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Abstract

Recently, there has been increasing interest in investigating the interrelationships among

the component stochastic processes of a dynamical system. The applications of these

studies are to be found in various fields such as Economics, Neuroscience, Engineering and

Neurobiology. Also the determination of the direction of the information flow is one of the

important subjects studied widely. These investigations have usually been implemented

in the time and frequency domains. Consequently, several mathematical and statistical

procedures have been developed to facilitate these analyses.

The aim of this thesis is to discuss the relationships between stochastic processes

of a relatively short time duration. Specifically, the research concerns the analysis of

the electrical activity of the dysfunctional brain, where the available data belong to a

right-handed focal epileptic patient. EEG signals are recorded directly from the scalp

using numbered electrodes according to the International 10/20 system introduced by

Jasper [1958]. The analysis is only performed for processes of the left hemisphere as they

represent the dominant hemisphere. Moreover, since each region of the brain is responsible

for a special function, we have chosen five processes to represent the five main lobes of

the brain; the frontal lobe, the central region, the parietal lobe, the occipital lobe and the

temporal lobe.

The analyses of these signals are carried out using four spectral density estimation

procedures, namely the multivariate autoregressive model of order 2; the average of peri-

odograms of adjacent segments of the single record; the smoothed periodogram approach

for the entire record; and the multi-taper method. Thereafter comparisons among the

results of these methods are made. The strength of the correlation between signals is mea-

sured by coherence and partial coherence functions. Also, the Granger causality concept

is implemented for these data in the form of determining the direction of the information

flow between these signals using the partial directed coherence (PDC) proposed by Baccalá

i



ii

and Sameshima [2001] using the statistical level of significance suggested by Schelter et

al. [2005]. The structure of the causal influences produced by the PDC shows that there are

statistically significant reciprocal direct causal effects between processes representing the

brain’s region, the frontal lobe, the central area, the parietal lobe and the temporal lobe.

However, there are two uni-directed causal influence relations, one is between the central

area and the occipital lobe and the second one is between the occipital and temporal lobes.

The indirect causal influences are detected between these processes throughout the process

representing the temporal lobe. Generally, the values of the PDC in the anterior-posterior

direction are larger than the values of the PDC in the opposite direction. Also, the causal

influences of each process on the temporal lobe process is larger than the causal influences

in the opposite direction.

The spectral analyses show that the estimated power spectra and coherences of these

signals are approximately peak in the δ-wave band of frequency [1, 4) Hz. The signifi-

cant non-zero estimated coherences are captured between the brain’s lobes except for the

occipital lobe which is uncorrelated with any of the other lobes. The depth of non-zero sig-

nificant estimated coherences is given by partial coherence, which measures the strength of

the estimated coherence between any two processes after removing the linear influence of

one or more other processes. For the current data, we found that the depth of correlations

depends on the spectral estimation method adopted. For example, the depth of correlation

is of order 2 for the method of averaging across periodograms of adjacent segments of the

single record and the method of smoothed periodogram of the entire single record and is of

order one for the multi-taper method. However, the depth of correlations is unknown for

the multivariate autoregressive model of order 2. The comparisons made between the re-

sults of the four spectral estimation methods mentioned previously, indicated that MVAR

is not sensitive to rapid changes occurring in the signal such as the effect of the notch

filter at 60Hz and a calibration signal at 47Hz, while the other three methods exhibited

good sensitivity to these changes with different strengths of responses. Furthermore, the

smoothed periodogram and the multi-taper methods persistently detect the notch filter

effect at 60Hz in the ordinary estimated coherence curves, while the method of averaging

across periodograms of adjacent segments of the single record does not.
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Chapter 1

Introduction

Interactions among large numbers of stochastic processes are commonplace and arise nat-

urally when a number of different input or control processes combine together to produce

output processes. Examples of this phenomenon are ubiquitous in Neurophysiology, Eco-

nomics and in several biological systems.

One of the most important properties exhibited by such interacting processes is that

their history, which is an intrinsic feature of the interaction. What happens at any instant

in time is a consequence of the accumulated effect of the past history of the interacting

processes. Therefore conventional differential equation models relating the rate of change

of state variables to their current values are inappropriate. Suitable models are delay

equations or integral equations where the integration is taken over the past history of the

processes.

Investigating of the relationship between two interacting processes and fixing the other

processes were common prototypes in experimental work. By performing this procedure

for various pairs of interacting processes and various choices for the values of the fixed pro-

cesses, the general structure of these interacting processes may be investigated. However,

since the pairwise results of this strategy are based on fixing the simultaneous influences

of the other processes, it does not reflect the actual behaviour of the interacting processes

in many real world structures.

Recently, the multivariate model of a system has been developed to investigate the

communication between various pairs of processes among large networks taking into ac-

count the influences of the others processes. Many researchers have used multivariate

models of the system to perform the time-frequency analysis of multi-channel data sets

in the different disciplines such as Economics, Biology, Physics, Neuroscience and Applied

1
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Mathematics.

In Neuroscience, the simultaneous interfacing of large numbers of neurons generates

electrical signals. In turn, these signals reflect the electrical activity of the brain. Fur-

thermore, understanding of the concept of the functional connectivity of brain regions

facilitates the recognition of brain behaviour in normal and abnormal cases.

One of the most widespread brain disorders is epilepsy. Epilepsy is a chronic disease

characterised mainly by recurrent and unexpected interruptions of normal brain electrical

activities, called epileptic seizures (Robert et al. [2005]). Also epilepsy is distinguished by

a neurobiological, cognitive psychological and social consequences of this condition.

Electroencephalogram (EEG) is generally used to detect the brain electrical activity

and to clinically diagnose epileptic seizures. EEG is characterised by its high temporal

resolution, which measures the electrical signals over a short time in milliseconds. EEG

can measure the electrical signals of the brain directly from the scalp by multiple elec-

trodes. Each EEG signal represents a difference in voltage between two electrodes, and the

presentation of the EEG signals is called a montage. Practically, there are different types

of EEG montages, such as the dipole montage, where the voltage is taken between two

contiguous electrodes, and the referential montage, where the voltage is measured with

respect to a specific electrode appointed to be a reference for all recording electrodes. The

common locations for the reference electrode are the midline, where the signals at these

places are not amplified in one hemisphere against the other and the linked ear locations,

where the signals usually encounter the same conditions in both hemispheres (Miller et

al. [1991]). The average reference montage, defined as an average of all signals, then

the averaged signal refer as a common reference for each channel. Finally, the Laplacian

montage represents the voltage between a recording electrode and a weighted average of

the surrounding electrodes (Nunez and Pilgreen [1991]).

There are various clinical and research applications for the EEG. Clinically, for ex-

ample, the EEG is used to distinguish epilepsy from other types of brain disorders, to

determine the location of an epileptic seizure onset, to specify the epilepsy syndromes and

characterise the strength of the seizure in order to accustom anti-epileptic medications (

Smith [2005], Aurlien et al. [2007], Ferris et al. [2006]). For research purposes, the EEG

is used to investigate different sleep stages and to monitor the brain during physical tasks

such as hand movements ( Mima et al. [2000], Brovelli et al. [2004]). Although, all previous

benefits of EEG, it apparently has the limitation of lower spatial resolution compared with
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the other methods such as functional magnetic resonance imaging (fMRI). Since the EEG

electrodes are mostly sensitive to the electrical activity of the brain in the cortical surface,

which is beneath the scalp, while the sources of electrical activity are separated from the

EEG electrodes by three layers; cerebrospinal fluid (CSF), the skull and the scalp ( Srini-

vasan [1999]). However, the functional magnetic resonance imaging (fMRI) measures the

brain electrical activities indirectly through the variations in the blood oxygen level that

are coupled with these activities (Ogawa et al. [1990], Ogawa et al. [1992], Logothetis and

Wandell [2004]). The most important feature of fMRI is the high spatial resolution which

is as good as (1mm) (Engel et al. [1997]). Also it provides measurements of the brain’s

electrical activities from all its regions, not only the cortical surface. Thus, fMRI is a pow-

erful tool with which to record small electrical signals from the deep brain areas. However,

the disadvantages of the fMRI are its low temporal resolution and indirect measurements

of the brain’s electrical signals, where such signals are recorded during the changes of the

blood oxygen level over time.

Recently, many authors have considered the incorporation of two techniques; EEG and

fMRI in order to improve the temporal-spatial resolutions. That is, the brain is scanned

simultaneously with EEG recording. For instance, Goldman et al. [2002] and Laufs et

al. [2003] have investigated the behaviour of the alpha rhythm [ 8, 12] Hz in normal

subjects during eyes-closed rest. They mapped the brain regions where the α-wave power

changes as the MRI signals change.

Electrical activities of the brain produced by different techniques, are performed as

sequences of observations over time called time series. The analysis of these time series

has been carried out in many literatures with respect to time and frequency domains.

For the spectral analysis, the times series are first transformed from their original time

domain into frequency domain using the Fourier transform. Fourier transform is used

to map functions in state space into functions in a frequency space. The fast Fourier

algorithms are applied to compute the Fourier transform coefficients. The application of

the fast Fourier algorithms conserves the time and effort required to carry out the massive

computations (see, Cooley and Tuckey [1965], Cooly et al. [1967], Bergland ( [1967], [1968]),

Gentleman and Sande [1966]).

The Power spectrum is a fundamental part of the spectral analysis and represents the

energy contained in the signal and how this energy is distributed with respect to frequency.

Several methods have been developed to estimate the power spectra and cross-spectra
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of multi-channel data. These methods can be classified into two types: a parametric

approach performed in the form of a“multivariate autoregressive model ( MVAR)”, and

a non-parametric approach, represented by “averaging periodograms across the adjacent

sections of the record”, a “smoothed periodogram of the entire record” and a “multi-taper

method”. The main concern of these methods is to estimate the spectra and cross-spectra

of the data of interest taking into account the natural dependence between these data.

Using the multivariate autoregressive model means imposing the data to fit this model.

Then the MVAR parameters are estimated to extract the spectral properties of these

data. To estimate the multivariate autoregressive parameters we will use the method

of maximum likelihood, which provides identical parameter estimates to those obtained

by the Yule-Walker approach. However, owing to the ability of the maximum likelihood

approach to determine the standard error of the parameter estimates, it is preferred. The

standard error is used as a statistical test of the null hypothesis that, the coefficients of the

multivariate autoregressive model of order p are significantly zero. Moreover, the accuracy

of the multivariate autoregressive model to fit the data depends on the determination of

the model order p which represents the number of the past observations used to predict

the current observations. Anderson et al. [1998] applied the multivariate autoregressive

model for EEG data to derive properties from the human EEG records when the subject

was performing physical and mental tasks. The multivariate autoregressive model was

proposed for the fMRI multi-subjects by Harrison et al. [2003] in order to investigate

the connectivity between the fMRI signals. Many authors have applied the multivariate

autoregressive model to obtain the spectral properties of the EEG signals (Bressler et

al. [1999], Moller et al. [2001], Ding et al. [2000]). See also (Percival and Walden [1993],

Cryer and Chan [2008] ).

Since the periodogram is a natural estimate of the power spectrum, the first two non-

parametric spectral estimates are developed to smooth the periodogram. The method

of averaging peridograms across contiguous segments of the single record, also known as

a disjoint sections method, was firstly proposed by Bartlett [1948]. In this method, the

data is segmented into a number of sections, namely L, each of which contains the same

number of data, say N , such that the whole length of the data T equals the product of

the number of segments L and the sample size N . The periodogram for each segment

is computed at every frequency in the spectral domain and hence, the estimate of the

spectrum at a specific frequency is obtained by averaging the L periodograms together at
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that frequency. Welch [1967] modified this method to involve overlapped segments in an

attempt to reduce the bias error that stemmed from finite data ( See also, Brillinger [1981],

Amjad et al. [1997] and Barbé et al. [2010]). This spectral estimation algorithm is suitable

when large numbers of data are available. However, increasing the size of the sub-samples

reduces the bias error, improves the frequency resolution and attenuates the spectral side

lobe leakage, but at the same time the risk of variability error is increased.

The smoothed periodogram procedure, which is also called a frequency average, is

based on the fact that the variation of the power spectra in the relatively small band of

frequency is small, so that the estimated power spectrum for each signal is achieved by

taking the average of the periodograms over a small band of frequency around a specific

frequency. This means every periodogram at a frequency lying within this small band

represents an estimate of the power spectrum at the frequency at the centre of the band.

In this method the variance error of the estimate is reduced while the number of the

frequency ordinates is increased. However, the increment of the frequency ordinates has

to be bounded by the sample size, that is the number of frequency ordinates must be less

than the length of data (see, Brillinger [1981], Bloomfield [2000], Cryer and Chan [2008] ).

The multi-taper method invented by Thomson [1982], plays an important role in esti-

mating the power spectra by reducing the estimation variance and attenuating the spectral

leakage due to the finite length of the data. These tapers are known as Slepian functions

or Discrete Prolate Slepian Sequences (DPSS) (Slepian [1978]). In this method, the data

is weighted by a number of orthogonal tapers prior to being transformed into the spectral

domain by using the finite Fourier transform. Thereafter, the estimated power spectrum

for each taper is computed and the multi-taper estimate of the power spectrum is cap-

tured by averaging the estimated power spectrum for all applied tapers (see, Percival and

Walden [1993]).

The interrelation between a pair of processes within a dynamic neural network of

stationary time series is captured by applying the ordinary coherence. Coherence is a

real-valued function of frequency based on the coefficients of spectra and cross-spectra.

Coherence measures the strength of correlation between a pair of processes and can be con-

ditioned to take into account the influences of the other processes. The value of coherence

ranges between one, which indicates perfect correlation, and zero, which indicates inco-

herent relation between these processes (see, Brillinger [1981], Bendat and Piersol [1986],

Halliday et al. [1995]).
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Furthermore, the determination of the information flow between stationary processes

during the interactions is also one of the important concepts in time series analysis.

Wiener [1956] was the first to realise the existence of causal relations between differ-

ent time series and suggested that, for two simultaneously observed time series, one can

be called causal to the other if the predictability of the second time series is improved

by incorporating information from the first. This concept of causality was formalised by

Granger [1969] in the context of the linear regression models of stochastic process the-

ory. Granger argues that if the variance of the prediction of the second time series at the

current time is reduced by involving past records from the first time series in the linear re-

gression model, then the first time series can be called G-causal for the second time series.

Geweke [1982] constructed the measures of linear dependence and feedback between mul-

tivariate autoregressive processes in frequency space, thereby making the interpretation of

Granger causality more straightforward.

The concept of Granger causality has attracted researchers from various disciplines,

and in particular the ideas have been used widely in Economics. Thereafter, there has

been a growing interest in the use of G-causality to identify causal interactions within

networks of stationary time series in various fields. In Engineering, Caines and Chan [1975]

investigated the feedback between input and output variables. Their measures of causality

were consistently presented in the spectral domain and have been subsequently adopted

by researchers in other fields.

Causal measures have been applied in Neurology since the beginning of the 1980s in

order to understand the mechanism of neuron connectivity and identify the direction of

interaction between multivariate time series. Saito and Harashima [1981] and Kamitake

et al. [1984] presented the method of directed coherence (DC) to demonstrate the relation

between a pair of data channels described by a bivariate autoregressive model. There-

after various methods have been developed to specify the direction of interaction between

pairs of processes within the dynamic system in the frequency domain. Kaminski and Bli-

nowska [1991], Baccalá and Sameshima [1998] and Baccalá et al. [1998] have developed a

method, after referred to as the directed transfer function (DTF), for calculating directed

coherence in multichannel systems modulated by the multivariate autoregressive model

framework. Wang and Takigawa [1992] used directed coherence to describe the direction

of information flow of the EEG signals between the two hemispheres of the brain in the

frequency domain. They found that the directed coherences of the right-left direction
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in the parietal and occipital lobes were greater than the directed coherences of the left-

right direction. Bernasconi and König [1999] applied Geweke’s spectral measures to detect

causal influences among different areas in the cat visual cortex.

Brovelli et al. [2004] used Granger causality to investigate the functional relationship

between neuronal activity in the precentral and postcentral areas of the brains of two

monkeys as each pressed a hand lever during the wait period of a visual discrimination task.

The partial directed coherence (PDC) was introduced by Baccalá and Sameshima [2001]

as a frequency approach to investigate the direction of information transmission among

multivariate autoregressive models. Schelter et al. [2005] proposed a statistical significance

level for non-zero partial directed coherence at a specific frequency. Mima et al. [2001]

applied the directed transfer function to the electroencephalogram-electromyogram (EEG-

EMG), where EMG reflects the muscles activities, in order to determine the information

flow between EEG and EMG signals. They found that the DTF of EEG→EMG was

greater than DTF of EMG→EEG.

Takigawa et al. [1996] debated the two directional influences between the frontal and

the occipital lobes in the EEGs of healthy and epileptic subjects using directed coherence.

They found that the dominant direction of information flow in the healthy control subject’s

EEG was the occipital-frontal direction. Also, they found that the high values of directed

coherence occurred in the α band. The values of the directed coherences of the EEG

belonged to the epileptic patient were significantly small when compared with those of

the healthy control, and spread over δ-, θ- and β-bands, where δ, θ, α, β, and γ are

the waves that EEG is classified into, and they will be discussed in Chapter 2. Sato et

al. [2009] introduced the application of the partial directed coherence for the fMRI data

to identify the causal relations between the fMRI signals and determine the information

flow direction.

The purpose of this work is to compare the spectral analysis methods of short duration

time series of EEG signals belonging to a right-handed focal epileptic patient. The elec-

trical activities of the brain due to the interaction between its various regions, including

frontal, central, parietal, occipital and temporal, are described by EEG signals recorded

from the scalp. This study investigates the correlations between the neural processes col-

lected from the left hemisphere. Since each region of the brain is responsible for a special

function, we will choose one process to act as a representative process for that area. We

will estimate the spectra and the cross-spectra of the chosen processes using a multivariate
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autoregressive model as a parametric approach, where the data are forced to fit this model,

using a disjoint sections method, a frequency averaging estimate and finally a multi-taper

method. Once the coherence coefficients are estimated, the associations between each pair

of chosen processes will be estimated. The partial coherence, which measures a linear

relation between two stationary processes after removing the linear influence or influences

of one or more processes, is employed to determine the correlation depth. The structure

of these processes will be built up by applying the partial directed coherence, which is

calculated from the estimated parameters of the MVAR model.

In this work, we will also carry out a statistical test of an independence property of

coherences of finite uncorrelated samples of two independent stationary stochastic pro-

cesses, as well as the independence relation between coherences and frequencies using the

maximum likelihood principle.

This work is arranged as follows:

- Chapter two: This chapter gives a description of the electroencephalogram and

describes the procedure of collecting these data from the scalp. In addition, we

explain the important statistical and mathematical properties of the data. Since the

data we will use in this research belongs to an epileptic patient, we give a general

view of this brain disorder (epilepsy) and describe the different types of epilepsy and

their symptoms.

- Chapter three: This chapter involves the definition and properties of the Fourier

transform of signals and stochastic processes. In addition, we provide three non-

parametric procedures to estimate the spectral density: an averaging periodograms

across adjacent segments of single records method; a smoothed periodogram of the

entire single record method; and, a multi-taper method. The statistical properties

of these methods are demonstrated.

- Chapter four : In this chapter we provide the theoretical definitions of coherence

and partial coherence, and explain the conditional spectra and cross-spectra. The

procedure of estimating ordinary and partial coherences directly from data is de-

scribed. The multivariate autoregressive model and the methods of estimating its

parameters such as the Yule-Walker and maximum likelihood methods are also de-

scribed. The partial directed coherence for multivariate system and its statistical

significance level are defined here.
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- Chapter five: In this chapter we provide a statistical test of the significant inde-

pendence feature of coherences, which are detected between finite samples of uncor-

related stationary stochastic processes, and the independence property of coherences

and frequencies. The maximum likelihood principle is used to examine how likely

it is that the observed data fit likelihood function under the null hypothesis that

the coherences of finite samples of independent stationary processes are significantly

independent and coherences and frequencies are significantly independent.

- Chapter six: In this chapter we include the spectral analysis and results based on

the spectral estimators mentioned in Chapter 3 and draw comparisons between these

different methods.

- Chapter seven: This chapter concludes the work and provides ideas for future

research.

Results included in this work have been produced by C programming and graphs have

been plotted using MATLAB software.



Chapter 2

EEG Data Description

2.1 Introduction

The EEG data plays a crucial role in detecting and diagnosing brain abnormality and it has

been employed intensively in various applications either for clinical or research purposes.

This work investigates the connectivity among processes of a neural network and will use

data consisting of brain signals belong to an epileptic patient as input for mathematical

and statistical analyses. Since the neurons are the generators of the EEG signals, we will

give a brief description of the neuron structure and the mechanism of generating EEG

signals. We will give a description of the technical method used to collect EEG data from

the scalp and present a general view of the brain regions and their basic functions. Also,

we will define the EEG signal and explain its properties, such as amplitude and frequency

bands. The epileptic activity is described and the most common types of epilepsy will

be explained along with their symptoms. The statistical properties of the signal, such as

its amplitude, mean and variance, will also be explained. Finally, the assumption of the

stationarity and the mixing condition will be demonstrated.

2.2 Neuron Structures

Central nerves system (CNS) essentially consists of nerve cells or neurones that are imbed-

ded in glia cells. Neurones play an important role in transmitting electrical signals and

information to the CNS, while glia cells provide support, protection and supply nutrients

to neurones. (See, Niedermeyer and Lopes Da Silva [2005]).

Basically, the neuron consists of a body (soma) in which a nucleolus is located, axon

10
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and dendrites, as shown in figure (2.1). Axon is a long fibre extends from the body,

and covered by fat membrane, called myelin sheath. Dendrites are short structures that

branch off from the cell body forming small neurones. Axons and dendrites are considered

as two different types of processes, which provide contact with and pass signals to different

targets, either organs or other neurones. The nerve cells are covered with thousand of small

structures, known as synapses, which are other mean of contact that pass signals.

Functionally, dendrites serve as receptors that receive and carry signals to the body

of the neuron, while axon serves as a transmitter that carry signals away from the body

toward other targets. Synapses are essential to pass signals to targets. At a synapse,

the plasma membrane of the target is called postsynaptic terminal, while the plasma

membrane of the neuron is called presynaptic terminal. These two synaptic terminals are

connected by ionic channels.

Figure 2.1: Neuron structure ( Niedermeyer and Lopes Da Silva [2005]).

2.3 Generation and Propagation of Action Potentials

Neuron, likes all cells in our bodies, maintains a voltage across its membrane. The potential

inside the neuron cell is about -70 µV, which means that the intracellular space is negatively

charged relative to the extracellular space. This potential is subject to vary when the

neuron is stimulated. Fluctuation of the neuron membrane potential gives rise to flow of
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electrical current by synaptic activities.

At rest, the neuron cell membrane is selective to certain ions in order to maintain its

potential. As soon as the cell body is stimulated, ion channels in synapses junctions begin

to open, causing a flow of positive ions into the cell. Once the potential inside the cell

reaches its threshold, around +40 µV, an action potential travels along the axon.

An excitatory postsynaptic potential (EPSP) occurs in the target neuron, if the action

potential ends in an excitatory synapse. In this case, the current flows to the following

neurones, hence propagates to the target. An inhibitory postsynaptic potential (IPSP)

occurs, if the action potential ends in an inhibitory synapse. Therefore, hyperpolarization

, a decrease of the intracellular potential relative to the extracellular potential, takes place

due to an outflow of positive ions from the neuron cell.

2.4 Electroencephalogram (EEG) signal

The electroencephalogram (EEG) is a record of fluctuations of electrical activity produced

by the firing of neurons within the brain. The brain itself consists of billions of neurons

making up a large complex neural network. This record can be taken from the head using

two different procedures either scalp or intracranial. In the former the electrical activity

of the brain is recorded on the surface of the scalp by using small metal discs, called

electrodes, with a conductive gel or paste to ensure good mechanical and electrical contact.

The intracranial method of recording the EEG signals depends on special electrodes being

implanted in the brain during surgery to record special kinds of EEG signal. In order to

provide accurate detection of the potential electrical activity of the brain, the electrodes

must be of impedance less than 5 kΩ (Adeli et al. [2003]). EEG has various applications

either for research purposes, such as distinguishing the different sleep stages, or for medical

purpose to diagnose brain disfunction such as epilepsy.

2.5 Description of Scalp EEG recording

In the scalp EEG recording, the brain’s electrical activities are recorded from the scalp by

placing electrodes, each of which is attached to an individual wire connected to an EEG

amplifier that measures the voltage differences between two points on the scalp. Con-

sequently, each channel is connected to two electrodes one of which is considered to be

identical to all channels and is called the system reference electrode. An amplifier am-
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plifies the voltage between the active electrode and the reference electrode typically by a

factor from 103 to 105. The analog signal carried by each electrode then passes through

three filters before being digitized for computer storage and processed via an analog-digital

converter. These filters are a high-pass filter, a low-pass filter and a notch filter. The high-

pass filter is set to (0.5 -1 Hz) in order to filter out all the low-frequency noise, whereas

the low-pass filter allows passing for high frequency ranging between (35-70 Hz) and cuts

off all the higher frequency. The notch filter is used to remove the noise caused by the

electrical power lines at the main frequency of 50 Hz or 60 Hz.

In order to understand the mechanism of the EEG recordings and how the electrode lo-

cations and names have been chosen, it will be useful to have a close look at the brain.

Anatomically, the brain consists of two similar hemispheres. Each hemisphere is responsi-

ble for sensory and motor processes on the contralateral side of the body. In other words,

the sensory information coming from the left side of the body crosses over to the right side

of the nervous system ( and of course to the brain) and vice versa. Similarly, the motor

cortex in one hemisphere controls the movements of the opposite side of the body. Each

hemisphere of the brain is divided functionally into four significant lobes: frontal lobe,

parietal lobe, temporal lobe and occipital lobe ( Kandel et al. [1995]).

2.6 Anatomical Brain regions

1- The frontal lobe is largely concerned with planning and movement. This lobe involves

the motor cortex, which lies in the back of the frontal lobe and controls the movement

of the limbs and trunk. The Broca’s area (or language area ), which is located in

the left frontal lobe, controls the muscles of the mouth involved in the production of

speech.

2- The parietal lobe is the segment of the brain that lies behind the frontal lobe and

contains the somatic sensory cortex, which is located in front of the parietal lobe

just behind the motor cortex in the frontal lobe. This lobe is responsible for feeling

touch sensation from the body. The top of the sensory cortex is concerned with the

bottom of the body, while the bottom of the cortex is responsible for the top of the

body.

3- The occipital lobe is the smallest portion of the brain and is located in the back of
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the head just behind the parietal and temporal lobes. This lobe involves the vision

area, which helps in the visual recognition of shapes and colours. Damage to this

area of the brain can cause blindness.

4- The temporal lobe is responsible for audition, learning, memory and emotion. Also,

the left temporal lobe contains the Wernicke’s area, which is concerned with inter-

preting the written and spoken language.

Moreover, there are three association areas concerned with integrating information for sig-

nificant action. They are all involved, to varying degrees, in the control of the three major

functions of the brain, namely perception, movement and motivation. The prefrontal as-

sociation cortex occupies most of the rostral part of the frontal lobe and is responsible for

planning voluntary movement. The parietal-temporal-occipital cortex is located in

the interface between the three lobes and controls the higher perceptual functions related

to somatic sensation, such as hearing and vision. Information from these different lobes

combine in the association cortex to form complex perceptions. The limbic association

cortex is found in the medial and inferior surfaces of the cerebral hemispheres, in por-

tions of the parietal, frontal and temporal lobes, and is mainly responsible for motivation,

emotion and memory. These lobes and their functions are displayed in figure (2.2)

Figure 2.2: Brain lobes and their functions
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2.7 Electrode position and nomenclature

Electrodes names and positions are specified by the International 10-20 system proposed

by Jasper [1958], which depends on a proportional measurement strategy to be applicable

for differences in head size and shape. This system consists of 19 recording electrodes as

well as the ground and system reference.

The location of electrodes is based on the landmarks of the skull, namely nasian(Nz),

which is a dent at the upper root of the nose; inion(Iz), which is an external occipital

protuberance; the left pre-auricular (LPA); and, the right pre-auricular (RPA). The main

coronal contour between LPA and RPA intersects with the main sagittal contour between

Nz and Iz at 50% of their lengths; this intersection point indicates the vertex of the skull.

The electrodes positioned along the main central coronal contour LPA-RPA are T3, C3,

Cz, C4, T4, located at 10% above the LPA, 20%, 20%, 20%, 20% and lastly 10% above the

RPA, respectively. The main sagittal contour Nz-Iz holds the electrode locations Pz, Cz

and Fz. The electrodes positioned in the first coronal contour, which is placed at a 10%

distance from the Nz between LPA and RLA, are FP1 and FP2. The second intermediate

coronal contour is placed at a 20% distance from both the first coronal contour and from

the central coronal contour, and holds the electrode positions F7, F3, Fz F4, F8. The

third intermediate coronal contour holds the electrode positions T5, P3, Pz, P4, T4 and

is located at a 20% distance from both the central coronal contour and from the fourth

coronal contour of the electrode positions O1 and O2. This, in turn, is placed at a 20%

distance from the last contour, which is located at a10% distance from the Iz ( Vernon

et al. [1993]). Each electrode site is characterised by a letter and a number. The letters

indicate the corresponding brain lobe, where F stands for frontal lobe, T for temporal lobe,

P for parietal lobe, O for occipital lobe, C indicates the central area of the skull as there is

no central lobe but it is named for nomenclature purposes, and ’z’ refers to the electrode

located on the main sagittal contour (midline). The numbers indicate the hemisphere,

where odd numbers applying to the left hemisphere and even numbers applying to the

right hemisphere.

However, the rapid development of topographic methods to study spontaneous and evoked

potentials and improvements of multi-channel EEG hardware systems, has necessitated

the standardisation of a large number of channels. Hence, in 1985 the International 10-20

system was modified to involve 74 electrodes instead of 21 electrodes by Chatrian et al.
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( [1985] , [1985]). This extended 10-20 system is called the10-10 system or 10% system of

electrode placements. In the extended 10-20 system the positions of the extra electrodes

were designated to be placed on the coronal contours and sagittal contours lying halfway

between the standard coronal and sagittal contours. This means that the coronal contour

AF lies halfway between coronal contours FP and F; the coronal contour FC lies between

contours F and C; the coronal contour CP between contours C and P; and the coronal

contour PO lies between contours P and O. The sagittal contours hold numbers 1 and 5 lie

halfway between z and 3, and between 3 and 7 respectively and the sagittal contour holds

number 7 locates halfway between the contours 5 and 9. The right hemisphere sagittal

contours have the same structures as the left contours. Consequently, the main sagittal

contour Nz-Iz is divided in a 10% increments to generate the electrode positions FPz,

AFz, Fz, FCz, Cz, CPz POz and Oz, and the main coronal contour LPA-RPA holds the

equispaced electrode locations T9, T7, C5, C3, C1, Cz, C2, C4, C6, T8, T10.

For consistency the extended 10-20 system replaces the electrode names T3/ T4 by T7/T8

and T5/ T6 by P7/P8. All electrode positions along the same sagittal contour have the

same postscript number, except FP1/ FP2 and O1/O2 and all electrode locations on the

same coronal contour have the same letter(s). Electrode positions combining two letters

indicate the position in the intermediate area, that is, FP means the fronto-polar position,

AF means the anterior-frontal electrode position, FC indicates the fronto-central position,

FT indicates the pronto-temporal position, CP is the centro-parietal location, TP is the

temporal-posterior electrode position, and PO designates the parieto-occipital region. (

See, American Electroencephalographic Society [1994], Nuwer [1987], Nuwer et al. [1998],

Klem et al. [1999]).

However, modifications to the standard 10-20 international system have been continued by

researchers in order to increase the resolution of EEG channels by increasing the number

of electrode settings. Currently 128 EEG channel systems and 256 EEG channel systems

are commercially available ( see, Suarez et al. [2000]). Recently, Oostenveld and Praam-

stra [2001] presented their modification of the 10% system, known as the 5% system, which

accommodates 345 channels and have proposed the nomenclature of the new electrode po-

sitions ( see, Jurcak et al. [2007]). Figure (2.3) illustrates the extended 10-20 international

system or the 10% system of the electrodes names and placements.
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Figure 2.3: Modified 10-20 international system of EEG electrodes names and places

The approximate placements of the electrodes beneath the skull according to the mod-

ified 10-20 international system are displayed in figure (2.4).

Figure 2.4: Electrodes positions in the left hemisphere of the brain
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2.8 Frequency bands and amplitude of the EEG signal

2.8.1 Frequency bands

The EEG has a wide range of frequency components which may relate to different physi-

ological processes. However, the range of clinical and physiological interests lies between

0.5Hz and 30Hz. This range is approximately classified into a number of frequency bands

as follows ( see, Pfurtscheller and Lopes da Silva [1999], Adeli et al. [2003], Hema et

al. [2009]).

Delta: The δ- rhythm is known as the slowest wave ranging between 0.5Hz and 4Hz and

possesses the highest amplitude compared with the other EEG’s waves. It appears nor-

mally in adults and babies during deep sleep stages and indicates the slow brain activities.

Theta: θ- rhythms lie within the range (4-8) Hz and are found normally in children during

sleep or in adults during drowsiness. Theta waves can also appear in small amounts in

the normal waking adult. The existence of high theta activity in awake adults represents

abnormal activity.

Alpha: α- rhythms lie within the range of frequencies (8-13) Hz and have been thought

to indicate both a relaxed and mentally inactive awakeness. They appear strongly in the

occipital area. These waves can be eliminated by opening eyes, hearing unfamiliar sounds,

or by anxiety or mental concentration.

Beta: β-rhythms range between 13-30 Hz and appear mostly in the frontal area. A β-wave

is usually associated with active thinking, active attention, focus on the outside world or

solving concrete problems. It can reach frequencies near 50 Hz during intense mental ac-

tivity.

Gamma: γ- rhythms lie within the high band of frequencies greater than 30Hz. Gamma

rhythms are characterized by quite a wide range extending between 25Hz to 100Hz. The

first detection of gamma activity was in 1956 by Sem-Jacobsen and Kuchera [1956] who

pointed out that the gamma rhythms emerge in the depth of the cortex as a response

to a light flash, especially when the patient looked at a light. According to Takano and

Ogawa [1998], the gamma activity (35-45) Hz is correlated to informational processing

and cognitive functions, such as attention. These authors demonstrated that the gamma

band increases in the childhood between 3 and 4 years of age and then peaks at around
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4 to 5 years of age, especially in the frontal areas . Tsang et al. [2004] showed that there

is a significant increase in power within the gamma band (35-45) Hz, over the frontal and

occipital areas in response to pulsed magnetic fields. The gamma wave around 40Hz oc-

curs as a response to auditory stimuli (Jokeit and Makig [1994]), Funk and Epstein [2004]

suggest that this may reflect the binding of various information and coordinating of sen-

sory and motor cortices activities. Niedermeyer [2003] reported that the gamma activity

within the range (40-80) Hz is apparently observed during arousal and may well be related

to consciousness.

2.8.2 Amplitude

The EEG amplitudes typically vary between 20 to 100 µV and are attenuated by the skull

and scalp. In general the EEG amplitude is inversely dependent on frequency, so that the

amplitude of the wave increases as the frequency decreases ( see, Pfurtscheller and Lopes

da Silva [1999]). For instance, the δ-rhythm, associated with the lowest band of frequency

(0.5-4) Hz in EEG, is classified as the highest amplitude wave. Also the θ-rhythm with

frequency band (8-13) Hz, has a larger amplitude than the β-rhythm, which is associated

with the frequency band (13-30) Hz, and so on.

2.9 Epilepsy

Epilepsy is a common chronic neurological disorder characterized by recurrent, unprovoked

seizures. These seizures are caused when a large collection of neurons discharge in abnormal

synchrony. There are two essential types of epileptic seizures, which are classified according

to the degree of the seizures, that is whether the seizure appears in a restricted part of

the brain in one hemisphere (focal epilepsy) or arises in both hemispheres simultaneously

(generalized epilepsy), (see, Kandel et al. [1995], Shorvon et al. [2009]).

2.9.1 Partial or focal epilepsy

Partial epilepsy has been divided into three groups, based on whether the consciousness

is impaired or if the seizure develops into generalized epilepsy as the abnormal activity

spreads to the other hemisphere. These three groups are called simple partial, complex

partial and partial secondary-generalized. The focal seizure is presented as a sharp spike

of electrical activity, called an EEG spike.
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Simple partial

A patient experiencing a simple partial seizure is still fully conscious. The seizure symp-

toms depend on the region of the brain where the epileptic seizure takes place. For example,

if the partial seizure originates in the visual or auditory cortex, it will result in visual and

auditory hallucinations respectively. However, there are some commonly observed sen-

sory and physical symptoms that the patient may demonstrate during the seizure, such

as a feeling of fear or extreme terror, where the patient may run to escape or try to find

assistance; a feeling of extreme pleasure or fun; an enhanced sense of taste or smell; a

numbness and tingling in a part of the body, involuntary twitching of the striated muscles

of the body or jerky movement. If the abnormal activity attacks the speech center it will

lead to vocalizing or repeating items of speech. This phenomenon of ictal repetition of the

syllables or phrases is called “epileptic palilalai”( see, Shorvon et al. [2009]).

Complex partial seizures

Complex partial seizures are characterized by impairment or full loss of consciousness, as

the epileptic activity affects a larger part of the brain and often lasts longer than other

types of epileptic seizures. The common symptoms associated with this type of epilepsy

include, a chewing or swallowing movement; a feeling of fear; a wandering around in a

confused way; walking often in circles (cursive seizures), categorized as “ambulatory”;

picking at or fumbling with garments (gestural automatisms); and, vocalizing or repeating

items of speech.

Secondary-generalized seizures

These kind of seizures starts either a simple or complex partial seizure, then develops into

a generalized seizure when the abnormal activity extends into the other hemisphere and

consciousness is lost. The most common types of focal epilepsy are Temporal lobe epilepsy,

where the seizures arise in one or both temporal lobes of the brain, and, Frontal lobe

epilepsy, when epileptic activities occur in one or both frontal lobes of the brain, often

while the patient is sleeping. The seizures of these two widespread types of epilepsy can

be either simple or complex partial.
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2.9.2 Generalized epilepsy

Generalized seizures happen when the epileptic discharges affect both hemispheres simul-

taneously and consciousness is lost. The generalized seizures involve six major types of

seizure: absence seizures or “petit mal ”; myoclonic seizures; clonic seizures; tonic seizures;

tonic-clonic seizures or “grand mal ”; and atonic seizures ( see, Shorvon et al. [2009]). Gen-

eralized seizures present as EEG traces over all electrodes.

Absence seizures

Absence seizures, also known as “petit mal ”, begin in childhood or adolescence, but

may persist into adulthood. They are brief episodes of lost consciousness and often last

less than 20 seconds. Absence seizures are usually accompanied with facial automatisms,

specifically repetitive blinking, but they do not involve involuntary jerking movements.

Myoclonic seizures

Myoclonic seizures are abrupt, brief arrhythmic, involuntary jerking movements that may

last less than a second, but often cluster within a few minutes. If the myoclonic seizures

evolve into rhythmic jerking movements, they are classified as clonic seizures.

Clonic seizures

Clonic seizures are characterized by rhythmic repetitive jerking movements. Each single

clonic movement consists of a rapid contraction followed by a slower relaxation.

Tonic seizures

This type of seizure, which is characterized by a loss of consciousness and rigid, violent

muscular spasms with posturing axial and limb muscular, typically last less than 30 sec-

onds.

Tonic-Clonic seizures

Tonic-Clonic seizures were previously referred to as “grand mal”seizures and consist of

two stages; a Tonic phase followed by a Clonic phase. Conventionally, these seizures

are characterized by a loss of consciousness and, either a sudden fall or dramatic violent,

involuntary jerking and muscular spasm of the limbs and the body.
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Atonic seizures

Atonic seizures are characterized by a reduction or loss of postural tone, which causes a

so-called drop attacks, whereby the patient falls or slumps to the ground. .

2.10 Statistical properties

In this section we will demonstrate some of the most important statistical terminologies

that are needed to analyse EEG signals.

2.10.1 Time series

A time series is a series of observations made over a period of time. The observations

are typically enumerated in the format Xt1 , Xt2 , · · · , where X may be a scalar-valued

function of time (univariate process), or a vector-valued function of time (multivariate

process). Our interest here involves the latter in which X is taken to be a column vector

of dimension T . In practice, observations of a time series are taken at uniformly spaced

intervals, say ∆t, and Xt conventionally denotes the observation taken at time t, Xt−1 is

the observation taken at time t−∆t and so on with Xt−k denoting the observation taken

at time t−k∆t. Time series models are classified in terms of the number of lags contained

in their specification. A model containing Xt, Xt−1, · · · , Xt−p is said to contain p lags (see,

Brillinger [1981], Rooss [1983]).

2.10.2 Stochastic Processes

The first step in the analysis of time series is the selection of a suitable mathematical

model for the data. The time series {xk(t), t ∈ To , k = 1, 2, · · · , T} is the realization of the

family of random variables {Xt, t ∈ To}. These considerations suggest modelling the data

as a realization (or part of a realization) of a stochastic process {Xt, t ∈ T}, where T is a

set of time points, very often 0,±1,±2, · · ·, and To ⊆ T . In the following section we shall

define precisely the stochastic process and its realization (Brockwell and Davis [1991]).

Definition (Stochastic Process) A stochastic process X = {Xt|t ∈ T} is a family of

random variables. That is, for each t in the index set T , Xt is a random variable, hence it

has an associated cumulative distribution function (cdf) given by

Ft(a) = Prob(Xt ≤ a)
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Definition (Realization of a Stochastic Process).

The functions {X(t), t ∈ To} on T are known as a realization or sample-path of the

process or the time series X.

An EEG signal considered as a time series (stochastic processes) is characterised by the

statistical properties that facilitate its analysis and physical interpreting. The most com-

mon statistical properties that are employed intensively in the time series analysis are:

amplitude, sample mean, variance, autocorrelation and cross-correlation.

2.10.3 Amplitude

Let X, be a time series and let A denote the amplitude of X, then A can be defined as an

absolute value of the X and be written as

A = |X| . (2.1)

2.10.4 Sample mean

The sample mean at a specific time, say t, is usually denoted by µ(t) and represents

the central tendency of the data in the stochastic process at that specific time t. It

can be estimated simply by taking the instantaneous value of each sample, summing the

values and then dividing by the number of samples( see, Brillinger [1981], Bendat and

Pirsol [1986], Percival and Walden [1993]). Suppose we have a time series X, with samples

x1(t), x2(t), · · · , xT (t), then the mean value of the time series X at the time t is obtained

from the formula

µX(t) =
1

T

T∑
k=1

xk(t). (2.2)

This definition considers the mean value as a function of time; hence the mean values at

two different times may be different, i.e.

