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ABSTRACT 

 

This thesis has presented experimental and finite element (FE) analyses of the 

static and ultrasonic forming of two metals; aluminium 1050 and magnesium 

AM50. Aluminium and magnesium are considered to be soft metals and can be 

easily shaped by any of the main industrial metalworking processes. Frequently 

aluminium and magnesium have been the subject of research studies. These two 

metals most commonly chosen in manufacturing industry because of their cost, 

mechanical properties and flexibility in processing. In this research, simple 

compression and forming tests were designed and the effects of superimposed 

ultrasonic excitation on workpiece and die, which is tuned to a longitudinal 

mode at 20.8 kHz, were studied via stress-strain measurements. Research 

through experiments and finite element simulations studies in the application of 

ultrasonic excitation has been carried out to gain quantitative understanding of 

the mechanisms of improvement in ultrasonic forming characteristics, such as a 

reduction in material flow stress and oscillatory stress. This research study has 

shown these mechanisms by applying ultrasonic vibration to the tool and die in 

the forming test and, similarly, effects were measured and predicted in the 

experimental and numerical analysis. 

The development and application of high power ultrasonic techniques in forming 

processes required the use of specifically designed ultrasonic components to 

correctly transmit the energy from the transducer to the workpiece and die 

interface. The application along with the ultrasonic vibration amplitude required 

for the process, were considered in order to design the most suitable horn 

profile. In this study, a 20 kHz transducer was used to provide up to 10 µm of 

peak-to-peak vibration amplitude, depending on the generator setting. 

Therefore, the booster and horn were designed to provide a range of ultrasonic 

vibration amplitudes between 5 to 20 µm and also used as a tool and die in the 

study of ultrasonic metal forming. The horn was designed using finite element 

modelling (FEM), and modal frequencies and associated mode shapes were 

subsequently confirmed using experimental modal analysis (EMA). The ultrasonic 

system has been measured and calculated as having a longitudinal mode of 

vibration at 20.8 kHz and to provide an amplitude gain of four. In this study, a 
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generator uses mains electricity to generate a high frequency ultrasonic signal to 

drive the transducer, which is tuned to a specific frequency of 20 kHz. The 

booster and horn were designed to meet the criteria of transducer, which is to 

provide a longitudinal vibration at tuned frequency of 20 kHz. However, the 

profile of booster and horn have been measured and calculated as having a 

longitudinal mode of vibration at 20.8 kHz, which is considered close to the 

transducer tuned frequency. 

The review of previous studies of superimposed ultrasonic excitation on 

upsetting showed that the most experimental characterisations of the volume 

effects mainly depended on an interpretation of measurements of the mean flow 

stress, and have neglected the oscillatory stress. In this study, the 

characteristics of oscillatory stress and the material behaviour in plastic 

deformation when superimposed ultrasonic excitation is applied on a static 

compression test under dry friction were considered. The effects on material 

properties of superimposed ultrasonic excitation on compression tests were 

illustrated in the stress-strain curve in Figure A-1. The effects were explained in 

terms of flow stress reduction, oscillatory stress, mean flow stress, maximum 

and minimum path of oscillatory stress in the stress-strain diagram. In Figure A1, 

the mechanism of flow stress reduction is related to acoustic softening, friction 

reduction and stress superposition which are labelled as (i) and (ii). The results 

showed that the static flow stress of compressive deformation was lowered by 

the ultrasonic vibration superimposed on the static load and this phenomenon 

has been referred to as the material softening mechanism which is influenced by 

volume and surface effects. The volume effect is defined as a reduction in flow 

stress of the material being formed and the surface effect is defined as a 

reduction in frictional conditions at the interface between the vibrating device 

and the workpiece. Finite element models were used to investigate numerically 

the volume and surface effects during ultrasonically assisted compression. The 

finite element models were developed using material model parameters which 

were identified from the experimental analysis. The influence of volume and 

surface effects were investigated separately in the FE model and it was shown 

that the volume effect dominated the effective material softening results during 

ultrasonic excitation. 
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Figure A-1 The effects of material properties behaviour during experimental of 

superimposed ultrasonic excitation on compression test 

 
 

The application of ultrasonic excitation on metals under plastic deformation 

conditions has been investigated previously. Most researchers have reported that 

superimposing ultrasonic excitation on metal working processes reduced the 

material flow stress. A further study of superimposed ultrasonic excitation on a 

static load during elastic deformation in metal working was not investigated, so 

it is not possible to determine the effect of ultrasonic excitation on the 

material. In this study, the investigation of oscillatory stress behaviour in the 

ultrasonic compression test of cylinder metal specimens during elastic 

deformation was carried out. In the stress-strain diagram, the ultrasonic 

vibration was shown to have lowered the static flow stress during elastic 

deformation under dry contact conditions and it was found that the reduction in 

static flow stress linearly increased with ultrasonic vibration amplitude. The 

stress reduction was influenced by volume and surface effects which occurred 

during the superimposed ultrasonic excitation. The results also showed that the 

maximum path of oscillatory stress exceeded the static flow stress, however, the 

mean flow stress is lower than the static flow stress at the onset of ultrasonic 
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excitation. To investigate the influence that volume and surface effects have on 

material softening during experimental compression tests, a series of FE models 

were developed. As mentioned previously, the FE models were developed using 

material model parameters which were identified from the experimental 

analysis in Figure A1, however, the mechanism of flow stress reduction which is 

related to acoustic softening and friction reduction which is labelled as (i) 

cannot be predicted in FE models. The FE models adopted the material softening 

effects in order to simulate realistic stress reduction compared with 

experimental results. The significant stress reduction in the FE analysis was 

obtained by adjusting the yield stress and contact conditions parameter. It was 

concluded that the surface effect dominated the stress reduction during metal 

upsetting test in elastic deformation. 

The study continued to a simple forming test where samples of flat sheet metal 

were forced into a shaped die by a shaped plunger on a test machine. The 

results of this study illustrated how ultrasonically assisted metal forming 

resulted in a lowering of the static forming force during ultrasonic excitation of 

the die. As a result, the static forming force was seen to be reduced by 

ultrasonic excitation of the die and the path of the maximum oscillatory force 

was observed to be parallel to or below the path of the static forming force. 

Force reduction was measured in these experiments using a high power 

ultrasonic transducer and also by tuning the die and then the punch during the 

metal forming test. It was found that a good coupling between punch, specimen 

and die allowed ultrasonic energy to be effectively transferred into the 

materials during superimposed ultrasonic excitation in the static forming test. 

This thesis has concluded that evaluation of the benefits of ultrasonic excitation 

not only relied on measurements of the mean flow stress alone but also on 

measurement of the oscillatory stress during superimposed ultrasonic excitation 

on forming tests. Findings on the effectiveness of ultrasonic excitation led the 

study to recognize that the lack of understanding of the effects of ultrasonic 

excitation on the forming process has resulted in difficulties in maximising the 

benefits and applications of this technology. 
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CHAPTER 1 

INTRODUCTION 

 

Ultrasonic metal forming involves the use of ultrasonic vibration in tools and 

dies. Simple ultrasonic metal forming tests are performed where samples of 

metal are placed between shaped tools and dies on a test machine. The tool and 

die are a part of a tuned ultrasonic system, and so ultrasonic excitation can be 

applied during the tests. The ultrasonic excitation system is shown in Fig. 1.1, 

below, and consists of a bolted Langevin piezoelectric transducer, a booster, 

and an ultrasonic horn, all tuned to their first longitudinal mode of vibration at 

20.8 kHz. The forming tool and die in this study consist of the output end of the 

ultrasonic horn. 

 
Figure 1-1 A tuned ultrasonic excitation system 
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This thesis presents experimental and finite element (FE) analyses of the static 

and ultrasonic forming of two metals namely aluminium and magnesium. In this 

research, simple compression and forming tests were designed and the effects of 

superimposing ultrasonic vibrations on the die, which is tuned to a longitudinal 

mode at 20.8 kHz, were studied via stress-strain and force-displacement 

measurements. Research through experiments and finite element simulations 

has been carried out to gain quantitative understanding of the mechanisms of 

improvement in ultrasonic forming characteristics such as a reduction in 

material flow stress, material forming force, oscillatory stress and oscillatory 

force. 

When ultrasonic vibrations are superimposed on a metal forming on a metal 

forming process, many measurements have shown that metal specimens exhibit 

significant temporary material softening. This beneficial affect can be attributed 

to two main mechanisms such as volume effect and surface effect. Initially, it 

was proposed that the ultrasonic vibration preferentially absorbed at dislocation 

sites, enabling to proceed with reduction in forming forces, but there is little 

direct measurement evidence to support the claim. Later, it was suggested that 

the volume effect deals with the influence of oscillatory stress mechanism which 

is involved with very much reduced forces and the surface effect deals with the 

changed in the interface friction that involved a contact surface between the 

die and the specimen such a way as to reduce the forming force. In the last 50 

years, a clear explanation of material softening mechanism during superimposed 

ultrasonic excitation has not been achieved, however a clear understanding from 

measurements is that the ultrasonic excitation results in the material softening 

even for low ultrasonic intensities, the softening effect is instantaneous, 

temperature and frequency have a negligible effect, no permanent change in 

material properties is detected for ultrasonic intensities lower than threshold 

value but resulted the permanent changes at high vibration amplitudes. Most 

recently, a study of significant effect during superimposed ultrasonic excitation 

on traditional forming process has growth up. An unclear explanations on the 

effects of high frequency vibration include stress superposition, acoustic 

softening and friction reduction due to the relative motion at the interface 

makes them difficult to understand. The explanation that was claimed from the 
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previous work have received doubt from the academic and industrial community 

due to lack of experimental and theoretical evidence. 

In traditional method of metal-working process, vibration has been applied in 

various processes which include upsetting, wire drawing, tube drawing, 

extrusion, tensile, cutting and drilling. It is used in a wide range of applications 

that has historically been divided into two categories; low and high power 

applications. Low power applications are generated at low power intensities 

ranging from 0.1 to 0.5 W/cm2 and the field of high power ultrasonic has been 

characterized between 20 kHz and 100 kHz and required at high power 

intensities ranging from 100 W to 10 kW. Previously, most ultrasonic applications 

were operated at frequencies from 15 to 80 kHz and 20 kHz is the most 

oscillation frequency of ultrasonic vibration was used during ultrasonic metal-

forming. Pure aluminium and aluminium alloy are the most metal have been 

used in previous work as a specimen. The other commercial materials such as 

steel, copper, titanium and super alloy also have been chosen as specimen to 

study the beneficial effects of high-frequency vibration on the metals. 

 

1.1 Research aims 

 

The aim of this study is to investigate the characteristics of material softening 

during the application of ultrasonic excitation in the metal forming processes. 

Most the investigations in this study are carried out through experiments and 

finite element simulation methods, by applying ultrasonic oscillations to the tool 

and die in a compression test and to single sheet forming metals. 

The investigation begins with the design and construction of a high gain 

ultrasonic excitation system that includes a Langevin piezoelectric transducer, 

an ultrasonic booster and a horn, which are all tuned to the first longitudinal 

mode of vibration at 20.8 kHz. All the ultrasonic components are connected 

together with rigs that can be fixed to the test machine. 
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The second part of the analysis aims to characterise the effects of flow stress 

and  oscillatory stress on material behaviour in plastic deformation when 

ultrasonic excitation is superimposed on a static compression test under dry 

friction. Data resulting from the ultrasonic response can provide material flow 

characteristics in terms of stress-strain diagrams and oscillatory stress 

behaviour. The results of experimental analysis are used to define the material 

parameters for the FE models. In association with this, a series of finite element 

models is developed to examine the effects of changes in material flow stress 

parameters and coefficients of friction in simulated metal compression tests. A 

comparison of the stress-strain diagrams obtained from the experimental and 

numerical analyses is then conducted. 

The third part of the study investigates the oscillatory response, in an ultrasonic 

compression test, of cylindrical metal specimens during elastic deformation by 

examining the maximum and mean flow of oscillatory stress. Finite element 

models are developed to investigate the effects of ultrasonic excitation during 

compression tests and to allow changes to the interfacial boundary conditions 

and material flow stress parameters. This part also investigates the effect of 

ultrasonic excitation on static compression loads in terms of the material 

softening mechanism during elastic deformation. 

The fourth part of the research aims to study a simple forming test, where a flat 

sheet sample of metal is forced into shaped die by a shaped tool on a test 

machine. The result of this study can explain how ultrasonically assisted metal 

forming can result in a lowering of the mean forming force during ultrasonic 

excitation of the die. The investigation is continued to study the characteristics 

of oscillatory force during the ultrasonic forming. The objectives of this study 

are to experimentally measure the mean forming force and oscillatory force 

during superimposed ultrasonic excitation on metal forming process. Ultrasonic 

excitation during metal forming on a single sheet of materials is carried out. 
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1.2 Early history of sonic and ultrasonic applications 

 

'Sonics' suggests a mechanical wave or an oscillation of pressure transmitted 

through a solid, liquid, or gas, composed of frequencies within the range of 

human hearing [1]. Sound wave propagation with the frequencies beyond the 

limit of human hearing is referred to as 'ultrasonic'. The history of ultrasonic 

wave propagation owes its origin to Paul Langevin, who in 1917 transmitted 

sound waves in sea water [2]. Langevin's work depended on another discovery, 

by Pierre and Jacques Curie, of the piezoelectric effect. They discovered that 

when a stress is applied to crystalline material, such as quartz, an electric 

charge is produced. They also found that, conversely, an electric charge applied 

to the material produces a change in the material's dimensions. Hence, an 

alternating voltage applied to the crystal can produce vibrations that generate 

sound waves in a surrounding medium. This system is known as piezoelectric 

transducer. The earliest form of an ultrasonic transducer was a whistle 

developed by Francis Galton in 1883 to investigate the threshold frequency of 

human hearing [3]. He produced a gas-driven transducer that generated sound of 

known frequencies and was able to determine that the normal limit of human 

hearing was around 18 kHz to 20 kHz. 

Sound is transmitted through a medium by vibration of the molecules through 

which the wave is travelling. Sound wave propagation can be categorised into  

three types; audio, low and high ultrasonic and diagnostic ultrasound. The audio 

range falls between 16 Hz and 20 kHz, and this range is important because its 

frequencies can be detected by the human ear. The useful ultrasound range 

refers to the frequencies between 20 kHz and 2 MHz, for both low power and 

high power ultrasonics. This range is used in a wide range of applications such as 

manufacturing, sonochemistry and medicine [4-8]. Diagnostic ultrasound 

frequencies of 2 MHz to 10 MHz are mostly used in medical applications such as 

ultrasonography and elastography. One of the chief medical applications is 

obstetric sonography, which is commonly used during foetal examinations. 

Low and high ultrasonics have been used to solve problems in such diverse areas 

as engineering, physics, chemistry, medicine, microscopy, underwater, ranging 
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and navigation. The first application of the ultrasonic frequencies was in the 

sonar detection of submarines during World War I [9]. Wood and Loomis 

established techniques for generating high acoustic powers to study the effects 

of high intensity sound [10]. The first practical application of ultrasound, outside 

sonar, was an ultrasonic flaw detection system which used the Wood and Loomis 

techniques [11, 12]. Later, during World War II, ultrasonic vibrations were 

applied in timing devices, anti-jamming devices, and moving target detecting 

systems which focus attention on the appearance of moving targets [13]. 

At the end of World War II considerable expertise had been developed in sending 

and receiving high frequency ultrasonic pulses to investigate many physical 

problems such as oscillatory magnetoacoustic phenomena in metals and the 

effect of dislocations and impurities on sound wave propagation and relaxation 

processes in gases, liquids and solids [14]. During post-war years, the 

introduction of the piezoelectric ceramics occurred, replacing quartz as a 

piezoelectric material. New applications in measurement and control were found 

in medicine, cleaning and machining. 

 

1.3 Development of power ultrasonics 

 

Following the Wood and Loomis work, the numbers and range of power 

ultrasonics studies increased steadily. At least 150 publications related to power 

ultrasonics can be identified in the period 1927 to 1939 [15]. The main studies 

covered emulsification and dispersion, the coagulating action, and chemical and 

biological effects. Investigations on power ultrasonic effects were carried out in 

gases, liquids, solids and living organisms. Between 1940 and 1955, major new 

development and research focused on transducer materials and ultrasonic 

generators [2]. Two important developments in high power ultrasonics also 

occurred, namely the production of the modern horn transducer and the concept 

of prestressed sandwich transducer [16, 17]. The horn transducer was described 

as a half wave-length rod to magnify the velocity of a resonant piezoelectric 

transducer, while the sandwich transducer was described as two different 
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materials bolted together in the transducer. In the sandwich transducer 

construction, a number of piezoelectric elements usually two or four are bolted 

between a pair of metal end masses. The piezo elements would be a pre-

polarized lead zirconate titanate composition which exhibit high activity coupled 

with both low loss and ageing characteristics and suited to form the basis of 

efficient and rugged transducer. 

Consider, the transducer is driven with an alternating voltage and the structure 

dimension changes in sympathy with the applied voltage at a tuned frequency 

corresponding to resonant length, however, the power handling capacity would 

be lower since the elements have poor thermal capacity and low tensile 

strength. Therefore, to reduce the inherent weaknesses a number of thin 

elements are clamped between two acoustically low loss metal end masses such 

as titanium or aluminium. The overall length of transducer would be designed to 

half-wave in order to obtain the required frequency of operation. Early 

implementations of power ultrasonic devices have included cleaning, plastic 

welding, metal welding, soldering and machining [18].  

 

1.3.1   Cleaning 

 

Ultrasonic cleaning is one of the oldest industrial application of power 

ultrasonics. The main advantage of ultrasonic cleaning is in brushless scrubbing 

due to the cavitations effect. Ultrasonic cleaning work best on relatively hard 

materials such as metals, glasses, ceramics and plastics, and cleaning equipment 

normally operates in the range of 20 kHz to 50 kHz. Cavitation occurs when high 

frequency alternating pressure in a liquid forms microscopic voids which grow to 

a certain size then collapse, causing very high instantaneous temperatures and 

pressures. This implosion of cavitational bubbles loosens dirt and grease stuck to 

the workpiece [19]. 
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1.3.2   Plastic welding 

 

Ultrasonic plastic welding works when high frequency vibration produces heat to 

melt the plastic precisely at the interface of the parts being joined without 

indiscriminate heating of the surrounding material [18]. The process is fast and 

clean, requires no consumables, does not need a skilled operator, and lends 

itself to automation. Compared to ultrasonic cleaning, ultrasonic plastic welding 

requires a much higher power intensity to hold vibrational amplitudes constant 

at varying mechanical loads. 

 

1.3.3   Metal welding 

 

The ultrasonic metal welding process was extensively researched in 1950 [20]. 

The advantages of ultrasonic metal welds are as low heating and relatively low 

distortion. The welding temperature is typically below the melting temperature 

of the metals, which helps to avoid brittleness and the formation of high 

resistance intermetallic compounds in dissimilar metal welds. The equipment for 

ultrasonic metal welding can be operated in ranges between 40 kHz and 60 kHz 

in machines of several kilowatts output capacity. 

 

1.3.4   Soldering 

 

Ultrasonic soldering is the oldest of the five major processes, the original work 

on these faster and more uniform soldering techniques being done as early as 

1936 [21]. The process is fundamentally similar to ultrasonic cleaning with 

cavitation in molten solder eroding surface oxides and exposing the metal. 

Ultrasonic soldering can be achieved without fluxes and improves wettability 
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under most conditions. Overall processing times with ultrasonic soldering can be 

improved because pre-cleaning and post-cleaning operations are eliminated. 

 

1.3.5   Machining 

 

The application of ultrasonic excitation to machining was discovered by Lewis 

Balamuth in 1942 while investigating the dispersion of solid in liquid by means of 

magnetostrictively vibrating nickel tube. Machining process provides high 

dimensional accuracy but this classic material removal process has some 

deficiencies. An introduction of ultrasonic technology to the machining process 

can be observed to reduce these problems. 

In ultrasonic machining, material is removed from a surface by fine abrasive 

grains in slurry. The tip of the tool, called a sonotrode, vibrates at a resonance 

frequency with low amplitude. This vibration provides a velocity to abrasive 

grains between the tool and the workpiece. The stress produced by the cyclic 

impact of abrasive particles on the workpiece surface is high and in brittle 

materials, such as ceramics and carbides, these impact stresses cause 

microchipping and erosion of the workpiece surface [22].  

In another machining process, called rotary ultrasonic machining, the abrasive 

slurry is replaced by a tool with metal bonded diamond abrasives which are 

either implanted or electroplated on the tool surface. The tool is vibrated 

ultrasonically and rotated while being pressed against the workpiece surface at a 

constant pressure. The process is similar to a face milling operation, with inserts 

being replaced by abrasives. Ultrasonic rotary machining substantially increases 

cutting rates, extends tool life, and due to the lower tool pressures, allows 

better dimensional control and reduces chipping [23]. 

 



Chapter 1  10 

1.4 Applications of power ultrasonics in current technology 

 

Power ultrasonics is currently used in a wide variety of science and engineering 

applications which require load reduction, decreased friction, surface 

improvement, safer techniques, cost effectivesness and increased product 

qualities. 

 

1.4.1   Ultrasonic in metalworking processes 

 

The study of ultrasonics in the areas of metal forming, metal removal and metal 

joining saw very little activity in the 1940 to 1955 period. However, in 1955 F. 

Blaha and B. Langenecker stated that an acoustic softening occurred in metals 

under ultrasonic action, leading to a reduction in static stress necessary for 

plastic deformation [24]. This work was followed by other studies and led to very 

extensive research on ultrasonic application on metal, as well as some industrial 

uses [5, 25-33]. The benefits of ultrasonic assisted forming typically included 

lower forming forces, larger percentage deformation without tearing, and 

improvements in surface finish. Much research has been published in 

metalworking processes such as machining [34, 35], forging and compression [36-

39], drawing and extrusion [30, 40-43], and welding [44]. All of these studies 

have shown the beneficial effects of oscillation on elastic-plastic deformation 

and friction at the contact surface. The studies were investigated in a wide 

variety of industrial metalworking operations in order to obtain an optimum 

manufacturing design for various commercial opportunities. A list of power 

ultrasonic applications in metalworking processes are summarised in Table 1-1. 
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Table 1-1 A variety list of power ultrasonic applications in metalworking processes 

Processes Applications Ultrasonic significant effects 

Machining 
Milling, turning, threading, 
electrolytic, spark erosion and 
abrasive machining 

Decrease in cutting forces, improvement 
in surface finish, increase in tool life, 
noise reduction and good machining on 
brittle materials 

Forging and 
Upsetting 

Hot and cold forging, with and 
without lubricant forging, open 
and closed forging 

Reduction in friction, force reduction, 
material softening, improvement in 
stress superposition 

Drawing and 
Extrusion 

Axial and radial 
Force reduction, improved surface 
finish, reduction in internal friction, 
higher drawing rates and less breakage 

Welding Plastic and metal 
Fast, clean, economical, low heat, no 
pre-cleaning and weld inaccessible areas 

 
 

1.4.2   Ultrasonics in medical applications 

 

The use of ultrasonics in medicine has several strands. Diagnostic ultrasound is 

now being used quite extensively for the examination of organs such as the 

brain, eyes, breast, and liver, as well as in obstetrics. Ultrasonic cleaning baths 

are available commercially for the cleaning of dental and surgical instruments, 

while the scaling of teeth can now also be done with a commercial device using 

an ultrasonic probe [45].  

Conventional bone cutting instruments such as burs, saw and chisels, offer 

limited accuracy and manoeuvrability to surgeons [46] and often result in tissue 

burning, formation of debris, and damage to adjacent tissue. An alternative 
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bone cutting device is the ultrasonic blade. In the last twenty years, 

improvements in transducer design and the development of more sophisticated 

electromechanical power control, has meant that interest in ultrasonic surgical 

devices has been strengthened [47].  

The use of ultrasonics as a tool in medical diagnosis and measurement first 

appeared after World War II. New applications of ultrasonics to medical 

procedures were raised in the late 1950's and continue to be developed. The 

most important area was imaging, where the technology of non-destructive 

testing  was adopted [48]. The use of ultrasound for surgical and dentistry 

procedures also appeared in this period. A list of some power ultrasonic 

applications in medical procedures is presented in Table 1-2. 

 

Table 1-2 A variety list of power ultrasonic applications in medical procedures 

Processes Applications Ultrasonic significant effects 

High intensity focused 
ultrasound (HIFU) [49] 

Treatment of cancers, tumours 
and fibroids 

High intensity heat 

Bone cutting [50] 
Orthopaedic devices, 
orthognathic surgery and 
osteotomy 

Elimination of swarf, improved 
cut quality and precision, 
reduced reaction force, clean 
and safe 

Ultrasonic cleaning 
[51] 

Dental scaling 
Cavitation and micro-
streaming 

Ultrasonic surgery [52] Soft tissue dissection 
Higher precision, tissue 
temperature rised and 
acoustic streaming 
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1.4.3   Ultrasonic in chemical and liquid applications 

 

The application of ultrasonics to liquid chemicals, sonochemistry, takes 

advantage of the cavitation bubbles produced by high frequency alternating 

pressure. The bubbles grow until they reach an unstable size before undergoing 

violent collapse, which produces both chemical and mechanical effects [31]. The 

cavitation effects depend on the type of system in which it is generated. These 

systems can be broadly divided into homogeneous liquid, heterogeneous 

solid/liquid and heterogeneous liquid/liquid system. The explanation of these 

systems' functions are shown in Fig. 1-2 to Fig. 1-4. 

 

 
                               (a)                                       (b) 

Figure 1-2 The cavitation of homogeneous liquid [53] where (a) the collapsing bubble hit to 
boundary layer and (b) surface cleaning after the hitting 
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Figure 1-3 The cavitation of heterogeneous solid/liquid [53] 

 

 

 

Figure 1-4 The cavitation of heterogeneous liquid/liquid [53] 
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Sonochemistry began in 1927 when Richards and Loomis observed the chemical 

effects of high frequency sound waves [54]. As the technology of ultrasonics 

developed it was soon realized that cavitation can produce useful effects. It is 

now well known that cavitation has considerable commercial importance in 

applications such as industrial cleaning, chemical processing and bio-chemical 

processes. A list of power ultrasonic applications in chemical and liquid 

processes is summarised in Table 1-3. 

 

Table 1-3 A variety list of power ultrasonic applications in chemical and liquid processes 

Processes Applications Ultrasonic significant effects 

Sonochemistry [4, 55] 
Material science, biotechnology 
and environmental protection 

Decrease in reaction time, 
improved yields, lower 
operating temperatures and 
pressures, increased 
selectivity, radical formation 
for reaction initiation and 
more effective catalysts  

Power ultrasound in 
food industry [56, 57] 

Particle size control, process 
tomography, determination of 
material properties, monitoring 
of shelf life and preservation 
enhancement 

Reduced impact on nutritional 
content, coupled with 
standard sterilization and 
pasteurization methods 

Ultrasonic cleaning 
bath and chemical 

etching and 
irradiation [6, 58]   

Reactor vessel, batch 
treatment and flow system 

Cavitation bubbles, acoustic 
energy, reduce processing 
time, induced extreme 
temperatures and pressures, 
thermal energy, chemical and 
mechanical energy 
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1.5 Summary of work 

 

The research reported in this thesis is based on understanding the benefits of 

applying ultrasonic excitation in the shaping of metal parts for manufacturing 

applications. Metal is chosen because of the engineering properties, and 

limitations that influence the choice of this material in many engineering 

applications. The two metals most commonly used in the manufacturing industry 

are steel and aluminium because of their cost, mechanical properties and 

flexibility in processing. 

Until the early 1950s, most manufacturing operations that involved metal 

processing were carried out using traditional machinery such as lathes, drills, 

milling machines and various pieces of equipment for forming, shaping and 

joining materials. However, nowadays such equipment can not provide the 

efficiency, productivity and quality needed for industrial manufacturing 

competitiveness. This demand has led engineers and investigators to develop 

new technologies to improve efficiency and flexibility in metal processing, one 

such technology is power ultrasonics. 

The early uses of power ultrasonics  largely focused on ultrasonic cleaning until, 

in the 1950s, the applications of ultrasonic vibration were studied by Blaha and 

Langenecker [24] who described the benefits of the effects of superimposed 

ultrasonic excitation in the metal forming process. Since then, a large number of 

investigations have reported that the principal effect of an ultrasonically 

assisted metal forming process is a reduction in static flow stress [4, 41, 59-67]. 

However, the findings have not been sufficient to explain the stress reduction 

mechanisms, which have resulted in difficulties in optimising the applications of 

this technology. In particular, no detailed characterisation of the effects of 

superimposing ultrasonic oscillations on stress during elastic-plastic deformation 

in a series of ultrasonic amplitude has been carried out, and previous findings 

have relied on interpretations of measurement of the mean flow stress and 

oscillatory stress on a single material and using ultrasonic vibration amplitude. 

This have been insufficient to resolve the effects of ultrasonic vibration. 
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Research through experiments and finite element simulation studies has been 

carried out to gain quantitative understanding of the mechanisms of 

improvement in ultrasonic forming characteristics, such as a reduction in 

material flow stress, coefficient of friction and oscillatory stress behaviour [59, 

66-69]. These studies have characterised the mechanisms by applying ultrasonic 

vibration to the tool and die in forming tests, and similar results have been 

predicted in numerical analyses. Research is now required further to 

characterise these behaviours and understand how they can be optimised for 

metal forming operations. To advance this field, this study will extend to finite 

element modelling to examine the characteristics of the oscillatory stress during 

the ultrasonic excitation. 

In this work, the ultrasonic energy is produced by a piezoelectric transducer, 

and the vibration energy is amplified by an ultrasonic booster and horn. The 

traditional methods for the design of an acoustic horn are based on the 

equilibrium of an infinitesimal element under elastic action forces, and 

integration over the horn length to attain resonance at a desired frequency [70-

72]. Accordingly, for practical applications, the tooling is designed for and 

vibrated at, or close to, the system resonance frequency [37]. 

Previous studies [4, 26, 43, 73-75] have shown that the effects of ultrasonic 

excitation on metal forming processes can be considered to be influenced by two 

categories of mechanism, namely volume effects and surface effects. Previous 

studies explained that the experimental characteristics of the volume effects 

and surface effects are mainly dependent on the interpretation of mean flow 

stress and have neglected the oscillatory stress. A study of the mean and 

oscillatory flow stress can be demonstrated to provide further insights into the 

beneficial, significant effects on metal forming process during superimposed 

ultrasonic excitation.  

All of the previous studies showed that the application of ultrasonic excitation 

on metal forming was investigated in elastic-plastic deformation conditions. A 

detail study of superimposed ultrasonic excitation on static load during elastic 

deformation conditions in metal forming has not been investigated because of 

the effects of reversible behaviour in the material, but understanding the 

effects of ultrasonic excitation during the elastic deformation is an advantage.  
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Therefore, an investigation was carried out in the present study that uses both 

experimental and finite element modelling approaches, and consequently the 

influences of volume effects and surface effects can be predicted by simulating 

the ultrasonic excitation on a static forming test in the FE analysis. 

Many past studies have been associated with the development of ultrasonic 

metalworking processes for industrial applications such as die forming, wire 

drawing and extrusion [59, 62, 63, 76, 77]. All of these studies interpreted the 

benefits of ultrasonic excitation in the forming process but their statements 

were focused on the measurement of mean flow stress and forming force only. 

The findings offered were not enough to validate the proposed stress and force 

reduction mechanisms.  

