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Abstract 

Building on tlie work of' Rosenboom, who created numerous inlcmclivc musical en- 

viluivinenIs that, utillsed Imman brainwaves [Ros90], this thesis extends the concept 

oF the by defining the concept of' a braiii-coniputer musical 

interface (13011), described concisely as: 

"A musical synthesis device that uses the knowledge of' the p-esence or 

ubsenxe of' certain musical thoughts or experiences, bY means of a brain- 

C0711PUtCY interfacc and EEG analysis system, so as to allow thought- 

control of' the music that is subsequently created. " 

Developing BCNII systems requires a fusion of genres hicluding the arts, neuro- 

sciences, and engineering. This thesis makes a practical contribution towards the 

developillent of' slich thought-controlled musical dein'ces by evaluating a number of 
EEG pattern classificatlim?. techniques. In particular, it is concerned with the critical 

1, "'Slic of' idelil ifYing patterns in the EEG that correspond to the kind of unisical tasks 

or expericnces of' relevance to the hypothetical BCMI. In this respect, the degree of 

success achieved acts to confirm that the BCMI is, in principle, no longer an aspect 

offiction, rather an opportunity waiting to be realised. 
Aii iterative procedure of hypothetical BCMI application desi'yn., expu-imental de- 

, slqn and zinplcTrientation, and data analysiS, is the means by which this research has 

been evolved. To this end, three novel experiments are designed and implemented, 

each of which contributes to the making of a working BCMI development environment. 

The first experiment, based on the classification of event-related potentials (ER, Ps) 

resitIting froni the aiiditory stimulus of simple tones heard over silence, demonstrates 

that successful classification of' single segments of' pre and post-stinnilus onset EEG 

is possible. This is achieved by means of a novel correlation-based feature extrac- 

I ion technique in combination with a multilayer perceptron neural network classifier. 

Three subjects are tested, yielding average classification accuracies of 84.7%, 80.8%, 

91.8(Y(, respectively. Most importantly, the experiment show,,, that, the EEG contains 
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Information concerning the experience of music -a pivotal requirement for the rval- 

is'al lon of' any BCMI. Two further experiments, involving the mentlal tasks musical 

rm, (if] cry and focusirty, boast, positive results in favour of' BUMI sYstems that, 

litills, c discrete Illusical1v relevant mental tasks. Classification tv,, sults in the order of' 

, 0(7( to 8017c are achieved for nio. st, ��tii)je('t�. 
A structured classification frainework is adopted that incorporates the following 

sub-stages, within which a number ofoptions are varied: 

4p Pre-processing: Raw representation (i. e. no pre-processing), average referencing, 

H. jortli's Laplacian spatial filter, low pass filtering. 

4P Featum extraction: Linear witoregressive, model coefficients, autoregressive model 

order estiniate, binned fast Fourier transform and estimated power spectral den- 

sitY coefficlents, and a, novel co rre I at ion- based detector. 

19 FCOALM SCICCNOTI: 'Vfflled number of EEG channels used. Of the 128 channels 
avallable, subsets of'4, IS and 92 channels are tested. 

9 Nontin. car Classi fication: Generalised linear models and single hidden-laver static 

imiltila. ver perceptron neural networks. Compared with the, (linear) Fisher dis- 

criminant, these are shown to offer a higher performance. 

Optimal strategies correlate with findings from BCI research, in particular, the suc- 

cess of'Laplace spatial filtering for pre-processing raw EEG data, linear autoregressive 

modelling for feature extraction, and static feedforward multilayer perceptron neural 

networks for classification. 
Due to the novelty of this research, further experimentation involving tasks such 

as musical imagery and focusing could be useful for validation purposes, and as a 

means of testing new methods for future BCMI applications. New experiments need 
to he implemented that attempt to inimic real-world, on-line environments. Efforts 

should be made towards reducing the number of channels required to achieve suitable 

classification accuracies, techniques such as cornmittee networks and multiple seyment 

averayin, g are worth evaluating for this purpose. Adaptive classification techniques 

such as hz*ddcn Markov models might be necessary as experiments show that the un- 
deriving statistical properties of EEG data may change during the operational time 
franjo of a prospective BCMI system, and thus may contarninate the data if treated 

with off-line or non-adaptive learning mechanisms. 
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Glossary 

AR Autoregressive Model. Representing the linear AR inethod offeature extraction. 
Gth order model coefficients used Implying 6-valued feature set. 

ARMO Autoregressive Model Order. Represciiting the optimal (estimated) AR. 

model order feature extraction method. Single valued feature set. 

AVR Average Reference. Representing the average reference pre-processing method. 

BCI Brain Computer Interface. 

BCMI Brain Computer Musical Interface. Representing the, concept of a thought- 

controlled musical device as explained in this thesis. 

CF Classifier. Represents the parameter for the particular classifier options used in 

the classification strategy. FISHER (Fisher discriminant). GLM (General linear 

inodel). MLP (Multilayer perceptron). 

CND Condition Combination. Represents the parameter for the particular combi- 

nation ofconditions being classified. I (Imagery). F (Focusing). FL (Focusing 

left). Ffl, (Focusing right). R (Relaxing - passive listening). C (Counting). 

COR Representing the correlation detector feature extraction method used in the 

auditory stimulus experiment. Single valued feature set.. 

DFT Discrete Fourier Transform. 

DSP Digital Signal Processing. 

EEG Electroencephalogram. 

Epoch A I)eriod of time, in t1fis case, relating to a segment ofEEG. 

ERP Event Related Potential. 
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FFT Fast Fourier Transforn). Representing the fast Fourier transdorin fvature, ex- 

traction method. 5 binned frequeucy ranges resulting in a 5-valued feature set. 

FISHER Fishei- Discriminant. ileprosenting the linear Fisher Discruninant classifier 

mallod 

FS Feature Selection. Represents the parameter for the particular foature selection 

options used In the classification strategy. FSI (4 Temporal channels). FS2 

(International 10-20 moritage). FS3 (128 channels less perimeter electrodes). 

FX Feature Extraction. Represents the parameter for the particular feature. extrac- 
tion mothod used in the classification strategy. AR. (601 order linear autoregres- 

sive model coefficients). ARAJO (Estimated optlinal AR model order). FFT 

(Binned absolute fast Fourier transform coefficlents). PSD (FFT squared). COR, 

(correlation detector method). 

GLM Generalised Linear Model. Representing the gencralised linear model neural 

network classifier method. 

ISI litt, ciý-Stiiiiiiliis-lllt(ýi-va, ]. 

LPF Low Pass Filt, er. Representing the low pass filter pre-processing inethod. 

MLP Multilayer Perceptron. Representing the multilayer perceptron neural network 

classifier method. 

Montage A specific set of' EEG electrode locations on the li(ýýad. 

NE Number of' Epochs. Representing the numher of epoclis used whilst training an 
MLP. 

NES Number of Training Set Patterns. Determined by the Split Ration (SR) and 
the size ofthe complete available data set (NDS). Also used: NES. 

NH -Nuinber of Hidden Units. Representing the number ofhidden units in an MLP. 

Also used Nfju. 

NI Number of Input Units. Representing the number ofinput units in an MLP. Also 

used Ni if - 

NONE Representing the no-pre-processing method, Le. raw EEG data. 
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NP Nuniher of' (Bootstrap) Perinutatlons. RepresentIng the iminher of times that a 
strategy is initialiseld (new ES and TS and new classifier weights) and trained in 

order to ohtain ýul average strategy fitness with a greater degree of confidence. 

NTS Number of' Test Set Patterns. Determined by the NES and the. size of the 

complete available data set (NDS). NTS = NDS - NES. 

P99 Probability that a cl-lance classifier could have Performed as well as or better 

than the given strategy. The 99 indicates that the goal performance used to 

calculate the probability of chance was the average strategy fitness (for each 
pattern in the test, set) less the 99 

PP Pre-processing. Represents the parameter for the particular pre-processing inethod 
used in the class ifical ioi) strategy. NONE (Raw, mean corrected EEG). AVR, 
(Average reference filter). SPF (Laplace spatial filter). LPF (Low pass filter). 

PS Power Spectral Density. Representing the power spectral density feature extrac- 
tion method. 5 binned frequency ranges (saine as FFT) resulting in ýi 5-valued 
feature set. 

SPF Spatial Filter. Representing the Laplace filter pre-processing inethod. 

SR Split, Ratio. Patterns (cases) are picked at randoin from the complete data set 
(DS) according to a split ratio SR = NES: NTS. This is perforined for every 
cycle of the bootstrapping process. 
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Chapter 1 

Introduction 

On(, of' the key f'eatures that distinguish humans from other animals is the fact that 

we are iiarinsic-ally musical. Music is generally associated with the expression of enio- 

timis [IIH77], Nit it is also common sense that, the hitellect plays an important role 

iii niusical activities [Deu77j. All the same, music appreciation requires the ability 

to recognise and imagine patterns of sounds, it requires sophisticated memory mech- 

anisins, iiivolviDg both conscious manipulation of concepts and subconscious access 

io millions of' networked neurological bonds [NIir97]. Countless studies have been 

iiii(lerlaken which address these ideas, some of which have already been mentioned. 

Iii the late 1960's, inspired by a fusion of ideas from the fields of brain science 

and bi4eedback', one person, Rosenboom', began a life work which, in the author's 

opinion, has been the most comprehensive attempt to date at harnessing the musical 

potential of the EEG in a creative and artistic way [Ros90]. He developed a variety 

of' EEG based musical interfaces and associated compositional and performance en- 

virointieut-s that utilised the latest EEG analysis and interpretation techniques. In 

particular, use was iiiade of the f'act that certain aspects of a person's musical ex- 

perience, such as their level of surprise related to the perception of a rare musical 
'The term 'I)iof(,. (, dl)ack' refers to the act of self-regulation, that one may be able to achieve a 

degree of conscious, wilful control of particular body functions formerly thought only to be regulated 
1) 

'v 
unconscious, autonomic processes. Biofeedback is most popularly associated with its therapeutic 

application. where a patient learns to control some body function, or biosignal, such as their EEG, in 

order to alleviate symptoms of illness. Her(,, however, it is used in its broadest, sense, corresponding 
to the 'type (2)' BCI described below. 

2 David Rosenboom, School of Music, Center for Experiments in Art, Information and Technol- 

ogy. California Institute of the Arts, 24700 McBean Parkway, Valencia, CA 91355, U. S. A. E-mail: 

(laN, i(I(CLiiiiisi(,.. (,. alarts. edu. Web site: http: //music. calarts. edii/-david. 
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CHAPTER 1. INTRODUCTION 2 

e\, ent, call be 111ferred froin a transient EEG component known as the event-related- 

pot ent ial (EPP). He concludes his report by describing an EEG based unusical inter- 

face/synthesis systern that, Nvould be able to make inferences about certain aspects 

of one's musical experience froin the EEG, then put this information to use in a live 

musical-blofeedback environment. Rosenboom's enthusiasni was evident, as he writes 
(of tills s. ysteni) [ROS9011 

"... thil, s goal 7,,,; invinc(liately achievable with existitty and (I. IfOT'dable t(,, chnol- 

ogy. All that 111, ý required is thc vision, support and tintc to realisc 71 't -" 

hispired by Rosenbooin's work, this thesis is concerned with exploring new areas of 

researcli and developing the concept of a brain cornputer inusical inteiface (BCMI) - 

ýi hYpothetical thought-controlled musical device that would infer knowledge about a 

perfOriner's musical experience, by analysing his electroencephalogram (EEC), then 

us(, the kitowledge to control or influence the music lie subsequently hears. An em- 

hellished description of' this concept follows some background information on EEG 

pattcrn classification, which, according to the author, is the critical area in need of 

im-estigatioii [DNIS98a]. 

1.1 EEG pattern classification 
lit this section a succinct introduction to the electroencephalogram (EEG) is followed 

by an overview of those aspects of its analysis that are relevant to this thesis. For a 
flill trcatment of' the, EEG in today's rich and varied field, refer to a good text book, 

ýsiwh as [, NLDS98]. 

1.1.1 The electroencephalogram 

"The human brain produces a complex, multidimensional, pulsating, elec- 
tromaynctic. field resulting from the electrochemical behaviour of masses of 

ncurons acting in small to vcry large groups" [R. os90]. 

According to Rosenboom [R. os90], EEG data can been categorised into four main 

components: a random-seerning background signal, long-terin coherent waves, short- 

terin transient waves, and complex ongoing waves. The randoin-seeming background 

signal is the residue observed after all known methods of waveforni decomposition are 

exhausted, very little is known about this signal. Long-term coherent waves are the 
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ý%, (, Il-kuown alpha. beta, delta, and theta rhythins, which range from approximately 
I to 30 Hertz. They are often associated with certain states of consciousness, such 

its alertness aml sleep. Short-term transient waves reflect the 'singular experience' 

; issocNited with an external stimulus and up to now they have been accessible onlý 
hv (EB, P) analysis (discussed in Chapter 2). Finally, it is sug- 

(gested that a non-nuidorn complex component exists, whose ever changing pattern 

conles froin the build-up ofbaseline, activations from the vast neuronal masses within 

the brain. This pattern is expected to be the result of the ongoing, self-organisation 

of information during a personis own life, experience.. If these patterns could be sue- 

cesshill. y measured, and sense made of' thein, one rnight witness the mechanisms of 
lilgher level thought processes. 

Froul an engineering perspective there are two distinct areas of' EEG analysis: 

e Evcnt related potentials (ERT) (or evoked potential, -, ) which focus oil short lived 

compoijents within the ongoing EEG, specific to sonic event, usually the, result 

of' sensorv stimulus. 

spontatwou. s-EEG which looks at the ongoing EEG for patterns or trends that 

correspond to certain 'brain states' of interest. 

These. two ways of treating the EEG are discussed in some detail in Chapter 2. 

In both cases however, there is the need to be able to discriminant between complex 
(often multi-channel) sets of EEG data belonging to a number of different classes 
[C'DA9-laj. 

1.1.2 Classification methods 

In this thesis, a number of EEG experiments are designed and implemented, all of 

which supply segments of multi-channel EEG data belonging to a number of classes. 
These classes correspond to specific conditions or tasks relating to an aspect of the 

subjects' experience of music. These experiments have been designed with one aim in 

mind, that is, to find a number of classifiable tasks or conditions relating to aspects 

of musical experience that could be utilised in a BCMI system. Since the success of 

such a search is both dependent on the tasks or conditions and the methods used to 

classify the EEG, the search also incorporates a selective evaluation of state-of-the-art 

classification methods. Some of these are discussed below. 
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Power spectral analysis 
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The reason f*or analYsing the EEG in the ftequeney domain is the hope that certain 

Iml tel-Ils will einel-ge froin the f'eatures extracted from its power spectral density (PSD) 

imd I Imt these imtterns correlate to the conditions that are being tested for. 

Typical features that are extracted froin the PSD include the dominant frequency, 

powerý wid of* course. individual f*reqiieiic. v powers. These values are often anal- 

v'sed vismilly h. v plotting thein on a inap of' the, head, or by coherence measures - the 

correlation between values at different locations on the head. 

Some authors have opted to split the PSD into several hands that correspond to 

the populmý EEG frequency bands. Janata [JP93], fOr example, chose the following 

I)onds: delta (1.5-3.5 Hz), theta (4.0-7.5 Hz), alpha (8.0-12.5 Hz), betal (13.0-18.0 

Hz). 1)(, ta2 (18.5-24.0 Hz), and beta3 (24.5-31.5 Hz). Other people have opted to 

consider a greater number of frequency bands, and then inake a selection on which 
I)ands (or other features) are based on some statistical measure, such as principal 

components analYsis (PCA) [JMS971. 

I'll(, most common method of generating a PSD is bY using the Fast Fourier 

Traiisforni (FFT) algorithin, w1fich is based oil the prennse that any signal can be 

broken down into a number of sinusolds. 
Dcspltc its popularity, the FFT has two limitations that are of'consequence to the 

analysis of' EEG signals: 

The FFT has a poor spectral resolution for signals of finite length (i. e. digital 

. signals), especially when the number of sarnples is small [B, oa96]. 

It deals poorly with signals that are of a short transient nature, and surrounded 
by noise [Roa96]. 

However, for many of the studies encountered in this literature. survey, the FFT 

lias been adequate since the duration of the epoclis of EEG have been sufficient to 

vield a reasonable resolution. 

It has only been in cases where the epoch duration has been required to be consid- 

erabI. y shorter, that alternative methods have been employed. For instance, Saiwaki 

[SX197] used an Auto-regressive (AR) model to produce the PSD of short EEG epochs, 

Ný'hile Jung [, JMS9-1] used the moving average technique, ARMA. It is probable that 

these inethods might be useful in this work as the aim is to work towards the instan- 

taneous detection and classification of musical thought patterns, which will require 
the EEG to be broken into reasonably short epochs (tens of milliseconds). 
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Coherence analysis and general measures of correlation between measures of PSD, or 
FRP amplitude at different sites on the scalp, are common. 

Petsche performed a series ofexpernnents where individuals were given a variety 

ofcreýaive inentid tasks to complete [Pet96]. 5-ininute epoclis of' EEG were obtained 
I'Or tlic tasks, as well as epochs for a resting state, where the subjects just relaxed. 
These epochs were then converted to PSDs and split into the six bands. Statistically 

significimt differences between the correlations of' the. resting EEG and task EEGs 

were plotted on maps of the scalp. He concludes that EEG patterns do change in 

comparison to resting EEG whilst performing creative tasks, and that the, upper 

ýdphýi Imnd (1211z) seems to reflect individual features apart from the group. 
Using a coherence technique. similar to Petsche, Janata [31`93] shows that it can be 

applied to subjects who perform listening tests where they hear a variety of musical 

resolutions (cadences) of varying dissonance. He identified that, the electrodes placed 

iwýir die auditory sit, es and right frontal and parietal regions were most, likely to show 

o, mficazit differences in coherence. 

Artificial neural networks 

In their description of biosignal classification methods, Ciaccio C/ al., [CDA94a] in- 

dicate that artificial neural networks (ANNs) are particularly suitable when little is 

known about the signals to be classified. 
An ANN may be described as a statistical iiiodel of a real world problem that has 

a network structure built around several layers of interconnected processing units, 

coninionly referred to as neurons [Gur97]. The tuneable parameters of the model, 

weights, represent the strength of the connections between neurons. These weights 

m-e adjusted during a training period over which a sequence of known input-output 

voclors are presented to the network until the error between the actual output and 
the desired output reaches an acceptable level. 

In this way, a neural network could be tuned to perforin pattern classification 
[Sivi%j, where the inputs are the features that have been chosen to represent the 

patterns extracted from the EEG data, and the output,,, are a set of classes that 

correspond to the patterns under classification. Referring to all the possible values of 

a set of parameters as its space, the neural network makes a mapping from feature 

space to classification space. Some examples of EEG pattern classification using ANNs 
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WillMin Penny and Steve Roberts (Oxford University) are working on a brain- 

computer-interface related problem where the ann is to recognise iniagined liand 

movenlent, ) [PBCSOO, RPOO]. They claini to be able to achieve classification 

accuracies lit the order of 80% in on-line. trials. Arriong the techniques explored 

mv Baveslan neural networks and a linear discriminant classifier [R, POO]. 

Jung et al., [JMS971 used a feed-forward ANN to estimate the level of alertness 

of subjects during target detection experiments. The ANN was trained using 

a set of' features extracted from two channels of EEG. Principal component 

anýil. vs'ls (PCA) was used as a means of reducing the, pattern Space, which was 

an 81 point PSD derived from ongoing EEG. 

In the clinical field, Weng et al., [WK96] confirined the, effectiveness of ANNs as 

a quantitative EEG analysis tool by performing pattern recognition of epileptic 

seizures. 16 channels of EEG, recorded at 200 Hz, were segmented into 2.56 

second epochs, tfien FFT'd to give the PSD. The inean power and dominant 

poiN-er were used as the main features for the ANN. Galicki et al., [GWD' 97] 

employed a similar strategy for pattern recognition of burst-interburst cycles of 

neonatal children using only two channels of EEG. 

1.2 Brain-computer musical interface 

1.2.1 Brain-computer interfaces 

One particular area where EEG pattern classification plays a central part is the field of 
brain coinputer interfaces (BCI). Brain computer interfaces (BCls) provide a new way 
fOr people to interact Nvith the world, via computer systems that interpret their EEG. 

BCI research began in the early 1970's [Mu173], yet only recently has the field becorne 

established, as witnessed by the first international meeting of "Brain-Computer Inter- 

face Technology: Theory and Practice, New York State Department of Health, June 

1999. " For a review of the state-of-the-art in today's fast-nioving BCI field, refer to 

Ihe Nvork of Peters et al. [PPF97]. 

Broadly speaking, BCI systems can be divided into three operational categories 

relating to adaptation: 
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1. Cornpute7- adapts to the usen Metaphorically speaking, these systems attempt 
to read the mind of the user. For example, Anderson ct al. [AS96] classify EEG 

patterns associated with specific mental tasks, such as mental arithine. tic, letter 

writing and object rotation. The idea being that a disabled person could control 

a wheel chair by performing the appropriate mental task. These, systems can be 

developed off'-line. 

2. Usci- adapts to thc computcr. These systems utilise t1w users' capacity to learn 

to control certain aspects of'their EEG, affording them the ability to exert some 

control of' events M their environment. Exainples are cursor movement con- 
trol [VVNINF91], or simple selection devices such as Birbaumer's letter selection 

system for the disabled [BGH+99]. 

3. Both the computer and user adapt. Combining the functionality of (1) and (2), 

these are systems that allow biofeedback and adaptation. For example, the 

combined use ofniental task pattern classification and biofeedback assisted on- 
line leariiing allow the computer and the user to adapt. Prototype cursor control 

systerns have, been developed in this fashion [PPF97, PRCSOOJ. 

To date, efforts have been ainied largely at developing ways to help severely dis- 

abled people communicate via computer systems. However, little has been undertaken 
that conihiiies state-of-the-art BCI technology with experimental musical applications, 

an area that iii principle should be possible by current standards [Ros90]. This is the 

topic inatter of this thesis, as will be explained in the remainder of this chapter. 

1.2.2 New BCMIs 

Saiwaki et al. [SK197] introduce the concept that a hurnan brain listening to music 

can be thought, of* as a systern where the input is a sound, and that the recognition of 

niusic is dependent on the many subsystems of the brain operating in co-operation. 
The output, the EEC, is hoped to represent this internal functioning. This general 

theory that aspects of our musical experience might be reflected in our EEG - is 

the Luiderlying thread that supports the creative idea of this thesis. 

Imagine ifit were possible to make inusic burst forth around you by merely imag- 

hinig a tune in your head. Crazy though it may seem, this could be the way people 

perform music in the 21st century - with a BCI for musical applications, or brain 

computer musical interface (BCMI). However, this idea is not unique, in fact, it has 
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been clearly hinted at by the impressive work of Rosenboorn [Ros90], who developed 

several experimental musical environments for composition and performance that in- 

corporate EEG-biofeedback. In these cases, music is controlled, or steered, by the user 

who learns to 'will' their EEG in a certain way (a category (2) BCI). Other examples 

of similar approaches can be found in [LKL94, Oki95, Roa96, FH98]. 

Rosenboom [Ros9O] concludes by describing an expert biofeedback system that is 

capable of inferring, from a performer's EEG, certain things about their experience 

whilst immersed in a musical environment. In doing this, it could direct the man- 

ner in which the music evolves in a way that reflects the performer's response to the 

previous parts of the performance. Such a system, as depicted in Figure 1.1, can be 

conceptualised as the interaction between performer / participant, and three func- 

tional sub-systems: a music engine, EEG analysis engine and co-ordinator. These are 
described below: 

Performer / Participant 

EEG Analysis engine 
Music engine - Acquisition 

- Pattern classifier 

Coordinator 
Events controller 
Expert inference 

Figure 1.1: Illustration of the general BCMI concept comprising a performer, EEG 

analysis engine, co-ordinator and music engine. 
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Music engine. Respoiisible for geiierating the miisic ac-cordmg to the mstnic- 
timis comliig from the co-ordhiator. This c-mild be reallsed as aii migoing score 

generýitioii ; md imisic syiithesis system, or more simply, a se(Iliellcer / sampler 
thm liwl a data base of loopable parts, the widitioilhig of' which woiild be. de- 

(ermliwd I)v the co-ordiiiator. 

0 EEG analysis engine. Incorp orating EEG acquisition and pattern classifi- 

cation. Capable of'classifying numerous mental tasks and musical experiences 

or states of'consciousness. the nature of' wIiicIj has been developed and tested 

in works , such as this thesis. This sub-s, vsteni, working closely with the co- 

ordinator, would be selectively directed as to what type of classification to per- 
form, depending on the current state of the inusic englue, and on previous 

hif'orences inade bv the co-ordinator. 

Co-ordinator. The central'expert'. Working with a set of'pre-deteri-nined rules 
that allow it to make inferences about the reaclions, 

or spontaneous actions via a set of previously established tasks known to be 

chissifiable I)v the EEG analyser. The co-ordinator would control the evolution 

ofinusic in a way that reflected the performer's Involvement. 

The general BC. NJl systein framework described above is embellished further in 

Chapters, 3, -1 and 5, cach of which deals with a specific EEG experiment with partic- 

ular BCAll-relevant tasks /condition s. 

Justification 

Besides making music, creation aceessible to a broader population (including people 

ý6t, h impaired muscular abilities), adding to the understandmg of' music and mind, 

; 111(1 promoting the development of thought-controlled sYsterns, a number of additional 

heiiefits of' this technology could exist, for the following fields: 

Music therapy. It, has been shown that with special digital imisical input, 
devices, the well-being of people with special needs, especially handicapped 

children, can be c-tiltivated. For example, Soundbeam, a system that allows the 

slightest movement of tile body to play a synthesiser via INUDI is one stich device 

in mse today [Sotij. As mentioned above, this work cotild lead to numerolis BCM1 

svstems which cmild be tailored for therapetitic ptirposes. 
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Biofeedback therapy. An area of' therapy clanning to assist people with 
various chronic illnesses. It has been receiving more, attention as technology has 
become more sophisticated and affordable [B. L971. Any progress in the fields 

of' EEG analysis and BCI will be of benefit to this field. As for music therapy, 
BCTNII , -,, ystcms tailored to therapeutic purposes could be of'incrit in this setting 

also. 

Clinical diagnosis. The EEG artalysis techiiiques exploreci ill this thesis could 

profit the fiel(l ofc1lifical diagiiosis where quailtitative EEG zmalysis is becoming 

mcreaslitgly popular as a diapostic tool. Examples Hichide: epileptic seizure 

(let, ectiou [NN"K96], (liagtiosis of Alzheimer's disease [HPGM95], serotonin defi- 

cicilcy research [II. J93], NIDNIA ("Ecstasy") use [DD0981, awl memory impair- 

Ilielit ill 111111tiple Sclerosis [PGH971. For furtber (letalls, see the article by Eric 

FottorMo publishe(I ill Le Mmide [Fot, 98]. 

1.3 Aims of this research 
This thesis Nvill contribute mostly to the fields of experimental musical b1ofeedback and 
the performing arts by advancing the technology behind thou glit-control led musical 
devIC(Is. 

TI)e fie](I of' BCI shares the same engineering challenge as the BCMI, namely, 
I he need to develop EEG pattern classification techniques so as to titilise a person's 
t. hoiights, experiences or reactions relating to the environment they are aiming to 

control or interact with. For this reason, it seems sensible to look for successful 

Illethods curre'litly being tested in the BCI field with a view to incorporating them 

in(o i he set of'classific-ation strategies explored in this thesis. In partictilar, the use of 
feanire extraction methods including autoregressive models and FFT, in combination 

with non-linear classifiers such as feedforward neural networks, as these are found to 
he among the most popular for those BCI studies thought to be of most relevance to 

the BCNII. 

The work described in this thesis addresses what the author believes are the key 

problem areas inherent to the development of new BCNII systems: 

Expanding the concept of the BCMI -a thought-control led musical instru- 

ment/environinent - by combining the ideas of computer njusic research with 
the state-of-the-art classification and experimental methods of the BCI field. 
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2. Finding pattern classification Methods that estimate, to a reasonable degree. of' 

acciiracy'ý the probability that a seginent of EEG belongs to one of a number of 

classe, s. where each class relates to a particular BCXII musical task or condition. 

3. Developing experiments that both provide EEG data of a suitable nature so as 
to allow for the off-line evaluation of a, number of EEG classitication methods, 

and attempt to account for the fact that, ultimately, t he BCMI system for which 
theY are intended would be required to operate iii real-tin Ic.. 

1. Developing a complete 'BCMI evaluation system' that provides a, systematic 

waY to achieve the above. 

The efforts ruade towards addressing the above problems form the main contribn- 
I ions of' this thesis, which are fiffly detailed in Chapter 6. Note that, where possible, 

eff'orls iii-e madc to backup the decisions inade during this research with relevant ref- 

erenccs'. lJoNvever, due to the novelty of this work, as well as the scarcity of similar 

research, there are niany cases where referencing is not possible. Much of the ground 

work, including the. development of the BCMI concept, the experimental paradigms, 

and the choice of EEG pattern classification methods, are the result of numerous com- 

11111111cations (ýInd subsequent assessments and refinernents inade by the alithor) with 

exlwi-ts in the fields of' psYchology, niusical-psychology, statistics, computer music, 

; ind I)SP-engineering. These people have been mentioned in the Ackii owl edgem ents 

Section. 

1.4 Outline 

Chapter 2 deals with aii account of the EEG pattern classification methods developed 

and evaluated in this thesis. These methods, drawn mostly froin the BCI field, are 

ýirranged and applied in a standard off-line pattern classification strategy [CDA93a], 

nain(AT data- acquisition, pre-processhig, feature extraction, fcature selection, data 

ý'This is a sornewhat, ambiguous definition as it makes no explicit mention of the classification 
accurac 'v sought after. Reasons for this are that there are no previous studies of this exact nature, 
ýuid therefore no benchmark exists for comparison. This work, unlike nian. v engineering theses, is 
not mi attempt to improve on what has gone before. That is not to say that, similar problems have 

not been tackled - on the contrary - work in the BCI field supports this work and offers the next best 
thing to a working benchmark. It has been decided to compare classification results to the worst 
case. that is the 'chance classifier' (described in Chapter 2). Emphasis is directed at finding the 
hest combination of the methods investigated, keeping in mind the restraints imposed by a potential 
BC-NII device. 
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pi-cparatIlmi, and classificaliori, This collation and organisation of' niethods forms the 

contribution of this thesis. Chapters 3-5 describe three experiments, all of 

which have been designed with the, BCNMI concept in inind. The first, of these, experi- 

ments (Chapter 3) involves the musical experience of perception, and is based on the 

anallysis of' ERP clata using a novel correlat ion- based feature extraction technique, 

the 11111-d contribution of' this thesis. Chapters 4 and 5 present, a different type of 

(. 1 ýIs-sificat 1011 problein based on the discrimination of'olifferent. mental tasks imbedded 

in senii-spontancous-EEG data. Both experiments have requircd the design of new 

paradigins for assessing specific mental tasks for the novel BCNII systems tinder de- 

velopinent. Jointly, these chapters represent a considerable contribution towards the 

exciting topic of this thesis. Finally, Chapter 6 draws together conclusions, and makes 

recoinniendations f*()r l'uture work in this area. 



Chapter 2 

Classification Methodology 

2.1 Introduction 

The EEG, often referred to as brainwaves, is a measurement of the volt age-d ifference 
between tA, o or more electrodes on the surface of the scalp [Hug951. This electrical 

ýIctlvjt'v Is thought fo be the, result of large numbers of neurons, within the cortex, 
depolm-Ising In synchronisation 1xith each other. Unfortunately, these signals are 

naturallY filtered by the fact that they must first conduct through the cerebral fluid, 

Hic hone ofthe skull, and the skin of the scalp, before reaching the electrodes. 
Modern digital EEG recording systems have head nets that hold as many as 128 

electrodesý and can sample a signal at 250Hz or more. This is more than adequate, 
ýIs the fiterellre Supports the Idea that all or most of the important, EEG activity lies 
bet", een 0 and 50 Hz [Hug95]. 

This section introduces some top-down considerations relating to the classification 
methodology. This is followed by an overview of the main EEG pattern classification 
methodology which is employed as part of the systemised BCMI evaluation protocol, 
to (bita froin three 13CMI-relevant experiments (see Chapters 3- 6). The remainder 

of' t lic chapter presents a detailed description of the DSP methods used in this thesis, 

ýfloiig Nvith reasoning as to why they are iise. d. 

Off-line approach 

Although the concept of the BCMI necessitates real-time analysis of' EEG data, the 

ýipproach taken here, is to evaluate DSP methods off*-fine. The main reasons for this 

al-c as R)Ilows: 

13 
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Many DSP methods can be evaluated in parallel using pre-recorded EEG data 

that, represents the kind of data expected ftom an on-line setting. This is a 

part, icidar advantage since very little is known about which DSP methods, if 

allY, axe capable of' performing EEG pattern classification ofthis, nature. 

2. 
-Methodology comparisons are based on a constant data set, and are therefore 

open to fut, ure. comparisons using improved methods. 

3. Off-line analysis requires considerAly less computational power and a simpler 

implementation, allowing more emphasis to be placed on the investigation of 
DSP methods. 

