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Abstract 

Heart disease is the leading cause of death worldwide.  Despite considerable progress in 

the prevention and treatment of heart disease it remains a highly prevalent source of patient 

morbidity and mortality.  The heart has the ability to change in shape, size, structure and 

function in response to adverse stimuli in a process known as cardiac remodelling which is 

intended to be an adaptive response initially but can become detrimental leading to 

eventual heart failure (HF).  The mechanisms underlying the progression from remodelling 

to HF remain poorly understood.  Remodelling in the heart is known to be associated with 

alterations in cardiac gene expression for which transcription factors play a significant role.  

It has been reported that the RUNX family of transcription factors which play important 

roles in developmental pathways, have been increasingly implicated in disease and in 

tissue injury.  One member of this family of transcription factors, RUNX1, has been shown 

to be up-regulated in heart tissue taken from human patients with MI.  Despite this 

knowledge, a precise quantitative measure of the altered expression of Runx in the heart in 

terms of regional and temporal changes using an animal model has not been previously 

explored.  Therefore the aim of the work presented in this thesis was to investigate the 

altered expression of the Runx genes in two different experimental animal models of heart 

disease: a mouse model of myocardial infarction (MI) and a rat model of hypertension and 

altered left ventricular (LV) mass to assess the changes in Runx expression in response to 

the different cardiac disease types.   

For this study a mouse model of MI was developed using the well-established coronary 

artery ligation (CAL) method and the phenotype of this model was characterised at 

different time points by assessing survival trends, performing in vivo functional 

measurements (pressure-volume (PV) loop methodology and electrocardiograms) with 

assessment of structural alterations of remodelling using histological and morphometric 

measurements.  The model was found to exhibit many of the clinical features consistent 

not only with other published murine model data but also those of human MI.  The mouse 

MI model was then used to measure Runx gene expression in the hearts using real time 

quantitative reverse transcription PCR (qRT-PCR) and immunohistochemistry (IHC) 

methods.  This was to assess whole heart and regional expression differences, how 

expression levels change over time as the MI develops, assessment of expression patterns 

of the different Runx gene members and exploration of potential links with Runx 

expression and possible functional relevance to the heart.  In the mouse model, Runx genes 
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were found to be up-regulated in response to MI with highest levels confined to the areas 

within and around the infarct and peri-infarct region by 4 weeks post-MI extending into the 

remote regions by 8 weeks.  Runx levels were found to be highest in the hearts with the 

greatest dysfunction.   

The second model of heart disease for assessing changes in Runx was a rat model of 

hypertension, with congenic sub-strains of this model showing altered LV mass also tested.  

The congenic rat strains were specifically bred models of rat with a chromosome 14 

substitution.  This contained a quantitative trait locus (QTL) from either normotensive or 

hypertensive strains for genes associated with LV mass.  These models were analysed 

using in vivo PV methodology to assess function without influence from blood pressure 

(BP) loading conditions (to assess whether the QTL is BP-dependent) and structural 

remodelling in the form of cardiac fibrosis was measured histologically.  The data revealed 

enhanced systolic function with diastolic dysfunction and cardiac fibrosis in hypertensive 

animals consistent with other published models.  The chromosome 14 congenic rat strains 

showed a BP-independent diastolic dysfunction or improved function linked to cardiac 

fibrosis.  Furthermore, in contrast to the MI model, the levels of Runx1 were significantly 

down-regulated in the rat models of hypertension and altered LV mass indicating potential 

differences in the triggers for altered expression between volume-overload versus pressure-

overload models of heart disease.   

Overall this thesis has shown the altered expression of Runx genes in two different animal 

models of heart disease which has not been previously explored and indicates potential for 

future investigation into the functional significance of Runx in the heart during disease.  
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The primary function of the heart is to maintain circulation of blood to the organs and 

tissues of the body.  The inability to supply the oxygen and nutrients necessary to support 

the needs of the body is the major consequence of heart disease and constitutes the basis of 

heart failure (HF).  Heart disease is currently the leading cause of morbidity and mortality 

worldwide (WHO, 2011).  In order to understand the complex nature of heart disease for 

the research of novel treatments it is important to understand the basic functioning of the 

heart and its adaptive capabilities as an organ during normal and pathological conditions. 

1.1 Cardiac EC coupling 

The mammalian heart is divided into a right and left side and has four chambers; two atria 

and two ventricles.  The right and left ventricles (which receive blood from the right and 

left atrium respectively) represent two synchronous muscular pumps contracting in a timed 

fashion.  Contraction occurs at the level of the individual contractile cells of the heart, the 

cardiomyocytes, by a process known as excitation-contraction (EC) coupling which is the 

sequence of events from electrical excitation of the cardiomyocyte to mechanical 

contraction of the heart.  During this process, calcium ions (Ca2+) play a pivotal role.  The 

main stages of EC coupling are described below and depicted in Figure 1.1. 

1.1.1 Initiation and Ca 2+ influx 

The process of EC coupling is initiated by the cardiac action potential which is an 

electrical impulse that rapidly alters cell membrane potential.  The action potential 

originates from the pacemaker cells of the sinoatrial (SA) node located in the right atrium 

and is quickly transmitted to the atrioventricular (AV) node (a small mass of cells located 

in the lower atrial septum) and through fast-conduction muscle fibres known as the Bundle 

of His to the Purkinje fibres which supply the signal to the ventricular cardiomyocytes.  

This occurs rapidly from one cardiomyocyte to the next via gap junctions as a wave 

propagation system.  The action potential creates a wave of depolarisation along the 

surface cell membrane (the sarcolemma) of the cardiomyocytes along distinct invagination 

structures that extend into the cell called transverse tubules (T-tubules).  This triggers the 

opening of voltage-gated L-type Ca2+ channels located along the T-tubules (Bers & Perez-

Reyes, 1999).  This allows Ca2+ to enter the cell which contributes to the plateau phase of 

the action potential.  Both extracellular and intracellular Ca2+ is absolutely essential for EC 

coupling as was first discovered by the physiologist Sydney Ringer in the early 1880s 

when he found that an isolated frog heart ceased to beat when Ca2+ was accidentally 
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removed from the solution that perfused the heart (Ringer, 1882a;Ringer, 1882b;Ringer, 

1883a;Ringer, 1883b).  

1.1.2 Calcium-induced calcium release 

1.1.2.1 Background to calcium-induced calcium relea se 

Ca2+ entry into the cell triggers a release of Ca2+ from the intracellular Ca2+ store organelle, 

the sarcoplasmic reticulum (SR); this is known as calcium-induced calcium release 

(CICR).  CICR was demonstrated in the 1970s and 1980s through a series of experiments 

performed by Fabiato and Fabiato who demonstrated that in skinned canine 

cardiomyocytes where the sarcolemmal membrane was removed (therefore lacked T-

tubules allowing intracellular Ca2+ to be equilibrated with a known Ca2+ concentration in 

the bathing fluid), the skinned cells were found to relax at 0.02-0.03 µM Ca2+, contract 

moderately at 0.1 µM Ca2+ and contract maximally at 0.3 µM Ca2+ (Fabiato & Fabiato, 

1975).  This revealed that contractions were induced by Ca2+-triggered release of Ca2+ 

from the SR and that the amount of Ca2+ released is a function of the amount of trigger 

Ca2+ (Ca2+ entering the cell through the L-type channel).  They later revealed that at high 

trigger Ca2+ concentrations (10 µM for 150 ms) CICR could be inhibited (Fabiato, 1985).  

1.1.2.2 Ca2+ release from the SR 

There are two distinct domains of the SR; the junctional domain which contains the 

channels for Ca2+ release from the SR and the longitudinal domain which contains the 

channel for Ca2+ uptake into the SR (Franzini-Armstrong, 1970;Winegrad, 1965).  Ca2+ is 

released from the SR during CICR via release channels on the junctional SR known as 

ryanodine receptors (RyR).  RyR are proteins (~ 2.3 million Dalton with the functional 

tetramer visible at the electron microscope level; (Saito et al., 1988)) and are located 

within nanometers of the sarcolemma of a T-tubule placing them in extremely close 

proximity with L-type Ca2+ channels.  The ratio for number of RyR per L-type Ca2+ 

channel ranges from 8:1 in rat, 6:1 in humans and 4:1 in guinea pig (Bers & Stiffel, 1993).  

Inward flux of Ca2+ across the entire cell leads to release of Ca2+ from the SR (typically no 

greater than 50% of the SR Ca2+ content however this is dependent on available SR Ca2+ 

(Shannon et al., 2000)) but a substantial fraction is released into the cytosol.  The 

intracellular free Ca2+ concentration ([Ca2+] i) rises from 0.1 µM to ~ 0.5-2.0 µM of which 

75-90% comes from the SR release and the remaining 10-25% comes from the inward 

current through the L-type Ca2+ channel (Eisner et al., 1998).  The total cytosolic Ca2+ 
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([Ca2+]total = [Ca2+] i plus bound Ca2+) required for half-maximal activation of contraction is 

approximately 70 µmol l-1 cytosol (Bers, 2002).   

1.1.3 Ca2+-mediated cross-linking and contraction 

The intracellular rise in [Ca2+] i allows Ca2+ ions to bind to the myofilament protein 

troponin C which is bound to another myofilament protein called tropomyosin as part of 

the tropomyosin-troponin complex.  At rest (Ca2+ unbound to troponin C) this complex is 

bound to the actin (thin) filament of the contractile sarcomere apparatus and in doing so 

obscures the myosin-binding sites on the actin.  When Ca2+ binds to troponin C it causes a 

shift in the tropomyosin-troponin complex shifting it deeper into the actin groove thereby 

exposing the myosin-binding sites.  Myosin can then subsequently bind to actin forming a 

cross-bridge and via adenosine triphosphate (ATP) hydrolysis the myosin head pulls the 

actin filament to the centre of the sarcomere causing it to shorten and contract the cell 

(Layland et al., 2005).  

1.1.4 Relaxation and Ca 2+ extrusion 

In order for the cardiomyocyte to relax (which is important to allow the heart to fill with 

blood again) [Ca2+] i must be restored back to resting levels.  This is necessary to allow 

Ca2+ to dissociate from troponin and allow the tropomyosin-troponin complex to return to 

its position where it obscures the actin binding sites and prevents myosin binding.  The 

majority of Ca2+ is transported out of the cytosol by four different pathways:  

(i)  The SR Ca2+ ATPase (SERCA) pump located on the surface membrane of the SR 

which transports Ca2+ back into the SR.  SERCA is regulated by an inhibitory protein 

called phospholamban (PLN) which in its basal unphosphorylated state inhibits SERCA by 

decreasing the affinity of SERCA to Ca2+ (James et al., 1989;Voss et al., 1994).  In its 

phosphorylated state, PLN enhances the activity of SERCA by increasing the pump’s 

affinity for Ca2+ (James et al., 1989) and permits resequestration of Ca2+ back into the SR. 

(ii)  The sodium-calcium exchanger (NCX) is a sarcolemmal pump which moves 1 Ca2+ 

ion out of the cell in exchange for 3 Na+ ions into the cell; this mechanism is driven by 

both transmembrane voltage and by Na+ and Ca2+ concentration gradients (Blaustein & 

Lederer, 1999). 
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(iii)  The sarcolemmal Ca2+ ATPase is also a sarcolemmal pump which hydrolyses ATP 

to transport Ca2+ out of the cell.  This contributes to a sarcolemmal current which is small 

in comparison to that of the NCX (Caroni & Carafoli, 1981). 

(iv)  The mitochondrial uniporter is a pore in the inner membrane of mitochondria which 

moves cytosolic Ca2+ into the mitochondria down an electrochemical gradient (Kirichok et 

al., 2004). 

 

Figure 1.1  Ca2+ transport in the ventricular cardiomyocyte. 

Schematic representation of Ca2+ transport within the cardiomyocytes with inset showing the time course of the rabbit 

ventricular cardiomyocytes action potential (black line), intracellular Ca2+ transient (blue line) and contraction (red 

dashed line).  Red arrows indicate means of Ca2+ entry into the cell and green arrows indicate means of Ca2+ extrusion 

from the cell.  ATP (ATPase); NCX (Na+/Ca2+ exchanger); PLB (phospholamban); SR (sarcoplasmic reticulum); RyR 

(ryanodine receptor).  Taken from (Bers, 2002). 

1.1.4.1 Proportions of Ca 2+ extrusion by each mechanism 

The proportion of Ca2+ extruded by each mechanism is different and varies between 

species; in rabbit cardiomyocytes the proportions of Ca2+ extruded are approximately as 

follows: 70% by SERCA, 28% by the NCX and 2% by the Ca2+ ATPase and the 

mitochondrial uniporter (Bassani et al., 1994).  In rat cardiomyocytes, approximately 92% 

is through SERCA, 7% through NCX and 1% through the Ca2+ ATPase and mitochondrial 

uniporter (Bassani et al., 1994).  The proportions in the mouse are very similar to the rat 

(Li et al., 1998).  These differences are largely due to a greater activity of SERCA in 

rodents (due to greater number of SERCA molecules) (Hove-Madsen & Bers, 1993).  The 
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entire process from Ca2+ influx to contraction and Ca2+ extrusion is then repeated for 

further contraction and relaxation of cardiomyocytes which forms the basic pumping 

mechanism of the heart. 