This current study aims, therefore to investigate the effects of ultrasonic 

excitation on material flow stress and oscillatory stress behaviour during the 

elastic and plastic deformation of metals, which have not been included in any 

previous studies. The material flow stress and oscillatory stress behaviour 

parameters are investigated in stress-strain diagrams and the parameters gained 

from these investigation are subsequently used to developed finite element 

models. The simulation models are used to predict the material softening due to 

both volume effects and surface effects. 



 

CHAPTER 2 

LITERATURE REVIEW 

 

2.1 The history of ultrasonic excitation in metal forming 
processes 

 

Applications of ultrasonics in metal working processes have been studied since 

the early 1950s [24, 25, 78], beginning with the earliest studies of Blaha and 

Langenecker who researched the effects of ultrasonic excitation on metal 

plasticity [24, 73]. The ultrasonic excitation results in a stress reduction 

phenomenon during plastic deformation of a metal. The characteristic stress-

strain curve was obtained from a tensile test of a single crystal of zinc. A 

significant effect was also observed by Blaha and Langenecker [73, 79, 80] when 

studying stress reduction during a tensile test of single crystals of aluminium, 

cadmium, beryllium, tungsten and stainless steel. The oscillation frequency of 

the ultrasonic vibration was in the range of 15 to 25 kHz. Progressing from this 

result, Blaha and Langenecker further observed that the magnitude of stress 

reduction was independent of the excitation frequency, but dependent upon the 

amplitude of vibration. 

In 1957 Nevill and Brotzen [25] obtained similar effects when stretching a low 

carbon steel wire with superimposed oscillatory stress. They concluded that the 

yield stress decrease was independent of the frequency of vibration between 15 

kHz and 80 kHz, was directly proportional to the amplitude of vibration, was 

independent of the elongation of strain applied, and was independent of 

temperature. In Nevill and Brotzen work, the vibrational amplitude was 

measured by the amplitude of the oscilloscope pattern which is proportional to 

the alternating voltage that supplied to the transducer. In this case, the 

amplitude of vibration was measured by the peak to peak of oscilloscope 

pattern. In the current technology, the transducer was provided with generator 

where the ultrasonic amplitude can be directly measured and controlled by the 
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generator display unit. The measurement of ultrasonic amplitude can be 

confirmed using non-contact method such as Laser Doppler vibrometer (LDV). 

Later, in 1965, Konovalov and Skripnichenko [26] investigated the effect of 

ultrasonic excitation on the properties of metals during tensile tests. In their 

work, ultrasonic excitation was generated by a magnetostrictive transducer. 

Their results showed that the ultrasonic excitation changed the mechanical 

properties of the metals for the interval of excitation during the tensile test. It 

was also shown that the effect was practically independent of the investigated 

rates of loading but dependent on the amplitude of vibration. 

In 1966, Izumi et al. [81] carried out a series of tests to observe the effect of 

ultrasonic vibration on the compressive deformation of metals. In this 

experiment, the ultrasonic vibration was generated by a magnetostrictive nickel 

transducer and was superimposed on a static compression load through an 

ultrasonic horn. A 22 kHz frequency was used and up to 17 m vibration 

amplitude was generated on the horn interface. The research study focused on 

the effects of ultrasonic vibration amplitudes on material compressive stress, 

heat generation, compression velocity and hardness distribution. The results 

showed that the ultrasonic excitation reduced the flow stress of compression 

and material hardness. The distribution of hardness was measured on the 

longitudinal cross-section of copper and brass alloy. They were measured that 

the hardness distribution considerably difference which can be seen between the 

specimen compressed without vibration and that with vibration. It was observed 

that an uniform distribution with low hardness values was seen in the specimen 

compressed with a large amplitude of vibration which is apparently due to heat 

generation. However, the difference in hardness between the specimen with and 

without vibration was not very obvious.  They also observed that the ultrasonic 

excitation generated high heat on the material when the amplitude increased. 

However, the effect of ultrasonic excitation was not influenced by the 

compressive loading rate. 

In 1967, Winsper and Sansome [64] reviewed all the studies of applications of 

ultrasonic excitation on metal forming from 1955 until the late 1960s. All the 

studies showed that superimposed oscillatory stress during metal forming 

process significantly reduced the static flow stress. This stress reduction has 
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been observed under both tensile loads and compressive loads during metal-

working operations. This article also reviewed the historical developments of 

ultrasonic excitation on metal-working processes. Research and preliminary 

conclusions on the effects of oscillatory stress on the mechanical properties of 

materials, the mechanisms of reduction in stress and the effects on friction, and 

also on the use of ultrasonics in various metal working processes such as forging, 

coining, extruding, rolling, forming and wire and tube drawing were described 

and discussed. At the end of the review, they suggested that the effects of 

superimposed ultrasonic excitation during metal-working processes can be 

explained by a reduction in mean flow stress, a reduction in friction force and 

the generation of localized heat. 

Since these discoveries, many investigators [4, 37, 38, 82-89] have focused on 

the effectiveness of applied ultrasonic vibration in metal working processes and 

related the benefits of oscillatory stress to characteristics of the deformation, 

process speed, ultrasonic frequency, amplitude, mode of vibration, material 

properties and the interface friction condition in order to increase the 

productivity, quality and reliability of industrial processes. 

Most of these research publications of ultrasonic application in metal-working 

processes were reported that the significant effects of ultrasonic vibration are 

independence to frequency, strain applied, temperature and rates of loading. All 

the claims and findings have been proved and supported with experimental and 

numerical measurements. However, it was an unclear explanation on 

temperature of material during superimposed ultrasonic excitation where as 

heating of the specimen often ignored. Some of the research works [5, 90] 

observed that the specimen  experienced a localised heating due to friction 

between a relative motion of surfaces where friction at the interface causes 

heat generation which is generates a thermal softening.  
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2.2 Mechanics of oscillatory deformation 

 

Improvements to metal-working technology, using ultrasonic vibrations to 

achieve advantageous effects during plastic deformation processes, are 

becoming more and more prominent. The equipment required for an ultrasonic 

system is expensive but the results obtained, if compared to conventional 

processes are driving a large scale use of ultrasonics in industry. 

This activity was prompted by the findings of Blaha and Langenecker who 

reported a reduction in forming stress due to superimposed oscillatory stress. It 

has been reported by Winsper et al [91] that the beneficial reduction in stress 

can be attributed to two basic mechanisms, known as the volume effects and 

the surface effects. They have defined volume effects as a decrease in flow 

stress of the material being formed and surface effect, as a change in frictional 

conditions at the interface between the vibrating device and the workpiece.  

The occurrence of the volume effect was discussed in the early work of Blaha 

and Langenecker [24] who explained that the change in mechanical properties 

during an ultrasonic tensile test was due to activation of dislocations. However, 

more explanation is required to define how ultrasonic oscillations can transmit 

the vibration energy to dislocate the material structure. The natural frequency 

of dislocations is estimated to be about 100 MHz [92], and thus the energy 

transmission cannot be explained in terms of resonance. This was accepted by 

Nevill and Brotzen [25] who argued that Blaha and Langenecker's work did not 

provide any correlation between the experimental and theoretical models of 

dislocation movement and energy absorption. Neville and Brotzen explained that 

the stress reduction was accounted for in terms of the superimposition of 

alternating acoustic stress on the stress produced externally. This superposition 

of stresses is schematically illustrated in Fig. 2-1, where � is a steady uniaxial 

stress, � is a maximum amplitude of alternating stress and �� is necessary 

minimum stress to produce yielding. The superposition of stress was achieved 

when � + � > �� ,where the alternating stress is greater than that required to 

induce plastic deformation. At this point, the alternating stress was sufficient to 

activate dislocation. 
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Figure 2-1 Superposition of steady and alternating stresses to cause yielding 

 

 

Winsper et al. [64] reviewed the application of ultrasonic excitation to metal 

deformation, as carried out by a large number of investigators. All the results 

showed that deformation was achieved with significantly reduced stress when 

oscillatory stress was superimposed on static forming. Some [25, 43, 93] have 

accepted the stress superposition mechanism, which describes the stress in a 

work piece when vibrations are applied which have amplitudes of less than some 

critical value. The magnitude of the oscillatory stress corresponding to this 

threshold value is dependent on the characteristics of the material being 

deformed. 

A measurement of the characteristics of stress reduction and oscillatory stress 

amplitude could instead offer a significant explanation of material softening 

during the superimposed ultrasonic excitation. 

The phenomenon of material softening effects was reported by Blaha and 

Langenecker [24]. This phenomenon is therefore often referred to as the Blaha 

effect, or volume effect, and is also known as the acoustoplastic effect [4, 64, 

74]. This acoustoplastic effect is described as a decrease in the flow stress 

during deformation at a constant strain rate or an increase in strain rate during 

plastic deformation under a constant stress.  



Chapter 2  24 

Winsper et al. [64] reported that the material softening mechanisms can be 

explained by the phenomena of reduced flow stress, reduced friction conditions 

and heating of the workpiece. However, the mechanisms of reduced flow stress 

and reduced friction were most effectively obtained in the material softening 

during ultrasonic metal-working operations. Heating of the workpiece was often 

ignored since the ultrasonic excitation did not generate heat in the workpiece. 

 

2.3 The influence of ultrasonic excitation on the processes 
of plastic deformation 

 

The effect of ultrasonic excitation on the processes of plastic deformation can 

be described by a force-displacement diagram (Fig. 2-2) for the static 

compression of a specimen [94]. The diagram shows regions of elastic and plastic 

deformation [22]. In elastic deformation, if the load � does not exceed an 

elastic limit ���, the force � and the displacement h are proportional to each 

other through the relationship: 

� = ��ℎ = ���,                                                 (2.1) 

where ℎ is the deformation of the specimen, �� = ��/� is its static stiffness; � 

and � are the cross-section and height of the specimen respectively; � is the 

elastic modulus of the material and � = ℎ/� is the strain.  

 



Chapter 2  25 

 
Figure 2-2 Elastic and plastic deformation [95] 

 

 

In plastic deformation in which the material experiences both stress and strain, 

the process varies depending on whether the deformation increases or 

decreases: curve 1 corresponds to an increase from point 0 and curve 1’ 

corresponds to a decrease in deformation starting from point �. Curve 1’ is 

practically parallel to the initial part of curve 1 as shown in Fig. 2-2. After a 

complete loading/unloading cycle there is residual plastic deformation ℎ� and, 

during subsequent reloading, the material will be in an elastic state, described 

by curve 1’, until the force � reaches the value ���, � = ��� = ��. Further 

loading causes a plastic deformation along curve 2. 

Fig. 2-2 shows a typical diagram for an elastic-plastic material that experiences 

work hardening where the force in the plastic deformation zone rises as the 

deformation increases. During the cyclic loading of such a material, its elastic 

limit rises from one cycle to the next and the value at certain point in time 
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depends on the complete loading history. This cyclic loading effect is similar to 

the process of vibrational hardening during ultrasonic metal forming.  

The vibrational loading processes can be described using idealized 1-D models 

consisting of elementary parts to describe the mechanical behaviour of a real 

material [94, 96, 97]. The model depicted in Fig. 2-3(a), consists of an elastic 

element ��, a pair of dry friction components � connected in series, and a 

carriage that includes of the vibratory tool. 

 

 
(a) 

 

 
(b) 

 

Figure 2-3 The model of vibrational loading process [98] 
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Let the deformation of the material result from its interaction with vibratory 

tool. The vibrational motion of tool with respect to the carriage obeys the law: 

�� = ������,                                                     (2.2) 

where � is the amplitude and � is the angular frequency. Carriage is subject to a 

constant static force � and, depending on the conditions of deformation, either 

moves with a constant speed �, or remains in equilibrium (� = 0). The full 

motion of the tools; carriage and vibratory tool are described as follows: 

�(�) = �� + ��(�) = �� + ������,                                   (2.3) 

To simulate the deformation process, the following experiment is carried out. 

The force � is slowly increased and the movement of the carriage is tracked. It 

is assumed that, for every given value of �, the model has an oscillatory regime 

of deformation. This assumption allows the interaction between the tool and the 

material to be considered during one period of tool vibration alone. The 

following notation is now introduced, ∆ is the distance between the centreline 

of the vibratory tool and the deformation of the specimen specimen; ℎ = �(�) −

∆ is the displacement of the carriage with respect to the specimen and is equal 

to the deformation over a period, and � is the force of interaction between the 

tool and the specimen. Values of ∆> 0 correspond to the adjustment of the tool 

in which an initial clearance is set up, while ∆< 0 corresponds to an initial 

interference between the material and the tool. The material deformation is 

assumed small and the elastic wave propagated along the material in a period of 

time shorter than the period of loading, that is � �⁄ ≪ � = 2��, where � is the 

speed of sound in the material. Consequently, due to this assumption and based 

on a linear relation of Hooke's law, the dynamic characteristic � = �(�, �̇)  

determines the relation between the force �, displacement � and speed �̇ of the 

tool as shown in Fig. 2-3(b). The dynamic characteristic is represented as 

follows: 
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� = �(�, �̇) =

⎩
⎪⎪
⎨

⎪⎪
⎧

										0, 										� ≤ ∆, �̇ > 0

									��(� − ∆), 									 ∆≤ � ≤ ∆ + ��
��

, �̇ > 0

																												��,												∆ + ��
��

≤ � ≤ ��, �̇ > 0

			�� + ��(� − ��),												�� − ��
��

≤ � ≤ ��, �̇ < 0

																					0, 									� ≤ �� − ��
��

, �̇ < 0

�             (2.4) 

where 

�� = �[�1 − ( �

��
)� + �

��
cos�� (�

�

��
)]                             (2.5) 

which is the maximum of the function (2.3) over a period. 

Hence, the force of interaction is calculated as: 

�(�) = �[�(�), �̇(�)]                                              (2.6) 

is a periodic function of time with a period � = 2�/�. The constant force � and 

the parameters of motion of the tool are obtained as: 

� =
�

�
∫ �(�)��

����

��
=

�

�
∫ �[�(�), �̇(�)]��

����

��
                            (2.7) 

The dynamic characteristic of applied force, the motion of vibratory tool and a 

force-time measurement can be calculated using equation (2.7) and is shown in 

Fig. 2-4. The material deformation does not exceed the limits of the initial 

linear part of the dynamic characteristic (0 < ℎ ≤ ��/��) and the carriage 

remains in dynamic equilibrium with speed � = 0. If the material deformation 

exceeds the limit (ℎ > ��/��), the deformation is considered to be plastic 

deformation and it is assumed that the carriage moves with a constant speed �. 

Fig. 2-5 demonstrates the situation of dynamic deformation. 
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(a) 

 
 
 
 

 
(b) 

 

Figure 2-4 The dynamic loading characteristics (� = �) [98] 
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(a) 

 
 
 

 
 

Figure 2-5 The dynamic loading characteristics (constant speed �) [98] 
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An experimental study by Izumi et al. [65] investigated the effect of ultrasonic 

excitation on compression test for different materials. The compression test was 

carried out for 14 mm diameter and 15 mm high specimens. The velocity of 

compression was kept constant and the amplitude of vibration was changed from 

0 to 15 µm. This investigation resulted in a relation between an observed yield 

limit , and vibration amplitude �,  

� = �� − ��,                                                     (2.8) 

where �� is the actual yield limit found in a static deformation processes and � 

is a material constant dependent on the material. In the case of Izumi et al. [65, 

81], the investigation used a vibration amplitude, � ≤ �� ��⁄  and deformation of 

displacement, ℎ ≥ 2�  which refers to Fig. 2-4 and Fig. 2-5 for continuous 

loading. If �̇ > 0, equation (2.4) shows the influence of the tool on the specimen 

during a periodic sequence of impulses as: 

�(�) = ��[�(�) − ∆],     �� ≤ � ≤ ��                                 (2.9) 

where �(�) = ������, ∆= � − ℎ, �� = − �

��
, and �� = �

�
���. According to equation 

(2.9), the constant force is equal to 

� = ��(ℎ − �)                                                 (2.10) 

Dividing equation (2.10) by � and using notation � = � �⁄ , �� = ��ℎ �⁄ , and also 

� = �� �⁄ = � �⁄ , we obtain a relation of the equation (2.8). According to 

equation (2.8) and equation (2.10), various materials respond differently to 

ultrasonic vibration in plastic deformation. Materials with a bigger elastic 

modulus � and specimens with a bigger static stiffness ��are more sensitive to 

the influence of ultrasonics [65, 98].  

The significant effect of force reduction due to ultrasonic excitation during the 

process of plastic deformation can be shown in Fig. 2-6. 
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Figure 2-6 Drop of compressive load due to superimposed vibration. (a) without vibration, (b) 

superimposed on the direction of static compression, (c) with vibration [65] 

 

 

2.4 The influence of ultrasonic excitation on interface 
friction 

 

Interface friction appears during the interaction of the tool and the workpiece 

where the friction force is used to resist the motion between tool and 

workpiece. A model of an ultrasonic system can be simulated with a friction 

force as shown Fig. 2-7. 
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Figure 2-7 Ultrasonic friction force [98] 

 

When carriage 2 moves, subject to a static force �, with an average speed � 

along the guide bar 3 then bush 1, which is connected to the carriage, is able to 

vibrate laterally with respect to it. A dry friction force � is developed in the 

contact zone between bush 1 and bar 3 and a static force, � = �, is needed to 

maintain the uniform motion. The influence of vibration in the contact zone on 

the static force necessary to overcome friction is now estimated. The steady 

motion of the bush 1 is considered as: 

�(�) = �� + ��(�) = �� + ������                                 (2.11) 

The nonlinear dynamic characteristic of the dry friction force is presented as 

follows: 

�(�̇) = �	���	�̇                                                (2.12) 

where ��� is signum function, denoted by ���	�̇ is defined by 

 ���	�̇ = �
−1, �̇ < 0

1, �̇ > 0
�  which is shown in Fig. 2-8(a) 
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Consider the differential equation of (2.11) and substitute it into (2.12). The 

frictional force developed in the contact zone: 

�(�) = ���̇(�)�= �	���	(� + �������)                         (2.13) 

is a periodic function with the period � = 2�/�. 

The relationship between the static force � and the parameters of the system's 

motion can be written as: 

� =
�

�
∫ �(�)��

�

�
=

�

�
∫ ���	(� + �������)��

�

�
                          (2.14) 

The characteristics of the friction present in the contact zone are shown in Fig. 

2-8, with the speed and friction force as a function of time. 

 
(a) 

 

 
(b) 

 
(c) 

 

 

Figure 2-8 The characteristics of the frictional force [98] 
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Solving the equation (2.14) in a period of cyclic motion gives 

� = �

�
[� − (�� − ��)],                                          (2.15) 

where 

�� = ��� = cos�� �−
�

��
� =

�

�
+ sin�� ���	 and �� = ��� = 2� − �� 

�� and �� are the instants, when the speed �̇(�) changed its sign in Fig. 2-8. 

Substituting �� and ��into equation (2.15), reveals 

� =
��

�
sin�� �

��
                                                (2.16) 

Considering that the carriage speed � is very small, the vibration velocity � ��⁄  

approximates to: 

sin�� �

��
≈

�

��
                                                   (2.17) 

and substituting (2.17) into (2.16) gives the static force required to overcome 

friction force as 

� =
��

���
�                                                        (2.18) 

The force behaviour under ultrasonic influence, as considered in (2.18), is known 

as a vibrational smoothing [99-103]. 

On the other hand, vibration of bush 1 is consider applied in a sliding plane 

perpendicular to the velocity of the carriage � in Fig. 2-7. The sliding plane is 

shown in Fig. 2-9. The plane moves along the x-axis, with a speed � and 

performs �-periodic vibration �̇(�) along the y-axis direction. The friction force 

� has a constant value and in a direction opposite to that of the velocity vector 

��(�). 
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Figure 2-9 The vibratory element slides in an axis 

 

 

As a result, the constant force � needed to overcome the friction force is 

required to be: 

� =
�

�
∫ �(�)��

�

�
=

�

�
∫

���

�� ��[�̇(�)]�

�

�
                                   (2.19) 

Substituting �̇(�) = ������� and assuming � ≪ ��, the constant force gives 

� =
�

�
�

�

��
�� �

������
�

��
�
�
���

�

�

��
�����

��

��
�
�
���

�                                    (2.20) 

The dependence of the static force � on the ratio of speeds 
�

��
, in accordance 

with equations (2.18) and (2.20), is shown in Fig. 2-10(a) and Fig. 2-10(b), 

respectively. The result in Fig. 2-10(a) occurs whenever the magnitude of 

friction and speed of forming are parallel which is shown in Fig. 2-7, conversely, 

if the magnitude of friction and forming speed are perpendicular in Fig. 2-9, the 

ratio of force  
�

�
 on the ratio of speed 

�

��
 is measured in Fig. 2-10(b). It can be 

seen that the vibration in the contact zone leads to a decrease in friction force 

[98]. Comparing Fig. 2-10(a) and Fig. 2-10(b), it can be seen that, for the 

vibration speed �� and for a small sliding speed �, the most pronounced 
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decrease in friction is achieved when the direction of vibration and sliding 

coincide. 

Fig. 2-7 shows that the frictional force is developed at the interface between 

the motion of the tool and the deformed material in metal forming. The work 

done by friction can translate into deformation, wear and heat, affecting the 

contact surface properties. This beneficial effect offers advantages to metal 

joining in some metal forming processes, but lubrication is used to prevent the 

wear. Consequently, the frictional force is reduced in terms of friction 

coefficient. 

 

 
(a) 

 
 

 
(b) 

Figure 2-10 The dependence of the static force on the ratio of speeds [98] for (a) vibration 
motion parallel to speed and (b) vibration motion perpendicular to speed 
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Friction coefficient reduction influences the aspect of ultrasonic metal forming 

called the surface effect. Thus, the phenomena of surface effects are defined as 

a change in frictional conditions at the interface between the vibrating tool and 

the specimen. The effect of ultrasonic excitation on friction was first examined 

by Lehfeldt [92], who reported that a sphere excited by oscillations moves on a 

revolving plate and minimum friction forces are observed when the sphere 

vibrates tangentially to the plate surface at the maximum amplitude. Winsper et 

al. [64] concluded that the superimposed ultrasonic excitation on conventional 

metal forming effectively reduces the frictional force without requiring any 

lubrication. The occurrence of surface effects during ultrasonic metal forming is 

useful in forming difficult materials under severe frictional conditions. 

Pohlman and Lehfeldt [92] summarised the reduction in forming force as being 

influenced by reductions of internal friction in the material and external friction 

at the interfaces where internal friction reduction is explained by the 

superimposition of the oscillatory stress on the static stress. They have 

measured the result of reduction in drawing force when the specimen was 

subjected to impulses of ultrasonic vibration at specific intervals. The 

suddenness of the reduction in drawing force when ultrasonic vibration is 

switched on indicated that the vibration has a direct influence on the internal 

friction of the specimen where the external friction was not occurred in the 

drawing process. The internal friction was defined as the force resisting motion 

between the elements making up a solid material while it undergoes plastic 

deformation. In the case of Pohlman and Lehfeldt work, as deformation 

occurred, internal forces opposed the applied force which mean that the 

internal friction was in linear proportion with forming force.  

Similar results obtained by other investigators [37, 40, 41, 64, 83, 104] interpret 

the coefficient of friction between tool and material as being significantly 

reduced with the application of ultrasonic vibration. The researchers also claim 

that the coefficient of friction is reduced as a function of the ultrasonic 

amplitude, forming speed, contact pressure, viscosity of the lubricant, 

acceleration of the vibratory tool, contact time and material properties. Many 

investigators [64, 105, 106] conclude that the ultrasonic vibration reduces the 

coefficient of friction for unlubricated surfaces. Unexpectedly, the results 

demonstrate similarly shape curves of stress-strain for lubricated runs.   
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Recently, many researchers have defined the effectiveness of surface effects on 

ultrasonic forming by experimental and numerical results. Finite element results 

by Yoa et al. [107] demonstrate that the stress superposition is only a part of the 

load reduction measured under superimposed ultrasonic vibration, and observed 

that there was no temperature change during the process. The load reduction in 

the ultrasonic forming process was attributed to a combination of stress 

superposition and friction reduction. Other investigators [108, 109] observed 

finite element simulations and experiments on hot ring compression to explore 

the frictional effect of ultrasonic excitation. They have measured the 

temperature of specimen during ultrasonic vibration on ring compression test. 

The test results indicated that ultrasonic vibration indeed raised the 

temperature of the specimen. The temperature increased rapidly in the initial 

vibration stage and then decreased with time. They also found that the stress-

strain curve obtained from ultrasonic compression test at 25oC has a similar 

curve compared with stress-strain curve of conventional compression at 150oC. 

Therefore the reduction in the flow stress caused by increasing the temperature 

to 150oC was similar to that caused by applying ultrasonic vibration. However, 

there was no further explanation on causes of  heat generated during applying 

the ultrasonic excitation. Consequently, the interface friction increased with the 

temperature of the material and indicated that the vibration also increased the 

interfacial friction. A simulation result by Mousavi et al.[67] predicted that the 

extrusion force was not affected by the friction factor in the contact 

interaction.  

Daud et al. [66] measured a significant number of friction coefficients in 

ultrasonic metal forming using an ultrasonic ring test. As a result the coefficients 

of friction from the ultrasonic tests were identical to the coefficient of friction 

for static test for a dry surface. This demonstrated that any change in the 

interface friction condition during ultrasonic excitation was temporary and the 

effects were not measurable by analysis of the specimen after ultrasonic 

excitation is discontinued. 

Later, Daud et al. predicted the behaviour of interface friction between die and 

specimen using an ultrasonic compression test with different lubricated surfaces. 

A reduction in the static stress was observed for all surface conditions. It was 

clear that the stress reduction was dependent on the lubricated condition but, 
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unexpectedly, a dry surface condition showed a higher reduction. A finite 

element model was developed for verification and an agreement was achieved 

with the experimental result if a lowered value of friction coefficient was 

introduced during superimposed ultrasonic excitation. 

Most of the investigators above claimed that the surface effect was not 

thoroughly understood, although it offered greater potential to the metal 

forming industry.  

 

2.5 The influence of oscillatory stress on metal 
characteristics 

 

Since the work of Blaha and Langenecker in 1955, a large number of 

investigators [25, 26, 36, 38, 39, 65, 66, 110, 111] have studied the effect of 

applying oscillatory stress to metal undergoing plastic deformation. 

Superimpositon of oscillatory stress onto static deformation shows significant 

effects on the forming force, forming speed, friction condition, material 

temperature and material properties. Most researchers have suggested that 

ultrasonic excitation reduced the material flow stress in their work.  

Explanations of the significant effect of superimposed oscillatory stress on 

material properties has become a major consideration in the study of the 

ultrasonic metal forming process. Choice of the appropriate material properties 

and metal characteristics can be dictated by the properties required for the 

process. The classic example involves strength and ductility; normally, a 

material of high strength will only have a limited ductility. A material rarely 

possesses the maximum or ideal combination of properties after it has been 

processed and thus it is necessary to trade off one characteristic for another. 

Consideration is made of whether any deterioration of material properties occurs 

during ultrasonic metal forming, such as whether a significant reduction in 

mechanical strength or grain size reduction for harder materials may result from 

the application of ultrasonics.  
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During ultrasonic metal forming, the vibration causes the flow stress loading of 

compression to be significantly lowered [38, 65]. The decrease of flow stress 

with increased ultrasonic vibration amplitude is called vibration sensitivity. This 

vibration sensitivity is exceedingly sensitive to the individual characteristics of 

materials such as acoustic impedence ( c ), Young’s modulus ( E ), melting point 

( mT ), work hardening coefficient and stacking-fault energy (  ). Other 

researchers [84, 112, 113] have found that the force reduction effect by 

ultrasonic excitation not only occurs in metal but also in plasticine, cheese and 

bone. Recently, the effectiveness of flow stress reduction and improvement in 

material properties by superimposed ultrasonic oscillation have been 

investigated by more researchers in many metal forming processes, which 

included metal drawing [30, 37, 114], extrusion [67, 111, 115], bending [116], 

grinding [117], machining [118] and drilling [33, 119]. Beside the major 

reduction in flow stress, the researchers have also observed other beneficial 

effects on metal properties during processing such as material hardness, grain 

size and surface roughness. 

 

2.5.1 Forming speed  

 

In a simple ultrasonic compression test, a cylindrical specimen is compressed 

between a flat punch and die. Usually, the flat punch is pressed down with a 

constant rate to compress the specimen on the static die as shown in Fig. 2-11 

[120]. � and � are the amplitude and the frequency of die vibrations, the 

maximum vibration speed is calculated as aftV 2)( max  , and the speed profile 

is shown in Fig. 2-12. 
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Figure 2-11 A simple ultrasonic vibration compression test 

 

 

 

Figure 2-12 (a) Variations of punch displacement and ultrasonic vibration displacement with 
time (one period) and (b) variations of punch speed and ultrasonic vibration velocity with 

time (one period) [67] 
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If the punch speed is less than the maximum vibration speed (refer to figure 2-

12(b) where  Vp1  Vpmax), the die surface separates from the specimen. Under 

this situation at time t1, the die vibration rate exceeds the punch speed, Vp1, 

and thus the die surface is separated from the flowing material. The separation 

continues until the die surface and the flowing material are in contact again at 

time t2. The time separation between t1 and t2 creates an opening without 

contact conditions. This occurrence results in a decrease of the punch load due 

to a reduction of the friction forces by the contact and separation incident [67]. 

On the contrary, if the punch speed is higher than the maximum speed, (refer to 

figure 2-12(b) where Vp2  Vpmax) the contact between the die surface and 

specimen remains, and no separation occurs. 

Another investigator, Kristoffy [37], reports that the maximum vibration speed 

must be at least three times the forming speed in order to achieve a force or 

friction reduction effect. It is also shown that a tangential vibration of the die in 

wire drawing operations does not change the direction of friction forces, unless 

the maximum vibrated velocity is larger than the drawing speed. However, 

Siegert et al. [30] explain that the reduction of friction force is influenced by a 

function of the ultrasonic amplitude and forming velocity. Unexpectedly, the 

friction force reduction observed reduces with the increase of forming speed. 

Izumi et al. [65] observe that the effect of forming speed was independent to 

the amplitude of superimposed ultrasonic excitation during the compression 

test. 

 

2.5.2 Material hardening properties 

 

Generally, metal hardening is defined as a strengthening of metal by plastic 

deformation and it is known as strain hardening or cold working. These effects 

occur because of dislocation movements within the crystal structure in the 

material. Metalworking processes which induce plastic deformation to exact a 

shape change are permanent. Plastic deformation occurs as a result of work 

performed on the material and the magnitude of the energy supplied is large 
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enough to break the material structure bonding. During this process, the bonds 

rupture and then reform.  

In ultrasonic metal forming, it has been believed that the vibratory energy 

transported to the material is enough to dislocate the structure bonds [24]. 

However, ultrasonic oscillation of frequencies below 100 MHz has not enough 

supplied the energy to impart dynamic mobility to the dislocations. The natural 

frequencies of dislocations are about 100 MHz, so the energy transmission cannot 

be explained in terms of resonance [92]. Schmid [110] reported a reduction in 

material hardness and yield point with less intense ultrasonic oscillation. The 

results from x-ray examination showed that the thermal softening of the 

specimen hardened by ultrasonics excitation occurred by material 

recrystallisation, without essential structural changes. 

