin itself consists of 30% protein and 70% lipid, which is a ratio 

unique for biological membranes (Baumann & Pham-Dinh, 2001). The lipid content 

consists of cholesterol, phospholipids and glycolipids.  The most common lipids found in 

myelin are the glycosphingolipids, particularly GalC. There are many myelin proteins, the 

majority of which are specific to oligodendrocytes and the myelin sheath. Numbered 

among them are MOG, MOBP, OSP and Cx32, which account for a very small proportion 

of the myelin proteins. Others have a more distinct role and account for greater 

proportions.  
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1.4.2.1 CNP (2’,3’-cyclic nucleotide 3’ phosphodies terase) 

CNP is only 4% of the total myelin protein. It is localized to the cytoplasm of non-

compacted myelin particularly at the paranodal loops and adaxonal cytoplasm. Whilst the 

exact function of CNP remains elusive it has been postulated that it associates with actin 

and tubulin components of sub-membranous cytoskeleton where it plays a role in 

membrane expansion and migration, indeed transgenic mice overexpressing CNP display 

perturbed myelin formation and abnormal membrane expansion (Trapp et al., 2004). Mice 

deficient in CNP develop an axonopathy (Lappe-Siefke et al., 2003). 

1.4.2.2 MAG (Myelin-associated glycoprotein) 

MAG is a type 1 integral membrane glycoprotein that accounts for only 1% of total myelin 

protein. Two MAG proteins have been identified Large MAG (L-MAG) and small MAG 

(S-MAG). It is selectively targeted to paranodes and the periaxonal membrane and as such 

is in direct contact with the axon. L-MAG has been detected in endosomes during early 

myelination, its endocytosis possibly being mediated by binding to a ligand present in the 

periaxonal space or the axolemma. Once endocytosed it is transported back to the 

oligodendrocyte body, a possible mechanism by which the axon influences 

oligodendrocyte myelination (Trapp et al., 2004). 

1.4.2.3 MBP (Myelin basic protein)  

Myelin basic protein is one of the major proteins of CNS myelin accounting for 30% of the 

total myelin protein (Baumann & Pham-Dinh, 2001). It exists in rodents as four main 

isoforms produced through translation of separate mRNAs generated from alternative 

splicing of the gene (Campagnoni & Campagnoni, 2004). The molecular masses of these 

four isoforms are 14, 17, 18.5 and 21.5kDa. The 17 and 21.5 isoforms appear early during 

mouse development, in fact the Mbp gene has been demonstrated in developing mouse 

embryos as early as E14.5 (Baumann & Pham-Dinh, 2001) Mbp mRNA is translocated to 

the inner tongue of the oligodendrocyte where it is translated and the protein inserted into 

the myelin sheath (Trapp et al., 2004). MBP plays a major role in myelin compaction 

adhering to the cytoplasmic leaflet of the myelin bilayer. Electron microscopic studies of 

the mutant shiverer mouse spinal cord have demonstrated that the major dense line of the 

myelin is missing. The shiverer mouse has a major defect in the Mbp gene in which 5 of 

the 7 exons are deleted. 
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In addition to the classic MBP isoforms there exists a group of alternatively spliced 

proteins from a larger Mbp gene, this one consisting of 10 exons, 7 of which code for the 

classic isoforms. These alternative proteins have been called the Golli-MBPs, their full 

function has yet to be elucidated, but it has been reported that among other functions they 

have a role in signalling pathways (Campagnoni & Campagnoni, 2004).  

1.4.2.4 PLP (Proteolipid protein) and DM20 

Proteolipid protein was discovered by Folch and Lees as early as 1951 (Folch & Lees, 

1951). It is the most abundant protein of central nervous system myelin accounting for 

over 50% of the total. The gene is highly conserved throughout nature and exists as a 

single copy gene on the X chromosome (Xq22.2 in human). The gene spans 17kb and 

consists of 7 exons (Diehl et al., 1986; Macklin et al., 1987) with a single promoter region. 

The gene encodes a 276 amino acid integral membrane protein with a basic isoelectric 

point (Vouyiouklis et al., 2000). Unusually, alternative splicing occurs within exon 3 to 

generate PLP and its smaller but distinct isoform DM20. Two very close transcription 

initiation sites exist (Milner et al., 1985) both of which are used. During peak myelination 

most transcription initiates from the upstream site and the full length PLP is expressed, 

however during oligodendrocyte development when transcription initiates from the 

downstream site DM20 is selectively expressed. 

Regulation 

PLP1 gene expression is regulated by the balance between activators and repressors, which 

bind to sites in the gene. It is likely that some of these transcription factors will recognise 

other myelin gene promoters as a mechanism for co-ordinately controlling groups of genes 

via common DNA sequences or cis elements. 

Conservation 

PLP/DM20 are part of the Proteolipid gene family the lipophilins (Gow, 1997) featuring 4 

transmembrane domains with intracellular termini, a large extracellular loop between 

transmembrane domains 3 and 4 and an intracellular domain between 2 and 3 (Figure 1.). 

All family members have a high degree of amino acid conservation.  
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Figure 1. Schematic of predicted topology of PLP/DM20 protein within the lipid bilayer of 

the oligodendrocyte plasma membrane, showing four transmembrane domains, a large 

extracellular loop between domains 3 and 4 and an intracellular loop between domains 2 

and 3, both termini are intracellular. Adapted from (Garbern, 2007)
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Translational and posttranslational regulation 

The orientation of PLP and DM20 in the rough endoplasmic reticulum is such that both the 

amino and carboxy termini are exposed to the cytoplasm (Gow, 1997). The correct folding 

of the proteins within the endoplasmic reticulum is essential for their subsequent transport 

to the Golgi and eventually the cell surface. During transit through the Golgi, PLP becomes 

associated with lipid rafts. These are microdomains rich in cholesterol and 

glycosphingolipids, which act as “rafts” for the assembly of a specific set of proteins. The 

hydrophobic nature of PLP/DM20 is enhanced by the attachment of long chain fatty acids 

to the cysteine residues via thioester linkage, the most common fatty acid being palmitate. 

A further posttranslational modification is proteolytic cleavage at the intracellular loop, 

thus creating an amino terminal half and a carboxy terminal half (Hudson et al., 2004). 

Function of PLP and DM20 

Investigations of expression patterns have revealed that DM20 is expressed primarily in 

pre myelinating oligodendrocytes (Dickinson et al., 1997) and other non-myelinating cells 

(non-myelin-forming Schwann cells, olfactory nerve ensheathing cells, and myocardial 

cells). The fact that DM20 expression does not coincide with myelin formation was the 

first clue that DM20 was distinct from PLP. ‘Loss of function mutants’ are the most useful 

tools for investigating the function of PLP/DM20. Genetic manipulation of the Plp1 gene 

produced mice lacking PLP/DM20 as well as a line lacking only the PLP isoform.  Both 

transgenic lines manage to elaborate a myelin sheath although in each case the sheath 

displays abnormal periodicity.  The mice lacking both PLP and DM20 have a perturbation 

of the intraperiod line (Yool et al., 2002) while the mice expressing only DM20 may have 

an expanded periodicity (Hudson et al., 2004) and pockets of cytoplasm throughout the 

compact myelin. Given that PLP has 3 fatty acid attachment sites in the intracellular loop 

whereas DM20 only has one may explain a role for PLP in stably linking adjacent 

membrane bilayers through intercalation of the fatty acid sites into the opposing bilayer 

leaflet (Hudson et al., 2004), a function that cannot be replaced by DM20. In each model 

oligodendrocyte development is normal.  In other models, oligodendrocyte death occurs 

when mutation of the Plp1 gene results in the translation of a misfolded protein, whereas 

knockout mice lacking functional PLP develop axonal swellings later in life despite 

elaborating a relatively normal myelin sheath (Griffiths et al., 1997). The swellings contain 

mitochondria and other membranous organelles and are associated with a deficiency in 

axonal transport (Edgar et al., 2004). These findings point to an important role for PLP in 

the maintenance and survival of axons. 
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1.4.3 PLP1 Mutants 

The proteolipid protein1 gene encodes the major protein of CNS myelin. Mutations within 

the gene vary from deletion to missense mutations to additional copies of the gene. The 

most common feature of the pathology of the mutants tends to be hypomyelination. 

1.4.3.1 Mutations in man 

Pelizaeus-Merzbacher Disease (PMD), an X-linked dysmyelinating leukodystrophy and 

the less severe Spastic paraplegia type 2 (SPG2) are associated with mutations of the PLP1 

gene (Inoue, 2005). To date, many mutations have been identified and by far the most 

common is duplication of the region harbouring the PLP1 locus. This type of mutation 

along with null mutations tends to be associated with the milder form of the disease 

whereas point mutations, of which there are many, are identified with more severe disease 

states (Yool et al., 2000). Investigation of the pathophysiology of PMD and SPG2 has been 

aided by the existence of various naturally occurring and engineered animal models  

1.4.3.2 Spontaneous disease models in animals 

Many spontaneous point mutations of the Plp1 gene have been described in mice. The 

jimpy mutation (Plpjp), the first to be described, has a point mutation within intron 4 

leading to the absence of exon 5 from the mature transcript.  The jimpy-4J (Plpjp-4j) model 

harbouring a point mutation in exon 2 is the most severe of the Plp1 mutations and in these 

animals death occurs around postnatal day 24. A further jimpy mutation the msd (Plpjp-msd) 

has also been described, in these animals the point mutation in exon 7 means that the 

carboxy terminus is maintained and the phenotype is almost indistinguishable from the 

classic jimpy with death occurring around 3-4 weeks of age. These mutants display acute 

neurological dysfunction due to lack of a functional myelin sheath. The myelin deficient 

rat (Plpmd)) is an example of a spontaneous mutation in a different species. Each is a useful 

model for investigations of the severe connatal form of PMD. (Nave & Griffiths, 2004) 

 Investigations of the mild forms of PMD and SPG2 are aided by work on the rumpshaker 

mouse (Plpjp-rsh), the paralytic tremor rabbit (Plppt) and the shaking pup (Plpsh). These 

mutants have less severe phenotypes and although hypomyelination is still a feature, 

oligodendrocyte numbers are maintained and the animals survive into adulthood (Yool et 

al., 2000). Interestingly the rumpshaker point mutation, Ile-186-Thr, when expressed on 

the C57Bl/6 background dramatically alters from the mild phenotype to that of a lethal 
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phenotype. The modifying gene/s responsible for this dramatic change are presently 

unknown, (Al-Saktawi et al., 2003) however a dramatic increase in apoptotic 

oligodendrocytes, microglia and a significant drop in the amount of myelin are reported. 

This same point mutation has been identified in a family with a history of SPG2 (Naidu et 

al., 1997) 

1.4.3.3 Engineered models in animals 

Transgenic mice harbouring increased copies of the Plp1 gene have been generated. The 

#66 line has 7 copies per haploid genome, #72 has 3 copies per haploid genome (Readhead 

et al., 1994), and the 4e line has 2. In these mice phenotypic severity closely mirrors copy 

number with phenotypes ranging from severely dysmyelinated in the high copy number 

line to normal myelination with late onset demyelination in lines with low copy number. 

Axonal swellings in later life are also a feature of these duplication mutants. (Anderson et 

al., 1998) 

Additionally, there are two engineered mouse lines with functionally null alleles of the 

Plp1 gene, Plp-null and Plptmkn1. Surprisingly these models elaborate large amounts of 

myelin, have normal numbers of oligodendrocytes and display no obvious clinical 

phenotype until late in life. (Anderson et al., 1998) 

1.5 Transgenic complementation as a rescue strategy  

Transgenic complementation has been used to study various myelin mutants. Readhead et 

al rescued the shiverer phenotype by transgenic complementation with a cosmid transgene 

containing the entire Mbp gene (Readhead et al., 1987), Kimura et al subsequently showed 

that complementation with only one isoform of Mbp can restore myelination in the 

shiverer (Kimura et al., 1989). In a further study, Readhead attempted to rescue the jimpy 

phenotype by transgenic complementation with autosomal copies of the mouse wild type 

Plp1 gene. The survival and myelination status of the complemented jimpy mice was not 

improved but the number of apoptotic glia was significantly decreased. They also 

discovered that myelination is extremely sensitive to over expression of the Plp1 gene as 

the lines of transgenic mice (#66 and #72 lines) generated to supply the Plp1 gene for the 

complementation developed dysmyelination (Readhead et al., 1994). Nadon generated 

transgenic mice that expressed either the Plp or Dm20 cDNAs in order to study the effect 

of these individually, when bred on to the jimpy phenotype. They discovered that alone 
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neither had any significant affect, but when both were expressed in jimpy partial rescue 

was achieved (Nadon et al., 1994).  

 

1.6 Aims 

As described previously the rumpshaker mutation expressed on the C57BL/6 background 

has a lethal phenotype with death occurring around postnatal day 30. Severe 

dysmyelination, high numbers of apoptotic oligodendrocytes and increased numbers of 

microglia are prominent features of this mutant. This study sought to normalise the level of 

PLP/DM20 by transgenic complementation with wild type Plp 1 and investigate the effect 

this has on apoptosis and myelination in addition to the possibility of ameliorating the 

lethal phenotype   

It is not clear if a lack of functional myelin leading to a breakdown of the normal 

axon/glial interaction and therefore a lack of essential trophic factors is responsible for 

oligodendrocyte apoptosis, or if the misfolded PLP accumulating in the endoplasmic 

reticulum causing activation of the unfolded protein response leads to eventual cell death. 

