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Abstract 

This research develops the concept of a Trajectory-Scheduling Network (TSN). A TSN 

system comprises nodes of linear subsystems placed along the operating trajectory' of a 

nonlinear plant to be controlled. The TSN is to enable linear time-invariant system analysis 

and design methods to be extended to nonlinear systems for their entire operating envelope 

or setpoint trajectory without needing linearisation. The thesis encompasses the analysis of 

TSN systems and their multi-objective design methods. 

TSN nodes are networked through interpolation and activation, similar to a gain- 

scheduling or local model/controller network. However, to achieve accuracy and ease of 

commissioning without requiring a large number of nodes, an algorithm has been 

developed first to identify optimum transition nodes within the entire operating envelope. 

Then the TSN approaches a nonlinear plant globally, not just locally, without requiring 

linearisation. If desired or necessary, global optimisation provides an enhancement in the 

design process for TSNs. Since optimising only" one aspect (a single objective) of 

performance while compromising others is undesirable, multi-objective designs have been 

developed concurrently to deliver or improve multiple aspects of performance. 

Following the development of a TSN, it is applied to nonlinear system modelling, and 

this TSN is termed a Trajectory-Scheduling Model (TSM). A TSM possesses the same 

properties and design features as the TSN generic framework. A nonlinear system, a 

coupled liquid-tank, is used to examine this modelling technique. Results verify the 

feasibility and effectiveness of the methods developed and validates the TSM. 
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Further, the TSN technique is applied to nonlinear controller design, by way of a 

Trajectory-Scheduling Controller (TSC) network. It is illustrated through the design of a 

networked, easy-to-understand and easy-to-use PID control system for the coupled liquid- 

tank. Results show that the methods developed offer a high-performance linear control 

system with nonlinear capabilities to handle practical systems operating in a broad range 

and to cope with conflict between setpoint following at transient and disturbance rejection 

at steady state. This method is then applied to the PID network design problems for two 

nonlinear chemical processes. 

As a TSN can be interpreted as a linear system, with respect to individual nodes, the 

controllers can thus be analysed using existing classical or conventional methods. For 

example, frequency-domain based stability margin and robustness analysis methods can be 

applied to determine the stability of each node and to assess the robustness of the overall 

network. Such examples are shown in this thesis. It is believed that the methodologies 

developed here' provide a novel tool for nonlinear plant modelling and control system 

design, which is effective for a wide setpoint range and the entire operating envelope, 

hence ease nonlinear control system analysis and design problems by linear means. 
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1.1 Motivation 

Most real-world systems encountered in control engineering are nonlinear (Shorten and 

Narendra 1998), but control methods practised on these systems are mostly linear (Levine 

1996). This fact and hence the need for linear control techniques that are applicable to 

nonlinear control problems have motivated this research. 

There are many ways to tackle a nonlinear process. The use of multiple models to 

control nonlinear systems has a log history beginning with gain scheduling (Shamma and 

Athans 1990). The more recent ideas are Neural Networks (Jacobs and Jordan 1993; Li and 

Haeussler 1996; Murray-Smith et al. 1992), Local Model Networks (Johansen and Foss 

1992a), adaptive gain scheduling (Narendra and George 2002) and Fuzzy Logic (Takagi 

and Sugeno 1985). Other approaches like linear and nonlinear Auto Regressive Moving 

Average with eXogenous inputs (ARMAX) type models are also widely used to model 

dynamic systems (Aström and Bohlin 1965; Johansen and Foss 1992b). 

The capability of the methods mention can be readily exploited in this context. 

However, the representation achieved by these methods is obscure (black-box). There are 

no simple ways to analyse the properties of the model achieved by them. In other words, 

there is no way to analyse the performance except by trial and error. While the knowledge- 

driven (clear-box) method are derived from physicochemical laws, but its case-by-case 

characteristics can make its application difficult and time consuming for industrially 

relevant control systems. 

Recently, grey-box approaches have been developed, which combine the clear-box and 

black-box (Gawthrop et al. 1993; Tan et al. 1997). Using the knowledge-driven method 

(Wang et al. 1997), the model can have a relatively simple structure; using the data-driven 

method, its parameters can be estimated and its learning ability can be improved. Although 
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this kind of approach appears suitable for the control of complex industrial processes, it 

still requires a systematic effort to select, organize, and coordinate many different methods 

into one efficient, practical framework for process control. 

Therefore, there is an urgent need to develop a widely applicable modelling technique 

that can provide advantages of both knowledge-driven and data-driven methods. There is 

also an urgent need to develop a corresponding control system design method for such a 

nonlinear process, so that a control system can be designed for the entire operating 

envelope of the process. Finally, it is essential that the system developed can be analysed. 

1.2 Approach 

Assisting modelling and design of control systems, intelligent methods such as rule-based 

expert systems (Skeirik 1990), multivariate statistical partial least squares (Chen et al. 

1998), and genetic algorithms (Goldberg 1989) have been used and found very powerful in 

control engineering applications. The aim of the work reported in this thesis is hence to 

explore the most recent development in these techniques for solving problems discussed in 

Section 1.1. 

In particular, neural network and fuzzy system techniques (Woosoon Yim and Singh 

1995) have shown their arbitrary functional approximation capability in a wide range of 

nonlinear dynamic system modelling and control system design applications. However, the 

networks are in the form of a "black-box" representation, in which a model developed can 

be difficult to interpret in terms of physical meaning to practising engineers. Such a model 

can also be complex due to the excessive number of network weights and other parameters. 

This erects barriers to the application of conventional analysis and control theories. 

Therefore, to overcome the complexity of the existing networks, a much simpler network 

based on the `Linear Approximation Model' (LAM) (Li and Tan 2000) is developed. 
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Extended in this thesis as a primary step in developing nonlinear control systems using 

existing linear techniques, hence, the LAM system identification and modelling technique 

is extended to a formal `Trajectory-Scheduling Model' (TSM). 

Based on LAM, a much more comprehensive network is developed (Chong and Li 

2000a). This is termed `Trajectory-Scheduling Network' (TSN) (Chong and Li 2002a; 

Chong and Li 2000b). TSN is a network that could be used in modelling and control, 

capable of tackling the nonlinear control problems. TSN is relatively simple and is formed 

with a set of conventional linear elements. It is a strategy of utilising linear synthesis 

technique for solving nonlinear problems. Each elements of TSN can be of a simple form, 

such as state-space models, proportional plus integral plus derivative (PU)), transfer 

function or transfer function matrix based. TSN may then satisfy design specifications in 

the full operating range of a nonlinear system, unlike a linear one, which can only satisfy 

part of it. Such a nonlinear, controller network applied the TSN technique is term 

`Trajectory-Scheduling Controller' (TSC). 

Finally, the combined TSM-TSC network can be interpreted in a classical way. 

Therefore, it can be analysed easily using conventional methods locally and globally. It is 

clear that such a network can overcome many control problems and satisfies modern-day 

requirements. This thesis will detail the development of this technique. 

1.3 Contributions 

The main contributions of the thesis are: 

" Critical review and thus extension of performance metrics for both single and 

multiple objective optimisation and search algorithms. The current visualisation 

technique for assessing non-dominant solution sets is limited to two objectives. 

This has been extended to higher dimensional data, with a novel visualisation 
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technique developed for identifying and presenting the best Evolutionary 

Algorithms (EA) solutions. 

" Critical review and thus solution to complexity and analysis problems in existing 

multiple model networking techniques. 

" Extension of the seminal LAM technique to a complete TSM technique, and 

application of evolutionary computation to derive TSMs automatically. A TSM 

eliminates the need of linearising and prior derivation of a first-principle's model. 

" Development of a novel operating-point-scheduling technique for the entire 

operating envelope of a given process. This is coupled with a node acquiring 

technique based on the process nonlinearity, reducing the number of networking 

parameters and increasing application speed for TSM and TSC. 

" Development of a flexible and straightforwardly applicable TSC, and also methods 

of obtaining TSC from existing control designs or CAD software, as well as 

through multi-objective evolutionary search techniques. These methods allow a 

priori knowledge to be incorporated in the design if desired. The results are 

presented with multi-objective visualisation, which enables the user to supervise (if 

desired) the final design for performance that meets his/her requirements. 

" Development of a linear parameter-variant technique and tool to enable analysis of 

a combined TSM and TSC network using classical stability analysis methods: 

" Development of a MATLAB based GUI software tool automatically to build a 

TSM for a nonlinear process, to evolve the corresponding TSC, and to analyse the 

close-loop system. This also makes it easy to implement in real-time with 

Lab VIEW and to test against real physical systems. 
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1.4 Outline of the Thesis 

This thesis consists of eight chapters. 

Chapter 1 presents the motivation and approach to carry out this research and the thesis 

contributions. This chapter also presenting the background aspects of the modelling and 

control problems. 

Chapter 2 begins with background on networking techniques used in control systems 

and their distinctions. An overview of networking techniques, which are based on 

operating region decomposition, is given. Aspects of the structure selection are discussed 

and problems in control systems design are presented. 

Chapter 3 presents the TSN structure and the algorithm to search the optimum 

transition nodes. The significant of finding appropriate transition nodes are discussed. A 

step-by step construction of the TSN network is illustrated, and finally a novel hybrid 

activation technique is proposed. 

Chapter 4 analyses the proposed evolutionary technique and the tools developed to 

construct the proposed design. The main advantages on multi-objective over single 

objective evolutionary algorithm are discussed, and the tools developed for carry out the 

search are shown. 

Chapter 5 presents detailed modelling techniques used for nonlinear systems. This 

chapter contain the full illustration on using TSM in modelling a plant from various 

aspects, including the modelling without using any mathematical model but solely on plant 

data only. 

Chapter 6 presents network controller design methods for nonlinear systems using the 

proposed networking technique and its validation. The benefits of using multi-objective 

design for TSC are discussed. A unique visualisation technique is proposed in multi- 
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objective designed of the TSC. Finally, the implementation of TSC on LAB VIEW real- 

time hardware for online experiments. 

Chapter 7 discusses stability analysis of controller networks using classical methods. In 

this chapter, a method of deriving TSM-TSC network into linear model and the verification 

for the entire operating trajectory are demonstrated. 

Chapter 8 draws conclusions and highlights future work. 
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2.1 Multiple Linear Networks for Nonlinear Control 

Control theory is well developed and understood for linear systems. Since one knows how 

to design a controller from a linear model, the multiple linear modelling and control can be 

easily applied to nonlinear systems. More importantly, the analysis of the properties of the 

representation achieved by these networks can be easily carried out since the linear control 

theory can be used to analyse locally the properties of each local model or controller. The 

main advantage of multiple linear model network approach is that they are capable of 

generalisation, the computation can be performed in parallel and a priori knowledge can be 

incorporated in their architecture. These significant advantages reveal the powerful 

potential of these multiple linear model approaches for the control of nonlinear systems. 

The complexity of a plant arises from at least three different sources. First, the plant 

dynamics involving disturbances, transport delays and non-minimum phase zeroes in the 

process. Secondly, the number of inputs and outputs - this is generally described in Multi- 

Input Multi-Output (MIMO) systems. Finally, the nonlinearity of the plant and actuator 

saturation. 

In this thesis, the emphasis is on the development of a TSC capable of handling 

problems arising from plant nonlinearity using intelligent multi-objective search technique. 

Therefore, only Single-Input Single-Output (SISO) nonlinear plants having simple 

dynamics or complex plants to a certain extent will be considered. 

2.2 Gain-Scheduling Network 

The basic idea of the gain scheduling (Levine 1996) approach is to design different (linear) 

controllers for different operating conditions of the plant. When in operation, the 

parameters of these controllers are interpolated by a scheduler, resulting in a time-varying 
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control scheme. The main advantage of this technique is that a relatively simple standard 

design technique (such as PID control) can be used to compose a nonlinear controller. 

Although gain scheduling has been proven to work successfully in many applications 

(Leith et al. 2000; Wada and Osuka 1997), it is difficult to obtain analytical results for 

stability and robustness of this control approach. The main problem is that the influence of 

the scheduler has to be taken into account. It can be neglected if the scheduling variable 

varies slowly in which case stability can easily be proven (Shamma and Athans 1990). 

Although gain scheduling have been proven useful but it also have some limitations and 

potential dangers (Shamma and Athans 1992; Shorten 1996). 