µX(t1) 6= µX(t2) if t1 6= t2 . (2.3)

2.10.5 Variance estimate

The variance of the stochastic process X at time t, denoted by σ2
X(t), measures the dis-

persion of data around the mean value of the sample and can easily be estimated by

computing the average of the squares of the instantaneous data values after subtracting

the mean value estimate ( see, Brillinger [1981], Bendat and Pirsol [1986], Percival and
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Walden [1993]). Consequently, the variance can be written as

σ2
X(t) =

1

T − 1

T∑
k=1

[
xk(t)− µX(t)

]2
, (2.4)

or equivalently, the variance can be expressed as

σ2
X(t) = E

[
(Xt − µX(t)

)2]
, (2.5)

where E denotes the expectation operator. Thus the variance, in this case, depends on

time, so that when the time changes the variance changes as well. Consequently, for

t1 6= t2, the variances σ2
X(t1) and σ2

X(t2) need not be equal, i.e.

σ2
X(t1) 6= σ2

X(t2) if t1 6= t2 . (2.6)

2.10.6 Autocorrelation function

The autocorrelation function (ACF) is a linear relationship which measures the interde-

pendency between samples of time series at different times. The autocorrelation of the

stochastic process X at the two times t1 and t2 is denoted by rXX(t1, t2) and defined by

rXX(t1, t2) =
CXX(t1, t2)[

σ2
X(t1)σ2

X(t2)
]1/2

,
(2.7)

where CXX(.) denotes the auto-covariance function of the stochastic process X at two

different times t1, t2, which can be expressed as

CXX(t1, t2) = E
[(
Xt1 − µX(t1)

)(
Xt2 − µX(t2)

)]
, (2.8)

where E denotes the expectation operator, and σ2
X(.) represents the variance of the process

X at the required time. The values of the correlation coefficient rXX(.) range between -1

and +1, where -1 indicates anti-correlation in which the value of Xt2 decreases as the value

of Xt1 increases, while +1 denotes positive correlation when the value of Xt2 increases

rapidly as the value of Xt1 increases. The zero value of the auto-correlation represent

the independence between the components of the process. In practice, rXX(.) is called

the sample estimate of the autocorrelation coefficient of the population autocorrelation,

which is denoted by ρXX ( see, Brillinger [1981], Bendat and Pirsol [1986], Percival and

Walden [1993]).
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2.10.7 Cross-correlation function

The cross-correlation function between two stochastic processes X and Y , where t =

±1,±2, · · · , is denoted by rXY at the time (t1, t2) and can be defined in terms of the

variances σ2
X(t1) and σ2

Y (t2) of the time series X and Y respectively, and the covariance

CXY between the processes X and Y at the time (t1, t2) ( see, Brillinger [1981], Bendat

and Pirsol [1986]), Percival and Walden [1993]) . Thus rXY (t1, t2) takes the form

rXY (t1, t2) =
CXY (t1, t2)[

σ2
X(t1)σ2

Y (t2)
]1/2

,
(2.9)

where the covariance between the processes X and Y can be calculated from the formula

CXY (t1, t2) = E
[(
Xt1 − µX(t1)

)(
Yt2 − µY (t2)

)]
, (2.10)

where the values of the correlation rXY (t1, t2) lie within the interval [-1, 1]. Therefore, the

two stochastic processes X and Y are said to be uncorrelated if the values of correlation

are zero, that is rXY (t1, t2) = 0.

2.10.8 Stationarity

The stochastic processX is called a stationary process or (strictly stationary or strongly

stationary process) if the cumulative function of the joint distribution of X at times,

t1 + s, t2 + s, · · · , tk + s contained in the index set T , does not vary with respect to s also

contained in the index set for all t1, t2, · · · , tk and for all k ≥ 1 (see, Brillinger [1981], Ben-

dat and Pirsol [1986], Percival and Walden [1993]). In other words, the stochastic process

X is said to be a stationary process if the cumulative function of the joint distribution of

X is independent of a shift in time

Ft1+s,t2+s+··· ,tk+s

(
Xt1 , Xt2 , · · · , Xtk

)
= Ft1,t2,··· ,tk

(
Xt1 , Xt2 · · · , Xtk

)
In addition, all the moments of the strictly stationary process X are independent of time.

However, the weak or wide-sense stationary Process is the second most common

type of stationarity, as it only requires its first and second orders of moments (mean

and covariance) to be independent of time. That is, for all k ≥ 1, for all t1, t2, · · · , tk
contained in the index set, for any s such that t1 + s, t2 + s, · · · , tk + s are contained

in the index set, all the joint first and second order moments of Xt1 , Xt2 , · · · , Xtk , exist

and equal the corresponding joint moments associated with Xt1+s, Xt2+s, · · · , Xtk+s. We

note that the strictly stationary process is a weakly stationary process. To simplify, we
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will use the expression “stationary process” to indicate the wide-sense stationary process.

Thus, the statistical quantities that are defined in the foregoing sections will be redefined

for the stationary process. Consequently, the mean and the variance that are given in

equations (2.2) and (2.5) respectively, will take the new formulae that are associated with

the stationary process

E [Xt] = µX(t) = µX(t+ s) = µX ,

E [(Xt − µX)2] = σ2
X(t) = σ2

X(t+ s) = σ2
X .

(2.11)

The auto-covariance function CXX(.) of the stationary process X for arbitrary choices

t1 = t and t2 = t+ s can be expressed as

CXX(t, t+ s) = E
[(
Xt − µX(t)

)(
Xt+s − µX(t+ s)

)]
,

= E
[(
Xt − µX

)(
Xt+s − µX

)]
,

= E
[
XtXt+s

]
− µ2

X .

(2.12)

Hence, the auto-covariance function CXX(.) between members of the stationary process

X separated by s units, where the variable s is an integer and called a lag, represents the

ordinary variance of the stationary process X when s = 0. Similarly, the auto-covariance

function of the stationary process Y , denoted by CY Y (.) and given by

CY Y (t, t+ s) = E
[(
Yt − µY (t)

)(
Yt+s − µY (t+ s)

)]
,

= E
[(
Yt − µY

)(
Yt+s − µY

)]
,

= E
[
Yt Yt+s

]
− µ2

Y ,

(2.13)

also represents the ordinary variance of the stationary process Y , when the time difference

s takes the value zero. The cross-covariance function CXY (.) between the two stationary

processes X and Y for arbitrary choices t1 = t and t2 = t+ s, is given by

CXY (t, t+ s) = E
[(
Xt − µX(t)

)(
Yt+s − µY (t+ s)

)]
,

= E
[(
Xt − µX

)(
Yt+s − µY

)]
.

(2.14)

To simplify, the argument t + s of the auto- and cross-covariance functions, defined in

equations (2.12), (2.13) and (2.14) for stationary processes X and Y, can be replaced by s,

since these functions depend only on the time difference s and not on the time itself. The

auto-covariance functions CXX(s) and CY Y (s) are even real-valued functions, satisfying

the property

CτXX(s) = CXX(−s)

CτY Y (s) = CY Y (−s) ,
(2.15)
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where Aτ denotes the transpose of A. The cross-covariance function CXY (s) is neither

odd nor even, but satisfies the property

CτXY (s) = CXY (−s) . (2.16)

Property (2.16) can be proved as follows, by the definition

CXY (−s) = E
[(
Xt − µX

)(
Yt−s − µY

)]
. (2.17)

As mentioned above, the cross-covariance function CXY (s) is independent of time which

implies it will not vary with any time translation. We can therefore replace t wherever it

appears in equation (2.17) by t+ s before taking the expectation

CXY (−s) = E
[(
Xt+s − µX

)(
Y(t+s)−s − µY

)]
,

= E
[(
Yt − µY

)
(Xt+s − µX

)]
,

= CτXY (s) .

(2.18)

The relations in equation (2.15) are special cases of the relation (2.16) when X = Y .

Finally, the auto-correlation function rXX(.) of the stationary stochastic process X, can

be obtained by substituting the values of the variance and covariance from equations (2.11)

and (2.12) respectively, into the equation (2.7), thus

rXX(s) =
CXX(s)[
σ2
Xσ

2
X

]1/2
,

=
CXX(s)

σ2
X

.

(2.19)

Similarly, the cross-correlation function between the two stationary processes X and Y

can be obtained by substituting the values of the variances and covariance from equations

(2.11, 2) and (2.14) respectively into the equation (2.9). Thus

rXY (s) =
CXY (s)[
σ2
Xσ

2
Y

]1/2
,

=
CXY (s)[
σ2
Xσ

2
Y

]1/2
.

(2.20)

It is obvious from equations (2.19) and (2.20) that the auto- and cross-correlations for the

stationary stochastic processes X and Y , rXX(s), rY Y (s) and rXY (s), are invariant with

respect to time.
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2.10.9 Confidence interval of the ACF

In order to evaluate the accuracy of the estimated autocorrelation rXX it is convenient

to apply Fisher’s transform, tanh−1 to the rXX , since the variance of the transformed

correlation coefficient is given by the constant value ( see, Bendat and Piersol [1986]).

Hence, Fisher’s transform takes the form

z = tanh−1(rXX) =
1

2
log
[1 + rXX

1− rXX

]
, (2.21)

and the random variable z has an approximately normal distribution with mean µz and

variance σ2
z defined by

µz =
1

2
log
[1 + ρXX

1− ρXX

]
(2.22)

σ2
z =

1

T − 3
. (2.23)

The confidence interval of the statistically significant nonzero values of the estimated cor-

relation coefficients, which indicate the actual existence of the correlation, can be achieved

by testing the hypothesis that ρXX = 0, where a significant correlation is indicated if the

hypothesis is rejected. From equation (2.22) and (2.23), the sampling distribution of the

random variable z, given ρXX = 0, is a normal distribution with mean µz = 0 and variance

σ2
z = 1/(T −3). Consequently, the acceptance region for the hypothesis of zero correlation

at level α of significance is given by[
− zα/2 ≤

√
T − 3

2
log
[1 + ρXX

1− ρXX

]
≤ zα/2

]
, (2.24)

where z is a standardized normal variable. The values of the correlation that lie outside

this interval provide a proof of the statistical correlation at the level α of significance.

2.10.10 Mixing Condition

The mixing condition of the stationary stochastic process X = {Xt; t ∈ T} can be defined

as a short span of dependence between its elements ( see, Brillinger [1981]). That is, if Xt

and Xt+s are random variables of the stochastic process X, then the process X is said to

satisfy the mixing condition if the relation between Xt and Xt+s tends to zero as the gap

in time s between “past ” and “future ” goes to infinity or at least becomes sufficiently

large. The dependence between random variables can be measured by conditions expressed

in terms of covariance or correlation coefficients or may be conditions placed on an order,

a time or a distance between random variables.
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Rosenblatt [1956] introduced a strong mixing condition in order to obtain a central limit

theorem for strictly stationary processes. Loynes [1965] obtained some limit theorems for

maxima of stationary processes when the strong mixing condition is satisfied. A big incon-

venience of the strong mixing condition is the difficulty in verifying it. Many researches

alternatively have tended to investigate the weakly stationary mixing condition or simply

weak dependence. Withers [1981], Tran [1990], Birkel [1989], and others obtained central

theorems under some notions of weak dependence. Newman [1984] investigated the inde-

pendence structures of associated sequences of random variables and obtained some useful

limit theorems under certain conditions placed on the covariance structure of a strong

mixing condition. A new weak dependence condition for time series has been proposed by

Doukhan and Louhichi [1999]. They stated their definition in terms of the decay of the

covariance between random variables of the weakly stationary time series, providing that

the gap of time between the two variables tends to infinity.

2.10.11 Weakly dependence

Let X = {Xt; t ∈ T} be a stationary time series. This means that X has constant mean

µX and variance σ2
X , and that the auto-covariance coefficient CXX(s) depends only on

the time difference s. Then X is said to be weakly dependent, if CXX(s)→ 0 as s→∞.

One of the most common weakly dependent time series is that generated by autoregressive

models of order one, denoted by AR(1).

2.10.12 Autoregressive process of order 1; AR(1)

Suppose that X is a weakly stationary stochastic process derived from an AR(1) model,

then

Xt = aXt−1 + Et , (2.25)

where t = 1, 2, · · · ; Et is an identical independent random variable with zero mean and

variance σ2 and it is assumed to be uncorrelated with Xt and Xt−1; and a represents the

autoregressive model parameter and satisfies the condition |a| < 1. Since we assumed that

X is a stationary process, then E(Xt) = E(Xt−1), but since a 6= 1 the means become equal

if and only if E(Xt) = 0. Because of independence between Xt−1 and Et, the variance of
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the process X can be written as

Var(Xt) = a2Var(Xt−1) + Var(Et)

= a2σ2
X + σ2

E .
(2.26)

This equation yields

σ2
X =

σ2
E

1− a2
(2.27)

In general, the stationary stochastic process Xt+s can be written as an AR(1)

Xt+s = aXt+s−1 + Et+s ,

= a2Xt+s−2 + aEt+s−1 + Et+s ,
(2.28)

then, after s substitutions, we get

Xt+s = asXt +

s−1∑
j=0

ajEt+s−j . (2.29)

The covariance coefficient between Xt+s and Xt can be obtained as

CXX(t, t+ s) = E
[(
Xt − E[Xt]

)(
Xt+s − E[Xt+s]

)]
. (2.30)

Note that from the previous assumption E[Xt] = E[Xt+s] = 0, and that Et is not correlated

to Xt across time, this means E[XtEt] = 0. Substituting the values of Xt+s from equation

(2.29) into equation (2.30) then gives

CXX(t, t+ s) = E
[
Xt

(
asXt +

s−1∑
j=0

ajEt+s−j
)]
,

= E
[
asXtXt +Xt

s−1∑
j=0

ajEt+s−j

]
,

= asσ2
X .

(2.31)

Therefore, the correlation between Xt and Xt+s is given by

rXX(t, t+ s) =
CXX(t, t+ s)

σ2
X

,

=
asσ2

X

σ2
X

= as .
(2.32)

Hence, for |a| < 1, lims→∞ as = 0, and X is a weakly dependent process.

2.11 Conclusion

The importance of the electroencephalogram signal is its capability to detect the abnormal

activities of the brain that are associated with diseases such as epilepsy. EEG has been used
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widely for research purposes, including the study of various sleep stages. In this chapter,

we have presented the definition of the EEG, explained the method that is used to collect

the EEG data from the scalp and described the electrode placement and nomenclature

according to the 10-20 international system and 10% system. Moreover, we have given a

general view of the anatomical brain lobes and their functions in order to understand the

EEG mechanism. We have shown that EEG signals are characterised by the specific range

of an amplitude, usually between 10µV and 100 µV , and specific bands of frequencies

associated to well known waves including δ-wave in [0.5, 4) Hz; θ-wave between 4Hz and

7Hz; α-wave in [8, 13) Hz; β-wave in [13, 30) Hz; and, finally γ-wave related to higher

frequencies between 30Hz and 100Hz. Each of these waves indicates specific normal and

abnormal activity of the brain. As we have shown, epilepsy is the most common abnormal

brain activity and has various types according to the location of the seizures at onset

and the degree of the seizures, so that the types of epilepsy are widespread. Finally, we

have presented the statistical properties of the signals in the time domain. The spectral

properties of the signals will be discussed in Chapter 3.



Chapter 3

Mathematical considerations

3.1 Introduction

Fourier analysis is an important tool that can play a crucial role in spectral analysis.

Fourier analysis is classified into two types: the continuous Fourier transform and the

discrete Fourier transform. Both are applied in various disciplines such as Physics, Engi-

neering and Physiology. This analysis has been described in detail and applied extensively

in several books, such as Brillinger [1981], Bloomfield [2000], Percival and Walden [1993],

Edwards [1979], Chatfield [1996]. Specifically, in this chapter we will give a brief descrip-

tion of the Fourier transform for signals and stationary stochastic processes with their an-

alytical and statistical properties. Also, we will present the concept of a periodogram as a

natural estimate of the power spectrum and cross-periodogram as the estimate of the cross-

spectrum. We will discuss three procedures commonly used to smooth the periodogram

or the cross-periodogram namely; averaging the periodogram (or cross-periodogram) or-

dinates in the neighbourhood of a particular frequency, averaging the periodograms (or

cross-periodograms) of contiguous sections of the stretch of data and a multi-taper method.

The confidence interval for the spectra will be constructed for each estimate.

3.2 Fourier transform

The Fourier transform is a procedure which takes a function represented in state space,

i.e. typically space or time, and transforms the function into an equivalent representation

in the frequency domain (Edwards [1979]). In practice, the Fourier transform arises in the

form of a continuous transform and a discrete transform.

32



CHAPTER 3. MATHEMATICAL CONSIDERATIONS 33

Definition

Let g(t) be a continuous function (signal), and let g(t) be square-integrable, that is g(t)

has finite energy such that

E =

∫ ∞
−∞
|g(t)|2 dt <∞ ,

then the continuous Fourier transform of g(t) at frequency f is defined by

G(f) =

∫ ∞
−∞

g(t)e−2iπft dt, (3.1)

and the discrete Fourier transform of the function g(t) is denoted by dg and given by

dg(f) =
∞∑

t=−∞
g(t)e−2iπft. (3.2)

Conventionally, almost all literatures use the partial sums of the discrete Fourier transform

of the function g(t), instead of the infinite sum defined in equation (3.2) (see, Edwards

[1979], Brillinger [1981], Percival and Walden [1993]), that is

dg(f) =

n∑
t=−n

g(t)e−2iπft. (3.3)

For a specific value of n, this definition of the Fourier transform also known as the finite

Fourier transform will be used intensively in the current work.

3.3 Finite Fourier transform

Consider a real-valued function (signal) g(t) with T samples of the form g(0), g(1), · · · , g(T−

1). Further, assume that the sequence outside the range 0, T − 1 is extended T -periodic,

hence, g(t) = g(t+ T ) for all t. The finite Fourier transform for the sequence g(t) will be

denoted by dTg , and it will also have T samples. Therefore, the finite Fourier transform

may be defined as

dTg (fk) =

T−1∑
t=0

g(t)e−2iπfkt ;
−T
2

< k ≤ T

2
, (3.4)

where fk =
k

T
are the ordinary frequencies, also known as the Fourier frequencies. That

is, the ordinary frequencies fk are observed in the region (-1/2, 1/2], and associated with

the angular frequencies ωk by ωk = 2πfk.

Of course, although the functions here are described as complex sequences, real-valued

sequences can be represented by setting the imaginary part to 0. In general, the transform
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into the frequency domain will be a complex valued function, that is,

dTg (fk) = a+ ib ,

with respective magnitude and phase.

|dTg (fk)| =
√
a2 + b2 , tan−1

( b
a

)
.

The quantity |dTg (fk)|2 is called the power spectrum of the signal g(t). From the definition

(3.4), we note that

dTg (fk) = dTg (fk+T ) . (3.5)

Proof:

The proof of the periodicity property of the discrete (finite) Fourier transform can be

obtained directly from the definition of the transform given in equation (3.4). By definition

we have

dTg (fk) =
T−1∑
t=0

g(t)e−2iπfkt , (3.6)

but since e−2iπt = cos(2πt)− i sin(2πt) = 1, then equation (3.6) can be written as

dTg (fk) =
T−1∑
t=0

g(t)e−2iπfkte−2iπt .

Once again, since e−2iπt = e−2iπfT t = 1, then we get

dTg (fk) =

T−1∑
t=0

g(t)e−2iπfkte−2iπfT t

=

T−1∑
t=0

g(t)e−2iπ k+T
T

t

= dTg (fk+T ) .

The complex conjugate of the Fourier transform of the real-valued function g(t) at fre-

quency f−k is equal to its Fourier transform at frequency fk, where −T/2 < k ≤ T/2, that

is

dTg (f−k) = dTg (fk) , (3.7)

where A denotes the complex conjugate of the variable A.

Proof:

To prove the symmetry property for the discrete Fourier transform of the real-valued
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signal, we first recall the definition of the finite Fourier transform given in equation(3.4),

that is

dTg (f−k) =

T−1∑
t=0

g(t)e−2iπf−kt . (3.8)

Applying the complex conjugate operator on both sides of the equation (3.8), yields

dTg (f−k) =

T−1∑
t=0

g(t)e−2iπf−kt .

By employing the property of the complex conjugate operator, which states that the

complex conjugate of the product of complex variables is equal to the product of their

complex conjugate, i.e., Z1 × Z2 = Z1 × Z2, and since the signal g(t) is a real-valued

function of time, then the complex conjugate of the signal g(t) is g(t), that is g(t) = g(t).

Hence we obtain

dTg (f−k) =
T−1∑
t=0

g(t) e−2iπf−kt ,

=
T−1∑
t=0

g(t) e2iπf−kt ,

since f−k = − k
T , we get

dTg (f−k) =
T−1∑
t=0

g(t) e−2iπfkt ,

= dTg (fk) .

The finite Fourier transform of a real-valued function g(t) at frequencies f0 and fT/2, i.e.,

dTg (f0) and dTg (fT/2), are real-valued functions. Moreover, the periodicity and symmetry

properties of the finite Fourier transform, expressed in equations (3.5) and (3.8) respec-

tively, indicate that the main domain of the finite Fourier transform of the signal g(t),

dTg (f), may be chosen to be f0 ≤ f ≤ fT/2 or f ∈ [0, 1/2].

In addition, if g(t) and h(t) are real-valued signals and are observed at t = 0, 1, · · · , T −1 ,

and a, b are scalars, then

dT(ag(t)+bh(t))(fk) = adTg (fk) + bdTh (fk) . (3.9)

This property can be proved straightforwardly from the definition of the finite Fourier
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transform, so that

dT(ag(t)+bh(t))(fk) =
T−1∑
t=0

(
ag(t) + bh(t)

)
e−2iπfkt ,

= a
T−1∑
t=0

g(t)e−2iπfkt + b
T−1∑
t=0

h(t)e−2iπfkt

= a dTg (fk) + b dTh (fk) .

The original function g(t) can be reconstructed from its finite Fourier coefficients using

the following relation which is referred to as an inverse form of the finite Fourier transform

g(t) =
1

T

T/2−1∑
k=−T/2

dTg (fk)e
2iπfkt ; t = 0, 1, · · · , T − 1 . (3.10)

The inverse of the finite Fourier transform of the function g(t), can be deduced by multi-

plying equation(3.4) by e2iπfk t́ to obtain

dTg (fk)e
2iπfk t́ =

T−1∑
t=0

g(t) e−2iπfkte2iπfk t́ .

Taking the summation over k from k = −T/2 to k = T/2− 1 gives

T/2−1∑
k=−T/2

dTg (fk)e
2iπfk t́ =

T/2−1∑
k=−T/2

T−1∑
t=0

g(t) e−2iπfkte2iπfk t́ .

Reversing the order of summation in this double sum leads to

T/2−1∑
k=−T/2

dTg (fk)e
2iπfk t́ =

T−1∑
t=0

g(t)

T/2−1∑
k=−T/2

e−2iπfk(t− t́) . (3.11)

To simplify equation (3.11), we take u = e−2iπ(t− t́)/T . Thus equation (3.11) becomes

T/2−1∑
k=−T/2

dTg (fk)e
2iπfk t́ =

T−1∑
t=0

g(t)

T/2−1∑
k=−T/2

uk . (3.12)

However, the second sum has value

T/2−1∑
k=−T/2

uk =

 T ; u = 1 ,

u−T/2
(1− uT )

1− u
; u 6= 1.

The case u = 1 corresponds to the situation t = t́, but under all circumstances u is a

T-th root of unity, that is, uT = 1. Thus for t and t́ taking integer values in the intervals

0 ≤ t < T and 0 ≤ t́ < T , it follows that

T/2−1∑
k=−T/2

uk =

 T ; t = t́ ,

0 ; t 6= t́ .
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Consequently, equation (3.12) leads to the solution

g(t) =
1

T

T/2−1∑
k=−T/2

dTg (fk)e
2iπfkt ; t = 0, 1, · · · , T − 1 . (3.13)

Thus the proof is completed.

3.4 Finite Fourier transform applications

3.4.1 Parseval’s theorem

This theorem states that the sum of the square of a function g(t) is equal to the average of

the sum of the square of its transform. In other words, the energy contained in a function

g(t) is equivalent to the average of the energy contained in its Fourier coefficients. That

is,
T−1∑
t=0

|g(t)|2 =
1

T

T/2−1∑
k=−T/2

|dTg (fk)|2 . (3.14)

Proof:

By using the definition of the inverse finite Fourier Transform, equation (3.10), we get

T−1∑
t=0

|g(t)|2 =
1

T 2

T−1∑
t=0

 T/2−1∑
k=−T/2

dTg (fk) e
− 2iπk

T
t

 T/2−1∑
j=−T/2

dTg (fj) e
2iπj
T
t


=

1

T 2

T−1∑
t=0

 T/2−1∑
k=−T/2

T/2−1∑
j=−T/2

dTg (fk)dTg (fj) e
− 2iπ(k−j)

T
t

 ,

(3.15)

where “overline”, as mentioned before, denotes the complex conjugate. By choosing m =

k − j and interchanging sums we get

T−1∑
t=0

|g(t)|2 =
1

T 2

T/2−1∑
k=−T/2

T/2−1∑
j=−T/2

dTg (fk)dTg (fj)

(
T−1∑
t=0

e
−2iπm
T

t

)
. (3.16)

The sum between parentheses has a solution T when m = 0 and zero otherwise. Hence

equation (3.16) becomes

T−1∑
t=0

|g(t)|2 =
1

T

T/2−1∑
k=−T/2

|dTg (fk)|2. (3.17)

The quantity |dTg (fk)|2 is called the energy spectral density for the signal g(t), while the

average of the energy spectral density gives the power spectral density for g(t).
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3.4.2 Convolution theorem

Let g(t) and h(t) be two T -dimensional sequences and let dTg (f) and dTh (f) be their finite

Fourier transforms respectively, then

dT(g∗h)(f) = dTg (f)dTh (f) , (3.18)

where the asterisk denotes the convolution between the two functions g(t) and h(t). This

formula can be derived straightforwardly from the finite Fourier transform and convolution

definition, as follows

dT(g∗h)(fk) =

T−1∑
t=0

(g ∗ h)(t) e−
2iπ
T
k t

=
T−1∑
t=0

 T−1∑
t−t́=0

g(t́ )h(t− t́ )

 e−
2iπ
T
k t

=

T−1∑
t́=0

g( t́ )e−
2iπ
T
k t́

 T−1∑
t− t́=0

h(t− t́ )e−
2iπ
T
k(t− t́ )

 .

Let t1 = t− t́ to get

dT(g∗h)(fk) = dTg (fk)

T−1∑
t1=0

h(t1) e−
2iπ
T
t1

= dTg (fk) d
T
h (fk) .

(3.19)

Thus the Fourier transform of the convolution of the signals g(t) and h(t) is the product

of their Fourier transforms dTg (f) and dTh (f).

3.5 Fourier transform of a stationary stochastic process

In the previous section, we introduced the Fourier transform for deterministic functions,

and the finite Fourier transform for relatively short lengths of record and its analytical

properties. The reconstruction of the original signal from its Fourier coefficients has also

been demonstrated. In Chapter 2, we introduced the definition of a stochastic process

as a series of random variables, namely {Xt}, and noted that these random variables are

observed at times t = 0,±1,±2, · · · . Also it is known that every realization of the random

variable represents a function (signal) of time. In addition, we demonstrated the concept

of the stationarity of stochastic process. The Fourier transform of the stationary stochastic
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process will now be defined.

Definition

Let X = {Xt}, where t = 0,±1,±2, · · · , be a stationary stochastic process, then the

Fourier transform of X at frequency f is given by

dX(f) =

∞∑
t=−∞

Xt e
−2iπft; −∞ < f <∞ , (3.20)

where the Fourier coefficient dX(f) is a complex-valued function of frequency f . The

spectral quantity |dX(f)|2 is a real-valued function of frequency f and it is called the

power spectrum of the stationary process X. However, when the values of the stationary

process X are available at the time points t = 0, 1, 2, · · · , T − 1, then the finite Fourier

transform of X is given by

dTX(fk) =

T−1∑
t=0

Xt e
−2iπfkt; −T/2 < k ≤ T/2 , (3.21)

where dTX(fk) are called the finite Fourier coefficients of the stationary stochastic pro-

cess X at frequency fk =
k

T
, and the superscript T denotes the size of sample from which

the Fourier transform is calculated. For a sufficiently large number of observations T , and

according to the central limit theorem, the Fourier coefficients for the stationary process

X are asymptotically independent complex normally distributed variates. The following

theorem gives the statistical distribution of the Fourier coefficients and their components

(Brillinger [1981]).

Theorem 3.5.1 Let X be a stationary stochastic process whose values are available

at t = 0, 1, · · · , T − 1, and let dTX(fk),−T/2 < k ≤ T/2, defined in equation (3.21),

be the finite Fourier coefficients of X. Then as T → ∞, the finite Fourier coefficients

dTX(fk),−T/2 < k ≤ T/2, are approximately independent complex normally distributed

variables with zero mean value and variance 2πT |dTX(fk)|2, that is,

dTX(fk) ∼ NC
(
0, 2πT |dTX(f)|2

)
, −T/2 < k ≤ T/2,. The real, Re dTX(fk), and imagi-

nary, Im dTX(fk), parts of the Fourier coefficients are asymptotically independent normally

distributed variables N
(
0, πT |dTX(f)|2

)
, −T/2 < k ≤ T/2.

The finite Fourier coefficients of the stationary process are invertible and we can recon-

struct the stationary process X by recovering its realizations Xt from its finite Fourier

coefficients using the relation

Xt =
1

T

T/2−1∑
k=−T/2

dTX(fk)e
2iπfkt ; t = 0, 1, · · · , T − 1 .
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Since the spectral density function is the core of the spectral analysis, we will present two

approaches that are broadly used in calculating the spectral density function from Fourier

coefficients and from covariance functions.

3.6 Spectral density via Fourier coefficients

LetX be a stationary stochastic process whose values are available at times t = 0, 1, · · · , T−

1, then the power spectrum of the stationary stochastic process X at frequency f , denoted

by SXX(f), f ∈ (−1/2, 1/2], is defined in terms of the finite Fourier coefficients by

SXX(f) = dTX(f)× dTX(f) ,

= |dTX(f)|2 ,
(3.22)

where dTX(f) represents the complex conjugate of the Fourier coefficient dTX(f) at frequency

f . From this definition, we note that the spectrum is a non-negative definite function of

frequency and describes the distribution of the power (variance) of the stationary stochastic

process with respect to frequency. Similarly, the spectrum of the stationary process Y at

a specific frequency f ∈ (−1/2, 1/2], is denoted by SY Y (f) and is defined as

SY Y (f) = |dTY (f)|2 . (3.23)

Note that the power spectra SXX(f) and SY Y (f) are real-valued functions of frequency

f , whereas the cross-spectrum between the stationary processes X and Y at frequency f ,

denoted by SXY (f), is a complex-valued function of frequency f and is defined in terms

of the finite Fourier coefficients by

SXY (f) = dTX(f)× dTY (f) . (3.24)

3.7 Spectral density via covariance function

The auto- and cross-spectral density functions, SXX(f), SY Y (f) and SXY (f) for the sta-

tionary processes X and Y , correspond to the auto-covariances CXX(s) and CY Y (s) for

the stationary processes X and Y respectively, and the cross-covariance CXY (s) between

these processes in the time domain, where s represents the difference between two con-

secutive times and takes the values s = 0,±1, · · · . Recall the definitions of the auto- and
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cross-covariance from equations (2.12), (2.13) and (2.14), namely

CXX(s) = E
[
XtXt+s

]
− µ2

X ,

CY Y (s) = E
[
Yt Yt+s

]
− µ2

Y ,

CXY (s) = E
[
(Xt − µX)(Yt+s − µY )

]
,

(3.25)

where E denotes the expectation, and µX and µY are time-independent mean values of

the processes X and Y respectively. The spectral density functions SXX(f), SY Y (f)

and SXY (f) can be defined in terms of the auto- and cross-covariance functions CXX(s),

CY Y (s) and CXY (s), provided these functions satisfy

∞∑
s=−∞

|CXX(s)| <∞ ,

∞∑
s=−∞

|CY Y (s)| <∞ ,

∞∑
s=−∞

|CXY (s)| <∞ .

(3.26)

The spectra and cross-spectra at a specific frequency f , can be expressed in terms of

the Fourier transform of the auto- and cross-covariance as follows (see, Brillinger [1981],

Percival and Walden [1993], Bendat and Piersol [1986])

SXX(f) =

∞∑
s=−∞

CXX(s)e−2iπfs ,

SY Y (f) =
∞∑

s=−∞
CY Y (s)e−2iπfs ,

SXY (f) =
∞∑

s=−∞
CXY (s)e−2iπfs .

(3.27)

These summations always exist over finite length of records. Due to the symmetry prop-

erties of the auto- and cross-covariance functions for the stationary processes stated in

equations (2.15) and (2.16), the following properties are satisfied for the auto- and cross-

spectral density functions

SXX(f) = SXX(−f) = SτXX(f) ,

SY Y (f) = SY Y (−f) = SτY Y (f) ,

SXY (f) = SXY (−f) = SτXY (f) .

(3.28)

The superscript τ denotes the transportation operator. The power spectra SXX(f) and

SY Y (f) are real-valued functions of frequency f , while the cross-spectral density is a
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complex-valued function of frequency f . From these properties, we note that the basic

frequency domain for the spectral density function is [0, 1/2]. Since the first two relations

in equation (3.28) are special cases of the last relation when X = Y , it is sufficient to

prove (3.28, 3) and then deduce results (3.28, 1) and (3.28, 2). The proof of the relation

(3.28, 3) can be obtained as follows. By definition

SXY (f) =
∞∑

s=−∞
CXY (s)e2iπfs ,

SXY (−f) =
∞∑

s=−∞
CXY (s)e2iπfs ,

SτXY (f) =

∞∑
s=−∞

CτXY (s)e−2iπfs .

(3.29)

From equations (3.29, 1) and (3.29, 2), it is obvious that SXY (f) = SXY (−f). Now to

prove that SXY (−f) = SτXY (f), we will use the the property CτXY (s) = CXY (−s) and

rearrange the exponential function argument to be 2iπf(−s) in the definition of SτXY (f).

Hence,

SτXY (f) =
∞∑

s=−∞
CXY (−s)e2iπf(−s) . (3.30)

By choosing u = −s, equation (3.30) become

SτXY (f) =
∞∑

u=−∞
CXY (u)e2iπfu . (3.31)

The right hand side of the equation (3.31) is the definition of the SXY (−f), therefore

SXY (−f) = SτXY (f). The proof is completed.

The expressions in equation (3.27) are invertible. Thus the auto- and cross-covariance

functions can be obtained from the definition of the spectral density in equation (3.27).

Thus

CXX(s) =

∫ 1/2

−1/2
SXX(f)e2iπfs df

CXY (s) =

∫ 1/2

−1/2
SXY (f)e2iπfs df ; s = 0,±1, · · ·

(3.32)

For the particular case when s = 0

CXX(0) =

∫ 1/2

−1/2
SXX(f) df . (3.33)

But equation (2.12) indicates that the variance of the stationary process X is σ2
X =

CXX(0). Consequently

σ2
X =

∫ 1/2

−1/2
SXX(f) df . (3.34)
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3.8 Nyquist frequency and aliasing

The highest frequency that can be extracted from the data is called the Nyquist frequency.

Suppose that the observations have been taken at equally spaced intervals of length ∆t,

which is called the sample rate, then the Nyquist frequency is fNq = 1/2∆t and the

corresponding angular Nyquist frequency takes the value ωNq = 2πfNq = π/∆t. The

Nyquist frequency is also called the folding frequency since all higher frequencies are ef-

fectively folded down into the interval [0, fNq]. On the other hand, the lowest frequency

(resolution) can be determined in terms of the Nyquist frequency and the sample size T

as

fresl =
2×Nyquist frequency

sample size
=

2fNq
T

.

Aliasing is a simple phenomenon which occurs naturally when the signal of interest is

sampled at equal spacing in time, in which two frequencies f and −f become indistin-

guishable. To explain this problem, consider the observation Xt at time t́ = t∆t = t/2fNq

from a pure cosine wave at frequency f , where 0 < f ≤ fNq. Since every observation of

the stochastic process can be expressed as a deterministic function, then the observation

at t́ will be (see, Bloomfield [2000], Percival [1993])

Xt = cos(2πf t́) ,

= cos(πft/fNq) .

This function Xt fluctuates rapidly as f increases from zero to f = fNq,

Xt = cos(πt) = (−1)t .

Now suppose that the value of the frequency f exceeds the value of the Nyquist frequency

fNq, such that fNq < f < 2fNq and let f́ = 2fNq−f , then the new value of the observation

Xt at a frequency f́ is given by

Xt = cos(2π f́ t́) = cos(2π(2fNq − f ) t́) .

By substituting the value of t́ = t/2fNq and rearranging the argument of the cosine

function, we get

Xt = cos(2πt− πft/fNq) .

But, by applying the trigonometric identity cos(A ± B) = cos(A) cos(B) ∓ sin(A) sin(B),

we obtain

Xt = cos(πft/fNq) = cos(2πf t́) .
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Thus all data at frequencies, f́ = 2fNq − f , have the same cosine function as the data

at frequency f , when sampled at point t́ = t/2fNq. Hence the frequencies f and f́ are

indistinguishable and they may be said to be aliasing of each other. Consequently, we can

say that every frequency not in the interval 0 ≤ f ≤ fNq has an alias in that interval.

Shannon’s [1949] sampling theorem places restrictions on the frequency contents of the

time signal Xt and can be simply stated as “The signal Xt can be recovered exactly from

its Fourier coefficients, if it is sampling at a rate greater than twice its highest frequency”.

However, the sampling of the signal Xt at rates below its highest frequency fNq results in

aliasing.

3.9 Fast Fourier transform

The discrete Fourier transform (DFT), demonstrated in section 3.5 can be applied to

any real or complex valued series. For example if we have the series X = {Xt, t =

0, 1, 2, · · · , T − 1} then the discrete Fourier transform of X is given by

dTX(fk) =
T−1∑
t=0

Xt e
−2iπfkt; −T/2 < k ≤ T/2 .

The calculation of the discrete Fourier transform of the seriesX directly from this definition

requires T 2 multiplications. In practice, when the length of the series becomes large, the

computation of the discrete Fourier transform will become more computationally intensive

and will take a considerable amount of time, as the times taken are proportional to the

square of the number of points in the series. Therefore it is important to look for a

technique which reduces the time consumed in calculating the discrete Fourier transform

of the series {Xt, t = 0, 1, 2, · · · , T −1} and is also more accurate. A much faster algorithm

has been developed by Cooley and Tukey [1965] and is called the FFT “Fast Fourier

Transform”, while the basic ideas were discussed much earlier (see, Cooley et al [1967]).

The concept of this technique depends on decomposing the series length T into small

integer factors, hence, the simple version of the FFT occurs when T is a power of 2. On

the other hand, Good ( [1958], [1971]) presented an algorithm to decompose T when it

either has a prime factor or cannot be written as a power of 2. For more information (

see, Brillinger [1981], Chatfield [1996], and Bloomfield [2000]).

Let T = T1T2, where T1 and T2 are integers, and suppose that time and frequency

indices take the form k = k1T2 + k2 and t = t2T1 + t1, then the discrete Fourier transform
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of the series {Xt, t = 0, 1, 2, · · · , T − 1} may be written as

dTX(fk) =

T1−1∑
t1=0

T2−1∑
t2=0

X(t2T1+t1) e
− 2iπ
T1T2

(k1T2+k2)(t2T1+t1)
; −T/2 < k ≤ T/2 , (3.35)

where fk = k/T , −T1
2 < k1 ≤ T1

2 and −T2
2 < k2 ≤ T2

2 .

Equation (3.35) can be rearranged as

dTX(fk) =

T1−1∑
t1=0

T2−1∑
t2=0

X(t2T1+t1) e
− 2iπ
T1T2

[k1T2t2T1+k1T2t1+k2t2T1+k2t1]

=

T1−1∑
t1=0

e−
2iπ
T
k2t1
(
e
− 2iπ
T1
k1t1

T2∑
t2=0

X(t2T1+t1)e
− 2iπ
T2
k2t2
)
.

(3.36)

The inner sum represents the discrete Fourier transform of size T2, the outer sum repre-

sents the discrete Fourier transform of size T1 and the exponential term e−
2iπ
T
k2t1 is called

the twiddle factor. It can be shown that the term (k1T2t2T1) vanishes because of primi-

tivity (e
− 2iπ
T1T2

k1T2t2T1 = e−2iπk1t2 = 1). Thus the total number of complex multiplications

required for this process is (T1 + T2)T1T2 = (T1 + T2)T , and the computational cost is

reduced, and is proportional to T log T , instead of T 2 if we compute the finite Fourier

coefficients directly from the DFT definition.

If T1, T2, · · · , Tm are integers, such that T = T1T2 · · ·Tm, then the speed comparison

is between T 2 and T (T1 + T2 + · · ·+ Tm). In practice, T1 + T2 + · · ·+ Tm is of the order

of log T and, therefore, the FFT has a computational speed of order T log T for large T .

3.10 Spectra Estimation

The natural estimate of the spectra and cross-spectra is the periodogram or sample peri-

odogram . The definition of the periodogram is given by Brillinger [1981], Bloomfield [2000],

Percival [1993] and Cryer and Chan [2008] as follows.

Definition 3.10.1 Let X = {Xt, t = 0,±1, · · · } be a stationary stochastic process with

theoretical power spectrum SXX(f),−∞ < f <∞. Its finite Fourier coefficients are given

by

dTX(fk) =
T−1∑
t=0

Xt e
−2iπfkt ; −T/2 < k ≤ T/2 .

The estimate of the power spectrum (periodogram) denoted by ITXX(fk) is given by

ITXX(fk) =
1

2πT
|dTX(fk)|2 ; −T/2 < k ≤ T/2 . (3.37)
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Due to its dependence on the finite Fourier coefficients, the symmetry, non-negativity

and periodicity properties are held for ITXX(fk), fk =
k

T
. As a result of the symmetry

property of the periodogram ITXX(fk), we will henceforth be concerned only with values

at fk ∈ [0, 1/2]. The statistical properties of the sample periodogram have been discussed

intensively in various literatures including
(
Brillinger [1981], Percival [1993], Cryer and

Chan [2008]
)

and others.

Theorem 3.10.1 Let X = {Xt, t = 0,±1, · · · } be a stationary stochastic process with

power spectrum SXX(f), and let ITXX(fk) be a sample periodogram of X at frequency

fk, where 0 < k < T/2, then the periodogram ordinates ITXX(fk) are asymptotically

independent SXX(fk)χ
2
2/2 variates for 0 < k < T/2 , whereas ITXX(fk) are asymptotically

independent SXX(fk)χ
2
1 variates for k = 0 or k = T/2 .

