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SUMMARY

Analog-to-digital converters play a crucial role in modern audio and commu-

nication design. Conventional Nyquist converters are suitable only for medium res-

olutions and require analog components that are precise and highly immune to noise

and interference. In contrast, oversampling converters can achieve high resolutions

(>20bits) and can be implemented using straightforward, high-tolerance analog com-

ponents. In conventional oversampled modulators, negative feedback is applied in order

to control the dynamic behavior of a system and to realize the attenuation of the quan-

tization noise in the signal band due to noise shaping. However, feedback can also

introduce undesirable effects such as limit cycles, jitter problems in continuous-time

topologies, and infinite impulse responses. Additionally, it increases the system com-

plexity due to extra circuit components such as nonlinear multi-bit digital-to-analog

converters in the feedback path. Moreover, in certain applications such as wireless,

biomedical sensory, or microphone implementations feedback cannot be applied. As

a result, the main goal of this thesis is to develop sigma-delta data converters without

feedback. Various new delta-sigma analog-to-digital converter topologies are explored

their mathematical models are presented. Simulations are carried out to validate these

models and to show performance results. Specifically, two topologies, a first-order and

a second-order oscillator-based delta-sigma modulator without feedback are described

in detail. They both can be implemented utilizing VCOs and standard digital gates, thus

requiring only few components. As proof of concept, two digital microphones based on

these delta-sigma converters without feedback were implemented and experimental re-

sults are given. These results show adequate performance and provide a new approach

of measuring .
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CHAPTER I

INTRODUCTION

1.1 Motivation

The market for personal communication devices is rapidly expanding with the devel-

opment of new services and applications. Devices such as cordless telephones, cellular

telephones, and wireless LANs require low power and low cost solutions. The market

for audio applications for automotive, home theater, and personal computer demands

cost effective and easy interfacing solutions as well. This range of applications and de-

vices has led to a proliferation of communication standards and modulation schemes.

At the same time consumers are demanding low-cost, low-power, and small devices that

satisfy these communication requirements. As a result, there has been much effort put

into the in the design of integrated circuits for personal communication that can easily

be integrated in a low cost technology. The relentless progress in VLSI silicon technol-

ogy optimized for digital circuitry generally has made it economically advantageous to

trade analog signal processing for digital signal processing. Moving from analog to dig-

ital signal processing, however, generally increases the demand on the data converters

that provide the interfaces between analog and digital circuits [Manickavel and Pedar,

1974; Howell and Sander, 1969; Razavi, 1996]. One technique for providing the inter-

face between the analog and the digital circuit is by using delta-sigma A/D converter.

In literature the nomenclature delta-sigma or sigma-delta converters are equally used.

However, the original name delta-sigma was coined by the inventors Inose and Yasuda

and thus the term delta-sigma will be used in this work [H. Inose and Marakami, 1962].

While delta-sigma converters have been around for some time [H. Inose and Marakami,

1962], it is only in the last two decades that they have become more attractive. One rea-

son being is that they are particularly suited for A/D conversion of narrow band signals

used in audio, communication and instrumentation devices. That is, they can achieve
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very high resolutions for low-bandwidths. Examples of such applications include dig-

ital telephone transmission, wireless phones, audio applications, and medical imaging.

This thesis is concerned with the improvement of delta-sigma A/D converters. It is

hoped that by using new and modified modulator topologies and digital signal process-

ing the complexity of delta-sigma modulators can be reduced while still obtaining the

same performance. Furthermore, as power dissipation is becoming an increasingly im-

portant issue in the design of analog to digital converters as signal processing systems

move into applications requiring portability, a secondary goal of this thesis is to reduce

the analog circuitry improving power dissipation.

1.2 Main Contributions

The main goal of this thesis is to develop delta-sigma data converters with reduced ana-

log complexity and thus to bring the digital domain closer to the analog domain. Sim-

plifications in the analog domain are achieved by removing the negative feedback path

from delta-sigma converters while still achieving the desired results. To this extent,

analog-to-digital data converters based on voltage-controlled oscillators are explored

and developed. As an application, two digital microphones utilizing oscillator based

analog-to-digital converters are realized. Undersampling is used as a powerful tech-

nique to efficiently deal with very high signal frequencies and thus reduce requirements

on sampling and acquisition circuitry. The use of undersampling in conjunction with

the use of simplified oscillator-based data converters results in a novel approach to real-

ize digital microphones. Moreover, second-order oscillator based analog-to-digital date

converters are developed, resulting in improved performance results compared to their

first-order counterparts. In this context, different second-order circuit techniques are

explored that result in performance improvements and/or trade-offs. In addition, a more

general goal of this thesis is to develop techniques at both the architecture and circuit

levels to minimize power dissipation. In the context of these goals, some key research

results are summarized below:

• Demonstration of the reduction in circuit complexity of a frequency sigma-delta
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modulator by utilizing a D-FF as a quantizer and differentiator.

Soell, S. and Porr, B. (2006) A VCO Based Digital Microphone Utilizing a FIR

Sigma Delta Converter. IEEE International Conference on Mixed Design of Inte-

grated Circuits and Systems

• Demonstration of a digital condenser microphone with reduced analog circuitry

based on a LC-oscillator and a first-order sigma delta modulator without feed-

back.

Soell, S. and Porr, B. (2007) An Undersampling Digital Microphone. IEEE Inter-

national Symposium on Circuits and Systems

• Demonstration of a Schmitt trigger oscillator based digital microphone based on

a first-order sigma delta modulator without feedback.

Soell, S. and Porr, B. (2007) An Undersampling Digital Microphone Utilising

Second Order Noise Shaping. IEEE International Conference on Mixed Design

of Integrated Circuits and Systems

• Demonstration of utilizing undersampling as a technique to efficiently implement

an oscillator based digital microphone.

Soell, S. and Porr, B. (2007) An Undersampling Digital Microphone Utilising

Second Order Noise Shaping. IEEE International Conference on Mixed Design

of Integrated Circuits and Systems

• Demonstration of realizing oscillator-based higher order noise shaping analog-to-

digital converters.

Soell, S. and Porr, B. (2007) An Undersampling Digital Microphone Utilising

Second Order Noise Shaping. IEEE International Conference on Mixed Design

of Integrated Circuits and Systems
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1.3 Scope and Structure of the Thesis

This work is divided into six chapters. After this introduction the second chapter intro-

duces the concept of analog-to-digital conversion and discusses methods used to char-

acterize analog-to-digital converters. This includes both Nyquist and oversampling con-

verters. An introduction of the most important analog-to-digital oversampling architec-

tures such as low-pass and band-pass topologies and their performance characterization

is given. In this context, essential concepts are reviewed such as decimation, undersam-

pling, and non-idealities in oversampling analog-to-digital converters. Chapter 3 then

focuses on a first order delta-sigma analog-to-digital converter without feedback. After

a review of existing work, the theory of the modulator topology is explained by re-

visiting established frequency modulation and de-modulation techniques. New and im-

proved first-order analog-to-digital converters are introduced and a mathematical model

for performance evaluation is given. The chapter then verifies obtained results with

simulations and concludes with a general discussion. These simulations include both,

ideal analog-to-digital converters as well as non-ideal topologies. Subsequently, as a

proof-of-concept, the discussed analog-to-digital converter is implemented in a practi-

cal application. Chapter 4 covers this. More specifically, two digital oscillator-based

microphones are presented based upon analog-to-digital converters without feedback.

An LC-oscillator and also a Schmitt-trigger based oscillator are used to realize digi-

tal condenser microphones. Both topologies utilize undersampling to deal with high

frequency signals. Experimental results are presented and discussed. Chapter 5 then

improves the performance of first order analog-to-digital converters by presenting two

second-order modulator topologies, also without utilizing feedback and based on os-

cillators. A mathematical background is established and the topologies are evaluated

using simulations. Again, simulation results are presented which also address nonlin-

earities. Chapter 6 contains a summary of the conclusions of this research and the goals

which were achieved, along with a comparison with existing works. This is followed

by a proposal for future research, which is given in more detail at the end of Chapter 6.
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CHAPTER II

SIGMA-DELTA MODULATORS

2.1 Nyquist-rate A/D Converters

Analog-to-digital conversion is the process of encoding an analog signal that is con-

tinuous in time and amplitude into a signal that is discrete with respect to time and

quantized with respect to amplitude. There are three fundamental operations involved

in the conversion process of a general A/D system. These are illustrated in Figure

2.1. The analog input signal, x(t), first passes through a bandlimiting low-pass filter,

removing the signal components that lie above one-half of the sampling rate of the sub-

sequent sampler. Otherwise, from the Nyquist sampling theorem [Nyquist, 1928], high

frequency components of x(t) would alias into the baseband upon sampling, causing

distortion. Following the anti-aliasing filter, the now bandlimited signal, xa(t), is sam-

pled, thus yielding the discrete-time signal, xs(t), which is still continuous in amplitude.

The sampled-data analog signal is then quantized in amplitude by utilizing a quantizer

before being encoded into the digital output data signal, y[n].

2.1.1 Sampling

In the sampling process, a continuous signal is sampled at uniformly spaced time in-

tervals, Ts. The samples x[n], of the continuous time signal, x(t) can be expressed as

x[n] = x(nTs). The process of sampling a continuous-time signal is shown in Figure

Figure 2.1: Fundamental operations comprising analog-to-digital conversion.
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Figure 2.2: Sampling Process of an Analog Signal. On the left side the signals are
represented in the time-domain, to the right in the frequency domain.

2.2. In the figure, a continuous signal, x(t), is multiplied by a Dirac comb, often also de-

scribed as a Shah function, X(t). The Shah function is a series of Dirac pulses spaced

at width Ts [Bracewell, 2000, pp.81ff]:

X(t) =

∞∑
n=−∞

δ(t − nTs). (2.1)

The effect, in the frequency domain, of the sampling process is to create periodically

repeated versions of the signal spectrum, X( f ), at multiples of the sampling frequency

Fs = 1/Ts. The spectrum of the sampled signal, Xs( f ), is depicted in the right hand side

of Figure 2.2. In general, the signal, Xs( f ), can be reconstructed back to its continuous

counterpart, x(t), if the repeated versions of the signal spectrum do not overlap. As a

result, the signal must be band limited to half the sampling rate, Fs. In turn, a signal with

bandwidth fb must be sampled at a rate great than twice of its bandwidth, Fs ≥ 2 fb. This

is known as the Nyquist-Shannon sampling theorem [Nyquist, 1928]. An important

fact to note is that sampling is a linear operation. Therefore, the effects of sampling

amplitude can be divided into two effects: the effect of sampling the original signal,
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Figure 2.3: Additive Quantizer Model: a) 1-bit quantizer b) noise model including
gain variation

and the effect of sampling noise superimposed with the original input. Nyquist rate

converters sample analog signals which have maximum frequencies slightly less than

the Nyquist frequency.

2.1.2 Quantization

Once sampled, the time-discrete signal samples must also be quantized in amplitude

to a finite set of output values. Quantization is the process of converting an analog

signal into a finite range number system [Goodall, 1951]. Quantization thus introduces

an error signal that depends on how well the signal is being approximated. Unlike

sampling, quantization of a signal is a non-reversible operation [van de Plassche, 2003,

pp.7ff]. The process of quantization in shown in Figure 2.3 a) where a 1-bit quantizer

maps an analog signal into the digital domain by rounding up or down to the nearest

step size. Alternatively, an example of multi-level quantization is depicted in figure 2.4

a). The quantization step, q, of a b-bit quantizer is given as:

q =
Vre f

2b , (2.2)

where Vre f is a reference signal. Figure 2.3 b) depicts a model for an approximation to

the 1-bit quantizer. [van Engelen and van de Plassche, 1999, p.38]. The model includes

a time invariant gain λ because adding quantization power to to an input signal with

variable power would not model the 1-bit quantizer accurately. In case of the 1-bit

quantizer the gain can have any value greater than zero. For multi-bit quantizers, the

gain would be closer to unity. Assuming a gain of unity, the quantization error is given

as the difference between the quantized input, Q [x(t)], and ideal input, x(t):

ε(t) = Q [x(t)] − x(t). (2.3)
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Figure 2.4: Part a) depicts a uniform b-bit quantizer utilizing M=6 quantization levels,
with a quantization step of q=2. Here, the input to the quantizer is a ramp-signal. Part
b) shows the introduced error ε which is the sawtooth error signal.
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Figure 2.5: Quantization error with a uniform probability density.

The error ε(t) forms a periodic sawtooth waveform in this case as depicted in figure 2.4

b). When expressed as a Fourier series expansion the quantization error ε(t) is given as

[van de Plassche, 2003, p.12]:

ε(t) =
q
π

∞∑
k=1

{
1
k

sin
[
2πk

x(t)
q

]}
(2.4)

Equation 2.4 illustrates that the quantization error ε(t) due to quantization forms a har-

monic series of phase-modulated sinusoids. This can be seen when realizing that the

argument of each sine term is a linear function of input x(t). Consequently, phase mod-

ulation maps to amplitude quantization [Hawksford, 2002, p.589]. The model in Figure

2.3 b) assumes that the quantization error is largely uncorrelated from sample to sam-

ple and has equal probability of lying anywhere in the range of ±q
2 ([van de Plassche,

2003], p.7 ff). This property is illustrated in Figure 2.5. However, for dc-inputs and

inputs that change regularly by multiples or sub-multiples of the step size in between

sample times, as happens in feedback circuits, the linear noise model does not hold any-

more [Norsworthy et al., 1997, p.5]. Under the assumption that the error is uncorrelated

to the input signal and has uniform distribution, its total noise power value σ2
ε is given

by [Staff, 1982, p.55]:

V2
Qrms

= σ2
ε =

∫ q/2

−q/2
ε2 P(ε) dε =

1
q

∫ q/2

−q/2
ε2 dε =

q2

12
. (2.5)

The average value of the error is zero with the assumptions made. Since the size of the

quantization level q is halved for each additional quantizer bit, equation 2.5 shows that

the noise power decreases by 6dB for each additional bit. For a sinusoidal input with

peak-to-peak amplitude, VA, of 2bq/2, the rms signal value, VArms , is given by 2bq
2
√

2
. Then
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the signal-to-noise ratio can be calculated:

S NRdB = 20log
(

VArms

VQrms

)

= 20log


2bq

2
√

2
q
√

12

 = 20log


√

3
2

2b


= 6.02 b + 1.76 dB.

(2.6)

Equation 2.6 shows that the signal-to-noise ratio of a quantizing system increases by 6

dB when an extra bit is added. It is often useful to express equation 2.5 as a total noise

power density per unit bandwidth [van de Plassche, 2003, pp.9ff], σ2
ε (f):

σ2
ε ( f ) =

q2

12 fbw
=

q2

6Fs
, (2.7)

where fbw is the quantization noise bandwidth and Fs is the sampling frequency. Since

the signal-to-noise ratio is calculated over a bandwidth equal to half the sampling fre-

quency we have fbw = 1/2Fs. Thus, for systems that use Nyquist sampling the signal-

to-noise ratio as a density can be written as:

S NR = 2b−1
√

3Fs (2.8)

Then the SNR for a system with a bandwidth equal to fbw is found by dividing equation

2.8 by
√

fbw to give:

S NR = 2b−1

√
3Fs

fbw
(2.9)

Equation 2.9 is convenient for dynamic range calculations of systems which do not

use Nyquist sampling. As will be shown shortly increasing the ratio Fs
fbw

reduces the

quantization noise density, resulting in higher SNR. Summarizing, if the resolution of

an A/D converter is limited by quantization noise, then its dynamic range increases by

approximately 6dB with every additional bit of resolution, b. It might be noted that in

practical applications sometimes circuit noise, thermal noise, or other non-linearities

determine the ultimate resolution of the A/D converter.
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2.1.3 Limitations of Nyquist-Rate A/D Converters

A typical limiting factor in Nyquist-rate architectures is that some operations such as

comparison, amplification, or subtraction must be performed to the overall precision

of the converter [Aziz et al., 1996, p.64]. This typically translates into the need for

precise component matching unless special calibration, error-correction, or trimming

techniques are used. A steep anti-aliasing filter must also precede any Nyquist-rate

A/D converter. This band-limiting filter rejects frequency components of the signal

located above one-half of the sampling frequency in order to prevent aliasing distortion.

These anti-aliasing filters are often quite difficult to design to allow for a large signal

bandwidth [van de Plassche, 2003, pp.27ff]. In addition, it is still quite difficult to

realize precise analog filters to high order in a VLSI technology without resorting to

active circuits.

2.2 Over-Sampling A/D Converters

The demands on the circuitry of the A/D converter and their individual required pre-

cision can be relaxed by exploiting speed, or oversampling [Walden, 1999]. The use

of over-sampling is advantageous as it alleviates the problems mentioned for Nyquist

A/D converters above. In particular, Figure 2.6 shows how oversampling can reduce the

demands on the aliasing filter. The spectrum of the input signal is shown in 2.6 a) as

having a bandwidth of interest of 22kHz. Since the sampling frequency is 48kHz, any-

thing above 24kHz will be aliased into the band of interest. Thus a steep anti-aliasing

filter is needed. With such a filter the sampled data has the spectrum as shown in Figure

2.6 b). When oversampling the input signal the anti-aliasing filter can be relaxed. This

is illustrated in 2.6 c) and d). It is now sufficient for the filter to attenuate signals above

72kHz without polluting the band of interest with aliased components. In particular,

Figure 2.6 d) shows that the band of interest does not contain any aliased components

as oversampling was used. Besides reducing the requirements on aliasing filters, the

main advantage of oversampling is that it lowers the noise power introduced by quan-

tization in the band of interest. This is because the quantization error is spread out
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Figure 2.6: Comparison of aliasing filter for Nyquist and oversampling converters.
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Figure 2.7: Quantization noise power for two oversampling ratios

over a larger frequency band. As a result the error density is reduced and the effective

resolution of the converter increases [Cherry and Snelgrove, 1999]. This is depicted in

figure 2.7. Figure 2.7 a) shows the quantization noise power for a Nyquist converter.

Meanwhile, in Figure 2.7 b) an oversampling factor of 4 reduces the quantization noise

power in the band of interest by a factor of 4. Only a relatively small fraction of the total

noise power falls within the band of interest and the noise outside the bandwidth can be

greatly attenuated by means of digital low-pass filtering. In general, for each doubling

of the sampling frequency Fs, 1/2 bit of increase in resolution is achieved [Johns and

Martin, 1997, p.535]. The signal-to-noise ratio is then given as:

S NR = 2b−1
√

3
√

R, (2.10)

where, the oversampling ratio, R, is defined as R = Fs
2 fbw

. Converting to decibels gives:

S NRdB = 6.02 b − 1.25 + 10log (R) . (2.11)

Again, the total noise power introduced due to quantization is exactly the same as in

the case of a Nyquist rate converter, but its frequency distribution is different because

of the higher sampling rate.
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Figure 2.8: First-Order Delta-Sigma Modulator. Figure a) shows the typical imple-
mentation of an arbitrary delta-sigma modulator. Part b) depicts the less conventional
modulator employing no negative feedback.

2.2.1 The FIR Modulator Principle

The basic thought behind every delta-sigma modulation is the exchange of resolution in

time for resolution in amplitude. That is, That is, narrow band signal can be digitized

to a very accurate level. As will be shown later, conventional delta-sigma modulators

are synonymous with negative feedback; however, they can also be realized without

negative feedback. Thus, there are essentially two main implementations for the basic

delta-sigma modulator, both of which are depicted in Figure 2.8. Part a) of the fig-

ure shows a delta-sigma modulator consisting of a coarse analog-to-digital converter,

a digital-to-analog converter, and a loop-filter, H(s), placed within a feedback loop. In

this thesis, however, the focus is on delta-sigma converters without feedback. A general

principle is depicted in figure 2.8 b). This modulator also consists of a coarse analog-

to-digital (A/D) converter and a loop-filter, H1(s), but lacks the D/A converter in the

feedback loop. Instead a second filter, H2(s), is needed. In the case of the modulator

with feedback the input signal, x(t), gets quantized to form a digital signal [Cherry and

Snelgrove, 1999, p.2]. The D/A converter converts the digital output back to an analog

signal which is then compared to the input signal as depicted in figure 2.8 a). The bi-

nary pulses represent the in the integrator accumulated sign of the difference between

the input and feedback signals, hence the prefix delta (∆). The feedback loop causes the
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Figure 2.9: Input and output of a first-order delta-sigma modulator.

quantization error to be suppressed for signals falling within the pass-band of the loop

filter. The prefix sigma stems from the use of an integrator within the filter (summation

= Σ). In the case of the modulator without feedback, the input signal, x(t), gets quan-

tized to form a digital signal also. However, since no feedback loop, the quantization

error will be noise shaped by a second filter H2(s). Consequently, the prefix (∆) does not

apply. However, the prefix Σ from the use of an integrator within the filter H1(s) can still

be used. The notation used to describe the modulator without feedback will be finite

impulse response modulator (FIR modulator). This is similar to FIR filters as they lack

a feedback loop also [Chan and Rabiner, 1973]. In either case of modulator, when the

sinusoidal input to the two modulator topologies is close to a plus full scale, the digital

output is positive during most clock cycles. Similarly, when the input is close to a full

negative scale, the digital output is negative during most clock cycles. In both cases, the

local average of the digital modulator output tracks the analog input. When the input is

near zero, the value of the modulator output varies rapidly between a plus and a minus

full scale with approximately zero mean. This is depicted in Figure 2.9. To further

analyze the two modulator topologies we need to apply the previously introduced three

main principles that make up any sigma-delta modulator and FIR modulator. These are

over-sampling, quantization, and noise shaping. The properties of quantization out-

lined in section 2.1.2 apply to the two modulator topologies. As mentioned in section
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Figure 2.10: Noise spectrum of a Nyquist converter

2.2, specifically equation 2.11 showed that for doubling the sampling frequency a 3dB

increase in resolution can be achieved. Delta-sigma and FIR modulators take advantage

of this and over-sample to achieve better resolution. The performance modeling criteria

designated the introduced quantization noise process as white, which means that the

noise power is uniformly distributed between [−Fs
2 , Fs

2 ]. This is depicted in figure 2.10.