Traditional gain scheduling is limited to a design based on local models, which are 

linearisation of the process's dynamics around the equilibria. While this yields good results 

when the process is operating close to its equilibrium manifold, performance can be 

unsatisfactory for transients, which go through operating regions far away from the 

equilibrium manifold. Hunt and Johansen (Hunt and Johansen 1997) showed how a 

controller design based on local models which are not limited to linearisation around 

process equilibria, but which cover off-equilibrium transient operating conditions, can 

significantly improve the performance of the gain scheduling controller. 

2.3 Local Model Network 

The LMN was introduced in Poggio and Girosi (Poggio and Girosi 1990) and further 

extended for modelling and control purposes by Johansen and Foss (Johansen and Foss 

1992b; Johansen and Foss 1993). The idea underlying the other network was introduced in 

Middleton et al. (Middleton et al. 1988) and further extended in Morse and Weller (Morse 

1990; Morse et al. 1992; Weller and Goodwin 1994) and coined as the "hysteresis 

switching algorithm". This algorithm aims to achieve stability whereas, the "Multiple 
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Switched Model" (MSM) extensively studied by Narendra et al. (Narendra et al. 1995; 

Narendra and Balakrishnan 1997), but closely related to the former algorithm, is used for 

improving the control performance whilst dealing with systems having their parameters 

changing quickly through time (e. g. nonlinear systems). 

The LMN consists of a single layer network of local plant models and a gating system 

often composed of radial basis functions. The various local models are activated by an 

input vector X varying with time that usually corresponds to the vector of parameters of a 

Nonlinear Auto Regressive Moving Average with eXogenous inputs (NARMAX). 

Therefore, each local model can be interpreted as a local NARMAX model of the plant. 

An important advantage of this method is the facility to transform the LMN into a local 

controller network. Since each local model is linear, there are several straightforward 

methods arising from control theory that can be used to transform the linear models into 

local linear controllers. The early work of Johansen and Foss (Johansen and Foss 1992b; 

Johansen and Foss 1993) used a proportional and integral (PI) design method to transform 

each model into a controller. In Gawthrop and Ronco (Gawthrop and Ronco 1996) the 

models are used to develop predictive controllers. A pole placement technique is used in 

Hunt and Johansen (Hunt and Johansen 1997) and Gollee and Murray-Smith (Gollee and 

Murray-Smith 1997). A model reference adaptive control design method has been used to 

transform the local models into controllers in Sharman et at (Sharman et al. 2002). 

2.4 Local Controller Network 

LCN is closely related to a gain scheduling approach which is a standard technique to 

handle systems having different operating regimes (Shamma and Athans 1992; Shamma 

and Athans 1990). In the gain scheduling approach, the gains of the controllers are changed 

according to the current operating condition. In the LCN approaches, this idea is extended 
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in such a way that different control structures can be used to meet different requirements 

involved by different operating regimes. 

The design of a controller is usually based on a model of the process. A large number 

of powerful design and analysis techniques for linear controllers whose design is based on 

a linear model of the process, see for example (Aström and Hagglund 1995; Franklin et al. 

1991; Kailath 1980; Middleton and Graham 1990). These include PID controller, optimal 

control, pole placement etc. 

If a model of the process is available in the form of an LMN with linear local models, a 

straightforward approach is to use a linear design technique to obtain a local linear 

controller for each local model. The local controllers can then be interpolated using the 

same scheduler as the LMN, which is referred in Figure 2.1 as a LCN. The main 

assumption here is that, once the system has been decomposed into locally valid models, a 

similar decomposition can be used to design a corresponding controller. 

Scheduler input 0 

------- ------------------ 

-------------- Scheduler 

P, pm Controller 1u 

control signal 
Controller 2. u2 

Controllern U. 

-------------- ------------------------- 
Local Controllers Validity Functions 

Figure 2.1 Local Controller Network 

LCN have been used successfully in a number of applications (Gollee and Hunt 1997; 

Johansen et al. 1998). The approach is closely related to fuzzy control. It can be interpreted 
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as a constructive way of designing gain-scheduling controllers. Instead of designing a 

network of controller off-line, controllers can be designed on-line. The interpolated LMN 

can be used to design a corresponding time-varying controller at each sampling instant. 

While this approach is closely related to adaptive control (Aström and Wittenmark 1989), 

it is computationally expensive as a new controller needs to be designed at each sampling 

instant. An alternative approach is suggested in Ronco (Ronco 1997), where a new 

controller is only designed if the performance requirements cannot be met by the current 

controller. Such a design approach is, however, potentially sensitive to noise and 

disturbances. 

2.5 Linear Approximation Model 

A LAM (Li and Tan 2000) approximates step response data by a transfer function or a 

transfer function matrix. This is similar to representing a nonlinear system response with 

high fidelity by convolution or harmonic analysis. This simple technique eases the 

difficulties encountered in conventional linearisation without the need for an initial 

nonlinear model. Unlike a LMN, LAM gives a straightforward approximation in the entire 

trajectory ranging from the initial condition to the setpoint, whilst a local model network is 

applicable only around the initial condition. 

In modelling a nonlinear system, a set of LAMs (Figure 2.2) obtained at different 

operating points can be networked conveniently by simple linear local interpolation to 

produce an unseen operating level if required. Compared with a local model network, a 

LAM network offers the advantage of obtaining each linear model directly from step 

response and hence the advantage of a wide range of validity of individual models that can 

act stand-alone in a certain degree. 
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input u 

scheduler 0----- -I 

Figure 2.2 Interpolated LAM network 

2.6 Framework of Networking 

Based on the network techniques used in modelling and control, the overall networks can 

be divided into 2 main categories: structure networking and parameter networking. In 

structure networking, each element or sub-task contain its own entities, e. g. the state or the 

integration action within it. While in parameter networking, only one structure is used, but 

the parameters within the structure change accordingly. 

2.6.1 Structure Networking 

The basic idea of the structure networking approach employed is to divide a complex, 

nonlinear system into smaller, simpler sub-tasks. Each sub-task can then be handled 

independently by a simpler model/controller. An activator (scheduler/supervisor) decides 

how relevant the sub-tasks are for the current operating condition, and weights 

(interpolate) them accordingly. The overall system is composed as the sum of all weighted 

sub-tasks. Such a structure is shown in Figure 2.3. 

Linear Approximation Model 
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Activator Input 

N 

Sub-task 1 
f, (W-) 

Input iv I Sub-task 2 

. 
i2 (t) 

Sub-task M 
fM(w) 

Activator 

Output 

r 
rr 
rr 

--------------- 
--- --------------------- 

Network Functions 

Figure 2.3 The multiple sub-task approach 

The sub-tasks can generally be of any form, e. g. linear or nonlinear, input-output or 

state-space form, empirical or based on physical analysis. It is often straightforward to 

incorporate a prior knowledge at this stage. When a sub-task is a local model it is also 

known as Local Model Networks (LMN) (Johansen and Foss 1992a), alternatively if sub- 

task is a local controller it is know as Local Controller Network (LCN) (Murray-Smith and 

Johansen 1997). 

In this structure networking, we consider 

v=f(VI), (z. i) 
with yr E'P c R"w the input vector, yE YE R the scalar output, and f: T -4 Ya smooth 

nonlinear continuous function. By introducing an activator that consists of M Scalar 

functions p, (gS) :c -> 
[0,1] 

, with 0ECc R70 being the activation variables. These 
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functions are smooth with a localized region of activity. The set of functions {pi }1 forms 

a partition of unity of the activation space, i. e. 

lP, (g)=1 VoEb. (2.2) 

Employing a set of activation functions with these properties, we can rewrite equation (2.1) 

as 

M 

Y=P; (O)f(VI) 
. (2.3) 

I1 for a given p, (g) sv 1, a local approximation off exists, 

f; (, V) sts f(YO if P, (0) s' 1, (2.4) 

then an approximation to equation (2.3) can be formulated as 

M 

Y pi (_), f (+l! ) 
. (2.5) 

i=1 

Here the functions fi , which are locally valid approximations of the global functions f, are 

defined as local sub-tasks. The functions set {p; }M define the validity of the corresponding 

local sub-tasks; they are thus called activation functions. The function pp has the largest 

value for those operation conditions where the function f, is the best approximation to f, 

and is closed to zero elsewhere. The overlap between neighbouring activation functions 

results in interpolation between sub-tasks. The advantage of this approach being the 

network could be easily expanded by adding an identical element into the structure. 

However, from another point of view, the entities contained in the elements are different 

from each other, issues similar to gain scheduling where scheduling variable have to vary 

slowly is a setback. 
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2.6.2 Parameter Networking 
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Assuming that sub-tasks is a local model network, considering that LMN in time-invariant 

nonlinear system in the state space form, 

= xo ±(t) =f (x(t), u(t -Td)); x(O) 
y(t) = g(x(t)) 

(2.6) 

Here f x) and g(x) are nonlinear continuous differentiable functions. For simplicity, we 

restrict ourselves to single input - single output system, the linearised system can be 

written as 

z(t) = Ax(t)+bu(t-Td)+d" 
(2.7) 

y(t) = cT x(t)+d'' 

with the bias terms d" and d" defined as 

dx= f(x°, u°)-Ax° -bu° (2.8) 
ay = y° -cT x° 

In the state space description (2.6), we have two nonlinear functions, f and g, which can be 

approximated by means of local functions decomposition, applying functions (2.5), the 

system can be rewritten as a weighted sum of local models, 

M 

Sc(l) = p; («(t)) ff ((t), u(t - Td)); x(O) = xo 
f=1 

M 
(2.9) 

Y(t) _ p, (O(t))S1((t)) 

which is a LMN representation of the system (2.6). Employing the concept of local 

linearisation for different operating conditions, we choose to work with linear local state- 

space representations as described by equation (2.7). This results in 

f, - (x(t), u(t)) = A. x(t) + b; u(t - Td) + d; 
(2.10) 

g, (x(t)) = c; x(t) + d; 

with The overall system can then be approximated as 
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M 

x(t) =p (q(t))[A; x(t) + b, u(t - Td) +d; 
l 

x(0)=g. 
j=I 

1 (2.11) 
y(t) =1 Pr (0(t))ýi x(t) + di'] 

j=I 

Such network can also be described as a linear parameter-varying (LPV) (Kajiwara et at. 

1999) system, 

z(t) = A(f (t)) x(t) + b(9S(t)) u(t -Td) + d; (fi(t)); z(0) = xo 

y(t) = cT (0(t))z(t) +dy (6(t)) 

where A, b d', c and d'' are the interpolated parameters of the local models, 

M 

A(g) _ (0)A, 

_ 
! -1 

dY (O) = Pi (0)d i 

dx(O) = Zpi i0)di > 

(2.12) 

(2.13) 

The parameters of (2.12) depend only on the activatoro. This type of parameter varying 

structure is depicted in Figure 2.4. The goodness of such an approach is that it is capable of 

reacting faster to scheduling variables, therefore overcoming the deficiency in structure 

networking. Despite having to breakdown the entities in the structure into each schedulable 

parameter, this network is much more robust and easy to manipulate. 
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---------------------------- --- 

- ------------------ -- 

- ------ -----. Activation - 
:. ; 
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d': dy 
" 

-Adf 

----Validity Functions 
------ -" ----------------- Local Models g, 

-- 

bm 
z M 

-M a 
-----------" 

Local Models f, 

Figure 2 .4 Parameter-varying Local Model Network i na state-space representat ion 

In this thesis, we adopt parameter-varying structure for model and controller in a much 

simpler form, which will be discussed in chapter 3. 

2.7 Activation Functions 

Almost all multiple model networks are built from a simple basic principle, interpolation 

and weighting (Stilwell and Rugh 1998). Neural network, Fuzzy Logic, ARMAX 'or 

NARMAX adopt multiple layer of interpolation and rules to incorporate each of the layers 

and weigh each of the nodes based on some activation or scheduling according to the 

reference or operating points. 

There is no systematic way to determine the required structure to model a given 

system. The most serious problem perhaps is that the network representation is a black- 

box, the properties of the model cannot be analysed. In another hand, LMN, LCN and 

LAM are much simpler networks with a clear structure that can be handled easily. In this 
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thesis, only such clear structure is adopted. It is far more important to apply a clear design 

in practical or physical plant than having a blank box that works in the dark. 

Networking/interpolation can be of linear or nonlinear type. In most cases nonlinear 

interpolation are more complex and exposed to a high order of variation in parameters 

during the transition of operating points. Although nonlinear interpolation can more 

accurately represent a given model, they require more computation power and cannot 

safely use on any given plant without understanding the dynamics of that plant, while 

linear interpolation is not subjected to such uncertainties. 