The χ2
ν denotes a chi-squared variable with ν degrees of freedom, while χ2

2/2 is an exponen-

tial variate with mean 1. Statistically, the chi-squared variate with ν degrees of freedom

is a summation of the squares of ν independent identical standard normally distributed

variates, where the expected value of the chi-squared variable is ν and its variance is 2ν.

Proof:

To prove this theorem, we rewrite equation (3.37) in terms of the components of dTX(fk)

as

ITXX(fk) =
1

2πT

{[
Re dTX(fk)

]2
+
[
Im dTX(fk)

]2}
; 0 ≤ k ≤ T/2 . (3.38)

But theorem (3.5.1) indicated that Re dTX(fk) and Im dTX(fk) are asymptotically in-

dependent normally distributed with zero mean values and variances πTSXX(fk) for

−T/2 < k ≤ T/2. That is( Re dTX(fk)√
πTSXX(fk)

)
∼ N(0, 1) and

( Im dTX(fk)√
πTSXX(fk)

)
∼ N(0, 1) .

Consequently, the sum of the squares of the standard normal variables
1

πTSXX(fk)
×{[

Re dTX(fk)
]2

+
[
Im dTX(fk)

]2}
is distributed as a chi-squared variable according to the

statistical fact that, the sum of the squares of the standard normally distributed variables

is a chi-squared variate with a degree of freedom equals to the number of the variates being

summed. Thus from equation (3.38) we get

2ITXX(fk)

SXX(fk)
=

1

πTSXX(fk)

{[
Re dTX(fk)

]2
+
[
Im dTX(fk)

]2} ∼ χ2
2 .

Thus, ITXX(fk) ∼ SXX(fk)χ
2
2/2 for 0 < k < T/2. In cases k = 0 or k = T/2, the term Im

dTX(fk) is cancelled out. This in turn leads to a reduction in the degrees of freedom to 1
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instead of 2. Hence, the periodogram will be distributed as chi-squared with 1 degree of

freedom, that is ITXX(fk) ∼ SXX(fk)χ
2
1/2.

The expected value and variance of the periodogram ITXX(fk) are given by

E ITXX(fk) = SXX(fk) +O(T−1) ,

Var ITXX(fk) = S2
XX(fk) +O(T−1) ; 0 ≤ k ≤ T/2 .

(3.39)

It is obvious from these statistics that the periodogram estimator is an inconsistent esti-

mator of the power spectrum due to its poor bias and, it has been proved to have poor

variance. The error in the bias stems from the truncation of the record at length T , which

causes the spectral leakage or loss of energy. This in turn leads to E ITXX(fk) 6= SXX(fk),

the expected value of the periodogram estimator is not equal to the power spectrum. Al-

though increasing the sample size T used in calculating the periodogram improves the

resolution of the frequency and reduces the bias, the variance of the periodogram remains

at the level of S2
XX(fk), and does not reduce because it is independent of the sample size.

In order to resolve the issues of bias and variability of the priodogram estimator, several

alternative methods have been proposed to provide reasonable spectral density estimators

take into account the trade-off between reducing variability and introducing bias. For

example, smoothed periodogram, and averaging periodograms across adjacent sections of

the single record.

3.10.1 Smoothed periodogram

The idea of this method is based upon the fact that the changes occur in the spectral

density over small frequency intervals are relatively small. The smoothed periodogram

averages the values of the sample periodogram over small intervals of frequency, which

consequently reduces the variability. This method has been investigated by Brillinger

[1981], Percival [1993], Diggle [1990] and Cryer and Chan [2008].

The smoothed periodogram denoted by ŜXX(fk) at frequency fk =
k

T
, can be obtained by

averaging the values of the sample periodogram over the small band of frequency centred

by fk and then extending m Fourier frequencies on either side of fk. This means that

every periodogarm at frequency fj lies in the interval [fk−m, fk+m] represents an estimate

of the power spectrum SXX(fk). Thus we have a set of 2m+ 1 independent estimators for

one quantity SXX(fk)

ITXX(fk−m) , · · · , ITXX(fk) , · · · , ITXX(fk+m) .
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The average of these estimators provides a reasonable unbiased and less variable estimator

for the spectrum SXX(fk)

ŜXX(fk) =
1

2m+ 1

m∑
j=−m

ITXX(fk+j); 0 ≤ k ≤ T/2 . (3.40)

Note that the power spectrum properties of symmetry, periodicity and non-negativity are

also satisfied for this estimator of the power spectrum, since it depends on the finite Fourier

coefficients dTX(fk). The statistical properties of the smoothed periodogram ŜXX(fk) are

E ŜXX(fk) ≈ SXX(fk) , 0 < k < T/2 ,

Var ŜXX(fk) ≈
S2
XX(fk)

2m+ 1
; 0 < k < T/2 ,

≈
S2
XX(fk)

m
; k = 0 or k = T/2 .

(3.41)

Thus, in the limit, the estimator ŜXX(fk) is unbiased, since the expected value of ŜXX(fk)

approaches asymptotically the value of the power spectrum SXX(fk) at frequency fk. How-

ever, the number of adjacent periodogram ordinates m should not be too large when com-

pared with the length of data T , as this may increase the bias of the estimator ŜXX(fk). In

terms of variability, the large number of adjacent periodogram ordinates m at frequencies

close to fk, produced good stability of the periodogram ŜXX(fk), as the variance of the

average of (2m + 1) adjacent periodogram ordinates is approximately 1/(2m + 1) times

the variance of the periodogram at the frequency fk, when 0 < k < T/2, and (1/m) times

the variance of the periodogram at the frequency fk when the frequency index is k = 0

or k = T/2. The following theorem gives the asymptotic distribution of the smoothed

periodogram ŜXX(fk) ( see, Brillinger [1981]).

Theorem 3.10.2 Let X = {Xt, t = 0,±1, · · · } be a stationary stochastic process and

suppose that ŜXX(fk), 0 < k < T/2 is the estimation of the real power spectrum SXX(fk)

at frequency fk, such that

ŜXX(fk) =
1

2m+ 1

m∑
j=−m

ITXX(fk+j); 0 ≤ k ≤ T/2 .

Then ŜXX(fk) at frequencies fk, 0 < k < T/2 is approximately distributed as

SXX(fk)χ
2
(4m+2)/(4m+2) and is asymptotically distributed as SXX(fk)χ

2
2m/(2m), if k = 0

or k = T/2.

Remark 3.10.3 The periodograms ITXX(fq), where q = j + k; −m < q < m + N/2, are

approximately independent SXX(fq)χ
2
2/2 variates for −m < q < T/2 + m, and asymp-
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totically SXX(fq)χ
2
1 if q = −m or q = m+ T/2, as indicated in theorem (3.10.1). Conse-

quently, the spectral estimator ŜXX(fk) distributes approximately as chi-squared variate

with (4m+ 2) degrees of freedom, i.e.

ŜXX(fk) ∼ SXX(fk)χ
2
2(2m+1)/2(2m+ 1) for 0 < k < T/2,

and asymptotically as chi-squared variate with 2m degrees of freedom, i.e.

ŜXX(fk) ∼ SXX(fk)χ
2
2m/(2m) if k = 0 or k = T/2.

3.10.2 Averaging across periodograms of adjacent sections of single records

The smoothed periodogram estimate of the theoretical power spectra, based on taking the

average of periodograms of contiguous segments of the set of data, was first proposed by

Bartlett [1948]. Welch [1967] proposed the use of the average of overlapped periodograms.

Thereafter, this estimate of the power spectra has been applied widely in various disciplines

because of its high precision and the relative low cost of calculations produced by the Fast

Fourier algorithm compared with the other estimators (see, Brillinger [1981], Bloomfield

[2000], Percival [1993], Rosenberg et al. [1989], Attivissimo et al. [1995], and Amjad et

al. [1997]). The periodograms asymptotic distribution and statistical properties have been

discussed intensively by Brillinger [1981] and Percival [1993].

For large number of observations, it is convenient to estimate the spectrum using the

disjoint structure, which depends on partitioning the main sample of length T into L

disjoint sections of equal length N . One must first perform the finite Fourier coefficients

for each segment, then calculate its periodogram, thereafter take the average of these

periodograms with respect to the number of subsamples.

Disjoint sections procedures

Let X = {Xt, t = 0,±1, · · · , T − 1} be a stationary stochastic process, and suppose that

there are L non-overlapping disjoint sections each of which has a length of N , such that

T = LN . Then the finite Fourier transform for each segment will be implemented as

dNX(fk, l) =
lN−1∑

t=(l−1)N

Xt e
−2iπfkt ; 0 ≤ k ≤ N/2 , (3.42)

where dNX(fk, l); l = 1, · · · , L and denotes the finite Fourier coefficient for the lth section at

frequency fk =
k

N
. The periodogram of the lth section at frequency fk is then denoted by

INXX(fk, l) =
1

2πN
|dNX(fk, l)|2 ; 0 ≤ k ≤ N/2 , (3.43)
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where l = 1, 2, · · · , L. The average of these periodograms at a specific frequency fk

gives the estimation ŜXX(fk) of the theoretical power spectrum SXX(fk) at that specific

frequency, that is

ŜXX(fk) =
1

L

L∑
l=1

INXX(fk, l) ; 0 ≤ k ≤ N/2 . (3.44)

The ŜXX(f) is symmetric, non-negative, and a periodic function of frequency f identical

to that of function INXX(f). The theorem (3.10.4) gives the approximate distribution of

the averaged periodograms of the contiguous segments of the data.

Theorem 3.10.4 Let X = {Xt, t = 0,±1, · · · } be a stationary stochastic process with

power spectrum SXX(f). Let INXX(fk, l) be the sample periodogram of the lth section of

N observations at frequency fk, that is

INXX(fk, l) =
1

2πN
|dNX(fk, l)|2 , (3.45)

for 0 ≤ k ≤ N/2 ,l = 1, 2, · · · , L. Let

ŜXX(fk) =
1

L

L∑
l=1

INXX(fk, l) ; 0 ≤ k ≤ N/2 , (3.46)

where T = LN , then the periodogram ŜXX(fk) is asymptotically distributed as SXX(fk)χ
2
2L/(2L)

for 0 < k < T/2 , and ŜXX(fk) are asymptotically independent SXX(fk)χ
2
L/L variables

for k = 0 or k = T/2 .

Remark 3.10.5 The periodograms INXX(fk, l), l = 1, · · · , L, where 0 < k < N/2 are

approximately independent SXX(fk)χ
2
2/2 variates for 0 < k < T/2 and asymptotically

SXX(fk)χ
2
1 if k = 0 or k = T/2 as indicated in theorem (3.10.1).

The average of periodograms over non-overlapped segments of the time series is unbiased

and provides an accurate estimator of the power spectrum. The reduction in variance of

the estimator is inversely proportional to the number of segments L, that is, the variance

of the estimator decreases as the number of disjoint sections L increases. For a fixed size

of subsample N , the decrease of the variance of the estimator implies an increase in its

bias, so we must be careful in employing this method. The expected value of ŜXX(fk) and

its variance are given by

E ŜXX(fk) ≈ SXX(fk) ; 0 < k < N/2 ,

Var ŜXX(fk) ≈
S2
XX(fk)

2L
; 0 < k < N/2 ,

≈
S2
XX(fk)

L
; k = 0 or k = N/2 .

(3.47)
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3.11 Confidence intervals for the spectrum

In order to evaluate the accuracy of an estimate to the parameter, it is often useful to

construct a confidence interval for the parameter based on the distributional properties

of the estimator. Thus, we will use the asymptotic distributions for the power spectrum

estimate ŜXX(f) defined in equations (3.40) and (3.44) to obtain the required confidence

intervals. In general, the estimate ŜXX(f) is distributed as chi-squared variable
SXX
ν

χ2
ν

with ν degrees of freedom. Let χ2
ν,α/2 be the (α/2)100% percentage point of the chi-squared

distribution χ2
ν , such that

prob
[
χ2
ν,α/2 < χ2

ν < χ2
ν,(1−α/2)

]
= 1− α.

Since the estimate ŜXX(f) is distributed asymptotically as
SXX(f)

ν
χ2
ν , it follows that the

variable
νŜXX(f)

SXX(f)
is distributed approximately as χ2

ν . Thus,

χ2
ν,α/2 <

νŜXX(f)

SXX(f)
< χ2

ν,(1−α/2) .

Consequently, the confidence interval for the power spectrum SXX(f) is

νŜXX(f)

χ2
ν,(1−α/2)

< SXX(f) <
νŜXX(f)

χ2
ν,α/2

.

This interval represents a (1 − α)100% confidence interval for the power spectrum at a

particular frequency f . This means that for every frequency in the domain of the function

SXX(f) there is a different confidence interval at the level of significance α%, as the

width of the confidence interval changes according to the value of the estimate ŜXX(f)

which varies from frequency to frequency. However, taking the logarithm of the confidence

interval, provides a confidence interval that is independent of frequency, that is

log(ŜXX(f)) + log
( ν

χ2
ν,(1−α/2)

)
< log(SXX(f)) < log(ŜXX(f)) + log

( ν

χ2
ν,α/2

)
. (3.48)

Thus, the inequality in (3.48) represents the (1 − α)100% confidence interval for the

log(SXX(f)). It is obvious from (3.48) that the width of the confidence interval

[
log(ŜXX(f)) + log

( ν

χ2
ν,(1−α/2)

)
, log(ŜXX(f)) + log

( ν

χ2
ν,α/2

)]
,

is given by

log
( ν

χ2
ν,α/2

)
− log

( ν

χ2
ν,(1−α/2)

)
= log

(χ2
ν,(1−α/2)

χ2
ν,α/2

)
,
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and is independent of log(ŜXX(f)). Consequently, it is independent of frequency. There-

fore, the confidence interval for the logarithm of the power spectrum relates to the esti-

mate based on averaging periodogram ordinates near the frequency fk, defined in equation

(3.40), is

[
log(ŜXX(fk)) + log

( (4m+ 2)

χ2
(4m+2), (1−α/2)

)
, log(ŜXX(fk)) + log

( (4m+ 2)

χ2
(4m+2), α/2

)]
,

for frequency indices, 0 < k < T/2. The confidence interval at the level of significance α%

for frequency indices k = 0 or k = T/2 is given by

[
log(ŜXX(fk)) + log

( 2m

χ2
2m, (1−α/2)

)
, log(ŜXX(fk)) + log

( 2m

χ2
2m,α/2

)]
.

The confidence interval for the logarithm of the power spectrum relates to the esti-

mate based on averaging periodograms of contiguous sections of the single data, given

in equation(3.40) is

[
log(ŜXX(fk)) + log

( 2L

χ2
2L, (1−α/2)

)
, log(ŜXX(fk)) + log

( 2L

χ2
2L,α/2

)]
,

for 0 < k < N/2. For the case of k = 0 or k = N/2, the confidence interval for the

log(SXX(fk)) takes the form

[
log(ŜXX(fk)) + log

( L

χ2
L, (1−α/2)

)
, log(ŜXX(fk)) + log

( L

χ2
L,α/2

)]
.

3.12 Cross-spectra estimate

Until this point, we have presented the periodogram as an estimate of the power spec-

trum for a stationary process with finite length. We have also discussed smoothing peri-

odogram(s) through averaging the periodogram ordinates near one specific frequency or

averaging periodograms of contiguous segments of the whole data. Moreover, we have dis-

cussed the asymptotic distribution and the related statistical properties for each estimate.

In this section, we will discuss the estimate of the cross-spectra of stationary processes. In

general, the periodogram has a natural extension to multiple time series.

LetX and Y be two stationary stochastic processes with partial values {X0, X1, · · · , XT−1}

and {Y0, Y1, · · · , YT−1}. Let dTX(fk) and dTY (fk) represent finite Fourier coefficients for X
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and Y respectively at frequency fk,−T/2 < k ≤ T/2, that is

dTX(fk) =

T−1∑
t=0

Xt e
−2iπfkt ,

dTY (fk) =
T−1∑
t=0

Yt e
−2iπfkt ; −T/2 < k ≤ T/2 .

(3.49)

Suppose that the cross-spectra between the stationary processes X and Y at a frequency f

where −∞ < f <∞ is SXY (f), then the estimate cross-periodogram of the cross-spectra

SXY (f) is denoted by ITXY (fk) and given by

ITXY (fk) =
1

2πT
dTX(fk) d

T
Y (fk) ; −T/2 < k ≤ T/2 . (3.50)

The cross-periodogram satisfies the identities

ITXY (−fk) = ITY X(fk) = IXY (fk) . (3.51)

The proofs of these identities are straightforward from the definition of the cross-peridogram

and the properties of the Fourier coefficients. Thus, by definition,

ITXY (−fk) =
1

2πT
dTX(−fk) dTY (−fk) ; −T/2 < k ≤ T/2 .

Using the property dTX(−fk) = dTX(fk), gives

ITXY (−fk) =
1

2πT
dTX(fk) d

T
Y (fk) .

Since Z = Z and by using the definition of the cross-periodogram again, we get

ITXY (−fk) =
1

2πT
dTY (fk) d

T
X(fk) = ITY X(fk) .

Now we want to prove that ITXY (−fk) = IXY (fk). By definition,

ITXY (−fk) =
1

2πT
dTX(−fk) dTY (−fk) .

Using the property dTY (−fk) = dTY (fk) yields

ITXY (−fk) =
1

2πT
dTX(−fk) dTY (fk) .

Once again, since Z = Z, then we get

ITXY (−fk) =
1

2πT
dTX(fk) d

T
Y (fk) .
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Since the complex conjugate of the product of two complex variables equals the product

of their complex conjugates, that is Z1Z2 = Z1 Z2, we get

ITXY (−fk) =
1

2πT
dTX(fk) d

T
Y (fk) = ITXY (fk) .

Therefore, the proof is completed. Note that, the cross-periodogram ITXY (fk) is a real-

valued function of frequency at f0 and fT/2, since the imaginary parts of the Fourier

coefficients are vanished at those frequencies. however, this value is not necessarily positive.

Also, there is another important identity which relates the cross-periodogram ITXY (fk) with

periodograms ITXX(fk) and ITY Y (fk) where −T/2 < k ≤ T/2, namely

|ITXY (fk)|2 = ITXX(fk) I
T
Y Y (fk) ; −T/2 < k ≤ T/2 . (3.52)

The proof of this identity can be deduced immediately from the definition of auto- and

cross-periodograms, that is

|ITXY (fk)|2 = ITXY (fk) I
T
XY (fk)

=
( 1

2πT
dTX(fk) d

T
Y (fk)

)( 1

2πT
dTX(fk) d

T
Y (fk)

)
.

By using the properties of the Fourier coefficients, mentioned above and the complex

variables multiplication properties, we obtain

|ITXY (fk)|2 =
( 1

2πT
dTX(fk) d

T
X(fk)

)( 1

2πT
dTY (fk) d

T
Y (fk)

)
.

Obviously, the two terms on the right hand side represent the definitions of the peri-

odograms ITXX(fk) and ITY Y (fk), thus |ITXY (fk)|2 = ITXX(fk) I
T
Y Y (fk). An estimate of

the cross-specrum SXY (f),−∞ < f < ∞, can be constructed by smoothing the cross-

periodogram in the same way that we smoothed the periodogram when estimating the

power spectrum in the previous section.

3.12.1 Smoothing the cross-periodogram

To smooth the periodogram in order to estimate the power spectrum at a particular

frequency, we average periodogram ordinates close to that frequency. Here we will average

cross-periodogram ordinates in the neighbourhood of a specific frequency to produce a

consistent estimate of the cross-spectrum.

Let X = {Xt; t = 0,±1, · · · }, and Y = {Yt; t = 0,±1, · · · } be two stationary stochastic

processes with cross-spectrum SXY (f),−∞ < f < ∞, and suppose that the two partial
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sequences {X0, X1, · · · , XT−1} and {Y0, Y1, · · · , YT−1} are known for the processes X and

Y respectively, then the estimate of the cross-spectrum, denoted by ŜXY (fk) is given by

ŜXY (fk) =
1

2m+ 1

m∑
j=−m

ITXY (fk+j); −T/2 < k ≤ T/2 , (3.53)

where ITXY (fk) represents the cross-periodogram defined in equation (3.50), and m rep-

resents the number of frequencies on each side of the main frequency fk. The cross-

periodogram ordinates are calculated at those frequencies prior to averaging them in order

to produce the estimate of the cross-spectrum ŜXY (fk) at that specific frequency. The

estimate ŜXY (f) has the same symmetry and periodicity properties as the cross-spectrum

SXY (f). Moreover, this estimate of the cross-spectrum has been proved to be an unbiased

estimate when the length of the times series T tends to infinity (see, Brillinger [1981]).

3.12.2 Averaging cross-periodograms of the contiguous sections

This procedure is elaborated clearly in section (3.10.2) during the discussion of smoothing

the periodogram as an estimate of the power spectrum in order to improve its statistical

properties. Here we will apply this method to smooth the cross-spectrum.

Let X = {Xt; t = 0,±1, · · · } and Y = {Yt; t = 0,±1, · · · } be two stationary stochastic

processes with the theoretical cross-spectrum SXY (f),−∞ < f < ∞, and suppose that

the two partial sequences {X0, X1, · · · , XT−1} and {Y0, Y1, · · · , YT−1} are known for the

processes X and Y respectively. Suppose that the two stretches are divided into L disjoint

blocks, in which each block involves N observations. The finite Fourier coefficients at

every frequency fk are computed for each segment as follows,

dNX(fk, l) =
lN−1∑

t=(l−1)N

Xt e
−2iπfkt ,

dNY (fk, l) =

lN−1∑
t=(l−1)N

Yt e
−2iπfkt ; −N/2 < k ≤ N/2 ,

(3.54)

where dTX(fk, l) and dTY (fk, l) represent the finite Fourier coefficients at frequency fk for

the lth section; l = 0, 1, · · ·L− 1, of the processes X and Y respectively. Then the cross-

periodogram at frequency fk for the lth section, denoted by INXY (fk), is

INXY (fk, l) =
1

2πN
dNX(fk, l) d

N
Y (fk, l) ; −N/2 < k ≤ N/2 . (3.55)

The cross-spectrum estimate ŜXY (fk) where −N/2 < k ≤ N/2 can be obtained by taking
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the average of cross-periodograms, to get

ŜXY (fk) =
1

L

L−1∑
l=0

INXY (fk, l) ; −N/2 < k ≤ N/2 . (3.56)

All previous estimates of the spectral density have performed good results for long

sequences of data. However, when the length of the data is short, these methods exhibit

undesirable results due to the paucity of the data. In the following section, we will discuss

the “multi-taper estimate”of the spectral density function that suites the situation of short

data.

3.13 Multi-taper method

In the two previous sections (3.10) and (3.12), we discussed the estimation of the auto-

and cross-spectrum for finite time series. We began with a simple periodogram as an

estimation for the power spectrum and a cross-periodogram for the cross-spectrum. We

also described their limitations, namely bias due to the spectral leakage and high variance

because of the data finiteness. Also, we presented the most common types of spectral

density estimation methods, which have been developed to smooth the simple periodogram

(or cross-periodogram) with the aim of reducing its bias and variability. Averaging across

adjacent frequencies exhibits a good reduction of the bias for a compromised number of

frequencies lying close to a particular frequency, while the improvement in the variance is

small. The average across contiguous preriodograms (or cross-periodograms ) represents

a consistent, unbiased estimator of the power or cross-spectrum with acceptable variance

for long stretches of data.

In this section, we will introduce a method that has been proved to overcome the

problems of bias and variability that usually accompany the spectral density estimate,

especially for the short data sets. This method was developed by Thomson [1982] as a new

estimate for the signal power spectrum. The new technique is based on the multiplication

of the whole data sequence by a set of weights or tapers, which makes the Thomson scheme

different from the Blackman-Tukey method, which is based on multiplying the data by a

single, constant taper. The main characteristic of Thomson tapers is that they form an

orthogonal basis, which not only leads to a reduced variance of the spectral estimates, but

also to a minimization of the spectral leakage due to the finite-length of the time series

(see, Slepian [1983], Thomson [1982]) .
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Each window is constructed so that it provides an independent sample of the data

sequence, while maximising the resistance to spectral leakage (Park et al. [1987], Thomson

[1990]). The statistical information discarded from the first taper is partially regained from

the second one, while the third taper retrieves the statistical information which is discarded

from the first two tapers and so on. Only a few low-order tapers are used as the higher-

order tapers allow an unacceptable level of spectral leakage (Percival and Walden [1993]

). These tapers belong to a family of functions known as Discrete Prolate Spheroidal

Sequences (DPSS) or Slepian Functions. These functions simultaneously optimise energy

concentration in time and frequency when either or both has a definite limit and define

the dimensionality of the time-frequency region. However, the application of the Slepian

functions is only suitable for continuous time and continuous frequency problems.

3.14 Slepian functions

The Discrete Prolate Spheroidal Sequences (DPSS) or Slepian functions were developed

by Slepian [1978] and arise as the eigenvectors of the Toeplitz eigenvalue problem

T−1∑
t=0

sin 2πW (t′ − t)
π(t′ − t)

vt,k(W ) = λk(W ) vt′,k(W ); t′ = 0, 1, · · · , T − 1, (3.57)

where T is the length of the data and W is the half-bandwidth parameter, which describes

a small local frequency band centred around f :|f − f ′| ≤W . Thus, the Slepian sequences

are orthogonal time-limited functions, highly concentrated in the frequency band [−W,W ].

The eigenfunctions λkare usually sorted in descending order of associated eigenvalue, that

is (1 > λ0 > λ1 > ... > λK−1), where λk gives the fraction of total energy retained within

the band [−W,W ]. Only the first K = 2TW eigenvalues are used because these are the

only tapers for which leakage is small.

3.14.1 The multi-taper procedure in estimating the power spectrum

The multi-taper method weighs the entire data sequence to get an estimated spectrum

for each taper. The final power spectrum is then computed by averaging these individual

spectra.

Let X0, · · · , XT−1 be realizations of the stationary stochastic process X with the the-

oretical power spectrum SXX(f),−∞ < f < ∞. Suppose that the sampling interval

between observations is ∆t, then the Nyquist frequency will be fNq =
1

(2∆t)
and the
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fundamental Fourier frequency (frequency resolution) is fresl =
1

(T∆t)
. The multi-taper

procedure is described in the following steps (Percival and Walden [1993]).

[i ] Determine the value of the half-bandwidth parameter W . The usual strategy

is to choose W to be a multiple j > 1 of the frequency resolution (T ∆t)−1, i.e.

W =
j

(T∆t)
, and the common values of j are 2, 3 or 4. Note that the value of j

may be taken to be larger than 4 in some applications, and some applications are

interested in taking j to be non-integer multiples ( see, Thomson [1982]).

[ii ] According to the equation (3.57), the first K of the eigenvalues λk and the eigen-

vectors vt,k are required, that is the values λ0, · · · , λK−1 and vt,0, · · · , vt,K−1, must

be computed, where K is the greatest integer less than or equal to 2TW .

[iii ] Each eigenvector vt,k, which is the kth Slepian function, is applied to the whole

data sequence, and the finite Fourier coefficients are computed at every frequency f

from the sum (using the fast Fourier transform, defined in section 3.9)

dTX(fj , k) =
T−1∑
t=0

Xt vt,k e
−2iπft ; k = 0, · · · ,K − 1, 0 ≤ j ≤ T/2, (3.58)

where fj = j/T is the Fourier frequency, and dTX(fj , k), is called the kth eigencoeffi-

cient, is the discrete Fourier transform of the product of the data and the kth Slepian

function of the length T at frequency fj . Consequently, the smoothed periodogram

corresponding to the kth Slepian function, denoted by ITXX(fj , k), is the squared

magnitude of the kth eigencoefficient, i.e.

ITXX(fj , k) =
1

2πT

∣∣dTX(fj , k)
∣∣2 ; k = 0, · · · ,K − 1, 0 ≤ j ≤ T/2 ,

and is known as the kth eigenspectrum.

[iv ] The multi-taper spectrum estimate, denoted by ŜXX(fj) of the theoretical power

spectrum SXX(f), is the average of the K eigenspectra, that is,

ŜXX(fj) =
1

K

K−1∑
k=0

ITXX(fj , k) ; 0 ≤ j ≤ T/2 . (3.59)

3.14.2 Cross-spectra estimate

To achieve the estimate of the cross-spectrum between two stationary processes, namely

X and Y , we follow the same procedures of estimating the power spectra, which are

elaborated in the previous section.
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Suppose that X = {Xt, t = 0, 1, · · · } and Y = {Yt, t = 0, 1, · · · } are two stationary

stochastic processes with the theoretical cross-spectrum SXY (f), where −∞ < f < ∞,

and suppose that the finite T realizations of these two processes are known, then the finite

Fourier coefficients at frequency fj for each process are obtained from the expressions

dTX(fj , k) =
T−1∑
t=0

Xt vt,k e
−2iπfjt ,

dTY (fj , k) =
T−1∑
t=0

Yt vt,k e
−2iπfjt ; k = 0, · · · ,K − 1, 0 ≤ j ≤ T/2 .

(3.60)

Thus, the k cross-eigenspectrum of the process X with the process Y at frequency fj , is

denoted by ITXY (fj , k), and defined by

ITXY (fj , k) =
1

2πT
dTX(fj , k) dTY (fj , k) ; k = 0, · · · ,K − 1, 0 ≤ j ≤ T/2 . (3.61)

Consequently, the estimated cross-spectrum at frequency fj , denoted by ŜXY (fj) of the

theoretical cross-spectrum SXY (f), is produced by taking the average of the K cross-

eigenspectra i.e.

ŜXY (fj) =
1

K

K−1∑
k=0

ITXY (fj , k) ; 0 ≤ j ≤ T/2 . (3.62)

3.14.3 Asymptotic distribution of the eigenspectrum

Although the periodogram is considered as a natural estimate of the spectral density, as

we mentioned in sections 3.10 and 3.12, it has been proved that, it is a biased estimator

because of its bias and variance. Indeed, the increase in the length of the data reduces

the bias and improves the frequency resolution, but unfortunately, it cannot improve the

variability of the estimator. In order to improve the accuracy of the periodogram, several

procedures were developed to reduce the bias and variance of the periodogram. We have

already provided two methods that are widely used in smoothing periodograms, namely

averaging across the interior frequency for the whole data and averaging periodograms

across adjacent sections from single records. As shown previously, all these estimators

were distributed approximately as squared-chi variable with different degrees of freedom

according to the nature of the estimator.

We will now investigate the asymptotic distribution of the multi-taper estimator. Each

eigenspectrum ITXX(fj , k) represents an estimate of the power spectrum at frequency fj ,

which is in fact a kind of smoothing periodogram that is produced by tapering the data
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prior to calculating its finite Fourier coefficients (eigencoefficients) dTX(fj , k). Hence, since

the kth eigenspectrum ITXX(fj , k) is the squared magnitude of a complex Gaussian random

variable, as given in theorem (3.5.1), it is distributed as SXX(fj)χ
2
2/2 for k = 0, 1, · · · ,K−

1 and frequency 0 < j < T/2, and as SXX(fj)χ
2
1 for (j = 0) or (j = T/2). Consequently,

the multi-taper estimator of the power spectrum ŜXX(fj) will asymptotically distribute

as SXX(fj)χ
2
2K/2K for j < 0 < T/2. The variance of the multi-taper estimator of the

power spectrum is approximately S2
XX(fj)/K ( see, Percival and Walden [1993], Walter

and Soleski [2005]).

3.14.4 Estimating the Slepian functions

Slepian functions are the eigenvectors computed from equation (3.57). However, a direct

approach based on this equation is rarely used in practice because of the infeasibility of

dealing with T × T matrices when T is large, and, of course, the computational effort

required to determine the eigenvalues and eigenvectors of such matrices. The standard

method for computing Discrete Prolate Spheroidal functions, uses an expansion in Legen-

dre polynomials or an expansion in Bessel functions. Here we will use the approach based

on Legendre polynomials (Miranian [2004], Boyd [2004], Gosse [2010]).

The Slepian functions are defined in the Fourier domain and were originally considered

as possible solutions for energy concentration problems ( see, Slepian [1983], Percival and

Walden [1993]).

Let g(t) be a signal and suppose that the values of the signal g(t) are available at

t = 0, 1, · · · , T − 1, then its continuous Fourier transform is given by

G(f) =

∫ ∞
−∞

g(t) e−2iπft dt , (3.63)

and the recovery of the signal from its Fourier transform is captured by

g(t) =

∫ ∞
−∞

G(f) e2iπft df , (3.64)

where f denotes the frequency in Hertz (Hz). The ratio of the energy of the signal g(t)

lying in a time interval [−T/2, T/2] to that in the entire signal, is defined by

λ =

∫ T/2

−T/2
|g(t)|2 dt∫ ∞

−∞
|g(t)|2 dt

. (3.65)
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Evidently λ ∈ (0, 1). The function g(t) is now replaced by its Fourier transform in the

numerator and denominator of this ratio, to get

λ =

∫ T/2

−T/2

(∫ ∞
−∞

G(f) e2iπft df
)(∫ ∞

−∞
G(f ′) e−2iπf ′t df ′

)
dt∫ ∞

−∞

(∫ ∞
−∞

G(f) e2iπft df
)(∫ ∞

−∞
G(f ′) e−2iπf ′t df ′

)
dt

. (3.66)

Interchanging the time integral with the frequency integrals, and gathering the Fourier

coefficients out of the time integral, gives

λ =

∫ ∞
−∞

∫ ∞
−∞

G(f)G(f ′)
(∫ T/2

−T/2
e2iπ(f−f ′)t dt

)
df df ′∫ ∞

−∞

∫ ∞
−∞

G(f)G(f ′)
(∫ ∞
−∞

e2iπ(f−f ′)t dt
)
df df ′

. (3.67)

The numerator time integral can be solved as follows∫ T/2

−T/2
e2iπ(f−f ′)t dt =

1

2iπ(f − f ′)

[
e2iπ(f−f ′)t

]T/2
−T/2

=
1

2iπ(f − f ′)

[
eiπ(f−f ′)T − e−iπ(f−f ′)T

]
.

(3.68)

Due to the evenness of the cosine function, and oddness of the sine function, equation

(3.68) becomes ∫ T/2

−T/2
e2iπ(f−f ′)t dt =

1

2iπ(f − f ′)
[
2i sin(Tπ(f − f ′))

]
,

=
1

π(f − f ′)
sin(Tπ(f − f ′)) .

(3.69)

The denominator infinite integral (
∫∞
−∞ e

2iπft df) is basically the inverse Fourier transform

of the Dirac δ(t) function, since

δ̂(f) =

∫ ∞
−∞

δ(t)e−2iπft dt = 1 ,

where δ̂(f) represents the Fourier transform of δ(t) at a frequency f . Thus

δ(t) =

∫ ∞
∞

e2iπft df . (3.70)

Substituting equations (3.69) and (3.70) into the equation (3.67) yields

λ =

∫ ∞
−∞

∫ ∞
−∞

G(f)G(f ′)
sinTπ(f − f ′)
π(f − f ′)

df df ′∫ ∞
−∞

G(f)G(f ′)
(∫ ∞
−∞

e−2iπf ′tδ(t) dt
)
df ′

, (3.71)
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which simplifies further, to give

λ =

∫ ∞
−∞

∫ ∞
−∞

G(f)G(f ′)
sinTπ(f − f ′)
π(f − f ′)

df df ′∫ ∞
−∞
|G(f)|2 df

. (3.72)

Suppose that g(t) has compact support in the frequency domain, by which is meant that

G(f) is zero-valued for all |f | > σ. In this case, equation (3.71) becomes

λ =

∫ σ

−σ

∫ σ

−σ
G(f)G(f ′)

sinTπ(f − f ′)
π(f − f ′)

df df ′∫ σ

−σ
|G(f)|2 df

. (3.73)

The objective of the subsequent analysis is to identify which function G(f) maximizes

the value of λ. Suppose that G(f) = F (f) maximizes the value of λ, and let G(f) =

F (f) + εh(f) in expression (3.73), then λ becomes a function of the parameter ε and the

function h(f), as expressed in the representation

λ(ε;h) =
P (ε;h)

Q(ε;h)
, (3.74)

where P (f) and Q(f) are defined by the respective formulae

P (ε) =

∫ σ

−σ

∫ σ

−σ

(
F (f) + ε h(f)

) (
F (f ′) + ε h(f ′)

)sinTπ(f − f ′)
π(f − f ′)

df df ′ ,

Q(ε) =

∫ σ

−σ

∫ σ

−σ

(
F (f) + ε h(f)

)(
F (f ′) + ε h(f ′)

)
df df ′ .

(3.75)

The function λ(ε;h) has a stationary value at G(f) = F (f), provided

∂λ(0;h)

∂ε
= 0 (3.76)

for arbitrary choice of the function h(f). It follows immediately by logarithmic differenti-

ation of expression (3.75), that

1

λ(0;h)

∂λ(0;h)

∂ε
=

1

P (0;h)

∂P (0;h)

∂ε
− 1

Q(0;h)

∂Q(0;h)

∂ε
.

According to equation (3.76), the condition of the stationary point of the function λ(ε;h)

at the value G(f) = F (f), is required to satisfy

∂P (0;h)

∂ε
− λ(0;h)

∂Q(0;h)

∂ε
= 0 (3.77)

for arbitrary choice of the function h(f). By replacing the derivatives of the functions

P (ε;h(f)) and Q(ε;h(f)), with respect to the variable ε in equation (3.77), by their values
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from equation (3.75), we get∫ σ

−σ

∫ σ

−σ

{
h(f)

[
F (f ′) + ε h(f ′)

]
+
[
F (f) + ε h(f)

]
h(f ′)

}sinTπ(f − f ′)
π(f − f ′)

df df ′

−λ(ε;h)

∫ σ

−σ

∫ σ

−σ

{
h(f)

[
F (f ′) + ε h(f ′)

]
+
[
F (f) + ε h(f)

]
h(f ′)

}
df df ′ .

(3.78)

Therefore, the stationary value of λ(ε;h) at ε = 0 satisfies∫ σ

−σ
h(f)

(∫ σ

−σ
F (f ′)

sinTπ(f − f ′)
π(f − f ′)

df ′ − λ(0;h)F (f)
)
df

+

∫ σ

−σ
h(f ′)

(∫ σ

−σ
F (f)

sinTπ(f − f ′)
π(f − f ′)

df − λ(0;h)F (f ′)
)
df ′ = 0 ,

(3.79)

for all values of h(f) and therefore∫ σ

−σ
F (f)

sinTπ(f − f ′)
π(f − f ′)

df = λF (f ′) . (3.80)

Thus F (f) is an eigenfunction of a Fredholm equation of the second kind with eigenvalue

λ, the value of the ratio, i.e. the fraction of the signal’s energy concentrated in the

frequency interval [−σ, σ] . Recall that the definition of λ, given in (3.65), ensures that

the eigenvalues of equation (3.80) lie in (0, 1), thereby guaranteeing that these eigenvalues

can be organised in decreasing order of magnitude, that is

1 ≥ λ0 ≥ λ1 ≥ · · · ≥ 0 .

The function
[sinTπ(f − f ′)

π(f − f ′)

]
is known as a kernel of the integral equation, hence the

solution of the integral equation depends on the properties of the kernel function.

It is convenient at this instant to non-dimensionalize the eigenvalue problem posed in

(3.80) by making the change of variable x = f ′/σ, y = f/σ and introducing the function

ψ(x) = F (xσ). The result of this non-dimensionalisation procedure is that the eigenvalue

problem posed in (3.80) is modified into the eigenvalue problem∫ 1

−1

sin c(y − x)

π(y − x)
ψ(y) dy = λψ(x) ; c = Tπσ , |x| ≤ 1 . (3.81)

Thus, the solution ψ(x) of the equation (3.81) depends on the values of T and σ through

the parameter c = Tπσ, due to the dependency of the kernel function on the value of

the parameter c. However, there are countably infinite solutions of the equation (3.81),

namely ψ0(x), ψ1(x), · · · corresponding to the fractions of the energy λ0, λ1, · · · , where the

eigenfunctions ψ(x)’s are known as prolate spheroidal wave functions.

Associated with the eigenvalue problem for ψ(x), is the problem of reconstructing the
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signal g(t) from its Fourier transform G(f). This reconstruction is achieved by using the

inverse Fourier transform

g(t) =

∫ σ

−σ
e2πiftG(f) df

in which it has been noted that G(f) has its support in [−σ, σ]. Under the change of

variables y = f/σ, with time rescaled from the interval [−T/2, T/2] to the interval [−1, 1]

by the mapping x = 2t/T , the previous equation becomes

g(Tx/2) = σ

∫ 1

−1
eTπiσyx ψ(y) dy ,

To simplify, we choose f(x) = g(Tx/2) and c = Tπσ, then the above expression will take

the form

f(x) = σ

∫ 1

−1
eicxy ψ(y) dy ; |x| ≤ 1 .

To summarize, we want to recover the signal g(t) from the eigenfunctions ψ(y). To

do so, we first need to compute the function f(x), using the mathematical system which

relates f(x) with the eigenfunction ψ(x),

λψ(x) =

∫ 1

−1

sin c(y − x)

π(y − x)
ψ(y) dy ,

f(x) = σ

∫ 1

−1
eicxy ψ(y) dy .

(3.82)

3.15 Characterization of the eigenfunctions ψ(x)

To achieve the required objective, the crucial idea is to construct an ordinary differential

equation satisfied by ψ(x), and use the solutions of this equation to deduce f(x). The

definition of the eigenfunction in (3.82) is first used to deduce that

λ
dψ

dx
=

1

π

∫ 1

−1

d

dx

(sin c(y − x)

(y − x)

)
ψ(y) dy = − 1

π

∫ 1

−1

d

dy

(sin c(y − x)

(y − x)

)
ψ(y) dy.

Integration by parts applied to this identity, gives

λ
dψ

dx
= − 1

π

[sin c(y − x)

(y − x)
ψ(y)

]1

−1
+

1

π

∫ 1

−1

(sin c(y − x)

(y − x)

) dψ
dy

dy

= − 1

π

[sin c(1− x)

(1− x)
ψ(1)− sin c(1 + x)

(1 + x)
ψ(−1)

]
+

1

π

∫ 1

−1

sin c(y − x)

(y − x)

dψ

dy
dy .

The next step in the calculation is to note that

λ
d

dx

[
(1− x2)

dψ

dx

]
=

1

π

d

dx

∫ 1

−1

(1− x2) sin c(y − x)

(y − x)

dψ

dy
dy

+
1

π

d

dx

[
(1− x) sin c(1 + x)ψ(−1)− (1 + x) sin c(1− x)ψ(1)

]
.

(3.83)
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Now we will concentrate on the integral on the right hand side of this equation. Using the

identity 1− x2 = (1− y2) + (y − x)(y + x), this integral may be re-expressed in the form

d

dx

∫ 1

−1

sin c(y − x)

(y − x)

[
(1− y2)

dψ

dy

]
dy +

d

dx

∫ 1

−1
(y + x) sin c(y − x)

dψ

dy
dy ,

or may be equivalently represented by

−
∫ 1

−1

d

dy

(sin c(y − x)

(y − x)

) [
(1− y2)

dψ

dy

]
dy

+

∫ 1

−1

(
sin c(y − x)− c(y + x) cos c(y − x)

) dψ
dy

dy .