While this is true for delta-sigma modulators, it will be shown later that the quantization

noise power might not necessarily be white for FIR modulators. Still, the total noise

power is given by V2
Qrms

= σ2
ε . The spectral density height, kx, can then be calculated

[Johns and Martin, 1997, p.533]:∫ Fs
2

−Fs
2

S 2( f )d f =

∫ Fs
2

−Fs
2

k2
x d f = k2

xFs = σ2
ε . (2.12)

Equation 2.12 can be solved for kx to give:

kx = σε

√
1
Fs
. (2.13)

Equation 2.13 shows that the total quantization noise power will be reduced by 3dB for

doubling the sampling frequency Fs. In addition to this over-sampling advantage, both

modulator topologies utilize noise shaping to further attenuate the quantization error.

2.2.2 The Concept of Noise-Shaping

Noise-shaping is generally done by utilizing a high-pass filter to suppress unwanted

components in the band of interest. There are two ways to realize a high-pass filter for

the introduced quantization noise. Firstly, the in-band quantization noise power can be

suppressed with a high-pass dramatically by embedding the quantizer in a feedback loop

[Inose et al., 1966]. A filter can then be used to spectrally shape the quantization noise
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Figure 2.11: First order Delta-Sigma (a) and FIR modulator (b) with an additive noise
source for the quantizer.

so that the majority of it is moved out of the signal pass-band. Figure 2.11 a) shows

this implementation. Notice that the quantizer was replaced by an additive noise source

ε(n). Secondly, a high-pass filter can be implemented by using an explicit filter, such

as a differentiator. This is depicted by H2(s) in figure 2.11 b). For the two modulator

topologies two transfer functions can then be written: a signal transfer function from

the input to the output (STF), and a noise transfer function (NTF) from the input of the

noise to the output. These are given for the delta-sigma modulator as:

S T FDS M(s) =
y(n)
x(t)

=
H(s)

1 + H(s)
, (2.14)

NT FDS M(s) =
y(n)
ε(n)

=
1

1 + H(s)
. (2.15)

In the same way we have for the FIR modulator:

S T FFIR(s) =
y(n)
x(t)

= H1(s)H2(s), (2.16)

NT FFIR(s) =
y(n)
ε(n)

= H2(s). (2.17)

Equation 2.15 shows that if the quantization noise is to be suppressed in the baseband,

H(s) must have a large gain. As a result Equation 2.14 will become unity and the in-

put signal passes the modulator un-attenuated. Equation 2.15 will then implement a
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Figure 2.12: Spectrum at the output of an oversampling A/D converter: with and
without noise-shaping. Note that the area under both curves is the same.

high-pass filter which shapes the quantization noise introduced by the quantizer. This

depicted in Figure 2.12 which shows that noise shaping can further attenuate the quan-

tization noise in the band of interest, fbw. In the case of the FIR modulator H2(s) should

attenuate the quantization error with a high-pass filter. For the STF to be unity, H1(s)

should ideally be the inverse of H2(s). It is important to note that the total noise level

remains the same; noise shaping only pushes the quantization noise to higher frequen-

cies where they can then be removed by an appropriate filter. There are various transfer

functions for H(s) that can realize a high gain in the feed-forward path of figure 2.11

a). One class using an integrator is especially suited for VLSI implementation as the

analog circuits required to implement the transfer function are simple and robust. The

same applies to the FIR modulator, where H1(s) is a cyclic continuous-time integrator

and H2(s) a high-pass filter or differentiator. The reason for choosing a cyclic inte-

grator is due to the lack of feedback in the FIR modulator. As will be shown later, a

voltage-controlled oscillator can realize such a cyclic integrator.

2.2.3 Limit Cycles and Idle Tones

The performance modeling criteria in section 2.2.1 designated the noise process as

white, which means that the noise power is uniformly distributed between [−Fs
2 , Fs

2 ].

This is the basis for equation 2.12 which is used to predict the resolution of the vari-

ous delta-sigma modulator topologies. This assumption is suitable for most busy input

signals. However, for dc or slowly varying inputs, the white-noise model is far from
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exact as the quantization error will be heavily correlated with the input signal [van En-

gelen and van de Plassche, 1999, p.8]. When the input signal is dc, the delta-sigma

modulator output will bounce between two levels keeping its mean equal to the input

signal. For certain dc input values the output sequence will be repetitive [Friedman,

1988]. If the repetition frequency lies in the signal band, the modulation will be noisy,

if not, it will be quiet. Repetitive patterns that are present in the output of the modulator

under zero input conditions are called idle patters. For example, the periodic pattern

of [1,−1, 1,−1, 1,−1, · · · ] is defined as a first-order limit cycle [Magrath and Sandler,

1995, p.846]. Idle patterns are a result of limit cycles. These limit cycles create tones in

the frequency spectrum. In general, a dc input signal can be expressed as a vulgar frac-

tion, Adc = n
d , with gcd(n, d) = 1. Then, the repetition frequency, FR, for a first-order

sigma delta modulator is given by [van Engelen and van de Plassche, 1999, p.46]:

FR =


(
1 − n2Adc

q

)
1
2 Fs n odd(

n2Adc
q

)
1
2 Fs n even

(2.18)

The low frequency repetitions in the output of a first-order delta-sigma modulator due

to small dc-inputs cause a deviation in the signal-to-noise ratio as expressed by equation

2.26. This is due to the repetition frequencies residing within the band of interest, fbw,

over which the signal-to-noise ratio is calculated. As a result, for a constant sampling

frequency, Fs, the quantization noise power will be a strong function of the power of the

input signal. As will become apparent later, FIR modulators experience also idle tones

and limit cycles which are equivalent to the idle tones and limit cycles in conventional

Delta-Sigma topologies. However, since no feedback is involved in FIR modulators,

these FIR topologies have no infinite filter response. Chapter 3 will treat the spectral

behavior of FIR modulators in more detail.

2.3 Delta-Sigma Topologies

The two most commonly found delta-sigma modulators implement either a low-pass or

a band-pass, depending on the desired application. These two architectures are analyzed

in the next two sections. The methods used here are partially applicable to the analysis
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Figure 2.13: First-order low pass delta-sigma modulator with a 1-bit quantizer

of the FIR modulators which are covered in chapter 3.

2.3.1 Delta-Sigma Low Pass

If the signal of interest extends to dc then a low-pass modulator topology should be

utilized. A discrete first-order low-pass delta-sigma modulator is shown in Figure 2.13.

The filter H(z) was replaced with a one unit delay discrete-time integrator [Norsworthy

et al., 1997, pp.5ff]. For the following analysis the quantizer was replaced with an

additive noise source and a gain of unity. More accurate models for a 1-bit quantizer

would include not only a time invariant gain λ but also a phase uncertainty. The reader

is referred to [van Engelen and van de Plassche, 1999] which includes both parameters

for a stability analysis of delta-sigma converters. By straightforward analysis of the

system in Figure 2.13 the following signal and noise transfer functions, S T F(z) and

NT F(z), are obtained:

S T F(z) =
y(n)
x(t)

= z−1, (2.19)

NT F(z) =
y(n)
e(n)

= 1 − z−1. (2.20)

Clearly, the signal transfer function only introduces a unit delay and leaves the signal

unaltered, whereas the noise transfer function high-pass filters the introduced quantiza-

tion noise. Under the assumption that the quantization noise is white with power S ( f ),

the total noise power in the range of [0.. fbw] = [0..Fs/2R] is given as:

Ptotal =

∫ fbw

− fbw

S 2( f )|NT F(z)|2d f =

∫ fbw

− fbw

q2

12
1
Fs
|NT F(z)|2d f . (2.21)
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Here, Fs is the sampling frequency, fbw the band of interest, and S ( f ) is the level of the

noise power spectral density given by equation 2.13. With the help of equation 2.20,

the magnitude squared of an Lth noise transfer function is given by:∣∣∣NT F(e2π j f /Fs)
∣∣∣2L

=
∣∣∣1 − e−2π j f /Fs

∣∣∣2L

=

∣∣∣∣∣∣sin
(
π f
Fs

)
2 je−π j f /Fs

∣∣∣∣∣∣2L

=

[
2sin

(
π f
Fs

)]2L

.

(2.22)

Making the assumption that, fbw � Fs, one can approximate sin (π f /Fs) with (π f /Fs).

With this approximation we can re-write the integral in Equation 2.21 as a function of

the sampling frequency, Fs, the oversampling ratio, R, and quantizer step, q:

Ptotal =

∫ fbw

− fbw

q2

12Fs

[
2
(
π f
Fs

)]2L

d f

=
q2

12

(
π2L

2L + 1

) (
1

R2L+1

)
.

(2.23)

In the case of a converter with b quantization bits, the rms-value of the maximal signal

amplitude which does not cause the quantizer to overload is given as:

VArms = 2b q

2
√

2
. (2.24)

For a sinusoidal input signal the input power is then given as:

Psig =
(
VArms

)2
=

q222b

8
. (2.25)

Utilizing Equation 2.23 and Equation 2.25 the signal-to-noise ratio can be obtained. The

signal-to-noise ratio for an Lth order low-pass modulator with an oversampling ratio R

and an b-bit quantizer is given as the ratio of the signal power and the noise power

resulting in:

S NRdB = 10log
(

Psig

Ptotal

)
= 10log

(
q222b

8

)
− 10log

(
q2

12

(
π2L

2L + 1

) (
1

R2L+1

))
= 10log

(
3
2

R2L+1 2L + 1
π2L 22b

)
.

(2.26)
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Figure 2.14: First, second, and third order low-pass noise transfer functions.

Equation 2.26 shows that for each doubling of R the signal-to-noise ratio improves by

9dB for a first-order low-pass with 1-bit quantizer. Mainly, 3dB are achieved due to

oversampling and 6dB are achieved due to noise shaping. For an order L modulator the

noise falls by 3(2L+1) dB for every doubling of R. This is depicted in Figure 2.14 which

shows the attenuation of the noise in the band of interest which can be achieved for

higher order noise transfer functions. Note, that compared to the first order sigma delta

noise transfer function, higher order noise transfer functions provide more quantization

noise suppression over the low frequency signal band and more amplification of the

noise outside the signal band.

2.3.2 Delta-Sigma Band Pass

So far, it was assumed that the sampling frequency, Fs, is much greater than the Nyquist

rate. For low-pass signals, the highest frequency component is also the signal bandwidth

fbw. If a signal with bandwidth fbw is narrow band but is located at a center frequency

of fc, its highest frequency component is now fc + fb. If fc is large, choosing the sam-

pling frequency much greater than the highest frequency component as in the low-pass

case will yield unreasonable large sampling frequencies. Therefore, for bandpass mod-

ulation the sampling frequency is chosen to be much higher than the bandwidth of the
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Figure 2.15: Low-pass to band-pass transformation: a) transformation of the NTF
zeros b) resulting NTF spectrum

signal, rather than its highest frequency component [Jayaraman et al., 1997; Raghavan

et al., 2001b]. The oversampling ratio is then given as R = Fs
2( fmax− fmin) [Norsworthy et al.,

1997, p.286]. The simplest way to design a bandpass modulator is to start with a low-

pass modulator and apply a lowpass-to-bandpass transformation. For instance, applying

the z−1 → −z−2 transformation maps the zeros from dc to π/2. This transformation is

particularly attractive as it does not affect the dynamics of the prototype low-pass mod-

ulator [Norsworthy et al., 1997, p.286]. The transformation has effectively doubled the

number of zeros of the low-pass noise transfer function and rotated these zeros in the

z-plane from z = 1 to z = j, as depicted in Figure 2.15. In the frequency domain, the

noise suppression region has been shifted from dc to ±Fs/4. Another transformation is

the z → z+a
az+1 ,−1 ≤ a ≤ 1 transformation which gives full control over passband loca-

tion but does not preserve modulator dynamics [Norsworthy et al., 1997, p.287]. Note

that the order of real band-pass modulators refers to the number of poles in the noise

transfer function. With this definition, a fourth-order modulator has only two zeros in
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the noise transfer function and the quantization noise is only suppressed with a second-

order transfer function in the signal passband. Thus, the order of a band-pass modulator

is defined as 2L. The signal-to-noise ratio of a bandpass modulator can be estimated in

the same manner as in the case of a low-pass modulator. If the z−1 → −z−2 transforma-

tion is extended to the Lth order noise-transfer function of a low-pass architecture, the

resulting magnitude squared of the noise transfer function is given as:∣∣∣NT F(e2π j f /Fs)
∣∣∣2L

=
∣∣∣1 + e−4π j f /Fs

∣∣∣2L

=

∣∣∣∣∣∣cos
(
2
π f
Fs

)
2 je−2π j f /Fs

∣∣∣∣∣∣2L

=

[
2cos

(
2
π f
Fs

)]2L

.

(2.27)

The quantization noise power over the frequency band of Fs/4 ± fbw is given as:

Ptotal =

∫ −
Fs
4 −

fbw
2

−
Fs
4 +

fbw
2

N( f )|NT F(z)|2d f +

∫ Fs
4 −

fbw
2

Fs
4 +

fbw
2

N( f )|NT F(z)|2d f

= 2
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4 −
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2
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4 +
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2
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4 −
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4 +
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2

q2

12Fs

[
2cos

(
2
π f
Fs

)]2L

d f

(2.28)

If it is assumed that 2 fbw
Fs
� 1 with fbw as defined in Figure 2.15 then Equation 2.28 can

be re-written to:

Ptotal = 2
∫ fbw

2

−
fbw
2

q2

12Fs

(
2sin

(
2
π f
Fs

))2L

d f

= 2
∫ fbw

2

−
fbw
2

q2

12Fs

[
2
(
2
π f
Fs

)]2L

d f

=
q2

12

(
π2L

2L + 1

) (
1

R2L+1

)
.

(2.29)

As expected, Equation 2.29 is identical to Equation 2.23 because the noise suppression

in a 2Lth order band-pass modulator is the same as the one in a Lth order low-pass

modulator. Thus the signal-to-noise ratio in decibels for a 2Lth band-pass modulator

with b-bit quantizer and oversampling ratio R is given as:

S NRdB = 10log
(
3
2

R2L+1 2L + 1
π2L 22b

)
. (2.30)

Both modulator topologies, band-pass and low-pass need decimation to lower the fre-

quency and filter out the noise-shaped quantization noise.
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2.3.3 The Concept of Decimation

To obtain a high-resolution signal from the low-bit stream from the output of the n-bit

quantizer, decimation or averaging is used. Furthermore, decimation is needed to lower

the date rate of the oversampled modulator. As was shown in figure 2.12, a key point

of a delta-sigma and FIR converters is that the quantization noise spectrum is shaped

in such a way as to place most of the noise power outside the signal band. To remove

the quantization noise low-pass filters are used. However, appropriate filters tend to be

difficult to realize at the elevated sampling rates of the modulator [Norsworthy et al.,

1997, p.28]. As a result, decimation is needed to lower the bit rate of sigma delta,

modulation and convert it to a form that is more suitable for processing and transmission

[Crochiere and Rabiner, 1981]. The factor by which the rate is lowered is the decimation

factor R, and is given as:

R =
Fs

Fd
, (2.31)

where Fs is the elevated sampling frequency of the sigma delta modulator and Fd is the

reduced sampling rate at the output of a decimator as shown in [Norsworthy et al., 1997,

p.30]. A convenient filter for decimation is based on the sinc function [Presti, 2000].

The transfer function of the filter is given as:

H(z) =
1
R

R−1∑
i=0

z−i. (2.32)

Conceptually, the filter computes an output by forming the sum of the contents of the

registers. Decimators based on sinc filters are appropriate for decimating sigma delta

modulation down to four times the Nyquist rate [Candy, 1986]. Further decimation

usually requires filters that cut off more sharply at the edge of baseband [Candy, 1986].

An efficient way to realize a decimation filter is known as the Hogenauer structure and

consist of a series of cascaded accumulators followed by a cascade of differentiator

(CIC) [Hogenauer, 1981] as expressed by:

H(z) =

(
1 − z−M

1 − z−1

)L

, (2.33)
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Figure 2.16: CIC decimation filter

where L is the order of the sinc filter. The Hogenauer structure is depicted in figure

2.16. With regard to overflow errors in all integrator stages, the two’s complement bi-

nary format has two attractive characteristics. First, under certain conditions, overflow

during the summation of two numbers causes no error. Second, with multiple summa-

tions, intermediate overflow errors cause no problems if the final magnitude of the sum

of the b-bit two’s complement numbers is less than 2b−1 ([Lyons, 2004], section 12.1.5).

Thus, a composite CIC filter would compute correct filter outputs provided the addi-

tions were performed with 2’s-complement arithmetic and provided the bit field width

of the accumulator exceeded the word width required by the final output sequence. The

required bit width is the number of bits in the input data words plus the number of bits

required to accommodate the maximum filter gain. Then the most significant bit at the

output of the filter is ([Hogenauer, 1981], equation 11):

Bmax =
[
Nlog2(RM) + Bin − 1

]
(2.34)

With a bit width as expressed by equation 2.34, the accumulators can successfully re-

cover from internal overflow.
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Figure 2.17: Illustration of undersampling various signals with different bands of in-
terest.

2.3.4 The Concept of Undersampling

Undersampling is sampling at a rate below the Nyquist frequency, which generally im-

plies a loss of information, unless the signal bandwidth, fbw is restricted to less than

Fs/2. For signals which do not extend to dc, however, the minimum required sam-

pling rate is a function of the bandwidth of the signal, 2 fbw, as well as its position in

the frequency spectrum [Analog Devices, 1998], [Vaughan et al., 1991a]. When such

a signal is undersampled, the aliased products can be used to translate the input signal

down to baseband for further processing. The minimum required sampling frequency,

Fs, will vary with the signals maximum frequency, Fmax, and its bandwidth, fbw. This

can be illustrated with the help of figure 2.17 [Analog Devices, 1998]. In part a) of the

figure, the signal occupies a band from dc to 1MHz, and therefore must be sampled at

greater than 2MSPS. The second case shown in part b) shows a 1MHz signal which
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Figure 2.18: Minimum required sampling frequency as a function of the maximum
signal frequency.

occupies the band from 0.5 to 1.5MHz. Now this signal must be sampled at a mini-

mum of 3MSPS. In the third case, shown in part c), the signal occupies the band from

1 to 2MHz, and the required sampling rate for no aliasing reduces back to 2MSPS. In

part d) of figure 2.17 the signal occupies the band from 1.5 to 2.5MHz. This signal

must be sampled at a minimum of 2.5MSPS. Generalizing this analysis will lead to fig-

ure 2.18. The actual minimum required sampling rate is a function of the ratio of the

highest frequency component, Fmax, to the total signal bandwidth, fbw. For large ratios

of Fmax to the bandwidth, fbw, the minimum required sampling frequency approaches

2 fbw [Vaughan et al., 1991a]. As a result, undersampling can be used to down-convert

a signal residing at a high frequency to baseband where it can be processed further.

This methodology will later be used in the FIR analog-to-digital modulator to down-

convert a high frequency signal. That is, the narrow-band frequency modulated output

of an oscillator is undersampled and digitized directly. A novel scheme will be pro-

posed which reduces the requirements on the sampling circuitry as undersampling is

performed, while still not suffering any drawbacks due to undersampling or spectral

reversal common to conventional amplitude undersampling applications.
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2.4 Higher Order Delta-Sigma Architectures

To achieve higher noise shaping of the introduced quantization error in the A/D con-

version, higher order noise shaping architectures are utilized along with multi-bit quan-

tization [Chao et al., 1990; Khoini-Poorfard et al., 1997; Kozak et al., 2000]. While

there is an abundance of modulator topologies utilizing higher order loop filters [Brandt

and Wooley, 1991; Leslie and Singh, 1990; Hairapetian and Temes, 1994], most of

them fall into three categories. These are single-loop low order designs, single-loop

high order designs or multi-loop designs. A detailed summary outlining the advantages

and drawbacks of each topology can be found in [Norsworthy et al., 1997, p.166] and

[Ribner, 1991]. As this work is concerned with low-order modulator architectures, the

main focus is on multi-loop designs as these are comprised out of multiple low order

single-loop topologies. Since FIR modulators do not have a feedback path, a cascaded

approach of multiple first-order FIR modulators is a good way to improve noise perfor-

mance. Cascaded architectures are reviewed next with emphasis on the later presented

FIR modulators.

2.4.1 Cascaded

A simple solution to stability problems of higher order single loop topologies was sug-

gested by Hayashi et al. [Hayashi et al., 1986]. In their work they proposed the use

of multiple first-order stages instead of a single high order loop filter to reduce quan-

tization errors. This principle is referred to as multi-stage noise shaping (MASH) or a

cascaded topology. The principle of cascaded sigma-delta modulation is based on the

use of multiple sigma-delta modulator stages in a cascade configuration [Matsuya et al.,

1987]. In ideal multi stage architectures, each successive stage accepts the quantization

noise of the preceding stage as its input in order to create a digital signal which per-

fectly cancels out the quantization error introduced in the preceding stage [Longo and

Copeland, 1988]. A basic second-order cascaded topology is depicted in figure 2.19.

As shown in the figure, two conventional first-order delta-sigma modulators utilizing

feedback are utilized to realize a second order structure. Both first-order modulators
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Figure 2.19: Second-order cascaded modulator topology based on two first-order
delta-sigma converters.

Figure 2.20: Second-order cascaded modulator topology based on two first-order FIR
delta-sigma converters.

need negative feedback to shape the quantization noise out of the band of interest. Later

it will be shown how a similar second order system can be realized without the need for

negative feedback. A simplified version of this scheme of cascaded FIR modulators is

shown in figure 2.20. A brief analysis of figure 2.19 shows that the output y(n) is given

as:

Y(z) = [X(z)S T F(z) + ε1(z)NT F(z)] H1(z)−

[ε1(z)S T F(z) + ε2(z)NT F(z)] H2(z)
(2.35)

The goal is to cancel the coarse quantization error ε1. This occurs when:

ε1(z)NT F(z)H1(z) = ε1(z)S T F(z)H2(z). (2.36)

The noise-transfer function and the signal transfer functions for H(z) = 1
1−z−1 were given

in section 2.3.1 as NT F(z) = 1 − z−1 and S T F = z−1. Then we can re-write equation
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2.36 as:

NT F(z)
S T F(z)

=
H2(z)
H1(z)

1 − z−1

z−1 =
H2(z)
H1(z)

.