However, it, is important to keep in mind that the, BCNII concept is on-line by 

iiýiture. Therefore, effort has been made to design EEG experiments that take this 

into iwcount. For example, experiments and analysis nietho(ls have been designed 

to work with the classification of up to 2-second EEG seginents. This time frante, 

idthough slow by some BCI standards [ADS95], is felt to be reasonable in the musical 

context ofthe BCMI. This is because the melodic aspects of a piece of musical often 
last sex, cral seconds before changing or stopping. 

Secondly, although less important in the early stages of experimentation, some 
thought is given to the. fact that the complexity of the niethods might impose practical 

constraints in a real-time environment. In particular, the 128-channel clinical EEG 

system used to gather data for this thesis, would be unsuitable for a mass produced, 

porGible, or widely accessible BCMI system, as these clinical devices are relatively 

expensive and cumbersome. As mentioned in Chapter 1, the ideal would be to use a 

sYst, eni that only requires a handful of EEG channels, in conjunction with a portable 

or desktop PC. Such systems exist in the field of BCI, for example, Birbaumer et 

all's spelling device for the paralysed (BGII-1-99]. To accommodate for this, the issue 

of' ininitrial complexity is kept in mind throughout the thesis by way of including an 

(waluation of the DSP methods that use subsets of the 128 channels available, so as to 

mintic a smaller EEG acquisition system. Nevertheless, the complex (or impractical 

to Implement in real-time by current standards) approach is not ignored since the 
focus of this thesis is mainly concerned with proof of the BCMI concept, as opposed 

to finding direct, engineering solutions. 
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2.1.2 Single subjects 

It, is of - teii neces'sary to engineer an EEG pattern classifier fliat is able to perform 

relia, bly on unseen data from new individuals, having 'learned' how to classify from a 

sample population of representative individuals [Swi96]. This is parhcularly relevant 

in tli(, field of' clinical diagnosis where Hie Problem is often to discriminate between 

Hie I 1FC, of' it healthy person and that of someone who is unwell [HJ93). In this case, 
( lie very imt, ure of' 1, he problem requires that the system is trained on a known data 

set (derived f'roni a, sainple of' 'normal' and unhealthy individuals), and is capable of 

generalis'atimi across Hie population. With a BCI based problem, there is riot the 

, ýanw need to generalise across a population of individual people - although it would 
be an admirable system Hiat could do so. Rather, it, niust, be able to learn to classifýy 

iieNN, iiisumces of' EEG fi-on) a single subject, within certain operational constraints. 
Such constrahAs inight include the environment the device is to be used in, or the 

nieut, al tasks it, has been trained to operate with. 
The pattern classification methods described in this thesis are only applied to 

single, as opposed to multiple subjects'. This means that the data used for training 

the classification systenis (since they incorporate neural networks), and for evaluation, 

is ýdwa, vs limited to that of one subject at a time. 
In the field ofEEG pattern classification, there are two types, or rather, two ways 

oftreating the EEG, namely, event-related potentials (ERPs) - also known as evoked 

polentials, and spontaneous-EEG. These are described below. 

2.1.3 Evoked potentials 
Defined as "an electrical peak [in the EEG] related to a particular stimulus. " [Car981. 

More generally, it is a transient signal that forms part of the ongoing EEG that relates 
to the brain's activity whilst processing some stimulus or other discrete event. If the 

occurrence ofthe event is clearly defined, such as the onset of a sound, then the ERP 

is assumed to be time and phase-locked to the event onset [NJEJSOO]. Extracting 

ERPs from the EEG is desirable, as their characteristics call lead to insights about 
how the brain functions, or even the nature of our immediate experience, perceptual 

or otherwise [NLDS981. However, as well as the ERP signal, there are other lion 

related signal components, treated as noise, which make observing the ERP in the 

'A single subject approach was adopted for 2 reasons. Firstly, limited human and computational 
resources being especially significant as the project was the first of its kind in the University. Secondly, 
it was assumed that inter-subject variation would add to the complexity of the classification problem. 
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Figure 2.1: Example plots of a raw EEG segment containing an ERP signal and the 
ensemble average signal of 100 time-locked segments. 

r, iw EEG vcry difficult. The most common method for extracting ER, Ps, used mostly 

in the fields ofpsychology and neuroscience, is to record the EEG, whilst presenting 
the sanie event again and again. Afterwards, the EEG is seginented around the 

stininhis onset, then, an ensemble average of the time-locked seginents (aka trials) 

is ni; ide. This has the effect of eniphasising event-related activit , v, whilst attenuating 
the noise. The result is an estimate of the ERP. Figure 2.1 gives an example of raw 
EEG containing an ERP (i. e. a single trial), and an enseirible average of multiple 
trials. The weakness of this approach is that it assumes the ER. Ps don't vary between 

trial,,, and that the correlation between the noise components is zero. Despite recent 

atteiripts at. improved ERP detection, that is, estimating ER. Ps from single or very 
fi, xv trials [LP195], this basic technique remains the standard approach in the majority 

of' cases. 

2.1.4 spontaneous-EEG 

spont ai wous- EEG analysis is concerned with longer-term qualities of the ongoing 
EEG, as opposed to short-term transient effects. Research fields include clinical 
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(Iliagn. osis, psychology, ncuroscience, biofeedback, and humau-co'tuputcr inte7facing. 

Quantitative ineasures transform raw EEG data so that, ineaningful patterns, that 

would otherwise be missed. (-an be identified. Traditional techniques, include Fouriff, - 
h; ised spectral analysis [. 1NIS971 and cross-channcl cohereticc [Pet, 96j, whilst more re- 

(viOlY, methods such as pai-ametric Tnodelling [SK197], independcut (urnponents anal- 

ysis (ICA) [MEJSOO], and chaos [Fre98] are being explored. Techniques such as these 

are utilised as part of automatic pattern classification systems, where known (or more 

often unknown) patterns in the EEG are detected without any human, i. e. qualdative 

efforts. A bi-iefreview of some. tYpical methods used in such systenis now follows. 

The gclwrýll engineering challenge common to all experiments described in this 
I hesis is to successfully predict, froni a, person's EEG, whether they are engaged in 

on(, of'a number of niusic-related mental tasks, as opposed to a passive baseline task. 
This requires a sYsteniatic approach involving the design of novel EEG experiments, 
ýmd the evaluation of' suitable DSP inethods, both of' which niust, be framed in the 

cmilext of' the BCNII concept introduced in Chapter I. To this end, a number of 
pattern classification strategies based on successful and closely related methodologies 
of'BCI research, such as [PR, CSOO, PPF97, AS96, JMS97], are explored. 

2.1.5 Top-down approach 

The raw nuilti-channel-EEG data acquired for off-line analysis in this thesis represents 

it ver. y large input-space. This is because each segment of data that is to be classified is 

represented by a huge miniber ofvariables. For example, a 128-channel segment lasting 

for I-second, and sampled at 250 Hz, would constitute a total of 128 x 250 = 32000 

ý-ýdiies. The main task of pattern classification is to take such a set of variables, arid 

map them onto a classification-space, thus performing a classification. Effectively, 

I his process involves a drastic kind offeature reduction, whereby as little information 

is lost as possible, yet, sufficient spurious information, called noise, is discarded. In 

this way, the system is able to generalise, that is, to classify new, unseen segments 

ofdata, without being sensitive to the inevitable changes in the. 'noise. ' [Bis95]. Tile 

general procedure for achieving this goal is well documented in the literature. In the 
field of blosignal classification (which is the case here), a series of papers by Ciaccio 

et al., provides a good overview of this procedure, including a variety of methods and 

applications [CDA93a, CDA93b, CDA94a, CDA94b]. 

As stated above, the basic aim is to perform a mapping from input-space to 

classification-space. It is often the case, as is chosen here, to split this task into 



CHAPTER 2. CLASSIFICATION METHODOLOGY 18 

ýi number of'sub-stages, nairiely, prc-processh-tg, fcature extrac-limi, ý`ý selection, classi- 
fil ca I'll 0,11, nild post-processing [CDA93a]. The f'ollowing sections provide a description 

of' t lie classification methods evaluated as part of the systcrnMcd BCMI evaluation 

prolocol successfully developed and tested in this thesis. 

2.2 Pre-processing 

A number ofýflterations including: scaling, artefact analysis, and filtering, are applied 
to raw multi-cliannel EEG data before attempting feature extraction. 

2.2.1 Scaling 

Consider it single-cliannel segment of EEG data, notated 

Ix 2 11 
c (t), t=I.... lvt I 

where c indexes the complete set of channels, C= 11,2,..., 1281,1 indexes the 

complete set of'segments I= 11,2,. 
.., Nil, J indexes the complete set of classes (i. e. 

experilliclItA conditions) J= 11,2- NjJ, and t is the discrete time index. Written 

ýýs ii tinic series vector, one has, x',, J- 

Raw data from the EEG recording equipment is stored in binary files, and once 

imported to MATLAB, has to be scaled to adjust for channel gain and D. C. offset. 
This nivolves a subtraction of a zero calibration constant zcro(,, then a multiplication 
hY i gain (-ýflibration constant gain,, for each EEG sample x, (t), in other words 

're(t) = (x, (t) - zero, )gaz*nc7 

where c denotes the channel and t the discrete time index. 

2.2.2 Artefact analysis 
The EEG is comprised of cortex born components (the. signals of interest) and noll- 

cortex born components, known in the literature as artefact. s. EEG artefacts can be 

divwled into two categories: (i) those derived from muscle activity of the individual 

sid). ject and (h) those due to measurement noise. 
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Muscle artefacts 

AII(IcIct", due to eye movement, blinking, swallowing and other spurious lirrib move- 
ments gencrate large EEG coi-yiponents which cover up the weaker cortex-born signals 
that on(, is interested in capturing. Figures 2.2 and 2.3 show examples of artefact 
cotit, a, minated inulti-channel EEG. Research in the EEC, pattern classification field 

acknowledges the fact that artefacts are problematic and must be considered. Coni- 

monly, inuscle artefacts are tackled in one. of three ways [NLDS981: 

1. Discard contaminated segments, detected manually or automatically. 

2. Include containinated segments in analysis, i. e. ignore artefacts. 

: 3. Model and subtract artefacts from EEC. 

In this thesis, method (2) is mostly employed, since all the experiments were 

-eyes-closed' designs that resulted in a low rate of eye related artefacts. However, 

ýi brief look at artefact detection with the view to excluding contaminated data (1) 

is atlenipted, but gives poor results. In this case, automatic detection of eye-blink 

mid eye-movenient artefacts is performed by algorithins that compare fast and slow 

imining averages of the difference between eye channel signals (based on those used 
b. y EGI's Averager software'). These are explained in Appendix A. 

Measurement artefacts 

It Is Inevitable that a measurement system is going to introduce, some noise to the 

sigiial under observation. With EEG, this is a real concern, as it is quite a small 

'signal (microvolt range) that requires sensitive electrical measurement equipment. 
When using a commercial EEG system, the main cause of noise is mains hunt 

(a 50 to 60 Hz signal due to the carrier frequency of mains electricity). In order to 

111111inlise the effect of this undesirable artefact, electrode impedances have to be kept 

\-ery low, which requires diligent placement of electrodes. 
With dense sensor arrays (such as the one used here) it is often the case that some 

sensors may be faulty, become misplaced during the experiment, or simply dry OUt3. 
'Visit www. egi. com for full documentation, included i which are, details of the artefact detection 

, ilgorithins utilised by the Averager software,. 
'The sensors in EGI's geodesic net are made from silver-silver chloride electrodes housed in small 

phistic c; isings. Contact between the scalp and electrode is made via a sponge (also in the casing). 
This requires that the net is soaked in an electrolyte solution (salt water) prior to use. Often, due to 
the qualit 

,v 
of the subjects hair, some electrodes dry out before the experiment is complete, causing 

the impedance and hence measurement noise to increase. 
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Raw Multichannel EEG x(t) from a musical imagery experiment 
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Figure 2.2: Raw multi-channel EEG containing eye-blink artefact (transients at about 
1.25 seconds in channels near eyes, i. e. low channel numbers and high numbers), and 
a possible bad channel (52) probably due to poor electrode placement. 
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Figure 2.3: Raw multi-channel EEG containing eye-movement artefact (peaking at 
2.125 secs. channels near eyes), and a bad channel (107), perhaps due to electrode 
becoming misplaced during experiment. 
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When t his happens, the EEG from that channel becomes contaminated and is usually 
Libelled a -bad channel' and excluded from the analysis. 

Artefacts due to bad channel placement or other electrical fmilts (such as amplifier 
fitult, s) are more obvious than muscular artefacts and can casily be observed in the 

riiw EEC, without, much effort (see figures 2.2 and 2.3). 
When the analysis includes data from a large channel set, the problem of several 

bad channels is rninor. But when a small subset of the total channel set is used (so as 

to mimic the behaviour an EEG system with less channels) the consequence of bad 

channels bccomes more significant. Therefore, care has to be taken to ensure that 

electrodes, m-e plw-ed carefully prior to running each new subject. 
fl,; w EEG is checked for bad channels using running-average and simple threshold 

; dgorithnis (Appendix A). The group of bad channels are denoted by the symbol, F, 

and excluded from all further analysis. 

2.2.3 Average referencing 

The EEG signal from single electrodes on the scalp is a ineasurement, of the potential 
difference between the electrodes and a 'neutral' reference point somewhere else on 
the body (carth-ground isn't used for safety reasons). Typical reference points are 
the inastoids, car lobes or nose. In practice, there is always some activity at the 

reference point which will contribute to the measured signals. With small electrode 

ýu, rays such as the standard 10-20 montage' this contribution is approximately the 

, same for each electrode, as the reference site is sufficiently far away. However, for 

deuse arrays, such as the 128 channel system used her(,,, the problem of reference site 

contribution becomes more serious, as electrodes are no longer an equal distance from 

the recording site 5 and therefore acquire non-equal contributions from the reference. 
On(! method oftackling this is to compute the average reference, which attempts 

to provide an inactive reference [Die98]. Converting a data, set to average reference 

itivolves calculating the. mean of all electrodes, then subtracting this from each elee- 

trode, in other words 
N, 

XC (0 M I: xi (t), (2.2) 
N, j=1 

where c is the channel label, N, the number of channels and t is the discrete time 

Index. 
'The international 10-20 montage is described in [NLDS981 
'With dense array systems, reference electrodes are often included at the vertex and mastoid 

locations, giving several options for re-referencing. 
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Figure 2A: Plots showing effects of average- referenci 11 g versus raw (i. e. no re- 
referencing) on a channel close to the reference site (vertex). 
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Figure 2.5: Plots comparing raw versus Laplace filtered EEG. 

2.2.4 Spatial filtering 

A spatial filter, based on the Laplace filter described in [H, jo75] is employed as a 
iiwas, ure to separate local EEG from larger global effects, a technique used by [R, POO] 

wid ýPPF97] (See Figure 2.5). It involves subtracting from each electrode's signal, 
the average of its nearest neighbours' signals, in other words 

X, (t) =: X, (t) Xi (2.3) 
19C, ic9c 

where Q, - is the neighbourhood of channel c, cEA (all used channels), and jQcj is 

Hic cardinality of 9c. In practice, bad channels are removed from the neighbourhood 

when computing (2.3), i. e. Qc nr=0, where F is the set of bad channels. 
Due to the irregular layout of the geodesic net, Q, varies according to the elec- 

t, rodesý locatioii. See Table 2.1 for details. 
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Tahle 2.1: Nearest neighbour channel sets used when calculating the Laplace filter 
trýmsf'Orm. See F Igure 2.6 for channel locations. 
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Figure 2.7: Plots showing raw EEG and low pass filtered EEG respectively. 

2.2.5 Low pass filtering 

27 

It is standard practice to discard EEG above 40 Hz by way of a low pass filter (LPF), 

primarily to remove mains-hum noise [NLDS981. The motivation for including the 
LPF as a pre-processing option is to provide an additional measure to the filtering 

that takes place on-board the EEG acquisition system. 
In practice, an 8th order digital low-pass Butterworth filter with a cut-off of 40 

Hz is applied to individual channels of EEG data (see Figure 2.7). This order ensured 
that the bandwidth was sufficiently covered. ] 

2.3 Feature extraction 
In practical situations, the overall performance of a neural network based classification 

system can be improved by breaking the 'mapping' into two stages where an initial 

(often fixed) transformation of the input variables precedes the neural network [Bis95]. 

This stage is often one of the most important. 
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xlpf (t) 
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The aim of feature extraction is to create a manageable and nicaningfid representa- 
tion of the original data space so as to maximise the potential success of the classifier. 
The key objective of a good feature extraction regime is to reduce the number of input, 

vai-Mbles, and hence reduce the complexity ofthe neural netivork, whilst at the same 
nine preserving the salient information in the, pre-processed data [CDA931)]. 

In (-, ises where there are a large number of' input variables, as with inulti-channel 
EEG &, ita, this crucial stage often involves a number of fixed transforms on the raw 

(bita (or pre-processed) variables into a sinaller set of variables known as features, thus 

accounting for the curse of dimensionalitY. This is one of the most important aspects 

of featurc extraction. The improvement due to diniensionalitY reduction outweighs 
the flict that some information is lost as a result of the transformation. 

Incoi-Poniting knowledge about the nature of the problem, especially the measure- 

ments that, are being used to perform the classification will assist, in thejudicial choice 

of'pre-processing and feature extraction regimes. For example, in EEG classification of 

imagined finger movements, it is generally agreed that data acquired from electrodes 
located ýibove the motor cortex, at frequencies around 12 Hz are the most important 
[PPF97]. This knowledge is often unavailable at the beginning of' ýi new project. It 

is, therefore important to evaluate and compare methods used in a systematic way, 

so that, at a later stage, knowledge can be used to improve the next generation of 

solutions. 
In choosing which of the many possible feature extraction methods to employ, it 

was decided to investigate those which had been most successful in previous EEG 

pattern classification studies. Techniques based on autoregressive modelling, FoUrier 

fransforins, coherence, and a correlation detector are employed. These are described 

below. 

2.3.1 Autoregressive modelling 
Autoregressive (AR) modelling, a popular method for signal identification is also 

proving to be successful in the field of EEG pattern classification, especially as an 

efficient feature extraction method. AR, modelling of EEG data for BCI systems 
lias been employed successfully by many groups including [AS96, ADS95, PPF97, 

PRCSOO]. The AR model can be used to estimate the spectral density of the signal 
it is modelling, which is desirable for the EEG since its changing spectral density is 

thought, to be an important feature [NK811. Here, two AR based feature extraction 

methods are used: AR model coefficients and an estimate of the optimal AR model 
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ordcr. These are described below. 

Ali, model coefficients contain information about the statistical nature ofthe signal 
being modelled, which is desirable for the EEG since its changing spectral density is 

thought to be an important feature [NK811. 

-. 
M. models are, a class of parametric model where the future samples of a sequence 

(f) 
ýt=1, ..., 

T are. modelled as a linear combination of past samples, i. e. 

NAB 

(2.4) 

where i= 1_ .., Njje are the coefficients of the AR. model of order NAR_ 

t'sing aiaoregressive model parameters to represent segnients of' single channel 
EEG tinic series data has the advantage of greatly reducing the dimensionality of 
the data. For example, one might wish to classify 2-second segments of EEG data 

which, if' sampled at 250 Hz, would result in 500-sample segments of multi-channel 
EEG data. By using a 5th order AR, process to estimate the AR, model coefficients, 

one achieves a cornpression ratio of 100: 1. 

AR model parameters can be estimated using a number of methods such as the 
N'tile-Walker and Burg methods. In this case, a stepwise least squares algorithm [NS] 

is ('111ployed'. 
All features derived from EEG time series data, including AR-derived features, are 

calculated from non-overlapping seginents of EEG between I and 2 seconds (250 - 500 

sairiples) duration. The choice of a non-overlapping scheine inininfises computational 

costs. The choice of window size is also influenced by computational costs, as well as 
temporal factors inherent in the paradigms. Further reasoning for window length is 

presented on a per-paradigni basis. 

A Nvell known affliction inherent to all sorts of optimisation problems is the trade- 

off between generalisation and accuracy. In the case of AR modelling, this is governed 
bY the model order (N,, 11? )- If the order is low, it is unlikely to sufficiently model the 
detail. On the other hand, if the order is too high, it will over-fit, that is, model 
the noise, and generalise poorly. One approach to finding the optimal order is to try 

a varietv of models on a sub-set of the available data (a kind of exploratory stage) 
then choose the model order that performed the best using the rest of the data. 

However, this can be time consuming, and in some cases impossible (for example, 

where the AR model order is just one of many parameters in a larger classification 

system). More efficient methods for estimating the optinial model order have been 

6 Realised in the ARFIT toolbox for MATLAB [SN]. 



CHAPTER 2. CLASSIFICATION JWETHODOLOGY 30 

(lovised. For exwnple: Akaike's Information Criterion (AIC) or Schwarz' Bayesian 
Criterion (Sf3C). In practice, a combination ofthe above methods arv utillsed, as well 
as indications from other EEG studies. 

Optimal (AR) model order 

A second -AB 
based feature: the oph'inal AR niodel order (ARMO) provides a measure 

of' signal couiplexity, something that has been suggested as a potentially useful nica- 

sure ol'the EEG during different mental activities [11.11,98]. Although other methods 

exist for estimating the complexity of a time series, such as the Lyapanov dimension 

and correlation dimension, these all require a large data set (ten-of-thousands of val- 

nes as opposed to hundreds, as in EEG) [ABST931. Therefore, an AR. based optimal 

inodel order estimation criterion is considered. 

A modified Schwarz" Bayesian Criterion (MSC) was used to estimate the optimal 

model order ofrion-overlapping single channel segments of EEG, thus producing single 

integer valued featureS7. 

2.3.2 Fourier analysis 

The fast Fourier transform (FFT) algorithm is the most, established method for per- 
forming spectral analysis of the EEG [NLDS98]. It enables an efficient computation 
that yields an estimate of the spectral content of a finite length time series. 

Here, the FFT algorithm is used to compute the discrete Fourier transform (DFT) 

and the power spectral density' (PSD) of single-channel EEG segments. The rnagni- 
tadc squared coherence, or simple coherence, between pairs of EEG channels is also 

computed. The-se transforms are described below. 

Discrete Fourier transform and power spectral density 

I'lle discrete Fourier transform' (DFT), denoted, X(k), of a d1screte time series, x(n), 

of finite length n=0,2,. .., 
N-I is defined as the complex series 

N-1 

X (k) =Ex (n) TVNk, k=0,1,... N - 1, (2.5) 
71=0 

where WN = exp -j27r/N is the tweak factor, k is the discrete frequency index and 

n the discrete time index. The first half of the DIFT terms represent the positive 
7The MSC was computed using the ARFIT toolbox, described in [SN]. 
'also referred to as a spectrogram. 
'Calculated using the FFT algorithm in MATLAB 
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frequency values where the kth value corresponds to a frequency of k Hz, where T NT 

is the sampling interval in seconds. 
Aiiother popular Fourier based measure used in EEG analysis is the power spectral 

dcuslt. v (PS'D) which is closely related to the FFT. There are several ways of estimating 
the powcr spectral deiisity (PSD), A-,, (k), of a discrete time. series x(n). These are 
described below: 

Periodogram. The periodograrn is defined as the magnitude square of 
the DFT of x(n), 

kx (k) IX (k) 12. (2.6) 
N 

Averaged periodogram. To obtain a smoother spectral estimate, the 

averaged periodogram can be computed by dividing the signal x(n) into 

a number of equal length segments, then computing the average of the 

peroidograins of each segment. Consider a signal x(n) oflength NL, split 

into L consecutive N-length segments, the averaged periodogram is defined 

ý2 

(k) -= LN x(n + 1N N (2.7) 
1=0 0 

This method produces a smoother estimate than the first method, at the 

expense of' the frequency resolution. Furthermore, both methods assurne 
that, the finite length signal is stationary for its duration. 

Windowed averaged periodogram. To further smooth the randomness 
ofk,, (k), it is helpful to window x(n) before computing the DFTs, i. e. 

L-1 1 ýN-1 
Uý-7tk 

ý2 1, 

Z-Z w(n)x(ii, + IN) (2.8) 
N0 

where w(n) is a window function of which many exist. For example, the 
Hann window 

w(n) = 0.5 1- cos 
27(n + 1) (2.9) 

( 

N+l 

For a practical coverage of the topic, see [Por971. 

\k1en working in the frequency domain and analysing EEG data, it is common 

practice to represent the spectrum in terms of a number of frequency bands believed 

to reflect certain functional aspects of the brain. This is achieved by summing the 



CHAPTER, 2. CLASSIFICATION METHODOLOGY 32 

ýIpproprlatv coefficient's of the DFT or PSD into the following standard bands": Delta 

(I - -1 FIz), Theta (4 -8 Hz), Alpha (8 - 13 Hz), Beta-I (18 - 24 Hz) and Beta-2 (24 - 32 
f1z). Thus producing 5-valued feature vectors for the DFT and PSD representatioris. 

2.3.3 Correlation detector method 

The problem of' detecting whether or not a single channel segment of* EEG, x(t), 

conumis, it particular ERP signal, where the ERP is thought, of is a target signal, 

y(t), and the ongoing EEG (x(t) - y(t)) is treated as stationary noise, Ti(t), (, -an be 

tackled using a correlation detector". The correlation detector computes the cross- 

correlation, rl, '! )i between a segment of'the received signal (in our case the EEG), x(t), 

mid i he target, signal template y(t) (the ERP), where t=1,2,. .., 
N is the discrete 

time Index. In other words 

rxy 
sxy 

v sxYS-Y 

where s, y is the unbiased sample covariance between the finite length time series x(t) 

and y(t), defiiied as 
N 

x (t) y (t) - xx (2.11) 
N-I t=1 

where Tr and yy are the sample means of jx(t)j and jy(t)j respectively. If x(t) is 

comprised of either (i) n(t), or (ii) y(t)+n(t), then T., y will be maximuin for case (ii). In 

communication detectors, the target signal (which is used directly to form the optimal 

matched filter response) is usually known, however, with the EBP detection problern, 
it has to be estimated. The simplest i-nethod for ERP estimation is to compute the 

ciisenible average of a number of pre-recorded, thrie. -locked EEG segments, each of 

whicli contains the ERP signal, that is 
NES 

XýWl (2.12) 

where I' is the index into the set of segments f xi (t) :i=1,2, ..., 
NEs I used for esti- 

niation. Heiice, the, correlation detector method converts single-channel segments of 
EEG, x(t), into single valued features, r, ý, which are the cross-correlation coefficients 

calculated using (2.10). 

'ONote that these ranges are approximate and vary slightly in the literature. 
'' The correlation detector method is based on the theory of matched filters used in communications 

systeins. For general information on matched filters, see [Str90]. 
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The complete set of' features obtained as a result of whatever pre-processing and 
foature extraction has been performed is written 

{f'3(m), m1,... Nrn} 

\%- I wre In indexes t, lie, feature nu in ber of' the set of features, 
.1 I= f 1,2, ..., NJ. For 

eximiple, if' Hie Imear aut, oregressive iilod(,, l coefficients, feature extraction was used, 
X, - N, 

-Ile, where N,,, [? is the model order. Written as a vector of 1'eatures, one has, 

ýi. Ij. 

2.4 Nonlinear classification 
In this thesi-s, two nonlinear classifiers are evaluated, the static-multilayer perceptron 

(NIL11), and a generalised linear modal (GLM). These are both types of artificial 

neural networks. As a comparison, Fisher's linear discriininant is also used. 

An artificial neural network (ANN) may be described as a statistical model of a 

re; d world problem that has a network structure built around several layers of inter- 

coilliected processing units, coinnionly referred to as neurons [Gur971j. The tuneable 

pai-anieters of the model, weights, represent, the strength of the connections between 

neiii-ons. These weights are adýjusted during a training period over which a sequence 

of' known input-output vectors are presented to the network until the error between 

Ow w-tual output and the, desired output reaches an acceptable level. In this way, 

an ANN can be tuned to perform pattern classification [Swi96] where the inputs are 
Ow fi, ýitures that have been chosen to represent the patterns extracted from the EEG 

data, and the outputs are a set of classes that correspond to the patterns tinder 

classification. 

There are numerous reasons why the EEG pattern classification problem tinder 

investigation is difficult, and hence warrants the use of neural networks, some of these 

I'CýISOIIS Mv given below: 

Very little is known about the discerning qualities of norinal EEG and the 
EEG that manifests as a result these types of mental activity. Ciaccio et al., 
[CDA94a] indicate that neural networks are particularly suitable when little is 
known about, the signals to be, classified [AS96]. 

EEG is generally accepted as a complex time varying signal that comprises of a 
large noise component, requiring a non-trivial approach to its analysis [NLDS98]. 
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Multi-channel EEG adds another dimension of complexity to tile. already chal- 
lenging case of single channel EEG analysis INLDS98], 

Although the field off EEG analysis is growing steadily, little work is being 

undertaken that addresses the multidisciplinary needs of* the BCMI concepts 
discus's'ed herein [B. os90]. 

Furthermore, neural networks are of particular interest because: 

4o are capable of modelling complex linear and/or non-finear structures from 

roal data. 

o They employ a processes where a set of representative data (the training set), 

(-on, - sisting of input vectors and desired output vectors, is presented to the net- 

work which uses an iterative training process to adjust the network's free parani- 

eters until a successful classification fitness has been achieved, thus modelling 
the structure within the data. 

0 'I'lleY have proved Successful when applied to similar problems. See for example 
the work of'[PR, CSOO, PPF97, AS96, JMS97]. 

The processes by which a computer based pattern classification system achieves 

its goal (, an be broken down into a number of sub-processes each fulfilling a certain 

role. With neural network based classification systems it is convenient to group these 

sub-processes into the following stages [Bis95]: 

Pre-processing. Raw data is manipulated in a number of ways, making it more 

suitable (reduced dimensionality) for presenting to a neural network. Typical 

processes include: 

(a) Palfei-n localisation, such as scaling to adjust for gains and bias in the 

measurement system, filtering to remove noise etc. 

(b) FcatUT'C extraction, where characteristic features based on transforms or 

other measures are assembled. 

(c) Feature selection where the best features are chosen. 
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(h) and (c) are often treated as separate stages from pre-processing, as is the 

case in this thesis. 

2. Neural network classification. Presented with the. pre-processed data, the neu- 

ral network's adaptive parameters (weights) are, adjusted during an iterative 

ti'ýmiing process which minimises the network error. 

3. Post-processing. Enables the network output to be inferpreted as a, classifica- 
tion, iind is often achieved by simple decision rule acting directly on the net- 

work's output. 

Off-line implementation of a neural network as part, of' a pattern classification 

s. N-stem clan be broken down into four stages: 

1. Data pi-eparation. Where the set of feature vectors derived from the pre-processed 

raw data is massaged into a form suitable for presentation to the network. This 

stage may involve arranging the data into suitable training and test sets, scaling 

the data so as to optimise the performance of the networks, and so on. 

2. kr(Ivitcclum. Where applicable, decide how many hidden layer and output units 

the network will have, what transfer functions will be used etc. 

D(1,11'Iting. Decide which training algorithm (and subsequent parameters) will be 

used to recursively time the network's weights, where relevant, determine the 

sloppi't-ty c-riterion so that the network reaches a suitable compromise between 

gencralisation and accuracy. 

4. Tc. ýtinq. Evaluate the network's ability to generalise by presenting it with a set 

of unseen data. 

The following sub-sections deal with these steps in turn. 
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2.4.1 Data preparation 

Concatenation 

Before presentation to a neut -al network, feature vectors are organised by concatenat- 
ing the channels into pattern vectors, 

If 13 

3. 
S (2) 

pt" 

fi, j 
ES(Nj. 's) 

oflength Nj.,,, ý x V,,, where FS is an Nb, S sized indexed list representing a subset of 
Hie total channel set (C), iCý, where ý is the subset of classes. The choice of which 

(Imimels to include in the. analysis, (FS) is considered part of the feature selection 

st ýIgc. 

Target vectors 

For each pattern vector, a target vector V, j must. also be constructed which represents 
Hie desired output, of the network for that particular pattern. The form of the target 

\, ectors depends on the number of output units in the network. The way that target 

N-ectors are constructed depends on how many outputs the classifier has, the number 

ofclasses being classified (ý), and the number of output units being used. Table 2.2 

illustrates the target vector arrangements for the different classifiers. 

Data set partitioning 

In order to train and test a network, the complete set of pattern vectors and their 

associated target vectors (DS) are split into a training set, ES Z-- j[p"j, t', jI, Z E 
qi, j C- ýJ, and test set, TS = j[p"j, t', j], i E ^f, j' E ýJ, where AP is an Nq, sized 

randoin list, of segments ftoin the set of total set of segments 1, where TnT=0 

and TUT=I, and ý is the set of classes (also referred to as conditions) used in the 

particular strategy. The size of the complete data set is, Nl_),,; ý NINý", where Ný is 

Hie size ofý. Thus, the size of the training set can be calculated IVEs = XpNý, and 

the test, set NTs = NDS - NES. 

12 In all cases, the number of segments, NI, is equal for each class / condition. 
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Table 2.2: Target vector formats for various 2-way and 3-Nvay classification prob- 
lems fOr each classifier. The single-output MLP was used in the Auditory Stimulus 

experiment, whereas, the 2 and 3 output networks were used elsewhere. 