(3.84)

Each integral of expression (3.84) is integrated by parts, to get∫ 1

−1

sin c(y − x)

(y − x)

d

dy

[
(1− y2)

dψ

dy

]
dy − c2

∫ 1

−1
(y + x) sin c(y − x)ψ(y) dy

+
[(

sin c(y − x)− c(y + x) cos c(y − x)
)
ψ(y)

]1

−1
.

(3.85)

Replacing the integral on the right hand side of equation (3.83) by expression (3.85) yields

λ
d

dx

[
(1− x2)

dψ

dx

]
=
ψ(−1)

π

[
− sin c(1 + x) + c(1− x) cos c(1 + x)

]
−ψ(1)

π

[
sin c(1− x)− c(1 + x) cos c(1− x)

]
+

1

π

∫ 1

−1

sin c(y − x)

(y − x)

d

dy

[
(1− y2)

dψ

dy

]
dy − c2

π

∫ 1

−1
(y + x) sin c(y − x)ψ(y) dy

+
ψ(1)

π

[
sin c(1− x)− c(1 + x) cos c(1− x)

]
−ψ(−1)

π

[
− sin c(1 + x) + c(1− x) cos c(1 + x)

]
,

which in turn simplifies, to give

λ
d

dx

[
(1− x2)

dψ

dx

]
=

1

π

∫ 1

−1

sin c(y − x)

(y − x)

d

dy

[
(1− y2)

dψ

dy

]
dy

−c
2

π

∫ 1

−1
(y + x) sin c(y − x)ψ(y) dy .

(3.86)

The expression (y + x), is now replaced by the ratio (y2 − x2)/(y − x) into the equation

(3.86), to give

λ
d

dx

[
(1− x2)

dψ

dx

]
=

1

π

∫ 1

−1

sin c(y − x)

(y − x)

d

dy

[
(1− y2)

dψ

dy

]
dy

−c
2

π

∫ 1

−1
(y2 − x2)

sin c(y − x)

(y − x)
ψ(y) dy .

(3.87)
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Rearranging this equation leads to

λ
d

dx

[
(1− x2)

dψ

dx

]
=

1

π

∫ 1

−1

sin c(y − x)

(y − x)

d

dy

([
(1− y2)

dψ

dy

]
− c2y2 ψ(y)

)
dy

+c2x2

∫ 1

−1

sin c(y − x)

π(y − x)
ψ(y) dy .

(3.88)

But the second integral on the right-hand side of equation (3.88) equals to λψ(x), as

defined in equation (3.82), thus

λ
( d
dx

[
(1− x2)

dψ

dx

]
− c2x2ψ(x)

)
=

1

π

∫ 1

−1

sin c(y − x)

y − x

( d
dy

[
(1− y2)

dψ

dy

]
− c2y2ψ(y)

)
dy.

(3.89)

In effect, − d
dx

[
(1−x2)dψdx

]
+ c2x2ψ(x), satisfies the same equation as ψ(x) and is therefore

a multiple of ψ(x). In conclusion, ψ(x) satisfies the ordinary differential equation

− d

dx

[
(1− x2)

dψ

dx

]
+ c2x2ψ(x) = γ ψ(x) . (3.90)

3.16 Computation of f(x)

The derivation of the properties of the function f(x) begins by first multiplying equation

(3.90) by eicxy and integrating the resulting equation with respect to y over the interval

[−1, 1] to get

−
∫ 1

−1

d

dy

[
(1− y2)

dψ

dy

]
eicxy dy + c2

∫ 1

−1
y2 eicxyψ(y) dy = γ

∫ 1

−1
eicxyψ(y) dy . (3.91)

One integration by parts applied to the integral on the left hand side of equation (3.91)

gives∫ 1

−1

d

dy

[
(1− y2)

dψ

dy

]
eicxy dy =

[
(1− y2)

dψ

dy
eicxy

]1

−1
− icx

∫ 1

−1
(1− y2) eicxy

dψ

dy
dy

= −icx
∫ 1

−1
(1− y2) eicxy

dψ

dy
dy .

A further integration by parts gives∫ 1

−1
(1− y2) eicxy

dψ

dy
dy =

[
(1− y2) eicxyψ(y)

]1

−1
−
∫ 1

−1

d

dy

[
(1− y2) eicxy

]
ψ(y) dy

=

∫ 1

−1

[
2y eicxy − icx(1− y2) eicxy

]
ψ(y) dy .
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Consequently∫ 1

−1

d

dy

[
(1− y2)

dψ

dy

]
eicxy dy =

∫ 1

−1

[
− 2icxy eicxy − c2x2(1− y2) eicxy

]
ψ(y) dy

= −c2x2f(x)− d

dx

(
x2ic

∫ 1

−1
y eicxyψ(y) dy

)
= −c2x2f(x)− d

dx

(
x2 d

dx

∫ 1

−1
eicxyψ(y) dy

)
= −c2x2f(x)− d

dx

(
x2 df

dx

)
.

(3.92)

Furthermore,

c2

∫ 1

−1
y2 eicxyψ(y) dy = − d2

dx2

∫ 1

−1
eicxyψ(y) dy = −d

2f

dx2
. (3.93)

When results (3.92) and (3.93) are introduced into (3.91), after reorganisation the function

f(x), is seen to satisfy

− d

dx

[
(1− x2)

df

dx

]
+ c2x2f(x) = γ f(x), (3.94)

which is precisely the same ordinary differential equation satisfied by ψ(x). Therefore f(x)

is a multiple of ψ(x). Let ψ1(x) and ψ2(x) be eigenfunctions corresponding to distinct

eigenvalues γ1 and γ2 then

−
∫ 1

−1

d

dx

[
(1− x2)

dψ1

dx

]
ψ2 dx+ c2

∫ 1

−1
x2ψ1(x)ψ2(x) dx = γ1

∫ 1

−1
ψ1(x)ψ2(x) dx, (3.95)

and for ψ2(x)

−
∫ 1

−1

d

dx

[
(1− x2)

dψ2

dx

]
ψ1 dx+ c2

∫ 1

−1
x2ψ1(x)ψ2(x) dx = γ2

∫ 1

−1
ψ1(x)ψ2(x) dx. (3.96)

The result of the integration by parts of the first expression in equation (3.95) is∫ 1

−1

d

dx

[
(1− x2)

dψ1

dx

]
ψ2 dx =

[
ψ2 (1− x2)

dψ1

dx

]1

−1
−
∫ 1

−1
(1− x2)

dψ2

dx

dψ1

dx
dx .

Applying integration by parts, once again, for the first term in equation (3.95), gives∫ 1

−1

d

dx

[
(1− x2)

dψ1

dx

]
ψ2 dx = −

[
(1− x2)

dψ2

dx
ψ1

]1

−1
+

∫ 1

−1

d

dx

[
(1− x2)

dψ2

dx

]
ψ1 dx .

Thus, by introducing the last result into equation (3.95), we will obtain

−
∫ 1

−1

d

dx

[
(1− x2)

dψ2

dx

]
ψ1 dx+ c2

∫ 1

−1
x2ψ1(x)ψ2(x) dx = γ1

∫ 1

−1
ψ1(x)ψ2(x) dx.

The left hand-side of this equation is identical to the left hand-side of equation (3.96), and

consequently, we get

(γ1 − γ2)

∫ 1

−1
ψ1(x)ψ2(x) dx = 0.

Thus eigenfunctions corresponding to distinct eigenvalues are orthogonal.
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3.17 Slepian function properties

From the foregoing discussion, we can summarize some properties of the eigenfunctions

ψ(x) and of the corresponding eigenvalues λ ( see, Slepian [1983], Percival and Walden

[1993], Boyd [2004]).

[i ] The eigenfunctions are real-valued and orthogonal on the interval [−1, 1], that is∫ 1

−1
ψj(x)ψk(x) dx = 0 ; for j 6= k.

[ii ] The eigenvalues are positive and satisfy the decreasing sequence

1 ≥ λ0 ≥ λ1 ≥ λ2 ≥ · · ·

and also satisfy the property lim
k→∞

λk = 0.

[iii ] The definition of the eigenfunction ψ(x), given in equation (3.81), was restricted to

the values x ∈ [−1, 1]. The definition can be extended to the values |x| > 1, because

the left hand-side of this equation is well-defined for all x, thus

ψ(x) =
1

λ

∫ 1

−1

sin c(y − x)

π(y − x)
ψ(y) dy ; c = Tπσ , |x| > 1 .

Moreover, the orthogonality property is also satisfied by the eigenfunctions on the

interval (−∞,∞), as well as on the interval [-1, 1].

[iv ] The Fourier transform for the eigenfunction ψk(x) restricted to |x| ≤ 1, has the

same form as ψk(x), except for scale change, i.e.

ψk(2πt/c) =
1

αk

∫ 1

−1
ψ(x) e−2iπxt dx, −∞ < t <∞

where αk is independent of x.

[v ] The eigenfunction ψk(x) is even or odd according to whether k is even or odd;

ψk(x) has exactly k zeros in the interval [-1, 1].

[vi ] The normalization of the eigenfunctions contributes to the energy of unity over

(−∞,∞), that is ∫ ∞
−∞

ψj(x)ψk(x) = δjk

where δjk is Kronecker’s delta function,

δjk =


1 if j = k,

0 if j 6= k.
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This follows ∫ 1

−1
ψj(x)ψk(x) = λkδjk .

The eigenfunctions are orthogonal on the interval [−1, 1] and orthonormal on (−∞,∞),

where λk represents the fraction of the energy contained in [−1, 1].

[vii ] The eigenfunctions ψk(x) and the eigenvalues λk are dependent variables of the

parameter c. In addition, the eigenvalue λk steeply decreases from approximately

unity to nearly zero value at k = 2c/π = 2WT , where k is called the Shannon

number.

In the following section we will solve the eigenvalue problem (3.94), which is satisfied

by the Slepian functions, using Legendre polynomials.

3.18 The Slepian eigenvalue problem

Prior to considering the Slepian eigenvalue problem, it will be useful to note some prop-

erties of Legendre polynomials. Let Pk(x) be the Legendre polynomial of order h, then

the family of such polynomials is defined by the generating formula (Xiao et al. [2001],

Boyd [2004]).

1√
1− 2xh+ h2

=

∞∑
k=0

Pk(x)hk . (3.97)

It is straightforward to show that Pk(x) has the following properties.

[i ] Pk(x) is a polynomial of degree k satisfying the ordinary differential equation

d

dy

[
(1− x2)

dψ

dx

]
+ k(k + 1)ψ = 0 . (3.98)

[ii ] The polynomials 1, x, x2 and x3 have unique representations in terms of Legendre

polynomials, given by the formulae

1 = P0(x) , x = P1(x) , x2 =
2P2(x) + P0(x)

3
, x3 =

2P3(x) + 3P1(x)

5
. (3.99)

[iii ] The family of Legendre polynomials satisfy the recurrence relation

xPk(x) =
(k + 1)

2k + 1
Pk+1(x) +

k

2k + 1
Pk−1(x) . (3.100)
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[iv ] The family of Legendre polynomials are mutually orthogonal over the interval

[−1, 1], with respect to the weight function w(x) = 1, that is,∫ 1

−1
Pj(x)Pk(x) dx =

2δjk
j + k + 1

, (3.101)

where δjk is Kronecker function.

The strategy is to approximate the eigenfunction ψ(x) by the Legendre series

ψ(x) =
K∑
k=0

ak

√
2k + 1

2
Pk(x) . (3.102)

Of course, expression (3.102) is an approximation because it cannot satisfy equation (3.94)

in the strict algebraic sense. Instead, the coefficients ak are chosen to ensure that equation

(3.94) is satisfied in the integrated sense, namely that∫ 1

−1

[
− d

dx

[
(1− x2)

dψ

dx

]
+ c2x2ψ(x)

]
Pk(x) dx = γ

∫ 1

−1
ψ(x)Pk(x) dx

for each integer k = 0, · · · ,K. This criterion guarantees that the remainder on substitution

of approximation (3.102) into equation (3.94) is orthogonal to all polynomials of degree

less than or equal to K. The self-adjoint nature of the differential operator in the previous

equation, in combination with the properties of Legendre polynomials, allows this condition

to be expressed in the simplified form

k(k + 1)

∫ 1

−1
ψ(x)Pk(x) dx+ c2

∫ 1

−1
x2ψ(x)Pk(x) dx = γ

∫ 1

−1
ψ(x)Pk(x) dx , (3.103)

where k takes all integer values from k = 0 to k = K inclusive. For notational convenience,

it is beneficial to define

ψk =

∫ 1

−1
ψ(x)Pk(x) dx . (3.104)

When k = 0 and when k = 1 the equation (3.103) leads to the respective conditions

c2

∫ 1

−1
x2ψ(x)P0(x) dx = γ

∫ 1

−1
ψ(x)P0(x) dx ,

2

∫ 1

−1
ψ(x)P1(x) dx+ c2

∫ 1

−1
x2ψ(x)P1(x) dx = γ

∫ 1

−1
ψ(x)P1(x) dx ,

which, in view of properties (3.99) and definition (3.104,) become

c2

3
ψ0(x) +

2c2

3
ψ2 = γ ψ0 ,

(
2 +

3c2

5

)
ψ1 +

2c2

5
ψ3 = γ ψ1 .

(3.105)
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See Appendix A. The conditions for k ≥ 2 are determined using the identity∫ 1

−1
xψ(x)Pk(x) dx =

k + 1

2k + 1

∫ 1

−1
ψ(x)Pk+1(x) dx+

k

2k + 1

∫ 1

−1
ψ(x)Pk−1(x) dx

which is a direct consequence of the recurrence relation (3.100). A second application of

this identity gives, (see Appendix A),∫ 1

−1
x2ψ(x)Pk(x) dx =

(k + 2)(k + 1)

(2k + 3)(2k + 1)
ψk+2 +

2k2 + 2k − 1

(2k + 3)(2k − 1)
ψk

+
k(k − 1)

(2k + 1)(2k − 1)
ψk−2 .

(3.106)

When results (3.103) and (3.106) are combined, the conditions to be satisfied for k ≥ 2

are

c2 (k + 2)(k + 1)

(2k + 3)(2k + 1)
ψk+2 +

[
k(k + 1) + c2 2k2 + 2k − 1

(2k + 3)(2k − 1)

]
ψk

+ c2 k(k − 1)

(2k + 1)(2k − 1)
ψk−2 = γ ψk .

(3.107)

Finally, it is clear from the orthogonality of Legendre polynomials and the definition of

ψ(x) in (3.102), that the coefficients ak in expression (3.104) are connected to ψk via the

formula

ψk =

∫ 1

−1
ψ(x)Pk(x) dx =


ak

√
2

2k + 1
, 0 ≤ k ≤ K ,

0 k > K .

3.18.1 Determination of ψ(x)

It is clear from (3.105) and (3.107) that these equations can be subdivided into separate

determination of odd and even coefficients. Specifically the even coefficients satisfy

c2

3
ψ0(x) +

2c2

3
ψ2 = γ ψ0 ,

2k(2k − 1) c2

(4k + 1)(4k − 1)
ψ2(k−1) +

[
2k(2k + 1) +

(8k2 + 4k − 1)c2

(4k + 3)(4k − 1)

]
ψ2k

+
2(k + 1)(2k + 1) c2

(4k + 3)(4k + 1)
ψ2(k+1) = γ ψ2k,

(3.108)
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and the odd coefficients satisfy (
2 +

3c2

5

)
ψ1 +

2c2

5
ψ3 = γ ψ1

2k(2k + 1)c2

(4k + 3)(4k + 1)
ψ2k−1 +

[
2(2k + 1)(k + 1) +

(8k2 + 12k + 3) c2

(4k + 5)(4k + 1)

]
ψ2k+1

+
2(2k + 3)(k + 1) c2

(4k + 5)(4k + 3)
ψ2k+3 = γ ψ2k+1 .

(3.109)

In conclusion, each set of coefficients is obtained by solving an eigenvalue problem for a

tri-diagonal matrix with positive off-diagonal entries. The eigenvalues and eigenvectors are

determined by the QR algorithm ( see, Appendix A). Both the eigenvalues and eigenvectors

are guaranteed to be real-valued, with eigenvectors corresponding to distinct eigenvalues

being mutually orthogonal.

3.19 Computation of the eigenvalues λ

It has been shown that ψ(x) satisfies the respective eigenvalue problems

λψ(x) =

∫ 1

−1

sin c(y − x)

π(y − x)
ψ(y) dy ,

µψ(x) =

∫ 1

−1
eicxy ψ(y) dy

(3.110)

in which µ may be complex-valued. It follows directly from the second of equations (3.110),

that

|µ|2
∫ 1

−1
ψ(x)2 dx =

∫ 1

−1

(∫ 1

−1

∫ 1

−1
eicx(y−z) ψ(y)ψ(z) dy dz

)
dx

=

∫ 1

−1

∫ 1

−1

(∫ 1

−1
eicx(y−z) dx

)
ψ(y)ψ(z) dy dz.

(3.111)

However, it is a straightforward calculation to confirm that∫ 1

−1
eicx(y−z) dx =

2 sin c(y − z)
c(y − z)

,

and when this result is incorporated into (3.111), the outcome is that

|µ|2
∫ 1

−1

[
ψ(x)

]2
dx =

2π

c

∫ 1

−1

(∫ 1

−1

sin c(y − z)
π(y − z)

ψ(y) dy
)
ψ(z) dz

=
2π

c

∫ 1

−1
λ
[
ψ(z)

]2
dz .

(3.112)
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The conclusion of this analysis is that λ = c|µ|2/2π = Tσ|µ|2/2. The quality of any

particular eigenfunction ψ(x), as measured by its ability to concentrate energy, and is

determined by the value of λ, which in turn is computed indirectly from the value of µ.

Specifically,

µ =

∫ 1

−1

∫ 1

−1
eicxy ψ(y)ψ(x) dx dy∫ 1

−1

[
ψ(x)

]2
dx

. (3.113)

It is straightforward to show from equation (3.110), that the eigenfunctions ψ(x) are either

even-valued functions of x ∈ [−1, 1], in which case µ is real-valued, or alternatively, are

odd-valued functions of x ∈ [−1, 1] in which case the eigenvalue µ is purely complex. The

calculation of the numerator of expression (3.113) is simplified by taking note of these two

properties of the eigenfunctions to obtain

µreal =

∫ 1

−1

∫ 1

−1
cos(cxy)ψ(y)ψ(x) dx dy∫ 1

−1

[
ψ(x)

]2
dx

. (3.114)

When ψ(x) is an even-valued function of x, and when ψ(x) is an odd-valued function of

x, the corresponding result is

µimag = i

∫ 1

−1

∫ 1

−1
sin(cxy)ψ(y)ψ(x) dx dy∫ 1

−1

[
ψ(x)

]2
dx

. (3.115)

In either case, when ψ(x) is specified by expression (3.102), it is easy to show that∫ 1

−1

[
ψ(x)

]2
dx =

K∑
j=0

K∑
k=0

ajak

√
(2j + 1)(2k + 1)

2

∫ 1

−1
Pj(x)Pk(x) dx

=
K∑
j=0

K∑
k=0

ajak

√
(2j + 1)(2k + 1)

2

2 δjk
j + k + 1

=
K∑
k=0

a2
k ,

(3.116)

where all coefficients with odd indices are zero when ψ(x) is an even-valued function of

x, i.e. a2k+1 = 0, and all coefficients with even indices are zero when ψ(x) is an odd-

valued function of x, i.e. a2k = 0. The numerators of expressions (3.114) and (3.115) are

computed by Gauss-Legendre quadrature.

The primary result of Gauss-Legendre quadrature is that∫ 1

−1
f(t) dt =

M∑
k=1

wk f(xk) , (3.117)
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has maximum precision (2M − 1) when the nodes xk are the zeros of PM (x) = 0 where

PM (x) is the Legendre polynomial of order M . Let the vector Ψ and the symmetric

matrices M ×M matrices C and S be respectively defined by

Ψ =
[
ψ(x1) ψ(x2) · · · ψ(xM )

]T
,

C =


w2

1 cos(cx2
1) w1w2 cos(cx1x2) · · · w1wM cos(cx1xM )

w2w1 cos(cx2x1) w2
2 cos(cx2

2) · · · w2wM cos(cx2xM )
...

...
. . .

...

wMw1 cos(cxMx1) wMw2 cos(cxMx2) · · · w2
M cos(cx2

M )

 ,

S =


w2

1 sin(cx2
1) w1wM sin(cx1x2) · · · w1wM sin(cx1xM )

w2w1 sin(cx2x1) w2
2 sin(cx2

2) · · · w2wM sin(cx2xM )
...

...
. . .

...

wMw1 sin(cxMx1) wMw2 sin(cxMx2) · · · w2
M sin(cx2

M )

 ,

then it follows immediately from equations (3.114) and (3.115) that the numerators of µreal

and µimag are respectivelyΨTCΨ and iΨTSΨ. The computation of µ, and indirectly λ,

therefore require two further steps, namely the determination of the nodes and weights of

Gauss-Legendre quadratures, and second, the computation of ψ(x) at these nodes. The

latter is achieved with high accuracy using Clenshaw’s algorithm which is now described.

3.19.1 Summation of Legendre sum by Clenshaw’s algorithm

The elegance of Clenshaw’s algorithm for the summation of a weighted sum of Legendre

polynomials stems from two important properties. First, it is never necessary to evaluate

high order Legendre polynomials, thereby avoiding the need to have explicit forms for

these polynomials. Second, the subtle cancelations that take place between polynomials of

different orders in the computation of the Legendre sum are recognised and incorporated

into the algorithm.

Suppose it is required to compute

ψ(x) =

K∑
k=0

bkPk(x)

for a given value of x. The algorithm begins by introducing the sequence y0, · · · , yK+2,

which is initiated by the specifications yK+1 = yK+2 = 0 with the remaining members of

the sequence generated by the backward recursion

yk =
(2k + 1)x

k + 1
yk+1 −

k + 1

k + 2
yk+2 + bk , k = 0, · · · ,K . (3.118)
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The expression for ψ(x), when written in terms of the iterates y0, · · · , yK+2, becomes

ψ(x) =

K∑
k=1

(
yk −

(2k + 1)x

k + 1
yk+1 +

k + 1

k + 2
yk+2

)
Pk(x)

which may be conveniently re-indexed to obtain

ψ(x) = y0 +

K−1∑
k=0

yk+1Pk+1(x)−
K∑
k=0

(2k + 1)x

k + 1
yk+1Pk(x) +

K+1∑
k=1

k

k + 1
yk+1Pk−1(x) .

The term yK+2PK+2(x) is added to the first summation and the term (K+1)
K+2 yK+2PK(x) is

eliminated from the third summation. Both terms are zero-valued but allow the previous

expression for ψ(x) to be recast into the format

ψ(x) = y0 + y1

(
P1(x)−xP0(x)

)
+

K∑
k=1

yk+1

(
Pk+1(x)− (2k + 1)x

k + 1
Pk(x) +

k

k + 1
Pk−1(x)

)
.

The recursive properties of Legendre polynomials ensure that each term in this summation

is zero-valued. Moreover, P1(x) = xP0(x), so that ψ(x) = y0.

3.19.2 Nodes and weights of the Gauss-Legendre quadrature

The general result underlying numerical integration based on Gaussian quadrature is that

if f(x) is continuously differentiable 2N times in the interval [a, b], that is f ∈ C2N [a, b],

and L0(x), L1(x), · · · , LN (x) is a family of orthogonal polynomials associated with the

weight function w(x), then∫ b

a
w(x)f(x) =

N∑
k=1

akf(xk) +
f2N (ξ)

(2N)!

∫ b

a
w(x)L2

N (x) dx . (3.119)

Evidently if f(x) is a polynomial of degree less than or equal to 2N −1, then the Gaussian

quadrature is exact. The quadrature is commonly stated to have a degree of precision

2N − 1, which is the maximum possible degree of precision for a quadrature sampling the

function value at N nodes. For this reason, Gaussian quadratures are regarded as optimal

quadratures. When w(x) = 1 and the interval is finite, the associated family of polynomials

are the Legendre polynomials and in this case the optimal Gaussian quadrature is∫ 1

−1
f(x) dx =

N∑
k=1

wkf(xk) (3.120)

where x1, · · · , xN are the roots of PN (x) and w1, · · · , wN are the associated weights.
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Suppose that L0(x), · · · is a family of monic polynomials defined by the iterative scheme

L−1(x) = 0, L0(x) = 1 and Lk+1(x) + ak Lk(x) + bk Lk−1(x) = xLk(x) then it is straight-

forward to show that x1, · · · , xN are the eigenvalues of the N ×N matrix

MN =



a0

√
b1 0 0 · · · 0

√
b1 a1

√
b2 0 · · · 0

0
√
b2 a2

√
b3 · · · 0

...
...

...
...

...
...

· · · · · · · · · · · · · · ·
√
bN

· · · · · · · · · · · ·
√
bN aN


. (3.121)

The argument proceeds as follows. Let Lk+1(x) = (−1)k+1 |Mk − xIk| and consider the

evaluation of Lk+1(x) by computing the determinant of the matrix (Mk − xIk+1) about

its last row. The result of this calculation is the identity

Lk+1(x) = (−1)k+1|Mk − xIk+1|

= (−1)k+1(ak − x)(−1)kLk(x)− (−1)k+1bk(−1)k−1Lk−1(x)

Consequently, the eigenvalues of Mk are the roots of the polynomial Lk+1(x) which is now

seen to satisfy the recursive relation

Lk+1(x) + akLk(x) + bkLk−1(x) = xLk(x) . (3.122)

In the case of Legendre polynomials the coefficients an and bn can be estimated by the

following procedure. Given that Legendre polynomials are defined by the iterative scheme

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x), define

Pk(x) =
(2k)!

2k(k!)2
Lk(x),

so that Lk(x) satisfies the iterative scheme

(k + 1)(2k + 2)!

2k+1[(k + 1)!]2
Lk+1(x) =

(2k + 1)(2k)!

2k(k!)2
xLk(x)− k(2k − 2)!

2k−1[(k − 1)!]2
Lk−1(x) .

This identity is multiplied by 2k(k!)2 and divided by (2k + 1)! to obtain the final form

Lk+1(x) +
k2

4k2 − 1
Lk−1(x) = xLk(x), (3.123)

which provides explicit expressions for ak and bk, thereby allowing the matrix MN to be

constructed and its eigenvalues calculated using the QR algorithm.
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3.19.3 Conclusion

Regarding the highly important role of the Fourier transform in facilitating the analysis of

the interacting processes in the spectral domain, rather than the original time domain, we

have defined, in this chapter, the conventional Fourier transform, and the concept of the

finite Fourier transform. Also, we have given the algorithm for the fast Fourier transform,

which is used extensively to reduce the number of computations of the discrete Fourier

coefficients. In addition, we have presented the definition of power and the cross-spectrum

and how they relate to the time domain quantities; autocorrelation and cross-correlation.

The three common used non-parametric spectral estimators have been debated such as, the

method of averaging across periodograms of the adjacent segments of the single record, the

method of frequency averaging and the multi-taper method. We have demonstrated that

the frequency averaging method reduces the bias error, when the number of frequencies

m lying in the neighbourhood of a specific frequency, is consistent. However, it has small

variance improvement. Averaging across periodograms of the adjacent segments of the

single record is regarded as an unbiased spectral estimator with acceptable variance when

the number of available observations is sufficiently large. The multi-taper method, which

based on multiplying the whole data with a number of orthogonal tapers, is characterized as

an unbiased spectral estimator with highly reducing variability, especially for the relatively

short data. Since each taper plays a crucial role in reducing the sidelobe spectral leakage

and provides a good eigenspectrum, then the average of the K eigenspectra increase the

resistance against spectral leakage to produce an approximately leakage-free estimator for

the spectra. Moreover, the average of the K different eigenspectra reduces the variance of

the spectral estimator.



Chapter 4

Measure of association among

processes

4.1 Introduction

Interactions among large numbers of stochastic processes are commonplace and arise nat-

urally when a number of different input or control processes combine together to produce

various output processes. Examples of this phenomenon can be found in Neurophysiol-

ogy, in Economics and in many biological systems. In the frequency domain, coherence

function is the natural measure of the connectivity between various couplings of processes.

4.2 Coherency and coherence functions

Definition 4.2.1 (Coherency function) The coherency function between two station-

ary stochastic processes, namely X = {Xt; t = 0,±1, · · · } and Y = {Yt; t = 0,±1, · · · },

at a specific frequency f is denoted by RXY (f) and defined in terms of power and cross-

spectral densities of these processes at that specific frequency by

RXY (f) =
SXY (f)

[SXX(f)SY Y (f)]1/2
, −∞ < f <∞ . (4.1)

In this definition SXY (f) is a complex valued-function of frequency f and therefore the co-

herency itself is a complex valued-function of frequency f , whereas the spectral quantities

SXX(f) and SY Y (f) represent the power spectrum of the processes X and Y respectively

and are real-valued functions of frequency.
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Definition 4.2.2 (Coherence function) The coherence between two stationary stochas-

tic process X = {Xt} and Y = {Yt}, where t = 0,±1, · · · , at a specific frequency f is

defined as the squared-magnitude of the coherency between these processes, that is,

|RXY (f)|2 =
|SXY (f)|2

SXX(f)SY Y (f)
. (4.2)

The coherence is therefore a real valued-function of frequency f and gives a measure of the

linear correlation between two processes, say X and Y , at frequency f . In particular, the

Cauchy-Schwarz inequality |a .b|2 ≤ |a|2|b|2 indicates that coherence must lie in [0, 1]. If

the coherence between two processes has value zero at frequency f then these processes are

uncorrelated at that frequency, whereas coherence with value one means that the processes

are perfectly correlated at that frequency.

4.2.1 Asymptotical Coherence

By definition, the measure of linear relationship between two stationary stochastic pro-

cesses is given by the squared-magnitude of the coherency function in equation (4.2). Since

coherence of two stationary processes is a normalisation of the cross-spectra to the power

spectra and since the exact spectral densities, especially in the real world, are not known

we must estimate the coherence through estimating the spectral densities. A good estima-

tion of the spectral densities leads to an accurate estimate for the coherence. In Chapter

3, we discussed the most common methods that are usually used to estimate auto- and

cross-spectral densities. Thus the estimated coherence, which is denoted by |R̂XY (f)|2,

will take the form,

|R̂XY (f)|2 =
|ŜXY (f)|2

ŜXX(f)ŜY Y (f)
, (4.3)

where ŜXY (f) represents the estimated cross-spectral densities at frequency f between

the two stochastic processes X and Y with estimated auto-spectral densities ŜXX(f)

and ŜY Y (f). This approximation is asymptotically unbiased. In order to facilitate the

investigation of the statistical properties of the estimated coherence, we apply Fisher’s

transform to the magnitude of the estimated coherency, |R̂XY (f)|, thus

Z = tanh−1(|R̂XY (f)|) =
1

2
log
(1 + |R̂XY (f)|

1− |R̂XY (f)|

)
. (4.4)

The random variable Z computed from the formula (4.4) may be shown to be asymptoti-

cally normally distributed.
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Goodman (Goodman [1965], Brillinger [1981]) derived the probability density function

(pdf) of |R̂XY (f)|2 as

Γ(n)

Γ(n− r)Γ(r)
(1− |RXY (f)|2)n 2F1(n, n; r; |RXY (f)|2|R̂XY (f)|2)×

|R̂XY (f)|2r−2(1− |R̂XY (f)|2)n−r−1

(4.5)

where 2F1(n, n; r; |RXY (f)|2|R̂XY (f)|2), is a hypergeometric function, n represents the

number of independent samples that effectively contribute to the estimate of the coherence.

This means, n may indicate the number of non-overlapping sections into which each record

is divided when “averaging across periodograms of contiguous sections from single records

” is applied to estimate spectral densities, as detailed in section 3.10.2. Also n can be

considered as the number of independent frequency points in a relatively small band of

frequency centred on a specific frequency, namely f , when the procedure of “smoothed

periodogram for the entire single record ”, discussed in section 3.10.1, is used to estimate

spectra and cross-spectra. The parameter r is the dimension of the stochastic processes of

interest, i.e., X. In the case of independent processes, that is |RXY (f)|2 = 0, expression

(4.5) becomes
Γ(n)

Γ(n− r)Γ(r)
|R̂XY (f)|2r−2(1− |R̂XY (f)|2)n−r−1 , (4.6)

which is asymptotically normally distributed with mean value (Enochson and Goodman

[1965], Brillinger [1981])

E
[
tanh−1|R̂XY (f)|

]
= tanh−1|R̂XY (f)|+ r

2(n− r)
(4.7)

and variance

Var
[
tanh−1|R̂XY (f)|

]
=

1

2(n− r − 1)
. (4.8)

4.2.2 Confidence interval for the asymptotic coherence

To decide whether the asymptotic coherence between two stochastic processes, namely X

and Y , is significant or not, we will examine the null hypothesis that the two processes of

interest are independent at level of significance α%, that is |RXY (f)|2 = 0. The probability

distribution function of the asymptotic coherence whose density distribution function given

by (4.6) when r = 1 is given by ( Brillinger [1981])

Prob
[
|R̂XY (f)|2 < x

]
= 1− (1− x)n−1 0 < x < 1 . (4.9)
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and

Prob
[
|R̂XY (f)|2 < x

]
= α . (4.10)

The combination of the two expressions (4.9) and (4.10) yields the solution

1− (1− x)n−1 = α ,

⇒ 1− α = (1− x)n−1 ,

⇒ (1− α)(1/n−1) = 1− x ,

therefore

x = 1− (1− α)(1/n−1) , (4.11)

where n denotes the disjoint segments L that the data has been divided into, when the

method of averaging periodograms across contiguous sections of single records, is used to

estimate the spectra and cross-spectra. Also this confidence interval can be applied to the

estimated coherence, when its components are estimated by the smoothed periodogram

method, in this procedure, the average of periodogram ordinates is taken with respect to

the number of frequencies lying in the neighbourhood of a specific frequency. That is n is

the number of independent frequencies 2m + 1 in a small band centered on that specific

frequency.

The estimated coherence based on spectral densities, which are obtained from the

multi-taper method, possesses the same features as the estimated coherence, which is pro-

duced by either the “disjoint sections method” and the “smoothed periodogram method”.

Consequently, it is distributed according to equation (4.6). Since the spectral densities are

estimated by applying K independent tapers, then the confidence interval of the significant

asymptotic coherence of X with Y under the null hypothesis of independence at level α%

is given by, (see, Thompson ( [1982], [2007]))

x = 1− (1− α)(1/K−1) . (4.12)

4.3 Partial spectra and partial coherence

4.3.1 Derived spectra

An important feature of the subsequent analysis is the use of processes that are derived

from other processes. Such processes are not measurable and are referred to here as derived

processes. A particularly important class of derived process occurs when an observable

process, say X, is conditioned on a group of other observable processes, say Z, such that
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the derived process of X is independent of each process of Z. For example, suppose Z

denotes the family of n processes Z1, . . . , Zn with respective Fourier coefficients dZ =

(dZ1 , . . . , dZn) where it is assumed a priori that the family Z have no common processes,

and let the process X have Fourier coefficients dX . The derived process of X conditioned

on Z is the process with Fourier coefficients

dX|Z = dX −AZdZ , (4.13)

where the n dimensional row vector AZ is chosen to ensure that

E
[
dX|ZdZ

]
= 0 . (4.14)

In this equation superscript dZ denotes the complex conjugate of dZ . Thus AZ is required

to satisfy the equation

E
[
dXdZ

]
−AZE

[
dZdZ

]
= 0 . (4.15)

4.3.2 Partial spectra

Let X, Y and Z be three stationary stochastic processes, and let dX|Z(f) and dY |Z(f) be

the Fourier coefficients of the derived processes X and Y with respect to the process Z.

The partial cross-spectral density between the processes X and Y given Z at a frequency

f is denoted by SXY |Z(f) and defined as, (see, Brillinger [1981], Bendat and Piersol [1986],

Rosenberg et al. [1989])

SXY |Z(f) = E
[
dX|Z(f) dY |Z(f)

]
,

= E
[ (
dX(f)− SXZ S−1

ZZ(f)dZ(f)
) (
dY (f)− SY Z S−1

ZZ(f)dZ(f)
) ]
,

= E
[ (
dX(f)− SXZ S−1

ZZ(f)dZ(f)
)(
dY (f)− dZ(f)S−1

ZZ(f)SZY
) ]
,

= SXY (f)− SXZ(f)S−1
ZZ(f)SZY (f) ; −∞ < f <∞ ,

(4.16)

where the spectral functions SXY (f), SXZ(f) and SZY (f) represent the cross-spectral

densities at frequency f between the processes (X,Y ), (X,Z) and (Z, Y ) respectively. The

spectral quantity S−1
ZZ(f) denotes the inverse auto-spectral density matrix of the process

Z at frequency f . In the same way, the partial auto-spectral density of the process X

conditioned on the process Z is defined by SXX|Z(f) = E
[
dX|Z(f) dX|Z(f)

]
. Thus, by a
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simple calculation, we can obtain

SXX|Z(f) = E
[
dX|Z(f) dX|Z(f)

]
,

= E
[ (
dX(f)− SXZ S−1

ZZ(f)dZ(f)
)(
dX(f)− dZ(f)S−1

ZZ(f)SZX
) ]
,

= SXX(f)− SXZ(f)S−1
ZZ(f)SZX(f) .

(4.17)

Similarly, the partial auto-spectrum of the process Y conditioned on the process Z will be

defined as

SY Y |Z(f) = SY Y (f)− SY Z(f)S−1
ZZ(f)SZY (f) . (4.18)

The definition of the partial spectra follows by the definition of the partial coherency

between two stationary stochastic processes given a third process as follows.

4.3.3 Partial coherency

The coherency function between two stationary stochastic processes, namely X and Y

conditioned on the stationary stochastic process Z, is denoted by RXY |Z(f) and defined

as (see, Brillinger [1981], Bendat and Piersol [1986] )

RXY |Z(f) =
SXY |Z(f)

[SXX|Z(f)SY Y |Z(f)]1/2
; −∞ < f <∞ . (4.19)

This type of coherency is called the partial coherency of the process X with the process

Y after removing the linear influence of the process Z at a specific frequency f . The com-

ponents of the partial coherency are calculated from the partial cross-spectrum between

the processes X and Y conditioned on the process Z, namely SXY |Z(f), and the partial

auto-spectral densities of the processes X, and, Y conditioned on the process Z, namely

SXX|Z(f) and SY Y |Z(f) respectively. Consequently, the partial coherence of the process

X with the process Y after eliminating the linear effect of the process Z, can be defined

as a squared magnitude of the partial coherency.

Definition 4.3.1 (Partial coherence) The coherence function between two stationary

stochastic processes, namely X and Y conditioned on the stationary stochastic process Z,

is denoted by |RXY |Z(f)|2 and defined as (see, Brillinger [1981], Bendat and Piersol [1986])

|RXY |Z(f)|2 =
|SXY |Z(f)|2

SXX|Z(f)SY Y |Z(f)
; −∞ < f <∞ . (4.20)
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The partial coherence function, |RXY |Z(f)|2, measures the strength of the correlation

between two processes X and Y at a specific frequency f after removing the linear influence

of the process Z. The values of the partial coherence lie within the interval [0, 1]. The

zero value of the partial coherence, i.e. |RXY |Z(f)|2 = 0, idicates that the correlation

between two processes X and Y is vanished after removing the linear effect of Z. That is

the correlation between X and Y can be predicted by Z.

4.3.4 Combining Partial Spectra

Let φ and ψ denote respectively families of n processes φ1, . . . , φn and m processes

ψ1, . . . , ψm with respective Fourier coefficients dφ = (dφ1 , . . . , dφn) and dψ = (dψ1 , . . . , dψm)

where it is assumed a priori that the families φ and ψ share no common processes. Let

ξ = φ∪ψ, that is, the family Z consists of (n+m) processes. The spectral density matrix

of Z may be expressed in the block form

SZZ =

 Sφφ Sφψ

Sψφ Sψψ

 . (4.21)

Moreover, the inverse of the spectral matrix SZZ can be obtained straightforwardly as

S−1
ZZ =

1

detSZZ

 Sψψ −Sφψ

−Sψφ Sφφ

 . (4.22)

where the determinant of the spectral matrix SZZ is calculated by

detSZZ = Sφφ Sψψ − SφψSψφ

= Sφφ
(
Sψψ − Sψφ S−1

φφSψφ
)

= Sψψ
(
Sφφ − Sφψ S−1

ψψSψφ
)
.

(4.23)

The partial auto-spectrum of the process ψ with respect to the process φ is given by

Sψψ|φ = Sψψ − Sφψ S−1
φφSψφ, and the auto-spectrum of the process φ conditioned on the

process ψ is Sφφ − Sφψ S−1
ψψSψφ, and so equation (4.23) will take the form

detSZZ = Sφφ Sψψ|φ = Sψψ Sφφ|ψ . (4.24)

Therefore, the inverse of the spectral matrix SZZ is given by

S−1
ZZ =

 S −1
φφ|ψ −S −1

φφ SφψS
−1
ψψ|φ

−S −1
ψψSψφS

−1
φφ|ψ S −1

ψψ|φ

 . (4.25)
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Although it is not apparent from expression (4.25), the inverse of the spectral density

matrix is symmetric. To appreciate how the symmetry comes about, note that the identity

(
Sψψ − SψφS−1

φφSφψ
)
S−1
ψψSψφ = Sψφ − SψφS−1

φφSφψS
−1
ψψSψφ = SψφS

−1
φφ

(
Sφφ − SφψS−1

ψψSψφ
)

can be rewritten in the form Sψψ|φS
−1
ψψSψφ = SψφS

−1
φφSφφ|ψ, or equivalently,

S−1
ψψSψφS

−1
φφ|ψ = S−1

ψψ|φSψφS
−1
φφ =

(
S −1
φφ SφψS

−1
ψψ|φ

)
.

There are two different representations of the partial spectrum SXY |φψ, depending on the

choice of family by which to perform the initial conditioning. However, to demonstrate

the independence of the initial choice of conditioning family of processes, we begin the

analysis with the calculation of SXY |Z = SXY |φψ from expression (4.16), to get

SXY |Z = SXY |φψ = SXY−
[
SXφ SXψ

] S −1
φφ|ψ −S −1

φφ SφψS
−1
ψψ|φ

−S −1
ψψSψφS

−1
φφ|ψ S −1

ψψ|φ


 SφY

SψY

 .
(4.26)

It is a matter of straightforward matrix multiplication to demonstrate that

SXY |φψ = SXY − SXφS −1
φφ|ψSφY + SXφS

−1
φφ SφψS

−1
ψψ|φSψY

−SXψS −1
ψψ|φSψY + SXψS

−1
ψψSψφS

−1
φφ|ψSφY .