1.2 Cardiovascular disease (CVD) 

Disease of the cardiovascular system occurs when the normal structure and functioning of 

the heart becomes compromised which can eventually lead to HF.  The heart is an adaptive 

organ and is capable of adapting to disease or injury through alterations to its structural 

properties and functional ability in order to maintain normal cardiac output (CO) within 

physiological limits.  This process is known as cardiac remodelling and refers to changes 

in the size, shape and function of the heart in response to cardiac load or injury (Cohn et 

al., 2000).  This tends to be beneficial initially but in the longer term it often becomes 

maladaptive and results in further deterioration of function (Colucci, 1997).  As a result, 

cardiac remodelling is a central feature in the development of HF.  Remodelling is a 

progressive process characterised by a complex array of cellular and molecular changes 

which are largely dependent on the underlying stimuli (Kehat & Molkentin, 2010).  The 

main features of remodelling involve changes in the size of the individual cardiomyocytes, 

cellular apoptosis of cardiomyocytes, changes in the molecular phenotype of the 

cardiomyocytes (e.g. altered gene expression) and alterations in the quantity and 

composition of the extracellular matrix (ECM) (Colucci, 1997).  Remodelling occurs 

differently in response to different cardiac disease types and details of each remodelling 

process for two common cardiac diseases relevant to this thesis; MI  and hypertension 

with hypertrophy , will be discussed in the sections that follow. 

1.2.1 Myocardial Infarction 

1.2.1.1 Definition and prevalence 

MI (also known as a heart attack) is defined as the death of a region of myocardium in the 

heart due to an obstruction of a coronary artery (Thygesen et al., 2007).  MI is one of the 

main forms of coronary heart disease (CHD) (Thygesen et al., 2007) which is the 

collective term for cardiac diseases characterised by narrowing of the coronary blood 

vessels leading to disruption in the supply of adequate circulation to the heart (Cohen & 

Hasselbring, 2007).  CHD in the form of MI is the leading cause of HF and represents the 

largest cause of mortality in the U.K. (Scarborough et al., 2011).  Although CHD mortality 

has fallen in recent years (by 32% between 2001and 2009) it continues to be a serious 
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public health problem with death rates reaching 88,000 each year in the UK (Scarborough 

et al., 2011). 

1.2.1.2 Main cause of MI 

MI is caused by an accumulation of fatty and fibrous deposits along the interior of a 

coronary artery which over time can progress to considerable thickening and hardening of 

the arterial wall (Cohen & Hasselbring, 2007).  While usually asymptomatic for decades, it 

may eventually become a serious problem if the plaque inside the artery suddenly ruptures 

causing a thrombus formation that can partially or completely obstruct coronary blood 

flow. 

1.2.1.3 Post-MI remodelling 

MI is a complex disease which progresses through a number of distinct stages.   

(i)  Ischaemia and cell death 

A blockage or occlusion of the coronary blood flow results in oxygen deprivation to a 

region of the myocardium (defined as ischaemia).  The consequences of ischaemia can 

vary depending on the extent and duration of the ischaemia.  During ischaemia, the oxygen 

and nutrient deprivation disrupts normal oxidative phosphorylation leading to a reduction 

in ATP necessary for normal function.  If the ischaemic episode is brief (<30 min in rodent 

models) (Ferdinandy et al., 2007) and reperfusion of blood is restored it is possible for the 

injured cardiomyocytes to regain normal structure and function but with time (i.e. not 

immediate) - in this case the myocardium is said to be stunned (Kloner & Jennings, 2001).  

Hibernating myocardium refers to an adaptive reduction of contractile function in response 

to a reduction of blood flow which is not regarded as a consequence to the energy deficit 

but rather an adaptive mechanism to maintain cardiomyocyte integrity and viability 

(Heusch & Schulz, 2002).  Prolonged ischaemia can lead to irreversible cell death 

(infarction).  This usually occurs within hours of the insult as a result of oxygen 

deprivation and depletion of ATP.  For continuous functioning, the myocardium is 

absolutely dependent on aerobic metabolism for the production of energy in the form of 

ATP.  During normoxia, ATP is produced in the mitochondria by oxidative 

phosphorylation; however during oxygen and substrate deprivation (ischaemia) this leads 

to a rapid decline in the production of ATP without which the cell cannot survive.  This 

leads to a multitude of subsequent processes that can lead to cell death by three main 
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methods: necrosis, apoptosis and autophagy (although autophagy is less understood in the 

context of MI) (Marambio et al., 2010;Olivetti et al., 1997;Wencker et al., 2003).   

Necrosis is a form of cell death characterised by loss of ATP, cell swelling, organelle 

swelling and membrane damage.  Depletion of ATP leads to an accumulation of AMP 

which triggers the activation of glycolytic enzymes and a switch to anaerobic metabolism 

and lactate production.  Increased lactate in the cell leads to accumulation of water and 

resultant osmotic stress to the cell eventually leading to organelle and cell swelling with 

resultant sarcolemmal membrane damage (damage to phospholipids and ion channels) (de 

Zwaan et al., 2001). 

Apoptosis is a form of ‘programmed cell death’ during which the cell instructs its own 

death.  This is different to necrosis which is considered a passive or accidental process.  

Apoptosis is rare in normal myocardium, occurring in 0.01-0.001% of normal human 

cardiomyocytes (Soonpaa & Field, 1998) increasing to 0.12-0.70% in human HF (van 

Empel et al., 2005).  It is triggered by neurohormonal factors, cytokines and extracellular 

factors which can activate apoptosis via the Janus kinase/signal transducer and activator of 

transcription (JAK/STAT) signalling pathway or via the stress activated protein kinase 

(SAPK) pathway (Mani & Kitsis, 2003;Negoro et al., 2001). 

Autophagy is a highly-conserved process in which intracellular membrane-bound 

organelles called lysosomes that contain enzymes can break down the cell’s own structures 

through activation of these enzymes.  During ischaemia, lysosomes are activated and can 

hydolyse the organelle/cell membranes which can lead to osmotic stress and further 

sarcolemmal disruption (de Zwaan et al., 2001). 

The process of LV remodelling following cardiomyocyte death is summarised in the flow-

diagram in Figure 1.2 below.   

(ii)  Inflammation 

Cardiomyocyte necrosis triggers the recruitment of various inflammatory cells to the 

infarcted area such as macrophages, monocytes and neutrophils to repair the damaged 

myocardium.  The localised area of dead myocardium is referred to as the infarct.  Necrotic 

cardiomyocytes activate the complement system and leads to free-radical generation 

causing a cascade of signalling molecules known as cytokines to be released by the dying 
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cells.  Examples of cytokines involved include interleukin-8 and C5a which recruit 

neutrophils to the infarcted region that release potent protease enzymes and phagocytose 

necrotic cardiomyocytes and cellular debris.  Transforming growth factor-beta 1 (TGF-β1) 

and gamma-interferon (γ-interferon) then recruit monocytes to the area which differentiate 

into macrophages, important for scavenging (phagocytosing) the dead cells (Frangogiannis 

et al., 2002;Nian et al., 2004).  As part of the cell clean-up process (neutrophils and 

macrophages engulfing dead cardiomyocytes), neutrophils release enzymes called serine 

proteases and matrix metalloproteinases (MMP) which break down the collagen fibres 

holding the cardiomyocytes together (Siwik & Colucci, 2004).  This leads to infarct 

expansion.   

(iii)  Infarct expansion 

Infarct expansion (infarct thinning and LV chamber dilation) can occur within hours of the 

infarction.  There are several mechanisms responsible for infarct expansion including (i) 

cell stretching due to increased sarcomere length, (ii) reduction in inter-cellular space such 

as the capillary beds which causes cells to be closer together in the infarcted region, but is 

predominantly due to (iii) the sliding movement of the cardiomyocytes also known as 

‘slippage’ (Rohde et al., 1999).  Side-slippage of cardiomyocytes occurs because of the 

loss of collagen holding the cells together therefore allowing them to slip (Whittaker et al., 

1991).  Cardiomyocyte cell death also contributes to the process allowing the neighbouring 

viable cells to slip (Gajarsa & Kloner, 2011).   

(iv)  Cardiac fibrosis 

Cardiac fibrosis is the deposition of collagen in the heart in response to stimuli and can be 

one of two main types: reactive or reparative.  Reactive fibrosis refers to the collagen of 

abnormal thickness and density which occupies the perivascular or interstitial space which 

was previously devoid of collagen whereas reparative fibrosis refers to the replacement of 

lost/dead cardiomyocytes (‘scarring’) and is often seen as a patchy distribution and serves 

to preserve the structural integrity of the myocardium.  Infarct expansion during MI can 

trigger myofibroblasts to proliferate and deposit collagen into the thinned tissue 

continually to form a scar (where dead tissue is replaced by collagen) which resists further 

expansion (Sun & Weber, 2000).  Therefore cardiac fibrosis in MI is largely a reparative 

fibrosis.  The collagen deposition is a compensatory response to stabilise the distending 

forces and support the thinned myocardium (French & Kramer, 2007). 
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Figure 1.2  Representation of the pathways of LV remodelling post-MI. 

ECM, extracellular matrix; RAAS, renin-angiotensin-aldosterone system; CO, cardiac output; SVR, systemic vascular 

resistance; LV, left-ventricular and AII, angiotensin II.  Figure taken from (Sutton & Sharpe, 2000) 

(v)  Cardiac hypertrophy 

Cardiac hypertrophy is the enlargement of cardiomyocytes in response to external stimuli 

and there are two main forms: eccentric and concentric.   

Eccentric hypertrophy refers to the in-series addition of sarcomeres (increase in 

cardiomyocyte length) and occurs under conditions of volume-overload (e.g. MI) causing a 

decrease in the ventricular wall thickness. Chamber dilatation leads to an increase in 

systolic and diastolic wall stress; this occurs because the increase in LV radius increases 

the wall stress and oxygen demand by Laplace’s law (Pfeffer et al., 1991a).  Elevated wall 

stress triggers eccentric hypertrophy (end-to-end lengthwise cell enlargement) in the non-

infarcted myocardium by causing altered expression of genes which encode contractile 

proteins (e.g. β myosin heavy chain) for assembly of new sarcomeres (Sadoshima et al., 

1992).   
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Concentric hypertrophy is the in-parallel addition of sarcomeres (increase in 

cardiomyocyte width) and typically occurs under conditions of pressure-overload causing 

an increase in ventricular wall thickness although this can also occur in volume overload.   

Hypertrophy in MI is mainly eccentric:  Hypertrophy is an adaptive response aimed to 

compensate for the functional loss of the infarcted myocardium (Pfeffer & Braunwald, 

1990).  Therefore, early acute chamber dilation is largely due to infarct expansion (in the 

infarct region) whereas late dilation is the result of eccentric hypertrophy of the non-

infarcted regions.  Eccentric hypertrophy is therefore secondary to infarct expansion and 

while they both contribute to dilation of the chamber, they differ in the mechanism by 

which their dilatory effect comes about: infarct expansion leads to dilation through 

slippage and loss of cardiomyocytes in the infarcted region whereas eccentric hypertrophy 

contributes to dilation through elongation of surviving cardiomyocytes in the non-infarcted 

regions by addition of sarcomeres (infarct expansion can result in stretching of existing 

sarcomeres which is different to the addition of more) (Weisman et al., 1988).  Eccentric 

hypertrophy is considered beneficial initially as it can maintain or in some cases improve 

contractility in the non-infarcted region; this has been demonstrated in isolated 

cardiomyocytes from the non-infarcted septum in mice 10-wk post-MI with eccentric 

hypertrophy (22.5% increase in cell length but no change in cell width versus sham) which 

showed improved contractility with a 24.6% increase in the Ca2+ amplitude compared to 

sham (Mork et al., 2009).  Over time however the LV chamber becomes so dilated that it 

begins to severely impair contractile function which is the most common cause of HF.  A 

summary of the time course of events of post-MI remodelling is summarised below in 

Figure 1.3 showing an example from a murine experimental model of MI. 
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Figure 1.3  Timeline of LV remodelling after MI. 

Example LV remodelling timeline showing major events which occur post-MI.  This is an example from a mouse MI 

model showing the three main phases of remodelling; early phase (<72h), proliferative phase (3-7 days) and late phase 

(>1-wk).  Times may vary depending on the extent of the injury.  Figure generated from studies by (Wang et al., 

2006;Yang et al., 2002). 

1.2.1.4 Progression to HF 

LV remodelling and HF have both been extensively studied but the mechanisms 

underlying the transition from one to the other remain unclear.  One of the main 

mechanisms is chamber dilation as described above; it is however also believed to be 

linked to characteristics of the peri-infarct myocardium (Jackson et al., 2002;Jackson et al., 

2003).  This refers to the region of myocardium found at the immediate periphery of a 

developing infarct (also termed border zone) where an interface exists between ischaemic 

and viable tissue.  The peri-infarct myocardium consists of viable surviving 

cardiomyocytes intermingled with dead necrotic cells and are potential substrates for life-

threatening ventricular arrhythmias (Pinto & Boyden, 1999).  Fibroblasts and inflammatory 

monocytes may also be present in the peri-infarct zone although they are predominantly 

found within the infarct region.  Furthermore, close contact between thin-walled infarct 

and viable myocardium results in an abnormally increased radius of curvature of the 

myocardium at the infarct margin, leading to elevated wall stress and associated energy 

demands in the peri-infarct (Buda et al., 1986;Guccione et al., 2001).  Energetic 

insufficiency in the peri-infarct can expand to the rest of the LV and lead to global LV 

dysfunction and potentially HF.  The peri-infarct is believed to play a major role in the 

development from compensated LV remodelling to HF.  Understanding altered function in 

the peri-infarct myocardium at the cellular level is important for gaining a better insight 

into the mechanisms underlying the progression of heart failure.  Studies have shown that 

cardiomyocytes isolated from this region demonstrate: (i) altered calcium handling, 

including decreased SR Ca2+ accumulation (Licata et al., 1997), (ii) altered ionic currents 
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(Pu et al., 2000) and (iii) limited cell shortening due to impaired contractile elements 

(Licata et al., 1997). 