Recently, Siu et al. [88] investigated the microstructure of aluminium samples 

after they had undergone ultrasonic assisted indentation. It was found that 

samples exposed to ultrasonics during indentation exhibited enhanced subgrain 

formation in the microstructure after the deformation process. Siu et al. 

observed similar subgrain formation in samples which had undergone global 

heating, this suggested that subgrain formation in samples exposed to ultrasound 

experienced localised heating. It was also observed that dislocations could travel 

further in a given length of time in areas containing subgrain formation, 

providing evidence that ultrasonics could enhance dislocation motion.      

Tsujino et al. [116] reported that the vibratory tool and die decreased the metal 

springback, increased the bending angle and improved the bending surface 

conditions during ultrasonic forming. The hardness of the specimen and the 

elongation of the bending surface decreased and became more uniform along 

the bending part, while the roughness of the bending surface was decreased by 

ultrasonic excitation. During ultrasonic deep hole drilling by Heisel et al. [119] a 

clear improvement in surface quality was apparent due to the existence of 

ultrasonic excitation compared to the conventional process. The influence of 

vibration energy on the material properties of the specimen was observed as a 

lowering of the residual deformation and increased the density of the material. 

Suh et al. [121] used ultrasonic technology to increase the hardness and fatigue 

strength of knives. This ultrasonic forging technique was observed to affect the 
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grain size of the material surface. The surface hardness was increased but the 

compressive residual stress was decreased by the ultrasonic vibration. The study 

suggested that ultrasonic vibration technology effectively improved the 

mechanical properties and had therefore become a practical method to improve 

metal forming processes. 

All the investigations into the effectiveness of ultrasonic excitation during metal 

forming processes demonstrate a significant response to the material mechanical 

properties during plastic deformation. The results also suggest that the flow 

stress of metals are softened during the ultrasonic excitation and become more 

useful as a result. This study of the effectiveness of ultrasonic excitation 

investigated during plastic deformation, and therefore, the present study will 

investigate the effectiveness of ultrasonic excitation during both elastic and 

plastic deformation. Thus, the material softening effects are modelled in an 

elastic-plastic equation to gain the elastic and plastic strain hardening data, and 

the material constant data, to describe the behaviour of the material. The 

material model parameters are then used to develop FE models which are used 

to predict the effects of a material softening mechanism. 

 

2.5.3 Ultrasonic amplitude 

 

In this study, ultrasonic vibration is excited in the ultrasonic horn and 

propagated to the material. The ultrasonic vibration amplitude is controlled by a 

Langevin piezoelectric transducer and generator. The Langevin transducer is 

widely used in high power ultrasonic applications, the transducer being used to 

vibrate at a tuned frequency by the generator [122]. In studies of superimposed 

ultrasonic excitation on metal forming processes, the major effects occurring 

were a lowering of the material flow stress, called volume effect, and a 

reduction in friction contact conditions, called the surface effect [4, 64]. The 

effectiveness of ultrasonic excitation is shown to be dependent on the ratio of 

stress reduction to the ultrasonic vibration amplitudes [61, 65]. This stress 
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reduction-ultrasonic amplitude ratio can be calculated and plotted in a stress – 

strain diagram, to show the effects on elastic-plastic material behaviour. 

In earlier ultrasonic studies, Nevill and Brotzen [25] reported that the decrease 

in flow stress was proportional to the ultrasonic vibration amplitude in 

frequencies between 15 kHz and 80 kHz. This result was independent of the 

resonance frequency, temperature and strain range. Petukhow et al. [111] have 

observed that increasing the amplitude of ultrasonic vibration results in a 

decrease in extrusion forces. In bending work by Tsujino et al. [116] observed an 

increment of ultrasonic excitation amplitude halved the radius of curvature of 

the bending compared to forming without vibration. Mousavi et al. [67] 

predicted, in their simulation work, that the average extrusion force was 

decreased by reducing the extrusion speed and increasing the amplitude of 

ultrasonic excitation. The vibration frequency was also demonstrated to be less 

influential than vibration amplitude in reducing the extrusion force. Other 

investigators [110] observed that ultrasonic amplitude strongly influenced the 

effect of material softening in various metal deformation processes such as wire 

drawing, tube drawing, rolling, and deep drawing.  

In conclusion, all the results obtained showed that the effect of ultrasonic 

vibration amplitude on the forming of sheet metal and the wider metal 

deformation process was related to the reduction in material flow stress. This 

effect was observed as stress reduction linearly increasing with increased 

ultrasonic amplitude. A significant explanation could be achieved by studying 

the effect of ultrasonic excitation on various type of metal in a range of 

ultrasonic amplitudes. The effect of absorption of vibratory energy by the 

material is reflected in the magnitude of ultrasonic amplitude. Furthermore, the 

ultrasonic amplitudes applied are dependent on the power of the ultrasonic 

transducer. 

The observed effect of material flow reduction did not include the oscillatory 

stress in strain hardening behaviour, but the mean flow stress only. 

Consequently, in all these studies, the experimental characterisation on the 

effects of superimposed ultrasonic excitation have largely relied on 

interpretations of measurements of the mean flow stress and have ignored the 

oscillatory stress. Analysis of the oscillatory stress measurements, especially on 
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the maximum and mean path of oscillatory stress, could provide better 

information to explain the material softening effect. 

 

2.6 Effect of Ultrasonic Oscillation in Finite Element 
Modelling (FEM) 

 

Finite element modelling (FEM) is developed to overcome the difficulty of real 

time measurements of metal forming processes during experimental analysis. 

Material flow distributions and forming force characteristics can be predicted by 

analysing the stress-strain behaviours of the material. This numerical analysis 

can be performed using commercial program simulation software such as 

Abaqus, Deform, Ansys, Dyna and Nastran [123]. These numerical studies are 

compared to measured data originating from the experimental test. As a result, 

it has become possible to quantitatively understand the mechanisms of improved 

forming characteristics such as a reduction in flow stress, coefficient of friction, 

and heat generation. 

Many physical phenomena in the material forming process can be described in 

terms of partial differential equations. In general, solving these equations by 

classical analytical methods, with many unknown parameters, is impossible. 

Hence, the finite element method is a numerical approach by which these 

partial differential equations can be solved approximately [124]. 

Metal forming simulation is a class of highly nonlinear continuum mechanics 

problems, because it is accompanied by large deformation (geometric 

nonlinearity), nonlinear materials behaviour (material nonlinearity in both 

deformation and temperature), and frictional contact (a nonlinear boundary 

condition). Starting in the mid-1980s, the history of FE modelling has shown 

significant success in axisymmetric applications of ultrasonic metal deformation. 

The approximation of a two-dimensional cross section in a three dimensional 

specimen, using the plane strain assumption, was an early option in attempting 

to achieve an understanding of the three dimensional forming process. Many 
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researchers have started to develop the axisymmetric FE model for metal 

forming simulation since the pioneering work [125] was presented in 1973. In 

this study, the three dimensional simulation of metal forming had difficulty in 

accomplishing the numerical task from the viewpoint of computational 

efficiency, solution accuracy, graphics visualization, mesh generation and 

automatic remeshing. However, as computer technology and software advanced, 

wider and more complicated metal forming processes began to be investigated. 

It is believed that the further development of the FE model will be continuously 

driven by industry needs to make the modelling more realistic, more practical, 

and more affordable. 

Most investigators [35, 66, 68, 108, 126-128] presented a conclusion from 

numerical studies, that under the activation of ultrasonic excitation, the 

material flow stress of metal forming was decreased. Hung et al. [108] predicted 

in their simulation that under the activation of ultrasonic vibration, the 

extrusion force was decreased. The postulated reason for the force reduction 

was that it was caused by the increase of the material temperature by the 

ultrasonic vibration. The ultrasonic excitation softened the specimen material 

and decreased the forming stress of the material. During the numerical 

simulation, the material was clearly deformed and melted around the tip of the 

cup when the ultrasonic vibration was applied in the drawing process. Therefore, 

they presumed that ultrasonic vibration raised the temperature of the specimen, 

increased the fluidity of the material and extended the height to diameter ratio 

of the cup. Other researchers such as Hung et al. [109], studied the ring 

compression tests and analyzed them using commercial software to simulate the 

frictional effect of ultrasonic vibration on hot ring compression. Consequently, 

the friction calibration curves and friction factor were inversely derived using 

finite element analysis. 

A three dimensional FE model to simulate a thermomechanical coupled process 

was developed from finite element code by Ahmed et al. [129]. This simulation 

demonstrated that a higher temperature and magnitude of residual stress 

occurred in the material when ultrasonic turning was compared to conventional 

turning. Finite element simulations were developed in ultrasonic tensile and 

compression tests using a commercial software code, Abaqus, with an implicit 

solution to simulate nonlinear material behaviour by Daud et al. [66]. In the FE 
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models an adjustment in the coefficient of friction was applied. The FE models 

were developed by adoption of the interface friction coefficient   = 0.25, 

representing a dry surface condition for static compression, and then changed to 

a friction free contact by setting   = 0 during superimposed ultrasonic 

excitation on the compression test. The models effectively changed the 

boundary conditions from a dry surface to a friction free condition, thus 

influencing the stress-strain result. Daud et al. suggested a more realistic 

representation of the simulation compression test data in modelling, by 

combining an adjustment in material properties with an adjustment in the 

friction contact conditions during the ultrasonic deformation. A consensus was 

achieved by Ashida et al. [59] who showed that an adjustment to the coefficient 

of friction between the sheet metal and die without lubrication was measured at 

approximately 0.5, and with ultrasonic vibration was approximately 0.15. Then 

during the application of ultrasonic excitation, the coefficient of friction 

between the sheet metal, the die with lubricant and the ultrasonic vibration was 

measured to be approximately 0.1. As a result, effective application of 

ultrasonic vibration to press forming for avoiding cracking and obtaining large 

deformation in press forming was achieved. 

In FE modelling, there are five types of hardening behaviour models: the 

isotropic hardening model, a linear kinematic hardening model, the Johnson-

Cook hardening model, a user-defined subroutine UHARD, and a nonlinear 

isotropic/kinematic cyclic hardening model [124]. These hardening models were 

used by investigators [130-132] in their metal forming investigations which 

resulted in the work hardening response. Previous studies [91, 93, 106, 133] 

have also shown that the amount of reduction of yield stress was directly 

proportional to the ultrasonic energy absorbed by the material. The material’s 

effective softening effects are dependent upon the ultrasonic intensity and this 

was introduced in the relations of the isotropic and kinematic hardening model 

[134]. Siddiq et al. [90] implemented the user-defined subroutine UHARD model 

and the combined hardening model to describe a material isotropic yield 

response, and used the size of the yield surface to predict the response of 

material behaviours. Consequently, the predicted results of material behaviour 

were dependent on the field or state variables assigned in the hardening model. 

The proposed friction model was also implemented in the numerical work, to 
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determine a friction model based on Coulomb’s friction law. The hardening 

variables were applied in non-linear isotropic and kinematic hardening model 

along with a thermomechanical coupling model of the ultrasonic welding process 

[90]. The hardening model was developed with material parameters that had 

been identified through previous studies and experiments of forming tests on 

materials. 

Therefore, the present study has been carried out through experiments and 

finite element simulation analysis by applying ultrasonic excitation to the lower 

die in the compression test and plate forming of metals. An FE model is 

developed using material model parameters which are identified in the 

experimental data. The versatility and predictive ability of FE model are 

demonstrated and the effect of ultrasonic excitation on metal forming process is 

investigated and compared qualitatively with experimental results under a 

variety of test conditions such as elastic-plastic deformation, a range of metals 

and a series of ultrasonic vibration amplitudes. 

 

2.7 Conclusion 

 

Superimposed ultrasonic excitation on metal forming processes has been 

investigated since the early 50s. The results have shown a significant beneficial 

effect on material characteristics and metal forming loads. The most significant 

finding was that the ultrasonic excitation reduced the material flow stress during 

the metal deformation process. However, further clarification on mean flow 

stress and oscillatory stress, and how they are affected the surface effects and 

volume effects, have not been offered in the literature. The explanations of the 

oscillatory stress measurements, particularly on the mean and maximum 

oscillatory stress paths, have not provided adequate information on the material 

softening effects. In almost all of these studies, evaluations of the benefits of 

ultrasonic excitation relied on measurements of mean flow stress only, and not 

on oscillatory stress measurement. 
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Most investigators claim that the surface effects and the volume effects are not 

thoroughly understood, although they currently offer great potential in metal 

forming processes. This understanding can be achieved by identifying the 

effectiveness of both mechanisms during elastic and plastic deformation 

conditions. 

Although the effectiveness of ultrasonic excitation on metal forming processes is 

experimentally and numerically proved in terms of the benefits to the forming 

force, an explanation of how the benefits arise is not yet available and an 

inability to quantify their contribution in material characteristics remains. 



 

CHAPTER 3  

DESIGN OF THE ULTRASONIC EXCITATION SYSTEM 

  

3.1 Methodology for the design of high power ultrasonic 
booster and horn 

 

 
The development and application of high power ultrasonic techniques in forming 

processes requires the use of specifically designed ultrasonic components to 

correctly transmit the energy from the transducer to the tool and die interface. 

Typical high power transducers consist of a piezoelectric or magnetostrictive 

element of transduction and a solid acoustic horn acting as an amplifier. 

Acoustic horns can be generally classified into catenoidal, exponential, conical, 

parabolic, hyperbolic and stepped forms, according to the decreasing rate of 

their cross-sectional area. The traditional methods for the design of an acoustic 

horn are based on the equilibrium of a small element under elastic action forces 

and integration over the horn length to attain resonance [70-72, 135]. The 

vibration can only be effectively applied if the tooling is designed for, and 

vibrated at or particularly close to, the system resonance frequency [37, 136]. 

The construction of each part of the tooling must be properly designed, 

accurately manufactured, tested, and (usually) corrected. The laws of sonic and 

ultrasonic wave propagation must be considered in the design of the tooling in 

order to achieve satisfactory vibration energy transmission, and avoid damage of 

the workpiece and tooling. 

Amin et al. [72] stated the differential equation in horn design as being: 
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where u  is the amplitude of the vibration in the axial direction, )(xA  is the 

cross-sectional area at any axial position x ,   is the angular velocity, and c  is 

the acoustic speed of the horn material. 

This equation has been confirmed by Peshkovsky et al. [137] who designed a five 

element bar horn and gave the equation of vibrations for displacement as: 
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where  ck /  is the wave number, f 2  is the angular frequency of the 

vibrations, and f  is the frequency of vibration. 

In designing the horn, the difficulties in solving the general differential equation 

have limited the horn contour geometries. Uniform profiles such as cylinder, 

stepped, conical or exponential are commonly used. Exponential and conical 

horns have been widely used in power ultrasonics studies [72, 138]. The design 

for horn resonance considers the profile as unloaded. This is the standard 

method used in the design and calculation of the vibrating components, 

including the ultrasonic transducer and horns [139]. For practical applications, 

to drive longitudinal oscillation, the ultrasonic transducer has the same 

longitudinal resonance frequency as the horn, and is attached at the end of the 

horn which causes the horn to vibrate in the longitudinal mode. When designing 

a horn therefore, the dimensions of the ends are restricted by the size of the 

transducer stack and the outer tool diameter.  

The next step is to choose the horn profile according to the displacement 

magnification required. Then the resonant length is obtained through solution of 

the differential equation. This length depends on the working frequency and has 

little effect on the magnification. Hence, the main variable that affects the 

magnification is the horn profile. The theory of acoustic horns is based on the 

problem of longitudinal vibration of multi-element rods that have cylindrical 

elements and elements of variable cross sections. The rod model is well suited 

to determine the approximate vibration behaviour, provided that the maximum 

cross-sectional dimension of the transducer and horn are less than a quarter-

wavelength of the frequency of interest. For a multi-element rod, the ultrasonic 
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horn design approach by Petshkovsky et al. [137] also agreed that for all 

practical purposes, it is sufficient to require that the maximum cross-sectional 

dimension of any portion of a resonant horn does not exceed a quarter-

wavelength at the horn’s resonance frequency.  

Another theory suggested by Heisel et al. [119] is that the vibration 

dimensioning of ultrasonic tools is carried out by half-wave synthesis. In this 

process, the smallest unit is a so-called 2/  longitudinal mode horn. In this unit, 

the mode form is represented by half a wavelength and the system is designed 

for a given resonant frequency. Then, longer ultrasonic tools can be obtained by 

connecting several 2/  vibrators together, all tuned to the same resonant 

frequency. In this way, it is established that the whole system is in resonance at 

the given frequency as well. An example of a multi-element horn designed by a 

mathematical equation for the characteristics of a five-element horn [137] is 

shown in Fig. 3 –1. 

 
Figure 3-1 Five element horn [137] 

 

 

The gain factor of the horn can be expressed as: 

Gain factor = 
in

out

u

u
         (3.3) 

where ��� is the input ultrasonic vibration amplitude from the transducer and 

����  is the output ultrasonic vibration amplitude measured at the end of horn. 
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From the theory of longitudinal vibration of rods, equations for conical, 

exponential and catenoidal rods are derived by Merkulov [140]. The principles 

describe how to obtain the resonant length for several types of horn. An 

illustration of these axisymmetric horn profiles is shown in Fig. 3-2. 

 

 

Figure 3-2 Common axisymmetric horn profiles illustrating node position, stress distribution 
and vibrational amplitude along the length of the ultrasonic component [141] 

 

 

The application and the ultrasonic amplitude required for the process were 

considered in order to design the most suitable horn profile. The horn profile 

was a compromise of component reliability and gain. The catenoidal profile 

produced a larger gain than the other three profiles but also exhibited higher 

stress for the same material. Manipulation of the profile line between the two 

ends of the rod can shift the node position, which is the location of the zero 

displacement, which can be removed from the high stress zone. This tends to 

reduce the value of maximum stress [140]. 

In this study, a 20 kHz transducer is used to provide amplitude of up to 10 µm 

peak-to-peak, depending on the generator setting. The horn is designed to 

provide a range of amplitudes up to 20 µm peak-to-peak. This horn is also used 

as a tool and die in the study of ultrasonic metal forming. Since the ultrasonic 
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vibrations are applied by a longitudinal transducer, the horn is tuned to the 

longitudinal mode at the operating frequency. The horn profile is designed to 

produce both higher and smaller amplitudes and is known as a booster or de-

booster horn. The booster horn is designed using the five element horn 

configuration as described by Peshkovsky [137]. It is possible to design the horn 

with high gain while ensuring both horn ends have the same cross sectional area. 

The horn has been divided into five sections with the complete rod length 

following half wave length conditions according to equation (3.4): 
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with c  = the speed of the stress wave in a solid medium and nf  = the driving 

frequency of the ultrasonic generator 

Equation (3.4) is valid for components whose length is considerably larger than 

their diameter. For guidance, the diameter, D , to length, l , ratios should be in 

the region of �/� < 1. In accordance with equation (3.4), a titanium (Ti-6Al-4V), 

rod component with c  = 4989 ms-1 should have an axial length of 0.125 m to 

resonate longitudinally at 20 kHz. This result is applied for the first longitudinal 

mode of vibration and defines the length of the half wavelength component.  

In this study, the five element horn is designed based on the characteristics of a 

Peshkovsky ultrasonic horn and has a different profile for each part the horn, as 

in Fig. 3-2. The advantage of five elements configuration can be seen whenever 

the dimensions of the ends are restricted design by the size of the transducer 

stack and the outer tool and die diameter. Therefore, the behaviours of five 

element horn configuration can be manipulated by resizing the profile of each 

element in the configuration. This requirement cannot be achieved if using a 

single horn profile such as in Fig. 3-2. Using this design, the gain can be adjusted 

by modifying the parameters of the curved sections, while the frequency of the 

longitudinal mode can be adjusted by the steepness of the linear taper sections, 

thus allowing the design criteria to be met such as gain, longitudinal mode 

frequency, node position and both ends of horn diameter matched with diameter 

of the transducer. The horns are manufactured from titanium (Ti-6Al-4V) and 

modelled fully with 3D quadratic elements in Abaqus. The titanium alloy has 
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been chosen as the material for tool and die to ensure the ultrasonic system is 

able to operate efficiently and is suitable to be used without failure under high 

loading conditions. Gain and stress distributions are determined using a 

frequency analysis, carried out by determining the modal characteristic and a 

steady state response. The stresses are calculated to ensure it operates within 

acceptable limits. As a result, the FE model predicted the maximum gain that 

can be achieved is gain 2 to meet the design criteria such as longitudinal mode 

at 20 kHz, both ends of diameter 32 mm and half-wave length of  125 mm. Two 

profiles of horn were designed, in order to provided a high gain ultrasonic horn. 

Both horns were designed with a criteria of longitudinal mode close to 20 kHz, 

gain 2 and half-wave length of 125 mm. The horns can be bolted together which 

gave the characteristics of gain 4 and longitudinal mode close to 20 kHz. In this 

study, the first horn is known as the booster and the second profile is known as 

the horn. The final profile designs for the booster and horn are shown in Figures 

3-3 and 3-4. The booster and horn are used as an ultrasonic die in the 

experimental tests which provide ultrasonic vibration to the material.   

 

 

Figure 3-3 Designed profile - booster 
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Figure 3-4 Designed profile - horn 

 

 

In this study, a punch tool is used to compress the metals to the die shape. The 

punch tool is connected to the cross-head of the test machine. Three types of 

punch tools are used, as shown in Fig. 3-5. 

 

 
Figure 3-5 Three types of punch (a) flat punch for compression test  (b) round punch, and (c) 

flat punch for forming test 

 

 

All the ultrasonic tools were connected to the mounting rigs that can be fixed to 

the test machine. This ultrasonic excitation system consists of the booster, die 
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horn, transducer, generator and mounting rigs. The design of the ultrasonic 

excitation system is shown in Fig. 3-6. The mounting rig is constructed of four 

pillar bars used to connect to the base of the test machine and a plate holder to 

attach to the flange which is located at the nodal mounting point on the 

booster. The pillar height is based on the size of the transducer used. All the 

ultrasonic tools devices, such as the mounting rig, plate holder, booster and horn  

are made from titanium alloy grade 5 (Ti-6Al-4V) due to the high strength and 

acoustic properties. 

 

 
Figure 3-6 The design of the ultrasonic excitation system, in isometric and front views 

 

 

3.2 Transducer 

 

A transducer is the name for a device capable of converting one form of energy 

into another, a simple example being a loudspeaker which converts electrical 

energy to sound energy. Ultrasonic transducers are designed to convert either 

mechanical or electrical energy into high frequency sound and there are three 

main types such as gas driven, liquid driven and electromechanical. In the study 

of superimposed ultrasonic excitation on metal working process, an 
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electromechanical transducer provides the ultrasonic vibration amplitudes 

required for the process. The two main types of electromechanical transducers 

are categories based on either the piezoelectric or the magnetostrictive effect. 

The most commonly used are piezoelectric transducers.  

Quartz was the piezoelectric material originally used in devices such as the very 

early types of underwater ranging equipment. Quartz is not a particularly good 

material for this purpose because of its mechanical properties, it is a somewhat 

fragile and difficult to machine. Modern transducers are based on ceramics 

containing piezoelectric materials.  Currently, the most frequently employed 

piezoelectric piezoceramic contains lead zirconate titanate, commonly referred 

to as PZT. 

Such materials have two complementary piezoelectric properties; by the direct 

effect and inverse effect. The direct effect is defined by pressure applied across 

the large surfaces of the section resulting in a charge generated on each face of 

equal size but of opposite sign. This polarity is reversed if tension is applied 

across the surfaces. The inverse effect is defined by a charge applied to one face 

of the section and an equal but opposite charge to the other face resulting in 

the whole section of crystal either expanding or contracting depending on the 

polarity of the applied charges. Thus on applying rapidly reversing charges to a 

piezoelectric material, fluctuations in dimensions will be produced. This effect 

can be harnessed to transmit ultrasonic vibrations from the crystal section 

through whatever medium it is in contact with.  

The most common form of transducer is a disc with a central hole. In a power 

transducer it is normal practise to clamp two of these piezoelectric discs 

between metal blocks which serve both to protect the delicate crystalline 

material and to prevent it from overheating by acting as a heat sink. Fig. 3-7 

shows an example of piezoelectric transducer. The unit is generally one half 

wavelength long or multiples of this can be used. The peak-to-peak amplitudes 

generated by such systems are normally of the order of l0 to 20 m and they are 

electrically efficient. Such transducers are highly efficient, and depending on 

dimensions can be used over the whole range of ultrasonic frequencies from 

20kHz to several MHz. 
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In this study, a generator uses mains electricity to generate a high frequency 

ultrasonic signal to drive the transducer, which is tuned to a specific frequency 

of 20 kHz and typically provides a maximum axial vibration of 10 m amplitude. 

The ultrasonic generator has electronic circuitry incorporated in the system 

which can track the exact resonance frequency and control the amplitude of 

vibration to allow tuned operation even under high loads.  

 

  

 

Figure 3-7 The form of piezoelectric transducer 

 

 

3.3 Finite element modelling 

 

Finite element analysis (FEA) is one of the most flexible and powerful 

computational tools available for solving engineering problems concerning the 

deformation of solids. Finite element modelling (FEM) can be applied to systems 

with any geometric configuration or boundary conditions. FEM was first 

developed in 1943 by R. Courant, who utilized the Ritz method of numerical 

analysis and minimization of variation calculus to obtain approximate solutions 

to vibration systems [142]. By the early 70's, FEM was limited to expensive 

mainframe computers generally owned by the aeronautics, automotive, defense 
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and nuclear industries. Since the rapid decline in the cost of computers and the 

phenomenal increase in computing power, FEM has been developed to an 

incredible precision. Present day supercomputers are now able to produce 

accurate results for all kinds of parameters. FEM consists of a computer model of 

a structure or design that is stressed and analysed for specific results. 

FEM uses a system of points called nodes which then form elements which create 

a grid called a mesh. The material and structural properties which define how 

the structure will react to certain loading conditions are assigned to the mesh. 

In FEM, a variety of meshing techniques exist to mesh models of different 

topologies. The different meshing techniques provide varying levels of 

automation and user control. In this study, the meshing technique is free 

meshing with tetrahedral elements which are used to simplify complex profile 

shapes so that the FE software can be used to generate a high quality mesh, 

without the need for partitioning. This type of element is chosen because it 

supports free meshing of three-dimensional solids. Free meshing with 

tetrahedral elements is the software default mesh generation algorithm which is 

significantly more robust for complex shapes and allows for increase in the size 

of the interior elements thus increasing the computational efficiency. 

In FEM, the model is meshed with elements. The number of elements in the 

model is controlled initially by the global size and accommodating structural 

features. A mesh convergence study is then conducted by varying the element 

density of the structure model to provide confidence in the accuracy of the FE 

modelling technique. The static and dynamic responses of loaded structures can 

be analysed computationally using FE packages using a frequency analysis to 

determine the natural frequencies and mode shapes. For example, Fig. 3-8 

depicts mode shapes of the first longitudinal, bending and torsional mode of 

vibration of a uniform rod analysed using 0.0054 global size elements with free 

boundary conditions. 
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(a) 

 
(b) 

 
(c) 

Figure 3-8 Mode shape diagrams with contours of displacement for (a) 1st  longitudinal (b) 
1st bending and (c) 1st torsional mode of vibration. 

 

 
Figure 3-9 Mesh convergence study for a uniform rod using 3D tetrahedron element. 

 

Fig. 3-9 illustrates a mesh density study using 4-node linear and 10-node 

quadratic tetrahedron elements by varying the global size number for the rod. 

The natural frequency of the first longitudinal mode using the FE package 

Abaqus is calculated to be 20 kHz and mesh convergence is achieved by both of 

the elements type. The 10-node quadratic tetrahedron element results in a 

convergence to the tuned frequency with less number of elements while the 4-

node linear tetrahedron element needed a higher number of elements to 

converge. These solutions show that the FE package is sufficiently accurate to 

provide a solution for a relatively low number of elements thus providing 
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confidence in the modelling approach for determination of natural frequencies 

and mode shapes. 

The finite element package Abaqus is used to calculate the natural frequencies, 

gain and stress distribution of the horn. In Abaqus, a complete finite element 

analysis usually consists of three distinct stages: pre-processing, simulation and 

post-processing. In the pre-processing stage, the horn is defined as a model of 

the physical problem, and an Abaqus input file is created. The model is created 

graphically using Abaqus/CAE or another pre-processor such as Solid Edge or 

AutoCad. In the simulation stage, the software solves the numerical problem 

which was defined in the pre-processing stage. To conduct a vibrational analysis 

in Abaqus two prescribed steps are applied, firstly a frequency step using either 

the Lanczos or subspace eigensolver to extract natural frequencies within the 

frequency range of interest, and secondly a steady-state dynamics direct step to 

predict the steady-state amplitude and phase of the system under a predefined 

loading of a harmonic excitation at a specified frequency. The frequency step 

allows natural frequencies and mode shapes of the system to be calculated and 

the steady-state dynamics direct step allows stress and displacement amplitude 

of the system to be predicted for the applied loading condition. The results can 

be evaluated once the simulation has been completed and the displacements, 

stresses or other fundamental variables have been calculated. In the post-

processing stage the results can be displayed in a variety of options, such as 

colour contour plots, animations, deformed shape plots and X-Y plots. In this 

study, the booster profiles were meshed using 3D quadratic tetrahedrons in 

Abaqus and the distributions of displacement amplitude and stress on the 

booster are shown in Fig. 3-10. The stress distribution in the booster was plotted 

using the Von-mises and Hencky criteria [143].  
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Figure 3-10 Booster contour for (a) element mesh (b) von-mises stress distribution (c) 

amplitude displacement distribution 

 

By plotting the Mises stress along the centre line of the titanium booster at the 

excited tuned frequency, it is possible to identify the maximum stress location 

along the longitudinal axis of the booster. Similarly, the displacement amplitude 

distribution can also be determined along the longitudinal axis and these are 

shown in Fig. 3-11. 

The combination of a booster and horn is used to obtain a higher gain. As 

mentioned in the previous section, the end diameter of the booster is equal to 

the end diameter of the ultrasonic transducer, in order to achieve interface 

continuity and transfer ultrasonic energy efficiently. When the booster and 

transducer are joined together, the transducer provides a 10 m peak-to-peak 

vibration amplitude, so that the end of booster produces 20 m of peak-to-peak 

ultrasonic vibration amplitude. This was sufficient to provide the range of 

ultrasonic amplitudes needed in this ultrasonic forming test study. However, the 

range of ultrasonic amplitudes can be increased by designing a second horn, 

having similar characteristics to the first horn; in this case a booster and horn. 

The combination of the booster and horn provides a gain of 4. In addition, the 

booster is used as a holder between the mounting rig and transducer. The tuned 

booster is included to allow a flange to be incorporated to provide a nodal 

mounting to the test machine. This ensures that the mounting rig does not affect 

the vibratory motion of the horn, booster or transducer. The distribution of von-

Mises stress and displacement for the booster and horn combination are 

calculated using FEM. The combination profiles are meshed using a 3D 10-node 
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quadratic tetrahedron element, as shown in Figure 3-12, and the distributions of 

displacement amplitude and stress along the booster and horn axes are shown in 

Figure 3-13. 