The study examines the effect of normalised PLP on the UPR in an attempt to understand 

the cause of cell death. 
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2. Materials and methods 

2.1  Animals  

Mice were bred in the General Parasitology Unit animal house of Biological Services, 

University of Glasgow under licence from the UK Home Office.Animal studies were 

approved by the Ethical Committee of the Faculty of Veterinary Medicine, University of 

Glasgow. 

2.1.1 Breeding 

To generate the genotypes of interest, female rumpshaker heterozygote mice on the 

C57BL/6 background were mated with C57BL/6males carrying a wild type Plp1 genomic 

transgene, line#66 (Readhead et al., 1994). Of the 4 genotypes generated, only male 

rumpshaker mice with or without transgene and the wild type male mice were used in the 

study. 

2.1.2 Genotyping 

In order to identify the genotype of each animal a 1cm length of tail was collected post 

euthanasia and snap frozen in liquid nitrogen 

2.1.2.1 Preparation of genomic DNA 

 Digestion was performed by the addition of Nuclei Lysis solution (Promega) containing 

0.35mg Proteinase K and 0.1M EDTA at 55◦C. Following complete digestion the protein 

component was precipitated by the addition of protein precipitation solution (Promega) and 

the supernatant containing the DNA removed to a microtube containing 2-propanol 

(Sigma) which upon gentle inversion precipitates the fine threads of DNA. The fine strands 

of DNA were pelleted by centrifugation and the 2-propanol removed and replaced by 70% 

ethanol to wash the DNA, which was again pelleted by centrifugation and the 70% ethanol 

removed. The DNA was allowed to air dry before reconstituting in 100µl DNA rehydration 

solution (Promega) at 65◦C for 1hour. The DNA was quantified on a Genequant 
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(Pharmacia Biotech) spectrophotometer and samples prepared at a concentration of 

25µg/µl in filter sterilised distilled water.  

2.1.2.2 PCR to determine presence of #66 Transgene  

To each “ready to go PCR bead”(Amersham Bioscience) 24µl of prepared master mix 

(0.5µl primer PLP,(sequence 5-CAGGTGTTGAGTCTGATCTACACAAG-3) 0.5µl 

primer αT7(sequence 5-GCATAATACGACTCACTATAGGGATC-3)(Readhead et al., 

1994), 23µl filter sterilized water and1µl(25 µg/ µl) of sample or control genomic DNA 

(gDNA). 50 µl of mineral oil was layered on top to prevent evaporation.  PCR was 

performed on the Biometra UNO-thermoblock PCR thermocycler using the following 

programme. An initial cycle of a denaturing step of 94◦C 3 minutes, annealing step 58◦C 

1minute and an extension step of 72◦C 2 minutes followed by 35 core cycles of 93◦C 40 

seconds, 58◦C 1 minute, 72◦C 30 seconds and a final cycle of 93◦C 40 seconds, 58◦C 1 

minute and 72◦C 3 minutes. Electrophoresis was performed on the samples through a 2.5% 

agarose gel (Gibco) containing 0.5µg.ml-1ethidiumbromide. The gel was both prepared 

with and run in Tris acetate ethylene-diamine-tetra-acetate buffer (TAE-see appendix). 

Samples were prepared with bromophenyl blue loading dye (see appendix) In each case 

positive and negative controls were included in the gel run as was sterile water to check for 

contaminating nucleic acids. Gels were viewed on a Herolab UVT-28M transilluminator to 

reveal bands and images captured with the COHU CCD camera system attached to a Sony 

Digital Image printer.  Figure 2. 

2.1.2.3 PCR amplification to identify rumpshaker ge ne mutation 

To each “ready to go PCR bead” (Amersham Bioscience) was added 24µl of prepared 

master-mix (0.5µl primer α-intron 3, (sequence C (5-CATCACCTATGCCCTGA-3)) 0.5µl 

primer α-intron 4, (sequence D(5-TACATTCTGGCATCAGCGCCAGAGACTGC-3)) 

(Schneider et al., 1992)  23 µl filter sterilized water) and 1µl (25µg/µl) of sample or 

control gDNA. 50µl of mineral oil was layered over each sample to prevent evaporation of 

the sample during the PCR run. The following program was performed on the Biometra 

UNO-thermoblock. An initial denaturing cycle of 94◦C for 3mins, 1min annealing at 55◦C, 

and 4min extension at 72◦C followed by 35 core cycles of 40secs 93◦C, 1 min at 55◦C, 2 

mins at 72◦C, and a final cycle of 40secs at 93◦C, 1min at 55◦C, and 5mins at 72◦C. 

Following PCR the DNA was purified using PCR purification kit (Qiagen) eluting in a 

final volume of 30µl. 
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The presence of the rumpshaker mutation introduces an AccI restriction enzyme site into 

the cDNA. We digested 10µl of DNA with 1 µl (10u/µl) AccI restriction enzyme 

(Invitrogen), 1.5µl 10x buffer in a final volume of 15µl at 37◦ C for 3 hours prior to 

electrophoresis through a 2.5% agarose gel (Gibco) containing 0.5µg.ml-1 ethidium 

bromide. The gel was both prepared with and run in Tris acetate ethylene-diamine-tetra-

acetate buffer (TAE). In all cases positive and negative controls were included in the gel 

run, as was sterile water to check for contaminating nucleic acids and samples were 

prepared with Bromophenyl blue loading dye. Figure 3. 

2.2 Tissue fixation and preparation 

2.2.1 Karnovsky’s modified fixative 

This fixative (Griffiths et al., 1981) was used for the preservation of tissues prepared for 

resin embedding for light and electron microscopy. Fixed tissues were stored at 4°C until 

processed. (see appendix). 

2.2.2 4% Paraformaldehyde 

4% paraformaldehyde prepared in phosphate buffered saline (PBS) was used for the 

fixation of tissues intended for cryopreservation and subsequent immunohistochemistry. 

Following perfusion and dissection tissues were immersed in fixative for 3-6 hours before 

transferring to 20% sucrose in PBS for 24 hours prior to rapid freezing  

2.2.3 Perfusion 

Mice were humanely euthanased using an overdose of carbon dioxide in a closed chamber. 

The carcass was pinned out the chest opened and the pericardium removed, to allow 

cardiac perfusion the right atrium was punctured to allow drainage and a needle was 

inserted into the left ventricle. Saline was injected under moderate pressure to flush the 

vasculature. Once the effluent was clear, between 50 ml and 100 ml of fixative was flushed 

through. Following perfusion the animal was immersed in fixative for up to 3 hours prior 

to dissection. The brain, optic nerves and spinal cord were removed, cut into appropriate 

blocks, placed in fixative and stored until further processing. 
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2.2.4 Resin processing and sectioning 

Tissue blocks prepared for resin embedding were processed using a Lynx el microscopy 

tissue processor (Leica). The tissues were passed through increasingly graded alcohols (see 

appendix) and infiltrated with araldite resin. The tissue blocks were oriented in resin-filled 

silicone moulds and placed at 60°C for 24 hours to allow polymerisation. Utilising an 

Ultracut-E ultratome (Reichert-Jung), 1µm sections, for examination by light microscopy, 

were cut with a glass knife and the sections mounted on cleaned glass microscope slides, 

whilst for electron microscopic study, 70nm sections were cut with a diamond knife and 

mounted on 200-mesh 3.05mm-diameter copper grids. 

2.2.5 Cryopreservation and sectioning  

Tissue blocks from fresh and 4% paraformaldehyde or P-L-P perfusion fixed animals were 

suspended in Tissue-Tec O.C.T compound (Miles Inc) filled foil moulds and frozen in 

isopentane cooled in liquid nitrogen. The frozen blocks were wrapped with NescoFilm 

(Bando Chemical Ind. Ltd.) and stored at -20°C until required. 15µm sections were cut 

using an OTF cryostat (Bright Instrument Company) and mounted onto APES-coated 

microscope slides (see appendix) that were then stored at -20°C. 

2.3 Staining techniques and Immunohistochemistry 

2.3.1 Methylene blue/ azur ΙΙΙΙΙΙΙΙ 

1µm resin sections were dried onto microscope slides on a 60°C hot plate. The sections 

were flooded with methylene blue/azurІІ (see appendix) stain for 30-60 sec and rinsed in 

running water. After drying, slides were mounted in DPX. 

2.3.2 Electron microscopy (EM) 

For electron microscopy, the 70nm resin sections on copper grids were “stained” with 

uranyl acetate and lead citrate (see appendix) examined and images captured on the JEOL 

CX100 electron microscope. 
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2.3.3  ABC Technique (Avidin biotin complex) 

This technique was utilised for immunolabelling resin sections with anti-MBP in order to 

facilitate the measurement of myelin density. To enable staining, the araldite resin was 

etched from the sections by agitation of the slides in sodium ethoxide (50% ripened 

saturated sodium ethoxide 50% absolute alcohol) for 30 minutes. Slides were washed in 

absolute alcohol (6 changes) over 30 minutes. Endogenous peroxidase activity was 

quenched using 3% hydrogen peroxide in water for 30 minutes. Sections were again 

washed in running water for 30 minutes. Non-specific immunoglobulins were blocked with 

10% normal goat serum (NGS) in PBS for 2 hours at room temperature. Excess NGS was 

removed and primary antibody, diluted in 1% NGS/PBS, was immediately applied and the 

sections incubated overnight in a humidity chamber at 4°C. Sections were allowed to warm 

to room temperature and washed in several changes of PBS. Biotinylated anti rat link 

antibody diluted in 1% NGS was applied for 1 hour at room temperature and then washed 

in PBS 6 changes over 30 minutes. Sections were incubated with ABC complex 

(Vectastain elite) for 30 minutes at room temperature and again washed in PBS, 6 changes. 

The chromogen was developed in filtered PBS containing 0.5 mg.ml-1 3,4,3,4-

tetraminobipheyl hydrochloride (DAB) and 0.003% hydrogen peroxide for up to 5 

minutes. Excess DAB was removed by washing in PBS for 2 minutes and running water 

for 5 minutes. The chromogen was intensified with 1% osmium tetroxide. The slides were 

then dehydrated in alcohols, cleared in xylene and mounted in DPX. 

2.3.4  Immunofluorescence 

Indirect immunofluorescence was the preferred method of labelling frozen cryostat 

sections. The sections were allowed to come to room temperature before washing in PBS 

to remove the Tissue-Tec. If the tissue had not been perfusion fixed then the sections were 

immersed in 4% paraformaldehyde for 20 minutes and washed once in PBS. Some 

antibody labelling required permeabilisation in -20ºC methanol or 0.5% triton X-100 

(Sigma), others required non-specific immunoglobulins to be blocked with 10% Normal 

goat serum (NGS) or 0.1% tritonX-100 with 0.2% pigskin gelatin (Sigma). Primary 

antibodies were diluted in 1% NGS or triton/gelatin blocking buffer, as above, the sections 

were incubated in primary antibody overnight at 4ºC. On day 2, sections were allowed to 

come to room temperature before being washed in several changes of PBS.  Secondary 

antibodies labelled with fluorescein isothiocyanate (FITC) or Texas red (TxR) were diluted 

in PBS or the blocking buffer as before and applied to the sections for 30 minutes at room 
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temperature. Slides were briefly washed in PBS before mounting in antifade mounting 

medium (Citifluor). Sections were examined by epifluorescence. FITC absorbs light with a 

wavelength 495 nm and emits it at 525 nm, which can be visualised as green light using a 

blue filter. TxR absorbs light at 596 nm and emits it at 620 nm, which can be visualised as 

red light using a green filter. 4,6-diamidino-2-phenylindole (DAPI), a nuclear marker 

employed, provides a blue fluorescent light with excitation of 345 nm and emission of 455. 

2.3.5 Antibodies and Markers 

Commercially available and gifted antibodies were used and their sources and dilutions are 

illustrated in Table 1. Anti-Caspase-3 antibody was used to recognise apoptotic cells. APC 

(Adenomatous Polyposis Coli) has an affinity for CC-1 and was employed to distinguish 

mature oligodendrocytes (Fernandez et al., 2000; McTigue et al., 2001). Anti-CD45 

antibody recognises pan-leukocytes and was used to identify microglia/macrophages. Anti-

MBP antibody was used to stain central compact myelin. 

 

 

Table 1 

       Antibody          Isotype          Dilution           Source 

       Caspase 3          Rabbit           1:4000            R&D  

      CC-1 (APC)           IgG2b            1:100       Calbiochem 

           MBP             Rat            1:500  N.P Groome (Gift) 

           CD45             Rat            1:600            Serotec 
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Table 2 

      Secondary Antibody                Dilution                  Source 

           Rabbit FITC                   1:80          Southern Biotech 

              Rat FITC                    1:50         Southern Biotech 

              MouseIgG2b                   1:100         Southern Biotech 

 

 

CC-1 staining of oligodendrocytes 

15µm cryostat sections from 4% paraformaldehyde perfused blocks were permeabilised in 

0.5% triton X-100 for 30 minutes and non-specific binding blocked with 0.1% triton X-

100, 0.2% pigskin gelatin in PBS for 30 minutes. Excess blocking solution was removed 

and CC-1 antibody at 1:100 diluted in blocking solution applied and the sections incubated 

at 4°C overnight. The slides were washed in PBS and incubated with goat anti-mouse 

IgG2b FITC secondary antibody diluted in blocking solution for 30 minutes, the nuclei 

stained with DAPI and the slides washed and mounted. CC-1 has been used to label mature 

oligodendrocytes (McTigue et al., 2001). 