1.2.2 Hypertension 

1.2.2.1 Definition and prevalence of hypertension 

Human hypertension is considered the largest cause of CVD worldwide (Hajjar et al., 

2006).  It has been estimated that between 1999-2002, 28.6% of the US population had 

hypertension (Hajjar et al., 2006).  The Health Survey of England in 2010 revealed that the 

incidence of hypertension was 31.5% in men and 29.0% in women living in England, U.K. 

(NHS Information Centre, 2010).  Hypertension is a chronic, progressive disease 

characterised by an elevation in arterial BP sufficient to increase the incidence of stroke (4-

6 fold), HF (2-3 fold) and renal failure (Schocken et al., 2008).  Although hypertension is a 

major risk factor for MI, the two diseases can occur independently of one another and 

exhibit very different phenotypes, therefore for the purpose of this thesis they will be 

referred to separately.  Clinically, hypertension is diagnosed when repeated measurements 

of resting brachial artery pressure exceed 140/90 mmHg in patients under 50 years of age, 

or 160/95 mmHg in patients older than 50 years (Levick, 2010).  However hypertension is 

emerging as a complex disease and some believe that it cannot be defined by BP limits 

alone and should incorporate the cardiac and vasculature abnormalities associated with the 

disease (Giles et al., 2005). 

1.2.2.2 Classification of hypertension 

Hypertension can be classified as either primary (essential) which means high BP with no 

underlying medical cause which is the most common form affecting the majority of cases 

(90-95%) (Carretero & Oparil, 2000), or secondary (remaining 5-10%) which means it is 

secondary to another medical condition affecting the arteries, kidneys, heart or endocrine 

system (O'Brien et al., 2007).  Despite the debates on the exact definition it is generally 

accepted that the hallmark of hypertension is the narrowing and stiffening of the arteries 

which supply blood to the body’s tissues (Izzo, Jr. & Shykoff, 2001).  At an early stage this 

is characterised by an increase in vascular tone (ability to constrict) and is reversible with 

the administration of vasodilator drugs.  However as the disease progresses the structure of 

the arterial tunica media (middle) layer changes; in mild hypertension rearrangement of the 

vascular smooth muscle myocytes occurs with a modest increase in the ECM which 

narrows the lumen by ~10% with little change in wall area, this is known as inward 
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eutrophic remodelling (Intengan & Schiffrin, 2001).  At this stage vasodilator drugs are 

ineffective to rectify the abnormal resistance.  In severe hypertension remodelling of the 

tunica media continues with hypertrophy (increased cell size) and hyperplasia (increased 

cell numbers) of the smooth muscle myocytes in addition to their rearrangement previously 

undergone (Amann et al., 1995).  The overall consequence is the narrowing of the artery 

with reduced compliance (stiffer) leading to an increase in the total peripheral resistance 

(TPR) and increased mean arterial pressure (MAP). 

1.2.2.3 Main causes of hypertension 

The causes of hypertension have not been fully elucidated but are linked to both genetic 

and environmental factors: 

Genetic factors have been shown to be important factors as it is estimated that 30-60% of 

BP phenotypic variation among individuals is genetically determined (Shih & O'Connor, 

2008).  Genetic links are also reflected by the familial and racial tendencies observed in the 

disease: i.e. hypertension is highly heritable (Doris & Fornage, 2005) and hypertension is 

more common among patients of Afro-Caribbean or African descent compared to 

Caucasians (Primatesta et al., 2000).  Studies using identical twins further support a 

genetic link as monozygotic twins have substantially greater similarities in LV mass than 

dizygotic twins (Adams et al., 1985).  It is very rare that just a single gene is involved and 

is usually multiple genes linked at distinct chromosomal regions known as quantitative trait 

loci (QTL) which will be covered in more detail in Chapter 5.   

Environmental factors that have been linked to hypertension include high dietary salt 

(Na+) intake, low dietary potassium (K+) intake, obesity, stress and alcohol consumption 

(Dickinson et al., 2006).  High dietary Na+ is considered one of the highest risk factors as 

plasma [Na+] is known to be elevated by ~2-3 mM in hypertensive patients (normal plasma 

[Na+] is 136-145 mM, abnormal plasma [Na+] in hypertension ≥147 mM) (Herrera & 

Garvin, 2005).  The mechanism by which high Na+ leads to hypertension is believed to 

occur by the following: high plasma [Na+] stimulates the adrenal cortex and the brain 

causing release of a substance called ouabain, an endogenous hormone and potent inhibitor 

of the Na+/K+  pump of the vascular smooth muscle cells.  Inhibition of the Na+/K+ pump 

causes partial depolarisation which increases the open probability of the L-type Ca2+ 

channels.  The rise in intracellular [Na+] reduces Ca2+ excretion from the cell by the NCX 

leading to increased [Ca2+] and resulting increased vascular tone (Blaustein et al., 2007).  
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Ouabain has the same effect on cardiomyocytes exerting a positive inotropic effect by the 

same mechanism - inhibition of the Na+/K+ pump (Muller-Ehmsen et al., 2003).  Other 

factors which link Na+ to hypertension are reduced expression of the α2 Na+ pump subunits 

and reduced expression of NCX1 which have also been shown to cause hypertension 

(Blaustein et al., 2006). 

Impaired Na+ renal handling is also believed to play a pivotal role in causing 

hypertension although it is not clear if this is genetically linked (Liu et al., 2011).  Under 

normal conditions, high [Na+] triggers a drop in circulating renin-angiotensin II-

aldosterone (RAA) levels which reduces distal tubular Na+ reabsorption to maintain the 

Na+ balance.  A large amount of Na+ is filtered into the nephron (25,000 mmol/day) and 

99% of this is reabsorbed.  Approximately ~65% of the reabsorption occurs in the 

proximal tubule, ~25% through the thick ascending Loop of Henle, ~5% through the distal 

tubule and ~5% through the principal cells of the collecting duct (Zhao et al., 2009).  There 

are two hypotheses which have been proposed to explain the imbalance.  Firstly, RAA 

levels are higher in hypertensive patients which would explain the inappropriate retention 

of Na+, however not all hypertensive patients demonstrate elevated RAA levels (Williams, 

1982).  The second hypothesis is that there is a defect in the gene(s) encoding essential 

renal ion channels or transporter proteins – this hypothesis is substantiated by the 

observation that normal rats develop hypertension when transplanted with kidneys from 

SHR with narrow afferent renal arterioles (Rettig, 1993). 

Other factors which can be risk factors for the cause of hypertension include stress as this 

can lead to temporary periods of increased BP which can heighten an individual’s 

susceptibility to developing hypertension (Dickinson et al., 2006).   

Overall hypertension has become regarded as a multifactorial disease and is likely to be 

caused as a result of complex interactions between dietary, neural, hormonal and renal 

mechanisms. 

1.2.2.4 Structural remodelling in the heart during hypertension 

Hypertension affects a number of systems of the body including the vasculature, the heart, 

the kidneys and the brain.  The structural impact on the heart is largely in response to 

pressure overload.  The narrowed, stiffened arteries raise MAP creating an elevated load 

on the ventricles; this basically means the ventricles have to work to greater extents to 
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ensure adequate delivery of blood to all of the body’s tissues.  In response to elevated BP, 

the heart undergoes structural remodelling in three main ways: 

(i)  LV hypertrophy (LVH):   Due to the increased pressure load on the heart the major 

response is cardiomyocyte hypertrophy i.e. individual cardiomyocytes of the heart become 

enlarged through parallel addition of sarcomeres (Frey & Olson, 2003) in attempts to 

enhance contractile function and cope with the persistent afterload.  Cardiomyocyte 

hypertrophy is driven by local growth factors (such as angiotensin II (AngII) and 

endothelin (Sadoshima et al., 1993;Shubeita et al., 1990), inflammatory cytokines (e.g. 

interleukin-1β) (Thaik et al., 1995) and mechanical stretch (Sadoshima & Izumo, 1993).  

These trigger the MAP kinase cascade causing an activation of cardiac nuclear 

transcription factors (e.g. GATA4) which in turn activate genes involved in the 

hypertrophy process of the cell (e.g. β myosin heavy chain), further details on cardiac 

transcription factors involved in this process are covered in Section 1.4.2.4.  Hypertensive-

induced hypertrophy affects the cardiomyocytes of the LV only causing an overall increase 

in LV mass (RV cardiomyocytes remain normal in size until a pressure overload caused by 

pulmonary venous hypertension and LV failure is present).  LVH is considered an 

important feature of hypertensive heart disease: firstly, it is one of the earliest responses to 

hypertension, present in children and adolescents with borderline elevation in BP (Daniels 

et al., 1990) and secondly, most importantly LVH is a major risk factor for adverse heart 

disease (see below).   

(ii) Coronary artery remodelling.  Similar to the narrowing and hardening of arteries of 

the systemic circulation, the same can also occur in the coronary arteries of the heart 

during hypertension (Jalil et al., 1991).  As described previously, the coronary arteries can 

also undergo medial thickening caused by hypertrophy and (in some cases) hyperplasia of 

the vascular smooth muscle cells (Amann et al., 1995).   

(iii) Perivascular and interstitial fibrosis.  Vascular smooth muscle cells can also 

undergo structural realignment with enhanced accumulation of ECM proteins such as 

collagen and elastin which is evident as a perivascular fibrosis (Jalil et al., 1991).  This 

occurs in response to the pressure-overload on the heart triggering the activation of 

neurohormonal factors including catecholamines, the RAA system and endothelin (Kai et 

al., 2005) leading to production of collagen by fibroblasts and vascular smooth muscle 

cells.  The accumulation of collagen can spread progressively from the perivascular space 

into the adjacent interstitial areas (reactive fibrosis) (Silver et al., 1990).  The reactive 
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fibrosis occurs when individual cardiomyocytes are encircled by collagen fibres which 

impair their ability to contract and relax causing increased myocardial stiffness (which is 

different to reparative fibrosis which replaces dead cardiomyocytes).  Cardiac fibrosis is 

not present in all types of LVH, for example it does not tend to occur with infrarenal aortic 

banding or volume-overload uninephrectomy and high Na+ diet (Brilla et al., 1990), 

compensated arteriovenous fistula (Salzmann et al., 1986), atrial septal defects (Marino et 

al., 1985) or chronic thyroxine administration (Bartosova et al., 1969). 

1.2.2.5 Progression to HF 

Persistent hypertensive heart disease can push the structural remodelling to a level where it 

become detrimental and can eventually lead to HF.  It has been estimated that hypertension 

is responsible for causing HF in 39% of men and 59% of women (Levy et al., 1996).  The 

structural adaptations outlined above which occur during hypertension can lead to cardiac 

dysfunction in several ways.  Both LVH and increased interstitial fibrosis lead to increased 

LV stiffness resulting in diastolic dysfunction (Kahan & Bergfeldt, 2005;Kai et al., 2005).  

Cardiomyocytes begin to die by necrosis and apoptosis which is believed to occur because 

of the increased diffusion distance into thickened myocardium causing local intracellular 

hypoxia (Kahan & Bergfeldt, 2005).  This is supported by the observations that discrete 

foci of reparative fibrosis (replacing necrotic myocytes) become evident throughout the 

myocardium (Lopez et al., 2001).  Loss of cardiomyocytes can lead to a dilated 

cardiomyopathy and according to Laplace’s Law, as radius increases, wall stress increases 

which further exacerbates cardiomyocyte death rate.  Hypertension-related LVH also 

increases a patient’s risk of MI which can also be the cause of dilated cardiomyopathy 

(Scarborough, 2010).  Dilated cardiomyopathy is a serious problem for patients as once 

this stage is reached it is very difficult to reverse.  About 1 in 3 cases of congestive HF are 

due to a dilated cardiomyopathy (Jameson et al., 2005). 

1.3 Mechanisms contributing to progression to HF in    
both MI and hypertension 

As described in the preceding sections the heart has the capability to adapt structurally and 

functionally as a protective mechanism in response to pathological conditions.  While 

remodelling is initially protective, over time persistent remodelling eventually begins to 

exacerbate rather than maintain normal function and this leads to eventual HF in the 

majority of CVD.  HF is defined by the chronic inability of the heart to maintain a 

sufficient CO to adequately perfuse the body’s tissues. Researchers have devoted many 
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years to the study of remodelling and the precise mechanisms by which this leads to HF.  

Although this still remains an area of intense investigation there are a number of cellular 

and molecular changes which occur during remodelling that are known to contribute to the 

functional decline associated with HF.  While HF can have distinctly different causes (e.g. 

MI or hypertension/hypertrophy) the functional characteristics of failing myocardium is 

very similar as detailed below. 

1.3.1 Abnormal Ca 2+ handling 

Morgan et al. (1991) were the first to observe altered Ca2+ handling in failing human 

ventricular tissue (traberculae carneae); they demonstrated prolonged time to peak (93.6% 

greater than control) and prolonged relaxation (60.6% longer time to reach 50% relaxation 

from peak than control) (Gwathmey et al., 1987;Morgan, 1991).  It has been well-

established that the dysfunction in contractility and generation of life-threatening 

arrhythmias observed in HF is largely due to abnormal Ca2+ handling (Pogwizd et al., 

2001).  Failing human cardiomyocytes demonstrate prolongation of action potential 

duration (Gwathmey et al., 1990;Nabauer & Kaab, 1998;Ohler & Ravens, 1994), reduced 

amplitude of the intracellular [Ca2+] i transient (Beuckelmann et al., 1992;Gwathmey et al., 

1991;Morgan, 1991), impaired force development (Gwathmey et al., 1990;Mulieri et al., 

1992) and slowed relaxation (Beuckelmann et al., 1992;Schwinger et al., 1992).   