FISHER IVILP MILP / GLM 

Number of 
outputs 

2 3 

Class 2-way 3-way 2-way 2-way 3-way 

Ell Ill 101 
0 

' 0 
2 121 121 [11 

1 1 [ 1 
0 - 3 

1 
n/a 

1 
131 

1 
n/a 

1 
n/a 

11 
0 
1- 1 

Scaling 

Consider the set of pattern vectors which make up the training set, ES [p', j i. C- 
T, j C ýj which can be represented as a pattern matrix 

lp I't, p 1,2, p I, Ný - 1, p 1, Ný, 
p1l"..., p Np - 1, Ný - 1, p Nq,, Ný] 

. 

The rows P, which correspond to the set of values presented to a single network input, 

are linearly scaled within the range [-1,11 prior to presentation to the networks. 
This is common practice when using neural networks, as it limits the range of values 

presented to any one network input, which call reduce the number of training iterations 

required before the network converges [Swi961. In the same way, the set of pattern 

N-ect, ors making up the test set are also scaled in tile same way. Sets of target vectors 

need not be scaled as they are naturally matched to the range of the network output 

units, i. e [0,11. 
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2.4.2 Architecture and training 

Multilayer perceptron 

Single hiddei i-I aver static MLP networks with a variety of' hidden unit numbers, and 
between I an(] 3 output units (depending on the task) are trained in batch mode using 

ýi scaled conjugate gradient algorithin [Bis95]. 

Over-fittitig is tackled by restricting the number of' training epochs to a fixed 

mimher (stopping criterion), determined empirically f'rom initial exploratory studies, 

where the perf'ormance of'networks doesn't improve significantly for a greater number 

of' training opochs. All network units use the logistic signioid transfer function: 

ýo (7)) =1 (2.13) 
1 exp(-v). 

which is a good general choice according to various neural network texts and numerous 
E, EG studies. 

Generalised linear model 

The GLNI used here has a single layer of siginoid units (sce 2.13) and is trained using 

t he iterat ive re-weighted least squares (IRLS) algorithm [NIN831. Figure 2.8 illustrates 

a GLM uetwork with a single output unit. This network has d inputs (plus a bias 

unit) feeding into a single output unit which computes a weighted linear combination 

ofinputs phis bias. This is then fed through a logistic siginoid to produce the output. 

This is linear regression with a non-linear activation function, which is precisely gen- 

erallsed linear regression. Both multilayer perceptron (MLP) and genera, lised linear 

model (GLM) networks are realised using the Netlab toolbox for MATLAB" devel- 

oped by Bishop and described in his book [Bis95]. 

2.5 Post-processing 

Patterns in the test set are forward propagated through a trained network to assess its 

classification fitness. Patterns presented in this manner are awarded T for a correct 

classification and '0' for an incorrect classification, in other words 

award(p) 
1f (Y) t (2.14) 
0 otherwise 

': 'Iit, t, p: //www. ncrg. aston. ac. iik/iietlab/. 
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X, 

Input 
vector 

f 

Xd 

Figure 2.8: Representation of a single output unit GLM network. 

where f (y) is the post-processing function which converts the continuous outputs of 
the sigmoidal output units, y(p) into a binary form comparable to the target vectors. 
The exact nature of f (y) depends on the number of output units in the network, 

and how the target vectors were constructed. Two basic post-processing functions are 

employed for the two types of output vector / target vector regimes (see Table 2.2): 

Case 1: Single output unit. Used with the MLP in the auditory 

stimulus experiment (Chapter 3). In this case, two-way classifications are 

encoded as single bit target vectors: a '0' representing class-1, and a '1' 

representing class-2. The trained network, when presented with a test 

pattern will produce a single valued output within the range [0,1]. The 

post-processing function used here is a simple threshold rule, such that 

(Y) 
1: y>0.5 (2.15) 
0 :y<0.5 

Case 2: Multiple output units. Used with the MLP and GLM in 

the musical imagery and focusing experiments (Chapters 4 and 5). Here, 

two and three-way classifications are encoded as two and three-bit target 

vectors. For example, the 3-class target vectors: [1 0 0], [0 1 01 and [0 0 1] 

representing class-1, class-2 and class 3 respectively. The trained network, 

when presented with a test pattern will produce three continuous (real 

valued) outputs within the range [0,11. The post-processing function used 
here is a competitive transfer function which returns a vector in the form 

of the target vectors, such that the bit with the highest value is allocated 
'1' and the rest a '0'. 

Single output 
layer 
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The fitness, ofthe network (f) is then calculated by averaging the awards for the test 

SO, palferns (T), 

f award(p', j) (2.16) N3, VT 
jejic-r 

where A-f Is the cardiiiality ofT. 

2.6 Fisher's discriminant classifier 
Fis, her's linear discriminant function is a st, andard method of' discriminant analysis 

NN'llich assumes, nothing about the probabilitv densities of* t1w individual class popula- 
I ions [NIK1397]. Its aini here is to achieve an optimal linear dimensionality reduction 
f'rom the multi-diniensional feature-space to a single dimension classification-space. It 

can Own be employed as a classifier by way of a simple decision rule, [Bis95]. 

The method applied in this thesis uses the MATLAB function fisherlmn" which 
is, hased on a modified perceptron algorithm [SH99]. The finiction parameter maxIts 

kvh1ch deterinines the maximum number of training iterations, Is set, to 200 for all 

strategies employed in this thesis. 

2.7 Statistical analysis of results 

2.7.1 Bootstrapping 

lu order to assess the confidence of a particular classification strategy more reliably, 

classifiers are re-initialised, trained and tested for a number of permutations of training 

sets (ES) and test sets (TS). Then the average fitness I is taken to represent that 

particular combination of pre-processing, feature extraction and network particulars. 
Tlw, bootstrapping procedure is described by the following pseudo code: 

repeat NP times: 

select randomised training and test sets (sizes depend on strategy). 

initialise, train and test classifier. 

record fitness, 

calculate average fitness, standard deviation, confidence intervals etc. 

The greater the number of permutations, (NP), the lower the confidence limits 

for the average fitness, which provides a more confident assessment of the strategy. 
"Of the Statistical Pattern Recognition Toolbox. Written by Vojtech Franc, Vaclav Hlavac, Czech 

Technical University Prague. Available from http: //cnip. felk. cvut. cz. 
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2.7.2 Random classifier 

The expected performance of a random classifier - Le. one which simply chooses the 

cla, sses for each trial at random - is used as a mearis of gauging the performance 

of a Imi-ticiihir classification strategy. The comparison helps address the problem of 

whet her or not, the result lias arisen by chance. 
Siippo,, se this is a problein with c classes. For each trial a random classifier chooses 

one of these classes at random. If it is assumed that the miderlYing classes in the 

observatiou data are equiprobable then it can be stated that, the probability of a 

siiccess is 1) = 1/c, and of failure (misclassification), I-p. 

One is interested in the probability of k successes over n independent trials which 

is givell by, 

Prob (k successes in n trials ) =: p 
k(I 

_ 
)n-k (2.17) 

Tlws, is actually the probability of ow, particular sequenec of' successes and failures. 

To fmd out, how many ways one can have. k successes in n trials, one computes the 

following, 
( 7t) 

Pk P)it-k (2.18) 
k k! (n - k)! 

Thus, the total probability of any A, successes in n trials is, 

71 k, p) 

This is the binomial probability mass function. 

More often one is interested in the distribution function computed from the fol- 
lowing cumulative sum, 

k 

F(n, k, p) Ef (n, q, p) (2.20) 
q=O 

Flils tells us the probability that the random classifier will have k or less successes in 

n trials. which can be turned around to yield the probability of'getting more than k 

Successes, 

Prob (k or more successes )=I- F(n, A: - 1, p) (2.21) 

For example, if the inean fitness of a 2-class strategy gives a result of 40% fitness 

f'()i- a batch of' 100 test patterns. The probability of the randoin classifier getting 40 or 

more lilts in 100 is 0.0966, or nearly 10%. It could therefore be said that the classifier 

strategy under test was doing nothing better than random choices. Only when this 

probability drops to around 5%, or even 1% does one conclude that the classification 

strategy is Outperforming a random classifier. 
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lit cases where the performance of a classification strategy is high (say greater 

thaij 70(YO, and/or when there are many trials in the test setý then probability of 
the random classifier matching the performance of the strategy under test becomes 

minuscule. The comparison is only really useful in the context, of inedium performance 

results. For example, suppose a three-class strategy yields an average fitness of' 50vo 

(havitig subtracted the lower confidence IiMit15) 
. 

The performaiwe of the random 

chmsifier depends entirely on the number of tinies it must guess. If' there were only 
10 test sel patterns (NT 10), the probability of guessing 5 trials correctly would 
he ýibout 21(X (Using equation 2.21, where n =: 10, k=5, and p=0.333). However, 

if', as is the case in the analysis in the following chapters, ,, V-y- is in the order of 50 

or more, theit the performance of a randoin classifier becomes insignificant (less than 

In this case, the result of 50%, even though it is poor M an engineering setting, 

is iievertheless statistically superior to random guessing. 

2.8 Summary 

The analytical emphasis in this thesis is placed on the evaluation of a selection of 

pre-processing methods in conjunction with two popular neural networks, namely, 

lliultihlyor perceptrons (MLPs) and later, generalised linear models (GLMs). As a 

ývay of' gauging the success of the nonlinear classifiers, a linear inethod, the Fisher 

discriniiiiant is employed (as recommended by communications with Will Penny from 

Oxford University's pattern analysis group). It is the application of these methods to 

the novel EEG pattern classification problems of the BCXII, rather than an analysis 

of the methods thernselves which constitute the main contribution of this thesis. This 

chapter describes the DSP methods which are later tested on two types of EEG pattern 

classification problems, one ERP-ba, sed, the others spontaneous. 

"In practice, k is obtained by subtracting the lower confidence limit from the average fitness, 
then rounding down to the nearest integer. 



Chapter 3 

Auditory Evoked EEG Experiment 

3.1 Introduction 

3.1.1 Motivation 

This experiment has been designed with the following hypothesis in inind: therc exists 

ivifor, tualto'n in, the EEG which allows one to distinguish behveen segments recorded 

tnijucdll'atcly preceding and immediately following a simple auditory stimulus heard 

ovcr szIcnCe. 
This may be a comparatively simple problem to address, however, it is ail inter- 

es'ting problein nonetheless. As ail initial exploration into music related EEG pattern 

(Iissificat. lon, it offers a number of benefits: 

e Simple problem. 

* Ideal for testing overall methods including: experimental skills, EEG data man- 
agement, systematic off-line EEG analysis etc. 

9 Potential for development into more extravagant problems with greater BCMI 

relevance. 

3.1.2 Hypothetical BCMI system utilising ERP detection 

Consider a BCMI system, such as the one depicted in chapter 1. The ability to be 

able to reliably differentiate between pre and post-stimulus-onset EEG alone does not 
lend itself to many exciting applications. However, it could lay the foundation for 

an ERP based system based on the idea of classifying between the EEG immediately 

43 
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f, ()11()\\, Illg a scIf elected target stimulus, and other, non target stinnili. For exaniple. 
Consider the composition of a simple piece of dance niusic', repetitive in nature - it 
often builds on a theme, adding and removing layers of'parts which weave in and out 

of the plece. Suppose it is possible to classify betweeii the EEG which immediately 
follows a the re-introduction of a part of music (to the ongoing dance trine) that the 

sul)ject, has heard before, and really likes, and is looking out for, as oppose(] to hearing 

ot her less fiwourite. parts. Knowing what this response would look like in the EEG 

\vould allmv the co-w-dinator to embellish this part, in favour ofthe other parts. This 

processes could continue, until the subject no longer choose to look out, for favourite 

parts, at which point, the music would stop. 

3.1.3 Classification problem 

The experiment described below allows the following classification problem to be 

tackled: Deterrnine, on a segment by segment basis, which class (pre or post-stimulus- 

o, nsct) a I-second rnulti- channel EEG segment belongs to, ukere the stimulus is any 

onc offour tones heard over silence. Note that the question of which tone is heard is 

not, addressed her(,, merely that a tone is or isn't heard. 

3.1.4 Objectives 

The main objective of the experiment is to evaluate a number of pattern classification 

strategies (outlined in Chapter 2) on the EEG data resulting from auditory stirmilus 

perception. What's more, it serves as a test bed for the author to become accus- 
tonied to the interdisciplinary nature of EEG experiment design, implementation, 

and analysis. 

3.2 Paradigm 

3.2.1 Overview 

Subjects perforin a single recognition task whilst listening to a continues sequence 

of' auditory stimulus trials, each consisting of one of four pure tones. Upon hearing 

the tone, the subJect decides which of the four tones they heard. The experiment 

'The modern variety, also known as club music. 
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Random Inter Trial Interval 

IAI 
Trial I Trial 2 

Class: 12 

3-9 (secs) 

Trial onset 

Figure 3.1: Illustration of auditory stimulus experiment trial format. 

is divided into 4 blocks of trials, giving the subject a chance to relax. In total, the 

experiment lasts for approximately I hour, including set-up time. 

3.2.2 Trial details 

The experiment consists of four blocks of 100 I-second trials, each with a random 
inter-stimulus interval (ISI) between three and nine seconds (Figure 3.1). Each trial 

auditions one of four 1-second tones (30OHz, 40OHz, 420Hz and 60014z) from a pseudo 
random play-list, such that there are 25 trials of each tone per block. Subjects are 
asked to listen to the tones and think to themselves which of the four they have just 
heard. The reason for having four tones instead of one, a varying ISI, and the random 
order is to maintain the interest of the subjects (for further discussion see [Ros9O]). 

To minimise artefacts due to muscular activity and sensor displacement, subjects are 
asked to sit still and keep their eyes closed during the experiment. A rest period of 
a minute or so is allowed between blocks. Three adult male subjects are used in the 

experiment. 

3.2.3 Data acquisition 

A 128-channel (plus Cz reference 2) Electrical Geodesics Incorporated (EGI) EEG sys- 
tem is employed [Tuc931. (See Figure 2.6 for channel locations. ) The system consists 

of a state-of-the-art geodesic sensor net, purpose built amplifier (Net Amps), acquisi- 

tion control and analysis software (Net Station and EGIS). EEG data is digitised at a 

sample rate of 250Hz and an A/D resolution of 12 bits, then band-pass filtered between 

0.1 and 40 Hz. For detailed technical notes, see EGI's web-site: http: //www. egi-com. 

'From the international 10-20 electrode placement standard. 
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An IBM compatible PC running in-house developed software manages the pre- 

sentation of the tones using on-board sound card and a powered loudspeaker, which 
is placed 1 meter from the subject. To enable the segmentation of EEG data, trial- 

onset markers are captured by Net Amps' Response-Switch Connector which receives 

negative going pulses of I-second duration from the PC's parallel port. 
EGI's Net Station software allows raw segmented EEG data to be saved in binary 

files compatible with the MATLAB environment which is used for all EEG analysis. 

3.2.4 Raw data segmentation 

For each trial, the two seconds of EEG centred around the time of stimulus onset 
are split into two non-overlapping 1-second segments. Thus, each trial yields a pre- 

stimulus-onset and post-stimulus-onset segment. These are labelled class 1 and it 

class 2 respectively. Subjects 1,2 and 3 yield 400,395 and 190 trialS3 resulting in 

N, = 800,790 and 380 segments in total. 

3.3 Classification methodology 

3.3.1 Overview 

The problem addressed by the classification methods described below is to distinguish 
between pre-stimulus-onset (class 1) and post-stimulus-onset (class 2) multi-channel 
EEG segments, on a subject by subject basis. A number of classification strategies 

are evaluated where the following variations are implemented' (See figure 3.3.1: 

* Pre-processing. Raw representation, i. e. no pre-processing (NONE) and Hjorth's 

Laplacian spatial filter (SPF). Exclusion of bad channels is standard. 

o Feature extraction. 6th order linear autoregressive model coefficients (AR) and 

a correlation template method (COR) based on matched filter theory. 

Data preparation. Following feature extraction, pattern vectors are scaled, then 

divided into a training and test set. Numerous training set sizes (NEs) are 
investigated, ranging from 100 to 700 (from a maximum of 800 segments). 

'Subject I yielded 400 trials. However, due to technical mistakes, subjects 2 and 3 only yielded 
195 and 396 trials respectively. 

4 For a detailed explanation of these methods, refer to Chapter 2. 
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o Classifiers. Single hidden-layer static multilayer perceptron (MLP) neural net- 

works, and a Fisher discriminant (FISHER) classifier are compared. 

The following sub sections describe these variations, and where appropriate, give 
justification for their inclusion into the classification system under investigation. Where 

justification is not given, refer to chapter 2 which explains the various methods in more 
detail. 

3.3.2 Pre-processing 

For each subject's data, bad channels are identified and removed from all further 

analysis. This is achieved using bad channel detection algorithm A (Appendix A). 

Data is then either Laplace filtered (SPF) according to equation 2.3, or left in its raw 
form (NONE). 

3.3.3 Feature extraction 

Two feature extraction methods are compared, namely AR coefficients (6th order) 

and correlation coefficients, as described in Chapter 2. These are computed for both 

raw and Laplace filtered EEC. 

3.3.4 Data preparation 

Pattern vectors are scaled within the range [-1,1] so as to limit the range of values 

presented at each network input. Scaled pattern vectors and single value target vectors 
are then randomly organised (see Chapter 2) into a training set (ES) and test set 
(TS). The number of patterns in the training set, NES, is varied between 100 and 
700, depending on the number of available segments (NI). This is done to see what 
effect the training set size has on classification fitness. 

3.3.5 Classification 

Classifications are made using static multilayer-perceptron (MLP) neural networks. 
The number of hidden layer units (NHu) is varied between I and 16'. All networks 
have a single unit output layer. 

5For computational restrictions, larger networks are not evaluated. 
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Figure 3.2: Flowchart representation of classification methodology. (1) Raw data 

set (DS), comprised of an equal number of pre and post-stimulus-onset multi-channel 
EEG segments, is filtered (or not) by Laplace method (3) which takes into account bad 

channels (2). The filtered data sets are then randomly divided into training (ES) and 
test (TS) sets according to parameter NES (5). Feature extraction (4) is performed, 
after which feature sets are massaged (in case of AR, scaled) into a suitable form (6) 
for batch training with MLP neural networks (7). Steps 4 to 7 are repeated NP times 
(8) to validate the results of the classifier. 
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-As ýi comparison, separate networks are trained and tested on four feature sets: 
AR coefficients an(] correlation coefficients computed froin raw EEG, wid AR, coeffi- 

clents and correlation coefficients computed from Laplace filtered EEG. For the AR 

i-cpresentations, there are 128 x6= 768 inputs to the networks, and for the correlation 

coefficieuts representation, 128 xI= 128 inputs. 

T]w issue of' over-fitting is tackled by restricting the number of training epoc-lis 
Io 20, shwe earlier exploratory analysis (involving t1w cross-validation early stopping 

metbod) indicated that the performance of networks doesn't, improve significantly for 

ýi greater number of training epochs. As a means of'comparison, a Fisher Discriminant 

(linciir classifier) is employed'. 

3.3.6 Post-processing and bootstrapping 

In order to assess the classification fitness of a trained classifier for a set of unseen 
test patterns, the post-processing functions, award(p) and f(y) (2.14 and 2.15) are 

IIt1liSed7. In order to produce classification results within a reasonable degree of 

confidence, individual classification strategies are reset, re-trained and re-tested in a 

hoolstrapping fashion. The number of repetitions, NP, is set at, 100, ensuring that 

Ilic magnitude of' the confidence intervals are typically low (2% or so). 

3.4 Results and discussion 

The classification results from the various strategy permutations given in the previous 

section are presented in Tables 3.1 - 3.8. (For a key to the abbreviations used in these 

týiblcs, as well as other results tables in this thesis, see the Glossary. ) The maill 

obsen, ations are surnmarised below. 

3.4.1 Optimal strategy 

I'lie optimal strategy common to all three subjects utilises the raw pre-processing 

option (NONE), the correlation detector feature extraction method (COH), the largest 

traming sets (NEs = 700 and 360 for subjects 1,3, and subject 2 respectively), and 

'The reason for evaluating the Fisher discriminant classifier is due to the fact that certain BCI 
studies, such as [PRCSOO], indicate that simple linear classifiers can perform fairly well in real-world 
situations. 

'For the Fisher discriminant, its outputs are massaged into a form that can be processed in the 
saine way, as if it were a neural network output. 
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t1w largest, MLP (Nlju=16). This strategy yields 84.7%, 80.8Yc, 91.8% for subJects 1, 
2 and 3 respectively. 

3.4.2 Classifier 

Strategies which use the MLP classifier perform marginall 'v 
better than those that 

emploly the FISHER, classifier, especially when combined with the COR. feature ex- 
traction niethod. Average classification fitnesses for these optimal strategies range 
froni 80 to 90% across subjects. 

Of the range of NILP network sizes tested, those with the greater number of hidden 

imits only perform marginally better than those with only one hidden layer unit. 
There could be several reasons for this, two of which are described below. 

Insufficient number of training examples 

The dimensionality of the input space (to the neural networks) is comparatively large 

compared to the number offree parameters in the network. Although it is recognised 
that finding the optimal settings for a neural network can be more of an art than a 

, sciciice, there are some theoretical guidelines which can be used as 'riile. s of thumb' 

in choosing good ratios between, for example, the number network inputs and the 

i)uinber of'patterns in the. training set. In his book [Swi96], Swingler gives the following 

sliggestions: 

o Never choose NHU to be greater than twice the number of hidden units. 

You cmi load p patterns of i elements intO 11092P hidden units. So never use 

more. IfYou want good generalisation, use considerably less. 

e Ensure you have at least 1/( times as many training examples as you have 

weights (w) in your network, where c is the network target error. 

The final guideline is probably most relevant to the results obtained in this exper- 

iment. Consider the smallest and largest networks. The smallest network, belonging 

to F-Y COR and NHu =I has w= 128 x1+I= 129 weights, implying that 

> If e=0.1, then N_rs > 1290. This lower limit is only just approached by 

the largest training set size, NEs 700. However, as NHU increases, this lower limit 

for is considerably missed. For example, taking the same strategy as before, but 

increasing Nljjý to 16. Thus u) = 128 x 16 + 16 = 2064, which implies Nrs > 2064. 
C 
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1', smg Hie smne error level, this iniplies a lower limit f*()i- Npl,,, ý of'20640, a figure which 
is nearly 30 times greater than the maximum NLs used in this experiment. This effect 

is hirther inflated when considering strategies that utilise the AR, method of feature 

extraction, which results in approximately 6 times more network weights. This might 

explain the relatively poor performance of the AR, representation compared to the 

COR method. 

Sparse data set 

11' the dat a set, presented to the network is sparse, that is, only a, small proportion of 

multidimensional space is covered, then the smaller network may have an adequate 

(-ýqmcity to model a suitable decision boundary. Increasing the network size would 

onlY increase the potential accuracy to which the network could operate to. However, 

it' the undedlylug statistics of the input data are simple, then this greater modelling 

capacity will be useless. 

On(, area of research that offers effective solutions to these kind of neural network 
application problenis is the field of Bayesian statistics. Bishop [Bi,,, 951 gives a detailed 

account, of this area, describing a variety of Bayesian techniques for neural networks 

wit h the advantages of providing an analytical inethod of' determining confidence 

intervals. and the lack of dependence upon data sets other than a training set. 

3.4.3 Pre-processing 

kk'hen using the MLP classifier, the raw data, (NONE) method performs slightly better 

than SPF. In the case of the FISHER classifier, a similar result is found, though the 

effect is less clear. This result is somewhat surprising as other studies (referenced 

in chapter 2) indicate that the Laplace spatial filter is beneficial. In fact, this is 

found to be the case in the other experiments presented in the following chapters. 
One could speculate that the reason for this finding is related to the nature of tile 

classification problem. In this case, the task is to classify between stimulus-absent 

verstis stunuhis-present data, whereas in other studies, the task is often of the form: 

clwssify between stinlulus-A and stimulus-B, or common-stimulus versus rare-stimulus. 
It is possible that, for the latter type of problem, a more localised (high frequency 

spatial resolution) representation of the EEG is beneficial. Whereas, for the stimulus 

on/offease, a more globalised (low frequency spatial resolution) representation could 
be important,. This tallies with the effect of the Laplace filter which attenuates global 
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CF=MLP, NHU=l, NES=100 
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Figure 3.3: Bar plot of classification fitness for all four condition comparisons as a 
function of feature extraction. SN=1 

effects whilst emphasising local ones [PPF971. 

3.4.4 Feature extraction 

Strategies employing the COR method (and the MLP) perform about 20% better 

than those using the AR method. As mentioned above, this could be a function of 
the network size problem mentioned above. However, if AR and COH are equally 

effective FX methods, one might at least expect (according to the network size 

training set size trade-off) to find that the strategy I FX = AR, NHu = 11 ==ý w 
6x 128 +I= 769 with the largest training set sizes would produce better results than 

the strategy I FX = COH, NIIu = 161 =* w=Ix 128 x 16 + 16 = 2064 with the 

smaller training set sizes. However, this is not the case. Clearly, for this particular 

choice of strategy variables, COH is the better method of feature extraction. Figure 

3.3 shows a comparison of the two feature extraction methods for subject 1. 

3.4.5 Data partitioning (training set size) 

The best results are obtained when using larger training set sizes (NES). However, as 
NEs increases, the improvement becomes less pronounced. Figure 3.4 shows a typical 
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Figure 3A Line plot of classification fitness versus Nl,, s and Nil,, of pre and post- 
stimulus onset EEG for subject I using the following variations: PP = NONE, FX 
COR, CF = XILP. 

example of this. 

3.4.6 Subject variation 
All subjects Yielded successful results. In order of highest to lowest, subject 3 came 
first, f0floNved by subject I and finally subject 2. 

3.4.7 Performance as a function of class 

When using the MLP classifier, the difference between pre and post-stimulus-onset 

classification scores depends on the method of feature extraction'. In the case of 
COH, pre-stimulus classification fitnesses are some 6 to 18% higher than post-stimulus 

segments. Whereas, in the case of AR, the pre-stimulus segments are classified some 
6% lower than post-stimulus segments. See Table 3.8. 

'The same trend is observed in the FISHER data. 

100 200 300 400 500 600 700 
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Table 3.1 
.- 

Classification results for subject I using COR, feature extraction and MLP 

classifier whilst varying the training set, size NI., s and number of hidden units iii Njju. 

SN = 1. FX = COR. CF MLP 

NES NHU 

PP = NONE 

Classification Fitness 

PP = SPF 

Classification Fitness 

Mean Stcl Pre Post Mean Stcl Pre Post 

100 0.787 0.024 0.831 0.743 0.754 0.025 0.855 0.652 

200 0.817 0.019 0.845 0.789 0.789 0.022 0.856 0.723 

300 0.830 0.018 0.847 0.814 0.802 0.020 0.850 0.753 

400 1 0.833 0.016 0.847 0.819 0.810 0.019 0.848 0.772 

500 0.838 0.020 0.850 0.825 0.822 0.021 0.857 0.787 

600 0.837 0.027 0.848 0.826 0.820 0.028 0.845 0.794 

700 1 0.830 0.033 0.840 1 0.819 0.827 0.033 0.844 0.810 

100 0.788 0.020 0.846 0.730 0.753 0.027 0.865 0.641 

200 0.816 0.017 0.845 0.788 0.787 0.019 0.862 0.711 

300 0.826 0.017 0.845 0.807 0.803 0.017 0.857 0.748 

400 2 0.835 0.018 0.849 0.821 0.814 0,019 0.856 1 0.772 

500 0.835 0.018 0.850 0.820 0.820 0.021 0.853 0.788 

600 0.833 0.023 0.846 0.820 0.827 0.027 0.859 0.795 

700 0.839 0.034 0.856 0.822 0.831 0.035 0.863 0.799 

100 0.790 0.023 0.843 0.737 0.757 0.023 0.862 0.651 

200 0.817 0.019 0.840 0.793 0.784 0.021 0.862 0.707 

300 0.828 0.017 0.845 0.811 0.801 0.019 0.854 0.748 

400 4 0.831 0.018 0.842 0.821 0.810 0.020 0.853 0.767 

50 0.837 0.020 0.841 0.834 0.822 0.021 0.848 0.795 

600 0.835 0.021 0.847 0.823 0.820 0.027 0.844 0.797 

700 0.837 0.036 0.852 1 0.821 0.832 0.036 0.856 0.808 

100 0.787 0.021 0.846 0.727 0.754 0.022 0.866 0.643 

200 0.815 0.019 0.842 0.789 0.783 0.019 0.857 0.709 

300 0.825 0.017 0.837 0.813 0.802 0.018 0.850 0.753 

400 8 0.834 0.018 0.842 0.825 0.808 0.019 0.851 0.766 

500 0.835 0.020 0.838 0.832 0.818 0.019 0.849 0.787 

600 0.840 0.023 0.846 0.835 0.826 0.026 0.846 0.805 

700 1 0.836 0.038 0.843 0.828 1 0.827 0.038 0.840 0.813 

100 0.784 0.021 0.847 0.722 0.751 0.023 0.876 0.625 

200 0.811 0.019 0.833 0.790 0.784 0.022 0.864 0.704 

300 0.826 0.016 0.836 0.816 0.798 0.020 0.851 0.744 

400 16 0.836 0.018 0.850 0.821 0.811 0.015 0.846 0.777 

500 0.838 0.020 0.841 0.834 0.817 0.020 0.847 0.788 

600 0.845 0.023 0.852 0.837 0.822 0.026 0.844 0.799 

700 0.847 1 0.032 0.848- 
T 

0.846 0.838 0.037 0.857 0.819 
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Table 3.2: Classification results for subject 2 using COB, feature extraction and MLP 
classifier whilst varying the training set size Nl,,, s and number of'Ifidden units in Niju. 

SN = 2. FX = COR. CF MLP 

NES NHU 

PP = NONE 

Classification Fitness 

PP = SPF 

Classification Fitness 

Mean Std Pre Post Mean Std Pre Post 

100 0.740 0.032 0.830 0.651 0.639 0.031 0.879 0.400 

1 
0.765 0.031 0.835 0.695 0.706 0.031 0.873 0.538 

300 0.781 0.044 0.835 0.727 0.750 0.045 0.880 0.621 
360 0.791 0.117 0.862 0.720 0.745 0.130 0.812 0.678 

100 0.741 0.032 0.841 0.640 0.644 0.029 0.884 0.404 
200 

2 
0.769 0.029 0.827 0.710 0.712 0.032 0.878 0.546 

300 0.786 0.047 0.833 0.739 0.753 0.047 0.876 0.630 
360 0.791 0.132 0.836 0.746 0.777 0.127 0.874 0.680 
100 0.740 0.029 0.826 0.653 0.779 0.129 0.894 0.664 
200 

4 
0.784 0.045 0.832 0.735 0.714 0.030 0.880 0.547 

300 0.800 0.115 0.840 0.760 0.759 0.049 0.881 0.637 
360 0.774 0.029 0.831 0.717 0.654 0.027 0.884 0.424 

100 0.741 0.029 0.840 0.642 0.646 0.024 0.893 0.399 
200 

8 
0.770 0.028 0.829 0.712 

. 0.711 0,029 0.884 0.539 
300 0.788 0.043 0.827 0.749 0.757 0,042 0.873 0.641 
360 0.777 0.129 0.818 0.736 0.764 0.124 0.864 0.664 

100 0.739 0.030 0.844 0.635 0.642 0.027 0.892 0.391 
200 

16 
0,768 0.030 0.826 0.711 0.709 0.036 0.877 1 0.540 

300 

L U 

0.771 

1 

0.044 0.809 0.733 0.757 0.051 0.876 1 0.639 
360 0 Ono n 4n, 
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Table 3.3: Classification results for subject 3 using COR feature extraction and MLP 
chissifier whilst, varYing the training selt size Npl,,, ý and number ofliidden units in Nilli. 