 
CD45 staining of microglia  

Animals were perfusion fixed with periodate-lysine-paraforfaldehyde fixative (P-L-P see 

appendix) Sections were permeabilised in methanol at –20°C for 10 minutes and washed in 

PBS. The sections were incubated with anti-CD45 in 1% NGS at 4°C overnight.  

Following PBS wash, goat anti-rat IgG FITC secondary antibody was applied to the 

sections at room temperature for 30 minutes, rinsed in PBS and counterstained with DAPI 

before mounting 
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Caspase-3 staining of apoptotic cells 

Following permeabilisation in 0.5% triton X-100 sections were blocked with 0.1% triton 

X-100, 0.2% pigskin gelatin in PBS for 30 minutes. Excess blocking solution was removed 

and anti-caspase-3 antibody diluted in blocking solution was applied and the sections 

incubated at 4°C overnight. The sections were washed and incubated with goat anti-rabbit 

IgG FITC secondary antibody diluted in blocking solution for 30 minutes the nuclei 

stained with DAPI and the slides washed and mounted. 

 
DAPI Staining 

Following immunolabelling cell nuclei were stained with 0.83µg.lml-1 4,6-diamidino-2-

phenylindole (DAPI), the fluorescent dye, for 30-60 seconds.  

 

2.4 Quantitative studies and statistical analyses 

2.4.1 Myelin volume  

Cervical segment 2 (C2) of spinal cord was dissected following perfusion-fixation in 

Karnovsky’s Modified Fixative and processed for resin embedding. Following 

polymerisation the resin blocks were trimmed and thin sections (70nm) cut from the 

ventral columns of the white matter tract and placed onto copper grids, which were 

subsequently stained with uranyl acetate and lead citrate.   

Using the Jeol CX-100 Electron microscope set at a magnification of x4000, ten 

micrographs from each sample were randomly selected and printed at ~3.5x enlargement 

to occupy an A4 sheet of printing paper. The myelin volume of each genotype was derived 

using a point counting technique (Williams, 1977).  A grid pattern (2cm2) was 

superimposed over each print and the number of gridline intercepts overlying areas of 

compact myelin expressed as a ratio of the total number of gridline intercepts. 

Vv = Points overlying compact myelin/Total points available on grid. 
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2.4.2 Axon status 

Utilising the same photomicrographs as above a simple line grid (2 lines running 

diagonally from corner to corner) was overlayed and the number of non-myelinated and 

myelinated axons touching the line were counted. The number of each was expressed as a 

percentage of total number of fibres.  

2.4.3 g ratio 

Axon and total fibre diameters were measured with Image ProPlus-4 software (Media 

Cybernatics, Silver SpringMD) from digital images of the ventral columns  of 0.5µm resin 

sections taken with x100 oil immersion lens. From these data the myelin thickness and g 

ratio (ratio of axon diameter to total fibre diameter) were calculated. 

2.4.4 Myelin Density 

Myelin area was measured on semi thin (1µm) resin sections immunolabelled with anti 

Myelin Basic Protein using the ABC technique. Four areas, two either side of the 

ventromedian fissure were captured (x40 dry lens) using a CCD camera (Colour Coolview, 

Photonic Science). The digital images were converted to grey scale using Image Pro Plus 

software (Media Cybernetics). An area of interest (AOI) of 2500µm2 was placed over two 

separate areas of each of the four captured images and the total area of black objects (MBP 

labelled myelin) measured. The density of myelin (µm2/mm2) of white matter was 

calculated.  

2.4.5 Quantification of CC-1+ cells 

Cell counts were performed on the ventral columns of cryosections (15µm), adjacent to the 

ventromedian fissure, from rostral cervical spinal cord. Images of CC-1-labelled cells 

(green channel) and DAPI-labelled nuclei (blue channel) from the same sampling area 

were collected (x20) using a CCD camera system (Photonic Science Colour Coolview) and 

stored in the computer. The green and blue channels were merged using Adobe Photoshop 

(Adobe systems Inc., San Jose) and the image quality adjusted. For each combined image, 

a frame (35804µm2) outlining the AOI was placed on the screen. The number of APC+ 

cell bodies containing a DAPI-stained nucleus was counted within the AOI or touching the 

top or left side but excluding those touching the bottom or right sides. The density of 

DAPI-labelled nuclei was counted automatically with an AOI of 10,000µm2. The density 



Jennifer A Barrie 2008  2-32 

of CC-1-labelled cells with DAPI-stained nuclei (nuclei/mm2) was calculated and the 

percentage of CC-1+ve cells (CC-1 cells/DAPI nuclei x 100) calculated. 

2.4.6 Quantification of CD45+ cells and caspase3+ c ells 

These cells were quantified as described for the CC-1+ cells (2.4.5). 

2.4.7 Calculation of cell numbers 

Quantification of cells or nuclei was determined by density in the ventral funiculi. As the 

area of the white matter varied between different genotypes we calculated the total number 

of cells/nuclei in the white matter of a transverse section. This calculation assumes that the 

density is equally distributed throughout the white matter when there is actually variation 

between tracts and at different ages. In fact the nuclear density alters across the width of 

the ventral column, being greater in the central region adjacent to the grey matter. The 

alternative strategy is to define a precise sub-region of the ventral column in which to 

calculate total numbers, a task that would be problematic in ensuring consistent 

identification of the chosen region. The calculation based on the total white matter area 

therefore offers an acceptable way of comparing cell numbers between different genotypes 

and ages. 

2.4.8 Statistical analysis 

Group sizes 

The number of animals included in a group varied between ages, genotype and techniques. 

In general, 4 or more animals were included in a group. 

 
Data presentation 

Graphs are presented as mean ± SEM. P values are denoted as *  <0.05, ** <0.01, *** 

<0.001. 
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Statistical tests 

As group sizes were always relatively small no assumptions were made that the data was 

distributed normally. Groups were first compared using one-way Analysis Of VAriation 

(ANOVA). If a significant difference (p<0.05) was detected, individual groups were 

compared using the Bonferroni multiple comparison test. Comparison of only the two 

mutant groups used the grouped t test. Analyses were performed using GraphPad prism 4   

(GraphPad software Inc, San Diego CA.)  

 

2.5 Biochemical Analysis 

2.5.1 Myelin fraction preparation 

This technique was used to extract myelin from CNS tissue and is based on the method of   

Norton and Poduslo (1973a). The principle is based on centrifugal enhanced flotation of 

the myelin fraction due to the highly buoyant nature of lipids. By-products of the technique 

include the pellet fraction containing the membranous and nuclear components of the 

spinal cord and the supernatant representing the cytoplasmic components. 

 Spinal cords snap frozen in liquid nitrogen and stored at -70ºC, from freshly euthanased 

animals were used in the preparation of the fractions.  

Initially the cord was thawed in 7.5ml high sucrose buffer (0.85M sucrose, 10mM Hepes, 

2mM Dithiothreitol, 1mM TLCK) and homogenised using an IKA ultra turrax polytron 

homogeniser at high speed for 12-15 strokes. 500µl of the resultant homogenate was 

retained and represents the total homogenate, the remainder was transferred to a Beckman 

centrifuge tube and 3ml of low sucrose buffer (0.25M sucrose, 10Mm Hepes) gently 

layered on top. The samples were centrifuged at 70000g, 90minutes, 4ºC using SW41 rotor 

on a Beckman ultracentrifuge. Following centrifugation the myelin fraction could be 

clearly visualised at the interface of the two sucrose solutions. The upper layer was 

aspirated and the myelin interface collected to a fresh tube, 6mls of chilled milliQ water 

(Millipore System) was added to each sample causing osmotic shock. The samples were 

vortexed and centrifuged at 23000g, J21 rotor, 4ºC, 30 minutes. The supernatant was 

removed and the process repeated a further 2 times with the exception that the third spin 

was performed at 17000g, this ensures that the myelin is as “clean” as possible. The final 

pellet was resuspended in a volume of milliQ water dependant on the size of the pellet, the 
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intention being to have each sample at a similar concentration. From a representative 

sample group the rumpshaker myelin pellet, being the smallest of the samples, was 

resuspended in 75µl, the transgene-complemented rumpshaker pellet resuspended in 150µl 

and the wild type pellets in 600µl. Aliquots of fractions generated from the initial high 

speed 70000g spin were collected for subsequent analysis, 1ml of the sucrose supernatant, 

enriched in the soluble cytoplasmic fraction and the pellet fraction enriched in 

membranous and nuclear elements resuspended in 2ml 0.25M sucrose. All fractions were 

stored at -20ºC. 

2.5.2 Oligodendrocyte culture preparation 

Oligodendrocytes were prepared from the spinal cord of postnatal day 5 animals by the 

method described (Fanarraga et al., 1995). Animals were euthanased in a halothane 

chamber and decapitated to ensure exsanguination. Using sterile technique and with the aid 

of a dissecting microscope the spinal columns were removed and the cord dissected out 

into Hanks balanced salt solution without calcium or magnesium (Invitrogen) the meninges 

were stripped from the cord and the cord masticated with a sterile scalpel. The connective 

tissue of the cord was digested by the addition of 1ml 0.25% trypsin (Invitrogen) and 

100µl 1% collagenase type 1(MP Biomedicals) and incubation at 37ºC for 30minutes, 

followed by a second dose of trypsin/collagenase and incubation for 30 minutes. The 

digestion was quenched by the addition of 1ml Stop solution (see appendix). The cord 

triturated through 23g needle (3 times) and 26g needle (3 times) before the addition of 

DMEM 10% (see appendix), and centrifugation at 800rpm 5minutes. The supernatant was 

removed and the pellet resuspended in 1ml DMEM/10%. The cell suspension was plated 

onto 2x 35mm poly-D-Lysine treated tissue culture dishes (see appendix) and the cells 

allowed to settle down onto the plate for 2hours in a LEEC tissue culture incubator at 37ºC 

with 5% CO2 before the addition of 1.5ml Sato conditioned medium (see appendix) The 

cultures were incubated for 7days in the incubator before harvesting. Although the cultures 

were a mixed population of cells the conditioned growth medium employed favoured 

oligodendrocyte proliferation. 

Cell Lysis 

Tissue culture plates were removed from the incubator and immediately washed with 

chilled PBS. 75µl of cell lysis buffer (see appendix) was added to each plate incubated on 

ice for several minutes and the adherent cells removed from the surface of the plate 

utilising a cell scraper. The cell suspension was then transferred to a tube and rotated end 
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over end at 4˚C for 30 minutes. The debris was precipitated by centrifugation at 5000rpm 

at 4˚C for 5minutes and the cell lysate transferred to a fresh tube and stored at -20˚C until 

required. 

2.5.3 Protein Assay 

Protein concentrations were quantified in order to ensure equal loading of samples on 

subsequent gels. The assay was performed using the Pierce protein assay system (Perbio) 

based on the Lowry Method using bicinchoninic acid (BCA) as the reagent. The reaction 

was initiated by the addition of the reagent and incubated at 37ºC for 30 minutes. 2mg/ml 

BSA standards (precision plus all blue protein, Biorad) were diluted (0.025, 0.05, 0.1, 0.2, 

0.4, 0.6mg/ml) and prepared at 10X the concentration of the samples, which were routinely 

5µl of sample/1ml of reaction reagent. Measurement of the absorbance of the final product 

was performed on a spectrophotometer (Cecil 1100) set to a wavelength of 562nM.  A 

standard curve was generated and the sample concentrations calculated from this. 

2.5.4 SDS PAGE (sodium dodecyl(lauryl)sulphate poly acrylamide 

gel electrophoresis)Western Blot 

 At the onset of the project gels were hand poured from stock solutions (table 4) Laterly 

precast gels were employed for safety, convenience, economy of time and reproducability. 

Precast gels employed were Novex Nupage 4-12%, 10 or 12 well (Invitrogen) with MES 

page buffer (Invitrogen)  

Gel preparation 

The gel tank system used for precast gels was the Invitrogen Mini gel system, although 

these gels were also compatible with the Atto system (Atto Corporation) employed for the 

hand poured gels. Various combs were used depending on the number of samples to be 

run.  

Sample Preparation 

The samples were prepared to a total volume of 24µl including 8µl of 3x SDS/DTT 

denaturing buffer (see appendix) and heated to 85ºC for 4 minutes, to linearise the protein 

and allow SDS association at a uniform charge to protein ratio, prior to running in SDS 
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PAGE (see appendix) or MES (Invitrogen) running buffer at Standard limits of 250V 

200mA and 25W with a constant voltage of 100-150V for approximately 1.5 hours. 

Transfer 

 Following a brief wash in water the gel was removed from the plate and placed in cathode 

buffer (see appendix) The proteins were transferred to PVDF membrane (Millipore 

Immobilon-P transfer membrane) using a semi dry blotter and Towbin transfer buffering 

solutions (see appendix) which enables the transfer. The transfer was carried out at 

standard limits of 50v 250 mA 15W constant current 225 mA for 1hour. To check the 

transfer was successful and to check for equal loading, the blot was stained briefly with 

Ponceau S (see appendix) a water-soluble stain that highlights the proteins. 