(4.27)

Case I - Initial conditioning taken with respect to φ The analysis of this case

begins by replacing SXY in expression (4.27) by SXY |φ + SXφS
−1
φφSφY to obtain

SXY |φψ = SXY |φ + SXφS
−1
φφ

(
Sφφ|ψ − Sφφ

)
S −1
φφ|ψSφY + SXφ

(
S −1
φφ SφψS

−1
ψψ|φ

)
SψY

−SXψS −1
ψψ|φSψY + SXψ

(
S −1
ψψSψφS

−1
φφ|ψ

)
SφY .

(4.28)

The difference
(
Sφφ|ψ−Sφφ

)
in equation (4.28) is now replaced by −SφψS−1

ψψSψφ, to obtain

SXY |φψ = SXY |φ − SXφS−1
φφSφψ

(
S−1
ψψSψφS

−1
φφ|ψ

)
SφY + SXφ

(
S −1
φφ SφψS

−1
ψψ|φ

)
SψY

−SXψS −1
ψψ|φSψY + SXψ

(
S −1
ψψSψφS

−1
φφ|ψ

)
SφY

= SXY |φ +
(
SXψ − SXφS−1

φφSφψ
)(
S−1
ψψSψφS

−1
φφ|ψ

)
SφY

−
(
SXψ − SXφS −1

φφ Sφψ
)
S −1
ψψ|φSψY .

(4.29)
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The combination
(
SXψ −SXφS−1

φφSφψ
)

is now replaced in equation (4.29) by its definition

SXψ|φ and the identity S−1
ψψSψφS

−1
φφ|ψ = S−1

ψψ|φSψφS
−1
φφ is used, to obtain

SXY |φψ = SXY |φ + SXψ|φ
(
S−1
ψψ|φSψφS

−1
φφ

)
SφY − SXψ|φS −1

ψψ|φfψY

= SXY |φ − SXψ|φS−1
ψψ|φ

(
SψY − SψφS−1

φφSφY
)

= SXY |φ − SXψ|φS−1
ψψ|φSψY |φ .

(4.30)

Thus SXY |φψ = SXY |φ−SXψ|φS−1
ψψ|φSψY |φ in the situation in which the initial conditioning

is taken with respect to the family of processes φ.

Case II - Initial conditioning taken with respect to ψ Suppose now that the initial

conditioning is taken with respect to the family of processes ψ. In this case the analysis

begins by replacing SXY in expression (4.24) by SXY |ψ + SXψS
−1
ψψSψY to obtain

SXY |φψ = SXY |ψ + SXψS
−1
ψψ

(
Sψψ|φ − Sψψ

)
S −1
ψψ|φSψY + SXφ

(
S −1
φφ SφψS

−1
ψψ|φ

)
SψY

−SXφS −1
φφ|ψSφY + SXψ

(
S −1
ψψSψφS

−1
φφ|ψ

)
SφY .

(4.31)

The difference
(
Sψψ|φ−Sψψ

)
in equation (4.31) is now replaced by −SψφS−1

φφSφψ, to obtain

SXY |φψ = SXY |ψ − SXψS−1
ψψSψφ

(
S−1
φφSφψS

−1
ψψ|φ

)
SψY + SXφ

(
S −1
φφ SφψS

−1
ψψ|φ

)
SψY

−SXφS −1
φφ|ψSφY + SXψ

(
S −1
ψψSψφS

−1
φφ|ψ

)
SφY

= SXY |ψ +
(
SXφ − SXψS−1

ψψSψφ
)(
S −1
φφ SφψS

−1
ψψ|φ

)
SψY

−
(
SXφ − SXψS −1

ψψSψφ
)
S −1
φφ|ψSφY .

(4.32)

The combination
(
SXφ−SXψS−1

ψψSψφ
)

is now replaced in equation (4.32) by its definition

SXφ|ψ and the identity S−1
φφ|ψSφψS

−1
ψψ = S−1

φφSφψS
−1
ψψ|φ is used, to obtain

SXY |φψ = SXY |ψ + SXφ|ψ
(
S−1
φφ|ψSφψS

−1
ψψ

)
SψY − SXφ|ψS −1

φφ|ψSφY

= SXY |ψ + SXφ|ψS
−1
φφ|ψ

(
SφψS

−1
ψψSψY − SφY

)
= SXY |ψ − SXφ|ψS−1

φφ|ψSφY |ψ .

(4.33)

Thus SXY |φψ = SXY |ψ−SXφ|ψS−1
φφ|ψSφY |ψ in the situation in which the initial conditioning

is taken with respect to the family of processes ψ.
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To summarise, the partial cross-spectrum SXY |φψ may be calculated by either condi-

tioning first on the processes of φ or on the processes of ψ. Both approaches, although

superficially different, lead to equivalent expressions for SXY |φψ, namely

SXY |φψ = SXY |ψ − SXφ|ψS−1
φφ|ψSφY |ψ = SXY |φ − SXψ|φS−1

ψψ|φSψY |φ . (4.34)

4.3.5 Estimating the partial spectra and partial coherence directly from

the data

Consider the case of (n+2) processes divided into the family of n processes Z and the single

processes X and Y in that order. These (n+ 2) processes give rise to the (n+ 2)× (n+ 2)

dimensional spectral matrix with block form

S =


SZZ SZX SZY

SXZ SXX SXY

SY Z SY X SY Y

 (4.35)

The recursive application of formula (4.16) provides a mechanism for the computation of

SXY |Z starting with the ordinary spectral densities represented by the elements of the

(n + 2) × (n + 2) dimensional spectral matrix set out in expression (4.35). The ordinary

spectra can be estimated by using one of the methods elaborated in Chapter 3. Moreover,

ordinary and partial coherences can be computed directly from these ordinary and partial

spectral densities. However, partial coherences at any order can be constructed directly

without the need to construct all partial coherences or partial spectra at lower orders.

It is a standard result from matrix algebra that S−1, the inverse of the matrix S set

out in block form in expression (4.35), is

S−1 =
1

detS
adjS , (4.36)

where adjS, commonly called the adjugate matrix of S, is the transposed matrix of co-

factors of S. The cofactor of S, corresponding to the (j, k)-th element of S, has the value

(−1)j+kMjk, where Mjk is the determinant of the matrix (or minor) formed from S by

striking out the j-th row and k-th column of S. Suppose now that it is desired to compute

the partial coherence ∣∣RXY |Z∣∣2 =

∣∣SXY |Z ∣∣2
SXX|ZSY Y |Z

. (4.37)

The key idea is to calculate the entry of S−1 in the slot currently occupied by SXY . Bearing

in mind that the adjugate matrix is the transposed matrix of cofactors, then the required
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entry will be a signed multiple of the determinant of the matrix formed by striking out

the row and column of S containing the entry SY X , that is, the determinant,∣∣∣∣∣∣∣
SZZ SZY

SXZ SXY

∣∣∣∣∣∣∣ . (4.38)

Because SZZ is a nonsingular n × n matrix, then it is straightforward matrix algebra to

establish the identity I 0

−SXZS−1
ZZ 1


 SZZ SZY

SXZ SXY


 I −S−1

ZZSZY

0 1

 =

 SZZ 0

0 SXY − SXZS−1
ZZSZY


(4.39)

where I is the n× n identity matrix. Taking determinants of the matrix identity immedi-

ately gives ∣∣∣∣∣∣∣
SZZ SZY

SXZ SXY

∣∣∣∣∣∣∣ =
(
SXY − SXZS−1

ZZSZY
) ∣∣SZZ ∣∣ = SXY |Z

∣∣SZZ ∣∣ . (4.40)

Consider now the determinant of the matrix formed from S by striking out the row and

column of S containing the entry SXX , that is, the determinant∣∣∣∣∣∣∣
SZZ SZY

SY Z SY Y

∣∣∣∣∣∣∣ . (4.41)

In this case it is straightforward matrix algebra to establish the identity I 0

−SY ZS−1
ZZ 1


 SZZ SZY

SY Z SY Y


 I −S−1

ZZSZY

0 1

 =

 SZZ 0

0 SY Y − SY ZS−1
ZZSZY


(4.42)

from which it immediately follows that∣∣∣∣∣∣∣
SZZ SZY

SY Z SY Y

∣∣∣∣∣∣∣ =
(
SY Y − SY ZS−1

ZZSZY
) ∣∣SZZ ∣∣ = SY Y |Z

∣∣SZZ ∣∣ . (4.43)

An equivalent calculation, in which the row and column of S containing SY Y is eliminated,

yields ∣∣∣∣∣∣∣
SZZ SZX

SXZ SXX

∣∣∣∣∣∣∣ =
(
SXX − SXZS−1

ZZSZX
) ∣∣SZZ ∣∣ = SXX|Z

∣∣SZZ ∣∣ . (4.44)

The immediate conclusion of this analysis is that the partial coherence (4.37) can be com-

puted directly from the entries of S−1, which is the inverse of the spectral density matrix
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in (4.35). Of course, in general, the procedure computes the partial coherence between

any pair of processes conditioned on all the other processes. However, lower order coher-

ences may be computed for the same set of processes by striking out appropriate rows and

columns ( see, Medkour et al. [2009]).

In the following section, we discuss the parametric spectral estimation, represented by

the multivariate autoregressive model of order p.

4.4 Autoregressive Model of order p AR(p)

Supposing that X is an M real vector valued stochastic process whose values are available

at t = 0,±1,±2, · · · , then the value of the process X at a specific time t can be expressed

in terms of its past values using the notion of an autoregressive model of order p as

Xt =

p∑
j=1

AjXt−j + Et , (4.45)

where Xt = [X1, t, X2, t, · · · , XM, t ]τ , the superscript (τ) denotes the vector transpose,

A1, · · · , Ap are M×M matrices of coefficients and Et = [E1, t, E2, t, · · · , EM, t]
τ is a residual

error vector of dimension M with M×M covariance matrix Σ. In particular, error vectors

at different times are assumed to be independent random variables with mean value zero.

In the following two sections we shall describe two different ways in which the values of

the matrices A1, · · · , Ap may be estimated from experimental observations.

4.4.1 Yule-Walker approach

The Yule-Walker approach estimates the coefficients matrices A1, · · · , Ap, by multiplying

equation (4.45) by historical values of Xt, and then taking expectations of the resulting

equations. This procedure is illustrated with reference to multiplication of equation (4.45)

by Xτ
t−1. In this case,

XtX
τ
t−1 =

p∑
j=1

AjXt−jX
τ
t−1 + EtX

τ
t−1 ,

and the expectation of this equation gives

〈 Xt, Xt−1 〉 =

p∑
j=1

Aj〈 Xt−j , Xt−1 〉+ 〈 Et, Xt−1 〉 , (4.46)
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where 〈 X,Y 〉 denotes the expected value of the outer product of the vectors X and Y ,

that is, it is the expectation of the matrix XY τ . The assumption that residual errors at

different times are independent processes indicates that 〈 Et, Xt−1 〉 = 0, which in turn

leads to the first Yule-Walker equation,

〈 Xt, Xt−1 〉 =

p∑
j=1

Aj〈 Xt−j , Xt−1 〉 . (4.47)

Let Cj be the M ×M matrix of auto-correlations of X at lag j then

Cj = 〈 Xt, Xt−j 〉 . (4.48)

Note that Cj are antisymmetric matrices. This means that

Cτj = 〈 Xt−j , Xt 〉 ,

and in terms of this family of matrices, equation (4.47) may be expressed in the form

C1 =
1∑
j=1

AjCj−1 +

p∑
j=2

AjC
τ
j−1 , (4.49)

which further simplifies to give

C1 = A1C0 +

p∑
j=2

AjC
τ
j−1 . (4.50)

This strategy can be continued by multiplying both sides of equation (4.45) by Xτ
t−k where

k takes all lags from k = 2 to k = p to obtain

XtX
τ
t−k =

p∑
j=1

AjXt−jX
τ
t−k + EtX

τ
t−k .

After taking the expectation of this equation and splitting the sum, the matricesA1, · · · , Ap

are seen to satisfy the (p− 1) equations

Ck =
k∑
j=1

AjC|j−k| +

p∑
j=k+1

AjC
τ
|j−k| (4.51)

where k takes values from k = 2 to k = p. It is now convenient to scale the matrices

C0, C1, · · · , Cp with respect to the covariance C0 by introducing the M ×M matrix

ρj = C−1
0 Cj , ρτj = C−1

0 Cτj .
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In this construction ρ0 = I, and the matrices, C1, · · · , Cp are not symmetric. Consequently,

equations (4.50) and (4.51) can be rewritten in the form

ρ1 = A1ρ0 +A2ρ
τ
1 +A3ρ

τ
2 +A4ρ

τ
3 + · · ·+Apρ

τ
p−1 ,

ρ2 = A1ρ1 +A2ρ0 +A3ρ
τ
1 +A4ρ

τ
2 + · · ·+Apρ

τ
p−2,

ρ3 = A1ρ2 +A2ρ1 +A3ρ0 +A4ρ
τ
1 + · · ·+Apρ

τ
p−3 ,

ρ4 = A1ρ3 +A2ρ2 +A3ρ1 +A4ρ0 + · · ·+Apρ
τ
p−4 ,

...

ρN = A1ρp−1 +A2ρp−2 +A3ρp−3 +A4ρp−4 + · · ·+Ap−1ρ1 +Apρ0 .

(4.52)

The transposed form of equations (4.52), when expressed in block matrix form, is

ρ0 ρ1 ρ2 ρ3 · · · ρp−1

ρτ1 ρ0 ρ1 ρ2 · · · ρp−2

ρτ2 ρτ1 ρ0 ρ1 · · · ρp−3

...
...

...
...

. . .
...

ρτp−1 ρτp−2 ρτp−3 ρτp−4 · · · ρ0





Aτ1

Aτ2

Aτ3

Aτ4
...

Aτp


=



ρτ1

ρτ2

ρτ3

ρτ4
...

ρτp


. (4.53)

Succinctly, RAτ = ρτ where R is a symmetric matrix of full-rank, so that R−1 is guar-

anteed to exist. In particular,

Aτ = R−1 ρτ . (4.54)

4.4.2 Maximum Likelihood

The Maximum Likelihood (ML) procedure estimates the values of the parameters of a

model to be those values which maximise the probability (likelihood) that a given sample

of data is a realization of the model. From a practical point of view, ML estimation is

robust and gives parameter estimates with good statistical properties in large samples. By

this we mean that the procedure is asymptotically unbiased and consistent, that is, the

standard error of parameter estimates decays as the square root of sample size increases.

To estimate the matrices A1, · · · , Ap using an ML procedure (Kalbfleisch [1985]), rewrite

the model (4.45) as

Et = Xt −
p∑
j=1

AjXt−j .
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Supposing that Et is distributed as a multivariate normal with mean value zero, then the

associated probability density function of E is

f(E) =
1

(2π)M/2

1

|Σ|1/2
exp

(
− 1

2
EτΣ−1E

)
, (4.55)

where |Σ| is the determinant of Σ, the covariance of E. Each observation of Et is based on

the observations of Xt and its past history up to and including Xt−p, and so the likelihood

of observing Et is

Lt =
1

(2π)M/2

1

|Σ|1/2
exp

[
− 1

2

(
Xt −

p∑
j=1

AjXt−j

)τ
Σ−1

(
Xt −

p∑
k=1

AkXt−k

)]
. (4.56)

The negative log-likelihood function is therefore given by

− logLt =
M

2
log 2π +

1

2
log |Σ|+ 1

2

(
Xt −

p∑
j=1

AjXt−j

)τ
Σ−1

(
Xt −

p∑
k=1

AkXt−k

)
. (4.57)

Since observations of Et at different times are independent random variables then the

likelihood of observing the sample is

L =
∏
t

Lt ,

and therefore the negative log-likelihood of observing the sample is

− logL = −
∑
t

logLt ∝ −E
[

logLt
]
,

where the constant of proportionality is the number of observation of Et, that is, the

number of transitions in the sample. Thus the computation of the negative log-likelihood of

the sample is formally equivalent to the task of computing the expected value of expression

(4.57). To facilitate this calculation we use equation (4.48), i.e.

Cj = E
[
X(t)Xτ (t− j)

]
.

Taking the expectation of the negative log-likelihood gives

E
[
− logLt

]
= E

[M
2

log 2π +
1

2
log |Σ|+ 1

2

(
Xτ
t −

p∑
j=1

Xτ
t−jA

τ
j

)
Σ−1

(
Xt −

p∑
k=1

AkXt−k

)]
.

(4.58)

Since the first and second terms on the right hand side of equation (4.58) are unaffected

by the expectation (the expected value of a deterministic function is constant), our focus
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will be on the third term of expression (4.58). This term is first expanded to obtain

E
[(
Xτ
t −

p∑
j=1

Xτ
t−jA

τ
j

)
Σ−1

(
Xt −

p∑
k=1

AkXt−k

)]
= E

[
Xτ
t Σ−1Xt

]
−

p∑
j=1

E
[
Xτ
t−jA

τ
jΣ−1Xt +Xτ

t Σ−1AjXt−j

]
+

p∑
j=1

p∑
k=1

E
[
Xτ
t−jA

τ
jΣ−1AkXt−k

]
.

To simplify this expression each part is treated separately as shown in calculations (4.59).

(a) E
[
Xτ
t Σ−1Xt

]
= E

[
Xi,t Σ−1

is Xs,t

]
= C0: isΣ

−1
is ,

(b)

p∑
j=1

E
[
Xτ
t−j A

τ
jΣ−1Xt +Xτ

t Σ−1AjXt−j
]

=

p∑
j=1

[
E
[
Xi,t−j Xs,t

]
Aj:miΣ

−1
ms + E

[
Xi,tXs,t−j

]
Σ−1
imAj:ms

]
=

p∑
j=1

Cj: is
[
Aj:miΣ

−1
ms +Aj:msΣ

−1
im

]
,

(c)

p∑
j=1

p∑
k=1

E
[
Xτ
t−jA

τ
jΣ−1AkXt−k

]
=

p∑
j=1

p∑
k=1

E
[
Xi,t−j Xr,t−k

]
Aj:miΣ

−1
msAk: sr

=

p∑
j=1

p∑
k=1

C|j−k|: irAj:miΣ
−1
msAk: sr .

(4.59)

The individual calculations in (4.59) are now substituted into the equation (4.58) to give

−E
[

logLt
]

=
M

2
log 2π +

1

2
log |Σ|+ 1

2
C0: isΣ

−1
is

− 1

2

p∑
j=1

Cj: is
[
Aj:miΣ

−1
ms +Aj:msΣ

−1
im

]
+

1

2

p∑
j=1

p∑
k=1

C|j−k|: irAj:miΣ
−1
msAk: sr .

(4.60)

The matrices A1, · · · , Ap are now chosen to minimize expression (4.60). The minimum

value of −E
[

logLt
]

will be attained at its stationary point with respect to variations in

the values of the matrices A1, · · · , Ap, that is, where

∂
(

logLt
)

∂Au:nq
= 0 .
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Calculation gives

−
∂
(

logLt
)

∂Au:nq
= −1

2

p∑
j=1

Cj: is
[
δjuδmnδiqΣ

−1
ms + δjuδmnδsqΣ

−1
im

]
+

1

2

p∑
j=1

p∑
k=1

C|j−k|: ir
[
δjuδmnδiqΣ

−1
msAk: sr +Aj:miΣ

−1
msδkuδsnδrq

]
= −1

2

p∑
j=1

[
Cj: qsδjuΣ−1

ns + Cj: iqδjuΣ−1
in

]
+

1

2

p∑
j=1

p∑
k=1

[
C|j−k|: qrδjuΣ−1

nsAk: sr + C|j−k|: iqAj:miΣ
−1
mnδku

]
= −1

2

[
Cu: qsΣ

−1
ns + Cu: iqΣ

−1
in

]
+

1

2

p∑
k=1

C|u−k|: qrΣ
−1
nsAk: sr

+
1

2

p∑
j=1

C|j−u|: iqAj:miΣ
−1
mn .

(4.61)

Taking account of the symmetry of Σ−1, it follows immediately from calculation (4.61)

that A1, · · · , Ap should be chosen to satisfy

−1

2

[
Cu: qsΣ

−1
sn + Cu: iqΣ

−1
in

]
+

1

2

p∑
k=1

C|u−k|: qrAk: srΣ
−1
sn +

1

2

p∑
j=1

C|j−u|: iqAj:miΣ
−1
mn = 0 .

(4.62)

Equation (4.62), when expressed in matrix notation, takes the simple form

−CuΣ−1 +

p∑
k=1

C|u−k|AkΣ
−1 +

p∑
j=1

C|j−u|A
τ
jΣ−1 = 0 , (4.63)

where u takes all integer values from u = 1 to u = p inclusive. Moreover, it is clear that

all occurrences of Σ−1 can be removed by post-multiplying equation (4.63) by Σ, to get

−Cu +

p∑
j=1

C|j−u|A
τ
j +

p∑
k=1

C|u−k|Ak = 0 , u = 1, 2, · · · , p . (4.64)

This equation can be rearranged to have the form

Ck =

k∑
j=1

AjC|j−k| +

p∑
j=k+1

AjC
τ
|j−k| . (4.65)

Equation (4.65) is identical to that derived by the Yule-Walker procedure with, of course,

the same solutions for the matrices A1, · · · , Ap.

Similarly, the optimal value of the residual covariance matrix Σ, which is chosen to

minimise the value of expression(4.58), is obtained by setting to zero the derivative of

−E
[

logLt
]

with respect to the (i, j)-th component of Σ, that is

∂
(

logLt
)

∂Σij
= 0 .
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Differentiating equation (4.58) with respect to Σij gives

−
∂
(

logLt
)

∂Σij
=

1

|Σ|
∂|Σ|
∂Σij

+
(
Xt −

p∑
k=1

AkXt−k

)τ ∂Σ−1

∂Σij

(
Xt −

p∑
k=1

AkXt−k

)
. (4.66)

To simplify equation (4.66), we use the result

|Σ| =
M∑
j=1

Σijαij , αij = (−1)(i+j)Mij , (4.67)

where αij is the cofactor of Σij in det Σ. Thus αij is a polynomial function of the elements

of Σ but is independent of Σik and Σkj for all k, and Mij is the determinant of the matrix

that results from Σ by removing the ith row and jth column. Therefore

∂|Σ|
∂Σij

= αij . (4.68)

Equation (B.14) can be expressed in the matrix form

∂|Σ|
∂Σ

= Adj
(
Σ
)
, (4.69)

where Adj
(
Σ
)

is the cofactor matrix the entries of which are αij . The following calculations

have been done as a preamble to the computation of ∂Σ−1/∂Σ. From the property ΣΣ−1 =

I, it follows that
∂
(
ΣΣ−1

)
∂Σij

= 0 ,

and therefore

∂Σrn

∂Σij
Σ−1
nq + Σrn

∂Σ−1
nq

∂Σij
= 0 , =⇒ δriΣ

−1
jq + Σrn

∂Σ−1
nq

∂Σij
= 0 .

The pre-multiplication of this equation by Σ−1
sr gives

∂Σ−1
sq

∂Σij
= −Σ−1

si Σ−1
jq . (4.70)

By substituting equation (B.16) into (4.66), we obtain(
Xt −

p∑
k=1

AkXt−k

)τ
n
Σ−1
ni Σ−1

jq

(
Xt −

p∑
k=1

AkXt−k

)
q

=
1

|Σ|
Adj(Σ)ji ,

and when this equation is contracted with ΣirΣnj , the result is(
Xt −

p∑
k=1

AkXt−k

)τ
n
Σ−1
ni ΣirΣnjΣ

−1
jq

(
Xt −

p∑
k=1

AkXt−k

)
q

=
1

|Σ|
Adj(Σ)jiΣirΣnj . (4.71)

The identity BAdj(B) = |B|I is now used to deduce that(
Xt −

p∑
k=1

AkXt−k

)τ
r

(
Xt −

p∑
k=1

AkXt−k

)
n

= δjrΣnj = Σnr . (4.72)
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Equation (4.72) can be expressed in block form as

Σ =
(
Xt −

p∑
j=1

AjXt−j

)τ(
Xt −

p∑
j=1

AjXt−j

)
. (4.73)

The standard error of the estimates of the matrices A1, · · · , Ap are given by the square

roots of the diagonal entries of the inverse Hessian of the negative log-likelihood function.

In this case the Hessian of the negative log-likelihood function is

Hess = −
∂2E

[
logL

]
∂Am∂Au

= (Number of realisations of E)× Σ−1C|m−u| ,

with inverse Hessian

Hess−1 =
C−1
|m−u|Σ

Number of realisations of E
.

4.4.3 Confidence interval for the estimated AR(p) coefficients

To validate the estimated autoregressive model coefficients Aj computed in the previ-

ous section, we will apply the t-statistical test, which is a measure of the deviation of

the estimated parameter value from its natural value and the standard error. The null

hypothesis to be examined is that the processes construct the autoregressive model are

independent, that is Aj = 0, where j represents the lag order of the autoregressive model

and {j = 1, · · · , p}. Moreover, the matrix Aj is equal to the zero matrix, if and only if, all

its entries Aj(l,m) = 0, where {l,m = 1, 2, · · · ,M}. That is, the interdependence between

processes vanishes at lag number j.

Let Âj(l,m) denote the estimated values of the entries of the matrix Aj , and let

SEj(l,m) denote the standard error of the estimated autoregressive coefficients Âj(l,m),

then ∣∣∣ Âj(l,m)

SEj(l,m)

∣∣∣ < 2 ; j = 1, 2, · · · , p. (4.74)

This relation can be written as

−2SEj(l,m) < Âj(l,m) < 2SEj(l,m) ; j = 1, 2, · · · , p. (4.75)

Thus the values of the estimated AR coefficients , Âj(l,m), lying within the interval(
− 2SEj(l,m), 2SEj(l,m)

)
indicate that the estimated parameters Âj(l,m) are significantly zero, otherwise the null

hypothesis is rejected.
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4.4.4 Spectral analysis for AR(p)

The spectral components of the data are estimated from the autoregressive model of order

p in equation (4.45). We began by applying the continuous Fourier transform defined in

equation (3.1) to the model equation (4.45), to get

X (f) =

∫ ∞
−∞

Xte
−2iπft dt =

∫ ∞
−∞

p∑
k=1

AkXt−ke
−2iπft dt+

∫ ∞
−∞

Ete
−2iπft dt

=

p∑
k=1

Ak

∫ ∞
−∞

Xt−ke
−2iπf(t−k∆t)e−2iπfk∆t dt+ E(f) ,

(4.76)

where X (f) denotes the Fourier transform of X(t) and E(f) is the Fourier transform of Et,

and f represents the ordinary frequency, which is in turn linked to the angular frequency ω,

by ω = 2πf . A simple translation of integration variable in the integral on the right-hand

side of the equation (4.76), gives the final equation

X (f) =

p∑
k=1

Ake
−2iπfk∆tX (f) + E(f) . (4.77)

Let B(f) denote the transfer matrix, which is defined by

B(f) = I −
p∑

k=1

Ake
−2iπfk∆t . (4.78)

Then the expression (4.77) may be rearranged into the form B(f)X (f) = E(f) with

solution

X (f) = H(f)E(f) , (4.79)

where H(f) = B(f)−1 represents the inverse of the transfer matrix. The power spectrum

of X is therefore

Sp(f) = X (f)X ∗(f) = H(f)E(f)E∗(f)H∗(f) , (4.80)

where the superscript asterisk (∗) denotes the matrix Hermitian operator, namely the

process of taking the complex conjugate of the matrix transpose.

The essential assumption made in the analysis of the error process Et is that it has

instantaneous covariance Σ but otherwise is uncorrelated at different times, that is,∫ ∞
−∞

EtE
τ
t−s dt = Σ δ(s) , (4.81)

where δ(s) is the Dirac distribution. This function takes the value of zero everywhere

except at s = 0 and also satisfies∫ ∞
−∞

f(x)δ(x− s) dx = f(s) .
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Equation (4.81) is multiplied by e−2iπfs and then integrated over R with respect to s to

obtain∫ ∞
−∞

e−2iπfs
(∫ ∞
−∞

EtE
τ
t−s dt

)
ds =

∫ ∞
−∞

Ete
−2iπft dt

∫ ∞
−∞

Eτt−se
2iπf(t−s) ds

=

∫ ∞
−∞

Ete
−2iπft dt

∫ ∞
−∞

Eτue
2iπfu du = E(f)E∗(f) .

In conclusion,

E(f)E∗(f) =

∫ ∞
−∞

e−2iπfs
(∫ ∞
−∞

EtE
τ
t−s dt

)
ds =

∫ ∞
−∞

Σδ(s)e−2iπfs ds = Σ .

Hence the model specification of the power spectrum of the error process is

Sp(f) = X (f)X ∗(f) = H(f) ΣH∗(f) . (4.82)

Here Sp(f) represents an M × M parametric spectral density matrix of the process X

. The superscript p has been included to distinguish the spectral density computed by

the parametric approach, namely the multivariate autoregressive model system, from the

spectral density, S(f), that is computed directly from the data. The diagonal entries

of Sp(f) contain the auto-spectra or the power spectra of the vector X components at

frequency f , say SpXi,tXi,t(f) ; i = 1, · · · ,M , while the off-diagonal entries involve the cross-

spectra between the elements of X. For example, SpXi,tXj,t(f), where i, j = 1, · · · ,M ,

represents the cross-spectrum between the two process Xi,t and Xj,t .

Consequently, the interrelation between components of the multivariate process X can

be captured using the ordinary coherence and partial coherence measurements given in

equations (4.2) and (4.20) respectively, by replacing the spectral density S(f) by the

parametric spectral density as follows

|RXiXj (f)|2 =
|SpXiXj (f)|2

SpXiXi(f)SpXjXj (f)
, i, j = 1, · · · ,M. (4.83)

This equation gives the definition of the coherence between two components of the mul-

tivariate vector process X, say Xi and Xj . The partial coherence between two processes

Xi and Xj given a process Xk, is defined as follows,

|RXiXj |Xk(f)|2 =
|SpXiXj |Xk(f)|2

SpXiXi|Xk(f)SpXjXj |Xk(f)
, i, j, k = 1, · · · ,M and k 6= i or j. (4.84)

Thus, this equation defines the correlation between two processes Xi and Xj after removing

the linear influence of the process Xk.
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4.5 Granger causality

Granger causality is a statistical measure of causal or directional influence from one time

series to another and is based on a regressive model which attempts to provide a linear pre-

diction of the behaviour of network activity (a time series) from its history (Granger [1969],

Dhamala et al. [2008]). The concept of Granger causality is based on the fact that the

causes precede their influences in time. That is, given two stationary stochastic processes,

the first process is said to be G-causal for the second process if knowledge involved in the

history of the first process plays a crucial role in improving the prediction of the second

process. In the following sections, we will demonstrate the concept of Granger causality in

its simple performance for bi-variate autoregressive models of appropriate model order p,

which is called bi-variate Granger causality (section (4.5.1)). While Granger causality in

multivariate system, which is based on fitting the underlying data by autoregressive vector

models, is called multivariate Granger causality, or simply MVGC, will be presented in

section (4.5.2).

4.5.1 Bi-variate G-Causality

Suppose that the two stationary stochastic processes Xt and Yt satisfy bi-variate autore-

gressive models (Kaminski et al. ( [2001]))

Xt =

p∑
j=1

AXX,jXt−j +

p∑
j=1

AXY,jYt−j + EX,t

Yt =

p∑
j=1

AY X,jXt−j +

p∑
j=1

AY Y,jYt−j + EY,t ,

(4.85)

where Aik,j , i, k = X,Y , are matrices of coefficients at lags, j = 1, 2, · · · , p, and Ei,t, i =

X,Y , is a residual error vector of dimension 2 with 2× 2 covariance matrix Σ. In partic-

ular, error vectors at different times are assumed to be independent random variables, as

mentioned in the previous section, with mean value zero. If the variance of the prediction

error EX,t (or EY,t) is reduced by the inclusion of the Y (or X) terms in the first (or

second) equation, then, according to Granger causality Y (or X), is said to have a causal

influence on X (or Y ). To construct the spectral decomposition of Granger causality as

proposed by Geweke [1982], we rewrite equation (4.85) in the matrix form
Xt

Yt

 =

p∑
j=1


AXX,j AXY,j

AY X,j AY Y,j




Xt−j

Yt−j

+


EX,t

EY,t

 . (4.86)
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The Fourier transform of equation (4.86) can be easily obtained as
BXX(f) BXY (f)

BY X(f) BY Y (f)



X (f)

Y(f)

 =


EX(f)

EY (f)

 , (4.87)

where Z(f) =
∫∞
−∞ Zte

−2iπft represents the Fourier transform of the process Z and the

components of the coefficient matrix B(f) take the form

B(f) = I −
p∑
j=1

Aje
−2iπfj∆t (4.88)

where A1, · · · , Ap, B, and I are 2× 2 matrices. Equation (4.87) can be written as
X (f)

Y(f)

 =


HXX(f) HXY (f)

HY X(f) HY Y (f)



EX(f)

EY (f)

 , (4.89)

where H(f) = B−1(f) denotes the inverse of the transfer function matrix. Therefore, the

spectral density matrix at frequency f is denoted by Sp(f), and expressed as,

Sp(f) = X (f)X ∗(f)

= H(f)E(f)E∗(f)H∗(f)

= H(f)ΣH∗(f) ,

(4.90)

and the covariance matrix of the residual errors has the form

Σ =


ΣXX ΣXY

ΣY X ΣY Y

 ,

where the diagonal components of the covariance matrix have the definitions ΣXX =

Var(EX,t),ΣY Y = Var(EY,t), and the off-diagonal components have the definitions ΣXY =

ΣY X = Cov(EX,t, EY,t).

In order to illustrate the causal influence of Y on X, we investigate the spectral density

component SpXX , so from equation(4.90) we have

SpXX = HXXΣXXH
∗
XX + 2ΣXYRe(HXXH

∗
XY ) +HXY ΣY YH

∗
XY .

To evaluate the causal power contribution, it is beneficial to eliminate the cross terms

(second term) of the spectral density SpXX , using the transformation that is introduced by
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Geweke [1982]. For the process X, the transformation takes the form 1 0

−ΣXY /ΣXX 1

 . (4.91)

Multiplying equation (4.87) by the transformation (4.91) gives
BXX(f) BXY (f)

B̂Y X(f) B̂Y Y (f)



X (f)

Y(f)

 =


EX(f)

ÊY (f)

 ,

where

B̂Y X(f) = BY X(f)− ΣXY

ΣXX
BXX(f) ,

B̂Y Y (f) = BY Y (f)− ΣXY

ΣXX
BXY (f) ,

ÊY (f) = EY (f)− ΣXY

ΣXX
EX(f) .

Now EX and ÊY are uncorrelated with each other even at the same time,

cov(EX , ÊY ) = E
[
EX ÊY

]
= E

[
EX
(
EY −

ΣXY

ΣXX
EX
)]

= E
[
EXEY −

ΣXY

ΣXX
EXEX

]
= ΣXY − ΣXY

= 0 .

Consequently, the transformed covariance matrix of the noise processes takes the form

Σ̂ = E



EX

ÊY

 ( EX ÊY )

 =


ΣXX 0

0 Σ̂Y Y

 , (4.92)

where Σ̂Y Y = ΣY Y −ΣXY /ΣXX , and the new inverse transfer matrix Ĥ(f) takes the form

Ĥ =

 ĤXX(f) HXY (f)

ĤY X(f) HY Y (f)

 ,
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where the transformed components of the inverse transfer matrix, ĤXX and ĤY X , take

the values

ĤXX(f) = HXX(f) +
ΣXY

ΣXX
HXY (f) ,

ĤY X(f) = HY X(f) +
ΣXY

ΣXX
HY Y (f) .

Hence, the component of the causal density spectrum ŜpXX can be written as a combination

of the intrinsic power of X and the causal power due to the linear influence of Y on X.

ŜpXX(f) = ĤXX(f)ΣXXĤ
∗
XX(f) + ĤXY (f)Σ̂Y Y Ĥ

∗
XY (f) . (4.93)

Since Granger causality is the natural logarithm of the ratio of total power to the intrinsic

power (Geweke [1982], Wang et al. [2007], Dhamala et al. [2008]), the causal influence of

Y on X at frequency f is

FY→X(f) = log

(
ŜpXX(f)

ŜpXX(f)− (ΣY Y − Σ2
XY /ΣXX)|HXY (f)|2

)
. (4.94)

Similarly, the causal influence of X on Y at frequency f , can be obtained by using the

transformation matrix  1 −ΣXY /ΣY Y

0 1

 ,

and following the same steps that lead to equation (4.94). Hence the linear causality from

X to Y can be interpreted as

FX→Y (f) = log

(
ŜpY Y (f)

ŜpY Y (f)− (ΣXX − Σ2
Y X/ΣY Y )|HY X(f)|2

)
. (4.95)

The instantaneous linear causality as defined by (Geweke [1982], Wang et al. [2007]) is

FX.Y (f) = log

(
|ĤXX(f)ΣXXĤ

∗
XX(f)||ĤY Y (f)ΣY Y Ĥ

∗
Y Y (f)|

Ŝp(f)

)
. (4.96)

The combination of equations (4.94), (4.95) and (4.96) leads to the linear dependence

between X and Y which takes the form

FX,Y (f) = FY→X + FX→Y + FX.Y . (4.97)

The measure of the linear dependence is the sum of the measures of the three types of

linear causality.

To investigate the causal influences in a multivariate stochastic system with respect

to Granger causality, the partial directed coherence will be elaborated in the following

section.
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4.5.2 Partial directed coherence for MVGC

Recall the mathematical model

Xt =

p∑
k=1

AkXt−k + Et , (4.98)

where Xt represents an M-dimensional stationary time series, Ak’s, where k = 1, · · · , p,

are coefficient matrices of dimension M ×M of the model and Et is an M-dimensional

residual error vector with mean value zero and covariance matrix Σ. As mentioned above,

the essential assumption is that the error vectors are uncorrelated across time.

In the multivariate autoregressive model the coefficients Ak(i, j) represent the linear

dependence of the current values of the process Xi on the past values of the process

Xj where i, j = 1, · · · ,M . This means that the process Xj has causal influence on the

process Xi, if the information involved in the past values of the process Xj improves the

predictability of the process Xi, taking into account the influences of the other processes.

The frequency domain of Granger causality in a multivariate system is based on the

autoregressive model proposed by Baccalá and Sameshima [2001] through the concept of

the partial directed coherence which is defined as

|πi←j(f)| = |Bij(f)|√∑
m |Bmj(f)|2

, (4.99)

whereBij(f) denotes the (i, j) component of the transfer matrixB(f) = I−
∑p

k=1Ake
−2iπfk∆t

at frequency f . This definition expresses the ratio of the influence of the process Xj on

the process Xi to the joint influences of the process Xj on the other processes in the

system. According to this definition, the partial directed coherence is equal to zero for all

frequency f , if and only if, all coefficients Ak(i, j) are zero, and hence the process Xj is

not Granger causal to the process Xi conditioned on the other processes in the system.

Furthermore, the values of the partial directed coherence are ranging between 0 and 1 due

to the normalization in equation (4.99).

In order to assess whether the estimated values of the partial directed coherence from

fitting the multivariate autoregressive model of order p to the data, are significant or

not, it is essential to determine a significance level for |πi←j(f)|. Schelter et al. [2005]

derived a significant level for the partial directed coherence using the statistical properties

of the estimated autoregressive coefficients Ak(i, j). Thus under the null hypothesis that

|πi←j(f)| = 0, the proposed significance level is given by( Gij(f)χ
2
1,1−α

T
∑

m |Bmj(f)|2
)1/2

, (4.100)
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where T represents the number of observations, χ2
1,1−α denotes the (1− α)quantile of the

chi-squared distribution with one degree of freedom, and Gij(f) is defined by

Gij(f) = Σii

[ p∑
k=1

p∑
l=1

Djj(k, l)(cos(kf)cos(lf) + sin(kf)sin(lf))
]
, (4.101)

where Djj(k, l) denotes the components of the inverse of the covariance matrix R of the

multivariate autoregressive model, that is D = R−1. The entries of the covariance matrix

are M ×M sub-matrices as defined in equations (4.53) and (4.54). Therefore, values of

the estimated partial directed coherence lying above the significance level line indicate the

existence of a causal influence from the process Xj to the process Xi, taking into account

the intermediate effects of the process Xj on the other processes in the considered system.

4.6 Conclusion

In this chapter, we have discussed the spectral association measurements, the ordinary and

partial coherences. Coherence function is commonly used in detecting the spontaneous

pairwise linear relations within a dynamic system and assessing statistically the strength

of the correlation under a null hypothesis. The partial coherence is used to determine the

depth of the coherence as it measures the linear relation between two stationary processes

after removing the linear effects of the intermediate process (or processes). Moreover, we

have demonstrated the mechanism of estimating spectral densities and partial spectral

densities directly from the data, and hence estimate coherences and partial coherences

at any order independently, without need to calculate the lower order. The significant

confidence intervals of coherences under the null hypothesis that, the two considered sta-

tionary processes are uncorrelated at level of significance α%, are explained for the three

non-parametric spectral estimators, the method of averaging across periodograms of adja-

cent segments from single records, the method of averaging frequency and the multi-taper

method.

In addition, we have discussed the traditional multivariate autoregressive model as a

parametric spectral estimate. We have also used the likelihood and the Yule-Walker meth-

ods to estimate the autoregressive model parameters Aj ’s, as well as the error covariance Σ.

The MVAR estimated parameters obtained by the Yule-Walker are identical to those ob-

tained by the maximum likelihood estimation. However, The maximum likelihood method

facilitates the calculation of the estimated standard error, which is a statistically impor-

tant to examine the accuracy of the estimation. The causal influences have been discussed
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and the direction of the information flow has been defined for bi-variate systems using the

direct Granger causality in the spectral domain and for multivariate autoregressive model

systems using a measure called partial directed coherence.



Chapter 5

Test for bands of significant

coherence in finite samples

5.1 Introduction

The likelihood principle is a statistical principle of inference which asserts that all the infor-

mation in a sample is contained in its likelihood function (Berger [1988], Birnbaum [1962]).

One of the most widely used applications of the likelihood principle is the estimation of

model parameters by choosing them to maximize the likelihood of a sample. The pro-

cedure is called Maximum Likelihood Estimation (MLE) and is often employed in signal

processing analysis to estimate parameters. Moreover, parameter estimates generated by

MLE are asymptotically unbiased (consistent) and asymptotically Gaussian with mini-

mum variance (efficient), with estimates achieving the Cramer-Rao lower bound, which

is defined as the smallest variance that an unbiased or asymptotically unbiased estimator

can achieve, ( see, Kay [1993], Peleg and Porat [1991], Rice et al. [2001]).

