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Abstract 
 

Quasi-brittle failure is characterised by material degradation, fracturing and 
potential interaction of fragmented parts. The computational description of 
this behaviour has presented significant challenges to the mechanics 
community over the past few decades, driven by the development of 
technology, the increasing social and economical constraints for safer and 
more complicated engineering designs and consequently by the increasing 
requirements for more accurate understanding of macro- and micro-
structural processes. 

Finite element methods have been pushed to their limits in an attempt to 
resolve strain localisation and ultimately fracturing in a unified and objective 
manner, while discrete methods have been utilised by artificial connection of 
discrete bodies which are identified a priori to act as continua. Neither of 
these attempts comprises a diritta via for modelling the transition from 
continuum to discontinuum efficiently and this has led to the investigation 
of alternative techniques. 

Herein, the numerical modelling of quasi-brittle localisation and fracturing is 
investigated using the Numerical Manifold Method (NMM) as an alternative 
unifying framework to industry-established techniques such as the Finite 
Element Method (FEM) and Discrete Element Method (DEM). 

One of the particularly interesting aspects of NMM is with respect to its 
potential for modelling both continuum and discontinuum states and 
providing an efficient framework for modelling the entire transition between 
continuum to discontinuum, from a continuum point of view, without 
remeshing. The attractive nature of this capability advocates potential for 
modelling mechanics of materials such as concrete, rock and masonry, but 
also a more general class of quasi-brittle materials. 

This work investigates and extends NMM primarily with respect to the 
following characteristics: 

1. Discontinuities, such as cracks, are introduced naturally in a discrete 
manner, but in a continuum setting, without the need for remeshing 

2. The approximation is improved globally or locally, for any arbitrary 
level, without remeshing 

3. Integration is undertaken explicitly, for any arbitrary level of local 
improvement of the approximation 

Furthermore, NMM is reformulated using a constrained variational 
approach for generalised three-dimensional problems. Essential boundary 
conditions are enforced using Lagrange multipliers and projection matrices 
and potential higher-order boundary issues are investigated. The 
developments are implemented algorithmically in MATLAB and higher-
order enrichment is demonstrated with the use of adaptivity. 
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1 Introduction 

1.1 Scope 

Physical processes range significantly in complexity. Certain relatively simple 
problems, such as the dynamics of a one-degree-of-freedom mass-spring 
system, may be described adequately by simple mathematical equations. 
Other processes, such as the impact and fragmentation of a body on a 
composite structure, the three-dimensional response of a concrete arch dam 
subjected to seismic actions and generally phenomena that involve complex 
loads and geometries, moving boundaries and random material 
microstructures, are complicated enough that analytical solutions are not 
sufficient, efficient or even possible. In such cases, numerical approximation 
techniques provide the only efficient and economically viable way to 
approach a safe solution. 

 

 

Figure 1-1. Scaled pre-stressed concrete containment vessel (PCCV), Sandia 
National Laboratories [88] 

 

Numerical approximation techniques offer powerful and efficient non-
destructive means to investigate complicated engineering problems in order 
to aid the design process, assess the performance of existing structures in 
present or future loading events, or substantiate forensic investigations. 
However, numerical tools are not without their difficulties and limitations. 
The numerical description of quasi-brittle failure is one such case, which has 
presented significant challenges to the computational mechanics community 
over the past few decades. 

Structures composed of quasi-brittle materials and components are 
abundant in most parts of the world, due to availability and mechanical 
properties of natural or human-engineered materials such as concrete, 
masonry, ice, metals, rock and geomaterials. Furthermore, several special 
safety-critical structures such as large containment vessels (Figure 1-1), dams 
and large floating structures are commonly quasi-brittle. 
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Figure 1-2. PCCV physical model after structural failure mode test (left) 
[89]. PCCV numerical model indicating contours of maximum principal 

strain (right) [90] 

 

The failure of quasi-brittle structures is characterised by the gradual 
transition from continuum to discontinuum caused by strain localisation and 
material degradation caused by development of microcracks, their 
coalescence into macrocracks (fracturing) and, potentially, interaction of 
fragmented parts. Therefore, in order to adequately describe the behaviour 
of quasi-brittle structures, three key elements are required: 

First, a method is required for the spatial discretisation of fracturing. In 
order to be adequate and versatile, this has to be capable to describe the 
transition from continuum to discontinuum without a priori assumptions 
regarding the location and potential path of localisation phenomena. 

Second, material behaviour needs to be represented numerically on a 
constitutive level. Once localisation occurs, material behaviour is governed 
by nonlinear constitutive phenomena. It is important that this reflects the 
state of gradual localised degradation before failure (fracturing) occurs; for 
example, the case of a partially-developed crack before it becomes fully 
open. 

Third, the approximation has to be accurate and potentially adaptive in 
order to predict initiation and propagation of discontinuities with minimum 
error. The solution has to be robust and free from numerical instabilities. In 
addition, computational efficiency is a key practical issue as it is directly 
associated with the performance of available computer resources and it is 
affected by the scale, importance and time constraints. 

The presence or appearance of discontinuities and local failure phenomena 
are not necessarily associated with complete structural failure or catastrophic 
collapse. Examples are pre-existing joints in structural rock and allowed 
thermal cracks in concrete structures that do not necessarily hinder the 
serviceability state. However, negligence of such allowable discontinuities 
from numerical models can, in certain cases lead ultimately to 
unconservative and potentially unsafe solutions due to over-estimation of 
structural capacity. 
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The primary aim of this research is to investigate and develop a unified 
method for modelling discontinuities in quasi-brittle structures as an 
alternative framework to techniques such as the Finite Element Method 
(FEM) and Discrete Element Method (DEM). Both FEM and DEM are 
established in several different engineering industries. However, FEM is 
continuum-based and consequently has been traditionally more attractive 
for modelling localisation phenomena, whereas DEM employs discrete 
interconnected bodies which are specified a priori, and hence has been more 
attractive for modelling problems involving discontinua. 

Particular emphasis is given to the investigation and development of the 
Numerical Manifold Method (NMM), as the framework of choice for 
undertaking this research. NMM is not established or developed as much as 
FEM and DEM, and it has so far been applied almost exclusively by 
geotechnical communities in Japan, U. S. and China. Nevertheless, there are 
attractive aspects that reflect the method’s potential for application to 
concrete, masonry and a more general class of materials. 

One of the most attractive aspects of NMM is with respect to its potential 
for modelling the complete transition from continuum to discontinuum in a 
discrete manner, but within a continuum setting, with or without remeshing 
and without the requirement to specify potential failure boundaries a priori. 
This aspect, coupled to a potential to enhance the approximation field 
globally or locally (with minimal additional computational expense) in order 
to minimise error, also without remeshing up to any theoretical level suggest 
that NMM is much more powerful than has been realised previously. The 
ability to enhance the approximation field without remeshing render the 
technique particularly attractive for adaptive simulations. Furthermore, there 
are similarities with other numerical techniques such as FEM and Partition 
of Unity methods which are worth investigating. 

 

1.2 Outline 

The general layout of the thesis can be identified in three main parts: 

1. Chapter 2 provides a literature review of strategies and numerical 
techniques that aim to resolve localisation and failure phenomena. 

2. Chapters 3, 4 and 5 investigate and develop the basis of NMM (Chapter 
3), the ability to improve the approximation (Chapter 4) without 
remeshing and using adaptivity, and the ability to describe localised 
failure (Chapter 5), also without remeshing. 

3. Chapters 6 and 7 discuss and develop further aspects such as integration 
and the behaviour and treatment of higher-order phenomena. 

 

More specifically, the thesis is organised as follows: 

Chapter 2 provides an introduction to numerical techniques for modelling 
localisation and failure. The main advantages and disadvantages of these 
methods are discussed briefly with emphasis on their application in 
problems that involve quasi-brittle structures. This sets the scene which 
ultimately leads to a general introduction of NMM and the reasons for 
which it is the framework of choice for undertaking this research. 
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Chapter 3 establishes and develops further the basis of NMM. In contrast to 
traditional formulations of NMM, here the technique is established using a 
variational approach. Shape and basis functions are introduced for any 
arbitrary level of the approximation, for any number of spatial dimensions. 
The enforcement of essential boundary conditions is discussed for a variety 
of traditional and non-traditional methods and extended with the 
application of Lagrange multipliers. Furthermore, a technique which 
employs projection matrices is implemented. This restores the problem to 
its original number of unknowns and does not depend on arbitrary stiffness 
constraints. Similarities with FEM are discussed at the end of the chapter. 

Chapter 4 treats the higher-order enhancement of the approximation (in 
essence a form p-enhancement), for any theoretical level, without 
remeshing. The practical implementation of this approach is restricted only 
by computing capabilities. The chapter also unveils an algorithm to 
undertake local enhancement and illustrates the use of error indicators for 
adaptive enhancement. 

Chapter 5 focuses on the discontinuous modelling aspects of the method. 
The topological and constitutive resolution of discontinuities, such as 
cracks, is developed and illustrated with numerical examples. A particularly 
interesting aspect of the approach is that it can also be used to potentially 
introduce discontinuities in other partition of unity methods. This leads to 
an examination of similarities and differences between NMM and the recent 
extension of FEM, the Extended Finite Element Method (XFEM). 

Integration in higher-order and discontinuous domains is discussed in 
Chapter 6, whereas Chapter 7 treats issues of modelling higher-order 
boundaries. Finally, Chapter 8 provides closure with a summary of the main 
conclusions and future perspectives of this work. 

 

1.3 Key advances 

This research explores and develops NMM as an alternative framework for 
modelling the transition of continuum to discontinuum in quasi-brittle 
materials. The following points summarise the key advances achieved during 
the project: 

1. Discontinuities are introduced naturally, in a discrete manner but within 
a continuum setting, without a priori assumptions and without the need 
for remeshing 

2. A local enhancement strategy for the approximation field is achieved, 
for any arbitrary level of enhancement, without the need for remeshing 

3. Essential boundary conditions are introduced in a robust and efficient 
manner using projection matrices, for any order of the approximation 
field without the use of artificial penalty constraints 

4. Integration of the discretised system of equations is undertaken 
explicitly (exactly) using simplex integration, for any arbitrary level of 
local enhancement of the approximation field 

 

Furthermore, NMM is recast in a more rigorous form than before and many 
aspects of the work originally introduced by Shi in 1996 [96] and other 
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researchers are extended. The formulation is generalised for the first time 
for domains of three spatial dimensions and the enforcement of essential 
boundary conditions is improved with the implementation of a technique 
which employs projection matrices and does not depend on artificial 
stiffness or increases the number of unknowns. In addition, certain issues 
with higher-order boundaries are investigated and potential treatments are 
proposed. 

 

1.3.1 Higher-order approximation and local enhancement 

Similar to FEM, the NMM approximation field can be improved by 
increasing the number of nodes of the mesh (h-enrichment) or relocating 
existing nodes (r-refinement). Furthermore, the approximation can also be 
improved by increasing hierarchically basis polynomials without increasing 
the number of nodes. 

The original NMM has been extended by several researchers [21, 65] such 
that the level of approximation can be theoretically of any order. Whilst the 
foundations for higher-order NMM have been laid, there have been few 
attempts to implement this in practice for any arbitrary level of 
approximation. Uniquely, this project has demonstrated how enhancement 
of the approximation field may be carried out using algorithms that perform 
the process for any arbitrary level. 

Moreover, this research developed a novel technique whereby the order of 
the displacement function can be increased for a selected number of nodes, 
thereby only enhancing the level of approximation locally. This allows the 
approximation field to improve for only critical areas of the domain with no 
remeshing and at minimal additional computational expense. The procedure 
can be desirable for p-adaptivity simulations and this is demonstrated with 
the development and use of an adaptive algorithm driven by simple error 
indicators. It is worthwhile to note that the implementation of this 
adaptivity approach is easy and it is similar for problems of any spatial 
dimension. 

 

1.3.2 Enforcement of essential boundary conditions 

Traditionally, essential boundary conditions in NMM are enforced using 
penalty methods. Although the implementation of penalty constraints is 
normally efficient, it may not be entirely satisfactory due to the use of 
artificial constraints and the potential development of conditioning issues. 

The enforcement of essential boundary conditions was extended with the 
use of a robust and efficient technique which employs projection matrices 
for any order of the approximation field. Unlike penalty methods the 
technique eliminates the need for artificial constraints and unlike traditional 
Lagrange multiplier methods it restores the problem to its original number 
of unknowns. 

Furthermore, the use of an alternative enforcement approach was 
investigated by modifying directly the form of displacement polynomials 
employed at the boundary.  
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1.3.3 Modelling of discontinuities 

Traditionally, quasi-brittle failure has been resolved numerically using either 
continuum-based approaches (for example smeared crack approaches) or 
via the introduction of discrete displacement discontinuities. The former 
approach can provide a realistic description of strain localisation and 
microscopic processes but does not fully resolve the complete mechanism 
of discrete failure zones observed in quasi-brittle structures and can result in 
severe numerical difficulties. 

The latter approach provides a potentially better description of 
discontinuous processes but has been traditionally incorporated in 
numerical techniques via the use of remeshing and a priori assumptions with 
regard to the location and path of potential failure zones. 

A unified continuous-discontinuous method is viewed as a more appealing 
and efficient approach for simulating the entire range of quasi-brittle 
phenomena. This project has shown how NMM can be utilised to introduce 
arbitrary displacement discontinuities without the need for remeshing and 
without the use of failure zones which have been specified a priori. 

Shape and displacement functions remain in essence unaltered and only the 
influence domain of weight functions is augmented. As a result, the 
approach is relatively simple to implement and can be potentially utilised in 
other techniques with shape or weight functions that form a partition of 
unity. 

In addition it is demonstrated that there are strong parallels between NMM 
and XFEM with respect to the introduction of displacement discontinuities. 
This means that the substantial amount of research that has been carried out 
in the field of XFEM, such as tracking discontinuities with level set methods 
and resolving crack branching, can be potentially utilised in further 
developments of NMM. 

 

1.3.4 Exact integration for arbitrary levels of enhancement 

In NMM the number of nodes per element and weighting functions remain 
normally constant but the order of displacement polynomials that constitute 
the basis functions can be increased. Since the integration domain and the 
structure of displacement polynomials are simple, the integration associated 
with the discretisation process may be undertaken explicitly (exactly) for any 
arbitrary level of enhancement without a loss of generality using simplex 
integration. 

This work developed a strategy for simplex integration that does not require 
explicit derivation of the element matrices for any arbitrary level of 
enhancement of the approximation. 
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1.4 Symbolic notation 

In principle, bold capitals denote vectors and matrices, whereas normal 
characters denote scalar quantities. References in literature are displayed in 
square brackets, while equation references are denoted in parentheses. 

 

Latin symbols 

A   constraint matrix 

B   strain interpolation matrix 

C   constraint matrix 

E   Young’s modulus 

E   elasticity matrix 

L   differential operator 

M   mass matrix 

N   normal vector 

iN  order of displacement function of cover i  

Q   projection matrix 

R   auxiliary matrix 

T   shape matrix 

iT   cover shape matrix 

a   deformation vector 

ia   cover deformation vector 

b   body force per unit volume 

k   penalty number 

im   number of terms of displacement function of cover i  

n   outward normal to Ω  

p   spatial dimension 

t̂   surface traction with outward normal n  

u   continuous displacements 

û   prescribed displacements 

u   discretised displacements 

iw   weighting (or cover) function 

x   spatial coordinate vector 
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Greek symbols 

Γ   boundary of a domain 

uΓ   subset of Γ on which displacements are prescribed 

tΓ   subset of Γ  on which tractions are prescribed 

t∆  finite solution increment 

∆u  displacement increment 

Π   functional 

Ω   volume, surface or line domain, excluding boundaries 

eΩ  element domain 

i
Ω  domain of cover i  

,i kα  cover displacement function for cover i , direction k  

, ...i ia b  weighting function coefficients 

,

i

i k

mβ  mth polynomial coefficient of function ,i kα  

δ   variation 

ε   continuous strain 

λ   discretised Lagrange multipliers 

ν   Poisson’s ratio 

σ   stress vector 

 

Miscellaneous symbols 

L   continuous Lagrange multipliers 

�   Euclidian space of real numbers 

 

Abbreviations 

BEM boundary element method 

EFG element-free Galerkin 

DEM discrete element method 

DDA discontinuous deformation analysis 

FEM finite element method 

NMM numerical manifold method 
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XFEM extended finite element method 

PU  partition of unity 
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2 Numerical resolution of quasi-brittle 
localisation and failure 

2.1 Introduction 

The family of quasi-brittle materials consists of a wide range of modern and 
traditional structural and architectural materials such as concrete, fibre-
reinforced concrete, cementitious mortars, masonry, rock, grouted soils, stiff 
clays and several geomaterials, polymers, laminates, fiber composites, 
ceramics, ice, consolidated snow, dental cements, biological shells, bone, 
paper and wood [12, 51, 125]. 

Furthermore, certain metals and intermetallic compounds are classified as 
quasi-brittle [53, 84] and certain predominantly brittle or ductile materials 
can also exhibit quasi-brittle response under suitable environmental 
conditions and confinement [125]. 

 

  

  

Figure 2-1. Examples of structures constructed of quasi-brittle materials. 
From top left to right: 1. The 1,400 year old Zhaozhou arch bridge in China 
[128] 2. Detail of vault of King’s College Chapel in Cambridge, U. K [119]. 
3. Reactor building of Berkeley nuclear power station, U. K. [20] 4. Hoover 
Dam, Colorado River, U. S. [78] 

 

Quasi-brittle behaviour is generally desirable because it is related to the 
capability of material to dissipate energy. In principle, this can be engineered 
by enhancing material inhomogeneities [51]. While brittle materials fail with 
very little or no energy release and deformation, quasi-brittle materials 
undergo some deformation and energy release before they give rise to the 
appearance of distinct discontinuities (cracks) and eventually fail. 
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Quasi-brittle materials are of paramount importance in several engineering 
fields such as structures, geotechnics, tectonics, arctic-ice mechanics and 
even aeronautics. They are also important in several engineering industries, 
such as nuclear, mining, petrochemical and civil. Apart from structural 
function, they also provide important roles in applications such as 
containment, shielding and aesthetics. 

Quasi-brittle structures exhibit a range of complicated nonlinear stress-strain 
phenomena when their yield capacities are exceeded. Structural members 
may exhibit large plastic strains or fail more abruptly depending on their 
ductility, while properties such as stiffness, tensile and compressive strength 
can increase due to rate effects and confinement or reduce due to time-
dependent phenomena such as shrinkage and creep [18, 29, 68, 93, 122]. 

 

 

Figure 2-2. Part of the reinforced concrete Cypress Street Viaduct, in 
California, which collapsed as a result of the Loma Prieta earthquake in 
1989 and caused 42 fatalities [118] 

 

Furthermore, the interaction of distinct failure mechanisms (tension, 
compression, shear, torsion) in multi-axial scenarios and the interaction with 
reinforcement components and bond materials in composite structures (for 
example in reinforced concrete and masonry structures), can complicate the 
understanding of structural response even further. 

The inhomogeneous, anisotropic, multi-constituent and often multi-phase 
character of quasi-brittle materials renders understanding of their behaviour 
notoriously challenging to resolve mathematically. The following section 
provides an introduction in fundamental concepts behind the 
implementation of numerical models that attempt to describe quasi-brittle 
response. 

 

2.2 Numerical resolution of localisation and failure 

When quasi-brittle materials are subjected to mechanical, thermal or 
chemical actions, their mechanical capacities can be exceeded. Near the peak 
strength limit and prior to failure, inelastic strains tend to localise in 
relatively thin bands, or process zones [34, 125]. At some stage between 
localisation and failure, distinct discontinuities appear (Figure 2-3), which 
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give rise to flexural, shear and torsional cracks, or damage and crushing of 
material due to high inelastic compressive strains. 

 

 

Figure 2-3. Typical crack pattern in a concrete beam 

 

Once strength capacity is reached and inelastic strains begin to localise, 
quasi-brittle materials display some ductility by undergoing deformation and 
energy release while stress is reduced gradually to zero. This gradual 
reduction of strength is known as ‘softening’ (Figure 2-4, Figure 2-5). 

 

  

Figure 2-4. Experimental tensile stress-deformation (left) and compressive 
(right) stress-strain curves of concrete specimens in uniaxial tension and 
compression [59] 

 

 

Figure 2-5. Typical stress-strain relationship of quasi-brittle materials in 
uniaxial tension 
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Numerical models that aim to resolve localisation and failure phenomena 
such as those discussed above fall principally into three distinct classes [49, 
99, 125]: 

 

1. Continuous 

2. Regularised-continuous 

3. Discontinuous 

 

The first class resolves displacement jumps that occur from the appearance 
of discontinuities using smooth field approximations. In physical terms, this 
implies that displacement jumps are distributed (or ‘smeared’ as it is 
commonly termed) over a discretised region of the continuum. Since the 
displacement field is differentiable, strain can be defined uniquely and 
therefore the smeared representation can be replaced by an equivalent 
inelastic strain. This type of discontinuity is commonly referred to as a 
‘weak’ discontinuity, since jumps in the displacement field are not 
considered explicitly. 

 

 

Figure 2-6. Representation of a weak discontinuity 

 

The second class is an enhancement of the first and consists of regularised 
models that represent displacement jumps using smooth approximations in 
both stress and strain terms. This is achieved using enhancements of the 
classical continuum theory by means of gradients of internal variables [33] 
or non-local terms [83]. 

 

 

Figure 2-7. Representation of a weak discontinuity in regularised media 
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The third class allows for jumps in the displacement field in an explicit 
manner. In finite elements this is undertaken traditionally using a priori 
assumptions regarding the location of potential discontinuous boundaries. 
In essence, discontinuities are represented by additional degrees of freedom 
and special interface models that allow for cohesive or traction-free 
boundaries. This type of discontinuities is commonly referred to as ‘strong’ 
discontinuities, since jumps in the displacement field are modelled explicitly. 

 

 

Figure 2-8. Representation of a strong discontinuity 

 

Numerical approximations based on the first class are attractive from the 
point of view that the problem can be solved within a continuum setting. 
However, as strain localisation occurs, the governing equations become ill-
posed, which causes numerical difficulties and requires regularisation of the 
continuum model in order to overcome this. 

Regularised-continuous techniques can restore well-posedness of the 
governing equations and potentially enable the inclusion of size effects using 
concepts that take into account the material microstructure. This is achieved 
using additional variables which are typically related to some characteristic 
length associated with the material or localisation pattern. However, these 
additional variables can be difficult to determine. 

Discontinuous techniques treat fracture and failure in a more 
straightforward manner, in terms of displacement jumps and tractions rather 
than in terms of stresses and strains. However, this traditionally necessitates 
intensive remeshing to represent evolving boundaries, or a priori 
assumptions regarding the location of discontinuities, and can consequently 
lead to increased computational cost and mesh bias pathologies. 

An overview of numerical techniques commonly employed for the 
discontinuous representations discussed above is given in sections 2.4 to 2.9. 
First, an introduction of the main strategies with which these are employed 
is provided in the following section. 

 

2.3 Numerical strategies for modelling quasi-brittle failure 

Current strategies for the utilisation of numerical models and techniques 
that aim to represent structural behaviour of quasi-brittle structures fall in 
the following two main classes: 
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1. Macro-models (or continuous/homogeneous models), in which 
structural behaviour is obtained from the homogenised description of 
material as isotropic or anisotropic composite continuum. 

2. Micro-models (or discrete models), in which material constituents or 
components and their interaction are considered individually. 

 

 

Figure 2-9. Examples of micro- (left) and macro-models (right) in masonry 
[63] 

 

In certain situations an intermediate meso-scopic scale is identified (Figure 
2-10) to differentiate models in which the smallest scale consists of material 
constituents or components (concrete aggregates, masonry mortar) from 
models of even smaller scales (e.g. molecular). 

 

 

Figure 2-10. Meso-scopic finite element model of concrete matrix and 
aggregates [82] 

 

Macro-models involve simplified hypotheses in order to describe the 
normally complex material microstructure as that of an isotropic or 
anisotropic composite. Consequently, they tend to be inaccurate for 
resolving micro-mechanical failure processes but they are associated with 
significant reduction of computational resources when compared to more 
sophisticated micro-models, and reduced pre- and post-processing effort. 

Advanced homogenization techniques [2, 52, 63] aim to enhance the 
representation of micro-structural behaviour in such models by resolving 
micro-constitutive laws into an anisotropic macroscopic level, in a way that 
the macro-constitutive law is not actually implemented, or even known. 
However, such techniques are not yet widely available in practice. 

Micro-models advocate the capability for more realistic resolution of 
structural behaviour via the explicit representation of individual material 
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components and their interaction. In practice, due to their complexity they 
can be more difficult to implement and validate than more simplified 
macro-models and they tend to be computationally involved. As a result, 
their application is often limited to the analysis of small structural specimens 
and details. 

Traditionally, in the context of resolution of discontinuous processes, 
macro-models are frequently associated with continuous approximation 
techniques and weak discontinuity models, whereas micro-models are 
associated with discrete techniques and strong discontinuities, although this 
is not a definite rule. A new generation of techniques that consists mainly of 
meshless and partition of unity approximations (sections 2.7 and 2.8) 
advocates the potential to provide unified descriptions of the transition 
from continuum to discontinuum in a realistic and computationally efficient 
manner. 

 

2.4 Overview of numerical techniques to resolve discontinuous 
processes 

The following sections aim to provide an overview of numerical techniques 
that are used to resolve discontinuous processes. It is not the intention for 
this to be a comprehensive review, but a brief discussion of the main 
advantages and disadvantages of most popular techniques. 

This overview will ultimately set the scene for the introduction of the 
Numerical Manifold Method in section 2.9 and provide the basis for 
drawing parallels between this and other techniques such as the Finite 
Element method, the Extended Finite Element method and Discontinuous 
Deformation Analysis. 

 

2.5 Continuous methods 

On a practical level, the resolution of localization and failure has been 
traditionally approached using continuum-based techniques such as the 
Finite Element Method (FEM) [27], the Finite Difference Method (FDM) 
[42] and Boundary Element Method (BEM) [8] normally coupled with weak 
discontinuity models based on plasticity, damage or smeared crack concepts. 

Continuous (or continuum) techniques are based on domain or boundary 
discretisations that resolve continua in a finite number of interconnected 
sub-domains. Sub-domains (or elements) are associated with sets of 
functions which define the approximation field within their domain. 
Typically, the resulting equations are assembled into a system on which 
constraints and loads are applied in order to obtain a solution. 

FEM is without doubt the most known and broadly applied technique used 
to solve problems in solids. Its origins can be traced back to the pioneering 
work of Argyris [4], Zienkiewicz [132] and the work of Varga on variational 
finite differences [120]. 
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Figure 2-11. FEM-damage model of a gothic cathedral [85] 

 

Continuum methods are often applied in macro-models of practical 
industrial applications as they are capable to derive adequate information 
about the global structural behaviour with relatively minimal initial model 
preparation and computational cost. However, modelling of discontinuous 
phenomena traditionally requires either the use of weak discontinuity 
models or some form of remeshing so that discontinuities can be resolved 
in a strong sense. 

The latter situation can be difficult to implement, it can be computationally 
involved and it can potentially lead to mesh bias issues. On the other hand, 
weak discontinuity models resolve jumps in the displacement field in a 
smooth sense (section 2.2) and can be practical when no remeshing is 
undertaken. 

An alternative approach to remeshing or the use of weak discontinuity 
models is the use of interface zones with interface elements. Interface 
elements can be used in strategic a priori specified locations or they can be 
dispersed throughout the finite element mesh [35, 112] to model existing or 
potential jumps in the displacement field in a strong manner (Figure 2-13). 
However, the former depends on knowledge or conjecture about where 
discontinuities may appear, while the latter can lead to considerably 
increased computational expense. Interface behaviour is defined by 
nonlinear interface laws which can be traction-free or cohesive while the 
surrounding continuum material may remain elastic or it may be nonlinear. 

 

 

Figure 2-12. Modelling of a strong discontinuity in a concrete beam using 
Linear Elastic Fracture Mechanics and remeshing (left) and FEM with 
interface elements 
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One of the main disadvantages of this approach is that potential failure 
mechanisms are normally defined a priori. This can render the model 
preparation process particularly time consuming. Furthermore, models may 
suffer from path dependence and computational cost can be high as 
relatively fine discretisation or remeshing is often required in order to 
capture the evolution of discontinuities in an accurate and robust manner. 

 

 

Figure 2-13. Three-point bending test of an unreinforced concrete beam 
using a combined FEM-cohesive interface model 

 

Here, it is worthwhile to also note the lattice framework, which dates back 
to the work of Hrennikoff [44]. Lattice techniques adopt a strong 
discontinuity approach and as a result they are sometimes perceived as 
discrete techniques although do not normally entail automatic detection of 
new contacts (see section 2.6). 

Lattice techniques replace the continuum with an equivalent beam or truss 
structure (which is known as the lattice). Elements can brake into lattices 
based on criteria of strain, force, or energy, as determined from the 
displacement solution [116]. Typically, an element is removed from the 
solution if it meets the adopted criterion. 

 

 

Figure 2-14. Lattice crack pattern of SEN concrete specimen test [92] 

 

2.6 Discrete methods 

Similar to certain continuum-based techniques, discrete methods allow 
strong discontinuities to be represented a priori in the numerical model. 
However, they are inherently more thorough with regard to the way they 
enforce and detect contact constraints and they generally appear to be better 
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suited for simulating complete failure of solids and interaction of 
fragmented parts. 

In discrete methods, a domain with pre-existing or no discontinuities is 
constructed as the assemblage of a finite number of discrete deformable or 
rigid bodies (also called blocks), interconnected with contact constraints and 
interfacial constitutive relationships. In contrast to continuum-based 
techniques, discrete methods do not normally augment the original mesh 
although the configuration of blocks is allowed to change, since 
discontinuities are aligned with the topology of discrete bodies. 