SN =I FX = COR. CF = MLP 

NES NHU 

PP = NONE 

Classification Fitness 

PP = SPF 

Classification Fitness 

Mean Std Pre Post Mean Std Pre Post 

100 0.861 0.023 0.902 0.819 0.719 0.029 0.892 0.546 
200 0.887 0.016 0.909 0.866 0.817 0.021 0.912 0.722 
300 0.899 0.017 0.915 1 0.883 0.856 0.021 0.924 0.789 

400 1 0.903 0.017 0.913 0.893 0.877 0.019 0.933 0.820 

500 0.906 0.019 0.915 0.897 0.889 0,025 0.926 0.852 

0.913 0.020 0.923 0.902 0.899 0.022 0.924 0.873 

0.911 0.033 0.920 0.901 Accidenta l data loss 

100 0.860 0.023 0.892 0.828 0.725 0.028 0.895 0.554 

200 0.888 0.016 0.909 0.867 0.819 0.023 0.916 0.722 

300 0.899 0.015 0.911 0.887 0.858 0.020 0.928 0.788 

400 2 0.904 0.016 0.915 0.893 0.880 0.018 0.934 0.827 

500 0.909 0.016 0.918 0.899 0.892 0.020 0.935 0.849 

600 0.912 0.021 0.916 1 0.907 0.899 0.018 0.931 0.867 

700 0.915 0.032 0.923 0.907 0.911 0.033 0.939 0.883 

100 0.863 0.021 0.905 0.821 0.725 0.027 0.894 0.556 

200 0.888 0.015 0.907 0.870 0.819 0.024 0.917 0.720 

300 0.900 0.015 0.909 0.891 0.856 0.018 0.920 0.793 

400 4 0.907 0.015 0.918 0.896 0.881 0.019 0.929 0.833 

500 0.908 0.018 0.923 0.894 0.893 0.019 0.927 0.860 

600 0.912 0.021 0.918 1 0.906 0.901 0.025 0.931 0.871 

700 0.913 0.030 0.920 0.906 0.910 0.027 0.934 0.886 

100 0.863 0.021 0.909 0.818 0.882 0.019 0.928 0.836 

200 0.887 0.016 0.902 0.873 0.893 0.019 0.930 0.857 

300 0.898 0.016 0.913 0.883 0.901 0.022 0.932 0.870 

400 8 0.905 0.016 0.913 0.897 0.907 0.032 0.933 0.882 

500 0.907 0.017 0.910 0.904 0.732 0.027 0.901 0.564 

600 0.912 
-` ý 0.021 0.921 0.904 0.821 0.021 0.917 0.725 

700 
-91 

1 
[ 

O 0.033 0.917 0.904 0.859 0.018 0.922 0.795 

100 0.865 0.018 0.901 0.829 0.728 0.033 0.903 0.553 

200 0.889 0.017 0.908 0.870 0.818 0.022 0.914 0.721 

300 0.899 0.016 0.916 0.882 0.858 0.019 0.925 0.791 

400 16 0.905 0.014 0.914 0.895 0.878 0.017 0.924 0.833 

500 0.913 0.018 0.920 0.906 0.893 0.020 0.926 0.860 

600 0.910 0.022 0.918 0.903 0.899 0.021 0,929 0.869 

700 0.918 0.027 0.928 0.908 0.908 0.032 0.928 1 0.888 
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Table 3.4: Classification results for subject I using AR, feature extraction and MLP 
classifier whilst varying the training set size A,, 

., ý; and number ot'hidden units, in N[ju. 

SN 1. FX = AR. CF MLP 

NES NHU 

PP NONE 

Classification Fitness 

PP = SPF 

Classification Fitness 

Mean Std Pre Post Mean Std Pre Post 

100 0.586 0.048 0.577 0.595 0.549 0.033 

1 

0.514 0.584 
200 0.584 0.050 0.533 0.636 0.559 0.039 0.588 0.529 
300 0.600 0.052 0.585 0.615 0.562 0.044 0.528 0.597 
400 1 0.604 0.054 0.582 0.625 0.571 0.048 0.573 0.568 
500 0.594 0.063 0.542 0.647 0.574 0.043 0.571 0.577 
600 0.594 0.065 0.547 0.641 0.570 0.056 0.574 0.566 
700 1 0.596 0.073 0.555 0.636 0.571 0.056 0.565 0.577 

100 0.596 0.041 0.590 0.601 0.557 0.029 0.577 0.537 
200 0.605 0.042 0.596 0.615 0.570 0.032 0.604 0.535 
300 0.613 0.043 0.606 0.620 0.577 0.033 0.557 0.597 
400 2 0.619 0.041 0.607 0.631 0.587 0.035 0.548 0.626 
500 0.617 0.049 0.610 0.624 0.580 0.036 0.576 0.585 
600 0.633 0.046 0.595 0.670 0.588 0.041 0.578 0.599 
700 0.619 0.055 0.590 0.648 0.578 0.051 0.605 0.552 

100 0.589 0.037 0.603 0.575 0.560 0.025 0.568 0.553 
200 0.614 0.029 0.594 0.634 0.577 0.025 0.562 0.592 
300 0.619 0.033 0.595 0.642 0.578 0.031 0.577 0.579 
400 4 0.623 0.035 0.585 0.661 0.586 0.027 0.605 0.568 
500 0.628 0.037 0.630 0.627 0.589 0.033 0.571 0.608 
600 0.628 0.039 0.618 0.638 0.598 0.037 0.563 0.633 
700 1 0.636 1 0.045 1 0.645 1 0.626 1 0.598 1 0.044 0.596 0.599 



CHA PTER I -A 
UDITORYEVOKED EEG EXPERIATENT 58 

Table 3.5: Classification results for subject 2 using AR feature extraction and MLP 
classifier whilst varying the training set size NES and number of hiddeii units in N11U. 

SN 2. FX = AR. CF MLP 

NES NHU 

PP NONE 

Classification Fitness 

PP = SPF 

Classification Fitness 

Mean Stcl Pre Post Mean Stcl Pre Post 

100 0.616 0.061 0.540 0.692 0.567 0.041 0.558 0.576 
200 

1 
0.634 0.051 0.576 0.692 0.577 0.049 0.622 0.533 
0.628 0.067 0.555 0.701 0.583 0.059 0.591 0.576 
0.627 0.126 0.498 0.756 0.576 0.119 0.584 0.568 

100 0.641 0.033 0.560 0.723 0.581 0.034 0.586 0.576 
200 

2 
0.644 0.043 0.564 0.724 0.596 0.045 0.612 0.580 

300 0.644 0.053 0.561 0.727 0.587 0.058 0.582 0.593 
360 0.628 0.128 0.508 

. 
0.748 0.607 0.124 0.572 0.642 

100 0.643 0.030 0.581 0.704 0.582 0.030 0.583 0.582 
200 

4 
0.648 0.030 0.583 0.713 0.596 0.036 0.612 0.579 

300 0.648 0.046 0.576 0.721 

] 

0.594 0.048 0.577 0.612 
360 0.113 1 0.564 2 0.595 0.117 0.570 0.620 
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Table 3.6: Classification results for subjects 1,2 and 3 using COR, feature extraction 
and FISHER, classifier whilst varying the training set size N1, -, 5. 

FX = COR. CF = FISHER 

NES SN 

PP = NONE 

Classification Fitness 

PP = SPF 

Classification Fitness 

Mean Std Pre Post Mean Std Pre Post 

100 0.777 0.024 0.779 0.775 0.769 0.021 0.775 0.763 
200 0.795 0.022 0.796 0.795 0.792 0.020 0.795 0.789 
300 0.795 0.046 0.794 0.795 0.786 0.022 0.794 0.779 
400 1 0.776 0.052 0.776 0.776 0.801 0.022 0.811 0.791 
500 0.791 0.048 0.799 0.784 0.795 0.024 0.807 0.782 
600 0.783 0.057 0.781 0.784 0.803 0,034 0.810 0.796 
700 1 0.806 0.051 0.809 1 0.804 0.792 0.038 0.802 1 0.782 

100 0.729 0.036 0.743 0.715 0.67 0.030 0.681 0.667 
200 

2 
0.756 0.047 0.769 0.744 0.734 0.037 0.755 0.713 

300 0.743 0.070 0.753 0.733 0.755 0.043 0.769 0.742 
360 r-0.740 0.135 0.752 0728 0.776 0.120 0.776 0.776 
100 0.863 0.024 0.879 0.847 0.762 0.024 0.769 0.756 
200 0.881 0.018 0.900 0.862 0.831 0.016 0.845 0.817 
300 0.867 0.033 0.883 0.851 0.861 0.018 0.879 0.843 
400 3 0.880 0.019 0.900 0.861 0.879 0.016 0.896 0.861 
500 0.878 0.018 0.904 0.852 0.872 0.013 0.902 0.856 
600 0.877 0.031 0.902 0.851 0.879 0.022 0.913 0.846 
700 0.875 1 0.043 1 0.897 1 0.852 1 0.882 1 0.024 0.920 0.836 
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Table 3.7: Classification results for subjects 1,2 and 3 using AR. feature extraction 
aml FISHER classifier wbilst varying the. training set sive Njl,,, ý. 

FX = AR. CF = FISHER 

NES SN 

PP = NONE 

Classification Fitness 

PP = SPF 

Classification Fitness 

Mean Stcl Pre Post Mean Std Pre Post 

50 0.586 0.031 0.615 0.557 0.572 0.024 0.578 0.567 

100 0.580 0.040 0.608 0.553 0.578 0.019 0.586 0.569 

150 0.578 0.036 0.608 0.549 0.577 0.023 0.580 0.574 

200 1 0.576 0.023 0.591 0.560 0.573 0.028 0.573 0.572 

250 0.581 0.042 0.608 0.554 0.563 0.029 0.571 0.554 

300 0.560 0.031 0.572 0.548 0.582 0.030 0.588 0.576 

350 1 0.586 0.044 0.590 1 0.582 0.554 0.039 
, 

0.565 0.544 

50 0.616 0.049 0.617 0.615 0.577 0.031 0.579 0.575 

100 
2 

0.595 0.050 0.599 0.590 0.588 0.031 0.594 0.582 

150 0' 623 0.057 0.629 0.617 0.595 0.050 0.582 1 0.609 

180 0608 0.191 0.592 
. 

0.624 0.584 0.165 0.568 0.600 

50 0.626 0.033 0.628 0.624 0.531 0.022 0.525 0.536 

100 0.612 0.042 0.609 0.615 0.544 0.022 0.539 0.549 

150 0.620 0.033 0.621 0.618 0.530 0.023 0.520 0.540 

200 3 0.614 0.040 0.612 0.616 0.544 0.019 0.537 0.550 

250 0.617 0.033 0.615 0.619 0.541 0.033 0.525 0.557 

300 0.606 0.052 0.605 0.607 0.527 0.031 0.522 0.532 

350 1 0.610 1 0.055 1 0.609 0.612 0.530 1 0.063 1 0.530 1 0.530 

Tahle 3.8: Combined (grand average) classification results for MLP classifier. All 
subjects, training set sizes and network sizes are combined in order to suininarise 
trends as a function of pre-processing and feature extraction. 

pp FX Mean Std Pre Post 

NONE 
- COH 

0.832 0.032 0.864 0.799 

SPF 
- 

0.792 0.035 0.884 0.700 

NONE 
AR 1 0.626 1 0.052 1 0.594 1 0.659 

SPF 

E 

0.601 I 1 0.043 1 0.605 
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3.5 Conclusions 

This, chapter describes an evoked auditory stimulus EEG experiment which has been 

designed as a first measure to assessing the viability of the BCMl concept. Classifi- 

cations are performed on single I-second segments of multi-channel EEG belonging 

to oue of two classes: pre or post-stirnulus EEG, where the stimulus is a pure tone 
heard over silence. Firstly, it has been shown that by coinhining a correlation de- 

tector based feature extraction method and MLP neural networks, one can classify 
betweell pre stinliflus-onset and post stimulus-onset auditory evoked EEG, a problein 

with relevance, to the BCMl concept [DMS981)], and any application involving sin- 

gle trial ERP detection. Secondly, it is found that a simple non-linear classifer -the 
Fisher discrillillialit, Only Performs marginally less successful than the MLP, a signif- 

icaut result froin the point of finding methods that minimise computational costs. 
Thirdly, a number of interesting questions relating to specific aspects of' the classifi- 

cation methodology have been raised. In particular 

Is the information in inulti-cliannel EEG sparsely distributed, in which case, 

(-an standard data reduction techniques be employed to simplify the task of the 

classifier? For example, would a reduced channel provide successful classification 

results? 

e Is the Laplace spatial filter suited to specific types of EEG classification problem, 

or can it be safely employed as a general pre-processing tool'? 

The correlation detector, simple yet effective in this situation: could it be useful 

in more challenging situations, such as differentiating, on a trial by trial basis, 

between a number of different classes of ERP relating to different aspects of 

musical experience? 

Overall, the experiment re-confirms what countless other research indicates - that 

the EEG contains information about our experience, and that techniques exist which 

enable aspects of that experience to be witnessed in near real time (since classifications 

are hased on I-second segments). 

3.6 Summary 

It is shown that autoregressive (AR) modelling, a correlation detector technique (a 

type of inatched filter), and a multilayer perceptron (MLP) neural network enable 
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the classification of single- trial, pre and post stimulus-onset, auditory evoked EEC, 

a problem which has relevance in the design of musical BCI systems. It is found 

that the correlation detector inethod of feature extraction significantly out-performs 

the AR inethod. It is also found that pre-processing with a Laplace filter does not 

improve classification fitness. This may suggest that auditory perception in the EEG 

is distributed over the entire scalp in a more gross inanner, since the Laplace filter 

ýiims to pick out local detail in favour of global detail [PPF971. A linear classifier, the 

Fisher discriminant, is also tested and found to operate almost as successfully as the 

N4LP. 



Chapter 4 

Musical Imagery Experiment 

4.1 Introduction 

Overview 

This chapter presents details of a novel EEG experiment, involving three BCMI related 

mental tasks: musical imagery, passive listening and counting. Numerous classifica- 
tion strategies (based on the classification framework described in Chapter 2) are 

eniployed in an off-line analysis of the three classes of EEG data relating to the above 
three tasks. The results suggest that a BCMI system based on these tasks alone is 

viable. This section gives some motivational issues and a description of the engineer- 

ing problein intrinsic to the design of the experiment. The remaining sections give. a 
detailed explanation of the experimental paradigm, the analysis methodology, results 

; uid discussion and some brief conclusions. 

4.1.2 Motivation 

One of* the key engineering problems upon which the concept of a new-era BCMI 
heavily depends is being able to classify between segments of EEG belonging to a 

variety of musical tasks. When considering which music related mental tasks to test as 

possible BCMI candidate tasks, imagery appears to be a good option. Brain imaging 

studies back this tip. For example Zatorre [ZHP96], by gives very strong evidence that 
both listening to music and imagining music use the same parts of the brain. Zatorre 

finds that there are many common areas of activation for perception and imagery, 

including the frontal and temporal-lobe areas, the hippocampal and thalamic areas, 

and more. A previous study by Zatorre [ZEM94] concludes that activity in the right 

63 
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superior temporal cortex is representative of perceptual analysis of' inelodies, pitch 

compari, sons are likely to involve the right prefrontal cortex, and active pitch ineinory 

recruiting both the right temporal and frontal regions. These st, ndies are important, 

since t hey re-enforce the hypothesis that the hunian brain uses the saine cortical areas 

and processes for the perception and iniagery of music. Moreover, with chies as to 

which parts ofthe brain are involved in these tasks, on(, might be able to focus on the 

EEG sites which correspond to these areas. 
Related studies in the field of BCI technology report the success of comparing (non- 

musical) iniagery tasks against a baseline. task, such as relaxing or sonic other passive 

activity. For example, Anderson et al (AS961 shows how half-second segments of EEG 

(Lita recorded whilst subjects perform imagined letter writing, object rotation and 

relaxation tasks (, an be classified using a combination of AR. modelling and standard 
f(, edf'Orward noural networks. 

The success of this study, and the brain imagery work of Zatorre readily leads to 

the following hypothesis, upon which the musical imagery experiment described in 

I his chapter is based: 

Thcrc, exists information in the EEG that allows one to lidentify whether a 

PCYSOTI, '18 engaged in one of two mental tasks: musical iniagery o'r passi . ve 
liste'ning. 

In this context, the mental task of musical imagery means to re-play the experience 

oflicaring some niusic, or a part of that music in the 'mind's car'. This activity should 
be fýuniliar to anyone who enjoys listening to and hurninhig along with a favourite 

time. Notice that once, the song has finished, one finds oneself humming the time in 

oiie's head without actually making any sound. When a composer 'hears' an entire 
tune (or part of it) in his head, he is using the 'mind's ear'. It is just like an artist who 

uses their 'mind's eye' to visualise how a piece of art would look after some changes, 

except with the, auditory faculty. 

To listen to a piece of niusic without making any special effort, such as imagining 

hearing parts (during or after they have finished), or actively focusing on one aspect 

or part of the music, is passive listening. In day to day life one is likely to be listening 

passively if they are relaxing to music or engaged in some other task whilst listening 

to music at the same time. 

In most contexts one chooses to perform musical imagery, invoking it as a tool to 

aid composition or assist performance, or simply as a means of enhancing the overall 
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musical experience. Musical iniagery is, for the following rcqisons, a prime candidate 

mental-task for tile BCMI investigation: 

* It is a well defined aspect common to the experience ofinusic. 

e It is creative and enjoyable by nature. 

9 It requires a deliberate mental effort. 

It 1, ý tll(' ('10, ýest thing to Singing or performing, yet is without any muscular 

activitv. 

The pwssive listening task is an activity requiring no effort, and is thus a suitable 

candidate for the baseline task, the 'neutral state' upon which a set of music related 

mental tasks (such as imagery) can be classified froin. 

4.1.3 Objectives 

The remainder of this chapter concerns the successful implementation of the follow- 

ing two objectives believed to be necessary for assessing the validity of* the above 
I I. v p Ot, II esis: 

1. Design and implement an experiment incorporating musical imagery and passive 
list, cinng tasks that allows the following classification problem to be tackled: 

Successfully determine, on a segment by segment basis, which class 
(musical imagery or passive listening) a 2-second multi-channel EEG 

segment belongs to, where the class is named after the mental task the 

subject i's performing while the segment is being recorded. 

2. Seek a, solution to the above problem by employing a variety of digital signal 

processing methods based on existing methods found to be of success In the 

EEG pattern classification field (such as those described in Chapter 1), thus 

gaining insight into whether the methods explored are likely to be suitable for 

a working BCMl system. 
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4.2 Paradigm 

4.2.1 Overview 

Subjects perforin one of three mental tasks: imagery (1), passive listening (relaxing) 

(R) and counting (C) whilst listening to a continuous sequence of trials. Each trial 

consists of two parts: a rhythm part, lasting for the entire trial, and a riff' part, 
lastliig fOr the first half of the trial. It is during the second half'of cach trial Chat the, 

nient, al task is perforined. The experiment is divided into 6 blocks oftrials, giving the 

subject a chance to relax. The experiment, lasts, for approximately I and a half hours, 

Including set-up time. 

Due to a lack of research in this area, the paradigm described herein is necessarily 

unique, and tlierefore certain particularities (such as the blocking arrangement - see 
helow) are also treated as an experimental variahles. lu terins of style, a halauce 

has hecu sought between existing standard practice (use of hlocks, randoinisation of 

trials, hichision ofa control condition etc. ), and the anticipated needs of hypothetical 

BCNII system. For example, the choice to use life-like musical stimulus, as opposed 

to inore simple 'repeatable' options. 

4.2.2 Trial format 

Each trial lasLs for 8 seconds and consists of 4 repetitions of a 1-bar rhythm loop 2. 

Superimposed onto this rhythm part are 2 repetitions of a I-bar riffloop which starts 

at the beginning ofthe trial and are finished halfway through the trial. Altogether, 

therc are 15 unique riff loops: 5 piano, synth and guitar loops respectively. All these 

musical parts were created using a multimedia PC computer using a MIDI-audio 

sequencer package, ail electric guitar with amplifier simulator, and ail audio i/o sound 

card. The music composed is in the style of a moderate tempo popular dance / club 
tune (120 beats per minute, 4 beats per bar). An inter-trial interval of 8 seconds 

means that there are no gaps between trials. In this way, the background part loops 

seanilessly for the entire duration of each block of trials. See Figure 4.1. 

'Riff: popular music jargon for a short catchy melody which is usually repeated many times in 
the course of a song. Classical music calls it an 'ostinato'. 

'Loop: popular music jargon for a segment of music which, when played in a continuous 'loop' 

sounds seamless, as if it were being played as a continuous part with no obvious beginning and end. 
The terin loop refers to the segment which is to be looped. 
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Rhythm parts 

A 

Figure 4.1: Diagrammatic representation of an imagery experiment trial. 

4.2.3 Conditions 

There are three conditions: Imagery, Passive Listening / Relaxing and Counting. A 

blocked system is adopted where the subject is instructed before each block of trials 

to perform one of three tasks, named after the conditions. These tasks are described 

below: 

lmagery task (1): listen to the looped riff, which lasts for 2 bars, then imme- 

diately after it finishes, imagine in your 'minds ear' that the riff continues for 

another 2 bars until the next trial begins. 

Passive listening task (relaxing - R): listen to the entire 4 bar trial with no effort, 
just relax. If you like, focus on the background part but in a relaxed way. 

Counting task (C): once the riff part has stopped, begin counting the following 

self repeating sequence: 1,10,3,8,5,6,7,4,9,2,1,10 and so on. Do this at 

your own pace. 

4.2.4 Blocks 

The experiment is divided into 6 blocks each consisting of 60 trials. Blocks are named 

after the task that the subject is instructed to perform in that block, and are ordered 

according to Table 4.1. The reason for having 2 blocks for each condition, and for 

changing the ordering of these blocks for each subject is to minimise the effects of time 
dependent features (such as increased alpha due to tiredness) which could confuse the 

results [Ros90]. Each of the 15 riff parts are auditioned 4 times in each block, but in 

a pseudo random order (so as to alleviate boredom). 

Time: 02468 (secs) 
-Y-----, -Y---, 

Riff parts Mental task region 
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Table 4.1: Block ordernig during imagery experiments. 

Block Number I SubJect II Subject 2 S ui -1ý -je-c t- 3- 
I Imagery Relaxing Counting 
2 Relaxing Counting Imagery 
3 Counting Imagery 11, claxing 
4 Imagery R, elaxing Counting 
5 11'elaxing Counting Imagery 
6 Counting linagery Relaxing 

4.2.5 Subjects 

Four inale subjects with musical experience were run. However, due to poor net 

placement, subject number Ts data has been excluded from the analysis. 

4.2.6 Rational for including counting task 

Suppose, hYpothetically, that it is possible to perform a two way classification between 

the EEG of' musical imagery and passive listening tasks respectively. Ail important 

line of'questioning that begs to be answered goes something like this: 

What is the phenonicuon, in this case, which leads to the classifiable char- 

acteristics contained within the EEG? 1.9 it that musical imagery requves 

mo, rc effort than the passive task, and this effort appears as a gross discrim- d 

z. nating characteristic? Or are there other, subtler task dependent charac- 
teristics, such as the fact that it is a musical task, or that it requires the 

ski'll of visualisation? 

'I'lic problem highlighted here is central to the field of EEG pattern classification. 
As mentioned early it is only recently that science has began to study the central 

nervous system, the brain, and mind in any depth, and it is a long way off its goal 
[Car98]. Consequently, scientific insight into the inner workings of the brain, and of 

conscious experience and how this is reflected in the EEG, falls short of being able to 

answer the above. question. Even with the most cleverly designed experiments which 

take into account many cognitive factors, there is still the uncertainty that it is the 

analysis methods which are not sensitive enough, or suitably attuned to the details 

hidden within the EEG. 

Nevertheless, the rational for including the counting task is that it provides a 

way to check that the characteristics which might allow one to classify between the 
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iniagery and passive listening tasks, are not merely a function of' a concentrating 

versiis not-concentrating state of mind (or effort versus no effort). The counting task 

is a control for the mental-effort component of the musical imagery task, since, like 

the iniagery task, counting also requires the subject to concentrate. If it was the act 

of concentration alone which lead to the classification imagery froin passive listening, 

then on(, might expect that a two-way classification between musical imagery and 

counting might f*ail. However, if one (-, an classify hetween these three tasks (two of 

wlucli require mental effort) then it supports the hypothesis that eff'ort related tasks 

involving diff'Crent, faculties produce different EEG based characteristics. 
Bearing this in mind, one should note that there have been successful attempts 

-it controlling or interacting with a 'musical environment' by the human EEG which 
liave utilised non-inusical tasks. These are typically based on the subjects' ability to 

seff regulate the power of their alpha wave frequency component (8-12Hz) by some 

relaxation or mental stilling technique [Ros90]. For this reason, it is useful to consider 

counting as a candidate task for the BCMI concept. 

4.2.7 Acquisition details 

E. EG data is acquired using the sarne systein as described in the, previous chapter. 
However, EGI's EGIS system is used to control the presentation of ninsical inedia and 
to nimiage the acquisition of data. 

4.2.8 Raw data segmentation 

Only the last four seconds (the later half) of each trial are used in the analysis. These 

4-second segments are further divided into two 2-second segments. Thus each trial 

yields 2 segments. With 120 trials for each condition, each subject produces 720 

segments (240 seginents for each of the three conditions). 

4.3 Classification methodology 

4.3.1 Overview 

EEG data is analysed on a subject by subject basis. Classifications are made between 

2-second imilti-channel segments belonging to pairs of conditions (2-way classifica- 
tions) and to all three conditions (3-way classifications). A number of classification 
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stratogics are evaluated where the following variations are imploniente(P: 

Prc-procc-, ýsing (PP): raw representation, i. e. no pre-processing (NONE), aver- 
age referencing (ANTR), Hjorth's Laplacian spatial filter (SPF), low pass filtering 
(LPF). Exclusion of bad channels is standard. Automatic detection and ex- 

clusion of 'bad' segments (muscle artefact contamination) is attempted, but is 

found to be unsuccessful. 

Fcaturc extraction (FX): 6th order linear autoregressive model coefficients (AR), 

autoregressive inodel order estimate (ARMO), binned fast Fourier transforin 
(FFT) and estimated power spectral density coefficients (PSD). 

Feahn-c selcetion (FS): various channel groupings consisting of subsets of the 
full 128 possible channels. (See Table 4.3. ) 

Data encoding - training set size (SR): two basic traming set sizes are inves- 
tigated, the exact size is determined by the split, ratio (SR. ) which is either 

mijety-tvii (9: 1) or fifty-fifty (1: 1). 

Classifiei-: generalised linear model (GLM) and single hidden-layer static multi- 
layer perceptron (MLP) neural networks, and a Fisher discriminant (FISHER). 

The following sub sections describe these variations, and where appropriate, give 

justification for their inclusion into the. classification system under investigation. 

4.3.2 Pre-processing 

Filtering 

As stated above, in addition to the raw representation, three filtering variations are 

eniplo. yed, namely: average referencing (AVR), Hjorth's Laplacian spatial filter (SPF) 

and a low pass filter (LPF). 

Bad channels 

Removal of bad channels is standard procedure when using dense array EEG systems. 
In this case, a bad channel detection algorithm is employed as a means to automati- 

cally detecting bad channels. See Appendix A- 'Bad channel detection algorithm B' 

for details. These channels are removed from all further analysis. 

3 For a detailed explanation of these methods, refer to Chapter 2. 
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Bad segments 

EEG identified as being contaminated by muscle artefacts is oftell removed from 

analYsis [NLDS98]. In this case, two artefact detectlon algorithms: oile for eye-blinks, 
t he other for e. ve-movenients are employed in an attempt to identify segirients of EEG 

wlildi contain these types of artefacts (Appendix A). Both algorithins are applied to 

all 720 2-second segments from all 3 conditions. If either of tlie algorithrris identify 

an artefact, the segirient is labelled as a 'bad', allowing it to be excluded from the 

mlaIN'sis'. 

As can beseen from Table 4.2, the number ofbad chaimels fo -ies r each subject, vai 
sigilificatitly. Of the three subjects' data, subject I's was the worst with inore than half 
the segments identified as being bad. This could be due to the calibration parameters 
of' the detection algorithms, or, more likely, a problem with one or more of the four 

eye channel electrodes. However, visual inspection at the time of recording confirmed 
that, the overall appearance of the data was 'clean'. 

Tahle 4.2: Percentage of bad segments identified by artefact detection algorithms. 
'I , otal nund)er of segments per subject is 720. 

Subject number Percentage bad 
1 58.9% 
2 9.4% 
3 18.6% 

4.3.3 Feature extraction 

The following t ran s format ions are performed on all the four variations of pre-processed 
segments, resulting in a number of sets of feature vectors. 

AR coefficients 

Single channel 2-second (500 samples) segments of pre-processed EEG are converted 
into 6-valued feature vectors, which are the 6th order AR model coefficients obtained 
using a stepwise least squares algorithm [NS] which is realised in the ARFIT tOOIbOX 
fOr MATLAB [SN]. The reasons for using a 6th order model are as follows: 
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A preliminary exploratory analysis indicated that the Gt, h order AR, model is 
the better choice in comparlson to 12 and 24 ordered models, which are found 
to offer insignificant improvements to the classification accuracy. 

e Existing research supports this finding, especially [AS96, PPF97, PH. CSOO]. 

Autoregressive model order estimation 

Single channel 2-second (500 samples) segments of pre-processed EEG are converted 
into single-valued feature vectors, where each value is the result ofthe optimal model 
order es'llimition using a modified Schwarz' Bayesian Criterion (XISC). 

Binned DFT and PSD 

Single channel 2-second (500 samples) segments of pre-processed EEG are converted 
using NIATLAB's built in FFT function (fft. m) to 500-valued FFT coefficients vectors. 
The first 250 values are kept and their absolute values calculated (using the abs. m 
NIATLAB function). This gives the DIFT coefficients ranging from 0 to 125 Hz, 

since the, EEG is sampled at 250 Hz. To compute the PSD coefficients, the simplest 
method is employed, that is, the squared DIFT coefficients. DFT and PSD coefficients 
are then arranged into bins and sumined according to the 5 popular EEG frequency 

ranges (Delta (I -4 Hz), Theta (4 -8 Hz), Alpha (8 - 13 Hz), Beta-] (18 - 24 Hz) 

aiid BcIa-2 (24 - 32 Hz)). Hence, both representations reduce it 500-valued segment 
of EEG tinie series into a 5-valued binned frequency representation. 

4.3.4 Feature selection 

Having transformed raw segments of EEG data into a number of reduced dimension- 

ality representations, the total number of features representing a single multi-cliannel 
seginent of EEG is still great. This is due to the number of channels available, i. e. 
12S. For example, with the AR representation, the total number of values in the 
feature vector is 128 x6 768 variables. Whereas, with the ARMO representation, 
there are only 128 x1 128 variables. It is a well known malady in the field of 
pattern classification that there is a price to pay for high diniensionality data sets. 
This is discussed in Chapter 2. Suffice to say that, reducing the dimensionality on the 

one hand throws away information, yet on the hand improves the likelihood that the 

network will perform well. In cases where there are many input variables presented to 
the classifier, there must also be significantly more exemplar patterns making up the, 
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Table 4.3: Channel sets lised in feature selection along with code names use(l In tables 
throughout the remainder of this thesis. 

Channel sets used in feature selection stage 

Channel sets 
Code name used Number of Geodesic Nets Electrode Numbers in tables channels 

Temporal channels FS1 4 465897109 

International 10-20 montage FS2 18 9 11 23 25 34 37 46 58 60 62 71 84 86 97 105 
109122124 

Full 128 EGI net minus the 18 14 17 22 26 33 39 44 45 49 56 57 63 64 69 

peripheral electrodes' 
FS3 92 70 74 75 82 83 89 90 95 96 100 101 108 114 

115 120 121 125 126 127 128 

1 Peripheral electrodes - the ones that were removed - are given here. 

training set [Bis95]. For this reason, a number of reduced channel set representations 
(FSI. FS2 and FS3) are presented to the networks, rather than using the full 128 

climmels. These are defined in Table 4.3. 
An additional reason for evaluating smaller channel sets is that from the practical 

engineering point of view, fewer channels are better (cheaper and more portable - not 
to mention simpler). 

4.3.5 Data set partitioning 

It, is unustial that the data analyst has an unlimited data set representative of the 

problein at hand. In this case, the finite-sized data set (DS) is partitioned into a train- 
ing set (ES) and test set (TS). (For details see Chapter 2, 'Data set partitioning'. ) 
Two partitionings are considered here, a fifty-fifty split (SR. =I: I) and a ninety-ten 
split (SR=9: 1), where SR denotes the split ratio. 

These two split ratios are evaluated to identify whether the classification system 
is sensitive to the size of ES. This is a very important question which is worthy of an 
entire branch of investigation because the engineer wishes to know how little training 
data will sufficiently allow the classification system to learn to classify unseen data. 
In the case of EEG, the less time an individual has to spend in a training phase, the 
better. 
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4.3.6 Classification 

InIIw fi (, I (I ofEEG pattern classificatioll, nonlinear classificatimi techii I ques have been 

"shown to perform well ill corriparison to linear methods [NLDS98]. Here, nonlinear 
classifications are performed by static-MLP and GLM neural networks. A linear 

inet hod - the Fisher discriminant classifier - is also evaluated 1. A railge of MLPs are 
evaluated where the number of hidden units is varied between 2 aud 32. Rather than 

attempting validation early stopping, or pruning, MLPs were trained in batch mode' 
For a fixed number of epochs - in this case 50 - which was found to be a suitable value 
in previous exploratory studies. 

4.3.7 Bootstrapping and statistics 

Every classification strategy is re-tested between 10 and 25 time,,,, 6 according to the 
bootstrapping method explained in Chapter 2. This yields an average fitness, T In 

addition to this, the following statistical measures are calculated: 995o confidence 
Iiiii1t, s. standard deviation, and Pchance - the. probability that the result average fitness 

could have arisen by chance (using the randoin classifier comparison described in 
Chapter 2)- 

4.4 Results and discussion 

In this section, results are presented in a way which focuses on the overall mean 
classification fitnesses (resulting from the bootstrap analysis) as a function of the 
numerous strategy variations (described above)7 . The main purpose for doing this 
is to identify which strategies are best suited to the problem at hand, as well as 
gaining some insight into the relative contribution of eacli sub-stage (with respect 

"As stated before, the reason for employing the Fisher discriminant is to add to the current body 
of research which compares linear and nonlinear methods in the EEG pattern classification field. 

513atch mode is preferred over incremental mode since (1) all data is available off-line, and (2) 
batch mode gives better convergence [Swi96]. 