 
Immunodetection of protein 

 Non-specific immunoreactive proteins and peptides were blocked with 5% skimmed milk 

(Marvel) in Tris buffered saline/tween (T-TBS see appendix) for 2 hours at room 

temperature or 4ºC overnight before immunolabelling for the specific protein of choice. All 

primary antibodies (for source and dilutions see table 3) were prepared in 5% skimmed 

milk/T-TBS and the blots incubated overnight at 4ºC on an ELMI skyline orbital shaker. 

After washing several times in T-TBS over 30 minutes secondary antibody linked to 

horseradish peroxidase was applied at a dilution of 1:10,000 (Sigma), again diluted with 

5% skimmed milk/T-TBS, 1hour room temperature followed by several washes. The blot 

was developed with ECL (Super signal West Pico chemiluminescent substrate. Pierce) 

wrapped in saranwrap and exposed to x-ray film (AGFA) over a range of incubation 

periods ranging from 30seconds to several minutes to identify the optimal exposure.  
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Table 3 

Antibody Dilution Source Secondary 

CNP 1:2000 P Brophy (Gift) Anti rabbit HRP 

MBP 1:5000 Chemicon Anti rabbit HRP 

PLP 1:100,000 In house Anti rabbit HRP 

ASPA 1:1000 J Garbern (Gift) Anti rabbit HRP 

MAG248 1:1000 Chemicon Anti rabbit HRP 

Sirtuin 2 1:500 Cell Signalling Anti rabbit HRP 

Bip 1:2000 Stressgen Anti rabbit HRP 

GFAP 1:200,000 Sigma Anti rabbit HRP 

 

Quantification of blots 

The blots were scanned with an Epson Perfection 4990 Photo scanner to create digital 

images. Scion Image software (NIH) was used to quantify individual protein bands from 

the blots. The software generates a graphic output of the pixel density of the selected band 

and the integral calculated to give signal density. 

Statistical Analyses 

Analysis was performed using Graphpad Prism 4 software (GraphPad software Inc, San 

Diego CA). Statistical tests applied were ANOVA and Bonferroni’s multiple comparison 

test and t-test as described previously. 
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2.6 Molecular Biology  

2.6.1 RNA Preparation 

Total RNA (tRNA) was extracted from spinal cord samples snap frozen in liquid nitrogen 

and stored at -80ºC. To minimise potential RNase contamination and subsequent 

degradation of RNA, work surfaces mortar and pestle etc were sprayed with 

RnaZAP(Ambion). The RNA was extracted using the RNAsol Bee commercial kit (Tel-

test Inc, Friendswood TX), which is based on the Phenol/Chloroform extraction of RNA 

and separation of nucleic acids from protein due to their differential solubility in protein 

and non-protein solvents. Spinal cord was ground in liquid nitrogen using mortar and 

pestle, to generate a homogenous powder, transferred to a 7ml specimen bottle on ice 

before the addition of 1ml of prechilled RNAsol Bee (homogenous powder assists in rapid 

inactivation of RNase) The tissue was triturated through hypodermic needles of decreasing 

gauge (23G, 26G, 30G) several times each. The entire sample was transferred to a 1.5ml 

microtube 200µl chloroform added and vortexed 20-30 seconds, chilled on ice for 5 

minutes and removed from the Phenol/chloroform fraction and 4µl of glycogen added to 

enable visualization of the RNA before the addition of 500µl of 100% isopropanol.  The 

sample was incubated at room temperature for 10 minutes before centrifugation 13K for 15 

minutes 4ºC. The supernatant was poured off and 1ml of 70% filter sterilized ethanol 

added the sample vortexed and centrifuged 13K, 8 minutes 4ºC and the supernatant 

aspirated with a pipette to ensure that the excess ethanol was removed. The sample was air 

dried for 10 minutes and the pellet resuspended in 150µl of DEPC treated water.  

The integrity of the RNA was confirmed by gel electrophoresis on a 2% agarose gel 

containing 0.5ng/ml ethidium bromide; each sample contained Orange G loading dye. Both 

mRNA and rRNA are visible as sharp bands indicating no decay of the mRNA; there 

should be no contaminating gDNA band present. The optical density of the RNA was 

measured with a spectrophotometer to check for salt, solvent or protein contamination and 

to quantify the RNA yield. The prepared RNA was used in real time quantitative PCR 

studies (qPCR) and reverse transcriptase-PCR (RT-PCR) studies of Xbp-1, Chop and 

ATF3. 
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2.6.2 Real time quantitative PCR (qPCR) 

The ABI prism7500 sequence detection system (Applied Biosystems, Foster City, CA) 

using TaqMan technologies (PE Biosystems, Foster City CA) was employed following 

manufacturers instructions. Real time quantitative PCR was performed using the Platinum 

quantitative RT-PCR Thermoscript one step system (Invitrogen). The PCR primer and 

probe sets were designed using the program primer-Express™ (Applied Biosystems) The 

following primer and probe sets were used. β-actin (Accession #NM_007393) forward 5/-

AGAGGGAAATCGTGCGTGACAT-3/: reverse 5/-AGGAAGGCTGGAAAACAGCC-3/: 

TaqMan probe 5/-TGGCCACTGCCGCATCCTCTTC-3/. A combined primer probe that 

amplified both Plp and Dm20 (Plp/Dm20) was utilised, forward 5/-

GTATAGGCAGTCTCTGCGCTGT-3/: reverse 5/-AAGTGGCAGCAATCATGAAGG-3/: 

TaqMan probe 5/-TGGCAAGGTTTGTGGCTCCAACCTT-3/. A combined primer set that 

amplified all MBP isoforms(Accession #NM_ 010777) was also utilised 5/-

AGACCCTCACAGCGATCCAA-3/: reverse 5/-CCCCTGTCACCGCTAAAGAAG-3/: 

TaqMan probe 5/-CAAGTACCATGGACCATGCCAGGC-3/. Each probe had FAM at the 

5/end and Blackhole Quencher at the 3/end (MWG Biotech, Germany). A standard curve 

generated from each set using serial dilutions of the RNA prepared from the samples 

confirmed the linearity of the method. The samples were run with the following program, 

30mins at 50ºC, 10mins at 95ºC followed by 40 cycles of 15secs at 94ºC and a final 2mins 

at 64ºC. Analysis was carried out by relative quantification using Ct values of the 

Plp/Dm20, Plp and MBP probes versus β-actin. Normalised expression of target message 

probe with respect to β-actin message was determined for all samples to generate mRNA 

per 50µg total RNA initially loaded. The relative amounts of transgene-complemented 

rumpshaker and rumpshaker mRNAs were expressed as a percentage of wild type.   

2.6.3 RT-PCR for XBP-1, Chop and ATF3 

RT-PCR was performed on the sample mRNA (prepared as described 2.6.1) using primers 

(MWG, Germany) for XBP-1, forward 5/-AAACAGAGTAGCTCAGACTGC-3/ and 

reverse 5/-TCCTTCTGGGTAGACCTCTGGGAG-3/. The PCR products were then 

digested with Pst 1 (Invitrogen), which cuts only the unspliced cDNA.  The spliced and 

unspliced products were resolved on a 2.5% agarose gel (Invitrogen) containing ethidium 

bromide. Control samples of RNA from oligodendrocyte cultures exposed to DTT, to 

stress the cells, were processed simultaneously. Primers for Chop (MWG) were forward 5/-

CATACACCACCACACCTGAAAG-3/, and reverse                                                           
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5/-CCGTTTCCTAGTTCTTCCTTGC-3/ (accession# X67083.1) a product size of 356bp, 

and those for ATF3 (MWG) forward 5/-CAACATCCAGGCCAGGTCT-3/, and reverse 5/-

CTCTGCAATGTTCCTTCTTTT-3/, (accession# BC064799.1) a product size of 532bp.  

Cyclophilin was used as an internal control for invariant gene expression when analysing 

these two products which were resolved on a 2% agarose gel with ethidium bromide, a 

1Kb ladder (Invitrogen) was included on each gel and the samples were loaded with 

Bromophenol blue loading dye. The captured images were quantified using the Scion 

image software correcting the intensity of the signals for the density of the cyclophilin.   
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Lane #             1        2      3       4      5       6       7      8       9 

 

Figure 2.  PCR products run on agarose gel. PCR performed using primers to reveal 

presence of #66 transgene. Lanes 1-3 transgene negative samples, lanes 4-7 transgene 

positive samples, lane 8 negative control and lane 9 positive control. 

 

Lane #            1       2      3      4      5       6       7      8       9 

                   

 Figure 3. Acc1 digested PCR products run on agarose gel performed to reveal 

rumpshaker, transgene-complemented rumpshaker and wild type genotypes. Lane 1 

rumpshaker, lane 2-3 wild type, lane 4-7 transgene-complemented rumpshaker, lane 8 wild 

type control, lane 9 rumpshaker control. 
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3.  Comparison of clinical and pathological 

phenotype in rumpshaker,  Plp1 transgene 

complemented rumpshaker and wild type mice . 

3.1 Survival study 

3.1.1 Introduction 

Rumpshaker mice on the C57BL/6 background present clinically with severe tremor from 

the second week of life and go on to develop seizures during the fourth week of life with 

the majority of animals dying in the fifth or sixth week (Al-Saktawi et al., 2003). I 

evaluated the survival time of these animals and others complemented with the Plp1 

transgene for up to 40 days.   

3.1.2 Method 

The offspring from a female C57BL/6 rumpshaker heterozygote and a C57BL/6 wild type 

male carrying the #66 Plp1 transgene were allowed to survive for up to 40 days 

postnatally, the longest time period approved by the Home Office. A tail tip was collected 

from any animal that died prematurely to allow the genotype to be ascertained. 

3.1.3 Results 

Fewer seizures were observed in the transgene-complemented rumpshaker mice and all 

survived up to 40days. Survival curves indicate a median survival of 35 days in the 

unmodified rumpshaker mice, significantly different from the transgene-complemented 

rumpshaker mice. The wild type mice also survived to P40, identical to the transgene-

complemented rumpshaker mice. (Figure 4.) 
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3.2 Quantification of Myelin 

3.2.1 Introduction 

Within the normal CNS the majority of axons are myelinated. Dysmyelination is a 

common feature of animals carrying a mutation of the Plp1 gene. As described previously 

(1.4.2), myelin is a highly organised multilamellar structure composed of 70% lipid and 

30% protein. I studied the effect on the rumpshaker phenotype of introducing a wild type 

Plp1 transgene. Peak myelination occurs around postnatal day 20 (P20), therefore, the bulk 

of my study focussed on that age point. 

3.2.2 Materials and methods 

3.2.2.1 Myelin density 

Myelin density was quantified using 1µm sections of P20 and P40 cervical spinal cord 

immunostained for myelin basic protein (MBP) as described previously (2.4.4). The 

amount of myelin positively stained is expressed as area of MBP staining per mm2. 

3.2.2.2 Myelin volume  

Since MBP immunostaining can label uncompacted myelin, the volume of compact myelin 

was quantified using electron micrographs of the ventral columns of C2 spinal cord at P20 

and a point counting method as described (2.4.1).  

3.2.2.3 Percentage of myelinated fibres 

Utilising the same micrographs as above the percentage of myelinated axons was 

quantified (2.4.2). 

3.2.2.4 g ratio 

0.5 µm resin sections were used to determine g ratio (the ratio of axon diameter to total 

fibre diameter.  
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3.2.2.5 Myelin periodicity 

High magnification electron micrographs were examined to assess the periodicity of the 

myelin. 

3.2.2.6 Hardware and Software 

A colour Coolview camera (Photonic Science) with Image ProPlus 4 software (Media 

Cybernetics) imaging system was used to assist in the quantification. 

3.2.3 Results 

3.2.3.1 Myelin density 

At both ages the rumpshaker and transgene-complemented rumpshaker animals had less 

myelin than the wild type animals; (Figure 5) however, expression of wild type PLP/DM20 

in the transgene-complemented rumpshaker animals significantly increased the myelin 

compared to the rumpshaker animals. (Figure 6A.) 

3.2.3.2 Myelin volume 

The transgene-complemented rumpshaker animals had significantly more compact myelin 

than the rumpshaker, but both rumpshaker and transgene-complemented rumpshaker had 

less than the wild type. (Figure 6B.) 

3.2.3.3 Proportion of myelinated axons 

The proportion of myelinated axons was significantly increased by the presence of wild 

type PLP/DM20 in the transgene-complemented rumpshaker animals compared with 

rumpshaker. (Figure 7A.) 

3.2.3.4 g ratio 

The g ratio was significantly increased in both the rumpshaker and transgene-

complemented rumpshaker animals compared with wild type. (Figure 7B.)  
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3.2.3.5 Myelin periodicity 

rumpshaker myelin has reduced periodicity and the intraperiod line (IPL) and major dense 

line (MDL) are hard to distinguish. The periodicity was recovered by expression of the 

transgene. (Figure 8D.) 