To satisfy the approximation described in equation (2.5) we require the following 

properties from a set of activation functions: 

a) A activation function transforms its input to a value between 0 and 1: 

{p1 
:« -> 

[o, i] (2.14) 

b) The value of activation function decreases with increasing distance of the input 

from its maximum (its `centre'). The activation converges to zero for inputs that are 

far away from the ̀ centre'. 

c) The set of activation functions forms a partition of unity of its input space, i. e. 

M 

Ep, (O)-1 VOEcbc R"a 
=1 (2.15) 

To ensure that every point in the input space is covered to the same degree, any 

interpolation functions with the properties tested could be applied as a activation function, 

i. e., Spline, Cubic Spline, Cubic, Nearest neighbour, Piecewise cubic Hermite, linear and 

extrapolation (see Figure 2.5 to Figure 2.10). 
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2.8 Activation Variables 

We introduced an activator in the form {p; (o) Y, 
-, 

and discussed some of its properties in 

the previous section. However, we did not specify the activation variables tE (D c: . In 

this section, we will discuss how the elements of the activation variables are selected. 

From the discussion in the previous sections, it is clear that the activation variables 

should reflect the changes of the system's characteristics, the effect being that the current 

sub-task will not be valid any more, and a different sub-task should activated. As we adopt 

linear sub-tasks, the change of system characteristics means that the operating regime has 

moved away from the operating point of the current sub-task. Therefore, the activation 

variables should reflect the significant nonlinearities of the system. 

A change of the system's characteristics is linked to a change of the operating regime 

of the task. A straightforward approach is therefore selecting the elements of the activation 

variables in such a way that the current operating regime is represented by it. The most 

commonly used activation variables are inputlsetpoint and output/feedback. The operating 

regime is completely defined by the data vector tp (2.1). Thus, the activation variables can 

be chosen as 

o(t 
k) = w(tk) ' 

kt"-, 
)2 

... 
U(tk-d-m6 )' y(tk-1)' " : 

Y(tk-n, )ý 

(2.16) 
EC rnu+ny+l 

In this case, defining the activation variables in this way will generally lead to an 

activation space whose dimensionality is higher than necessary, because not all the 

dimensions of the activation variables might have a nonlinear impact on the system, 

therefore, the activation variables will not be included in the optimisation of the 

networking system in this research. The use of a priori knowledge about the networking 
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system is of great importance here. We will therefore discuss some aspects of the 

activation variables. 

2.8.1 Input and Setpoint Elements in the Activation Variables 

If the input is part of the activation variables, it enters the network both though the 

nonlinear activator and as an input of the system. As the activator can perform a many-to- 

one mapping, it is possible for the overall network structure to perform such a mapping, 

i. e. to have same output behaviour for different input sequences under identical initial 

conditions. If the input is excluded from the activation variables, it enters the network only 

as an input of the sub-tasks. As these sub-tasks are linear, they perform a one-to-one 

mapping. Hence, the overall system will perform a one-to-one mapping with respect to the 

input: different input condition sequences will necessarily lead to different output patterns, 

assuming the same initial conditions (see Figure 2.11), thus, leading to a more general 

network structure. 
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Figure 2.11 Input or setpoint activation 

oý 0 

The setpoint activation method is one of the most commonly use method in networking 

systems. This method switches the controllers instantaneously from one to another. From 

the figure above, we can see the instant step change of controllers. Such a method gives a 

fast response to setpoint change. 

2.8.2 Output and Feedback Elements in the Activation Variables 

If output elements (i. e. the state, or delayed values of the output) are included in the 

activation variables, changes to the process require readjustment of both the parameters of 

the local models and the parameters of the activator (see Figure 2.12). 

If output elements are excluded from the activation variables, limited changes of the 

plant require only readjustment of the parameters of the sub-tasks. The parameters of the 

activator can remain unchanged. 
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Figure 2.12 Output/feedback activation 

Output activation method switches the controller gradually according to the output of a 

plant. This is a stable way to schedule controllers but have a slower response time to 

setpoint change and sensitive to output noise. One numerical error found is the zero 

response due to initial zero state of all values. 

2.8.3 Additional Elements in Activation Variables 

So far, we have only discussed the use of input and output as activation variables. 

Depending on the system to be networked, it might be useful to take additional variables as 

potential elements for the activation variables into account: 

" Filtered inputs: The input of the process can often change very rapidly. When 

inputs are directly used for activation, this leads to an abrupt switch to a different 

sub-task. It is usually desirable to change the sub-task characteristics more 

smoothly. Employing a low-pass filtered version of the input for activation can 

improve the switching characteristics of the sub-task significantly. 
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" Output derivative: Many physical systems change their characteristics with the 

rate of change of their output. This is quite often the case when the system behaves 

differently, when the output increases compared to when it decreases. If only the 

delayed outputs are included in the activation variables, thus, equation (2.16) will 

be difficult to network. Including the output derivative as an element of the 

activation variables can improve the network performance significantly. 

" Auxiliary inputs: Sometimes the characteristics of a system change with variables, 

which do not represent direct inputs to the process, themselves. A chemical 

reaction, for example, can depend on the temperature. Although the temperature 

does not act as an input to the reaction, and thus will not be an input to the local 

models, it is important as an element of the activation variables. Thus, it might be 

necessary to* include auxiliary variables in the activation variables, which are not 

inputs to the local models. 

2.9 Operating Nodes 

To have an effective network, it is essential to find the optimal number and assign the 

operating points or nodes/position of each sub-task to an appropriate location. Although 

these elements can be included in the search or optimisation process, using a priori 

knowledge with human intervention will reduce the search time tremendously and produce 

a safer and more effective networking system. There are various techniques to find 

networking nodes, the simplest method being uniform distribution between the activation 

spaces. 

In this research, we have a novel technique to find an effective non-uniform, nonlinear 

asymmetrical nodes. Using the process data collected, a static model is formed within the 
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operating range and then a trajectory is formed along the static model. We will explain this 

method in the next chapter. 

2.10 Conclusion 

In this review, two different types of networking approaches have been distinguished. 

The first approach entails the use of multiple linear blocks to form a network. This method 

is more convenient in the sense that the linear block designed on a specific operating point 

retained its tuned parameters and structure, the overall output is achieved through 

networking the output of the individual linear blocks. The second approach intends to use 

the parameters within the block to form a parameter network. This approach is to 

breakdown of all the elements existing in the blocks and later networking those parameters 

of the system. 

In a LMN that adopts parameter networking, requires linearisation and hence firstly a 

nonlinear model needs to be built for carrying out the linearisation. Otherwise, controlled 

perturbation, which can induce unnecessary plant upset, would be needed in order to obtain 

a locally valid linear model at each operating point under consideration. Moreover, the 

state in the LMN also needs to be networked, therefore, increase the complexity of the 

networking system. 

LCN and LAM adopted structure networking. In LCN, each of the local controller is 

design from a locally valid models of the LMN. Therefore, each of the local controller in 

LCN is bond by the validity region of the LMN. This implied higher number of linear 

controller block used. 

Unlike LMN, LAM does not require linearisation, each linear model can obtain directly 

from step response data, eliminate the need of intermediate nonlinear model use in LMN. 

Although LAM eliminate linearisation step, but it only valid for step response where the 
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setpoint is fixed. Varying the setpoint requires regeneration of the model from initial state, 

therefore post a problem in continuous time modelling. Other than the problems stated, 

there are also no systematic way to obtain optimum operating nodes for the network. 

The underlying aim of this research is to ` develop an easy-to-use ̀ quasi-linear' 

modelling and control technique for nonlinear systems, particularly when these systems 

need to operate in an operating envelope as opposed to at one fixed point. Critical review 

carried out on existing multiple linear model based control system techniques has revealed 

their complexity and inadequacy. 

x. 
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The estimation of the trajectory nodes and model dynamics are highly correlated (Platt 

1991). The nonlinearity of the local region of the operating space is directly related to the 

position of trajectory nodes assigned to the system. Different methods have been applied to 

determine the activity region surrounding the trajectory nodes which depend on their 

distance and location (Tan et at. 2004). The simplest methods consist of uniformly 

distributing the trajectory nodes on the operating space. This is obviously not suitable in 

many cases since the nonlinearity of the operating space cannot be expected to be 

homogeneous. 

To have an effective network, it is essential to find the optimal number and assign the 

operating points or nodes/position of each sub-task at an appropriate location. Although 

these elements can be included in the search or optimisation process, using a priori 

knowledge with human intervention will reduce the search time tremendously and produce 

a safer and more effective networking system (Chong and Li 2002b). 

3.1 Multiple Setpoints and TSN Nodes 

To find a set of effective operating nodes for a process, the first step is to capture the 

nonlinearity of the process. Using a chemical process as an example, the response between 

the input and the steady-state output of the process are plotted in Figure 3.1. Such a plot is 

also known as static model. The operating range is between 0 and 1. 

Starting by inserting 2 nodes to the operating trajectory, the first node is at lowest 

operating trajectory (node 1); another node is at the highest operating trajectory (node 3). 

As we can see, 2 nodes cannot approximate nonlinear trajectory effectively. Therefore, 

One new node will be inserted in between nodes (1) and (3) using the algorithm, 

NG Dal�. �+1 max 
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where N is a new node satisfy the condition Ad,.,, I max> i, where i is the tolerance which 

can be specified by user. 

With the new node (2) added (Adj, 3max> i), we now have 3 operating nodes along the 

operating trajectory. To satisfy the condition Ad,,,,, +1 max> i, Ad1,2 max and Ad2,3 max will 

be calculated and checked against T. In this case both (Od j, 2 max; Od2,3 max)< i, so there 

will be no new nodes inserted into the operating trajectory. The resulting operating nodes 

for this example were node (1) at 0, node (2) at 0.553 and node (3) at 1. 

Mitsubishi Chemical Operating Nodes 
1 

3 0.9 

08 Ade 3mß 
0.744 

0.7 
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0.3 7..... 

/Ad12max/z 
'ý 

0.2 - ýý 

01 " '' 

01 
0 

3max //' 

23456 
Input (I/h) 

Figure 3.1 Algorithm for finding operating nodes (from Case 2) 

3.1.1 Formulation 

To generalise the formula, we first normalise the static model. Assigned x=input, Youtput 

and n is the operating point, the normalise the static model is 
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Yýºwº (n) = 
y(n) - Y(n, ) 

x (n) _ 
x(n) -- x(n"»") (3.1) 

Y(n, ) -Y(n) x(n. ) - x(n, ) 

Step 1: Assigned the two most significant nodes N as: N(l) = [x�o,,,, (nom ), y�o�fl (n j� )] and 

N(2) = [x�, 
m 

(n 
. 

), Y. (nm )] 

Step 2: Sort the nodes incrementally. 

Step 3: Find the gradient (m) between the nodes N(n) to N(n+I ). 

m_Y. 
(n) -Y. (n + 1) 

(3.2) 
x�o, �, 

(n)-x,, (n+1) 

and the offset c 

c=y. (n)-mxx, 
p,... 

(n) (3.3) 

get the inverse of gradient m 

MInv (3.4) 

Step 4: Find the largest gap between the slope m and y,. , where 
dm 

=0 or Ad.., +, 
(max) 

Step 5: If Ad,., (max) z r, where r is the given tolerance, add new nodes N(+1) to the 

coordinate and repeat step 3. Otherwise, end the route 

The test showed that using this technique, the resultant parameters from the 

evolutionary search has a smooth transition between each node (see Figure 3.2). 
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Figure 3.2 Smooth parameters 

Without using this algorithm, the resultant parameters from the evolutionary search 

where the operating nodes are search elements, we have an extreme diversify parameter 

values (see Figure 3.3 ). 
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From this simple test, it is obvious that using a priori knowledge is a much safer way 

in finding an effective operating node. From the sample, each node will represent a linear 

model. A linear controller is then designed from this model or from the node. Linear 

interpolation is then linking all the nodes together to forms the nonlinear system. This 

feature is the basic of the TSN construction. This algorithm has been first introduced in Li 

et al. (Li et al. 2004). Unlike the increment network in Ronco (Ronco 1997), this algorithm 

provide a good trajectory along the nonlinear system, therefore requiring no further 

pruning to remove the bad nodes. 

3.1.2 Illustration 

In order to illustrate the capability of the TSN we will consider the control of a nonlinear 

system. This system is described by the following equation 

y= sin(x) 

where sin(x) is the system's nonlinearity and 0! 9 x :! g 2; r. 