 

 

Figure 2-15. Deformed DDA model of dry brick assembly problem [17] 

 

According to Zienkiewicz [134], the discrete framework is one which: 

1. Allows finite displacements and rotations of discrete bodies, including 
complete detachment 

2. Recognizes new contacts automatically, as calculation progresses. 

 

The Discrete or Distinct Element Method (DEM) [30] and Discontinuous 
Deformation Analysis (DDA) [94] are merely examples of a large array of 
discrete techniques. Key differences between different techniques are 
usually identified with regard to the way contact is enforced or detected, the 
time-integration scheme (implicit or explicit), the type of deformability and 
the type of interfacial constitutive laws. 

 

 

Figure 2-16. Fracturing of wellbore stability model using DEM [32] 

 

Discrete frameworks are particularly attractive in low and high-speed impact 
applications where fragmentation and debris scatter can be important, 
modelling of structures that consist of interconnected deformable blocks, 
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such as masonry [102], although they have also been applied in simulations 
of fracturing of concrete and rock materials [32] in a variety of scenarios. 

 

 

Figure 2-17. DEM simulation of a vase shattered onto the ground [131] 

 

Potential difficulties or limitations of discrete techniques can be associated 
with computational cost issues [86] due to large numbers of bodies or 
blocks often required to discretise continua, the sensitivity of explicit 
schemes to the solution of static or quasi-static scenarios using dynamic 
relaxation, the simulation of deformable continua and the detection and 
enforcement of contact constraints. 

 

2.7 Meshless methods 

The desire to alleviate difficulties associated with mesh generation and re-
meshing associated with traditional continuum-based techniques has 
recently given rise to an increased interest in the development and 
application of meshless methods. 

 

 

Figure 2-18. Modelling of a discontinuity using a mesh-based (left) and 
meshless approach (right) 

 

Meshless techniques generally conceive the domain as an assemblage of 
overlapping domains of influence iΩ ⊂ Ω , also known as covers, or 

patches. The domains of influence are effective within the physical domain 
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and ineffective outside the domain or on emerging discontinuities (Figure 
2-19).  

 

 

Figure 2-19. Meshless cover domain of influence 

 

Each cover iΩ  is associated with a weighting function ( )iφ x . If  ( )iφ x  is 

nonzero only in iΩ , and is such that: 

 

( ) 1i

i

φ =∑ x          (2.1) 

 

then the weighting function is a partition of unity [6]. This property has 
been the impetus of an important new class of mesh-based and meshless 
numerical techniques discussed in section 2.8. 

In contrast to traditional continuum-orientated techniques (such as FEM), 
the basis of meshless (or meshfree) methods lies in that for any given set of 
points, or nodes, there is no requirement to define elements in order to 
determine where the weighting function is zero or non-zero. Consequently, 
the approach is particularly attractive in simulations of moving boundaries, 
large deformation and strongly discontinuous phenomena, since no 
remeshing is required. 

In all, there are several meshless methods and families of meshless methods, 
based on moving least squares [57], smooth particle hydrodynamics [66], 
natural neighbour Galerkin approximations [107] or reproducing kernel 
methods [61] to name a few.  

A comprehensive overview and developments is given by Belytschko, 
Duarte, as well as others [14, 36, 58]. The Element-Free Galerkin (EFG) 
[13], a refinement of the Diffuse Element Method originally proposed by 
Nayroles [79] based on the moving least squares approximation, can be 
given as an example of a relatively recent and popular approach which is 
also based on the partition of unity. 

It is worthwhile to note that, as in the case of EFG, shape functions and 
their derivatives can be continuous. This is in contrast to FEM in which 
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computed strains and stresses are non-smooth and post-processing of such 
quantities normally requires additional considerations. 

Although meshless methods have distinct advantages over traditional 
continuum and discrete-based techniques with regard to pre-processing and 
resolution of moving boundaries, from the point of view of accuracy and 
efficiency there are limitations reported in literature, which in some 
situations they can negate certain inherent advantages over other techniques 
[37]. 

Reported difficulties are primarily associated with the enforcement of 
essential boundary conditions [14] due to the non-interpolating character of 
shape functions over nodal parameters, errors due to numerical integration 
[107] and issues related to computational expense [5, 14] due to the 
complicated character of shape functions. 

 

2.8 Partition of unity methods 

The realisation that it is possible to exploit the partition of unity (PU) 
property of shape functions of certain meshless methods [13, 80] and FEM 
[133], leads to the identification and development of the so called PU 
framework [6].  

PU methods advocate distinct advantages over traditional continuum-based 
methods with regard to modelling of discontinuum states, since they can 
explicitly resolve jumps in the approximation field without the requirement 
to undertake remeshing even when no a priori assumptions are made with 
respect to the discontinuity path. Consequently, PU methods appear 
particularly attractive in applications that involve simulation of moving 
boundaries, such as fracturing and crack propagation. 

The Numerical Manifold Method (NMM) [96], the Extended Finite 
Element Method (XFEM) [6, 15], Partition of Unity Finite Elements [98, 
125] and Polygonal Finite Elements [109] are only a few examples of 
variants based on the PU concept. FEM may also be seen as a PU method 
although it does not traditionally exploit these properties with regard to 
discontinuity modelling. Instead it employs remeshing techniques, 
predefined interfaces or smeared continuum methodologies (see section 
2.5). 

NMM appears as a particularly interesting technique for modelling a range 
of phenomena, as it combines PU characteristics with the possibility to 
locally improve the approximation also without remeshing, theoretically for 
any arbitrary level. Although this is also possible with other PU variants, in 
NMM integration can be undertaken explicitly, for any level of the 
approximation. 
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Figure 2-20. Fracturing of a simply supported concrete beam by FEM and 
linear elastic fracture mechanics with remeshing (left), NMM with no 
remeshing (right) 

 

Similar to meshless methods, PU methods identify the trial function as the 
product of weighting functions (or shape functions), which are centred on 
supports, and functions which describe the approximation field within a 
discretised region of the domain. 

The weighting function associated with a given support is equal to unity on 
that support and decreases to zero on neighbouring supports and 
boundaries. At any point within the physical domain, the sum of weighting 
functions equals unity. 

 

 

Figure 2-21. FEM/NMM/XFEM partition of unity shape/weight functions 
on a one-dimensional line element 

 

Jumps in the approximation field are introduced naturally by rendering 
covers ineffective over the discontinuity domain. This involves the 
introduction of additional supports, which however overlap existing 
supports so that the mesh topology remains similar. 
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Figure 2-22. XFEM pull-out test of a steel anchor embedded in a concrete 
cylindrical block [3] 

 

2.9 The Numerical Manifold Method 

The Numerical Manifold Method (NMM) [96, 97] is a relatively recent yet 
potentially powerful numerical analysis technique based on the partition of 
unity concept [6] and ideas similar to those used in meshless methods [5]. 
Furthermore, NMM integrates aspects of traditional and hierarchical finite 
element methods [133, Chapters 3 and 4]. Due to the partition of unity 
characteristics, it provides the possibility to model both continuum and 
discontinuum states, as well as the transition from continuum to 
discontinuum in a single unified framework. 

NMM can be viewed as a more generalised formulation of DDA, whereby 
blocks are substituted by assemblages of elements formed by overlapping 
covers, or supports, or domains of influence. Similar to DDA, the 
approximation can be enhanced using higher-order polynomial basis 
functions to achieve a variable-strain field within elements without altering 
the mesh (Figure 2-24). 

 

 

Figure 2-23. Uncracked configuration, mesh and principal stress contours of 
a notched Concrete Compact Tension Specimen (CTS) 
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Figure 2-24. Major principal stress contours (left) of CTS crack propagation 
without remeshing. The approximation is enriched around discontinuities 
(right) also without remeshing 

 

The principal difference with regard to the way the approximation is 
constructed in each case is that DDA blocks utilise single covers, while 
NMM elements utilise multiple covers. Furthermore, NMM does not 
normally include rotational terms. 

Similar to meshless methods, NMM treats discontinuities by introducing the 
concept of effective cover regions. Where a cover intersects a disconnected 
domain, that part of the cover becomes ineffective. However, covers and 
the associated shape functions are defined differently in each case, in both 
topological and mathematical terms. In NMM the cover domain of 
influence is typically defined by the element topology, i.e. a mesh is required, 
whereas in meshless methods definition of elements is not required to 
determine where shape functions are zero or non-zero. 

 

 

Figure 2-25. Typical cover domain of influence of NMM (left) and a 
meshless approach (right) 

 

On the other hand, because of this more flexible, with regard to pre-
processing, definition of the meshless space, the associated weighting 
functions [1, 13] can be significantly more complicated that the linear 
weighting functions typically employed in NMM. Consequently, shape 
functions and their spatial derivatives as well as integration can be more 
involved in meshless methods than in NMM. 
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In addition to similarities with meshless methods, DDA and FEM with 
standard and hierarchical shape functions, NMM exhibits strong parallels 
with the more recently developed Extended Finite Element Method 
(XFEM) [15, 73, 104, Chapter 5]. 

 

 

Figure 2-26. Schematic relationship between NMM and other techniques 

 

The application of NMM has so far been limited predominantly within 
geotechnical communities in Japan, China and the U. S. [64, 81, 91, 108, 
123, 129, 130]. However, the similarities of NMM with meshless methods 
and hierarchical FEM indicate a possibility of use for modelling failure 
processes in a wider range of materials and applications. 

To date, the original NMM [96] has seen relatively little development 
although it has been extended in attempts to exploit its potential to improve 
the level of approximation with higher-order basis functions [23, 65], while 
preserving the ability to undertake integration analytically. Most 
developments have not been demonstrated, and there is no evidence of 
potential issues associated with convergence or enforcement of constraints 
in higher-order deformability states. 

Three important complementary characteristics can best describe the 
attractiveness of NMM: 

1. First, the level of approximation can be improved globally, or locally, 
without the necessity for remeshing. This characteristic renders the 
method ideal for p-adaptivity. 

2. Second, discontinuities in the displacement field can be introduced 
explicitly without the need for remeshing due to the PU property. 
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3. Third, integration associated with the discretisation procedure may be 
undertaken analytically rather than numerically, for any arbitrary level of 
the approximation. 

 

These characteristics will be introduced in the following chapter and 
developed further in subsequent chapters. 
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3 The Numerical Manifold Method 

3.1 Introduction 

In mathematics and physics, a manifold is defined as an abstract topological 
space, in which locally and around every point there is a neighbourhood 
topologically similar to the Euclidian structure (although the global structure 
appears more complicated). The Euclidian space itself is a manifold and in 
essence, all engineering structures can be perceived as manifolds. 

 

 

Figure 3-1. The concept of manifolds 

 

The concept of manifolds is important as it facilitates the understanding of 
complicated structures in terms of simpler ones, which are elements of the 
former. At this point it may be evident that fundamental concepts 
associated with most modern numerical techniques – the concepts of 
discretisation and approximation - are closely associated with the concepts 
of manifolds. 

FEM and other analysis techniques essentially employ the concept of 
manifolds by the realisation that a domain can be discretised into an 
assemblage of simpler finite regions, for which the behaviour is well 
understood. However, a key difference advocated by NMM, which was first 
introduced by Shi in 1996 [96], comparing to traditional numerical 
techniques is that its structure allows it to treat problems that involve 
discontinuities and moving boundaries in a more natural way, without the 
requirement of computationally involved remeshing techniques. 

NMM possesses several similarities with FEM, DDA, meshless and 
partition of unity methods, integrated in a unique setting. A brief 
introduction of NMM has been provided in Chapters 1 and 2. This chapter 
lays out and extends further the basis of the method, which in turn reveals 
why it is advocated as a potentially powerful candidate for modelling 
continua, discontinua, and the transition from continuum to discontinuum. 

Traditionally, the main equilibrium equations in NMM have stemmed from 
the principle of minimization of potential energy [96, 97] for two-
dimensional problems and for limited forms of displacement functions, 
whereas essential boundary conditions have been imposed using penalty 
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constraints. Here, NMM is cast in a more general constrained variational 
form for problems of any spatial dimension, and for any level of 
approximation, whereby essential boundary conditions are satisfied using a 
Lagrange multiplier technique although the can be satisfied in several 
different other ways. The proposed technique employs projection matrices, 
it does not involve fictitious penalty constraints and restores the problem to 
its original number of unknowns.  

Furthermore, while the key abilities to model the transition from continuum 
to discontinuum and to improve the approximation without remeshing are 
unravelled in detail in subsequent chapters, the potentially powerful ideas of 
NMM can become progressively evident from examination of its 
fundamental structure. 

 

3.2 Strong form of the governing equations 

Consider a domain pΩ∈�  bounded by Γ . The boundary is composed of 
sets uΓ  and tΓ , on which prescribed displacements and tractions are 

imposed respectively, such that u tΓ = Γ ∪ Γ  and 0=Γ∩Γ tu , in order to 

obtain a unique solution. 

 

 

Figure 3-2. Example domain 2Ω∈� with boundary sets uΓ  and tΓ  

 

In the absence of inertial forces, the governing equation for static 
equilibrium is given as: 

 

div 0+ =σ b  in Ω     (3.1) 

or 

0∇ ⋅ + =σ b  in Ω     (3.2) 

or 
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, 0ij j ibσ + =  in Ω     (3.3) 

 

which is known as the equation of linear momentum balance and ,ij jσ  and 

ib  are the stress and body force components respectively. This can be 

written in full as: 
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           (3.4) 

 

Alternatively, using Voigt’s notation (3.4) can be written as: 

 

0T + =L σ b           (3.5) 

 

where L is a differential operator: 
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L    (3.6) 

 

and σ  is a vector containing the stress components: 

 

, , , , ,T
xx yy zz xy yz zxσ σ σ σ σ σ =  σ         (3.7) 

 

Restricting the problem to small displacements, strains are related to 
displacements via the following kinematic relationship: 

 

=ε Lu       (3.8) 
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where the strain vector is defined as: 

 

, , , 2 , 2 , 2T
xx yy zz xy yz zxε ε ε ε ε ε =  ε          (3.9) 

 

On the boundary of the domain, the displacements and tractions are 
prescribed as follows: 

 

( ) ˆ= =g u u u  on uΓ     (3.10) 

ˆ T= =t t N σ  on tΓ     (3.11) 

 

Equations (3.10) and (3.11) are the essential and natural boundary 
conditions respectively [133]. Whereas natural boundary conditions are 
satisfied automatically by the variational form (given later in this chapter), 
hence the designation ‘natural’, it is required to modify the variational form 
in order to satisfy essential boundary conditions. 

The matrix N contains the components of the outward normal vector:  

 

[ , , ]x y zn n n=n  to Γ     (3.12) 

so that: 

0 0 0

0 0 0

0 0 0
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T
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n n n

n n n

n n n

 
 
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 
 

N        (3.13) 

 

3.3 Shape functions 

In NMM the physical domain is covered by a grid of nodes and each node 
has a domain of influence or support. In NMM literature, this domain of 
influence is known as the cover. Similar to meshless methods, a cover is 
associated with a weighting function which specifies the interpolation within 
the domain. This domain of influence is defined by element topology. The 
common area of an arbitrary number of overlapping covers constitutes an 
element (Figure 3-3) and the entire physical domain is completely covered 
by elements. 
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Figure 3-3. Covers and cover functions in NMM. General cover functions 
(left), simple hexagonal cover functions defined by a regular background 
mesh (right). 

 

 

Figure 3-4. Schematic representation of typical hexagonal covers in two 
dimensions 

 

In principle, the extent of a cover can be arbitrary. However, the nature of 
the integration of the weak form is closely related to the weighting function 
and the extent of the common area. Since the shape and extent of the cover 
is crucial to integration, a simple choice for the shape of cover is usually 
adopted. 

In order for the integration associated with the discretisation process to be 
undertaken explicitly the extent of each cover associated with a particular 
node has to be defined by the node’s neighbours. Figure 3-3 shows a regular 
grid of nodes covering a two-dimensional physical domain, where each 
nodal cover is hexagonal and the common area of overlapping covers is a 
triangular element. In the case that an unstructured grid is adopted, each 
cover is still defined by its neighbours and therefore will, in general, be an 
irregular polygon. However, the elements associated with overlapping 
covers are still triangular, albeit not necessarily regular in shape. 

For simplex elements, or elements that adopt the form of the simplest 
possible shape in any given space, the cover weighting function for node i  
is typically defined as a linear function of position in the global coordinate 
system: 

 

,
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where ia  and ,s iκ are the cover weighting function coefficients and sx  are 

the components of the position vector in the p -dimensional Euclidian 

space. 

 

 

Figure 3-5. Simplex elements in p
� , for 1, 2,3p =  

 

For example, in the case of four-node tetrahedral elements ( 3p = , 

1,2,3,4i = ), the weighting function iw  is: 

 

3

, 1, 1 2, 2 3, 3
1

i i s i s i i i i

s

w a x a x x xκ κ κ κ
=

= + ⋅ = + + +∑   (3.15) 

 

or, alternatively: 

( )1 2 3i i i i iw a b x c x d x= + + +            (3.16) 

 

where ia , 1,i ib κ= , 2,i ic κ= , 3,i id κ= are the weighting function 

coefficients and 1,2,3x  are components of the position vector.  

A particularly significant property of the weighting function is that it is a 
partition of unity. Hence, the weighting function has to satisfy the following 
conditions: 

 

( )
1
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w
=

= ∀ ∈Ω∑ x x     (3.17) 

( )0 1i iw≤ ≤ ∀ ∈Ωx x     (3.18) 

( ) 0i iw = ∀ ∉Ωx x     (3.19) 
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where eΩ  is the element domain and 3
iΩ ⊂ �  represents a cover, which 

may not be necessarily a subset of Ω ; for example a cover may extend 
outside the physical domain, as in the case of evolving discontinuities 
discussed in Chapter 5. Equations (3.17), (3.18) and (3.19) ensure that the 
weighting function that corresponds to any part of a cover iΩ  that lies 

outside the physical domain Ω  is set to zero. Equation (3.18) is in fact the 
Kronecker delta function with which FEM shape functions are also 
associated: 

 

0

1ij

for i j

for i j
δ

≠
= 

=
    (3.20) 

 

In other words, cover functions are ineffective (zero) outside physical 
boundaries and the cover grid can be independent of the physical domain. 
This concept implies that it is possible to model geometric discontinuities 
without the aid of complicated and computationally involved remeshing 
techniques, by simply forcing cover functions to be zero. 

In practice, this concept implies that rather than creating a mesh that 
coincides with the boundaries of the problem, and therefore having to 
resort to unstructured meshing, the analyst can employ the benefits of a 
regular structured mesh and simply identify boundaries and enforce 
appropriate constraints (Figure 3-6). In order to do this, it is necessary to 
employ some form of discontinuity tracking, which is arguably less involved 
than the implementation of remeshing algorithms. 

 

 

Figure 3-6. NMM mesh of a circular concrete tunnel in jointed rock. Left: 
original mesh; right: illustration of mesh with effective and ineffective 
boundaries. No remeshing has taken place. 

 

Whereas cover topology is not in principle required to coincide with the 
topology of the physical problem, it can often be advantageous to ensure 
that the two overlap. In this case, it is possible to easily employ the widely 
available pre- and post-processing software originally intended for finite 
element codes. 
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3.4 Displacement functions 

In three dimensions, the unknown displacement function within an element 
(defined by n  number of covers and nodes) is defined as: 

 

1

2
1

3

n

i i

i

u

u w

u =

 
 

= = 
 
 

∑u α     (3.21) 

 

where iw  is the weighting function (or shape function) associated with the 

cover of node i  and iα  is the vector of displacement functions associated 

with the cover of node i . iα  adopts the following form: 

 

( ),1 ,2 ,3

T

i i i iα α α=α       (3.22) 

 

where ,i kα  is the cover displacement function of node i  in the kx  

direction. Typically, the displacement functions ,i kα  are trivariate 

polynomials of order iN : 

 

, , ,
, 1 2 1 3 2

, , ,
4 3 5 1 2 3... i

i

i k i k i k
i k

Ni k i k i k
m

x x

x x x x

α β β β

β β β

= + +

+ + + +
  (3.23) 

 

where , ,
1 i

i k i k
mβ β…  are the polynomial coefficients and im  is the total 

number of coefficients of ,i kα . The terms of ,i kα  can be determined for 

any given order iN  from Figure 3-7 or Figure 3-8. 
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Figure 3-7. Schematic representation of displacement function monomials 
in two dimensions 

 

 

Figure 3-8. Schematic representation of displacement function monomials 
in three dimensions 

 

The number of terms im  of ,i kα  of cover i  is given by: 

 

( )
1

!

p

i

l
i

N l

m
p

=

+

=
∏

    (3.24) 

 

For example, if the displacement functions are zero-order ( 0iN = ) in 2
� , 

then the number of terms according to Equation (3.24) is equal to: 
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( )
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l
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= =
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    (3.25) 

 

and Equation (3.23) reduces to: 

 

,
, 1

i k
i kα β=        (3.26) 

 

In this case, the displacement function equals a constant term; therefore 
equation (3.22) is a vector of nodal displacement contributions. 

 

If the displacement function of the same cover is increased by one order of 
magnitude ( 1iN = ), then: 

 

( )
2

1

1
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2!

l
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l

m =

+

= =
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           (3.27) 

 

and Equation (3.23) becomes: 

 

, , ,
, 1 2 1 3 2

i k i k i k
i k x xα β β β= + +        (3.28) 

 

Since the displacement function is a polynomial, the unknowns are the 

coefficients , ,
1 2, , ...i k i kβ β  and not nodal displacements as in the case with 

zero-order displacement functions.  

Similarly, if in a three-dimensional domain ( 3p = ) the displacement 

functions are of first-order ( 1iN = ), then: 
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3

1

1

4
3!

l
i

l

m =

+

= =
∏

          (3.29) 

 

, , , ,
, 1 2 1 3 2 4 3

i k i k i k i k
i k x x xα β β β β= + + +      (3.30) 
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A closer examination of equations (3.26) and (3.21) reveals that in the 
special case that zero-order displacement functions are used, the unknowns 
are nodal displacements similar to FEM. In addition, for the simplex 
elements typically used in NMM the weighting function is a linear function 
of position and exactly the same as the FEM shape functions. Thus, for 
simplex elements, zero-order NMM and FEM yield exactly the same trial 
functions (see section 3.11). 

It can be observed that the approximation identified by equation (3.21) may 
be improved not only by increasing the number of nodes n , and therefore 
undertaking remeshing, but also by increasing the order of ,i kα . In this 

latter case, remeshing does not take place as the approximation is enhanced 
by augmenting the form of the displacement function rather than adding 
additional nodes. 

Furthermore, it can be observed that the order iN  of each of the cover 

displacement functions in equation (3.23) associated with an element can be 
different for different nodes. Therefore, it is possible to enhance the 
displacement field only locally. This aspect constitutes an integral part of the 
hierarchical enhancement strategy treated later in the thesis. 

 

3.5 Remarks regarding element technology 

In principle, NMM covers can have arbitrary shapes and therefore it is not 
necessary to employ elements which are simplices. For example this has 
been shown by Sasaki & Ohnishi [91] in the context of NMM and analysis 
of rock mass using four-node iso-parametric elements, Cheng et al [25] with 
the development of Wilson non-conforming elements, and Chen et al [23] 
with the development of circular elements used to discretise geotechnical 
problems that consider the interaction of soil grains. 

The main advantage of simplex elements (triangles in two dimensions, or 
tetrahedra in three dimensions) as opposed to elements with more 
complicated shapes is that they can be easily adapted to fit almost any 
geometry and as a result they are particularly convenient in h-adaptivity 
strategies. For example, it is possible to discretise domains into element 
shapes similar to those employed by recent polygonal finite element 
methods [106, 109], since polygons are in fact assemblages of simplices. 
There are several algorithms available in the public domain that can be used 
for the triangulation of complex two- or three-dimensional domains in a 
fully automated manner (Figure 3-9). 

Furthermore, from a numerical point of view, polynomial descriptions of 
the approximation field can be integrated easily over simplex elements, 
whereas integration over more complex domains normally necessitates 
numerical integration. 
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Figure 3-9. Discretisation of an arbitrary domain with an unstructured mesh 
of simplex elements using the GiD [46] pre- and post-processor 

 

However, simplex elements are commonly associated with poor 
performance in the context of FEM with linear shape functions. This is due 
to the poor quality of deformability represented by FEM linear shape 
functions in three-node (in two dimensions) and four-node (in three-
dimensions) interpolation schemes, which consequently results in constant 
strain fields within such domains. 

In NMM with higher-order formulations (more than one unknown per 
node at each axis), similar performance issues do not apply, since element 
deformability improves significantly from the zero-order case and higher-
order strain fields are recovered as discussed and demonstrated later. 
Integration can be undertaken analytically for any order of the 
approximation field. Furthermore, it can be argued that the use of effective 
or ineffective covers to model arbitrary boundaries can also negate the 
necessity to implement more complex element shapes for the purpose of 
discretising arbitrary geometries.  

 

3.6 Discretised system of equations 

In previous sections it was shown that the approximation to the unknown 
function within an element in three-dimensions is described by: 
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∑u α     (3.31) 

 

and that the weighting function iw  associated with cover i  is typically 

defined as: 

( )1 2 3i i i i iw a b x c x d x= + + +            (3.32) 
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If the coefficients and position components of iα  are separated, then 

equation (3.32) may be alternatively cast in the following form: 

 

1

n

i

i=

=∑ iu T a         (3.33) 

 

where Ti  is a cover shape matrix which contains the position components 

of the displacement function vector iα , multiplied by the weight function 

iw : 
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 
 

=  
  
 

T    (3.34) 

 

and ia  is a vector which contains the deformation coefficients of iα : 

 

( ),1 ,2 ,3 ,1 ,2 ,3
1 1 1 ...

i i i

T
i i i i i i

i m m mβ β β β β β=a        (3.35) 

 

Note that the subscript of β  is the number of the coefficient term, while 

the left superscript is the node number, followed by the direction of the 
position component associated with the displacement function which 
contains β . 

The cover shape matrix iT  has dimensions ( )ip m p×  and its form and 

composition depends on the form of the weighting function, the spatial 
dimensions and the order of the cover displacement function. 

For example, in two dimensions ( 2p = ), if zero-order displacement 

functions are used ( 0iN = ), 1im =  so that iT  is a 2 2×  matrix. 

The cover deformation vector ia  has dimensions ( )ip m×  and its shape 

and composition depends only on the spatial dimensions considered and the 
total number of terms of the cover displacement function (thus, the order of 
the displacement function). 

The unknown function of (3.33) may be rewritten in a simplified form as: 

 

=u Ta      (3.36) 
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where T  and a  are the shape matrix and deformation vector respectively. 
The form of T  and a  depends on the number of sub-matrices iT  and ia  

respectively, and therefore on the number of covers, or nodes n  associated 
with an element.  T  is defined as: 

 

[ ]1 2 ... n=T T T T      (3.37) 

 

For example, in the case of a two-dimensional simplex (three-node triangle), 
3n =  so T  is always a 1 3×  matrix, containing sub-matrices of variable 

dimensions ( )2 1 2iN× +  that depend on the order of cover displacement 

functions. For a three-dimensional simplex (four-node tetrahedron) 4n = , 
therefore T  is 1 4×  and contains sub-matrices of variable dimensions 

( )3 1 3iN× + . 

Similarly, the deformation vector is defined as: 

 

[ ]1 2 ...
T

n=a a a a     (3.38) 

 

For two-dimensional simplices ( 3n = ), a  is a 3 1×  vector of sub-vectors of 

variable dimensions ( )2 1im× ×  which depend on the order of cover 

displacement functions employed. For three-dimensional simplices ( 4n = ), 
a  is a 4 1×  vector containing sub-vectors of dimensions ( )3 1im× ×  which 

depends on the order of displacement functions employed at each individual 
cover. 

 

Strains can be related to the unknowns a  as: 

 

= =ε L Ta Ba         (3.39) 

 

The differential matrix B  can be expressed in a general form as: 

 

[ ]1 2 ... n=B B B B    (3.40) 

 

where iB  are sub-matrices of dimensions that depend on the number of 

strain components and the number of terms of the shape sub-matrices iT . 

Similar to a , the number of sub-matrices of the differential matrix  depend 
on the number of nodes (two for one-dimensional elements, three for two-
dimensional elements and so on).  



 

 

   
 

49 

From equations (3.39) and (3.40) it follows that in a three-dimensional case, 
the differential sub-matrices adopt the following general form: 
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  (3.41) 

 

The differential matrix will be discussed in more detail later. 

 

3.7 Weak form 

The weak form, or approximation of the equilibrium equations is obtained 
by multiplying equation (3.5) by a variation of the displacement δ u , 
integrating over the domain Ω  and seeking a solution which makes 
stationary the resulting functional. In the case that the essential boundary 
conditions are imposed explicitly (as is commonly the case in FEM), then 
δ u  must be kinematically admissible; i.e. it must a priori satisfy the essential 
boundary conditions. However, in NMM, since shape functions do not 
interpolate nodal displacements, the essential boundary conditions must be 
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imposed using either some form of Lagrange multipliers, or the penalty 
method. In the case of Lagrange multipliers: 

 

( ) ( ) 0
u

TT T d dδ δ
Ω Γ

+ Ω + Γ =∫ ∫u L σ b gL        (3.42) 

 

where ( ) ˆ 0= − =g u u u  are the kinematic constraints and 

[ , , ]T
x y z=L L L L  are the Lagrange multipliers which can be physically 

interpreted as the reaction forces required to impose the prescribed 
displacements. Applying the divergence theorem, the first term in (3.42) can 
be expressed as: 

 

( ) ( )
t

T T T T Td d dδ δ δ
Ω Ω Γ

Ω = − Ω + Γ∫ ∫ ∫u L σ ε σ u σΝΝΝΝ     (3.43) 

 

Substituting the natural boundary conditions, incorporating (3.43) into 
(3.42) and expanding the Lagrange multiplier term results in: 

 

ˆ

u u

t

TT T

T T

d d d

d d

δ δ δ

δ δ

Ω Γ Γ

Ω Γ

Ω − Γ − Γ

= Ω + Γ
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∫ ∫

ε σ g u

u u tb

L L

  (3.44) 

 

The unknown u  is discretised spatially according to (3.31) and L  is 
discretised in a similar manner as: 

 

1 2

1 2

1 2

0 0 0 0

0 0 0 0

0 0 0 0

x

y

z

h h

h h

h h

   
   = = =   
     

Hλ

�

�

�

L

L

L

L

  (3.45) 

 

where H  is typically taken equal to T  although this does not necessarily 
have to be the case. 