(2.37)

Thus, choosing H1(z) = z−1 and H2(z) = 1 − z−1 will cancel ε1 and leave the output of:

Y(z) = z−2X(z) + ε2(z)(1 − z−1)2 (2.38)

As a result, in the MASH topology the quantization error has been improved without

increasing the order of the loop filter. However, the topologies are sensitive to the ana-

log accuracy of implementation, typically limiting the resolution of analog-to-digital

conversion to less than 14 bits, regardless of the order of the noise shaping [Cauwen-

berghs and Temes, 2000]. To circumvent this, calibration methods can be applied to in

the digital domain to correct for analog imprecision, trading a small increase in the im-

plementation complexity of the digital part for a significant increase in effective analog

precision[Cauwenberghs and Temes, 2000; Kiss et al., 2000].

2.5 Summary

This chapter introduced the important concepts forming the foundation for the following

chapters. The most vital aspects of every delta-sigma modulator, namely oversampling,

quantization, noise shaping, and decimation where reviewed and can now be used to

realize different A/D topologies. Also, other well established principles such as under-

sampling and higher order delta-sigma topologies were re-introduced, giving the tools

needed to fully appreciate the following chapters.



32

CHAPTER III

FIRST-ORDER FIR SIGMA DELTA MODULATORS

3.1 Introduction and Review

While oversampling discrete-time (DT) and continuous-time (CT) analog-to-digital (A/D)

modulators have widely been used for high resolution applications, they are almost ex-

clusively synonymous with feedback. Generally, any type of feedback is applied in

order to control the dynamic behavior of a system, to ensure stability, improve linearity,

and compensate for the effect of disturbances [Franklin et al., 2006]. More importantly,

in delta-sigma A/D converters the negative feedback path also realizes the quantization

noise suppression in the signal band as shown in section 2.2.2. So why would we want

to remove feedback from a system?

• Feedback entails having to deal with undesirable effects such as excess loop delay

as in continuous time delta-sigma A/D converter [W. Gao and Snelgrove, 1997].

Ideally, the feedback digital-to-analog converter’s currents respond immediately

to the quantizer’s clock edge, but the non-zero transistor switching time of the

latched comparator (quantizer) and the digital-to-analog converter result in a finite

delays [J.A. and W.M., 1999]. Excess loop delay will shift the poles of the noise

transfer function and will therefore change the characteristic of the noise shaping

or make the overall modulator unstable.

• Another problem encountered with multi-bit digital-to-analog converters in the

feedback path is their inherent nonlinearity. Non-linearity of the quantizer (A/D)

of the modulator in the feed-forward loop is reduced by the gain of the loop.

However, non-linearity in the feedback D/A converter is a serious problem since

this nonlinearity directly feeds into the input [Wang et al., 2001].

• Limit-cycles, inherent to systems with feedback, might cause instability
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[Reefman et al., 2005; Tao et al., 1999a] in the modulator.

• Feedback increases also the system complexity due to extra circuit components

such as the digital-to-analog converter in the feedback path [Norsworthy et al.,

1997]. Furthermore, in many systems feedback is simply not possible as no path

exists.

As a result, delta-sigma converters without feedback are an interesting alternative to

conventional topologies. As introduced in Section 2.2.1, delta-sigma A/D converters

without feedback are based on frequency modulators followed by frequency-to-digital

converters. The work on frequency-to-digital converters for delta sigma converters com-

menced in the early 90’s. However, most of the methods used in these works are based

upon well established frequency demodulation techniques. Different research groups

have worked on the topic of frequency-to-digital converters since then, realizing dif-

ferent implementations with and without feedback. While there are a wide variety of

publications on delta-sigma converters utilizing frequency modulation and demodula-

tion techniques, three university groups have taken interesting yet different approaches

to realize these modulators based in some form of frequency modulation and demod-

ulation. One group in particular, is lead by Professor Ian Galton at the University of

California, San Diego and includes William Huff, Paolo Carbone, and Eric Siragusa.

Their implementation of a second order delta-sigma frequency-to-digital converter is

presented in [Ian Galton and Siragusa, 1998]. There, a second-order modulator utilizing

feedback is realized. Hence, the previous mentioned comments on using negative feed-

back apply. This topology which is depicted in Figure 3.1 a) simultaneously performs

frequency demodulation and digitization. The topology presented is based on phase-

locked loops and uses analog circuitry such as a charge-pump and a digital counter to

realize two integrators. Figure 3.1 a) depicts the second-order delta-sigma PLL. As can

be seen from the figure, the topology operates on a hard-limited version of the frequency

modulated input signal and generates a 2-bit output sequence. Thus, the performance is

equivalent to a conventional second order delta-sigma modulator. Note, that the topol-

ogy requires an already generated frequency modulated input signal, x(t)h. That is, no
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Figure 3.1: The three most important existing topologies. Figure a) shows the works
of [Ian Galton and Siragusa, 1998], figure b) the works of [Thomas A. D. Riley and
Plett, 1998], and figure c) the works of [Hovin et al., 1997].
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frequency modulation is performed by the circuit. While excellent performance results

are achieved, the overall complexity of the system is quite high, even more so when

including a frequency modulation unit. Furthermore, a non-uniform to uniform deci-

mation filter is required as the overall topology samples the FM signal asynchronously.

This decimation filter will increase the complexity of the topology further. Follow-up

publications to this work include [Izadi and Leung, 2002] and [Sharifkhani, 2004].

A second research group consists of Walt T. Bax, Thomas A. D. Riley, Miles A.

Copeland, Tom A. D. Riley, Norman M. Filiol and Calvin Plett at Carleton University,

Ottawa in Canada. Their realization of a delta-sigma frequency-to-digital converter is

based on two delta-sigma phase-locked loops as described in

[Thomas A. D. Riley and Plett, 1998] and shown in Figure 3.1 b). As can be seen from

the figure this topology mimics a 1-2 cascade typically found with conventional delta-

sigma converters. The first stage integrates the input signal to convert the frequency

content of the FM signal to phase. The signal content and error due to quantization are

then fed into the second stage. Both stages need feedback to realize noise-shaping as

explained in section 2.2.2 and hence increase circuitry complexity. Furthermore, the

topology requires frequency dividers to down-convert the FM input signal to the refer-

ence clock. Again, the topology presented performs no frequency modulation. Another

implementation utilizing a phase-locked loop and a frequency divider in described in

[Riley et al., 1993].

Finally, the research group at the University of Oslo in Norway comprising out of

Dag T. Wisland, Mats E. Hovin and Tor S. Lande introduced yet another version of

a delta-sigma frequency-to-digital converter [Hovin et al., 1997; Wisland et al., 2002,

2003]. Their implementation is, however, different from the approach the other research

groups took as the delta-sigma frequency-to-digital converter is implemented without

feedback, thus, resulting in a more efficient modulator implementation. This topology

is shown in Figure 3.1 c). Their topology could be realized by utilizing the frequency

de-modulation technique patented by Akira Sogo in [Sogo, 1989]. The demodulation

scheme provided by Akira Sogo in conjunction with an oscillator approach to perform
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frequency modulation and a 1-1 cascade similar to conventional delta-sigma modulators

thus realizes an efficient scheme to frequency demodulate and digitize an FM signal.

However, as depicted in figure 3.1 c) the second path of the 1-1 cascade still utilizes

feedback.

While these are the most important publications there are many others that are uti-

lizing voltage-to-frequency conversion also to realize delta-sigma topologies [Watanabe

et al., 2003; Ravinuthula and Harris, 2004; Yang and Sarpeshkar, 2005; Pekau et al.,

2006]. However, all of them utilize some sort of feedback to shape out quantization

noise.

In this and the following chapters all feedback paths are removed while still realizing

the noise-shaping characteristics synonyms to delta-sigma converters. Since these FIR

modulators are based on frequency modulation and demodulation techniques, a brief

review of these principles and how they can be used is given. Based on these principles

various versions of FIR modulator topologies are presented and optimized. An overview

of the presented structures and their simplifications is given in figure 3.2. Part a) of the

figure shows a first-order FIR modulator where a VCO is used as a frequency modulator

followed by an optional hard-limiter to rectify the frequency modulated signal. The

frequency de-modulation technique proposed in [Sogo, 1989; Hovin et al., 1997] is

given in the shaded region of figure 3.2 a). We simplified this topology by realizing

that a simple asynchronous D-FF can realize a quantizer and differentiator at the same

time. This simplification is depicted in figure 3.2 b) which shows a resetting D-FF

followed by a sinc decimation filter. Alternatively, a resetting-counter can be utilized

as depicted in figure 3.2 c). Furthermore, the concept of undersampling as introduced

in Section 2.3.4 can be used with the counter from figure 3.2 c) or the implementation

from figure 3.2 a), which alleviates the need for high clock frequencies. Utilizing a

resetting counter in conjunction with undersampling will also eliminate the need for

having to choose a certain sampling frequency. This will be outlined in later sections.

Usually when utilizing undersampling the sampled signal must not cross an integer

multiple of the sampling frequency Fs/2. Otherwise aliasing occurs. However, with
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Figure 3.2: Part a) shows the topology adopted by [Hovin et al., 1997]. Part b) shows
how we replaced the XOR gate and D-FF by a simple asynchronous D-FF, or more
importantly, by a resetting counter as seen in part c). In part d) the counter was moved
into the sinc decimation filter.
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the counter this is not the case as it captures and retains all the frequency modulated

signal edges in between sampling instances. As a result, this first-order topology as

depicted in figure 3.2 c) is a marked departure from prior art. To further simplify the

FIR modulators the counter from figure 3.2 c) can be absorbed into the decimation

filter as shown in figure 3.2 d). However, this can only be done if the decimation filter

is based on a cascade of integrators and differentiator. All simplified first-order FIR

modulators are then analyzed in terms of non-linearities, phase noise, jitter, and meta-

stability. Exact mathematical models are presented describing the noise suppression

and hence the signal-to-noise ratio performance. Simulation examples are presented

to give proof-of-concept and to discuss performance results. The performance is then

compared to the mathematical model.

3.1.1 FIR SDM Principle

The principle behind all sigma delta converters is essentially the same: The analog in-

put signal should pass undisturbed through the system and appear as a digital equivalent

at the output. Quantization error introduced should be attenuated in the band of inter-

est. Thus, the signal-transfer function should ideally be unity plus some delay, and the

noise-transfer function a variation of a an appropriate high pass filter. Conventional

delta-sigma modulators, as the ones introduced in section 2.2.1, implement the noise

shaping of the quantization error by using negative feedback. The negative feedback,

however, is not needed as long as the system realizes a high pass characteristic for

the introduced quantization noise, and lets the input signal through without attenuation

or distortion. The scheme to realize this task is depicted figure 3.3, which shows the

three stages needed: integration, quantization, differentiation. The figure shows that the

input signal gets integrated, quantized, and then differentiated to arrive at the output un-

changed. The quantization error introduced when quantizing the signal; however, does

not experience integration and, therefore, only experiences differentiation, which is a

first-order high pass filter as shown in figure 3.3. Thus the error gets noise shaped out
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Figure 3.3: The three principal operations synonymous to delta-sigma modulators:
integration, quantization which introduced quantization noise as shown, and differenti-
ation proving noise shaping.

of the band of interest as in a conventional sigma delta modulator with negative feed-

back. To implement the topology shown in figure 3.3 we can borrow methods used from

frequency modulators. More specifically, frequency modulation is used to implement

integration as seen in figure 3.3. The frequency modulated signal is then time-domain

quantized, followed by frequency-demodulation.

Frequency modulation is an important part of the FIR delta-sigma modulator as it

performs a translation from the amplitude domain to the frequency domain. By this

translation an integration of the modulation signal is performed. Generally, frequency

modulation is used to facilitate transmission of information from a transmitter to a re-

ceiver [Armstrong, 1936]. In frequency modulation, the frequency of a carrier signal

is varied in accordance with a modulating signal which contains the information. A

typical frequency modulated signal can be expressed as:

y(t) = cos
[
2π( fc + kx(t))

]
, (3.1)

where y(t) is the frequency modulated signal, fc is the carrier frequency, k is the modula-

tion index which controls the amount of frequency deviation, and x(t) is the modulating

signal. Frequency modulation can be implemented by numerous methods. A common

way is to apply the modulating signal, x(t), to a voltage-controlled oscillator. The output
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frequency of a voltage-controlled oscillator is governed by:

ωout = ωc + Kvcox(t), (3.2)

where Kvco is the gain of the VCO. In particular, since the phase is the integration of

the frequency, the sinusoidal output of a VCO can then be expressed as:

y(t) = cos
(
ωct + Kvco

∫
x(t)dt + φo

)
. (3.3)

Equation (3.3) shows that the voltage controlled oscillator acts as an integrator and that

the output frequency of the VCO is a function of the input x(t). The cos() function in

equation (3.3) also shows that the VCO inherently performs a modulo 2π operation and

will thus never saturate. The output of the VCO is hence a frequency-modulated signal

whose frequency deviation of the carrier, ωc, is proportional to the modulating input

signal x(t). The operation of the voltage controlled oscillator implementing frequency

modulation is depicted in figure 3.4. The top part of the figure shows the modulating

input signal, x(t), in this case comprising of three different dc-inputs. The middle part

of the figure represents the phase. Notice, that the frequency is the slope of the phase,

or alternatively, the frequency is the derivative of the phase. The bottom part of the

figure represents the output signal y(t). As can be seen from the figure, the higher the

input magnitude the faster the frequency at the output as given by equation (3.2). Thus,

the information is encoded into the instantaneous frequency of the sinusoid, and more

specifically, the zero crossings. The VCO can thus be used as the integrator depicted in

figure 3.3. To quantize and differentiate the FM signal we again borrow methods used

from FM de-modulators.

One way of demodulating the information is to use a discriminator, which converts

the frequency modulation to amplitude modulation, which can be detected using an

envelope detector [Chu, 1969]. Alternatively, a phase-locked-loop (PLL) can be used.

A more simple solution to demodulate the frequency-modulated signal is to utilize the

zero-crossings of the carrier sinusoid and/or the widths of each cycle period [Carlson

et al., 2001]. An attractive way to demodulate a frequency modulated signal was first

patented by Akira Sogo [Sogo, 1989]. His distinctive way of demodulating consists
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Figure 3.4: Principle of Operation of a VCO. Part a) shows the input the VCO which is
for illustrative purposes three different amplitudes. Part b) illustrates how the frequency
of oscillation at the output of the VCO depends linearly on the input magnitude. Part c)
explains how the frequency of the carrier sinusoid is the derivative of the accumulating
phase.
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Figure 3.5: Delta-Sigma Modulator by utilizing a VCO as integrator, an A/D converter
(hard-limiter), sampling D-FF and XOR to implement differentiation, and a low-pass to
obtain back the input signal [Sogo, 1989]

of utilizing a analog-to-digital converter converting the analog FM signal into a digital

signal of one bit, an exclusive OR (XOR) circuit performing differentiation of the dig-

ital signal, and finally a low-pass filter which is supplied with a pulse train furnished

from the exclusive OR circuit. This principle, along with utilizing a VCO for modula-

tion, can then be used to implement a sigma delta modulator without feedback [Hovin

et al., 1997; Sogo, 1989]. The overall scheme is shown in figure 3.5. Note that the

D-FF and XOR gate is essentially a phase-detector. The phase detector is essentially a

differentiator, 1 − z−1, which disregards the sign bit by taking the absolute value.

3.2 An FIR Sigma Delta Modulator Utilizing an Asyn-
chronous D-FF

The topology depicted in figure 3.5 can be simplified further by realizing that the phase

detector can be replaced by a phase rate monitor which is simply an asynchronous D-FF.

This is described next. We essentially combined the D-FF, XOR, and A/D converter into

one asynchronous D-FF which is cleared with a one-shot to arrive at the circuit shown in

figure 3.6. The simplifies the circuitry as we now have less component count resulting

in a more efficient architecture. The principle of operation can be explained as follows.

We know from Logan’s theorem [Logan, 1977] and other references [Carlson et al.,

2001] that if a signal is band-limited then the times or instances of the zero crossings

are sufficient to reconstruct the signal to within a constant factor. Since the bandwidth

of the modulating signal is limited to only a small fraction of the frequency of the

carrier, the information can be determined by the zeros crossings of the carrier sinusoid

alone. Positive and negative zero crossings of the signal y(t) occur at a phase change
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Figure 3.6: Delta-Sigma Modulator by utilizing a VCO as integrator and a D-FF for
differentiation. D-FF is cleared with a one-shot.

of π of the carrier sinusoid and contain all the information about the input signal. A

D-FF can be used which is clocked by these zero crossings to quantize and differentiate

the signal y(t). Essentially, the D-FF acts as a accumulate and dump circuit which

is equivalent to a rate monitor. Consequently, the D-FF performs as a phase monitor

implementing first-order noise shaping. This is an important point as it simplifies the

delta-sigma converter. The entire principle is depicted in Fig. 3.7. The input signal, x(t),

generates a linear frequency-modulated signal, y(t), where the frequency of oscillation

is proportional to the input amplitude. Reference points are taken at the oscillator output

waveform, such as the positive-slope zero crossings which occur when the total phase

crosses integer multiples of 2π. Subsequently, these locations are quantized along the

time axis by the D-FF using a grid of equally spaced time slots of width Ts as shown in

Fig. 3.7. The final output, y(n), can then be read out from a synchronized decimation

filter. The exemplary embodiment depicted in figure 3.6 is thus a departed approach

from the topology depicted in figure 3.5 [Hovin et al., 1997; Sogo, 1989]. To obtain

best performance results, we need to make sure that the D-FF is being reset at a rate

greater than the frequency of the carrier sinusoid. This is due to the fact that the D-FF

can only recognize one positive zero crossing at a time. If not being reset fast enough,

the D-FF might miss zero crossings resulting in a loss of information. Other factors

which might limit the performance, but apply to all sigma-delta topologies, include

meta-stability, clock jitter, and phase noise from the oscillator [Tao et al., 1999b; Awad,
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Figure 3.7: The figure shows the modulating signal x(t) and the resulting phase change
of the oscillator, φ(t). The oscillator produces a waveform, y(t), which has zero-
crossings for each multiple of 2π. These zero crossings can be time-domain quantized
by counting them over a fixed time window, Ts. The introduced quantization noise is
differentiated by resetting the count value at the end of each sampling window, thus
performing an accumulate and dump function.
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Figure 3.8: Delta-Sigma Modulator by utilizing a VCO as integrator and a resetting
counter as quantizer.

1997; Oliaei, 2000]. For example, an error can occur when the D-FF is set to clear

while an FM edge is present.

3.3 A FIR Sigma Delta Modulator Utilizing an Asynchronous
Counter

Another novel way to replace the D-FF, XOR and A/D converter from figure 3.5 is to

utilize a resetting counter. This scheme is depicted in figure 3.8. Similar to the asyn-

chronous D-FF, the resetting counter counts the rising and falling edges of the FM signal

over some constant period, Ts, at which, the count value is read out and the counter is

reset. Therefore, the counter acts as a quantizer as well as differentiator for the intro-

duced quantization noise. To make sure the counter does not miss any FM edges, the

maximum count value of the counter must not be exceeded during the time window

Ts. This topology is particularly well suited for utilizing undersampling. In conven-

tional applications where a sample and hold circuit might perform undersampling, the

sampling frequency has to be selected very carefully to avoid aliasing. That is, the band-

width of interest must not cross any integer multiples of Fs/2. Furthermore, for certain

sampling frequencies, Fs, there will be a spectral reversal in addition to the desired fre-

quency shift. This can be seen with the help of figure 3.9. The figure shows the signal

of interest on sheet five. After the undersampling process the signal will fall correctly

onto the first sheet. However, when the signal of interest is on sheet four or six, then

the final signal after being translated down to sheet one will also experience a spectral

reversal, for example. However, when using the resetting counter any undersampling
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Figure 3.9: Frequency translation due to undersampling and spectral reversal.

frequency will work as long as the counter does not miss any edge crossings in between

sampling instances and the sampling frequency satisfies the Nyquist criterium. These

two criteria can easily be satisfied. With reference to figure 3.8 we note the combination

of integrator and differentiator is similar to a sinc decimation filter, more specifically,

similar to Hogenauer decimation filters [Hogenauer, 1981]. An efficient way to real-

ize decimation filters is to utilize a sinc or comb filter. A sinc filter of order L has the

transfer function:

H(z) =

(
1 − z−R

1 − z−1

)L

, (3.4)

where R is the decimation factor. One implementation of a sinc filter is known as

the Hogenauer structure and consists of a series of cascaded accumulators followed

by a cascade of differentiators (CIC) [Hogenauer, 1981]. There is a connection of the

FIR modulator to the Hogenauer sinc decimation filter. One can re-draw the resetting-

counter from figure 3.8 as shown in figure 3.10. The figure shows the resetting counter

which, in a first step, is redrawn as an accumulate and dump circuit [Norsworthy et al.,

1997, p.33]. The accumulate and dump function performs the same operation as a first-

order Hogenauer sinc decimation filter. When omitting the resetting operation from the

counter, the differentiation function is removed leaving an accumulator behind. When

implemented as a modulo 2n accumulator we obtain the modulo 2n accumulator used

in the Hogenauer sinc decimation filters. This is depicted in figure 3.10 which implies
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Figure 3.10: The equivalence of the resetting counter to the sinc decimation filter.

Figure 3.11: The equivalence of the counter to the sinc accumulator.

that the modulo counter can be used in the sinc decimation filter as well as in the FIR

modulator. As a result, we can improve the two structures from figures 3.6 and 3.8 by

combining the decimation filter with the FIR modulator. This can be achieved by ab-

sorbing the accumulating modulo counter from figure 3.11 into the decimation filter. As

shown in [Hogenauer, 1981] the order of the decimation filter should be one higher that

of the modulator. Since the FIR modulator is of first-order a second order decimation

filter will be used. The FIR modulator, followed by a second order sinc decimation fil-

ter based on two accumulators and two differentiators is depicted by the shaded area in
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Figure 3.12: FIR modulator with a CIC decimation filter reducing the output rate from
Fs to FD = Fs

R . Part a) shows the FIR modulator with the CIC decimation filter con-
nected to its output. Part b) depicts the simplified FIR modulator with the resetting
D-FF now absorbed in the decimation filter. All additions are performed in two’s com-
plement or modulo 2n arithmetic with bit width, n, large enough to accommodate the
final output magnitude as explained in Section 2.3.3.

figure 3.12 a). Shown in figure 3.12 b) is how the D-FF was absorbed into the decima-

tion filter by utilizing a counter which is clocked by the zero crossings of the frequency

modulated signal. This simplification not only reduced digital circuitry, but also rids the

topology of the resetting operation. As a result, all the information in the zero crossings

of the FM signal is retained regardless of the system clock frequency, Fs. Additionally,

a clocking scheme will be easier to implement as there is no explicit sampling of the

frequency modulated signal necessary before feeding it into the modulo-counter.