 

 
(a) 

 

 
(b) 

 

Figure 3-11 Graphical representation of (a) displacement and (b) Mises stress distribution 
along the centre axis of the booster 
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Figure 3-12 Booster and horn contours of (a) element mesh (b) Mises stress distribution (c) 
amplitude displacement distribution 
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(a) 

 
 

 
(b) 

Figure 3-13 Graphical representation of (a) displacement and (b) Mises stress distribution 
along the centre axis of the combination of booster and horn 

 

 

From FE analysis, the maximum stress location along the longitudinal axis of the 

ultrasonic booster and horn was predicted by plotting the Mises stress along a 

centre line of the profiles at the excited natural frequency. Similarly, the nodal 

position can also be determined along the centre line of booster and horn. Two 

tuned ultrasonic horns were designed, using the procedure described previously 

to resonate in the longitudinal mode at 20 kHz. The maximum Mises-stress for 

the combined booster and horn was calculated to be 160 MPa.  
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In this study, titanium alloy grade 5 (Ti-6Al-4V) has been chosen as the material 

for the booster and horn due to its high strength, high toughness, anti-

corrosiveness, durability and low acoustic loss. The material selection for 

ultrasonic components is critical to ensure the ultrasonic system is able to 

operate efficiently and is suitable to be used under high loading conditions 

without failure. High strength and high toughness are most important factors for 

the design of ultrasonic components especially ultrasonic horns where the 

structures experience high loading. All the ultrasonic components were 

assembled using threaded studs. Ideally for ultrasonic systems, an acoustic loss 

factor of zero is perfect and there should be no energy losses but in reality every 

ultrasonic component will experience acoustic losses and reduction of energy in 

the system particularly at joining surfaces and stud locations. The acoustic loses 

in the material can be quantified from the quality factor. Higher quality factor 

indicates a lower energy loss. Another factor that influences the energy transfer 

in material is the acoustic impedance. The acoustic impedance of all 

components should be matched as closely as possible to ensure energy transfer is 

maximum between joining components and to ensure the vibration is transferred 

effectively between one component and the next. Consequently, titanium alloy 

is used in design of the ultrasonic components. The material properties for the 

Titanium alloy are tabulated in Table 3-1. The maximum stress in both of the 

horns designed in this study are significantly lower than the yield strength of the 

titanium alloy, from Table 3-1. It is safe to assume from the FE analysis that the 

ultrasonic horns operate within a safe operating regime in terms of stress levels. 
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Table 3-1 Material Properties of Titanium Ti-6Al-4V (Grade 5) 

Density 4430 kg/m3

Hardness, Vickers 349

Tensile Strength, Ultimate 950 MPa

Tensile Strength, Yield 880 MPa

Modulus of Elasticity 113.8 GPa

Compressive Yield Strength 970 MPa

Poisson Ratio 0.342

Melting Point 1604 - 1660oC

Shear Strength 550 MPa

Titanium Ti-6Al-4V (Grade 5)

 
 

 

3.4 Experimental modal analysis (EMA) 

 

Experimental modal analysis (EMA) is a form of vibration testing of an object 

whereby the natural (modal) frequencies, modal masses, modal damping ratios 

and mode shapes of the object under test are determined. EMA works when 

energy is supplied to the system with known frequency content. Where 

structural resonances occur there will be an amplification of the response, 

clearly seen in the response spectra. By analysis of the response spectra and 

force spectra, a transfer function can be obtained. The transfer function or 

frequency response function (FRF) is often a curve fitted to estimate the modal 

parameters. Commonly FE modelling is also used to calculate these modal 

parameters but validation of the FE simulations is carried out using EMA. EMA is 

used in this study to confirm the FE predicted modal parameters for the 

ultrasonic horns. 
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3.4.1 FRF measurements 

 

The frequency response function (FRF) is a fundamental measurement that 

exhibits the inherent dynamic properties of a mechanical structure following 

EMA, frequency, damping and mode shape are obtained from a set of FRF 

measurements. The FRF describes the input-output relationship between two 

points on a horn as a function of frequency, as in equation (3.5); 

F()  [H()] = X()                                            (3.5) 

where H() is the motion parameter response per unit of excitation force at an 

input degree of freedom (DOF). F() and X() are the input force function and 

an output motion parameter response, respectively. This equation shows that 

the FRF is defined as the ratio of the Fourier transform of an output response 

(X()) divided by the Fourier transform of the input force (F()) that caused the 

output. 

The FRF is simply defined by a curve representing the output to input ratio. The 

input applied force and output response of the horn as either displacement, 

velocity or acceleration can be measured. The measurement is captured in the 

frequency domain using a fast Fourier transform (FFT) algorithm. During the 

transformation the functions become complex and contain real and imaginary 

components and use both magnitude and phase to describe the FRF response. 

 

3.4.2 Dynamic signal processing 

 

The Fast Fourier Transform (FFT) is an algorithm for transforming data from the 

time domain to the frequency domain. Because of the many calculations 

involved in transforming domains, the transform must be implemented on a 

digital computer if the results are to be sufficiently accurate. The frequency 

domain cannot be calculated directly from a measurement in a continuous 
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manner but instead must be calculated by sampling and digitizing the time 

domain input. This means that the algorithm transforms digitized samples from 

the time domain to samples in the frequency domain. 

When the measurement signals have been gathered at various target locations 

on the structure by the response measuring device in this case a laser 

vibrometer, the data is collected and processed using a spectrum analyser. To 

extract the natural frequencies and mode shapes of the system, FRF's are 

calculated from Fast Fourier Transforms (FFT). Fourier transforms convert 

response signals from the measurement devices in the time domain to spectral 

properties in the frequency domain using digital Fourier transform (DFT) 

analysis, a form of the FFT algorithm developed by Cooley and Tukey in the 

1960s [144]. Erroneous results can be produced using digital Fourier analysis by 

aliasing. Aliasing is a problem where the discretisation of the continuous time 

history is misinterpreted if the sampling rate is too slow, and high frequency 

signals can be misinterpreted as low frequency signals and can cause a distortion 

of the measured spectrum using DFT. This phenomenon can be avoided by using 

anti-aliasing filters where the original time signal is subjected to a low-pass 

sharp cut-off filter. Leakage is a problem where a sample of the signal is taken 

using a finite length of time history coupled with the Periodicity Principle. The 

Periodicity Principle considers all signals to be periodic but unfortunately signals 

such as random excitation are not. If the signal sampled is ideal and is precisely 

periodic the resulting spectrum will display a single line at the frequency of the 

sine wave but if the signal is not ideally periodic several lines will appear 

surrounding the single frequency and as such the spectrum produced does not 

indicate the single frequency which the time signal processed. This problem can 

be minimised or avoided by changing the duration of the measurement period, 

using zero padding where zeros are added to the end of the measured sample 

and by using the windowing technique where a prescribed profile, such as 

hanning, cosine taper, hamming or exponential window is used on the time 

signal. Filtering is also a solution that can be used on its own or alongside the 

windowing technique on the sample in the frequency domain instead of the time 

domain. Common filters include high-pass, band limited, narrow band and notch. 

The FRF's of the manufactured horns were generated in this study using a 

hanning window and also a high pass sharp cut off filter to minimise leakage and 
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aliasing. The FRF results during the EMA of the horns were also improved by 

collecting 30 responses during the analysis for each measurement point and 

averaging the FRF results to reduce the noise content in the final FRF. 

  

3.4.3 Laser doppler vibrometers 

 

Laser Doppler Vibrometers are optical devices that are able to detect the 

instantaneous velocity of the structure [145]. A LDV works upon two principles, 

the Doppler shift and optical inferferometry. The Doppler shift describes how 

the frequency of a wave will change if the source of the wave is moving relative 

to an observer. Since light can be treated as a wave, this principal can be 

applied to laser light. Thus the wavelength of reflected light is slightly different 

to the wavelength of the incident beam for moving objects. If the object were 

stationary the reflected beam would be of exactly the same frequency and 

wavelength. However if the object is moving toward the incident beam then the 

reflected beam has a shorter distance to travel and since the speed of light 

remains constant, the wavelength of the reflected beam must decrease. The 

opposite is true if the object is moving away from the source, the wavelength 

will increase. The difference between the wavelength of the source beam and 

reflected beam can be used to determine the velocity of the object. Fig. 3-14 

shows how typical vibrometer is constructed. 
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Figure 3-14 Basic components of a laser Doppler vibrometer [146] 

 

 

The beam from the laser, which has a frequency ��, is divided into a reference 

beam and a test beam with a beam splitter. The test beam then passes through 

the Bragg cell, which adds a frequency shift ��. This frequency shifted beam 

then is directed to the target. The motion of the target adds a Doppler shift to 

the beam given by �� =
��(�)����

�
, where �(�) is the velocity of the target as a 

function of time, � is the angle between the laser beam and the velocity vector, 

and � is the wavelength of the light. Light scatters from the target in all 

directions, but some portion of the light is collected by the LDV and reflected by 

the beam splitter to the photo detector. This light has a frequency equal to 

�� + �� + �� . This scattered light is combined with the reference beam at the 

photo-detector. The initial frequency of the laser is very high (1014 Hz), which 

is higher than the response of the detector. The detector does respond, 

however, to the beat frequency between the two beams, which is at �� + ��  

(typically in the tens of MHz range). The output of the photo detector is a 

standard frequency modulated (FM) signal, with Bragg cell frequency as the 

carrier frequency, and the Doppler shift as the modulation frequency. This signal 

can be demodulated to derive the velocity versus time of the vibrating target. 
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3.4.4 EMA measurement system 

 

The experimental testing equipment and operating configuration used in this 

study consists of a SignalCalc ACE hardware unit, an amplifier, an ultrasonic 

transducer, a 3D Laser Doppler Vibrometer (Polytec, 3D CLV-3D) and LDV signal 

processing unit and computer which consists a dynamic signal analyser using 

SignalCalc ACE data acquisition software, Data Physics Corp. The tuned horn was 

excited between 0 and 40 kHz using a random excitation as input signal created 

at low power by a function generator of SignalCalc ACE hardware unit that has a 

sample rate of 204.8 kHz and 51200 spectral lines with resolution of 0.78 Hz for 

measurements taken between the range of 0 and 40 kHz. The amplifier amplifies 

the signal from the function generator. The ultrasonic transducer converts the 

electrical signal from the amplifier to mechanical vibration through the 

piezoelectric effects, thus exciting the horn by the vibration supplied from the 

transducer. During the excitation of the horn, a laser beam from the 3D LDV is 

pointed at the horn surface to measure the vibration velocities response of the 

surface. This time domain data was recorded and transformed to the frequency 

domain using the Fast Fourier Transform (FFT) to generate the frequency 

response function (FRF) which was produced using a dynamic analysis analyzer in 

the computer. It is possible to determine the maximum magnitude of response 

when the excitation frequency is at the resonant frequency of the horn. These 

measurements were then analysed using ME'Scope VES modal analysis software 

to measure the modal parameters such as resonance frequencies and mode 

shapes of the ultrasonic horn. The EMA measurement system setup is illustrated 

in Fig. 3-15.  
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Figure 3-15 EMA Hardware Setup 

 

 

3.5 Validation 

 

The tuned ultrasonic booster and horn use precision engineering equipment to 

manufacture accurately the ultrasonic components to the required size to ensure 

the component is tuned precisely. The booster and horn were manufactured 

using computer aided manufacture (CAM) technology for modelling before 

machining using a CNC machine. The ultrasonic excitation system is shown in 

Fig. 3-16, and consists of the ultrasonic transducer, a booster, and an ultrasonic 

horn, all tuned to their first longitudinal mode of vibration at a nominal 20 kHz. 

The forming die in this study constitutes the output end of the ultrasonic horn. 

The die horn and booster were designed using finite element analysis (FEA), and 
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the modal frequencies and associated mode shapes were subsequently confirmed 

using experimental modal analysis (EMA). 

 

 
Figure 3-16 Ultrasonic transducer, booster and die horn 

 

 

To validate the FE modelling approach for ultrasonic booster and horn design, 

the longitudinal mode shape from the FEM was analysed for the combined 

booster and horn and compared to the mode shapes from the EMA analysis on 

the booster and horn. The EMA was conducted creating a mesh of points on the 

outer surface, sufficient to capture the movement of the booster and horn in 

any mode shape. The FEM and EMA mode shape results for the ultrasonic booster 

and horn are shown in Fig. 3-17. This figure shows the FEM and EMA modal 

responses for the designed ultrasonic booster and horn in the longitudinal mode 

at frequency close to 20 kHz. In this study, FEM predicted the resonance 

frequency of the designed booster and horn to be 20.74 kHz, while EMA 

measured the frequency at 20.8 kHz. Fig. 3-18 shows the frequency response 

measured and predicted by EMA and FEM, respectively. As mentioned previously, 

the transducer alone was setup to longitudinal mode at the resonant frequency 

of 20 kHz and it can be read from the monitor display unit. However, the 

longitudinal mode of combination booster and horn was measured in EMA at 

resonant frequency of 20.8 kHz which is used as a driving frequency for the 

ultrasonic experiments. There is no tuning procedure has been taken placed, 

however, during the experiments the tuned frequency, acoustic power and 

ultrasonic amplitude are monitored in order to ensure the system maintained 

same performance throughout experiments even under high loading conditions. 
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Figure 3-17 Comparison of (a) FE predicted and (b) EMA measured longitudinal mode shape 

and modal frequency 

 

 

 
Figure 3-18 Natural frequencies measured and predicted by EMA and FEA for ultrasonic tools 

at 20 kHz tuned frequency 
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3.6 Conclusion 

 

This chapter has shown the process of designing an ultrasonic excitation system 

that includes an ultrasonic transducer, a booster and an ultrasonic horn, all 

tuned to their first longitudinal mode of vibration at 20 kHz. The system was 

designed using numerical finite element analysis and was verified by 

experimental modal analysis. The tuned booster was used to allow a flange to be 

incorporated between the transducer and the die horn, to provide a nodal 

mounting to the test machine. This ensures that the mounting rig does not affect 

the vibratory motion of the horn, booster or transducer. The forming die in this 

study constituted the output end of the ultrasonic system and was incorporated 

into the end of the horn. The die horn and booster were designed using finite 

element modelling (FEM), and modal frequencies and associated mode shapes 

were subsequently confirmed using experimental modal analysis (EMA). The 

ultrasonic booster was designed using the five-element horn configuration as 

reported by Peshkovsky [137]. The transducer can only provide ultrasonic 

amplitudes up to 10 m, depending on the generator setting, therefore the 

profile of the booster and horn are designed to amplify the amplitude and allow 

a range of ultrasonic amplitudes to be excited. The ultrasonic system has been 

measured and calculated as having a longitudinal mode of vibration at 20.8 kHz 

and to provide a gain of four. 

 

 

 

 

 

 

 



 

CHAPTER 4  

STATIC-ULTRASONIC UPSETTING OF METALS 
SPECIMENS UNDER PLASTIC DEFORMATION 
CONDITIONS 

 

4.1 Introduction 

 

Metal upsetting is a measurement procedure to determine the behaviour of 

materials under compression loads. Usually a cylindrical specimen is used. The 

compression test is one of the primary tests and has been the most highly 

developed, especially in the study of the workability behaviour of metals [147]. 

The specimen is compressed and deformation at various loads is recorded. The 

load necessary to produce a given displacement is monitored as the specimen is 

crushed in compression at a constant rate. A load-versus-displacement curve is 

the immediate result of such a test. Material properties are obtained from the 

stress-strain diagram. The compressive stress and strain are calculated from the 

measured force-displacement data and plotted as a stress-strain diagram which 

is used to determine elastic-plastic region, yield stress ��, and modulus of 

elasticity �. A stress-strain diagram for a material under compression load is 

shown in Fig. 4.1. The relationship between the load-displacement curve and 

stress-strain curve can be expressed as 

� =
�

�
(1 +

�

�
),                                                    (4.1) 

and 

� = ��(1 +
�

�
)                                                    (4.2) 

where � is the applied load, � is the cross-sectional area of the specimen, ℎ is 

compression displacement and � is the height of the specimen. 
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Metal upsetting is usually used in the workability test to define the level of 

deformation that can be achieved in a metalworking process without inducing an 

undesirable condition, such as fracture, buckling, or the formation of laps. In 

this investigation, metal upsetting is used as a metal forming process to study 

the effects of superimposed ultrasonic excitation on material characteristics 

that can be plotted in the stress-strain diagram. 

 

 

Figure 4-1 Stress-strain diagram 

 

As discussed in chapter 2, early studies concluded that the influence of 

vibrations on metal forming processes could be considered in two specific areas, 

volume effects and surface effects. The compression of the specimen during 

metal upsetting results in a flow of material towards the outside of the flat dies. 

At the same time, friction forces are generated on the contact surface 

influencing deformation. Ultrasonic excitation prevents the accumulation of 

shear stresses, meaning that the influence of the friction forces on the contact 

surfaces of the specimen and die are reduced. This reduction in friction forces is 

defined as the surface effects. This effect occurs together with a decrease in 

static force required for deformation, known as the volume effect. The volume 

effect was defined as the reduction in flow stress or applied load during 

ultrasonic excitation of the material being formed [75, 85]. More recently, 

studies [39, 66] have shown the beneficial effects of volume and surface 
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mechanisms during ultrasonic excitation on upsetting. Daud et al. [66] 

investigated the effects of the application of longitudinal and radial ultrasonic 

excitation in compression tests of aluminium specimens, and finite element 

models were developed to numerically investigate the material and friction 

effects of ultrasonically assisted compression. The results showed that the 

compression stress was reduced by an effective softening mechanism of 

ultrasonic excitation on the material under dry surface friction conditions. Daud 

et al. matched the numerical result to the experimental result by adopted an 

effective softening mechanism of ultrasonic excitation to the FE models which 

reduced the material properties and adjusted the contact conditions.   

The results of the experiment by Izumi et al. [81] are shown in Fig. 4.2. Curve 1 

shows a force-strain diagram, obtained for a static compression of an aluminium 

cylindrical specimen. The strain � = ln	(1 +
�

�
) is shown on the horizontal axis, 

where ℎ is the compression displacement and � is the height of specimen. Curve 

2 shows the change in static force � whilst compressing a similar specimen in the 

presence of ultrasonic excitation. Curve 3 shows the difference of static force 

whilst compressing the specimen, between two intervals of ultrasonic excitation. 

In all these cases, the compression process was carried out with the same 

constant speed � = 0.5	��/��� and the vibration was employed at a frequency 

of 22	���. The amplitude of vibration at the tip of the horn was 10	��. From 

this result it was observed that a softening of the material and a change in its 

elastic-plastic behaviour appears under the influence of ultrasonic excitation. 

The influence of ultrasonic excitation in curve 3 is confirmed by the observation 

in curve 1 and curve 2 when the vibration is applied and re-applied during the 

compression deformation. It was observed that curve 3 nearly followed curve 2 

in the presence of ultrasonic excitation and returns to curve 1 when the 

vibration is stopped. Similar effects were explained by Daud et al. [148] when 

investigating the influences of oscillatory stress in compression tests of 

aluminium. 
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Figure 4-2 Changes in compression load in the presence of ultrasonic excitation [81] 

 

More recently, an investigation by Siddiq et al. [5] studied the effects of 

ultrasonic excitation on a metal upsetting process. The study was carried out by 

developing a finite element model that predicted the ultrasonic softening 

effects when ultrasonic energy was applied during deformation. Material model 

parameters were identified via inverse modelling using experimental data. The 

study demonstrated the predictive ability of the FE model of ultrasonically 

assisted upsetting of aluminium alloy at room temperature, in confirming 

experimental results previously reported by Hung et al. [39]. The results showed 

that the ultrasonic energy reduced the stress-strain response of the material 

during the upsetting process due to material softening. The results showed a 

very good agreement between the experimental and simulated response. 

The review of previous studies of superimposed ultrasonic excitation on 

upsetting showed that most of the experimental characterisations of the volume 

effects mainly depended on an interpretation of measurements of the mean flow 

stress, and have neglected the oscillatory stress. This chapter aims to 

characterise the oscillatory stress on the material behaviour in plastic 

deformation when superimposed ultrasonic excitation is applied on a static 

compression test under dry friction.  
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4.2 Apparatus 

 

A schematic of the apparatus is shown in Fig. 4-3. The resonant ultrasonic 

system is set up between the cross-head and the table of the 250 kN Zwick Roell 

material testing machine with 100 Hz sampling rate, which is capable of 

controlling the cross-head speed. The designs of the system have been divided 

into three sections: an ultrasonic excitation system, a holder structure and the 

punch device. The ultrasonic excitation system consists of a 500 Watt 

piezoelectric transducer, a booster and a die horn. The holder structure consists 

of plates and pillars that can be connected between the ultrasonic excitation 

system and the table of the Zwick Roell material testing machine. The punch 

device consists of a punch tool and a piezoelectric force transducer which was 

attached to the cross-head of the Zwick Roell machine. During the ultrasonic 

experiments the temperature of material is not monitored that based on 

previous studies demonstrated that there was no temperature change during the 

ultrasonic forming process [66, 107]. 

 

 
(a) 

 
(b) 

Figure 4-3 A schematic of the apparatus for static and ultrasonic upsetting tests (a) attached 
to Zwick Roell testing machine and (b) designed in Solid Works 
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4.2.1 A 500 W ultrasonic generator and piezoelectric transducer 

 

The ultrasonic generator used in this study can deliver a 20 kHz signal at a 

potential power output of up to 500 Watts is shown in Fig. 4-4(b). This generator 

offers the facility of constantly monitoring both amplitude and acoustic power.  

During the ultrasonic experimental test, the amplitude and acoustic power were 

monitored to ensure the parameters are consistently at same level of point 

throughout experiment even under high loading conditions. The transducer used 

in this study is based on a bolted Langevin transducer design. In this 

construction, a number of piezoelectric discs are bolted between a pair of metal 

end masses. The piezo elements are of a pre-polarized lead zirconate titanate 

(PZT) composition. The PZT discs generate the inverse piezoelectric effect such 

that if a charge is applied to one face of the disc and an equal but opposite 

charge to the other face, the discs are either expanded or contracted depending 

on the polarity of the applied charges. Thus on applying a rapidly reversing 

charge to the piezoelectric material fluctuations in dimensions are produced. 

This effect can be harnessed to transmit ultrasonic vibrations from the piezo 

elements through whatever medium with which it is in contact. The overall 

length of the transducer is one half-wave at the required frequency of 20 kHz. 

The piezoelectric transducer has potential efficiencies of 98% when employed in 

a mode of continuous operation. Maximum peak to peak displacements at the 

transducer radiating face are in the range of up to 12 m. 

 

 
(a) 

 
(b) 

Figure 4-4 (a) Ultrasonic transducer and (b) ultrasonic generator 
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4.2.2 Data analysis apparatus 

 

There are various methods of measuring the amplitude response of vibrating 

elements. One of the most common used is piezoelectric transducer. A 

piezoelectric transducer is a device that uses the piezoelectric effect to 

measure pressure, acceleration, strain or force by converting them to an 

electrical charge. In this study, there are two types of transducer used to 

measure the static-oscillatory force response during superimposed ultrasonic 

excitation on upsetting test. The transducers are referred to as the piezoelectric 

force transducer and the machine load cell. 

 

4.2.2.1 Piezoelectric force transducer 

 

The piezoelectric force transducer is the simplest form of measurement 

transducer which contains a piezoelectric element sandwiched between two 

electrical contacts. The piezoelectric force transducer is mounted under preload 

between the punch tool and machine cross-head. Once the transducer is 

subjected to vibration, stress is applied to the piezoelectric element and the 

resultant strain within the element generates an electrical charge through the 

direct piezoelectric effect. The generated charge is directly proportional to a 

known amplitude of force. The charge signal is fed to a charge amplifier as an 

output voltage. The voltage signal is acquired by the SignalCalc ACE data 

acquisition hardware and software for data processing. The piezoelectric force 

transducer can measure static and dynamic force responses. Table 4-1 shows the 

technical data for the Kistler piezoelectric force transducer used in this study. 
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Table 4-1 Technical Data of Kistler Force Transducer 

Type 
10 kN Force 
Transducer 

Maximum Range of Load, kN ± 10 

Natural Frequency, kHz  55

Weight, g 90 

Sensitivity, charge/N  -4

Operating Temperature Range, oC -40 to 120 

 

 

4.2.2.2 Data analysis hardware and software 

 

SignalCalc ACE, powered by Quattro is used as the hardware to receive the 

output voltage signal which is collected from the charge amplifier. The hardware 

is capable of real-time measurements to record data on all channels at a rate of 

204.8 ksamples/sec. The vibrational force responses obtained by the force 

transducer in voltage are channelled into the Quattro for processing, analysis 

and then conversion into readable data using SignalCalc ACE dynamic signal 

analyser software. The vibrational force responses are continuously recorded in 

the time and frequency domain in the software analyzer. It is much more 

practical to convert the force responses versus time to the parameter of interest 

such as, static-oscillatory stress versus strain. In order to obtain these 

parameters, a simple mathematical model is developed using Matlab R2010a 

commercial software to compute the parameter of static flow stress, oscillatory 

stress and strain. 
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4.2.2.3 Zwick Roell test machine load cell 

 

The machine load cell is typically a stiff and precise spring that outputs a 

relatively large electrical signal directly proportional to the force on the device. 

Applying a force to this spring produces strain that causes small deformations in 

the load cell. These deformations directly transfer to strain gauges strategically 

bonded to the load cell. In turn, the dimensional change of the bonded strain 

gauges produces a resistance change in each individual gauge. The resistance 

change produces an electrical charge that is proportional to the compression 

load. The machine load cell can only measure static force responses. 

Consequently, an applied force versus displacement diagram can be directly 

measured from the machine software. Then, the force-displacement diagram is 

converted to a stress-strain diagram using the Matlab R2010a software. 

 

4.2.3 Materials and specimens 

 

Two types of metal specimens are used in the upsetting tests. All the specimens 

are machined to a cylinder of 8 mm in diameter and 8 mm in height, giving an 

aspect ratio of 1. The use of specimens having aspect ratio more than two should 

be avoided to prevent buckling and shearing modes of deformation. All specimen 

surfaces were sanded and polished to provide a uniform surface roughness. The 

interfaces between the specimens, die horn and flat punch tool are in dry 

conditions. For modelling purposes, the coefficients of friction, , at the 

interfaces were estimated from static ring compression tests where for a dry 

surface  = 0.25 [66]. Compression tests were performed on specimens of 

commercial grade metals; aluminium and magnesium. The mechanical properties 

of the metals specimens measured from experimental test are shown in Table 4-

2. 
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Table 4-2 The mechanical properties of the metals specimens used in the compression tests 

Material Properties Unit 
Metals 

Aluminium Magnesium 

Density kg/m3 2705 1770 

Compressive Strength, Yield MPa 60 124 

Modulus of Elasticity GPa 1.45 1.7 

Poissons Ratio   0.33 0.35 

 

 

4.3 Experimental procedure 

 

In these experiments, metals cylindrical specimens are compressed between a 

flat die and a flat punch tool. The die is the end surface of the ultrasonic horn. 

The die horn consists of a tuned longitudinal mode horn of 20.7 kHz, for the 

experiment which superimposes axial ultrasonic vibration on the static 

deformation process, providing a uniform nominal vibration peak to peak 

amplitude in a range of 5 m to 20 m on the flat die surface depending on the 

ultrasonic generator setting. The flat punch tool is connected to the cross-head 

of the Zwick Roell testing machine which provides a constant cross-head speed 

of 5 mm/min for these experiments. In ultrasonic deformation tests, the 

ultrasonic excitation is applied after 1 mm displacement deformation of the 

specimen height which assumes that the material is deforming beyond the yield 

limit in plastic hardening deformation. Both static and ultrasonic deformations 

are performed at a constant cross-head speed of 5 mm/min under dry surface 

conditions until 50% of specimen height is reached. Previous studies [5, 39, 65] 

showed that the strain rate did not influence the significant effect of ultrasonic 

excitation under room temperature. However, when the material temperature 

was increased, the loading force was expected to decrease as the strain rate was 
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lowered. The temperature rise occurred due to frictional heating when relative 

motion of the interface exists. In this study, a speed of 5 mm/min was chosen in 

order to observe the effect of ultrasonic excitation on specimen behaviours 

during the experimental test and FE simulation. The other constraints were due 

to apply time of ultrasonic excitation and the appearance of frictional heating. 

It was measured that the observation can be done for 24s during the ultrasonic 

excitation tests.  

 

4.4 Metal stress-strain diagrams 

 

The behaviour of materials under compression loads can be obtained by plotting 

the stress-strain diagram. The diagram is generated by calculating the true 

stress and strain of compression deformation under static loading. Fig. 4-5 shows 

the stress-strain diagram for aluminium and magnesium. These curves are used 

to determine the material properties of the metals shown in Table 4-2. 

 
Figure 4-5 Metal stress-strain diagram 
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The resulting stress-strain diagram gives a direct indication of material 

properties such as modulus of elasticity, yield point and ultimate strength. The 

modulus of elasticity is defined as the ratio of stress to strain within the elastic 

region of the stress-strain curve. It is a measure of the stiffness of the material 

and is also known as Young's Modulus. The Young's Modulus of aluminium and 

magnesium were determined in Table 4-2 that shows the values of material 

stiffness are much lower than standard figures of 69 GPa and 45 GPa for 

aluminium and magnesium, respectively. Experimentally, the behaviour of 

materials was obtained using the experimental procedure that has been 

discussed previously. Generally, the Zwick-Roell testing machine was measured 

the deformation (strain) of an elastic material is directly proportional to the 

amount of force applied to the material (stress) and the Young's Modulus is 

calculated to measure the stiffness of material. However, the results shown in 

Table 4-2 was affected by the compliance of the ultrasonic system structure 

included rig, tool and die that attached to the machine. It was expected that in 

this case, the elastic modulus measured is an extensive property of the solid 

body dependent on the material, the structure and boundary conditions. This 

has resulted repercussion in the oscillatory stress predictions particularly in FE 

models. 

Commercially material properties of aluminium A1050 and magnesium AM50 are 

a shown in Table 4-3.  Initially, these properties were used as a material model 

in FE to simulate the static compression test and resulted the stress-strain 

curves which shown in Fig. 4-6. The stress-strain curves of standard material 

properties were compared against the experimental results presented the FE 

model prediction show a variation with experimental results. Data improvement 

has been applied to the material model in FE in order to obtain a good 

comparative agreement with the experimental results by adjusted the material 

properties of Young's Modulus and Yield stress. The adjusted material properties  

was shown in Table 4-2. The comparison results for adjusted material properties 

in FE model with experimental are shown in Fig. 4-6. However, the application 

of adjusted material properties in FE model was affected the prediction of 

oscillatory stress during the superimposed ultrasonic excitation. The 

measurement of oscillatory stress for standard and adjusted material properties 

in FE model are shown in Fig. 4-7. Fig. 4-7 shows a prediction of oscillatory 
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stress using material model of adjusted and standard properties of material 

against ultrasonic vibration amplitude. In Fig. 4-7(a) and (b) the slope of 

oscillatory stress to ultrasonic amplitude using standard material properties was 

observed higher than the slope of oscillatory stress to ultrasonic amplitude in 

experimental and using adjusted material properties in FE model has a lower 

slope of oscillatory stress to ultrasonic amplitude. Consequently, correction on 

ultrasonic vibration amplitude was applied to correlate the prediction of 

oscillatory stress in FE model as to achieve a good comparative agreement with 

experimental slope of oscillatory stress against ultrasonic amplitude. From Fig., 

the coefficient of ultrasonic amplitude was identified where the amplitude was 

amplified four times in FE model as correlated to the experimental results for 

both materials. The correction in ultrasonic amplitude resulted a good 

agreement between the gradient of oscillatory stress to ultrasonic amplitude in 

experimental result and using adjusted on material properties and vibration 

amplitude in FE model which showed in Fig. 4-7(a) and (b). 