3.3 Quantification of glial cell apoptosis 

3.3.1 Introduction 

Oligodendrocyte cell death is a prominent feature of Plp1 missense mutations (Cerghet et 

al., 2001; Skoff, 1995) Programmed cell death (apoptosis) is characterised by activation of 

the caspase cascade, including caspase 3, an effector caspase expressed in 

oligodendrocytes, which is a classic marker of apoptosis (Momoi, 2004). 

Histopathologically, dead cells are characterised by pyknotic nuclei with condensed 

chromatin. I used both histopathological identification and immunostaining to quantify the 

numbers of apoptotic glia. In addition, I quantified the numbers of microglia/macrophages 

present. 

3.3.2 Materials and methods 

3.3.2.1 Quantification of pyknotic nuclei 

Quantification was performed on 1µm resin sections of cervical spinal cord (C2) stained 

with methylene blue/azurІІ (see 2.3.1). Pyknotic nuclei in all white matter tracts were 

counted. 

3.3.2.2 Quantification of Caspase 3 positive cells 

15µm cryo sections were immunostained with caspase3 antibody (see 2.3.5). Counts were 

performed from 4 areas on the ventral columns of the cervical 2 segment of spinal cord at 

postnatal day 20 and 40 (P20, P40). The immunostained sections were counterstained with 

a nuclear marker DAPI (see 2.3.5), only caspase 3 positive cells containing a nucleus were 

counted.  
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3.3.2.3 Quantification of oligodendrocyte numbers    

The numbers of CC-1 positive oligodendrocytes in the ventral columns of cervical 2 spinal 

cord were counted (see 2.3.5.). In addition, double immunostaining with anti-CC-1/ anti-

caspase 3 was performed.  

3.3.2.4 Quantification of Macrophages/microglia 

The number of macrophages/microglia present in 15µm cervical 2 sections of spinal cord 

were counted by immunostaining with the pan leucocyte marker CD45.  

3.3.3 Results 

3.3.3.1 Pyknotic nuclei 

At P20 both the rumpshaker and transgene-complemented rumpshaker mice had elevated 

numbers of pyknotic nuclei compared to the wild type animals; however, the presence of 

the transgene significantly reduced the number when compared to rumpshaker. At P40, the 

overall numbers of pyknotic nuclei in all genotypes were reduced; however, the differences 

between genotypes remained unchanged. (Figure 10A.) 

3.3.3.2 Caspase 3 positive cells 

The counts of activated caspase 3 positive oligodendrocytes in the ventral columns showed 

an identical profile to that of the pyknotic nuclei at P20. (Figure 10B.) 

3.3.3.3 CC-1 positive cells  

The number of CC-1 positive oligodendrocytes was comparable across all three genotypes 

(Figure 11A.). The number of double stained CC-1 positive/ caspase 3 positive cells was 

also reduced in the transgene-complemented rumpshaker animals compared to 

rumpshaker. 

3.3.3.4 CD45 positive cells 

The numbers of CD45 positive macrophages/microglia were the same for rumpshaker and 

transgene-complemented rumpshaker, each having a fivefold increase from wild type. 

(Figure 11B.) 
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3.4 Discussion 

Data presented in this chapter show that the transgene-complemented rumpshaker animals 

live longer than the unmodified rumpshaker mice. The myelin status in the transgene-

complemented rumpshaker animals is improved with an increase in the amount of myelin. 

Additionally, the proportion of myelinated axons is increased and the periodicity of the 

myelin is returned to that of wild type, conversely, the g-ratio is not significantly 

improved. The number of apoptotic oligodendrocytes is reduced in the transgene-

complemented rumpshaker animals; however, there is no change in the number of 

microglia/macrophages, which remain elevated compared to wild type. 

The presence of wild type PLP has a marked effect on the survival of the animals. In this 

study I examined and quantified the most common characteristics of myelin mutants, 

dysmyelination and apoptosis of oligodendrocytes, to try to identify the key parameters 

that would account for the improved survival. Although the amount of myelin is increased 

in the transgene-complemented rumpshaker animals, the level is still significantly reduced 

compared to that of wild type animals. Since the g ratio is not significantly improved, the 

increase must be attributed to the greater number of myelinated axons. McLaughlin 

(McLaughlin et al., 2006) demonstrated that misfolded rumpshaker PLP is inserted into the 

myelin sheath. In transgene-complemented rumpshaker myelin it is possible that the 

majority of the misfolded rumpshaker PLP is replaced by wild type PLP, which returns the 

periodicity to normal.  

 It is true that mice with hypomyelination die prematurely and that severe hypomyelination 

causes earlier death, studies by Billings-Gagliardi (Billings-Gagliardi et al., 1999) and 

Wolf (Wolf et al., 1999) revealed that contrary to the accepted view, hypomyelination is 

not the cause of premature death. There is also a relationship between hypomyelination and 

severity of apoptosis in Plp1 myelin mutants, decreasing amounts of myelin corresponding 

with increased apoptosis, determining the relationship between the two is complicated. 

Skoff (Skoff et al., 2004) has proposed that apoptosis of oligodendrocytes occurs initially 

and that hypomyelination follows as a result of the reduced numbers of oligodendrocytes. 

They show that inhibiting the synthesis of mutant PLP reduces apoptosis and that the 

subsequent increase in myelin can be attributed to more oligodendrocytes surviving rather 

than a proliferation of new oligodendrocytes.  However Al-Saktawi (Al-Saktawi et al., 

2003) found no difference in the number of oligodendrocytes in C57 rumpshaker when 

compared with wild type, the number of apoptotic oligodendrocytes in rumpshaker being 
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matched by the number of proliferating oligodendrocytes. Indeed in my study the CC-1 

immunostaining indicated comparable numbers of oligodendrocytes in each of the three 

genotypes. Furthermore, Thomson (Thomson et al., 1999) showed that in the first week of 

life oligodendrocyte numbers in jimpy mice were similar to wild type mice but that the 

amount of myelin was only 20% of wild type and that only a minority of axons were 

ensheathed by myelin, suggesting that myelin mutant oligodendrocytes are unable to 

properly associate with axons resulting in hypomyelination and that the subsequent 

apoptosis can be attributed to a lack of trophic support to the oligodendrocytes which fail 

to connect with an axon. We cannot distinguishing rumpshaker PLP from wild type PLP, 

therefore cannot determine if transgene-complemented rumpshaker oligodendrocytes are 

synthesising wild type PLP capable of associating with axons, and that the increase in 

myelin is a direct result of this. We could utilise a genetic approach and breed a caspase-3 

deficient mouse with our rumpshaker mouse to produce a cross in which apoptosis of   

oligodendrocytes would be reduced. If there was an improvement in survival it would 

suggest that apoptosis is the primary cause of hypomyelination and is also related to 

survival.  

Seizure is another well-documented characteristic of myelin mutants and indeed both the 

C57BL/6 rumpshaker and transgene-complemented rumpshaker mice manifest this 

characteristic. A common cause of seizure is hypoxia. Miller (Miller et al., 2003) have 

reported that the myelin-deficient (md) rat develops “lethal hypoxic depression of 

breathing at postnatal day 21,” the age at which these animals die prematurely. They 

describe pathological changes in the respiratory control centre located in the caudal 

brainstem of these animals, including severe dysmyelination and the presence of 

immunoreactive PLP/DM20 in neurones.  

A further notable characteristic of the rumpshaker phenotype is the macrophage/microglial 

response. It is unclear if this is primarily an effect of cell death and tissue damage or if it is 

part of the causal mechanism. The fact that there is no discernable difference between the 

rumpshaker and the transgene-complemented rumpshaker mice may indicate that the 

inflammatory response is unimportant in determining the severity of the pathology. It 

would be possible to assay a panel of cytokines in these two genotypes to determine if any 

change in expression was induced by the transgene. Alternatively, we could treat the 

animals with minocycline to inhibit microglial activation (He et al., 2001) and determine if 

there was any improvement in phenotype or survival. A further approach would be to 

attenuate the macrophage response by crossbreeding sialoadhesin deficient mice (Ip et al., 

2006) with our rumpshaker mice and again, determine any improvement. 
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Figure 4. Survival curves from rumpshaker (rsh) and transgene-complemented rumpshaker 

(rshtr) mice. All transgene-complemented rumpshaker survived to postnatal day 40, the 

oldest age studied. 
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Figure 5. Images from ventral columns of 1µm resin sections immunostained for MBP.     

A - rumpshaker, B- transgene-complemented rumpshaker, C -wild type. The image of 

rumpshaker demonstrates that significantly fewer axons are surrounded by sheaths 

immunolabelled with MBP, an increased in immunolabelling is seen in the image of 

transgene-complemented rumpshaker. Images 100x oil and bars= 20µm. 



Jennifer A Barrie 2008  3-51 

Figure 6A. Graph of myelin density expressed as area of MBP positive immunostaining 

per mm2 performed on 1µm resin sections of cervical spinal cord at P20. Both rumpshaker 

(rsh) and transgene-complemented rumpshaker (rshtr) are lower than wild type (WT), 

however rumpshaker is significantly reduced compared with transgene-complemented 

rumpshaker.   

 Figure 6B. Graph of myelin volume. Counts were performed on electron micrographs 

(x4000) overlaid with a point counting grid. rumpshaker (rsh) is significantly reduced 

compared to transgene-complemented rumpshaker (rshtr). Both mutants are well below the 

wild type (WT) value. 
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Figure7A. Graph of proportion of myelinated axons expressed as percentage of wild type. 

Counts performed on electron micrographs (x4000). rumpshaker (rsh) is reduced compared 

to transgene-complemented rumpshaker (rshtr) and both are reduced compared to wild 

type (WT). 

Figure 7B. Graph of axon diameter plotted against myelin thickness. Increase in myelin 

thickness with increasing axon diameter is significantly reduced in rumpshaker (rsh) and 

transgene-complemented rumpshaker (rshtr). Individual points for wild type (WT) and 

regression lines for WT (slope 0.087) rsh (0.024) and rshtr (0.027) are shown.   
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Figure 8. Electron micrographs of myelin sheaths (x 4000) from 70nm resin sections 
showing ventral column axons of cervical spinal cord at P20. A- rumpshaker- many axons 
are unmyelinated, myelin sheaths are very thin. B- transgene-complemented rumpshaker- 
most axons are myelinated although the myelin sheaths are still relatively thin. C- wild 
type-myelin sheaths are of the appropriate thickness for the diameter of axon. Bars =5µm  
D- micrograph montage of 70nm resin sections showing myelin periodicity in ventral 
column axons of cervical spinal cord at P20. Periodicity is altered in rumpshaker (rsh) and 
the major dense lines (M) and intraperiod lines (I) are indistinct, wild type (WT) and 
transgene-complemented rumpshaker (rshtr) show correct periodicity. Bar =20nm 
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Figure 9.  1µm resin sections of the ventral columns of cervical spinal cord stained with 

methylene blue/azur II. A - rumpshaker, B- transgene-complemented rumpshaker, C -wild 

type. rumpshaker image shows prominent pyknotic nucleus (arrow) and many 

unmyelinated axons. Images x100 oil and bars= 20µm 
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Figures 10A. Graphs depicting numbers of pyknotic nuclei counted in white matter tracts 
of cervical spinal cord at P20 and P40.Counts performed on 1µm resin sections. At each 
age the transgene-complemented rumpshaker (rshtr) is reduced compared to rumpshaker 
(rsh). P40 rsh n=1 (the only animal to survive to P40).  
Figure 10B. Graph of caspase3 positive cell counts from the ventral columns of 15µm 
frozen sections. rumpshaker (rsh) has significantly greater numbers compared with 
transgene-complemented rumpshaker (rshtr). Wild type (WT) had only a nominal number 
of caspase3+ve cells.   
Figure 10C. Image of ventral column of transgene-complemented rumpshaker 
immunostained for caspase3 (red) CC-1 (green) and the nuclear marker DAPI (blue) only 
one cell (orange) is positive for both caspase3 and CC-1  
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Figure 11A.Graph of CC-1+ve cell counts expressed as cells/mm2. The counts were 

performed on 15µm frozen sections immunostained with CC-1, a marker for mature 

oligodendrocytes. The difference between the three genotypes was not significant 

Figure 11B. Graph of inflammatory cell counts depicting CD45+ve cell counts expressed 

as positive cells/mm2 performed on 15µm frozen sections.  There is no difference between 

rumpshaker (rsh) and transgene-complemented rumpshaker (rshtr), each is significantly 

greater than wild type (WT).  
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4. Analyses of protein and mRNA levels in spinal 

cord and cultured oligodendrocytes  

4.1 Introduction 

PLP, the major myelin protein of the CNS (as discussed 1.4.2.4) is markedly reduced in the 

rumpshaker mouse on the C57BL/6 background (Al-Saktawi et al., 2003).  In this study I 

analysed the level of PLP and the alternatively spliced isoform DM20 to determine if 

complementation of the mutant Plp gene with the wild type Plp gene would increase the 

levels of these proteins in the CNS myelin. Since other myelin proteins, such as MBP, are 

also reduced in the myelin extracts from the dysmyelinated rumpshaker, protein analyses 

of these were performed too. To ascertain if the same attenuation was reflected in the 

transcript level of the major myelin proteins, real time quantitative PCR was performed on 

total RNA extracted from P20 spinal cord.  