3.4 Theoretical Performance

Having introduced the FIR modulator conceptually, a mathematical model is needed

to gain insight into the theoretical performance. This section treats the quantization

noise introduced when sampling a frequency modulated signal, i.e. output of a VCO

being sampled by a D-FF or counter. As a result, signal-to-noise ratio equations can

be derived to give more insight into the modulator. Figure 3.13 depicts the sampling

and quantization of the frequency modulated signal, FM, at the output of the oscillator.

In part a) of the figure a FM signal from the output of a VCO is shown. The period is
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Figure 3.13: Part a) depicts the asynchronous FM signal from the VCO. Part b) shows
the now synchronized FM signal. In c) the time-domain quantization error is illustrated,
which can be normalized with respect to the sampling time as shown in part d).

denoted by TFM. This signal is sampled, or synchronized with respect to a sampling

clock, Fs, resulting in the quantized signal depicted in part b) of the figure. When

sampling the FM signal an error is introduced which is a timing error in the positive

and negative going edges, as depicted by the shaded area in part c) of Figure 3.13. Each

shaded error pulse will have a pulse width τn which is anywhere between 0 and Ts.

Thus, when normalized with respect to Fs each error pulse will have a height between

0 and 1. This is shown in part d) of Figure 3.13, which shows the normalized error of

constant width Ts but variable height, hn. There are different approaches that can be

taken to analyze the performance of the FIR modulator. As cited in [Iwersen, 1969], the

spectrum of a pulse sequence can be broken into a factor which contains the information

about the pulse shape and a factor which contains the information about the area of each

pulse and the periodicity. Following this, [Roza, 1997] assumes the area An under each

error pulse to be a random quantity and uniformly distributed between 0 and Ts. This

assumption presupposes a lack of correlation between the sampling frequency and the

modulating frequencies. However, there is a strong correlation between the sampling

frequency Fs and the frequency of the FM signal, FFM. Intuitively, the frequency of the

FM signal, FFM is quantized or divided by the sampling frequency, Fs. This division can
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be expressed as:

TFM

Ts
=

⌊
TFM

Ts

⌋
+

〈
TFM

Ts

〉
(3.5)

Here, the b·c operator expresses the floor operator and 〈·〉 the fractional part. Thus, the

normalized error
〈

TFM
Ts

〉
will be an equidistributed modulo one sequence, uniformly fill-

ing the interval [0..1]. As a consequence, a different approach must be taken to analyze

the quantization error. In [Candy and Benjamin, 1981] Candy models a delta-modulator

with an impulse generator which generates a width pulse Ts whenever the asynchronous

FM signal goes up or down. These asynchronous pulses can then be sampled by a sam-

pling clock Fs. This is depicted in Figure 7 in [Candy and Benjamin, 1981]. A parallel

approach is taken here to find an expression for the error pulse sequence. To do so the

square-wave frequency modulated signal is assumed to have a width of αc and period

of Tc. Hence, the duty cycle would be αc
Tc

. This signal can then be expressed as the

summation of two unit-step functions. Since a step-function is the integral of the Dirac

function we can express the frequency modulated signal as:

FM(t) =
∑

l

∫
dt {δ (t − lTc) − δ (t − lTc − αc)} . (3.6)

The Fourier series of a dirac function is given as:

δ(t − T ) =

∞∑
l=−∞

exp
[
2π jl(t − T )

]
(3.7)

With equation 3.7 equation 3.6 is now given by:

FM(t) =
1
Tc

∑
l

∫
dt

{
exp

(
2π j

l
Tc

t
)
− exp

(
2π j

l
Tc

(t − αc)
)}

=
∑

l

sin
(
πlαc

Tc

)
πl

exp
(
2π j

l
Tc

(
t −

αc

2

)) (3.8)

Equation 3.8 is the common Fourier series representation of a pulse train with duty

cycle αc
Tc

. and may be also expressed in a more common form which is given as:

FM(t) =
αc

Tc
+ 2

∞∑
l=1

sin
(
πlαc

Tc

)
πl

cos
(
2π

l
Tc

t
)

(3.9)
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The phase shift of αc
2 is ignored from now on. This FM signal is then sampled by the

sampling clock. We can express the sampling clock as a Dirac comb or X(t) function:

X(t) =

∞∑
i=−∞

δ(t − iTs). (3.10)

Because the Dirac comb is periodic with period Ts, it can be represented as a Fourier

series [Bracewell, 2000; Ortigueira, 2001]:

∑
k

δ(t − kTs) =
1
Ts

∑
k

exp
(
2π jkt

Ts

)
. (3.11)

Thus, when sampling the frequency modulated signal with the clock we can multiply

equation 3.8 with equation 3.11 to obtain:

FM(t) =
∑

l

∑
k

sin
(
πlαc

Tc

)
πl

exp
(
2π j

(
l

Tc
+

k
Ts

)
t
)

(3.12)

In the last step the phase shift of αc
2 was ignored. Hence, we obtain a signal with spectral

lines at f =
(

l
Tc

+ k
Ts

)
as seen from the exponential expression in equation 3.12. Since

we are only interested in the band of [0..Fs/2], or | f | ≤ Fs
2 , the set of frequencies of the

FM(t) signal must satisfy: ∣∣∣∣∣ l
Tc

+ kFs

∣∣∣∣∣ ≤ Fs

2∣∣∣∣∣ l
TcFs

+ k
∣∣∣∣∣ ≤ 1

2

(3.13)

This can only be true if k = −b l
TcFs
c. Then the set of frequencies of FM(t) is given as

f = 〈 l
TcFs
〉Fs. When inserting this k-value into equation 3.12 we obtain:

FM(t) =
∑

l

sin
(
πlαc

Tc

)
πl

exp
(
2π jFs

〈
l

TcFs

〉
t
)

(3.14)

Equation 3.14 represents the sampled frequency modulated signal which now includes

an error term, which is the quantization error. If the center frequency, Fc, is modulated

by a sinusoidal signal, equation 3.14 will be sinusoidal as well. To gain more insight

into the why the center frequency Fc does not influence the overall performance of the

modulator we can simplify the summation in equation 3.14 by noting that:

∞∑
l=−∞

f (l) =

∞∑
l=1

f (l) +

−1∑
l=−∞

f (l) + f (0) (3.15)
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and obtain:

FM(t) =
sin

(
πlαc

Tc

)
πl

∣∣∣∣∣∣
l=0

+ 2
∞∑

l=1

sin
(
πlαc

Tc

)
πl

cos
(
2πFs

〈
l

TcFs

〉
t
)

(3.16)

Equation 3.16 can be further simplified to yield:

FM(t) =
αc

Tc︸︷︷︸
S o

+ 2
∞∑

l=1

sin
(
πlαc

Tc

)
πl

cos
(
2πFs

〈
l

TcFs

〉
t
)

︸                                        ︷︷                                        ︸
S k

(3.17)

Equation 3.17 tells us that we may distinguish between the baseband, S o, and higher-

order bands noise bands, S k. The baseband is the undisturbed input signal, whereas

the higher order bands are the noise components. It can be seen that if Fc
Fs

is a rational

number the sequence 〈l Fc
Fs
〉 will duplicate as the index takes on all integer values. That

is, for a rational number Fc
Fs

, the sequence 〈l Fc
Fs
〉 is repetitive. The power spectrum of the

noise would then be the summation of all amplitude components with Fs〈l Fc
Fs
〉 giving

the desired frequency. It is also clear that when the modulating signal is periodic so is

Fc, making the noise component periodic also. Since sin(2πu) is a periodic function

and αc = Ts we may write for the noise component:

n(t) = 2
∞∑

l=1

sin
(
2π

〈
l Fc

2Fs

〉)
πl

cos
(
2πFs

〈
l
Fc

Fs

〉
t
)

(3.18)

Here, αc equals Ts because the pulse width of the error due to sampling the FM signal

was in the range 0..Ts. Assuming an irrational frequency Fc, so that Fc is incommensu-

rate with Fs, will assure the set of frequencies will be unique and the total power will

be the summation for each input component. We also realize that for a good design,

the center frequency must be high enough to separate the significant noise components

from the baseband as also pointed out in [Roza, 1997]. It is important to note that

the overall signal in equation 3.17 will be independent of the center frequency of the

VCO, Fc. This is because the summation of all amplitude values of the higher order

components in equation 3.18 including the base band will be:

Fc

Fs
+ 2

∞∑
l=1

sin
(
2π

〈
l Fc

2Fs

〉)
πl

=
Fc

Fs
+ 1 −

Fc

Fs
= 1, (3.19)
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Hence, the overall output of the FIR modulator will be independent of the center fre-

quency of the VCO, Fc as shown by the simulation results. When increasing the sam-

pling frequency, on the other hand, we will attenuate the noise by 3dB and thus increase

the signal-to-noise. This is because of the oversampling effect explained in Section 2.2.

Essentially the noise is spread out over more data points, lowering the noise in band.

This can also be seen when looking at the set of frequencies, Fs〈l Fc
Fs
〉, represented in

equation 3.18. Since Fc is incommensurate with Fs, the sequence 〈l Fc
Fs
〉 will uniformly

fill out the interval [0..1] and be independent of Fs or Fc in the limit l → ∞. However,

due to the multiplication factor of Fs in the term Fs〈l Fc
Fs
〉, the frequencies are spread out

by a factor of two when doubling the sampling frequency Fs. It is also noted that due

to the noise shaper (1 − z−1) the noise floor will be attenuated by an additional 6dB. At

the same time, however, the output signal of the FIR modulator will be attenuated as

the VCO gain, Kvco, will be independent of the gain of the differentiator. This is easy to

realize when considering the signal and noise transfer function of the overall FIR mod-

ulator. To start we realize that the signal transfer function (STF) will be the product of

a CT integrator and a DT differentiator. To find the frequency response of the STF the

CT integrator needs to be transformed into the discrete time domain. To have the FIR

SDM produce the same output, the input to the counter needs to be the same for a CT

and DT integrator. Thus, the impulse response of the CT integrator and the equivalent

discrete time integrator has to be the same as well [Oliaei, 2001]. Therefore,

Z−1{H(z)} = L−1{H(s)} |t=nT (3.20)

For an ideal VCO the continuous time transfer function can be represented by its dis-

crete time equivalent:

H(s) =
Kvco

s
⇐⇒ H(z) = Kvco

1
1 − z−1 (3.21)

Then the signal transfer function is given as:

S T F = Kvco
1

1 − z−1 Ts
1 − z−1

1
=

Kvco

Fs
. (3.22)

From equation 3.22 it can be seen that in the ideal case the signal appears scaled by

Kvco/Fs at the output. Note that, a more realistic model for the VCO will include a
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modulation bandwidth, ωmod, which will attenuate signals at high frequencies. Also

note that since there is no feedback anymore in the FIR modulator, the overall perfor-

mance of the system will be only as good as the VCO. Phase noise and jitter effects

as well as the non-linear V-F relationship of the VCO will therefore degrade the per-

formance. The resolution of the FIR modulator depends on the sampling frequency Fs

of the D-FF/counter and the sensitivity of the VCO Kvco. The noise transfer function,

which shapes the quantization noise, is simply given as:

NT F = 1 − z−1. (3.23)

While equation 3.23 gives the correct noise shaping of the quantization noise, it does not

show why the center frequency of the VCO does not influence the overall performance

as equation 3.19 did. Assuming for the error to have zero mean and to be uncorrelated,

the mean square value of the normalized error is given as:

V2
ε = σ2

ε =

∫ 1/2

−1/2
x2dx =

1
12

(3.24)

The overall introduced quantization noise power, V2
ε , is independent of the sampling

frequency, similar to conventional delta-sigma modulators, and thus needs a scaling

factor of 1/Fs as shown in equation 3.24. Intuitively, when Fs is doubled, the normal-

ized error height is doubled as well to keep the area beneath each pulse constant. Thus,

the spectral density, S(f), will be:

S ( f )2 =
1

12
1
Fs

(3.25)

The quantization noise power introduced by the quantizer over the frequency band from

0 to fb is given as:

Pe =

∫ fbw

− fbw

S 2( f )|NT F(z)|2d f =

∫ fbw

− fbw

1
12

1
Fs
|NT F(z)|2d f

≈

∫ fb

− fb

1
12

1
Fs

[
2
(
π f
Fs

)]2

d f

Pe = 10log(
π2

36R3 ).

(3.26)

Thus, with reference to equation 2.23 in Section 2.3.1 equation 3.26 is the same as for

the conventional delta-sigma modulators. However, the output signal amplitude for the



CHAPTER 3. F-O FIR S DM 55

Figure 3.14: Delta-Sigma Modulator by utilizing a VCO as integrator and a resetting
counter as quantizer.

FIR modulator is attenuated by 6dB for doubling Fs as already shown with 3.22. Thus

the maximum signal-to-noise ratio is given as:

S NR ≈ 20log(
AinKvco/Fs

2
√

2
) − 10log(

π2

36R3 ), (3.27)

where Ain is the input amplitude. This result is the same as the one derived in [Hovin

et al., 1997].

3.5 Simulation Results

A first-order FIR modulator was simulated in Spectre using the VerilogA/AMS model

as shown in the appendix A.1. The VCO is an ideal oscillator with center frequency, Fc,

and VCO gain, Kvco. The rectified frequency modulated signal furnishes a resetting-

counter which counts the zero-crossings of the FM signal over the sampling time Ts

before resetting. The topology was shown in figure 3.8 and is repeated in figure 3.14

for convenience. First, equation 3.27 was compared to the experimental data. This

is depicted in Figure 3.15. The figure shows the experimental data points along with

a best fit line to illustrate the SNR trend when varying the sampling frequency, Fs.

Also shown in figure 3.15 is the SNR predicted by equation 3.27. As can be seen the

experimental data does approximate the predicted SNR but rather with slightly higher

slope than the expected 3dB slope. Also, the experimental SNR is approximately 3dB

higher than predicted by equation 3.27. As will be explained shortly, the SNR is quite

dependant on the ratio of the frequency of the VCO, Fvco to the sampling frequency,

Fs. For certain ratios, the baseband will be noisier than for other ratios. This seems
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Figure 3.15: SNR results for a 1st order FIR modulator with varying sampling fre-
quency, Fs. The plot shows the obtained data points along with a best fit line. Also
shown is the SNR predicted by equation 3.27. Details: Kvco = 0.5MHz, Fin = 8.4kHz,
BW = 20kHz, Fc = 4.352MHz.

Figure 3.16: SNR results for a 1st order FIR modulator with varying input amplitude
for three different sampling frequencies. Details: Kvco = 0.5MHz, Fin = 8.4kHz, BW =

20kHz, Fc = 4MHz.
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Figure 3.17: SNR results for a 1st order FIR modulator with varying VCO center
frequency, Fvco. Details: Fs =

√
2 × 100MHz, Kvco = 0.5MHz, Fin = 8.4kHz, BW =

20kHz, Ain = 0.5.

to be the reason for the minor discrepancy of the obtained experimental SNR results

to the theoretical SNR as equation 3.27 does not account for the spectral behavior of

the quantization noise. Second, the input amplitude to the VCO was varied for three

different sampling frequencies, Fs. The result are shown in Figure 3.16. In the figure,

the solid lines represent a best-fit curve, approximating the obtained data points. This

is to illustrate that for doubling the sampling frequency, Fs, a 3dB signal-to-noise ratio

gain is achieved. The dots in figure 3.16 represent the data-points for the best fit line of

Fs =
√

2×25MHz as an example. This is to show that there is a variation in the in-band

noise as the spectral components of the noise vary with input amplitude. This is similar

to conventional delta-sigma topologies. Note however, that there is no maximum input

range for the FIR modulator as the VCO is inherently stable, always producing a limited

output signal. Thirdly, in a another simulation, the center-frequency of the VCO was

changed while keeping all other parameters constant. The results for this simulation are

shown in figure 3.17. As expected from theory, the signal-to-noise ratio is independent

of the center frequency, Fo. Still, there is a variation in signal-to-noise ratio as some

ratios of Fc
Fs

will result in a quieter or more noisy base band. To illustrate this point we
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Figure 3.18: Total power of noise components within baseband. Depicted also a small
sinusoid centered so as to minimize noise components. Fs =

√
(2)×25e6, Fc = 8MHz,

Kvco = 0.25MHz

can utilize equation 3.18 which is repeated here:

n(t) = 2
∞∑

l=1

sin
(
2π

〈
l Fc

2Fs

〉)
πl

cos
(
2πFs

〈
l
Fc

Fs

〉
t
)

(3.28)

For certain ratios of Fc
Fs

the baseband will be noisier than for other ratios. The set of

frequencies is given as Fs〈l Fc
Fs
〉, and for certain values of l these will fall into baseband,

f ≤ BW. Since the frequency of oscillation of the VCO is given as Fvco = Fc+Kvco×xin,

we can see that a dc-input be directly seen as simply a change in Fc. Thus, the finite set

of frequencies of f (l)set = Fs〈l Fc
Fs
〉 can be obtained and the values of l which cause f (l)set

to be ≤ BW can be obtained. Each dc-input will produce a distinct set of frequencies

and all the powers which fall onto the same frequency can be added. This is illustrated

in figure 3.18. The figure plots the simulation results of the total power of the noise

components which fall into baseband as a function of various dc-input values. As can

be seen, for some inputs there are more noise components which fall into baseband than

for other input values. In figure 3.18 one such value is xin = 0.45 and it seems a good

choice to center a small sinusoid at this value, since the center frequency of the VCO
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is usually given. This is indicated by the sine-wave in figure 3.18. It might also be

noted that since the introduced quantization noise is not fed back into the modulator as

in conventional modulators the noise in the FIR modulator tends to be more correlated.

3.5.1 Non-Linearities

While the FIR modulator is easy to implement and requires only little analog and digital

circuitry, it is mainly limited by the noise performance and linearity of the VCO. This is

because there is no negative feedback to reduce aforementioned problems common to

VCOs. The two main limitations for the analog circuitry are analyzed next. First phase

noise which is common to oscillators is observed and its effects on the signal-to-noise

ratio. Second, the linearity of the VCO is discussed. The main limitation for the digital

circuitry is Jitter of the required sampling clock and meta-stability.

The source of phase noise in an oscillator is due to thermal and flicker noise [Agi-

lent Technologies, 2006]. Jitter in autonomous blocks is almost completely due to the

oscillator’s phase noise. Phase noise and jitter are also two related quantities. Phase

noise is a frequency-domain view of the noise spectrum around the oscillator signal,

while jitter is a time-domain measure of the timing accuracy of the oscillator period.

Phase noise can thus be related to jitter, but only in the absence of flicker or 1/f noise.

Since oscillators translate signals between frequencies, any injected noise at baseband

will appear near the carrier and its harmonics. Similarly, noise at the harmonics or car-

rier will appear in turn at baseband. In [Kundert, 2006] the author relates phase noise

of an oscillator to a jitter metric. This relation is expressed in equations 63, 74, and 78

on pages 31 through 33. Then the equivalent jitter can be modeled as a random varia-

tion in the frequency of the VCO. Equation 85 on page 38 in [Kundert, 2006] gives the

dithered frequency of the VCO including jitter as:

f j =
f0

1 + ∆T j f0
, (3.29)

where ∆T j is given as:

∆T j =
√

KJδ j (3.30)
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Figure 3.19: Block diagram of the behavioral model of the oscillator used in a first-
order FIR modulator which includes jitter [Kundert, 2006].

Figure 3.20: SNR results for a 1st order FIR modulator with phase noise related to
jitter. Details: Fs =

√
2 × 50MHz, 100MHz, 200MHz, Kvco = 0.5MHz, Fin = 8.4kHz,

BW = 20kHz, Ain = 0.5, f0 = 4.352MHz.

The term f0 is the free-running frequency of the VCO, ∆T j is the random variation in

each period of the VCO due to jitter and δ j is a zero-mean unit-variance Gaussian ran-

dom process. The factor K in equation 3.30 is the number of jitter updates per period.

For a square wave K is 2. This jitter metric based on equation 3.29 can then easily be

included into an oscillator VerilogA/AMS model and the FIR modulator can be simu-

lated. By varying the jitter we can thus gain insight into the effects of phase noise of the

oscillator on the overall performance of the FIR modulator. Intuitively, since the jitter

due to phase noise is quite random, it should act as an equivalent to dither in conven-

tional delta-sigma modulators applied at the input [Chou and Gray, 1991], breaking up

idle tones in the output of the modulator to some extend but also increasing the noise

floor in baseband. A model for the oscillator VerilogA/AMS model is shown in Figure
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3.19. Thus, the period jitter, J, is modeled as a random variation in the frequency of

the VCO. Note, that the jitter appears at the input of the VCO and will thus directly

add to the output of the FIR modulator. A first-order FIR modulator was simulated for

various jitter values and sampling frequencies. The model for the VerilogA/AMS code

is given in Appendix A.1. This is the same model as used before for simulating the FIR

modulator. This time however, the optional jitter parameter is used, dithering the fre-

quency of the VCO. The obtained results are depicted in Figure 3.20. As can be seen in

figure 3.20 for low jitter/phase noise values the SNR does not degrade much, however,

at large jitter values and high sampling frequencies the SNR degrades by approximately

3dB per doubling the phase noise. When a low sampling frequency is used, for instance

the
√

(2) × 50MHz plot in figure 3.20 the SNR becomes less dependent on phase noise

and thus only degrades a little. In general, low noise oscillators should be used to obtain

best performance, however, requirements are less stringent when using a low sampling

frequency. For instance, undersampling the output of oscillator is a good way to be

less affected by phase noise or jitter. Another non-ideal effect is the non-linearity of

the voltage-controlled oscillator. That is, the frequency of the output of the VCO will

not be a linear function of the input voltage. This non-linearity of the input-voltage

output-frequency relationship will introduce even and odd order harmonics in the out-

put spectrum. To keep these harmonics to a minimum, the oscillator should be operated

in the most linear region and the input voltage amplitude should be kept as small as

possible. However, performance evaluation and demands entirely depend on the appli-

cation purpose. In audio applications such as studio microphones certain nonlinearities

might be desired. For instance, distortion by-products that lie closer to the excitation are

less likely to be perceived [Earl and Lidia, 2003]. Furthermore, non-linearities caused

by the oscillator or more importantly by other components such as a condenser micro-

phone for instance will produce a more rich appearing sound to the ear. As will be

shown later, we use the oscillator FIR modulator to implement a digital microphone.