 

Table 4-3 The mechanical properties of the commercial metals (standard)[149] 

Material Properties Unit 
Metals 

Aluminium Magnesium 

Density kg/m3 2705 1770 

Compressive Strength, Yield MPa 90 130 

Modulus of Elasticity GPa 69 45 

Poissons Ratio   0.33 0.35 

 
 



Chapter 4  93 

(a) (b) 

Figure 4-6 Comparison of experimental and simulation data with standard and adjusted 
material properties for static compression test for (a) aluminium and (b) magnesium 

 

 

(a) (b) 
Figure 4-7 Comparison of experimental and simulation ratio of oscillatory stress to ultrasonic 

amplitude with standard and adjusted material properties for (a) aluminium and (b) 
magnesium 
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In this study, the measurement of Young's Modulus and yield stress of the 

specimen was not properly determined the actual properties of material. 

Subsequently, in future works the determination of specimen material properties 

such as Young's Modulus and compression yield stress limit during compression 

test should be considered. As suggestion, a suitable device to measure the actual 

material properties is the electrical resistance strain gauge [150]. The device 

can be used to determine Young's Modulus and Poisson's ratio and most widely 

used for measuring elastic strains.      

 

4.5 Ultrasonic upsetting finite element model and boundary 
conditions 

 

The ultrasonic upsetting model is developed using the commercial finite element 

code Abaqus. The material properties model applied in the ultrasonic upsetting 

model is referred to in Table 4-2, along with boundary conditions parameters 

such as interface contact conditions, compression speed and ultrasonic 

amplitudes. The identification of these material and boundary condition 

parameters is performed using an inverse modelling method. In this method 

experimental stress-strain curves are compared with the simulated stress-strain 

curves and the difference between the experimental and simulated stress-strain 

curves is minimized by the variation of these parameters. The process is 

repeated until a good agreement is achieved between experimental and 

simulated stress-strain curves. 

 

4.5.1 Stages of Finite Element Modelling 

 

The construction of the FE model was developed using Abaqus commercial 

software. The stages followed in the modelling processes in Abaqus are shown in 

Fig. 4-8.  
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Figure 4-8 Stages of numerical analysis in FE modelling 

 

 

The modelling process was initiated by creating individual parts by sketching 

their geometry directly into Abaqus in its parts module. Punch and die tools 

were modelled as rigid bodies, and the specimen was modelled as an 

axisymmetric deformable body. The material properties of the deformable 

specimen were defined in the second stage of the FE modelling. The material 

properties definition was assigned as elastic-plastic behaviour. The elastic and 

post-yield parameters of the material used the classical metal plasticity model 

in the simulation. The initial yield stress at zero plastic strain was defined in the 

model. The elastic-plastic behaviour data was obtained from the static and 

ultrasonic compression test. Fig. 4-5 measured the initial yield stresses at zero 

plastic strain are 60 Mpa and 120 Mpa for aluminium and magnesium, 
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respectively. Ten other data points through the curves of plastic stress-strain 

conditions are measured included Young's Modulus, Poisson's Ratio and density of 

the materials which were shown in Table 4-2. All the data points are defined in 

FE material model as material behaviours. The static stress-strain curves were 

plotted from FE model simulation and matched with the experimental results. As 

a result, a better correlation between the experimental and FE data was 

achieved. All parts were assembled in a global coordinate system. Rigid body 

tools were used because of their advantages over deformable bodies with regard 

to degrees of freedom and this produced significant computational time savings 

without affecting the overall results. 

The analysis procedures, loading, and output request options were defined in 

the Abaqus steps. General static and implicit dynamics procedures were 

introduced in the step analysis. The first step used is general static to calculate 

the elastic-plastic behaviour when a static load is applied then the procedure is 

continued in implicit dynamics as a second step. A static analysis is sufficient to 

obtain a response in static compression until a certain displacement deformation 

occurs. However, for superimposed ultrasonic excitation, a nonlinear dynamic 

analysis must be performed. In a nonlinear dynamic response, the equations of 

motion must be integrated directly. The direct integration of the equations of 

motion is performed in Abaqus as an implicit dynamics procedure. An automatic 

incremented control was used in the steps so that Abaqus automatically adjusts 

the size of the load increments and solves nonlinear problems easily and 

efficiently. 

The most critical stage in the process is designating the load and boundary 

conditions. The conditions applied in the deformation of the FE model followed 

the experimental procedures. The FE loading and boundary conditions are 

discussed later in this section. The contact simulation is assigned to identify the 

area of surfaces that are in contact and to calculate the contact pressure 

generated. In this analysis, the contact simulation has to be able to detect when 

two surfaces are in contact and to apply the contact constraints. Similarly, the 

analysis must be able to detect when two surfaces separate and remove the 

contact constraints, especially during the dynamic analysis. The interaction 

between contacting surfaces consists of two components, normal to the surfaces 

and tangential to the surfaces. In those normal to the surface, a hard contact 
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behaviour was used. The behaviour shows where a dramatic change in contact 

pressure occurred and also shows when a contact condition is changed from open 

(clearance) to closed (clearance equal to zero) and vice-versa. In those 

tangential to the surface, a coulomb friction model is used to describe the 

interaction of contacting surfaces. The model characterises the frictional 

behaviour between the two surfaces using a coefficient of friction, µ. The 

axisymmetric deformable specimens are meshed using four node quadrilateral 

elements, as it is necessary to use a sufficiently refined mesh to ensure the 

results are adequate; coarse meshes can yield inaccurate results. The suitable 

mesh can be demonstrated as producing converged results. Lastly, the job was 

created to complete the FE model process stage. In the ‘visualization and 

results’ stage, the results of displacements and reaction forces are obtained in 

the history output database file for each increment of the simulation. These 

results are used to create the stress-strain diagrams.  

The results calculated in the FE model were matched to the experimental test 

results to attain close agreement outcomes. In this case, the static stress-strain 

curve predicted by FE model was matched to the static stress-strain curve 

measured from the experimental test. If acceptable agreement was achieved, 

this marked the end of the process stages. However, if the results were not well 

matched, the process returned to the load and boundary condition stage. An 

adjustment can be made in material properties data or the definition of load 

and boundary conditions to gain a better match, but the adjustment made 

should be referred to the experimental results. The process is repeated until the 

results correlation is satisfactory. 

 

4.5.2 The FE loading and boundary conditions 

 

The finite element method requires dividing of the analysis region into many 

sub-regions. These small regions are the elements, which are connected with 

adjacent elements at their nodes. Mesh generation is a procedure of generating 

the geometric data of the elements and their nodes, and involves computing the 
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coordinates of nodes, defining their connectivity and thus constructing the 

elements. In this study, the FE model was constructed from only half of the 

specimen diameter and was meshed using axisymmetric four node elements, 

taking advantage of symmetry. An axisymmetric model is a way to analyze a 

revolved part as a 2D model where the part and loads are symmetrical. The 

axisymmetric elements deform as if each element was a solid ring, so that an 

axisymmetric solid element is modelled like a 2D element. The axisymmetric 

four-node element is shown in Fig. 4-9. By reducing a 3D model to a 2D plane, 

there can be orders of magnitude reduction in solution time and file size. 

 

 
Figure 4-9 The axisymmetric four-node element 

 

 

The FE model consists of three main parts; the flat punch and die as 

axisymmetric analytical rigid bodies, and the axisymmetric deformable metal 

specimen. The geometry of the model for the specimen has dimensions of 4 mm 

 8 mm. The deformed and undeformed mesh profiles of an upsetting test 

simulation are shown in Fig. 4-10: 
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Figure 4-10 Mesh profile for (a) undeformed (b) deformed (c) multiple view of meshing for 

the upsetting FE model 

 

 

The speed of the punch and vibration amplitudes are applied in the simulation 

through a reference point associated with the rigid bodies of punch and die, as 

shown in Fig. 4-11. A constant velocity of 5 mm/min is applied in a vertical 

direction at the punch reference point while the centre line is defined as a fixed 

symmetry in the horizontal direction. The ultrasonic vibration is applied using 

displacement boundary conditions, with a periodic sinusoidal curve; �� =

������, where � is the amplitude of vibration and   is the angular frequency. 

The contact interaction conditions are defined as a surface to surface method 

between all the rigid bodies and specimen interfaces. Tangential and normal 

behaviour are defined as contact properties with a friction coefficient of 0.25 

for dry surfaces and hard contact, respectively. Isotropic elastic-plastic 

properties are used to describe the behaviour of metal specimens. All the 

material properties parameters of the metals used are shown in Table 4-2. 
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Figure 4-11 FE model boundary conditions 

 

 

To demonstrate the performance of the current FE model, a compression test of 

soft grade aluminium with and without ultrasonic excitation is simulated and 

validated against the experimental and numerical results [66]. In Fig. 4-12, black 

solid and dash line show the stress-strain relationship from experimental and FE 

simulated static compression tests for a cylinder specimen with dry interface. 

Hence, the red solid line shows the stress-strain relationship from the current FE 

model of a static compression test with using the material properties model 

measured in the experimental test by Daud et al., such as material elastic-

plastic behaviour data, coefficient of friction of 0.25 for dry contact surface 

which measured in the material ring compression test, constant crosshead speed 

at 5 mm/min and compressed until 50% of the specimen height. Model prediction 

show a good agreement with the experimental and previous numerical results. 

For identification of the oscillatory stress behaviour, the simulation test 

conditions were using the same material properties model applied with a 

constant velocity of 5 mm/min to the punch, with and without the ultrasonic 

excitation. The ultrasonic excitation was introduced with a frequency of 20 kHz 



Chapter 4  101 

and longitudinal vibration amplitude of 10 m at 22% reduction of the specimen 

height. Fig. 4-13 shows the oscillatory stress behaviour from the FE model 

compared to the model by Daud. Fig. 4-13(a) shows an 11 MPa reduction in the 

mean stress and the peak to peak oscillatory stress amplitude is 23 MPa. Close FE 

prediction results are shown in Fig. 4-13(b) where the mean stress is reduced by 

13 MPa, and the peak-peak oscillatory stress amplitude is 24 MPa. However, the 

experimental results by Daud et al. measured a reduction in mean stress of 40 

MPa and a peak-to-peak oscillatory stress amplitude of 24 MPa during the 

superimposed ultrasonic excitation on compression. It is clearly shown that the 

agreement is not so close for the mean stress reduction but for the oscillatory 

stress amplitude the experimental and FE result was the same. For more 

realistic representation of the compression test data, they suggested combining 

a temporary adjustment in material properties with a temporary adjustment in 

the friction contact condition during ultrasonic excitation in the FE model. Since 

the simulation of the deformation process is matched validated with previous 

study, the process has expanded the materials and the amplitudes of vibration 

used were varied for the other metals with vibration of 5 m to 20 m applied 

on the die in this study. 

 

 

Figure 4-12 Comparison of FE stress strain data with previously published for FE and 
experimental results. 
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(a) 

 
(b) 

Figure 4-13 Results of (a) ultrasonic loading obtained by Daud et al. [66] and (b) ultrasonic 
loading computed by the current FE modelling 

 

 

4.6 The effects of ultrasonic excitation on experimental 
results 

 

The effects of material properties behaviour during the superimposed ultrasonic 

excitation on compression test can be illustrated in the stress-strain curve. The 

effects can be explained in terms of flow stress reduction, oscillatory stress, 

mean flow stress, a path of maximum peak of oscillatory stress, and a path of 

minimum peak of oscillatory stress in the stress-strain diagram. All the term 

annotations are shown in Fig. 4-14. 
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Figure 4-14 Annotation of stress-strain diagram 

 

 

Static flow stress is defined from the curve of material flow behaviour in the 

stress-strain diagram during elastic-plastic deformation under a constant 

compression rate. Oscillatory stress is defined as the sinusoidally varying stress  

that occurs when the ultrasonic excitation is introduced. Fig. 4-14 shows the 

ultrasonic excitation introduced at strain ��. The path of maximum oscillatory 

stress is defined as a connection of the maximum peak points of oscillatory 

stress. Hence, the path of minimum oscillatory stress is defined as a connection 

of the minimum peak points of oscillatory stress. The mean flow stress is defined 

as the mean value of the oscillatory stress and can be calculated as 

�� =
�����

�
;                                                  (4.4) 

where �� is the maximum peak of oscillatory stress and �� is the minimum peak of 

oscillatory stress. 



Chapter 4  104 

Stress reduction is defined as the reduction of static flow stress to the mean 

flow stress in the presence of ultrasonic excitation at strain ��. At this point, the 

stress reduction can be calculated as 

∆� = ������� − �	� ;                                             (4.5) 

where �� is the mean flow stress and ������� is static flow stress at strain �� 

In this investigation, the stress reduction is determined in terms of a percentage 

that can be defined as 

∆� =
���������	�

�������
× 100%;                                       (4.6) 

These terms are used to explain the effects of superimposed ultrasonic 

excitation on upsetting in the following sections. 

As reported in previous studies [39, 65, 66], the flow stress of compressive 

deformation can be remarkably reduced by superimposing ultrasonic vibration on 

the static load in compression tests. Researchers have concluded that softening 

of the material and a change of its elastic-plastic properties take place under 

the influence of ultrasonic excitation, and that such a softening effect can only 

be observed in the presence of vibration. This effect was confirmed in numerous 

later research studies and experiments [5, 77, 107]. The studies also explained 

the influence of friction on material flow in ultrasonic upsetting tests. During 

the upsetting process, the condition of plastic deformation changes as the 

geometry of the cylinder specimen changes. The movement of the flat punch 

causes the changes, and is an important feature in the compression process.  

The punch and die are subjected to both deformation and friction forces. The 

frictional forces act in the direction tangential to the surface of the punch and 

die, opposite to the relative velocity between the punch, die and the specimen. 

As shown in the previous studies, ultrasonic excitation of the die leads to a 

decreases in the mean load required to overcome frictional forces, which are 

described in terms of a coefficient of friction.  
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The influence of volume effects in the flow stress reduction was investigated 

experimentally by Izumi et. al [65]. This resulted a relationship between an 

observed yield limit �, and vibration  amplitude �; 

� = �� − ��;                                              (4.8) 

where �� is the actual yield limit found in a static deformation processes and � 

is a material constant.  

The influence of surface effects on the coefficient of friction was investigated 

experimentally by Rozner [41]. This investigation demonstrated that a maximum 

reduction in the coefficient of friction of 40% could be achieved in a study of 

ultrasonic strip drawing. In this current study, aluminium and magnesium are the 

metals studied as cylinder specimens. Aluminium and magnesium are considered 

to be soft metals and can be easily shaped by any of the main industrial 

metalworking processes. Mostly aluminium has been the subject of research 

studies [5, 27, 39, 45, 64, 77, 81, 109, 148]. Most of these studies performed the 

application of ultrasonic vibration to metalworking processes for a dry surface 

condition.  

During the upsetting tests, two sets of forming force measurement data are 

recorded. The first set of force-displacement data is recorded by the machine 

load cell. This set of data includes a mean load and static force measurement in 

a series of ultrasonic excitation loading tests with excitation amplitudes of  5 

m, 10 m, 15 m and 20 m. The second set of data are recorded using the 

piezoelectric force transducer mounted between the punch tool and the 

machine cross-head. This set of data consist of a static force measurement and a 

series of oscillatory force measurements with excitation amplitudes of  5 m, 10 

m, 15 m and 20 m. Both data sets are measured simultaneously during static 

and ultrasonic metal upsetting. All the force responses are processed and 

analysed using SignalCalc ACE data acquisition hardware and software and 

Matlab R2010a software to provide stress-strain material behaviour. All the 

material behaviours are presented in stress-strain diagrams for the aluminium 

and magnesium specimens in the following section. 

 



Chapter 4  106 

4.6.1 Aluminium 

 

 
(a) 

 
 
 
 
 
 
 
 
 

  
(b) 

 

Figure 4-15 Comparison of stress-strain results measured by (a) machine load cell and (b) 
piezoelectric force transducer for aluminium specimens 

 

 

Table 4-4 Comparison of the percentage reduction in compressive flow stress 

Sensor 

Reduction in mean flow stress for 
amplitudes of 

5 m 10 m 15 m 20 m 

Machine Load Cell 6 % 12.4 % 21 % 31.7 % 

Piezoelectric 
Force Transducer 

6 % 12.5 % 21 % 31.6 % 

 

 

Fig. 4-15 shows the stress-strain results which were measured for static and 

static-ultrasonic compression tests on aluminium cylinder specimens. Fig. 4-15 

shows two sets of data recorded by the test machine and the piezoelectric force 

transducer. The data was used to confirm agreement between the two sensors 
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for both the static and ultrasonic stress response measurements. The results in 

Table 4-4 show that the mean flow stress is recorded similarly by both of the 

force transducers, and clearly exhibits a reduction in the static flow stress in all 

tests under ultrasonic excitation. The percentage reduction in mean flow stress 

increases with ultrasonic amplitude. 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

Figure 4-16 Mean flow stress and oscillatory stress measured by piezoelectric force 
transducer for (a) 5 m, (b) 10 m, (c) 15 m and (d) 20 m ultrasonic amplitude 
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Measurement of the flow stress without reference to the oscillatory stress 

behaviour does not provide very meaningful interpretations of the effects of 

ultrasonic excitation, because this relies on a reduction in the mean flow stress 

alone as being a direct measure of a beneficial effect. The measurements of the 

oscillatory stress are presented in Fig. 4-16 for a series of ultrasonic amplitudes 

between 5 m and 20 m. For each measurement, the peak to peak amplitude 

of the oscillatory stress during the ultrasonic excitation of the die horn is 

recorded and these results are summarised in Table 4-5. 

 

Table 4-5 Stress reduction and amplitude of peak to peak oscillatory stress 

Ultrasonic 
amplitude 

Reduction in mean flow 
stress 

Amplitude of peak to peak 
oscillatory stress 

5 m 6 % 7.952 MPa 

10 m 12.5 % 14.712 MPa 

15 m 21 % 19.881 MPa 

20 m 31.6 % 27.833 MPa 

 

 

4.6.2 Magnesium 

 

Similar procedures and methods are employed in the superimposition of 

ultrasonic excitation on compression tests for cylindrical die cast magnesium 

AM50. The compression tests are carried out via experimental procedures using 

the Zwick Roell material testing machine. The ultrasonic compression test 

procedure is repeated for four different ultrasonic amplitudes of vibration that 

are applied at the die surface. The material properties of magnesium, derived 

from a static compression test, are shown in Table 4-2, and the plastic flow 

characteristic of the material is obtained by the measurement of a true stress-

strain curve as shown in Fig. 4-5. Two sets of data are measured, from the 
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machine load cell and the piezoelectric force transducer. Fig. 4-17 and Table 4-6 

show two sets of data recorded by the load cell of the test machine and the 

piezoelectric force transducer. Fig. 4-17 and Table 4-6 are used to confirm 

agreement of the measurement of mean flow stress between the machine load 

cell and piezoelectric force transducer. The measurements of the oscillatory 

stress are presented in Fig. 4-18 for a series of ultrasonic amplitudes between 5 

m and 20 m. For each measurement, the peak to peak amplitude of the 

oscillatory stress during ultrasonic excitation of the die horn is recorded and 

these results are summarised in Table 4-7. 

 

 
(a) 

 
 
 
 
 
 
 
 
 

 
 

(b) 
 

Figure 4-17 Comparison of stress-strain results measured by (a) machine load cell and (b) 
piezoelectric force transducer for magnesium specimen 

 

Table 4-6 Comparison of the percentage reduction in compressive flow stress 

Sensor 

Reduction in mean flow stress for 
amplitudes of 

5 m 10 m 15 m 20 m 

Machine Load Cell 3.4 % 6.3 % 9.6 % 11.4 % 

Piezoelectric 
Force Transducer 

3.8 % 6.3 % 10 % 12.5 % 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4-18 Mean flow stress and oscillatory stress measured by piezoelectric force 
transducer for (a) 5 m, (b) 10 m, (c) 15 m and (d) 20 m ultrasonic amplitude 

 
 
 

Table 4-7 Force reduction and amplitude of peak-peak oscillatory stress 

Ultrasonic 
amplitude 

Reduction in mean flow 
stress 

Amplitude of peak to peak 
oscillatory stress 

5 m 3.8 % 7.952 MPa 

10 m 6.3 % 15.904 MPa 

15 m 10 % 23.857 MPa 

20 m 12.5 % 27.833 MPa 
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4.6.3 The material softening mechanism 

 

In all of these upsetting processes the results showed that the static flow stress 

of compressive deformation was considerably lowered by the ultrasonic vibration 

superimposed on the static load. When ultrasonic vibrations were superimposed 

on static compression during plastic deformation, the flow stress dropped 

immediately. This phenomenon has been referred as the Blaha effect and is also 

known as the acoustoplastic effect or volume effect. This effect during 

superimposed ultrasonic excitation has been described as a decrease in the flow 

stress during deformation at a constant strain rate or an increase in strain rate 

during plastic deformation under a constant stress [4, 74]. The relationship 

between the stress reduction, ∆�, and ultrasonic vibration amplitude during the 

compression of aluminium and magnesium is shown in Fig. 4-19. The results in 

Fig. 4-19 show how the percentage stress reduction for the same ultrasonic 

amplitude are highly dependant on the metal of the specimen, with softer 

metals allowing larger stress reductions to be achieved, and that stress 

reduction increases nearly linearly with ultrasonic amplitude in the range of this 

study (5 m to 20 m). 

 
Figure 4-19 The relationship between stress reduction and vibration amplitude 
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The magnitude of compressive yield stress reduction by ultrasonic vibration 

amplitude can be measured during the superimposed ultrasonic excitation at a 

specific strain. These results can be seen in Fig. 4-20, in which the compressive 

yield stress reduction was measured at strain,  = 10 %. It was found that within 

the ultrasonic amplitude range, the compressive yield stress is observed to 

decrease in proportion to the amplitude. This relationship can be expressed as 

an equation (4.8). The values of material constant, �, slope of the line in Fig. 4-

20, depend on the type of metal as shown in Table 4-8 (a). The � values show 

good agreement, for the two metals used with those in Table 4-8 (b) from 

research reported by Izumi et al. [65].  

 

 
Figure 4-20 Compressive flow stress at � ≈ ��% in relation to ultrasonic vibration amplitude 

 
 
 

Table 4-8 The value of slope � calculated by (a) current study and (b) Izumi et al.[65] 

Material 
Material dependent 

constant, � 

Aluminium 0.447 

Magnesium 0.38376 

 
(a) 

Material 
Material dependent 

constant, � 

Aluminium 0.40 

Magnesium 0.37 

 
(b) 
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Since contact conditions exist between the specimen, the ultrasonically 

oscillating die and the punch, the presence of friction cannot be neglected. 

Many previous studies [38, 40, 83] have suggested that the application of 

ultrasonic excitation in metal forming processes reduces the coefficient of 

friction at the tool or die-specimen interface. Based on indirect measurements, 

these reports concluded that the reduction in coefficient of friction in metal 

forming is related to the measured reduction in material flow stress. This claim 

was not fully proven because of the lack of ability to measure the coefficient of 

friction accurately. However, the coefficient of friction was directly estimated 

from the experimental data in ultrasonic drawing experiments [40, 41]. By 

comparing ultrasonic and conventional drawing, it was reported that the friction 

coefficient in ultrasonic drawing was approximately reduced by 30% to 40%. 

 

4.7 Incorporating ultrasonic excitation in the numerical 
model 

 

An FE model is developed using material model parameters which were 

identified from experimental data. The stress-strain data and material behaviour 

were obtained from the stress-strain diagram in Fig. 4-5. The material behaviour 

model was defined in the FE model by introduced the initial yield stresses at 

zero plastic strain, data points of plastic stress-strain conditions, Young's 

Modulus, Poisson's Ratio and material density which can be measured from Fig. 

4-5. In this study, the compression tests have used a dry specimen interface as 

the contact condition and a coefficient of friction of 0.25 for a dry surface 

condition is adopted in the FE model. The specimen was deformed under static-

ultrasonic loading by applying a constant velocity of 5 mm/min to the reference 

point of the punch rigid body. General static and implicit dynamics procedures 

were used in the step analysis to simulate the static-ultrasonic loading. The first 

step, general static, is to calculate the elastic-plastic behaviour when a static 

load is applied, then the procedure is continued in implicit dynamics as a second 

step to predict an oscillating plastic behaviour. By controlling the total time 

step, the specimen was compressed for 12 s in the first step in static loading and 
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continued in ultrasonic loading for 0.001 s in the second step analysis to allow 

for manageable computational time. Ultrasonic loading was superimposed at the 

reference point of the die rigid body at a frequency of 20 kHz and longitudinal 

vibration amplitude of 5 to 20 m. This gave 20 cycles of oscillation, with each 

cycle containing 20 data points. It was computed so that the superimposed 

ultrasonic excitation was introduced at strain, � = 11.8	% during plastic 

deformation. The versatility and predictive ability of FE modelling is 

demonstrated and the effect of ultrasonic excitation on upsetting process is 

investigated and compared with the experimental results.  

For the second series of FE models, changes were made to the material model 

and boundary conditions to simulate the effects of reduction in flow stress and  

interface contact conditions. The reduction in flow stress followed equation 

(4.8) with the values of material dependent constant, � being 0.447 and 0.38376 

for aluminium and magnesium, respectively. In this series, the adjustment of 

material behaviour properties was carried out on the initial yield stress and data 

points of plastic stress-strain conditions by referred to the equation (4.8). The 

material flow stress reductions were calculated for a series of ultrasonic 

vibration amplitudes from 5 to 20 m. The reduction in coefficient of friction is 

set to a value of 0.15 during superimposed ultrasonic excitation in the second 

step analysis procedure. A friction value of 0.15 was chosen because it is 

consistent with reductions reported in previous studies. This value represents 

the maximum reduction in the coefficient of friction of 40% which has been 

reported [41]. This contact condition adjustment was applied to the ultrasonic 

deformation for ultrasonic vibration amplitudes between 5 and 20 m. In all of 

these processes, the analysis procedure was repeated as for the first series of FE 

models. 

For the third series of FE models, the effect of a reduction in the material flow 

stress during superimposed ultrasonic excitation was investigated. In this case, 

the changes only considered a reduction of flow stress in order to investigate the 

influence of the volume effect alone during ultrasonic plastic deformation. 

For the fourth series of FE models, the effect of a change in the numerical value 

of the coefficient of friction during superimposed ultrasonic excitation was 
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investigated. The adjustment only considered the coefficient of friction, to 

predict the influence of the surface effect alone during ultrasonic vibration.  

For comparison, the results of the first series and second series of FE models are 

presented alongside the experimental results for superimposed ultrasonic 

excitation at ultrasonic vibration amplitudes of 5 m to 20 m. The results are 

shown in the following section according to the materials used in this study. 

Previously from the experimental result, the material stiffness was measured has 

a lower value than the actual material stiffness for aluminium and magnesium. 

Consequently, the adjustments on ultrasonic amplitudes were applied in the FE 

models as equated to the experimental results. The relationship can be 

determined from an equation (2.8) which showed that the material with a bigger 

elastic modulus � and specimens with a bigger static stiffness �� is more 

sensitive to the influence of ultrasonics. Subsequently, the equation shows the 

elastic modulus � is inversely proportional to ultrasonic amplitude. The 

adjustment of amplitudes applied was relied on the reduction in elastic modulus 

of material from 69GPa to 1.45GPa for aluminium A1050 and from 45GPa to 

1.7GPa for magnesium AM50, the vibration amplitudes were increased fourfold in 

FE models. The measurement of adjusted ultrasonic amplitudes was determined 

from Fig. 4-7. A compression test of aluminium and magnesium with and without 

ultrasonic amplitudes were simulated and validated against the current 

experimental results to demonstrate the performance of modified amplitudes. 

Consequently, the FE model predictions show a good agreement with the 

experimental results. 

 

4.7.1 Aluminium 

 

The predictive measurements of the first series and second series of FE models, 

presented in Fig. 4-21 to Fig. 4-24, show a comparison of the mean flow stress 

and oscillatory stress measured from the piezoelectric force transducer and the 

results predicted by the numerical analysis during static and ultrasonic 
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deformation. The ultrasonic die horn is excited at amplitudes between 5 m and 

20 m and the test results are shown in the figures. For each measurement, the 

stress reduction and the peak to peak amplitude of the oscillatory stress during 

ultrasonic excitation of the die horn are summarised in Table 4-9. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4-21 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first series of FE models and (c) predicted in the second 

series of FE models for 5 m ultrasonic amplitude 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4-22 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first series of FE models and (c) predicted in the second 

series of FE models for 10 m ultrasonic amplitude 
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(a) 

 
(b) 

 
(c) 

 
 

Figure 4-23 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first series of FE models and (c) predicted in the second 

series of FE models for 15 m ultrasonic amplitude 

 
(a) 

 
(b) 

 
(c) 

Figure 4-24 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first series of FE models and (c) predicted in the second 

series of FE models for 20 m ultrasonic amplitude 

 

 

Table 4-9 Stress reduction and amplitude of peak-peak oscillatory stress 

Vibration 
amplitude 

Stress reduction (%) Peak-peak oscillatory stress 

Piezoelectric 
force 

transducer 

The first 
series of 
FE Model 

The 
second 

series of 
FE Model 

Piezoelectric 
force 

transducer 

The first 
series of 
FE Model 

The 
second 

series of 
FE Model 

5 m 6.0 % 4.0 % 7.8 % 7.952 MPa 8.350 MPa 8.349 MPa 

10 m 12.5 % 8.0 % 14.8 % 14.712 MPa 16.998 MPa 16.998 MPa 

15 m 21.0 % 12.5 % 22.0 % 19.881 MPa 25.249 MPa 25.249 MPa 

20 m 31.6 % 16.5 % 32.0 % 27.833 MPa 33.399 MPa 33.398 MPa 
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All of these figures show the effects of the flow stress and oscillatory stress 

during superimposed ultrasonic excitation for four different ultrasonic vibration 

amplitudes. The results from the piezoelectric force transducer show the 

ultrasonic excitation was introduced after 1.3 mm displacement of the cross-

head, which quates to a strain, � = 15%, and then loading was continued until 

50% reduction of specimen height was achieved. However, in the FE model the 

ultrasonic excitation was introduced after 15 s of static loading which equates to 

a strain of 14.5 % and loading was continued for 0.001 s to 0.002 s. During this 

time, the stress is observed to oscillate about a constant mean value. 