The respective variations of u  and L  are discretised in a similar manner as: 

 

δ δ=u T a      (3.46) 

 and δ δ= H λL          (3.47) 
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Substitution of these discretisations into (3.44) results in: 

 

( )ˆ

ˆ

u
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T T T T

T T

T T T T

d d
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d d

δ δ
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Ω Γ
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∫ ∫

∫

∫ ∫

a B σ λ a u

a λ

a a t

H T

T H

T b T

          (3.48) 

 

Assuming linear elasticity, stress is related to strain as: 

 

=σ Dε             (3.49) 

 

It is worthwhile to note that although the constitutive relation does not have 
to be elastic, in subsequent chapters nonlinearities will be introduced in 
terms of discontinuous displacement fields rather than nonlinear material 
laws. 

Therefore, equation (3.48) can be rewritten as: 
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H T

T H

T b T t

  (3.50) 

 

Since (3.50) must hold for arbitrary δa  and δ λ , the following system of 
equations must hold: 

 

0T

    
=    

    

K A a f

λ qA
    (3.51) 

 

where the first set of equations emanates from the δa  terms in (3.50) and 
the second set of equations from the δ λ  terms. 

The structural stiffness matrix is expressed as: 

 

T d
Ω

= Ω∫K B DB            (3.52) 
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Matrix A  couples displacement degrees of freedom to Lagrange multipliers: 

 

u

T d
Γ

= − Γ∫A T H           (3.53) 

 

whereas the external forces are defined as: 

 

ˆ
t

T Td d
Ω Γ

= Ω + Γ∫ ∫f T b T t        (3.54) 

 

The vector containing the applied displacements is defined as: 

 

ˆ
u

T d
Γ

= − Γ∫q uH           (3.55) 

 

The integrals of equation (3.51) can be evaluated either numerically, or using 
simplex integration. Integration is a key aspect of the formulation presented 
here and will be discussed in depth later.  

 

3.8 Enforcement of essential boundary conditions 

Due to the non-interpolating nature of the weighting function with respect 
to nodal displacements, the enforcement of essential boundary conditions in 
NMM can be rather more complicated than it is in FEM. 

Traditionally, essential boundary conditions in NMM (as well as DDA) [21, 
65, 94, 96] have been imposed using the penalty method [10, 133]. Penalty 
constraints eliminate the problem mentioned above; however, the solution 
depends on artificially high stiffness constraints and the matrix system can 
be susceptible to ill-conditioning. Particular issues associated with the 
enforcement of constraints are examined later. 

Alternatively, the enforcement of essential boundary conditions can be 
resolved in a more robust way by means of Lagrange multipliers [133]. In 
paradox, whereas this approach eliminates the requirement for artificial 
constraining forces, it introduces additional unknowns. However, it is 
possible to restore the problem to its original number of unknowns by 
modifying the variational principle, as discussed by Zienkiewicz in the 
context of FEM [133]. Furthermore, an alternative Lagrange multiplier 
technique presented by Ainsworth [1] in the context of Finite Elements and 
which restores the problem to its original number of unknowns is presented 
here. 

Another approach is the direct enforcement of displacement constraints, as 
it is common in FEM [134]. As noted in the beginning of this section, this 
method is not straightforward when high-order displacement functions are 
employed. This issue can be alleviated by coupling with finite elements. This 
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coupling resolution may not always be desirable in other numerical 
techniques (such as meshless methods) as it is not natural and requires some 
modification of the solution process. However, in NMM coupling with 
FEM can be effectively achieved in a natural way by treating the boundary 
with zero-order displacement functions. Section 3.11 shows that elements 
associated with zero-order functions result in identical trial functions as 
those employed by FEM, and Chapter 7 examines further the use of zero-
order enforcement. 

 

3.8.1 Lagrange multipliers 

The essence of the Lagrange multiplier technique for enforcing essential 
boundary conditions is that each multiplier can be identified as a force used 
to constrain an equivalent nodal displacement. This was presented briefly in 
section 3.7. In order to complete this formulation it is necessary to give 
details of the choice of the Lagrange multiplier shape functions H  for 
which there are a number of possibilities. However, the most 
straightforward approach is to use the point collocation method [133]. 

In this case, for a given point ˆ ix  on uΓ , the shape function is given as: 

 

( )ˆi ih x xδ= −         (3.56) 

 

where δ  is the Dirac delta function. Substitution of (3.56) into (3.53) and 
(3.55) results in: 

( )ˆT
ij j iA = - xT         (3.57) 

and: 

( )ˆ
i iq = u x      (3.58) 

 

The Lagrange multiplier method enforces the boundary condition exactly at 
the specified points on the boundary and the corresponding reactions forces 
are determined directly from solution of the discrete algebraic equations. 
The main disadvantage of the method is that the dimension of the resulting 
system of equations is increased and the global matrix is symmetric but no 
longer positive definite, thereby restricting the solvers that can be used. 

It is worthwhile to note that it is possible to restore the problem to its 
original number of unknowns [133] with the use of Lagrange multipliers. 
Generally, this can be achieved by expressing the augmented parts of the 
functional with quantities that identify the Lagrange multipliers in a physical 
way, although a more mathematical approach is implemented in section 
3.8.3. 
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3.8.2 Penalty constraints 

The penalty method may be considered an approximation of the Lagrange 
multiplier method, whereby the Lagrange multiplier is approximated as 
follows: 

 

( )k≅ g uL      (3.59) 

 

where k  is a large positive number having the physical interpretation of a 
stiff spring constant in mechanics. With this approximation, (3.42) becomes: 

 

( ) ( )1
0

2u
T T Td k dδ δ

Ω Γ
+ Ω + Γ =∫ ∫u L σ b g g         (3.60) 

 

Expressing the first term as an integration by parts and introducing the same 
spatial discretisation for u and δ u as before, (3.60) results in: 
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u

u t

T T T T

T T T T T T

d k d

k d d d

δ δ

δ δ δ

Ω Γ

Γ Ω Γ

Ω − Γ =

− Γ + Ω + Γ

∫ ∫
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a B DB a a T Ta

a T u a T a Tb t

 (3.61) 

 

Since this must hold for arbitrary δa , the following system of equations 
entails: 

 

ˆk k+ = +Ka Wa f f           (3.62) 

 

where K  and f  are the same as before, 

 

u

T d
Γ

= − Γ∫W T T          (3.63) 

and: 

ˆ ˆ
u

T d
Γ

= − Γ∫f T u        (3.64) 

 

The penalty method presents some advantages, in that the dimension of the 
system is not increased and the matrix in the resulting system is symmetric 
and positive definite. However, a shortcoming is that the essential boundary 
conditions are only imposed weakly, whereby the parameter k  controls the 
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degree to which they are enforced and the matrix  k+K W  is usually ill-
conditioned, since the condition number increases with k .  

 

3.8.3 Enforcement of essential boundary conditions using projection matrices 

The discrete system of equations can also be derived from the minimization 
of the discrete version of the modified (constrained) energy functional as: 

 

( )
,  

1
min  

2
T T TΠ = − + −

a λ
a Ka f a λ Aa q     (3.65) 

 

Assuming this problem is well-posed, the following matrices are well-
defined: 

 

= −Q I RA       (3.66) 

( )
1

T T
−

=R A AA        (3.67) 

 

where I  is the identity matrix, R  is an auxiliary matrix and Q  is a 
projection matrix. Thus, there is a unique solution to the following modified 
problem: 

 

=Ka f            (3.68) 

 

where the modified stiffness matrix and force vector are defined as: 

 

= +T TK Q KQ A A          (3.69) 

( )T T= + −f A q Q f KRq    (3.70) 

 

and the corresponding Lagrange multipliers can be recovered from: 

 

( )T= −λ R f Ka       (3.71) 

 

The constrained system has the same number of unknowns as the original 
problem and it can be solved using standard solvers. For computational 
efficiency, it is also possible to implement a sequential approach [1] rather 
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than a single step using a global constraint matrix A . Thus the approach 
offers clear advantages over both the Lagrange multiplier method and 
penalty method. 

A simple procedure for obtaining the constrained system of equations in 
NMM is illustrated below. 

 

 

% Compute constraint matrix A 

for point=1:npoint %loop constraints 

 for elem=1:nel  %loop elements 

  if current element contains P 

   Obtain nodal coordinates of ‘elem’ 

   Compute element shape matrix (T) 

   Augment A with contributions from T 

  end 

 end 

end 

R=A'*inv(A*A'); 

Q=I-R*A; 

Kc=Q'*K*Q+A'*A; 

fc=A'*g+Q'*(f-K*R*g); 

b=Kc\fc; 

 

Figure 3-10. MATLAB pseudo-code for computation of constraint system 
and derivation of unknowns 

 

3.8.4 Direct enforcement of essential boundary conditions 

In FEM, displacement boundary constraints are typically enforced by 
specifying nodal values and eliminating equations for which displacements 
are known. This approach is relatively simple to implement and ensures that 
boundary displacements vanish completely without the issues associated 
with the penalty constraints and Lagrange multipliers. 

In NMM with higher-order displacement functions, direct enforcement of 
displacement constraints is not as straightforward as in FEM, hence it is 
usually attractive to employ penalty constraints and Lagrange multipliers as 
discussed earlier. This is due to the fact that the vector of unknowns is 
populated by terms that are not all necessarily nodal displacements. 
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Perhaps an obvious resolution is the coupling of NMM with finite elements 
at the boundary. Whereas this treatment is not natural in other methods (e.g. 
meshless methods) and generally requires the implementation of a mixed 
formulation, in NMM it can be a natural consequence of the choice of 
displacement functions employed at the boundary, without altering the 
formulation. 

If elements attached to uΓ  are associated with constant cover displacement 

functions and linear weighting functions, they are equivalent to finite 
elements and thus displacement constraints can be imposed directly in the 
system matrices using the standard FEM approach. This equivalence has 
been briefly advocated in section 3.4 and it is verified later.  

 

 

Figure 3-11. Direct enforcement of displacement constraints using a 
coupled FE-meshless approach (top) and NMM (bottom) 

 

A drawback of this approach is that it depends on the choice of 
displacement polynomials and weighting functions and it can hence be 
perceived as limiting in terms of the order of the approximation employed. 
However, higher-order elements in NMM do not necessarily have to employ 
the same order of displacement polynomials at each node. Thus, it is 
possible to discretize the boundary with nodes that are associated with zero-
order displacement functions while the interior nodes of the same boundary 
elements can be associated with higher-order functions (Figure 3-11). In this 
case the boundary unknowns are readily nodal displacements. The system 
equations for which values are known can then be eliminated in similar ways 
as in FEM. 

The concept and implementation of this approach is developed in Chapter 4 
while issues regarding its applications are examined in Chapter 7. 

 

3.9 Quasi-static and dynamic time discretisation 

Static and dynamic problems in NMM can be resolved using the same 
concepts applied in FEM and other methods. 
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In linear statics, the set of unknowns of the discretised system can be 
obtained directly using a standard elimination technique, such as Gauss 
elimination, or an iterative technique. However, in situations where there is 
a nonlinear relationship between stresses and strains, or between 
displacement jumps and tractions, and generally in cases where the load-
displacement relationship bifurcates, then a form of an incremental 
approach is required. This is also true for transient problems. 

Whereas for given mesh discretisations linear statics are associated with 
unique solutions, in quasi-statics a single static, or a series of static solutions 
may be sought but the solution becomes path-dependent. In order to 
achieve equilibrium of internal and external forces in this latter case, the 
external forces or prescribed displacements have to be applied in a series of 
finite steps t∆ . 

In principle, the total applied increment (for example ∆u ) is adapted by 
iterative increments δ u  until equilibrium is attained. 

 

1 1t t tδ+ +∆ = ∆ +u u u     (3.72) 

 

The iterative procedure typically linearizes (in each iteration) the nonlinear 
equations associated with this increment (Figure 3-12). A successful iteration 
terminates when a convergence criterion is satisfied. The convergence 
criterion can be typically a force norm, displacement or energy norm. As a 
new equilibrium is sought at each increment, this process implies that the 
tangent stiffness has to be assembled at each increment.  

In this work, a Newton-Raphson procedure constrained by a force norm 
has been implemented. However, a wide range of other well-known iterative 
procedures [134] are also suitable. 

 

 

Figure 3-12. Newton-Raphson iterative procedure [115] 
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In lieu of the implicit iterative procedure suggested here, it is also possible 
to obtain a static or quasi-static solution using explicit central differences 
[28] with dynamic relaxation. In this case, the solution is approached as a 
steady-state resolution of the equation of motion using artificial damping.  

An important advantage of this approach is that the requirement for 
assembly of the tangent stiffness at each increment is eliminated. However, 
Lagrange multipliers cannot be incorporated in the same way as previously 
[1], although it is possible to enforce displacement constraints directly on 
low-order NMM elements as discussed in section 3.8.4. An additional 
disadvantage is that mass scaling, which is undertaken to recover numerical 
stability, affects the solution path. 

The above considerations were discussed in the context of negligible inertia 
forces. In applications where inertia effects are significant, the solution can 
be approached using either implicit or explicit schemes [28, 134].  

In general, implicit approaches of highly nonlinear or highly dynamic 
problems (or both) may suffer from relatively large solution times, while 
explicit schemes may suffer from loss of stability. The choice of an optimal 
solution strategy depends ultimately on the physics of the particular problem 
under consideration, the presence and extent of constitutive and 
geometrically nonlinear effects, applied loads and their duration and the 
required level of accuracy, as well as project constraints. 

 

3.10 Computational implementation 

NMM, as it has been developed in all subsequent parts of the thesis has 
been implemented using MATLAB [71] as a computing environment and 
GiD [46] as a platform for pre- and post-processing (Figure 3-13). 

MATLAB is a high-level programming language which also integrates a 
large library of pre-compiled and efficient mathematical functions, data 
visualisation and data analysis tools. 

GiD is a customizable graphical interface for modelling, data input and 
results visualisation for different types of numerical techniques. It integrates 
sophisticated meshing algorithms and the possibility to program extensions 
using the Tcl/Tk language [111]. 
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Figure 3-13. Simplified flowchart of analysis process 

 

Pre-processing (discretisation, material properties, definition of boundary 
conditions, input of initial order of displacement polynomials at different 
parts of the domain, solution parameters) takes place in GiD. Using a 
custom module programmed with Tcl/Tk extensions, the complete 
problem input is translated into a format recognisable by the MATLAB 
NMM code.  

The pre-processing process is in principle similar to the process undertaken 
to create a finite element model. However, the order iN  which defines the 

form of the displacement polynomials associated with nodes i  can also be 
defined interactively for any individual node as an additional nodal property. 
If iN  is not prescribed then a default value of 0 is assumed (constant 

displacement functions). In an adaptive simulation, the prescribed (or 
default) values of iN  are considered as initial values. 

The MATLAB code invokes the input file and performs analysis (assembly 
of the discretised system, enforcement of constraints, solution, and 
adaptivity). For debugging and speed purposes, the code typically stores all 
matrices and vectors in memory although optionally a swap file can be 
employed for analyses with large numbers of degrees of freedom. Once 
results have been obtained, the solution is saved in a format suitable for 
post-processing in GiD. 

Results are typically saved per pseudo-time step within the MATLAB code. 
Nodal stress and strain averaging is undertaken during this stage, although it 
can also be undertaken during post-processing (in GiD). Furthermore, 
preparation of the post-processing mesh to visualise discontinuities in 
continuous-discontinuous problems (removal of overlapping regions as 
discussed in Chapter 5) is also undertaken during this stage. 

Visualisation and analysis of results (deformation, contour plots, graphs) is 
undertaken using the post-processing module of GiD, once the results file 
prepared by MATLAB has been invoked. 
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3.11 Remarks regarding NMM and FEM 

In previous parts it was advocated that there are similarities between NMM 
and other numerical methods, namely FEM, partition of unity methods, 
DDA and meshless methods. The principal conceptual connections 
between these methods and NMM arise from the way that the 
approximation field is constructed: the form of shape functions and the 
associated unknown functions. This section provides a closer examination 
on similarities between NMM and the most popular of these techniques: 
FEM. 

Subsequent to the introduction of the generalised NMM displacement 
function (section 3.4), it was discussed that when zero-order displacement 
functions are employed on all covers associated with a simplex element, 
then the element is identical to a constant-strain finite element. 
Furthermore, the concept of h-enhancement of the approximation (by 
increase of the total number of nodes or decrease of element size) was 
advocated (similar to FEM), although it was also mentioned that, 
potentially, in NMM a better approximation can be also obtained by 
increasing the order iN  of the associated displacement polynomials. 

Similar to FEM, the complete NMM domain has to be discretised with a 
finite number of elements, although covers may or may not be effective on 
discretised regions of the domain. Also, in both methods the approximation 
within an element is constructed as a form of: 

 

=u Ta      (3.73) 

 

where T  is a shape function matrix and a  is a vector of unknowns. 

In NMM, T  is a function of the weight function multiplied by the 
positional terms of the associated displacement polynomials. In essence this 
is also true for FEM, although FEM does not explicitly identify weighting 
functions. The NMM weighting function is typically a linear function of 
position and the same function is used for any order of the trial function. 
Furthermore, both NMM and FEM shape functions are partitions of unity 
[133, section 3.3]. 

In the simplest possible NMM case of simplex elements with zero-order 
displacement functions, a  is populated by constants (since the displacement 
functions are zero-order), hence T  is identified by the weight function 
alone which, as mentioned previously is a linear function of position. As a 
result, the unknowns of a  are the nodal displacement unknowns. 

 

 

Figure 3-14. Shape functions of two one-dimensional elements in NMM 
with zero-order displacement functions (left) and standard FEM (right) 
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This is also true in FEM. If linear simplex elements are employed, then the 
shape functions are linear functions of position [133]. Hence T  is 
populated by linear terms similar to NMM, and a  consists of nodal 
displacement unknowns. 

For example, in the case of a three-node constant strain triangle, in FEM 
the variation of the displacement function in each direction is defined by a 
linear expansion with three terms [133]: 

 

( )1 2 1 2 1 3 2,u x x x xβ β β= + +           (3.74) 

 

 

Figure 3-15. Three-node two-dimensional element and shape functions 

 

or: 

u = Pβ             (3.75) 

[ ]1 21 x x=P          (3.76) 

 

If the coordinates of nodes A, B and C (Figure 3-15) are substituted in 
Equation (3.74), the following system can be constructed to determine the 
coefficients β : 

 

1, 2, 1

1, 2, 2

1, 2, 3

1

1

1

A A A

B B B

C C C

u x x

u x x

u x x

β

β

β

    
    =     
        

        (3.77) 

 

or alternatively: 

=u Cβ             (3.78) 

 

Therefore, equation (3.75) can be alternatively expressed as: 
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u = -1PC u     (3.79) 

or: 

u = Tu             (3.80) 

= -1T PC             (3.81) 

 

In NMM the variation of the displacement function within an element is 
defined as the product sum of weighting functions and cover displacement 
functions (section 3.4). In zero-order NMM, since the cover displacement 
functions are constant, the displacement variation will be governed by the 
weighting function: 

 

( )1 2 1 2 1 3 2,w x x x xβ β β= + +         (3.82) 

or: 

w = Pβ              (3.83) 

[ ]1 21 x x=P           (3.84) 

 

If nodal coordinates are substituted in Equation (3.82), the coefficients 
β can be determined from: 

1, 2, 1

1, 2, 2

1, 2, 3

1

1

1

A A A

B B B

C C C

w x x

w x x

w x x

β

β

β

    
    =     
        

         (3.85) 

or: 

=w Cβ      (3.86) 

= -1β C w       (3.87) 

Since: 

u w= u               (3.88) 

It follows that: 

u = Pβu       (3.89) 

 

However, using the definition given in section 3.3 and the Kronecker delta, 
the weighting functions equal unity at the centre of covers and zero at 
centres of neighbouring covers. Therefore, substituting equation (3.87) into 
(3.89) yields: 
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u = -1PC Iu        (3.90) 

Hence,  

= -1T PC      (3.91) 

 

which is identical to equation (3.80) and the FEM shape functions in (3.81). 

FEM can improve the approximations not only by reducing the element size 
(introducing more nodes), but also by introducing new nodes in the same 
element using standard shape functions. Since the points that determine the 
variation of the displacement function increase, consequently equation 
(3.74) and P  expand and adopt more complicated polynomial forms. As a 
result, the shape functions in equation (3.81) change and the computation 
process has to be repeated. 

In NMM, rather than introducing new nodes, additional unknowns can be 
introduced in the displacement function, at existing nodal supports with the 
use of higher-order polynomials. The same weighting functions are 
preserved for any order of the displacement function. 

 

 

Figure 3-16. Higher-order triangular element: Left: FEM with standard 
shape functions. Right: NMM with linear weighting functions 

 

This approach is conceptually similar to the hierarchical approximation 
approach in FEM and it is associated with distinct advantages with regard to 
the integration process, as will be discussed later, and conditioning of higher 
order elements in steady-state problems [133]. The similarities of 
hierarchical FEM with higher-order NMM are discussed later in more detail. 

Therefore, the principal conceptual difference between NMM and FEM 
with standard shape functions arises from the way elements are constructed 
in each case. Whereas traditionally, in FEM a better approximation can be 
obtained by decreasing the element size or introducing new nodes in 
elements, in NMM a better approximation can be achieved either by 
decreasing the element size (similar to FEM) or by introducing higher-order 
polynomial displacement functions, without introducing new nodes. 
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In this latter case essential boundary conditions cannot be enforced directly 
as in FEM and instead Lagrange multipliers, penalty constraints or coupling 
techniques have to be considered, although an elegant alternative is that of 
local enforcement with zero-order displacement functions as proposed in 
Chapter 7. 

Furthermore, in NMM strong discontinuities can be modelled by exploiting 
the partition of unity property as discussed in the following chapter, wherein 
no a priori assumptions are required regarding the potential discontinuity 
path. On the other hand in FEM discontinuities are traditionally modelled 
using remeshing techniques or interface elements which are defined a priori. 

In Chapter 5 it will be shown that the same discontinuous-modelling 
concepts employed in NMM can also be adopted in FEM. In fact, the 
development of XFEM [73, 74, 75], which appears as an extension of FEM 
and advocates similar concepts for modelling of discontinuities without 
remeshing, is a strong example that this is possible. 

 

3.12 Concluding remarks 

The Numerical Manifold Method has been introduced and extended for the 
analysis of continuous and discontinuous problems in solid mechanics. In 
particular, the improvements developed in this chapter can be summarised 
as follows: 

 

1. NMM was constructed in a variational form for three-dimensional 
domains 

2. The approximating function was extended for a generalised case of 
higher-order deformability within simplex elements. The resulting 
system matrices may appear more involved than the original 
formulations by Shi [96] and Chen [21] for zero and first-order 
functions, but they are cast in a general form for one-, two- and three-
dimensional spaces, for any arbitrary order of displacements functions.  

3. Essential boundary conditions were satisfied using penalty constraints, 
Lagrange multipliers and a technique based on projection matrices. In 
addition, the possibility to enforce essential boundary conditions 
directly (similar to FEM) in higher-order approximations was 
introduced. 

 

Furthermore, the concepts of local enhancement of the approximation field 
and modelling strong discontinuities using partitioned covers, without 
remeshing, were introduced. These concepts can be particularly significant 
in failure simulations, in which the ability to represent evolving 
discontinuities in robust, efficient and accurate ways is generally desired. 

In the final part of this chapter, parallels between NMM and FEM were 
drawn. Comparisons point towards conceptual similarities as, under specific 
conditions, the two methods appear to arrive at the same conclusions 
although cast from relatively different angles. In addition, NMM appears to 
materialise as an integrated array of several powerful modelling aspects 
(partition of unity, hierarchical enhancement), although several of these 
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aspects appear analogous to traditional and more recent developments in 
finite element techniques. 
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4 Higher-order approximation and 
hierarchical local enhancement 

4.1 Introduction 

The basis of NMM for solids in two and three dimensions was laid in 
Chapter 3, while it was advocated that the solution can be potentially 
improved by expanding the polynomial functions used to approximate the 
displacement field up to any arbitrary level, without introducing new nodes 
and hence without undertaking remeshing. 

The problems of improvement, convergence and adaptivity are intrinsic and 
universal in numerical approximation techniques, whether continua or 
discontinua are considered, and whether discontinuities are introduced using 
remeshing or other strategies. 

In principle, a numerical solution can be improved by increasing the number 
of unknowns employed to define the approximation field, so that the trial 
field becomes a closer representation of the actual field. Assuming that the 
trial field is capable of reproducing the displacement form of the continuum 
(or discontinuum), then with refinement or enrichment of the 
approximation with additional unknowns it may be possible to obtain the 
exact solution. 

 

This can be achieved in two ways: 

1. By adapting the level of discretisation. In mesh-dependent methods this 
can be undertaken via remeshing or via modification of the existing 
mesh without changing the number of elements, nodes or connectivity. 
The former is referred to as h-refinement and the latter r-refinement. 

2. By use of higher-order basis functions. Instead of introducing more 
unknowns by increasing the number of nodes, the approximation can 
be enhanced by expanding the local basis functions used to approximate 
the unknown field (p-refinement). This is typically undertaken in a 
hierarchical manner. 

 

Both approaches are equally applicable in NMM. However, in order to 
preserve the main benefit obtained by the partition of unity approach of 
NMM, which is the introduction of discontinuities without remeshing as 
discussed in Chapter 5, there is a distinct advantage in investigating the 
ability to improve the approximation using higher-order functions. 
Furthermore, the possibility for hierarchical improvement of the 
approximation field without remeshing appears to be a particularly attractive 
option for adaptivity, as it entails almost identical implementations for 
problems of any spatial dimension and mesh structure. 

 

This chapter examines the following: 

1. The ability to improve the approximation without remeshing 
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2. The ability to improve the approximation locally, without remeshing 

3. The ability to improve the approximation adaptively, without remeshing 

 

Although the foundations for the first remark above have been laid [21, 65] 
in the context of NMM, the practical implementation of the ability to 
improve the approximation up to any arbitrary level has not been 
demonstrated in literature. To the best of the author’s knowledge, the 
second and third remarks have not been examined whatsoever in the 
context of NMM.  

This chapter begins with the development of two alternative strategies for 
constructing higher-order systems in a general three-dimensional case. Both 
strategies are illustrated with algorithmic examples. A strategy for local 
hierarchical enhancement of the approximation is discussed and remarks 
regarding deformability and boundary discretisation are made. 

The section then moves to discuss the exploitation of local higher-order 
enhancement using p-adaptivity and error indicators. A single element 
benchmark test is devised to investigate convergence and higher-order 
deformability. Furthermore, the global and local higher-order enhancement 
and adaptivity strategies discussed here are illustrated using numerical 
examples. 

 

4.2 Discretised higher-order system 

In Chapter 3, it was shown that the general discretised system can be cast in 
a form of the familiar relationship: 

 

=K a f       (4.1) 

where: 

T d
Ω

= Ω∫K B DB     (4.2) 

and: 

[ ]1 2 ... n=B B B B        (4.3) 

 

where n  is the number of nodes associated with an element. 

However, in contrast to traditional finite element techniques, the unknown 
vector a  can consist of terms that are not necessarily nodal displacements, 
unless the associated nodal displacement functions are monomials which are 
also independent of position. 

Furthermore, it was discussed that although the approximation can be 
enhanced by increasing the number of nodes associated with an element or 
the complete domain (similar to FEM with standard shape functions) while 
the number of unknowns per node remains constant, it is also possible to 
enrich the approximation by increasing the order of displacement function 
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polynomials associated with nodes. In this latter case, the number of 
unknowns per node increases, and the unknowns have no direct physical 
interpretation although they are related to displacement degrees of freedom 
via the cover displacement function. 

The cover displacement functions can be of any general polynomial order 
N . It is worthwhile to note that the displacement functions at a particular 
node associated with a given element can be different from the 
displacement functions of another node associated with the same element. 
Furthermore, the displacement function of a particular node in a given 
direction could be different from the displacement function employed in 
another direction. 

Using Equation (3.24), it is observed that by increasing the order iN  of the 

displacement function polynomial associated with node i , the number of 
unknowns increases linearly in one dimension, quadratically in two-
dimensions and in an exponential manner in three-dimensions (Figure 4-1). 
For example, in two dimensions, the number of unknowns per node 
increases from two (for the zero-order case), to 30 unknowns for the 
fourth-order case. This can be viewed crudely as discretising an area which 
is initially represented by a single three-node constant-strain triangular 
element (six unknowns), with 14 three-node constant-strain triangular 
elements. 
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Figure 4-1. NMM unknowns for different orders ( iN ) of displacement 

polynomials for the one-, two- and three-dimensional case, for a given node 
i  

 

When higher-order displacement functions are used, each sub-matrix iB  in 

equation (4.3) can consist of several terms of nonlinear functions of the 
spatial components (see equation (3.41)) and as a result each term of the 
stiffness matrix K  in equation (4.2) can be an expansion of tens, or even 
several thousands of nonlinear sub-terms. Clearly, for any general higher-
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order case, the analytical derivation and hard-coding of the complete 
discretised system is limited and impractical. 