Meta-stability in digital systems occurs when two asynchronous signals combine in

such a way that their resulting output goes to an indeterminate state [Wellheuser, 1996].
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Figure 3.21: Meta-stability: a) Probability to enter a metastable state b) Probability to
still be in a metastable state after some time tw

A common example is the case of data violating the setup,ts, and hold, th, specifications

of a latch or a flip-flop. In a synchronous system, the data always has a fixed relationship

with respect to the clock. When that relationship obeys the setup and hold requirements

for the device, the output goes to a valid state within its specified propagation delay

time. However, in an asynchronous system, the relationship between data and clock

is not fixed, therefore, occasional violations of setup and hold times can occur. When

this happens, the output may go to an intermediate level between its two valid states

and remain there for an indefinite amount of time before resolving itself, or it may

simply be delayed before making a normal transition. In either case, a metastable event

has occurred. Eventually, the output will stabilize at a valid logic level; however, logic

circuitry after the flip-flop might fail due to the delay caused by metastability. Thus, it is

important to understand when a flip-flop might fail. The probability for a device to fail

P f ail is given as the product of the probability that the device will enter meta-stability

Pe and the probability that the device is still in a metastable state Ps after some time tw.

P f ail = (Pe) (Ps) (3.31)

The probabilities Pe and Ps are defined in Figure 3.21. The probability to enter a

metastable state is given as the probability of a given transition being in the setup+hold

window ts + th which is the fraction of time that is setup and hold window. This is

depicted in Figure 3.21a). The device might still be in a metastable state after some

time tw when the starting voltage ∆Vs was too small. The Probability of starting with
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Figure 3.22: Mean time between failures plot.

this voltage is proportion of total voltage range that is too small. This is depicted in

Figure 3.21b). As a result the failure probability and error rate are given as:

P f ail = (Ps) (Pe) = (ts + th) fcycleexp
(
−

tw

τ

)
(3.32)

f f ail =
(

fsig

) (
P f ail

)
= fsig (ts + th) exp

(
−

tw

τ

)
(3.33)

In Equation 3.33 fsig is the frequency of the signal to be sampled and τ is the circuit time

constant (which has also been shown to be inversely proportional to the gain-bandwidth

product of the circuit). To see how meta-stability will effect the FIR modulator consider

the example given below. Assume a rather large value of th = ts = τ = 100ps for

illustration purposes and assume the maximum FM frequency for a 0.5sin input signal

is about Fs/4. With this in mind we can plot equations 3.33 to plot the time till the first

failure as a function of sampling frequency Fs. Figure 3.22 shows that for high clock

frequencies meta-stability becomes an issue. To solve this problem one can easily use

a frequency divider before applying the FM signal to the D-FF. However, a better ap-

proach is to use under-sampling as a means to keep the sampling frequency at a desired

value. This is especially beneficial when the frequencies at the output of the VCO are in

the UHF range. As will be shown in an application example, we use undersampling of
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the frequency modulated signal to circumvent then otherwise difficult data acquisition

at very high frequencies.

3.6 Discussion and Conclusion

It was shown that a first-order FIR modulator can be realized by using a VCO to create

a frequency modulated signal and sampling D-FF in combination with an XOR gate to

reproduce the input signal. This topology was then simplified by combining the XOR

gate and D-FF into a single asynchronous D-FF utilizing a one-shot. This simplifica-

tion was possible by realizing that a resetting D-FF acts as a time-domain quantizer and

differentiator at the same time. Additionally, the asynchronous D-FF was replaced by

a resetting counter, also acting as a time-domain quantizer and differentiator. The main

advantage of using an asynchronous counter is to utilize powerful under-sampling tech-

niques. With oscillators producing often very high frequency signals [Tsai et al., 2005;

Li and O, 2005; Bao et al., 2005], it was felt that undersampling is a useful technique to

process the FM signal at a much lower frequency. Using a counter in conjunction with

undersampling also eases the requirements on the sampling frequency, Fs. Hence, a

FIR modulator consisting of a VCO and resetting counter realizes an efficient A/D con-

verter with reduced circuitry, that is very versatile with undersampling techniques, and

still gives good performance results. Next, the first-order FIR modulator was analyzed

by providing a mathematical model for the introduced quantization noise power, and

a signal-to-noise ratio equation was found. This equation was successfully compared

to simulation results which were obtained using a VerilogA/AMS model of the first-

order FIR modulator. Similar to conventional modulators, the noise floor is reduced by

increasing the sampling frequency Fs. When doubling Fs, the noise floor is reduced

by 3dB due to the oversampling effect, and 6dB are obtained by attenuating the noise

floor in the band of interest by the differentiator. However, since the integrating gain of

the VCO, Kvco, is independent from the sampling frequency Fs the output signal will

be reduced when Fs is increased, resulting in an overall 3dB signal-to-noise ratio im-

provement per doubling of Fs. Even though the presented FIR modulators used little
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circuitry, they are affected by non-idealities such as phase-noise of the oscillator and

meta-stability of the digital circuitry. Hence, jitter due to phase noise of the oscillator

and its effects on the first-order FIR modulator was investigated. It was found that only

large jitter values will degrade the performance. When the jitter is large enough to effect

the SNR, then a 3dB decrease per doubling the jitter value was observed. In addition

to phase-noise, meta-stability of the digital circuitry was considered also. Since the re-

setting of the asynchronous D-FF needs to satisfy certain setup and hold requirements,

errors might occur when an input is present. As a result, a mean-time between failures

figure was produced revealing a strong dependency of the sampling and resetting time,

Fs to the failure rate of the device. Hence, it is desired to utilize undersampling to

circumvent very high sampling frequencies. A lower sampling time in turn relaxes the

requirements on the resetting frequency of the D-FF.
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CHAPTER IV

FIR DIGITAL MICROPHONE UTILIZING

UNDERSAMPLING

Microphones are usually realized by utilizing a capacitive changing transducer to pro-

duce a DC voltage across a high impedance resistor proportional to the impeding sound

waves. This voltage drop can then be amplified before it is being converted into the digi-

tal domain by a delta-sigma analog-to-digital converter. With the change in capacitance

due to the sound waves being quite small, and the high impedance resistor being noisy,

a clean and high quality signal is difficult to achieve. A better approach would be to

utilize the presented FIR modulator to realize a digital microphone. As will be shown

in this section, this approach helps alleviate some of the problems often encountered

with conventional microphone implementations. The proposed digital microphone uses

minimal circuitry, keeping the component count low, solves the problem with the small

capacitance change in the transducer, and uses undersampling as a novel way to directly

digitize sound waves. The proposed topology is based on a first-order FIR modulator;

and two different oscillators are being used to implement this novel digital microphone.

Before delving into details on two different circuit implementations using various os-

cillator types, conventional microphones are reviewed first.

4.1 Conventional Condenser Microphones

A condenser microphone operates as a variable capacitor formed by a diaphragm and a

back electrode [Sinclair, 1998, p.19]. As a result, when the distance between the two

electrodes changes due to impeding sound pressure waves, the capacitance varies ac-

cordingly. There are two main operating principles to detect this capacitance variation.

1) In low-frequency (LF) condenser applications the audio signal can be generated di-

rectly as shown in 4.1 a). A battery is connected to the two electrodes of the condenser
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Figure 4.1: Schematic of a typical condenser microphone.

capsule, which produces an electrical potential between them. The amount of charge

is determined by the voltage of the battery, the area of the diaphragm and back-plate,

and the distance between the two. This distance changes as the diaphragm moves in

response to sound. When the distance changes the voltage across a high impedance

resistor, RLoad, changes accordingly. The signal read across the resistor needs to be am-

plified before being digitized by a close by A/D converter. Drawbacks of this approach

include the noisy high-impedance load resistor which generates large quantities of ther-

mal noise [Brauer et al., 2004]. In combination with the microphone capacitance, the

load resistor creates an equivalent circuit of a low-pass filter of first order for the thermal

noise (figure 4.1 b)), and the high-pass RC network characteristic prevents measuring

low frequency audio signals (figure 4.1 c)). The high source impedance inherent to these

LF methods must also be matched to the signal lines requiring amplifiers with very high

input impedances [Hibbing, 2004]. 2) On the other hand, RF condenser methods use a

high frequency carrier frequency onto which the sound signal is modulated utilizing os-

cillators. As a result, the audio signal needs to be demodulated thereafter. Even though

this approach is more complicated compared to LF methods, it alleviates some of the

LF methods drawbacks. The condenser capsule impedance can be decreased by using

a high frequency carrier signal as Z = 1
2π fCmic

. Also, the impedance can be kept constant

as it is independent of the input sound signal [Hibbing, 2004].
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4.2 RF-Topologies

There are two basic ways to implement condenser microphones based on RF methods.

Either the condenser capsule’s capacity is part of an oscillator’s resonant circuit, so that

the oscillator’s frequency is modulated with the audio frequency and can be demod-

ulated with a usual frequency demodulator or discriminator. Or, alternatively, a fixed

oscillator generates a fixed frequency and the condenser capsule’s capacity is part of

the frequency demodulator, so that with the audio frequency it de-tunes the demodula-

tor and thus produces the audio signal [Sennheiser, 1989]. The first approach is adopted

here as the FIR sigma delta modulator proposed in section 3 can be used to directly dig-

itize the frequency modulated signal produced by the oscillator. In this chapter, two dif-

ferent oscillator implementation where used to realize the microphone circuit. Firstly,

an LC-oscillator where the condenser capsule replaces the varactor in the LC-tank was

used to create a frequency modulated signal according to the impeding sound waves.

Secondly, connecting a single resistor-capacitor network to an inverting Schmitt trig-

ger will produce an oscillator creating a frequency modulated signal proportional to the

modulating sound waves. In both approaches this frequency modulated signal is under-

sampled before being digitized by a first order FIR modulator. As will become apparent

shortly, the modulation due to a change in the condenser capsule capacity with imped-

ing sound waves is often very small resulting in only minor frequency modulation. This

in turn makes it difficult to achieve a high dynamic range in the digital output signal.

Employing high frequencies of the oscillator will alleviate this problem as outlined in

the following sections but increases requirements on the sampling circuitry responsible

for handling the frequency-modulated signal. As a consequence both circuits presented

in this chapter utilize undersampling to efficiently handle high frequency signals.

4.2.1 LC-Oscillator based FIR approach

As shown in figure 4.2 a sampling D-FF can be connected to an LC-oscillator where

the varactor has been replaced with a transducer. Sound pressure waves will thus cre-

ate a modulated signal at the output of the LC oscillator prior to digitization with the
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Figure 4.2: Digital microphone based on an LC-oscillator. The LC-Oscillator operates
at approximately 9MHz with the sampling frequency, Fs, set to 1.2MHz.

FIR modulator from section 3. The performance of the condenser microphone is then

determined mainly by the nonlinearities of the diaphragm, phase noise of the oscillator,

and jitter of the sampling clock. The nonlinearity of the diaphragm depends on the di-

aphragm chosen to the acoustic area of application, the tonal character of the audio to

be recorded, and the expectations and requirements with regard to the resulting sound

character. For a detailed treatment of the nonlinearities of condenser microphones and

how they are perceived by the human ear the reader is referred to [Earl and Lidia, 2003;

Peus, 1997]. Since there is no feedback in the FIR modulator, the overall performance

of the system will be only as good as the oscillator. Phase noise inherent to autonomous

circuits such as oscillators will directly add to the output [Hegazi et al., 2004]. To real-

ize the circuit shown in figure 4.2, a Behringer B1 condenser microphone was obtained

and the capsule was extracted. Measurements showed that the center capacitance of the

transducer and the approximate capacitance deviation when excited with sound in the

case of the Behringer B1 microphone were approximately 60pF ± 0.1pF. A common-

base oscillator approach was adopted for the LC Oscillator to form the frequency mod-

ulated signal. For the design process the following approach was adopted.

• The small-signal model of the oscillator is used to analyze and determine all

circuit component values.

• The oscillator is simulated in Spectre(RF) to gain insight into tuning sensitivity,

non-linearity and noise figures.

• In Spectre, the FIR modulator is then simulated and results are observed
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Figure 4.3: Small-signal equivalent circuit of the Hartley common-base circuit.

• A printed-circuit-board implementation of the FIR modulator is realized using

discrete SMD components and experimental results are recorded and analyzed.

The small signal model for the common-base Hartley oscillator was thus found first

and is given in figure 4.3. Note, that the capacitance C f was ignored as its reactance is

assumed to be negligible to the reactance of L1. To design the oscillator, the closed-loop

system equations where found by summing the currents at the collector:

vc

(
sC +

1
Rp

+
1

sL1

)
− ve

(
gm +

1
sL1

)
= 0 (4.1)

At the emitter:
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(
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1
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+
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+
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(
1
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)
= 0 (4.2)

This can be solved in several ways; however, a matrix expression:

[Y][v] = 0 (4.3)
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The poles will be formed by the determinant of the matrix. To find the conditions for

oscillation, we can set the determinant to zero and solve.(
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When the substitution is made that s = jω , even-order terms (s2 and constant term)

will be real, and odd-order terms (s3 and s ) will have a jω in them. Thus, when the

even-order terms are summed to zero, the result will be an expression for gain. When

odd-order terms are summed to zero, the result will be an expression for the frequency.

When assuming RE = ∞ then the result for the odd-order terms is:

ω =
1√

C(L1 + L2) +
L1L2

Rpre

. (4.6)

The result for the even-order term:

gm =

(
1 +

L1

L2

)
1

Rp
(4.7)

Thus, for the oscillator to start oscillating the gm-value has to be greater than (1 +

L1/L2)/(Rp). The capacitor C f is to prevent a short circuit from the collector node to

the emitter node via L1. In order for C f not to influence the operation of the oscillator, its

reactance value should be negligible in comparison with that of inductor L1. Then, the

node between L1 and L2 is directly connected to the emitter. However, it was found that

if C f is made too big the wide band-width of the low-pass feedback network will result

in low frequency oscillations. To bias the oscillator a one-battery biasing scheme as

shown in figure 4.4 was adopted. The bias-circuit components R1,R2,RE are selected to

produce a given current flow under no-signal conditions. The collector current Ic should

be set to a value to produce the required output power. With the correct bias-feedback

the output power is about 0.25 times of the input power. Thus, divide the desired output

power by 0.25 to obtain the needed input power. For a given supply voltage VCC, Ic can

then be found by dividing the input power by VCC. The equations given below can then

be used to establish the desired collector current Ic and collector-emitter voltage Vce.

For β > 1, Ic ≈ Ie. It is important that for best stability Ve is normally about 10%− 20%

of VCC.

Re =
Ve

Ic
(4.8)

Vb = Ve + Vbe ≈ Ve + 0.6 (4.9)
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Figure 4.4: One-battery biasing

Selecting IR2 = 10Ib = 10Ic/β:

R2 =
βVb

10Ic
(4.10)

Finally,

R1 =
β(VCC − Vb)

11Ic
(4.11)

When testing the biasing circuit it was validated that Ve is about 10% − 20% of VCC

and than Vb is 0.6 V higher than Ve. There are many other biasing schemes each ap-

plicable for a certain application. For other biasing schemes the reader is referred to

[Rhea, 1995, (pp.133ff)]. The capacitor C1 and any power supply by-pass capacitors

should be such that the reactance is < 5Ω [Lenk, 1999, pp.59ff]. Capacitors C1 and a

possible capacitor in parallel to RE must bypass the radio frequency signal, and there-

fore, should have relatively high values. CE is selected such that its reactance at the

resonance frequency is negligible in comparison with RE [Misra, 2001, pp.455ff]. Sim-

ilarly the parallel combination of R1 and R2 must be infinitely large in comparison with

the reactance of C1. This design process for a common-base oscillator is only an initial

step. Having done the initial calculations first, Spectre(RF) was used to design and sim-

ulate the common-base LC oscillator from figure 4.2. The values for the bias network
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Figure 4.5: Linearity and tuning sensitivity of the LC oscillator.

were set to R1 = 10kΩ, R2 = 20kΩ, RE = 1kΩ, C1 = 100pF, C f = 180pF, L1 = 2uH,

L2 = 2uH, and the capacitance C was varied in accordance with the obtained condenser

capsule. Thus, the capacitance was set to 60pF and changed by approximately 1pF.

The frequency of the circuit is given by L1, L2, and C. The total inductance is given by

L1 + L2. Ideally, the capacitance should be 2 pF per meter, where the wavelength in

meters is found by 300/frequency(MHz) [Lenk, 1999, p.63]. However, the transducer

capacitance was fixed at 60pF and could thus not be changed. Alternatively, an induc-

tive reactance between 80Ω and 100Ω at the operating frequency is a good guideline

as well. Since the transducer capacitance is rather large two small 2 µH inductors had

to be used. Since v = L di
dt and i = C dv

dt , reducing the inductors even further, however,

will require large currents spikes which the active device might not be able to provide.

First, a tuning sensitivity and linearity (Swept PSS) simulation was performed and the

results are depicted in Figure 4.5. As can be seen from the figure the frequency of os-

cillation is around 9.71MHz and varies almost linearly with a change in capacitance.

The change in capacitance is depicted on the x-axis and is in the range from 60pF to

61pF. Also shown in figure 4.5 is the derivative of the dependency of the frequency

of oscillation with respect to a change in capacitance. This derivative, which is also

the gain of the oscillator, Kvco, gives insight into the linearity. As can be seen there is

a small non-linearity associated with the oscillator. This will result in even and odd
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order harmonics in the output spectrum as will be shown shortly. Note, that this non-

linearity is due to the oscillator and not due to a varactor or transducer, which when

implemented, will add a further nonlinearity. In case of a transducer from a condenser

microphone, a certain non-linearity is desired as it will make sound be perceived in a

more pleasant way [Earl and Lidia, 2003]. In a second simulation step the complete FIR

modulator from figure 4.2 was simulated in Spectre. That is, the output of the oscilla-

tor was hard-limited and the de-modulation scheme using an XOR gate and D-FF was

used to demodulate and digitize the frequency-modulated signal. The capacitance was

changed with a sinusoid of frequency 440Hz. Based on the linearity plot shown in fig-

ure 4.5 the center capacitance was set to 60.5pF and varied by 0.1pF. Since the change

in capacitance is in reality very small also, undersampling the frequency-modulated

signal was utilized. That is, the sampling frequency is much lower than the frequency

of the oscillator. Undersampling results in a frequency translation and is thus an effi-

cient way to deal with high frequency signals. This undersampling results in reduced

component count because a complete analog down-conversion stage is eliminated. As

a consequence, care must be taken to choose a sampling frequency Fs. The sampling

frequency must be chosen such that there is no overlapping of the aliased components.

This means that the sampling frequency must be at least twice the signal bandwidth,

and the sampled signal must not cross an integer multiple of Fs/2 [Analog Devices,

1998, p.5]. Undersampling eases requirements on the sampling circuitry as lower clock

frequencies are needed. Furthermore, as less samples are taken on-line digital signal

processing will require less computation effort. Note, that undersampling still satisfies

the Nyquist criterium as the sampling frequency is still higher that twice the bandwidth

of the signal of interest. The obtained data values were exported to Matlab and the

power spectral density obtained. The PSD plot is shown in Figure 4.6. As seen in the

figure, the fundamental is at the expected frequency of 440Hz. The quantization noise is

nicely shaped out of the band of interest to first order. Having used Spectre to simulate

the LC-oscillator FIR modulator the topology from from figure 4.2 was implemented.
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Figure 4.6: PSD plot of the output of a 1st order LC-oscillator FIR modulator simu-
lated in Spectre. Details: Fin = 60.5pF + 0.1pF × sin(2π440t), Fs = 1.4142135MHz.

Even though all design parameters were selected carefully it was found that when im-

plementing the oscillator on a printed circuit board using discrete SMD components

the oscillator would often not show the desired results, and a trial-and-error approach

was adopted to fine-tune the components values. With the two 2 µH inductors the LC

oscillator showed a free running frequency of about 9MHz. With a 0.1pF change of

capacitance due to modulation, the anticipated change in frequency was 9kHz, requir-

ing a minimum sampling frequency of ≈ 20kHz. A hard limiter was used to rectify the

FM signal before feeding it into a data-acquisition board. The data-acquisition board

essentially performed the sampling operation. The obtained values were exported into

Matlab where digital signal processing was done. This entailed delaying each sample

and feeding it into a digital XOR gate which demodulated the frequency-modulated

signal as depicted in Figure 4.2. The sampling frequency Fs was set to 1.2MHz. This

undersampling frequency Fs was well above the anticipated Nyquist frequency. The

overall circuit was excited with voice samples (≈88dB SPL) as well as pure sine waves

at a frequency of 440Hz. The PSD of the modulator output with a 440Hz sine wave at

the input is shown in figure 4.7. As seen from figure 4.7 the quantization noise is nicely

attenuated at low frequencies while it becomes more dominant at higher frequencies.