For the third series of FE models, that considers adjustment of flow stress alone 

during plastic deformation, the results are shown in Fig. 4-25. For the fourth 

series of FE models, that consider adjustment on coefficient of friction alone 

during plastic deformation, the results are shown in Fig. 4-26. For each 

measurement, the stress reduction and the peak to peak amplitude of the 

oscillatory stress are calculated and the results of both series of FE models are 

summarised in Table 4-10. 
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(a) (b) 

(c) (d) 

Figure 4-25 Stress reduction and oscillatory stress in aluminium, for FE model incorporating 
flow stress adjustment for (a) 5 m (b) 10 m (c) 15 m and (d) 20 m ultrasonic amplitudes 
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(a) (b) 

(c) (d) 

Figure 4-26 Stress reduction and oscillatory stress in aluminium, for FE model incorporating 
coefficient of friction adjustment for (a) 5 m (b) 10 m (c) 15 m and (d) 20 m ultrasonic 

amplitudes 

 

Table 4-10 Stress reduction and amplitude of peak-peak oscillatory stress 

Vibration 
amplitude 

Stress Reduction Peak-peak oscillatory stress 

The third series 
of FE Model 

The fourth series 
of FE Model 

The third series 
of FE Model 

The fourth series 
of FE Model 

5 m 7.0 % 5.2 % 8.349 MPa 8.449 MPa 

10 m 14.0 % 9.3 % 16.699 MPa 16.899 MPa 

15 m 21.4 % 13.5 % 25.049 MPa 25.308 MPa 

20 m 31.5 % 17.6 % 33.399 MPa 34.314 MPa 
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4.7.2 Magnesium 

 

The same series of simulations was then performed for magnesium compression 

models, as described in the previous section. The predictive measurements of 

the first series and second series of FE models, presented in Fig. 4-27 to Fig. 4-

30, show a comparison of the mean flow stress and oscillatory stress measured 

from the piezoelectric force transducer and the results predicted by the 

numerical analysis during the static and ultrasonic deformation. Then, for each 

measurement, the stress reduction and the peak to peak amplitude of the 

oscillatory stress during ultrasonic excitation of the die horn are summarised in 

Table 4-11. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4-27 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first series of FE models and (c) predicted in the second 

series of FE models for 5 m ultrasonic amplitude 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4-28 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first series of FE models and (c) predicted in the second 

series of FE models for 10 m ultrasonic amplitude 
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(a) 

 
(b) 

 
(c) 

Figure 4-29 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first series of FE models and (c) predicted in the second 

series of FE models for 15 m ultrasonic amplitude 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4-30 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first series of FE models and (c) predicted in the second 

series of FE models for 20 m ultrasonic amplitude 

 

Table 4-11 Stress reduction and amplitude of peak-peak oscillatory stress 

Vibration 
amplitude 

Stress reduction Peak-peak oscillatory stress 

Piezoelectric 
force 

transducer 

The first 
series of 
FE Model 

The 
second 

series of 
FE Model 

Piezoelectric 
force 

transducer 

The first 
series of 
FE Model 

The 
second 

series of 
FE Model 

5 m 3.8 % 2.0 % 4.8 % 7.952 MPa 7.555 MPa 7.674 MPa 

10 m 6.3 % 3.6 % 8.8 % 15.904 MPa 15.109 MPa 15.427 MPa 

15 m 10.0 % 5.4 % 11.0 % 23.857 MPa 22.684 MPa 23.101 MPa 

20 m 12.5 % 7.2 % 13.7 % 27.833 MPa 30.239 MPa 30.855 MPa 
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For the third series of FE models, that considers adjustment of flow stress alone 

during plastic deformation, the results are shown in Fig. 4-31. For the fourth 

series of FE models, that considers adjustment on coefficient of friction alone 

during plastic deformation, the results are shown in Fig. 4-32. For each 

measurement, the stress reduction and the peak to peak amplitude of the 

oscillatory stress are calculated both series of FE models are summarised in 

Table 4-12. 

 

(a) (b) 

(c) (d) 

Figure 4-31 Stress reduction and oscillatory stress in magnesium, for FE model incorporating 
flow stress adjustment for (a) 5 m (b) 10 m (c) 15 m and (d) 20 m ultrasonic amplitudes 
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(a) (b) 

(c) (d) 

Figure 4-32 Stress reduction and oscillatory stress in magnesium, for FE model incorporating 
coefficient of friction adjustment for (a) 5 m (b) 10 m (c) 15 m and (d) 20 m ultrasonic 

amplitudes 

 

Table 4-12 Stress reduction and amplitude of peak-peak oscillatory stress 

Vibration 
amplitude 

Stress Reduction Peak-peak oscillatory stress 

The third series 
of FE Model 

The fourth series 
of FE Model 

The third series 
of FE Model 

The fourth series 
of FE Model 

5 m 3.2 % 3.3 % 7.575 MPa 7.674 MPa 

10 m 6.0 % 5.2 % 15.129 MPa 15.427 MPa 

15 m 9.3 % 7.0 % 22.903 MPa 23.101 MPa 

20 m 12.0 % 9.0 % 30.239 MPa 30.855 MPa 
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4.8 Experimental and numerical results discussion 

 

In this study, the effects of ultrasonic excitation on the stress-strain behaviour 

for dry contact conditions were investigated. The stress-strain relationships were 

derived from the measured load-displacement data using a piezoelectric force 

transducer and predicted data using finite element modelling. During 

superimposed ultrasonic excitation, the oscillatory stress, static flow stress, 

mean flow stress and stress reduction can be extracted from the stress-strain 

diagram. 

Measured and predicted data from the experimental and numerical analysis for 

aluminium and magnesium are shown in figures in previous section. For 

discussion purposes, the results from the experimental and numerical tests on 

aluminium during superimposed ultrasonic excitation for an ultrasonic vibration 

amplitude of 20 m are presented in Fig. 4-33.  

 

 
(a) (b) (c) 

(d) (e) 

 

 

  

Figure 4-33 Oscillatory stress for aluminium specimen and 20 m ultrasonic amplitude, (a) 
measured by piezoelectric force transducer, (b) from FE analysis, (c) from FE analysis with 

adjustments to material flow stress and coefficient of friction, (d) from FE analysis with 
adjustments to material flow stress only and (e) from FE analysis with adjustments to 

coefficient of friction only. 
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Comparison of Fig. 4-33(a) and (b) shows that measurement of the flow stress 

without reference to the oscillatory stress behaviour does not provide a very 

meaningful measure of the effects of ultrasonic excitation, especially since the 

deviation between the results of the FE model and measurements is best 

illustrated by the change in the path of the maximum oscillatory stress. It can be 

observed for both the experimental and FE data that the path of the mean 

oscillatory stress is significantly reduced from the path of the static flow stress 

when ultrasonic excitation is introduced, but the path of the maximum 

oscillatory stress is also significantly reduced in the measurements but not in the 

FE results. This change in behaviour, characteristic of an effective material 

softening, is a result of the acoustoplastic effect [4, 74]. This volume effect is 

then incorporated into the FE model by applying an adjustment to the material 

flow stress properties at the onset of ultrasonic excitation in Fig. 4-33(c) and 

(d). This involves calculation of a material dependent constant, � which can be 

estimated from the measured oscillatory stress as the decrease of flow stress per 

unit amplitude as described by Izumi [65]. In this study, the material dependent 

constant, � was measured as 0.447 and 0.38376 for aluminium and magnesium, 

respectively. 

However, it has also been shown previously that ultrasonic excitation 

additionally alters the friction contact condition between the specimen and 

upper and lower test machine platens [5, 66, 90]. This surface effect is included 

in the FE model as a 40% reduction in the coefficient of friction, consistent with 

the maximum achievable friction reduction generally agreed in the literature 

[40, 41]. The resulting stress-strain relationship is shown in Fig. 4-33(c) and (e). 

The results clearly show that a close match between the experiment and the FE 

model data is achievable by modelling the effects of superimposed ultrasonic 

excitation as a combination of an adjustment of material flow stress properties 

and interfacial friction in Fig. 4-33(c). Fig. 4-33(d) and (e) show the effects of 

superimposed ultrasonic excitation predicted by the FE model by adjustment of 

(d) material flow stress properties only and (e) interfacial friction only.  

Similar measurement and FE modelling procedures were employed for studying 

the effects of ultrasonic excitation on compression tests for magnesium metal 

specimens for the range of ultrasonic amplitudes. Fig. 4-34 show the results for 
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an ultrasonic amplitude of 20 m. Similar measurement results to those for 

aluminium, illustrating both a reduction in the mean flow stress and a reduction 

in the path of the maximum oscillatory stress from the path of the static flow 

stress, were obtained in all tests. Therefore, the FE models were developed to 

match the experimental results by combining an adjustment in the material 

properties with an adjustment in the friction contact condition during ultrasonic 

excitation.  

 

 

 
(a) (b) (c) 

(d) (e) 

 

 

  

Figure 4-34 Oscillatory stress for magnesium specimen and 20 m ultrasonic amplitude, (a) 
measured by piezoelectric force transducer, (b) from FE analysis, (c) from FE analysis with 

adjustments to material flow stress and coefficient of friction, (d) from FE analysis with 
adjustments to material flow stress only and (e) from FE analysis with adjustments to 

coefficient of friction only. 

 

The results have also shown that the percentage reduction in the mean flow 

stress from the static flow stress increases linearly with ultrasonic amplitude. 

These results are summarised in Fig. 4-35. The results in Fig. 4-35 show how the 

percentage stress reductions for the same ultrasonic amplitude are highly 

dependant on the metal of the specimen, with the softer metal allowing larger 

stress reductions to be achieved, and that stress reduction increases linearly 
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with ultrasonic amplitude in the range of this study (5 m to 20 m). Fig. 4-35(b) 

shows that the predicted percentage reduction in static flow stress is a close 

match with the experimental results. The influence of surface effects and 

volume effects were predicted by plotting the percentage in static flow stress 

reduction against vibration amplitude from FE analysis with adjustment to 

material properties only and from FE analysis with adjustment to contact 

conditions only. This relationship is shown in Fig. 4-36. Therefore, the slope of 

the graph can be measured and is called the ∆� − ��� value. In this case, the 

∆� − ��� value is defined as a ratio of the percentage of stress reduction to 

ultrasonic vibration amplitude. The ratio of stress reduction to ultrasonic 

amplitude (-USA) is adopted as a measure of the separate and combined 

contribution of volume effects, in terms of adjustment in material properties, 

and surface effects, in terms of adjustment to the friction contact condition. 

The measurement of the ∆� − ��� value is summarised in Table 4-13. The 

results are presented as a bar chart in Fig. 4-37. The bar chart shows that for 

plastic deformation, the volume effect of effective material softening dominates 

the stress-strain behaviour during superimposed ultrasonic excitation. 

A similar result was achieved by Yoa et al [107] who reported that the dominate 

mechanism contributing to stress reduction in the plastic condition was the 

volume effect. It is known that the mechanism of stress reduction by 

superimposed ultrasonic excitation can be accounted for by a combination of 

three effects; stress superposition, surface effect and volume effect. However, 

through FE simulation in the report's result suggested that a reduction in friction 

only resulted in a minor decrease in stress, when compared to the influence of 

the volume effect.  

Sources behind the material softening effect induced by high-frequency 

vibration have been investigated by various researchers [5, 66, 107] and it has 

been reported that the effect is temporary and that only limited permanent 

effect was detected from the stress-strain recovery behaviour. The factors which 

cause this softening effect have been attributed to various factors; including 

thermal effects due to heat generation [65], energy absorption from the sound 

wave through thermoelastic energy conversion [133], energy transformation by 

inelastic scattering [133], and motion of dislocation [88, 133]. 
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Siu et al. [88] investigated the microstructure of samples that had undergone 

indentation with and without the application of ultrasonic excitation, finding 

that samples exposed to ultrasonic contained subgrain formations while those 

indented without ultrasonic did not. The subgrain formation is evidence of 

dislocation which from previously studies [24, 133, 151-153] have reported that 

dislocations are able to freely cross-guide due to the contraction of the 

extended dislocations. This provides evidence, contrary to Nevill et al. [25] and 

Pohlman et al. [92] that the material softening effect stems from dislocation 

behaviour and not from the superimposition of alternating stress on the stress 

produced externally. 

Siu et al. [88] also observed the surface temperature increased due to heating 

effect in the sample from the ultrasonic energy. Therefore, to be able to 

compare samples indented with and without ultrasonic vibration, and 

understand the relationship between ultrasonic vibration and surface 

temperature, samples which were indented without ultrasonic vibration were 

heated during and after the indentation process. After the process, both samples 

were analysed, finding that the heated sample showed a similar degree of 

subgrain formation as the sample intended with ultrasonic vibration. This result 

shows a relationship between material softening and thermal softening, 

however, experimental results [24, 133, 151] reported that the ultrasonic energy 

required to produce the same amount of softening was extremely lower than the 

required thermal energy. This is due to the fact that ultrasonic energy was 

absorbed in the regions of dislocations while thermal energy absorbed uniformly 

in the sample [5]. Therefore the processes which involve ultrasonic energy 

supplied to the sample can be simulated using constitutive models that 

incorporate acoustic softening effects or volume effects. Furthermore, if 

relative motion of surface exists, softening due to friction should also be 

incorporated as surface effects and therefore in order better simulate ultrasonic 

processes, both volume and surface effects must be incorporated in the material 

model [90]. 
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(a) (b) 

Figure 4-35 Reductions in static flow stress to mean flow stress during ultrasonic excitation 
from (a) experiment and (b) FE analysis 

 

 

 

 
(a) 

 
(b) 

Figure 4-36 The percentage of stress reduction in adjustments of material flow stress and 
contact conditions for (a) aluminium and (b) magnesium 
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Table 4-13 The predicted of ∆� − ��� value 

Material 

∆� − ��� value, mm-1 

experiment 
combined 

adjustment 

adjustment to 
material 

properties 

adjustment to 
contact 

conditions 

Aluminium 14.7 15.4 15.0 9.0 

Magnesium 6.4 7.3 6.1 4.7 

 
 
 
 
 
 

 
Figure 4-37 The contribution to stress reduction of volume and surface adjustments in the 

FE model 

 

The influence of oscillatory stress amplitude was investigated in the stress-strain 

diagram during superimposed ultrasonic excitation on plastic deformation of 

aluminium and magnesium. The stress-strain diagram was plotted and the 

ultrasonic oscillatory stress was represented by the oscillating stress amplitude 

from which the maximum, mean and minimum peak of the stress amplitude 

were measured. This can be seen in the experimental and numerical test results 
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in the previous section. The results show that the mean value of the oscillatory 

stress is significantly reduced at the onset of ultrasonic excitation and follows a 

path parallel to the static stress path. The paths of maximum and minimum 

oscillatory stress also follow a path parallel to the static stress. The 

measurement of peak to peak oscillatory stress to ultrasonic vibration amplitude 

is shown in Fig. 4-38. The results show that the magnitude of peak to peak 

oscillatory stress linearly increases with the amplitude of ultrasonic vibration 

and the value is very similar for aluminium and magnesium. A similar result was 

obtained in numerical results, the peak to peak oscillatory stress amplitude was 

not changed by the adjustment to material properties and contact conditions in 

the FE analysis.  

 

(a) (b) 

Figure 4-38 Peak-peak oscillatory stress amplitude from (a) experiment and (b) FE analysis 
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4.9 Conclusion 

 

A study of the effects of superimposed ultrasonic excitation on compression of 

aluminium and magnesium cylindrical specimens has been carried out. During 

plastic deformation, longitudinal mode ultrasonic oscillations were superimposed 

on the flat die, where dry surface conditions were applied. Finite element 

models were developed using material model parameters which were identified 

from an experimental analysis. The finite element models were used to 

investigate numerically the material parameter effects and friction effects of 

ultrasonically assisted compression. The numerical model was adjusted at the 

onset of and during ultrasonic excitation by a combination of adjustment to the 

material properties and the contact friction. This allowed close agreement to be 

obtained between experimental and FE data illustrating the effects of reduction 

in the mean flow stress and, additionally, a reduction in the path of the 

maximum oscillatory stress from the path of the static flow stress due to 

ultrasonic excitation of the die. The influence of volume and surface effects 

were investigated separately in the FE model and it was shown that the 

reduction in mean flow stress is dominated by the effective material softening 

during ultrasonic excitation. 

 

 

 

 

 

 

 



 

CHAPTER 5  

STATIC-ULTRASONIC UPSETTING OF METALS 
SPECIMENS UNDER ELASTIC DEFORMATION 
CONDITIONS 

  

5.1 Introduction 

 

Previously in the literature [36, 64, 66, 109], the effects of ultrasonic excitation 

were studied by applying the oscillatory energy to a metal undergoing plastic 

deformation. A study of superimposed ultrasonic excitation on a static load 

during elastic deformation in metal working was not investigated. Therefore, a 

study of characterisation of mean flow stress and oscillatory stress behaviour 

could explain further insight s into the effects on metal forming process during 

elastic condition.  

In Chapter 4, the effect of material softening mechanism in plastic deformation 

during superimposed ultrasonic excitation was characterised. In this chapter, the 

aim is to investigate the oscillatory stress behaviour in the ultrasonic 

compression test of cylinder metal specimens during elastic deformation, by 

examining the paths of the maximum and minimum oscillatory stress. The mean 

flow stress and stress reduction can be measured in the stress-strain diagram. 

Finite element (FE) models were developed to predict the effects of 

superimposed ultrasonic excitation during elastic deformation, allowing the 

contact condition and material flow stress behaviour data to be investigated. 

In earlier investigations [24, 25, 64, 65, 73], the study of the effect of oscillatory 

stress on the mechanical properties and behaviour of metals has focused on the 

application of ultrasonic excitation on plastic deformation. Blaha and 

Langenecker [24], who discovered that there was a reduction in material flow 

stress while tensile testing single crystals of zinc, reported that when an 

oscillatory stress is superimposed on a constant level of applied stress, a stress 
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reduction in elastic deformation region was shown in the stress-strain diagram, 

whilst a continuous application of oscillatory energy from the initial strain 

deformation. Another study, by Izumi et al. [81], monitored the reduction of the 

static compressive stress due to the superimposed ultrasonic excitation on static 

compression and is depicted in Fig. 5-1.  

 

 
Figure 5-1 Reduction in compressive stress due to superimposed ultrasonic excitation. (a) 
without ultrasonic excitation, (b) interval of two ultrasonic excitation, (c) with continuous 

ultrasonic excitation [81] 

 

Fig. 5-1(c) illustrates that ultrasonic excitation was applied prior to reaching the 

yield limit, and as a result, the stress immediately dropped after the 

superimposing. The stress reduction increased up to the yield stress limit and 

continued with increasing deformation after the yield limit. It was believed that 

the effect was influenced by the reduction in the material flow stress and 

coefficient of friction. Therefore, a series of FE models was developed to 

investigated the influences of the volume effect, such as the reduction in 

material flow stress, as well as surface effect, such as the reduction in the 

interface contact conditions. 
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Theoretically, in elastic deformation the material deformation does not exceed 

the limit of the initial linear part of the dynamic characteristic �0 < ℎ ≤ ��� ��⁄ � 

and the load � does not exceed an elastic limit ��� which can be in Fig. 2-2. In 

this elastic deformation, it was concluded that the strain is recoverable. By 

referring to equation (2.10) and similar assumptions were used in Chapter 2 , 

this investigation resulted in a relation between a constant force �, and 

vibration amplitude � over a period of cycle is: 

� = ��(ℎ − �)                                                  (5.1) 

where �� is a material static stiffness, ℎ is the material deformation and 

because of the material deformation does not exceed the yield limit and strain 

recoverable, the influence of ��� value is small where in term of the stress 

superposition was not achieved. Since the constant force � is lower than the 

elastic limit ���, the material will not yield, the mechanism of stress 

superposition will not attain and the force reduction will not occur.  

The influence of surface friction is a mechanism of reduced the forming force 

during ultrasonic metal working processes since the motion of interface between 

the tool and specimen are existed. Theoretically, the influence of ultrasonic 

excitation on interface friction was previously discussed in Chapter 2. This 

chapter explained that the frictional force is developed at the interface 

between motion of the tool and specimen and the work done by this friction can 

be translated into force reduction. The force � needed to overcome the friction 

force can be described as: 

� =
�

�
�

�

��
�� �

������
�

��
�
�
���

�

�

��
�����

��

��
�
�
���

�                                    (5.2) 

From the explanation above showed that the force � in equation (5.1) was not 

effectively contributed to the reduction in forming force, but in contrast to the 

force � in the equation (5.2), it was determined that the force � needed to 

overcome frictional force is more effective to generate the significant effect of 

ultrasonic excitation in the elastic deformation conditions. 
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5.2 Experimental procedure 

 

A 20 kHz axially resonant ultrasonic system, consisting of a piezoelectric 

transducer and half-wavelength ultrasonic horn, was positioned to form the 

lower platen on a Zwick Roell test machine as shown in the Chapter 4. In these 

experiments, cylindrical metal specimens were compressed between a flat die 

and punch. Two types of metal specimen were used in the tests, with all 

specimens machined to a cylindrical bar of 8mm in diameter and 8mm in height, 

giving an aspect ratio of 1. Specimen surfaces were sanded and polished to 

provide a uniform surface roughness and the interfaces between the specimens, 

while die horn and punch tool were not lubricated. Compression tests were 

performed on specimens of commercial grade metals of aluminium and 

magnesium. The ultrasonic horn provided a uniform nominal vibration amplitude 

in the range of 5 to 20 m, which was controlled by the ultrasonic generator. 

The flat punch was connected to the cross-head of the test machine which 

provided a constant cross-head speed of 5 mm/min. For measuring the static-

oscillatory force response, a piezoelectric force transducer was mounted 

between the punch and machine cross-head. For each test, ultrasonic excitation 

was applied prior to yield limit, in order to investigate the effect of ultrasonic 

excitation in elastic deformation. In this case,  a cylinder specimen was 

compressed conventionally in the testing machine, under static loading until it 

reached half of the specimen height to obtain the static material flow stress 

data. Subsequently, for the static-ultrasonic compression tests, ultrasonic 

vibration amplitudes were applied to the ultrasonic die surface prior to yield 

during elastic deformation. In order to investigate the effects of material 

softening mechanisms in the elastic region, the ultrasonic excitation was 

introduced between 0.2 mm and 0.3 mm of the cross-head displacement. The 

ultrasonic excitation was continued throughout loading until the material yield 

limit was exceeded. This process was repeated for a series of ultrasonic 

vibration amplitudes between 5 m and 20 m. A finite element model was 

developed using axisymmetric four node elements, taking advantage of 

symmetry. The model material properties and boundary conditions applied aim 

to simulate the experiments for static and ultrasonically assisted deformation. 
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5.3 Finite element modelling 

 

The FE model was developed using Abaqus commercial software, as explained in 

Chapter 4. FE model was developed using material model parameters which 

were identified in experimental data. The effect of ultrasonic excitation on the 

upsetting process is investigated and compared with experimental results. The 

FE loading and boundary condition also followed the same procedure as in 

Chapter 4. The model of half of the cylinder specimen was meshed using 2D 

axisymmetric four node elements, while the ultrasonic die and punch tool were 

assumed as rigid bodies. The 2D cylinder specimen was modelled as an 

axisymmetric deformable body, assigned as an elastic-plastic isotropic material 

model. A constant velocity of 5 mm/min was applied to the punch rigid body. 

Four sets of FE models were simulated to investigate the material softening 

mechanisms during upsetting test simulation on elastic deformation. 

In the first FE models, the specimen was deformed under static loading for 2.4 

seconds in static general procedure. The time was calculated to be exactly the 

same timing as the application of ultrasonic excitation with the experimental 

test. Then, the deformation for 0.01 seconds in dynamic implicit procedure 

under vibrated displacement boundary conditions on the die rigid body was 

continued. This FE model was simulated for ultrasonic vibration amplitudes 

between 5 m and 20 m. The coefficient of friction of 0.25 was applied during 

the static and ultrasonic deformation. 

In the second, third and fourth FE models, the same procedure as Chapter 4 

were followed. 
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5.4 The effects of ultrasonic excitation in experimental 
results  

 

The results from the static and ultrasonic compression tests were constructed in 

stress-strain diagrams. The stress-strain data followed the test procedure 

discussed in Chapter 4, where the static, mean and oscillatory force response 

was measured by the piezoelectric force transducer, while the load cell of 

Zwick-Roell testing machine was used to measure the static and mean forming 

force only. The results from the machine load cell result can be used to validate 

the results obtained by the piezoelectric force transducer. The force-

displacement data was processed and analysed in SignalCalc ACE dynamic signal 

analyser software while Matlab R2010a was used to plot stress-strain curves. 

 

5.4.1 Aluminium 

 

The ultrasonic excitation superimposed on static compression test has been 

carried out for cylinder specimens of aluminium. During the upsetting tests, two 

sets of stress-strain data were recorded. The first set of data was measured by 

the machine load cell during static flow stress test and a series of mean flow 

stresses which excited by ultrasonic vibration amplitudes of 5 m, 10 m, 15 m 

and 20 m. The second set of data were recorded using the piezoelectric force 

transducer mounted between the punch tool and the machine cross-head. The 

content of this data consisted of a static flow stress, mean flow stress and 

oscillatory stress from excitation at ultrasonic vibration amplitudes between 5 

m and 20 m. Both data sets are measured simultaneously during the static and 

ultrasonic metals upsetting.  
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                          (a) 

 
 
 
 
 
 
 
 
 

                          (b) 

Figure 5-2 Comparison of stress-strain results measured by (a) machine load cell and (b) 
piezoelectric force transducer for aluminium specimen 

 

Table 5-1 Comparison of the percentage reduction in compressive flow stress 

 

Reduction in mean flow stress for 
amplitudes of 

5 m 10 m 15 m 20 m 

Machine Load Cell 5 % 10 % 20 % 35 % 

Piezoelectric 
Force Transducer 

5 % 10 % 20 % 35 % 

 

 

Fig. 5-2 shows the stress-strain diagram which were measured for static and 

static-ultrasonic compression tests on the aluminium cylinder specimen. This 

figure shows two sets of data recorded by the machine load cell and the 

piezoelectric force transducer. Both diagrams were used to confirm agreement 

between the two sensors for both the static and ultrasonic stress response 

measurement. Fig. 5-2(b) shows a delay in strain deformation, this can be 

accounted to an error in the timing synchronisation of the load application 

during the experimental tests. The results in Table 5-1 show the comparison of 

the percentage reduction in mean flow stress measured between the machine 

load cell and piezoelectric force transducer. The table shows that stress 
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reduction is the same for both of the force transducers, and that a clear 

reduction in the static flow stress in all tests condition under ultrasonic 

excitation exists. It can also be observed that the percentage of reduction in 

static flow stress increases as ultrasonic vibration amplitude increases during 

elastic deformation. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-3 Mean flow stress and oscillatory stress measured by piezoelectric force transducer 
for (a) 5 m, (b) 10 m, (c) 15 m and (d) 20 m ultrasonic amplitude 

 

 

Fig. 5-3 shows the oscillatory and mean flow stresses measured during 

compression tests. These show that the static flow stress immediately reduced 

once the ultrasonic excitation was introduced. The lowering in flow stress was 
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observed for the duration of applied ultrasonic excitation. Fig. 5-3 shows the 

path of maximum oscillatory stress exceeds the static flow stress at some 

vibration amplitudes. The calculated stress reduction and peak to peak 

oscillatory stress are demonstrated in Table 5.2. 

 

Table 5-2 Stress reduction and the magnitude of peak-to-peak oscillatory stress 

Ultrasonic 
amplitude 

Reduction in mean flow 
stress 

Amplitude of peak to peak 
oscillatory stress 

5 m 5 % 9.940 MPa 

10 m 10 % 15.904 MPa 

15 m 20 % 23.857 MPa 

20 m 35 % 27.833 MPa 

 

 

5.4.2 Magnesium 

 

Superimposed ultrasonic excitation on static compression tests has been carried 

out for cylinder specimens of magnesium and similarly to those processes 

applied during the compression of aluminium samples. Fig. 5-4 shows the first 

data set and consists of a comparison of the stress-strain measurements between 

the machine load cell and the piezoelectric force transducer. 
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(a) 

 
 
 
 
 
 
 
 
 

 
(b) 

 

Figure 5-4 Comparison of stress-strain results measured by (a) machine load cell and (b) 
piezoelectric force transducer for magnesium specimen 

 

Table 5-3 Comparison of the percentage reduction in compressive flow stress 

Sensor 

Reduction in mean flow stress for 
amplitudes of 

5 m 10 m 15 m 20 m 

Machine Load Cell 1 % 1.5 % 2.5 % 5 % 

Piezoelectric 
Force Transducer 

1 % 1.5 % 2.5 % 5 % 

 

 

Fig. 5-4 and Table 5-3 confirm agreement in the measurement of mean flow 

stress between the machine load cell and piezoelectric force transducer. The 

investigation of the effects of ultrasonic excitation on the mean flow stress and 

the oscillatory stress are presented in Fig. 5-5 and are studied for various 

ultrasonic amplitudes between 5 m and 20 m. For each measurement, the 

peak to peak amplitude of the oscillatory stress during the ultrasonic excitation 

of the die horn is recorded and these results are summarised in Table 5-4. 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 5-5 Mean flow stress and oscillatory stress measured by piezoelectric force transducer 
for (a) 5 m, (b) 10 m, (c) 15 m and (d) 20 m ultrasonic amplitude 

 

 

Table 5-4 Stress reduction and the magnitude of peak-to-peak oscillatory stress 

Ultrasonic 
amplitude 

Reduction in mean flow 
stress 

Amplitude of peak to peak 
oscillatory stress 

5 m 1 % 7.952 MPa 

10 m 1.5 % 13.917 MPa 

15 m 2.5 % 23.857 MPa 

20 m 5 % 29.821 MPa 
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Fig. 5-5 shows the static flow stress reduced when the ultrasonic vibration was 

introduced during the compression tests and it was also seen that the stress 

reduction is increased with ultrasonic vibration amplitude. The path of maximum 

oscillatory stress observed exceeds the static flow stress in all tests condition of 

elastic deformation for this material, however, the mean flow stress is lower 

than the static flow stress. The magnitude of peak-to-peak oscillatory stress is 

increased with ultrasonic vibration amplitudes. 

 

5.4.3 The material softening mechanism 

 

The effect that ultrasonic excitation has during the upsetting tests on aluminium 

and magnesium were investigated. In the stress-strain diagram, the ultrasonic 

vibration amplitudes were shown to have lowered the static flow stress during 

elastic deformation under dry contact conditions. The reduction in static flow 

stress increased with the ultrasonic vibration amplitude, and can be seen in Fig. 

5-6 for both tested materials, aluminium and magnesium. 

 
Figure 5-6 The relationship between stress reduction and ultrasonic vibration amplitudes 
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Fig. 5-6 shows the relationship between stress reduction, ∆�, and vibrational 

amplitudes during compression testing of aluminium and magnesium. The results 

in Fig. 5-6 shows that the percentage stress reductions are highly dependant on 

the metal of the specimen, as the softer metal exhibits larger stress reductions. 

It can also be seen that stress reduction increases with ultrasonic amplitude in 

the range of this study (5 m to 20 m) during elastic deformation.  

Fig. 5-5 shows that the maximum peak of oscillatory stress exceeded the static 

flow stress, however, the mean flow stress and the path of minimum oscillatory 

stress are lower than the static flow stress at the onset of ultrasonic excitation. 

The magnitude of the peak-to-peak oscillatory stress was measured and is shown 

in Fig. 5-7, and shows a linear increase with ultrasonic vibration amplitude 

between 5 m and 20 m. The magnitude of oscillatory stress is highly 

dependant on the vibration amplitude but this relationship is the same for both 

metals tested. 

 

 
Figure 5-7 The measurement of peak-to-peak oscillatory stress in the experimental test  
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To investigate the influence that volume and surface effects have on material 

softening during the experimental compression tests, a series of FE models were 

developed. The FE models adopted material softening effects in order to 

simulate realistic stress reduction compared with experimental results. The 

significant stress reduction in FE analysis was obtained by adjusting the yield 

stress and contact condition parameter that provided realistic predictions of the 

volume effect and surface effect. The adjustment in the yield stress and 

coefficient of friction for this study are followed the previous FE material model 

in Chapter 4. 