The following sections develop two alternative methods with which higher-
order systems can be constructed algorithmically. This is achieved without 
making simplifications, so that the resulting systems are exactly those which 
would be derived by the analytical process. It is implied that an integral of 
the type: 

 

( )1 2 3 3
1 2 3 1 2 3 1 2 3, ,n n n

V
x x x dx dx dx n n n∀ ∈∫∫∫ �   (4.4) 

 

is available and the reader is referred to Chapter 6 where the analytical and 
algorithmical derivation of exact integrals of this type is explained. 

 

4.3 Sub-matrix method 

One possible way of computing the stiffness matrix of a general higher-
order system is by using the sub-matrix method. A variant of this approach 
was originally implemented by Lu [65] for the two-dimensional case for 
problems that are of global order N . Here, the approach is extended in 
three-dimensions and it is generalised for problems in which not all nodal 
displacement functions are of the same order (section 4.7). 

The sub-matrix method relies in explicit hard-coding of sub-matrices of the 
global stiffness matrix. Once the sub-matrices are available, the global 
stiffness matrix is assembled algorithmically. 

For clarity, a detailed explanation of the sub-matrix method is omitted from 
this chapter and presented in Appendix D. 

 

4.4 Multi-dimensional matrix method 

An alternative method for constructing the stiffness matrix of an arbitrary 
higher-order problem is proposed here, which can be undertaken utilising 
products of multi-dimensional arrays. The multi-dimensional array products 
are used to assemble the matrix which defines the stress-strain relation, and 
therefore the stiffness matrix. Multi-dimensional array capabilities are 
available in most popular programming codes, such as MATLAB, C++ and 
FORTRAN. 

A key difference between this approach and the sub-matrix method is that 
there is no derivation and requirement to hard-code explicitly parts of the 
B  matrix. As a result, the implementation of this method is less laborious 
than the sub-matrix method. Also, implementation of the multi-dimensional 
matrix approach for a generalised one-, two- and three-dimensional case 
entails minimal differences. However, the approach discussed here can be 
more demanding in terms of computational resources and it can also be 
more difficult to implement than the sub-matrix method.  

Similar to the sub-matrix method, from the definition of the weighting 
function,  each term of the sub-matrix iB  that contains a derivative with 
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respect to x can be expressed in the general form given in Equations (12.7), 
(12.8) and (12.9). 

Since integration can be undertaken explicitly (Chapter 6) and in order to 
make the computer implementation easier, the terms of sub-matrices iB  

can be stored in multi-dimensional arrays iB . Each matrix iB  has 

dimensions ( ) ( ) ( ) ( )1 1 1 1i i i ir p N N N N× + × + × + × + , where r  is the 

number of strain components.  

The first two dimensions of iB  correspond to the location of terms of iB  

whereas the third dimension of iB  corresponds to the exponents of 1x  

terms, the fourth dimension corresponds to the exponents of 2x  terms and 

so on. For example, for a two-dimensional problem ( 2p = ) with three 

strain components ( 3r = ), iB  will be ( ) ( ) ( )3 2 1 1 1i i iN N N× + × + × + . 

For clarity, further explanation of the approach is provided in Appendix E. 
It is worth noting that multiplication of the multi-dimensional arrays used to 
evaluate element stiffness matrices is an important algorithmical challenge 
associated with the approach. Appendix F explains how to implement this. 

 

4.5 Boundary discretisation 

Enrichment with higher-order displacement functions can yield improved 
element deformability, which consequently results in non-homogeneous 
strain state within higher-order elements. Due to this reason, enforcement 
of constraints using any method requires particular care to ensure that 
boundary edges or surfaces between restrained nodes are also adequately 
restrained. This issue is treated in Chapter 7. 

 

4.6 Higher-order deformability 

The enhanced element deformability resulting from enrichment with higher-
order displacement functions can produce a better correlation between the 
approximation and the actual displacement field, and potentially yield a 
better solution (Figure 4-2). Furthermore, the stress and strain fields are also 
enhanced. 

 

 

Figure 4-2. Original and higher-order deformability of a beam constrained at 
both ends 

 

For example, a constant-strain element which is enriched with higher-order 
displacement functions at any of its nodes will produce a variable strain 
state. The results can be comparable to the FEM situation where additional 
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nodes are introduced in the element while the standard shape functions are 
retained (Figure 4-3). Here however, the number of nodes remains constant 
and the displacement and strain fields can be enhanced up to any arbitrary 
level without undertaking any form of remeshing. 

 

 

Figure 4-3. Stress contours of: 1- Single three-node triangular plane-strain 
element (DIANA element T6EPS and NMM with 0-order displacement 
functions yield exactly the same constant stress field). 2- Single six-node 
triangular isoparametric plane-strain finite element test (DIANA element 
CT12E). 3- Single three-node triangular plane-strain NMM element with 1st 
-order displacement functions. In all cases the two left-hand nodes are fixed 
whereas a point load of 0.5 is applied on the right-hand node in the 
horizontal direction. E = 1000, ν = 0. 

 

In order to visualise better the enhanced deformability of higher-order 
elements it is useful to employ a secondary mesh of triangles within each 
element during the post-processing stage, thereby enabling the use of 
standard FE post-processing software to be utilised. Displacements at these 
additional nodes and stresses within the additional elements can be 
determined a posteriori. Evidently, if the mesh is relatively fine, these a 
posteriori considerations to enhance visualisation of deformability are not 
necessary. 

 

4.7 Algorithmical issues of hierarchical local enhancement 

The difference between global and local enhancement is that in the former 
case, the displacement polynomials of all nodes of a given problem are of 
the same order N , while in the latter case the displacement polynomials of 
each node i  can be of different order iN . 

From the point of view of practical implementation, this means that the 
contribution to the stiffness matrix or the force vector from the degrees of 
freedom of a node associated with displacement polynomials of order iN , 

can be different for each node i  and will be governed by the number of 
unknowns (defined as im  previously). 
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While the derivation of local contributions associated with any arbitrary 
order iN  (as functions of shape matrices iT  and their derivatives) has been 

considered by the theoretical and implementational considerations of 
previous sections, the only remaining question is how to assemble such 
dissimilar local contributions to the global system. 

It is known that, for example, the stiffness contribution of node i  in a 

three-dimensional case is of ( ) ( )3 3i im m×  dimensions (three times the 

number of unknowns in each direction). The stiffness contribution of node 

1i +  is of ( ) ( )1 13 3i im m+ +×  dimensions. If the same problem is simply re-

numbered so that i  becomes 2i + , the position of contributions associated 
with that node in the global system changes. 

In general, there are !n  combinations, where n  is the total number of 
nodes, with which this re-numbering can be undertaken. Therefore 
derivation of a direct analytical expression for the identification of the 
location of contributions of each node in any general case is impractical. 
However, this issue can be approached algorithmically in an iterative 
manner. 

The algorithm of Figure 4-4 offers such an example. This example returns 
the starting row and column of a general discretised two-dimensional 
system, where the stiffness or force contributions from the degrees of 
freedom of nodes enriched with displacement polynomials of any arbitrary 
order have to be included. 

 

 

% It is assumed that this algorithm is located within a loop of the form: 

% for i=1:3 

%   for j=1:mi 

%   for r=1:3 

%     for l=1:mr 

% where i & r are nodes of a given element, j and l are degrees of freedom 
% associated with nodes i & j respectively. Furthermore, node i has mi 
% unknowns and is associated with polynomials of Ni order whereas node r 
% has mr unknowns and is associated with polynomials of Nr order 

Row = 0; 

for ii=1:Ni 

Ntem = … % calculate order of polynomial associated with ii 

mtem = (Ntem+1)*(Ntem+2)/2; 

if (ii==Ni) 

DOF = 2*j-1; 

else 

DOF = 2*mtem; 
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end 

for jj=1:DOF 

Row = Row + 1; 

end 

end 

 

Column = 0; 

for rr=1:Nr 

Ntem = … % calculate order of polynomial associated with rr 

mtem = (Ntem+1)*(Ntem+2)/2; 

if (rr==Nr) 

DOF = 2*l-1; 

else 

DOF = 2*mtem; 

end 

for ll=1:DOF 

Column=Column+1; 

end 

end 

 

Figure 4-4. Pseudo-algorithm for the calculation of the starting location of 
local contributions of nodes associated with displacement functions of any 
arbitrary order in a general two-dimensional system 

 

4.8 Adaptivity 

Numerical approximations are intrinsically associated with errors and it is 
often desired to minimise inaccuracies by improving the solution using 
some form of estimators, which provide estimates of the relative error of 
the solution, or indicators, which provide cruder estimates of relative errors, 
or provide indication of where the solution has to be improved rather than 
how much. 

Early in the chapter it was discussed that the NMM approximation can be 
improved using h-refinement strategies, similar to traditional finite element 
techniques, or using p-refinement by adapting the order of displacement 
polynomials that define the approximation field. This latter approach can in 
principle be undertaken by: 
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1. Increasing the displacement polynomial order uniformly throughout the 
domain (global refinement) 

2. Increasing hierarchically the displacement polynomial order in a local 
level (local enhancement). 

 

A distinct advantage of the latter case is that, since the approximation can 
be improved locally by increasing the order of displacement polynomials, 
then with the use of error estimators or error indicators it may be possible 
to improve the solution by simply adapting locally the order of nodal 
displacement functions from iN  to 1iN + , or i esN N+ , where esN  is the 

enhancement step. 

Therefore, the approximation is potentially improved locally without 
undertaking any remeshing, therefore with optimal  pre-processing effort. 
Within the developed higher-order framework discussed in previous 
sections, this form of adaptivity is relatively straightforward to implement. 

It is worthwhile to note that since this type of adaptive strategy is based only 
on local adaptation of the order of displacement polynomials (by increasing 

iN  based on certain criteria), the procedure is identical for problems of any 

spatial dimension, mesh structure and element type unlike h-refinement 
strategies. 

 

  

Figure 4-5. Analysis of L-shaped domain with singularity. Step 1: contours 
of zero-order displacement functions (left) and major principal stress (right). 
The bottom horizontal edge is fully fixed whereas the right-hand vertical 
edge is allowed to translate in the vertical direction only. Pressure acting 
upwards is applied on the top horizontal edge. 
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Figure 4-6. Analysis of L-shaped domain with singularity. Step 2: contours 
of first-order displacement functions around the singularity (left) and major 
principal stress (right). The bottom horizontal edge is fully fixed whereas the 
right-hand vertical edge is allowed to translate in the vertical direction only. 
Pressure acting upwards is applied on the top horizontal edge. 

 

  

Figure 4-7. Analysis of L-shaped domain with singularity. Step 5: contours 
of fourth-order displacement functions around the singularity (left) and 
major principal stress (right). The bottom horizontal edge is fully fixed 
whereas the right-hand vertical edge is allowed to translate in the vertical 
direction only. Pressure acting upwards is applied on the top horizontal 
edge. 

 

Here, a simple automated p-adaptive procedure has been implemented 
whereby error indicators are used to provide an estimate of the relative local 
error and hence, an indication of where the approximation requires 
improvement in order to minimise error. The adopted error indicators are 
based on: 

 

1. Stress criteria based on local errors of individual components of stress 
tensors compared to a smoothed solution. 

2. Displacement criteria based on local errors of two consecutive 
solutions. 

 

In the first case, the error approximation technique is based on the standard 
Zienkiewicz-Zhu technique for error-estimation in finite elements [133]. 
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Similar to finite elements, in NMM the continuity assumption used in 
displacement-based formulations results in a continuous displacement field 
across elements, but a discontinuous stress field. To obtain more acceptable 
stresses, averaging of the element nodal stresses can be undertaken. The 
stress error vector at each node of the element considered is defined as: 

 

e a e
i i i∆ = −σ σ σ           (4.5) 

 

where ∆ e
iσ  is the stress error vector at node i  of element e , a

iσ  is the 

averaged stress vector at node i  and e
iσ  is the calculated stress vector of 

node i  of element e . 

Ideally, if the stress field is smooth then stress at a particular node would be 
the same for each element associated with that node, so that the averaged 
stress would be the same as the calculated stress. In this case, the error 

would be zero. If ∆ e
iσ  exceeds a prescribed limit, then in order to improve 

the approximation the order of the displacement function associated with 
that node can be increased from iN  to 1iN + .  

The displacement-based approach is similar, but requires initially two 
solutions to be derived: the original solution and an improved solution so 
that relative error can be indicated. In this case: 

 

1i i

i
N N
i i

+∆ = −u u u             (4.6) 

 

where i∆u  is the displacement error vector at node i , 1iN
i

+u  is the 

displacement vector calculated using a displacement function which is 

increased from the original  order iN  of that node by one, whereas iN
iu  is 

the displacement vector calculated using a displacement function of order 
N  for node i . 

Based on the assumption that an enhanced solution will provide a better 
approximation, the second solution is obtained by increasing the order of 
displacement functions uniformly by a single order. If the prescribed error is 
exceeded locally, then the order of the associated displacement function (of 
the original solution) is increased from iN  to 1iN +  and a new solution is 

obtained. 

Combinations of the above two criteria are possible. Furthermore, it is 
possible to prescribe a step function for increasing polynomials by two or 
more steps to achieve faster convergence. Options for prescribing 
automatically boundaries of enriched problems with zero-order polynomials 
in order to enforce displacement continuity are also available. Similarly, 
within the context of a discontinuous modelling framework, it is possible to 
enhance automatically only nodes within a prescribed radius in the vicinity 
of a discontinuity tip if this is required, in order to improve initiation and 
orientation estimators (Figure 4-8). 
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Figure 4-8. SEN beam model with enhanced displacement functions in the 
vicinity of the originating discontinuity. The coloured region illustrates the 
enhancement zone while blue represents the region associated with zero-
order displacement functions. 

 

 

Figure 4-9. Major principal stress contours of refined SEN model. 

 

Other a posteriori error indicators or estimates can also be used to drive the 
adaptive process or measure the error of the calculated solution. One such 
example is the energy norm error estimator [133] which is used in examples 
presented later in this chapter. For elasticity problems, the energy norm 
error for each element can be written as: 

 

{ }
1

2

e

T
e e ee d

Ω

 = ∆ ∆ Ω
  ∫ σ E σ           (4.7) 

 

where e∆σ  is the stress error vector of element e , evaluated from all e

i∆σ  

of this element, E  is the elasticity matrix and eΩ  is the element volume. 
The energy error of the complete domain can be calculated as: 

 

1

m
i

i

e e
=

=∑         (4.8) 

 

where m  is the total number of elements. Furthermore, the relative energy 
norm error can be calculated as: 
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( )100 %
e

u
η = ×           (4.9) 

 

where u  is the energy norm of the calculated solution.  

A benchmark problem which utilises the implemented adaptive strategy is 
illustrated in section 4.12. 

Clearly, there are cases in which convergence using any criteria is bound to 
fail. For example, where singularities exist or where point loads are applied 
(Figure 4-7). Furthermore, it is worthwhile to note that the use of 
interpolation with high-order polynomials at equidistant points can 
introduce errors as the solution tends to oscillate with increasing polynomial 
orders at interpolation intervals [87]. This is known as ‘Runge’s 
phenomenon’ (Figure 4-10). Potential remedies are the use of spline curves 
or the use of Chebyshev nodes that become increasingly closer near 
boundaries. 

 

 

Figure 4-10. Runge’s phenomenon: interpolation of Runge’s function with 
high-order polynomials 

 

Therefore, although the type of adaptivity introduced  here can in principle 
improve a solution with reduced pre-processing effort, it requires an active 
level of attention and engineering judgement in order to avoid spurious 
results. 
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4.9 Single element benchmark test 

In order to examine the performance and convergence of elements 
enhanced with higher-order displacement functions, the following 
benchmark test is considered. The test consists of a single three-node 
triangular plane-stress element (Figure 4-11). 

Nodes two and three are restrained in the horizontal (x) direction, while 
node three is also restrained in the vertical (y) direction. A force equal to 0.5 
is applied at node one in the positive x-direction. The elastic modulus is 
taken as 100, whereas Poisson’s ratio is assumed to be zero. 

 

 

Figure 4-11. Single element test 

 

The number of unknowns is: 

 

( )( )
3

1

3 1 2i i

i

N N
=

× + +∑     (4.10) 

 

where iN ∈�  is the order of displacement polynomials associated with 

nodes 1, 2 and 3. 

A closed-form solution can be sought by perceiving the problem as a 
limiting case of a tapered bar problem (Figure 4-12), in which the tip cross-
sectional area tends to zero. 
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Figure 4-12. Tapered bar problem with end load P 

 

From the basic definition of stress, the axial stress at any position x  along 
the bar is: 

 

x

x

P

A
σ =     (4.11) 

 

Assuming that the cross-sectional area xA  varies linearly from the 

constrained end LA  to the free end 0A , (4.11) can be re-written as: 

 

0
0

L
x

A A
P A x

L
σ

− 
= + 

 
        (4.12) 

 

Using Hooke’s law, the strain along x  can be derived from: 

 

x
x

x

P

E EA

σ
ε = =          (4.13) 

 

Since one end is fully constrained and strain is a derivative of displacement, 
the displacement at x  can be given as the integral of xε  from 0 to x . 

Therefore, substituting (4.12) in (4.13) and integrating yields: 

 

( )
0 0

0

1x

L

P
u x dx

A AE
A x

L

=
−

+
∫    (4.14) 
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It can be shown that (4.14) is equal to: 

 

( ) 0
0 0ln lnLA AP

u x A x A
aE L

− 
= + − 

 
       (4.15) 

 

where ( )0 /La A A L= − . 

From (4.13) and (4.15) it can be observed that if 0 0A =  and x  approaches 

L , strain and displacement approaches infinity; i.e. the tip of the problem is 
a singularity. For small values of xA  the displacement within the domain 

will not be affected due to St. Venant’s effect. 

The solution of the zero-order case is identical to the constant strain finite 
element case. This is shown here for reference. 

 

 

Figure 4-13. Zero-order element: deformed shape and contours of 
displacement along the horizontal axis 

 

 

Figure 4-14. Zero-order element: deformed shape and contours of stress in 
the horizontal axis 
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Node xu  xxσ  

1 0.01 1 

2 0 1 

3 0 1 

Table 4-1. Zero-order test: nodal results 

 

If the order of displacement polynomials of nodes one, two and three is 
increased uniformly by a single order of magnitude, a first-order solution is 
recovered (Figure 4-15). 

 

 

Figure 4-15. First-order element: deformed shape and contours of 
displacement along the horizontal axis 

 

 

Figure 4-16. First-order element: deformed shape and contours of stress in 
the horizontal axis 

 

Node xu  xxσ  

1 0.025 3 

2 0 1E-12 
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3 0 2.2E-12 

Table 4-2. First-order test: nodal results 

 

Similarly, it can be shown that for a second-order element the solution is: 

 

Node xu  xxσ  

1 0.04 6 

2 0 3.26 

3 0 3.26 

Table 4-3. Second-order element: nodal results 

 

Evidently, the increased order of displacement polynomials in the higher-
order cases leads to an increasing strain state within the same three-node 
domain. 
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Figure 4-17. Variation of displacement along x 

 

From Figure 4-17 it can be observed that higher-order enrichment affects 
the boundary between points were essential conditions are imposed. Thus 
the problem is restated such that sufficient constraints are imposed to 
ensure that no horizontal displacement occurs along the left hand edge of 
the element. The updated displacement graph is displayed in Figure 4-18. 
The displacement approximation in this case is an improved representation 
of the analytical field, although convergence appears to become slow as x  
approaches the singularity. Figure 4-19 to Figure 4-26 illustrate the 
deformed element, horizontal displacement distribution and stress 
distribution for the zero-order to fourth-order case. 
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Figure 4-18. Variation of displacement along x, with enforced displacement 
continuity along the constrained boundary 

 

 

Figure 4-19. First-order element: deformed shape (×2) and contours of 
displacement along the horizontal axis 
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Figure 4-20. First-order element: deformed shape (×2) and contours of 
stress along the horizontal axis 

 

 

Figure 4-21. Second-order element: deformed shape (×2) and contours of 
displacement along the horizontal axis 

 

 

Figure 4-22. Second-order element: deformed shape (×2) and contours of 
stress along the horizontal axis 
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Figure 4-23. Third-order element: deformed shape (×2) and contours of 
displacement along the horizontal axis 

 

 

Figure 4-24. Third-order element: deformed shape (×2) and contours of 
stress along the horizontal axis 

 

 

Figure 4-25. Fourth-order element: deformed shape (×2) and contours of 
displacement along the horizontal axis 
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Figure 4-26. Fourth-order element: deformed shape (×2) and contours of 
stress along the horizontal axis 

 

4.10 Example: Constrained beam in uniaxial tension 

In order to demonstrate the convergence characteristics of enhancement 
with higher-order displacement functions, a number of illustrative problems 
is presented. The first problem represents a one-dimensional beam 
restrained at both ends and loaded at its mid-point with a point load (Figure 
4-27). The elastic modulus, element length L and cross-sectional  area are 
taken as 1. The force load is taken as 4/3. 

 

 

Figure 4-27. Problem definition and discretisation 
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(ii)  N=1; 4 nodes.

(i)  N=0; 4 nodes.

(iii)  N=3; 4 nodes.

 

Figure 4-28. Displacement versus position for different orders of 
displacement polynomials 

 

Figure 4-28 illustrates the displacement versus position graphs resulting 
from various analyses. It is worthwhile to note that a bifurcation point in the 
strain field exists at the mid-point of the beam due to the chosen loading 
arrangement. In the particular case that a node exists at the loading location 
in the centre of the beam, the NMM solution will be exact. 

However, in the case that a node does not exist at the loading point, the 
discontinuity in the strain field will be difficult to capture using continuous 
displacement functions. Therefore, to make the problem interesting, the 
beam has been discretised crudely into three equal elements and four nodes, 
ensuring that loading is not applied on a node. 

The remaining graphs in Figure 4-28 represent various solutions 
corresponding to different orders of the displacement function. Graph (i) 
shows the solution using zero-order displacement functions. In this case, 
the analysis cannot resolve the strain discontinuity at the centre of the beam 
and the result is zero strain in the central element. The same solution is also 
representative of the FEM solution using three linear elements. 

Graph (ii) shows the result for the same number of nodes (and elements) as 
graph (i) but using first-order displacement functions associated with each 
node. The resolution of displacement is now somewhat improved and tends 
to a more accurate representation of the exact solution. The resolution can 
be enhanced further by using higher-order displacement functions. For 
example, graph (iii) displays the result from a third-order analysis with four 
nodes. Once again, it can be seen that the solution is approaching the exact 
solution. 

It is interesting to note that a second-order solution offers no improvement 
upon the equivalent first-order analysis. This is due to the symmetric one-
dimensional nature of the particular problem considered: additional degrees 
of freedom associated with the second-order displacement functions 
provide no enhancement to the first-order case. If the loading point is 
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moved off-centre then an improvement on the first-order analysis would be 
observed for this particular case. 

The same problem is now revisited considering various local enhancement 
strategies (Figure 4-29). The beam is discretised, as before, into three equal 
elements and four nodes, with no node positioned at the centre. 
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Figure 4-29. Displacement versus position for different local enhancement 
strategies 

 

Graph (i) in Figure 4-29 illustrates the result from an analysis with zero-
order displacement functions at the two end-nodes, and first-order 
functions at the two remaining nodes. This solution does not offer an 
improvement to the uniform first-order case (Figure 4-28, graph ii), but it 
offers a better approximation than the model with uniform zero-order 
functions (Figure 4-28, graph i). 

The approximation is improved further by increasing the displacement 
polynomials associated with the two internal nodes to third-order (graph ii). 
Finally, graph (iii) illustrates the solution which corresponds to enhancement 
of the end-node displacement polynomials to first-order, while adopting 
third-order functions at all other nodes. It is interesting to note that 
perturbations are observed in the displacement field in the outer two 
elements. Once again, for this particular problem introducing second-order 
functions offers no improvement to the equivalent first-order case. 

 

4.11 Example: Semi-infinite plate with hole 

The following problem of a semi-infinite membrane subject to uniaxial 
tension is considered in order to investigate the effect of global and local 
enhancement with higher-order displacement polynomials. The problem 
consists of a 400×200 mm membrane of thickness 1 mm (Figure 4-30) 
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subject to a uniform axial pressure of 100 MPa. A traction-free circular hole 
of 20 mm radius is situated in the middle of the membrane to weaken the 
section. The elastic modulus and Poisson’s ratio are taken as 100,000 MPa 
and 0.3 respectively. The problem is idealised in plane-stress. 

 

 

Figure 4-30. Definition of quadrant idealisation of semi-infinite perforated 
plate; (r, θ) are polar coordinates 

 

Normally, due to two-fold symmetry it is sufficient to model only a 
quadrant of the problem. However, since displacement continuity at 
constrained boundaries is not automatically enforced (see section 4.9 and 
Chapter 7) when higher-order polynomials are employed at the boundary, 
the symmetry case will be incorrect as it is desired to enrich elements in the 
vicinity of the hole. 

This pathology associated with higher-order boundaries can be successfully 
treated by enforcing a constant-strain state along boundaries using zero-
order displacement functions (Chapter 7). However, since it is desired to 
enrich the region in the vicinity of the hole with higher-order functions, 
here it is necessary to consider the full model and enforce essential 
boundary conditions with zero-order functions on the actual boundary. 

A relatively coarse discretisation comprising 278 three-node triangular 
elements is considered (Figure 4-31). This corresponds to 164 nodes, or 328 
degrees of freedom from the zero-order case which is equivalent to a finite 
element model comprising of constant strain triangles. 
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Figure 4-31. Problem discretisation 

 

Traction conditions are imposed on the boundaries of the model of Figure 
4-31 based on the analytical solution [114], while the hole remains traction-
free: 
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where ( ),x y  are the horizontal and vertical Cartesian coordinates 

respectively, ( ),r θ  are polar coordinates originating from the centre of the 

traction-free hole with θ  measured counter-clockwise from x  (see Figure 
4-30), P  is the applied tensile stress and a  is the hole radius. 
Displacements are calculated from: 
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where ( )/ 2 1Eµ ν= +   , ( ) ( )3 / 1κ ν ν= − +  for plane stress, while E  

and ν  is the elastic modulus and Poisson’s ratio respectively.  

The mesh is created deliberately coarse in order to examine the effect of 
approximation improvement via p-refinement alone using zero, first, 
second, third and fourth-order displacement polynomials. However, along 
those boundaries where essential boundary conditions and loads are applied, 
nodes will be deliberately associated with zero-order polynomials at all cases 
considered – the reason for this will be discussed in full in Chapter 7. 

Prior to analysing the problem using higher-order displacement functions, it 
is worthwhile to examine NMM convergence using h-refinement with 
remeshing and zero-order displacement functions (in essence finite element 
analysis with constant-strain triangles). Four additional discretisations from 
the original of Figure 4-31 are considered, with the mesh becoming 
increasingly refined primarily around the hole (Figure 4-32): 

 

 

Figure 4-32. h-refinement using remeshing and zero-order displacement 
functions: (a) 215-node mesh (b) 264-node mesh (c) 430-node mesh (d) 
638-node mesh 

 

Indicatively, contours of displacement along the horizontal axis and major 
principal stress are illustrated in Figure 4-33 and Figure 4-34 respectively for 
the original mesh (Figure 4-31).  
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Figure 4-33. Contours of displacement along the x-axis; zero-
order/constant-strain analysis using the original mesh 

 

 

Figure 4-34. Smooth contours of major principal stress; zero-
order/constant-strain analysis using the original mesh 

 

Results of xxσ  at location A (top of the hole) for each of the five 

discretisations considered are presented in Figure 4-35 against the analytical 
solution. Furthermore, convergence of the energy norm error is illustrated 
in Figure 4-36. 
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Figure 4-35. Results of σxx versus mesh density from h-refinement study 
using remeshing and zero-order displacement functions 
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Figure 4-36. Energy norm error versus mesh density from h-refinement 
study using remeshing and zero-order displacement functions 

 

From Figure 4-35 and Figure 4-36 it is evident that using h-refinement with 
remeshing and zero-order displacement functions, the solution eventually 
converges to the analytical solution with 1,276 degrees of freedom 
approximately. 

A second experiment is conducted using only the original mesh (Figure 
4-31, 164 nodes) while increasing the order of displacement functions 
uniformly throughout the mesh. The results are presented in Figure 4-37 
and Figure 4-38 against the analytical solution.  
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Figure 4-37. Uniform p-refinement: variation of σxx along the line A-A’ for 
various orders of the displacement function polynomials 
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Figure 4-38. Uniform p-refinement: σxx at point A versus the order of 
displacement functions 

 

Evidently, the zero-order solution yields a relatively poor solution in the 
vicinity of the hole but displays a closer match to the analytical solution 
towards the top boundary of the plate. On the other hand, the higher-order 
approximations yield better correlation to the analytical profile between the 
boundaries of the problem, but the solution appears to diverge at the 
boundaries and particularly in the vicinity of the hole (Figure 4-38). This can 
also be confirmed by the energy norm error for each case considered as 
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illustrated in Figure 4-39. A potential cause for this behaviour is Runge’s 
phenomenon (section 4.8). 
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Figure 4-39. Energy norm error at A versus the order of global p-refinement 

 

It is important to re-state that the same mesh was utilized in all five analyses; 
the only difference was the uniform increase of the order of displacement 
functions, resulting in 2 degrees of freedom per node in the first case and 6, 
12, 20 and 30 degrees of freedom per node in the second, third, fourth and 
fifth case respectively (Table 4-4). 