As shown by the dashed line in figure 4.7, the noise is attenuated sufficiently till about
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Figure 4.7: Power spectral density plot of the acquired digital output of the digital
microphone. The Figure shows the fundamental at 440Hz and its harmonics. The
fundamental is at -61dB. Also shown is the power supply noise at multiples of 50Hz.
Circuit/Acquisition details: Fs= 1.2MHz, Fin=440Hz, N = 221 samples, fc ≈9MHz
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2kHz. At this frequency the noise floor rises and will become more audible with re-

spect to the fundamental input signal. Over this frequency range the dynamic range

is approximately 115-61=54dB. Compared to the Spectre simulation result from figure

4.6 the performance seems not as good, however, when overlaying the two graphs and

considering a signal bandwidth of 10kHz for comparison, the dynamic range is almost

identical. This can be seen in Figure 4.8. Figure 4.8 a) shows the simplified result of the

FIR modulator simulated in Spectre, whereas part b) of the figure shows the simplified

result obtained from the implemented FIR modulator on a PCB board. Considering a

bandwidth of 10kHz, the simulation results are almost identical. Also note that at low

frequencies, the spectrum of the FIR modulator simulated in Spectre is quieter as no

power supply noise is present. Additionally, there is no low-frequency contamination

due to background noise which was picked up by the condenser capsule. Figure 4.7

also reveals the two main limitations to the performance of the circuit used. Firstly,

knowing that the output-amplitude is scaled according to equation 3.27, the signal out-

put level of -61dB suggest a frequency modulation of approximately 1060Hz. This

is due to the small capacitance change in the condenser capsule. Thus, it is desirable

to use a large diameter condenser capsule resulting in a higher frequency modulation

and thus in a higher signal-to-noise ratio. However, a better alternative is to utilize a

higher frequency oscillator which will result in more frequency modulation and is a

good way to increase performance. Since the frequency of oscillation is determined by

f = 1
2π
√

LC
, if the frequency of the oscillator is increased by a factor of M with a fixed

transducer, then the modulation is increased by a factor of
√

M. This approach is es-

pecially advantageous when using an integrated circuit approach as the frequencies can

be much higher than with the discrete circuit here used. Undersampling the frequency

modulated signal will then provide the ideal means to process the very high frequencies

which can be achieved by an integrated circuit approach. Also shown in figure 4.7 are

the harmonics of the fundamental frequency which are mainly due the characteristic

non-linearity of the condenser capsule but also due to the non-linearity of the oscillator.

Secondly, as seen in Figure, 4.7, the power supply noise adds to the quantization noise,
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Figure 4.8: Figure depicting the comparison between the PSD results of the Spectre
simulation to the PSD results from the circuit realization. Part a) shown the results
from the Spectre simulation. Part b) depicts the results obtained from the LC-oscillator
circuit implementation.
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Figure 4.9: Delta sigma modulator utilizing a Schmitt-trigger oscillator as integrator,
sampling D-FF and phase detector. Implemented Schmitt-trigger oscillator oscillates at
approximately 91MHz. The sampling frequency, Fs, was set to 0.8 MHz.

with the fundamental occurring at 50Hz. Thus, it is important to appropriately decouple

the oscillation circuit from the power supplies, or us a battery powered approach. This

circuit noise which resides at low frequencies is mixed with low frequency background

sound, picked up by the condenser capsule. In conclusion, the LC-oscillator utilized

to implement a digital FIR microphone gives a proof of concept for the FIR modulator

digital microphone; however, the performance in terms of SNR is rather limited with

the circuit used. To improve upon the results obtained, one would have to assemble a

more professional circuit, ideally an integrated approach, to reduce circuit noise. This

would also result in higher frequencies of oscillation increasing the performance. More

specifically, a factor M increase in oscillation frequency of the oscillator will yield a
√

M factor increase in modulation-width increasing the output amplitude by roughly

3dB for doubling M. Since the experimental circuit uses 1st order noise shaping, a con-

venient way to further improve the SNR is to extend the topology from figure 4.2 to a

second order topology.

4.2.2 Schmitt-Trigger Oscillator FIR approach

As a second implementation, an inverting Schmitt-trigger was used to realize an oscil-

lator as shown in 4.9. This approach was adopted to move towards a more integrated

approach by ridding the FIR modulator from the previous section of the undesirable

inductor. As seen in figure 4.9, the transducer is now connected to the input of the in-

verting Schmitt trigger. Thus the RC network consisting out of the transducer and the
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high frequency impedance of the feedback wire will change the oscillation proportion-

ally to the impeding sound waves. With the 60pF transducer and no additional resistor

in the feedback path, the frequency of the circuit was about 91MHz. This frequency

should improve the performance by roughly
√

10 compared to the LC-oscillator ap-

proach from the previous section which oscillated at 9MHz. Thus, we expect about

9dB more SNR. With a 0.1pF change of capacitance, the anticipated change in fre-

quency of f ≈ 1
RCln2.26 due to modulation was about 150 kHz. Utilizing a Schmitt

trigger, there is no need to use an explicit hard limiter to rectify the FM signal before

feeding it into a data-acquisition board. As in the case with the LC oscillator under-

sampling was used to down-convert the 91MHz signal and thus ease the requirements

on the sampling circuitry. The obtained values were exported into Matlab where digital

signal processing was done. This included delaying the sampled FM signal and feeding

into and XOR gate as depicted in figure 4.9. The sampling time Ts was set to 0.8MHz.

This undersampling frequency Ts was well above the anticipated Nyquist frequency of

40kHz. The overall circuit was excited with voice samples (≈88dB SPL) as well as

pure sine waves. The PSD of the modulator output with a 1kHz sin-wave at the in-

put is shown in figure 4.10. As seen from figure 4.10 the quantization noise is nicely

attenuated at low frequencies. The figure also shows a dashed line indicating that the

noise floor is nicely attenuated until about 20kHz. Over this range the dynamic range is

approximately 68dB. Comparing this to the results of the LC-oscillator approach shown

in Figure 4.7, we obtained more dynamic range over a 10 times higher frequency band

by utilizing a more integrated approach. The main limitation of the approach used here

is again due to the small capacitance change in the condenser capsule. Even though

the frequency of oscillation is higher than in the LC-oscillator case, it is limited by the

rather large condenser capacitance of 60pF to about 91MHz. An even higher frequency

oscillator would alleviate some of the drawbacks as a higher frequency will result in

more frequency modulation and is a good way to increase performance. Thus a com-

pletely integrated circuit approach is more appropriate as the frequencies can be even
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Figure 4.10: Power spectral density plot of the acquired digital output of the digital mi-
crophone. The figure shows the fundamental at 1kHz and its harmonics. The fundamen-
tal is at -11dB. Also shown are the harmonics at multiples of 1kHz. The dashed lines
shows that a slightly higher dynamic range as in the LC oscillator is achieved but over
a ten times higher bandwidth. Circuit/Acquisition details: Fs= 0.8MHz, Fin=1kHz,
N = 218 samples, fc ≈91MHz

Figure 4.11: Comparison of an ideal first-order modulator simulated in Matlab to the
obtained results from the Schmitt-Trigger Based FIR modulator from figure 4.10.
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higher than with the discrete circuit used here. Compared to the LC-oscillator the sig-

nal is about 69dB above the noise floor whereas in the case of the LC-oscillator it is

only 64dB. Thus, there is a 5dB improvement even though the sampling frequency Fs

is slightly lower at 0.8MHz. It is also noted that the noise floor is almost constat up

until 20KHz resulting in a high dynamic range over the entire audio band. After the

20kHz mark the noise floor starts rising, but still at a lower rate than in the case of the

LC-oscillator. In figure 4.11 a comparison is shown to an ideal first-order FIR modula-

tor simulated in Matlab. As seen in the figure the low-frequency noise is much lower in

the ideal case as no circuit noise is present. Interestingly, the noise shaping is less pro-

nounced in the experimental setup while the quantization noise of the ideal modulator

rises as expected. While the overall performance does not yet compare to commercial

products, the Schmitt-trigger implementation shows that an oscillator with a higher fre-

quency will result in better performance as it achieves reasonable resolution over the

entire audio band. Also, in contrast to the LC-oscillator circuit, the Schmitt-trigger cir-

cuit was powered by a battery, thus reducing power supply noise at multiples of 50Hz.

In conclusion, the Schmitt-trigger based FIR digital microphone improves upon the re-

sults from the LC-oscillator based approach. A higher dynamic range is achieved by

utilizing higher frequencies of the frequency-modulated signal.

4.3 Conventional Setup

To compare the obtained results for the LC-oscillator and the relaxation oscillator ap-

proach, a condenser microphone was used in a conventional setup. The microphone was

setup utilizing a Tascam US-122 USB Audio/MIDI Interface and recordings of two sine

waves were done. The resulting plots of the power-spectral densities for a 1kHz and

440Hz sin wave are depicted in Figures 4.12 and 4.13. When observing the two figures

and comparing them to the results of the LC-oscillator and Schmitt-trigger setup, one

observes a comparable noise floor region towards dc. At higher frequencies the quanti-

zation noise floor in the FIR microphone circuits becomes more dominant as it is only

noise shaped to first order. The conventional setup on the other hand retains its low
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Figure 4.12: Power spectral density plot of the acquired digital output of the conven-
tional condenser microphone setup. The figure shows the fundamental at 1kHz and its
harmonics. The fundamental is at -16dB. Also shown are the harmonics at multiples of
1kHz. Circuit/Acquisition details: Fs= 22kHz, Fin=1kHz
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Figure 4.13: Power spectral density plot of the acquired digital output of the conven-
tional condenser microphone setup. The figure shows the fundamental at 440Hz and its
harmonics. The fundamental is at -21dB. Also shown are the harmonics at multiples of
440Hz. Circuit/Acquisition details: Fs= 22kHz, Fin=440Hz
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noise floor. This is because a higher-order delta-sigma converter capable of converting

signals till 96kHz is used in the Tascam Audio/MIDI Interface. In order for the FIR

microphone to obtain comparable results, higher order noise shaping would have to be

employed as well as moving to an integrated approach.

4.4 Conclusion

In this section it was shown that a digital microphone can be realized by utilizing a first-

order FIR delta-sigma modulator. A condenser capsule was used to modulate a carrier

frequency utilizing a LC common-base oscillator and a Schmitt-trigger oscillator. The

frequency-modulated signal produced was then directly digitized by undersampling it

and utilizing a phase detector to demodulate it. Undersampling proofed as a good way

to deal with the high frequencies produced by the oscillators, especially the Schmitt-

trigger oscillator. Experimental results showed that the Schmitt-trigger approach not

only has a higher dynamic range than the LC-oscillator FIR modulator, but also that it

keeps this high value over a frequency band of up to 20Hkz. This is mainly due to the

10-fold increase in frequency of oscillation, resulting in a more wide-band modulation.

Advantages of using an FIR modulator with oscillator to implement digital microphones

include the capability of measuring very low-frequency signals. In conventional con-

denser microphones this is not possible as the change in capacitance of the condenser

capsule is read across a noisy high impedance resistor which forms a high-Pass RC

network. This high-pass RC network prevents the measurement of low frequency audio

signals. Another benefit is that the presented approach is easily expandable to integrated

circuits using ring oscillators. As will be proposed later, an N-stage ring-oscillator with

the condenser capsule sitting at one (or all) of the inverter output nodes could be used

to frequency modulated a voice signal onto a carrier frequency. Considering the high

frequencies of an integrated ring-oscillator much better results can be achieved as more

modulation-depth is achieved. The increase in dynamic range with a much better circuit

noise figure of an integrated approach should result in resolutions that are comparable

to that of commercially available product.
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CHAPTER V

SECOND-ORDER FIR SIGMA DELTA

MODULATORS

5.1 Introduction

To achieve better noise shaping of the introduced quantization error, higher order topolo-

gies resulting in steeper noise transfer functions have to be utilized. While there are

many architectures for implementing high-order noise transfer functions [Norsworthy

et al., 1997, p.166], here, a cascade of first-order modulators is used [Matsuya et al.,

1987]. This is because two first-order FIR modulators can be used to realize one

second-order FIR analog-to-digital converter. The principle of cascaded sigma-delta

modulation is based on the use of multiple modulator stages in a cascade configuration

[Matsuya et al., 1987]. In ideal multi stage architectures, each successive stage accepts

the quantization noise of the preceding stage as its input in order to create a digital signal

which, in the ideal case, perfectly cancels out the quantization error introduced in the

preceding stage. With a cascade of two modulators we can utilize the already introduced

first-order FIR delta-sigma modulator from section 3 to create a second order topology.

Then, this second order topology will implement second order noise shaping while still

operating without any negative feedback. This chapter introduced various implemen-

tations of second order topologies based on a cascade FIR modulators. However, the

FIR modulator deployed in the second stage of the cascade will be an all digital imple-

mentation as not oscillator is needed to produce a frequency modulated signal. Since a

cascade needs the quantization error from the preceding stage, a way to obtain the quan-

tization error is addressed first. There are essentially to cases which need considering

for finding the error depending on whether the frequency of the oscillator, Fvco is much

higher or much less than the sampling frequency, Fs. After the error detection scheme is
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a)

b)

c)

TFM
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Error =1 єFs

x(t)
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error detection

D-FF
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D

CK Q

CLR
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Figure 5.1: The figure shows the error introduced when sampling a frequency mod-
ulated signal with a clock frequency greater than the frequency of the VCO. Part a)
shows the FM signal. The sampling clock is denoted by the dashed lines. The resulting
sampled signal, FMs1, is shown in part b). This sampling introduces a timing error in
each positive or negative edge which is depicted in part c) as the shaded area.

introduced, the following subchapters then deal with various implementations of second

order modulators. These include two versions of cascaded first-order FIR modulators

realizing an overall second-order topology. Simulation results are given along with a

theoretical analysis. The chapter is concluded with a discussion and comparison of the

two proposed topologies.

The basic thought behind a cascade is to feed the quantization error from the first

modulator the second modulator. When the frequency modulated signal is sampled by

a D-FF, for instance, a timing error is introduced as described in section 3.4. There

are two main approaches to finding the quantization error introduced by the sampling

D-FF. The easiest would be to utilize a simple XOR gate which gives the difference

between the frequency-modulated signal, FM, and the sampled frequency-modulated

signal, FMs. This is depicted in figure 5.1. Part a) of the figure shows the FM signal

from the VCO being sampled by the clock (D-FF). The sampled signal, FMs1, is shown

in part b) of the figure. The timing error in the positive and negative edges of FMs1 is

given by the shaded area in part c) of the figure. While using an XOR is certainly the

most straightforward way of obtaining the timing error, the sampling frequency Fs has
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CLR
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Figure 5.2: The figure shows the error introduced when under-sampling a frequency
modulative signal. Part a) shows the FM signal. The sampling clock is denoted by the
dashed lines. The resulting sampled signal, FMs2, is shown in part b). This sampling
introduces a timing error in each positive or negative edge which is depicted in part c).

to be greater than the center frequency of the FM signal, Fc. If the center frequency of

the VCO is much greater than the sampling frequency, then a simple XOR gate cannot

be used. In the case that the frequency of the VCO is much greater than the sampling

frequency, Fs, the timing error is the time from the last rising or falling edge of the

asynchronous FM signal to the current rising or falling edge of the sampled signal,

FMs2. This can be seen in Figure 5.2 in which the clock frequency Fs is four times

slower. Again, the figure shows the asynchronous FM signal in part a) and its quantized

equivalent, FMs2, in part b). The time-domain quantization error is given in part c)

of figure 5.2. A simple XOR gate would in this case not only give the timing error at

instances when FMs2 switches, but also whenever FM is different from FMs2. As a

result, one would have to make sure to only process the correct error pulses in later stage

of the digital circuitry and ignore the non-relevant ones. In figure 5.2 this is indicated by

the selective XOR gate. This will be addressed in more detail in the following sections.

With these two error detection schemes in mind, the next sections show various

topologies of second order modulators based on a cascade of two first-order FIR mod-

ulators. These different versions are divided into architectures using negative feedback
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and architectures operating without negative feedback.

5.2 Second-Order FIR Modulators

As the emphasis of this work is on delta-sigma modulator topologies utilizing no feed-

back, the topologies presented in this section are based on two first-order FIR mod-

ulator. Two versions of second-order modulators are introduced. First, a topology is

devised based on the cascade of two first-order FIR modulators which strongly resem-

bles a conventional cascade of delta-sigma modulators. That is, the second stage uses

digital circuit components to realize an integrator and differentiator along with a time-

domain quantizer needed to process the quantization error from the preceding stage.

This topology is then simulated and performance results are discussed. To reduce cir-

cuit component count, the first version is re-designed by exploiting a novel signal pro-

cessing feature inherent to the functionality of the proposed modulator. Furthermore,

this refined version is also suitable for undersampling. Again, a performance evaluation

is done and performance results are discussed.

5.2.1 Version I

The principle of cascaded structures was introduced in section 2.4.1 and with reference

to figure 2.19 which depicts a cascade of two first-order sigma delta modulators, we can

devise a second order modulator using the principle of FIR modulators without negative

feedback as depicted in figure 5.3. Figure 5.3 shows a VCO, sampling D-FF and XOR

making up a first-order FIR SDM. With the aforementioned limit, the quantization error

of the first FIR SDM, εFs, can easily be found by utilizing a XOR gate. This XOR gate

gives the difference between the asynchronous frequency-modulated signal, FM, and

the sampled frequency-modulated signal, FMs. The error εFs is the time error from

each positive or negative pulse edge of the frequency-modulated signal to the positive

or negative pulse edge of the sampled frequency-modulated signal. Utilizing an XOR

gate is a simple way of obtaining this error, however, the sampling frequency Fs must

be greater than the frequency of the oscillator, Fvco. When Fs is substantially lower than

the frequency-modulated signal frequency, a different error detection scheme should be
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a)

b)

c)

tn-1 tn

N

Tse

d)

e)

FM

F qM

єFs

carry

Figure 5.4: a) Asynchronous FM signal b) Sampled FMq signal c) The error signal εFs

as determined by the XOR gate d) The count value of the integrating-counter giving an
estimate of the on-time or width of the error pulses e) The carry signal at time instances
τn when the integrating-counter has reached its final count value N.

utilized. This approach will be outlined in the second version later. In either case, the

error εFs, is proportional to the widths, τεFs , produced by the error detection circuit.

Figure 5.4 shows the asynchronous FM signal and the sampled signal, FMs, in parts

a) and b), respectively. The signal produced by the error detection circuit is depicted

in figure 5.4 c). To process this error we need to integrate the signal first, quantize,

and then differentiate to shape the introduced quantization noise. This is exactly the

same principle as in the case of the first-order FIR modulator from section 3.2. First,

the error is fed into a first counter, the integrating-counter for further processing. The

integrating-counter performs the signal processing operation of an integrator, similar to

the one performed by the VCO. The heuristics behind this assertion are as follows. The

integrating-counter is enabled with each positive going edge of the error signal εFs. It

then keeps counting up with an elevated frequency of Fse until it reaches its terminal

count-value of N as shown in figure 5.4 d). At this time, τn, the carry signal goes high

and the counter starts over, thus performing a modulo operation. The carry signal is

depicted in figure 5.4 e). Since the counter only counts as long as an error pulse is

present we can define the time instances the carry signal occurs as the time from the last



CHAPTER 5. S-O FIR S DM 92

carry signal plus N times the clock time Tse:

τ(n) = τ(n − 1) + NTse εFs

τ(n)
εFs

=

∫
NTse ⇐⇒

τ(z)
εFs(z)

=
NTse

1 − z−1 ,
(5.1)

where εFs = [0, 1]. Thus the frequency of occurrence of the carry signal is dependent

proportionally on the pulse-width of the error signal, as well as the final count value

N. Essentially, the integrating-counter is a time-to-frequency converter, converting the

width of the error signal produced by the XOR gate to a pulse frequency-modulated

signal. However, since the integrating-counter uses the finite clock Fse, there will be

an error between the ideal width of each error pulse and the width determined by the

integrating-counter, which is a multiple of Tse. The normalized width of each error

pulse as determined by the integrating-counter is given by an integer multiple of Tse

and a fractional part:

εFsN = Q
[
εFs
Tse

]
=

⌊
εFs
Tse

⌋
+

〈
εFs
Tse

〉
︸︷︷︸
εFse

= bεFsc + εFse,

(5.2)

where εFse is the new error due to the finite clock of the counter, Fse. Thus equation 5.1

is re-written and the output of the integrating-counter is given by:

τ(z) = bεFsc
NTse

1 − z−1 , (5.3)

The output of the integrating-counter is a pulse frequency-modulated signal which is

asynchronous with respect to the sampling time, Ts. We can again draw a comparison

to the first-order FIR modulator where the output of the VCO was a frequency modu-

lated signal representing the modulating signal at the input of the oscillator. Here, the

input signal is bεFsc, and the output of the integrating counter is the new pulse frequency-

modulated signal. To synchronize the pulse frequency-modulated carry signal with the

sampling clock frequency, Fs, it needs to be time-domain quantized before it can be de-

modulated. In the previous section this was done with a novel resetting D-FF or reset-

ting counter. As before, this time-quantization will introduce a new error, defined as εFs2
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Figure 5.5: a) Carry signal at instances of τn as determined by the integrating counter.
b) Count signal of the quantizing-counter counting the carry pulses. c) To find the
change in the count-value the counter is reset at rate Ts. This makes cn−1 = 0 and gives
the change of the count value as cn. Furthermore, it guarantees that the differentiating
counter will not saturate. d) Quantized output signal y(n)2

.

here. To time-domain quantize and also shape the introduced quantization error, εFs2,

a second counter is utilized as shown in figure 5.3. This quantizing-counter performs

time-quantization along with first-order noise shaping of the introduced quantization

noise, εFs2. This can be explained with the help of figure 5.5. Part a) of the figure shows

the time-instances of an exemplary carry signal produced by the integrating-counter.

These time-instances are being counted by the quantizing-counter as depicted in figure

5.5 b). Discrete-time differentiation with respect to figure 5.5 is defined as:

d
dt

=
∆y
∆t

=
c(n) − c(n − 1)

Ts
, (5.4)

where Ts is the simulation’s discrete step size, or sampling clock. As a result the transfer

function of the resetting quantizing-counter is given as:

y(z)
c(z)

=

(
1 − z−1

)
Ts

. (5.5)
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To find the difference of cn − cn−1 as expressed in equations 5.4 and 5.5, the counter is

simply reset at the end of each sampling instance Ts. This is shown in part c) of figure

5.5 which also shows that total change in the counter value, cn − cn−1, is simplify given

by cn owing to the resetting operation. The final output, y(n)2 is the quantized value,

just before the resetting as depicted in part d) of figure 5.5. As a result, the quantizing-

counter acts as a time-quantizer and differentiator at the same time. Subsequently, the

signal transfer function of the second path is given by the product of the discrete inte-

grator and differentiator:

S T F =
NTse

1 − z−1

1 − z−1

Ts

=
NTse

Ts

(5.6)

Hence, it is desired to have the count-value of the integrating counter be the ratio of the

elevated clock frequency, Fse, to the sampling clock, Fs. Then with N = Fse/Fs the

STF will be unity. Assuming this N-value of the integrating-counter we can now write

the outputs of each first-order modulator, y(n)1 and y(n)2. The output of the first FIR

SDM with respect to figure 5.3 is given as:

y(z)1 =
Kvco

Fs
x(t) +

(
1 − z−1

)
εFs (5.7)

The output of the second FIR SDM is given as:

y(z)2 =

[
bεFsc

1 − z−1 + εFs2

]
=

[
εFs − εFse
1 − z−1 + εFs2

] (
1 − z−1

)2
(5.8)

When the two signals of equation 5.7 and equation 5.8 are subtracted and assuming

NFs = Fse, one can see that the quantization error εFs cancels out and only the input

signal along with the quantization errors εFse and εFs2 remain:

yout(z) =
Kvco

Fs
x(t) +

(
1 − z−1

)
εFse +

(
1 − z−1

)2
εFs2. (5.9)

The error εFse is determined by the elevated counter clock, Fse, as expressed by

equation 5.2. Using a finite clock Fse to quantize the widths of εFs introduces the same

error as when sampling the input signal at rate Fse. As outlined in section 3.4 the
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introduced error will be in the range of [0..Tse], or [0..1] since the error is in multiples

of Tse. Assuming no correlation and zero-mean the normalized mean square value is

given as:

V2
εrms

= σ2
ε =

∫ Tse
2T s

−
Tse
2T s

ε2 P(ε) dε =
T s
Tse

∫ Tse
2

−
Tse

2

ε2 dε =
F2

s

F2
se

1
12

=
Fs2q2

12
. (5.10)

The variable q was used in the last equation to show the similarity to conventional delta-

sigma converters, where q is often used to represent the quantization step size. Thus,

when doubling Fse we expect to reduce the noise floor of εFse by 6dB as q will be halved.