 

5.5 Incorporating ultrasonic excitation in the numerical 
model 

 

The effects of longitudinal ultrasonic excitation on the stress-strain relationship 

for elastic deformation were predicted in the FE analysis. A series of FE models 

was developed to investigate the influence of the material softening mechanism 

during superimposed ultrasonic vibration on the static compression test. For 

comparison, the results of the first and second FE models are presented with 

experimental results where ultrasonic excitation is superimposed at ultrasonic 

vibration amplitudes from 5 m to 20 m. The third and fourth FE models are 

presented individually, and are shown in the following section according to the 

material used in this study. 

 

5.5.1 Aluminium 

 

Fig. 5-8 to Fig. 5-11 show the mean flow stress and oscillatory stress that were 

experimentally measured and numerically predicted during superimposed 

ultrasonic excitation. The numerical results were predicted in the first and 

second FE models. For each measurement, the stress reduction and the peak-to-
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peak amplitude of the oscillatory stress during ultrasonic excitation of the die 

horn are summarised in Table 5-5. 

(a) (b) (c) 

Figure 5-8 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first FE models and (c) predicted in the second FE models 

for 5 m ultrasonic amplitude 

 

(a) (b) (c) 

Figure 5-9 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first FE models and (c) predicted in the second FE models 

for 10 m ultrasonic amplitude 

 

(a) (b) (c) 

Figure 5-10 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first FE models and (c) predicted in the second FE models 

for 15 m ultrasonic amplitude 
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(a) (b) (c) 

Figure 5-11 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first FE models and (c) predicted in the second FE models 

for 20 m ultrasonic amplitude 

 

Table 5-5 Stress reduction and amplitude of peak-to-peak oscillatory stress 

Vibration 
amplitude 

Stress reduction  Peak-to-peak oscillatory stress 

Piezoelectric 
force 

transducer 

The first 
FE Model 

The 
second FE 

Model 

Piezoelectric 
force 

transducer 

The first 
FE Model 

The 
second FE 

Model 

5 m 5 % 0.42 % 2 % 9.940 MPa 8.398 MPa 8.398 MPa 

10 m 10 % 2.99 % 7.5 % 15.904 MPa 16.793 MPa 16.789 MPa 

15 m 20 % 7.86 % 17.5 % 23.857 MPa 25.184 MPa 25.129 MPa 

20 m 35 % 14.07 % 30.5 % 27.833 MPa 33.565 MPa 32.660 MPa 

 

 

It can be seen that the results predicted in first FE model differed with the 

results measured by the piezoelectric force transducer. The results of the 

second FE model clearly show that a close match between the experiment and 

the FE model data is achievable by modelling the effects of superimposed 

ultrasonic excitation as a combination of an adjustment of material flow stress 

properties and interfacial contact condition. 

The third and fourth FE models were used to repeat the second FE model by 

introducing an adjustment to yield stress and coefficient of friction in order to 

predict the influences of volume effect and surface effect separately during the 

compression simulation. The predictive effects of superimposed ultrasonic 
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excitation on the adjustment to flow stress alone during elastic deformation are 

shown in Fig. 5-12. Meanwhile, the predictive effects of superimposed ultrasonic 

excitation of the adjustment on coefficient of friction alone during elastic 

deformation are shown in Fig. 5-13. For each measurement, the stress reduction 

and the peak-to-peak amplitude of the oscillatory stress are summarised in Table 

5-6. 

 

(a) (b) 

(c) (d) 

Figure 5-12 Stress reduction and oscillatory stress in aluminium, for FE model incorporating 
flow stress adjustment for (a) 5 m (b) 10 m (c) 15 m and (d) 20 m ultrasonic amplitudes 
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(a) (b) 

(c) (d) 

Figure 5-13 Stress reduction and oscillatory stress in aluminium, for FE model incorporating 
coefficient of friction adjustment for (a) 5 m (b) 10 m (c) 15 m and (d) 20 m ultrasonic 

amplitudes 

 

Table 5-6 Stress reduction and amplitude of peak-to-peak oscillatory stress 

Vibration 
amplitude 

Stress Reduction Peak-to-peak oscillatory stress 

The third FE 
Model 

The fourth FE 
Model 

The third FE 
Model 

The fourth FE 
Model 

5 m 1 % 1.17 % 8.398 MPa 8.397 MPa 

10 m 3.44 % 7.24 % 16.795 MPa 16.789 MPa 

15 m 8.43 % 16.75 % 25.155 MPa 25.172 MPa 

20 m 14.78 % 30 % 32.905 MPa 33.539 MPa 
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5.5.2 Magnesium 

 

A series of FE models simulating the compression test were adjusted by including 

effective material softening during superimposed ultrasonic excitation on 

magnesium. A comparison of results consisting of stress-strain curves for 

experimental result, and a first and a second FE models are shown in Fig. 5-14 to 

Fig. 5-17. The models consisting of a simulated compression test were developed 

without and with the adjustment to material yield stress and coefficient of 

friction. For each measurement, the stress reduction and the peak-to-peak 

amplitude of the oscillatory stress during ultrasonic excitation of the die horn 

are summarised in Table 5-7. 

 

(a) (b) (c) 

Figure 5-14 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first FE models and (c) predicted in the second FE models 

for 5 m ultrasonic amplitude 

 

(a) (b) (c) 

Figure 5-15 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first FE models and (c) predicted in the second FE models 

for 10 m ultrasonic amplitude 
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(a) 

 
(b) 

 
(c) 

Figure 5-16 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first FE models and (c) predicted in the second FE models 

for 15 m ultrasonic amplitude 

 

(a) (b) (c) 

Figure 5-17 Comparison of stress-strain data (a) measured by the piezoelectric force 
transducer, (b) predicted in the first FE models and (c) predicted in the second FE models 

for 20 m ultrasonic amplitude 

 

 

Table 5-7 Stress reduction and amplitude of peak-to-peak oscillatory stress 

Vibration 
amplitude 

Stress reduction Peak-to-peak oscillatory stress 

Piezoelectric 
force 

transducer 

The first 
FE Model 

The 
second FE 

Model 

Piezoelectric 
force 

transducer 

The first 
FE Model 

The 
second FE 

Model 

5 m 1 % 0.04 % 1.1 % 7.952 MPa 8.497 MPa 8.497 MPa 

10 m 1.5 % 0.1 % 1.63 % 13.917 MPa 16.995 MPa 16.996 MPa 

15 m 2.5 % 0.14 % 2.5 % 23.857 MPa 25.494 MPa 25.487 MPa 

20 m 5 % 0.17 % 5.05 % 29.821 MPa 33.995 MPa 33.238 MPa 
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For the third FE models, that considers adjustment of flow stress alone during 

elastic deformation, the results are shown in Fig. 5-18. For the fourth FE models, 

that considers adjustment on coefficient of friction alone during elastic 

deformation, the results are shown in Fig. 5-19. For each measurement, the 

stress reduction and the peak to peak amplitude of the oscillatory stress are 

summarised in Table 5-8. 

 

 

(a) 
(b) 

(c) (d) 

Figure 5-18 Stress reduction and oscillatory stress in magnesium, for FE model incorporating 
flow stress adjustment for (a) 5 m (b) 10 m (c) 15 m and (d) 20 m ultrasonic amplitudes 
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(a) (b) 

(c) (d) 

Figure 5-19 Stress reduction and oscillatory stress in magnesium, for FE model incorporating 
coefficient of friction adjustment for (a) 5 m (b) 10 m (c) 15 m and (d) 20 m ultrasonic 

amplitudes 

 

Table 5-8 Stress reduction and amplitude of peak-to-peak oscillatory stress 

Vibration 
amplitude 

Stress Reduction Peak-to-peak oscillatory stress 

The third FE 
Model 

The fourth FE 
Model 

The third FE 
Model 

The fourth FE 
Model 

5 m 0.04 % 1.1 % 8.497 MPa 8.497 MPa 

10 m 0.097 % 1.63 % 16.995 MPa 16.998 MPa 

15 m 0.14 % 2.506 % 25.495 MPa 25.487 MPa 

20 m 0.17 % 5.05 % 33.994 MPa 33.238 MPa 
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5.6 Discussion: The effects of superimposed ultrasonic 
excitation on elastic deformation 

 

An investigation into the effects of superimposed ultrasonic excitation on the 

static deformation of metals for aluminium and magnesium specimens was 

performed through experimental tests and FE simulations. The study was carried 

out by introducing the ultrasonic vibration prior to reaching the yield stress limit 

on the static compression test. The results shown in the previous section were 

characterised as the behaviours of material properties parameters under elastic 

deformation. The results were presented in four sets of FE models in order to 

observe the contributions of the effects which focused on two categories of 

mechanism, namely volume effect and surface effect. The mechanism effects 

can be predicted by simulating the ultrasonically assisted metal compression in 

the FE analysis. 

 

5.6.1 The ultrasonic excitation effects on stress reduction 

 

The results presented in this chapter shows that a flow stress reduction was 

measured on the elastic deformation for each of the test metals. Although, the 

static flow stress was reduced when the ultrasonic excitation was introduced, 

the percentage of stress reduction is slightly lower compared to the results 

which were shown in the findings for ultrasonically assisted metal compression 

during plastic deformation in Chapter 4. It was believed that the percentage of 

stress reduction was affected by the material reversible conditions during 

superimposed of ultrasonic excitation in elastic deformation.  

Finite element models were developed to predict the effects of stress reduction 

mechanisms in numerical terms. Four sets of FE models were developed in the 

FE analysis, which consisted of a combined adjustment to material flow stress 

and interface friction coefficient, adjustment to material flow stress only, 

adjustment to coefficient of friction alone and without any adjustment to flow 
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stress or coefficient of friction. As a result, the influence of the volume effect 

and surface effect could be predicted in terms of the stress reduction 

mechanisms. The stress reductions measured in the experimental test and 

predicted in the second FE models can be seen in Fig. 5-20, for aluminium and 

magnesium cylindrical specimens during ultrasonic deformation. This figure 

shows that the aluminium produced a higher percentage stress reduction 

compared to the magnesium. 

 

(a) (b) 

Figure 5-20 Reductions in static flow stress to mean flow stress during ultrasonic excitation 
from (a) experiment and (b) FE analysis 

 

 

5.6.2 The ultrasonic excitation effects on oscillatory stress 

 

An investigation of the peak-to-peak oscillatory stress during ultrasonic 

compression can provide significant information of the stress reduction effects. 

Observation of the oscillatory stress in experimental and FE analysis results 

demonstrated that the path of maximum oscillatory stress exceed the static flow 

stress, but the mean flow stress and the path of minimum oscillatory stress are 
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lower than the static flow stress. This phenomenon is exhibited in aluminium and 

magnesium specimens. The path of maximum oscillatory stress was affected by 

the material deformation condition either in elastic or plastic region. The 

superimposed ultrasonic excitation during elastic deformation resulted on the 

path of maximum oscillatory stress exceeding the static flow stress, while the 

path of maximum oscillatory stress was lower than static flow stress if the 

ultrasonic excitation was applied in plastic deformation. The magnitude of peak-

to-peak oscillatory stress is plotted in Fig. 5-22. 

However, Fig. 5-3(c) and (d) for aluminium seem to have a lower path of 

maximum oscillatory stress during superimposed ultrasonic excitation at 15 m 

and 20 m. This can be explained in Fig. 5-21 which shows that the stress-strain 

results during the superimposed ultrasonic excitation at amplitude of 20 m.  

The ultrasonic excitation was introduced at 3% strain at which the specimen is 

expected to deform under elastic condition. During the superimposed ultrasonic 

excitation, oscillatory stress was measured and presented in terms of the path of 

maximum, minimum and mean oscillatory stress as Fig 5-10(a). An FE model was 

then used to simulate the mean flow stress and oscillatory stress, Fig. 5-10(c). 

These results implied that the static flow stress and mean flow stress are 

presented as two different material behaviours. Although ultrasonic was applied 

at 3% strain at all excitation levels at vibrational amplitudes of 15 m and 20 m 

it was found that the mean static flow stress was in the plastic region of 

deformation. At these vibrational amplitudes to ensure that both mean and 

static flow stress was within the elastic region, ultrasonic should have been 

applied at 2.4% strain. 

Experimental results reported by Izumi [81] are shown in Fig. 5-1. Izumi found 

that as strain levels increased that widening between static flow stress and 

mean flow stress occurred, however, when compared to Fig. 5-21 this behaviour 

was not observed. Izumi observed that above an vibrational amplitude threshold 

specimen experienced a significant increase in temperature and it was 

concluded that was accountable for the widening between the traces of static 

and mean flow stress. Although in this study, the specimen temperature was not 

measured the stress-strain behaviour did not show the widening. Therefore, it 
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can be determined that the compression test did not reach the vibrational 

amplitude that would induce significant heating observed by Izumi.   

 

 
Figure 5-21 Stress-strain results during superimposed ultrasonic excitation at amplitude of 

20 m 
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(a) 

 
(b) 

Figure 5-22 Peak-peak oscillatory stress amplitude from (a) experiment and (b) FE analysis 

 

Fig. 5-22 shows the effectiveness of oscillatory stress with a series of ultrasonic 

vibration amplitudes employed. The oscillatory stress are observed to almost 

linearly increase with the ultrasonic vibration amplitudes for both analytical and 

numerical methods. Fig. 5-22 also shows that the magnitude of peak-to-peak 

oscillatory stress was in the same result for each ultrasonic vibration amplitude 

applied in the aluminium and magnesium. 

 

5.6.3 The influence that amplitude of vibration has on stress 
reduction mechanisms 

 

Volume effect and surface effect can be predicted by simulating the 

superimposed ultrasonic excitation on static compression during an elastic 

deformation in the numerical analysis. The adjustment to the material flow 

stress and the coefficient of friction in FE model can predict the contributions of 

each mechanism. Similar to Chapter 4, the influence that surface effect and 

volume effect has on material softening was predicted by plotting the 

percentage of stress reduction to vibration amplitude. This relationship is shown 

in Fig. 5-23. The measurement of the ∆� − ��� value is summarised in Table 5-
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9. The results are presented in Fig. 5-24 and show that for elastic deformation, 

the surface effect of effective material softening dominates the stress-strain 

behaviour during superimposed ultrasonic excitation. 

The effect of material softening has been considered by most investigators to be 

a combination of three effects; stress superposition, friction reduction and 

acoustic softening during elastic-plastic deformation [4, 5, 64, 107], Fig. 4-14. 

However, the mechanism of material softening in the elastic deformation has 

not been adequately explained. Nevill and Brotzen [25] believed that reduction 

in stress can be explained by a mechanism of superimposition of steady and 

alternating stress, while other investigators [24, 88, 133] have suggested that 

the stress is reduced because of vibrational energy is absorbed at dislocation 

sites. As mentioned in literature, the superposition of stress was achieved when 

the oscillatory stress is greater than the required stress to induce plastic 

deformation, however, if the oscillatory stress is lower than the required stress 

the specimen will not yield, the mechanism of stress superposition will not 

attain and the stress reduction will not occurr. Nevill and Brotzen also observed 

that the decrease in stress was independent of the prior strain for a value of 

average permanent elongation up to 15% during ultrasonic tensile testing of 

wire. This result showed that the mechanism of stress reduction was measured 

in the absence of surface effect. Stress superposition usually occurred due to 

material's elastic-plastic property. If only the stress superposition is in effect 

without acoustic softening, the path of the maximum oscillatory stress was 

consistent with the static stress without vibration in plastic deformation [107]. 

Therefore, in this study, the contribution of friction reduction and stress 

reduction have been predicted with respect to stress superposition. However, 

the mechanism of the superposition of stress was not achieved during 

superimposed ultrasonic excitation in the elastic deformation and the FE 

simulation in the result predicted that a reduction in flow stress resulted in a 

minor decrease, when compared to the influence of the friction reduction. This 

account that the surface effect is a dominant contribution of stress reduction in 

the upsetting operation. Since, the mechanism of stress superposition was not 

significant in elastic region caused the reduction in mean flow stress was very 

small compared to the amount of peak-to-peak oscillatory stress resulted the 

path of maximum oscillatory stress exceeded than static flow stress. 
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(a) 

 
(b) 

Figure 5-23 The percentage of stress reduction in adjustment to material flow stress and 
contact conditions for (a) aluminium and (b) magnesium 

 

 

Table 5-9 The measurement of  - USA value 

Material 

 - USA value, mm-1 

experiment 
combined 

adjustment 

adjustment to 
material 

properties 

adjustment to 
contact 

conditions 

Aluminium 15.00 1.28 6.15 12.39 

Magnesium 2.10 2.14 0.09 2.14 
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Figure 5-24 The contribution to stress reduction of volume and surface adjustments in the 

FE model 

 

5.7 Conclusion 

 

Superimposed ultrasonic excitation on elastic compression has been carried out 

for aluminium and magnesium cylinder specimens, and the effects of this the 

excitation on metal specimens has been investigated. Previously, in Chapter 4, 

superimposed ultrasonic excitation applied during plastic deformation had 

discussed the influence of surface effect and volume effect in stress reduction 

mechanisms. Elastic deformation was known to have material reversible 

conditions during the deformation, therefore the explanation in reduction 

mechanisms was interpreted differently in elastic deformation. It was shown 

that the path of maximum oscillatory stress was exceeded the static flow stress. 

An investigation aiming to characterise the materials behaviour during the 

superimposed ultrasonic excitation on elastic deformation can explain the 

reduction mechanisms, namely volume effect and surface effect. As a result, a 

reduction in static flow stress was shown in ultrasonically assisted metals 

compression on elastic deformation and the results were exhibited using 

experimental and numerical analysis for all of the metals used. 
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The effectiveness of the reduction mechanisms on volume effect and surface 

effect has been studied, and it can be concluded that the surface effect 

mechanism has dominated the stress reduction during the metals upsetting test 

on elastic deformation. It is believed that it did not affect the volume effects 

mechanism because of the material strain recovery factor in elastic 

deformation. The effectiveness of the reduction mechanisms were also 

considered to be dependent on the compressive strength of the metal samples, 

where the softer material exhibited a higher percentage of stress reduction than 

harder material.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER 6 

STATIC-ULTRASONIC EXCITATION IN METAL PLATE 
FORMING 

 

6.1 Introduction 

 

Metal forming processes are among the most common material processes in 

manufacturing technology. It is a manufacturing process by which parts or 

components are forming from a plate, sheet, bar, rod, wire or tubing of various 

cross-sections. Metal-working of a plate is generally known as a sheet metal 

forming process. Meanwhile, the term of press-working or press forming is used 

commonly in industry to describe sheet-forming operations, because they 

typically are performed on presses using a set of dies. The most well known 

metal forming processes in industry are; rolling, forging, extrusion, drawing, 

sheet metal forming and joining. In order to reduce the manufacturing cost of a 

serviceable part, thorough knowledge of all possible methods of producing the 

part is required in order to select the best process or combination of processes. 

Since these operations occur within a high-volume industry, even small 

improvements in material properties, simulations, and manufacturing costs will 

translate into substantial savings. Power ultrasonics has the potential to benefit 

these manufacturing process. Blaha and Langenecker [24] first investigated the 

benefits of superimposing ultrasonic excitation during the metal forming 

process. A large number of investigations have since clearly reported that the 

principal effect of an ultrasonically assisted metal forming process is a reduction 

in forming load [41, 59-63]. 

In the fields of high power ultrasonics, the oscillatory systems which consists of 

an ultrasonic transducer, horn and working tool can be designed with various 

shapes and excited to vibrate in different vibrational modes such as longitudinal 

mode, torsional mode, flexural mode and composite vibrational mode [154]. The 

ultrasonic transducers are used to convert the electrical input signal from an 
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ultrasonic generator into ultrasonic vibration, the ultrasonic horn connected to 

the transducer is used to amplify the vibration amplitude, and the working tool 

is used to radiate ultrasonic energy into the workpiece. As described in Chapter 

3, the ultrasonic vibration amplitude generated by the ultrasonic transducer is 

based on the piezoelectric effect which occurs if a rapidly reversing charge is 

applied to a piezoelectric material to expand or contract the material. The 

amplitude of material fluctuations will depend on the applied charge voltage. 

The effect of ultrasonic excitation on the deformation behaviour of metals has 

been under investigation for many decades [24]. It was found that during 

deformation, the application of power ultrasonic excitation to the specimen 

reduces the yield strength of the material, thus reducing the forming force. 

Other reports in 1970s [152, 153, 155] discussed experiments on different 

materials to study the effect of applying ultrasonic excitation during 

deformation. Material softening effects were observed and it was found that the 

reduction in yield strength is proportional to the applied ultrasonic vibration 

amplitudes. Rozner [41] performed experimental studies on ultrasonic assisted 

strip drawing and reported reduction in forming load and coefficient of friction. 

They observed that the ultrasonic excitation did not affect mechanical 

properties or microstructure of the drawn metal. In 1998 Jimma et al. [62] 

investigated an ultrasonic deep drawing process and found that ultrasonic energy 

not only reduces the drawing force, but also increases the limiting drawing ratio. 

Later, Murukawa et al. [63, 114] performed experimental studies on ultrasonic 

assisted wire drawing by applying ultrasonic excitation in both the radial and 

axial directions, finding that radial vibration was more effective in decreasing 

the drawing force and increasing the drawing speed than axial vibration. In 2007 

Ashida and Aoyama [59] performed experimental studies of press forming by 

using superimposed ultrasonic excitation of the die, and found that by applying 

ultrasonic vibration, wrinkling and cracking could be avoided. 

However, these findings have not offered a conclusive explanation of the load or 

stress reduction mechanism. Previously, in the literature, Blaha and Langenecker 

[24] explained that the flow stress reduction was due to activation of 

dislocations during superimposed ultrasonic excitation. However, Nevill and 

Brotzen [25] argued that Blaha and Langenecker's work did not provide any 

correlation between the experimental and theoretical models of dislocation 
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movement and energy absorption. They proposed a model of superimposition of 

alternating acoustic stress to explain the stress reduction mechanism. In their 

study, a model of stress superposition effect was introduced as in Fig. 6-1. This 

model that explained to induce yield, a minimum stress, Sy, is required. For the 

case of �� > � + �, where � is static flow stress and � is the stress amplitude, 

the material would not yield. For the case of �� < � + �, the material for a 

portion of the vibration cycle, is subjected to a total stress greater than that 

required to induce plastic deformation. The stress superposition effect was 

clarified by Kirchner et al. [36] for low frequency oscillation applied in a series 

of compression tests. They reported that the path of the maximum oscillatory 

stress will follow the path of static flow stress curve and the path of mean flow 

stress will be lower than and parallel to the static flow stress curve in a strain 

rate independent material. In a strain rate dependent material, the path of the 

maximum oscillatory stress will be parallel to, but can be higher than the static 

flow stress. This two descriptions are shown in Fig. 6-2.  

 

 
Figure 6-1 Stress superposition effects [25] 
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(a) 

 
(b) 

Figure 6-2 Superimposition principle where an oscillatory stress is superimposed on a static 
flow stress, showing (a) rate independent and (b) rate dependent elastic-plastic material [36] 

 

This chapter aims to further the understanding behind these finding through 

investigating a forming test to measure the effects that superimposing ultrasonic 

vibrations on the die, which is tuned to a longitudinal mode at 20.8 kHz, has on 

the force-displacement measurements. The reason is the measurements can be 

directly measured from the piezoelectric force transducer and machine load cell 

which it does not effected by changes of contact area between punch, specimen 

and die when measured in the stress-strain data. Earlier studies [28, 74, 75, 81, 

156] focused on the influence of ultrasonic oscillations on the internal stresses 

during the plastic flow of metal and as well as interfacial friction effects. Many 

of these studies have been associated with the development of ultrasonic 

metalworking processes related to industrial applications such as die forming, 

wire drawing and extrusion [59, 62, 63, 76, 77]. In all of these studies, the 

evaluation of the benefits of ultrasonic excitation relied on measurements of the 

mean forming force only and not on measurement of the oscillatory force during 

ultrasonic excitation. 

Therefore, this study explains the results of a simple forming test where samples 

of flat sheet metals are forced into a shaped die by a shaped plunger on a test 

machine. The die is part of a tuned ultrasonic horn, therefore ultrasonic 

excitation can be applied during the tests but, crucially, tests can be performed 

with and without ultrasonic excitation. The design and tuning of the ultrasonic 

horn is achieved using finite element modelling (FEM) and experimental modal 
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analysis (EMA). During experimental forming tests both the plunger and 

piezoelectric force transducer are attached to the cross-head of the test 

machine of which the latter is used to measure the static-oscillatory force. The 

results will illustrate how ultrasonically assisted metal forming can lower the 

static forming force during ultrasonic excitation of the die and, further, 

investigate the oscillatory force during an ultrasonic forming process. 

In this chapter, four sets of forming test setup were used to investigate the 

effect of ultrasonic excitation on the metal forming process. The design of the 

experiment setup was based on the forming of a single plate of metal between a 

shaped die and plunger. Each set of experimental setup and results is discussed 

in a separate section. These differences forming the test setup were used to 

examine the significant effects between exciting the die and exciting the punch.  

 

6.2 The static-ultrasonic metal forming test on excited die 

 

6.2.1 Experimental setup 

 

In this experiment, the specimen was formed between two types of punch and 

die setup. The ultrasonic forming test setup is shown in Fig. 6-3 and consists of 

an ultrasonic transducer, a booster and an ultrasonic horn, all tuned to their 

first longitudinal mode of vibration at 20.8 kHz. The system was held in a 

structure that allowed it to be connected to the table of the Zwick Roell test 

machine, while the punch device consists of a punch tool and a piezoelectric 

force transducer which was attached to the cross-head of the Zwick Roell 

machine. 
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Figure 6-3 A schematic illustration of the apparatus for static and ultrasonic forming tests 
with insert zoom at punch tool and ultrasonic die horn. 

 

The tuned booster was included to allow a flange to be incorporated between 

the transducer and the die horn in order to provide a nodal mounting to the test 

machine. The forming die in this study was the output end of the ultrasonic horn 

and is shown in the zoomed insert in Fig. 6-3. The die horn and booster were 

designed using FE modelling, with the booster designed using the five-element 

horn configuration described by Peshkovsky [137]. The die horn and booster are 

manufactured from titanium alloy (Ti-6Al-4V) and were modelled fully with 3D 

quadratic elements in Abaqus. The FE model predicted that the longitudinal 

mode of the booster plus die horn was 20.74 kHz, while the modal frequency 

determined experimentally from EMA was found to be 20.8 kHz for the 

longitudinal mode. The horn and booster details were discussed in Chapter 3. 

The ultrasonic transducer can provide ultrasonic amplitudes of up to 10 µm, 

depending on the generator setting, therefore the profile of the booster and 

horn are designed to amplify this amplitude and further allowing higher 

ultrasonic amplitudes to be achieved. The system was connected to a booster 

plate holder and four titanium alloy pillars that can be fixed to the test 

machine. 
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6.2.2 Experimental procedure 

 

In these experiments, flat sheet metal specimens are compressed between a 

small bowl-shaped die and a round and a flat-nosed punch. The die consists of a 

tip of the ultrasonic horn tuned to a longitudinal mode at 20.8 kHz and is excited 

by a piezoelectric transducer. The punch tool is connected to the cross-head of a 

Zwick-Roell test machine which provides a constant cross-head speed of 5 

mm/min. The punch profile used, shown in Fig. 6-4, consists of a round punch 

and a flat punch tool. A Kistler force transducer is mounted between the punch 

and the cross-head, as shown in Fig. 6-5, to measure the static-oscillatory force 

response during each test. The recorded signal response is acquired using 

SignalCalc ACE hardware and software for data processing. The forming tests 

where conducted on two different commercial metals, aluminium and die cast 

magnesium, so the effects of ultrasonic excitation on the forming loads could be 

compared. 

  

 

 
(a) 

 
(b) 

Figure 6-4 The profiles of (a) round punch and (b) flat punch tool 
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Figure 6-5 Ultrasonic metal forming test set-up 

 
 

 
 

(a) (b) 
 

Figure 6-6 The specimen deformation by (a) flat punch and (b) round punch 

 

 

The specimen was placed between the punch and die during the deformation, 

and is illustrated in the FE model, Fig. 6-6. Each specimen of 3 mm thick plates 

was cut to a size of 30 mm  30 mm. The configuration was chosen in order to 

reduce the plate oscillations at its free ends. A series of static and ultrasonic 

forming tests were performed at a constant cross-head speed under dry surface 

conditions. The plate was compressed to approximately 1 mm displacement, as 

measured by the machine cross-head, at which point the ultrasonic excitation 

was applied by the ultrasonic horn. It was measured that the superimposed 

ultrasonic excitation is applied in the plastic deformation region.  

piezoelectric force 
transducer 
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Two sets of data were recorded during the test. The first set of force data was 

recorded from the load cell in the cross-head of the machine for four ultrasonic 

amplitudes of the horn; 5 µm, 10 µm, 15 µm and 20 µm. The second set of data 

was recorded for these ultrasonic amplitudes, and the forces were measured 

using the piezoelectric force transducer mounted between the punch and the 

machine cross-head. For all of the tests reported here, the tests were stopped at 

a cross-head displacement of 3 mm due to the die bowl height. However, the 

testing machine is programmed to stop if the applied load is close to exceeding 

the maximum limit of the piezoelectric force transducer. 

 

6.2.3 Experimental results 

 

Two sets of data are presented for the ultrasonic assisted forming tests. The 

data sets consist of a result from the test machine load cell and a couple of 

results from the Kitsler force transducer. 

 

6.2.3.1  Force measurement using machine load cell on the flat 
punch forming test 

 

Fig. 6-7 depicts the force-displacement curves measured for static and static-

ultrasonic forming tests on the two different metal specimens. During ultrasonic 

excitation of the die, approximately at displacement between 1mm and 1.5mm, 

the mean forming force is recorded by the machine load cell and clearly exhibits 

a reduction in the static forming force in all tests, which was increased with 

ultrasonic vibration amplitude. The results in terms of the percentage reduction 

in the static forming force are summarised in Table 6-1. 
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(a) 

 
 
 
 
 
 
 
 
 

 

 
(b) 

 

 

Figure 6-7 Flat punch forming tests with and without ultrasonic excitation of the die on (a) 
aluminium and (b) magnesium 

 

 

Table 6-1 Reduction in the static forming force for the flat punch forming test 

Material 
Reduction in static forming force for amplitudes of 

5 m 10 m 15 m 20 m 

Aluminium 3.5 % 7 % 9.5 % 13 % 

Magnesium 1.4 % 2 % 2.8 % 4.5 % 

 
 

 

6.2.3.2 Force measurement using machine load cell on the round 
punch forming test 

 

Fig. 6-8 shows force-displacement results measured by the machine load cell 

during static and static-ultrasonic excitation of the die for aluminium and 

magnesium. During the test, the static forming force was reduced by the 

introduction of ultrasonic excitation on the die at displacement of 1mm and the 

force reduction clearly increased with ultrasonic amplitude. The results in terms 

of the percentage reduction in static forming force when using the round punch 

are summarised in Table 6-2. As seen in Fig. 6-8(b) the force-displacement 
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curves appear in smooth line at the beginning of the deformation until 

displacement of 2mm, the curves start to ripple. The reason is the plate 

specimen starts to break after 2mm of the displacement but the punch continues 

deform until to the end of deformation.  