 

Solution Total number of 
unknowns 

0-order 328 

1st-order 936 

2nd-order 1848 

3rd-order 3064 

4th-order 4584 

Table 4-4. Total number of unknowns per solution case 

 

Although no remeshing is taking place, it is evident that uniform-global 
refinement may not yield correct results or may not be efficient in a 
situation such as this. However, the order of cover displacement functions 
can be increased alternatively for a selected number of nodes, thereby only 
enhancing the level of approximation locally, at areas of interest with 
minimal computational expense and no remeshing. If the selection of nodes 
and the level of p-refinement are chosen carefully, then convergence can be 
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improved without remeshing and it is possible to recover the correct 
solution. This is demonstrated in the following example. 

The same problem is now revisited considering various local enhancement 
strategies. Only two nodal zones in the vicinity of the hole (zones II and III 
as indicated in Figure 4-40) are enriched with higher-order displacement 
polynomials, while the rest of the domain, including the boundary defined 
by the hole (zone I), are enforced zero-order displacement functions at all 
cases. 

 

 

Figure 4-40. Local enhancement zones 

 

In the first analysis, only nodal zone II is associated with first-order 
displacement polynomials, while the rest of the nodes are associated with 
zero-order polynomials. In the second analysis, nodal zones II and III are 
associated with second and first-order displacement polynomials 
respectively. Similarly, in the third analysis zones II and III are associated 
with third and second-order displacement polynomials respectively. A 
fourth analysis is undertaken in which both zones II and III are associated 
with third-order displacement polynomials. This is summarized in Table 4-5. 
The choice of displacement polynomials is also shown indicatively for the 
fourth analysis in Figure 4-41. The results for σxx at point A from each 
analysis are summarized in Figure 4-42. The energy norm error at A for each 
case considered is illustrated in Figure 4-43. 

 

Analysis Zone I Zone II Zone III 

1 0-order 1st-order 0-order 

2 0-order 2nd-order 1st-order 

3 0-order 3rd-order 2nd-order 

4 0-order 3rd-order 3rd-order 

Table 4-5. Order of cover displacement polynomials associated with 
different nodal groups 
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Figure 4-41. Contour plot of the distribution of higher-order polynomials in 
the discretised domain for the fourth case of local enhancement 
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Figure 4-42. σxx at point A versus the order of displacement polynomials. 
Comparison between global and local enhancement. 
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Figure 4-43. Energy norm error at A for each case of local enhancement 

 

Solution Total number of 
unknowns 

1 (0+1st-order) 400 

2 (0+2nd+1st-order) 588 

3 (0+3rd+2nd-order) 852 

4 (0+3rd +3rd-order) 1012 

Table 4-6. Total number of unknowns per local enhancement case 

 

Evidently, the use of local enhancement can achieve some control of 
convergence. In this case, the correct solution was achieved with a gain in 
computational cost when compared to the case with h-refinement (1012 
versus 1276 degrees of freedom) and a significant gain in pre-processing 
effort (a single mesh was used with p-refinement instead of five in the case 
of h-refinement). However, it is clear that particular care needs to be taken 
with boundaries to avoid divergence issues. It is worthwhile to note that it is 
possible to automate the local enhancement process in an adaptive manner. 
This is demonstrated with the following example. 

 

4.12 Example: Timoshenko beam and adaptive local enhancement 

A cantilever beam problem is employed to illustrate adaptive local 
enhancement with higher-order NMM. The process is implemented as 
discussed in section 4.8. The beam is fixed on its left-hand end whereas a 
distributed load of 1 is applied on the free end. The elastic modulus and 
Poisson’s ratio are taken as 100 and 0 respectively. The beam length is taken 
as 5, while the breadth and depth of the section are taken as 1. 
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Figure 4-44. Problem definition 

 

Two steps of adaptive enrichment are carried out using simple stress error 
indicators. The left and right-hand boundaries where essential boundary 
conditions and loads are prescribed respectively are automatically enforced 
with zero-order displacement polynomials to maintain continuity (Chapter 
7). Essential boundary conditions are enforced using projection matrices. 

The complete process is automated and can be undertaken for any order of 
displacement polynomials. User parameters that drive the enrichment 
process are stress-based norm tolerances, a maximum allowed number of 
enhancement steps, a maximum allowable order of displacement 
polynomials (to avoid excessive cost or potential divergence issues 
associated with the presence of singularities or point loads), and a prescribed 
magnitude of enhancement per step, which represents the increase of the 
order of displacement polynomials. 

A relatively coarse structured mesh is adopted. The mesh comprises only 40 
three-node triangles (Figure 4-45). This discretisation remains unaltered 
during the solution process. 

 

 

Figure 4-45. Problem discretisation 

 

Analytical solutions for displacements and stresses for this problem are 
given by Timoshenko [113]: 

 

( ) ( )( )26 3 2
6 2

x

P D
u y L x x y D y

EI
ν

   = − − − + + −    
 (4.21) 

( ) ( ) ( )
2

2 21
3 4 5 3

6 2 4
y

P D
u y L x D x L x x

EI
ν ν

  
= − − + + + −  

   
 (4.22) 
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( )
2

xx

P D
L x y

I
σ

 
= − − − 

 
       (4.23) 

0yyσ =            (4.24) 

( )
2

xy

P y
y D

I
σ = − −           (4.25) 

 

Based on the above closed-form relationships, the target solution at the tip 
is calculated as: 

.max 5.1yu = −      (4.26) 

. 30xx top fixed endσ =         (4.27) 

 

Results of the adaptive solution are illustrated below for each step of the 
process. Note that step 1 is the initial solution using FE constant-strain 
triangles / 0-order simplex NMM elements. Steps 2 and 3 are the two 
adaptivity steps. 

 

 

Figure 4-46. Step 1 (initial solution): contours of the order of displacement 
polynomials 

 

 

Figure 4-47. Step 2 (first adaptivity step): contours of the order of 
displacement polynomials 
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Figure 4-48. Step 3 (second adaptivity step): contours of the order of 
displacement polynomials 

 

 

Figure 4-49. Step 1 (initial solution): deformed shape and contours of 
displacement in the vertical axis 

 

 

Figure 4-50. Step 2 (first adaptivity step): deformed shape and contours of 
displacement in the vertical axis 

 

 

Figure 4-51. Step 3 (second adaptivity step): deformed shape and contours 
of displacement in the vertical axis 
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Figure 4-52. Step 1 (initial solution): deformed shape and smooth contours 
of xxσ  

 

 

Figure 4-53. Step 2 (first adaptivity step): deformed shape and smooth 
contours of xxσ  

 

 

Figure 4-54. Step 3 (second adaptivity step): deformed shape and smooth 
contours of xxσ  

 

Step dofs 
.maxyu  .maxxxσ  

1 66 -2.76 15.2 

2 174 -4.67 23.4 

3 336 -5.1 31.5 

Table 4-7. Summary of results per step of the adaptive simulation 
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Figure 4-55. xu  versus position for each adaptive step 
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Figure 4-56. yu  versus position for each adaptive step 
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Figure 4-57. xxσ  versus position for each adaptive step 

 

From Figure 4-47 and Figure 4-48 it is evident that during the adaptive 
process the order of polynomial displacement functions is increased 
uniformly throughout the domain (the left and right hand boundaries are 
enforced with zero-order functions at all times as discussed above). This 
would be expected in this particular case due to the coarse discretisation 
adopted and the symmetric nature of the problem (high tensile and 
compressive stress gradients at the top and bottom part of the beam). The 
first enrichment step (step 2) increases displacement polynomials to second-
order (Figure 4-47), while the second enrichment step (step 3) increases 
polynomials to third-order (Figure 4-48).  

From Figure 4-55 and Figure 4-56 it is evident that already from the first 
enrichment step (step 2) the approximation achieves good correlation to the 
closed-form solutions, whereas the second enrichment step (step 3) achieves 
even better match to the closed-form displacement profiles. The solution 
for displacement in the vertical direction matches the target solution of -5.1 
exactly. The energy norm error and relative energy norm error are presented 
in Figure 4-58 and Figure 4-59 respectively, as calculated at the upper left 
element where the peak tensile stress along the axis of the beam occurs. 
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Figure 4-58. Energy norm error at the uppermost left element for each 
adaptive step 
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Figure 4-59. Relative energy norm error at the uppermost left element for 
each adaptive step 

 

The approximated stress profile (Figure 4-57) of the first step (zero-
order/constant-strain finite element case) indicates poor correlation to the 
analytical solution. Furthermore, it can be observed that there is an abrupt 
change of stress between the first two nodes at the top left of the beam, 
since the discretisation is too coarse. A similar effect is also observed in the 
first enhanced solution (step 2). In this particular case the solution also 
appears to oscillate at the right boundary where stress along the horizontal 
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axis is expected to be zero, although the boundary is enforced with zero-
order displacement functions. 

However, the first adaptive step improves the solution significantly 
elsewhere comparing to the uniform zero-order case (step 1). At the top of 
the fixed end in particular, the relative energy error reduces from 53% in the 
uniform constant-strain case to 13% (Figure 4-59). The solution of the 
second step (step 3) achieves much better correlation to the analytical stress 
solution, with only 2.5% relative energy error and approximately 5% error 
from the target closed-form solution of σxx. 

 

4.13 Remarks regarding NMM and hierarchical FEM 

Finite element methods with hierarchical shape functions [133], are 
conceptually similar with the idea of higher-order approximation in NMM. 
In both techniques, rather than introducing more nodes to construct 
elements with ‘standard’ shape functions, the approximating displacement 
function is expressed as a hierarchically increasing expansion of functions 
which are typically polynomials derived from the Pascal-like triangle of 
Figure 3-8. 

From this concept, it also follows in both methods that the complete 
problem domain may be enhanced globally, or locally by increasing the 
order of displacement functions rather than undertaking any kind of mesh 
regeneration. Potential divergence points between NMM and hierarchical 
FEM can be related to the fact that NMM shape functions are traditionally 
expressed directly in the global coordinate system, and integration is 
undertaken explicitly using the simplex strategy discussed in Chapter 7. 

It is also worthwhile to note that, as shown by Taylor [110], a form of p-
refinement can be realized in finite elements based on the partition of unity 
(in essence XFEM) by incorporating higher-order polynomials into the 
finite-element approximation. This concept was also applied by Wells [127] 
to overcome volumetric locking during plastic flow. 

Furthermore, in the context of XFEM and the introduction of 
discontinuities via partition of unity concepts, Moës [73] discussed the 
extension to higher-order elements and Mariani [69] employed cubic 
polynomial bases to reproduce the cusp-like shape of the process zone at 
the discontinuity tip of a cohesive crack. However, to the author’s 
knowledge higher-order enhancement in XFEM has not been demonstrated 
in the generalised form presented here. 

 

4.14 Concluding remarks 

This chapter discussed and demonstrated strategies with which global and 
local enhancement of the approximation field may be carried out up to any 
arbitrary level, with no remeshing and potentially minimal computational 
expense. Furthermore, the concept of local hierarchical enhancement was 
demonstrated in the context of a p-adaptive strategy. 

The local enhancement strategies presented here preserve the abilities to 
introduce discontinuities using the methodology discussed in Chapter 5 (the 
partition of unity remains unaffected), and to undertake integration explicitly 
using simplex integration (Chapter 6). These developments, coupled with 
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the ability to introduce strong discontinuities explicitly, without remeshing, 
can be potentially tailored for complex problems associated with challenging 
remeshing issues. For example, the improvement of approximation using 
structured hexahedral meshes, the simulation of propagating cracks and the 
transition from continua to discontinua in general can be covered by the 
modelling framework developed here. 

Similar to other techniques, there are particular cases in which convergence 
is not possible or cases in which adaptivity is bound to fail; for example this 
can happen at singularities or regions where point loads are applied. 
Furthermore, experiments indicate that special considerations are required 
in order to maintain convergence and continuity at boundaries where 
higher-order polynomials are employed. The latter issue is treated in 
Chapter 7 whereas the former can be potentially controlled using local 
enhancement as it was shown earlier. Consequently, the approximation 
process with hierarchically increasing displacement functions requires a 
special level of attention and engineering judgement in order to attain 
meaningful results. 

The process of enhancement with hierarchically increasing displacement 
functions is inherently associated with a progressively increasing number of 
degrees of freedom. Although this is achieved with a minimisation of data 
preparation during pre-processing or when the approximation adapts (as no 
mesh regeneration is undertaken), the process may not be automatically 
associated with a reduction in computational effort comparing, for example, 
to h-refinement with remeshing. This is due to the progressively increasing 
cost of the formulation process, as element deformability increases in 
complexity. 

Furthermore, depending on the initial level of discretisation, an optimally 
converged solution may not be necessarily one which is achieved using p-
refinement alone, but a combination of h- and p-refinement, so that 
additional standard and higher-order degrees of freedom are situated closer 
to regions of interest. Finally, it is worthwhile to note that aspects of the 
higher-order strategies and issues discussed here can be potentially 
applicable in other techniques which are conceptually similar to NMM, such 
as DDA and extended finite elements. 
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5 Modelling of evolving displacement 
discontinuities 

5.1 Introduction 

Previously, it was discussed that quasi-brittle failure has been traditionally 
approached numerically using either continuum-based failure techniques 
(such as smeared crack concepts) or via the introduction of displacement 
discontinuities using discrete modelling techniques (Chapter 2). 

The former provides a realistic description of strain localisation but does 
not fully resolve the complete failure mechanism of quasi-brittle materials 
and can result in severe numerical difficulties. The latter provides a better 
description of macroscopic traction-free cracks, but it traditionally involves 
a priori assumptions in discrete methods with regard to the location of 
discontinuous boundaries, or it is incorporated in standard finite elements 
via interface elements and computationally involved remeshing techniques. 

The unification of continuous and discrete modelling techniques appears as 
a more natural and attractive progression for simulating localisation and 
failure, and this is what meshless and partition of unity based techniques 
have recently attempted to resolve. This chapter examines how the partition 
of unity property of NMM weight functions can be utilised to introduce 
arbitrary displacement discontinuities without the requirement for a priori 
assumptions, without the use of interface elements and without remeshing. 

The basic idea behind the technique developed here is the incorporation of 
discontinuous shape functions into the approximation, without in essence 
augmenting the standard or higher-order basis functions, or the solution 
process. Hence, discontinuities are not limited to element boundaries but 
can be located anywhere in the mesh. Enrichment with additional degrees of 
freedom that represent the displacement jumps follow directly from the 
existing mesh topology. 

Furthermore, the following aspects of discontinuous modelling are 
discussed in the context of NMM: 

 

• How discontinuities can be initiated 

• Where discontinuities are initiated 

• What is the orientation of introduced discontinuities 

• Where discontinuities stop 

• How discontinuities can potentially interact 

 



 

 

   
 

111 

5.2 Partition of unity 

In Chapter 3 it was discussed that NMM weight functions are partitions of 
unity, and therefore must satisfy and adhere to the following conditions: 

 

( )
1

1
n

e
i

i

w
=

= ∀ ∈Ω∑ x x          (5.1) 

( )0 1i iw≤ ≤ ∀ ∈Ωx x          (5.2) 

( ) 0i iw = ∀ ∉Ωx x          (5.3) 

 

If an arbitrary discontinuity, which is represented by boundary dΓ  (Figure 

5-1), is introduced anywhere in the arbitrary physical domain Ω , then the 
domain on either side of the discontinuity will be partitioned, or 

decomposed, into +Ω  and −Ω  respectively, where + −Ω + Ω ⊆ Ω . 

 

 

Figure 5-1. Example arbitrary physical domain Ω  intersected by 
discontinuity dΓ  

 

At this stage, the definition of +Ω  and −Ω  is arbitrary in order to introduce 
the concept; later it will be shown that whether a point lies to the ‘left’ or 
‘right’ of a discontinuity can be determined by the location of that point and 
the geometrical definition of the discontinuity. 

For (5.3) to hold, any weight functions intersected by the discontinuity will 
have to be modified in order to become discontinuous (or ineffective) in 

dΓ . Specifically, weight functions in +Ω  intersected by dΓ  have to become 

ineffective in −Ω , and weight functions in −Ω  intersected by dΓ  have to 

become ineffective in +Ω . 

However, if weight functions intersected by the discontinuity become 
modified due to (5.3), equations (5.1) and (5.2)  are invalidated. Therefore, 
in order to restore the partition of unity, additional supports (covers) may be 



 

 

   
 

112 

introduced. The additional supports can either be located on dΓ  (hence 

remeshing is undertaken), or they can overlap existing supports on either 
side of dΓ  (Figure 5-2). 

 

 

Figure 5-2. Arbitrary discretised domain with discontinuity and additional 
supports 

 

In the latter situation, remeshing is not undertaken in the traditional sense, 
although additional degrees of freedom are introduced. In this case, the 
computational effort relies only on: 

 

1. Tracking the discontinuous boundary 

2. Identifying existing supports on either side of the discontinuity 

3. Introducing additional supports on known locations and updating the 
element topology.  

 

The concept described above can be illustrated in stages using the following 
simple one-dimensional single-element example defined by nodes i  and j . 

 

 

 

Figure 5-3. Phase 1: A discontinuity is introduced between nodes i  and j  

of one-dimensional element ij . 
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Figure 5-4. Phase 2: Weight functions become discontinuous. The partition 
of unity is violated between i  and j . 

 

 

Figure 5-5. Phase 3: Identification of weight functions required to restore 
the partition of unity. Additional overlapping supports are introduced. 

 

 

Figure 5-6. Phase 4: Connectivity of overlapping mesh. Partition of unity is 
restored. 
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Algorithmically, the partition of unity procedure described above can be 
significantly more simple and efficient than remeshing, since additional 
degrees of freedom that represent displacement jumps follow directly from 
the existing mesh topology. 

Furthermore, the merits of the partition of unity approach can extend 
further in three-dimensional domains and elements with complicated shapes 
where remeshing algorithms become more involved, or under certain 
constraints they are not even possible. For example, it is not possible to 
remesh a structured hexahedral mesh intersected by arbitrary discontinuities 
unless intersected regions of the domain are discretised with different 
element types in an unstructured manner. In contrary, the approach 
described here is: 

 

• Independent of element shape 

• Independent of mesh structure 

 

It is worthwhile to note that, since the procedure described up to this point 
relies on the partition of unity property only, it can be implemented in any 
technique that incorporates weight or shape functions that satisfy the 
partition of unity.  

 

5.3 Kinematics of discontinuities 

In this section, the introduction of discontinuities via the partition of unity 
concept is taken a step further by examining the displacement field in the 
vicinity of discontinuities. 

Previously, it was discussed that where the cover (or support) of a node is 
completely intersected by a discontinuity, that node is duplicated by an 
additional node that is unconnected to its parent. For example, consider the 
plane element in Figure 5-7. The covers of nodes 1 and 2 are deemed to be 
cut completely by a discontinuity. These nodes are highlighted by circles. 
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Figure 5-7. Plane element intersected by discontinuity 

 

Node 1 lies to the ‘left’ of the discontinuity and thus it is renamed 1+  and it 

is duplicated by an additional node 1− . Node 2 lies to the ‘right’ of the 

discontinuity, and therefore it is renamed 2−  and it is duplicated by an 

additional node 2+ .  

The displacement fields to the ‘left’ and to the ‘right’ are now described by 
separate displacement functions: 

 

= ++ -u u u          (5.4) 

where: 

w=+ + +u α         (5.5) 

w− − −=u α         (5.6) 
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+α  and −α denote the cover displacement functions which, in the case that 
these are constant, represent two alternative sets of nodal displacements, 

whereas w+ and w−  represent the standard cover weighting functions 
modified by the Heaviside function (H ): 

 

Hi iw w+ =        (5.7) 

( )1i iw H w− = −            (5.8) 

where: 

1
H

0

+

−

 ∈Ω
= 

∈Ω

x

x
    (5.9) 

 

Evidently, 1w
+  is equal to the original weighting function 1w  at the left of 

the discontinuity and equal to zero at the right of the discontinuity (Figure 

5-8). Conversely, 1w
−  is equal to zero on the left of the discontinuity and 

equal to 1w  on the right of the discontinuity (Figure 5-9). 

 

 

Figure 5-8. Weight function associated with node 1+ . 1w  and 1w
+  represent 

the original and modified weight functions respectively. 

 

 

 

Figure 5-9. Weight function associated with node 1− . 1w  and 1w
−  represent 

the original and modified weight functions respectively. 
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The condition for the weighting functions to form a partition of unity is 
therefore satisfied. In the case that the cover of a node is not intersected, 
then: 

 

i i iw w w+ −= =        (5.10) 

 

It is computationally convenient to consider that the two displacement 

fields +u  and −u  are associated with separate yet identical overlapping 

elements, denoted as +e and -e  (Figure 5-7). 

It is worthwhile to note that in Figure 5-7, node 1+  is identical to node 1 

and has only been renamed for notational convenience. Thus, element +e  

consists of nodes 1 and 3 of the original mesh, and the additional node 2+  
which is unconnected to the original mesh. In essence, the displacement 
jump has been introduced arbitrarily into the element domain via additional 
degrees of freedom in the form of a strong discontinuity and the 
displacement field on either side of the discontinuity is decoupled. 

The key difference of this approach when compared to remeshing 
techniques is that the additional degrees of freedom follow directly from the 
existing mesh topology, hence the approach is simple to implement, 
efficient and it does not alter the mesh structure. 

 

5.4 Nonlinear constitutive characterization 

Discontinuities can be specified a priori or they can be introduced when 
required in arbitrary locations of the domain. In finite elements, the former 
approach is known to lead to discrepancies associated with bias due to 
predefined discontinuity trajectories and it requires the use of artificial 
elastic stiffness in order to maintain continuity in the discontinuous zone 
before failure. 

Simone [98] reports that in the context of partition of unity models, similar 
to conventional interface models, the use of predefined discontinuities can 
also lead to numerical discrepancies due to pathological coupling between 
the degrees of freedom used to resolve the potential displacement jump. It 
is suggested that this issue can be circumvented when the discontinuous 
enhancement is introduced only when inelastic strains appear [100]. In this 
case, it is not required to include an elastic part in the constitutive model as 
the elastic onset is represented by the continuum prior to the appearance of 
the jump. 

In traditional linear elastic fracture mechanics, the nonlinearity of the 
process zone is lumped at the tip of a discontinuity, assuming that 
localization is small compared to problem dimensions. Consequently, the 
surrounding material can be assumed to remain elastic. For quasi-brittle and 
certain ductile materials, this concept is not entirely satisfactory [11, 43, 76] 
and the cohesive forces that exist in the process zone must be taken into 
account (Figure 5-10). In this case, the degrading mechanism is lumped in a 
discrete zone in the vicinity of the tip (Figure 5-11). 
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Figure 5-10. Difference between fracture where linear elastic fracture 
mechanics apply (left) and quasi-brittle problems (right) 

 

 

Figure 5-11. Conceptual model of a cohesive zone. Adapted from Moës [76] 

 

Moës and Belytschko [76] note that this distribution of cohesive forces leads 
to a reduction of the singular stress field observed at the tip in linear elastic 
fracture mechanics models. Therefore, it is not necessary to use special 
singular enrichments in the approximation field around the discontinuity tip 
as it is traditionally conducted in fracture mechanics. For example, in the 
context of XFEM Moës [76] used non-singular enrichments motivated by 
asymptotic analysis, while Mariani [69] used quadratic polynomial 
enrichments. 

In this case, since nonlinear behaviour is concentrated in a discrete line or 
surface, the behaviour of the displacement jump in the vicinity of the tip can 
be defined directly in terms of traction and displacement. As a result, 
discrete constitutive models are typically based on explicit traction-
separation formulations [117, 125] so that tractions or stresses are computed 
directly from total relative displacements: 

 

d C d=t T u     (5.11) 

 

where dt  is the traction vector with components in the principal directions 

of the discontinuity, CT  is the constitutive tangent matrix and du  is the 
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vector of the relative displacement jump in the principal directions of the 
discontinuity. 

Discrete constitutive relationships can also be formulated from classical 
continuum models by taking into account the Dirac-delta distribution in the 
strain field [125]. For example, Lourenco [63] developed a plasticity-based 
composite yield criterion which combines cracking and crushing, with non-
associated Coulomb friction for the shear domain, with a view to modelling 
the behaviour of masonry joints. 

Here, a direct damage-based exponential softening model is provided as an 
example. This model is derived from Wells [125] and implemented in the 
example given in section 5.13. Indicative units are given in the metric 
system. Nonlinear response is governed by the tensile strength tf  (N/m2) 

and the fracture energy release rate fG  (N/m) (Figure 5-12) of the material. 

 

Figure 5-12. Softening behaviour of discrete damage-based model 

 

Assuming that the discrete jump is introduced only when the initiation 
criterion is met, the elastic regime is resolved by the continuum constitutive 
representation prior to the jump. Development of the nonlinear onset is 
described by a loading function f (m), which defines the state of loading 

with respect to the evolution of the displacement jump: 

 

eqf u κ= −        (5.12) 

 

where equ  (m) is a scalar measure of the displacement jump at a 
discontinuity and κ  (m) is a history parameter which is equal to the 

maximum value reached by equ . For example, while a discontinuity grows 

κ  is equal to equ , so f  equals zero and loading is taking place. If on the 

other hand f  is less than zero, unloading or reloading is taking place. 
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Figure 5-13. Local coordinate system of discontinuity 

 

The normal traction component (Figure 5-13) of a discontinuity is defined 
as: 
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     (5.13) 

 

while the shear components in the directions t  and s  parallel to the 
discontinuity plane (Figure 5-13) are given by: 
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where ,s tt  (N/m2) and ,s tu  (m) are the tractions and displacements 

respectively in the shear directions, inid  (N/m3) is the shear stiffness at 

0κ =  (initial stiffness) and sh  is a parameter which defines the decay of 

shear stiffness while the discontinuity evolves in the normal direction. sh  is 

typically calculated as: 
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5.5 Initiation of discontinuities 

Initiation of discontinuities in quasi-brittle materials can be instigated using 
principal stress-based criteria. Principal stresses can be determined from the 
eigenvalues of the Cauchy stress tensor. If the problem is initially 
continuous, then the location of the initial discontinuity tip can be 
determined by sampling all stress points. If a discontinuity already exists, 
then sampling can be restricted to elements in the neighbourhood of the 
discontinuity tip. However, if the possibility of multiple discontinuities is 
considered, then it is necessary to sample all stress points at every step of 
the analysis. 

Simone [98] notes that although mesh refinement studies suggest that the 
total energy dissipated during crack propagation is a constant material 
parameter in an elastic medium [126], hence there is merit in stress-based 
initiation criteria, the approach is not always satisfactory from a physical and 
mathematical perspective. For example, with refinement it may be possible 
to recover a singular stress field in the vicinity of the tip. In NMM, this issue 
can be exacerbated with the use of higher-order displacement functions due 
to oscillating interpolation errors (Chapter 4). 

In such cases, criteria based on elastic principal stress are not meaningful 
measures of initiation, and energetic criteria based on fracture mechanics 
principles can be more meaningful [76]. Alternatively, a simple remedy can 
be the introduction of a length scale associated with the sampling radius to 
ensure that only stress points at a given distance away from the tip are 
considered. This approach can avoid the singular stress field concentrated 
around the tip in cases where mesh refinement or hierarchical enhancement 
has been carried out. 

Although criteria derived using local stress tensors may be more accurate for 
adequately fine discretisations, they can be associated with bias if the 
approximation of the local stress field is ill-posed. Incorrect identification of 
the orientation of discontinuities can subsequently lead to incorrect solution 
paths. 

A more robust approach is the use of a ‘non-local’ stress tensor to 
determine the principal stress directions, as suggested by Jirasek [47] in the 
context of embedded discontinuity models, by Simone [98] in partition of 
unity based discontinuous elements, and Wells [125] in the context of 
embedded and partition of unity based discontinuous elements. The 
approach is not non-local in a constitutive sense, but a more accurate way of 
averaging stresses in the vicinity of the tip. The stress tensor can be 
calculated as a weighted average of stresses ahead of the tip using Gaussian 
weight functions. The weight function associated with a stress point i  is: 
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where r  is the interaction radius typically taken as three times the average 
element size in front of the tip, and il  is the distance of point i  from the 

tip. 
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It is worthwhile to note that if the material surrounding the discontinuity tip 
is nonlinear, then the stress field will be bounded and therefore principal 
stress-based criteria can be used with more confidence. Furthermore, the 
use of stress-based criteria can be appropriate for cohesive zone models, 
due to the inherent reduction of the singular stress field at the tip comparing 
to traditional linear fracture mechanics models, since nonlinearity is 
distributed rather than lumped at a single point [76]. In this case, the strain 
field around the tip can be improved by the use of non-singular enrichments 
or higher-order polynomial functions, as noted in the preceding section. 

 

5.6 Orientation of discontinuities 

Similar to initiation criteria, the orientation of discontinuities can be 
obtained using principal stress-based criteria. Since it is known that discrete 
failure takes place predominantly perpendicular to the direction of the 
driving principal stress, the simplest approach is to assume that 
discontinuities extend perpendicular to the direction of major principal 
stress at the initiation point and intersect elements in the same direction. 
Alternatively, a more accurate approximation may be achieved if it is 
assumed that discontinuities extend from the initiation point to the location 
of major principal stress interpolated using the non-local stress tensor 
associated with equation (5.16). 

 

5.7 Discontinuous enhancement and propagation 

When an element is intersected by a discontinuity, appropriate supports on 
either side of the discontinuity are duplicated and the topology is updated 
using the procedure described in section 5.2. However, in order to enforce 
the condition of zero displacement jump at the tip, at least one support on 
either side of the tip must be unique (Figure 5-14). 