As expressed in equation 5.9 the error εFse is attenuated by a first-order differentiator,

1 − z−1. Hence, the noise power for εFse is given as:

Pe =

∫ fbw

− fbw

S 2( f )|NT F(z)|2d f =

∫ fbw

− fbw

q2F2
s

12Fs
|NT F(z)|2d f (5.11)

Making the assumption that sin (π f /Fs) is approximately (π f /Fs), we obtain:

Pe ≈

∫ fbw

− fbw

q2Fs

12

[
2
(
π f
Fs

)]2

d f

= 10log
(
2
9
π2 f 3

bw

F2
seFs

)
.

(5.12)

As simulation results will later confirm, when doubling the frequency Fse while keeping

Fs constant, the SNR will improve by 6dB. When doubling the sampling frequency,

Fs, the noise floor of εFse is attenuated by 3dB. Having addressed the error εFse, the

error εFs2, which is due to the synchronization of the output of the integrating-counter

with respect to the sampling frequency Fs, is considered next. Again, assuming no

correlation and zero-mean, its normalized variance is given by:

V2
εrms

= σ2
ε =

∫ 1
2

− 1
2

ε2 P(ε) dε =

∫ 1
2

− 1
2

ε2 dε =
1

12
. (5.13)

As expressed in equation 5.9 this error is attenuated by a second-order differentiator,(
1 − z−1

)2
. The noise power for εFs2 is thus given as:

Pe =

∫ fbw

− fbw

S 2( f )|NT F(z)|2d f =

∫ fbw

− fbw

1
12

1
Fs
|NT F(z)|2d f (5.14)

In equation 5.14 the 1/Fs term is due to oversampling as the total introduced noise

power is spread out over more samples at higher sampling frequencies, Fs. Making the
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assumption that sin (π f /Fs) is approximately (π f /Fs), we obtain:

Pe ≈

∫ fbw

− fbw

1
12Fs

[
2
(
π f
Fs

)]4

d f

= 10log
 8
15
π4 f 5

bw

F5
s

 . (5.15)

Equation 5.15 tells us that the error εFs2 is attenuated by 15dB when doubling the sam-

pling frequency, Fs. The total noise of the overall second order FIR modulator is then

the sum of the two errors εFse which is due to the finite clock Fse and εFs2 which is due

to synchronization with respect to Fs. Hence, the SNR is given as:

S NR = 20log10
[
2|Ain|∆ f

Fs

]
− 10log


2
9

q2π2 f 3
bw

F2
seFs︸     ︷︷     ︸

εFse

+
8

15
π4 f 5

bw

F5
s︸    ︷︷    ︸

εFs2

 . (5.16)

It is easy to see that the dominant error in equation 5.16 is εFse. Hence, the SNR is

determined by εFse and can be simplified to:

S NR ≈ 20log10
[
2|Ain|∆ f

Fs

]
− 10log

(
2
9
π2 f 3

bw

F2
seFs

)
. (5.17)

5.2.2 Simulation Results

To verify the results derived in the previous section, mainly equation 5.16, the second-

order FIR modulator from figure 5.3 was simulated. For this a VerilogA/AMS model

was written which is included in Appendix A.2. Three different simulation were per-

formed to verify equation 5.16.

• Utilizing an ideal integrator while changing the frequency of the sampling

D-FF, Fs:

In a first run, the integrating-counter was replaced with an ideal integrator to ob-

serve the effects of changing the sampling frequency Fs with which the frequency

modulated signal at the output of the VCO is being sampled. An ideal integrator

was used because the error εFse will dominate the noise floor and hence make

it difficult to observe how changing circuit parameters will effect the error εFs2.

With an ideal integrator, on the other hand, the error εFse in equation 5.16 is not

present and only εFs2 remains. Hence, for doubling the sampling frequency, Fs,
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Figure 5.6: Simulation results of the FIR modulator from Figure 5.3. The figure shows
the obtained SNR for different sampling frequencies, Fs. The integrating-counter is
assumed to be ideal in this simulation, hence no error εFse. Two plots are given. The
first plot, indicates the theoretical SNR. The second plot shows the simulation results
obtained including a best-fit line to show the expected slope of 9dB for doubling Fs, as
expressed in equation 5.16. Circuit/Acquisition Details: Kvco=0.25MHz, fbw=20kHz,
Fc=1.07241MHz, fin=8.4kHz.

we expect a 9dB increase in SNR. That is, 15dB are gained due to the attenuation

of the noise floor and 6dB are lost due to the scaling of the output amplitude. The

results of the simulation are given in Figure 5.6. The figure shows the dependency

of the SNR on changing the sampling frequency, Fs. With increasing sampling

frequency, Fs, the quantization error εFs2 will be attenuated further, resulting in

more SNR. Also shown is a best-fit line indicating the average slope, which is

9dB for doubling Fs. To verify the simulation results to the theoretical SNR pre-

dictions from equation 5.16 a plot representing the theoretical SNR is depicted

also. As can be seen there is a small offset but otherwise the simulation follows

the theory.

• Utilizing a real integrating-counter while changing Fse which determines the

resolution of the counter:

Having investigated the dependency of the sampling frequency Fs on εFs2, a non-

ideal integrating counter with a finite clock frequency Fse was used next. Now,
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Figure 5.7: Part a) depicts the SNR results for a sampling frequency of Fs = 7.07MHz
while increasing the frequency of the integrating-counter, Fse. Part b) depicts a sim-
ilar result for a sampling frequency of Fs = 28.3MHz. Note that for very high fre-
quencies of Fse the SNR approaches the values from Figure 5.6. This is indicated by
S NRmax. The best-fit lines are also shown to confirm the expected increase in SNR
of 6dB for doubling Fs, as expressed in equation 5.16. Circuit/Acquisition Details:
Fs=
√

2× 5MHz and Fs=
√

2× 20MHz, Kvco=0.25MHz, fbw=20kHz, Fc=1.07241MHz,
fin=8.4kHz.
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the error εFse should dominate the noise floor. With this setup we can observe

the effects of changing the clock frequency Fse which determines the accuracy

of the integrating-counter. At the same time, the sampling frequency Fs is kept

constant. When the integrating-counter with its finite clock frequency Fse is used,

as shown in Figure 5.3, the dominant error εFse will be added to the error εFs2

and the SNR shown in Figure 5.6 cannot be obtained. This maximum SNR can

only be approximated by choosing very high sampling frequencies of Fse. From

equation 5.12 we expect to increase the SNR by a factor of 6dB per doubling

Fse. This is depicted for two constant sampling frequencies, Fs, in part a) and b),

of figure 5.7, respectively. In part a) the highest SNR with no error εFse present

is 72.25dB, as determined from Figure 5.6. With increasing clock frequency

Fse this SNR value is approached, but never reached. The same applies for a

second sampling frequency, shown in part b) of figure 5.7. The highest SNR

value achievable would be 86.8dB. Again, the slope is also depicted to show the

expected 20dB per decade slope.

• Utilizing a real integrating-counter and changing Fse and Fs:

In a final simulation both, the sampling frequency Fs and the frequency of the

integrating-counter Fse were changed simultaneously. That is, when Fs is in-

creased by a factor of two, Fse is increased also by a factor of two. When Fse

is doubled, the error εFse will be halved and thus 6dB are gained. Since Fs is

doubled also we obtain 6dB more attenuation; however, loose 6dB as the output

amplitude will be reduced. Hence, we would expect a total of 6dB increase in

SNR. The simulation results depicting the SNR are given in figure 5.8. The fig-

ure confirms that for doubling Fs and Fse a total of 6dB are gained. Note that

even though the error εFs2 is attenuated by 9dB per doubling Fs, the error εFse

dominates the noise floor and we obtain 6dB in total.

In summary, when the sampling frequency Fs is doubled and Fse remains constant no

SNR improvement is obtained. When both, Fs and Fse are doubled, a 6dB improvement

is achieved. When Fs remains constant and Fse is doubled, a 6dB SNR improvement
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Figure 5.8: Simulation results of the FIR modulator from Figure 5.3. The figure shows
the obtained SNR for different sampling frequencies, Fs and Fse = 10Fs. The dom-
inant error is εFse and hence a 6dB slope is observed. Circuit/Acquisition Details:
Kvco=0.25MHz, fbw=20kHz, Fc=1.07241MHz, fin=8.4kHz.

occurs. In all cases the maximum gain in performance is limited to 6dB as the error εFse

which due to Fse of the integrating counter dominates the noise floor. As a consequence,

the topology could be simplified by ridding it of the quantizing-counter from figure 5.3.

This is because εFs2 does not determine the overall SNR and is hence insignificant. In

turn, since the quantizing-counter is responsible also for noise-shaping an equivalent

would have to be found as the overall topology needs second-order noise-shaping. The

next section describes a way to achieve this. A second topology is proposed with simpli-

fied circuitry while still giving the same performance than the aforementioned circuit.

Furthermore this simplified topology can easily be modified to include undersampling

as described below.

5.2.3 Version II

Figure 5.9 shows this simplified 2nd order modulator. As can be seen, it now comprises

out of a 1st order FIR modulator in the upper path which again introduces a quantization

error, ε1, when sampling the frequency modulated signal with the D-FF. This quantiza-

tion error, ε1, is determined and quantized in the second path to be subtracted from the
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Figure 5.10: Part a) shows a asynchronous signal. Part b) depicts the sampled version,
now synchronized with respect to the clock. As shown, the introduced time quantization
error will be noise shaped by 1 − z−1 if the pulse widths are considered.

first stage, thus resulting in improved performance. Since the introduced quantization

error as depicted in Figures 5.1 and 5.2 is in the time-domain, a circuit capable of de-

termining the widths of each error pulse could be utilized to quantize this error. Thus,

we can replace the integrating-counter with a width-counter. This is an elegant solu-

tion as will become apparent shortly. The quantization error, ε1, is found first by an

XOR gate as explained in section 5. Again, this assumes that the sampling frequency

Fs is higher than the frequency at the output of the VCO. This error is then quantized

and noise-shaped out of the band of interest by the same width-counter, operating at an

elevated frequency Fse. The heuristics behind this novel assertion are explained with

the help of figure 5.10. When sampling the error pulse train signal, ε1_n, shown in

figure 5.10 a), each rising or falling edge will experience a new time error, ε2_n. Shown

in figure 5.10 b) is the sampled version of the signal in part a). As can be seen, each

positive or negative edge has a new time error ε2_n, which is anywhere within the region

of the sampling period [0..Tse]. Also depicted in the figure are the exact pulse widths

ε1_n which are given by the time difference of the negative and positive edge instances.

Mathematically, for instance, the first pulse width, ε1_1, is given by the time difference

of the rising and falling edge of the first pulse, t2 − t1. The sampled pulse width is then

given as t2 + ε2_2 − t1 − ε2_1 = ε1_1 + ε2(1 − z−1). As a result, the new timing error, ε2,

is attenuated by a high-pass filter and thus shaped out of the band of interest, if a width

counter is used. Conceptually, whenever the accumulated quantization error exceeds
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a width of Tse, the width of the synchronized cycle period is shortened by a length of

Tse to reflect this error. Thus, the error experiences first-order noise shaping. It might

be noted that this elegant principle is identical to amplitude quantization with negative

feedback applied. Subsequently, the XOR-gate and the width-counter in Figure 5.9

quantize the error, ε1_n, and also noise-shape the quantization error ε2_n. In turn, no neg-

ative feedback is needed and the overall complexity of the circuit is kept to a minimum.

So far it was assumed that the sampling frequency, Fs, is higher than the frequency of

the VCO. However, when the VCO frequency, Fvco, is much higher than the sampling

frequency, Fs, the XOR gate cannot be used to determine the error pulses. This was

already indicated in section 5. Instead the topology depicted in figure 5.11 can be used.

The topology from figure 5.11 is a modification of the version from figure 5.9 to allow

for undersampling. Figure 5.12 gives insight into the general operation of the just in-

troduced topology from Figure 5.9 and also explains how to use sampling frequencies

lower than the VCO output for which figure 5.11 is an example. The frequency modu-

lated signal at the output of the VCO is shown in part a) of figure 5.12, and the sampled

version in part b). The timing error when sampling the FM signal is depicted in figure

5.12 c) by the shaded pulses. Note that the timing error is the time difference from the

last rising or falling edge of the FM signal to the sampled signal, FMs. Also note that

there is only one timing error per FMs edge. A counter which counts the width of each

FM signal pulse can be utilized to provide a quantized value of the error pulses. In order

to do so, the counter is simply a free running counter which is simply reset at each pos-

itive or negative FM edge. This is shown in part d) of figure 5.12. The counter counts

up at the elevated frequency, Fse. With respect to figure 5.12 c) we see that there is only

one error pulse per sampled FMq edge. Also note that the demodulated output, y(n)1

provides a means to read out the count value since y(n)1 goes high only for each positive

or negative FMq edge. This can bee seen when observing parts b) and f) of figure 5.12.

Subsequently, the count value can be read out at each positive y(n)1 edge. This value is

then held to furnish the following circuitry and then cleared with the negative edge of

y(n)1. Subsequently, since the count value is a representative of the quantization error
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ε1 introduced in the upper path, it can be differentiated and then combined with the out-

put of the upper path to cancel the quantization error ε1. It is important to note that the

topology depicted in figure 5.11 can be used with undersampling the FM signal or using

a sampling frequency that is much higher than the oscillation frequency of the VCO.

However, when undersampling we need to make sure that we choose the sampling fre-

quency Fs such that the entire band of the bandpass signal is translated down without

crossing any integer multiples of Fs/2. Otherwise aliasing or spectral reversal of the

signal might occur. The topology from figure 5.11 not only reduces the circuitry when

compared to the first version shown in figure 5.3 but also is suitable for undersampling

making it a much more versatile topology.

5.2.4 Theoretical Performance

Mathematically, the output of the upper path is given as:

y(z)1 =
Kvco

Fs
x(t) +

(
1 − z−1

)
ε1, (5.18)

where the attenuation of the error is done at rate Fs. The pulse widths of the error signal

are quantized by the width counter as an integer multiple of Tse. As a result the output,

c[n], of the counter is given by:

c(n) = Q
[
τε(n)
Tse

]
=

⌊
τε(n)
Tse

⌋
+

〈
τε(n)
Tse

〉 (
1 − z−1

)
= ε1 + εFse

(
1 − z−1

)
.

(5.19)

In equation 5.19 the b·c operator expresses the floor operator and 〈·〉 the fractional part.

The introduced error, εFse, which is the subtraction of the two errors at each rising and

falling edge of ε1, has a triangular probability distribution. This error is thus being noise

shaped by (1 − z−1). Thus, the output y(z)2 is given by:

y(z)2 =
[
ε1 + εFse

(
1 − z−1

)] (
1 − z−1

)
, (5.20)

and the overall output as:

yout(z) = y(n)1 − y(n)2

=
Kvco

Fs
x(t) +

(
1 − z−1

) (
1 − z−1

)
εFse.

(5.21)
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Thus, in the ideal case the quantization error ε1 is cancelled, and only a scaled version

of the input remains along with a second order noise shaped quantization error, εFse.

The overall performance of the cascade, more specifically, the cancellation of the quan-

tization error, ε1, is determined by the clock frequency Fse at which the width-counter

operates. Also, further attenuation can be achieved when increasing the sampling fre-

quency Fs. Thus, we may distinguish between the two cases:

• Changing the frequency of the free-running counter, Fse:

Intuitively, the faster the clock Fse, the less error is introduced when sampling

the error signal, ε1. This is essentially the same principle as in the case of the

first-order modulator where the FM signal was sampled by Fs. Since sampling is

done at the elevated clock frequency, Fse, it can be seen as an equivalent to multi-

bit amplitude quantization in conventional delta-sigma converters. Reducing the

quantization step size by a factor of two would then decrease the noise floor by

6dB. This will be confirmed with simulation results shortly. Since the sampling

frequency Fs remains unchanged an overall SNR increase of 6dB is expected.

• Keeping Fse constant and changing the sampling frequency of the D-FF, Fs:

The error from the first modulator, ε1, is fed into the second stage, sampled, and

its width is determined by the width-counter. This width includes the original

error ε1 plus the new error εFse due to the sampling process. Note that this width

value is now in the amplitude domain and is also normalized with respect to Fs.

Even though the error εFse is constant as Fse is constant, its height doubles when

Fs is doubled as it is also normalized with respect to Fs. This will result in an

increase of 6dB in the noise floor of the error εFse. On the other hand, due to the

second order differentiation the noise floor of εFse is expected to be attenuated

by a total of 12dB for doubling Fs. As a consequence, chaining Fs will have no

effect as the net SNR remains constant. This is because 6dB dynamic range are

lost as the signal output amplitudes will be reduced by a further 6dB for doubling

Fs. Simulation results in the next section confirm this intuitive result.
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• Changing Fse and Fs simultaneously:

Having considered the two previous cases it is clear that doubling Fs as well as

Fse will result in 6dB increase in SNR

As mentioned, the error εFse is anywhere in the range of 0..Tse or 0..1 in terms of Tse.

For simplicity the error is assumed to be random with zero mean. The latter assumption

is easily justified as any dc-shift is simply a change in the center frequency of the VCO.

Then its normalized variance with respect to Fs is given by:

V2
εrms

= σ2
ε =

∫ Tse
2Ts

−
Tse
2Ts

ε2 P(ε) dε =
Ts

Tse

∫ Tse
2Ts

−
Tse
2Ts

ε2 dε =
1

12
F2

s

F2
se
. (5.22)

The width counter will express the time-domain quantized error widths as a count value

and also provide noise shaping. With the overall second order noise shaping, the noise

within the bandwidth of interest, fbw, is given as:

Pe =

∫ fbw

− fbw

S 2( f )|NT F(z)|2d f =

∫ fbw

− fbw

1
12

1
Fs

F2
s

F2
se
|NT F(z)|2d f (5.23)

Making the assumption that sin (π f /Fs) is approximately (π f /Fs), we obtain:

Pe ≈

∫ fb

− fb

1
12

1
Fs

F2
s

F2
se

[
2
(
π f
Fs

)]4

d f

= 10log
 8
15

π4 f 5
bw

F3
s F2

se

 . (5.24)

Since the signal output has remained the same, the signal-to-noise ratio is given as:

S NR = 20log10
[
2|Ain|∆ f

Fs

]
− 10log10

 8
15

π4 f 5
bw

F2
seF3

s

 , (5.25)

Thus, for doubling Fse we obtain a 6dB decrease in the noise floor.

5.2.5 Simulation Results

The topology in figures 5.9 and 5.12 was simulated for different clock frequencies, Fse

, and also different sampling and undersampling frequencies, Fs. Appendix A.3 gives

the VerilogA/AMS code used to simulate the second order FIR topology. The signal-to-

noise ratio was obtained by importing the output into Matlab and calculating the PSD.

The results for the simulation of the topology from 5.9 are given in figures 5.13 and
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Figure 5.13: SNR plot versus ratio of the elevated clock frequency with which the
width-counter is clocked, Fse over the sampling frequency Fs=constant. Depicted is
the SNR plot for the second order cascade from figure 5.9. As expected, the SNR
shows a 20dB per decade characteristic. Circuit/Acquisition Details: Fs=

√
2×25MHz,

Kvco=0.5MHz, fbw=20kHz, Fc=4.352MHz, fin=8.4kHz.

Figure 5.14: SNR plot versus the sampling frequency Fs while keeping Fse con-
stant. Depicted is the SNR plot for the second order cascade from figure 5.9. As ex-
pected, the SNR shows no improvement. Circuit/Acquisition Details: Fse=

√
2×1GHz,

Kvco=0.5MHz, fbw=20kHz, Fc=4.352MHz, fin=8.4kHz.
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5.14. Figure 5.13 shows the SNR results for keeping the sampling frequency constant

while varying the clock frequency of the width-counter, Fse. As expected, a 20dB per

decade, or, 6dB SNR increase per doubling of Fse are achieved. Naturally, with the

error still being quite correlated with itself and dependant on the ratio of Fvco to Fs

as explained in section 3.4, the SNR fluctuates somewhat but on average follows the

20dB per decade slope. Also note that for very low frequencies of Fse compared to

Fs the width-counter cannot determine an accurate representation of the error ε1. At

these low ratios the 2nd order modulator approaches the result of a 1st order modulator.

It was also found that at very high ratios of Fse to Fs the SNR levels off which is

mainly due to the accuracy of the simulator (Spectre). For example, in VerliogAMS the

@cross statement used as a trigger for the width-counter, will when the event occurs,

temporarily stop the simulator for a very minute amount of time, resulting in a small

error. Figure 5.14 shows the obtained SNR when keeping Fse constant while changing

Fs. As already discussed previously no change in SNR is expected. The results for the

simulation of the topology from 5.12 utilizing undersampling frequencies are given in

figures

5.3 Comparison To The First-Order Modulator

Having analyzed and discussed the second-order FIR modulators, in this section a com-

parison is drawn to the first-order FIR modulators from section 3. Specifically, the

second-order modulator from figure 5.9 is compared to the first-order modulator from

figure 3.6. A direct comparison should show whether there are any benefits to the

second-order topology over the simpler first-order modulator.