(3.5) 

This function is non monotonic since a change of sign occurs around the operating 

condition x=2r, r, 
4. This is a difficult control problem. 

The first part is to test 05x 5'r . 
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Figure 3.5 Trajectory with 5 nodes 

The figures above show the results of linear trajectory along the positive region of the 

sin function. It is clear that the linear trajectory can shapes closely to the curves, providing 

0 20 40 eo 80 100 120 140 160 180 
Input 

Figure 3.4 Trajectory with 3 nodes 
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a good approximation of the nonlinear function. Next, the nonlinear function is extended to 

negative region to test its generalisation ability. 

The second part is to test 0 <_ x<_ 21r, various numbers of nodes are plot in Figure 3.6 

to Figure 3.9. The figures show that the changing signs does not affect the algorithm and 

capable to forms the trajectory from positive to negative without discontinuity. Therefore, 

such algorithm has proven generic enough to apply on any conditions. 
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Figure 3.6 Trajectory with 4 nodes 
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Figure 3.7 Trajectory with 5 nodes 
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Figure 3.8 Trajectory with 6 nodes 
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Instead of using manual assignment to the number of nodes, the algorithm can also be 

defined by a given tolerance. The search will stop automatically when the tolerance meets. 

0 50 100 150 200 250 300 350 400 
Input 
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Figure 3.10 normalize tolerance of 0.1. Five nodes found. 
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Figure 3.11 normalize tolerance of 0.01. Twelve nodes found. 
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These results show that the nodes are clustered closely near the top and bottom of the 

curves where nonlinearity is high, and the minimum nodes required where the curves are 

nearly linear. The overall trajectory is a near perfect match of the nonlinear function. This 

is indeed the reason why the TSN can performance closely along the whole nonlinear 

trajectory (see Figure 3.11). The TSN construction (red dashed line) matches the desired 

nonlinear function (blue line). More importantly, this shows that although the algorithm is 

a simple method it is very efficient. 

3.2 TSN Construction 

This is different from to parameters network discussed in Chapter 2. The network 

developed is simpler and easier to construct. The first step is to find the number of 

elements embedded in the given model or controller, then find the number of nodes used in 

the network. The parameterization of such a network will be distributed as follows: 

Z 
Co 
m 
0 z 
ö 
d 
a E 
z 

Number of Elements m 

P11 P12 
_ 

P1m 

P21 P22 P2m 

Pn1 Pn2 Pnm 
iII 

Figure 3.12 Parameterisation of TSN 

Because each of the parameters in the network is static, no feedbacks or state 

transitions are required to feed into each parameter for the given model or controller. 
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Therefore, by interpolating the parameters in each element, the constructed network in 

general is shown in the figure below; 

Figure 3.13 Trajectory-Scheduling Network 

In TSN, the structure of the system was retained, only the parameters in the system 

vary. Therefore, the TSN has no problems with the transition, state and integral embedded 

in the system. Unlike a multiple structure approach (Figure 2.3), within each sub-task, the 

transition, state and integral values are different from each other. Thus, the scheduling has 

to be slow while the TSN can adopt fast scheduling. In general, TSN can be applied to any 

type of system easily without the need to restructure the system. Literature review in 

chapter 2 on LMN (Figure 2.4) showed that the basic model has been rearranged internally. 

This was not an easy approach for inexperienced engineers to adopt. The layout of the TSN 

is much simpler, as all the parameters are clearly distributed in Figure 3.12 and later act 

externally with the system. This method remains the same when applied on nonlinear 

modelling or nonlinear controller. To demonstrate its potential, the TSN will be used to 

construct a TSM and TSC in chapter 5 and 6. 

Validity Functions 
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3.2.1 Interpolation 

In this work, we will restrict ourselves to the use of linear interpolation. Linear 

interpolation used minimum computing power, is easy to understand and is simple to 

implement. Tests also showed that the performance using Spline and Cubic interpolations 

are marginally better than linear interpolation. The gap of the performance also reduces by 

increasing the number of operating node. Furthermore, with the novel nodes searching 

technique discuss in section 3.2, trajectory smoothness can be guaranteed. 

Weight 
Linear System 1 

100% -----ý 

70% 

Linear System 2 Linear System 3 
, .............. 

50% 

PY(t) 

f. 

P2 P3 Operating Point 

Figure 3.14 A simple linear interpolation scheduling networking for multiple linear systems 

The figure illustrates a linear interpolation network. The example shows the sum of 

70% of system I output and 30% of system 2 output was the total contribution for output 

y(r). 
The general linear interpolation formulation can be defined as: 

P+1 -y(t) Y(t) -I X Y. (t) + x5'1 1(r) 
if Pi ý Y(t) ý pill 

pill - P, P", - P; 

Y(t) = 1'; if y(t) < P, (3.6) 

if y(t) >P. 
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where the outputs y, (t) are interpolated giving a final output y(t) using equation (3.6), Pr 

is the operating nodes, and n is the number of operating nodes implemented. To 

satisfy the approximation described in equation (3.6) we require the following properties 

from the set of scheduling functions: 
, 

a) A activation function transforms its input to a value between 0 and 1: 

{pj : (i (3.7) 

b) The value of the activation function decreases with increasing distance of the input 

from its maximum (its `centre'). The activation converges to zero for inputs, which 

are far away from the ̀ centre'. 

., 
'l 

P; (0) =1 

1 
0 

if P, S029 pill 

if 0 <p, (3.8) 

1'0 >P. 
otherwise 

c) The set of activation functions forms a partition of unity of its input space, i. e. 

p, (q)=1 VQE0cR"® 
(3.9) 

TSN uses one general function for all systems, either modelling or control. Such 

network can also be described as an LPV system. 

E; (g) _ Ph (O)E, y, (3.10) 

The parameters of (3.10) depend only on the activator b. This type of parameters 

varying structure is depicted in Figure 3.13. The goodness of such an approach is that it is 

capable of reacting faster to scheduling variables, therefore overcoming the deficiency in 

structure networking. Despite having to break down the entities in the structure into each 

schedulable parameter, this network is much more robust and easy to manipulate. 
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3.2.2 Hybrid Activation Variables 

In chapter 2, we learned that most of the activations are singular; they are either the input 

or the output of a given process. The weakness of using only one activation variable is that 

only one variable is monitored at any one time. Therefore, the response can be slow and 

unable to change according to the variables that are not in used. 

By combining the input and output variables, this novel activation method provides the 

intermediate performance of the two. This method eliminates the delayed and zero 

response using only the output as the scheduler during the start-up when most values and 

initial conditions are zeros. On the other hand, a small percentage of the input variables 

will be used to increase the speed of the activation. 
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Figure 3.15 Hybrid activation (intermediate) 
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This method is the compensation between input and output activation. The activation is 

(intput+output)/2 or the so called intermediate activation. The performance is between the 

two formal methods. 
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Figure 3.16 Hybrid activation (boost) 

5 

To increase the transition between controllers and to achieve a fast output response, the 

activation effort is (input+error). This method gives the fastest response time but only 

advisable to use on stable plant. 

3.3 Summary 

The TSN is a modified version of the LMN. The main difference is that the TSN is 

achieved through a static model of the process whereas the LMN requires further 

linearisation of the nodes found. There are several important advantages arising from this 

simple networking. Among them is the facility to determine the neighbourhood of the 
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operating condition using the static model. This leads to better interpolation capability of 

the network as well as a straightforward understanding of the network activity. The 

activation of no more than two models/controllers each time also has the advantage of 

implying very few computations that made it possible for real time software controller. 

Another important advantage of linear interpolation is that it highly simplifies the 

problem of developing an automatic architecture construction of the TSN. This 

simplification also means that the network operation is not restricted to equilibrium points 

of the plant. Therefore, it is not a concern to have a controller or model precisely on the 

equilibrium points. Instead, the important issue is to have appropriate node positions that 

lead to a desired global performance for the operating trajectory. In addition, the hybrid 

activation method proposed increases the performance of a system, compared with a single 

activation function. 

The TSN algorithm is developed and described in this thesis. This algorithm constructs 

the network architecture from either data or model. It determines the number of 

models/controllers (nodes) required to model/control an unknown nonlinear system as well 

as the operating region of each model/controller. The TSN therefore gives complete 

autonomy to the TSM and TSC described in chapters 5 and 6 respectively. 
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4.1 Control System Design Objectives 

An evolution algorithm provides globally optimal solutions to engineering design problems 

by emulating natural evolution. Therefore, the performance index (cost function) is used 

for evaluating the systems performance. A performance index is a number that indicates 

the "goodness" of system performance. A control system is considered optimal when the 

values of the parameters are chosen so that the selected performance index is minimum or 

maximum depending on the situation. The optimum values depend directly on the 

performance index selected. In addition, a performance index must yield a single positive 

number or zero. Finally, to be practical, a performance index must be easily computed 

analytically. 

Consider a generic unity negative feedback control system of a given plant G(s) with a 

controller H(s). Refer to Figure 4.1 for notations. Without loss of generality, for the case 

F(s) = 1, 

E(s) = R(s) - Y(s) =1 [R(s) 
- G(s)D(s)] (4.1) 

1+H (s)G(s) 

D(s) 
Plant 

R(s) ý, , 
C(s) 

, c. -, E(s)ý, ý U(s) 
, 

Y(s) 

Figure 4.1 A feedback control system with a model-following command 
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where D(s) is usually a disturbance signal, which may be coloured and also be modelled to 

include the plant uncertainty. The ultimate objective of a control system design is hence to 

find an H(s) such that 

E(s) = 0, Vs, D(s) 

or 

(4.2) 

e(t)=L'{E(s)}=0, Vt, d(t) (4.3) 

This ultimate objective means that Condition (4.2) or (4.3) need to be satisfied 

regardless of plant uncertainties, which is impossible in a practical control system design. 

Hence, a performance index, J: R" --* R+, is often used to measure how close the 

above ultimate objective is met, where n is the number of parameters that needs to be 

determined in the design. For this, performance indices and specifications need to reflect 

the following qualitative requirements (Kashiwagi 1983; Levine 1996; Li et al. 1995b). 

" Good relative stability (e. g., good gain and phase margins); 

" Excellent steady-state accuracy (e. g., minimal or no steady-state errors); 

" Excellent transient response (e. g., minimal rise-time, settling-time, overshoots and 

undershoots); 

" Robustness to the environment (e. g., maximal rejection of disturbances); and 

" Robustness to the modelling and plant uncertainties (e. g., minimal sensitivities to 

parametric and structural variations). 

In the context of evolutionary computation, a performance index is often termed a 

`fitness function', where ̀ maximising a fitness function' is more commonly encountered 

than `minimising a cost function', although an evolutionary algorithm (EA) can do both 

maximisation and minimisation in one process. For convenience, a cost function can be 

converted easily into a fitness function by, for example, f: R-' -* R+, 
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fi(H) 
1+J (H) E (0,1], (4.4) 

where i is the number of functions used. Special cases of the performance index J are two 

commonly used indices as listed below. 

The Integral of Absolute Error (TAE) (Levine 1996): 

JlAE =ZI e(t)I = Ile(t)11i (4.5) 
t 

The Integral of Square Error (ISE) (Levine 1996): 

Jjsa = e2 (t) _ 
IIe(t)II2 (4.6) 

t 

4.2 Multi-Objective Optimisation 

GA have been recognised to be well-suited to multi-objective optimisation (Fonseca and 

Fleming 1993; Goldberg 1989). Unlike conventional methods that linearly combine 

multiple attributes to form a composite scalar objective function, a multi-objective 

evolutionary algorithm (MOEA) (Li et al. 1996) incorporates the concept of Pareto's 

domination to evolve a family of non-dominated solutions at multiple points along the 

Pareto optimal frontier simultaneously and efficiently. By combining the Pareto dominance 

with partial preference information in the form of a priority vector, each of the individual 

components in the cost function can have different priorities or preferences to guide the 

optimisation from individual specifications rather than pre-weighting the cost function 

(Fonseca and Fleming 1993; Tan and Li 1997). 

4.2.1 Pareto Optimality 

Pareto-based fitness assignment was first proposed by Goldberg (Goldberg 1989), as a 

means of assigning equal probability of reproduction to all non-dominated individuals in 

the population. The method assigns rank 1 to the non-dominated individuals and removing 

them from contention, then finding a new set of non-dominated individuals, ranked 2, and 
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so forth. Tournament selection based on Pareto dominance was later proposed by Horn et 

al. (Horn et al. 1994). In addition to the individuals competing in each tournament, a 

number of other individuals in the population were used to help determine whether the 

competitors were dominant or not. Sharing is used to determine the selection if both 

competitors were either dominant or non-dominant. 