1.3.1.1 Alterations in Ca 2+ handling proteins 

Many of these changes occur due to alterations in the expression and/or interactions 

between the Ca2+ regulatory proteins.  The reduced contractility of failing cardiomyocytes, 

as stated above, is primarily due to a reduced systolic Ca2+ transient amplitude arising from 

ineffective CICR.  CICR is reduced in HF often because of a decrease in SR Ca2+ content, 

the cause of which is believed to be for two reasons: (i) there is a reduced expression and 

activity of SERCA2 in human failing cardiomyocytes (Arai et al., 1993;Meyer et al., 

1995), although some studies have shown no change in SERCA2 expression but reduced 

Ca2+ uptake activity (Movsesian et al., 1989;Schwinger et al., 1995).  The second reason 

(ii) is due to diastolic leak of Ca2+ as a result of altered function and/or abundance of the 

Ca2+ release channel, RyR.  There is also evidence that the abundance of L-type Ca2+ 

channels is reduced in HF which would also play a role in reduced CICR (Chen et al., 

2002).  Ca2+ ‘leak’ is generally defined as loss of Ca2+ from the SR during resting or 

quiescent conditions and is believed to occur from abnormalities in RyR phosphorylation 

which increase the open probability of the channel (Shannon et al., 2000).  Together the 
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diastolic Ca2+ leak and slow Ca2+ uptake by SERCA2 impair diastolic relaxation which 

may be a contributory mechanism for diastolic dysfunction.  HF also induces abnormal 

alterations in the SERCA regulatory protein, PLN: for example alterations have been 

shown in the abundance of PLN (Kiss et al., 1995;Linck et al., 1996), the PLN/SERCA2 

stoichiometry (Koss et al., 1997), basal level of PLN phosphorylation (Schmidt et al., 

1999) and the ability of β-adrenergic signalling to mediate PLN phosphorylation (Huang et 

al., 1999).  Reduced phosphorylation of PLN and increase in PLN/SERCA2a ratio both 

contribute to contractile dysfunction in HF (Schmidt et al., 1999).  Each of these 

abnormities in PLN has been demonstrated in HF however the observations are not always 

consistent suggesting there are other factors involved.  Finally, the NCX has also been 

shown to be misregulated in HF with increased abundance and activity reported (Hasenfuss 

et al., 1999).  The functional significance of this is believed to be that increased NCX 

activity may compensate for reduced SERCA2 function – this has been demonstrated 

through use of transgenic mice overexpressing NCX whereby a 2.4 fold increase in NCX 

activity compensated for reduced SERCA function by 28% allowing maintenance of the 

duration of the Ca2+ transient (Terracciano et al., 2001).  Furthermore these changes in the 

NCX are not always consistently observed in HF, particularly in animal models – in a 

review by Sipido et al., of the 29 different studies investigating hypertrophy-induced HF, 

14 showed an increase in NCX expression and/or function, 10 showed a decrease and 5 

showed no change (Sipido et al., 2002).   

Relevant to this thesis, in a mouse model isolated cardiomyocytes from viable septum 10-

wk post-MI showed prolongation of the Ca2+ transient time to peak (15% greater than 

sham) indicative of slowed Ca2+ release (Mork et al., 2009).  In another study, mouse 

cardiomyocytes isolated from the whole LV post-MI showed a 14.7% reduction in the Ca2+ 

transient amplitude compared to sham (Zhang et al., 2010). 

Collectively these findings demonstrate that the abnormalities in Ca2+ handling are 

predominantly due to altered Ca2+ handling proteins but due to the conflicting evidence it 

is unlikely to be due to a change in any single protein but rather a disturbance in the 

balance and/or regulatory interactions between them that is responsible. 

1.3.2 Contractile elements 

The contractile apparatus of the cardiomyocytes is another potential site of functional 

abnormality that is believed to contribute to the functional decline during HF.  The 
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contractile mechanism consists of two major structural proteins (actin and myosin) and a 

complex of regulatory proteins consisting of tropomyosin, troponin C, troponin I and 

troponin T for the regulation of normal contraction and relaxation of the cell.  Troponin T, 

a regulator of the actin-myosin interaction, is an example of a contractile element found to 

be altered in human HF: in the normal heart the troponin T isoform T1 predominates, 

however in patients with HF there is an increased abundance of the T2 isoform which 

normally only accounts for ~2% of the total troponin (Anderson et al., 1992) although the 

significance of this shift is unknown. 

1.3.3 ECM alterations 

The ECM is a mesh of connective tissue which interconnects cardiomyocytes and other 

cell types of the heart.  It is composed of collagens, proteoglycans, glycoproteins, peptide 

growth factors and proteases and its primary functions are to maintain alignment of cardiac 

muscle fibres and neighbouring vasculature, and provide an orderly transmission of force 

to the entire ventricle during systole.  The ECM is an important determinant of the 

structural integrity of the heart and is a very important central feature in structural 

remodelling during heart disease – disproportionate deposition of ECM proteins or loss of 

ECM proteins are the major causes of stiffened myocardium (diastolic dysfunction) and 

dilation, respectively which are two major causes of decompensatory HF.  During HF, the 

release of endothelin influences the synthesis or degradation of collagen in the 

myocardium (Guarda et al., 1993).  The most commonly observed ECM remodelling 

during disease is the adverse accumulation of fibrillar collagen, expressed as cardiac 

fibrosis (both reactive and reparative) which has been demonstrated in diseased post-

mortem human hearts (Beltrami et al., 1994;Pearlman et al., 1982).  This is largely 

controlled by effector hormones of the RAA system (Weber et al., 1991b) e.g. AngII 

increases collagen synthesis in a dose-dependent manner by (i) induction of fibroblast 

hyperplasia, (ii) activation of collagen synthesis pathways, and (iii) inhibition of collagen 

degradation pathways (Gonzalez et al., 2004).  Fibrosis can provide structural support to 

thinned myocardial infarcts however it can also exacerbate normal functioning as it can 

limit normal diastolic ‘suction’ (recoil), impair myocardial compliance and compromise 

the length-dependent muscle fibre shortening during contraction (Moreo et al., 2009). 
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1.4 Altered gene expression in cardiac disease 

Many of the changes above which contribute to functional decline during pathological 

remodelling with regard to Ca2+ handling proteins, the contractile proteins and the ECM 

proteins occur due to alterations in the gene messenger RNA (mRNA) levels that encode 

these proteins.  An important pattern of altered gene expression during cardiac disease 

involves the re-expression of foetal genes not normally expressed in adult myocardium, for 

example up-regulation of atrionatriuretic peptide receptor C (Takahashi et al., 1992).  As 

well as re-induction of foetal genes, cardiac disease can elicit alterations in a diverse range 

of adult cardiac genes.  These genes are extremely important in cardiac research as they 

could represent potential therapeutic targets for disease treatment.   

1.4.1 Differential gene expression in different car diac diseases 

As detailed earlier, different cardiac diseases lead to different morphological forms of 

structural remodelling (MI vs. hypertensive heart disease and LVH) and each are also 

associated with distinct patterns of gene expression.  Genes can therefore be altered 

differently in different cardiac diseases, and by examining changes in a single gene in 

different diseases represents a powerful means of elucidating the functional significance of 

target genes which could represent potential therapeutic targets in CVD.  This is important 

because different forms of cardiac disease are characterised by different pathophysiology, 

prognosis and response to therapy.  For example it has been shown that the same gene can 

be altered differently in ischaemic versus non-ischaemic human cardiomyopathy – e.g. the 

gene for the leptin receptor which is involved in the regulation of adipose tissue mass was 

shown to be down-regulated (~1.8-fold) in ischaemic cardiomyopathy but up-regulated 

(~2-fold) in non-ischaemic cardiomyopathy compared to control healthy hearts (Kittleson 

et al., 2005).  The gene encoding lumican, a regulator of fibrillogenesis, followed a very 

similar pattern with down-regulation in ischaemic (~1.8-fold) but up-regulation in non-

ischaemic cardiomyopathy (~2.5-fold) (Kittleson et al., 2005).  Altered gene patterns have 

been well characterised in animal models of MI which show altered expression of genes 

encoding proteins involved in calcium-handling (Swynghedauw, 1999), contractile 

function (Yue et al., 1998), ECM (Weber, 1997) and the RAA system (Holtz, 1998).     

Microarray techniques have emerged as a large-scale approach for the identification of 

target genes altered during cardiac disease (Kaab et al., 2004); however, this may involve 

large numbers of genes and targets still require validation using qRT-PCR.  Gene 
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expression profiles are complex and require detailed understanding of the precise 

regulatory mechanisms underlying the control of their expression patterns.  It is for this 

reason that transcription factors have emerged as important targets in elucidating the 

intricate mechanisms of altered gene expression during the pathophysiology of HF 

(Buermans et al., 2005). 

1.4.2 Transcription factors 

A transcription factor is a protein which regulates the precise location, timing and rate of 

the process of transcription which is the transfer of genetic information from DNA by the 

synthesis of an RNA molecule copied from a DNA template.  Transcription factors are 

essential to life as they directly control the expression of genes in response to specific 

physiological stimuli and developmental signals (Latchman, 1997).  Transcription factors 

therefore lie at the core of regulatory and developmental processes (Lee & Young, 

2000;Mitchell & Tjian, 1989).  They are also extremely important in disease as they 

respond to pathophysiological stimuli and are often recruited to direct gene expression for 

protective mechanisms against the disease (Semenza, 1999).  In addition they represent 

important therapeutic targets - approximately 10% of currently prescribed drugs directly 

target the nuclear receptor class of transcription factors (Overington et al., 2006) an 

example of this is tamoxifen for the treatment of breast cancer (Gronemeyer et al., 2004). 

1.4.2.1 Transcriptional regulation of gene expressi on 

Every cell in the body, with a few exceptions, has identical DNA but there are very distinct 

cell types and tissue types which vary in structure and function, this is because of 

transcriptional control (selective gene expression) by transcription factors.  Transcription 

factors initiate the transcription process for subsequent translation into proteins.  The 

process is discussed briefly and summarised in Figure 1.4.  Transcription factors bind to a 

specific region of DNA and recruit an enzyme known as RNA polymerase to synthesise a 

complementary mRNA strand based on the gene sequence from the DNA template.  Once 

the mRNA strand is synthesised, it leaves the nucleus and enters the cytoplasm where it 

attaches to a ribosome to begin translation (the process of protein synthesis from the 

mRNA template).  A different RNA molecule called transfer RNA (tRNA) bearing a three-

base (anti-codon) sequence joined to an amino acid binds to the complementary anti-codon 

sequence of the mRNA strand.  The ribosome continues along the mRNA strand adding 

more tRNA-amino acid sequences to form a growing polypeptide chain that forms the 

protein for which the original gene sequence encodes. 
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Figure 1.4  Summary process from transcription to translation. 

Transcription occurs in the nucleus with the synthesis of an mRNA strand from a DNA template containing the gene 

sequence.  The mRNA strand leaves the nucleus into the cytoplasm for the synthesis of the protein (translation).  Steps 1-

5 summarise the process.  mRNA; messenger RNA. tRNA; transfer RNA.  Amino acids are illustrated by the blue 

circular shapes.  Figure taken from Benjamin-Cummings, Addison Wesley Longman Inc. 

1.4.2.2 Transcription factors bind to DNA 

Transcription factors bind to specific DNA sequences located in regulatory regions 

(usually promoters or enhancers) found near the transcription initiation site of a gene 

which is the first nucleotide of the DNA that will be transcribed into RNA.  These 

regulatory regions can include elements such as the TATA box (a core promoter DNA 

sequence) and CpG islands (high frequency linear cytosine and guanidine DNA 

sequences).  These regulatory sequences are generally located 30 bp upstream of the 
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initiation site and serve to direct binding of RNA polymerase II (Pol II) (Figure 1.5).  

Transcription factors contain functional domains which are clusters of amino acids which 

allow the protein to carry out a specific function, namely a DNA-binding domain for 

binding to DNA and a transactivation domain which activates transcription via interaction 

with other proteins.  The DNA binding domain usually takes one of three structures which 

allow it to bind to DNA; (i) helix-turn-helix (HTH) which consists of two adjacent α-

helices separated by a turn of several amino acids; (ii) zinc finger which co-ordinates zinc 

ions with a combination of cysteine and histidine residues or (iii) basic leucine zipper 

consisting of four leucine residues at 7-residue intervals which form an α-helix with 

protruding leucine residues such that when two leucine residues dimerize the motif’s ‘zip’ 

together (Klug & Cummings, 2005). 

1.4.2.3 Transcription initiation complex 

In eukaryotes, transcription is initiated by a group of general transcription factors that form 

an initiation complex (Figure 1.5).  A sequence-specific transcriptional activator protein 

(TATA binding protein; TBP) is a protein that binds to the TATA sequence of a promoter 

on the DNA to activate the assembly of a well-known group of general transcription 

factors (TFII).  These transcription factors are responsible for the positioning and 

activation of the Pol II enzyme which catalyses the transcription process.  The complex is 

assembled in the following order.  Once TBP is bound to the promoter, TBP-associated 

factors (TAF) bind and this recruits the binding of TFIIB and TFIIA first which are 

responsible for positioning Pol II in the correct place.  Next, Pol II complexed with TFIIF 

are positioned in place.  Finally a multi-subunit complex containing TFIIH binds and 

through helicase activity facilitates the separation of the DNA strands and phosphorylates 

Pol II via its C-terminal domain which activates Pol II for transcription at the start site.  