4.2 Materials and methods 

Myelin was extracted from dissected, snap frozen spinal cord following the method of 

Norton and Poduslo (1973a) previously described (2.5.1.), the myelin protein content 

assayed (2.5.3) and SDS PAGE Western blots performed (2.5.4). Enriched myelin fraction 

samples of rumpshaker, transgene-complemented rumpshaker and wild type P20 and P40 

cord were blotted for the myelin proteins PLP, DM20, MBP, CNP and MAG. In addition 

total homogenate samples were blotted for GFAP and aspartoacylase (ASPA) and the 

pellet fraction enriched in membranes, including endoplasmic reticulum, blotted for the 

chaperone protein BiP. The NAD-dependent deacetylase Sirtuin2 was also investigated. 

Primary oligodendrocyte cultures (2.5.2) were lysed and the lysates blotted for PLP, MBP 

and ASPA. To perform real time quantitative PCR (qPCR) (2.6.2) and semi-quantatitive 

reverse transcriptase-PCR (RT-PCR), total RNA was extracted (2.6.1) following the 

instructions provided with RNAsol Bee reagent (Tel-Test Inc, Friendswood, Texas).  
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4.3 Results  

4.3.1  Myelin protein analyses 

PLP/DM20 level in rumpshaker myelin from P20 spinal cord is less than 20% of the level 

in wild type myelin. In the presence of the transgene (transgene-complemented 

rumpshaker), however, the level of PLP/DM20 recovers to near normal levels (approx 

90% of wild type) (Figure 12A.). In contrast, the level of MBP in the presence of the 

transgene does not recover to normal levels, being only 30% of wild type, which was only 

slightly above the level of rumpshaker at 25%, a difference which is not statistically 

significant (Figure 12B.). Both CNP (Figure 13A.) and MAG (Figure 13B.) levels are 

improved from the low level in rumpshaker, but neither reaches the level of wild type. The 

oligodendrocyte culture lysates show similar results to the myelin fractions, the PLP/DM20 

levels are very low in rumpshaker and recover to wild type levels in the transgene-

complemented rumpshaker (Figure 14A.), whereas MBP is similarly low in the 

rumpshaker but does not recover in the transgene-complemented rumpshaker samples 

(Figure 14B.). Sirtuin2 levels were low in the rumpshaker but returned to normal in the 

transgene-complemented rumpshaker samples (Figure 12c.). 

4.3.2  Non myelin proteins 

Total homogenate fractions were blotted for GFAP, a marker for astrocytes and ASPA, a 

protein marker for oligodendrocytes. In both the rumpshaker and transgene-complemented 

rumpshaker animals GFAP levels are elevated compared to wild type (Figure 15A.); in 

contrast, the ASPA levels are reduced compared to wild type (Figure 15B.). Results for the 

endoplasmic reticulum enriched pellet fraction blotted for BiP are discussed in (5.3.1) 

4.3.3 Real time PCR (qPCR) 

Total RNA from wild type, rumpshaker and transgene-complemented rumpshaker cord 

was collected and real time PCR performed for Plp/Dm20 and Mbp mRNA. The level of 

Plp/Dm20 mRNA has returned to near wild type level in the transgene-complemented 

rumpshaker samples (Figure 16A). Mbp mRNA levels in both rumpshaker and transgene-

complemented rumpshaker remains 20% lower than those of wild type (Figure 16B). 
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4.4 Discussion 

In this section I have presented data showing that in the presence of the wild type transgene 

both PLP/DM20 and Plp/Dm20 are returned to near wild type levels. Conversely, MBP is 

not returned to normal levels in the transgene-complemented rumpshaker animals, 

remaining at a similar level to rumpshaker, the same result is reflected in the 

oligodendrocyte cultures, which do not elaborate a myelin sheath, suggesting that the 

paucity of myelin is not the cause of the continued reduction in MBP. Mbp mRNA levels 

are also reduced compared to wild type, however this reduction is not nearly as great as the 

protein, suggesting that the deficiency in MBP occurs predominantly during translation or 

post-translational modification as a consequence of altered translation efficiency, 

accelerated degradation or a combination of the two. CNP and MAG levels have a greater 

recovery than MBP but again do not return to wild type levels. These proteins employ 

similar but distinct transport mechanisms to PLP suggesting that a global protein transport 

deficit is not induced and that the selective attenuation of MBP is a specific effect. Sirtuin2 

levels mirrored those of PLP in that they were recovered to normal in the transgene-

complemented rumpshaker cord. In both the rumpshaker and transgene-complemented 

rumpshaker animals ASPA is reduced whilst GFAP is elevated.   

While the numbers of oligodendrocytes between all three genotypes are similar, the density 

of astrocytes and microglia are increased in rumpshaker and transgene-complemented 

rumpshaker.  The elevation in the density of these cell types will have a significant 

dilutional effect on the oligodendrocyte-derived proteins that are present in the total 

homogenate. This could account for the reduction in the ASPA content despite the number 

of oligodendrocytes being maintained. The elevation in GFAP is most likely a mild 

astrocytosis. 

This study reveals that sirtuin 2 is grossly reduced in rumpshaker myelin and recovered to 

wild type levels in the transgene-complemented rumpshaker. Sirtuin 2 is targeted to the 

paranodal region of the myelin sheath (Southwood et al., 2006). Werner et al show that in 

the PLP null   mouse sirtuin 2 was “virtually absent” and surmised that PLP/DM20 was 

required to transport sirtuin2 to the myelin. They hypothesise that the late-onset axonal 

degeneration observed in the PLP null mice may be associated with the absence of sirtuin 2, 
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that it has a function in the support of the axon by the oligodendrocyte (Werner et al., 

2007). 

Although the major myelin protein PLP/DM20 is recovered in the transgene-

complemented rumpshaker animals, severe dysmyelination still persists, suggesting that 

merely replacing or “topping up” the aberrant PLP/DM20 with wild type protein is not 

enough to establish the synthesis of normal amounts of myelin, that other mechanisms, not 

ameliorated in the transgene-complemented rumpshaker, cause the dysmyelination to 

persist. 

rumpshaker PLP is present in the oligodendrocyte membrane as evidenced by positive 

immunostaining with the conformational sensitive antibody, O10; however, processing of 

the mutant protein is altered. McLaughlin(McLaughlin et al., 2006) demonstrated that 

rumpshaker PLP has an accelerated degradation through the MG132 sensitive proteasome, 

being two times faster than wild type. Furthermore, the mutant protein is endocytosed from 

the membrane at a faster rate than wild type (McLaughlin et al unpublished data). It is 

possible that the high turnover of a major myelin component renders the myelin sheath 

unstable, or that the turnover is too fast to allow accumulation and thickening of the myelin 

sheath.  

The association of PLP with myelin is dependant on several factors, which could be 

affected when a misfolded protein is present. PLP is transported to the myelin membrane 

by association with glycosylceramide/cholesterol enriched microdomains known as lipid 

rafts (Simons et al., 2000). It has been shown that the cholesterol composition of 

rumpshaker myelin is compromised, perhaps affecting the lipid raft formation or the ability 

of PLP to associate with them (Karthigasan et al., 1996; Kramer-Albers et al., 2006) 

Palmitoylation, a post translational modification of PLP, is necessary for stabilisation of 

the protein–lipid interaction Schneider (Schneider et al., 2005) and Tetzloff (Tetzloff & 

Bizzozero, 1998) concluded that acylation plays an important role in the acquisition of 

palmitic acid by PLP. The abnormal molecular organization of rumpshaker PLP may 

prevent these post-translational modifications.  

The continued reduction in MBP, which is essential for myelin formation, may also be 

critical in the continuing dysmyelination (Shine et al., 1992). Mbp mRNA is translocated to 

the cytoplasmic face of the major dense line where it is translated on free ribosomes and 

where its efficient translation requires a stabilising mRNA protein complex. Increased 

citrullination, a post-translational modification of MBP, decreases the ability of the protein 
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to aggregate with acidic lipid vesicles (Seiwa et al., 2000). Fyn tyrosine kinase (Fyn) is a 

signalling molecule which stimulates MBP gene transcription and has a putative role in the 

initiation of myelination (Umemori et al., 1999). Fyn deficient mice have been shown to 

have increased citrullination of MBP; moreover, L-MAG, which remains reduced in the 

transgene-complemented rumpshaker animals, stimulates the activation of Fyn. This is 

perhaps too simplistic an explanation and would certainly require further investigation; 

however, it may contribute to the loss of the synchronised synthesis of myelin.   

An ongoing study within our laboratory has utilised transgenic complementation to 

produce rumpshaker mice harbouring a transgenic cosmid containing one copy of the Mbp 

gene to determine if additional MBP affects an improvement in phenotype, a further cross 

under investigation is the rumpshaker x shiverer (shi). It is hoped that these studies will 

elucidate further the relationship between PLP and MBP.  
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 Figure 12A. Graph of PLP protein in myelin fraction of P20 cord expressed as a 

percentage of wild type. rumpshaker (rsh) is approx 20% of wild type (WT) whereas 

transgene-complemented rumpshaker (rshtr) is recovered to near wild type. Figure 12a. 

Representative blot stained with anti-PLP/DM20 (transgene-complemented rumpshaker 

and wild type are necessarily saturated to allow detection of rumpshaker band), Figure 12c. 

Blot of sirtuin 2 showing recovery of sirtuin 2 in the transgene-complemented rumpshaker.                                                                      

Figure 12B. Graph of MBP protein in myelin fraction of P20 cord expressed as a 

percentage of wild type. Transgene-complemented rumpshaker does not recover to wild 

type levels, remaining only slightly elevated when compared to rumpshaker, The 

difference is not statistically significant. Figure 12b. PVDF membrane of the myelin 

fraction blotted with anti-MBP.   
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Figure 13A. Graph of CNP protein in myelin fraction of P20 cord expressed as a 

percentage of wild type. Transgene-complemented rumpshaker is partially recovered. 

Figure 13a. Panel shows representative CNP blotFigure 13B. Graph of MAG protein in 

myelin fraction of P20 cord expressed as a percentage of wild type. Transgene-

complemented rumpshaker is partially recovered. Figure 13b. Panel shows representative 

MAG blot. 
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Figure 14A. Graph of PLP/DM20 protein from oligodendrocyte cell culture lysate 

expressed as a percentage of wild type. Transgene-complemented rumpshaker is returned 

to near wild type levels. Figure 14a. Panel shows western blot PVDF membrane blotted 

with anti-PLP. 

Figure 14B. Graph of MBP protein from oligodendrocyte cell culture lysate expressed as a 

percentage of wild type. Transgene-complemented rumpshaker remains at a similar level 

to rumpshaker; the difference is not statistically significant. Figure 14b. Representative 

panel of membrane blotted with anti-PLP. 
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Figure 15A. Graph of GFAP protein expressed as a percentage of wild type in total 

homogenate of P20 cord. GFAP is elevated in both rumpshaker and transgene-

complimented rumpshaker compared to wild type. Figure 15a. Representative western blot 

of GFAP.          

Figure 15B. Graph of ASPA protein expressed as a percentage of wild type in total 

homogenate of P20 cord. ASPA is significantly lower in both rumpshaker and transgene-

complimented rumpshaker compared to wild type but not significantly different from each 

other. Figure 15b. Panel shows representative blot stained with ASPA. 
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Figure 16A Graph of Plp/Dm20 mRNA from P20 cord expressed as a percentage of wild 

type. Plp/Dm20 message in transgene-complemented rumpshaker is significantly increased 

to near wild type levels. 

Figure 16B Graph of Mbp mRNA from P20 cord expressed as a percentage of wild type. 

Mbp message in transgene-complemented rumpshaker remains around 20% lower than 

wild type. 
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5. Study of the unfolded protein response 

5.1 Introduction 

The unfolded protein response (UPR) is a complex signal transduction system activated in 

response to the accumulation of misfolded proteins within the endoplasmic reticulum 

lumen (Gow, 2004). It is part of the endoplasmic reticulum stress response comprising the 

UPR, the endoplasmic reticulum associated degradation (ERAD) pathway and the 

endoplasmic reticulum overload response, that together act to protect the cell and 

subsequently the organism from the effects of an accumulation of unfolded or misfolded 

proteins. Within the membrane of the endoplasmic reticulum (ER) are three sensors, PERK 

(PKR-like resistant kinase), ATF6 (activating transcription factor 6) and IRE1 (Inositol 

requiring enzyme 1) that monitor the accumulation of unfolded proteins and activate the 

ER stress response when these become a burden upon the cell.  

There are many proteins and transcription factors associated with the UPR, which 

modulates cell homeostasis through transcription and repression of translation. Previous 

studies have shown that the UPR is activated in the rumpshaker (McLaughlin et al., 2007), 

most likely in response to the accumulation of the misfolded PLP. This study sought to 

reveal any alteration in the activation status of the UPR in response to the introduction of 

the wild type PLP transgene. I investigated the molecular chaperone protein BiP and the 

transcription factors Chop, Atf3 and Xbp1 as these are key indicators of an unfolded protein 

response. 