 

  

 
(a) 

 
 
 
 
 
 
 
 
 

 

 
(b) 

 

 

 

 

Figure 6-8 Round punch forming tests with and without ultrasonic excitation of the die on (a) 
aluminium and (b) magnesium 

 

 

Table 6-2 Reduction in static forming force for the flat punch forming test 

Material 
Reduction in static forming force for amplitudes of 

5 m 10 m 15 m 20 m 

Aluminium 3.5 % 7.5 % 12 % 20 % 

Magnesium 1.6 % 2.2 % 4.5 % 7 % 
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6.2.3.3  Mean forming force and oscillatory force measurement 
on the flat punch forming test using the piezoelectric 
force transducer 

 

The measurement data presented in Fig. 6-9 and Fig. 6-10 show the oscillatory 

force and mean forming force measured by the piezoelectric force transducer 

for a series of ultrasonic vibration amplitudes. For each measurement, the peak-

peak amplitudes of the oscillatory force during ultrasonic excitation of the die 

horn are summarised in Table 6-3. 

 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 6-9 Flat punch forming tests showing the measured mean forming force and 
oscillatory force on aluminium for (a) 5 m, (b) 10 m, (c) 15 m and (d) 20 m ultrasonic 

amplitude 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 6-10 Flat punch forming tests showing the measured mean forming force and 
oscillatory force on magnesium for (a) 5 m, (b) 10 m, (c) 15 m and (d) 20 m ultrasonic 

amplitude 

 

 

Table 6-3 Amplitude of peak to peak oscillatory force on the flat punch forming test 

Material 
Peak to peak oscillatory force for amplitude of 

5 m 10 m 15 m 20 m 

Aluminium 440 N 740 N 1060 N 1400 N 

Magnesium 350 N 700 N 1000 N 1200 N 
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6.2.3.4  Mean forming force and oscillatory force measurement 
on the round punch forming test using the piezoelectric 
force transducer 

 

Measurement of mean forming force and oscillatory force using a piezoelectric 

force transducer was repeated for the round punch forming test. Observation of 

oscillatory force behaviour during the forming test could be used to interpret the 

beneficial effects of static forming force. Fig. 6-11 and Fig. 6-12 show the force-

displacement diagrams for the measurement of the mean forming force and 

oscillatory force during the test of aluminium and magnesium, respectively. 

Calculations for the peak to peak oscillatory force are summarised in Table 6.4. 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 6-11 Round punch forming tests showing the measured mean forming force and 
oscillatory force on aluminium for (a) 5 m, (b) 10 m, (c) 15 m and (d) 20 m ultrasonic 

amplitude 
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As can be seen in Fig. 6-11 and Fig. 6-12, the measurement of mean forming 

force and oscillatory force did not produce a smooth force displacement curves 

during plastic deformation as observed in previous plots. A drop of force can be 

observed at between a displacement 2.0 mm and 2.5 mm in Fig. 6-11(b), (c) and 

(d). This can be accounted to drop in ultrasonic energy being applied to the via 

the transducer. This was also observed in Fig. 6-12 (b), (c) and (d) between a 

displacement of 1.5 mm and 2.0 mm, however, it can also be observed that in 

this behaviour continues above a displacement of 2.0 mm, while this was not 

seen above a displacement 2.5 mm in Fig. 6-11. This stems from the fact that 

the magnesium sample began to break at a displacement of 2 mm while the 

break point of aluminium sample was found to lie above the maximum 

displacement of 3 mm.    

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

Figure 6-12 Round punch forming tests showing the measured mean forming force and 
oscillatory force on magnesium for (a) 5 m, (b) 10 m, (c) 15 m and (d) 20 m ultrasonic 

amplitude 

    



Chapter 6  180 

Table 6-4 Amplitude of peak to peak oscillatory force on the round punch forming test 

Material 
Peak to peak oscillatory force for amplitude of 

5 m 10 m 15 m 20 m 

Aluminium 300 N 700 N 900 N 1200 N 

Magnesium 200 N 350 N 500 N 800 N 

 

 

6.2.4 Discussion of the effect of ultrasonic excitation on the 
static forming force and oscillatory force 

 

A study of forming on single materials plates between a vibrated bowl shaped 

die and flat and round punches illustrated that superimposed ultrasonic 

excitation on a static forming test can produce beneficial effects on the material 

forming force. Two different commercial metals were used and four ultrasonic 

amplitudes were generated on the die to investigate the effect of ultrasonic 

excitation. The measurement results data recorded were plotted in force-

displacement diagrams and it was found that the punch shape has significant 

influence on the static forming force which can be seen in Fig. 6-13. 

In this study, the results were not measured in a true stress-strain diagram in 

order to explain the beneficial effect of ultrasonic excitation on the forming 

process. To create true stress-strain diagrams, a constant contact area, or if the 

contact area changes with respect to process duration, this change in area 

throughout the process is required. However in these experiments the change in 

contact could not be measured due to the shape of the die and punch. 
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(a) (b) 

Figure 6-13 The influence of punch shape on static forming force for (a) aluminium and (b) 
magnesium during metal forming test 

 

During ultrasonic excitation of the die, the mean forming force recorded by the 

machine load cell clearly exhibits a reduction in the material forming force in all 

tests, which was increased with the ultrasonic vibration amplitudes. These 

results demonstrate that the effect of ultrasonic excitation of the die in metal 

forming is highly dependent on the material and the amplitude of vibration [24, 

65]. The force reduction measured is shown in Fig. 6-14 for flat punch and round 

punch forming tests. The reduction in material forming force is believed to occur 

because the vibration energy is absorbed by the material. This indicates an 

interaction between dislocations and the applied vibrations that enables 

deformation to proceed with a reduction in static forming force [75]. The 

movement of dislocation has been studied by Siu et al. [88] who investigated the 

microstructure of aluminium samples after they had undergone ultrasonic 

assisted indentation. It was found that samples exposed to ultrasonics during 

indentation exhibited enhanced subgrain formation in the microstructure after 

the deformation process. Siu et al. observed similar subgrain formation in 

samples which had undergone global heating, this suggested that subgrain 

formation in samples exposed to ultrasound experienced localised heating. It 

was also observed that dislocations could travel further in a given length of time 

in areas containing subgrain formation, providing evidence that ultrasonics could 

enhance dislocation motion. 
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(a) (b) 

Figure 6-14 The percentage of force reduction in ultrasonic amplitudes measured in the 
experimental test for (a) flat punch and (b) round punch forming test 

 

 

(a) (b) 

Figure 6-15 The peak-to-peak oscillatory force in ultrasonic amplitudes measured in the 
experimental test for (a) flat punch and (b) round punch forming test 
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The material softening can be explained by analyzing the oscillatory force 

measurements. The measurement of peak-to-peak oscillatory force is shown in 

Fig. 6-15 and it is seen to be proportional to ultrasonic vibration amplitudes for 

both the round and flat punch. It was found that the magnitude of oscillatory 

force is very similar for aluminium and magnesium in flat punch forming but 

significantly different in round punch forming.    

The measured force-displacement relationship in the plate experiment followed 

the definition of oscillatory stress superposition as described earlier. For all 

experimental results shown in Fig. 6-9 to Fig. 6-11 illustrate the maximum path 

of oscillatory force and mean forming force are followed by the path of the 

static forming force curve and mean forming force which is lower than and 

parallel to the static force-displacement curve for aluminium, however, in 

magnesium the path of maximum oscillatory is observed slightly higher than 

static forming force but the mean forming force is recorded lower than and also 

parallel to the static force-displacement. Fig. 6-14 shows that the test using the 

round punch showed a high percentage force reduction compared to the flat 

punch. 

On the other hand, this result also demonstrates that the effect of ultrasonic 

excitation of the die in metal forming is highly dependent on the material, 

where aluminium shows a higher percentage force reduction than die cast 

magnesium. It is shows that ultrasonic excitation could offer beneficial effects in 

terms of forming force, particularly for softer metals. For harder materials, it 

becomes more difficult to achieve significant forming force reduction benefits 

from ultrasonic energy of the forming tools because of the high forming loads 

required for metal forming processes. To progress these processes for harder 

metals, a more powerful ultrasonic transducer and generator system which can 

enable increased levels of ultrasonic energy into the material, should be 

utilised. 
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6.3 The static-ultrasonic metal forming test on excited die 
by modified ultrasonic generator system 

 

6.3.1 Experimental setup 

 

The same experimental setup was then performed for the second set of static-

ultrasonic metal forming test as for the first set of static-ultrasonic metal 

forming test described in the previous section. A modification has been made to 

the ultrasonic generator which increases the electrical power supply to the 

transducer. Four more pieces of equipment were added to the experimental 

setup; a power amplifier, a voltage control and analyzer, transformers and a 

cooling fan. This new set-up of equipment can generate up to 1 kW electrical 

power supply to the ultrasonic transducer.  

 

6.3.2 Experimental procedure 

 

In this experiment, the die horn was excited by a piezoelectric transducer driven 

by the modified ultrasonic generator. The punch was connected to the cross-

head of a Zwick-Roell test machine which provided a constant cross-head speed 

of 5 mm/min. After a 1 mm cross-head displacement, ultrasonic excitation was 

introduced. The ultrasonic amplitudes provided to the die horn were related to 

the range of electrical power from 100 Watts to 1000 Watts using the power 

amplifier. The static forming force and mean forming force were measured by 

the machine load cell. The tests were stopped at a cross-head displacement of 3 

mm. Forming tests on two different metals were conducted to measure the 

effects of ultrasonic excitation of the forming die; aluminium and magnesium. In 

this study, the die amplitude could not be monitored due to a modification to 

the original 500W ultrasonic transducer system. Therefore, the amplitude of the 

ultrasonic  die amplitude was controlled manually through a power amplifier. 
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In this system, the ultrasonic generator in Fig. 4-4(b) is used to supply an 

electrical power to the transducer was replaced to a power amplifier, voltage 

controller and analyser, transformers and cooling fan in order to develop a new 

ultrasonic system which could increase the ability to supply the electrical power 

up to 1kW to the transducer. Basically, the current ultrasonic generator used 

offers a facility of monitoring both amplitude and acoustic power and the 

transducer output generated at the end of transducer was controlled by the 

input voltage in the generator. The generator was set up to produced a limited 

input voltage in order to deliver at maximum amplitude of 10 m. The new 

setup of ultrasonic system could increased the range of input voltage thus 

increased the ultrasonic amplitude. In this new ultrasonic system, the range of 

input voltage was monitored by changing the electrical power supply to the 

transducer. However, the new ultrasonic system has limit the maximum power 

supply at 1 kW in order to avoid damage the transducer and transformers. It was 

expected that the new system of generator could produce higher ultrasonic 

amplitudes by increased the electrical power supply to the transducer. However, 

in this study, the ultrasonic amplitudes were not measured due to lack of 

monitoring equipment and the amplitudes are difficult to control consistently 

throughout the ultrasonic loading. 

     

6.3.3 Experimental results 

 

Fig. 6-16 and Fig. 6-17 show the measured mean forming force from the round 

punch and flat punch forming tests for the range of power input to the 

transducer. These results clearly showed the static forming force reduction 

achievable with the modified ultrasonic generator. Fig. 6-16 and Fig. 6-17 show 

that the static forming force immediately drops when ultrasonic excitation is 

introduced at a displacement of 1mm, and can be observed for both metals. 

However, these results show that the path of the mean forming force was not 

parallel to the static forming force and it could be observed that this deviation 

from a parallel path was increased for increased power. 
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During superimposed ultrasonic excitation, it was noticed that specimen 

temperature was increased and it was also found that the material was softened 

around the outer circle of the deformation. This effect is due to thermal 

softening due to friction [90] where friction at the interface causes heat 

generation . In this study, it was found that the superimposed ultrasonic 

excitation reduces the material's yield force significantly. However, the force 

reduction effect was not only influenced by reduction in forming force but also 

by the surface effect of relative motion of surfaces, where there are significant 

temperature rises then softening due to frictional heating should also be 

incorporated as a material softening effects [90]. The high temperature is a 

feature of the higher input power and was not a feature of results using the 

lower power system. In this study, the temperature rise was not expected 

occurred during the experimental test therefore the heat generated on the 

material was not measured even it was a major concern during the superimposed 

ultrasonic excitation on metal forming.  

Table 6-5 and Table 6-6 present the percentage force reduction for aluminium 

and magnesium samples during round punch and flat punch forming tests, while 

Fig. 6-18(a) and (b) show the force reduction against input power. It can be 

observed that the material forming force reduction increased in proportion with 

the electrical power, however, it was found that during superimposed ultrasonic 

excitation, it was difficult to retain consistent vibration ultrasonic energy to the 

material. It can also be seen that the modified system achieved a very 

significant reduction in static forming force for both metals tested. The 

inconsistency in ultrasonic energy can be seen in Fig. 6-16 and Fig. 6-17 for both 

aluminium and magnesium which as the force-displacement diagram does not 

provide smooth curve under superimposed ultrasonic excitation. This condition is 

obviously occurred with higher input power. However, Fig. 6-16(b) shows that 

when the magnesium specimen was compressed by the round punch it broke at a 

displacement of 2.5 mm and which can be seen as ripple lines in the trace. As 

there is a widening between the static and mean forming forces, the percentage 

drop of force was measured at the point at which ultrasonics was applied. This 

allowed comparisons to be made between the drop in force at each power level. 
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(a) (b) 

Figure 6-16 Measured mean forming force by electrical power supplied to ultrasonic 
generator for (a) aluminium and (b) magnesium on round forming punch 

 
 
 
 

(a) (b) 

Figure 6-17 Measured mean forming force by electrical power supplied to ultrasonic 
generator for (a) aluminium and (b) magnesium on flat forming punch 
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Table 6-5 Reduction in mean forming force by electrical power supplied to ultrasonic 
generator on the round punch forming test 

Power intensity of 
ultrasonic transducer 

Reduction in mean forming force for material of 

Aluminium Magnesium  

100 Watts 10 % 1 % 

200 Watts 30 % 5 % 

300 Watts 50 % 10 % 

400 Watts 60 % 18 % 

500 Watts 67 % 22 % 

 
 

Table 6-6 Reduction in mean forming force by electrical power supplied to ultrasonic 
generator on the flat punch forming test 

Power intensity of 
ultrasonic transducer 

Reduction in mean forming force for material of 

Aluminium Magnesium 

100 Watts 13 % 0.8 % 

200 Watts 15 % 3 % 

300 Watts 16 % 6.3 % 

400 Watts 12 % 7.5 % 

500 Watts 22 % 10.2 % 

600 Watts 24 % 12.7 % 

700 Watts 25 % 14.1 % 

800 watts 45 % 14 % 

1000 Watts 60 % 15 % 

 

(a) (b) 

Figure 6-18 Force reduction with electrical power supplied to ultrasonic transducer on (a) 
round punch and (b) flat punch forming test 
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6.4  The static-ultrasonic metal forming test on excited 
punch 

 

6.4.1 Experimental setup 

 

A similar set-up was used in the third set of static-ultrasonic metal forming test 

as the first set of static-ultrasonic metal forming test described in previous 

section of 6.2. The setup of the third ultrasonic forming test is shown in Fig. 6-

19. In these experiments, the positions of the punch and die were inverted. The 

shaped punch consists of the tip of the ultrasonic horn which is tuned to a 

longitudinal mode at 20.8 kHz. The ultrasonic punch profile used is shown in Fig. 

6-20. In this case a tuned punch is excited at 20.8 kHz during the forming test 

and the bowl shaped die is moved by the machine cross-head. 

 

 

Figure 6-19 A schematic illustration of the apparatus for static and ultrasonic forming tests 
with insert zoom at bowl die and ultrasonic punch. 
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(a) 

 
(b) 

Figure 6-20 The profiles of the ultrasonic (a) round punch and (b) flat punch 

 

 

6.4.2 Experimental procedure 

 

The ultrasonic punch horn was excited by the 500W piezoelectric transducer. 

The die was connected to the cross-head of a Zwick-Roell test machine which 

provided a constant cross-head speed of 5 mm/min during measurements. 

Forming tests on flat 3mm thick plates manufactured from aluminium and 

magnesium were conducted to measure the effects of ultrasonic excitation of 

the forming punch. A series of static and ultrasonic forming tests were 

performed at ultrasonic vibration amplitudes of the punch horn between 5 µm 

and 20 µm. In these experiments, the specimen was compressed to 

approximately 1 mm displacement of die as measured by the machine cross-

head, at which point ultrasonic excitation was introduced to the ultrasonic 

punch horn. The die was continuously loaded for 3 mm displacement. The static 

forming force and mean forming force were measured by the machine load cell. 
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6.4.3 Experimental results 

 

Two sets of material forming force data were recorded from the machine load 

cell, and the force-displacement data can be seen in Fig. 6-21 and Fig. 6-22. The 

calculated force reduction is summarised in Table 6-7. 

Fig. 6-21 and Fig. 6-22 show that the static forming force dropped immediately 

after the ultrasonic excitation was introduced for the flat and the round punch, 

while the force reduction was shown to almost linearly increase with the 

ultrasonic vibration amplitude, Fig. 6-23. This result illustrated that a vibrated 

round punch more effectively reduces material forming force during the 

superimposed ultrasonic excitation compared to the result achieved by the 

vibrated die as described in the previous section. It was believed that there are 

good coupling between the bowl die, specimen and vibration punch, where the 

ultrasonic energy was fully absorbed by the material, enabling the deformation 

to proceed at a lower forming force. 

 

(a)  (b) 

Figure 6-21 Forming tests with and without ultrasonic excitation of the flat punch on (a) 
aluminium and (b) magnesium 
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(a) (b) 

Figure 6-22 Forming tests with and without ultrasonic excitation of the round punch on (a) 
aluminium  and (b) magnesium 

 

 

 

Table 6-7 Force reduction on a vibratory punch forming test 

Material 
Ultrasonic 
amplitude 

Reduction in mean forming 
force for a type punch of 

Round Flat 

Aluminium 

5 m 9 % 7 % 

10 m 18 % 16 % 

15 m 40 % 27.4 % 

20 m 60 % 33 % 

Magnesium 

5 m 2.5 % 1 % 

10 m 7 % 4 % 

15 m 11 % 7 % 

20 m 13.5 % 12 % 
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(a) (b) 
 

Figure 6-23 Force reduction to ultrasonic amplitudes on the static forming test for (a) round 
punch and (b) flat punch 

 

 

6.5 The static-ultrasonic metal forming test on excited die 
in different loading speed 

 

6.5.1 Experimental setup and procedure 

 

The same experimental setup was then performed for the fourth set of static-

ultrasonic metal forming test as for the first set of static-ultrasonic metal 

forming test described in the previous section. An investigation into the effect of 

force reduction during superimposed ultrasonic excitation during static forming 

tests with respect to forming speed was carried out. In this study, the specimen 

was pressed by into the die form using round punch. After a 1 mm punch 

displacement, the die was ultrasonically vibrated at 20 m along the axial 

direction during the process until 3 mm punch displacement. The range of speed 

was taken as 10 mm/min, 20 mm/min and 30 mm/min of machine cross-head 
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speeds. The static forming force and mean forming force were measured by the 

machine load cell. 

 

6.5.2 Experimental result and discussion 

 

Force reduction in forming speed changes is shown in Fig. 6-24 for aluminium 

and magnesium specimen. The measurement of force reduction with forming 

speeds are summarised in Table 6-8. 

Fig. 6-24 shows that static forming force reduced when a 20 m ultrasonic 

amplitude was introduced on the die and the path of mean forming force was 

observed parallel to the path of static forming force for all the forming speeds 

applied to the aluminium and magnesium specimens. It was found that the force 

reduction on metal forming process does not change with the forming speeds 

applied. This result shows an agreement with previous studies  [30, 37, 65, 67] 

where the effect of forming speed was independent to the effectiveness of the 

superimposed ultrasonic excitation during the forming test until the forming 

speed reached the critical maximum forming speed. The critical maximum 

forming speed was calculated as ��������� = 2��� where � is the amplitude and � 

is the tuned frequency. However, in this experimental test, the forming speed 

could not exceed 30 mm/min because of constraints in adequately supplying the 

ultrasonic energy from the piezoelectric transducer during the forming test. 
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(a) (b) 

Figure 6-24 Force reduction in forming speed changed for (a) aluminium and (b) magnesium 
specimens at 20 m 

 
 
 
 

Table 6-8 Percentage of force reduction in forming speeds 

Material Machine cross-head speed 
Percentage of force 

reduction measured by 
machine load cell 

Aluminium 

10 mm/min 18.5% 

20 mm/min 18.5% 

30 mm/min 15% 

Magnesium  

10 mm/min 5.5% 

20 mm/min 5% 

30 mm/min 5.5% 
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6.6 Conclusion 

 

The effects of the application of ultrasonic excitation in forming test on single 

metal plate have been investigated. During plastic deformation, longitudinal 

mode ultrasonic oscillations were superimposed on both shaped die and punch 

where different type of shaped punch applied. Four sets of static-ultrasonic 

metal forming test were carried out. The material static forming force, mean 

forming force and oscillatory force were measured during the ultrasonically 

assisted forming test. It can be concluded that the material static forming force 

was reduced by the ultrasonic excitation which applied on shaped punch and die 

tool. This result agreed with previous studies of metal forming processes showing 

that the material forming force is reduced by ultrasonic vibration of the forming 

tool and it was shown from measurement of the oscillatory force that a 

reduction in the material forming force is directly indicate of a benefit of 

ultrasonic excitation which is the path of maximum oscillatory force was 

observed to be parallel or below the path of static forming force in most cases. 

Better ultrasonic excitation systems were carried out in order to require more 

effectively couple the ultrasonic energy into materials which shows that the 

material mean forming force are significantly reduced during superimposed 

ultrasonic excitation on either punch tool or die horn.  

A study of the effect of ultrasonic excitation on the deformation behaviour of 

metal plates were investigated where forming force reduction was a major 

effect occurred during the superimposed ultrasonic excitation. Material 

softening effects were observed and it was found that the reduction in forming 

force is proportional to the applied ultrasonic vibration amplitudes. The material 

softening was generated by mechanisms of volume effect and surface effect 

which are influenced by the internal stresses during the plastic flow of metal 

and interfacial friction effect between the motion of tool and specimen. Further 

study on the mechanisms of volume effect and surface effect could provided a 

significant information since the constraints of changes of contact area, model 

of metal plate behaviours and monitoring measurement for ultrasonic amplitudes 

and material temperature can be solved. 



 

CHAPTER 7 

CONCLUSIONS 

  

7.1 Conclusions 

 

This thesis has presented experimental and finite element (FE) analyses of the 

static and ultrasonic forming of two metals; aluminium and magnesium. In this 

research, simple compression and forming tests were designed and the effects of 

superimposing ultrasonic vibrations on the tool and die, which is tuned to a 

longitudinal mode at 20.8 kHz, were studied via stress-strain measurements. 

Ultimately, a characterisation of superimposed ultrasonic excitation behaviour 

on static compression and forming tests was achieved. Findings on the 

effectiveness of ultrasonic excitation led the study to recognize that the lack of 

understanding of the effects of ultrasonic vibrations on the forming process has 

resulted in difficulties in maximising the benefits and applications of this 

technology. The results of this study illustrate how ultrasonically assisted metal 

forming can result in a lowering of the static flow stress, and the study shows 

how the benefits of ultrasonic excitation depend on the specimen material 

properties and the ultrasonic excitation parameters. 

This thesis has concluded that evaluation of the benefits of ultrasonic excitation 

not only relies on measurements of the mean flow stress but also on 

measurement of the oscillatory stress during ultrasonic excitation. An analysis of 

the oscillatory stress measurements, especially of the paths of maximum 

oscillatory stress and mean flow stress in the stress-strain diagram, provided 

information to explain the contributions of material softening and friction 

effects. This study has investigated the use of ultrasonic vibrations in metal 

forming, which were characterised by an effective softening of the material 

properties during the intervals of superimposed ultrasonic excitation. The 

magnitude of the stress reduction in the metal specimens was shown to be 
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dependant on the relationship of elastic-plastic deformation and on the 

amplitude of the ultrasonic vibration.  

The study began with the design of an ultrasonic excitation system, including 

ultrasonic booster and horn, all tuned to their first longitudinal mode of 

vibration at 20.8 kHz. The system was designed using analytical solutions and 

numerical finite element analysis, and was verified by experimental modal 

analysis. 

Subsequently, the experiments and FE model of an ultrasonic compression test 

were setup and developed in order to investigate the material softening 

mechanisms during superimposed ultrasonic excitation. In the static and 

ultrasonic compression tests, the metal specimens were compressed between 

two flat platens under dry surface conditions in plastic deformation. 

Consequently, a significant stress reduction was exhibited under ultrasonic 

excitation. The characteristics of the material softening effects were then 

illustrated in the stress-strain diagram by plotting the mean flow stress path and 

oscillatory stress curve. Material model parameters were developed from the 

experimental results using stress-strain behaviour data which provided the value 

of the material dependent constant, � and coefficient of friction, . 

An FE model was developed using these material model parameters which were 

identified from the experimental analysis. In this numerical study, the 

magnitude of the oscillatory stress, the maximum oscillatory stress and the mean 

flow stress were predicted during a simulation of superimposed ultrasonic 

excitation on the metal compression test. The FE model was used to investigate 

numerically the influence of the volume effect and surface effect on the 

resulting stress-strain relationship. This was achieved by adjusting the material 

property and contact condition parameters in the FE model to provide a match 

between experimental and numerical analysis data. 

The FE model allowed the influence of the volume effect and surface effect to 

be studied separately. It was found that, in achieving a close match between 

experimental and numerical data, the volume effect significantly dominated the 

resulting oscillatory stress data during superimposed ultrasonic excitation in 

plastic deformation. Also, analysis of the oscillatory stress was shown to provide 
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a more meaningful interpretation of superimposed ultrasonic excitation on metal 

plastic deformation. In this case, the path of the mean oscillatory stress was 

demonstrated to be parallel to the static flow stress path, but the path of the 

maximum oscillatory stress was parallel but significantly lower than the static 

flow stress path. The FE models allowed it to be shown that this behaviour was a 

clear indication of an effective material softening, since a simple 

superimposition of ultrasonic excitation would result in a path of maximum 

oscillatory stress following the path of the static stress curve in the stress-strain 

diagram. A calculation of the ratio of percentage stress reduction to ultrasonic 

vibration amplitude provided a method for determining the beneficial effects 

obtainable for different materials. 

Similarly, the influence of superimposed ultrasonic excitation was studied in the 

elastic deformation region of the metals. Similar experimental procedures and 

FE methods were adopted as for the study in the plastic deformation region to 

investigate the occurrence of stress reduction during elastic deformation. 

Adjustments to the material properties and contact conditions were again made 

in the FE model, but this time in the elastic region of the stress-strain diagram, 

to allow a match of experimental and numerical stress-strain data and to allow a 

study of the separate influences of the volume and surface effects during 

ultrasonic excitation. In this case, the surface effect mechanism dominated the 

resulting oscillatory stress-strain relationship. Again, in the elastic region, the 

softer metal exhibited a higher percentage of mean stress reduction than the 

harder metal. However, a significant difference observed in the elastic region 

for the oscillatory stress behaviour was that the path of the maximum oscillatory 

stress was parallel to but exceeded the static flow stress path, with this 

overshoot clearly observed for most of the tests. 

The FE simulation in the elastic-plastic result on compression test was predicted 

the stress reduction in the elastic region is dominated by friction and causes 

overshoot and plastic region is dominated by material properties and results in 

undershoot. Furthermore, there were three significant mechanisms of material 

softening; oscillatory stress, stress reduction and friction reduction were clearly 

identified and analyzed. This phenomenon was explained by a mechanism of 

superimposition of steady and alternating stress where the oscillatory stress was 

significantly reduced the mean flow stress with softening effect resulted the 
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path of maximum oscillatory stress lowered than static flow stress in plastic 

region. However, the mechanism of stress superposition was not significant in 

elastic region caused the reduction in mean flow stress was very small compared 

to the amount of peak-to-peak oscillatory stress resulted the path of maximum 

oscillatory stress exceeded than static flow stress. 

For both studies, in the elastic and plastic regions, the percentage reduction in 

mean stress was nearly proportional to the ultrasonic vibration amplitudes for 

both metals studied. 

A force reduction in ultrasonic metal forming was further investigated by 

conducting a simple plate forming test with a shaped punch and die. It was 

found that the mean forming force was reduced under superimposed ultrasonic 

excitation. The oscillatory force behaviour showed the path of the maximum 

oscillatory force to be parallel to or lower than the static forming force, 

depending on the metal used. Further investigation of force reduction was 

studied by changing the experimental setup conditions, in one set of tests by 

using a higher power ultrasonic transducer and in another set of tests by tuning 

the punch rather than the die. For all test configurations, the mean forming 

force was reduced for increased ultrasonic vibration amplitude. It was also 

shown that good coupling between punch, specimen and die was optimal for 

coupling the ultrasonic energy effectively into the metal specimens during 

ultrasonic excitation, allowing very significant mean forming force reductions to 

be achieved. 

 

7.2 Summary of findings and innovations 

 

This study has provided detailed measurements and simulations of the effective 

influential characteristics of metal specimen deformation under ultrasonic 

excitation, such as static flow stress, oscillatory stress, mean flow stress and 

maximum oscillatory stress, in the elastic and plastic deformation regions. Such 

stress-strain behaviour data provide a meaningful interpretation of the 
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application of ultrasonic excitation in metal forming in terms of the volume and 

surface effects.  

The present study has introduced the use of an ultrasonic booster, horn and high 

power ultrasonic transducer to generate high ultrasonic vibration amplitudes on 

the ultrasonic tool. The use of various different power intensities in this study 

using a higher power transducer was introduced for the first time. It was 

determined in this study that the higher ultrasonic vibration amplitude allows 

very significantly reductions in the mean flow stress to be achieved. This 

beneficial effect described in this thesis provides the foundation for ultrasonic 

tool and die design which could be utilised to enable much higher power 

ultrasonic forming to be achieved for more difficult to form metals. 

 

7.3 Future works 

 

Superimposed ultrasonic excitation on metal forming processes is believed to be 

capable of providing significant advantages in the areas of metal processing and 

manufacturing.  

Further explanation is required on the specimen temperature rise during 

superimposed ultrasonic excitation on a simple forming test using a high power 

transducer, as discussed in Chapter 6, where a sample of flat sheet metal is 

forced into a shaped punch tool by an ultrasonic die on a test machine. A study 

on the characterisation of the temperature rise during the forming test may 

define the frictional heating mechanism and help to understand whether this 

aids or hinders application of this technology to more complex forming 

processes. In this work, the results are based on assumption that there are no 

temperature changes throughout all tests. Therefore the temperature changes 

could be further monitored and maintained in order to better explanation the 

effects of ultrasonic excitation on metal forming process. 
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In this study, all the findings throughout the thesis are focused on an appearance 

of material softening when superimposed ultrasonic excitation on metal forming 

process by measured the stress reduction, oscillatory stress and the path of 

maximum oscillatory stress in stress-strain diagram. There are no other evidence 

apart from the stress-strain data. Real time metallurgical or micro structure 

analysis could be studied to further prove the finding from this work.  

Application of the high power ultrasonic technique in forming processes requires 

the use of specifically designed ultrasonic components to correctly transmit the 

energy from the transducer to the workpiece and die interface. Improvements in 

the design of the ultrasonic excitation system, especially amplitude control 

under high static loads, could provide a higher range of ultrasonic amplitudes.  

Defining the material properties in FE modelling effectively defines the 

behaviour of the materials in the numerical analysis. The post-yield behaviour of 

the materials is specified using the classical metal plasticity model in Abaqus, 

the isotropic hardening model, the linear kinematic cyclic hardening model, the 

Johnson-Cook hardening model and the nonlinear isotropic/kinematic hardening 

model. Understanding and development of a more suitable plastic hardening 

model to correlate the measured and numerical data can provide for improved 

simulations of ultrasonic forming tests. 
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