'This figure was set arbitrarily so as to give a suitable number of repetitions, and hence, a good 
confidence statistic. The trade-off between the time taken to re-compute was the main factor in 
inaking the choice of how many repetitions to perform. 

711, this conteXt, tile term strategy refers to a set of classification parameters, one parameter for 
each of tile five sub-stages of the classification procedure: pre-processing (PP), feature extraction 
(FX), feature selection (FS), data-encoding (SR) and classifier (CF). Additional 'variations' which 
are not particular to the classification methodology itself are the experimental conditions, or classes 
(CND), and the subject number (SN). These abbreviations are used throughout the following two 
chapters as a shorthand was of describing the particular strategy components. 



CHAPTER 4. NIUSICAL IMAGERYEXPERIMENT 75 

to its varuitions') to the overall classification. performance. Note that,, as expressed in 
Cliýiptcr 1. the. overall aim is to develop a systematic BCMI C`Vahiah, '071 PT'OtOCOI, WhiCh 
has been achieved, rather than dwelling on the specific rainifications of the individual 

stages. 

4.4.1 Optimal strategies 

Class, ification results for the optimal strategies are presented for the cach of the three 

classifiers: Fisher discriminant (FISHER. ), generallsed linear niodel (GLM) and static- 
inultilayer perceptron (MLP) in Tables' 4.4,4.5 and 4.6 respectively. The following 

attributes are common among all three classifiers: 

o Pre-processing: Laplace spatial filter (SPF). 

e Feature extraction: 6th order linear autoregressive inodel coefficients (AR). 

o Split, ratio (determines training set size): 9: 1. 

Furthermore, strategies which utilise the FISHER, and MLP classifiers perform best 

wlien iising the largest number of electrodes (FS3). When using the GLM the two 

way classifications (IR, IC, R, C) perform best with the international 10-20 electrode 
montage (FS2) whereas the three-way classification problem (IR. C) does best when 
using the larger channel set (FS3). 

4.4.2 Best classifier 

Taking the best, strategies for the three classifiers, the MLP is marginally better than 
the FISHER and GLM which both achieve similar classification fitnesses. This trend 

can be seen in Figures 5.3 - 5.5. 

To compare the overall performance of each classifier the average performance 
across a number of strategies is calculated (see Table 4.7). Clearly, the MLP achieves 
the best overall classification fitness. The GLM appears to be slightly better than the 
FISHER method. However, when restricting this comparison to the best strategies for 

each condition and subject, it is found that the FISHER method performs marginally 
bettcr (96.2%) than the GLM (95.4%)'. These differences in performance fall within 
the 99%, confidence limits and the one (typical) standard deviation which for these 

'Refer to Table the Glossary for a key of abbreviated code-names used in tables. 
ý'Coinputed from the average of the 12 optimal strategies in Tables 4.4,4.5. 
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Table 4.4: Optimal classification strategies tisii)g the FISHER classifier. 

Optimum Strategies for the FISHER classifier' 
SN 

Classification fittnes Confidence CND 

Mean Std Min Max. Limits (+/-) Class 1 Class 2 Class 3 
NI NES NTS 

0,977 0018 0.958 1.000 0.019 1 R 

1 
0994 0010 0,979 1.000 0,010 1 C none 474 432 48 
0971 0.020 0.938 1.000 0.021 R C 

0961 0,022 0.931 1.000 0.023 1 R C 474 648 72 
0979 0.017 0,958 1 000 0,017 1 R 

2 
0913 0040 0.833 0958 0041 1 C none 474 432 48 
0958 0035 0.896 1 ý000 0.036 R C 

0893 0049 0,792 0958 0051 1 R C 474 648 72 
0 960 0039 0875 1,000 0.040 1 R 

3 
0 973 0030 0,917 1.000 0030 1 C none 432 432 48 

0996 0ý009 Oý979 1 coo 1100 0.009 R C 

0 965 0.029 0.903 000 1. 

E100 1 

0.030 1 R C 432 648 72 

1 These parameters were common to all the above variations: PP-SPF, FX-AR, FS-FS3 SR. 91, CFýFISHER, NP-1 0 

Table 4.5: Optimal classification strategies using tbe GLM classifier. 

Optimum Strategies for GLM classifier' 
SIN 

Classification fittries Confidence CND 

Mean Std. Min. Max. Limits Class 1 Class 2 Class 3 
FS NI NES NTS 

0.922 0.031 0.854 0.979 0.018 1 R 

1 
Oý965 0.022 0.917 1.000 0.012 1 C none FS2 78 432 48 

01928 
- 

0.038 0.813 0.979 0.021 R C 

09 45 0.023 
1 

0.889 0.986 0.013 1 R C FS3 474 648 72 

0989 0,014 0,958 1 000 0.008 1 R 

2 
0.932 

- 

1 

0.034 0.854 0.979 0.019 1 C none FS2 90 432 48 

0,927 0.035 0.833 0.979 0.019 R C 

0.938 0.029 0.889 1.000 0.016 1 R C FS3 474 
1 

648 72 

0.963 0.032 0.896 1.000 0.018 1 R 

3 
0.986 0.017 0.938 1,000 0.009 1 G none FS2 90 432 48 

0.996 0.010 0.958 1.000 0.006 R C 

0.963 0.020 1 0.917 1,000 0.011 1 R C FS3 432 648 72 

1. These parameters were common to all the above variations: PP=SPF, FX=AR, SR=9: 1, CF=GLM, NP=25 
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Table 4.6: Optimal classification strategies using the MLP classifier. 

Optimum Strategies for MLP classifier' 
SN 

Classification fiftnes Confidence CND 
ES NTS 

Mean Std. Min. Max. Limits (+/-) Class 1 Class 2 Class 3 
NI N 

0,998 0.007 0.979 1.000 0.007 1 R 

1 
0.996 0.009 0.979 1.000 O. DD9 I C none 

474 
432 48 

0.994 
- - 

0.010 0.979 1.000 0.010 R C1 

0- 0.015 0.958 1.000 0.016 1 R C 648 72 

0.994 0.010 0.979 1.000 0.010 1 R 

2 
0.973 0.031 0.896 1.000 0.032 1 C none 

474 
432 48 

0,954 0.038 0.896 1.000 0.039 R C 

0.951 0.023 1 0,903 0.986 0.024 1 R C 648 72 

0.973 0.014 0.958 1.000 0.014 1 R 

3 
0.011 0.97 1.000 0.011 1 C none 432 432 48 

0.014 0.958 1. DDO 0.014 R C 

0.015 0.958 1.000 0.016 1 R C 432 648 72 

1. These pa a common to all the above variations: PP-SPF. FX. AR. FS-FS3. SR-9: 1. CF-MLP. NP-1 0. NH-8. NE-50. 

Figure 4.2: Bar plot of classification fitness for all four condition comparisons as a 
function of classifier. SN=1 
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Figure 4.3: Bar plot of classification fitness for all four condition comparisons as a 
function of classifier. SN=2 

Figure 4A Bar plot of classification fitness for all four condition comparisons as a 
function of classifier. SN=3 
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Table 4.7: Classification fitness as a function ofclassifivi- finiction. 

Classification fitness as a function of classifier 

Mean fitness' CF 

0.672 GLM 

0.652 FISHER 
1 Mean taken over 384 variations: PP=NONE, AVR, SPF, LPF. FX=AR, ARMO, FFT, PSD. FS=FS2, FS3. CND=1R, 1C, RC, 1RG. SN=1.2.1 

stalistics is in tli(, order of +/- 2 percent. Therefore the FISHER, and GLM classifier 

- witli respect to classification fitness - are viewed as being equally successful. 
All three classifiers perform within similar regions of accuracy, therefore it is riec- 

es, sar, y to consider the merits of the dependent pre-classifier variations which would 
(hrectlY (, fl'(, (! t the overall computational expense of the strategy. This will be dealt 

wll]i in the conclusions sub-section. 

4.4.3 Pre-processing 

Of the four pre-processing variations (NONE, AVR, SPF, LPF) the Laplacian spatial 
filter (SPF) performs the best, followed by the average reference (AVR. ) filter, then no- 
pre-processing (NONE) and finally, the low pass filter (LPF). This trend is consistent 
throughout the numerous strategy permutations (see Figure 4.5). 

It (! an be seen from Table 4.8 that the improvement to the overall classification 
fitness due to the SPF is the most significant. Indeed, the success of this pre-processing 
mediod agrees with the finding of numerous other studies, sucli as [I'PF971. 

Pre-processing and estimated optimal AR model order 

The pre-processing filters change the estimated optimal AR, model order (ARMO) 
from that ofthe raw data (see Table 4.9). Notice that the SPF operation reduces the 
ARAM to a value closer to 6 than the alternative pre-processing methods. This point 
is of interest as it suggests that the success of the SPF method in combination with 
the 6-order AR model coefficients could be due to the suitability of the complexity of 
the pre-processed data with the 6th order AR model. If this were the case, one might 
expect that the classification fitness for the AR feature extraction method might be a 
function of the optimal model order estimate. However, when looking at the data more 
carefully, it appears that there is no trend indicating the above nature. Table 4.10 
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Figure 4.5: Bar plot of classification fitness for all four condition comparisons as a 
function of pre-processing. SN=1,2,3. 

Table 4.8: Classification fitness as a function of pre-processing. 

Classification fitness as a function of pre-processing for each classifier 
FISHER GLM MLP 

Mean fitness' PP Mean fitneSS2 PP Mean fitneSS3 PP 

0.750 SPF 0.719 SPF 0.776 SPF 

0.662 AVR 0.687 AVR 0.704 AVR 

0.612 NONE 0.663 NONE 0.667 NONE 

0.582 LPF 0.619 LPF 0.651 LPF 

1. Mean taken over 96 variations: 
FX=AR, ARMO, FFT, PSD. FS=FS2, FS3. SR=9: 1, 
CF=FISHER, CND=1R, 1C, RC, 1RC. SN=1,2.3. 

2. Mean taken over 96 variations: 
FX-AR, ARMO, FFT, PSD. FS. FS2, FS3. SR-9: 1, 

11CF-FISHER, CND=1R, 1C, RC, 1RC. SN=1,2,3. 

3 Mean taken over 12 variations: 
FX=AR, ARMO, FFT, PSD. FS. FS1 SR=9: 1, CF. MLP, 

iCND=IR. SN=1,2,3. 
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Tahle 4.9: The effects of pre-processing on the estimated optinial AR inodel order 
(A ItM 0) 

- 

Average optimal AR model order (ARIVIO') as a function of PP and CND for each subject 

PIP CND Subject 1 Subject 2 Subject 3 
1 9.4 14.0 10.6 

LU 
z R 9.1 14.0 10.1 
0 
z C 8.5 14.0 9.6 

Mean 9.0 14.0 10.1 
1 10.9 10.4 9.7 

Ir 
> 

R 11.5 10.7 9.6 
< C 10.8 10.8 8.9 

Mean 11.1 10.6 9.4 
1 7.7 9.2 6.9 

LI- 
12 

R 7.5 9.4 7.1 
- C 7.1 9.3 6.9 

Mean 7.4 9.3 7.0 
1 18.3 18.4 18.6 

LL n 
R 18.4 18.4 18.5 

- -J C 18.2 18.5 18.6 
Mean 18.3 18.4 18.5 

Grand Mean 11.4 13.1 11.3 
11 ARMO feature set used to calculate above values. All 128 channels excluding bad channels were used. 

illustrates this by showing the classification fitnesses for the AR. and FFT methods for 

the four pre-processing methods along with the corresponding average ARMO values. 
Instead, on(, finds that it is the pre-processing method and not, the ARNIO value which 

governs the success of the strategies. 

Artefact removal 

A brief look at the impact on overall classification performance with respect to arte- 
fact containination (see Table 4.11) indicates that the removal of bad trials from the 

atialysis makes no impact on the performance of the above strategies. This could be 

due to several factors, namely: 

* Poor or poorly calibrated artefact detection algorithin. 

e Low proportion of genuine artefacts. 

* Overall classification system is insensitive to artefacts. 
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Table 4.10: Possible relationship between pre-processing, inean ARMO and classifi- 
cal loll fitness. 

Possible relationship between PP, Mean ARMO and Classification fitness 
SN PPI Mean ARMO Mean fitness (AR)' Mean fitness (FFT)2 

SPF 7 0.945 0.815 

1 
AVR 11 0.851 0.596 

NONE 9 0.838 0.565 
LPF 18 0.776 0.587 
SPF 9 0.938 0.762 

2 
AVR 11 0.906 0.636 

NONE 14 0.900 0.559 
LPF 18 0.846 0.587 
SPF 7 0.963 0.583 

3 
AVR 9 0.892 0.484 

NONE 10 0.906 0.476 
LPF 19 0.912 0.512 

ARMO feature set used to calculate Mean ARMO. All 128 channels excluding bad channels were used, Mean fitnesses are calculated by averaging all the 
permutations of the strategieswhere- CF=GLM. FS=FS2. CND=IRC. FX= (1) AIR (2) FFT. (3) PIP column ordered according to the best-to-worst findings of the PIP 

analysis 

The issme of' how to handle artefacts in EEG and general signal analysis is ail entire 
topic in its own right. If nothing else, this brief exploration into the inatter confirms 
this. 

4.4.4 Feature extraction 

Irrespective of the classifier used, the Gth order auto regressive model coefficieiits (AB) 

represeiiUition performs significantly better than the alternatives (see Figure 4.6). The 

AR model order estimation (ARMO) representation fairs the, worst, with the Fourier 

niediods (FFT, PSD) somewhere in-between (see Table 4.12). 

Most noteworthy is the finding that the AR representation significantly out-performs 
(10% + improvement) the Fourier methods. This finding is generally cmifirmed by 

other spoutaueous-EEG pattern classification studies, for example JAS96, PPF97, 

PRCS()O]. 

4.4.5 Feature selection 

lit gcneral, both MLP and FISHER, classifiers perform best when using the largest 

number of' channels (FS3), whereas the GLM perform best with the smaller 10-20 

grouping (FS2) (see Table 4.13). When only the optimal strategies for each classifier 
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Table 4.11: Effect on classification fitness after removing bad trials. Bad trials re- 
ferring to segments of EEG that were identified by the muscle artefact detection 
algorithms. 

Effect on classification fitness after removing bad trials 

SN Mean fitness' 
pp 

Bad trials removed All trials used 
0.993 0.989 SPF 

2 
0.964 0.965 AVR 
0.929 0.939 NONE 
0.881 0.876 LPF 
0.896 0.963 SPF 

3 
0.853 0.893 AVR 
0.861 0.857 NONE 
0.832 0.829 LPF 

1. Mean fitness is the strategy fitness where: FX=AR. FS=FS2. CND=IR. CFýGLM. 

SN=1,2,3. 

0.800 

>1 0.750 

0.700 
co MRSHER 
C: 
.00.650 MGLM 
ca 0 OMLP 
. 0.600 U) U) 

0.550 

0.500 
AR ARMO FFT PSD 

FX 

Figure 4.6: Bar plot of classification fitness for all four condition comparisons as a 
function of feature extraction. SN=1,2,3. 
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Table 4.12ý Classification fitness as a function of feature extraction varlations (and 

chissifier výiriatioiis). 

Classification fitness as a function of feature extraction for each classifier 
FISHER GLM MLP 

Mean fitness' FX Mean fitnesS2 FX Mean fitness3 FX 

0.788 AR 0.784 AR 0.799 AR 

Oý624 FFT 0.650 ARMO 0.686 FFT 

0.617 PSID 0.628 PSID 0.683 PSD 

0.578 ARMO 0.626 FFT 0.556 ARMO 
1, Mean taken over 96 variations: 
p P-=NONEAVRSPF, LPFý FS=FS2, FS3. SR=9: 1, 
CF-FISHER, CND=1R, 1C, RC, IRC. SN=1,2,3. 

2. Mean taken over 96 variations: 
PP=NONE, AVR, SPF, LPF. FS=FS2, FS3. SR=91, 
CF=GLM, CND=1R, iC, RC, 1RC. SN=1,2.3. 

3. Mean taken over 4 variations: 
PP=NONE, AVR, SPF, LPF. FS=FSI. SR=9ý 
CND=IR. SN=1,2 

: 
3. 

Table 4.13: Classification fitness as a function of feature selection (channel sets). 

FISHER GLM MLP 

Mean fitness' FS Mean fitnesS2 FS Mean fitnesS2 FS 

0.699 FS3 0.718 FS2 0.783 FS3 

0,605 FS2 0.640 FS1 0.712 FS2 

n/a n/a 0.626 FS3 n/a n/a 
1. Mean taken over 192 variations. 
PPýNONE, AVR, SPF, LPF FX=AR, ARMO, FFT, PSD. 
SR=9 1, CF=FISHER, CND=IR, IC, RC, IRC SN-1,2,3. 

2. Mean taken over 192 variations: 
PP=NONE, AVR, SPF, LPF, FX-AR, ARMO, FFT, PSD. 
SR-91, CF-GLM, CND. lR, lC, RC, lRC. SN. 1,2,3. 

2. Mean taken over 192 variations: 
PP=NCNE, AVR, SPF, LPF. FX-AR, ARMO, FFT, PSD. 

SR-91, CF-GLM, CND-IR, IC, RC, IRC. SN-1,2,3. 
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are considered, 1-e. PP=SPF, FX=AR, it is found that, the improvement (in(, to 
optinial FS choice is in the order of a 5VO. For example, for condition pair 111, the 
XILP classifierYields 99.2% when using FS3, compared to only 95.8% when using the 

-, inaller FS2 channel set. Of the three classifiers, the GLM seenis to yield best fitness 
for the smaller channel sets, a result which sets it apart frorn the other classifiers in 
term,; ofcoinputational and practical complexity. 

Note that Nvhen comparing the results of strategies utilising the sinaller channels 
sets, (FS1 and FS2) in conibination with either the Laplace filter (SPF) or the average 
reference filter (AVR) with strategies which use the full channel set (FS3), it, must be, 

renienibered that both of these pre-processing options require additional electrodes 
(all the, electrodes are used for the AVR calculation, whereas all the nearest neighbours 
are used for the SPF filter). This becomes relevant only when the inerits of reduced 
chýniiivl sets, over dense arrays are being pronounced. For exaniple, consider the results 
froin subject I and the strategies employing the 4 temporal channels (i. e. FS=FSI) 

as as the following settings: FX=AR, SR, =9: 1, CFz--GLM. One finds that the 
SPF strategy yields a significantly higher classification fitness (82%) over the no pre- 
proces'sing strategy (77%). However, because the SPF filter actually uses inore than 

-1 channels in its derivation, the engineer must bear in mind that, should a 4-channel 

systein be chosen, it would not be possible to utillse. a Laplace filter unless special 
Laplacian electrodes were used". This argument becomes especially relevant when 
the AVB, filter is used since the effectiveness of the average referencing requires a dense 

array in the first place [Die98]. 

4.4.6 Training set size 

Before evaluation by the classifier, the data is split into a training set (ES) and test 

set, (TS). The proportional size of these sets is determined by the split ratio (SR). 
It, is found that the SR resulting in the larger training set size, 9: 1, only performs 
slightly better than the alternative, I: I (see Table 4.14). This is generally true for 

comparisons between pairs of strategies. For example, subject 1, with the following 

attributes: PP=SPF, FX=AR, FS=FS2, CND=IR, C. For the larger training set size 
of' 648 patterns, the strategy achieves a classification fitness of 87%. Whereas, for 

the sinaller training set size of 360, it yields 84%. This is not a great difference in 

performance, despite the big difference in the size of ES. Obviously, the smaller 

number of t raining-pat terns required, the better, since a BCM1 which minimises the 

"'Such Laplacian electrodes are available commercially as self contained sensors. 
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Table 4.14: Classification fitness as a function of training set, size. 

Classification fitness as a function of split ratio (training set size) 

Mean fitness' SR 

0.661 9: 1 

0.635 1: 1 
1. Mean taken over 576 variations: PP=NONE, AVR, SPF, LPF. FX=AR, ARMO, FFT, PSD. FS=FSI, FS2, FS3. CF=GLM. CND=IR, IC, RC, IRC. SN=1,2,3. 

amount, of' training sessimis will be favourable. If successful strategies could be found, 

it would 11ccessary to determine a suitable lower-Iiinit for the training set size. 

4.4.7 Conditions 

Of' the 4 possible variations of condition comparisons (IR, IC, B, C and IR, C), the 
t'Oriner (IB) is the most irnportant. Musical imagery is the primary mental task which 
t1ils experiment is based on, and relaxing (or passive listening) is the baseline task. If 

successful classifications can be made between unseen EEG segments recorded whilst 
the subject is engaged in either of these two tasks, then this will help the strengthen 
case for the BCMI concept. Table 4.15 demonstrates that all the four condition pairs 
are classified to similar fitnesses. 

The fact that strategies tested on the three 2-way condition pairs yield similar 

c4issifications is slightly concerning. Consider tasks I and C. Both require a the 

subject to rilake concerted mental effort, whereas task R being passive requires little 

inent, il cffort. This point was discussed at length earlier in the chapter. The point here 

is that on a hierarchical scale of concentration (or mental effort), tasks I and C should 
railk comparatively higher than R. The fact that segments belonging to conditions I 

and C (-an be successfully distinguished from each other - and Just as well as with 
the active-passive combinations (IR and CR) - suggests that the, finer aspects of the 
brains' functioning (i. e. musical imagery versus numerical counting) are being picked 

up. Following this line of thinking, one would expect the active-passive combinations 
to yield better results than the more challenging IC combination. However, this is 

not the case, therefore a closer look at the reasons behind this behaviour are given 
below. 
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Table 4.15: Classification fitness as a function of condition variations (and classifier 
variations). 2-Nvay cI assifi cations are of similar order of classification fitness, whereas, 
the 3-wa. v problem is somewhat less successful. 

Classification fitness as a function of condition-pairs for each classifier 
FISHER GLM 

Mean fitness' CND Mean fitness" CND 

0.715 RC 0.684 RC 

0.688 Ic 0.678 Ic 

0.683 IR 0.676 IR 

0.520 IRC 0.650 IRC 
1 Mean taken over 96 variations PP=NONE, AVR, SPF, LPF. 
FX=AR, ARMO, FFT, PSD. FS=FS2, FS3. SR=9: 1, CF=FISHER. SN=1,2,3. 

2. Mean taken over 96 variations: PP= NONE, AVR, SPF, LPF. 
FX=AR, ARMO, FFT, PSD. FS=FS2, FS3. SR=9: 1, CF=MLP. SN=1,2,3. 

Effects of blocking conditions 

During the EEG acquisition stage of the experiment, trials are arranged in a single- 
condition-per-block fashion. This block-wise ordering of trials reveals an interesting 
result, which suggests there is a relationship between the withiii-subject classification 
fitness of' the 3 possible 2-way classifications - IR, IC and BC - and the order in 

wliicli the blocks are presented during the experiment. Table 4.16 demonstrates that 
the condition pair which performs best corresponds to the order (position in time) 

of' Ow blocks. This relationship could be explained by the idea that throughout the 

recording phase of the experiment there is a time dependent. component to the EEG 

which grows as the experiment goes on. 
Suppose that there was a time dependent component of the EEG which increased 

steadily w1ii1st the experiment was underway. For example, as the experiment pro- 
gresses the subject's attention might become weaker leading to an increasing mag- 
nitude of' the, alpha band component (related to the state of relaxation / sleepiness. 
If' this were the case one would expect to find that trials recorded further into the 

experiment would contain a greater prevalence of this component. A quantitative 
pattern classification system operates on the statistical properties of the data choos- 
ing the salient features in order to perform the classification [CDA93a]. It will always 

converge to the simplest solution which is why the data must be free from hidden 

decoys - f'Catures which would lead to a classification, but for the wrong reasons. In 

cases where the engineer is unaware of the underlying nature of the data, they cannot 
know which features to exclude or account for. This lack of prior knowledge must 
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Table 4.16: Classification fitness as a function of' block ordering. 

Relationship between block ordering and 2-way classification fitness 

SN Ordering 
Relative Condition Pair Ranking Mean classification fitness' 

Best Medium Worst IR IC RC 

1 1RCIRC IC RC IR 0.922 0.965 0.928 

2 RCIRCI IR IC RC 0.989 0.932 0.927 

3 CIRCIR RC IR IC 0.963 1 0.986 1 0.996 

11. PP=SPF, FX=AR. FS=FS2. CF=GLM. SR=9: 1. 

Table 4.17: Classification fitness as a function of subject. 

Classification fitness as a function of subject for each classifier 

FISHER GLM MILP 

Mean fitness' SN Mean fitneSS2 SN Mean fitneSS3 SN 

0.674 1 0.682 1 0.764 1 

0.649 3 0.672 3 0.730 3 

0.632 2 0.661 2 0.715 12 
1 Mean taken over 128 variations 
PP=NONE, AVR, SPF, LPF, FX=AR, ARMO, FFT, PSD. 
FSýFS2, FS3 SR=9: 1, CF=FISHER, CNDý1R, 1C, RC, 1RC 

2. Mean taken over 128 variations: 
PP-NONE, AVR, SPF, LPF. FX-AR, ARMO, FFT, PSD. 
FS-FS2, FS3. SR-9: 1, CF-GLM, CND-1RJC, RGJRC. 

3. Mean taken over 256 variations: 
PP=NONE, AVR, SPF, LPF. FX-AR, ARMO, FFT, PSD. 
FS=FS2, FS3. SR=1: 1,9: 1, CF-MLP, 
CND=1R, 1C, RC, 1RC. 

be countered for by rigorous experimental design, so as to ensure that, as best as 

possible, no niasking factors creep into the data and caused a false positive result. 
This finding lAglilights a possible flaw in tile experimental design. It is possible 

thM, Hie siiccess of' the classification strategies described above are due to something 

otlier than the EEG components related to the mental tasks of interest. If this is the 

case, then the results obtained from this experiment must be treated as tentative. 

4.4.8 Subjects 

Týihle 4.17 demonstrates that all three subjects' data are classifiable to a similar 
extent. 
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4.5 Conclusions 

A tiovel niusical imagery experiment has been developed targeting BCMI systems 

as future applicat ions. This experiment is also designed to validate whether state- 

of-Ific-art, DSP might be able to perform coinputerised pattern classification of' a 

subject's EEG whilst lie/she is engaged in active musical linager ,v 
tasks, as opposed to 

pwisilve listelmig 01' counting tasks. The EEG patterii classificalimi systeni described 

iii Chapter 2 is applied and tested on the data froin 3 subjects. Results are mixed. 
Tlie data recorded from 3 subjects has been analysed with a variety of classifi- 

cation strategies, incorporating numerous pre-processing, feiturv extraction, channel 

selection, iind classifier variations. The general behaviour ofthe classification systern 

ml, s m-cordingly with respect to the results of similar research into spontaneous-EEG 

pattern classification. The following list suminarises these findings: 

The Laplacian spatial filter as a pre-processing step significantly outperforms 
both average reference filtering (also known as corrinion referencing) and raw 

un-filtered data. 

o Linear autoregressive. model coefficients significantly outperform Fourier trans- 
forin based representations as a feature extraction method. 

e Classification of inental tasks might be possible with a handfid of EEG sensors, 
as opposed to dense arrays of electrodes. 

o Nonlinear classifiers, such as the MLP, may not be significantly better than 

simpler linear alternatives, such as the Fisher discrinlinant. 

At first glance, the classification figures seem outstanding, ranging from 90 to 99%. 

Whilst the overall classification performances are very high (in the order of 95% +), 

there is some doubt as to whether this success is due to in fact iniss-classification 

(hie to tAine-related experimental artefacts born from a weakness in the design of the 

paradigni. Tlie results can be contaminated (due to the way that trials are blocked 

according to condition, as opposed to mixing them up so that each block contained all 

three tasks) and this could be remedied by paying careful attention to the design of 

off-fine experiments which are aimed at testing tasks for BCI technology. The closer 

the experiment can be made to the envisaged real world situation, the. better. Clearly, 

this experiment demonstrates that the systemised BCMI evaluation pmtocol works. 



Chapter 5 

Musical Focusing Experiment 

5.1 Introduction 

This chapter presents another novel experiment, similar to the previous one, which 
li&; been designed with the end use of a BCMI system in mind. The EEG pattern 

chissification methodology employed is the same as that used for the musical imagery 

experiment. However, the mental tasks and paradigm are different. 

In this section, motivational issues are given, as well as a description of the en- 

gincering problem intrinsic to the design of the experiment. The remaining sections 

give ýt detailed explanation of the experimental paradigm, results and discussion, and 

conclusions. Since the, classification methodology used is practically identical to that 

iis, (, d in the imagery experiment - there is no need to re-present it in this chapter. 

Motivation 

The inusical focusing experiment has been designed with the following hypothesis in 

Inind: 

. 
firstly, there exists information in the EEG which allows one to identify 

'1111 C 1/1, CT, a person is engaged in one Of tU)O 'Mental tasks: rilusical focusing 

or pa, ssive IiStffling. Secondly, one can establish front the EEG alone, 

which ear the music the person is focusing on i's being heard t/IT*Ough the 
headphones. 

In the context of this experiment, musical focusing requires the subject to pay 

special attention to a particular part of the music they are listening to. For example, 

suppose you are listening to a piece of pop music. There will be many instruments, 

90 
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idl playing something different. The instruments inav even be placed apart in flie 

stereo mix. For example, the vocal part might be centre panned', the guitar panned 
liard-left, and the keyboards hard right. The druins (, -. oiild be paiined according to 

the actual position of the parts making up the kit. Suppose you riotice that there is 
flute part hiding somewhere amongst all the other parts. If you listened carefully and 
tried to pick out this part from the others, then you would be focusing - deliberately 

steering you awareness towards that particular part in favour over the others. This is 

just on(, ex,, iniple of musical focusing of which there are many others. 
Suppose t hat it, is possible to tell from a persons' EEG whether they are perforining 

the nientid task of focusing, as opposed to Just listening to tli(, music in a normal 

rel; ixed manner. Furthermore, suppose that it is possible to tell whether they are 
focii, sing on a part of the music which is panned hard-left, centre, or hard-right. The 

abilitY to do this would open up numerous possible BCMI applications. One such 

vs te it i Is desc rII )ed below. 

5.1.2 Hypothetical BCMI system utilising musical focusing 

Figure 5.1 shows how musical focusing could be utilised in a BCMI context. Taking 

the BCNII system described in Chapter I (Figure 1.1) as a basic framework, the 
EEG an a lyýý 'I's engine, capable of identifying when the person is focusing and whether 
they are focusing on a part which is placed left or right in the stereo rnix, would 
be connininicating with the co-ordiTiator. The co-ordinator would instruct the Tnusic 

c, ay'lluc, in a way which related to which part the person had just, been focusing on. For 

example, suppose the person hears a guitar part appear 2 in the right hand side of the 

mix, and liking it, they focus on it. The co-ordinator (which is responsible for telling 

the music engine what to play, then waiting for the EEG analyser's response) would 

interpret this as 'person is focusing on guitar part', since it knows that the. guitar 

part, is right in the current mix. Then, depending on a set of rules, the co-ordinator 

,, N, ould take some action, such as incorporating the guitar as a regular continuous 

part in the overall mix, or adding new variations for the performer to 'choose'. The 

possibilities are endless. This framework would allow the performer / participant to 

''Panning' refers to the relative volume (loudness) that a sound makes in each of a stereo pair of 
speakers. The three extremes are hard-left (sound only heard in left speaker), center (sound heard 
in both speakers at an equal level), and hard-fight (sound in right speaker only). 

2 Assume that there are some initial conditions, or rules, that as well as starting the music off at 
the beginning, would also introduce new parts as the music evolved. The integration of these parts 
could then be influenced by the performer. 
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steer their own unfolding musical performance without touching a, button or making 

aii. y other gesture. They would simply involve themselves in the experience, using 

musical focushig like a conductor uses a baton. 

Nlusical focusHig is, for the following reasons, a prinie candidate inciltal-task for 

the BCNII concept: 

o It is a itat, ural activity in the context of musical experience. 

It Is, ii simple task which requires only an experiential understmiding of' music. 
Iii otlier words, everyone who has grown lip with 11111sic sliould be able to (10 it. 

* It requires a deliberate mental effort of a kind which can be set apart from other 
types of musical tasks, such as musical imagery. 

9 It Avoidd readily find use in a BCMI systein such as the onc described above. 

5.1.3 Classification problem 

The experiment described below allows the following classification problems to be 

tackled: 

successfully determine, on a segment by segment basis, which class - musical 
focusing or passive listening -a 2-second multi-channel E 'EG segment belongs 

to, where the class is named after the mental task the subject is performing 

while the segment is being recorded. 

2. Within the focusing set of data, successfully determine which headphone speaker 
the target part was heard in. In other words, ascertain froin the EEG whether 

the subject was focusing on music heard through the left ear or right ear. 