For a fair comparison, the first-order modulator is clocked at the elevated sampling

frequency Fse, while the second order modulator utilizes the slow sampling frequency

Fs in the upper path, and the elevated sampling frequency Fse in the lower path. Figure

5.15 shows the two circuits. Note that most blocks were implemented on transistor

level basis using the IBM 130nm Standard Cell Library. The VCO and the counter

were implemented as a VerilogA model. Furthermore, it is assumed that both clocks
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are derived from the same system clock.

As seen in figure 5.15 the first-order topology shown in part a) has less component

count; however, its output rate is Fse
Fs

higher than the output rate of the second-order

topology. As a result, the first-order modulator would require a higher decimation rate

to lower the data rate of the oversampled modulator. In addition, the first-order FIR

modulator might require output signal amplification as the output amplitude is scaled

by a factor of Kvco
Fse

as expressed in equation 3.27. The second-order modulator on the

other hand has an output rate which is at the lower frequency Fs. As a result, the

decimation filter will be simpler when compared to the first-order FIR modulator.

An important point to recall is that the first-order modulator improves its SNR by

approximately 3 dB for doubling the sampling frequency, Fs. This was expressed in

equation 3.27. The second order FIR modulator, on the other hand, gains 6dB in SNR

for doubling the sampling frequency Fse. This was expressed in equation 5.25. Subse-

quently, one would expect the second-order FIR modulator to outperform the first-order

modulator.

Figure 5.16 shows the SNR comparison of the first and second-order FIR modulator

for various frequencies, Fs. The first-order modulators sampling frequency was varied

from 20MHz to 200MHz. The red graph shows the SNR results obtained. As expected,

the slop of the first-order modulator is approximately 3dB. The results of the second

order modulator are depicted by the blue line. The second-order modulator was oper-

ated at a sampling frequency of 13MHz as depicted in figure 5.15 b). As can be seen

the slope of the second-order modulator is higher compared to that of the first-order

modulator. At lower frequencies the second-order topology is inferior to the first-order

structure. It is believed that this is mainly due to the fact that the width-counter, which

is clocked at Fse, does not have enough resolution to estimate the error ε1 correctly.

Hence, at low frequencies, Fse, the with-counter might actually introduce more error

that expected. At higher frequencies of Fse however, the second-order modulator yields

a better signal-to-noise ratio. This is because its SNR increases with a higher slope

per doubling Fse, and hence the second order modulator outperforms the first-order
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topology. Figure 5.17 shows a PSD comparison of the two modulators. As can be

seen the output signal amplitude of the first-order modulator is attenuated by approx-

imately -69dB whereas the second-order modulator only attenuates the wanted signal

by approximately -48dB. At the same time, due to the second-order noise shaping, the

quantization noise is attenuated similar to that of the first-order modulator in the band-

width of interest resulting in the better SNR. Summarizing, both modulator topologies

are useful implementation of delta-sigma A/D converters. In general, the second-order

FIR modulator is recommended over the first-order modulator as not only it allows for a

simpler decimation filter design, but also outperforms the first-order topology at higher

frequencies. In turn, at lower sampling frequencies the first-order topology is beneficial

as it has better performance and less component count.

5.4 Discussion and Conclusion

In this chapter two second-order FIR modulators based on oscillators were presented.

First, a second order topology was devised utilizing a first-order FIR modulator as de-

scribed in Chapter 3 and an all digital equivalent utilizing an integrating-counter run-

ning on a clock Fse to essentially act as a digital voltage-controlled oscillator. The

differentiating-counter used realizes time-domain quantization and also noise-shaping

of the introduced quantization error εFs2. The presented topology was analyzed math-

ematically and equations expressing the three different error sources were given. Fur-

thermore, a signal-to-noise ratio equation was determined. This equation indicated that

for doubling the sampling frequency Fs no increase in net SNR is achieved. Also it

was shown that increasing the clocking frequency of the counter, Fse, would result in

an SNR increase of 6dB. These theoretical results were then verified by simulating the

aforementioned topology. Various parameters were changed to successfully verify the

obtained equations. Since the maximum obtainable SNR increase was limited to 6dB,

the topology was in a second circuit variation simplified while still retaining all the

characteristics. That is, a novel scheme was proposed which not only gives a digital

representation of the quantization error from the first stage, ε1, but also noise-shapes the
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Figure 5.16: The second order modulator’s upper path is clocked at Fs and the
lower path at the elevated frequency Fse. The first-order modulator is clocked at the
elevated frequency Fse also. Circuit/Acquisition Details: Kvco=100kHz, fbw=20kHz,
Fc=4.4MHz, fin=12.41kHz, Fs=13MHz.
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Figure 5.17: Comparison of the PSD plot for the first and second-order modulators.
Circuit/Acquisition Details: Kvco=100kHz, fbw=20kHz, Fc=4.4MHz, fin=12.41kHz,
Fs=13MHz, Fse=145MHz.
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quantization error εFse introduced when quantizing ε1. As a result, this new topology has

a significantly reduced circuit count. In a next step, the topology was adapted to make

use of the powerful undersampling techniques. Again, a mathematical model was given

for the introduced quantization error sources. An signal-to-noise ratio equation was

derived, which was then successfully verified by simulating the topology. Simulation

results given include both, conventional sampling and undersampling of the frequency

modulated signal at the output of the VCO. It was concluded that a major benefit of the

last topology is that it can be used for conventional sampling as well as undersampling

applications, making it a versatile topology. As in the case of the first version of the

second-order modulator, an overall SNR increase of 6dB was achieved for doubling Fse

even though the circuitry was reduced.
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CHAPTER VI

DISCUSSION AND FUTURE WORK

In this thesis, various novel approaches were taken to realize first-order and higher

order delta-sigma modulators without feedback. More specifically, two versions of a

first-order modulator were proposed and two versions of a second-order modulator we

presented. As a practical application, and to show proof-of-concept, a digital micro-

phone was implemented and experimental results obtained.

6.1 First-Order FIR Modulators

These approaches include the realization of first-order modulator topologies utilizing

an oscillator as frequency modulator and either an asynchronous D-FF or asynchronous

counter for frequency de-modulation and noise shaping of the introduced time-domain

quantization noise. It was found that the SNR is proportional the the frequency mod-

ulation sensitivity of the oscillator and 6dB of increase in SNR can be achieved for

doubling the sensitivity. Since the attenuation of the introduced quantization noise is

directly proportional to the sampling frequency, a two-fold increase in Fs will result

in slightly more than 3dB of SNR increase. This 3dB increase in SNR for doubling

the sampling frequency Fs was also achieved by the first-order topology from [Hovin

et al., 1997]. However, the circuit we proposed is simpler as the XOR gate and D-FF

as depicted in Figure 3.5 where combined into one asynchronous D-FF as described in

section 3.2 and shown in figure 3.6. This asynchronous D-FF performed the simultane-

ous operation of time-domain quantization and noise-shaping of the quantization noise.

Conventional delta-sigma converters (with feedback) are capable of achieving 9dB for

doubling the sampling frequency Fs [Norsworthy et al., 1997]. However, it is more

difficult to move to high oversampling ratios as the entire system (analog + digital)
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needs to be able to support these high frequencies. Hence, continuous time architec-

tures can support much higher speeds [Raghavan et al., 2001a]. In the FIR modulators

we presented, only the demodulation part, which is an all digital circuit, has to run

at the desired sampling frequency. Hence, the maximum speed is determined by the

metastability requirements set by the asynchronous D-FF only.

In a second circuit implementation we replaced the asynchronous D-FF with an

asynchronous counter as depicted in figure 3.8. The counter is an ideal way to uti-

lize undersampling as it can be used to reduce the requirements on the demodulation

circuitry and help with meta-stability problems as described in section 3.5.1. That is,

it is even easier to move to very high frequencies with the oscillator, yielding more

frequency modulation and thus more dynamic range, and then using undersampling to

de-modulate the signal. When considering conventional undersampling applications

such as [Vaughan et al., 1991b; Analog Devices, 1998], it is noted that there are spe-

cific requirements on the choosing the sampling frequency Fs, as otherwise spectral

reversal might occur, or the desired signal be frequency-translated to above the Nyquist

frequency. The asynchronous counter from figure 3.8 circumvents these two problems

as it retains all the signal information in between sampling instances, as long as the final

count value of the counter is large enough. When comparing our two FIR modulators

to the works of [Ian Galton and Siragusa, 1998], the FIR modulator principle presented

by us offers mainly simpler circuitry as no feedback path is required. Considering that

Galton’s work presented [Ian Galton and Siragusa, 1998] does not include frequency

modulation, his entire circuit may be replaced by the here presented resetting counter

to obtain first-order noise shaping. No additional charge-pumps, phase detectors, S/H

circuits and N-bit ADCS are required.

6.2 Second-Order FIR Modulators

The second-order realizations which are based upon a cascade of two first-order FIR

modulators are distinctive in the way that still no feedback path is needed to realize
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the second-order noise shaping. The second path in the cascade is an all digital ap-

proach and does not comprise of any analog components. This differers from all the

other published second order modulators topologies as they all use negative feedback

[Ian Galton and Siragusa, 1998; Izadi and Leung, 2002; Sharifkhani, 2004; Thomas A.

D. Riley and Plett, 1998; Riley et al., 1993]. In [Ian Galton and Siragusa, 1998] an

analog charge pump and capacitor are needed to implement an integrator. For a good

overall performance it is crucial for the current pulses of the charge pump to be pro-

duced with a high level of accuracy. This is difficult to achieve in practice, however.

The reasons for this are a mismatch in the speed of p-channel and n-channel transistors

in the current sources for example [Rhee, 1999]. Furthermore, the switches for switch-

ing in the appropriate current pulses will have a finite rise and fall time. Since the pulses

operating the switched contain all the information, finite rise and fall time will result in

a charge error at the capacitor [Jae-Shin et al., 2000]. Furthermore, this error might be

amplified by charge injection. The capacitor needed to realize an integrator in conjunc-

tion with the CP is quite area expensive also. While a direct performance comparison

between the work of [Ian Galton and Siragusa, 1998] and the second order modulators

presented in this work is difficult, it is easy to see that from a circuit point of view the

2nd order FIR modulators seem more beneficial. The second order modulator presented

by [Hovin et al., 1997] utilizes two first-order modulators to implement a second order

modulator. While the first 1st-order modulator operates without feedback, the second

1st-order modulator uses a negative feedback path. Again, a charge pump is needed to

realize an integrator and the aforementioned problems apply here as well. The second

version of the 2st-order modulator shown in figure 5.11 excels in that it uses a novel

width-counter to realize one of the differentiators needed. That is, we used the width-

value to realize differentiation as described in section 5.2.3. Hence, standard CMOS

digital circuitry can be used to extend the performance of a first-order FIR modulator

to a second order topology. When comparing our second-order FIR modulator with the

work of [Hovin et al., 1997], it is realized than his work still relies on feedback in his

cascaded approach. That is, a charge pump is needed as an integrator in conjunction
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with negative feedback. Likewise, the third-order modulator of [Thomas A. D. Riley

and Plett, 1998] needs a phase detector and charge pump along with a continuous-time

operational amplifier to achieve 3rd-order noise shaping. The FIR modulator on the

other hand does not need any additional analog components as an all-digital FIR modu-

lator is realized using a novel width counter which is responsible for noise-shaping the

introduced quantization noise.

6.3 Undersampling Digital Microphone

A digital microphone was realized in two different circuit implementations to show

proof-of-concept of the first-order FIR modulator. The two implementations are shown

in figures 4.2 and 4.9. Implementing a microphone with a FIR modulator reduces the

circuitry as no analog pre-amp is needed to condition the signal for analog-to-digital

conversion as it is done in conventional condenser microphones [Pastille, 2000]. Fur-

thermore, the FIR approach does not consist of any noisy high-impedance resistors

which, in conventional applications, form a high-pass RC network characteristic pre-

venting measuring low frequency audio signals. In [Brauer et al., 2004] the noise due

to resistances was studied in detail. It was found that ideally the resistor value should be

decreased to reduce the effects due to noise. But this has an undesired effect as together

with the capacitance of the microphone the load resistor forms a high-pass filter with

a cut-off frequency in the acoustic band [Brauer et al., 2004]. To alleviate this prob-

lem, in a first step, an LC-oscillator was used for generating a frequency-modulated

signal which could then be digitized by the FIR modulator. Usually, a high capsule

polarization voltage is necessary for the condenser capsule; however, the LC-oscillator

condenser microphone uses a comparatively low voltage, generated by the oscillator.

Since discrete components were used to realize the LC-oscillator the frequency of os-

cillation was somewhat limited. This was also due to the large condenser capacitance

that had to be used. Experimental results showed a good dynamic range over a some-

what limited bandwidth. It was found that circuit noise and power supply noise were a

limiting factor in the performance of the system. Furthermore, due the small change in
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capacitance and low frequency of oscillation, only a very narrow band frequency mod-

ulation was obtained. As a consequence, a Schmitt-trigger oscillator was used to move

to higher frequencies of oscillation and thus obtain a higher sensitivity resulting in more

dynamic range. Also, a battery-supplied approach was taken to minimize power supply

noise. When testing this circuit, it was found that a higher dynamic range was possible

over a ten-fold increase in bandwidth. This showed that moving to higher frequencies,

and ridding the circuitry of power supply noise, greatly increased the performance to

approximately 11 bits of resolution over a frequency band of 20kHz. While this is still

not comparable to the results obtained from a commercial product [Tascam, 2007], it

shows that when moving to higher frequencies, and using an integrated approach better

performance can be achieved. Ring-oscillators can be implemented as an integrated

circuit, and thus the presented FIR modulators could benefit from the lower noise figure

associated with an IC approach.

6.4 Future Work: Microphone Utilizing an Integrated Ring
Oscillator

It was shown that a first-order SDM can be realized by using an oscillator and a D-

FF. This simple approach was then used to realize a digital microphone application. A

condenser capsule was used to modulate a carrier frequency utilizing a Schmitt-trigger

based oscillator. The advantage of using such a topology to digitize speech is that this

approach is capable of measuring low frequency audio signals with a low noise fig-

ure. In conventional condenser microphones the change in capacitance is read across

a noisy high impedance resistor which forms a high-Pass RC network, preventing the

measuring of low frequency audio signals. Additionally, no analog pre-amp is needed to

condition the signal for analog-to-digital conversion as is done in conventional setups.

Further applications of the presented approach include capacitance-to-digital convert-

ers which are coming into widespread use in human-to-machine interfaces [Pratt, 2006].

Another benefit is that the presented circuit is easily expandable to integrated circuits

using ring oscillators. When testing the LC and Relaxation oscillator in Section 4, it
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was found that better results can be obtained when moving to an integrated approach.

For example, consider a N-stage ring oscillator with the condenser capsule sitting at

one (or all) of the inverter output nodes as depicted in fig. 6.1 a). The frequency of

oscillation is determined by the delay through the inverter and thus by the change in

capacitance. The capacitance could be realized by hovering a membrane over the ring

oscillator chip. This is depicted in fig. 6.1 b). A change in capacitance is mainly

formed by the vibrating membrane and the top metal area of the ring oscillator nodes

on the die. Thus this topology could lend itself to be a more attractive integrated so-

lution. Of course this would require the package to be as thin as possible (bare-die is

best). Much higher frequencies can be achieved resulting in a better resolution of the

circuit. Since a dynamic-range increase of
√

M can be achieved for an M increase in

oscillation frequency, an integrated approach will be capable of producing better reso-

lutions. Also seen in figure 6.1 is a second ring-oscillator with a constant capacitance.

This oscillator can be used to generate a clock signal used for resetting the counter.

Having this pseudo-differential setup will minimize errors as both oscillators will be

affected in the same way. To further improve the performance of such an topology, one

can incorporate second order noise shaping techniques presented in section 5 into the

integrated approach.
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Figure 6.1: a) Alternative circuit using an integrated approach utilizing ring oscilla-
tors. The upper ring oscillator is responsible for generating the FM signal which is
then quantized and differentiated by the resetting counter. The counter is reset by the
lower ring oscillator. b) Simplified inverter cross-section. The change in capacitance is
caused be the vibrating membrane over the chip. The capacitance is formed between
the grounded membrane and the top metal area of the ring oscillator nodes on the die.
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APPENDIX A

VERILOGA/AMS LISTINGS

The VeriloA/AMS models to test and verify the poroposed circuits are given in this

section.

A.1 First Order FIR Modulator - Resetting Counter

1 ‘include "disciplines.vams"
‘include "constants.vams"

module sdvcoct (out, in, clk);

6 input in, clk; voltage in, clk;
output out; voltage out;
parameter real f0=1e6; // carrier frequency VCO

parameter real Kvco=50e5; // gain VCO

parameter real jitter=0; // jitter in seconds

11 real freq, phase, n, count, dT;
integer x, y, seed, fptr;
analog begin

@(initial_step) begin
16 fptr=$fopen("output");

seed = -561;
end

freq = f0+Kvco*V(in);
21 freq = freq/(1 + dT*freq);

phase = 2*‘M_PI*(laplace_nd(freq, {1},{0, 1})↓
→ %1-0.5);

@(cross(phase+‘M_PI/2,+1) or cross(phase-‘M_PI↓
→ /2,+1))

begin
26 dT = ‘M_SQRT2*jitter*$dist_normal(seed,0, 1);

n = (phase >= -‘M_PI/2) && (phase < ‘M_PI/2);
end

@(cross(n - 0.5 ,0)) count=count+1;
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31

@(cross(V(clk) - 0.5,1)) begin
$fstrobe(fptr, "%g", count); count=0;

end

36 @(final_step) $fclose(fptr);

V(out) <+ n;

end
41 endmodule

Listing 1: (sdm.va) First Order FIR Modulator in VA/AMS

A.2 Second Order FIR Modulator V.I

1 ‘include "disciplines.vams"
‘include "constants.vams"

4 module sdm (out, in, clk, clk1);

input in, clk, clk1; voltage in, clk, clk1;
output out; voltage out;

9 parameter real f0=1e6; // Carrier frequency VCO

parameter real Kvco=50e5; // Gain VCO

parameter real period=1/25e6; // Sampling frequency

integer fptr1, fptr2;
14 real count, FM, errs;
real freq, phase, n;
real carry, count1, comb, counte;
integer s_a, s_b, err;

19 analog begin

@(initial_step)
begin
fptr1=$fopen("/out1");

24 fptr2=$fopen("/out2");
end

//********************* VCO **********************//

freq = f0+Kvco*V(in);
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29 phase =2*‘M_PI*(laplace_nd(freq, {1},{0, 1})↓
→ %1-0.5);

@(cross(phase+‘M_PI/2,+1) or cross(phase-‘M_PI↓
→ /2,+1))

begin
n = (phase >= -‘M_PI/2) && (phase < ‘M_PI/2)↓

→ ;
end

34

//*********** Upper Path Resetting Counter ********//

@(cross(n - 0.5,1) or cross(n - 0.5, -1))
begin
count=count+1;

39 end

//************ Sampling FM Signal ************//

@(cross(V(clk) - 0.5, 1)) FM = n;

44 //************ XOR ************//

s_a = (n > 0.5)? 1: 0;
s_b = (FM > 0.5)? 1: 0;
err = (s_a^s_b);

49 @(cross(V(clk1) - 0.5, 1)) begin errs=err; end
comb = V(clk1)*errs;

//************ Integrating Counter ************//

carry = 0;
54 @(cross(comb - 0.5, 1)) counte=counte+(1/10.0);

@(cross(counte - 1.0, 1)) begin carry=1; end

//************ Differentiating Counter ************//

59 @(cross(carry - 0.5,1)) count1=count1+1;
@(cross(V(clk) - 0.5,1))
begin
$fstrobe(fptr1, "%g", count); count=0;
$fstrobe(fptr2, "%g", count1); count1=0;

64 end

V(out) <+ carry;

end
69 endmodule

Listing 2: (2ndVersionI.va) Second Order FIR Modulator V.I in VA/AMS
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A.3 Second Order FIR Modulator V.II - Undersampling

1 ‘include "disciplines.vams"
‘include "constants.vams"

module sdm (out, in, clk, clk1);

6 input in, clk, clk1; voltage in, clk, clk1;
output out; voltage out;

parameter real f0=1e6; // Carrier frequency VCO

parameter real Kvco=50e5; // Gain VCO

11 parameter real period=1/25e6; // Sampling frequency

integer fptr1, fptr2;
real count, count1, FM, y1;
real freq, phase, n;

16 real err;

analog begin

@(initial_step)
21 begin

fptr1=$fopen("/VCO/out1");
fptr2=$fopen("/VCO/out2");

end

26 //****************** VCO *******************//

freq = f0+Kvco*V(in);
phase = 2*‘M_PI*(laplace_nd(freq,{1},{0, 1})↓

→ %1-0.5);
@(cross(phase+‘M_PI/2,+1) or cross(phase-‘M_PI↓

→ /2,+1))
begin

31 n = (phase >= -‘M_PI/2) && (phase < ‘M_PI/2)↓
→ ;

end

//******** Sampling FM Signal ********//

@(cross(V(clk) - 0.5, 1)) FM = n;
36

//****** Generating Y1 (XOR) Signal ******//

FMd = zi_nd(FM,{1},{1},period);
y1 = abs(FM-FMd);

41 //****** Freerunning Counter Reset ******//

@(cross(n - 0.5 ,0))
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begin
count1=0;

end
46

//*** Freerunning Counter Determining Width ***//

@(cross(V(clk1) - 0.5 ,1))
begin
count1 = count1+1;

51 end

//***** Freerunning Counter Read Out ******//

@(cross(y1 - 0.5, 1))
begin

56 err=count1;
end

//********** Saving Outputs **********//

@(cross(V(clk) - 0.5,1 ))
61 begin

$fstrobe(fptr1, "%g", y1);
$fstrobe(fptr2, "%g", err);
err=0;

end
66

//********** Closing Files **********//

@(final_step)
begin
$fclose(fptr1); $fclose(fptr2);

71 end

V(out) <+ FM;

end
76 endmodule

Listing 3: (finalLS2under.va) Second Order FIR Modulator V.II - Undersampling in
VA/AMS
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