Given two stationary time series, we aim to use the likelihood principle to compute

the probability that two experimental data sets are uncorrelated in a particular band of

frequencies. To achieve this objective, we shall use coherence to measure the strength of

correlation between the two signals at each frequency of the band, and thereafter compute

the value of the likelihood of observing such a sequence of coherences under the null

hypothesis. A probability is then associated with this value of likelihood, and a decision

is taken as to whether or not the signals are correlated or uncorrelated in this band of

frequencies. Although the strategy is identical, in practice, we prefer to use the negative

log-likelihood function instead of the traditional likelihood function.

106
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To achieve this objective, we will use the known probability density function for the

coherences between samples of the two independent time series X and Y , derived in Good-

man [1965] and Brillinger [1981], and defined previously in Chapter 4 by equation (4.6).

Asymptotically as the sample size increases, coherences at different frequencies are inde-

pendent. Therefore the computation of negative log-likelihood comprises the sum of the

negative log-likelihood of independent coherences, which in turn behaves asymptotically

as the sum of independent random variables. Each random variable has a finite mean and

a finite variance, so the conditions necessary for the validity of the central limit theorem

(CLT) are satisfied. The theorem asserts that the value of the negative log-likelihood of

the band of frequencies is increasingly well approximated by a Gaussian random variable

as the number of frequencies in the band is increased. Indeed, the conventional view is that

five or six independent frequencies are enough for the CLT to give a good approximation

for their distribution. These asymptotic results provide a good way to validate our pro-

cedure: the distribution of our test statistic is expected to converge to that of a Gaussian

distribution when a large amount of data is available and larger bands of frequencies are

used.

Of course, the primary difficulty in the application of the likelihood procedure in this

work, is that the available samples have a finite (and sometimes relatively small) size,

and that the investigation may sometimes involve a band which has as few as four or five

frequencies. In such applications, neither is the conclusion of the central limit theorem

appropriate, nor are the calculated coherences at sequential frequencies independent. The

statistical properties of small bands of frequencies calculated from finite samples must

be determined by simulation under the null hypothesis that the signals are uncorrelated.

Another important point to note is that the test statistic is one-sided, as large coherences

push the test statistic into the right tail of its distribution. In the simulations, the null

hypothesis will be set at the confidence levels α = 1%, 2.5%, 5% and 10%, to follow its

rejection region.

5.1.1 Asymptotic behaviour of the likelihood function for samples of

coherences

Supposing we have two independent stationary stochastic processes X and Y, then the

probability density function of the coherence U = |RXY (ω)|2 between samples of these
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processes, has been given by equation (4.6). Recall the pdf of the coherence U

f(u) =
Γ(L)

Γ(L− r)Γ(r)
u2r−2(1− u)L−r−1 , (5.1)

where r is the dimension of the stochastic processes of interest and L is the number of

non-overlapping sub-samples of length N , into which a record of total length T has been

sub-divided. In other words, if there are T observations of a stochastic process, namely

X, then L = T/N where N has to be chosen appropriately (see, Brillinger, [1981], Amjad

et al. [1997]). Neurophyiological data is usually observed at millisecond intervals with a

large sample typically consisting of 60 seconds of recording, some 60,000 data in total for

each process. However, the samples at our disposal have as little as 5 seconds of data.

When data is measured at millisecond intervals the choice N = 1000 leads naturally to

physical frequencies in Hertz (Hz) whereas other popular choices of N (say N = 512 or

N = 1024) necessarily require the natural Fourier frequency to be rescaled into Hertz.

When r = 1, then equation (5.1), becomes

f(u) = (L− 1)(1− u)L−2 (5.2)

and the likelihood function of observing a sequence uK , . . . , uK+M of independent coher-

ences over the frequency band of K Hz to K +M Hz inclusive is

L(uK , . . . , uK+M ) =
M∏
i=0

f(uK+i) . (5.3)

Since the calculation of log-likelihood is more straightforward and is equivalent to calcu-

lating likelihood, then the log-likelihood of observing a sequence uK , . . . , uK+M of inde-

pendent coherences is therefore,

logL = (M + 1) log(L− 1) + (L− 2)

M∑
i=0

log(1− uK+i) . (5.4)

Although log(1 − U) is not a Gaussian distributed random variable, it has a finite mean

and variance, and therefore, for a sufficiently large value of M the central limit theorem

indicates that logL will behave as a Gaussian random variable, with the mean value and

variance to be determined. In the specific case in which UK , · · · , UK+M are assumed to

behave as independent random variables then

E [logL] = (M + 1)× E [log f(u)] , Var [logL] = (M + 1)×Var[log f(u)] . (5.5)
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Therefore, in this instance, the task is to compute E [log f(u)] and Var[log f(u)] for the

pdf given by equation (5.2). The calculation of E [log f(u)] yields

E [log f(u)] =

∫ 1

0
(log(L− 1) + (L− 2) log(1− u))f(u) du

= log(L− 1) + (L− 2)

∫ 1

0
log(1− u)f(u) du

= log(L− 1)− L− 2

L− 1
.

(5.6)

Given the value of E [log f(u)], in this case the computation of Var[log f(u)], is most easily

achieved from its definition, to get

Var[log f(u)] =

∫ 1

0

(
log(L− 1) + (L− 2) log(1− u)− E [log(f(u)]

)2
f(u) du

=

∫ 1

0

(
(L− 2) log(1− u) +

L− 2

L− 1

)2
f(u) du

= (L− 2)2

∫ 1

0

(
log(1− u) +

1

L− 1

)2
f(u) du .

(5.7)

Therefore Var[log(f(u)] = (L−2)2Var[log(1−u)]. The identity Var[X] = E [X2]−(E [X] )2

now yields

Var[log f(u)] = (L− 2)2
[ ∫ 1

0

(
log(1− u)

)2
f(u) du− 1

(L− 1)2

]
= (L− 2)2

[ 2

(L− 1)2
− 1

(L− 1)2

]
=

(L− 2)2

(L− 1)2
.

(5.8)

The mean value and variance of the logL are now determined by substituting results (5.6)

and (5.8) into the equation (5.5), to recover

E [logL] = (M + 1)
[

log(L− 1)− L− 2

L− 1

]
, Var[log(L)] = (M + 1)

(L− 2)2

(L− 1)2
. (5.9)

Therefore the asymptotic estimate of the standard deviation σ of logL is

σ =
√

(M + 1)
(L− 2)

(L− 1)
. (5.10)

In practice our simulation experiments achieve this result for samples of two independent

processes when the sample of frequencies comprises 5 or 6, or more frequencies, which are

chosen to be well separated, so that the correlation structure between successive frequen-

cies has no role to play in shaping the properties of the sample. Figure (5.1) illustrates

the Gaussian behaviour of the negative logL for the coherence between samples of two
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stationary uncorrelated processes of duration T = 100 seconds at one millisecond intervals,

when the data has been subdivided into 100 sub-samples of size N = 1000 and for M = 19

(20 frequencies) well separated over a spectrum of 200 Hz.
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Figure 5.1: Distribution of negative log-likelihood of coherence at M =

19(20 frequencies) and T = 100 sec.

5.1.2 Behaviour of the negative log-likelihood function for bands of fre-

quencies

The previous section has demonstrated the Gaussian behaviour of the negative log-likelihood

function for the coherences between samples of two stationary stochastic processes known

a priori to be independent for sub-samples of well-separated frequencies. This section will

investigate the behaviour of the negative log-likelihood function of coherences between

samples of independent stationary stochastic processes, say X and Y , for small bands of

frequencies. The investigation will be carried out by simulating millisecond data for two

independent time series using the autoregressive model

Xt = αXt−1 + EX,t ,

Yt = βYt−1 + EY,t ,

(5.11)

where |α| < 1 and |β| < 1 are the autoregressive coefficients of each model and EX,t and

EY,t are independent white noise processes with zero mean and unit variances for processes

X and Y , respectively. The simulation exercise consists of one million trials of durations

from 5 seconds to 60 seconds in 5 second intervals. Each simulated sample (X,Y ) is first

divided into L sub-samples of duration one second (i.e., N = 1000), and the finite Fourier
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transform is used to compute the associated sample of Fourier coefficients

dX(f, l) =
lN−1∑

t=(l−1)N

X(t) e−2iπft

dY (f, l) =
lN−1∑

t=(l−1)N

Y (t) e−2iπft

(5.12)

for the lth sample at frequencies between f = 3Hz to f = 100Hz in intervals of 1Hz. The

estimated cross-spectrum and power spectra for X and Y are computed from the formulae

Ŝij(f) =
1

L

L∑
l=1

INij (f, l) , (5.13)

where,

INij (f, l) =
1

2πN
di(f, l)dj(f, l) , (5.14)

where INij (f, l) represents the periodogram of the lth sample at frequency f , the overbar

indicates a complex conjugate, and (i, j) denotes the pairs (X,X), (X,Y ), (Y,X) and

(Y, Y ). The quantities ŜXX(f) and ŜY Y (f) are the estimated power spectra of the pro-

cesses X and Y , respectively, while ŜXY (f) is the estimated cross-spectrum between the

processes X and Y (see, Brillinger [1981], Amjad et al. [1997]). The estimated coherence

between the processes X and Y is defined by

UXY (f) = |R̂XY (f)|2 =
|ŜXY (f)|2

ŜXX(f)ŜY Y (f)
, (5.15)

where R̂XY (f) is the estimated coherency between X and Y . The definition guarantees

that coherence is a real valued-function of frequency, such that UXY ∈ [0, 1]. Coherence

gives a measure of the linear correlation between two processes, say X and Y , at frequency

f . If the coherence between two processes has value zero at frequency f , then these

processes are said to be uncorrelated at that frequency, whereas a coherence with value

one means that the processes are perfectly correlated at that frequency.

The negative log-likelihood function of independent coherences is computed for bands

of frequencies ranging in size from R = 3 consecutive frequencies to R = 13 consecu-

tive frequencies. The probability density function for the negative log-likelihood function

(− logL) for each band of frequencies has been estimated using Kernel density estimation.

Although not explicitly presented here, it has been verified by simulation that the distri-

bution of negative log-likelihood depends only on the number of consecutive frequencies

in the band. Specifically, the distribution is independent of the location of the band of

frequencies.
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The estimated distribution of the negative log-likelihood (− logL) of coherences be-

tween finite independent samples, has been computed for different sets of data at distinct

bands of frequencies, where the size of band ranges between R = 3 to R = 13. For a fixed

number of sub-samples L, increasing the size of the frquency band from R = 3 to R = 13

results in a contraction in the length of the tail of the distribution, that is, the distribution

moves gradually in the direction of becoming a Gaussian distribution, as illustrated in

figure (5.2).
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Figure 5.2: Distribution of negative log-likelihood of coherence, repre-

sented by the solid-line at R = 3, dashed-line at R = 9 and crossed-line at

R = 13.

The estimated probability density function of the negative log-likelihood (− logL(u))

of coherences is independent of frequencies, that is the distribution at the same size of

two different group of frequencies is identical. Figure (5.3) illustrates the distribution of

(− logL) for two bands of frequencies, both of size R = 3, where the first band, consisting

of the frequencies R1 = [3, 4, 5], and the second band consisting of the frequencies R2 =

[10, 11, 12], for L = 25, corresponding to 25 seconds of data.
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Figure 5.3: Distribution of negative log-likelihood of coherence for the

data sample T = 25 seconds, represented by the solid-line for R1 = [3, 4, 5]

and crossed-line for R2 = [10, 11, 12].

Note that the previous bands of frequencies were chosen to be well separated. The esti-

mated probability density function of the negative log-likelihood (− logL(u)) of coherences

is also identical for equal-sized contiguous bands of frequencies. Figure (5.4) illustrates the

distribution of the negative log-likelihood (− logL(u)) of coherences for the two adjacent

bands of frequencies, each of size R = 3, where the first band involves the frequencies

R1 = [7, 8, 9], and, the second band involves the frequencies R2 = [10, 11, 12], for the data

sample T = 25 seconds.
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Figure 5.4: Distribution of negative log-likelihood of coherence for the

data sample T = 25 seconds, represented by the solid-line for R1 = [7, 8, 9]

and crossed-line for R2 = [10, 11, 12].

Furthermore, this result is also satisfied by the distribution of the negative log-likelihood

(− logL(u)) of coherences for overlapped equal-sized bands of frequencies. Figure (5.5)

displays the distributions of the negative log-likelihood (− logL(u)) of coherences for the
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two overlapped bands of frequencies, each of size R = 3, where the first band consists of

the frequencies R1 = [3, 4, 5], and the second band consists of the frequencies R2 = [5, 6, 7],

when the number of sub-samples is L = 40, corresponding to 40 seconds of data.
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Figure 5.5: Distribution of negative log-likelihood of coherence for the

data sample T = 40 seconds, represented by the solid-line for R1 = [3, 4, 5]

and crossed-line for R2 = [5, 6, 7].

The distribution of the negative log-likelihood of coherences becomes less diffuse as

more data becomes available. This effect is illustrated in figure (5.6)
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Figure 5.6: Distribution of negative log-likelihood depends on the volume

of data for N = 1000. The solid-line corresponds to L = 25, the dashed-line

to L = 35 and the crossed-line to L = 40.

In this analysis, we will use a one-sided statistical test of the null hypothesis. Given a

negative log-likelihood function (− logL) estimated from L samples, a normalised random

variable is constructed by subtracting the mean value for the given band of frequencies

and dividing this difference by the standard deviation for bands of that size. Specifically,
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the normalised random deviate is

Z =
− logL −

(
− log(L− 1) +

L− 2

L− 1

)
L− 2

L− 1

×
√
R (5.16)

which is asymptotically distributed N(0,1) as L→∞ and as R→∞.

5.1.3 Confidence bounds

Confidence bounds for the 1%, 2.5%, 5% and 10% confidence intervals are constructed from

simulated data by ordering the values of simulated negative log-likelihood in ascending

order. The critical values for Z are displayed in tables (5.1) and (5.2), and plotted in

figure (5.7) for 10%; in tables (5.3) and (5.4) and plotted in figure (5.8) for 5%; in tables

(5.5) and (5.6) and plotted in figure (5.9) for 2.5%; and in tables ( 5.7) and (5.8) and

plotted in figure (5.10) for 1%. From these tables, it is clear that critical values decrease

as the volume of available data increases.

Sample size L

Band size R 5 10 15 20 25 30

3 1.342834 1.341998 1.337456 1.340030 1.342699 1.341123

4 1.341676 1.336733 1.340778 1.337048 1.337156 1.336827

5 1.337838 1.342567 1.335269 1.337006 1.338702 1.339840

6 1.335826 1.334253 1.338740 1.335731 1.333924 1.335803

7 1.339838 1.339042 1.338117 1.336204 1.333018 1.332716

8 1.331561 1.334763 1.333724 1.333022 1.333312 1.335280

9 1.327653 1.329546 1.329784 1.329891 1.330039 1.327031

10 1.337362 1.332822 1.327778 1.331017 1.330574 1.325646

11 1.330229 1.330303 1.328423 1.325019 1.328107 1.329091

12 1.328739 1.323474 1.325460 1.325809 1.328876 1.328557

13 1.325830 1.325288 1.326166 1.323608 1.322406 1.325656

Table 5.1: Critical values for the confidence bound level at 10% significance

for samples L = 5, · · · , 30, and frequency bands R = 3, 4, · · · 13 .
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Sample size L

Band size R 35 40 45 50 55 60

3 1.334961 1.336417 1.340235 1.341048 1.337544 1.340419

4 1.336244 1.335669 1.338019 1.335678 1.336491 1.333835

5 1.336829 1.339126 1.340525 1.341660 1.339817 1.336321

6 1.335620 1.335661 1.338113 1.337660 1.334820 1.337346

7 1.335077 1.336282 1.337177 1.336792 1.338362 1.334823

8 1.333487 1.336034 1.330677 1.328573 1.330327 1.333293

9 1.325812 1.327081 1.330947 1.327166 1.331452 1.326266

10 1.327333 1.330052 1.332908 1.332495 1.330539 1.330708

11 1.328769 1.325493 1.327090 1.330719 1.329691 1.328311

12 1.327554 1.331100 1.327862 1.327726 1.327440 1.328344

13 1.326207 1.323766 1.325723 1.324008 1.324640 1.326435

Table 5.2: Critical values for the confidence bound level at 10% significance

for samples L = 35, · · · , 60, and frequency bands R = 3, 4, · · · 13.
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Figure 5.7: Confidence intervals of 10% level of significance for the negative

log-likelihood of coherences indexed by R, the size of frequency bands.
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Sample size L

Band size R 5 10 15 20 25 30

3 1.905980 1.898001 1.899185 1.903682 1.901794 1.908924

4 1.877294 1.875737 1.878117 1.870973 1.872840 1.873265

5 1.853368 1.858847 1.854459 1.856493 1.854886 1.858248

6 1.844127 1.843433 1.841972 1.842051 1.836630 1.839643

7 1.836248 1.835600 1.832545 1.830744 1.833717 1.830251

8 1.818080 1.824916 1.818552 1.822887 1.818487 1.819648

9 1.810317 1.812138 1.809030 1.812371 1.811600 1.805118

10 1.809714 1.803434 1.805472 1.803989 1.808063 1.800398

11 1.798983 1.800827 1.798454 1.796276 1.793796 1.799518

12 1.790979 1.786701 1.790726 1.788147 1.793443 1.792843

13 1.787403 1.785392 1.787051 1.787481 1.787910 1.783824

Table 5.3: Critical values for the confidence bound of 5% level of signifi-

cance for samples L = 5, · · · , 30, and frequency bands R = 3, 4, · · · , 13

Sample size L

Band size R 35 40 45 50 55 60

3 1.899715 1.900456 1.900873 1.902032 1.902768 1.903178

4 1.874695 1.869926 1.876958 1.870658 1.875474 1.868643

5 1.853686 1.856863 1.859390 1.859509 1.859554 1.857693

6 1.839876 1.841897 1.839951 1.841877 1.839719 1.844579

7 1.833153 1.833609 1.833819 1.835697 1.832430 1.830455

8 1.822732 1.821378 1.815450 1.813553 1.814434 1.817297

9 1.803982 1.807732 1.809689 1.807973 1.805669 1.805319

10 1.803029 1.805926 1.808030 1.804406 1.802083 1.803864

11 1.798549 1.794394 1.796393 1.797390 1.796998 1.796993

12 1.793475 1.794226 1.791518 1.793007 1.794719 1.791227

13 1.787103 1.785732 1.788485 1.786476 1.785866 1.787137

Table 5.4: Critical values for the confidence bound of 5% level of signifi-

cance for samples L = 35, · · · , 60, and frequency bands R = 3, 4, · · · , 13.
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Figure 5.8: Confidence intervals of 5% level of significance for the negative

log-likelihood of coherences indexed by R, the size of the frequency band.

Sample size L

Band size R 5 10 15 20 25 30

3 2.441731 2.433056 2.435632 2.436052 2.434719 2.446202

4 2.384801 2.385301 2.387818 2.377896 2.378743 2.376821

5 2.344527 2.350677 2.338193 2.341252 2.341899 2.339987

6 2.309318 2.311871 2.312939 2.315495 2.307185 2.310784

7 2.297646 2.297382 2.291266 2.293322 2.294826 2.286953

8 2.260710 2.277594 2.270758 2.271683 2.263686 2.264133

9 2.256689 2.256112 2.246502 2.254222 2.252756 2.249213

10 2.245126 2.239773 2.242619 2.240027 2.243679 2.240495

11 2.230312 2.232448 2.225071 2.226759 2.222060 2.223289

12 2.217937 2.214207 2.215455 2.211415 2.214492 2.219919

13 2.208729 2.207789 2.209355 2.209205 2.207751 2.206530

Table 5.5: Critical values for the confidence bound of 2.5% level of signif-

icance for samples L = 5, · · · , 30, and frequency bands R = 3, 4, · · · , 13.
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Sample size L

Band size R 35 40 45 50 55 60

3 2.439525 2.436577 2.438974 2.440095 2.442775 2.444274

4 2.379444 2.374200 2.380426 2.378700 2.379901 2.374239

5 2.340660 2.342443 2.342139 2.342213 2.344429 2.343432

6 2.307397 2.309294 2.306780 2.313340 2.309141 2.314306

7 2.290272 2.298239 2.292143 2.292333 2.295721 2.286555

8 2.274322 2.273548 2.269730 2.264676 2.268676 2.265840

9 2.248715 2.246421 2.251407 2.252495 2.244750 2.243727

10 2.237924 2.237184 2.245066 2.236115 2.238157 2.236057

11 2.221398 2.229195 2.227047 2.228148 2.227234 2.230487

12 2.217560 2.217978 2.216824 2.220419 2.217499 2.215059

13 2.206431 2.202549 2.210191 2.206447 2.209440 2.212456

Table 5.6: Critical values for the confidence bound of 2.5% level of signif-

icance for samples L = 35, · · · , 60, and frequency bands R = 3, 4, · · · , 13.
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Figure 5.9: Confidence intervals of 2.5% level of significance for the nega-

tive log-likelihood of coherences indexed by R, the size of frequency bands.
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Sample size L

Band size R 5 10 15 20 25 30

3 3.125212 3.107784 3.104866 3.123241 3.129997 3.124436

4 3.017014 3.026843 3.029781 3.018637 3.026708 3.020331

5 2.955838 2.955127 2.952360 2.940477 2.953851 2.942908

6 2.905423 2.894407 2.900126 2.910242 2.898123 2.900871

7 2.861484 2.872921 2.868190 2.863554 2.865099 2.862360

8 2.822964 2.833855 2.822102 2.829362 2.815902 2.818667

9 2.801921 2.807405 2.792819 2.810156 2.807732 2.798323

10 2.783738 2.784485 2.775517 2.781787 2.781244 2.769433

11 2.757280 2.765712 2.755530 2.753106 2.755636 2.753675

12 2.737436 2.732164 2.737552 2.731446 2.733644 2.732794

13 2.729947 2.724100 2.722570 2.723601 2.719365 2.719585

Table 5.7: Critical values for the confidence bound of 1% level of signifi-

cance for samples L = 5, · · · , 30, and frequency bands R = 3, 4, · · · , 13.

Sample size L

Band size R 35 40 45 50 55 60

3 3.129315 3.115726 3.124341 3.119534 3.114501 3.121020

4 3.018749 3.012121 3.013897 3.015230 3.034061 3.009235

5 2.957804 2.954701 2.945864 2.950818 2.952831 2.948743

6 2.897422 2.894139 2.899168 2.901543 2.900022 2.895699

7 2.866115 2.865815 2.860510 2.859838 2.863527 2.859399

8 2.838740 2.822902 2.824445 2.817581 2.830935 2.814708

9 2.795475 2.790769 2.798602 2.795846 2.788758 2.795515

10 2.776942 2.772330 2.785609 2.775062 2.776470 2.773983

11 2.747478 2.758826 2.752427 2.753554 2.758709 2.757996

12 2.736303 2.744082 2.737092 2.735006 2.735639 2.731828

13 2.724202 2.721043 2.728733 2.726191 2.727522 2.720905

Table 5.8: Critical values for the confidence bound of 1% level of signifi-

cance for samples L = 35, · · · , 60, and frequency bands R = 3, 4, · · · , 13.
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Figure 5.10: Confidence intervals of 1% level ofsignificance for the negative

log-likelihood of coherences indexed by R, the size of frequency bands.

5.2 Conclusion

In this chapter, we proposed the use of the likelihood function as a measure of the indepen-

dence between two samples in a specified band of frequencies. The basis of the algorithm

is the analytical expression for the probability density function of coherence at any fre-

quency, as provided by Goodman ( [1965]) and Brillinger ( [1981]), when it is known a

priori that the processes are uncorrelated at that frequency. The difficulty in practice is

that the analysis must be performed on samples of data; indeed for experimental reasons

these samples may be collected over intervals of relatively short duration. Sequential mea-

sures of coherences calculated from such samples may be expected to be correlated and

this effect may be compounded by the need to search for correlations across bands con-

taining small numbers of consecutive frequencies. These effects conspire to complicate the

identification of the information-carrying bands of frequencies. Under such circumstances,

the distribution of any test statistic can only be established by extensive simulation, and

the simulated data can be used to identify confidence bounds. This chapter has demon-

strated how this procedure is achieved in the case of a test statistic based on the negative

log-likelihood of a sample of coherences.



Chapter 6

Data Analysis

The EEG data set used in this analysis has been provided by King Faisal Hospital and

Research Center KFHRC [ Jeddah, Saudi Arabia. In KFHRC, all experiments are per-

formed with ethical approval, and the patients (or their representative) give the informed

consent for the procedures to be undertaken]. These data belong to an epileptic patient

who suffers from focal epilepsy. The EEG recordings were collected from 64-electrodes

placed on the scalp according to the International 10-10 system and the sampling rate was

200 Hz. The cut-off frequencies digital filters were set at 70 Hz and 1 Hz for the high-pass

and low-pass respectively, and the power line noise was reduced using a 60 Hz notch filter.

In order to facilitate the investigation of the underlying data set, we have taken a subset

of the channels (or signals), on the basis that signals collected from the same geographical

region of the brain convey approximately the same information and, consequently, are

equivalent functionally. As elaborated in Chapter 2, the brain is essentially divided into

two distinct regions, namely the right and left hemispheres, each of which involves four

main lobes: the frontal, the parietal, the occipital and the temporal lobes. Each hemi-

sphere controls the contralateral side of the body by receiving information from different

parts of the body, processing this information and then taking the convenient response

among these lobes .

Since the subject whose EEG being analysed is right-handed, we will restrict the inves-

tigation to the left hemisphere only. Specifically, we will choose a representative signal

from each lobe, for example channel F5 for the frontal lobe, C5 for the central area which

lies between the frontal and parietal lobes, P5 for the parietal lobe, O1 for the occipital

lobe and T9 for the temporal lobe. For mathematical simplicity these channels will be
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renamed to hold {X1, X2, X3, X4, X5} for F5, C5, P5, O1 and T9 respectively. These

signals will be investigated spectrally using both a parametric approach, whereby the data

are fitted to the multivariate autoregressive model of order (2), since the MVAR param-

eters are significantly zero for the order 3, and a non-parametric approach, such as the

method of averaging across periodograms of contiguous sections from single records, the

smoothed periodogram method, and the multi-taper method or the Slepian sequence ap-

proach. Thereafter the comparison will be made between these methods.

We first prepare the data by subtracting the ensemble mean from the raw data to ensure

the stationarity condition of the signals before being analysed. Then we investigate the

autocorrelation coefficients (ACF) of the chosen signals, which provide a measure of the

interdependence between the components of the signal itself in the time domain using

equation (2.20). To decide whether or not the signal is significantly decaying across time,

or in other words, whether the interdependence between its components is decreasing or

not, we apply the statistical test under the null hypothesis that the signal’s components

are %95 uncorrelated, i.e, ρXX = 0. This statistical test is then examined with respect to

Fisher’s transformed variable of the estimated correlation, defined in equation (2.21), since

it is distributed normally with a mean value and constant variance, calculated from the

formulae (2.22) and (2.23), respectively. Thus, the confidence bounds of the independent

statistical test is computed with respect to the Fisher variable z using the equation (2.24).

Consequently, all values of the estimated correlation lie within the confidence bounds, con-

struct the acceptance region for the null hypothesis. While the values of correlation lying

outside the boundaries of the confidence interval contribute to reject the null hypothesis

at level α = 5% of significance. The maximum number of lags used in this calculation is

p = 2600, where the whole length of the signal is T = 13000 milliseconds. Hence , the

results of this statistical test exhibit that the signals are strongly autocorrelated across

time. The ACF of the signals X1 and X2 are illustrated in figures (6.1:a) and (6.1:b),

where the oscillating curve represents the ACF and the two horizontal lines denote the

confidence interval limits at level of significance 5%,
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(a) The ACF of the signal X1
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Figure 6.1: (a): The ACF of the signal X1, (b): the ACF of the signal X2. The

two straight lines represent the confidence bounds of α = 5% level of significance,

where the low line is x = −0.017 and the upper line is x = 0.017.

The autocorrelation functions of the signals X3 and X4 are plotted in figures (6.2:a)

and (6.2:b), respectively.
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(a) The ACF of the signal X3
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(b) The ACF of the signal X4

Figure 6.2: (a): The ACF of the signal X3, (b): the ACF of the signal X4. The

two straight lines represent the confidence bounds of α = 5% level of significance,

where the low line is x = −0.017 and the upper line is x = 0.017.

The interdependence relationship between the components of the signal X5 is illus-

trated in figure (6.3)
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Figure 6.3: The ACF of the signal X5 (oscillated curve) and the two straight lines

represent the confidence bounds of α = 5% level of significance, where the low line

is x = −0.017 and the upper line is x = 0.017.

These figures show that the hypothesis of independence relationship between the sig-

nal’s components is rejected for all signals, since there are statistically significant correla-

tion values that lie outside the confidence interval of independence [ -0.017 , 0.017], which

implies that the signals are not decaying. Although the autocorrelation function appears

weak sometimes as in signal X5, but still statistically significant.

6.1 Multivariate autoregressive model analysis (MVAR)

To perform the spectral analysis of the processes {X1, X2, X3, X4, X5}, we model these

signals by a multivariate autoregressive model of order (p = 2). The coefficients Aj ’s of

the multivariate autoregressive system are estimated from equation (4.54) using the max-

imum likelihood method, described in Chapter 4. Once the multivariate autoregressive

coefficients are obtained, the Fast Fourier Transform is applied to the multivariate autore-

gressive model, and the transfer matrix
[
H = B−1 =

(
I−

p∑
j=1

Aj e
−2iπfj∆t

)−1]
, where the

identity matrix I and the coefficients matrices Aj are of dimension M ×M with (M = 5)

in this case, is calculated.

The power spectrum is an important measure that is used widely in spectral analysis to

capture the frequencies which correspond to the fluctuations of a signal in its time domain.

The estimated power spectra of the signals X1, X2, X3, X4 and X5 are calculated using the

formula (4.80) with respect to the frequency band f ∈ [1, 70] Hz. The logarithm to base

10 of the estimated power spectra of these signals are then plotted versus the frequency

components in figure (6.4). Figure (6.4:a) depicts the estimated spectrum of the signal
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X1, figure (6.4:b) illustrates the estimated power spectrum of the signal X2, the estimated

power spectrum of the channel X3 is plotted in figure (6.4:c), and finally, figure (6.4:d)

shows the estimated power spectrum of the channel X4.
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(a) The power spectrum of the signal X1
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(b) The power spctrum of the signal X2
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(c) The power spectrum of the signal X3
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(d) The power spctrum of the signal X4

Figure 6.4: The logarithm to base 10 of (a): the power spectrum of the signal X1,

(b): the power spectrum of the signal X2, (c): the power spectrum of the signal

X3, and (d): the power spectrum of the signal X4. The spectra plotted against the

frequency which takes values between 1 Hz and 70 Hz.

The estimated power spectrum of the signal X5, which describes the distribution of

the power contained in the signal as a function of frequency, is displayed in terms of the

logarithm to base 10 of the estimated power spectrum in figure (6.5).
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Figure 6.5: The logarithm to base 10 of the estimated power spectrum of the signal

X5 against the frequency components f ∈ [1, 70] Hz.

From these figures of the estimated power spectra, produced by the multivariate au-

toregressive model of order 2, we note that this parametric spectral estimation procedure

is not sensitive to the notch filter, because the effect of the notch filter is expected to

appear as a spike at 60Hz. This means that the multivariate autoregressive model is only

responsive to the observational properties that are consistent with its parameters features.

The direction of the information flow between signals among neuronal structures is

determined by using the partial directed coherence, which is denoted by |πi←j(f)|. The

partial directed coherence measurement |πi←j(f)| describes the causal influence of the

process j, on the process i at a specific frequency f , taking into account the influence of

the process j on all the processes involved in the network being investigated. To decide

whether the estimated values of the partial directed coherence between the components

of the multivariate autoregressive model of order (p = 2) are statistically significant or

not, we examine the null hypothesis that |πi←j(f)| = 0, and use the significance level

introduced by Schelter et al. [2005] and defined in equation (4.100) with α = 5% level of

significance. The graphical structure produced by the partial directed coherence is shown

in figure (6.6).
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Figure 6.6: The directions of the causal influences between the signals in

the neural structures

This diagram shows the direction of the interrelation between processes represent-

ing the main brain areas. It can be seen clearly that there are statistically significant

causal influences of the frontal process X1 on the central, parietal, and temporal processes

X2, X3, X5, respectively. That is, the values of the estimated partial directed coherence

|π2←1(f)|, |π3←1(f)| and |π5←1(f)|, are lying above the level of significance α = 5%, which

represents the rejection region of the null hypothesis. Figure (6.7) illustrates the partial

directed coherence from X1 to X2, denoted by the solid-line, and, the confidence bound

of α = 5% level of significance, denoted by the starred-line.
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Figure 6.7: Partial directed coherence |π2←1(f)| is denoted by the solid-

line, and, the confidence bound of α = 5% level of significance is represented

by the starred-line.

The causal influence of process X1 on process X3 at frequency f , is plotted in figure

(6.8)
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Figure 6.8: Partial directed coherence |π3←1(f)| is denoted by the solid-

line, and, the confidence bound of α = 5% level of significance is represented

by the starred-line.

The absolute value of the partial directed coherence is |π5←1(f)| ≈ 0.5 at frequency

f ∈ [1, 20) Hz, while this value gradually decreases and becomes smaller from 22Hz,

onwards. Figure (6.9) illustrates the direct causal influence from X1 to X5, represented

by the solid-line, and, the confidence bound of significance, plotted by the starred-line.
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Figure 6.9: Partial directed coherence |π5←1(f)| is represented by the

solid-line, and, the confidence bound of α = 5% level of significance is

represented by the starred-line.

We can say generally that the historical information of process X1 combined with the

historical information of the processes X2, X3, X5, collectively, contribute to improve the

expectation of the present values of processes X2, X3 and X5. Also, we can see clearly from

figure (6.6) that the frontal process X1 has no direct influence on the occipital process X4.
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This means that the estimated directed partial coherence |π4←1(f)| is significantly zero.

figure (6.10) illustrates that the partial directed coherence |π4←1(f)|, plotted in the solid-

line and the confidence bound of α = %5 level of significance, marked by the starred-line

are approximately identical.
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Figure 6.10: Partial directed coherence |π4←1(f)| is represented by the

solid line, and the confidence bound of the α = 5% level of significance is

marked by the starred line.

On the other hand, the direct casual influences from processes X2, X3 and X5 to process

X1 are detected. That is, the values of the partial directed coherences |π1←2(f)|, |π1←3(f)|,

and, |π1←5(f)|, are statistically significant. We note that, at the same points of frequency

f , the values of the direct causal influence from process X2 to process X1, displayed in

figure (6.11), is less than the values of the causal influence of process X1 on process X2,

shown in figure (6.7).
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Figure 6.11: Partial directed coherence |π1←2(f)| is represented by the

solid-line, and the confidence bound of α = 5% level of significance is

marked by the starred-line.

The direct causal influence of process X3 on process X1 is plotted by the solid-line,

and the confidence bound of α = 5% level of significance is marked by the starred-line in

figure (6.12).
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Figure 6.12: Partial directed coherence |π1←3(f)| is represented by the

solid-line, and the confidence bound of α = 5% level of significance is

marked by the starred-line.

The values of the directed partial coherence |π1←3(f)| are statistically significant at

frequencies f ∈ [1, 38) Hz. Furthermore, the values of the partial directed coherence from

process X1 to process X3 are larger than the values of the partial directed coherence from

process X3 to process X1 at the same points of frequency. The direct causal influence

of process X5 on process X1 is shown in figure (6.13), where the solid-line represents the
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|π1←5(f)| and the starred-line denotes the confidence bound of α = 5% level significance.
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Figure 6.13: Partial directed coherence |π1←5(f)|, represented by the solid-

line, and the confidence bound of α = 5% level of significance, marked by

the starred-line.

Obviously, the partial directed coherences from process X1 to processes X2, X3, and,

X5 are larger than the partial directed coherence of each process on process X1 at the

same points of frequency.

Now we will discuss the causal effects of process X2 on processes X3, X4, and, X5.

Clearly, the graphical diagram (6.6) shows that there are reciprocal causal influences be-

tween processes X2 and X3, and between processes X2 and X5. This means that the

partial directed coherences |π3←2(f)|, |π5←2(f)|, |π2←3(f)|, and |π2←5(f)| are statistically

significant. However, there is only one direct causal influence of process X2 on process X4.

Figure (6.14) displays the causal influence of process X2 on process X3, denoted by the

solid-line, the causal influence of process X3 on the process X2, which is denoted by the

dashed-line and the significant confidence bound at level of significance α = 5%, indicated

by the starred-line.
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Figure 6.14: Partial directed coherence |π3←2(f)| is plotted in the solid-

line, the Partial directed coherence |π2←3(f)| is represented by the dashed-

line, and the confidence interval of α = 5% level of significance is marked

by the starred line.

From this figure, we can clearly see that processX2 (orX3) has a statistically significant

causal influence on process X3 (or X2), taking into account the joint influences of process

X2 (or X3) on the other processes in the current neural structure. Also, we note that the

partial directed coherence from process X2, which represents the central area of the brain,

to process X3, which indicates the parietal lobe of the brain, is larger than the partial

directed coherence from process X3 to process X2 at the same points of frequency f . This

means |π3←2(f)| > |π2←3(f)|, where f ∈ [1, 45] Hz, and the partial directed coherence

|π2←3(f)| is entirely vanished at frequency f ∈ [35, 70] Hz.

The partial directed coherences between processes X2 and X5 is displayed in figure

(6.15), where the solid-line represents the |π5←2(f)|, the dashed-line denotes the |π2←5(f)|,

and, the starred-line reprsents the confidence bound of α = 5% level of significance. It is

noticeable that there are two bands of frequency containing two different causal effects of

process X2 (or X5) on process X5 (or X2). While the partial directed coherence |π5←2(f)|

is larger than the partial directed coherence of X5 on X2 within the band of frequency

f ∈ [1, 33) Hz, the causal effect of X5 on X2 becomes larger at frequency f > 33Hz.
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Figure 6.15: Partial directedcoherence |5π←2(f)| is plotted by the solid-

line, the Partial directed coherence |π2←5(f)| is represented by the dashed-

line, and the confidence interval of α = 5% level of significance is marked

by the starred line.

The direct causal influence of process X2 on process X4 is detected and illustrated in

figure (6.16), where the solid-line indicates the |π4←2(f)| and the starred-line represents

the confidence bound of α = 5% level of significance.
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Figure 6.16: Partial directed coherence |π4←2(f)| is plotted by the solid

line and the confidence interval of α = 5% level of significance is represented

by the starred-line.

Although the two direct causal influences are detected between the parietal lobe pro-

cess X3 and the temporal lobe process X5 at frequency f , the strength of these causal

influences are different. For instance, the causal effect of X3 on X5, taking into account

the joint influences of process X3 on the other processes in the neural structure at fre-
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quency f ∈ [1, 35), is stronger than the causal effect process X5 on process X3, considering

the joint effects of process X5 on the other processes corresponding to the same points of

frequency. The values of the partial directed coherence |π3←5(f)| are larger than the values

of |π5←3(f)| at frequency f > 35Hz and upwards. Figure (6.17) shows the direct causal

influences between processes X3 and X5, where the partial directed coherence |π5←3(f)|

is represented by the solid-line, the partial directed coherence |π3←5(f)| is denoted by the

dashed-line, and, finally the confidence interval of α = 5% level of significance is denoted

by the starred-line.
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Figure 6.17: Partial directed coherence |π5←3(f)| is represented by the

solid-line, the partial directed coherence |π3←5(f)| is dashed-line, and the

confidence interval of α = 5% level of significance is marked by the starred-

line.

Finally, only one direct causal influence of the occipital lobe process X4 on the tem-

poral lobe process X5 is detected. The partial directed coherence |π5←4(f)| is statistically

significant and is plotted in figure (6.18) by the solid-line, the dashed-line represents the

values of |π4←5(f)| and the starred-line denotes the confidence bound of α = 5% level of

significance.
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Figure 6.18: Partial directed coherence |π5←4(f)| is represented by the

solid-line, the dashed-line represents the |π4←5(f)|, and the confidence

bound of α = 5% level of significance is represented by the starred-line.

This figure shows that the causal influences between processes X4 and X5. The partial

directed coherence |π5←4(f)| takes its highest value (≈ 98) at frequency f ∈ [1, 10), and

then decreases dramatically towards zero at f = 23 Hz and onwards. The process X5

has no direct causal effect on the process X4. As can be seen from figure (6.18), almost

all values of the partial directed coherence |π4←5(f)|, represented by the dashed-line, lie

beneath the confidence bound, marked by the starred-line. However, the process X4 pos-

sesses indirect causal influences on processes X1, X2, X3 among process X5. Similarly the

processes X1, X3, X5 have indirect causal effects on process X4 via process X2. That is, the

processes X1, X3 and X5 have direct causal effects on X2, and, X2 has a direct causal influ-

ence on X4, consequently, these processes have indirect causal influences on the process X4.

We will now investigate the correlation between the processes representing the various

brain areas by using the measurement of coherence. As mentioned in Chapter 2, the co-

herence measurement is a function of frequency and its value varies between zero, which

indicates no correlation between the processes, and the unit value, which means that the

two processes are identical. The estimated coherence of the multivariate autoregressive

model of order (p) is given in equation (4.83 ). The statistical significant estimated co-

herence of processes Xi and Xj is determined by testing the null hypothesis that these

two processes are %95 not correlated at frequencies between 1 Hz and 70 Hz, that is

|RXiXj (f)|2 = 0. The confidence bound with the α = 5% level of significance proposed by

Schelter et al. [2005] and defined in equation (4.100) is applied.
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In general, the significant estimated coherences are captured between the processes,

which represent the different brain areas, except for the occipital lobe, which apparently

is uncorrelated to any of those processes. The estimated coherence of process X1 with

process X2 occurs mostly at frequency f ∈ [1, 17] Hz, which involves the EEG’s waves;

δ-rhythm, which ranges between frequencies 1Hz and 3Hz and is thought to indicate the

slow brain activities; and, θ-rhythm, which corresponds to the frequency band [4, 8) Hz

and reflects sleep and drowsiness in adults. The occurrence of a high theta wave indicates

an abnormality, which is in this case is known to be epilepsy. Also, there is evidence of

the existence of the α-wave within the frequency band [8, 13) Hz, indicating a relaxed and

mentally inactive awakeness. The β-rhythms, which usually occur at frequencies between

13Hz and 30Hz, and indicate the active brain activities, such as thinking, concentrating,

and solving problems, are appeared with proportionally small magnitude almost reaching

the value 0.2, at frequency ranging between 13Hz and 15Hz. Figure (6.19) illustrates

the estimated coherence of process X1 with process X2, represented by the solid-line, the

confidence bound of α = 5% level of significance is marked by the starred-line.
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Figure 6.19: The estimated coherence function |R̂X1X2(f)|2 is plotted by

the solid-line, and the confidence bound of α = 5% level of significance is

represented by the starred-line.