5.1.4 Objectives 

Seek a solution to the above problem by employing a variety of digital signal processing 

methods based on existing methods found to be of success in the EEG pattern classi- 
fication field, thus gaining insight into the validity of the hypothesis stated above, and 

whether the methods explored are likely to be suitable for a working BCMI system 3 

ý'This experiment was designed and performed at the same time as the imagery experiment. 
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Figure 5.1: Hypothetical BCMI system using focusing. (1) Co-ordinator informs 
music engine to start music, and (2) tells EEG analysis engine to classify data as 
focusing-left or focusing-right. (3) Music engine starts background part along with a 
synth part (panned left) and guitar part (panned right). (4) The performer, preferring 
the guitar part, focuses on it. (5) The EEG analysis engine detects this and relays 
it to the co-ordinator which, in turn (6) makes the inference that the performer likes 
the guitar part. At this stage, action is taken (which would be based on a pre-defined 
rule) in the form of (7) instructing the music engine to embellish the guitar and (8) 

attenuate the synth. (9) The music engine thus removes the synth part and (10) 

adds two new guitar parts (panned L and R) based on the previous one. (11) The 

performer, preferring the guitar part in the left of the mix, focuses on it. (12) Finally, 
the EEG analysis engine classifies the EEG data as focusing-left, and so on. 
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5.2 Paradigm 

5.2.1 Overview 

perform One II .1 of three niental tasks (fo(using, passive listening / relaxing, 

ýind counting) whilst listening to a continues sequence oftrials. Starting with a vocal 

cuc, each trial continues with a 16-second inusical portion composed of four parts -a 
rhythin part, and three instrumental parts. It is during the musical portion of vach 
trial that one ofthree mental tasks is performed. The experiment is divided into four 

blocks of trials thus giving the subject the opportunity to rest. The experiment lasts 

For approximately I hour 14 . 

5.2.2 Trial format 

Each trial lasts for 19 seconds. The trial starts with a 3-second vocal cue that, informs 
the subject, w1fich task they must perform during the trial. If it, is a focusing trial, 

theY licar the narne of one of three instruments, which depicts the 'target' iustrument 

tlieY should focus ou. In the case of the relaxing or counthig tasks, they hear the word 
-relax' or 'count' respectively. This is followed by 16 seconds of' music during which 
the subject performs one of three basic tasks. The inter-trial-interval is 19 secouds, 

which ineans that the as soon as the 16-second musical portion of the current trial is 

finished, the next trial begins (see Figure 5.2 for a diagrammatic representation of a 
typical trial). 

The musical portion of each trial is constructed of 4 parts'. (1) A background 

part comprisiiig of 8 repetitions of a I-har druni rhythin loop', (2) an instrumental 

part. paimed liard-left, (3) a second instruniental part, center panned, (4) and a third 
iust ninicutal part, panned liard-right. Each instrumental part is comprised of' eight 

repetitions of a I-bar riff' played on one of three instruments: a synthesiser, electric 

guitar and piano. Altogether there are 24 unique riffs which are split aniong the three 
iustruments resulting in eight synth, electric guitar and piano parts respectively. The 

'The focusing experiment was run in conjunction with the imagery experiment. Consequently, 

subjects were involved in the experiments for approximately 2 and a half hours. 
'All musical parts were created using a multimedia PC computer using a MIDI-audio sequencer 

package, an electric guitar with amplifier simulator, and an audio i/o sound card. The inusic com- 
posed is in the style of a moderate tempo popular dance / club tune (120 beats per minute, 4 beats 

per Nir). These musical parts are the same as those used in the imagery experiment. 
'Loop: popular music jargon for a segment of music which, when played in a continuous 'loop' 

sounds seamless, as if it were being played as a continuous part with no obvious beginning and end. 
'Riff: popular music jargon for a short catchy melody which is usually repeated many times in 

the course of a song. 
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Table 5.1: Details of the eight sound files that provide stimulus during the 16 secoild 
inental task portion following the verbal cue (also realised as a selection of sound files. 
See Appendix B for details). Only oil(, sound file is aii(litioned per trial, the choice of 
w1m. 11 depends' Oil the pseudo random audition list (Appendix 13). Details are given 
as t, o Nvlilcli instrumental parts are used and their positioning iii t1w sterco field. 

Sound file Panning 

number Hard-left Centre Hard-right 

1 Synth-1 Guitar-1 Piano-3 

2 Synth-2 Piano-1 Guitar-3 

3 Guitar-1 Synth-1 Piano-4 

4 Guitar-2 Piano-2 Synth-3 

5 Piano-1 Synth-2 Guitar-4 

6 Piano-2 Guitar-2 Synth-4 

7 Synth-5 Guitar-3 Piano-5 

8 Synth-6 Piano-3 Guitar-5 

9 Guitar-6 Synth-3 Piano-6 

10 Guitar-7 Piano-4 Synth-7 

11 Piano-7 Synth-4 Guitar-8 

12 Piano-8 Guitar-4 Synth-8 

histruniental parts are 'auditioned' (see Table 5.1) so that, there are always three 
instruments playing, each one panned either hard-left, ceut, re, or hard-right. The 

rew,, mi for having eight unique riffs for each histrunmit is to provide variety for the. 

subject. 

5.2.3 Mental tasks 

There are three main mental tasks: focusing (F), passive listening / relaxing (R) and 

coiint, ing (C). Data gathered whilst subjects perform these tasks are allocated to one 

of' Hilve conditions who's names are the same as the tasks. The focusing condition is 
further divisible into two sub-conditions: focusing-left (FL) and focusing-right (FR. ), 

dependent on which headphone speaker - left or right - the target instrument. is heard 

in'. Before the experiment begins, subjects are given the following instructions as to 

the nature ofthe tasks: 

* Focusing task. Listen to the looped riffs whilst focusing especially hard on the 

target part, which belongs to the instrument that is defined during the cue at 
8Note that for the sake of simplicity, it was decided not to include a third sub-condition for 

focusing on center panned instrumental parts. 
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Cue Mental task portion 

03579 11 13 15 17 19 time (secs) 
1-yj 

1 -bar riff is 'looped' to form a 16 sec. instrumental part 

Figure 5.2: Diagrammatic representation of a focusing experiment trial. 

the beginning of the trial. 

* Passive listening task. Listen to the entire 4 bar trial with no effort, just relax. 

Counting task. Count the following self repeating sequence - 1,10,3,8,5,6,7, 

4,9ý 21 1,10 and so on - until the trial is finished'. 

Subjects are informed that the instrument they are cued to focus on in each trial 

will either be panned hard-left or hard-right. However, they are not informed as to 
the experimental relevance for doing this. 

5.2.4 Blocks 

A blocked system is adopted whereby an equal number of trials from each of the three 

main conditions are presented in a pseudo random order (Appendix B). Altogether 

there are four blocks, each consisting of 12 focusing trials (six with left target and six 

with right target parts), 12 relaxing trials and 12 counting trials. This makes a total 

of 36 trials lasting 19 seconds each, hence the experiment lasts for about 45 minutes 
(not including rests in-between blocks). 

Within each block the trials are auditioned in a pseudo random order, so that the 

subject does not learn to predict which type of trial is coming next. Each of the 12 

sound files (see Table 5.1) which are comprised of the 4 musical parts, are played once 
9The rational for including the counting task is the same as for the imagery experiment (see 

Chapter 4 for discussion). 
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onl. v in any one block, there order being a function of' the target instrinneiit and the 

panning sub-conclition. 
Before the experiment proper is started, subjects are given an opportunity to 

become finnilinr with the trial format and mental tasks by invans, of* ýi prýwtice session. 
This, ýilso ifflows f'or any last minute adjustments to the EEG iippariitus to be inade. 

5.2.5 Subjects 

The sanic four subjects that performed the musical iniagerY experiniviit are used 
(however, due to poor net placement, subject, number 4's data has been excluded 
fi-oni the analysis). Having performed the musical iniagery experinient, a five-minutc 

bi-eak is given between experiments where subjects have the chance to get up and 

walk around. 

5.2.6 Data acquisition and segmentation 

The same protocol is used for EEG acquisition as described in the previotis chapter. 
Each trial is segmented into eight non-overlapping 2-secoial segments. In this way, 

em-h subJect yields 1152 segments comprising of'384 focusing (which cari be further di- 

vided into an equal number of focusing-left and focusing-right segments), 384 relaxing 

and 384 counting segments. 

5.3 Classification methodology 

TI)e classification methodology used here is essentially the same as for the imagery 

expcrinient, hence a full explanation of the methodology is not necessary. Instead, 

the differences are listed below: 

e Antoant of data. The focusing experiment yields a greater number of data 

segments for each class, and therefore the sizes of training and test sets are 
different, from those in the imagery experiment. 

MLP classifier. Only one static multilayer perceptron neural network classifier 
(XILP) is evaluated. It has the following properties. 8 units in the. hidden layer, 

two or three units in the output layer, for two-way and tl)ree-way classifications 

respectively, training lasts for 50 epochs in batch mode. 
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5.4 Results and discussion 

The analysis results froul the various strategy permutations are presented in numerous 

tables ofwlilch there are three basic types: 

1. TOp-le-n. optimal Strate_qieS for each condition combinahion: on(, table for each 

subject / classifier conibination. These tables take a single subject and classifier, 
10 and present the ton best strategies for each of the five condition combinations 

resulting in a total of nine tables: 5.2 - 5.10. 

2. Opfitnal strategics for each condition comb ination. and subject: one table for 

each of the three classifier methods, hence 3 Tables (5.11 5.13). These tables 

condense the results giving only the highest scoring strategy for each subject, 

classifier and condition combination. 

3. Sf'I'0JC. qY aVCYagC8: one table for each subject (5.14 5.16) plus a fourth Table 

(, 5.17) for grand strategy averages. These tables present the average classifica- 

tiou statistics for each of the main methodology variations namely: PP=NONE, 

AVR, SPF, LPF. FXz--AR, ARMO, FFT, PSD. FS=FSI, FS2, FS3. SR, =9: 1, 

1: 1. CF=FISHER, GLM, MLP. For example, to compute the average classifica- 

tion fitness for the SPF pre-processing method for subject 1, all the strategies 
for (, ýich condition combination, feature extraction rnetliod, feature selection 

inethod, data split ratio and classifier are taken into the average. The grand 

strategy averages table further reduces this by combining the data from each 

subject. The reason for doing these averaging procedures is to reveal general 
trends for the, individual methodological variations. 

5.4.1 Pre-processing 

The optimal strategies of subject 1 point at SPF as being the best pre-processing 

method, followed by AVR. However, for subjects 2 and 3, AVR appears to lead, 

followed by NONE. These findings are particularly evident in strategies which utilise 

the FISHER, and MLP classifier. A similar trend is apparent when looking at the 

stxýAegy averages and grand average tables. 

"'Note that. in the case of the GLM classifier, the fifth condition combination F-R-C has was 
not computed due to the comparatively poor performance of the GLN1 classifier compared with the 
FISHER, and MLP. 
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Tiiblc 5.2: Ten optimal strategies of subject I using the Fisher discriminant classifier. 

Top-ten optimum strategies for each condition combination for subject 1 using the FISHER classifier 
GND Classification fitness Confidence 

Class I Class 2 Class 3 Mean Sid. Min. 
I 

Ma. Limits (, /-) 
PP FX FS SR NI NES NTS 

0741 0036 0,703 0,781 0074 

1 

SPF FFT FS3 11 486 192 192 

Oý722 Oý025 0.693 0.760 0.052 SPF PSD FS3 11 486 192 192 

0,716 0.057 0658 0789 0.117 SPF PSD FS3 91 486 342 38 

0711 0.037 0.658 0.763 0077 SPF AR FS3 91 486 342 38 

FL FR NONE 
0710 0024 Oý682 0734 0,049 SPF AR FS3 11 486 192 192 

0,684 0049 0605 0.737 0 101 AVR PSD FS3 91 486 342 38 

0,679 0.086 0579 0.816 0,177 AVR AR FS3 91 486 342 38 

0.674 0.044 0.605 0.711 0.091 SPF FFT FS3 91 486 342 38 

0.665 0048 0.615 Oý740 0.09B AVR AR FS3 11 342 192 192 

0,658 0,087 0,553 0.789 0.180 NONE PSD FS3 91 486 342 38 

0636 0.022 0.609 0.664 Oý045 SPF FFT FS3 11 486 384 384 

0.621 0,037 0 579 0671 0.075 SPF FFT FS3 91 486 684 76 

0.620 0031 0.578 0661 0,064 SPF PSD FS3 11 486 3154 384 

0613 0.038 0.566 0.671 Oý078 NONE AR FS3 91 486 6B4 76 

F R NONE 
0.613 0.053 0526 0.671 0.109 AVR AR FS3 91 486 684 76 

0.613 0,038 0.566 0.671 0078 AVR PSD FS3 91 486 684 76 

0609 0.023 0.573 0,635 0048 SPF AR FS3 11 486 3B4 384 

0.608 Oý087 0.474 0711 0 179 SPF PSD FS3 91 486 684 76 

0603 0.055 0.566 0.697 0.112 AVR AR FS3 91 456 684 76 

Oý600 0039 0.570 0.664 0,081 AVR PSD FS3 11 486 3B4 384 

0816 0,021 Oý789 0842 0043 SPF AR FS3 91 486 694 76 

GA05 0024 0 776 0829 Oý048 SPF FFT FS3 91 486 684 76 

0,801 0,037 0.766 Oý859 0.076 SPF FFT FS3 11 486 384 384 

0,789 0,053 0,724 0,842 0110 SPF PSD FS3 91 486 684 76 

F C NONE 
0381 0.010 0.768 0.792 0.020 SPF PSD FS3 11 486 3B4 384 

0.774 0.054 0.697 0.842 0.111 AVR PSD FS3 91 486 684 76 

0773 0.023 0.750 0,802 0.047 AVR FFT FS3 11 486 384 384 

0.769 0.029 0.734 0.802 0.061 AVR PSD FS2 11 78 384 384 

0.768 0.075 0.645 0.829 0155 AVR PSD FS2 91 78 684 76 

0.763 0.101 0.645 0.868 0.207 LPF PSD FS3 91 486 684 76 

0.834 0.048 0,776 0.908 0099 SPF FFT FS3 91 486 684 76 

0,807 0.019 0781 0.831 0.039 SPF FFT FS3 11 466 384 384 

0.801 0029 0.781 0.852 0.060 SPF PSD FS3 11 486 384 384 

0789 0.052 0.711 0829 Oý107 SPF PSD FS3 91 486 684 76 

R C NONE 
0.784 0.036 0.750 0842 0.073 AVR FFT FS3 91 486 684 76 

0.782 0,020 0.763 0.807 0,041 AVR FFT FS3 11 486 384 384 

0,770 0.023 0.742 0,805 0.048 SPF AR FS3 11 486 3a4 384 

0.766 0,075 0.711 0.882 0.155 SPF AR FS3 91 486 684 76 

0765 0.024 0727 0792 0.050 AVR PSD FS3 11 486 384 384 

0.75B Oý044 0.697 0.789 0091 NONE FFT FS3 91 486 6114 76 

0636 0,022 0,609 0.664 0.045 SPF FFT FS3 11 466 384 384 

0.621 0.037 0.579 0.671 0.075 SPF FFT FS3 91 486 684 76 

0.620 0,031 0.578 0,661 0.064 SPF PSD FS3 11 486 384 384 

0.613 0.038 0.566 0.671 0.078 NONE AR FS3 91 486 684 76 

0.613 0.053 OZ26 0.671 OA09 AVR AR FS3 91 486 684 76 

0.613 0.038 0.566 0,671 0,078 AVR PSD FS3 91 486 684 76 

0609 0,023 0.573 0,635 0.048 SPF AR FS3 11 486 384 384 

0,608 Oý087 0.474 0.711 0,179 SPF PSD FS3 91 486 694 76 

0.603 0.055 0,566 1 0.697 1 
OA12 AVR AR FS3 91 1 456 1 684 76 

0.600 0.039 0.570 1 0.664 1 0.081 AVR PSD FS3 FS3 I11 1 486 1 3B4 384 

From total of 480 Strategies CND-F-R, F-C, F-C-R, FL-FR, R-C. PP. NONE, AVR, SPF, LPF. FX. AR, ARMO, FIFT, PSD FS-FS1, FS2, FS3. SR-9: 1,1 1. NP. 5 CF-FISHER 
SN=1, 

I 
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Table 5.3: Ten optimal strategies of subject 2 using the Fisher discriininant classifier. 

Top-ten optimum strategies for each condition combination for subject 2 using the FISHER classifier 
CND Classification fitness Confidence 

Class 1 Class 2 Class 3 Mean I Std. Min Max. Limits (, /-) FX FS SR NI INES NTS 

0,641 0.027 0.599 0.667 0.056 AVR AR FS3 11 456 192 192 
0605 0,119 0.395 0684 0.245 NONE AR FS2 91 72 342 38 
0,601 0.037 0.563 0641 0,076 AVR FFT FS3 11 456 192 192 
Oý600 0078 0.474 0658 0.160 AVR AR FS3 91 456 342 38 

FL FR NONE 
0.595 0,100 0.526 0,763 0205 NONE PSD FS3 91 456 342 38 
0.592 Oý039 0.542 0630 0,080 NONE AR FS3 11 456 192 192 
0.589 0.105 0.421 0,711 0.215 AVR FFT FS3 91 456 342 38 
0,584 0A 14 0.447 0.711 Oý234 NONE FFT FS3 91 456 342 38 
0563 0.082 0.474 0.684 0.170 SPF AR FS3 91 456 342 38 

0,032 0.521 0.609 0.067 NONE PSD FS3 11 456 192 192 

0,603 0.055 0.566 0.697 0.112 AVR AR FS3 91 456 684 76 
0,592 0.084 0.513 0.711 0.172 AVR FFT FS2 91 72 684 76 
0,567 0.010 0,557 0.583 0.021 AVR AR FS3 11 456 384 384 

0.556 0.033 0.505 0,591 0.068 NONE FFT FS2 11 72 384 384 

F R NONE 
0.555 0025 0,526 0.592 0052 NONE AR 

. 
FS1 91 12 684 76 

0,555 0.054 0487 0.632 0.111 AVR PSD FS2 91 72 684 76 

0554 0.021 0.521 0576 0.042 NONE FFT FS3 11 456 3154 384 

0 553 0,023 0.521 0578 0.048 AVR FFT FS3 11 456 394 384 

0,552 0,030 0.521 0.589 0,062 AVR PSD FS2 11 72 384 384 

0,547 0027 0,526 0,592 0056 AVR ARMO FS3 91 76 684 76 

0671 0.076 0.592 1 0789 0.157 AVR PSD FS2 91 72 684 76 

0661 0.099 0.500 0.763 0.204 AVR FFT FS3 91 456 6a4 76 

0650 0,044 0,618 0.724 0.091 NONE FFT FS3 91 456 684 76 

0.629 0042 0.565 0,680 0,087 AVR PSD FS3 11 456 384 384 

F C NONE 
0,627 0.029 0.589 0.659 1 0,060 NONE FFT FS3 11 456 384 384 
0.626 0.051 1 0.536 0661 0.106 AVR FFT FS2 11 72 394 384 

0.624 0.050 0.566 0671 l AVR FFT FS2 91 72 694 76 

0,620 0.026 0.583 0.648 0.053 AVR FFT FS3 11 456 3154 384 
0605 0,048 0.549 0.654 0.099 NONE PSD FS3 11 456 384 384 

Oý595 0,045 0526 0,645 0.093 AVR PSC, FS3 91 456 684 76 

0.684 0053 0.618 0.750 0.108 NONE FFT FS3 91 456 684 76 

0,662 0.024 0.630 0.693 0.049 AVR FFT FS3 11 456 3a4 384 
0.655 0.078 0.553 0.737 0.161 NONE PSD FS3 91 456 6&4 76 
0.654 0.040 0.617 0.719 0.082 NONE FFT FS3 11 456 384 384 

R C NONE 
0.653 0.065 0.566 0.711 DA34 AVR PSD FS2 91 72 684 76 

0,647 0.073 0.526 0.711 0.151 AVR FFT FS2 91 72 6B4 76 

0645 0019 0622 0.669 0,039 AVR PSD FS3 11 456 384 384 

Oý639 0.058 0.579 0.724 0,119 AVR FFF FS3 91 456 684 76 

0.639 0.044 0.594 0.688 0090 AVR PSD FS2 11 72 384 384 

0,631 0,045 0.583 0,685 0.093 NONE PSC, FS3 11 456 384 W 

0,458 0,052 Oý412 0,526 0.106 NONE FFT FS3 91 456 1026 114 

0.453 0031 0410 0A79 0,065 AVR FFT FS3 11 456 576 576 

0,433 0.043 0.368 0,474 0.088 AVR FFT FS2 91 72 1026 114 

0.425 0.036 0.368 0,456 0.075 AVR PSC, FS2 91 72 1026 114 

0.423 0.052 0.342 0.474 0.107 AVR FFr FS3 91 456 1026 114 

0.411 0.042 0.344 0.455 0.086 AVR PSD FS2 11 72 576 576 

0.409 0.031 0.359 0.441 0,064 AVR FFT FS2 11 72 576 576 

OA09 0.026 0.373 0,436 0053 AVR PSD FS3 11 456 576 576 

0.40ý7 0.019 0.389 0.432 

J 

038 

J 

0.038 NONE Fr FS3 11 456 576 1 576 

l5 0,405 0.045 0.325 1 0.43 2 00 93 3 AVR AR FS3 11 1 456 1 
--5-76-- r 

576 

total of 480 Strategies: CND=F-R, F-C, F-C-R, FL-FR, R-C. PP-NONE, AVR, SPF, LPF. FX-AR, ARMO, FFT, PSD. FS-FS1, FS2, FS3 SR-9: 1,1 1 NP-5. CF-FISHER. 
N=2 Por" 
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Table 5.4: Ten optimal strategies of subject 3 using the Fisher discruninant, classifier. 

Top-ten optimum strategies for each condition combination for subject 3 using the FISHER classifier 
CND Classification fitness Confidence 

PP 
Class 1 Class 2 Class 3 Mean I Std, S 1d Min I Max, limits . /-) 

1 
FX FS SR NI 

1 
NES NTS 

0.665 ' 0048 '4" 0.615 0.740 0098 AVR AR FS3 11 342 192 192 

0.658 026 0,026 0.632 0.6114 0.054 NONE AR FS3 91 342 342 38 

0658 0.081 0 81 0.579 0789 0167 NONE PSD FS3 91 342 342 38 

0658 

J 

01 04 0.104 0ý500 0,763 0213 AVR AR FS3 91 342 342 38 

FL FR NONE 
0656 "026 0.026 0625 0.688 0053 AVR FFT FS3 11 342 192 192 

0,653 0 66 0.066 0.605 0.763 0,135 AVR FFT FS3 91 342 342 38 

0.647 00 '5 0055 0.579 0.711 0,112 NONE PSD FS2 91 72 342 38 

0.631 00 18 0,018 0.609 0,656 0,037 AVR ARMO FS3 11 57 192 192 

0621 . 044 0.044 0.553 0,658 0.091 AVR ARMO FS3 91 57 342 38 

0616 0,101 0A74 0737 0.208 LPF FFT FS3 91 342 342 38 

0,592 0.057 0,526 0,658 0,117 AVR FFT FS3 91 342 684 76 

0584 0,056 0.539 0658 0,116 SPF AR FS3 91 342 684 76 

0582 0.072 0.487 0.658 0148 NONE FFT FS3 91 342 684 76 

0574 0.067 0.513 0684 0,139 NONE PSD FS2 91 72 684 76 

F R NONE 
0571 Oý033 0.513 Oý592 0,068 AVR PSD FS3 91 342 6114 76 

0.563 0.050 0.500 Oý632 0,104 AVR AR FS3 91 342 684 76 

0,561 0,082 0,461 GZ58 0,169 NONE I FS1 91 24 684 76 

0.558 0.032 0.518 0596 0.066 NONE PSD F 

qS3 

11 342 384 384 

0,558 0.071 0.474 0632 0.145 SPF PSD FS2 91 72 1 694 76 

1 1 
0.558 0.026 

1 0.531 0586 1 0.053 AVR AR FS3 FS3 11 342 384 384 

0.666 0.083 0.526 0,737 0.171 NONE FFT FS3 91 342 684 76 

0653 0.034 0,605 0 6134 0.071 AVR FFT FS3 91 342 684 76 

0,642 0.027 0.609 

1 

0669 0.056 AVR FFT FS3 11 342 384 384 

0,583 0.015 0.565 0607 0ý031 AVR PSD FS3 11 342 394 384 

F C NONE 
0.582 OZ34 6 0.526 0612 0,069 NONE FFT FS3 11 342 1 384 384 

0.577 OZ39 0.529 0.633 1 0,081 NONE AR FS3 11 342 384 384 

0576 0.025 0.539 0.605 1 0.052 AVR PSD FS2 91 72 684 76 

Oý574 0.021 0.544 0,602 0.043 NONE FFT FS1 11 24 3a4 384 

0574 0.036 Oý526 0,618 0,073 NONE PSD FS1 91 24 6114 76 

0.571 0,090 0447 0.671 0184 SPF PSD FS3 91 342 6a4 76 

0679 0.026 0,645 0.711 0053 NONE PSD FS3 91 342 6154 76 

0,668 0.081 0.579 0.763 0 166 NONE PSD FS2 91 72 6B4 76 

0655 0.014 0.632 0,671 0,030 AVR FFT FS3 91 342 684 76 

0.650 0.015 0.635 0.672 0,030 AVR FFT FS3 11 342 384 384 

R C NONE 
0.646 Oý020 0.620 0,664 0.041 AVR PSD FS3 11 342 384 384 

0.644 Oý036 0.594 0.680 0,075 NONE FFT FS3 11 342 384 3a4 

0.644 0,035 0.586 0.677 0071 NONE PSD FS3 11 342 384 384 

0,642 0.030 0,592 0.671 0.062 NONE FFr FS3 91 342 684 76 

0.632 0016 0.618 0.658 0,033 SPF FFT FS3 91 342 684 76 

0.624 0.048 0.566 0.697 0.099 SPF PSD FS3 91 342 684 76 

0.430 0,036 0.377 0465 0073 NONE PSD FS3 91 342 1026 114 

0.425 0.050 0.386 0.509 0.103 NONE FFT FS3 91 342 1026 114 

0.411 0.034 0,375 0.458 J 0.071 AVR FFT FS3 11 342 576 576 

0.410 0.020 0.382 0.434 0,040 NONE PSD FS3 11 342 576 576 

0.407 0,061 0,325 0.491 0.125 AVR FFT FS3 91 342 1026 114 

0.406 0.026 0.375 0,429 0,054 NONE FFT FS3 11 342 576 576 

0.398 0,049 0.316 0.439 0 100 NONE FFT FS2 91 72 1 1026 114 

393 0,048 0.333 0465 0.098 AVR FFT FS2 91 7 2 1026 J 114 
L 

03 Oý392 0030 0.345 0.427 0061 NONE AR FS3 11 

J 

2 342 576 576 

1 1 
0 03 ý391 0.040 0.333 0439 0.081 NONE AR FS3 91 t 2 

E342 

1026 114 

From total of 480 Strategies CND=F-R, F-C, F-C-R, FL-FR, R-C. PP-NONE, AVR, SPF, LPF. FX. AR, ARMO, FFT PSD FS. FS1, FS2, FS3. SR-9 1.1 1. NP-5 CF. FISHER 
SNý3 
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Table 5.5: Ten optimal strategies of subject I using the generalised linear model 
classifier. 

Top-ten optimum strategies for each condition combination for subject 1 using the GLIVI classifier 
CNID Classification fitness Confidence 

Class I Class 2 Class 3 Mean I Std. Min Max Limits (. /-) PP 
1 

FX FS SR NI NES NTS 

0.688 0078 0.553 0868 0,044 SPF PSD FS2 91 78 342 38 

0.685 Oý092 0,474 0816 0.051 NONE AR FS2 91 78 342 38 

0.664 0.083 0.500 0.842 0.046 SPF AR FS2 91 78 342 38 

0660 0,059 0.526 0.763 0.033 SPF FFT FS2 91 78 342 38 

FL FR NONE 
0.654 0,062 0.526 0789 0,035 LPF AR FS2 91 78 342 38 

0.654 0095 0.421 0.816 0,053 LPF FFT FS2 91 78 342 38 

0,649 0.073 0.500 0363 0,041 AVR AR FS2 91 78 342 38 

0643 0.047 0547 0,729 0,026 SPF PSD FS2 11 78 192 192 

0.636 0.066 0500 0737 0.037 AVR AR FS1 91 24 342 38 

0,633 0.078 0.474 0842 0.044 NONE PSID FS1 91 24 342 38 

0.672 0.050 0.553 0.803 0,028 AVR AR FS2 91 78 684 76 

0653 0.050 0.553 0.750 0,028 SPF PSD FS2 91 78 6114 76 

0.649 0.043 0.579 0.737 0.024 LPF AR FS2 91 78 6a4 76 

0,642 0053 0553 0.776 0,030 AVR FFT FS2 91 78 684 76 

F R NONE 
0638 OZ65 0.513 0,737 0,036 AVR AR FS3 91 486 684 76 

0.634 0.020 0596 0,667 0.011 LPF AR FS2 11 78 384 384 

0,627 0.028 0,557 0.680 0.016 AVR AR FS2 11 78 384 384 

0,626 0.06B 0.474 0,737 Oý038 NONE PSID FS1 91 24 684 76 

0625 Oý049 0.526 0.737 0,028 SPF FFT FS2 91 78 684 76 

Oý621 0051 0.500 Oý711 0.028 AVR PSD FS2 91 78 684 76 

0.819 0,047 0.711 0.882 0.026 AVR FFT PS2 91 78 694 76 

0.812 0041 0.737 0895 0,023 SPF FFT FS2 91 78 684 76 

0.807 0,037 0.737 0,882 0,021 NONE PSID FS2 91 78 684 76 

0.803 0.030 0.711 0,842 0.017 NONE FFT FS2 91 78 684 76 

F C NONE 
0.802 

- 
0.044 0.711 0.882 0.025 LPF PSD FS2 91 78 684 76 

0.799 0.032 0.750 0.855 0018 LPF FFT FS2 91 78 694 76 

0.797 0053 0.684 0.882 0.030 NONE AR FS2 91 78 684 76 

0788 0.051 0,697 0,855 0,028 AVR PSD FS2 91 78 684 76 

0782 0.043 0.711 0855 0.024 AVR AR FS2 91 78 684 76 

0.778 0.055 0671 0,882 0031 SPF PSD FS2 91 78 6114 76 

0.816 0029 0.763 0.882 0.016 LPF AR FS2 91 78 6154 76 

0.810 0048 0,697 0.908 0.027 AVR AR FS2 91 78 684 76 

0.807 0.037 0.711 0,868 0,021 AVR PSD FS2 91 78 684 76 

0.803 0.044 0.737 0.882 0.025 NONE FFT FS2 91 78 6a4 76 

R C NONE 
0800 Oý036 0.724 

- 
0.868 0.020 LPF FFT FS2 91 78 684 76 

0793 0,049 0.684 0.882 0.027 NONE AR FS2 91 78 694 76 

0789 0,044 0711 0868 0.025 AVR 

1 

FFT FS2 91 78 684 76 

0789 0.048 0.711 0.868 Oý027 NONE PSD FS2 91 78 684 76 

0.786 0.055 0.671 0.895 0.031 LPF F 1 78 6a4 76 

1 
0.783 0.014 0.758 0.813 () ( 1 78 394 384 

I 
From total of 384 Strategies. CND=F-R, F-C, FL-FR, R-C. PP-NONE, AVFl, SPF, LPF. FX-AR, ARMO, FFT, PSD. FS-FS1, FS2, FS3 SR-9: 1,1 1 NP-5. CF-GLM. SN-I 
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Table 5.6: Ten optimal strategies of subject 2 using the generalised linear model 
classifier. 