 

 

Figure 5-14. Discontinuous enhancement at the tip of a discontinuity 

 

The decision of whether an element is intersected by a discontinuity and 
whether a support of an intersected element lies on the ‘left’ or ‘right’ of the 
discontinuity, can be determined using geometric predicates such as 
standard incircle and orientation tests. Incircle tests verify whether elements 
or supports are intersected by discontinuities whereas orientation tests verify 
whether supports lie on a given side of a discontinuity. 
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However, from an algorithmical point of view it can be convenient to only 
identify newly intersected elements, automatically duplicate all of their 
supports and subsequently remove the additional supports on either side of 
the tip in order to enforce the zero displacement jump condition.  

Intersection can be typically identified using criteria based on the sign of the 
area defined by a segment of the discontinuity and the vertices of an 
element. For example, in two dimensions the signed area formed by two 
points of the discontinuity and a vertex of a simplex element is: 
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x y

x y
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Α =     (5.17) 

 

where ( ) ( )1 1 2 2, , ,x y x y  are the coordinates of the end points of a 

discontinuity segment and ( ),q qx y  is a ‘query’ point. 

If all three triangular areas formed from a discontinuity and the three 
vertices (used as query points) of a simplex element have the same sign, then 
all three vertices lie on the same side of the segment, hence the element is 
not intersected, provided also that all three areas are non-zero. If on the 
other hand the areas formed by two vertices have the same sign and the area 
formed by the third query point has opposite sign, then the element is 
intersected (Figure 5-15). 

An algorithm for detecting intersection in two dimensions is given in 
Appendix B. 

 

Figure 5-15. Area signs of an element intersected by a discontinuity and an 
element which is not intersected 

 

In principle, discontinuities can be introduced as single or multiple segments 
within elements, they can intersect elements completely or they may not, 
and their trajectory can be straight, curved or branched. However, Wells 
[125] notes in the context of partition of unity models, the implementation 
of curved discontinuities or discontinuities that do not intersect elements 
completely requires the implementation of ramp functions which lead to 
convergence difficulties when used with incremental solution procedures. 
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Furthermore, the implementation of branched [31, 76] or curved 
discontinuities [101] involves augmentation of the standard polynomial basis 
functions with special enrichments. This can subsequently alter the solution 
process and dilute the ability to improve the approximation hierarchically 
for any arbitrary level (Chapter 4) and the ability to undertake integration 
explicitly (Chapter 5). 

Thus, from an implementational point of view, the simplest approach is to 
extend discontinuities so that they intersect elements completely. Therefore, 
when the initiation criterion determines that the tip will propagate, the 
discontinuity is extended fully within the next element.  

Evidently, for a very coarse mesh this approach may yield a degree of 
inaccuracy. However, for fine discretisations the discrepancies would 
diminish. It is worthwhile to also note that in the context of cohesive zone 
models, energy dissipation depends on the relative opening or slip 
movement of discontinuities, therefore results obtained from the complete-
intersection approach are not particularly sensitive to the length of 
extension [125]. 

Furthermore, if the approximation is enhanced with higher-order 
displacement functions (Figure 5-16) as it will be discussed later, the 
deformability of enriched elements is increased and the resulting strain field 
is inhomogeneous. Consequently, the deformability of elements intersected 
by discontinuities is enhanced. This can help improve estimates derived by 
stress-based initiation and orientation criteria. 

 

  

Figure 5-16. Enhanced higher-order approximation of simply supported 
concrete beam. Contours of higher-order functions (left) and resulting 
tensile principal stress contours on overlapping mesh (right). 

 

5.8 Integration 

Integration in NMM is normally undertaken explicitly using simplex 
integration. Simplex integration is described in detail in Chapter 6. The sole 
difference between integration of intact and fractured elements is that in the 
latter case, the integration volume (or area) is the volume to the ‘left’ or 
‘right’ of the discontinuity, rather than the volume of the original element. 
Exact integration over arbitrary domains which result in such cases is 
already covered by the simplex integration strategy discussed in Chapter 6 
and no additional considerations are required. 
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Figure 5-17. Integration domain of element intersected by discontinuity 

 

In contrast, in partition of unity methods based on numerical integration 
schemes a form of domain sub-partitioning is required [98, 125]. For 
example, in the particular case of a triangular element intersected by a 
discontinuity, the two resulting domains would have to be triangulated so 
that the edges of each sub-domain coincide with the boundary of the 
discontinuity. Each sub-domain would then be mapped to a parent triangle 
over which integration would be carried out. 

 

5.9 Contact modelling 

Contact of discontinuous parts of the domain due to load reversal and crack 
closure is not a necessary consideration in many static and quasi-static 
problems; however it can be essential in dynamic scenarios, such as 
problems considering impact. General frictionless or frictional contact 
models developed for finite element methods [134] or DDA [102] can be 
equally applicable here, depending on the application considered. 

Since the displacement jump is represented by degrees of freedom that are 
located on existing supports on either side of the discontinuity, rather than 
on the boundary of the discontinuity, contact criteria can be based on the 
relative movement of enhanced supports. 

Alternatively, it may be convenient to track movement of the discontinuous 
boundary with virtual ‘internal’ points. This may be necessary in problems 
enriched with higher-order displacement functions due to the enhanced 
deformability of enriched elements (at the discontinuous boundary 
displacement between two points is not linear interpolation of the 
displacement of these two points). 

Node-to-surface spring contact matrices in the context of NMM have been 
proposed by Lu [65]. 

 

5.10 Solution strategy 

The solution of linear or nonlinear quasi-static problems requires the use of 
incremental procedures. Here, a standard Newton-Raphson iterative 
technique [134] has been implemented with force and displacement control, 
using a direct solver and convergence criteria based on residual force. The 
method exhibits quadratic convergence, provided that a good initial solution 
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is achieved. It is worthwhile to note that if the tangent matrix is 
unsymmetrical, as it can be the case when considering shear cohesive 
components or frictional contact, unsymmetrical solvers are required. This 
case is not considered here. An algorithmic account of the solution process 
is provided in Appendix C. 

After a solution has been obtained it may be necessary to crop overlapping 
parts of the mesh where the partition of unity is not valid, so that the 
discontinuity is visualised in a topologically convenient manner (Figure 
5-18). This can be achieved by implementing an algorithm which considers 
virtual points on the boundary of the discontinuity, calculates results at 
these points and produces a cropped mesh for post-processing. No actual 
additional degrees of freedom are introduced during this process and results 
at the boundary of discontinuities are computed a posteriori using the basic 
definitions given in Chapter 3. 

 

  

Figure 5-18. Concrete beam of section 5.12. Cropped deformed mesh (left) 
and tensile principal stress contours on overlapping mesh (right). 

 

For example, displacements at the boundary of a discontinuity or indeed at 
any point P  within a discontinuous sub-domain of an element can be 
computed directly from equation (3.33), with the shape function matrix 
evaluated at the location of P . 

 

5.11 Example: Beam in tension 

In order to illustrate the concept of introducing discontinuities with 
discontinuous weight functions, the following one-dimensional problem is 
chosen. The problem consists of a straight beam constrained at one end. 
The beam is discretised with three bar elements with translational degrees of 
freedom only. A discontinuity is introduced in the middle of the beam; 
therefore the problem is enhanced with two additional degrees of freedom 
which overlap existing supports in order to represent the displacement jump 
(Figure 5-19). A contact spring is also introduced in order to maintain 
continuity. 
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Figure 5-19. Discretisation of tension beam with discontinuity and spring 

 

A horizontal force 1P =  is applied on the free end of the beam. The elastic 
modulus is taken as 100E = , whereas 1A =  and 1L = . Using Hooke’s 
law of elasticity, a reference tip displacement can be derived for an 
equivalent continuous beam: 
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If the spring is relatively stiff, so that its stiffness is taken as 1

EA
s

L
= , 

NMM recovers the elastic solution: 
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The complete solution vector is: 
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   (5.20) 

 

The displacement at the middle of the beam, just to the left and just to the 
right of the discontinuity can be calculated as: 
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2 2 3* 3*m
u w u w u− = +            (5.21) 

2* 2* 3 3m
u w u w u+ = +            (5.22) 

 

And the displacement jump can be calculated as the difference: 

 

j m m
u u u+ −= −         (5.23) 

 

Since the weight functions of the supports to the left and to the right of the 
discontinuity equal 0.5 at the location of the discontinuity, equation (5.23) 
can be rewritten as: 

 

( )2* 3 2 3*0.5ju u u u u= + − −       (5.24) 

 

Therefore, 

1.
0.01j su =      (5.25) 
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Figure 5-20. Displacement jump of 1D bar problem 

 

The segments of constant displacement immediately to the left and right of 
the discontinuity in Figure 5-20 are due to the fact that spring connectivity is 
enforced at 1x =  and 2x = . 
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5.12 Example: Simply supported beam 

An example problem presented by Jirasek [50] has been adopted here as a 
benchmark. Although the introduction of arbitrary displacement 
discontinuities in NMM has been suggested in relevant literature, it has 
rarely been undertaken in practice nor presented in the generic manner 
described here. 

The problem in Figure 5-21 illustrates a concrete beam and a pre-existing 
crack with a curved trajectory that would be introduced into the model 
based on some criterion (here arbitrarily). The beam is four metres wide by 
three meters high. The elastic modulus is taken as 1000, while Poisson’s 
ratio is taken as 0. The applied load consists of a vertical force of 10. Figure 
5-21 illustrates not only the discontinuity but also those nodes whose cover 
or support has been intersected by the discontinuity. This process has been 
fully automated within the developed modelling framework. The problem is 
idealised as plane-stress. 

 

 

Figure 5-21. Problem set-up, mesh and location of discontinuity. The cover 
of highlighted nodes is cut by the discontinuity, hence those nodes are 
duplicated. 

 

Figure 5-22 (a) shows how the structure would behave without a 
discontinuity whereas Figure 5-22 (b) displays how the structure behaves 
with the discontinuity included. 
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Figure 5-22. (a) Deformed mesh without fracture. (b) Deformed mesh with 
fracture 

 

In Figure 5-22 (b) the duplicate elements are shown to illustrate how two 
separate elements are required to capture the displacement jump across the 
discontinuity. If those parts of each element which correspond to a zero 
weighting function are removed, a more realistic representation of the 
discontinuity is revealed in Figure 5-23. This process has also been 
implemented to be performed automatically within the modelling 
framework adopted here. The initiation of fractures has not been considered 
here since the process is not unique to NMM. 

 

 

Figure 5-23. Deformed cropped mesh with fracture and displacement 
contours 

 

It is worthwhile to note that the original model (without the discontinuity) 
consists of 40 degrees of freedom, while inclusion of the discontinuity 
increases the solution bandwidth by only 12 degrees of freedom. If we now 
produce a model with a topologically identical representation of the discrete 
discontinuity with element boundaries aligned with the crack using an 
unstructured mesh (Figure 5-24), the resulting mesh consists of 210 degrees 
of freedom.  

The exact same boundary is used in both models and the unstructured mesh 
is the most-crude mesh possible with the algorithm considered. In both 
models zero-order elements are used. 
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Figure 5-24. Deformed unstructured mesh with fracture aligned with 
element boundaries 

 

In the partition of unity discretisation considered above the resulting 
maximum crack width appears much smaller comparing to the solution 
obtained using the unstructured aligned discontinuity model. This is credited 
to the coarse discretisation used in the former case and not to the way the 
discontinuity has been modelled. Indeed, comparison of uncracked results 
using similar coarse and fine discretisations yield similar discrepancies. 

Using what has been discussed so far, the following observations can be 
made: 

1. The partition of unity approach can achieve a kinematically and 
topologically equivalent representation of discontinuities as an aligned 
mesh approach, for less effort during both the pre-processing and 
analysis stages. 

2. The partition of unity approach requires an extra step after analysis in 
order to produce results that can be visualised in the same way as those 
of an aligned mesh approach (overlapping parts of the mesh have to be 
cropped and results have to be calculated at the boundary of 
discontinuities). 

3. Accuracy of the partition of unity approach is sensitive to discretisation. 

 

In order to improve the approximation of the partition of unity model, the 
following general strategies could be adopted: 

 

1. Refine the mesh, while preserve the mesh structure. 

2. Refine the mesh and change the mesh structure. For example, an 
optimal solution that achieves the best results in terms of quality at 
minimum cost may be a combination of remeshing and use of 
discontinuous weight functions. 

3. Improve the approximation locally or globally, using higher-order 
displacement functions. 

4. Use a combination of 1 and 3, or 2 and 3 
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5.13 Example: Simulation of an evolving discontinuity 

A simply supported beam is subjected to a point load as shown in Figure 
5-25. The beam dimensions are 10×3×1 (span, depth, width). The point load 
is applied on the middle top of the beam acting downwards and it is 
monotonically increased in 14 steps of 0.1. The elastic modulus is E=1000, 
Poisson’s ratio is ν=0.0, tensile strength is ft=1 and the fracture energy 
release rate is Gf=0.1. 

The purpose of the analysis is to predict how the beam is going to crack. 
The beam is initially uncracked and modelled using linear elastic material. 
The nonlinear behaviour of the potential crack interface is modelled using 
the traction-separation damage model given in section 5.4, considering only 
normal traction. The problem is discretised using a mesh of plane-stress 
constant strain triangles and solved using a Newton-Raphson iteration 
scheme and displacement control. No remeshing is undertaken at any stage. 

 

Figure 5-25. Simply supported beam 

 

As the load is increased, a crack is formed that propagates vertically from 
the bottom of the beam towards the point of load application. This is 
illustrated in Figure 5-26 to Figure 5-28. It is worthwhile to restate that this 
result has been achieved without remeshing. A plot of load versus 
displacement is presented in Figure 5-29. 

 

 

Figure 5-26. Step 4: Deformed shape and contours of resultant displacement 
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Figure 5-27. Step 9: Deformed shape and contours of resultant displacement 

 

 

Figure 5-28. Step 14: Deformed shape and contours of resultant 
displacement 
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Figure 5-29. Load versus displacement 

 

It is worthwhile to note that smoothness of the softening profile in Figure 
5-29 depends on the adopted mesh discretisation along the crack trajectory, 
as demonstrated [98] in the context of fracturing with partition of unity 
based finite elements. 
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5.14 Remarks regarding NMM and XFEM 

NMM and XFEM [15, 16] exhibit strong parallels with respect to modelling 
discontinuities using discontinuous shape functions, as they are both based 
on the partition of unity framework. In chronological terms, the concept of 
modelling discontinuities using the partition of unity concept can be traced 
back to NMM [50], which appears in literature [95, 96] at almost the same 
time as the identification of the partition of unity framework [6]. 

The key difference between the two techniques is that NMM captures the 
jump in the displacement field using discontinuous displacement functions 
to the ‘left’ and to the ‘right’ of a discontinuity in order to restore the 
partition of unity. XFEM on the other hand, introduces an additional degree 
of freedom at each node by enriching the trial function. In both methods 
the resulting stiffness matrix is symmetric and there is an increase of its size 
due to the introduction of additional degrees of freedom. 

Another distinctive difference between the two methods lies in the way the 
integration process is carried out. In XFEM integration is carried out 
numerically at Gauss points, while in NMM integration is undertaken 
analytically using simplex integration. Consequently, XFEM requires a form 
of partitioning of elements affected by the discontinuity, yet without 
introducing any additional degrees of freedom, so that numerical integration 
can account accurately for the fractured surfaces on either side of the 
discontinuity. 

In NMM no additional step is taken for integration due to the multivariate 
polynomial form of cover displacement functions and the inherent ability to 
undertake integration explicitly, even for higher-order basis functions, using 
simplex elements. However, if the effects of partial cracking are to be 
captured, the displacement function needs to be modified with special 
enrichments. This would have to be dealt with using an XFEM-like 
integration approach. 

It is worthwhile to note that as Jirásek [50] has shown, XFEM can be cast in 
a format very similar to that described here. This means that the substantial 
amount of research that has been carried out in the context of XFEM (such 
as tracking discontinuities using level sets and resolving crack branching in 
two and three-dimensions) can be potentially utilised in further 
developments of NMM. 
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5.15 Concluding remarks 

This chapter has described the basic concepts and implementation of NMM 
for modelling discontinuities in continua, whereby displacement jumps are 
represented in a strong form by enhancement of the finite element space 
using discontinuous partition of unity functions. The principal advantages of 
this approach over traditional modelling techniques, with interface elements 
or discontinuities aligned with the mesh boundary, can be summarised as 
follows: 

 

1. Objectivity 

2. Computational efficiency 

3. Ease of implementation 

4. Independency from element type and structure 

 

Resolution of the displacement and strain field in the vicinity of jumps is 
fully discontinuous and therefore, it can represent discrete discontinuities 
such as cracks realistically. In addition, the proposed model is not 
susceptible to ill-effects associated with classical continuum-based weak 
discontinuity models and zero energy dissipation. 

Traditional finite element techniques for modelling strong discontinuities 
are normally associated with interface models and remeshing. The use of 
interface models without remeshing implies the adoption of a priori 
assumptions with regard to location and trajectory of potential 
discontinuities, and therefore may yield results that are not objective due to 
mesh alignment and issues associated with integration and fictitious elastic 
stiffness of interface elements. If interface elements are activated only when 
required, then the use of remeshing techniques is entailed. This implies that 
continuum elements intersected by discontinuities are remeshed and 
interface elements are introduced and aligned to boundaries of 
discontinuities. However, whenever a localization zone is remeshed, the 
immediately neighbouring region may also be remeshed in order to obtain a 
smooth transition of the approximation field. This process can result in a 
significant increase of unknowns. 

In NMM, enrichment of the continuum with additional degrees of freedom 
that represent displacement jumps follows directly from the original 
topology, so that additional degrees of freedom are introduced only on 
existing nodes intersected by discontinuities. No surrounding elements are 
affected and therefore remeshing is not taking place in the traditional sense. 
Consequently, the procedure is the same for any element type and structure. 

Hence, even if the intrinsic computational cost of a remeshing algorithm 
alone is ignored, the number of additional degrees of freedom resulting with 
NMM can be significantly smaller than that obtained from remeshing and 
the use of interface elements. 

Another particularly attractive feature of introducing discontinuities using 
the approach described here is that in essence, the original trial function is 
not altered. Instead, only the weight functions that interpolate the 
displacement field are modified in the vicinity of discontinuities. 
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Consequently, the ability to improve the level of approximation locally or 
globally, up to any theoretical degree is preserved. Furthermore, integration 
can be undertaken explicitly (as discussed in Chapter 6) for any level of the 
approximation, without any particular additional considerations.  

Although the introduction of discontinuities with partition of unity 
functions can achieve objective representation of discrete phenomena, the 
sharp nature of the displacement field in the vicinity of discontinuities can 
manifest high stress gradients. Consequently, local improvement strategies 
of the approximation field in the vicinity of newly-introduced discontinuities 
may be necessitated. 
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6 Integration 

6.1 Introduction 

A key aspect of NMM is the ability to undertake integration of element 
functions analytically via simplex integration. This is possible since the 
integrals are restricted to simplex domains, even though the functions may 
comprise complex polynomials. In contrast, integration of these functions in 
FEM is usually undertaken numerically.  

In the case that discontinuities exist and simplex elements are cut into 
effective and ineffective regions, the domain over which an integration is to 
be performed may no longer be a simplex (Figure 6-1). This can also be 
treated naturally using simplex integration. 

 

 

Figure 6-1. (a) Typical integration sub-domain in standard FEM with 6-node 
triangular elements (b) Typical integration sub-domain in high-order NMM 
with 3-node triangular elements and ineffective covers 

 

This chapter reviews the principles of simplex integration; furthermore, it 
demonstrates its computer implementation for irregular domains, higher-
order displacement functions and local enrichment. Finally, the potential 
advantages and disadvantages of the method are discussed. 

 

6.2 Integration techniques 

Integration of the variational principles and discretised system discussed in 
Chapter 3 can in general be undertaken using the same numerical 
approaches employed in FEM [133]. However, most work on NMM to date 
has utilised triangular elements and simplex (exact) integration, although 
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there are a few examples in which numerical techniques have been 
employed for integration over rectangular [25, 91] and circular [23] domains. 

The principal advantage of numerical integration in FEM over exact 
integration is versatility, particularly with non-simplex element geometries or 
shape functions constructed based on the interpolation of a number of 
nodes greater than that defined by the vertices of the simplex (the simplest 
possible shape in a given space).  

On the other hand, the principal advantage of analytical integration 
techniques and simplex integration is precision. However, since such exact 
techniques rely on analytical derivations, they can generally apply to a 
limited range of integrand functions and sub-domain geometries. 

A particularly attractive characteristic associated with simplex geometries 
(triangles in two dimensions, tetrahedra in three dimensions) is that 
triangulation can be performed for any shape in a fully automated manner 
for two- or three-dimensional domains. In addition, assemblages of 
simplices can reproduce polygonal or polyhedral domains exactly and 
accurate approximations of complex circular or spherical domains. 

 

 

Figure 6-2. Polygonal, polyhedral, circular and spherical domains discretised 
by simplex elements 

 

However, triangular and tetrahedral elements with standard shape functions 
based on three-node (in two dimensions) and four-node (in three 
dimensions) interpolation schemes in FEM are well-known to perform 
poorly for certain classes of problems.  

Unlike FEM with standard shape functions, higher-order NMM 
formulations offer improved performance and deformability even with 
three-node triangular or four-node tetrahedral elements. In addition, the 
integrated functions are relatively simple due to the choice of polynomial 
displacement functions. In fact, integral terms of any order displacement 
functions are of the form of Equation (6.1) in three-dimensions, for non-
negative integer exponents 1n , 2n  and 3n : 

 

1 2 3
1 2 3 1 2 3
n n n

V
x x x dx dx dx∫∫∫         (6.1) 

 

Due to the nature of the integral kernels and the improved performance and 
deformability associated with higher-order displacement functions, coupled 
with the versatility of simplex element geometries and the precision offered 
by simplex integration, it can be argued that it is not necessary to use 
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numerical integration or non-simplex elements coupled with higher-order 
NMM. 

 

6.3 Exact integration in simplex domains 

A simplex is defined as the simplest possible polytope in any given space 
[124]. In a single dimension, the simplex is a line segment, in two 
dimensions it is a triangle whereas in three dimensions it is a tetrahedron 
(Figure 3-5). The concept can be generalised to a space of any number of 
dimensions.  

Simplex integration can be carried out using analytical expressions of regular 
shapes transformed into a general coordinate system. In addition, it is 
possible to integrate in general polygonal areas or polyhedral volumes using 
domain-subdivision. This is treated in section 6.4. 

In higher-order NMM it is generally desired to integrate terms of 
polynomials of an arbitrary order N  (section 3.4). Analytical solutions of 
integrals of Equation (6.1) exist [40] since the 1950’s and have been used in 
the context of FEM and the Boundary Element Method [19], as well as 
NMM and DDA [22, 95]. 

The analytical solution of the integral of a general term of a polynomial 
function in a regular triangle of area rA  is given by [22]: 

 

( )
0 1 2 0 1 2
0 1 2 1 2

0 1 2

! ! !

2 !r

i i i

A

i i i
u u u du du

i i i
=

+ + +∫∫      (6.2) 

 

where 0 1 2, ,i i i ∈� . 

 

 

Figure 6-3. Transformation of a two-dimensional simplex from general into 
regular coordinates 

 

The integral of a function in a general triangle gA  can be converted into 

integration in a regular area using coordinate transformation (Figure 6-3). 
The resulting solution for this case is: 
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( )
1 2

1 1 1 2 2 21 2

1 2 1 2

1 2

1 2 1 2 1 2 1 2 1 1 2 2
0 0

, , ,
g

n n
n k k n k kn n
P P P P

A
k k

x x dx dx J n n k k x x x x
− −

= =

= η∑∑∫∫  (6.3) 

 

where: 

( )
( )

( ) ( )
( ) ( )

1 2
1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 1 2 2

! !
, , ,

2 !

! !

! ! ! !

n n
n n k k

n n

n n k k k k

k k n k n k

η = ×
+ +

+ − − +
×

− −

    (6.4) 

 

and J  is the Jacobian determinant: 

 

1 0 2 0

1 0 2 0

1 1 1 1

2 2 2 2

P P P P

P P P P

x x x x
J

x x x x

− −
=

− −
           (6.5) 

 

The derivation of Equation (6.4) is given in detail in Appendix A. 

 

 

Figure 6-4. Transformation of a three-dimensional simplex from general 
into regular coordinates 

 

Similarly, in three dimensions the analytical solution of the integral of a 
general term of a polynomial function in a polyhedron is given by: 

 

( )

( )

31 2

3 31 2 1 2

1 2

1 2 3 1 2 3

1 2

1 2 1 2 1 2

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3
0 0 0 0 0 0

1 1

1 2

, , , , , , , ,

, ,

g

nn n

V

n ln n l l

ns nv k k

l l l m m m

k k

k k k k k k

x x x dx dx dx

J n n n l l l m m m

f P P P

α
= = = = = =

= =

+ +

=

 
 
 
 
×  

∫∫∫
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 (6.6) 
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where: 

( )

( )
( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

1 1 1 1 2 2 2 2 3 3 3 3

, , , , , , , ,

! ! ! !

! ! ! 3 !

! !

! ! ! ! ! !

n n n l l l m m m

n n n n n n l l l

m m m n n n

l l l m m m m m m

n l l m n l l m n l l m

α =

+ + − − −
= ×

+ + +

+ + − − − + +
×

− − − − − −

  (6.7) 

( )
1 2 1 2 1 2

3 3 3 3 31 1 1 1 1 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2

1 1 1 1 2 2 2 1 2 2 3 3 1 3 2

, ,k k k k k k

n l l m mn l l m m n l l m m
Pk k Pk k Pk k Pk k Pk k Pk k Pk k Pk k Pk k

f P P P

x x x x x x x x x

+ +

− −− − − −
+ + + + + +

=

=
   (6.8) 

 

and: 

1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

1 1 1 1 2

2 2 1 2 2

3 3 1 3 2

Pk k Pk k Pk k

k k Pk k Pk k Pk k

Pk k Pk k Pk k

x x x

J x x x

x x x

+ +

+ +

+ +

=        (6.9) 

 

ns  is the total number of surfaces of the volume (for tetrahedra 4ns = ), nv  
is the number of vertices (for tetrahedra again 4nv = ) of surface 1k  with 

coordinates ( )
1 2 1 2 1 21 2 3, ,Pk k Pk k Pk kx x x . 

 

6.4 Integration in arbitrary polygons and polyhedral volumes 

Integration in an arbitrary polygon of n  vertices with orientated boundary 

1 2 3 ... nP P P P∂Γ =  can be calculated by the closed loop algebraic sum of the 

integrals of n  triangular sub-domains, where each sub-domain is formed by 
the vertex of a fixed arbitrary point 0P  and two successive polygon vertices 

[Figure 6-5, Figure 6-6], [22]. The same concept can be applied in 
integration of polyhedral volumes in three dimensions [22, 95]. 

 

Figure 6-5. Simplex and six-side polygon in 2
�  
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Figure 6-6. Simplex decomposition of a polygon in 2
�  

 

In a two-dimensional simplex: 

 

( ) ( )

( ) ( )

1 2 3 0 1 2

0 2 3 0 3 1

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

, ,

, ,

P P P P P P

P P P P P P

f x x dx dx f x x dx dx

f x x dx dx f x x dx dx

= +

+ +

∫∫ ∫∫

∫∫ ∫∫
     (6.10) 

 

Thus, in a general polygon: 
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( ) ( )
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1 2 1 2
...
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1
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n
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P P P

n

P P P P P P
k
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=
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∫∫
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       (6.11) 

 

Similarly, Equation (6.11) can be generalised for polyhedra in three 
dimensions: 
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∫∫∫

      (6.12) 
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Figure 6-7. Simplex decomposition in 3
�  

 

Therefore, in situations where the use of ineffective covers can result in 
polygonal, or polyhedral domains (Figure 6-1 b), integration can be carried 
out using the approach discussed in section 6.3 and equations (6.11) or 
(6.12) without any further considerations. This can offer significant 
flexibility when compared to other integration techniques as the procedure 
is readily applicable to a general class of problems with arbitrary polygonal 
or polyhedral shapes. 

 

6.5 Integration for arbitrary levels of global and local enrichment 

In cases where global or local enrichment is undertaken by use of higher-
order basis functions, the stiffness matrix is populated by integrals of 
higher-order polynomial terms of the form of Equation (6.1). The 
procedure outlined previously also applies to higher order kernels of 
polynomial displacement functions. Therefore, no additional considerations 
are required in such cases. 

 

6.6 Numerical implementation 

The simplex concept outlined previously can be implemented numerically 
for any general high order case using simple algorithms. This section 
illustrates the implementation of the simplex integration of high-order 
polynomials in general polygons in two dimensions. The same procedure 
can be extended easily for polyhedra in three dimensions. 

Assuming that 1 2n nx y  is integrated in the area of a general polygon with 

vertices ( ) ( ) ( )1 1 2 2, , , , ... ,n nx y x y x y  in two dimensions and that the vertex 

coordinates are stored in vectors x  and y :  

 

 

nnt=size(x); nn=nnt(2); % number of points that define the area of 
integration 



 

 

   
 

144 

s=0; Jac=0; 

[coef] = simcoef2d(n1,n2); % function that computes the simplex 
coefficient of Equation (6.4) 

x(nn+1)=x(1); y(nn+1)=y(1); 

for i=0:nn-1 

Jac = x(i+1)*y(i+2)-x(i+2)*y(i+1); % Jacobian 

s1=0; 

for k1=0:n1 

for k2=0:n2 

s1=s1+coef(k1+1,k2+1)*(x(i+1)^(n1-k1))* 

*(x(i+2)^(k1))*(y(i+1)^(n2-k2))*(y(i+2)^(k2)); 

end 

end 

s=s+s1*Jac; 

end 

 

Figure 6-8. MATLAB implementation of high-order simplex integration in a 
general polygon 

 

The coefficient of Equation (6.4) can be computed using the following 
algorithm: 

 

for k1=0:n1 

for k2=0:n2 

coef(k1+1,k2+1)=(factorial(n1)*factorial(n2)*factorial(n1+n2-k1- 

k2)*factorial(k1+k2))/(factorial(n1+n2+2)*factorial(k1)*factorial(k2) 

*factorial(n1-k1)*factorial(n2-k2)); 

end 

end 

 

Figure 6-9. Algorithm for computation of simplex coefficients 

 

The algorithm in Figure 6-8 assumes that the exponents 1n  and 2n  of the 

polynomial term that is to be integrated are given. In a practical case the 
monomial exponents have to be determined either analytically or iteratively 
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for a general case with uniform p-enrichment or local enhancement 
respectively. The exponents of any term of a high-order polynomial 
function can be determined using the approach discussed in Chapter 4. 