Collectively this forms the transcription pre-initiation complex (PIC) that accompanies all 

eukaryotic transcription but is sufficient only for a low basal level of transcription.  The 

final stage involves the induced level of transcription which represents the higher, 

stimulated stage – this involves other areas of the promoter region, enhancers and the 

binding of other transcription factors. 
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Figure 1.5  Assembly of the transcription initiation complex in eukaryotes. 

TBP binds to the TATA box which initiates the binding of a combination of general transcription factors (TF) to 

assemble the initiation complex required for mRNA synthesis.  Following TBP binding, the next to bind are TFIIB and 

TFIIA (which position Pol II), followed by TFIIF which is complexed with Pol II.  TFIIE is then added followed by 

TFIIH, which separates the two DNA strands and phosphorylates the Pol II C-terminus for initiation of transcription at 

the start site.  TBP = TATA-binding protein; TAFs = TBP-associated factors; TFIIA,B,E,F,H,J = transcription factors 

required to direct RNA polymerase II binding; Pol II = RNA polymerase II. 

1.4.2.4 Role of transcription factors in the heart 

Much of the alterations in the structural properties of the heart during remodelling (both 

physiological and pathophysiological) are due to altered gene expression by the action of 

transcription factors.  One clear example of this is during cardiac hypertrophy.  In response 

to specific stimuli, transcription factors such as GATA, MEF2, Gx/Nkx2-5 and HAND 

direct the expression of various genes necessary for enlargement of the cardiomyocytes, 

including the transcription of genes responsible for the production and assembly of 

contractile proteins to increase sarcomeric unit number (Glennon et al., 1995).  These 

cardiac transcription factors are known to play a crucial role in the heart during 

embryogenesis; however in recent years they have received increasing interest in the post-

natal heart particularly during disease of the heart.  Their role is crucial during hypertrophy 

as cardiomyocytes are terminally differentiated and do not have the ability to proliferate.  

Therefore transcription factors control the cellular alterations necessary for cardiomyocytes 

to adapt under various conditions.  Transcription factors integrate a wide range of stress 

signals (e.g. mechanical load, neurohormones and cytokines) and therefore represent a 

point of convergence in the pathway from cardiac stress to cardiac remodelling and failure 

(Frey & Olson, 2003).  Further details on the transcription factors which have been 

implicated in the regulation of myocardial gene expression during the pathogenesis of 

cardiac disease are detailed below: 

The GATA transcription factor family bind to the specific consensus DNA sequence 

(A/T)GATA(A/G) via a highly conserved domain containing double zinc fingers (Patient 

& McGhee, 2002).  There are three members of the GATA family which are known to be 
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expressed in the heart: GATA4, GATA5 and GATA6.  GATA4 and GATA6 are expressed 

in the nuclei of cardiomyocytes (Koutsourakis et al., 1999;Perrino & Rockman, 2006) 

while GATA5 is restricted to endothelial cells (Morrisey et al., 1997).  Of the three, 

GATA4 plays the more prominent role as it directly regulates the expression of a range of 

cardiac-specific genes including: α-myosin heavy chain (α-MHC), myosin light chain 1/3 

(MLC1/3), atrial natriuretic peptide (ANP), brain natriuertic peptide (BNP), cardiac 

troponin C, cardiac troponin I, cardiac sodium-calcium exchanger (NCX1) and cardiac-

restricted ankyrin repeat protein (CARP) (Liang & Molkentin, 2002;Molkentin, 2000).  

GATA4 is also critically involved in inducing gene expression in the heart in response to 

various hypertrophic stimulations (Herzig et al., 1997).  For example GATA4 is essential 

for the up-regulation of β-MHC and the AngII type 1α receptor in response to transverse 

aortic constriction (TAC) (Hasegawa et al., 1997) and GATA4 DNA-binding activity is 

significantly enhanced in response to pressure-overload by intravenous infusion of 

arginine(8)-vasopressin (AVP) in conscious rats (Hautala et al., 2001).  GATA1 has been 

reported to be up-regulated 2-3 fold in the remote LV 24-48 h post-MI in a rat model 

(LaFramboise et al., 2005). 

MEF2 transcription factors bind to specific A/T rich consensus DNA sequences to regulate 

a number of cardiac genes including α-MHC, SERCA, cardiac troponin T, cardiac 

troponin C, cardiac troponin I and desmin (Bhavsar et al., 2000;Black & Olson, 1998).  

MEF2 is expressed in cardiomyocyte nuclei (Wang et al., 2011) and is also critically 

involved in the regulation of genes during cardiac hypertrophy (Zhu et al., 1991).  The 

regulatory DNA-binding of MEF2 increases in the cardiomyocytes of rat hearts exposed to 

pressure or volume overload (Molkentin & Markham, 1993).  MEF2 also functions as an 

important effector of intracellular Ca2+ signalling pathways as its activity is stimulated by 

Ca2+/calmodulin-dependent protein kinase (CaM kinase) (Passier et al., 2000). 

Csx/Nkx2-5 are homeobox transcription factors with a helix-turn-helix DNA-binding 

motif which binds to a specific consensus DNA sequence T(C/T)AAGTG (Chen & 

Schwartz, 1996).  Homeobox refers to a sequence of DNA ~180bp long which encodes a 

60 amino acid DNA-binding protein domain (homeodomain) for transcriptional regulation.  

Csx/Nkx2-5 are expressed in cardiomyocyte nuclei (Zhu et al., 2000) and directly regulate 

a number of cardiac-specific genes such as ANP (Shiojima et al., 1999), cardiac α-actin 

(Chen & Schwartz, 1996), connexin40 (Bruneau et al., 2001) and NCX1 (Muller et al., 

2002).  Csx/Nkx2-3 has been shown to be essential during embryogenesis as the 

Csx/Nkx2-3-null phenotype results in embryonic lethality due to arrested looping 
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morphogenesis of the heart tube (Lyons et al., 1995).  Csx/Nkx2-3 is also expressed in the 

adult mammalian heart (Kasahara et al., 1998) but its roles post-natal are less understood.  

It has been shown that Csx/Nkx2-3 expression is up-regulated in hypertrophic hearts 

(Saadane et al., 1999) and protects against cytotoxic damage in the heart (Toko et al., 

2002). 

HAND transcription factors (eHAND and dHAND) bind DNA via basic helix-loop-helix 

motifs to regulate genes specific to cardiac development (Srivastava, 1999).  eHAND and 

dHAND are expressed in human hearts but the eHAND isoform is significantly down-

regulated in hearts from patients with cardiomyopathies (Natarajan et al., 2001).  eHAND 

has been shown to be expressed in the nucleus of cardiomyocytes (Togi et al., 2004) and 

dHAND has been shown to be expressed in the endocardium and myocardium by RT-PCR 

(although cell types were not specified) (Yamagishi et al., 2000).  In a mouse model of 

hypertrophy, eHAND expression is down-regulated in the LV only and dHAND 

expression is down-regulated in the RV only (Thattaliyath et al., 2002).  Knowledge of the 

direct downstream genes regulated by HAND is at present limited. 

Forkhead box (FOX) transcription factors are present in other tissue types as well as the 

heart such as skeletal muscle, lung, liver, thymus and nervous system (Hoekman et al., 

2006;Maiese et al., 2008) and have recently been implicated as having a major role during 

cardiac disease.  FOX transcription factors are up-regulated in early (1-wk) post-MI rat 

hearts by ~5.5 fold (FoxO1) and in advanced human HF by 4-8 fold (Hannenhalli et al., 

2006;Philip-Couderc et al., 2008).  Abundant expression of FOXP1 protein has been 

localised to nuclei of failing human cardiomyocytes by IHC (Hannenhalli et al., 2006).  

FOX transcription factors activate the expression of genes encoding ATP-dependent 

potassium (KATP) channels (e.g. KIR6.1) in the peri-infarct region in a rat model of MI 

(Philip-Couderc et al., 2008) and promote autophagy in cardiomyocytes by activating 

autophagy pathway genes Gabarapl1 and Atg12 (Sengupta et al., 2009).  Therefore, even 

small changes in the expression of transcription factors in the heart can have important 

phenotypic and functional consequences.   

Other:  In another study by Hannenhalli et al. (2006), the investigators used a combination 

of microarrays and a computational approach to identify particular transcription factors 

which were responsible for the changes in gene expression between failing and non-failing 

hearts and their study revealed that the following transcription factor-binding sites were 

responsible for many of the altered gene expression patterns involved in HF: GATA, MEF-
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2, Nkx, NF-AT, polyA, TATA, FOX, Octamer, IRF, CDP, AIRE, C/EBP, AFP1 and Msx-

1 (Hannenhalli et al., 2006).  The regulation of cardiac gene expression is known to be a 

complex process mediated by interactions between transcription factors, coactivators, 

corepressors and epigenetic modifications (e.g. histone acetylation); however 

transcriptional genomics – assessing single transcription factors - (as opposed to a 

microarray-based identification of a large number of genes) may provide a more 

integrative analysis to identify therapeutic targets against transcription factors through 

targeting of a number of genes rather than just a single target gene. 

1.5 RUNX transcription factors 

The RUNX family are a group of transcription factors which represent a novel group of 

proteins in the context of myocardial injury.  This section will provide background 

information on the RUNX family followed by their recent interest in cardiac disease. 

1.5.1 Identification and structure 

1.5.1.1 Nomenclature 

The RUNX proteins are a family of transcription factors which regulate gene expression 

for normal metazoan development (Coffman, 2003).  RUNX proteins are encoded by the 

RUNX genes and are defined by the ‘runt box’ which is a highly conserved protein domain 

important for DNA binding and protein-protein interactions and represents a unique 

characteristic of all members of the RUNX family (Kagoshima et al., 1993).  The runt box 

derives its name from the first member of the family to be discovered, the Drosophila 

melanogaster gene Runt which is responsible for segmentation of the Drosophila fly 

embryo during development (Gergen & Butler, 1988).  Over the years alternative names 

have been assigned to RUNX proteins which have been derived from their roles in disease 

such as acute myeloid leukemia (AML), core-binding factor α (CBFα) and polyoma 

enhancer-binding protein-2α (PEBP2α).  In this thesis they will be referred throughout as 

the RUNX family.  Where the description refers to the protein (human, rat and mouse) this 

will be written in uppercase (RUNX) and for references to the gene this will be written in 

italics either with all letters uppercase, RUNX (human) or only the first letter in uppercase, 

Runx (rat or mouse) according to standard genetic nomenclature (Elsevier, 1998). 
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1.5.1.2 Chromosomal location of RUNX genes 

Runx genes are present in a diverse range of organisms (Rennert et al., 2003) and the 

number of RUNX genes can vary depending on phylogenetic background; for example 

mammals have three, Drosophila have four and lower invertebrates such as the eukaryotic 

nematode C. elegans and the sea urchin S. purpuratus have only a single Runx gene (Nam 

et al., 2002;Robertson et al., 2002).  Relevant to this thesis, the three mammalian RUNX 

genes, RUNX1, RUNX2 and RUNX3 are located on human chromosome 21, 6 and 1; 

mouse chromosome 16, 17 and 4; and rat chromosome 11, 9 and 5 respectively (GenBank, 

National Centre for Biotechnology Information; NCBI).   

1.5.1.3 Structure of RUNX genes 

A summary diagram of the structure of the RUNX genes is depicted in Figure 1.6.  Each 

RUNX gene (RUNX1, RUNX2 and RUNX3) encodes the respective named protein 

(RUNX1, RUNX2 and RUNX3).  The RUNX genes are very closely related and share 

extensive regulatory elements and functional coding regions known as exons (Levanon & 

Groner, 2004).  Firstly, each of the three genes is transcriptionally regulated from two 

promoters; P1 (distal) and P2 (proximal) (Bangsow et al., 2001;Levanon et al., 2001b;Park 

et al., 2001).  Both promoters direct transcription of adjacent 5’-untranslated regions 

(5’UTR) which are regions transcribed but not translated.  The P1-5’UTR (452 bp long) 

contains four exons and two RUNX-binding sites (which allow the RUNX protein to bind 

to the RUNX gene) within a highly conserved 18 bp sequence found at the beginning of the 

P1 5’-CAACCACAGAACCACAAG-3’ (the underlined bases represent the two RUNX-

binding sites) (Drissi et al., 2000;Bangsow et al., 2001).  The fourth exon encodes the 

initiator ATG and the highly conserved P1 N-terminal peptide (MAS) (Pozner et al., 

2000).  The P2-5’UTR contains a single exon which directs translation of the P2 N-

terminal peptide (MRIPV), contains an internal ribosome entry site (IRES) and terminates 

with an in-exon splice site (Pozner et al., 2000).  The P2-5’UTR is the larger of the two 

5’UTRs (1631 bp) and is distinctly nested within a very large CpG island (high frequency 

of linear cytosine and guanidine sequences) not found in the P1-5’UTR (Levanon et al., 

2001a).  The RUNX genes also contain exons which encode different functional domains of 

the RUNX proteins including the Runt domain and the transactivation domain (Levanon & 

Groner, 2004).  In addition they also share similarities outwith the RUNX locus itself with 

highly conserved neighbouring genes such as the CLIC6 and DSCR1 genes (Levanon & 

Groner, 2004).  The RUNX3 gene is the smallest of the three with the fewest exons 

(Bangsow et al., 2001).  Major features of the RUNX genes are summarised in Table 1.1.   
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Table 1.1  Functional roles of the regulatory regions of RUNX genes. 