Top-ten optimum strategies for each condition combina tion for subject 2 usi ng the GLM cl assifier 
CND Classification fitness Confidence 

PIP S NTS 
Class 1 Class 2 Class 3 Mean Std. Min. Max. Limits fý/-) 

I 
FX FS SR NI 

I 
NE 

Oý608 0.076 0.447 0,763 0.043 AVR AR FS2 91 72 342 38 

0.606 0065 0,500 0.763 0.036 SPF AR FS2 91 72 342 38 

0606 0.075 0.474 0.737 0.042 NONE PSD FS2 91 72 342 38 

0.604 0.071 0,421 0.711 1 0,040 NONE AIR FS2 91 72 342 38 

FL FR NONE 
0604 0.073 0.500 0.816 0.041 NONE AR FS1 91 12 342 38 

0ý588 0.076 0447 Oý737 0.042 NONE FFT FS2 911 72 342 38 

0.585 0.033 0.510 0.630 0,019 SPIF AR FS2 11 72 192 192 

0 583 Oý087 0.395 0.763 0.049 AVR FIFT FS2 91 72 342 38 

0,583 0.031 0.510 0,630 &017 NONE AR FS1 11 12 192 192 

0582 0,030 0.521 0.641 0,017 AVR AR FS2 11 72 192 192 

0623 0.047 0.526 0.684 0.026 AVR AR FS3 91 456 684 76 

0.618 0.045 0.513 0,697 0,025 NONE AR FS2 91 72 6114 76 

0615 0,045 0.513 0.724 0.025 AVIR AR FS2 91 72 684 76 

0 612 0,032 0,553 0.671 0.018 NONE FFT FS2 91 72 684 76 

F R NONE 
0605 0.052 0.500 0.684 

. 
0.029 AVIR FFT FS2 91 72 684 76 

0,602 0,023 0.552 0.635 Oý013 AVR AR FS2 11 72 384 384 

0 602 0.021 0.568 0.646 0.012 AVIR PSD FS2 11 72 384 384 

0 597 0.056 0,461 0.711 0,031 AVR PSD FS2 91 72 684 76 

0.593 0.023 0.547 0.633 0.013 AVR IFFT FS2 11 72 384 384 

0,584 0.020 0.542 0.617 0,011 NONE FFT FS2 11 72 394 384 

0.752 752 0.041 0,671 0,829 0,023 AVIR AR FS2 91 72 684 76 

0.723 723 0.049 0.632 0.816 0,028 NONE PSD FS2 91 72 1 684 76 

0 72 0 0.720 0ý018 0.680 0.758 0.010 AVR PSD FS2 11 72 3154 3114 

0718 0718 0.045 0.632 0.816 0.025 AVR FFT FS2 91 72 684 76 

F C NONE 
0.718 0021 0.685 0.755 0.012 AVIR AR FS2 11 72 394 3a4 

0,717 0,044 0.618 0.789 0.024 AVR PSD FS2 91 72 684 76 

0,709 0.063 0.579 0.868 0,035 NONE FIFT FS2 91 72 694 76 

0.697 0.023 Oý633 0745 0.013 AVIR FFT FS2 11 72 384 384 

0.685 0.034 0.632 0350 0019 NONE AR FS2 91 72 684 76 

1 1 0.674 0.021 0.641 1 0.716 0.012 NONE PSD FS2 111 72 384 3154 

0 335 OZ44 0.658 0.829 0.025 AVR PSO FS2 91 72 684 76 

1 

0.728 0,042 0.658 0,816 0.024 AVR FIFT FS2 91 72 684 76 

0.721 0.045 0.632 0.803 0,025 NONE AR FS2 91 72 684 76 

0.707 0.022 0,654 0.740 0.012 AVIR FIFT FS2 11 72 384 384 

R C NONE 
0.704 

- 
0.043 0.618 0.776 0.024 AVR AR FS2 91 72 6154 76 

0.699 0.047 0.566 0.776 0.026 NONE PSD FS2 91 72 684 76 

0,696 0.018 0.669 0,740 0.010 AVIR PSID FS2 11 72 384 364 

0.686 0.017 0.641 0.721 0.009 NONE AR FS2 11 72 384 384 

0,684 0.054 0,579 0.776 0.030 AVIR FIFT FS3 91 456 6114 76 

0.683 0.020 0.651 0.714 0.011 AVR AIR FS2 I1 72 384 
- 

384 
From-total 

of 384 Strategies: CND=F-R, F-C, FL-FR, R-C. PP. NONE, AVR, SPF, LPF FX. AR, ARMO, FIFT, PSD. FS. FS1, FS2, FS3. SR. 9: 1,1 1. NP-5. CF-GLM. SN-2. 
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Table 5.7: Ten optimal strategies of subject 3 using the generalise(I linear inodel 
c4issifier. 

Top-ten optimum strategies for each condition combina tion for subject 3 usi ng the GLM cl assifier 
CND I Classification fitness Confidence 

Class I Class 2 Class 3 Mean Stdý Min Max. Limits /-) PIP 
1 

FX FS SIR NI NES NTS 

0707 0.070 0.553 0.842 0.039 AVR ARMO FS3 91 57 342 38 

0.700 0,074 0.526 0.816 0.042 AVR AR FS1 91 24 342 38 

0.695 0.087 0.526 0,842 0.048 AVR AIR FS2 91 72 342 38 

Oý681 0.029 0.635 0.729 0.016 AVR AIR FSI 11 24 192 192 

FL FIR NONE 
0.671 0.068 0.526 0.763 0,038 AVR PSD FS2 91 72 342 38 

0665 0.077 0.474 0,789 0,043 AVIR ARMO FS2 91 12 342 38 

0.665 0.028 0.609 0,719 0.015 AVR AIR FS2 11 72 192 192 

0,661 0.067 0.500 0.763 0.038 AVIR FIFT FS2 91 72 342 38 

0650 0.033 0.583 0,719 0.018 AVR ARMO FS3 11 57 192 192 

0.649 0.079 0.474 0.789 0.044 SPF FFT FS2 91 72 342 3a 

0.621 0.068 0.487 0.789 0,038 NONE AR FS3 91 342 664 76 

0.616 0.055 0.487 0,711 0,031 NONE FFT FS3 91 342 684 76 

0.614 0.059 0,487 0.724 0,033 NONE PSD FS3 91 342 684 76 

0612 0,053 0.513 0.737 0,030 NONE AIR FS2 91 72 684 76 

F R NONE 
0606 0.061 0500 0324 0.034 AVIR AIR FS3 91 342 684 76 

0.603 0.065 0.487 0737 0037 AVIR PSD FS3 91 342 684 76 

0.595 0.046 0.500 0684 0.026 NONE PSD FS1 91 24 684 76 

0.592 0,054 0.474 0,671 0,030 NONE FIFT FS2 91 72 Ba4l 76 

0.591 0048 0.487 0.658 Oý027 NONE FIFT FS1 91 24 684 76 

0.591 0.052 0.487 0.697 0029 NONE PSD FS2 91 72 684 76 

0.684 0.051 OZ92 0.789 0.029 NONE AR FS2 91 72 694 76 

0.679 0.045 0,566 0350 0,025 AVIR AR FS2 91 72 684 76 

0677 0.054 0.592 0.803 0.030 AVR AR FS3 91 342 684 76 

0.671 0.067 0.539 0.803 0,037 AVR PSD FS3 91 342 6a4 76 

F C NONE 
0.666 0.058 0,526 0.750 0.032 SPF AR FS2 91 72 684 76 

0.663 0.048 0579 0,750 0.027 AVIR PSD FS2 91 72 684 76 

0.662 0070 0.526 0.776 0.039 NONE PSID FS2 91 72 684 76 

0,661 0.021 0.615 0.698 0.012 NONE AR FS2 11 72 384 384 

0.659 0.045 0.539 0324 0,025 NONE AR FS3 91 342 684 76 

0650 0.024 0.607 0.690 0.013 AVR AR FS2 11 72 384 394 

0.717 0,045 0.658 0,829 0025 AVR PSD FS3 91 342 684 76 

0,716 0.051 0.605 0.803 0.028 NONE FIFT FS2 91 72 684 76 

0.707 0.049 0,618 0.803 0.028 NONE PSD F82 91 72 6a4 76 

0707 0.052 0.632 0.789 0.029 AVR FFT FS3 91 342 684 76 

R C NONE 
0.701 0.045 0.592 0.776 0,025 AVIR AIR FS2 91 72 6a4 76 

0694 0,040 0.632 0.763 0.022 NONE AR FS2 91 72 6B4 76 

0.689 0.067 0.566 0.816 0.038 NONE FFT FS3 91 342 6B4 76 

0665 0.046 0.618 0.789 0.026 NONE FIFT FS1 91 24 684 76 

0,684 0.047 0.592 0.776 0,026 NONE AR FS3 91 342 6a4 76 

1 0.683 0.051 0,553 0.776 0.028 AVIR AIR FS3 91 342 1 684 76 

From total of 384 Strategies CND=F-R, F-C, FL-FR, R-C. PP-NONE, AVR, SPF, LPF. FX. AR, ARMO, FFT, PSD FS-FS1, FS2, FSISR-91,11ýNP. 5 CF. GLM. SN-3 
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Table 5.8: Ten optimal strategies of subject I using the multilayer perceptron classi- 
fier. 

Top-ten optimum strategies for each condition combina tion for subject 1 usi ng the MLP cl assifier 
CN D Classification fitness Confidence 

PP 
Class 1 Class 2 Ciass 3 Mean Std. Min, Max Limits FX FS SR NI NES NTS 

Oý805 0.0% 0.684 0868 0.057 SPF FFT FS3 91 486 342 38 

0771 0070 0.658 0.895 0072 SPF PSD FS3 91 486 342 38 

0,755 0.058 0.684 0,842 0.060 SPF FFT FS2 91 78 342 38 

0754 0,022 0.734 0.792 1 0.023 SPF FIFT FS3 11 486 192 192 

FL FH NONE 
0,747 0.047 0,658 0816 0048 AVR FFF FS3 91 486 342 38 

0737 0,063 0.658 D. B42 0065 SPF AR FS2 91 78 342 38 

0731 0,034 0.656 0.766 0.035 SPF PSD FS3 11 486 192 192 

0,729 0.021 0.698 0771 0,022 SPF AR FS3 11 486 192 192 

0724 0.031 0.684 0.789 0,032 SPF AR FS3 91 486 342 38 

0718 0,078 1 0.579 0389 1 
0.080 SPF PSD FS2 91 78 342 38 

0.709 0,039 0.658 0.776 0.041 SPF FFT FS3 91 486 W 76 

Oý701 0,029 0.643 0.742 0ý030 SPF FFT FS3 11 486 384 384 

0.691 0.020 0.648 0.711 0,020 SPF PSID FS3 11 486 384 384 

0.683 0.064 0.605 0789 0ý065 SPF AR FS3 91 486 684 76 

F R NONE 
0.682 0.050 0.618 0776 0052 AVR PSID FS3 91 486 684 76 

0676 0,072 0.592 0803 0,074 SPF PSD FS3 91 4B6 684 76 

0671 0019 0,633 0,703 OV9 SPF AR FS3 11 4B6 384 384 

0.671 0038 0.579 0.697 Oý039 AVR AR FS3 91 486 684 76 

0.670 0060 0.579 0,750 0.062 NONE FFT FS3 91 486 684 76 

0,663 0041 0,592 0,711 0042 NONE AR FS3 91 486 684 76 

0,805 Oý056 0.684 0.868 0.057 SPF FFT FS3 91 486 342 38 

0.771 0.070 0.658 0.895 OV2 SPF PSD FS3 91 4156 342 38 

0.755 0.058 0.684 0.842 0.060 SPF FFT FS2 91 78 342 38 

0,754 0.022 0,734 0.792 0.023 SPF FFT FS3 11 486 192 192 

F C NONE 
0 747 0.047 0.658 0.816 Oý048 AVR FFT FS3 91 486 342 38 

0,737 0.063 0,658 0,842 0.065 SPF AR FS2 91 78 342 38 

0.731 Oý034 0.656 0.766 0.035 SIPE PSID FS3 11 486 192 192 

0.729 Oý021 0.698 0.771 0.022 SPF AR FS3 11 486 192 192 

0.724 0031 0.684 0.789 0.032 SPF AR FS3 91 486 342 38 

0.718 OW8 0.579 0.789 Oý080 SPF PSD FS2 91 78 342 38 

0883 0.035 Oý842 0,934 0.036 SPF FFr FS3 91 486 684 76 

0.868 0.023 0.829 0.895 0.024 SPF PSD FS3 91 486 694 76 

0.857 0.010 0.846 0.875 0.010 SPF FFT FS3 11 486 3114 384 

0.842 0.026 0.789 0.882 0,026 AVR FFT FS3 91 486 6a4 76 

R C NONE 
0838 0.019 0.805 0,870 0020 SPF PSID FS3 11 486 384 384 

0,826 0.028 0.776 0855 0,028 AVR PSID FS3 91 486 684 76 

0.825 0.030 0.789 0882 0.031 NONE FIFT FS3 91 486 684 76 

0.817 0.023 0.776 0A42 0,023 NONE PSD FS2 91 78 684 76 

0.817 0040 0.750 0.855 0,042 AVR PSD FS2 9 11 78 684 76 

0.613 0.015 0397 0.839 0.015 NONE FFT FS3 11 486 384 1 384 

0.669 0.024 0.625 0.714 0.025 SPIF FFT FS3 11 486 576 576 

0.658 0.020 0.632 0.693 0,021 SPF FFT FS3 91 486 1026 114 

0.651 0.048 0.579 0.719 0.049 SPF AR FS3 91 486 1026 114 

0637 0.019 0.602 0,660 0.019 AVR FFT FS3 11 486 576 576 

IF R C 
0.633 0.043 0.561 0.684 0044 NONE FFT FS2 91 78 1026 114 

0.632 0.013 0.615 0.653 0.013 AVR PSD FS3 11 486 576 576 

0.632 0.014 0.6A 0.658 0,014 SPF AR FS3 11 486 576 576 

0,632 0.056 0.535 0.702 0.058 SPF PSD FS3 91 486 1026 114 

Oý625 0.037 0,570 0.675 0.038 AVR PSD FS2 91 78 114 

0.625 0,051 0.518 0302 Oý053 AVR PSD FS3 486 1026 114 

Lo- 
total of 256 Strategies CND-F-R, F-C, FL-FR, R-C, F-R-C. PP-NONE, AVR, SPF, LPF FX-AR, ARMO, FFT, PSID. FS. FS2, FS3. SR-9: 1,11. NP-5. CF-MLP SN-1. 
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Table , -). 9-. Tcij optimal strategies of subject 2 using the inultilayer perceptron classi- 
fier. 

Top-ten optimum strategies for each condition combination for subject 2 using the MLP classifier 
CND I Classification fitness Confidence 

PP 
Class 1 Class 2 Class 3 Mean Std. Min. Max. Limits /-) FX FS SIR NI NES NTS 

0703 0.068 0.579 0.816 0,070 AVR AR FS3 91 456 342 38 

ri 

0679 0.033 0646 0.740 0.033 AVR AR FS3 11 456 192 192 

0.668 Oý071 0.579 0,789 0.073 NONE AR FS3 91 456 342 38 

Oý663 0.059 0579 0.763 1 0,061 SPF AR FS3 1 91 456 342 38 

FL FR NONE 
0.639 0.053 0.553 0.711 0.054 AVR AR FS2 91 72 342 38 

0631 0.025 0.599 0.682 0.025 SPF AR FS3 11 456 192 192 

0.627 0.023 0.589 0.672 0.024 NONE AR FS3 11 456 192 192 

0 621 Oý054 0.526 0.684 0.056 AVIR FFT FS3 91 456 342 38 

0616 0.027 0.589 OZ82 0.028 AVR AIR FS3 11 72 192 192 

1 0616 0085 0.526 0789 0,088 NONE AR FS3 91 72 342 38 

0639 0056 0513 0697 0057 AVR FFT FS3 91 456 684 76 

0629 0,041 0.566 0684 0042 SPIF FIFT FS3 91 456 684 76 

0621 0.018 0.602 0,659 0018 AVR FFT FS3 11 456 384 384 

0621 0.041 0.553 0.684 0,042 AVR PSID FS2 91 72 684 76 

F R NONE 
0,620 0.054 0.513 0,684 0,055 AVR AR FS2 91 72 1 684 76 

0618 0,039 0.566 0.671 0.040 NONE FIFT FS2 91 72 684 76 

0.614 0.061 0.487 0,697 0.062 AVR PSD FS3 91 456 684 76 

0,614 0.081 0.500 0.750 0,083 AVR FFF FS2 91 72 684 76 

0610 0.021 0.576 0.646 0,022 AVR FFT FS2 11 72 384 384 

0,609 0041 0.539 0671 Oý042 AVR AR FS3 91 456 684 76 

Oý768 0,031 0.724 0829 0.032 AVR FFF FS3 91 456 684 76 

0.727 0.014 0.708 0,747 0.014 AVR FFT FS3 11 456 384 384 

0722 0.053 0.618 0.789 0.054 AVR PSC, FS2 91 72 684 76 

0,721 0.024 0,698 0.758 0.024 AVR PSD FS3 11 456 384 384 

F C NONE 
0.716 0053 0.645 0.803 0 055 NONE FFT FS3 91 456 684 76 

0.711 0.056 0,618 0.789 - 0,058 AVR AR FS3 91 456 684 76 

0709 0047 0.658 0.776 0,048 SPIF FFT FS3 91 456 1 684 76 

0709 0053 0.658 0,803 0054 AVR AR FS2 91 72 684 76 

0,706 0,021 0,677 0.737 0,021 AVR PSD FS2 11 72 384 384 

0 700 0.056 0.605 0.789 0.058 AVR FFT FS2 91 72 694 76 

0751 0.060 0.658 0.842 0.062 AVIR PSD FS3 91 456 56 684 76 

0,749 0.049 0.658 0.816 0,050 NONE FFT FS3 91 456 56 684 76 

0,743 0.014 0.708 0.755 0.015 AVR FFT FS3 11 456 4516 384 384 

0.742 0.046 0.671 0803 0,047 AVIR IFFr FS2 91 72 72 72 684 76 

R C NONE 
0.728 0.065 0.605 0.829 0.067 AVR FIFT FS3 91 4 456 456 56 684 76 

0.712 0.042 0,671 0.789 0.043 NONE FIFT FS2 91 72 684 76 

0,711 0024 0.674 0.750 0.024 NONE PSD FS3 11 456 384 384 

0.710 0.018 0,693 0.747 0,019 AVR FFT FS2 11 72 384 384 

0.709 0.028 0.664 0.747 0.029 AVR PSID FS3 11 456 384 384 

0.707 0,048 0,645 O. BO3 0.050 AVR AR FS3 91 456 684 76 

0,561 0.050 0.456 0.623 0.052 AVIR FFT FS3 91 456 1026 114 

0.546 0,031 0.509 0.605 0,032 NONE FFT FS3 91 456 1026 114 

0,544 0.27 0,491 OZ78 0.028 AVR FFT FS3 11 456 576 576 

Oý531 0.018 0.505 0.563 0.019 AVR FFT FS2 11 72 576 576 

0.531 0,051 0.439 0.605 0.052 AVIR PSID FS2 91 72 1026 114 

0.526 0,031 0.462 0.553 0.032 AVR AR FS3 91 456 1026 114 

0.523 0.018 0,491 0.543 0.018 NONE FFT FS3 11 456 576 576 

0.519 0.038 0.465 0.588 0.039 AVR FFT FS2 91 72 1026 114 
L 

0ý 111 5 0,052 0.412 0.623 0,054 NONE FFT FS2 91 72 1026 114 

' 0 0.504 0.015 0.490 0,533 PSID FS2 11 72 576 576 
LI-m 

total of 256 Strategies. CND-F-R, F-C, FL-FR. R-C, F-R-C. PP. NONE, AVR, SPF, LPF FX. AR, ARMO, FIFT, PSID. FS-FS2, FS3. SR-9: 1,1: 1. NP-5. CF-MLP SN-2. 
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Table 5.10: Ten optimal strategies of' subject 3 using the inultilayer perceptron clas- 
sifier. 

Top-ten optimum strategies for each condition combination for subject 3 usi ng the MLP cl assifier 
CND Classification fitness Confidence 

Class 1 Class 2 Class 3 Mean I Std. Min. Max. Limits (+/-) PIP FX 
1 

FS SR NI NES NTS 

0,774 0.053 0.684 0842 0,054 AVR AR FS3 91 342 342 38 

0.726 0.061 0,632 0816 0.063 AVIR AR FS2 91 72 342 38 

0719 0.014 0682 0734 0,015 AVR AR FS3 11. 342 192 192 

0,700 0.073 0579 0816 0,075 SPF AR FS3 91 342 342 38 

FL FIR NONE 
0.692 0.053 0579 0763 0.054 AVR FFT FS3 91 342 342 38 
0689 0,072 0579 0789 0.074 NONE FIFT FS3 91 342 342 38 
0688 0.033 0615 0.729 0.034 AVR AR FS2 11 72 192 192 

0687 0067 0579 Oý789 0.069 SPF IFFT FS3 91 342 342 38 

0686 0,041 0615 0,750 0.042 AVR PSID FS3 11 342 192 192 

0683 0030 0641 0,724 0,031 NONE AR FS3 11 342 192 192 

0.662 0059 0579 0.763 0060 AVR AR FS3 91 342 684 76 

0.659 0058 0579 0.737 0.059 NONE PSD FS3 91 342 684 76 

0.654 0.061 0,579 0,763 0.063 NONE FFT FS3 91 342 684 76 

0638 0,028 0,602 0.685 0,029 NONE FIFT FS3 11 342 384 384 

F R NONE 
0634 0.015 0607 0,648 0.016 NONE PSID FS3 11 342 384 384 

0.618 Oý065 0539 0711 0067 AVIR PSID FS3 91 342 684 76 

0617 0.022 0573 0,643 0.023 NONE AR FS3 11 342 384 384 

0.616 0.021 0589 0646 0.022 AVR AR FS3 11 342 384 384 

0,616 0.045 Oý539 0,684 0.046 NONE FIFT FS2 91 72 684 76 

0,613 0.060 0,526 0.724 0.062 NONE AR FS2 91 72 684 76 

0.730 0.044 0.645 0 7B9 0.046 AVR FFr FS3 91 342 694 76 

0.687 0026 0646 0727 0.027 NONE FIFT FS3 11 342 384 384 

&680 0010 0.661 0.693 0.010 AVR FFr FS3 11 342 3154 3134 

0676 0044 0579 0,737 0.045 NONE FFT FS3 91 342 684 76 

F 0 NONE 
DZ74 0051 0.592 0.750 0053 AVR FFT FS2 91 72 684 76 

0,674 0056 0579 0750 0.058 ILPF FFT FS3 91 342 
- 

684 76 

0662 0039 0.592 0737 0.040 AVR AR FS2 91 72 684 76 

0.657 0074 0.566 0.829 0.076 NONE FFT FS2 91 72 684 76 

0.655 0030 0. r, 09 0324 0.031 NONE PSID FS3 11 342 384 384 

0.651 0035 0.592 0.711 0.036 NONE AR FS2 91 72 684 76 

0.788 0047 0684 0.829 0,048 NONE FFT FS3 91 342 684 76 

0.778 0042 0.724 0.829 0.043 NONE PSD FS3 91 342 684 76 

0,775 0.047 0.684 0.816 0.048 AVR FFT FS3 91 342 694 76 

0.753 0.019 0.711 0.779 0.020 AVR FFT FS3 11 342 384 3a4 

R C NONE 
0747 0,010 0.729 0,763 0010 NONE FFT FS3 11 342 384 384 

0745 0.054 0.671 0.816 Oý056 SPF FFT FS3 91 342 684 76 

0732 0.049 0.645 0.803 0.050 AVR PSD FS3 91 342 684 76 

0730 0037 0,671 0,789 0.038 NONE PSD FS2 91 72 684 76 

0730 Oý023 0.695 0.760 0.024 NONE PSD FS3 11 342 384 384 

0729 Oý066 0.632 0.829 0.068 NONE FFT FS2 91 72 684 76 

0533 0.039 0.474 0.605 0.040 NONE FFT FS3 91 342 1026 114 

0504 0.040 0.465 0.579 0.041 NONE PSO FS3 91 342 1026 114 

0504 0.018 0.481 0.533 0.018 NONE FFT FS3 11 342 576 576 

0502 0.039 0.430 0.561 0.040 NONE IFFT FS2 91 72 1026 114 

0498 0.053 0.421 0.596 0.055 AVR AR FS3 91 342 1026 114 

0488 0.013 0.469 0.509 0ý0114 NONE FFT FS2 11 72 576 576 

0484 0.037 0.430 0.544 Oý038 AVR FIFT FS3 91 342 1026 114 

0481 0022 0.444 0507 0023 AVR FFT FS3 11 576 576 

0479 Oý048 0.430 0.596 0.049 ILPF FFT FS3 91 114 

_ 

r 
0478 1 0.047 0,412 0,535 0.048 ILPF PSD FS3 91 114 rF,. 

- Iot: 

ýf 

256 Strategies. CND-F-R, F-C, FL-FR, R-C, F-R-C. PP. NONE, AVR. SPF, LPF. FX-AR, ARMO, FIFT, PSD. FS=FS2, FS3 SR. 9 1,1: 1 ý NP-5. CF-MLP SN. 3. 
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Table 5.11: Optirnal strategies using the Fisher discruninant classifier. 

Optimum strategies for each condition combination and subject using the FISHER classifier 
SN 

CND Classification fitness Confidence 

Class 1 Class 2 Class 3 Mean Sid, Min. Max. Limits (, /-) 
pp 

I 
FX FS SR NI INES NTS 

FL FR NONE 0,741 0.036 0,703 0.781 0.074 SPF FFT FS3 11 486 192 192 

F R NONE 0.636 0.022 0609 0.664 0.045 SPF FFT FS3 11 4B6 384 384 

1 F C NONE 0816 Oý021 0789 0.842 0.043 SPF AR FS3 91 486 684 76 

R , G NONE 0.834 0.048 0.776 0.908 1 0.099 SPF FFT FS3 1 91 486 684 76 

F RI C 0579 0.051 0.526 0,658 0,105 Si FFT FS3 91 486 1026 114 

i FR NONE 0641 0.027 0.599 0,667 0056 AVR AR FS3 11 456 192 192 

F R NONE 0,603 0.055 0.566 0.697 0 112 AVR AR 1 91 456 684 76 

2 F C NONE 0,671 0.076 0.592 0.789 0,157 AVR PSD FS2 91 72 684 76 

R C NONE 0.684 0.053 0.618 
1 

0.750 0.108 NONE FFT I FS3 91 1 456 684 76 

F R C 0A58 0.052 0.412 0.526 0.106 NONE FFT FS3 91 456 1026 114 

FL FR NONE 0665 
1 

0.048 0.615 0.740 0.098 1 AVR AR FS3 11 342 192 192 

F R NONE 0,592 0.057 0.526 0.658 0.117 AVR FFT FS3 91 342 684 76 

3 F C NONE 0,666 0.083 0.526 0.737 0.171 NONE FFT FS3 91 342 684 76 

R C NONE 0.679 0.026 0,645 0.711 

1 

0053 NONE PSD 684 76 

FI R C 0.430 0.036 0,377 Oý465 0,073 NON 1026 114 

Frof, total of 1440 Strategies: CNDýF-R, F-C, F C-R, i R-C. Pi AVR, SPF, ii ARMO, i PSD 1`8=1751, i FS3. Si 1 NP=5. CF=FISHER SN=1.2.3 

Table 5.12: Optimal strategies using the generalised linear model classifier. 

Optimum strategies for each condition classifier and subject using the GLM classifier 
SN 

CND Classification fitness Confidence 
PP 

Class 1 Class 2 Mean Std Min. Max. Limits (, /-) 

I 
FX FS 

I 
SR NI 

I 
NES NTS 

FL FIR 0688 0.078 0,553 0.868 0,044 SPF PSD FS2 91 78 1 342 38 

F R 0.672 0.050 0.553 0.803 0.028 AVR AR FS2 91 78 684 76 
F 

- 
C OV 9 0.047 0.711 0.882 0,026 AVR FFT FS2 91 78 684 76 

R C 0,816 0.029 0.763 0.882 0,016 LPF AR FS2 91 78 684 76 

FL FR 0.608 0.076 0.447 0.763 0.043 AVR AR FS2 91 72 342 38 

F R 0.623 0.047 0.526 0.684 0.026 AVR AR FS3 91 456 684 76 

F C 0.752 0.041 0.671 0,829 0.023 AVR AR FS2 91 72 684 76 

R C 0.735 0.044 0.658 0.829 0,025 AVR PSD FS2 91 72 684 76 

FL FR 0.707 0.070 0.553 0.842 0,039 AVR ARMO FS3 91 57 342 38 

3 
F R 0.621 0,068 0.487 0,789 0.038 NONE AR FS3 91 342 684 76 

L 

F F C 0.684 0.051 0.592 0.789 0.029 NONE AR FS2 91 72 684 76 

FR I C 0.717 0.045 0,658 0.829 0.025 AVR PSD FS3 91 1 342 F 684 76 
_ 

From total of 1152 Strategies CND. F-R, F-C, FL-FR, R-C. PP. NONE, AVR, SPF, LPF. FX-AR, ARMO, FFT, PSD, FS-FSI, FS2, FS3. SR-9: 1,1: 1 NP-5. CF-GLM. SN-1 . 2,3. 
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Tahle 5.13: Optimal strategies using the multilaver porcept, ron classifier. 

Optimum strategies for each condition combination and subject using the MLP classifier 
SN 

CND Classification fitness Confidence 

Class 1 Class 2 Class 3 Mean SId. Min. Max. Limits PIP FX FS SR NI NES NITS 

FL FR NONE 0.805 0056 0.684 0.868 0,057 SPF FFT FS3 91 486 342 38 

F R NONE 0.709 0039 0.658 0.776 0.041 SPF FF-T FS3 91 486 684 76 
1 F S NONE 0.805 0056 0,684 0.868 0057 SPF FFT FS3 91 486 342 38 

R 
- 

C NONE 0.883 0035 0842 0,934 1 0036 SPIP FFT FS3 91 486 684 76 [ 

F R C 0.669 0024 0.625 &714 0.025 SPF FFT FS3 11 486 576 576 

FL FR NONE 0.703 0068 0579 0,816 0070 AVR AR FS3 91 456 342 38 

F R NONE 0,639 0056 0,513 0.697 0057 AVR FFT FS3 91 456 684 76 
2 F C NONE 0.768 0031 0.724 0.829 0,032 AVR FIFT FS3 91 456 684 76 

R C NONE 0.751 0060 0.658 
1 

0,842 0.062 
1 AVR IPSD F83 91 456 684 76 

F R C 0,561 0050 0,456 0.623 0052 AVR FIFT FS3 91 456 1026 114 

FL FR NONE 0,774 0,053 0,684 0.842 0.054 AVR AR FS3 91 342 342 38 

F 0662 0059 0,579 0.763 Oý060 AVR AR FS3 91 342 684 76 

3 F 0730 0044 0645 0.789 0,046 AVR FFT FS3 91 342 684 76 
FR 

0788 0047 0.684 0,829 0.048 NONE 91 342 684 76 
F Oý533 00, 0 313 039 0A74 0ý60", 1 91 342 1026 114 

From total of 768 Strategies CND=F R, F-C, FL FR. R-C, F-R-C. PP=NONE, AVR, SPF, LPF FX=AR, ARMO, FFT, PSD. FS-FS2, FS3 SR=9.1,1.1. NPý5. CF=MLP. SN-1,2,3. 

Table 5.14: Grand strategy averages for subject, 1. 

Strategy Averages - Subject 1 
Processing 

Variable 
Classification fitness Confidence 

stage Mean Std. Min. Max. Limits 

NONE 0.593 0.041 0.528 0.655 0.055 

PP 
AVR 0.61 0.04 0.548 0.674 0.054 
SPF 0.612 0.04 0.549 - 0.674 0.052 
LPF 0.581 0.038 0.522 0.639 0.051 
AR 0.601 0.035 0.544 0.657 0.046 

FX 
ARMO 0.512 0.04 0.451 0.574 0.053 

FFT 0.664 0.041 0.579 0.707 0.056 

PSID 0.64 0.042 0.573 0.703 0.057 

FS1 0.581 0.044 0.514 0.648 0.062 
FS FS2 0.62 0.041 0.553 0.684 0.055 

FS3 0.606 0.043 0.537 0.675 0.057 

SIR 
91 0.607 0.053 0.523 0.69 0.07 

11 0.591 0.026 0.55 0.631 0.036 

FISHER 0.608 0.043 0.554 0.661 0.089 
CF GLM 

- 
0.618 0.04 0.536 0.697 0.023 

F MLP 0.672 0.036 0.614 0.728 0.037 
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Table 5.15: Grand strategy averages for subject 2. 

Strategy Averages - Subject 2 
Processing 

Variable 
Classification fitness Confidence 

stage Mean Std. Min. Max. Limits (+/-) 

NONE 0.545 0.042 0.479 0.61 0.055 

pp 
AVR 0.561 0.042 0.493 0.625 0.056 
SPF 0.522 0.039 0.461 0.583 0.049 
LPF 0.49 0.02 0.459 0.523 0.025 
AIR 0.535 0.03 0.488 0.581 0.039 

FX 
ARMO 0.492 0.036 0.435 0.549 0.046 

FFT 0.55 0.038 0.489 0.608 0.05 
PSID 0.541 0.039 0.481 0.601 0.051 

FS1 0.523 0.035 0.464 0.58 0.049 
FS FS2 0.557 0.035 0.495 0.613 0.046 

FS3 0.541 0.036 0.479 0.602 0.045 

SR 
91 0.534 0.049 0.456 0.61 0.062 

11 0.526 0.023 0.49 0.56 0.03 
FISHER 0.536 0.038 0.488 0.583 0.079 

CF GLM 0.553 0.037 0.481 0.624 0.02 
MLP 0.587 0.034 0.532 0.644 0.036 

Table 5.16: Grand strategy averages for subject 3. 

Strategy Averages - Subject 3 

Processing 
Variable 

Classification fitness Confidence 
stage Mean Std. Min. Max. Limits 

NONE 0.564 0.042 0.498 0.628 0.056 

PP 
AVR 0.563 0.042 0.497 0.627 0.055 

SPF 0.54 0.041 0.476 0.604 0.054 

LPF 0.515 0.031 0.467 0.564 0.042 

AIR 0.543 0.031 0.493 0.591 0.041 

FX 
ARMO 0.51 0.04 0.447 0.574 0.053 

FIFT 0.568 0.042 0.502 0.633 0.057 

PSID 0.562 0.042 0.497 0.626 0.056 

FS1 0.547 0.041 0.482 0.611 0.059 
FS FS2 0.563 0.039 0.499 0.626 0.056 

FS3 0.563 0.039 0.497 0.631 0.055 

SIR 
91 0.551 0.053 0.468 0.634 0.069 

11 0.54 0.025 0.501 0.578 0.034 

FISHER 0.548 0.042 0.495 0.6 0.088 

CF GLM 0.577 0.039 0.501 0.653 0.022 

MLP 0.609 0.037 0.549 0.666 0.038 
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Table 5.17: Grand strategy averages incorporating all subjects. 