 

6.7 Considerations regarding numerical accuracy and efficiency 

The computation of high-order simplex coefficients of Equations (6.4) and 

(6.7) in 2
�  and 3

� respectively can become a significantly expensive part of 
the procedure outlined in previous sections of this Chapter, depending on 
how simplex integration is implemented. 

As a typical example, consider the static analysis of a triangular element with 
displacement functions of order 6N = . A MATLAB (version 7.1 R14) 
implementation of this problem yields a solution in which 10% of the 
processing time is spent in assembly of the stiffness matrix, whereas 80% is 
expended by the integration algorithm. 82% of the integration algorithm 
alone (66% of the total processing time) is expended by the algorithm 
computing simplex coefficients. 

In this case, it is found that the indirect determination of factorials as 
products of array elements using the generic function prod (Figure 6-10) 
rather than the generic direct function factorial can result in reduction of the 
processing time of this computation by over 90% when compared to the 
direct approach illustrated in Figure 6-9.  

 

 

for k1=0:n1 

for k2=0:n2 

coef(k1+1,k2+1)=(prod(1:n1)*prod(1:n2)*prod(1:(n1+n2-k1- 

k2))*prod(1:(k1+k2)))/(prod(1:(n1+n2+2))*prod(1:k1)*prod(1:k2)* 

prod(1:(n1-k1))*prod(1:(n2-k2))); 

end 

end 

 

Figure 6-10. Alternative algorithm for computation of simplex coefficients 

in 2
�  

 

Using the alternative approach illustrated in Figure 6-10, analysis of the 6th-
order triangular element is undertaken in only 22% of the time of the 
original analysis, with the exact same order of accuracy. In this case, the 
alternative algorithm yields a solution in which 34% of the total time is 
expended in assembly of the stiffness matrix, whereas only 4% of the total 
time is expended by the integration algorithm (including computation of 
simplex coefficients). 
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Another potential issue associated with the determination of simplex 
coefficients is associated with computer limitations to represent large 
numbers accurately. For example, double precision numbers occupy 64 bits 
and have significant precision of 53 bits [39]. This gives double precision 
numbers accuracy of about 16 decimal digits. 

Consequently, a double precision factorial can only be accurate for 21n ≤  
approximately [70]. For larger order exponents of high order monomials the 
solution is likely to have the correct magnitude but it will be accurate only 
for the first 16 digits. Furthermore, for orders 90n >  arithmetic overflow 
problems can occur as the factorial numbers become too large to be 
represented computationally. In addition, integration of higher-order 
polynomial displacement functions can increase the total computation time 
significantly as the number of monomial terms increases according to 

Equation (3.24) in p
� . 

In situations such as those mentioned above, performance can be improved 
by approximating Equations (6.4) and (6.7) [22], therefore essentially 
introducing an additional, yet relatively insignificant or ‘cancellating’ error. 
In practical smooth or non-smooth problems the displacement function 
polynomials are not likely to exceed 8N = . Therefore float overflow or 
other performance problems will not be of particular concern unless there 
are constraints associated with the adopted discretisation scheme (element 
size). 

 

6.8 Remarks regarding integration in NMM and XFEM 

NMM has several conceptual similarities with XFEM as key-aspects of both 
methods emerge from the framework of partition of unity [6, 7]. However, 
where discontinuities emerge, NMM traditionally constructs the 
approximation space as an enriched product of standard basis functions, 
while XFEM constructs the approximation space as a product of standard 
basis and special enrichment functions [1, 16]. 

This key difference influences the integration approach adopted in each case 
as the shape functions and their derivatives can be conceptually different. As 
a result, in NMM the stiffness matrix can consist only of integrals of 
monomial terms, whereas in XFEM it can consist of integrals of monomial 
terms and other special functions.  

In situations where fracture problems are considered within the framework 
of linear elasticity and zero traction boundary conditions on crack surfaces, 
the XFEM special functions are typically singular linear elastic near-tip field 
functions [38, 73], in order to enrich the crack-tip. 

In linear elastic cohesive crack models, the situation is slightly different, as 
the tractions between either side of a discontinuity lead to a reduction of 
stress in the tip. This reduction is desirable since it reduces the non-physical 
singular stress field at the tip [76]. Therefore, singular enrichment functions 
[73] are not valid. In this case, enrichments at the tip can be undertaken 
using non-singular asymptotic functions [76], or enrichment functions based 
on higher-order polynomial bases [69]. 

Consequently, integration in XFEM is not always as straightforward as it is 
in the case of NMM and it is undertaken numerically. This in turn means 
that the integration domain must conform to the boundary of the 
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discontinuity. If the discontinuity is not taken into account, then the 
solution can lead to poor results or a non-invertible set of equations if 
integration points do not track the discontinuity [56]. 

Therefore, integration of elements that are intersected by discontinuities 
requires element partitioning into triangular sub-domains although it is 
possible to avoid partitioning of the tip elements by introducing additional 
nodes [69]. In addition, in cohesive models the variational principle involves 
integration over the domain and integration over segments of the cohesive 
zone [73, 76].  

XFEM partitioning is undertaken without introducing additional unknowns 
since basis functions are only associated with nodes tied to parent elements 
[105]. However, computational cost can increase as the number of 
integration points increases. Furthermore, integration by partitioning around 
a singularity can yield poor results if the integration rule is not adequate or if 
the mesh in the proximity of the singularity is coarse. 

With simplex integration, non-simplex domains resulting by the intersection 
of (simplex) elements and discontinuities are also in essence partitioned into 
simplex sub-domains (section 6.4), similar to the XFEM approach. Also 
similar to XFEM, no additional unknowns are introduced. 

However, unlike XFEM, integration in this case is exact and therefore the 
additional computational cost of integration of domains intersected by 
discontinuities depends only on the order of the displacement functions 
associated with nodes tied to parent elements. Also, this is guaranteed to 
yield precise results relative to a given discretisation. 

Furthermore, although simplex integration constrains the shape of the 
approximating basis functions, it is likely to avoid the potential issues of 
zero energy modes associated with inadequate or reduced numerical 
integration rules [133] of non-smooth as well as smooth problems without 
the requirement for additional considerations when the order of the basis 
functions is increased (e.g. in adaptive enrichment). 

Depending on the form of the special enrichment functions, simplex 
integration can also be used in XFEM. Similarly, NMM can benefit from the 
work undertaken in XFEM in situations where a simplex approach is not 
desirable, whether this is for the performance reasons discussed earlier in 
section 6.7, the implementation of non-simplex elements or the enrichment 
of the approximation field with non-standard basis functions. 

 

6.9 Concluding remarks 

One of the distinct advantages of numerical integration over exact 
integration in standard FE techniques is versatility, since for a certain class 
of problems it is often necessary to only prescribe different shape functions 
in order to implement different element types.  

Although simplex integration constrains the shapes of approximating basis 
functions, it is arguable whether implementation of different element shapes 
(and hence use of other integration techniques) is necessary in higher-order 
NMM, coupled with the fact that assemblages of simplices can reproduce 
accurately irregular manifolds in any given space.  
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Simplex elements in NMM with higher-order basis functions do not 
generally incorporate the poor accuracy observed using the same elements 
with zero-order displacement functions (FEM). Coupled with the fact that 
simplex integration can be fully adapted for domains that are intersected by 
discontinuities in any space, for any arbitrary order of the cover 
displacement functions to yield a precise solution, the simplex approach can 
be attractive in situations where h- , p-, or a combination of h- and p-
adaptivity is desired. 

Furthermore, simplex integration is exact, therefore issues associated with 
the efficiency and accuracy of numerical schemes (such as the choice of a 
minimum rule to achieve convergence, the choice of a rule to preserve the 
convergence of an exact solution and generally, loss of accuracy) can be 
eliminated without significant computational cost. 

It is worthwhile to note that, to date, application of simplex integration has 
not been investigated within the context of nonlinear constitutive 
behaviour. Although the explicit integration strategy presented herein 
applies readily to higher-order NMM with linear elastic behaviour and 
situations where discontinuities are introduced via partition of unity 
concepts, its generalised application may be impeded when constitutive 
behaviour of the continuum is nonlinear, unless the tangent stiffness matrix 
consists of polynomial terms. 
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7 Treatment of higher-order boundaries 

7.1 Introduction 

The use of higher-order displacement functions is clearly an attractive 
quality of NMM that makes it a potentially powerful approximation 
technique. However, the enforcement of essential boundary conditions for 
higher-order NMM is not straightforward. In Chapter 3 the enforcement of 
these constraints was described in general terms using the point collocation 
method, whereby the boundary conditions are enforced exactly at specified 
points on the boundary. However, if the boundary conditions require an 
entire edge to be constrained and only the nodes are utilised for this 
purpose, the increased deformability associated with higher-order NMM will 
result in incomplete enforcement (Figure 7-1). A similar problem manifests 
itself if distributed loads are not applied consistently. 

 

 

Figure 7-1. Higher-order boundary effects 

 

To resolve this it is possible to restrain additional points along the edge. 
This approach was utilised in section 4.9. The number and positioning of 
these additional points will determine whether the boundary conditions are 
enforced exactly, or approximately. However, this can be cumbersome from 
a numerical implementation point of view. 

Two alternative techniques are the direct enforcement of essential 
constraints using constant-strain elements at the boundary or the use of 
zero-order displacement functions for nodes on the boundary. The latter 
approach relies on the local enrichment strategy discussed in Chapter 4. 

Perhaps more significant is that the imposition of essential boundary 
conditions associated with higher-order displacement functions can lead to 
rank deficiency of the system matrix. This is due to the NMM displacement 
functions at restrained nodes resulting in a non-unique solution due to 
presence of monomials that are reproduced by the weighting functions 
(Duarte [37] and subsequently Lin [60]). This will be discussed in more 
detail later. 
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7.2 Boundary deformability in higher-order NMM 

In FEM, due to the interpolation of nodal displacements, constraints on 
element boundaries between nodes are enforced naturally (Figure 7-2 (a)). 
This is not the case in NMM with higher-order displacement functions 
(Figure 7-2 (b)), since deformation between nodes associated with higher-
order functions is not anymore an interpolation of the nodal displacements. 
Figure 7-2 (b) also illustrates the effect of inconsistently applied loads. 

Both of the above do not normally apply in NMM with higher-order 
displacement functions (Figure 7-2), since deformation between nodes 
associated with higher-order functions is not anymore a linear interpolation 
between the displacements of these nodes. In addition, the unknowns 
corresponding to nodes associated with higher-order functions are not 
simply displacements and the unknowns of higher-order functions 
associated with constrained nodes are not all necessarily zero. 

 

 

Figure 7-2. Deformed shape of a two-element test. (a) FEM with constant-
strain triangles (b) NMM with higher-order displacement functions 

 

This section investigates further the origin of these issues using the 
benchmark test devised in Chapter 4, in order to develop the potential 
treatment strategies illustrated in following sections of this chapter. 

Consider the single element test of Figure 7-3. 

 

 

Figure 7-3. Single element test 

 

The number of unknowns is given by: 
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( )( )
3

1

3 1 2i i

i

N N
=

× + +∑        (7.1) 

 

where 0,1, 2,3,4...iN n=  is the order of polynomial cover displacement 

functions associated with nodes =i 1  to 3. Here, 1
i

N = , i.e. first-order 

displacement functions. A force 0.5f =  is applied at node 1 in the positive 

x direction. Boundary constraints are enforced using the projection matrix 
approach proposed in Chapter 3. The elastic modulus and Poisson’s ratio 
are taken as 100 and 0.0 respectively. The displacement of point A is 
monitored. 

If nodes 1, 2 and 3 are associated with first-order displacement polynomials, 
from Figure 4-15 it is evident that point A between the constraints of the 
left-hand edge displaces; i.e. the constraints of nodes 2 and 3 do not 
automatically enforce displacement constraints between these two nodes.  

Furthermore, as illustrated in Figure 4-16, the stress field is not constant, 
compared to the zero-order (constant-strain) case of Figure 4-14. This can 
be expected since high-order displacement functions are employed. Because 
the weight functions remain linear but are now multiplied by first-order 
polynomials, the interpolants are of second order. An analogy for this 
situation in the context of FEM with standard shape functions would be an 
element with mid-nodes, which is constrained only at corner nodes. 

The reason for the displacement of point A may not be immediately clear, 
since nodes 2 and 3 are restrained. It is known that the weight function of 
node 1 is zero along the left edge between nodes 2 and 3, whereas the 
weight functions of nodes 2 and 3 at the same location are both equal to 0.5 
(mid-way between the supports). This fact may complicate the issue further 
since it essentially implies that there is no translation contributed from node 
one. 

The explanation to this issue is that, although the weight function of node 1 
is indeed zero along the edge defined by nodes 2 and 3, the unknowns as 
well as weight functions of nodes 2 and 3 are not all zero. This can be 
shown analytically. 

The displacement at any point has been defined in Chapter 3 as: 

 

3

1
i i

i=

=∑u T a        (7.2) 

 

where iT  is the shape function matrix, which is product of the weight 

function ( ),iw x y a bx cy= + +  and the position components associated 

with the displacement function at node i . If the linear displacement 
function is given as: 
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1 2 3i i i iu x yβ β β= + +      (7.3) 

 

where 1,2,3β  are the displacement function coefficients (unknowns), then 

iT  is equal to: 

 

1 0 0 0

0 1 0 0i i

x y
w

x y

 
=  

 
T    (7.4) 

 

and the vector of unknowns of node i  is: 

 

1 1 2 2 3 3

T

i i x i y i x i y i x i yβ β β β β β =  a     (7.5) 

 

For the problem under consideration, it can be shown that the weight 
function of node 1 is derived as: 

 

1 0 1 0w x y= + +         (7.6) 

 

For any point along the left-hand edge: 

 

1 2 30 1 0 0 0w y −= + × + × =       (7.7) 

 

Furthermore, the weight functions of nodes 2 and 3 along the left edge are: 

 

2 0 0.5 0 1 0.5 0.5w = − × + × =         (7.8) 

3 1 0.5 0 1 0.5 0.5w = − × − × =         (7.9) 

 

Although nodes 2 and 3 do not translate, it can be shown that the 
corresponding displacement coefficient vectors derived from the solution 
are equal to: 

 

[ ]2 0.003 0.106 0.015 0.051 0.003 0.099
T

= − − −a        (7.10) 

[ ]3 0 0 0.049 0.073 0.038 0.099
T

= −a          (7.11) 
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Using the definition given in Equation (7.4), at point five (0, 0.5) the shape 
function matrices of nodes 2 and 3 along the left edge are: 

 

2

1 0 0 0 0

0 1 0 0 0

y
y

y

 
=  

 
T             (7.12) 

 
=  

 

y
y

y
3

1 0 0 0 0

0 1 0 0 0
T             (7.13) 

Therefore, 

 

( )= −0.041 1xu y y     (7.14) 

 

i.e. the displacement in the x direction is parabolic, satisfies the boundary 
conditions and yields a displacement of 0.103 at point A. 

 

7.3 Treatment of higher-order boundaries 

The previous section demonstrated that deformation of boundaries between 
constrained nodes is not automatically enforced when higher-order 
displacement functions are employed. Evidently, this lack of constraint may 
not always be desired in structural analysis. 

Furthermore, loadings have to be applied consistently with respect to the 
order of the displacement functions. Consider the problem in Figure 7-4, 
comprising two triangular elements with 1st-order displacement functions.  
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Figure 7-4. Two-element problem. Elastic modulus E = 100 and Poisson’s 
ratio ν = 0. 
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Figure 7-5. Contours of horizontal displacement and deformed mesh (x40); 
Left: Inconsistently applied boundary conditions and loads. Right: 
Consistently applied boundary conditions and loads 

 

Figure 7-5 (left) shows the deformed shape and contours of horizontal 
displacements when the left hand side constraints are only applied at the 
nodes and the load on the right hand edge is applied as point loads. In 
comparison, Figure 7-5 (right) shows the results using sufficient constraints 
(i.e. nodes 1, 4 and an additional point at the mid point between these two 
nodes) on the left edge and consistently applied loads on the right edge 

using ˆ
t

T d
Γ

= Γ∫f T t . 

Two potentially simpler yet more general approaches for applying point 
loads and constraints are discussed in the following two sections. 

 

7.4 Coupling with Finite Elements 

The concept of treating boundary domains with finite elements may be 
recognizable from work in meshless methods and BEM. This type of 
coupled approximation is occasionally employed due to the attractive 
properties of FEM with regard to application of loads and enforcement of 
constraints. 

Whereas this type of coupled approximation may be relatively complicated 
in general numerical techniques as it is not natural, in NMM it can be 
achieved simply by utilising a boundary layer of simplex elements associated 
with zero-order displacement functions, which are equivalent to constant 
strain finite elements as discussed previously. 
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Figure 7-6. Example of a beam in tension with constant strain elements at 
the left and right-hand boundaries 

 

This strategy requires a transition layer of elements with mixed displacement 
functions between the boundary layer and the rest of the domain. However, 
this can be implemented and fully automated easily using the local 
enhancement methodology discussed in Chapter 4. 

A potential drawback of this approach is that the ability to tailor the 
approximation at the boundaries using higher-order displacement functions 
is lost. Depending on the adopted discretisation, the approach may 
introduce detrimental errors. Generally, a relatively fine mesh discretisation 
near the boundary is recommended to avoid potential numerical difficulties. 

Furthermore, for certain types of discretisations the approach may not be 
attractive as it can eliminate the ability to achieve a better approximation 
altogether without undertaking some form of mesh refinement. 

A more developed and attractive adaptation of the same concept is 
discussed in the following section. 

 

7.5 Treatment of higher-order boundaries with zero-order functions 

An alternative approach is to enforce zero-order displacement functions 
only on the boundary nodes but continue to permit higher-order functions 
for all other nodes. This approach implies that the displacement function 
coefficients associated with the displacement boundary nodes are the nodal 
displacements. These are then interpolated between boundary nodes, 
thereby enforcing the correct boundary conditions along the entire 
boundary and not only at the nodes (Figure 7-7).  
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Figure 7-7. Beam in tension – contours of order of displacement functions. 
Boundary nodes with applied constraints and loads are discretised with zero 
displacement functions. 

 

This can be demonstrated using the single element test of Figure 7-3. If zero 
displacement functions are employed at nodes 2 and 3, then the only 
variables at these nodes are the (already known) prescribed displacements: 

 

[ ]2 0 0
T

=a        (7.15) 

[ ]3 0 0
T

=a        (7.16) 

 

At point A between these nodes, the weight functions of both nodes 2 and 
3 are 0.5  (as discussed previously), therefore the associated shape matrices 
are equal to: 

 

2

1 0
0.5

0 1

 
=  

 
T            (7.17) 

3

1 0
0.5

0 1

 
=  

 
T            (7.18) 

 

whereas the weight function of node 1 at point A is zero, since this point 
lies on the boundary: 

 

1

1 0
0 0
0 1

 
= = 

 
T            (7.19) 

 

Therefore, the displacement of node five equals zero (Figure 7-8), although 
the resulting stress field is not constant as illustrated by Figure 7-9: 
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5

2 2 3 3
5

0 0
x

y

u

u

 
= + + = 

 
T a T a        (7.20) 

 

 

Figure 7-8. Single element test with zero-order displacement functions at 
nodes 2 and 3 and 1st-order displacement functions at node 1. Contours of 
displacement along the horizontal axis and deformed shape (×10). 

 

 

Figure 7-9. Single element test with zero-order displacement functions at 
nodes 2 and 3 and 1st-order displacement functions at node 1. Contours of 
stress in the horizontal axis and deformed shape (×10). 

 

Another numerical example to illustrate this concept is that of a concrete 
compact tension specimen (CTS) in Figure 7-10, Figure 7-11 and Figure 
7-12. The specimen features a pre-existing traction-free crack. The left-hand 
edge of the specimen is fully restrained, whereas a distributed load is applied 
on the right-hand edge. The specimen is discretised with 1st-order 
displacement functions, whereas the region around the crack tip is 
discretised with 2nd-order functions. The constrained boundary is prescribed 
zero-order functions in order to enforce constraints directly. Furthermore, 
the load boundary is also discretised with zero-order functions in order to 
avoid higher-order boundary effects.  

It is clear that the adopted approach allows the loading and boundary 
conditions to be imposed effectively and the expected stress concentration 
around the crack tip to be captured. 
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Figure 7-10. Compact tension specimen (CTS) with pre-existing crack 

 

 

Figure 7-11. CTS contours of the order of displacement functions used to 
approximate the solution field. Constraint and load boundaries are 
discretised with zero-order functions. 

 

 

Figure 7-12. CTS contours of major principal stress 

 

7.6 Shape functions and linear dependence 

It has been observed that either local or global enhancement can result in an 
ill-conditioned system matrix that can potentially lead to inaccurate results. 
Duarte [37] and subsequently Lin [60] noted this phenomenon in the 
context of h-p Clouds and NMM respectively and recognised that this was 
due to the fact that the polynomials used to construct the displacement 
function included monomials that are reproduced by the weighting 
functions. Lin proposed that the linear term should be omitted from the 
displacement functions. In fact this only partially tackles the problem.  
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This issue is most easily examined by considering 1D NMM using 2-node 
simplex elements. The displacement at a node i is given by (note the 
weighting functions of all other nodes are zero at node i ): 

 

( )( )
( ) ( )

2
1 2 3 1

2 1
1 1 2 2 3 1

...

...

i i

i i i i N
i i N

i i i i i i N
i i i N i

u w

a b x x x x

a b x b x b x

α

β β β β

β β β β β β

+

+
+

=

= + + + + +

= + + + + + +

  (7.21) 

 

where i jβ  are the unknown displacement function coefficients. Clearly, if 

u is prescribed to a given value, there is a non-unique solution for the 
unknown coefficients. To avoid this, it is necessary to remove those terms 
with odd exponents: 

 

( )( )2 4
1 3 5 1

2 3 1
1 1 3 3 1

...

...

i i i i N
i i N

i i i i i N
i i i i N i

u a b x x x x

a b x a x b x b x

β β β β

β β β β β

+

+
+

= + + + + +

= + + + + +
 (7.22) 

 

Therefore, at restrained nodes only, it is necessary to use modified 
displacement functions to avoid repeated monomials. The simplest and 
most practical approach is to use a zero-order displacement function at 
these restrained nodes, thereby ensuring linear independence of the system 
matrix. This also provides a convenient and straightforward technique for 
imposing essential boundary conditions (as described earlier). 

In order to investigate the conditioning of the stiffness matrix consider the 
problem of Figure 7-13: 

 

 

Figure 7-13. Two-element test 

 

The test consists of two three-node elements. Nodes 1 and 4 are fully 
restrained while a force of 1 is distributed to nodes 2 and 3. Young’s 
modulus is taken as 1000 while Poisson’s ratio is taken as 0.0. The 
displacement function is increased uniformly on all four nodes. 
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The aim is to investigate how the rank (the number of linearly independent 
rows or columns) of the stiffness matrix is affected. In order to do this, the 
rank of the original stiffness matrix K  and the constrained stiffness matrix 

CK  can be plotted against the order of displacement functions N . The 

number of linearly dependent rows (difference between the total degrees of 
freedom and the rank of CK ) are also plotted. 

Two cases are investigated: 

A. The displacement function is increased uniformly on all four nodes. 

B. The boundary nodes are prescribed with zero-order functions while 
the order of the displacement functions associated with the other 
two nodes is increased 
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Figure 7-14. Conditioning of two-element test for uniform enrichment (case 
A) and enrichment of non-prescribed boundaries only (case B) 

 

Figure 7-14 illustrates the rank of the original stiffness matrix K  and the 
constrained stiffness matrix CK  against the order of displacement functions 

N . In addition, the number of linearly dependent rows is also plotted in 

each case. 

In case A it appears that CK  is of higher rank than K , although it is still 

rank-deficient. In case B, CK  is again of higher rank than K  and the rank 

profiles of both matrices follow the profiles observed in case A for a 
reduced number of degrees of freedom. In case B, the constrained system 
has no deficiency up to 8N = , unlike case A in which only the constant 

strain situation ( )0N =  is not associated with linear dependence.  

Linear dependence and rank deficiency for this problem is resolved with the 
use of techniques that modify the order of displacement functions of the 
boundary only (see section 7.4 and 7.5), albeit for <N 8  (Figure 7-14) 

Consider again the two-element test of Figure 7-13. Two new cases are 
investigated: 
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i. the standard displacement functions of the complete domain are 
increased uniformly 

ii. the displacement functions of the complete domain are increased 
uniformly but the linear term is omitted 
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Figure 7-15. Conditioning of two-element test for uniform enrichment with 
standard and modified displacement functions 

 

 

Figure 7-16. Density of non-zero terms of the stiffness matrix for the 2nd-
order case of the test problem for the original matrix (left) and with the 
linear term omitted (right) 

 

For the first-order case, removal of linear monomials from the displacement 
functions reduces the polynomials to zero-order; therefore the problem 
essentially reduces to the traditional FEM constant-strain case with standard 
shape functions, which is not associated with rank deficiency. For the 
second-order case, removal of the linear monomials ensure the system of 
equations remain linearly independent. This could also have been achieved if 
the linear monomials were removed from only displacement functions 
associated with the prescribed boundary nodes. However, as expected, for 
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the third-order case, exclusion of the linear monomials does not solve the 
problem of linear dependence and rank deficiency. 

 

7.7 Concluding remarks 

Although the enrichment of NMM with higher-order shape functions can 
potentially improve the approximation, it can also potentially lead to 
insufficiently constrained boundaries and ill-conditioning issues. This 
chapter has shown that for higher-order NMM care must be given to apply 
loads and boundary conditions consistently.  In the case of boundary 
conditions, a number of strategies was presented and their performance was 
investigated. Perhaps the most straightforward approach is the use of zero-
order displacement functions for nodes on restrained boundaries.  

The issue of rank deficiency of the system matrix has also been investigated 
and it has been shown that this may be resolved with appropriately modified 
displacement functions for nodes on restrained boundaries. Once again, the 
simplest solution to this problem is the enforcement of boundary nodes 
with zero-order displacement functions. 
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8 Conclusions and future perspectives 

“The only thing I know is that I know nothing” 

Socrates 

8.1 Conclusions 

The computational description of quasi-brittle failure, characterised by 
material degradation, fracturing and potential interaction of fragmented 
parts, has presented significant challenges to the mechanics community over 
the past few decades. Efforts to resolve this behaviour numerically have 
been driven by increasing technological developments, social and 
economical constraints for safer and more complicated designs and 
consequently by increasing requirements for more accurate understanding 
of macro- and micro-structural processes. 

Finite element methods have been pushed to their limits in an attempt to 
resolve strain localisation and ultimately fracturing in a unified and objective 
manner, while discrete methods have been utilised by artificial connection 
of discrete bodies which are identified a priori to act as a continuum. 
Neither of these attempts comprises a diritta via for modelling the transition 
from continuum to discontinuum efficiently and this has led to the 
investigation of alternative techniques. 

Here, the Numerical Manifold Method was investigated as a potentially 
unifying framework for modelling continua and discontinua, alternative to 
industry-established techniques, such as FEM and DEM. One of the 
particularly interesting aspects of NMM is with respect to its potential for 
modelling efficiently the entire transition between continuum to 
discontinuum, in a continuum setting, without remeshing. 

The work investigated and uniquely extended NMM primarily with respect 
to the following characteristics: 

1. The approximation can be improved globally or locally, for any arbitrary 
level, without remeshing. This is achieved by hierarchically increasing 
the order of displacement polynomials which define the trial field. The 
process has been fully automated algorithmically for any arbitrary level 
of global and local enhancement. 

2. Discontinuities, such as cracks, can be introduced naturally into the 
numerical domain, in a discrete manner but in a continuum setting, 
without the need for remeshing, without a priori assumptions or the use 
of interface elements. This is achieved by exploiting the partition of 
unity property of NMM weight functions. 

3. Integration is undertaken explicitly, for any arbitrary level of local 
improvement of the approximation. This is achieved using simplex 
elements and simplex integration. The integration process has been 
implemented, coupled and fully automated algorithmically for any 
arbitrary level of global or local enrichment of the approximation. 

4. Essential boundary conditions are enforced in an elegant manner using 
projection matrices as an alternative to the Lagrange multiplier method 
or penalty method. The technique avoids problems such as increasing 
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the dimensions of the system matrix, loss of the positive definite system 
or ill-conditioning of the stiffness matrix due to penalty terms. 

 

NMM was reformulated using a constrained variational approach for 
generalised three-dimensional problems and recast in a form familiar to 
traditional and extended finite element techniques. Potential issues 
associated with higher-order approximations, such as conditioning and the 
enforcement of essential boundary conditions and loads were investigated 
and potential treatments were proposed. Local higher-order enrichment was 
implemented within the context of a p-adaptive strategy driven by simple 
error indicators. 