4.2.2 Goal and Priority 

Goal and priority information is often naturally available from the problem formulation, 

although they are not necessarily utilised in a strict sense. The cost assignment method 

described earlier can be modified to accommodate goal information (Fonseca and Fleming 

1993; Tan and Li 1997) in a similar way to that used by conventional goal attainment 

method (Grace 1992). The method of goal attainment entails the construction of a set of 

goal values for the objective functions. 

4.3 Evolutionary Search Algorithms 

Evolutionary computation based design techniques make use of simulation results just like 

a human designer, and `intelligently' transform the simulation problem into its reverse 

problem of design. A multiple coefficient design space characterised by a performance 

index is usually multi-modal, which is hard to accommodate by traditional optimisation 

methods. 

Emulating the Darwinian-Wallace principle of `survival-of-the-fittest' in natural 

selection and genetics have led to today's success in Evolutionary computation (Li et al. 

1996). Evolutionary algorithms (EA) (Fogel 1995) such as Genetic Algorithms (GA) 

(Goldberg 1989), have been found to be very effective and efficient in searching a poorly 

understood, irregular and complex space for optimisation and machine learning. Such an 

algorithm evaluates performances of candidate solutions at multiple points simultaneously 
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and thus efficiently approaches the global optimum. As summarised in Figure 4.2, an EA 

encodes a candidate design in an artificial `chromosome' and then vary these chromosomes 

for improvements, generation by generation, in a similar way to natural evolution. This is 

in effect a parallel search and machine learning process, in which the EA makes use of past 

trial information in a similarly intelligent manner to human designers. The EA can start 

designs from the application engineer's existing library or from an initial population of 

random candidates. A number of automatically `evolved' top-performing candidates will 

finally merge as optimal designs. 

Inidal/existing or 11 1 Final optbnised 

API: 12090217) 5% 
I fP2: 40030161)=60% 

fP3: 01641801x=35% 

Selection 

I 
. 
ßp2) 

I) 

Variation 

w. crossover 
Mutation P2: 40030 161 

P2': 40030 061 
P2": 40130 801 

P2: 40030 161 
5/ 

P3': 01641 161 P3: 016411801 

© Yim I. i, Umven ty of Glasgow, 1995-97 

Figure 4.2 Computer-automated design by artificial evolution 

Evolutionary computation can search multi-objective, globally optimised solutions to 

many practical engineering problems that cannot be solved by conventional means. Its 

unique searching and adaptive learning powers have facilitated design automation, meeting 

multiple design objectives, offering design quality improved beyond the present 

performance bounds, and reducing design cycle and time-to-market dramatically. A 

conventional CACSD package that provides simulation results, taking into account 

actuator saturation, is used to evaluate the performance of candidate controllers in terms of 
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plant outputs, close-loop errors and control signal provision. Artificial evolution then 

enables CACSD to become CAutoCSD. By trading off precision slightly using 

nondeterministic adjustments, the EA exponentially reduces the search time compared with 

exhaustive search and thus provides much improved tractability and efficiently in design 

automation (Li et al. 1995a; Li and Haeussler 1996; Ng 1995; Tan 1997). 

Eshaustive search of twin-tank plant response using PID controller 
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Figure 4.3 Exhaustive search of PID controller 

Illustration in Figure 4.3 show that exhaustive search method took 1.5 hrs to find an 

optimum PID controller while the evolutionary method (Figure 4.4) took approximately I 

minute to find the best performance matching the exhaustive search method. 

Ti 
1000 10000 Kp 
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Figure 4.4 Close loop response of plant from EA search 

Some of the advantages of EA are as follow: 

  Evolutionary methods offer the ability to deal with nonlinearity and conventionally 

intractable cost functions. 

  They are robust and cope well with noisy, inaccurate or incomplete data. 

" They can provide solutions to problems that were previously out of range problems 

that cannot be solved by analytical mathematical techniques, which involve so 

many variables that other methods would take too long to solve them, or that have 

frequently and unpredictably shifting goals. 

" They are modular and therefore portable; because the evolutionary mechanism is 

separated from the problem representation they can be transferred from problem to 

problem. 

m They provide an extremely open and flexible approach to design, allowing arbitrary 

constraints, simultaneous multiple objectives and the mixing of continuous and 

discrete parameters. 
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The applications of evolutionary methods are not only in engineering; it is also widely 

used in marketing, finance, medicine and management. 

4.4 MATLAB Based Design Automation Framework for TSN 

There are many software tools that can be used to design TSN control system. Of these, 

MATLAB was used intensively for simulation and analysis, it came with a rich control 

toolbox and control analysis tools. Easy-to-use and simple high level programming 

language that can be converted to C in no time. The MATLAB based design package 

developed to design the TSM-TSC has many build-in functions: 

9 Local search, EA and MOEA for model identification, TSM identification, tuning 

for PID and TSC. 

9 Come with 5 sample processes, twin tank, Mitsubishi chemical/process, VenDeVu, 

PH process or custom defines (transfer functions/state-space), also with custom 

define controller (transfer functions). 

" Finding static model and operating nodes. 

9 Setting for noise, load disturbance, and limits. 

" Setting for MOEA and EA 

" Classical analyses enable; Bode, Nyquist and Root locus. 

" Save/load enables 
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5.1 System Modelling 

A model may be defined as a representation of the essential aspects of a system, presenting 

knowledge of that system in a usable form. A useful model must not be too complicated 

that it cannot be understood and therefore unsuitable for predicting the behaviour of the 

system, at the same time it has to be accurate enough to represent the system. In practice, 

most systems are nonlinear with distributed parameters; linear models for such systems are 

often used because of their simplicity. 

Hence, we will be dealing in this study, with the system represented in Figure 5.1. 

w-. 

Model 

input System output 

Figure 5.1 Block diagram of a single input single output system 

Since system modelling appears to be primordial for the design of controllers, the first 

concern of this chapter is the determination of a general model for nonlinear systems. We 

will then describe the method used during this research to determine the values of the 

parameters of a model. Having described the model, and how to estimate its parameters the 

design method so called the `Trajectory-Scheduling Model' (TSM) will be presented. This 

modelling method will be illustrated according to a couple of examples. 
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5.2 Trajectory-Scheduling Models 

Based upon the LAM, this simple method has extended to highly nonlinear modelling 

network using the general structure of the TSN introduced in chapter 3. Using the TSN 

structure with the LAM as linear model blocks, the TSM is then formed. 

Given a system of, 

m inputs, 

n states, 

r outputs , 

the full state space system is given by, 

±(t) = Ax(t) + Bu(t) 

y(t) = Cx(t)+Du(t) (s. 1) 

where A (size nxn) is the system matrix, 

B (size nxm) is the input matrix, 
C (size rxn) is the output matrix, 
D (size rxm) is the direct feed through matrix. 

The matrix D represents any direct connections between the input and the output. 

However, in many simple cases, the D matrix is zero. 

The rewriting of state variable equations in vector-matrix form will occur often in state 

space work, the step of identifying the number of states (n), inputs (m) and outputs (r) 

automatically sets up the size of the ABCD matrices to be filled: 

x(t) = Anxnx(t)+BnxmU(t) 
(5.2) 

y(t) = Crxnx(t) + D, 
xmu(t) 

As we are only interested in single input single output 2 states model, 

thus, n=2, m=1 and r-1. Therefore 

A: (2x2); B: (2x1); C: (1x2); D: (1x1). (5.3) 

In the time domain, the general state variable diagram then looks like Figure 5.2. 
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-------------------------------, 

u(t) 'B 
++ 

X(t) x(t) C +ý v(t) 

Figure 5.2 General ABCD block diagram 

We have used dotted lines connect the D matrix, since for many cases the D matrix will 

be zero, and these connections will not be present. 

In TSM, each model used is a linear model identical to Figure 5.2. Therefore, unlike 

LMN, TSM does not require linearisation. For a network consisting of i=1,..., M number of 

models. The overall system can then be approximated as 

M 

x(t) _ p, (g(t))[A; x(t)+B; u(t)] 

M 
(5.4) 

Y(t) _ýp, (O(t ))[Ci x(t) + Diu (t )l 

where A, B, C, D are the interpolated parameters of the linear models, 

MM 

A(O) = p, (O)A1, B(O) _ P, (O)B,, 

mM 
(5.5) 

C(O) = Pi (O)c;, D(O) _ P; (O)D; 

The parameters of (5.5) depend only on the scheduler 0. This type of parameter 

varying structure is much simpler then (2.12). The overall TSM structure is shown in the 

figure below. 
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Validity Functions 

--I 
Scheduler 

Model input (u) 
X =14x LU Model output (y) 

Model 

Figure 5.3 Trajectory-Scheduling Model 

For practical engineering systems, an evolution-based TSM modelling technique has 

been developed. This simple and easily understood method is applicable to continuous- 

time modelling and is capable of obtaining an optimal nominal model from a wide range of 

step response data. 

To achieve high modelling quality and fast generation of TSM, an evolutionary 

algorithm may be used to search for globally optimal solutions. For more adaptiveness, 

further fine-tuning by local optimisation method may be applied. This method is illustrated 

in Figure 5.4. 
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5.3 Nonlinear Coupled System Modelling (Case 1) 

The diagram shown below is a twin-tank coupled non-linear hydraulic system that model 

liquid-level found in chemical and diary plant. The scale down model can also be found in 

the laboratory. Based on the Bernoulli's mass-balance and flow equations, the system 

structure is described in (5.6) and the process is shown in Figure 5.5. 

-sgn(h, -h2)ý'a' 2glh, -htl ei- 
0v A+A' 

(5.6) 

11 

h[2jsgn(hi 
-h2)fÄ' 2glh, -htl -cÄ2 2g h2 -Ho 00 0 

Figure 5.4 Evolving a TSM network from plant step response data. 
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Table 5.1: The coefficients of the twin-tank 

Height Of water in tank 1 ht in 

Height Of water in tank 2 h2 m 

minimum height of water in tank H0= 0.03 m 

Cross sectional area of tank l&2 A =0.01 m2 

Discharge coefficient of orifice I ci = 0.53 

Discharge coefficient of orifice 2 c. 2 = 0.63 

Cross sectional area of orifice I al = 0.0000396 m2 

Cross sectional area of orifice 2 a2 = 0.0000386 m2 

Gravitational constant g=9.81 m S-2 

Pump Flow rate Qi = 0.000007 (m3 S-1 V'1) 

Flow rate from tank 1 to tank 2 Q1 = c, a, 2g h, -hZ (M3 S-1) 

Discharge rate Qo = c2aZ 29 h2 - Ho (m3 s 1) 

The step response of the twin-tank was plotted in 3D forms (Figure 5.6). The 

nonlinearity of the plant can be clearly seen. 

Figure 5.5 Nonlinear twin-tank couple system 
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Figure 5.6 The nonlinearity of the twin tank system presented as 3D open loop step response 

5.3.1 System Identification with TSM 

The first step is to obtain a static model of the twin tank (Figure 5.7). This can easily be 

done by generating an input versus output data from equation (5.6). The next step involves 

finding the best transition/operating point for the plant using the algorithm described in 

chapter 3.2. From the node search algorithm, the best transition nodes found to be at 

0.04m, 0.07m and 0.13 m. 
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Figure 5.7 The static model and operating nodes of the twin-tank system 

In step 3, we construct a TSM at each of these transition points using the linear model 

given by the equation (5.7). 

rhZ ]=[a b1r h21 B1 
hcdJ Lh J+ 0 JU (5.7) 

Finally, linear interpolation will be use to link all the nodes to together as shown in 

Figure 5.8. 
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Figure 5.8 Linear interpolation of the TSM Twin-tank system 

5.3.2 Validation and Analysis 

In modelling of the twin-tank plant for the whole operating region, the 3 nodes TSM was 

evolved through EA. All the parameters for TSM were obtained simultaneously using 

evolutionary search methods. From the TSM produced, a response of an unseen operating 

point was generated. In Figure 5.9 shows that the identified model at various unseen 

operating points matched the actual system. 