Gene Region Function 

ATG initiator First codon (start codon) of mRNA transcript which is translated into 

the amino acid methionine.  

Exons 

2-4 

6 

Functional coding region. 

Encodes Runt domain. 

Encodes transactivation domain. 

UTR Regions of DNA which can influence translation but are themselves 

not translated. 
MAS N-terminal sequence encoded by the P1-5’UTR. 

MRIPV N-terminal sequence encoded by the P2-5’UTR. 

 

 

Figure 1.6  RUNX genes structure and elements involved in expression regulation. 

(A)  Structure of the three mammalian RUNX  genes; RUNX1, RUNX2 and RUNX3.  All RUNX genes have similar 

genomic organisation with two promoters (P1 and P2) and a very large first intron.  Common exons are shown in the 

same colour.  5’ untranslated regions (UTRs) are shown in yellow and orange, and 3’ UTRs shown in blue.  The highly 

conserved Runt domain is encoded by three exons (green boxes).  The exons comprising the transactivation domain are 

shown in black and grey.  The conserved neighbouring genes are also shown (CLIC6 & DSCR1).  RUNX3 is the smallest 

of the three RUNX genes with the fewest exons.  (B)  Schematic showing the common structure of the P1-5’UTR (yellow 

in diagram A) which contains four exons; the two RUNX binding sites are indicated by RR (for binding by the RUNX 

protein to the RUNX gene); and the fourth exon encodes the initiator ATG and the highly conserved P1 N-terminal 

peptide (MAS).  (C) Schematic showing the P2-5’UTR (orange in diagram A) which has a single exon which terminates 

with an in-exon splice site (AG) which is preceded by a branch point signal CTRAY.  The P2-5’UTR contains an internal 

ribosome entry site (IRES) and is nested within a very large CpG island depicted by the grey cloud.  Figure taken from 

(Levanon & Groner, 2004). 
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1.5.1.4 Structure of RUNX proteins 

Runt homology domain 

A schematic representation of the domain structures of each mammalian RUNX protein is 

shown in Figure 1.7.  The most important and defining feature of the RUNX proteins is a 

highly conserved region known as the Runt homology domain (RHD) (Ito, 1999).  The 

RHD is located in the N-terminus of the protein and is necessary for DNA binding and 

protein-protein interactions (Kagoshima et al., 1993;Crute et al., 1996).  The RHD is an s-

type immunoglobulin (Ig) fold domain similar to the DNA-binding domains found in other 

transcription factors such as NFκB, p53, NFAT and STAT, but differs in that the RHD 

loops at both ends of the Ig-fold rather than just the end which contacts the DNA.  This is 

believed to give the RHD the ability to substantially bend the DNA more (Berardi et al., 

1999).   

Other functional domains 

Another highly conserved region among all three proteins is the nuclear localisation signal 

(NLS) domain which is immediately adjacent to the RHD and is responsible for the sub-

cellular nuclear localisation of the RUNX proteins (Choi et al., 2001).  Together the RHD 

and the NLS comprise the very highly conserved 128 amino acid sequence of the RUNX 

proteins (Choi et al., 2001).  Other functional domains common to all three RUNX 

proteins are the transactivation domain which is required for transcriptional activity, the 

inhibitory domain (ID) which is necessary for repressing transcriptional activity (Coffman, 

2003), the nuclear matrix targeting signal (NMTS) which is important for attachment to the 

nuclear matrix once directed into the nucleus by the NLS (Tang et al., 1999) and the 

VWRPY motif which mediates transcriptional repression by recruiting the transcription co-

repressor, Groucho and its mammalian homologue transducin-like enhancer of split (TLE) 

and directing them to the target promoter regions (Levanon et al., 1998).  The NLS, 

transactivation domain, ID, NMTS and VWRPY are all located in the C-terminus of the 

protein (Coffman, 2003).  RUNX2 has an additional two domains within the N-terminus 

which are not present in RUNX1 or RUNX3 which is the polyglutamine and polyalanine 

(23Q/17A) domains (Thirunavukkarasu et al., 1998).   
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Amino acid composition 

Beyond their common functional domains, the RUNX proteins are similar in the 

composition of amino acids but the sequences can vary between each.  In all three RUNX 

proteins, the C-terminus is rich in proline, serine and threonine residues (PST) (Coffman, 

2003).  Given that the two promoters (P1 and P2) generate different 5’UTRs and therefore 

different N-terminal regions of the protein this can lead to multiple gene products with 

variable N-terminal peptide sequences.  The different UTRs can lead to differences in 

peptide amino acid sequences at the N-terminal due to the difference in translational-

regulatory mechanisms of each: for example, for RUNX1 the P1-5’UTR directs cap-

dependent translational control while the P2-5’UTR regulates translation by the IRES 

mechanism.  All eukaryotic mRNA have a cap structure (a 5’ terminal nuclear 

modification) which affects RNA splicing, stabilisation, transport and translation which 

acts as a ‘molecular tag’ to direct the 40S ribosomal subunit in place.  IRES is a 

mechanism which allows a ribosome to bind in the middle of the mRNA strand rather than 

at the cap-end (Levanon & Groner, 2004).  The RUNX1 sequence derived from P1 begins 

with a MASDS amino acid sequence at the N-terminal, and from P2 begins with a MRIPV 

amino acid sequence.  Transcription from the two alternative promoters can give rise to 

splice variants of the RUNX protein which differ in their N-termini sequences and as a 

result, have alterations in the functioning of the protein.  The use of multiple promoters in 

gene expression confers versatility to the final protein where it may be required to be 

expressed in different tissue types or at different developmental stages for which a single 

promoter may not be sufficient (Ayoubi & Van De Ven, 1996).  In particular this can have 

significant effects for RUNX1 in that it can cause the protein to have reverse roles in 

selected cell types.  For example, the short isoform of RUNX1 (RUNX1/p26 or RUNX1A) 

lacks much of the C-terminus including the transactivation domain which can therefore 

affect transcriptional activity, but also lacks some of the domains which inhibit DNA 

binding via the Runt domain (Kim et al., 1999;Gu et al., 2000) and therefore has the ability 

to bind DNA more effectively in some cases.  RUNX1A has been shown to block 

differentiation and promote proliferation in a murine myeloid cell line whereas the normal 

RUNX1/p46 protein (p46 refers to the isoform) does the opposite (blocks proliferation and 

promotes differentiation).  Therefore it is possible that alternatively spliced RUNX proteins 

can play opposing roles. 
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Figure 1.7  Schematic representation of the functional domains of the RUNX proteins. 

Schematic representation of the structure of RUNX1, RUNX2 and RUNX3 proteins.  The numbers refer to amino acids.   

The N-terminus (N) and C-terminus (C) are shown.  The functional domains conserved across each RUNX protein are 

shown in colour; the Runt Homology Domain (RHD) in red which mediates DNA-binding and protein-protein 

interactions and the Nuclear Localisation Signal (NLS) domain shown in green which is responsible for nuclear 

localisation.  The C-terminus contains motifs common to all RUNX proteins including the inhibitory domain (ID) which 

represses transcriptional activity, the nuclear matrix targeting signal (NMTS) important for nuclear targeting and the 

VWRPY motif which mediates transcriptional repression through its association with a transcription co-repressor, 

Groucho/transducin-like enhancer of split (TLE).  The letters Q and A on RUNX2 designate homopolymeric stretches of 

glutamine and alanine residues present at the N-terminus which are unique to RUNX2 as was referred to in the text 

above. 

Multimeric complex formation 

All RUNX proteins bind via the RHD to the same specific DNA consensus sequence 

(TGTGGT) in the promoter region of a target gene through recruitment of common 

transcriptional modulators (Bae & Ito, 1999).  Additionally they all bind to DNA as part of 

a multimeric complex containing a number of different proteins (Kamachi et al., 1990).  

These include a partner protein known as the core binding factor beta subunit (CBFβ) as 

well as other transcription factors and co-activators/co-repressors (Durst & Hiebert, 2004).  

CBFβ binds to RUNX via the RHD and helps stabilize the complex and increase the 

affinity for DNA-binding but does not itself bind to DNA (Ogawa et al., 1993).  The 

mechanism by which CBFβ stabilizes the complex is understood to be that it maintains the 

RHD in an open conformation serving as a kind of ‘molecular clamp’ (Habtemariam et al., 

2005).  Once bound to CBFβ, RUNX recruits other DNA binding transcription factors to 

build a multi-protein complex for regulated transcription.  For example, RUNX binding 

sites are often located adjacent to DNA-binding sites for other transcription factors such as 

members of the Ets family, Myb and C/EBP (Lund & van, 2002;Durst & Hiebert, 2004).  
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RUNX can also interact with a number of co-activators (HAT, p300, CBP) or co-

repressors (mSin3A, TLE and HDACs) which can activate or repress transcription 

respectively (Pelletier et al., 2002) as shown in Figure 1.8. 

 

Figure 1.8  Schematic representation of RUNX transcriptional regulatory complexes for activation and repression 

of gene expression. 

(A)  Schematic representation of a RUNX activation complex.  The Runt Homology Domain (RHD) of the RUNX 

protein (red) binds DNA and facilitates binding of CBFβ (blue) and various DNA-binding factors such as Ets, Myb and 

C/EBP (green) which recruit co-activating factors such as p300 and CBP (yellow) - together results in activation of the 

target gene of interest.  (B)  Schematic representation of a RUNX repression complex.  The RHD of the RUNX protein 

(red) binds DNA and facilitates binding of CBFβ (blue) and various co-repressors such as mSin3A, TLE and HDACs 

which together results in repression of the target gene of interest. 

1.5.2 Function of RUNX proteins 

All RUNX proteins function as transcription factors which regulate specific gene 

expression in developmental pathways.  It is well-established that RUNX transcription 

factors have opposing functioning as both activators and repressors of transcriptional 

regulation depending on the context of the regulatory region (Coffman, 2003;Blyth et al., 

2005).  There are sequences in the C-terminus that control this through recruitment of 

associative activators or repressor proteins to the complex.  For example, RUNX can 

activate transcription through interactions with histone acetyl-transferases (e.g. MOZ and 

MORF) (Kitabayashi et al., 2001;Pelletier et al., 2002) or they can also inhibit 
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transcription by interacting with the dominant co-repressor Groucho/TLE (Aronson et al., 

1997) or the mSin3A co-repressor (Lutterbach et al., 2000).  However, despite the highly 

conserved structural similarities between the RUNX proteins and their shared properties in 

binding to the same DNA consensus sequence through pairing with CBFβ, each of the 

RUNX proteins have distinct functional roles in different lineage-specific development.  

This is reflected in the different phenotypes which have been elucidated from the 

respective genetic knockouts. 

1.5.2.1 RUNX1 functions as a regulator of haematopo iesis 

Haematopoiesis is the formation and development of blood cells.  In the embryo two 

waves of haematopoiesis occur; primitive and definitive haematopoiesis, which give rise to 

the embryonic precursor cells and the adult HSCs that form specific blood cells capable of 

self-renewal, respectively (Lensch & Daley, 2004).  RUNX1 is absolutely critical for 

definitive haematopoiesis by controlling haematopoietic stem cell development and 

differentiation (initiation phase only) (Okuda et al., 1996;Okuda et al., 2001;Hoogenkamp 

et al., 2009).  This has been clearly demonstrated by Runx1-/- mice which die at an early 

embryonic stage (E11.5-E13.5) from an early block in blood development (Okuda et al., 

1996). These mice exhibit normal primitive haematopoiesis but a complete lack of 

definitive haematopoiesis (Okuda et al., 1996;North et al., 1999). 

1.5.2.2 RUNX2 is required for bone development 

RUNX2 is involved in the regulation of osteogenesis which is the development of bones; 

this has been verified in Runx2-/- mice which die shortly after birth from a complete lack of 

bone formation although they do form the cartilage of an ossified skeleton (Otto et al., 

1997;Komori et al., 1997).   

1.5.2.3 RUNX3 is involved in neurogenesis 

RUNX3 regulates the development and survival of proprioceptive neurons in dorsal root 

ganglia (Inoue et al., 2002), this has been confirmed by Runx3-/- mice which demonstrate 

severe limb ataxia due to defective development of proprioceptive neurons (Levanon et al., 

2002).  However there are discrepancies between the Runx3-/- phenotype as others have 

shown a hyperproliferation of epithelial cells in the gastric mucosa which led to death of 

the Runx3-deficient animals shortly after birth from starvation (Li et al., 2002); an 

observation not seen by Levanon et al. (2002).  RUNX3 is also known to be a putative 
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gastric tumour repressor as it controls cell proliferation and apoptosis of gastric epithelium 

(Li et al., 2002). 

1.5.3 Tissue-specific expression of RUNX 

In addition to their distinct roles, each RUNX protein also shows a very specific 

spatio/temporal expression pattern in different tissue types.  It is believed that the RUNX1 

protein can promote its own expression by binding to the Runx1 gene promoters or 

enhancers and down-regulate its own expression by recruiting the repressor Smad6 

(Pimanda et al., 2007).  The RUNX protein binds to distinct RUNX-binding sites located 

within the P1 promoter which is indicated by the yellow box in Figure 1.6A and by RR in 

Figure 1.6B.  It has been proposed that the highly conserved CpG islands present at both 

ends of RUNX genes may be involved in the tissue-specific expression (Ehrlich, 2003) 

although the precise role by which this occurs remains unclear.  Tissue sites for RUNX 

expression are detailed below and summarised in Table 1.2.    