5.2 Materials and methods 

The pellet fractions from spinal cords of P20 mice, processed by the method of Norton and 

Poduslo (2.5.1), were collected and resuspended in 0.25M sucrose. SDS-PAGE was 

performed on the samples and the nitrocellulose membrane blotted with anti-BiP.  mRNA 

from whole cord was prepared (2.6.1) and RT-PCR performed (2.6.4) using primers for the 

amplification of Chop, ATF3 and XBP1. 
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5.3 Results 

5.3.1 BiP 

The level of the immunoglobulin binding protein BiP (also known as Glucose-regulated 

protein 78(GRP78)) is elevated in both the rumpshaker and transgene-complemented 

rumpshaker samples compared to wild type; the transgene-complemented rumpshaker 

level is significantly higher than rumpshaker (Figure 17A). 

5.3.2 XBP1   

A small amount of active (spliced) Xbp1 mRNA is present in the samples of both 

rumpshaker and transgene-complemented rumpshaker, although the majority is unspliced. 

The wild type sample consists entirely of unspliced Xbp1 (Figure 17B.). 

5.3.3 Chop and ATF3 

Both Chop (Figure 18A.) and ATF3 (Figure 18C.) mRNAs are elevated in rumpshaker and 

transgene-complemented rumpshaker samples compared to wild type; there is no 

significant difference between samples from the two mutants. 

5.4 Discussion 

 Results from the study of the unfolded protein response show that Chop, Atf3, Xbp1 and 

BiP were elevated in both rumpshaker and transgene-complemented rumpshaker mutants 

compared to wild type. The difference between both mutants in each case was not 

significant with the exception of BiP. This study revealed that there is increased induction 

of BiP in the transgene-complemented rumpshaker compared to rumpshaker.  

The ER is the site for the synthesis of secretory and membrane proteins and lipids and is 

also a major intracellular calcium storage compartment and as such ER homeostasis is of 

the utmost importance to the survival of the cell.  BiP is a stress-inducable ER chaperone 

protein that binds to unfolded peptides and promotes proper folding of newly synthesised 

proteins. It also acts as the master modulator of the UPR network and under normal 

conditions binds to the luminal domain of the ER stress sensors PERK, ATF6 and IRE1 

inhibiting their activation. Upon ER stress BiP dissociates from the stress transducers and 
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binds to the accumulating unfolded proteins, the unbound transducers become active 

leading to the transcriptional and translational induction of various intermediaries resulting 

in upregulation of CHOP (Oyadomari & Mori, 2004). It is disputed whether the effect of 

the transcriptional activation of CHOP is pro-apoptotic or anti-apoptotic. McLaughlin et al 

reported an increase in CHOP positive nuclei in rumpshaker when expressed on the C57 

background, a result which correlates with the increased number of apoptotic cells in these 

animals (McLaughlin et al., 2007), and one which would suggest a pro-apoptotic role. 

Interestingly, they failed to co-immunostain CHOP and Caspase3 perhaps indicating that 

different cells were involved or that the temporal expressions of the proteins were 

different. Additionally, Marciniak reports that the deletion of CHOP protects cells from ER 

stress by decreasing the client protein load (Marciniak et al., 2004). Conversely, 

Southwood (Southwood et al., 2002) showed that CHOP null/rsh mice died earlier than 

rumpshaker controls, suggesting a protective role for CHOP. Rao in his review refers to 

CHOP as an ER stress-induced cell death modulator (Rao et al., 2004) which is perhaps 

cell type specific. The elevation in Chop transcription in both the rumpshaker and 

transgene-complemented rumpshaker would suggest a pro-apoptotic function; however, 

since no change is induced by the introduction of the transgene we cannot deduce anything 

further from the results. Likewise, we see no change in the level of Atf3, the induction of 

which has been shown to increase the likelihood of an apoptotic event. Recently it has been 

reported that this transcription factor plays a minor role in the UPR and that its activation is 

a secondary event unrelated to cell death (Sharma et al., 2007).  

Activation of IRE1 mediates the splicing of X-box binding protein pre-messenger RNA to 

form mature Xbp1 mRNA. The transcription factor protein XBP-1(S) translated from the 

mature mRNA binds to, among other things, the ER stress response element (ERSE) 

activating the transcription of ER chaperones like BiP (Yoshida et al., 2006). In both the 

rumpshaker and transgene-complemented rumpshaker we detected a small amount of 

mature Xbp1 mRNA (spliced) however the majority remained unspliced. Lee et al reported 

that the expression of BiP was only modestly dependant on XBP-1 (Lee et al., 2003). 

Recently Yoshida et al demonstrated that unspliced pre-mRNA encodes a functional 

protein the expression of which is significantly induced during recovery from ER stress 

(Yoshida et al., 2006), they also demonstrated a corresponding increase in unspliced 

mRNA. The cellular response to chemically induced ER stress, such as that employed by 

Yoshida, is many times greater than that induced in vivo. It is not unreasonable to surmise 

that there may be a recovery response in the transgene-complimented rumpshaker that we 

have failed to detect.  
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BiP plays a central role in the UPR. As an ER chaperone protein, an integral part of the 

“ER quality control system” it assists in the folding of client proteins and retains misfolded 

proteins within the ER. In addition it acts as a stress sensor, its dissociation from PERK 

results in attenuation of protein synthesis reducing the client protein load in the cell, and 

dissociation from IRE1 and ATF6 activates transcription of ER chaperone proteins and 

Xbp1 (S). Gülow et al demonstrated that BiP expression is tightly controlled at post-

transcriptional level, and that under ER stress conditions translation efficiency is enhanced 

(Gülow et al., 2002), an essential response if the cell is to survive. Recent studies have 

suggested that ER stress causes BiP (or a subpopulation of) to redistribute from the ER 

lumen to become an ER transmembrane protein where it forms a complex with caspase-7 

and caspase-12 at the ER surface preventing caspase cascade activation and subsequent 

cell death (Rao et al., 2004). It can be said that the anti-apoptotic role of BiP represents an 

important pro-survival component within the UPR. It seems entirely possible that this 

element has been upregulated in the transgene-complemented rumpshaker, which has a 

larger elevation in BiP and lower numbers of caspase-3 positive cells than rumpshaker 

(3.3.3.4). Perhaps the burden of wild type PLP in addition to the misfolded PLP has 

induced an increase in translation of BiP, which has had the added benefit of reducing 

oligodendrocyte apoptosis. Karim et al found no induction of the UPR in #66 hemizygote 

animals which are essentially transgene-complemented rumpshaker without the 

rumpshaker mutation (unpublished data), it is apparent therefore that the continuing 

presence of misfolded rumpshaker PLP, even at the reduced level in transgene-

complemented rumpshaker, induces activation of the unfolded protein response. 
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Figure 17A. Graph of BiP protein from pellet fraction of P20 cord expressed as a 

percentage of wild type. BiP is elevated in rumpshaker compared to wild type but the 

transgene-complemented rumpshaker is elevated when compared to rumpshaker . Figure 

17a. Representative blot of BiP 

Figure 17B. Pst1 digested X-Box protein PCR products. Rumpshaker (rsh) and transgene-

complemented rumpshaker (rshtr) have undigested and spliced bands as well as a Pst1 

digested band, wild type product is completely digested. 
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Figure 18A. Graph of quantified agarose gel products of RT-PCR, using primers for CHOP 

against cDNA from P20 cord showing both rumpshaker and transgene-complemented 

rumpshaker are elevated with no significant difference between them.                                         

Figure 18a. Image of representative agarose gel of RT-PCR CHOP products                                           

Figure 18b. Image of cyclophilin gel an internal control showing equal loading                            

Figure 18C. Graph of quantified agarose gel from RT-PCR, performed using primers for 

ATF3 against cDNA from P20 cord. Again, both rumpshaker and transgene-complemented 

rumpshaker are elevated with no difference between them.                                                         

Figure 18c. Image of representative agarose gel of RT-PCR ATF3 products. 
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6. Summary and further work 

This body of work was carried out to determine if the introduction of wild type 

PLP/DM20, by transgenic complementation, into rumpshaker on the C57BL/6  

background would ameliorate the lethal phenotype, elucidate the primary cause of 

oligodendrocyte apoptosis and establish the cause of premature death. There are several 

possible explanations for the lethal phenotype, which may act in tandem. 

Rumpshaker mice harbouring the wild type transgene survive up to, and possibly beyond, 

postnatal day 40, significantly longer than rumpshaker. There is an increase in myelin 

volume and density and in the number of myelinated axons in the presence of wild type 

PLP. In addition, the periodicity of the myelin is returned to that of wild type, having 

distinct intraperiod and major dense lines. 

It is possible that with an increased number of myelinated axons the transgene-

complemented rumpshaker attains a critical threshold of myelination and that essential 

neuronal pathways, for example, the respiratory control centre, are sufficiently myelinated 

to allow survival. Miller et al (Miller et al., 2003) reported severe dysmyelination of the 

respiratory control centre in the md rat leading to “lethal hypoxic depression of breathing” 

around the time of premature death in these animals, further investigation would be 

required to determine if this is an explanation for the seizures which may be the cause of 

premature death in rumpshaker and if transgene-complementation improves the incidence 

or severity of the seizures.    

The presence of misfolded PLP within the rumpshaker myelin causes a change in the 

myelin structure revealed by the altered periodicity. The presence of the misfolded PLP 

may affect the arrangement of key components in the process of myelination such as 

cholesterol and glycosphingolipids (Karthigasan et al., 1996). Processing of key myelin 

proteins is altered in both rumpshaker and transgene-complemented rumpshaker. 

McLaughlin demonstrated that rumpshaker PLP is endocytosed from the myelin 

membrane at an increased rate perhaps causing the sheath to be unstable and preventing it 

from reaching full maturity (unpublished data). PLP/DM20 levels in the transgene-

complemented rumpshaker myelin are returned to wild type levels but MBP remains 

severely reduced and CNP and MAG only partially recover. Transgene-complementation 

of rumpshaker returns the myelin to normal periodicity and although myelin volume, 
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density and the number of myelinated axons are increased it is still significantly 

dysmyelinated. The presence of abnormal myelin has consequences for the underlying 

axon. Studies by Edgar (Edgar et al., 2004; Edgar & Garbern, 2004) confirmed that the 

oligodendrocyte directly supports the underlying axon although it is not yet clear how this 

is achieved, perhaps the presence of normal amounts of PLP within the myelin and/or the 

increased stability of the myelin sheath is improving the feedback control to the axon. 

Trajkovic reported that transport of PLP to the myelin sheath is under neuronal control 

(Trajkovic et al., 2006) this too could be improved by the presence of wild type PLP. 

The presence of the misfolded rumpshaker PLP within the oligodendrocyte elicits the 

unfolded protein response. Investigation of several components within the UPR revealed 

that only the molecular chaperone protein BiP was altered, being upregulated in transgene-

complemented rumpshaker.  At a cellular level, the presence of the wild type transgene 

reduces the number of apoptotic oligodendrocytes, it is possible that upregulation of BiP is 

reducing stress within the oligodendrocyte and thus reducing apoptosis. 

The microglia/macrophage response in transgene-complemented rumpshaker is unchanged 

remaining at a level five times greater than wild type. Further investigation would be 

required to establish the cause of this inflammation. Is the microglial/macrophage 

activation a response to the presence of myelin debris, or does activation of the 

inflammatory response produce cytokines, which induce the apoptosis? Lin demonstrated 

that apoptosis following ER stress was related to release of the immune cytokine 

interferon-γ in oligodendrocyte culture (Lin et al., 2005); alternatively, low level or 

transient cytokine release can be protective (Vilhardt, 2005). 

Transgene-complementation of the rumpshaker with wild type PLP has rescued, to a 

degree, the lethal phenotype. Further studies will be required to determine why these 

animals survive and conversely why rumpshaker animals die. Breeding pairs have been set 

up to ascertain the longevity of the transgene-complemented rumpshaker. In addition 

proteomic studies are being conducted utilising mass spectrometry to determine the ratio of 

rumpshaker to wild type PLP within total homogenate samples of P20 spinal cord. Clearly, 

there are many more questions which remain unanswered, transgenic complementation 

provides a useful tool to address many of these. 
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7. Appendix 

7.1 Tissue fixation and immunocytochemistry 

7.1.1 APES coated slides 

Coating microscope slides with the adhesive APES (3(aminopropyl)triethoxysilane) 

(Sigma) enabled the sections to adhere to the slides during the subsequent steps in 

immunohistochemistry. Slides were soaked overnight in 5% Decon 90 (Decon Lab Ltd) 

washed in distilled water and oven dried. The dried slides were dipped in methylated spirit 

then soaked in 0.25% APES/methylated spirit for 2 minutes, rinsed in distilled water, oven 

dried and wrapped in foil. APES-coated slides were stored at room temperature. 

7.1.2 Karnovsky’s modified fixative 

8% Paraformaldehyde: 

 20 g of paraformaldehyde was added to 250 ml of dH2O and heat to 65°C.  

 A few drops of 1M NaOH added to clear the solution which was allowed to cool. 

0.08M Cacodylate buffer:  

17.1224g sodium cacodylate dissolved in 1 litre of dH2O and adjusted to pH 7.2. 

Preparation of Karnovsky fixative (500ml) 

250ml 8%Paraformaldehyde                                                                                                    

100ml 25% EM Grade glutaraldehyde                                                                                    

150ml 0.08M sodium cacodylate buffer                                                                                                                     

0.25g calcium chloride                                                                                                                          

Add volumes, dissolve calcium choride, adjust to pH 7.2, filter, and store at 4ºC. 
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7.1.3 4% paraformaldehyde 

20g paraformaldehyde was added to 500ml PBS and heated to 65°C. A few drops of 1M 

NaOH were added to clear the solution which was then cooled and filtered. 