69 

Figure 5.9 Validation of TSM network (step response) 

The TSM is not limited to producing a step response, indeed it can mimic any response 

from any given initial conditions. The result shows that the TSM fit the actual nonlinear 

system accurately (see Figure 5.10). From the results, it was clear that this method is 

suitable to use for continuous-time modelling. 

o1 

0.1 

0.1 Noisy data 

NL plant 
0.1 

--- TSM 

0.1 
E 
ö 0.0 

0.0 

0.04 

Step input Ramp irpul 

002 Validate 

Training data 
0 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 
Time (s) 

Figure 5.10 Validation of TSM network (continuous response) 
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In comparison, the LAM network only valid for a step response where the input cannot 

vary throughout the simulation. Varying the input requires regeneration of the model from 

initial state and therefore simulation time increases proportionally with the size of the 

LAM network. The TSM overcome this problem where the input signal can be varied at 

any time, therefore it is a better solution in modelling. Although the TSM is far superior, 

the parameters of each linear model have to be chosen carefully so that they can co- 

ordinate with each other to produce a valid response for unseen operating points; whereas 

the LAM does not require such coordination. To give TSM a better co-ordination, the 

initial parameters for TSM can be aided by identification tools and later optimised with 

EA. 

The superiority of using evolution methods in modelling are that the data used need not 

be specified and their ability to learn through a simple cost function. This flexible method 

is preferable over classical methods because it has a wider range of selection and handles 

many types of industrial problems. As for this parameter-varying TSM network, there is 

only one state at any given time, therefore it can start from any operating point unlike the 

LAM and LMN, where the initial condition for each local model have to be the same or 

start from zero. 

5.4 Nonparametric System Modelling 

`Linearity over a range" is an oxymoron; that is, a mathematical contradiction in terms. 

Nevertheless, it is a useful engineering concept. However, nonlinear effects assume greater 

importance as performance requirements become more stringent. Many control methods 

consider smooth nonlinearities, which are linearisable near equilibrium and which have an 

increasing effect over a larger range of operation. Geometric and kinematic nonlinearities 

in multi-body systems such as spacecraft or robotics are examples of smooth, global 
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nonlinearities. Control theorists often assume that these nonlinearities are sufficiently well 

known that the functions and their derivatives can be used in transformation techniques. 

On the other hand, many control applications require accurate motion over small 

amplitudes. In this regime, the nonlinearities tend to be non-smooth and possibly 

discontinuous. Friction is a common example of a non-smooth nonlinearity. In addition, 

non-smooth nonlinearities such as friction and backlash may possess hidden, un- 

measurable states. The ability to perform identification depends on the nature of the plant, 

as well as on the environment. 

Motivated by the above problems, original data collected should not be filtered or 

modified, such data include friction, noise and some unknowns. Using convolution 

methods, the original response can be reproduced. To proceed, the plant unit-impulse 

response data can be obtained from the step response as given by: 

g(t)=. Y, (t)/A (5.8) 

where g(t) is the data collected, , 
y, (t) is the output at different operating point 

and A is the current input state. 
This may be regarded as such an infinite-order "model', since convoluting this with the 

step input will yield a high fidelity reconstruction of the step response, as indeed shown in 

Figure 5.1 1. 
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Figure 5.11 Regeneration of plant response with and without noise using convolution methods 

The same multiple model technique can be used to network the response data to 

approximate a nonlinear plant. Using the same linear networking technique, multiple data 

were collected at different operating points. 
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The open-loop output, y; (t) resulting from the control signal, u, (t) where P--numbers of 

data collected is given by: 

uj (t) * g; (t) = u1(t) * . v. j (t) /A (5.9) 

Therefore the output response, y(t) given by control signal, u(t) is: 

t-* 
A'+' - u(t) t+ U(t) - A. 

xt/A or A5ut5A (5.10) u (I) Aj+j -A Ai+l - Ar 

An unseen plant response was produced, compared with the TSM networks and actual 

plant data (at 0.8m). In additional a Spline interpolation method was also introduced in the 

experiment. 

The results (see Figure 5.12) show that the TSM and convolution methods produced 

the same response, and spline interpolation improved the response marginally. It is 

subjective whether linear or spline interpolation should be used because the trade-off for 

using spline interpolation is a longer processing time and a structure that is more complex 

when the improvement is marginal. Another issue is the convolution method does not 

require identification process but the simulation time was much longer than TSM. 

Such observation opens up a way of designing an optimal controller directly from plant 

response data in the presence of noise and uncertainty. 
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Open loop step response of twin tank with interpolation/convolution 
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Figure 5.12 Step response of TSM, convolution, linear and spline 
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5.5 Discussions 

The results in this chapter show that using only one model and a single cost function, 

evolutionary methods are able to identify a system with different types of data. The 

disadvantage of evolutionary methods is it requires longer time in searching whereas 

numerical methods take only a fraction of a second. Although numerical methods are fast, 

it does not have the ability to find a set of suitable linear models that can be co-ordinated 

together to perform a nonlinear system due to many identical data in the matrix. 

In an LMN, each of the models is normally linearised at the operating point and only 

valid within the initial condition. A TSM network offers the advantage of obtaining each 

linear model directly from step response data, eliminating the need of intermediate 

nonlinear models used in the LMN and hence the advantage of wide range of validity of 

individual models that can act stand-alone in a certain degree. Finally, using convolution 

method, model identification can be eliminated using only process data. 
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The aim of this chapter is to describe the `Trajectory-Scheduling Controller' (TSC) design 

method based upon a TSN in chapter 3, which overcomes the deficiency associated with 

LCN. Each element of a TSC can be of a simple linear controller, such as PID. The tuning 

parameters can be obtained directly from a set of step response data at several typical 

operating levels for fast prototyping. Since step response data are often readily available in 

control engineering practice, such TSC can be evolved automatically and optimally from 

these data using appropriate model. The overall controller is co-ordinated and evolved 

along the entire operating trajectory in the operating envelope, tackling the control problem 

of practical or nonlinear plants. 

6.1 PID Controllers Feasible as TSC Nodes 

PID control can be used in TSC effectively and efficiently, although other types of 

controllers can also be used. PID control offers the simplest and yet most efficient solution 

to many real-world control problems. Its three-term functionality covers treatment to both 

transient and steady-state responses. Since the invention of PID control in 1910 (largely 

owing to Elmer Sperry's ship autopilot), and the Ziegler-Nichols' (ZN) straightforward 

tuning methods in 1942 (Ziegler and Nichols 1942), the popularity of PID control has 

grown tremendously and covers more than 90% of industrial usage. No other controllers 

match the simplicity, clear functionality, applicability, and ease of use offered by the PID 

controller (Wang et al., 1995). Its wide application has stimulated and sustained the 

development of various PID tuning techniques, sophisticated software packages and 

hardware modules (Ang et al. 2005). 

The PID controller come in many forms, it can also be implemented as extreme forms 

of phase-lag and phase-lead compensators. The PID controller is also known as the ̀ Three- 
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Term' controller where Kp is the proportional gain, TI the integral time constant and TD the 

derivative time constant, whose transfer function in `ideal form' is shown in Figure 6.1. 

G(s) = Kp 1+1 +TDs 
TI s 

Figure 6.1 PID Structure - Ideal Form 

(6.1 

Two other common type are `parallel form' (Figure 6.2) and `series form' (Figure 6.3). 

Parallel Form 

Figure 6.2 PID Structure - Parallel Form 

The parallel form PID controller can be written as: 

G(s) = Kp + 
KI 

+ KDS, (6.2) 

s 

where KI is the integral gain and KD the derivative gain. The `Three-Term' functionalities 

are highlighted by: 
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" The proportional term - providing an overall control action proportional to the error 

signal through an all-pass gain factor; 

" The integral term - reducing steady-state errors through low-frequency compensation 
by an integrator; 

" The derivative term - improving transient response through high-frequency 

compensation by a differentiator. 

Series Form 

A PID controller may also be realised in the `series form' if both zeros are real, i. e. TI? 

4 TD. In this case, (6.1) can be implemented as a cascade of a PD and PI controller (Li et al. 

1998), shown in Figure 6.3, in the form: 

G(s)=Kp(a+TDs 1+ 
1 

(6.3) 
a7is 

where, 

1± 1-4TD /TI 
a= >0 

2 

Figure 6.3 PID Structure - Series Form 

6.2 TSC Construction 

(6.4) 

In this methods, each of the linear systems was represented by a transfer function or 

transfer function matrix. This is similar to represent a nonlinear system response with high 

fidelity by convolution or harmonic analysis. This simple technique eases the difficulties 
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encountered in conventional linearisation without the need for an initial nonlinear model. 

Unlike a LMN, TSM gives a straightforward approximation in the entire trajectory ranging 

from the initial condition to the setpoint, whilst a LMN applicable only around the setpoint. 

(see Figure 6.4 twin-tank coupled system) 

Once the trajectory of a static model has been predicted, control measures are required 

to ensure that the trajectory data is applied in a consistent manner when calculating the 

many trajectory-related parameters required by the controllers of the system. This thesis 

describes the queue control techniques used in generating the predicted trajectory and the 

subsequent use of the trajectory data. The queue control logic that is discussed requires a 

minimum amount of main storage while a task is waiting to be performed. 
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Figure 6.4 Activation region of Linear Model Network and Local Model Network 

In modelling of a nonlinear system, a set of linear system obtained at different 

operating points was networked conveniently by simple linear local interpolation (chapter 

3.2.1) to produce an unseen operating level. 
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The TSC developed exhibits simple and effective control system design in an operating 

envelope of a nonlinear plant. In the controller design, the example shows that a linear 

TSC offers high performance control for a nonlinear system in the entire operating 

envelope. TSC designed by evolutionary computation shown that the technique can 

accommodate many practical requirements imposed by engineering specifications, since it 

does not require differentiation of performance index. 

A direct convolution method for controller design from step response data, bypassing 

the system identification stage has been developed. Validation against linear and nonlinear 

plants has shown that the performance of a controller evolved from the response data was 

better. This approach offered a step towards autonomy in building control system. Where, 

convolution operation has been extended to include a variable type of input excitations, 

therefore a TSC is possible to design directly from off or on-line data. 

A simple PID control system can be designed easily out of a TSM. To apply the TSC 

technique to nonlinear plants, controllers were designed for the entire TSM network of the 

nonlinear system. The network is to provide adequate performance across the operating 

envelope of the system. For the TSM obtained in the previous section (case 1), three PID 

controllers in the TSC are scheduled or simply switched between them as shown in Figure 

6.6. During a control operation, a variable indicating operating point is monitored and 

different controllers (or controller parameters) are activated according to this scheduling 

variable. In this design, the plant output y(t) was used as scheduling variable to weight the 

output of the controllers. 
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Figure 6.5 Trajectory-Scheduling Controller 

In real world most of the actuators have its limit. If a controller with an integrating 

action is used, the error may continue to be integrated when the actuator saturates, leading 

to "wind up". Therefore, anti-windup was implemented in the TSC developed here. 
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Validity Functions 

The TSC used a simple linear interpolation schedule to weight the controllers output. 

This combined control effort offers a good global close-loop performance under different 

operating condition of the nonlinear system in a simple way. Using the same principles, 

interpolation may also apply to the controller parameters. 

6.3 TSC Design Methods 

6.3.1 Generating Controller Nodes Using a CACSD Package 

Individual PID controllers from a step-response trajectory of the twin-tank coupled system 

(case 1) to each of the three operating points were generated from the PIDeasyTM (see 

Figure 6.7) design package. 

Figure 6.6 Trajectory-Scheduling PID Controller. 
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Figure 6.7 Direct design from plant response using PlDeasy'M 

PIDeasyTM analyses step response data and generates an appropriate PID controller 

from them in split seconds. At each operating point, the step response of the TSM produces 

a corresponding PID controller. This tuning method is known as local tuning. The locally 

tuned controller parameters are shown in Table 6.1. 

Table 6.1: PID controller parameters by local tuning 
PID controller Kp Ki Kd 

At 0.05m 3510.21 96.19 0.5353 

At O. lm 1350.86 172.707 1.34237 

At 0.15m 1012.74 225.447 1.77881 

6.3.2 Deriving Trajectory Controllers from TSM 

To evolve a TSC out of TSM, all the parameters of the three linear controllers and the 

scheduling weights are evolved simultaneously in an operating envelope. This tuning 

method is known as global tuning. At the end of the search, the controller parameters 

obtained are tabulated in Table 6.2. 

, dr. 