RUNX1 is first detected in mouse embryos within definitive haematopoietic stem cells 

(HSC) and in endothelial cells at HSC emergence sites, for example the yolk sac, umbilical 

arteries, aorta-gonad-mesonephros (AGM) and liver (North et al., 1999;Cai et al., 2000).  

RUNX1 is also expressed in the bronchi, mucosa of the oesophagus and stomach, epithelia 

of palatal ridges, in ectodermal invaginations (e.g. salivary and mammary glands) and 

epidermal appendages (e.g. whiskers and teeth; epithelia only) of the embryo.  RUNX1 is 

also expressed in the mesenchyme of the heart (see later) and central nervous system 

(CNS) of the embryo. 

RUNX2 is expressed predominantly in chrondrocytes (prehypertrophic and hypertrophic) 

and osteoblasts which is not surprising given its role in the developing skeleton.  RUNX2 

is also expressed in fibroblasts of periodontal ligament fibroblast cell lines (Saito et al., 

2002) and in primary murine fibroblasts (Kilbey et al., 2007).  RUNX2 has also been 

shown to be expressed in the epidermal appendages (whiskers and teeth) but confined to 

the papilla regions (Levanon & Groner, 2004). 
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Table 1.2  Summary of RUNX expression sites. 

Tissue/Cell Type RUNX1 RUNX2 RUNX3 References 

Haematopoietic System         
(Embryonic)         
Aorta-gonad-mesonephros +     North et al. 1999 
Liver (haematopoietic 
precursors) +   + 

Levanon et al. 2001 

Thymus + + + Woolf et al. 2003 
Spleen +   + Levanon et al. 2004 
(Adult)         
Thymus +  + + Woolf et al. 2003 
Myeloid, B and T lymphoid 
cells +     

Lorsbach et al. 2003 

          
Skeleton         
Immature and permanent 
cartilage +     
Prehypertrophic cartilage     + 
Hypertrophic cartilage   + + 
Osteoblasts + +   
Membranous bone + +   

Levanon et al. 2001 

          
Dorsal Root Ganglia         
(Embryonic)         
TrkA neurons +     
TrkC neurons     + 

Levanon et al. 2001 

(Adult)         
Mature dendritic cells 

    + 
Fainaru et al., 2004 

Epidermal appendages         
Epithelial +     
Mesenchymal   + + 

Levanon et al. 2001 

+ indicates positive expression at the respective sites. 

RUNX3 is also expressed in prehypertrophic and hypertrophic chrondrocytes (however in 

the latter, RUNX2 predominates).  RUNX3 is not detected in osteoblasts.  RUNX3 is also 

expressed in the salivary and mammary glands, and the whiskers and teeth (although 

confined to the mesenchyme) (Levanon et al., 2001). 

Collectively, it can be seen that there are overlap of the RUNX proteins in the tissue in 

which they are expressed but there are differences in the regional distribution within the 

shared tissues. 

1.5.4 Regulatory mechanisms of RUNX gene  and RUNX protein 
expression 

1.5.4.1 Transcriptional control 

RUNX genes can be regulated by SMAD5 signalling pathways; the up-regulation of Runx2 

mRNA for osteoblastic differentiation is preceded by an increase in Smad5 expression 
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(Lee et al., 2000).   A number of cytokines can also regulate RUNX expression; TGF-β is 

known to regulate RUNX2 and RUNX3 expression.  However depending on the tissue type 

or cell line, TGF-β can either induce or repress RUNX2 and RUNX3 expression.  Inhibition 

by TGF-β is believed to occur through inhibition of the RUNX P1 promoter (Alliston et al., 

2001).  The Notch signalling pathway has also been implicated as a regulatory mechanism 

of RUNX expression as the Notch-RUNX pathway has been shown to be critical for the 

developmental specification of HSCs (Burns et al., 2005).  The FGF pathway can also 

activate or repress RUNX expression depending on the cell type - for example FGF 

activates Runx2 in the mesenchymal pluripotent cell line C3H1OT1/2 but represses Runx2 

in the rat osteosarcoma cell line ROS17/2.8 (Zhou et al., 2000).  RUNX can also be 

regulated by signalling pathways via GATA, FOG and FOXP3 (Levanon & Groner, 2004). 

1.5.4.2 Translational control 

In addition to transcriptional control, RUNX expression can also be controlled through 

transcription-coupled translational control mechanisms (e.g. cap- and IRES-mediated 

translational control as described previously in Section 1.5.1.3) (Pozner et al., 2000).  The 

two 5’UTRs are the key players in the translational regulation of RUNX directing cap-

dependent (P1-5’UTR) and IRES-dependent (P2-5’UTR) as described previously.  The 

functional significance of cap and IRES-mediated translation is that IRES is believed to 

control translation when the cap system is impaired (e.g. during mitosis, differentiation or 

stress conditions).  The presence of both cap- and IRES-mediated control indicates the 

complexity of how RUNX genes are regulated. 

1.5.5 RUNX in human disease 

Due to their essential roles in cell proliferation and differentiation, it is not surprising that 

RUNX genes have been implicated in human disease.  RUNX genes are best known for 

their altered expression levels in human cancers (Look, 1997;Planaguma et al., 

2004;Sakakura et al., 2005).  The most notable is the link with RUNX1 and human 

leukaemia, caused by chromosomal translocations of RUNX1 – the most frequently 

observed (seen in 10-20% of acute myeloid leukaemia cases) is the t(8;21) translocation 

which results in fusion of the N-terminal half of RUNX1 (containing the entire Runt 

domain) with the C-terminus of the ETO (for eight-twenty one translocation) partner 

protein (Miyoshi et al., 1991).  RUNX1 is also over-expressed in endometrioid carcinoma 

tumours (Planaguma et al., 2004) and down-regulated in gastric cancer tumours (Sakakura 
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et al., 2005).  Mutations of RUNX2 can cause cleidocranial dysplasia (CCD), a congenital 

bone malformation disease caused by haploinsufficiency (Otto et al., 1997) consistent with 

its roles in osteogenesis.  Deletion or inactivation of the RUNX3 gene has also been shown 

to be involved in gastric cancers (Li et al., 2002).  The role of RUNX in cancer 

development however is very complex in that they have dualistic roles as both dominant 

oncogenes as well as tumour repressors in a highly context-dependent manner (Blyth et al., 

2005).  It is clear that precise regulation of RUNX is critical for normal function.  The 

same may be true in the heart. 

1.5.6 RUNX in damaged muscle 

Recently it has been increasingly documented that RUNX genes may also be linked to 

conditions of metabolic stress following tissue injury (Wang et al., 2005;Ghosh et al., 

2010;Custodio et al., 2012).  This has been found to be the case in injured skeletal muscle; 

in the healthy muscle Runx1 levels were measured using a labelled RNA probe and were 

found to be barely detectable (0.0001% mRNA) in the nuclei of skeletal myocytes; 

however, following denervation of the muscle Runx1 mRNA expression was increased 50-

100 fold (Zhu et al., 1995;Wang et al., 2005).  Interestingly, under these conditions the 

muscle retained much of its structural features intact.  However when these experiments 

were repeated in animals with genetic ablation of Runx1 in the muscle, this led to severe 

distortion of the muscle’s structure during denervation including (i) misaligned and 

irregularly spaced Z-discs, (ii) a lack of thick filaments, (iii) a severely dilated SR and (iv) 

presence of autophagic vacuoles (Wang et al., 2005).  Runx1 is therefore necessary for the 

prevention of muscle atrophy in denervated skeletal muscle.  Skeletal muscle shares many 

structural similarities with cardiac muscle in that they are both part of the striated muscle 

group with sarcomeres and the primary structural proteins in each are actin and myosin, 

therefore the role of Runx1 in protecting the structural malformations of the muscle may be 

applicable to cardiac muscle.  Furthermore, the disrupted electrical activity that triggers 

Runx1 expression in denervated skeletal muscle could also be possible under conditions of 

altered electrical activity in the heart during MI.  In the heart under normal conditions, 

electrical signals propagate freely between cardiomyoctes via gap junctions; however 

following an MI, disruptions in electrical activity in the remodelled peri-infarct arise due to 

marked changes in gap junction organisation and connexin43 distribution in addition to the 

physical loss of communication between viable and dying cardiomyocytes (Peters, 1995). 
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1.5.7 RUNX in the heart 

Despite knowledge of its expression and protective role in other striated muscle tissue, 

very little is known about the expression and functional role of RUNX1 and the other 

RUNX proteins in the heart.   

1.5.7.1 RUNX1 

Normal tissue 

The presence of RUNX1 in the heart under healthy conditions is not clear; one study 

revealed that RUNX1 was present in all adult human tissues except the heart and brain 

(Miyoshi et al., 1995).  However RUNX1 has been shown to be present in the mammalian 

heart during mouse embryogenesis (Levanon et al., 2001a).  Telfer and colleagues (2001) 

have also confirmed expression of RUNX1 in the murine whole heart homogenates, 

although it was not clear from their study whether this was embryonic or adult tissue 

(Telfer & Rothenberg, 2001).  RUNX1 has been shown to be present within the nucleus of 

mesenchymal cells in the valvular regions of the heart at E16.5 during mouse 

embryogenesis (Levanon et al., 2003).   

Diseased tissue 

Gattenohner et al. (2003) found that RUNX1 was detectable in healthy human hearts by 

Western Blot but shows elevated expression in the heart after ischaemic cardiomyopathy, 

although it was also not clear from which region of the heart the samples were taken 

(Gattenlohner et al., 2003).  In the same study, it was found that over-expression of 

RUNX1 in the human heart during ischaemic cardiomyopathy occured in parallel with 

increased expression of a Neural Cellular Adhesion Molecule (NCAM) (Gattenlohner et 

al., 2003).  NCAM is a glycoprotein present on select cell type surfaces that mediates 

adhesive interactions between cells (Edelman, 1986).  NCAM levels are low in the healthy 

adult human heart relative to neonatal tissue with expression confined to the intercalated 

discs as detected by IHC (Gordon et al., 1990b;Gattenlohner et al., 2003).  In addition to 

cardiomycocytes NCAM is also expressed in endothelial cells (Gerety & Watanabe, 1997), 

mesothelial cells (Lackie et al., 1991) and neuronal cells that innervate the heart 

(Watanabe et al., 1992).  NCAM has been reported to be up-regulated after human MI, 

preferentially in the infarct and peri-infarct regions (Gattenlohner et al., 2003).  This has 

also been found to be the case in animal models of MI, both in rat (Gattenlohner et al., 
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2003) and mouse (Nagao et al., 2010) which both show up-regulation of NCAM post-MI 

in areas within or around the infarcted myocardium.  RUNX1 has been identified to have a 

binding site within the NCAM promoter (Gattenlohner et al., 2003) and therefore promotes 

NCAM expression.  Furthermore NCAM is shown to be specific for ischaemic damage, 

compared to other forms of cardiac disease (e.g. myocarditis and sarcoidosis) and its 

expression is believed to be as a result of a loss of cell-cell communication (Gattenloner et 

al., 2004).  Ischaemia-specific damage as a trigger for NCAM expression is further 

supported by the evidence that NCAM is also up-regulated in hypoxia-induced rat model 

of hypertrophy relative to control animals (Gordon et al., 1990) and increased in human 

transplanted hearts where there is extrinsic denervation relative to non-transplanted hearts 

(both shown by immunofluorescence and western blots but not quantified) (Gordon et al., 

1990b).  Furthermore, another cause of NCAM up-regulation has been reported to be 

metabolic stress (reduced intracellular ATP) via the p38 mitogen-activated protein kinase 

(MAPK) dependent pathway which has been demonstrated in isolated rat neonatal 

cardiomyocytes (Nagao et al., 2010).  It may be that the loss of communication between 

cells (i.e. loss of the ability for molecules/ions to cross one from cell to the next) or stress 

stimuli across the remodelled peri-infarct zone may also be an important stimulus in the 

up-regulation of RUNX1.   

Knockout studies in skeletal muscle identified 29 genes which were selectively regulated 

by RUNX1 and are responsible for the expression of various structural and signalling 

proteins, many of which are also present in cardiac muscle e.g. phospholamban, 

osteopontin, sodium channel type V and thrombospondin (Wang et al., 2005).  These 

proteins are critical proteins in the heart which highlights the potential importance of 

RUNX1 in the heart during disease.  RUNX proteins may therefore be prime candidates in 

understanding the mechanisms underlying the pathophysiology of adverse remodelling as 

their regulation may be important for post-infarction healing and modified SR-mediated 

Ca2+ handling.   

1.5.7.2 RUNX2 

RUNX2 expression in the heart is relatively unknown; a recent study has shown that it is 

undetectable in the rat heart – negative with IHC but is up-regulated in the nuclei of 

cardiomyocytes under conditions of uremia-induced myocardial hypertrophy and fibrosis 

during high phosphorous conditions or parathyroid hormone infusion (Custodio et al., 

2012).  Inhibition of the Notch receptor protein involved in cell signalling has been found 
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to cause a ~2-fold increase in the expression of RUNX2 in aortic valve interstitial cells and 

under these circumstances RUNX2 can contribute to aortic valve calcification in humans 

(Garg et al., 2005) and mice (Nigam & Srivastava, 2009).  Notch signalling has been 

reported to inhibit RUNX2 transcriptional activity through stimulated expression of the 

Hey1 gene (a direct Notch target gene) which represses RUNX2 during osteogenesis 

(Zamurovic et al., 2004).  Notch signalling has been shown to be increased in a mouse MI 

model (Gude et al., 2008) which may have implications for reduced expression or activity 

for RUNX2.  It also been reported that RUNX2 is crucial for vascular remodelling 

observed in atherosclerosis and RUNX2 expression is increased in calcifying human 

atherosclerotic plaques and artery lesions obtained from human patients with ischaemic 

heart disease (Tyson et al., 2003) therefore RUNX2 may play an important role in 

coronary artery disease (including MI for which the main cause is atherosclerotic plaque 

disruption in coronary vessels) (Hansson, 2005) through activation of chrondrocytic and 

osteoblastic proteins that contribute to the calcification process (Tyson et al., 2003).  