7.1.4 Periodate-lysine-paraformaldehyde fixative(P- L-P)                                                                                                                                     

Buffered lysine solution:  

13.7g lysine monohydrate dissolved in 375ml dH2O.                                                        

1.8g sodium hydrogen phosphate dissolved in 100ml dH2O.                                             

The two solutions were mixed to give 475ml and pH 7.4 

10% Paraformaldehyde:  

20g paraformaldehyde dissolved in 200 ml dH2O and heated to 65°C. Few drops of 1M 

NaOH were added to clear and allowed to cool and filtered. 

 Preparation of P-L-P fixative: 

Immediately before use the buffered lysine solution was added to the 10%  

paraformaldehyde and the volume made up to 1 litre using 0.1M phosphate buffer. Finally 

2.14g sodium periodate was dissolved in the solution. 

7.1.5 Phosphate buffer saline (PBS) 

8g Sodium Chloride                                                                                                                            

1.44g Disodium hydrogen phosphate                                                                                                       

0.24g potassium dihydrogen phosphate                                                                                                        

0.2g potassium chloride                                                                                                             

Dissolved in 800 ml of dH2O, adjusted to pH 7.4 with 1M HCl and the volume made up to 

1 litre with dH2O 
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7.2 Tissue processing and staining for Electron 

Microscopy 

7.2.1 Resin processing 

The following is the programme entered into the Lynx tissue processor in order to produce 

resin blocks from the Karnovsky fixed tissue.   

1- isotonic cacodylate buffer 50 min 4°C 
2- 1% OsO4 in cacodylate buffer 2hr room temperature 
3- isotonic cacodylate buffer 30 min room temperature 
4- 50% ethanol 5 min 4°C 
5- 50% ethanol 10 min 4°C 
6- 70% ethanol 5 min 4°C 
7- 70% ethanol 10 min 4°C 
8- 80% ethanol 5 min 4°C 
9- 80% ethanol 10 min 4°C 
10- 90% ethanol 5 min 4°C 
11- 90% ethanol 10 min 4°C 
12 ethanol 20 min 4°C 
13 ethanol 20 min 4°C 
14- propylene oxide 15 min room temperature 
15- propylene oxide 15 min room temperature 
16- 1:3 resin: propylene oxide 13 hr room temperature 
17- 1:1 resin: propylene oxide 18hr room temperature 
18-  resin 6hr 30ºC 

 
7.2.2 Araldite Resin 

30g Araldite CY212                                                                                                                        

25.2g DDSA (Dodecynyl succinic anhydride)                                                                 

1.2ml DMP 30 (2,4,6tri(dimethylaminoethyl)phenol                                                     

0.75ml Dibutylphthalate 

7.2.3 Methylene blue/ azur ΙΙΙΙΙΙΙΙ  stain  

1% Methylene blue powder                                                                                                                         

1% azur ІІ powder                                                                                                                        

1% Disodium tetraborate                                                                                                 

dissolved in distilled H2O and filtered before use 



Jennifer A Barrie 2008  7-78 

                                                                                                                                                 

 
7.2.4 Staining of Electron microscope grids 

 
Reynold’s lead citrate (1.2mM lead citrate, 1.8mM sodium citrate, pH 12.0) 
 
1- 1.33 g lead nitrate dissolved in 15 ml dH2O 1 min vigorous shaking 
2- 1.76 g sodium citrate dissolved in 15 ml dH2O 1 min vigorous shaking 
Add solution 1 to solution 2 and equilibrate over 30 minutes with occasional shaking. 

Clear with 1M NaOH and make up to the final volume of 50 ml with dH2O. 

Saturated Uranyl acetate 

Uranyl acetate in excess dissolved in 50% ethanol (store at 4◦C in the dark) 

Staining schedule 

10mins Uranyl acetate                                                                                                            

2x 50% ethanol wash                                                                                                           

1% distilled H2O wash                                                                                                                     

Air dry                                                                                                                                              

10 mins Reynolds Lead citrate in 1M NaOH moistened chamber                                                     

2x 1M NaOH                                                                                                                                  

wash distilled H2O                                                                                                                           

Air dry 

7.3 Oligodendrocyte culture 

7.3.1 DMEM 10% 

500ml Dulbeccos modified Eagle Medium                                                                                               

5ml Fungizone                                                                                                                                       

5ml 100x Glutamine                                                                                                                                    

2.5ml Gentamycin                                                                                                                          

50ml Foetal bovine serum 
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7.3.2 Sato mix 

Glucose (1g/L)                                                                                                                                   

BSA Pathocyte (0.0286%)                                                                                                     

Progesterone (0.2µM)                                                                                                                          

Putrescine (0.1µM)                                                                                                                  

Thyroxine (0.45µM)                                                                                                                      

Selenite (0.224µM)                                                                                                                           

Tri-iodothyronine (0.5µM) 

7.3.3 Sato conditioned Medium 

50ml Dulbeccos modified Eagle Medium containing fungizone and gentamycin                                    

1ml 100x Glutamine                                                                                                              

1ml 0.5mg/ml Bovine Insulin                                                                                                           

500µl 1% Apo transferrin                                                                                                                

50µl Foetal bovine serum                                                                                                                      

1ml Sato Mix                                                                                                                                      

Mix final 5 ingredients and sterilize through a 0.2µm syringe filter into DMEM. 

7.3.4 Stop solution 

Soyabean trypsin inhibitor (0.52mg/ml)                                                                                       

Bovine serum albumin factor V (3mg/ml)                                                                                   

DNase (0.04mg/ml)                                                                                                                        

Make up in HBSS and filter sterilize 

7.3.5 Poly-D-Lysine treated dishes 

Using sterile technique, 13.3µg/ml Poly L Lysine in sterile distilled water was added to 

35mm vented Petri dishes for 30mins. The Poly L Lysine was aspirated and the dishes 

rinsed once with sterile distilled water then left to dry. Petri dishes were then repackaged 

for use as required 
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7.4  Biochemistry and Molecular biology buffers  

7.4.1 Tris buffer saline (10x) 

12g Tris base                                                                                                                                    

87g sodium chloride                                                                                                                       

Make up to 800ml adjust to pH7.4 1M HCl top up to 1L 

7.4.2 Tris acetate EDTA buffer x10 (TAE buffer) 

48.4g Tris base                                                                                                                                 

11.4ml Glacial acetic acid                                                                                                                    

20ml 0.5M EDTA 

Make up to 1L Distilled H2O 
 
 
7.4.3 SDS Page Running buffer (10x) 

144g Glycine                                                                                                                                   

30.3g Tris                                                                                                                                           

10g SDS                                                                                                                                       

Dissolve glycine then add Tris and finally SDS make up to 1L 

7.4.4 Towbin transfer buffers 

Anode 1                                                                                                                                

36g Tris                                                                                                                                              

74ml Methanol                                                                                                                         

Make up to 1L  

Anode 2                                                                                                                                                 

3g Tris                                                                                                                                              

75ml Methanol                                                                                                                                     

Make up to 1L 
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Cathode                                                                                                                                                       

3g Glycine                                                                                                                                                        

3g Tris                                                                                                                                                  

74ml Methanol                                                                                                                                

Make up to 1L 

7.4.5 TBS-T Buffer 

100ml Tris Buffer                                                                                                                           

1ml Tween 

7.4.6 Cell Lysis Buffer 

1ml 10% Triton x-100                                                                                                                              

1ml 10x TBS                                                                                                                                        

20µl 0.5M EDTA                                                                                                                                   

5 µl 1M DTT                                                                                                                                               

5 µl 10mg/ml Aprotinin                                                                                                                             

5 µl 10mg/ml Leupeptin                                                                                                                       

5 µl 10mg/ml Trypsin inhibitor                                                                                                         

100 µl 100mM Benzamidine                                                                                                              

100 µl 250mM sodium orthovanadate                                                                                                  

100 µl 100mM sodium pyrophosphate                                                                                              

40 µl 250mM PMSF                                                                                                                         

Make up to 10ml with distilled H2O Add PMSF immediately before use. 

7.4.7 Ponceau S 

0.1% Ponceau S powder                                                                                                                    

1% Glacial acetic acid 
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7.4.8 Bromo phenol Blue loading Dye (6x) 

0.04% Bromophenol Blue                                                                                                                 

0.04% Xylene cyanol                                                                                                                                 

15% Ficoll 400                                                                                                                                     

500µl 1M Tris-HCl                                                                                                                                

5ml 0.5M EDTA                                                                                                                               

Make up to 50ml H2O 

7.4.9 Orange G Loading Dye (6x) 

15% Ficoll 400                                                                                                                                     

500µl 1M Tris-HCl                                                                                                                                

5ml 0.5M EDTA                                                                                                                               

0.4% Orange G                                                                                                                            

Make up to 50 ml H2O 

7.4.10 DEPC-treated water 

0.1% solution of DEPC was made in distilled water and left for at least 12 hours to 

inactivate contaminating RNases. The water was autoclaved for 20 minutes to destroy the 

DEPC before use and stored sealed at room temperature until required. 
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8. Abbreviations 

3XSDS/DDT 3x concentration sodiumdodecylsulphate/dithiothreitol 

ABC Avidin-Biotin complex 

ANOVA one way analysis of variation statistical test 

AOI area of interest 

APC Adenomatous Polyposis Coli  

APES 3-aminopropyltriethoxy-silane 

ASPA aspartoacylase 

ATF3 Activating transcription factor 3 

ATF6 Activating transcription factor 6 

BCA Bichinoic acid 

BiP chaperone protein 

BSA Bovine serum albumin 

CC-1 APC directed against CC-1 identifies oligodendrocytes 

CD45 CD45 antigen  

cDNA complimentary deoxyribonucleic acid 

CNP 2′ ,3′,cyclic nucleotide 3′-phosphodiesterase 

CNS central nervous system 

DAB  3,4,3′,4′,-tetraminobiphenyl hydrochloride 

DAPI 4′,6-diamidino-2-phenylindole 

DDSA Dodecyl succinic anhydride 

DEPC diethyl pyrocarbonate 

dH2O distilled water 

DM20 26.5kDa protein isoform encoded by Plp gene 

DMEM10% Dulbeccos modified eagle medium with 10% Foetal calf serum 

DMP30 tri-dimethylaminomethyl phenol  

DNA deoxyribonucleic acid 

DNase  deoxyribonuclease 

DTT dithiothreitol 

ECL enhanced chemiluminescent substrate 

EM Electron microscopy 

ER Endoplasmic reticulum 

ERAD endoplasmic reticulum associated degradation 
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ERSE endoplasmic reticulum stress response element 

FAM fluorescein reporter label for rPCR 

FITC fluorescein isothiocyanate 

gDNA genomic deoxyribonucleic acid 

GalC galactocerebroside 

GFAP glial fibrillary acidic protein 

HBSS Hanks balanced salt solution 

IRE1 Inositol requiring enzyme 1 

MAG myelin-associated glycoprotein 

Mbp myelin basic protein gene 

MBP myelin basic protein 

MES 2-(N-morpholino)ethanesulfonic acid 

MOBP myelin-associated oligodendrocytic basic protein 

MOG myelin/oligodendrocyte glycoprotein 

mRNA messenger ribonucleic acid 

NG2 sulphated proteoglycan 

NGS  normal goat serum 

OPC oligodendrocyte progenitor cells 

OSP oligodendrocyte specific protein 

P20 postnatal day 20 

P40 postnatal day 40 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PDGFR platelet derived growth factor a receptor 

PERK PKR-like resistant kinase 

PLP 
proteolipid protein (30kDa protein isoform encoded by Plp 
gene) 

P-L-P periodate-lysine-paraformaldehyde 

PLP1 proteolipid protein (human gene) 

Plp1 proteolipid protein (non-human gene) 

Plpjp jimpy 

Plpjp-4j jimpy-4j 

Plpjp-msd myelin synthesis deficient 

Plpjp-rsh rumpshaker 

Plpmd myelin deficient 

Plppt paralytic tremor 

Plpsh shaking pup 

Plptmkn1 targeted mutation of the PLP gene 
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PMD Pelizaeus-Merzbacher disease 

PMSF phenylmethanesulphonylfluoride  

PVDF polyvinylidene fluoride transfer membrane  

qPCR Quantitative polymerase chain reaction 

rRNA ribosomal ribonucleic acid 

RNA ribonucleic acid 

RNase ribonuclease 

rsh rumpshaker 

rshtr transgene-complemented rumpshaker 

RT-PCR reverse transcription polymerase chain reaction 

SDS sodium dodecyl sulphate 

SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis 

shi shiverer 

SPG2 Spastic Paraplegia Type 2 

SVZ subventricular zone 

TAE tris acetate ethylene-di-amine-tetra-acetate buffer 

TBS tris buffered saline 

TLCK Na -p-tosyl-l-lysine chloro-methyl ketone 

tRNA transfer ribonucleic acid 

TxR Texas red 

UPR unfolded protein response 

UV ultraviolet 

WT wild type 

xbp-1 gene encoding X-Box protein1 

XBP-1 X-Box protein 1 
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