Grand Strategy Averages 
Processing 

Variable 
Classification fitness Confidence 

stage Mean Std. Min. Max. Limits (+/-) 

NONE 0.567 0.042 0.502 0.631 0.055 

PP 
AVR 0.578 0.041 0.513 0.642 0.055 
SPF 0.558 0.040 0.495 - 0.620 0.052 
LPF 0.529 0.030 0.483 0.575 0.039 
AR 0.560 0.032 0.508 0.610 0.042 

FX 
ARMO 0.505 0.039 0.444 0.566 0.051 

FFT 0.594 0.040 0.523 0.649 0.054 
PSID 0.581 0.041 0.517 0.643 0.055 
FS1 0.529 0.040 0.468 0.598 0.057 

FS FS2 0.558 0.039 0.496 0.616 0.055 
FS3 0.551 0.040 0.489 0.614 0.055 

SR 
91 0.564 0.052 0.482 0.645 0.067 

11 0.552 0.025 0.514 0.590 0.033 

FISHER 0.564 0.041 0.512 0.615 0.085 
CF GLM 0.586 0.039 0.508 0.662 0.022 

MLP 0.623 0.036 0.565 0.679 0.037 

Optimal strategies 

For subject 1, the optimal strategy for the two-way classificition FL-FR,, 
SPVJ'FT, FS3,9 : 1, MLPJ, yields a classification fitness of'80-5% compared with 

74.7%) for the same strategy except using AVR (see Table 5.8). LPF and NONE don't 

eveii reach the top-ten strategies list for most of the strategies which utilise the MLP 

cla, "ifier for subject 1. This trend is maintained for strategies that utilise the FISHER. 

classifier (see Table 5.2) but less so for GLM based strategies (see Table 5.5). 
The Optinial strategies for subjects 2 and 3 for the same two-way classification, 

FL-FR,, also utilise the MLP classifier, the larger channel set (FS3) and larger split 
ratio (9: 1). However, unlike strategies for subject 1, these strategies tend to utilise the 
AVR, inethod in preference to SPF. Taking the optimal strategy for subjects 2 and 3, 
1 AVR,, AR,, FS3,9 : 1, MLPJ, subject 2 yields 70.3% compared with 66.8% for NONE 

mid 66.3% for SPF. As with subject 1, LPF doesn't make it into the top-ten strategies 
for the FL-FR, classification. A similar trend is evident for subject 3, giving 77.4% for 

AN/'R,, 70% for SPF and 68.9% for NONE. Again, LPF doesn't make it into the top- 

ten. The variable performance of NONE and SPF can be somewhat enlightened upon 
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hY cmusidering the occurrence of strategies which utilise these inethods in the top-ten 

strýitegles lists for each condition combination. It can be seen that the prevalence of 
stratlegles utilising the NONE method far outnumber those which us'e SPF. This is 
idso confirined by the strategy averages tables, which are discussed below. 

Strategy averages 

The strategy averages for each subject mostly confirm the findings of' the optimal 
strategies. The general trend puts AVR, slightly above NONE, which is slightly better 
than SPF, which is in turn slightly better than LPF. The main point of interest 
liere is that, according to the strategy averages, AVR and SPF perform iieck-to- 
iieck for subject, 1. It is not until the optimal strategies are considered that. Hie 
difference", between these pre-processing variations becomes more clearly defined. The 

coniparahvel, y poor performance of LPF is reflected in all four strategy averages tables. 

5.4.2 Feature extraction 

As is the case for the pre-processing methods, there is no one feature extraction 
inethod which is significantly better than the other for all three sub. Jects. Instead, it 
is found that FFT is most successful for subject 1, compared to AR, for subjects 2 

and 3. 

Optimal strategies 

\Vhen considering tile. top-ten strategies for the important two-way classifications FL- 
RL and F-R, it can be seen that FFT is the best method for subject 1, as opposed 
to AB, for stibjects 2 and 3. For condition comparisons F-C, RX and F-R-C the 
optimal strategies for subjects 2 and 3 are less clear cut (in terins of all obvious 
preferred feature extraction method), in these cases, FFT, AR all(] PSD all Yield 
similar restilts. In all cases however, ARMO performs comparatively poorly. 

Taking the optimal strategy of subject 1, f SPF, FFT, FS3,9 : 1, MLPJ, and 
varYing the feature extraction method gives the following results (for FL-FR condition 
pair): 80.5% (FFT), 77.1% (PSD), 72.4% (AR). A similar trend is apparent For the 
F-B, condition pair, although to a lesser extent: 70.9% (FIFT), 67.6% (PSD), 68.3% 
(AB). Note that ARMO doesn't appear in the top-ten strategies list for any of the 

other condition combinations. When looking at the three-way classification, F-R- 
C, the difference in performance between FFT and AR diminishes towards being 
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iiegligible: for FFT, compared to 65.11YO for AR, and 63.2(Y(, for PSD. Similar 

results are found for strategies utilising the FISHER classifier, but, to a lesser extent 
wit 1i flie GLM classifier. These trends are also apparent when considering tlic strategy 
averages data. 

Strategy averages 

Lookiiig at, the strategy averages, it (, an seen that for subject 1, FFT (which is closely 
f0flowed hN, PSD) significantly outperforms AR, whereas for suh. jects 2 and 3, FFT's 
iniprovemeiit over AR, is only slight. Strategies using ARMO perforin comparatively 
worse (at least 10'Ye worse in most cases) than any of the other three iriethods. This is 

mt thýit surprising since the ARMO representation has only on(,. feature per chamiel, 
compaivd to five features for FFT and PSD, and 6 for AR. 

5.4.3 Feature selection 

"Ttien looking at the frequency and position of individual strategies which utilise one 
of the three feature selection methods in the top-ten tables, the following trends are 
apparent: 

FS3 is significantly better than FS2 in strategies which use the FISHER, classi- 
fier. FS1" performs poorly in comparison to both FS3 and FS2. 

o FS3 is slightly better than FS2 in strategies which use the MLP classifier. FSI 

perfOrnis poorly in comparison to both FS3 and FS2. 

FS2 is slightly better than FS3 in strategies which use the GLNI classifier. FSI 

performs poorly in comparison to both FS3 and FS2, but, not quite as poorly as 
in the above two cases. 

Optimal strategies 

In the case of strategies using MLP (the most successful classifier), FS3 generally 

sc, ores sonie 5% higher than FS2. For example, consider subject I with the FL-FR 

coii(lition coinbiiiation. The strategy JSPF, FFT, FS3,9 : 1, MLPj yields 80.5yo, 

compared with 70.5% when using FS2. This is also the case for strategies using the 

"This was realised before the analysis computations had been completed, hence the FSI strategy 
variation was not obtained for the MLP classifier as the analysis for which was computed last. 
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FISHER classifier. However, almost all the optimal strategies using the GLNI classifier 
favour FS2 over FS3. In most cases FSI dose not appear in the, top-ten tables. 

Strategy averages 

It, is clear to see from Table 5.17 that FS2 performs slightly better than FS3: 55.8% as 

opposed to 55.1'Y(,,. FSI perfornis significantly less sticcessfully at, 52.7%. This treii(I 

is reflected in all the single subject averages tables, with the exception of subject, 
3 Jable 5.16) where it can be seen that FS3 and FS2 perform equally well. Note 

that this finding (lose not agree with the trends discovered by looking at the optimal 
12 sti-ýItegles 

5.4.4 Training set size 

11, is generally the case that strategies trained with a larger training set size, resulting 
froin the 9: 1 split ratio, perform only marginally better than those trained on tile 

snialler daGi sets resulting from a 1: 1 split ratio. This is apparent in both the. top-ten 

stnitegy lists and the strategy averages tables. 
This result suggests that the additional information provided by the larger training 

set sives is cither not necessary (in terms of modelling the data), or that the classifiers 

-irc not sensitive enough to this extra information. Ifthe former is true, which further 

aii; ilysis would show, then this eludes the question: "What is the lower limit at which 
the number of' training set patterns will no longer achieve a suitable classification 

solution'! " The answer, as discussed before, could be a critical factor in deciding 

whether the existing classification techniques might be applicable to a working BCMI 

systein. 

5.4.5 Classifier 

The best classification fitnesses are obtained from strategies which utilise the MLP 

classifier. These are followed by strategies employing the GLN4, and lastly the FISHER. 

classifier. This trend is apparent in both the top-ten strategy lists and the strategy 
averages tables. Looking at the optimal strategy for each classifier and subject, it can 
be, seen that although strategies employing the MLP result in the best performance, 

'This is not taken to seriously because of the large number of sub-optimal strategies which combine 
to arrive at the strategy averages data presented here. The point of computing the strategy averages 
is to gain some insight into the overall performance of individual method variations - as opposed to 
simply identifying the 'winning formula' as it were. 
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Figure 5.3: Bar plot of classification fitness for all four condition comparisons for 
optimal strategies, as a function of classifier. SN=I. 

the GLM and FISHER classifier based strategies are still capable of achieving signifi- 
cantly better than chance classifications. For example, consider the FL-FR condition 
pair. The optimal strategies using the MLP yield 80.5%, 70.3% and 77.4% for subjects 
1,2 and 3 respectively, GLM yields 68.8%, 60.8% and 70.7%, and FISHER, 74.1%, 
64.1% and 66.5%. To further gauge the performance of the 3 classifiers, the grand 
average classification fitness of the first four optimal strategies in the top-ten tables 
have been computed: MLP = 75.2% , GLM = 70.4% and FISHER = 68.6%. This 
trend is also reflected in the averages and grand averages tables. Figures ?? -?? also 
display these results. 

5.4.6 Conditions 

The condition combinations of most interest from the BCMI perspective are F-R and 
FL-FR, as these both incorporate musical tasks, as opposed to the counting task, 

which is included in this experiment primarily as a measure to control for modality 
(see earlier discussion). However, since the analysis has been performed for all the 

other combinations, they will be discussed here as well. Tables 5.11,5.12 and 5.13 

summarise the optimal strategies for each subject and condition combination for the 
FISHER, GLM and MLP classifiers respectively. When comparing the relative success 
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Figure 5.4: Bar plot of classification fitness for all four condition comparisons for 
optimal strategies, as a function of classifier. SN=2. 
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Figure 5.5: Bar plot of classification fitness for all four condition comparisons for 
optimal strategies, as a function of classifier. SNý-3. 
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ofthe different condition combinations, attention is placed on strategies which us(, the 
XILP classifier since they generally outperform the strategies of the other classifiers. 

A general treiid is observed which ranks the four two-way classifications in tlic 
1,0110wing order of' sliccess: R-C, F-C, FL-FR, an(] F-R.. However, exceptions are f0iind 

ý\, Ijcti looking at, the performance for individtial classifiers. Conditioii conibinatimis 
\%, hich stand out, above the rest in terms of classification fitness are R-C, and F-C. 
For example, consider the mean classification fitnesses for the optimal strategy of' 
subject 1, JSPF, FFT, FS3,9 : 1, 

-AILPI, 
in order of success, these are: R-C 

88.3(4ý F-C = 80.5%, FL-FB, = 80.5% and F-R, = 70.9(/(,,. Clearl 
,v 

RX Stands Out, 

ýis the best: FL-FR and F-C equal, and F-R, significantly less. For the optimal 
striaegy of'subject 2, JAVR, AR, FS3,9 : 1, AILP) the pictlirv looks quite different: 

R-C = 70.7%, F-C = 71.1%, FL-FR = 70.3% and F-R, = 60.9%. The order is tile 

sairie, but only just. The only significant difference is that F-R, is markedly worse 
hi comparison to the others. For subject 3 using JAVR, AR, FS3,9 : 1, MLPj the 

iesiflts are: FL-FR = 77.4% R-C = 69.5(/c, F-R, = 66.2VO and F-C 65.1%. However, 

when iising I NONE, FFT, FS3,9 : 1, MLPJ which performs well for all 4 condition 
comparisons, one sees: R-C = 78.8%, FL-FR = 68.9% F-C = 67.6Yol F-R, = 65AVO 

respectively. 
N, Vitholit exception, the two-way classifications perform better than the three way 

classificatioti F-B. -C. This is not surprising and needn't be discussed ffirther. The fol- 
lowhig sl rategy: f NONE, FFT, FS3,9 : 1, AILPI yields 53.3% which is 20% better 
than the average random guess for a three-class problem which is of course 33.3% 
(assuming equal a priori probabilities for each class). 

5.4.7 Subjects 

Strategies tested on subject I yield the best results, followed closely by those for 

subject, 3 and less closely by those of'subject 2. 

Consider for example the optimal strategies (see Table 5.13) for the two-way classi- 
fication FL-FB,. For subjects 1,2 and 3 these are 80.5%, 70.3VO and 77.4% respectively. 
Similarly, for the F-R. condition pair: 70.9VO, 62.9% and 66.2%. 

For the three-way comparison, F-R-C, one has: 66.9%, 56.1% and 53.3%, which 
implies that subject 2 outperforms subject 3 for this condition combination 13 

. 
"Due to the order of standard deviation and confidence limits which are both approximately 3%, 

it cannot be said that there is a significant difference between the performance of these strategies. 
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5.5 Conclusions 

In this chapter, a novel musical focusing experiment which was designed with Hie 

end use of a BCMI system in mind is described along with the analysis results of the 
EEG pattern classification system - described in Chapters 2 and 4- as applied to Hie 
fociising experiment data. 

Following a description of the experiment (which inchides details ofa hypothetical 
BC. Nfl application utilising musical focusing) a thorough break- 
dowii ofthe classification sub-systems is given, by way of results and discus'sion. This 
leads to a refined set of recommendations relating to which variations (of the ininierotis 
classificatioii strategies employed) might be worthy of further investigation. 

Tlic geiieral behaviour of the classification system acts accordingly with respect 
to other research involved with EEG pattern classification. In particular, the work of' 
Aiiderson ct a/ who find that similar length segments of EEG based on a number of 
distinct niental tasks (such as imagined object rotation, relaxation, niental arithmetic) 
(, -an be sticcessfully classified using similar classification strategies as those employed 
here [AS96]. 

Tlie classification fitnesses achieved by the optimal strategies reported in this 

cliapter, being in the order of 60 - 80% for two way classifications, should warrant 
further work in this field. In particular, the use of' pre-classifier processes such is 
spatial filtering and autoregressive modelling, as a way of reducing the dimensionality 

of' inulti-channel EEG data before classification proper is performed by a nonlinear 

classifier (such as static-multilayer perceptrons or generalised linear models). 
The classification methodology described in Chapters 2 and 4 is evaluated for 

inany sub-systeni variations. The key findings relating to these sub-systeins (stages 

of' the classification methodology) are detailed below: 

Pre-processing 

An iniproved classification performance due to pre-processing filters, especially Hjorth's 

Laplacian spatial filter., and to a lesser extent, the average reference filter (also known 

as coninion ref(Tence filtering) is observed. Of the four pre-processing variations in- 

vestigated (NONE, AVR, SPF and LPF), AVR and SPF are found to considerably 

improve the classification performance when compared to NONE. LPF doesn't even 

inatch the performance of NONE. 
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Feature extraction 

The success of' linear autoregressive model coefficients (for two out of three subjects) 

s, , uggests a possihIc superior feature extraction Tilethod over traditional FFT based 

incasures. Of* the four inethods investigated (AR, ARMO, FFT and PSD), AR. and 
FFT are I'Mind to considerably improve the classification performance when compared 
to NONE. Furthermore, ARMO falls short of the performance of NONE. 

Feature selection 

Class'Ifiers trained oil data from a large number of channels, such as the 128-cliannel 
dense arrýiy system used here can achieve significantly better results than those trained 

on data from a handful of electrodes. However, in some cases, as few as 12 electrodes 
(in combination with the GLM classifier) achieved comparable results. Classifiers 

preseiited with features made up of the largest channel set (FS3) perform the best 

most of' tlie thne. However, when using the GLM classifier, tlie optinial strategies 

are slightly more in favour of the medium set, FS2 (based on the international 10-20 

set ofelectrodes). Strategies employing the smallest set, FSI, which consist of the 4 

temporal electrodes perform comparatively worse in all but a few cases". In this work, 
the classification system attempts to classify 2-second segments on an individual basis. 

However, this time window could be increased several fold without compromising t1le 

needs of a BCNII system, the result of which might lead to a considerably improved 

classification fitness, as other studies have shown [AS96, PPF97, PP99, PRCSOO]. 

This in turn might allow, among other things, a reduced channel set to be employed. 
These and other ideas will discussed in more detail in Chapter 6. 

Training set size 

Of the two data split ratios, 9: 1 and 1: 1), the former (which results in 90% of the 

avaikible data being used for training) only results in a marginal improvement over 

strategies which employ the 50(Yo/50% data split, 1: 1. The fact that the smaller 
training set size performs almost as well as the larger one is encouraging. 

"'Since one, of the BCMI engineering ideals is to reduce the number of EEG electrodes to a 
minimum, more, work is required in exploring solutions which employ smaller channel sets. This and 
other issues concerning future developments of this work are given in Chapter 6. 
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Classifiers 

Noii-linear classifiers, nainely the static-multilayer perceptron and generalised linear 

inodel neural networks can outperform linear classifiers, such as the Fisher discrind- 

mint. The three classifiers listed in order of success are: MLP, GLM and FISHER. 

Subjects 

All three sub jects achieve good classification results. Subject I yields the best, results 
when utilising the following strategy: JSPF, FFT, FS3,9 : 1, AILPI, whereas sub- 
jects 2 and 3 utilise JAVR, AR, FS3,9 : 1, MLPJ. These strategies take into account 
the iniportmice of the FL-FR and F-R condition comparisons over the remaining 
comparisons which include the counting task. 

5.6 Summary 

The results are very encouraging and help validate the hypothesis stated in the in- 
troduction, that is: a person's EEG contains information allowing one to ascertain - 

15 to a reasonable degree of success which one of 3 mental tasks (musical focusing, 

passive listening, and counting) they are performing. 
Although there exist so far no studies exactly like this one, the results agree with 

the findings of studies which deal with DSP realised EEG pattern classification of' 
mental tasks. Without a doubt, the results frorn this experiment bode well for the 

case in favour ofa BCMI which utilises specific music related mental tasks, as opposed 
to inore abstract mental activities such as learned control over the alpha wave (8-12 

Hz) EEG component, via relaxation. 

"In this case, 'reasonable' means statistically better than chance. 



Chapter 6 

Conclusions and Future Work 

The key point, of this work has not been to try and solve the mystery of the brain, 

riit, her, to evaluate whether the EEG can be harnessed in new ways during certain 

musical situations, in a way that would allow thought-related control of an interactive 

musical environment. The work described in this thesis started with a thorough 

search for studies in the field of thought-conh-olled musical devices [DMS98a]. With 

the exception ofone study [R. os90], no existing work was found that specifically sought 
to address the author's concept of a BCMI, which is briefly defined as: 

"A musical synthesis device that uses the. knowledge of the PT'(-'SCTIC(, ' or 

absence of' cortain musical thoughts or experiences, by means of a bi-ain- 

contpuler interface and EEG analyst's en. qz . Tie, so as to allow thought- 

control of the music that is subsequently created. " 

Although this concept has been suggested by Rosenhooin, ftos90], work has yet 
to be carried out which attempts to address the engineering demands of such as 

system in the context of modern day technologies, especially the rapidly expanding 
field of braiii-coni puter- interfacing. Hence, to the best of the author's knowledge, this 

thesis opens up a new topic, fusing the domains of experimental computerised musical 

z. nstruincnts and brain- computer zTiterfacing. 

6.1 Major contributions 

6.1.1 A new area of research 

Besides opening a way forward in the field of BCMI systems, the major contribution 
of' this research has been the building and testing of a BCNII evaluation protocol 

121 
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incorporatHig t1w design and implementation of novel EEG experiniciits, and the 
development and evaluation of various EEG pattern classification strategies, soine of' 
which are novel. This was achieved by the following iterative procedure, the fruits of' 

which are, reported in Chapters 3,4, and 5 respectively: 

1. Hypothetical BCMI applications outlined: The purpose of this stage was to es- 
tablish classification problems that formed a basis upon which EEG experiments 

were designed. To this end, three problenis were defined, each based on flic basic 
BCMI framework outlined in Chapter 1. 

2. Novcl EEG experim e Tits designed and implemented: Given the hypothetical 

BCMI applications and associated classification problems, suitable experiments 

were designed and implemented that provided data for the evaluation of'various 

state-of-the-art classification methods taken from the BCI field. 

3. Data analysis: Involving a systematic evaluation of EEG pattern classifica- 
tion methods, with a view to both validating the BCMI concept, and locating 

successful classification strategies and experimental paradigm,, for future itera- 
tions/developments. 

The results ofthis work have led to a number ofinsights relating to the plausibility 
ofthe novel BCMI concepts described in this thesis. These insights are detailed below. 

6.1.2 Insights gained 

BCMI concept is plausible 

The primary finding of this research is that the concept of the BCNII, as defined above 
(and elsewhere in the thesis) is without doubt plausible with current technology, such 

as those inethods found to work in this thesis. 

ERP based experiments worthy of further investigation 

The ERP-hased auditory stimulus experiment described in Chapter 3, demonstrates 

that, successful classification of single I-second segments of pre and post-stiniulus onset 
EEG is possible by means of a novel correlation-based feature extraction technique. 
The experiment also shows that the EEG contains information concerning the expe- 

Hence of music (in this case, the perception of simple tones heard over silence), and 
that this information is accessible in a reasonable time franie. The results warrant 
further investigation into ERP-based BCMI systems. 
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Music related mental tasks can be classified 

Bot. h the musical imagery and musical focusing experiments (Chapters 4 and 5) hoast 

1)o.,,, It, lv(, results in favour of BCMI systems that utilise discretc musicallv relevatit 
memal tasks. In particular, the. successful pair-wise classificat, imis (hnagerý\ (, s i, ýýrI,, 
relaxing, focusing versus relaxing, and focusing-left versus focusing-right) show that 
bot h imagery and focusing could be considered as viable candidate tasks for any fut, ure 
BC-NIl research. 

Optimal classification methods correlate with BCI findings 

Optimal strategies correlate with finding froin BCI research, in particular, the success 
of* Laplace spatial filtering for pre-processing raw EEG data, linear autoregressive 
modelling for feature extraction, and static feedforward multilayer perceptron neural 

, uctum-ks f'Or classafication. 

Need to consider both large and s mall- channel- set systems 

The fact that, the successful classification results reported in this thesis were based 

oil features obtained from large channel sets (between 20 and 128 electrodes) may 

not, detract from the. case in favour of the BCMI concept. The reasons for this are 

as follows. First, the experiments confirm the principle behind the, BCMI concept is 

viable. Second, although the ideal real-world BCMI would be a portable easy-to-lise 
de\, ice, harbouring a small EEG sensor array (perhaps 2 to 4 electrodes as part of' a 
head band), there is no reason why large-channel-set systeins could not be realised. 
For example, the 128-cliannel device used in this thesis call be set up lit less than 30 

minutes. Thirdly, it, is likely that the methods described in this thesis (-all be adjusted 
to account for small-channel-set situations. For details, see the section oil future work. 

6.2 Future work 

6.2.1 Refine classification methods 
Advanced search techniques for refining optimal classification strategies 

As a result of the great number of possible pre-processing options available, and since 
the consequence of the, choice of these options is crucial to the success of the classifier, 
it is necessary to adopt a systematic approach that enables a large number of' these 
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options to be compared. One particular technique known to be useful ni engineering 
problems where an exhaustive search becomes practically infeasible, is evolutionary 
methods such as genetic algorithms. These could be employed as a method of(juickly 
lioning in on optimal strategies, allowing a greater number of classification strategies 
to be tested. 

Multiple segment averaging 

One possible solution that might improve the classification performance of' the optimal 

strategies would be multiple segment averaging which involves making classifications 

over a number of' short segments, then combining the results by choosing the most 

prevalent class. This methodology has been shown to increase accuracy significantly in 

ot lier st udies. For example, Anderson et al. [AS96] find that, for a five-class problem, 

averaging the results of 20 half-second segments improves the classification accuracy 
bY up to 16%. 

Committees of networks 

Committees of' networks have been successfully employed by Pffirtscheller's group 
[PPF97]. Rather than training a single network on features fi-om all the channels, they 

iised a separate network for each channel, then formed a committee that consisted of' 
the strongest networks (i. e. those that performed the best). The class attributed to 

new EEG segments is thus formed by taking a 'vote' which simply consists of labelling 

the seginent as belonging to the class which received the highest number of votes. 

6.2.2 Refine experimental paradigms 

Mental tasks 

More experiments are required to validate the usefulness of musical imagery and 
focusing. Particular attention needs to be placed on integrating ideas about how a 
real-world 13C. NII would utilise the ability to detect the presence or absence of these 

mental tasks in a subject's EEG. It would also be worthwhile to devise experimerits 
that incorporated both musical imagery, focusing, and passive listening. A successful 

result in this scenario would certainly be exciting! 
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Experimental artefacts 

Further experimentation should be undertaken where ernphas's is placed on the need 
to rule out, the chance of contamination due to experimental artefacts, such as those 

experienced in the, musical imagery experiment. For example, the musical iniagery 
task could be tested in a paradigm similar to that of the focusing experiment. 

Towards adaptive systems 

More work needs to be undertaken to establisli experimental paradigins which reflect 
Ilic sort of challenges that would be expected in a real-world, on-line system. For 

example, the fact that during the course of time, the underlying statistics of the EEG 

are changing. For example, as the subject beconies tired, alpha (frequencies lit the, 
8-12flz range) tends to increase [NLDS98]. Therefore, experiments should be set- 
up which allow for adaptive classification methods (such as Hidden Markov Models 
[PR99]) to be evaluated to compensate for the changeable nature, of the EEG during 
longer periods of time. 

6.2.3 On-line prototypes 

The findings of this thesis indicate that a prototype BCMI which incorporates imagery 

and focusing mental tasks would be worthy of investigation. However, in order to 

achieve. suitable classification accuracies in a real-time environment, further off-line 
experimentation would be advisable. 



Appendix A 

Artefact, detection algorithms 

A brief description of the artefact detection algorithms (including pseudo-code) is 

given below. The algorithms are designed to detect eye-blink and eye-inovenient 

artefacts, aii(I bad channels, from a segment of multi-chaimel EEG (acquired using 
the 128-channel geodesic net of EG1 (http: //www. egi. coiii). 

A. I Eye-blink artefact detection algorithrnt 
This algorithin is applied twice (once for each pair of eye-blink channels 18 1261 and 
f 12 7 128 1) to detect eye-blink artefacts. It compares the deviation between fast and 
slow running averages of a pair of eye-blink channels with a threshold. An eye-blink 

is (Ictected wli(, ii the deviation exceeds the threshold level. 

Fast = 
Slow = average of difference of 1st 10 samples 
for each sample: 

Diff - difference in voltage of eye channels 
Fast 0.8 * Fast + 0.2 * (Diff - Slow) 

Slow 0.975 * Slow + 0.025 * Diff 

if IFastj > Eye Blink Threshold (70 pV), reject segment 

(See figure A. 1 for example plot. ) 

A. 2 Eye-movement artefact detection algorithmt 
The algorithin used for detecting eye-movement artefacts is exactly the same as for 

eye-blinks, except that it uses the two horizontal eye channels 1128 1251. (See figure 

126 



APPENDLk, A. ARTEFACT DETECTION ALGORITHMS 127 

A. 2 fOr example plot. ) 

A. 3 Bad channel artefact detection algorithms 
Two algorithins , vere used at different times to detect bad channels. 

Bad channel detection algorithm A 

This algoi-Ithin rejects channels which sainple's exceed a 200 p. 11' threshol(I niore than 
IOVO of the thne. 

for each channel: 
count -0 

for each sample: 

if ISamplel > 200 (ItIl"), count = count +1 

end 

if count > 0.1 * number of samples in segment, label channel as bad 

end 

Bad channel detection algorithm Bt 

This algorithm measures the difference between fast and slow running averages of 
channel amplitudes, and compares this with a Voltage Threshold and Transit Thresh- 

old. It has the effect of detecting both high frequency noise (such as inains hum) and 
lmv fi-equencY drift. 

for each channel 
Fast = 
Slow = average voltage of Ist 10 samples 
for each sample: 

Fast 0.8 * Fast + 0.2 * sample voltage 
Slow 0.975 * Slow + 0.025 * sample voltage 
Diff Fast - Slow 

if IDiffl > Transit Threshold (100 /tV), label channel as bad (signal transit rejection) 

else if JFastJ > Voltage Threshold (200 /jV), label channel as bad (signal voltage rejection) 

end 

end 
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These algorithms are the same as those described in the EGI Averager software documentation 
(reference). 
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Figure A. 1: Eye-blink detection algorithm finds possible artefact in both sets of eye 
channels. Dotted line on lower plots indicates the 70 /_tV threshold. 
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Figure A. 2: Eye-movement detection algorithm finds possible artefact. Dotted line 

on lower plots indicates the 70 pV threshold. 
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Figure A. 3: Bad channel detection algorithm finds a bad channel. 
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Sound file audition tables 

Tables B. 1, B. 2 and B. 3, give details of the order in which the sound files listed in Table 
5.1 are ýmditioiied in each of the blocks that make up the focusing experiment. Note 
timl somid files 13 - 17 represent the vocal cue instruction sounds: 'guitar', 'svntli', 
-pmno', 'relax' and 'count' respectively, and conditions I-5 refer to conditions: Fl, 
F13- R, C and Practice respectively. 

Table B. I: Sound file play list for the practice block. 

Block 
number 

Trial 
number 

Instruction 
sound file 

Music sound 
file 

Condition 

1 13 1 5 

2 14 2 5 

0 3 15 3 5 

4 16 4 5 

5 17 5 5 
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Table B. 2: Sound file play list for blocks one and two. 

Block 

number 

Trial 

number 

Instruction 

sound file 
Music sound 

file 
Condition 

Block 

number 

Trial 

number 
Instruction 

sound file 
Music sound 

fi le 
Condition 

1 14 4 1 1 13 12 2 

2 15 6 1 2 13 7 1 
3 16 10 3 3 16 1 3 
4 1 10 4 4 16 8 3 

5 13 2 1 5 14 8 2 

6 15 12 1 6 17 10 4 

7 17 6 4 7 16 12 3 

8 16 12 3 8 13 4 2 

9 15 9 2 9 16 5 3 

10 16 8 3 10 16 7 3 

11 17 9 4 11 15 11 1 

12 17 11 4 12 13 1 1 

13 15 3 2 13 17 4 4 

14 17 7 4 14 14 3 1 

15 16 9 3 15 17 5 4 

16 16 4 3 16 16 2 3 

17 14 5 2 17 17 7 4 

18 14 11 2 18 16 4 3 

19 15 7 2 
2 

19 16 6 3 

20 17 4 4 20 17 9 4 

21 15 1 2 21 17 3 4 

22 16 5 3 22 17 8 4 

23 16 7 3 23 14 9 1 

24 13 8 1 24 17 12 4 

25 17 3 4 25 17 2 4 

26 17 8 4 26 16 9 3 

27 17 12 4 27 16 10 3 

28 17 5 4 28 17 11 4 

29 16 11 3 29 17 1 4 

30 17 2 4 30 15 5 1 

31 16 6 3 31 13 10 2 

32 16 3 3 32 14 2 2 

33 16 2 3 33 13 6 
12 

34 16 1 3 34 16 3 3 

35 17 1 4 

j 

35 16 11 3 

1 

36 14 10 1 36 17 6 4 
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Tnble B. 3: Sound file play list for blocks three and four. 

Block 
number 

Trial 

number 
Instruction 
sound file 

Music sound 
tile 

Condition 
Block 

number 

Trial 

number 
Instruction 

sound file 
Music sound 

file 
Condition 

1 17 3 4 1 16 4 3 
2 17 2 4 2 16 10 3 

3 14 11 2 3 17 11 4 

4 15 7 2 4 17 6 4 

5 14 4 1 5 14 8 2 

6 17 10 4 6 14 9 1 

7 14 5 2 7 16 6 3 

8 17 9 4 8 17 10 4 

9 1 12 4 9 16 9 3 

10 17 4 4 10 16 8 3 

11 15 12 1 11 14 2 2 

12 16 3 3 12 17 9 4 

13 16 7 3 13 13 10 2 

14 17 6 4 14 14 3 1 

15 14 10 1 15 16 3 3 

16 16 6 3 16 16 5 3 

17 16 9 3 17 17 3 4 

3 
18 17 8 4 

4 
18 13 4 2 

19 17 1 4 19 16 12 3 

20 16 1 3 20 15 11 1 

21 17 5 4 21 17 7 4 

22 13 8 11 22 17 1 4 

23 1 13 2 1 23 15 5 1 

24 15 6 1 24 13 7 1 

25 16 12 3 25 16 1 3 

26 17 7 4 26 13 1 1 

27 15 9 2 27 16 2 3 

28 16 5 3 28 17 4 4 

29 16 2 3 29 16 11 3 

30 17 11 4 30 13 12 2 

31 16 10 3 31 17 8 4 

32 15 3 2 32 13 6 2 

33 16 4 3 33 17 5 4 

34 16 8 3 34 16 7 3 

35 16 11 3 35 17 12 4 

36 15 1 2 3-6 17 2 4 
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