Table 6.2: PID controller parameters by global tuning 
PID controller Kp Ki Kd 

At 0.05m 2000.175034 1351.85888 1010.193409 

At 0.1m 86.58769437 164.8790683 237.7647766 

At 0.15m 1.652132227 1.979571326 1.754395542 

The closed loop responses of the locally tuned and globally tuned TSC were compared. 
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Figure 6.8 Closed loop responses of the TSC at operating points including the unseen ones at 
0.075m and 0.125m. 
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Figure 6.9 Closed loop responses of the TSC at unseen operating points. 
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From the results, it can be seen that the performance of the globally tuned method (see 

Figure 6.8 and Figure 6.9) exceeds that of the locally tuned method providing a fast 

optimal solution to the nonlinear control problem. 

Note that in the locally tuned method, each PID controller was generated using `linear' 

step-response data, but is now tested against the nonlinear plant. This reveals the need for 

network tuning. 

6.3.3 Evolving TSC from Multi-Setpoint Response Data 

In this section, step response data of twin-tank plant (case 1) is collected at 0.05m and 

0.1m. EA was used to evolve a PID controller towards optimal performance at 0.065m 

without going the through system identification process. The result (see Figure 6.10 and 

Figure 6.11) shows that the close-loop performance of this design method is very similar to 

the close-loop performance of nonlinear twin-tank plant. 
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Figure 6.10 Closed loop time responses of TSC via convolution method. 
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Controller response of twin tank model and interpolated convolution model 
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Figure 6.11 Closed loop control signal of TSC via convolution method. 

In the next test, a physical step response data is collected from an electrical motor, 

which contained unknown noise. A PID controller was evolved using the original data and 

applied to the actual physical model. The close-loop response of this model free designed 

offers a near optimal performance (Figure 6.12), matching or better than the performance 

designed by Internal Model Control (IMC) (Dong and Brosilow 1997) methods (Figure 

6.13) 
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Figure 6.12 Closed loop responses of speed control (model free designed) 
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Figure 6.13 Closed loop responses of speed control (IMC designed) 
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A direct controller design method from step response data has been developed. Results 

obtained shown that the design method can be automated by efficient evolution from step 

response data, bypassing the identification stage. 

6.3.4 TSC through Evolution 

An evolutionary algorithm (EA) provides globally optimal solutions to engineering design 

problems by emulating natural evolution (Li et al. 1996). A population of potential 

solutions was evolved using crossover, mutation and selection operators to arise at better 

and better solutions. One advantage of an EA for search and tuning is that the objective or 

fitness function need not be differentiable. This is useful for global optimisation involving 

nonlinearity and actuator limits. Here, the objective function to be minimised is the Ll 

norm of all errors across the closed loop response within a given time period m as shown in 

Figure 6.14. 

Yref 

0 

ref 

miqý 
(t) 

Figure 6.14 Objective function for optimising the controller at one reference point. 

To evolve the TSC for the entire operating envelope, a few pre-select reference points 

were used. Therefore, at n reference operating points the overall cost function is given in 

equation (4). Where e(t) is the tracking error. 

Lml tO 
yref (t) - Y(t) 11 

, do 
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n 
J=IE I e(t)I 

ref =1 t=0 

m 
(6.5) 

In the EA search, three reference levels were used to evaluate the error tracking 

performance, which are representative of the whole operating trajectory. Each reference is 

tested for a period of m=1000 sec. The evolved TSC will be used to test against two unseen 

operating points at 0.075m and 0.125m as shown in Figure 6.15. 

Controller I Controller 2 Controller 3 

100% 
R` \ /R2\ R3 . Reference points 

+points used to 
validate 
controller 

Operating Level 

Figure 6.15 Evaluation points in the operating envelope. 

To evolve a TSC, all the parameters of the three linear controllers and the scheduling 

weights are evolved simultaneously in operating envelope. At the end of 50 generations of 

a population size of 50, the controller parameters obtained were tabulated in Table 3. 

Table 6.3: PID controller parameters search through evolution simultaneously. 
PID controller Kp Ki Kd 

At 0.05m 3500.011 2499.963 1999.93287 

At 0.1 m 349.9258 500.2581 500.640639 

At 0.15m 3.323444 4.834564 7.84161825 

The closed loop responses of the finally evolved TSC are shown in Figure 6.16 and 

6.17. From the results, it can be seen that the performances are excellent providing a fast 

optimal solution to the nonlinear control problem. 
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Figure 6.16 Closed loop responses of the TSC at operating points including the unseen ones at 
0.075m and 0.125m. 
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Figure 6.17 Closed loop responses of the TSC at unseen operating points. 

2500 

Using the same result, the performance of the TSC was tested against some 

disturbance. A plant disturbance of 0.02m was injected into the plant at t=200 and 700 

second as shown in Figure 6.18. 

Close loop reference step Response 
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Figure 6.18 Performance of TSC, where disturbance occur at t=200 and 700 s. 

The response confirms that the TSC does yield a good transient and steady state 

performance, with some robustness against the plant uncertainties. 

6.4 TSC Network Design for a Nonlinear Chemical Process 

(Case 2) 

In this application, a nonlinear chemical process at Mitsubishi Chemicals is considered. 

The dynamics of the constant-temperature reaction is modelled by: 

- -Ky2(t) + dtv [d -y(t)]u(t) (6.6) 

where 

y(t) = concentration in the outlet stream (moUl) 

u(t) = flow rate of the feed stream (1/h) 

K= rate of reaction (1/mol/l-h) 

V= reactor volume (1) 

d= concentration in the inlet stream (mol/1) 
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To illustrate the nonlinearity of the plant, the static model at steady-state corresponding 

to Figure 6.19 at different operating points or equilibria may be used. A given level of 

u(oo) determines a physically unique y(co) by the parabolic equation: 

Z1d Ky +yuy-yu=o (6.7) 

which is often termed an `equilibrium manifold', as illustrated by the solid curve in Figure 

6.19. 
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Figure 6.19 The equilibrium manifold of the nonlinear process within its operating envelope 

A static model is often the first step in investigating a nonlinear process. The model 

can be used to determine the range of control signals, the sizes of the actuators and the 

resolution of selected sensors. In practice, such a static model can be obtained either from 

close-loop or open-loop tests as shown in Figure 6.20. Note that the tests have a physical 

interpretation only for a stable process (Aström and Hagglund 1995). 

Mitsubishi Chemical Operating Nodes 
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Figure 6.20 Open-loop tests of the nonlinear process within its operating envelope 

Apparently, to control such a nonlinear process, a nonlinear controller may be used, but 

this lacks the transparency on stability and familiarity that a practising engineer would be 

confident with. In to a recent survey, over 90% of industrial control systems in use are 

realised in various forms of proportional plus integral plus derivative (PID) control 

(Aström and Hagglund 1995). Hence, the use and design of a simple PID control system is 

desirable. 

6.4.1 Controller Design 

Based on the analysis of the process and its model, clearly, the use of a straightforward 

PID control would be inadequate. For such a nonlinear plant, therefore, the use of a TSC is 

proposed (Chong and Li 2002b). In this application, each node of the TSC is a 

straightforward three-term PID controller, placed along the operating trajectory as shown 

in Figure 6.19. The nodes found at [0.307,0.487,0.744] will be interpolated as shown in 

Figure 6.21. 
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Figure 6.21 Weighting function of TSC 

A simple three-node TSC is designed, under a hard constraint on the input flow rate as 

limited by the range [0 10] Uh. The scheduling between the three PID controller nodes is 

determined by the output levels, using simple triangular-shaped activation functions S1, S2 

and S3. This is quite similar to assigning the degree of memberships in the fuzzification 

process in a fuzzy control system (Chowdhury and Li 1998). 

After a fast individual local PID tuning from IMC tuning rules, 

9.82 

u(t) = 
[S, S2 S3 ] 15.6 

28.6 

1.22 0.0376 1 

0.784 0.0241 p-' e(t) 
0.481 0.0137 p 

(6.8) 

the TSC is then optimised through MOEA. The overall controller hence takes the form: 

35.76 

u(t) = 
[S, S2 S3 ] 24.98 

21.68 

0.751 382.8 1 

0.268 74.58 p-' e(t) 
0.189 451.68 p 

(6.9) 
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where p is the differentiation operator. 

6.4.2 Results 

The results for a setpoint of 0.53 moll, specified by Mitsubishi Chemicals, are shown in 

Figure 6.22. To test the robustness of the TSC regulator, a 20% load disturbance was 

added. The performance is compared with PID controllers obtained through IMC and 

MOEA-IMC. It can be seen (Figure 6.22) that the TSC offers a good performance with a 

fast rise, no overshoots, and an extremely good rejection to the load disturbance at various 

operating point for the nonlinear process. 
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Figure 6.22 Performance of the TSC regulator subject to a 20% load disturbance 

In essence, a Linear Time Invariant (LTI) building block based TSC is a nonlinear 

controller overall. The switching between the nodes is through soft activation and hence 

imposed no threat of actuator damage. To thoroughly test the performance of the PID 
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network designed for nonlinear, the system was driven throughout the allowed operating 

trajectory. The results are shown in Figure 6.23. It can be seen that it is indeed reliable in 

the entire operating envelope. 
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Figure 6.23 Performance reliability of the PID network in the entire operating envelope 

6.5 TSC for a Polymerisation Reaction Process (Case 3) 

This is another multivariable nonlinear system, but the control task is SISO, where a 

gaseous phase concentration of polymerisation reaction is given by 

` -(-x, = +K u di 7p, pi 1) (6.10) 

TSC 
- IMC 

Z-N 

_ 
dX2 1 

(Kp2x1x2 - x2 + Kp3u2) (6.11) dl IP2 
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Y=X2 

where the operating point is at: The control task is to use ul to control x2. 

x1 =0.02 kg h"' ; consumption velocity of catalyst 

x2 =5.0 kg cm'2 ; gas density 

u1 =0.05 kg h-' ; supply quantity of catalyst 

u2 =3195 kg h"' ; supply quantity of polyethylene 

and the constant coefficients are: 

K1 =0.4 

K2 =-1648 kg-'h 

Kp3 =0.05317cm2h 
T 1=2.4 h 

Tp2=7.1 h 

The step responses of the given process at equal interval are shown as Figure 6.24. 
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Figure 6.24 Open-loop step response from (0.01-0.1) at equal-interval of 0.01 (kg h-1) 

Step response of Mitsubishi Process 
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From Figure 6.24, the effective range of the output should be around 5 kg cm-'. 

Assume that output will be regulated from 2-10 kg CM-2 .A static model was constructed 

for this operating range as shown in Figure 6.25. 
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Figure 6.25 Operating range x2=[2-10] (kg cm-2); u1=[0.0235-0.1269] (kg h-1) 

From the static model, the TSC operating node found to be at [2 4.4497 10]. 

PID controllers were used at these operating nodes. 

These PIDs are: 

a) tuned by IMC tuning rules 

b) tuned by evolution algorithm 

These two results are compared. Figure 6.26 and Figure 6.27 shows the various test 

condition applied to the plant. It is obvious that EA tuning is superior to IMC tuning. 
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Figure 6.26 Close-loop response. r(t)=5kg cm-2 with [xi, x2]=[0,01 initial condition. 

lb 

10 

. 
27 

ö 
5 

00 
2468 10 12 14 16 18 

Time (hr) 

0.2 

0.15 

0.1 

L) 0.05 

n 
02468 10 12 14 16 18 

Time (hr) 
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disturbance. 
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6.6 Multi-Objective Design 

With the continuously increasing computing power, optimal control is receiving a wider 

acceptance in engineering practice. When optimisation is carried out over an `integral of 

absolute error' (IAE) index, 

J=IAE 

(6.13) 
=Z le(t)l 

t-0 

it only satisfies the time response of a system (see Figure 6.28), where the control signal is 

chattering (from case 1) 
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Figure 6.28 Good transient but chattering control signal. 

When the control effort needs to be considered alongside the IAE performance it 

delivers, the control energy is added to augment the index. 

J= a1L4E + a2JAED 

=5, al 
l 
e(t)l + a2 

du 
(t) 

(6.14) 1 

L. r t-0 
dt 



Chapter 6 TSN, for Nonlinear Control System Design 

0.2 

0.15 

d 
-0 0.1 

0 
0 

10 

6 
ca C 

rn 6 
N 

4 
0 U2 

Twin-tank model close loop response 

------------------------------- 

1II 

-- ----- ---- 

--------------- --- 

Ii 

------------ 

-- --------- 

ii 

200 400 600 800 1000 1200 1400 1600 1800 
Time(s) 

0ý 
0 200 400 600 800 1000 1200 1400 1600 1800 

Time(s) 

Figure 6.29 Suppressing the control signal 
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The combined performance index into one fitness proves effective in suppressing the 

control signal (see Figure 6.29), note that it is not a true multi-objective solution, the 

choice of the weighting factors between the errors and controls proves to be a nontrivial 

exercise in practice. Therefore, a true multi-objective solution is preferable. 