Also, the estimated coherence between the frontal representative process X1 and the

parietal representative process X3, is statistically significant at frequencies between 1Hz

and 17Hz, as can be seen clearly from figure (6.20), where the solid-line represents the

estimated coherence |R̂X1X3(f)|2, and the starred-line denotes the confidence bound of

α = 5% level of significance.
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Figure 6.20: The estimated coherence |R̂X1X3(f)|2 is plotted by the solid-

line, and the confidence bound of α = 5% level of significance is represented

by the starred-line.

Clearly, the two processes X1 and X3 are highly correlated at frequencies corresponding

to the δ-wave, where the estimated coherence values almost hit the value 0.56 at frequencies

f ∈ (0.5, 4) Hz. Then, the estimated coherence decreases gradually within the band of

frequency [4, 8] Hz, which represents the θ-wave. Also, there is the existence of the EEG

wave α in the band frequency [8, 13) Hz and the beta wave at frequencies between 13Hz

and 16Hz. The coherence between the two processes X1 and X5 is displayed in figure

(6.21).
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Figure 6.21: The estimated coherence |R̂X1X5(f)|2 is represented by the

solid-line and the confidence bound of α = 5% level of significance is marked

by the starred-line.

where the solid-line denotes the estimated coherence of the process X1 with the pro-
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cess X5 and the starred-line indicates the confidence bound of 5% level of significance.

As can be seen from figure (6.21), the estimated coherence occurs mostly at points cor-

responding with frequencies in the interval [1, 20) Hz. High correlation between these

two processes happens within the δ-wave frequencies, [1, 4) Hz, where the values of the

coherence |R̂X1X5(f)|2 almost reach 0.7. Then, the coherence reduces to the value of 0.6

in the band of frequencies [4, 8) Hz, which is the θ-wave range. Although the estimated

coherence continuously decreases, the values of the estimated coherence remain strongly

significant, which approximately range between 0.4 and 0.6 in the α-wave frequency band

[8, 13) Hz and between 0.1 and 0.4 in the β-wave frequency band [13, 30) Hz. There are

significant estimated coherences arising between the processes X2 and X3 in the frequency

band [1,16] Hz; and the processes X2 and X5 at frequency f ∈ [1, 17] Hz; and between

the two processes X3 and X5 in the frequency band [1,18] Hz. According to the previous

discussion, these intervals involve four types of EEG waves, each of which indicates a spe-

cific brain activity: δ-wave within the band [1, 4) Hz; θ-wave in the frequency band [4, 8)

Hz; α-wave, which is ranging between 8Hz and 13Hz; and finally the β-wave, which is

usually captured in the frequency band [13, 30) Hz. Figure (6.22) illustrates the estimated

coherence function of the process X2 with the process X3.
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Figure 6.22: The estimated coherence |R̂X2X3
(f)|2 is plotted by the solid-

line and the confidence bound of α = 5% level of significance is marked by

the starred-line.

From this figure we can see clearly that the processes X2 and X3 appear strongly cor-

related within the δ-wave and θ-wave bands of frequency where the values of the estimated

coherence range between 0.45 and 0.6. Thereafter, the estimated coherence reduces dra-
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matically in the two following bands of frequency corresponding to alpha and beta waves

until reaching the zero value.

The significant estimated coherence of the process X2 with the process X5 occurs within

the frequency band [1, 17) Hz. The estimated coherence function |R̂X2X5(f)|2 is plotted

against frequencies f between 1Hz and 70Hz in figure (6.23), where the solid-line indicates

the function |R̂X2X5(f)|2 and the confidence bound of 5% level of significance is marked

by the starred-line.
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Figure 6.23: The estimated coherence function |R̂X2X5(f)|2 is represented

by the solid-line and the confidence bound of α = 5% level of significance

is marked by the starred-line.

Again the strong correlation between the two processes occurs in the delta and theta

bands of frequency [1, 8) Hz, while the values of the estimated coherence decrease gradually

in the alpha and beta bands of frequency. Similarly the estimated coherence |R̂X3X5(f)|2

presents a high correlation between processes X3 and X5 in the frequency band [1, 4)

Hz, where the coherence almost hits the value 0.7. This value of coherence reduces to

0.6 in the frequency interval [4, 8) Hz, which corresponds to the theta wave. Thereafter,

the strength of the correlation decreases in the α- and β- rhythms bands of frequency, as

can be seen in figure (6.24), where the solid-line denotes the estimated coherence function

|R̂X3X5(f)|2 versus frequency f , and the 5% statistical confidence bound of coherence, is

marked by the starred-line.
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Figure 6.24: The estimated coherence |R̂X3X5
(f)|2 is denoted by the solid-

line and the confidence bound of α = 5% level of significance is marked by

the starred-line.

Note that although the occipital lobe process X4 has a direct causal influence on the

temporal lobe process X5, there is no significant estimated coherence between these two

processes. Figure (6.25) shows that all coherence values lie beneath the confidence bound

of α = 5% level of significance.
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Figure 6.25: The estimated coherence |R̂X4X5
(f)|2 is denoted by the solid-

line and the confidence bound of α = 5% level of significance is marked by

the starred-line.

To determine the depth of the correlation between various pairs of processes among

the neural network, we investigate the partial coherence, defined in Chapter 4. Partial

coherence can be obtained from the relation (4.84). That is, the order of the depth

of correlation between two processes corresponds to the number of the processes that
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have been used to condition the coherence relation. The estimated coherence between

processes X1 and X2, after removing the linear influences of process X3, reduces from 0.6

to approximately 0.2 and also results in the disappearance of the β-wave in the frequency

range [13, 30) Hz, as shown in figure (6.26).
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Figure 6.26: The estimated partial coherence |R̂X1X2|X3
(f)|2 between pro-

cesses X1 and X2, after removing the linear influences of process X3 is

marked by the solid-line and the confidence bound of α = 5% level of

significance is represented by the starred-line.

Also, eliminating the linear effects of process X2 from the estimated coherence between

processes X1 and X3 generally leads to weaken the correlation between these processes,

and causes the β-wave in [13, 30) Hz to decay. The changes in the estimated coherence

of processes X1 and X3, after removing the linear effects of process X2, are presented

in figure (6.27). Similarly the estimated partial coherence between processes X2 and X3

conditioned on X1, reduces to less than 0.2, as revealed in figure (6.28).
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Figure 6.27: The estimated partial coherence |R̂X1X3|X2
(f)|2 between pro-

cesses X1 and X3, after removing the linear influences of process X2, is

marked by the solid-line and the confidence bound of α = 5% level of

significance is represented by the starred-line.
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Figure 6.28: The estimated partial coherence |R̂X2X3|X1
(f)|2 between pro-

cesses X2 and X3, after removing the linear influence of process X1, is

marked by the solid-line and the confidence bound of α = 5% level of

significance is represented by the starred line.

The process X5, which represents the temporal lobe, plays a crucial role in supporting

estimated coherence functions |R̂X1X2(f)|2, |R̂X1X3(f)|2 and |R̂X2X3(f)|2. The removal

of the linear effects of process X5 from these coherence functions causes the complete

destruction of these correlations. Figure (6.29) shows the decay of the estimated coherence

between processes X1 and X2 as a result of eliminating the linear effects of process X5.
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Figure 6.29: The estimated partial coherence |R̂X1X2|X5
(f)|2 between pro-

cesses X1 and X2, after removing the linear influence of process X5, is

marked by the solid-line and the confidence bound of α = 5% level of

significance is represented by the starred-line.

Figure (6.30) illustrates the estimated coherence of processes X1 and X3 conditioned

on process X5.
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Figure 6.30: The estimated partial coherence |RX1X3|X5
(f)|2 between pro-

cesses X1 and X3, after removing the linear influences of process X5, is

marked by the solid-line and the confidence bound of α = 5% level of

significance is represented by the starred-line.

Figure (6.31) displays the decay of the estimated coherence between the processes X2

and X3 after removing the linear influences of process X5 .
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Figure 6.31: The estimated partial coherence |R̂X2X3|X5
(f)|2 between pro-

cesses X2 and X3, after removing the linear influences of process X5, is

marked by the solid-line and the confidence bound of α = 5% level of

significance is represented by the starred-line.

Consequently, we can say that the depth of the correlation between the frontal process

X1 and the central process X2 is of order one, as the estimated coherence vanishes com-

pletely after removing the linear influences of only one process, in this case X5. Similarly

the depth of the estimated coherence of the frontal process X1 with the parietal process

X3; and the estimated coherence of the central process X2 with the parietal process X3

are also of order one.

However, the investigation of the correlations between process X5 and the other pro-

cesses involved in the current neural network, with the exception of process X4, reveals

that the coherence remains strong and significant even for the second order. Note that

we do not consider the third order of coherence, since process X4 is entirely independent

from all other processes. Figure (6.32) illustrates the estimated coherence of X1 with X5,

after removing the linear influences of process X2, plotted by the dashed-line and the ef-

fect of eliminating the linear influences of process X3 on the estimated coherence between

X1 and X5, marked by the dotted-line. That is, the first order estimated partial coher-

ences |R̂X1X5|X2
(f)|2 and |R̂X1X5|X3

(f)|2 are approximately similar, whereas the removal

of simultaneous linear influences of processes X2 and X3 from the estimated coherence

between processes X1 and X5, contributes to reduce the estimated coherence function

|R̂X1X5|X2X3
(f)|2 to the smaller values.
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Figure 6.32: The estimated partial coherence |R̂X1X5|X2X3
(f)|2, after re-

moving the linear influences of the two processes X2 and X3 simultaneously,

is marked by the solid-line, the dashed-line represents the estimated partial

coherence of order one |R̂X1X5|X2
(f)|2, the dotted-line denotes the esti-

mated partial coherence of order one |RX1X5|X3
(f)|2 and the confidence

bound of α = 5% level of significance is represented by the starred line.

Similarly, the removal of the linear influences of process X1 from the estimated co-

herence of processes X2 with X5, contributes to reduce the value of coherences to less

than 0.3. Approximately the same result is obtained from removing the linear effects of

process X3 from the estimated coherence of processesX2 with X5. These results are il-

lustrated in figure (6.33) where the |R̂X2X5|X1
(f)|2 is represented by the dashed-line, the

|R̂X2X5|X3
(f)|2 is denoted by the dotted-line and the starred-line represents the confidence

bound of α = 5% level of significance. The estimated second order partial coherence

|R̂X2X5|X1X3
(f)|2, which is produced by removing the simultaneous linear influences of

processes X1 and X3, is still statistically significant with relatively small values just above

0.1, and is plotted by the solid-line in figure (6.33).
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Figure 6.33: The estimated partial coherence |R̂X2X5|X1X3
(f)|2 between

processes X2 and X5, after removing the linear influences of processes X1

and X3 simultaneously, is marked by solid-line, the dashed-line represents

the partial coherence of order one |R̂X2X5|X1
(f)|2, the dotted-line denotes

the partial coherence of order one |RX2X5|X3
(f)|2 and the confidence bound

of α = 5% level of significance is represented by the starred-line.

Figure (6.34) illustrates the estimated first order partial coherence |R̂X3X5|X1
(f)|2,

denoted by the dashed-line, the estimated first order partial coherence |R̂X3X5|X2
(f)|2,

marked by the dotted-line and the estimated second order partial coherence |R̂X3X5|X1X2
(f)|2,

represented by the solid-line. The confidence bound of α = 5% level of significance is rep-

resented by the starred-line.
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Figure 6.34: The estimated second order partial coherence

|R̂X3X5|X1X2
(f)|2 is denoted by the solid-line, the dashed-line represents

the estimated first order partial coherence |R̂X3X5|X1
(f)|2, the dotted-line

denotes the estimated first order partial coherence |R̂X3X5|X2
(f)|2. The

confidence bound of α = 5% level of significance is marked by the

starred-line.

A quick look at the ordinary coherence of processes X3 and X5, displayed in figure

(6.24) reveals how much support is provided from the processes X1 and X2, either sepa-

rately or collectively, to reinforce the correlation between the processes X3 and X5. Figure

(6.34) shows that the absence of the linear influences of the process X1 from the estimated

coherence of X3 with X5 , denoted by the dashed-line, plays a crucial role in reducing the

values of the estimated coherence from almost 0.7 to less than 0.3 in the δ- wave band [1,

4) Hz, and less than that value for the rest of the EEG’s waves over their bands of fre-

quencies. The estimated first order partial coherence, occurred as a result of removing the

linear effects of process X2, sketched by the dotted-line, appears approximately as equal as

the estimated first order partial coherence of X3 and X5, produced by removing the linear

effects of process X1, denoted by the dashed-line. However, the removal of simultaneous

linear influences of these processes from the estimated coherence of processes X3 andX5,

leads to a huge reduction in the estimated coherence values and almost eliminates the β-

wave in [13, 30) Hz.

Generally speaking, the temporal area is strongly associated with the frontal, central and

parietal areas, in spite of removing the linear effects of one or two processes. Moreover, the

EEG’s waves; δ-wave, θ-wave, α-wave still remain in the estimated second order partial

coherence of X3 with X5, while the β- wave almost vanishes.
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6.1.1 Results summary of MVAR

In light of the previous analyses of the chosen neural network using a multivariate autore-

gressive model, we encapsulate the following results:

- The multivariate autoregressive model of order(p = 2) is not sensitive to the rapid

changes that occur in the data, such as the calibration signal at (f = 47Hz), and the

loss of information caused by the notch filter at (f = 60Hz).

- The occipital lobe, represented by the process X4, is uncorrelated with the other

brain lobes.

- The four brain regions, the frontal lobe, central area, parietal lobe and temporal lobe

exhibit different non-zero levels of correlation.

- The temporal lobe process X5 plays a crucial role in supporting the correlation

between the other lobe processes. Consequently, the removal of the linear influences

of process X5 leads to the destruction of these correlations, as shown in figure (6.29),

figure (6.30) and figure (6.31).

- The estimated coherences of the process X5 with the other processes, except X4,

decrease, but do not vanish after removing the linear effects of one process such as

X2, or two processes such as X2 and X3 . See figure (6.32), figure (6.33) and figure

(6.34).

- The four types of the EEG’s waves that appear in the MVAR analysis are δ-wave,

θ-wave, α-wave and β-wave.

6.2 Non-parametric spectral estimation

In this section, in order to estimate the spectral density, we provide the spectral analysis

of the current data using non-parametric approaches, namely the averaging periodograms

across contiguous sections of single records; smoothing the periodogram of the entire record

(also known as averaging across frequency method ); and the multi-taper method. These

methods are demonstrated extensively in Chapter 3.

Firstly, we give particular descriptions for these methods, which are consistent with

the underlying data, and discuss the power spectra of the considered data. Secondly, we

debate the coherence and partial coherence analyses of these methods in parallel.
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6.2.1 Averaging periodograms across contiguous sections of single records

It is well known that the power spectrum is an important measure widely used in spectral

analysis to capture frequencies corresponding to the fluctuations of the signal in its time

domain. We begin by estimating the power spectrum of each channel, {Xi; i = 1, · · · , 5},

by portioning the whole record, for each signal, of length T milliseconds into L non-

overlapping segments, each of size N , in this case N = 200, and L = 65 subsamples.

The choice of the sample size N = 200 implies naturally to physical frequencies in Hertz.

Thereafter, the finite Fourier transform is applied to every single section {l = 1, 2, · · · , L},

and the estimated power spectrum (periodogram) for each segment {l = 1, 2, · · · , L} at

frequency fk, where the frequency index, −N/2 < k ≤ N/2 , INXX(fk, l) is computed

directly from equation (3.45), by taking the average of the squared-magnitude of the

finite Fourier coefficients |dNX(fk, l)|2 with respect to the size of subsample N . Once the

periodograms are computed, the estimated power spectrum for the whole record of the

signal is obtained from relation (3.46), by taking the average of these periodograms over

number of subsamples L. Similarly, the cross-spectra can be estimated directly from the

data using equation (3.56), which is based on averaging the cross-periodograms of disjoint

sections as elaborated in Chapter 3.

In order to validate the calculation of the estimated power spectra of the underlying

data set we add to each observed signal a calibration signal consisting of a cosine signal at

a specific frequency, namely (f = 47Hz), multiplied by the convenient root mean square

RMS to the signal of interest. This leads to the appearance of a spike corresponding to

that specific frequency (f = 47Hz) in the power spectra curves. The logarithm to base 10

of the estimated power spectra are plotted against frequencies between 1Hz and 70Hz for

the processes X1 and X2, in figures (6.35:a) and (6.35:b), respectively.
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Figure 6.35: The logarithm to base 10 of: (a) the power spectrum of the signal X1;

(b) the power spectrum of the signal X2. The estimated spectra plotted against the

frequency ranging between 1Hz and 70Hz.

From figures (6.35:a, 6.35:b) we can see clearly that the method of disjoint sections,

successfully captures the artificial calibration signal at frequency (f = 47Hz), while the

multivariate autoregressive model failed to do so in the previous section. Also there is an

appearance of a trough at a frequency 60Hz due to the reduction of the main frequency,

in Saudi Arabia is of 60 Hz, by the notch filter. The logarithm to base 10 of the estimated

power spectra of the processes X3 and X4 are displayed in the figures (6.36:a, 6.36:b)

respectively,
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Figure 6.36: The logarithm to base 10 of: (a) the power spectrum of the signal X3;

(b) the power spectrum of the signal X4. The spectra plotted against frequencies

between 1Hz and 70Hz.

and the logarithm to base 10 of the power spectrum of the process X5 is illustrated in
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figure (6.37).
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Figure 6.37: The logarithm to base 10 of the power spectrum of the signal X5.

The spectra plotted against frequencies between 1 Hz and 70 Hz.

The calibration signal peak at frequency (f = 47Hz), and the reduced power line

noise at (f = 60Hz) have emerged. Since the power spectrum describes the distribution

of the energy contained in the signal at each frequency, and from figures (6.35:a, 6.35:b,

6.36:a, 6.37), we note that these signals almost behave similarly, but with different levels of

energy. The process X4, which represents the occipital lobe, contains energy which differs

in strength and behaviour from those involved in the other signals as illustrated in figure

(6.36:b).

6.2.2 Smoothed periodogram

In this section we perform the spectral analysis for the same neural network by employing

the smoothed periodogram method to estimate the spectral densities. As elaborated in

Chapter 3, the Fourier coefficients dTX(f) are obtained for the entire record of every single

process, then the periodogram ITXX(fk) is computed at frequency (fk = k/T ) where k ∈

(−T/2, T/2]. Thereafter, the estimated spectra and cross-spectra are captured by taking

the average of periodograms across (2m + 1), where m = 7 in this case, independent

frequencies in the neighbourhood of the frequency fk using expressions (3.40 ) and (3.53)

respectively. Also, we add the typical calibration signal at frequency (f = 47Hz) to the

observed signals in order to validate the calculations of the estimated spectra and cross-

spectra. Thus the logarithm to base 10 of the spectra of processes X1 and X2 are plotted

against frequency in figures (6.38:a, 6.38:b).
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Figure 6.38: The logarithm to base 10 of:(a) the power spectrum of the signal

X1, (b) the power spectrum of the signal X2. The spectra plotted against the

frequencies between 1Hz and 70Hz.

From these figures, we can clearly see a spike at frequency (f = 47Hz), due to the

addition of the calibration signal, and a deep trough appearing at frequency (f = 60Hz),

as a result of the notch filter, which reduces the line power noise. Similarly the logarithm

to base 10 of the power spectra of processes X3, X4 are displayed in figures (6.39:a, 6.39:b)

respectively. The estimated power spectrum of the process X5 is illustrated in figure (6.40).
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Figure 6.39: The logarithm to base 10 of: (a) the power spectrum of the

signal X3; (b) the power spectrum of the signal X4. The spectra plotted

against the frequencies between 1Hz and 70Hz.
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Figure 6.40: The logarithm to base 10 of the power spectrum of the signal X5.

The spectra plotted against frequencies between 1 Hz and 70 Hz.

Again, the calibration signal peak emerges at the correct frequency and ensures that the

calculations of the power spectra are executed properly. The trough stems from decreasing

the noise of the power line by the notch filter at frequency (f = 60Hz), appears more clearly

in the power spectra estimated by the smoothed periodogram procedure, than with those

estimated by the disjoint sections method, especially for the process X4.

6.2.3 Multi-taper method

Multi-taper methods have been developed to estimate spectral densities for records of

relatively short duration. In this approach, observations are weighted by independent

tapers. The finite Fourier transform is then applied to the product of the data with tapers

using the logarithm of the Fast Fourier Transform. Next the power spectrum is obtained

for every single taper and the final power spectrum is constructed, by taking the average

of these spectra. This method was described in Chapter 3. We shall now perform the

spectral analysis for the same neural network using the multi-taper method, where the

number of independent tapers we use is K = 10, and the estimated spectra and cross-

spectra will be obtained from the expressions (3.59) and (3.62) respectively. Typically, the

artificial pure signal is added to the observed signals in order to ensure the authenticity of

the estimated spectra and cross-spectra. Then, the logarithm to base 10 is applied to the

estimated spectra of the processes in the study. The estimated spectra of the processes

X1, representing the frontal lobe and X2, representing the central area of the brain, are

illustrated in figures (6.41:a), (6.41:b), respectively.
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Figure 6.41: The logarithm to base 10 of : (a) the power spectrum of the signal

X1; (b) the power spectrum of the signal X2. The spectra plotted against the

frequencies between 1Hz and 70Hz.

The estimated spectra of the parietal lobe, represented by process X3 , and the occipital

lobe process X4, are displayed in figures (6.42:a), (6.42:b), respectively.
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Figure 6.42: The logarithm to base 10 of : (a) the power spectrum of signal X3; (b)

the power spectrum of the signal X4. The spectra plotted against the frequencies

between 1Hz and 70Hz.

The estimated spectrum of the temporal lobe of the brain, is presented in figure (6.43).
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Figure 6.43: The logarithm to base 10 of the power spectrum of the signal

X5, plotted against the frequencies between 1Hz and 70Hz.

The detection of the loss of information by the notch filter at frequency 60Hz, is

presented as a deep narrow trough is revealed more clearly in this method, compared with

previous estimation methods, especially for the process X4. Also, the emergence of the

calibration signal at frequency (f = 47Hz), indicates the correctness of the calculations.

In general, the estimated spectra of signals X1, X2, X3 and X5 decrease slightly at

frequencies between 1Hz and 10Hz, then the steady manner of the energy dominates.

However, the power spectrum of the signal X4, displayed in figure (6.41:b), shows that the

energy of X4 decreases dramatically at frequencies lying in the interval [1, 20) Hz followed

by an increase of the signal power peaking at almost 30Hz, therefore descending behaviour

appears again with appearance of the calibration signal peak at 47Hz and the notch filter

effect at 60Hz.

We shall now investigate the correlation between these processes using the measure-

ments of the coherence and partial coherence, defined in equations (4.3) and (4.20) re-

spectively. The components of the partial coherence, partial spectra, are computed from

the mechanism described in Chapter 4. In order to decide whether the estimated co-

herence of two processes is significant or not, we examine the null hypothesis that two

processes are %95 uncorrelated, that is |RXiXj (f)|2 = 0. The confidence interval for the

estimated coherence is defined in expression (4.11) in Chapter 4. Thus we have three

level of confidence bound at %5 level of significance according to the adopted spectral

estimation method. That is, for the the disjoint sections method, the confidence bound

is given by
(
x = 1 − 0.05(1/64)

)
; for the smoothed periodogram method, is given by(

x = 1−0.05(1/14)
)

; and finally for the multi-taper method, the confidence bound is given

by
(
x = 1 − 0.05(1/9)

)
. Consequently, all values of the estimated coherence or partial
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coherence locate below the confidence bound construct the acceptance region for the null

hypothesis.

The estimated coherences between the processes X1 and X2 at frequency f in [1, 70] Hz,

is displayed in figure (6.44), where the narrow spike appears at (f = 47Hz) represents the

calibration signal. Figure (6.44:a) displays the estimated coherence function |R̂X1X2(f)|2,

calculated by the disjoint sections method, figure (6.44:b) represents the estimated coher-

ence between those processes, calculated by the frequency averaging method, and finally,

figure (6.44:c) represents the estimated coherence of X1 with X2, produced by the multi-

taper method. The estimated coherences are plotted by solid-line, where the confidence

bound of the significant coherence at level 5% is marked by the starred-line. Thus the

estimated coherence values, |R̂X1X2(f)|2, lying above the starred-line indicate the signif-

icant correlation between processes X1 and X2, while the coherence values locate below

the starred-line represent frequencies at which processes are not significantly correlated.

Figure (6.44:a) shows that the significant coherence between X1 and X2 occurs within

the frequency interval [1, 11] Hz, which is the frequency domain of three types of EEG’s

waves. For example, the δ-wave appears clearly in the frequency band [1, 4) Hz, where the

high values of coherence are raised. The θ-wave frequency band [4, 8) Hz includes different

events, as the estimated coherence reduces steeply from the value 0.497 at frequency 5Hz

to the value 0.2271 at frequency 6Hz, followed immediately by a sharp rise in the estimated

coherence value to 0.3365 at 7Hz. Thereafter, the value decreases slightly in the α-rhythm

frequency band [8,11] Hz.

Figure (6.44:b) shows that the estimated coherence between X1 and X2 occurs mostly

in the band frequency [1, 4)Hz, which is related to δ-rhythm and partially in the θ-rhythm

band frequency [4,6] Hz. The spike at 47Hz denotes the calibration signal that has been

added to the real signals to authenticate the calculations of the spectral densities, and

the second spike at frequency 60Hz due to the notch filter, which is reducing the power

line noise in both processes X1 and X2. Continuing, the estimated coherence between

processes X1 and X3 is also captured in the δ-rhythm and θ-rhythm frequency bands, that

is, the significant estimated coherence occurred in [1, 8] Hz. It also can be seen that the

spike at frequency (f = 60Hz), which represents the notch filter effect.
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Figure 6.44: The estimated coherence function, |R̂X1X2
(f)|2 : (a) the disjoint

sections method, (b) the frequency averaging method, (c) the multi-taper method.

The estimated coherences are plotted against the frequencies between 1 Hz and 70

Hz.
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From figure (6.44:c), we can see that the high value of the estimated coherence,

|R̂X1X2(f)|2, occurs within the δ-wave band of frequency [1, 4) Hz, which denotes the

slow brain activity. Also, there are two significant values of the estimated coherence cor-

responding to frequencies 4Hz and 5Hz within the θ-wave frequency band [4, 8) Hz.

Continuing, the significant estimated coherences between the processes X1 and X3,

computed by the three non-parametric methods, are illustrated in figure (6.45). Figure

(6.45:a) displays the estimated coherence, calculated by the disjoint sections method; and

figure (6.45:b) represents the estimated coherence between processes X1 and X3, calculated

by the smoothed periodogram method; and finally the estimated coherence of X1 with X3,

produced by the multi-taper method, is shown in

figure(6.45:c). Where the estimated coherence |R̂X1X3(f)|2 is plotted by the solid-line

and the starred-line represents the confidence interval of the significant coherence at level

5%.

For the disjoint sections method, the estimated coherence of X1 and X3 occurs entirely

within the frequency interval [1, 10] Hz, as shown in figure (6.45:a). It can be seen that

the estimated coherence value rises between frequencies 1Hz and 3Hz, then falls sharply

from the value 0.6078 at frequency 3Hz to the value 0.3642 at frequency 4Hz, constructing

a spike of the δ-wave in [1, 4) Hz. Also, another peak appears within the band frequency

[4, 8) Hz, which is associated with the θ-wave. Thereafter, the value of the estimated

coherence decreases gradually within the α-wave frequency band [8, 10] Hz.

For the smoothed periodogram method, the estimated coherence between processes X1

and X3 is captured within the frequency band [1, 8] Hz. This band, in turn, involves two

types of the EEG’s waves: the δ-rhythm in [1, 4) Hz; and θ-rhythm in the frequency band

[4, 8) Hz. Figure (6.45:b) shows three consecutive spikes correspond to the frequencies

3Hz, 5Hz and 8Hz.

Furthermore, the significant estimated coherence between processes X1 and X3, cal-

culated by the multi-taper method, occurs in the δ-wave band frequency [1, 4) Hz as

illustrated in figure (6.45:c). Although the calibration signal at frequency (f = 47) Hz

appears in the three figures, the notch filter at (f = 60) Hz emerges in the last two figures.
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Figure 6.45: The estimated coherence function, |R̂X1X3(f)|2 : (a) the disjoint

sections method, (b) the frequency averaging method, (c) the multi-taper method.

The estimated coherences are plotted against the frequencies between 1 Hz and 70

Hz.
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The significant estimated coherence is captured between processes X1 and X5. Figure

(6.46:a) shows that the estimated coherence, calculated by the disjoint sections method,

occurs in the wide frequency band [1, 33] Hz, which consists of five frequency bands

linked to the EEG’s waves. The largest value of the estimated coherence 0.6898 occurs

at frequency 3Hz within the δ-wave frequency band [1, 4) Hz. This value then decreases

steeply to 0.4572 corresponding to the frequency 4Hz in the θ-wave frequency band [4, 8)

Hz. In addition, there is evidence of the α-wave in [8, 13) Hz, while the β-wave emerges

in two adjacent bands of frequency [15, 22) Hz and [22, 28) Hz. Moreover, the first

appearance of the γ-wave can be seen within the frequency band [ 29, 33) Hz.

Figure (6.46:b) displays the estimated coherence of X1 with X5, produced by the

smoothed periodogram method. The significant estimated coherence |R̂X1X5(f)|2 occurs

mostly in the δ-wave frequency band [1, 4) Hz and the θ-wave in frequencies between 4Hz

and 8Hz. Also, there is a small spike appears at (f = 10Hz) in the α-wave frequency band

[8, 11) Hz.

Moreover, the significant estimated coherence between X1 and X5, calculated by the

multi-taper method and plotted in figure (6.46:c), happens in the frequency band [1, 8]

Hz. High values of coherence appear in the δ-wave band [1, 4) Hz, while the low values

of coherence occur within the θ-wave band [4,8) Hz. Figure (6.46) shows that, as the

confidence bound increases, from the top of the panel to the bottom, the significant band

of frequency contracts and coherence curve becomes more smooth.

Nevertheless, the process X4, which represents the occipital lobe of the brain, is uncor-

related with the other processes. That is the estimated coherences between this process

and any of the processes {X1, X2, X3, X5} are significantly zero. For instance, the inde-

pendent relation between processes X1 and X4 is illustrated in figure (6.47). The small

values of the estimated coherence appear at 28Hz and 29Hz are irrelevant, because the

statistical test of the significant coherence requires at least three consecutive values of the

significant estimated coherence.
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Figure 6.46: The estimated coherence function, |R̂X1X4(f)|2 : (a) the disjoint

sections method, (b) the frequency averaging method, (c) the multi-taper method.

The estimated coherences are plotted against the frequencies between 1Hz and 70Hz.
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Figure 6.47: The estimated coherence function, |R̂X1X4(f)|2 : (a) the disjoint

sections method, (b) the frequency averaging method, (c) the multi-taper method.

The estimated coherences are plotted against the frequencies between 1Hz and 70Hz.
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Following the coherence discussion, there is a significant estimated coherence between

processes X2 and X3 within the frequency interval [1, 12] Hz, as displayed in figure (6.48:a)

with respect to the disjoint sections method. This figure shows three adjacent peaks; the

first one represents the δ-wave in [1,4) Hz; while the second and third peaks lie within

the θ-wave frequency band [4, 8) Hz. The estimated coherence decreases sharply between

frequencies 7Hz and 8Hz. The α-wave also emerges between 8Hz and 12Hz with relatively

low values of the estimated coherence.

For the smoothed periodogram method, the significant estimated coherence of X2 with

X3 occurs in the frequency band [1, 8) Hz, this band involves two types of the EEG’s waves;

δ-wave in [1, 4) Hz, and θ-wave in [4, 8) Hz. The highest value of the estimated coherence

is 0.6451 at frequency (f = 4Hz) in the θ-wave frequency band, this value then sharply

decreases to hit the value 0.4006 at frequency (f = 5Hz). Figure (6.48:b) shows that the

estimated coherence curve become more smooth compared with the curve produced by the

disjoint sections method. That is, for small amount of data the smoothed periodogram

method becomes more suitable, while the disjoint sections method becomes more consistent

estimation when the number of available observations is sufficiently large. These results

are broadly demonstrated in Chapter 3.

However, the multi-taper method exhibits high capability in reducing the estimation

variance. This result can be clearly seen as a smoothness of the estimated coherence curve

in figure (6.48:c). In addition, the process X2 strongly correlates with the process X5

at frequencies lying between 1Hz and 13Hz. That is the significant estimated coherence

occurs in δ-rhythm band [1, 4) Hz, θ-rhythm band [4, 8) Hz, and α-rhythm band [8,13] Hz.

Figure (6.49) shows that the highest value of |R̂X2X5(f)|2 is 0.6494 at frequency (f = 2Hz),

and this value decreases gradually to reach the value 0.3796 at frequency (f = 7Hz). Then

the estimated coherence value steeply declines towards the value of 0.2104 at frequency

(f = 8Hz), following that this value decays gradually towards the significant zero value.

Similarly, the significant estimated coherence is found between processes X3 and X5

over the frequency bands [1,12] Hz, [14,18] Hz and [21, 24) Hz, as shown in figure (6.50).

In the first frequency band [1, 12] Hz, the estimated coherence appears in the form of

δ-waves in [1, 4) Hz, θ-waves in [4, 8) Hz and α-waves in [8,12] Hz. Also, the estimated

coherence appears in frequency intervals [14, 18] Hz and [21, 24) Hz, gives rise to β-waves.
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Figure 6.48: The estimated coherence function, |R̂X2X3(f)|2 : (a) the disjoint

sections method, (b) the frequency averaging method, (c) the multi-taper method.

The estimated coherences are plotted against the frequencies between 1Hz and 70Hz.
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Figure 6.49: The estimated coherence function, |R̂X2X5(f)|2 : (a) the disjoint

sections method, (b) the frequency averaging method, (c) the multi-taper method.

The estimated coherences are plotted against the frequencies between 1Hz and 70Hz.
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Figure 6.50: The estimated coherence function, |R̂X3X5(f)|2 : (a) the disjoint

sections method, (b) the frequency averaging method, (c) the multi-taper method.

The estimated coherences are plotted against the frequencies between 1Hz and 70Hz.



CHAPTER 6. DATA ANALYSIS 168

Up to this point, we have discussed the estimated coherence between two processes

among the current neural network, taking into account the linear influences of the rest

processes on this specific coherence. We now investigate the estimated coherence between

the pair of processes, after removing linear effects of one or two processes, using the partial

coherence measurement, that is derived directly from the data, as defined in Chapter 4.

The estimated coherence between processes X1 and X2, after removing linear influences

of process X3 is illustrated in figure (6.51), where the solid-line represents the estimated

ordinary coherence, |R̂X1X2(f)|2, the dashed-line denotes the estimated partial coherence,

|R̂X1X2|X3
(f)|2, and the starred-line denotes the confidence bound of %5 level of signifi-

cance at frequencies ranging between 1Hz and 70Hz.

For the disjoint sections method, the partial coherence between processes X1 and X2,

after removing linear influences of process X3, |R̂X1X2|X3
(f)|2 at frequency f in [1, 70] Hz,

reveals a general decrease in the values of the estimated coherence. EEG’s waves, that are

found in the ordinary estimated coherence of X1 with X2, still emerge in the estimated

first order partial coherence, |R̂X1X2|X3
(f)|2, with less value, as can be seen from figure

(6.51:a).

For the smoothed periodogram method, the removal of the linear influences of process

X3 from the estimated coherence of X1 with X2 reduces the value of the estimated coher-

ence and creates two separated spikes, with one representing the δ-wave in [1, 4) Hz, and

the other representing the θ-wave in [4, 6]. This results shown in figure (6.51:b).

However, the estimated coherence of X1 with X2, entirely decays, after removing the

linear influences of the process X3, using the multi-taper method as depicted in figure

(6.51:c).
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Figure 6.51: The estimated ordinary coherence, |R̂X1X2(f)|2, represented by the

solid-line, and the estimated first order partial coherence, |R̂X1X2|X3
(f)|2, repre-

sented by the dashed-line. he starred-line denotes the confidence bound of %5 level

of significance at frequencies between 1 Hz and 70 Hz. Where (a) the disjoint sec-

tions method, (b) the smoothed periodogram method, (c) the multi-taper method.
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Similarly, figure (6.52) shows the estimated partial coherence of X1 with X2, after

removing linear influences of the process X5, depicted by the dashed-line and the estimated

ordinary coherence between processes X1 and X2, denoted by the solid-line.

Figure (6.52:a) displays the decay of the estimated partial coherence between processes

X1 and X2, given X5, calculated by the disjoint sections method. Also, it can be clearly

seen that the complete disappearance of the δ- and α- waves in frequency bands [1, 4) Hz

and [8, 13) Hz, respectively. Meanwhile, the θ-wave within the frequency band [4, 8) Hz,

persists but with relatively small values for the estimated partial coherence.

In addition, the removal of linear influences ofX5 from the estimated coherence between

X1 and X2 leads to entirely decrease of the estimated coherence using the smoothed

periodogram method, shown in figure (6.52:b). the small spike appears at frequency (f =

5Hz) is irrelative, as the significant estimated coherence at %5 level of significance requires

at least three consecutive frequencies.

The multi-taper method provides a clear view of the entirely decrease of the estimated

coherence of X1 and X2, after eliminating linear effects of X5. All values of the estimated

partial coherence, |R̂X1X2|X5
(f)|2, locate beneath the confidence bounds of %5 level of sig-

nificance. Consequently, since the estimated coherence of X1 with X2 is entirely decayed,

after removing linear influences of X3 or X5, one can say that the depth of the correlation

between those process is of order one, using the multi-taper method.
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Figure 6.52: The estimated ordinary coherence, |R̂X1X2(f)|2, represented by the

solid-line, and the estimated first order partial coherence, |R̂X1X2|X5
(f)|2, repre-

sented by the dashed-line. he starred-line denotes the confidence bound of %5 level

of significance at frequencies between 1 Hz and 70 Hz. Where (a) the disjoint sec-

tions method, (b) the smoothed periodogram method, (c) the multi-taper method.
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Furthermore, eliminating the linear influences of processes X3 and X5 simultaneously,

contributes to diminish the values of the estimated coherence betweenX1 andX2, as can be

clearly seen in figure (6.53), where the solid-line indicates the estimated ordinary coherence,

|R̂X1X2(f)|2, the dashed-line represents the estimated partial coherence, |R̂X1X2|X3X5
(f)|2,

and the starred-line denotes the confidence bound of 5% level of significance.

Figure (6.53:a) illustrates that the estimated coherence of X1 with X2, after removing

the contemporaneous linear effects of X3 and X5, is decreased but not completely van-

ished. That is, the estimated coherence is still statistically significant at the consecutive

frequencies 7Hz, 8Hz, and 9Hz within theta and alpha waves bands.

For the smoothed periodogram method, the estimated coherence between processes

X1 and X2, after eliminating the concurrent linear influences of X3 and X5 is completely

vanished. Consequently, the depth of correlation between these processes is of order 2.

Similarly, the estimated second order partial coherence of X1 and X2 is entirely decayed

using the multi-taper method.
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Figure 6.53: The estimated ordinary coherence,|R̂X1X2(f)|2, represented by the

solid-line, and the estimated second order partial coherence, |R̂X1X2|X3X5
(f)|2, rep-

resented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. (a) the disjoint sections

method, (b) the smoothed periodogram method, (c) the multi-taper method.
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The estimated first order partial coherence of X1 and X3, given X2, depicted in figure

(6.54), where the solid-line represents the estimated ordinary coherence, |R̂X1X3(f)|2, the

dashed-line denotes the estimated partial coherence|R̂X1X3|X2
(f)|2, and the starred-line

indicated the confidence bound of %5 level of significance. Figure (6.54:a) shows that

the reduction in the value of the estimated coherence as a result of eliminating the linear

influences of X2, with respect to the disjoint sections method.

The estimated partial coherence, |R̂X1X3|X2(f)|2, calculated by the smoothed peri-

odogram method and presented in figure (6.54:b) illustrates that the decrease of the esti-

mated coherence values and completely disappearance of θ-waves in [4, 8) Hz. However,

there is an entirely decay of the estimated coherence of X1 and X3, after removing linear

influences of X2, using the multi-taper method.

Similarly, although the removal of linear influences of X5 from the estimated coher-

ence of X1 with X3, reduces the values of the estimated coherence produced by the disjoint

sections method, it contributes to vanish the estimated coherence between processes X1

and X3, with respect to the smoothed periodogram and multi-taper methods. That is

|R̂X1X3|X5
|2 is significantly zero. Thus, the depth of the correlation between these two

processes is of order one for the two latter methods. Figure (6.55) depicts the estimated

ordinary and partial coherences of X1 and X3, after eliminating linear influences of X5.

Where the solid-line represents the estimated ordinary coherence, the dashed-line denotes

the estimated partial coherence, |R̂X1X3|X5
|(f)2, and the starred-line indicates the confi-

dence bound of %5 level of significance.

In addition, the removal of the simultaneous linear effects of X2 and X5 from the

estimated coherence of X1 with X3, displayed in figure (6.56), leads to the complete

destruction of the estimated coherence between these two processes, using the disjoint

sections method. Thus the depth of the correlation between these two processes is of

order two, with respect to this method. Moreover, the estimated second partial coherence,

|R̂X1X3|X2X5
(f)|2, remains significantly zero, where all values of the estimated coherence

lie beneath the confidence bound of %5 level of significance for the smoothed periodogram

and multi-taper methods, as illustrated in figures (6.56:b) and (6.56:c), respectively.



CHAPTER 6. DATA ANALYSIS 175

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Frequency f (Hz)

|R
X

1
X

3

 (
f)

|2

(a)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Frequency f (Hz)

|R
X

1
X

3

(f
)|

2

(b)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Frequency f (Hz)

|R
X

1
X

3

(f
)|

2

(c)

Figure 6.54: The estimated ordinary coherence, |R̂X1X3(f)|2, represented by the

solid-line, and the estimated first order partial coherence, |R̂X1X3|X2
(f)|2, repre-

sented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. Where (a) the dis-

joint sections method, (b) the smoothed periodogram method, (c) the multi-taper

method.
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Figure 6.55: The estimated ordinary coherence, |R̂X1X3(f)|2, represented by the

solid-line, and the estimated first order partial coherence, |R̂X1X3|X5
(f)|2, repre-

sented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. Where (a) the dis-

joint sections method, (b) the smoothed periodogram method, (c) the multi-taper

method.
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Figure 6.56: The estimated ordinary coherence, |R̂X1X3(f)|2, represented by the

solid-line, and the estimated second order partial coherence, |R̂X1X3|X2X5
(f)|2, rep-

resented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. Where (a) the dis-

joint sections method, (b) the smoothed periodogram method, (c) the multi-taper

method.
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Regarding the estimated coherence between processes X2 and X3, calculated by the

disjoints sections method, the elimination of linear influences of the process X1 (or X5),

contributes to reduced values of the estimated coherence, and to the elimination of the

α-wave, which ranges between frequencies 8Hz and 13Hz.