Furthermore, throughout the manuscript parallels were identified between 
NMM and other related techniques (FEM, XFEM, FEM with hierarchical 
shape functions). Differences between NMM and traditional FEM, 
hierarchical FEM and extended finite element techniques are subtle, yet 
distinct and mutually preserving: the use of simplex elements, the use of 
simplex integration, the use of hierarchical displacement polynomials and 
the introduction of discontinuities via partition of unity concepts without 
special enrichments. 

For example, the ability to introduce discrete discontinuities without 
remeshing does not dilute the abilities to enhance the approximation to any 
arbitrary level without remeshing and undertake integration explicitly, for 
any arbitrary level of global or local enhancement. Similarly, the use of 
global or local hierarchical enhancement does not alter the ability to 
introduce discontinuities using the partition of unity, or to undertake 
integration analytically. 

In contrast, the similarities between NMM and the aforementioned 
techniques are so striking that it can be postulated that the modelling 
framework described here is in essence one in which FEM, hierarchical 
FEM and partition of unity concepts have been intertwined from the early 
stages of its conceptual birth. As a result, there are merits in investigating 
NMM as a framework for solving a more general class of problems than it 
has been originally intended. 

 

8.2 Future perspectives 

NMM indicates potential for use as an alternative modelling framework for 
the analysis of localisation and failure of a large class of materials and 
problems. However, in comparison to techniques such as FEM, XFEM and 
DEM, NMM is still at its infancy in terms of development, application and 
validation.  

There are five principal avenues for further research: 

1. Unification of the continuous-discontinuous and higher-order aspects 
of NMM. This has been postulated in this manuscript but it has not 
been demonstrated. 

2. Development of a strategy for explicit integration of element matrices 
for nonlinear constitutive behaviour. Although the explicit integration 
strategy presented here applies to the situation where discontinuities are 
introduced via partition of unity concepts, its generalised application 
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may be impeded when constitutive behaviour of the continuum is 
described by nonlinear relationships. 

3. Development of the discontinuous modelling approach described here 
to account for more realistic phenomena, such as crack branching and 
curved cracks. 

4. Implementation and validation of the three-dimensional extensions of 
higher-order NMM and discontinuous modelling methodologies 
presented in this manuscript. 

5. Further investigations in order to understand and resolve potential 
conditioning issues observed with the use of hierarchical higher-order 
shape functions and investigation of the effect of mesh regularity on 
convergence. 

 

Higher-order approximation, local enhancement strategies and simplex 
integration have all been developed with the idea of extending them to 
three-dimensional domains. Conceptually, the introduction of displacement 
discontinuities in three-dimensions is possible but there are a number of 
significant algorithmic difficulties that would need to be overcome. For 
example, tracking of discontinuities in three dimensions represents a 
significant geometrical challenge, although recent developments in the area 
of level sets [77] may be of use. 

In conjunction with other projects (HYDRO-DDA [45], MAECENAS 
[67]), in which the modelling of multi-phase flow in discrete cracks is an 
important consideration, it is recognised that the coupling of NMM with a 
separate mathematical flow description would represent a significant step 
forward. Furthermore, the modelling of coupled hygro-mechanical 
problems using a single mathematical mesh represents an alternative 
possibility, as long as the mesh in the vicinity of the fracture is sufficiently 
fine to capture the resulting localised flow to the required accuracy. 

Furthermore, the explicit integration strategy developed currently requires a 
constitutive law that is linear and as yet a methodology for extending this 
technique for nonlinear material behaviour such as plasticity or damage has 
still to be undertaken. 

It is worthwhile to note that there is strong potential to integrate aspects of 
the NMM framework described here, such as the modelling of 
discontinuities using partition of unity concepts, or the higher-order local 
enhancement using hierarchically increasing displacement polynomials, to 
FEM, XFEM or DDA. Similarly, the extensive amount of research 
undertaken with regard to modelling curved or branched cracks and tracking 
discontinuities in XFEM, or the detection of contact and enforcement of 
contact constraints in DDA may be potentially utilised for further 
developments of NMM. 

The developments in the Numerical Manifold Method presented here 
illustrate that the technique could provide a credible alternative modelling 
framework for analysts in both research and industry. For civil and 
structural engineers working with quasi-brittle materials this technique could 
provide the necessary tool for accurately predicting failure mechanisms and 
collapse loads. For the analysis of jointed material such as rock and 
masonry, the technique provides a natural modelling framework without the 
need for a complex mesh that explicitly represents discontinuities, and it 
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also offers the attractive capability to adapt the approximation locally and 
efficiently without altering the initial discretisation. 
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9 A. Integration 

This section illustrates the transformation and analytical derivation of the 

integral of a higher order monomial over the area of a simplex in 2
� . A 

similar approach can be followed to derive monomial simplex integrals in 
3
� , or potentially integrals of other functions. For additional information 
reference can be made to Chapter 5 and references 22 and 95. 

The classical integration problem in NMM is: 

 

1 2

g

n n

A
x y dxdy∫∫     (9.1) 

 

where 1 2n nx y  is a monomial of a general higher-order displacement 

function, x  and y  are spatial components and 1n  and 2n  are non-negative 

integers. 

 

 

Figure 9-1. Example transformation of a simplex in 2
�  from general to 

regular coordinates 

 

The analytical solution of a polynomial term for the case of regular triangles 
is [40, 95]: 
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where 0i , 1i  and 2i  are non-negative integers. 

Adopting 0 0i =  to eliminate the coefficient, the kernel of Equation (9.2) 

adopts the form of a typical higher-order monomial 1 2n nx y : 
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( )
1 2 1 2
1 2 1 2
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A

i i
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i i
=

+ +∫∫     (9.3) 

 

In order to compute Equation (9.3) for a simplex in a general coordinate 
system, it is necessary to undertake coordinate transformation. In the 
general coordinate system, coordinates x  and y  can be expressed as: 

 

0 0 1 1 2 2x x u x u x u= + +        (9.4) 

0 0 1 1 2 2y y u y u y u= + +        (9.5) 

 

where ( ) ( ) ( )0 0 1 1 2 2, , , , ,x y x y x y  are the coordinates of points (nodes) 1P , 

2P  and 3P  respectively in the general coordinate system. 

 

Inserting Equations (9.4) and (9.5) in (9.3) yields: 
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where J  is the Jacobian: 
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J
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− − 
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        (9.7) 

 

For simplicity, it can be assumed that ( ) ( )0 0, 0, 0x y = . In this case, using 

Equations (9.3) and (9.6), the following expansion can be obtained: 

 

( ) ( )
( )

− −

=

= + =
−

∑
1

11 1 1 1 1 1 1

1

1
1 1 2 2 1 2 1 2

1 1 10

!

! !

n
nn n k k n k k

k

n
x x u x u x x u u

k n k
    (9.8) 

 

Similarly: 
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Substituting Equations (9.8) and (9.9) in (9.6) yields the desired integral 
solution: 
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where: 

( )
( )

( ) ( )
( ) ( )

1 2
1 2 1 2

1 2

1 2 1 2 1 2

1 2 1 1 2 2

! !
, , ,

2 !

! !

! ! ! !

n n
n n k k

n n

n n k k k k

k k n k n k

η = ×
+ +

+ − − +
×

− −

  (9.11) 

 

Chen and Ohnishi [22] have shown that integration using the procedure 
described here yields accurate results for high orders of 1n  and 2n , and this 

has been verified by the author. 
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10 B. Detection of discontinuities 

The following code implemented in MATLAB verifies whether two-
dimensional simplex elements are intersected by a specified discontinuity 
using the signed area of the triangle defined by two points of the 
discontinuity and a query point which can be the vertex of a simplex. If 
element intersection is detected, then the supports of that element can be 
duplicated. 

 

dx=1; dy=1; nnx=5; nny=4; % trial mesh 

dis=[2.6 0; 2.55 0.55; 2.4 1; 2.28 1.28; 2 1.7; 1.85 1.85; 1.7 2]; % coordinates 
of discontinuity 

x=0; y=0; k=0; yc=0; 

% Nodal coordinates stored in vectors x & y: standard nodes 

for i=1:nny 

    xc=0; 

    for j=1:nnx 

        k=k+1; 

        x(k)=xc; y(k)=yc; xc=xc+dx; 

    end 

    yc=yc+dy; 

end 

nnodes=k; 

% Element topology stored in array top 

k=1; top=[]; 

for i=1:nny-1 

    n1=nnx*(i-1)+1; n2=n1+1; n3=nnx*i+2; 

    for j=1:nnx-1 

        top(k,1:3)=[n1 n2 n3]; 

        k=k+1; 

        top(k,1:3)=[n1 n3 n3-1]; 

        k=k+1; 

        n1=n1+1; n2=n2+1; n3=n3+1; 

    end 
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end 

% Nodal dof stored in nod_dof 

nel=k-1; nod_dof=[]; 

for i=1:nnodes 

  nod_dof(i,:)=[i*2-1 i*2]; 

end 

% Element dof stored in edof 

edof=[]; 

for i=1:nel 

    edof(i,:)=[i nod_dof(top(i,1),:) nod_dof(top(i,2),:) nod_dof(top(i,3),:)]; 

end 

[d1,d2]=size(dis); 

elcrack=0; segcrack=0; SA=0; SA2=0; SA3=0; 

k=0; seg=0; 

tol=10.^-6; % tolerance 

% Loop elements 

for i=1:nel 

    % Element nodal coordinates 

    xxe(1)=x(top(i,1)); xxe(2)=x(top(i,2)); xxe(3)=x(top(i,3)); 
xxe(4)=x(top(i,1)); 

    yye(1)=y(top(i,1)); yye(2)=y(top(i,2)); yye(3)=y(top(i,3)); 
yye(4)=y(top(i,1)); 

    % Loop discontinuity points 

    for di=1:d1-1 

        seg=di; 

        x1=dis(di,1); y1=dis(di,2); 

        x2=dis(di+1,1); y2=dis(di+1,2); 

        % Loop element nodes and check their orientation with respect to 

        % the discontinuity geometry 

        % SignA values (for each node) are stored in 1x3 array SA 

        % SignA is twice the signed area of the triangle defined by (xx,yy); 

        % (x1,y1); (x2,y2); where (xx,yy) are the query point coordinates and 

        % (x1,y1); (x2,y2) the coordinates of the discontinuity 

        for j=1:3 
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            xx=x(top(i,j)); yy=y(top(i,j)); 

            SignA=(x1-xx)*(y2-yy)-(x2-xx)*(y1-yy); 

            SA(j)=SignA; 

            if SA(j)>=-tol & SA(j)<=tol 

                SA(j)=0; 

            end 

        end 

        % Check if the discontinuity projection passes through the element 

        % numbers of intersected elements are stored in vector 'elcrack' 

        % ‘Crack’ segments passing through the corresponding elements of 

        % 'elcrack' are stored in 'segcrack' 

        if elcrack(1,:)~=i 

            % the above line simply ensures that the element has not 

            % already been classified as cracked 

            if sign(SA(1))==sign(SA(2)) 

                if sign(SA(2))==sign(SA(3)) 

                elseif sign(SA(2))~=sign(SA(3)) 

                    % Check if the discontinuity intesects the element 

                    for jj=1:3 

                        SignA=(xxe(jj)-x1)*(yye(jj+1)-y1)-(xxe(jj+1)-x1)*(yye(jj)-y1); 

                        SA2(jj)=SignA; 

                    end 

                    for jj=1:3 

                        SignA=(xxe(jj)-x2)*(yye(jj+1)-y2)-(xxe(jj+1)-x2)*(yye(jj)-y2); 

                        SA3(jj)=SignA; 

                    end 

                    % if sign(SA2)=sign(SA3) then there is no intersection 

                    % but if sign(SA2)~=sign(SA3) we also have to have 

                    % two terms of each of sign(SA2) & sign(SA3) equal 

                    % and there has to be at least one non-zero term in 

                    % each of sign(SA2), sign(SA3); this means that the 

                    % crack segment goes through two element edges. If 

                    % sign(SA2) is equal to sign(SA3) then the crack 
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                    % segment is parallel to one of the element edges 

                    % but without intersecting the element 

                    for jj=1:3 

                        if SA2(jj)>=-tol & SA2(jj)<=tol 

                            SA2(jj)=0; 

                        end 

                        if SA3(jj)>=-tol & SA3(jj)<=tol 

                            SA3(jj)=0; 

                        end 

                    end 

                    if isequal(sign(SA2), sign(SA3))==0 && nnz(SA2)~=3 && 
nnz(SA3)~=3 

                        aa=sign(SA2); bb=sign(SA3); 

                        posa=find(aa>0); posb=find(bb>0); 

                        nega=find(aa<0); negb=find(bb<0); 

                        zera=find(aa==0); zerb=find(bb==0); 

                         

                        if size(posa,2)==2 && size(posb,2)==2 

                            k=k+1; 

                            elcrack(k)=i; 

                            segcrack(k)=seg; 

                        elseif size(posa,2)==2 && size(negb,2)==2 

                            k=k+1; 

                            elcrack(k)=i; 

                            segcrack(k)=seg; 

                        elseif size(posa,2)==2 && size(zerb,2)==2 

                            k=k+1; 

                            elcrack(k)=i; 

                            segcrack(k)=seg; 

                        elseif size(nega,2)==2 && size(posb,2)==2 

                            k=k+1; 

                            elcrack(k)=i; 

                            segcrack(k)=seg; 
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                        elseif size(nega,2)==2 && size(negb,2)==2 

                            k=k+1; 

                            elcrack(k)=i; 

                            segcrack(k)=seg; 

                        elseif size(nega,2)==2 && size(zerb,2)==2 

                            k=k+1; 

                            elcrack(k)=i; 

                            segcrack(k)=seg; 

                        elseif size(zera,2)==2 && size(posb,2)==2 

                            k=k+1; 

                            elcrack(k)=i; 

                            segcrack(k)=seg; 

                        elseif size(zera,2)==2 && size(negb,2)==2 

                            k=k+1; 

                            elcrack(k)=i; 

                            segcrack(k)=seg; 

                        elseif size(zera,2)==2 && size(zerb,2)==2 

                            k=k+1; 

                            elcrack(k)=i; 

                            segcrack(k)=seg; 

                        end 

                    end 

                end 

            elseif sign(SA(1))~=sign(SA(2)) 

                for jj=1:3 

                    SignA=(xxe(jj)-x1)*(yye(jj+1)-y1)-(xxe(jj+1)-x1)*(yye(jj)-y1); 

                    SA2(jj)=SignA; 

                end 

                for jj=1:3 

                    SignA=(xxe(jj)-x2)*(yye(jj+1)-y2)-(xxe(jj+1)-x2)*(yye(jj)-y2); 

                    SA3(jj)=SignA; 

                end 

                for jj=1:3 
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                    if SA2(jj)>=-tol & SA2(jj)<=tol 

                        SA2(jj)=0; 

                    end 

                    if SA3(jj)>=-tol & SA3(jj)<=tol 

                        SA3(jj)=0; 

                    end 

                end 

                % if sign(SA2)=sign(SA3) then there is no 

                % intersection 

                if isequal(sign(SA2), sign(SA3))==0 && nnz(SA2)~=3 && 
nnz(SA3)~=3 

                    aa=sign(SA2); bb=sign(SA3); 

                    posa=find(aa>0); posb=find(bb>0); 

                    nega=find(aa<0); negb=find(bb<0); 

                    zera=find(aa==0); zerb=find(bb==0); 

                     

                    if size(posa,2)==2 && size(posb,2)==2 

                        k=k+1; 

                        elcrack(k)=i; 

                        segcrack(k)=seg; 

                    elseif size(posa,2)==2 && size(negb,2)==2 

                        k=k+1; 

                        elcrack(k)=i; 

                        segcrack(k)=seg; 

                    elseif size(posa,2)==2 && size(zerb,2)==2 

                        k=k+1; 

                        elcrack(k)=i; 

                        segcrack(k)=seg; 

                    elseif size(nega,2)==2 && size(posb,2)==2 

                        k=k+1; 

                        elcrack(k)=i; 

                        segcrack(k)=seg; 

                    elseif size(nega,2)==2 && size(negb,2)==2 
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                        k=k+1; 

                        elcrack(k)=i; 

                        segcrack(k)=seg; 

                    elseif size(nega,2)==2 && size(zerb,2)==2 

                        k=k+1; 

                        elcrack(k)=i; 

                        segcrack(k)=seg; 

                    elseif size(zera,2)==2 && size(posb,2)==2 

                        k=k+1; 

                        elcrack(k)=i; 

                        segcrack(k)=seg; 

                    elseif size(zera,2)==2 && size(negb,2)==2 

                        k=k+1; 

                        elcrack(k)=i; 

                        segcrack(k)=seg; 

                    elseif size(zera,2)==2 && size(zerb,2)==2 

                        k=k+1; 

                        elcrack(k)=i; 

                        segcrack(k)=seg; 

                    end 

                end 

            end 

        end 

    end 

end 
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11 C. Nonlinear solution procedure for 
discontinuous fracturing 

This section provides an algorithmic account of the nonlinear solution 
procedure for cohesive crack problems using displacement control. The 
following is an example of a pseudo-code that can be implemented in 
MATLAB. 

 

- Resolve which elements are intersected by the discontinuity 

kappa=zeros(1,nel); kappa_t=kappa; % ‘nel’ is the total number of elements 

- Apply displacement control 

        % loop over all elements 

        for i=1:nel 

            - if the element is intersected by the discontinuity: 

                - calculate stress and strain vectors 

                - determine coordinates of displacement discontinuity 

                - define matrix ‘C’ for transforming local to global 

                - define displacement jump ‘u_jump’ at centre of discontinuity in 

the global coordinate system 

               - Transform displacement jump ‘u_jump’ at centre of discontinuity 

in the local coord system 

                if abs(u_jump(1))>kappa_t(i); kappa(i)=u_jump(1); end 

                if the element contains the crack tip: 

                    t=zeros(2,1); d=0; 

                else 

                    t(1,1)=ft*exp(-ft/Gf*kappa(i));  t(2,1)=0; t=C*t; 

                    d=- ft^2/Gf*exp(-ft/Gf*kappa(i)); 

                   % Gf is the fracture energy release rate, whereas ft is the tensile 

    % strength 

                end 

               - Calculate traction matrix in local and global coord system 

           - Calculate traction stiffness matrix 

                - Calculate tangent stiffness matrix 
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  - Assemble element contributions to the system 

            elseif: if the element is not intersected by the discontinuity 

  - Assemble element contributions to the system 

           end 

        end 

      Solve 

      - Determine elements in vicinity of cracktip 

      - Calculate stress ahead of crack tip 

      - Resolve which elements are intersected by the discontinuity 

  - Modify new nodes for crack tip 

      - Modify elements for fracture 

      - Update displacement degrees of freedom 

 - Repeat 
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12 D. Sub-matrix method 

This section describes the sub-matrix method for computing the stiffness 
matrix of general higher-order systems. The approach is based on the work 
of Lu [65] but it is extended for three-dimensions and problems in which 
nodal displacement functions are not necessarily of the same order. 

Consider the strain vector for a general solid element with n  number of 
nodes: 

( )

1

2
1 2= = n

n
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          (12.1) 

 

where iB  is a sub-matrix of the strain interpolation matrix B  with 

dimensions ( )1ir p N× + , for r  strain components. B  is defined as 

(section 3.6): 
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Therefore, for the three-dimensional case the strain interpolation sub-matrix 
can be expressed as: 
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From (12.3) it can be observed that: 

 

[ ]1 2i i i im=B B B B�      (12.4) 

 

where m  is the number of polynomial terms of the displacement functions 
(section 3.4), and  any term ikB , 1...k m= , is of the general form: 
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where 1 2 3, , 0... in n n N= . 

 

Using the definition of the weight function (section 3.3), the general term 
31 2

1 2 3
nn n

iw x x x  can be expanded as following: 
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And similarly: 
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The discretised system can be expressed in a general form as: 
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with: 

 

, 1 2 3
T T

ij kl ij kl
e

dx dx dx= ∫K B EB         (12.11) 

 

where j corresponds to the thj  degree of freedom of node i , whereas l  

corresponds to the thl degree of freedom of node k . From equations (12.7), 
(12.8) and (12.9), it can be observed that it is possible to derive explicit 
expressions of the stiffness sub-matrices ,ij klK . Therefore, ,ij klK  can be 

alternatively expressed as: 
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All terms , 1 2 3ij kl
e
k dx dx dx∫  of Equation (12.12) are typically derived 

explicitly and hard-coded. Integration can be undertaken analytically using 
the simplex integration strategy discussed in section 6.3. The derivation of 
the terms of Equation (12.12) is laborious to present here. Indicatively, for 

the two-dimensional case each term , 1 2 3ij kl
e
k dx dx dx∫  is the sum of sixteen 

integrated terms. 

The global stiffness matrix can be assembled using an algorithm similar to 
the following: 
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for element=1:(to total number of elements) 

 for i=1:(number of element covers) % cover i loop 

  for mi=1:(number of polynomial terms of cover i) 

   for j=1:(number of element covers) % cover j loop 

    for nj=1:(number of polynomial terms of cover j) 

     evaluate ,ij klK  

     add ,ij klK  in K  

    end 

   end 

  end 

 end 

end 

 

Figure 12-1. Element-by-element assembly of the global stiffness matrix 

from sub-matrices 
,ij kl

K . 

 

It can be shown that the location of sub-matrix ,ij klK  in the global stiffness 

matrix is: 

 

( )( )2 1 1iRow i m j= − + −      (12.13) 

( )( )2 1 1kColumn k m l= − + −       (12.14) 

 

where im  and km  are the numbers of polynomial terms of the displacement 

functions associated with nodes i  and k  respectively (see section 3.4). 

Equations (12.13) and (12.14) are valid provided that all displacement 
functions are of the same order, i.e. 1 2 ... nN N N= = . If this is not the case, 

then an iterative approach is required to determine the location of each sub-
matrix in the global system. This has been illustrated in section 4.7. 
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13 E. Multi-dimensional matrix method 

Chapter 4 advocated that the terms of sub-matrices iB  can be stored in 

multi-dimensional arrays iB , which can then be used to compute the 

stiffness matrix without explicitly deriving any of its parts. Each matrix iB  

has dimensions ( ) ( ) ( ) ( )1 1 1 1i i i ir p N N N N× + × + × + × + , where r  is 

the number of strain components considered, and the position of each term 

of iB  determines the exponents of x . 

The first two dimensions of iB  correspond to the location of terms of iB  

whereas the third dimension of iB  corresponds to the exponents of 1x  

terms, the fourth dimension corresponds to the exponents of 2x  terms and 

so on. For example, for a two-dimensional problem ( 2p = ) with three 

strain components ( 3r = ), iB will be ( ) ( ) ( )3 2 1 1 1i i iN N N× + × + × + . 

As a further example, from Equations (12.3) and (12.7) given in Appendix 

D, term ( )1,1  of iB  in a three-dimensional case is: 
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Therefore, term 1ia n  can be stored in location ( )1 2 31,1, 1, ,n n n− of iB , 

whereas term ( )1 1ib n +  can be stored in location ( )1 2 31,1, , ,n n n  and so on.  

Thus, the element stiffness sub-matrix ijK  associated with nodes i  and j  

can be generally expressed as: 
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The term ( )1 2 1 2 1 22 2 2
1 2 3, ,q q r r s sS x x x+ − + − + −  in equation (13.2) is the explicit 

integral of a general polyhedral (simplex) volume as given in Chapter 6. 
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In order to further illustrate the concept consider a one-dimensional 
( 1p = ), two-node ( 2n = ) axial bar element defined by nodes i  and j , 

with first-order displacement functions ( 1i jN N= = ). Due to the one-

dimensional nature of the problem, the weight function simplifies to: 

 

i i iw a b x= +          (13.3) 

 

Therefore, the strain interpolation sub-matrix iB  is: 
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The multi-dimensional sub-matrix iB  has dimensions 1 2 2× ×  and is 

defined as: 
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B
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    (13.5) 

 

( 1,:,1)iB  represents those coefficients of iB  that are multiplied with 0x , 

whereas (1,: , 2)iB  represents those coefficients of iB  that are multiplied by 
1x . 

The product of coefficient sub-matrices is an operation unavailable in 
programming libraries. An algorithmical approach for deriving such multi-
dimensional products is discussed in the following section. 

 



 

 

   
 

186 

14 F. Convolution of multi-dimensional 
coefficient arrays  

In order to compute the stiffness sub-matrices e
ijK  in the multi-dimensional 

matrix approach (Appendix E), it is necessary to multiply multi-dimensional 
coefficient arrays of strain interpolation sub-matrices. This section reviews 
the logic behind the implementation of this operation. 

In order to multiply the coefficient arrays of Equation (13.2), consider the 
following problem: 

 

⋅ =A B C       (14.1) 

 

where A , B  and C  are n-order multi-dimensional arrays. In order to 
simplify the problem, let us assume that we have fourth-order arrays as it 
would be the case for a two-dimensional problem. 

As discussed above, ( )1 2, , ,i j m mC  will be assembled from coefficients 

which are multiplied by 1 2
1 2
m mx x monomials in arrays A and B , which are 

strain interpolation coefficient arrays. 

Therefore, ( )1 2, , ,i j m mC  can be computed by summing ( )1 2, , ,i j n nA  

and ( )3 4, , ,i j n nΒ for all 1 2 3 4, , ,n n n n , where 1 2 3 4, , ,n n n n  are such that: 

 

3 41 2 1 2
1 2 1 2 1 2

n nn n m mx x x x x x⋅ =     (14.2) 

 

This means that the individual elements of the product of arrays A  and B  
can be computed from: 

 

( ) ( ) ( )1 2 1 2 3 4:, :, , :, :, , :, :, ,m m n n n n= ⋅∑C A B   (14.3) 

 

for all 1 2 3 4, , ,n n n n for which: 

1 2 3 4 1 2n n n n m m+ + + = +       (14.4) 

 

Similarly, for the three-dimensional case with fourth-order coefficient arrays 
it is required that: 
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( ) ( ) ( )1 2 3 1 2 3 4 5 6:, :, , , :, :, , , :, :, , ,m m m n n n n n n= ⋅∑C A B      (14.5) 

 

for all 1 2 3 4 5 6, , , , ,n n n n n n for which: 

 

1 2 3 4 5 6 1 2 3n n n n n n m m m+ + + + + = + +       (14.6) 

 

It is worthwhile to note that all m  and n  are integers. Furthermore, 
commutativity and associativity apply. 

 

To illustrate the derivation of the product of two-dimensional coefficient 

arrays, the first three terms ( ):, :, 0, 0 , ( ):, :,1, 0  and ( ):, :, 2, 0  of a fourth-

order coefficient array C  can be computed from: 

 

( ) ( ) ( ):, :, 0,0 :, :, 0,0 :, :, 0,0= ⋅C A B    (14.7) 

( ) ( ) ( )

( ) ( )

:, :,1,0 :, :, 0,0 :, :,1,0

:, :,1,0 :, :, 0,0

= ⋅

+ ⋅

C A B

A B
   (14.8) 

( ) ( ) ( )

( ) ( )

( ) ( )

:, :, 2,0 :, :, 0,0 :, :, 2,0

:, :, 2,0 :, :, 0,0

:, :,1,0 :, :,1,0

= ⋅

+ ⋅

+ ⋅

C A B

A B

A B

   (14.9) 

 

Element stiffness sub-assemblies ijK  can be used to construct and operate 

on the global stiffness matrix, or alternatively on element assemblies eK . 
The global and element stiffness matrices can be assembled using 
procedures similar to the sub-matrix approach. Alternatively, the product of 

TB EB  can be stored in multi-dimensional arrays using the approach of 

Figure 14-1. eK can be assembled using the approach illustrated by the 
algorithm of Figure 14-2. 

 

 

% Compute ( )TB E B and store result in multi-dimensional array KS 

% ( )TB E is stored in matrix BTE 

for an1=0:N 

 for an2=0:N 

  for bn1=0:N 
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   for bn2=0:N 

    TKT(1:6*m,1:3)=BTE(1:6*m,1:3,an1,an2); 

    TBT=B(1:3,1:6*m,bn1,bn2); 

    KS(1:6*m,1:6*m,an1+bn1,an2+bn2) 

=TKT*TBT; 

   end 

  end 

 end 

end 

 

Figure 14-1. Two-dimensional convolution of multi-dimensional arrays 
TB E  and B  

 

 

% Assemble the element stiffness matrix by adding all terms (:,:,n1,n2) of  
% KS 

for i=1:6*m 

 for j=1:6*m 

  for n1=0:2*N 

   for n2=0:2*N 

    KE(i,j)=KE(i,j)+KS(i,j,n1,n2); 

   end 

  end 

 end 

end 

 

Figure 14-2. Assembly of two-dimensional element stiffness matrix using a 
multi-dimensional matrix approach 

 



 

 

   
 

189 

15 Published papers 

The following papers were published and presented as part of this research 
(given in chronological order): 
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Swansea University, Wales 

2. Kourepinis, D., Bićanić, N, Pearce, C. J., 2003, A Higher-Order 
Numerical Manifold Method Simplex Integration Strategy. In Proceedings 
of the 11th National Conference of the British Association for Computational 
Mechanics in Engineering (ACME), University of Strathclyde, Scotland 

3. Kourepinis, D., Bićanić, N., and Pearce, C. J., 2003. A Higher-Order 
Variational Numerical Manifold Method Formulation and Simplex 
Integration strategy. 145-152. SINTEF. The 6th International Conference on 
Analysis of Discontinuous Deformation. Lu, M. 

4. Kourepinis, D., Bićanić, N., Pearce, C. J., 2004. The Numerical 
Manifold Method for Modelling Fracturing in Quasi-Brittle Materials. 
In Proceedings of the 12th National Conference of the Association of Computational 
Methods in Engineering (ACME), Cardiff University 

5. Bićanić, N., Pearce, C. J., Davie, C., Kourepinis, D., 2005. Some 
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