Competitive performance indicators are usually not reconcilable, e. g., a small error 

cannot normally be achieved with a small control effort. As solving one problem may 

deteriorate another, all resulting `equally optimal' solutions will thus form a so-called 

`Pareto front', on which one solution is not dominantly `better off' than another and hence 

on which all solutions are the `best' in terms of multiple objectives (Herreros ei al. 2000). 

In order to bring out, and verify the optimality of, Pareto solutions, the IMC method is 

conventionally applied here to the design of a PID controller as a benchmark or reference 

point. Using the IMC reference, the search space for optimisation can be reduced, 

eliminating unnecessary processing time beyond acceptable stability margins. The 
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application of EA here has led to multi-objective solutions all mapped out in Figure 6.30, 

where the results region is seen divided by the reference point. 
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Figure 6.30 Pareto optimal solutions divided by a conventional design as a reference point. 

Figure 6.30 also reveals how much improvement in reducing both control error and 

potential chattering by the weightless Pareto optimisation technique. This EA based multi- 

objective search yields much balanced optimal solutions compared with conventional and 

objective methods. 
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Figure 6.31 Performance of all TSC on Pareto front 

Figure 6.31 shows that all the TSC controllers fall on the Pareto front was stable 

although some oscillation occurs. 
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Figure 6.32 Performance of TSC fall in region with both objectives optimised 

Figure 6.32 shows that the TSC controllers fall on the region where both objectives are 

optimised have an excellent step response and less control signal chattering. 

6.7 Guided Search 

In this example, a nonlinear chemical process (case 2) similar to section 6.4 is considered. 

The application of Multi-Objective Evolutionary Algorithm (MOEA) here has led to multi- 

objective solutions all mapped out in Figure 6.33, where the result was divided into four 

regions by the IMC reference point. 

It also reveals how much improvement in reducing both control error and potential 

chattering by the weightless Pareto optimisation technique. This MOEA based multi- 

objective search yields much more balanced optimal solutions compared to conventional 

single objective methods. 
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Figure 6.33 Pareto optimal solutions divided by a conventional design as a reference point. 

Figure 6.34 shows the solution found in the region where there are improvements made 

on both objectives compared to the IMC design. 
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Figure 6.34 Step response of individual solution fall in the region with both improvements 
compared to IMC tuning. 

By comparing these solutions with IMC, it is obvious that any one of these solutions 

exceeds the performance of the IMC design without the need of adding an additional 

weighting when choosing a controller from the non-dominated solutions set. 

The step responses of the solutions fall in region where only ISE was minimised are 

plotted in Figure 6.35. Those responses look very ideal, thus, are not practical to 

implement in real physical systems. Therefore, these solutions will be eliminated when 

choosing a controller. 
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Finally, in the region where control energy was minimised, the step responses (Figure 

6.34) are too sluggish, some of the output did not reach the setpoint. Therefore, these 

solutions will not be considered for controller selection. 
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Figure 6.36 Step response in region where only Control Energy was reduce. 

6.7.1 Multi-Objective Decision Making 

From Figure 6.33, the selection of high-performance low-chattering weightless controller 

has been minimised to a few solutions. In some cases, when the good solutions are more 

than needed, the selection can be narrowed down to one or two solutions. This can be 

achieved by adding one or more reference points from different tuning methods. In Figure 

6.37, Z-N designed PID was inserted as one of the additional reference point, minimising 

the good solutions from non-dominated sets to two. 
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Figure 6.37 Additional Z-N tuned PID as reference point. 

Using two reference points, Z-N and IMC, the optimum controllers were narrowed 

down to two. The step responses were plotted and shown in Figure 6.38 below. 
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Figure 6.38 Step response of good region MOEA solution 

6.7.2 Evolving High-Performance TSC Systems Using MOEA 

The MOEA design methods are not restricted to PID controllers and the objective function 

can be more than two. Furthermore, the plant can be linear or nonlinear and constraints can 

be included in the design. In the following example, a TSC was applied to the nonlinear 

chemical plant used in the previous test. Three objectives used were ISE, control energy 

and load disturbance. Although TSC cannot compare with IMC in many ways, IMC can 

still be used as the guideline when choosing TSC from the non-dominated sets. The test 

results are shown below. 
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Figure 6.39 2D and 3D view of non-dominated solutions for 3 objectives MOEA and selection 
region reference to IMC. 

In Figure 6.39, the selection region can be classified clearly from 2D and 3D plots. 

This method cannot be used on MOEA with 4 or more objectives. Therefore, another 

visualisation and selection method has to be adapted. 
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Figure 6.40 Normalised and sorted view of non-dominated sets from MOEA and selection region 
reference to IMC 

The selection technique in Figure 6.40 can be used on four or more objectives. From 

the figure, the solutions that fall under `region with improvement' are the chosen 

controllers. Their performances were plotted and shown in Figure 6.41. The plot shows 

that the selected PID from MOEA has a faster step response, better load disturbance and 

requires less control energy. 
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Figure 6.41 Step response from selected solution (with load disturbance). 

6.8 LabVIEW Based TSC 

A LabVIEW TSC/PID real time online controller has been developed to test the method 

proposed. The controller comes with these functions: 

" TSC with infinite controllers 

" Series or parallel, P, 1, PI, PID, ideal PID, PI-D, I-P, I-PD, PID-LPF controllers 

" Limits/anti wind-up 

" Digital input enables 

" Spline, linear, polynomial and rational interpolation/extrapolation scheduling 

" Save/load enables 

OL- I 

12 
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Figure 6.42 LabVIEW online TSC controller interface 

6.9 Summary 

115 

The TSC offers several important advantages. 

" The TSC develops a clear representation of the controllers since each TSC is linear. 

This enables analysis of the overall properties and makes the conversion of the 

TSC-TSM network into a linear system at any operating point more 

straightforward. 

"A priori knowledge can be use for TSC design 

" The learning of TSC is fast and straightforward, and various tuning rules and search 

tools can be applied. 

" Capabilities to network controllers with various transfer functions. 
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These advantages highlight potential of the TSC-TSM as a nonlinear control design 

approach. 
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Chapter 7 Analysis of Trajectory-Scheduling Networks 

7.1 Linear representation of the TSN Systems 
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The TSN is made of a linear network The interpolated linear systems can be extracted 

from the TSN instantly at any given operating point. Adapting the equations (2.2 to 2.5) in 

section 2.6.2, at any given operating point (V/), the parameters Py, that extracted from the 

TSN can be derived as: 

M 

v)P1(s0) , (7.1) 
r_ý 

thus, the linear model G, extracted from the TSM is 

Gr, = G, (v7)P, (0) , (7.2) 
i=1 

and the controller Cv� extracted from the TSC is 

Cw =YC, (v/)Pi(0)" (7.3) 
i=I 

Therefore, the extracted close loop system of the network at yr is illustrated as Figure 

7.1. 

Controller Model 

GW(s) cW(s) II 

Figure 7.1 Static system during transition 

Hence, the close loop transfer function can be derive as 

CG (s) = 
C, Gw 

'ý 1+C,, G, (7.4) 

Since the extracted system is linear, any classical LTI analysis methods can be applied, 

such as the Bode plots in an open loop and a root locus in a closed loop. By analysing (7.4) 
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for the full operating trajectory of the TSC-TSM networks, any nonlinear systems 

represented by it can be studied. Hence, the stability of the nonlinear systems for the whole 

operating trajectory can be ensured. 

7.1.1 Analysis TSM-TSC with Classical Methods 

Using the twin-tank couple process as an example, the system was set to operate at the 

level from 0.04m to 0.14m. Using the data collected from these operating ranges, the TSM 

and TSC controllers are evolved. The obtained TSC-TSM systems are analysed using the 

method suggested above. The system was broken down into 0.01 in steps and plotted in the 

figure below: 
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Figure 7.2 Step response of the TSM network 
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Figure 7.4 Root locus of the TSC-TSM network 
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Refer to the step, Bode and root locus plot. The results show that each of these linear 

paths, covering the complete operating region, was well within the stability margins, 
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therefore giving a simple and direct way to design and analyse nonlinear control systems, 

which was once impossible directly from sets of plant response data. 

Any type of classical analysis method can be applied to the TSC-TSM network, not 

only on the desired operating point but also on the full range of the operating region. 

Therefore, the stability of the non-linear system can be easily assessed. Figure 7.5 shows 

that the TSC-TSM network can be explored using linear interpolation with Step, Bode, 

Nyquist, Pole-Zero and Nichols Chart. 
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Figure 7.5 Classical analysis methods applied to TSC-TSM system (linear interpolation) 

This analysis is not restricted to linear interpolation of the TSC-TSM network only, 

investigations were also made on two other types of interpolation, namely the Piecewise 
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Cubic Hermite Interpolation (Figure 7.6) and the Spline Interpolation (Figure 7.7). 
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7.1.2 TSC Activation and System Stability 
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Although the TSC-TSM can be analysed with uncertainty boundaries, the transition 

analysis of each linear controller node in the TSC would also be of interest. This will 

enable us to detect and predict possible problems occurring in the system. 

For example, the overall system performance looks like this: 
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Figure 7.8 Overall performance of the TSC-TSM system 

A further investigation has been carried out to assess each of the controllers and how 

the interpolation activates the TSC. 
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Figure 7.9 Individual controller signals and their activation according to step change. 

The figure above shows that each controller exhibits a synchronising signal waveform 

at different operating level. This evidence supports the fact that the TSC co-ordinate well 

within the operating range under the crossover activation of the network. 

Although one can argue that linear analysis techniques are generally inappropriate for 

interpreting the TSN system and the results of such an analysis do not reflect all the 

properties of the underlying parameter-variant system, it must be remembered that it can 

still provide extremely valuable insight in terms of local and global stability. 
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Chapter 8 Conclusions and Further Work 

8.1 Conclusion 
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The solution developed in this thesis builds on from the existing work and endeavours to 

solve the intractable problem of addressing both setpoint following and disturbance 

rejection (Ang et al. 2005; Aström and Hagglund 1995; Levine 1996). Another objective 

has been to utilise existing plant 110 data at operating levels of interest, without needing to 

inject artificial perturbation to the plant at operating point under consideration. Achieving 

these goals, the following have been developed. 

" Extension of gain-scheduling, LMN/LCN and LAM techniques to a complete TSM 

technique, and application of evolutionary computation to derive TSMs 

automatically. A TSM eliminates the need of linearising and prior derivation of a 

first-principle's model or the need for artificial perturbation to the plant under 

operation. 

" Extension of performance metrics for both single and multiple objective 

optimisation and search algorithms. The current visualisation technique for 

assessing non-dominant solution sets is limited to two objectives. This has been 

extended to higher dimensional data, with a novel visualisation technique 

developed for identifying and presenting the best EAs solutions. 

" Development of a flexible and straightforwardly applicable TSC, and also methods 

of obtaining TSC from existing control designs or CAD software, as well as 

through multi-objective evolutionary search techniques. These methods allow a 

priori knowledge to be incorporated in the design if desired. The results are 

presented with multi-objective visualisation, which enables the user to supervise (if 

desired) the final design for performance that meets his/her requirements. 
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" Development of a linear parameter-variant technique and tool to enable analysis of 

a combined TSM and TSC network using classical stability analysis methods. 

" Development of a novel operating-point-scheduling technique for the entire 

operating envelope of a given process. This is coupled with a node acquiring 

technique based on the process nonlinearity, reducing the number of networking 

parameters and increasing application speed for TSM and TSC. 

" Development of a MATLAB based GUI software tool automatically to build a 

TSM for a nonlinear process, to evolve the corresponding TSC, and to analyse the 

close-loop system. This also makes it easy to implement in real-time with 

LabVIEW and to test against real physical systems. 

8.2 Future Perspective 

With reference to the methodology and techniques developed, the development of 

multiple model networks has been relatively mature. However, a nonlinear network 

analysis is still lacking at present. Hence, this part of research should deserve more 

attention. The future work includes a theoretical development of a full suite of nonlinear 

network analysis. 

A fully `plug-and-play' automated nonlinear system modelling and design tool in the 

form of a professional software package would be valuable to industrial users. Some 

simple additional steps can be added to the current design to achieve automated ̀plug-and- 

play'. Finally, one valuable enhancement would be to make the software-based system 

Ethernet enabled, where users can ̀ plug-and-play' remotely through the Internet. 
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