Continuing, the removal of linear influences of process X1 (or X5) from the estimated

coherence of processes X2 and X3, using the smoothed periodogram method, leads to a

reduction in the values of the estimated coherence with a disappearance of the θ-wave in

[4, 8) Hz. That is, the significant estimated first order partial coherence between processes

X2 and X3, conditioned on X1 exists only in the frequency band [1, 4) Hz.

However, eliminating linear influences of X1 (or X5) causes a completely destruction

of the estimated coherence of X2 with X3. That is, |R̂X2X3|X1
(f)|2 and |R̂X2X3|X5

(f)|2 are

significantly zero, using the multi-taper method. Figure (6.57) illustrates the estimated

coherence between X2 and X3, after removing the linear effects of X1. Where the ordinary

coherence, represented by the solid-line, the estimated partial coherence |R̂X2X3|X1
(f)|2,

denoted by the dashed-line, and the starred-line indicates the confidence bound of %5 level

of significance. The small spike appears at frequency 4Hz, in figure (6.57:c) is irrelative as

we need at least three consecutive values of significant estimated coherence.

Furthermore, the removal of the simultaneous linear effects of X1 and X5 from the

estimated coherence of X2 with X3, leads to a further reduction in the values of estimated

coherence. Figure (6.58:a) displays the massive reduction of the estimated coherence of

X2 and X3, where the significant estimated coherence only appears in θ-waves band with

relatively small values.

The estimated second partial coherence, |R̂X2X3|X1X5
(f)|2, calculated by the smoothed

periodogram and multi-taper methods are significantly zero, where the small spike emerges

at 4Hz in figure (6.58:b), is negligible.
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Figure 6.57: The estimated ordinary coherence, |R̂X2X3(f)|2, represented by the

solid-line, and the estimated first order partial coherence, |R̂X2X3|X1
(f)|2, repre-

sented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. Where (a) the dis-

joint sections method, (b) the smoothed periodogram method, (c) the multi-taper

method.
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Figure 6.58: The estimated ordinary coherence, |R̂X2X3(f)|2, represented by the

solid-line, and the estimated second order partial coherence, |R̂X2X3|X1X5
(f)|2, rep-

resented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. Where (a) the dis-

joint sections method, (b) the smoothed periodogram method, (c) the multi-taper

method.
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Continuing the discussion of estimated partial coherences, the process X5 possesses

strong and non-vanishing estimated coherences with processes {X1, X2, X3}, despite of the

removal of linear influences of one or two processes from the ordinary estimated coherences

using the disjoint sections method.

For the smoothed periodogram method, the elimination of linear influences of one pro-

cess from the estimated ordinary coherence of X5 with any of the processes {X1, X2, X3}

leads to reduce the values of the significant estimated coherence. However, the removal

of the synchronized linear effects of two processes from the estimated coherence between

X5 and any of the processes {X1, X2, X3}, causes the entire reduction of the estimated

coherence. That is, the estimated second order partial coherences with respect to X5 are

significantly zero. Consequently, we can say that the depth of correlations between pairs

(X1, X5), (X2, X5), and (X3, X5), is of order two.

The estimated first order partial coherences of X5 with any of processes {X1, X2, X3},

using the multi-taper method, are significantly zero. Thus the depth of correlations of

pairs (X1, X5), (X2, X5), and (X3, X5), is of order one for this method.

Figure (6.59) illustrates the estimated first order partial coherence |R̂X1X5|X2
(f)|2,

plotted by the dashed-line, the estimated ordinary coherence, represented by the solid-

line, and the confidence bound of %5 level of significance, marked by the starred-line.

The removal of linear effects of X2 from the estimated coherence of X1 with X5,

calculated by the disjoint section method, reduces the values of the significant estimated

coherence, as shown in figure (6.59:a). The estimated first order partial coherence of

X1 with X5 conditioned on X2, |R̂X1X5|X2
(f)|2, calculated by the smoothed periodogram

method, occurs in two separated bands of frequency, one associated with δ-waves, and the

second, related to θ-waves, as shown in figure (6.59:b). Specifically, the first part of the

estimated partial coherence curve locates in frequency band [1, 3] Hz, while the second

part of the estimated partial coherence curve lies between 5Hz and 8Hz.

In addition, the estimated first order partial coherence of X1 with X5, after removing

linear influences of X2, produced by the multi-taper method, is significantly zero as shown

in figure (6.59:c). Similarly, although the removal of linear effects of process X3 from

the estimated coherence of X1 with X5 decreases the values of the significant estimated

coherence, produced by the disjoint sections method, it causes an entire decay of the

estimated partial coherence, |R̂X1X5|X3
(f)|2, calculated by the smoothed periodogram or

multi-taper methods.
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Figure 6.59: The estimated ordinary coherence, |R̂X1X5(f)|2, represented by the

solid-line, and the estimated first order partial coherence, |R̂X1X5|X2
(f)|2, repre-

sented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. Where (a) the dis-

joint sections method, (b) the smoothed periodogram method, (c) the multi-taper

method.
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The estimated second order partial coherences of X1 with X5, calculated by the three

non-parametric estimations; the disjoint sections method; the smoothed periodogram

method, and the multi-taper method, are displayed in figures (6.60:a), (6.60:b), and

(6.60:c) respectively. Figure (6.60:a) displays the further decrease of the estimated second

order partial coherence of X1 with X5 due to the elimination of the synchronized linear

influences of X2 and X3. However, there is a complete decay of the estimated second order

coherence, |R̂X1X5|X2X3
(f)|2, calculated by the smoothed periodogram method, as shown

in figure (6.60:b).

For the multi-taper method, as discussed previously, the elimination of linear influences

of X2 ( or X3) from the estimated coherence of X1 with X5, contributes to destroy the

estimated coherence. That is, |R̂X1X5|X2
(f)|2, and |R̂X1X5|X3

(f)|2 are significantly zero.

Therefore, the removal of the concurrent linear effects of X2 and X3 from the estimated

coherence of X1 with X5 is expected to decay this correlation, as displayed in figure

(6.60:c).

Typical results are detected for the estimated coherence ofX2 withX5, andX3 withX5,

after removing either linear influences of one process or the simultaneous linear influences

of two processes. However, the reduction caused by the removal of the concurrent linear

influences of two processes is larger.

The estimated first order partial coherence, |R̂X2X5|X1
(f)|2, illustrated in figure (6.61),

where the solid-line represents the estimated ordinary coherence, the dashed-line denotes

the first order partial coherence of X2 with X5 conditioned on X1, and the starred-line

indicates the confidence bound of %5 level of significance.

It can be clearly seen that the removal of linear influences of X1 from the estimated

coherence between X2 and X5 reduces the values of the estimated coherence, calculated by

the disjoint sections method, as displayed in figure (6.61:a). In addition, the estimated first

order partial coherence, |R̂X2X5|X1
(f)|2, produced by the smoothed periodogram, appears

only in the δ-wave range [1, 4) Hz with a complete disappearance of the θ- wave that is

found in the estimated ordinary coherence. Again the small spike rises at 6Hz is negligible,

as it is required at least three consecutive significant coherence values to say that there is

a significant correlation between those processes.
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Figure 6.60: The estimated ordinary coherence, |R̂X1X5(f)|2, represented by the

solid-line, and the estimated second order partial coherence, |R̂X1X5|X2X3
(f)|2, rep-

resented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. Where (a) the dis-

joint sections method, (b) the smoothed periodogram method, (c) the multi-taper

method.
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However, the first order partial coherence |R̂X2X5|X1
(f)|2, calculated by the multi-taper

method is significantly zero, as illustrated in figure (6.60:c). Therefore, we can say that the

depth of the correlation between processes X2 and X5 is of order one with respect to the

latter two methods. The elimination of linear effects of X3 from the estimated coherence

of X2 with X5, gives the similar results of removing linear influences of X1 for the three

estimation methods.

The removal of the concurrent linear influences of X1 and X3 from the estimated

coherence of X2 with X5, displayed in figure (6.61), where the solid-line represents the

estimated ordinary coherence, the dashed-line denotes the estimated second order partial

coherence, |R̂X2X5|X1X3
(f)|2, and the starred-line indicates the confidence bound of %5

level of significance.

The estimated second partial coherence, |R̂X2X5|X1X3
(f)|2, calculated by the disjoint

sections method, occurs in two separated regions; with one appears in the δ-wave band

[1, 4) Hz, and the other part extends between the θ-wave in [4, 8) Hz and the α-wave in

[8, 13) Hz. For the smoothed periodogram method, the elimination of linear effects of X1

and X3 from the estimated coherence causes a complete decay of the estimated coherence,

where the small values emerge at 2Hz, 3Hz, and 6Hz are negligible, as shown in (6.62:b).

That is, |R̂X2X5|X1X3
(f)|2 is significantly zero, which is identical to the result obtained by

the multi-taper method and depicted in figure (6.62:c).
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Figure 6.61: The estimated ordinary coherence, |R̂X2X5(f)|2, represented by the

solid-line, and the estimated first order partial coherence, |R̂X2X5|X1
(f)|2, repre-

sented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. Where (a) the dis-

joint sections method, (b) the smoothed periodogram method, (c) the multi-taper

method.
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Figure 6.62: The estimated ordinary coherence, |R̂X2X5(f)|2, represented by the

solid-line, and the estimated second order partial coherence, |R̂X2X5|X1X3
(f)|2, rep-

resented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. Where (a) the dis-

joint sections method, (b) the smoothed periodogram method, (c) the multi-taper

method.
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Continuing, The estimated first order partial coherences of X3 with X5, after removing

linear influence of X1, calculated by the disjoint sections, the smoothed periodogram, and

the multi-taper methods, are displayed in figures (6.63:a), (6.63:b), (6.63:c), respectively.

The removal linear influences of X1 from the estimated coherence of X3 with X5, decreases

the values of the significant estimated coherence, and causes the entire disappearance of

the β-wave at frequencies between 13Hz and 17Hz that emerges in the estimated ordinary

coherence, |R̂X3X5(f)|2, as shown in figure (6.63:a). For the latter two spectral estimations,

the elimination of linear influences of X1 from the estimated coherence of X3 with X5 leads

to the complete decay of the estimated coherences. That is, |R̂X3X5|X1
(f)|2 is significantly

zero. Consequently, the depth of the correlation between X3 and X5, is of order one with

respect to these two methods. Similar results are obtained when the linear effects of X2 are

eliminated from the estimated coherence of X3 with X5, for the three spectral estimations.

However, the elimination of the synchronized linear influences of X1 and X2 from

the estimated coherence, contributes to a further decrease of the estimated coherence

values between X3 and X5. Figure (6.64:a) shows that the estimated second order partial

coherence appears in two separated regions; with one in the frequency band [1, 5] Hz,

which contains the δ-wave in [1, 4) Hz and a small amount of the θ-wave in [4, 6) Hz, and

the other part of the estimated coherence extends between the θ-wave within the frequency

band [6, 8) Hz, and the α-wave in the frequency band [8, 11) Hz. The estimated second

partial coherence, |R̂X3X5|X1X2
, (f)|2 is significantly zero with respect to the smoothed

periodogram and the multi-taper methods, as displayed in figures (6.64:b) and (6.64:c),

respectively.
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Figure 6.63: The estimated ordinary coherence, |R̂X3X5(f)|2, represented by the

solid-line, and the estimated first order partial coherence, |R̂X3X5|X1
(f)|2, repre-

sented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. Where (a) the dis-

joint sections method, (b) the smoothed periodogram method, (c) the multi-taper

method.
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Figure 6.64: The estimated ordinary coherence, |R̂X3X5(f)|2, represented by the

solid-line, and the estimated second order partial coherence, |R̂X3X5|X1X2
(f)|2, rep-

resented by the dashed-line. The starred-line denotes the confidence bound of %5

level of significance at frequencies between 1 Hz and 70 Hz. Where (a) the dis-

joint sections method, (b) the smoothed periodogram method, (c) the multi-taper

method.
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6.2.4 Results summary of the non-parametric spectral estimations

We shall summarise the results that are discussed previously

- The occipital lobe of the brain, represented by the process X4, is uncorrelated with

the other brain areas, namely the frontal lobe represented by the process X1; the

central area represented by the process X2; the parietal lobe denoted by the process

X3; and the temporal lobe represented by the process X5.

- The temporal lobe process X5 plays a crucial role in supporting the estimated co-

herences between the other processes. The elimination of linear influences of this

process causes a massive decrease in values of the estimated coherence, such as

|R̂X1X2|X5
(f)2|, shown in figure (6.52:a) and |R̂X1X3|X5

(f)|2, illustrated in figure

(6.55:a). Moreover, the removal of linear influences of X5 sometimes leads to the en-

tire destruction of the estimated coherence, calculated by the smoothed periodogram

or the multi-taper methods, such as the |R̂X1X2|X5
(f)2|, shown in figures (6.52:b,

6.52:c), and |R̂X1X3|X5
(f)|2, illustrated in figure (6.55:b, 6.55:c).

- The coherences |R̂X1X2(f)|2, |R̂X1X3(f)|2 and |R̂X2X3(f)|2 almost entirely vanish

when the linear influences of any two other processes have been removed. On other

words, the estimated second order partial coherences, associated with these estimated

coherences, are significantly zero.

- The depth of correlations between processes (X1, X2), (X1, X3) and (X2, X3) depends

on the adopted spectral estimation. For example, the depth of correlations is of order

one when the multi-taper method is applied, and is of order two when the disjoint

sections is used. For the smoothed periodogram method, the depth of correlations

ranging between order one and order two according to the given process.

- The depth of correlations between processes (X1, X5) and (X2, X5), is of order one

with respect to the multi-taper method, and is of order two when the smoothed peri-

odogram method is used. However the depth of correlations between these processes

is unknown for the disjoint section method.

- Although the depth of correlation between processes X3 and X5 is of order one

for the smoothed periodogram and the multi- taper methods it is unknown for the

disjoint sections method.
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- The EEG’s waves that appear frequently in this investigation are the δ-wave in the

frequency band [1, 4) Hz, the θ-wave within the frequency band [4, 8) Hz, the α-wave

in the frequency band [8, 13) Hz and the β-wave usually ranging between 13Hz and

30Hz.

6.2.5 Comparison of the spectral estimate methods

The spectral analyses of the current neural network {X1, X2, X3, X4, X5} using various

spectral estimates either a parametric approach, represented by the “multivariate autore-

gressive model of order p ”, where p = 2 in this case, or a non-parametric approach such

as, the “disjoint sections method”, the “smoothed periodogram method”, and the “multi-

taper method”, exhibit independency of the occipital lobe process X4, with processes

representing other areas of the brain. Also, all these methods show strong correlations

between the brain regions; the frontal lobe, the central area, the parietal lobe and the

temporal lobe.

The multivariate autoregressive model is unable to detect rapid changes that occur

in the signal, such as the effect of the notch filter which reduces the power line noise.

This means that the MVAR only reflects the signal’s properties which are consistent with

properties of the MVAR parameters. Although, the three other methods respond to the

reduction of the power line noise by the notch filter at frequency 60Hz and also to the

calibration signal at frequency 47Hz, the strength of the responses are different. The

multi-taper method displays high sensitivity in detecting the loss of information caused

by the notch filter even for relatively small values of the power spectra. Furthermore, the

smoothed periodogram and the multi-taper methods still present the notch filter effect at

60Hz in the ordinary estimated coherence curves while the disjoint sections method does

not. This proves the accuracy of these two methods in estimating spectral densities, and,

in turn, the coherences of the short length record. However, the orthogonality property

of the tapers enables the multi-taper method to minimize the spectral leakage due to the

finiteness of the data, and reduces the estimation variance. This gives the multi-taper

method an advantage on the smoothed periodogram method.

The estimated coherences, computed from four spectral estimate methods, peak in

the δ-wave range [1, 4) Hz, which corresponds to slow brain activities. In addition, the

depth of coherence ranges between order one for the multi-taper method and order two

for the smoothed periodogram and the disjoint section methods, but is unknown for the
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multivariate autoregressive model since the correlations between the occipital lobe process

and the other lobe representatives, X1, X2 and X3 remain significant and do not completely

vanish.

6.2.6 Application of the statistical test for bands of significant coherence

in finite samples

In Chapter 5, we developed a statistical test for the significant coherences between finite

samples of uncorrelated processes in particular band. Since the hypothesis of this test is

that, the two processes are not correlated, we apply this test to the coherence between

processes X1 and X4, which are proven to be uncorrelated at level of significance %5 in

the frequency band [1, 70] Hz. The procedures of the test are

1- Calculate the coherence of the uncorrelated processes at each frequency in a partic-

ular band.

2- Choose the size of the band to be tested, where the size should be chosen between 3

to 13 frequencies.

3- Compute the negative log likelihood of the probability distribution values of observ-

ing such coherences, using equation (5.4).

4- compare the calculated values of the negative log-likelihood with the critical values

listed in table (5.3), where α = 5%.

5- if the value of the negative log-likelihood of significant coherences in the chosen band

of frequency is larger than the critical value then, the hypothesis is rejected in that

band. If this value is less than the critical value, then the hypothesis is accepted.

According to the previous analysis of spectral densities and coherences, the frequency

band of interest is [1, 30) Hz. In particular we choose the bands of size 3, 4, 5, where the

first band consists of the frequency [1, 2, 3] Hz, the second band contains the frequencies

[4, 5, 6, 7] Hz and the third band is [8, 9, 10, 11, 12] Hz. Since the length of the used

data is 13 seconds, the corresponding critical value for the confidence bound of α = %5

level of significance is approximately CV ≈ 1.9. The calculated values of the negative

log-likelihood for the first band is 13.290721, for the second band is 18.821432, and ,

for the third band is 23.55084. Clearly these values are larger than the critical value

CV , which lead to reject the hypothesis that the two processes are not correlated in
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these particular bands at the level of significance of %5. Since the number of the available

observations is small, the consecutive measures of coherences of finite samples are expected

to be correlated. On other words, if the number of the underlying data is large enough,

the hypothesis will be accepted.



Chapter 7

Conclusion and future work

7.1 Conclusion

The investigation of the interrelationships between interacting processes among dynamic

systems has received a lot of interest from researchers. Furthermore, there has been

an increase in the number of studies concerned with the direction of information flow

within large networks in disciplines, such as Economics, Neuroscience, Engineering and

Neurobiology. Several mathematical methods have been proposed in order to facilitate

these studies in time and frequency domains.

Specifically, the current work has studied the electrical activity of the brain, which is

produced by the interaction of large numbers of neurons. This electrical activity of the

brain is recorded in different forms such as EEG , fMRI and MRI. The EEG’s presentation

is used as the application for this research, particularly the EEG signals which reflect the

electrical activity of the brain under epileptic conditions. The time-frequency analyses

are carried out for the EEG signals representing the left hemisphere of the brain. Since

the EEG signals collected from the same geographical area are approximately functionally

equivalent, only five signals are chosen to represent the five areas of the brain.

To conclude, we have described the mechanism of collecting the EEG records from the

scalp and have described the electrode placements and nomenclature according to the 10-

20 international system and 10% system in Chapter 2. Also, this chapter gave a succinct

anatomical description of the brain lobes and their functions. As the data used in this

work belongs to an epileptic subject, we have explained this brain disorder and provided

information about its common types and their symptoms. The properties of the EEG

signals, such as amplitude and frequency range, have been summarised in this chapter.

195
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This chapter also presented the definition of a stochastic process, auto-correlation, cross-

correlation, and mixing condition.

Chapter 3 dealt with the Fourier transform and its properties. The description of

the Fast Fourier Transform algorithm was provided in this chapter. The spectral esti-

mation methods such as averaging periodograms across contiguous sections of the single

records, the averaging frequency method and the multi-taper method with their statistical

properties have been described broadly in this chapter.

Chapter 4 involved definitions of coherence and partial coherence. The calculation of

these measurements directly from the data using the concept of the derived spectra was

explained. The asymptotic coherence and partial coherence were displayed in this chapter

and the construction of confidence intervals of significant coherences and partial coherences

was explained. The multivariate autoregressive model, and the methods that were used

to estimate its parameters the Yule walker and likelihood estimations were presented.

The concept of Granger causality was discussed in this chapter with respect to bivariate

and multivariate autoregressive models. The concept of partial directed coherence (PDC)

introduced by Baccalá and Sameshima [2001] was defined, while the significance level of

the PDC proposed by Schelter et al. [2005] was also provided.

Chapter 5 provided a statistical test for bands of significant coherence in finite samples

produced from uncorrelated stationary stochastic processes, using the likelihood principle.

In this chapter, the likelihood function was used to measure the independence between

two samples in a specified band of frequencies. The basis of this investigation was the

analytical expression for the probability density function of coherence at any frequency, as

provided by Goodman ( [1965]) and Brillinger [1981] when the processes are known a priori

to be uncorrelated. This test was implemented for extensive simulated data to determine

the confidence interval bounds for significant coherences within a relatively small band of

consecutive frequencies.

Chapter 6 involved the time-frequency analyses of the data provided by King Faisal

Hospital and Research Center KFHRC [Jeddah; Saudi Arabia]. The analyses have been

carried out for five EEG signals collected from the scalp of a focal right-handed epileptic

patient. These signals were chosen to represent the main lobes of the brain in the left

hemisphere, as explained broadly in Chapter 2. Coherence and partial coherence were

used to measure the strength of the correlations of these processes, while the partial

directed coherence introduced by Baccalá and Sameshima [2001] was applied to determine
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the direct and indirect causal influence among these processes. The significance level of

the PDC values proposed by Schelter et al. [2005], given in equation (4.100), was also

employed.

The application of the partial directed coherence for the processes {X1, X2, X3, X5}

produced the causal influence structure displayed in figure (6.6). Clearly, there were re-

ciprocal direct causal influences among the processes, representing the frontal lobe, the

central area, the parietal lobe and the temporal lobe. That is, information flows between

the processes in both directions at different levels. However, two uni-directed causal influ-

ences were captured between the processes X2 and X4, and the processes X4 and X5 where

X4 represents the occipital lobe of the brain. Indirect causal influences of the occipital

lobe process, X4, on the rest of the processes throughout the process X5 were detected.

Generally speaking, the values of the partial directed coherences in the anterior-posterior

direction were larger and greater than the values of the PDC in the posterior-anterior

direction. Similarly, the values of the partial directed coherences of all processes pairwise

with the process X5 were clearly larger than the values of the PDC in the opposite di-

rections. The causal influences of the process X5 on the processes X1, X2 and X3, which

were displayed in figures (6.13, 6.15, 6.17) respectively, are almost all spread out over the

entire frequency range and gently decreasing towards higher frequencies.

The spectral analyses of the processes X1, X2, X3 and X5, using the parametric and

non-parametric approaches, detailed in Chapter 3, revealed that the estimated power

spectra of these processes peaked approximately at 2Hz in the δ-wave band, while the

process X4 had two peaks, one corresponding to the frequency 3Hz in the δ-wave band,

and the second one at f ≈ 29Hz, which is the last frequency in the β band. The power

spectra of these processes, produced by applying the smoothed periodogram procedure

in figures (6.38, 6.39, 6.40) and the multi-taper in figures (6.41, 6.42, 6.43), showed the

efficiency of these two estimators to detect the noise caused by the power line even for

relatively small values of the power spectra.

Significant coherences have been captured between the processes, representing the main

regions of the brain in the left hemisphere, except the occipital process X4, which exhib-

ited independence from the other processes. Also, the significant estimated coherences

were mostly detected in the δ and θ bands, and peaked in the δ-band. The partial coher-

ence analysis, which specifies the depth of the correlations between these processes, gave

slightly different results according to the spectral approach used in the analyses. Generally
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speaking, significant estimated coherence still remains after removing linear influences of

two processes in the analyses, produced by MVAR as in figures (6.32, 6.33, 6.34). For the

method of averaging periodograms across non-overlapped segments of the single records,

the estimated coherences are significantly non-zero between processes (X1, X5), (X2, X5)

and (X3, X5) despite the removal of the simultaneous linear influence of two processes

as in figures (6.49, 6.50, 6.52). However, the estimated second order partial coherences

|R̂X1X2|X3X5
(f)|2, |R̂X1X3|X2X5

(f)|2 and |R̂X2X3|X1X5
(f)|2 plotted in Figures (6.46, 6.47,

6.47) are significantly zero.

In the smoothed periodogram of the entire record, the elimination of the simultaneous

linear influences of two processes decreases the estimated coherences. For example, the

destruction of the estimated coherence of process X1 with process X5 occurred as a result of

removing the concurrent linear effects of processes X2 and X3, see figure (6.60:b). However,

in the multi-taper method, the pairwise significant estimated coherences are statistically

significantly zero when linear influences of only one process has been removed as in figures

(6.51:c, 6.52:c, 6.54:c).

To conclude, in the light of the results of spectral densities and coherences analyses,

performed in Chapter 6 by using spectral estimations such as; the multivariate autoregres-

sive method of order 2; averaging periodograms across adjacent sections of single records;

smoothed periodogram of the entire record; and, the multi-taper method, we found that

the multi-taper is a powerful tool estimation, that is not only able to estimate the spectral

densities with reduced variance for the short duration data , but is also able to minimize

the spectral leakage due to the finiteness of the data.

7.2 Future work

The analysis of the EEG signals of an epileptic subject has attracted interest for either

clinical or research purposes. The research into EEG analysis will continue as it represents

a broad area for researchers to know more about the underlying brain activities under

normal and abnormal conditions. In the future I will continue to investigate the following

points:

- According to the present results, as the power spectra and coherences peaked in the

δ- band, the investigation of the behaviour of the δ-wave under normal and epilepsy

conditions for waking adults is challenging, since the existence of the δ- wave in
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adults during deep sleep stages is normal.

- Investigate the difference between the activities of the normal θ-wave and the epilep-

ticform θ- wave in childhood. Since the θ wave manifests itself normally in children

and in adults during the sleep or drowsiness, the presence of the high θ- wave in an

awake adult indicates abnormal conditions.

- Investigate the effects of long-term anti-epilepsy medication on the vision levels in

children with epilepsy.
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Appendix A

In this appendix we provide some definitions for the mathematical terminologies mentioned

and used in Chapter 3.

A.1 Chi-squared distribution

Let {X1, X2, · · · , Xn} be independent standard normal random variables, then the sum of

the squares of these variables, say Z,

Z =
n∑
i=1

X2
i ,

is distributed as Chi-squared deviate with n degree of freedom and denoted by

Z ∼ χ2
n .

With probability density function

f(x) =


1

2n/2 Γ(n/2)
xn/2−1 e−x/2 ; x ≥ 0

0 ; x < 0 ,

where the mean and variance values are n and 2n respectively.

A.2 QR algorithm

QR algorithm is a commonly used procedure to compute the eigenvalues and eigenvectors

of a matrix. This procedure is based on decomposing a matrix, say A, into a product of

an orthogonal matrix, Q, and an upper triangular matrix, R, such that

A = QR ,

where QQ = QQ = I, and I is the identity matrix. The ‘overline’ represents the matrix

transpose and satisfies the property Q = Q−1.
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A.3 Derivation of equations (3.105) and (3.106)

Here we will explain how we obtained equations (3.105) and (3.106) delivered in Chap-

ter 3 within the section on the calculation of the Slepian functions ψ(x) using Legendre

polynomials. For equation (3.105) we start with the equations

c2

∫ 1

−1
x2ψ(x)P0(x) dx = γ

∫ 1

−1
ψ(x)P0(x) dx ; for k = 0,

2

∫ 1

−1
ψ(x)P1(x) dx+ c2

∫ 1

−1
x2ψ(x)P1(x) dx = γ

∫ 1

−1
ψ(x)P1(x) dx ; for k = 1.

(A.1)

Substituting the Legendre polynomials,

1 = P0, x = P1 , x2 =
2P2(x) + P0(x)

3
, x3 =

2P3(x) + 3P1(x)

5
,

into equations (A.1) yields

c2

∫ 1

−1

[2P2(x) + P0(x)

3

]
ψ(x) dx = γ

∫ 1

−1
ψ(x)P0(x) dx ; for k = 0,

2

∫ 1

−1
ψ(x)P1(x) dx+ c2

∫ 1

−1

[2P3(x) + 3P1(x)

5

]
ψ dx = γ

∫ 1

−1
ψ(x)P1(x) dx ; for k = 1.

(A.2)

Rearranging equations (A.2) and using the definition, ψk =

∫ 1

−1
ψ(x)Pk(x) dx , give

2c2

3
ψ2 +

c2

3
ψ0 = γψ(x)0(x) ; for k = 0,

(2 +
3c2

5
)ψ1 +

2c2

5
ψ3 = γ

∫ 1

−1
ψ(x)1(x) ; for k = 1.

(A.3)

Now for k ≥ 2 we use the identity∫ 1

−1
xψ(x)Pk(x) dx =

k + 1

2k + 1

∫ 1

−1
ψ(x)Pk+1(x) dx+

k

2k + 1

∫ 1

−1
ψ(x)Pk−1(x) dx

which is a direct consequence of the recurrence relation (3.100). A second application of

this identity gives∫ 1

−1
x2ψ(x)Pk(x) dx =

k + 1

2k + 1

∫ 1

−1
xψ(x)Pk+1(x) dx+

k

2k + 1

∫ 1

−1
xψ(x)Pk−1(x) dx .

(A.4)



APPENDIX A. 213

We apply the recurrence relation (3.100) for each term on the right hand side of equation

(A.4), thus the first integral on the R.H.S. is simplified to∫ 1

−1
xψ(x)Pk+1(x) dx =

(k + 1) + 1

2(k + 1) + 1

∫ 1

−1
ψ(x)Pk+2(x) dx+

k + 1

2(k + 1) + 1

∫ 1

−1
ψ(x)Pk(x) dx ,

=
k + 2

2k + 3

∫ 1

−1
ψ(x)Pk+2(x) dx+

k + 1

2k + 3

∫ 1

−1
ψ(x)Pk(x) dx .

(A.5)

And the second integral is solved as∫ 1

−1
xψ(x)Pk−1(x) dx =

(k − 1) + 1

2(k − 1) + 1

∫ 1

−1
ψ(x)Pk(x) dx+

k − 1

2(k − 1) + 1

∫ 1

−1
ψ(x)Pk−2(x) dx ,

=
k

2k − 1

∫ 1

−1
ψ(x)Pk(x) dx+

k − 1

2k − 1

∫ 1

−1
ψ(x)Pk−2(x) dx .

(A.6)

Substituting the solutions of the integrals obtained in equations (A.5) and (A.6) into

equation (A.4) we get∫ 1

−1
x2ψ(x)Pk(x) dx =

k + 1

2k + 1

(
k + 2

2k + 3

∫ 1

−1
ψ(x)Pk+2(x) dx+

k + 1

2k + 3

∫ 1

−1
ψ(x)Pk(x)

)

+
k

2k + 1

(
k

2k − 1

∫ 1

−1
ψ(x)Pk(x) dx+

k − 1

2k − 1

∫ 1

−1
ψ(x)Pk−2(x) dx

)
.

(A.7)

Rearranging this expression and using the definition of the ψk we obtain∫ 1

−1
x2ψ(x)Pk(x) dx =

(k + 1)(k + 2)

(2k + 1)(2k + 3)
ψk+2 +

[
(k + 1)2

(2k + 1)(2k + 3)
+

k2

(2k + 1)(2k − 1)

]
ψk

+
k(k − 1)

(2k + 1)(2k − 1)
ψk−2 .

(A.8)

Simplifying the ψk coefficients yields∫ 1

−1
x2ψ(x)Pk(x) dx =

(k + 1)(k + 2)

(2k + 1)(2k + 3)
ψk+2 +

(2k2 + 2k − 1)

(2k + 3)(2k − 1)
ψk

+
k(k − 1)

(2k + 1)(2k − 1)
ψk−2 .

(A.9)

which is the form of the equation (3.106).
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B.1 Introduction

In this appendix, we estimate the power spectra of two stationary correlated processes,

namely Xt and Yt using two different spectra estimations; the averaging across peri-

odograms of adjacent sections (disjoint sections method) and the autoregressive model

of order 1. The power spectra will be estimated for different length of data ranging be-

tween 5 and 65 seconds, then the comparison between the results of two approaches will

be made using L1 and L2 error estimates.

B.2 Autoregressive Model AR(1)

Let Xt and Yt be two correlated stationary processes of length T and they are connected

by the autoregressive model

Xt = αXt−1 + β Yt−1 + σ EX,t ,

Yt = αYt−1 + β Xt−1 + σ EY,t ,

(B.1)

where EX,t and EY,t denote uncorrelated white noise processes of unit variance across time

and within themselves, with the covariance matrix Σ. The observations Xt, Yt are taken

at time t, while Xt−1 and Yt−1 are the observations taken at time t−∆t and ∆t is the time

interval between two observations. Finally α, β and σ represent the AR(1) parameters of

the trial model (B.1). To facilitate this calculation it is convenient to write equation (B.1)

in the matrix form  Xt

Yt

 =

 α β

β α

 Xt−1

Yt−1

+ σ

 EX,t

EY,t

 (B.2)
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The Fourier transform

F(f) =

∫ ∞
−∞

f(t)e2iπft dt (B.3)

is applied to equation (B.2) to get the frequency representation of this equation, that is, X (f)

Y(f)

 = e2iπf∆t

 α β

β α

 X (f)

Y(f)

+ σ

 EX(f)

EY (f)

 . (B.4)

This equation can be rearranged into the form 1− αeiθ −βeiθ

−βeiθ 1− αeiθ


 X (f)

Y(f)

 = σ

 EX(f)

EY (f)

 , (B.5)

where θ = 2πf∆t, and solved for the Fourier coefficients X (f) and Y(f) to obtain

Z(f) = σA−1ξ (B.6)

where

Z(f) =

 X (f)

Y(f)

 , A =

 1− αeiθ −βeiθ

−βeiθ 1− αeiθ

 , ξ =

 EX(f)

EY (f)

 . (B.7)

As the spectrum of the innovations is the identity matrix then the spectral density matrix

of Z is

S = E
[
Z(f)ZH(f)

]
= σ2A−1IA−H = σ2∆t A−1A−H , (B.8)

where H denotes the complex-conjugate (Hermitian) transpose. The inverse of A is

A−1 =
1

detA

 1− αeiθ βeiθ

βeiθ 1− αeiθ

 , (B.9)

where detA = (1−αeiθ)2− (βeiθ)2 = 1 + (α2−β2)e2iθ−2αeiθ. Substituting into equation

(B.8) and performing the matrix multiplication gives

S =
σ2∆t

|detA|2

 1 + α2 + β2 − 2α cos θ 2β(cos θ − α)

2β(cos θ − α) 1 + α2 + β2 − 2α cos θ

 . (B.10)

The calculation of the numerator of equation (B.9) yields

|detA|2 = |1 + (α2 − β2)e2iθ − 2αeiθ|2

= 1 + 2(α2 − β2) cos 2θ − 4α(1 + α2 − β2) cos θ + (α2 − β2)2 + 4α2

= (1− α2 + β2)2 + 4
[
(α2 − β2) cos2 θ − α(1 + α2 − β2) cos θ + α2

]
.

(B.11)
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Hence, the power spectra and cross-spectra of the two processes Xt and Yt can be obtained

directly from equations (B.10) and (B.11).

In the following section we will simulate two correlated processes using AR(1) for

different length of data and apply the finite Fourier transform to these data.

B.3 Numerical spectra analysis

In this section we will generate two correlated processes Xt and Yt using the autoregressive

model AR(1) for different length of data. Specifically, T = 10, 20, 30, · · · 65 seconds, and

the parameters α, β and σ are given the values 0.5, 0.1, 1 respectively, that is

Xt = 0.5X(t−1+0.1Yt−1 + N(0, 1) ,

Yt = 0.5Yt−1 + 0.1Xt−1 + N(0, 1) .

(B.12)

The analytical power spectra derived in the previous section and the estimated power

spectra using the disjoint section method will be computed. In fact we will consider

the power spectrum of the process Xt but the power spectrum of the process Yt can be

obtained in a same way. For example, the analytical power spectrum of the process Xt

when T = 10, 000 milliseconds is calculated straightforwardly from equations (B.10) and

(B.11) and plotted in figure (B.1),
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Figure B.1: This figure shows the AR(1) power spectrum of the both

processes Xt when the length of records is T = 10 seconds.

To estimate the spectral density using the “Disjoint sections method” depends on

partitioning the whole data T into L non-overlapping samples each of length N such that

L = T/N . In this particular calculation we choose N = 1000 to give physical frequencies
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in Hertz (Hz), consequently, the number of samples that will contribute to the estimate of

the spectra and cross-spectra of the process Xt of the specific length T milliseconds is (L).

The Finite Fourier transform is used to compute the Fourier coefficients for the associated

sub-sample, namely for the l-th sample at frequencies between f = 1 Hz to f = 100 Hz in

intervals of 1 Hz by the formulae

dTX(f, l) =

lN−1∑
t=(l−1)N

X(t) e−2iπft

dTY (f, l) =

lN−1∑
t=(l−1)N

Y (t) e−2iπft .

(B.13)

The estimated cross-spectra and spectra of the processes Xt and Yt are computed from

the formula

ITij(f) =
1

2πLT

L∑
l=1

dTi (f, l)dTj (f, l) ; i, j = X,Y . (B.14)

The periodogram of the processes Xt when the length of the data is T = 10, 000 millisec-

onds is plotted in Figure (B.2)
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Figure B.2: This figure shows the periodogram of the processes Xt when

the length of records is T = 10 seconds.

Figure (B.3) illustrates the comparison between the analytical power spectrum calcu-

lated directly from the autoregressive model AR(1), denoted by the solid line, and the

estimated power spectrum of the processes Xt, denoted by the dotted-line, when the du-

ration of the sample is ten seconds
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Figure B.3: This figure shows the comparison between the power spectrum

calculated directly from the AR(1), solid-line, and the estimated power

spectrum of the process Xt, dotted-line, when T = 10 seconds.

Similarly, the same procedures have been used to estimate the power spectra and cross-

spectra of the processes Xt when the length of the data is T = 15, 20, · · · 65 seconds by

means of both approaches. We note that the AR(1) power spectrum remains having the

same values since the AR(1) parameters are fixed. We note that as the size of sample in-

creases the estimated power spectrum converges to the analytical power spectrum. Figures

(B.4) and (B.5) display the analytical and the estimated power spectra (periodograms) of

the processes Xt when the duration of time is 20 seconds and 30 seconds respectively.
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Figure B.4: This figure shows the comparison between the power spectrum

calculated directly from the AR(1), solid-line, and the estimated power

spectrum of the process Xt, dotted-line, when T = 20 seconds.
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Figure B.5: This figure shows the comparison between the power spectrum

calculated directly from the AR(1), solid-line, and the estimated power

spectrum of the process Xt, dashed-line, when T = 30 seconds.

B.4 Error estimates

The convergence of the estimated power spectrum can be measured by using one of the

two error norms L1 and L2 which defined as

L1 : Err =
1

n

n∑
k=1

|ARPS − ESPS| ; n = 1, 2, · · · , 100 , (B.15)

L2 : Err =

√√√√ 1

n

n∑
k=1

|ARPS − ESPS|2; n = 1, 2, · · · , 100 , (B.16)

where ARPS represents the power spectrum derived from the autoregressive model and

ESPS represents the estimated power spectrum obtained by applying the disjoint sections

method, | | denotes the absolute value of the difference at frequency f ∈ [1, 100] Hz, and

n is the number of the data. Specifically, the error estimates have been calculated from

the natural logarithm of the power spectra instead of the power spectra themselves for the

different size of samples, particularly T = 5, 10, 15, 25, · · · , 65 seconds, five seconds apart,

and arranged in the table (B.1) (upper panel) when the length of the used data ranging

between 5 and 35 seconds and (lower panel) when the length of the data takes the higher

values between 40 and 65 seconds of the process Xt. A similar strategy can be performed

for the process Yt. Thus, it can be seen clearly that the values of the two error norms

decrease as the size of the data increases. This in turn means that the two approaches

to the calculation of the spectra are convergent when the size of the sample is sufficiently

large. Also, the estimated power spectra converges faster for the L1 norm than for the L2.
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Sample Size 5 10 15 20 25 30 35

log10 L1 0.167530 0.113257 0.093697 0.080062 0.068631 0.061420 0.054126

log10 L2 0.202671 0.139274 0.119233 0.103447 0.088020 0.081384 0.070510

Sample Size 40 45 50 55 60 65

log10 L1 0.050303 0.046334 0.042947 0.040320 0.039753 0.036857

log10 L2 0.067820 0.062417 0.056559 0.050721 0.048580 0.046239

Table B.1: This table shows the L1 and L2 errors estimates between the logarithm

to base 10 of the power spectra of the process Xt at different length of data ,

where T = 5, 10, 15, · · · , 35 seconds, 5 seconds apart (upper panel) and for T =

40, 45, · · · , 65 seconds, 5 seconds apart (lower panel).

The logarithm to base 10 of the L1 and L2 errors values are written in the table (B.1)

for the sample sizes T = 5, 10, 15, · · · , 35 seconds (upper panel), and T = 40, 45, · · · , 65

seconds (lower panel) for the process Xt are explained in the figure
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Figure B.6: This figure shows the comparison between the L1 error, solid-

line and L2 error, dotted-line for the logarithm of estimated power spectrum

of the process Xt, when the size of sample increases from 5 seconds to 65

seconds.

B.5 Conclusion

This work focussed on estimating the power spectra of two correlated stationary stochastic

processes using two different spectral density estimations; the autoregressive model of order

1 and the disjoint sections method. The investigation has been made for different sizes of

sample. Specifically, for the duration T = 10, 15, · · · 65 seconds, five seconds apart, and
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the two types of the error norms have been employed to examine the convergence between

the analytical and the estimated power spectra. The results of this investigation showed

that the difference between these values become less as the size of the sample increases.



Appendix C

In this appendix we provide a definition of the kernel density estimation

C.1 Kernel density estimation

Kernel density estimation is a non-parametric method for estimating the probability dis-

tribution of a random variable from a finite sample of independent realisations of that

random variable.

Let x1, x2, · · · , xm be a sample of m independent identically-distributed realisations of

the random variable X, then the kernel density estimate of probability density is

f(x) =
1

mh

m∑
i=1

K
(x− xi

h

)
, (C.1)

whereK is some kernel function and h is a smoothing parameter called the bandwidth. The

standard Gaussian function with zero mean value and variance 1 has been used frequently

as a kernel function. In this case formula (C.1) becomes

f(x) =
1

mh

m∑
i=1

1√
2π

e

(x− xi)2

2h2 . (C.2)

The kernel density function used in Chapter 5 is that implemented in MATLAB and

called ksdensity in MATLAB.
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