Recently, a preliminary report revealed that increased RUNX2 in the heart may promote 

cardiac fibrosis and further deteriorate function (Nakahara et al., 2008).  Another study 

revealed similar findings in which transgenic mice with cardiomyocyte-specific double 

genetic ablation of dystrophin (a protein which links the cytoskeleton to the ECM in 

muscle) and β1-integrin (a cellular adhesion molecule) showed increased myocardial 

dysfunction, cardiac fibrosis and calcification which was concurrent with a ≈10-fold 

increase in Runx2 mRNA (measured by qRT-PCR) in whole heart homogenates (Elsherif 

et al., 2008).  A review by Sanoudou et al. (2005) into the genes altered in human end-

stage HF as analysed by microarray revealed that RUNX2 was significantly up-regulated in 

human cardiomyopathies such as dilated cardiomyopathy (DCM) and hypertrophic 

cardiomyopathy (HCM) although exact quantification was not specified (Sanoudou et al., 

2005). 

1.5.7.3 RUNX3 

RUNX3 has also been shown to be expressed in the mouse embryonic heart (Levanon et 

al., 2001a).  RUNX3 has also been located in the endocardial cushion in mouse embryonic 

hearts which is a specialised region that gives rise to the septum and valves at E10.5 during 

heart development (Fu et al., 2011).  Similar to RUNX2, RUNX3 is a direct target of Notch 

signalling in endocardial cells however in the case of RUNX3, Notch activation 

significantly increases RUNX3 mRNA rather than inhibit as it does for RUNX2 (Fu et al., 
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2011).  As above, Notch signalling is activated in mice post-MI and this may have 

implications for potential increased expression of RUNX3 post-MI.     

Despite the information detailed above, RUNX expression in the heart remains somewhat 

unclear and information is lacking in the following areas:  (i) RUNX has been shown to be 

expressed in embryonic murine tissue however there are discrepancies in the expression of 

RUNX in the adult mammalian heart, with limited knowledge on its expression in 

cardiomyocytes, (ii) the altered expression patterns of RUNX have not been assessed in 

animal models of MI or hypertension; (iii) at present, there is no quantitative data for the 

altered expression of RUNX in the heart during disease and (iv) no evidence exists on the 

expression of Runx genes in different regions of the heart, or (v) over different time-points 

post-MI or any links with the cardiac expression in relation to the functioning of the heart.  

These areas were the main focus of this thesis. 

1.6 Animal models of cardiac disease 

1.6.1 Need for animal models of disease 

As mentioned above although RUNX expression has been reported to be altered in human 

cardiac disease, very little is known about the quantifiable levels of altered expression in 

the diseased heart nor the potential functional significance of this altered expression.  

Unfortunately performing such measurements on human heart samples to investigate this 

further is associated with a number of problems.  Firstly, it can be very difficult to acquire 

a sufficient number of human cardiac samples for medical research as tissue is often in 

short supply or needed for other uses such as transplantation.  Secondly, human heart 

samples may be highly variable in terms of disease stage or from patients being on 

different treatments and tend to come from an end-stage (therefore usually severe stage) 

only rather than during the transition phase from compensated remodelling to HF.  Thirdly, 

it is difficult to obtain healthy hearts for control tissue.  Despite these limitations human 

heart tissue is extremely valuable to medical research.  However it is for the reasons named 

above that animal models of cardiac disease have become invaluable as an alternative for 

the study of cardiac disease progression (Patten & Hall-Porter, 2009).  The most common 

pathophysiological changes in human cardiovascular disease including MI, hypertension 

and cardiac hypertrophy have been successfully reproduced in animal models. 
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1.6.2 Criteria for use of animal models 

An ideal model for any human cardiovascular disease must satisfy the following criteria: 

(i) mimic the human disease as closely as possible, (ii) produce symptoms and 

characteristics which are predictable and controllable, (iii) allow studies in a stable, chronic 

condition (iv) conform to appropriate ethical and animal welfare considerations and 

appropriate legislation and (v) allow measurement of relevant cardiac, haemodynamic and 

biochemical parameters (Doggrell & Brown, 1998;Houser et al., 2012).  Animal models 

provide a means of studying a specific disease condition in a controlled way.  These 

experimental models can provide vital information on the structural and functional 

alterations which occur during different cardiac diseases as well as cellular and molecular 

alterations associated with the disease (Hasenfuss, 1998).  The use of mice as animal 

models is particularly useful due to the ability to manipulate their genome and generate 

transgenic strains (Fox, 2007).  Through over-expression or targeted disruption of a 

particular gene, mouse models provide a unique approach to studying specific genes which 

is of great benefit in understanding the pathophysiology of HF (Rockman et al., 1994;Lin 

et al., 1995).   

1.6.3 Use of animal models to investigate RUNX expr ession in 
the heart during disease 

The investigation of altered RUNX gene expression in cardiac disease is possible through 

use of clinically-relevant animal models of cardiac disease.  For this thesis, the two animal 

models of interest include: (a) a mouse model of MI and (b) a rat model of hypertension 

and congenic rat model of altered LV mass (LVH).  A very brief description of each 

model is described below but more details on each model will be provided in the respective 

later chapters (Chapter 3 and Chapter 5). 

1.6.4 Mouse model of MI 

Human MI is caused by chronic narrowing or acute occlusion of coronary arteries by 

atherosclerotic plaques and thrombosis respectively (Libby, 2001).  The most common 

approach for inducing MI experimentally in an animal model is by surgical coronary artery 

ligation (CAL).  This involves placing the animal under anaesthesia with mechanical 

ventilation and the heart is accessed from between two ribs in a thoracotomy procedure; a 

fine thread or suture is then placed around the left coronary artery and tied to induce 

permanent MI.  Animals are permitted to recover and researchers can then study 
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myocardial changes such as remodelling and dysfunction over different time periods and 

under different conditions according to the nature of the study.  Animal models of MI have 

been widely used in different species such as dog (Kass et al., 1988), pig (Eising, 1994), 

rabbit (Masaki et al., 1993) and rat (Flaim et al., 1981).  CAL-induced MI in a mouse 

model was first described in 1978 by Zolotareva and Kogan (Zolotareva & Kogan, 1978).  

With the advent of genetic modifications possible in the mouse, this species has gained 

popularity for the use of models of cardiac disease such as MI (Patten, 1998;Michael et al., 

1999;Gao et al., 2010).       

1.6.5 Rat model of hypertension and congenic models  of altered 
LV mass 

The spontaneously hypertensive rat (SHR) is an animal model of human essential 

hypertension and represents the most commonly used model of cardiovascular disease 

(Doggrell & Brown, 1998).  The strain originates from a colony of male Wistar rats in 

Kyoto, Japan in the 1960s which were bred by Okamoto et al. (1963) for high blood 

pressure (Okamoto & Aoki, 1963).  The SHR is normotensive for the first 6-8 weeks of its 

life with systolic blood pressures (SBP) of 100-120 mmHg and then hypertension develops 

over the next 12-14 weeks with SBP >150 mmHg reaching 180-200 mmHg in its adult life.  

Like the human condition, the SHR develops characteristic symptoms of the disease such 

as cardiac hypertrophy and renal disease (Doggrell & Brown, 1998).  A second strain of rat 

has been developed from the SHR known as the stroke-prone spontaneously hypertensive 

rat (SHRSP) as having a higher incidence of stroke by selective mating of offspring with at 

least one parent with spontaneous stroke (Okamoto et al., 1974).  Like SHR, the SHRSP 

strain develops hypertension from 5 weeks of age but the SBP can increase to 250 mmHg 

in males (compared to 200 mmHg in SHR males) with a higher incidence of stroke.  There 

is a significant positive correlation between BP and the incidence of stroke.  Additionally, 

salt loading accelerates the onset of hypertension and the occurrence of stroke (Okamoto et 

al., 1974;Vacher et al., 1996).  Post-mortem examination of the brains of SHRSP rats show 

lesions in the cortex or subcortex of frontal, medial or occipital areas (Okamoto et al., 

1974) similar to those observed in humans (Bogousslavsky, 2003). 

1.6.5.1 Use of congenic sub-strains for particular genes of interest 

Inbred animal models offer the advantage of genetic homogeneity and complete control of 

environmental factors but most importantly they allow for specific inter-crosses to generate 

sub-strains which can provide insights into genetic determinants of hypertension which are 
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beyond the scope of human studies.  These sub-strains are useful for the study of specific 

genetic regions important for hypertension such as altered LV mass.  This approach 

involves the identification of quantitative trait loci (QTL), which are regions of a 

chromosome containing genes for a particular trait.  This then makes it possible to narrow 

down the genes contained within the QTL interval.  This novel congenic rat model permits 

exploration of possible triggers for RUNX expression.   

1.7 Characterisation of cardiac function in the two  
models 

1.7.1 Use of PV catheters to assess cardiac functio n 

PV measurements are regarded as the gold standard for measuring cardiac function, 

particularly in vivo (Kass et al., 1986;Burkhoff et al., 2005).  The simultaneous 

measurement of LV pressure and volume, both during steady-state conditions and during 

varying load on the heart have established a very comprehensive means of understanding 

cardiac mechanics.  The ability to assess both load-dependent and load-independent 

measures of cardiac function is an important feature of the PV technique which is not 

possible using alternative measures of LV function such as echocardiography.  This 

however has recently become possible using magnetic resonance imaging (MRI) in 

combination with a pressure catheter with MRI-based volume measurements to create the 

PV loop (Lederman, 2005).  The PV catheter technique uses a single impedance 

(conductance) catheter which is designed to lie along the long axis of the LV and contains 

sensors that measure both pressure and volume simultaneously.  PV methodology has been 

applied to humans (Kass et al., 1988b) and large animals (Little & Cheng, 1993); however 

with recent technological advances in miniature sensors this technique can now be applied 

to smaller animals, including rats and mice (Georgakopoulos et al., 1998).  The PV 

technique offers many advantages over other techniques such as the ability to assess more 

accurate load-independent indices of function; it does not rely on geometric assumptions, 

and can easily be applied to small rodents.  However the procedure is invasive and can 

normally only be performed once in the animal prior to termination meaning that 

longitudinal or repeated measurements in the same animal are not easily achievable (unlike 

echo and MRI).  However, it has recently become possible to do the PV technique in 

conscious mice (Joho et al., 2007).  The technique also relies on appropriate volume 

calibration methods such as the hypertonic saline dilution method and independent 

assessments of SV (details on this can be found in the General Methods chapter).  Despite 
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these limitations, the PV technique is considered to be one of the most accurate methods of 

assessing cardiac function and was therefore selected as the method of choice for 

functional measurements in this thesis. 

1.8 Measurement of gene expression 

The expression level (mRNA levels) of a particular gene in a tissue sample may be 

measured using a technique known as the polymerase chain reaction (PCR).  The PCR 

technique was developed in 1983 by Kary Mullis and it completely revolutionised the 

detection of nucleic acids; Mullis was later awarded the Nobel Prize for Chemistry 

together with Michael Smith in 1993 for his work in developing the PCR method (Bartlett 

& Stirling, 2003).  The technique is based upon the amplification of a specific target 

sequence of DNA (specific to gene of interest) by repeated cycles of heating and cooling to 

permit melting and subsequent replication of specific regions of double-stranded DNA by 

the enzyme DNA polymerase directed by short oligonucleotide sequences known as 

primers.  The DNA generated by each cycle serves as the template for further replication 

and therefore sets in motion a “chain reaction” during which the target DNA sequence is 

exponentially amplified.  By measuring the amount of cellular mRNA this provides 

information on the extent a particular gene is expressed.  Full details on the technique are 

covered in the General Methods (Chapter 2). 

1.9 Aims 

The RUNX family of transcription factors have been shown to have a protective role in 

skeletal muscle and have been recently shown to have altered expression in cardiac 

disease.  However, quantitative data on the degree to which Runx expression in the heart is 

altered during cardiac disease is limited.  The major aim of this thesis was to characterise 

the changes in expression of Runx mRNA levels in two separate animal models of cardiac 

disease; a mouse model of MI and a rat model of hypertension and altered LV mass.  

RUNX expression has not been measured in the cardiac tissue of either of these animal 

models previously. 

1. The first aim (i) was to establish and characterise a mouse model of MI which would 

later be used as an experimental model for measuring altered Runx expression during 

MI.  This was a new model in the laboratory therefore this involved developing a 

technique to perform CAL-induced MI in mice which was reproducible with low 

mortality.  It was then further aimed to (ii) perform a detailed characterisation of the 
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mouse MI model in terms of assessing structural alterations of the heart through 

histological and morphological measurements, and changes in cardiac function using in 

vivo electrocardiograms and PV methodology.  The associated survival characteristics 

of the model were also investigated.  These measurements were performed at two 

separate time points (4 or 8 weeks after the procedure) to assess whether the model 

demonstrated cardiac remodelling and dysfunction associated with MI.  It was 

hypothesised that performing CAL in mice would produce a model with characteristics 

of MI comparable to other published murine MI models and mimic human MI. 

2. The second set of aims was to assess alterations in the expression of the three Runx 

genes (Runx1, Runx2 and Runx3) in cardiac tissue from the mouse MI model using 

qRT-PCR methodology.  This was to investigate whether there were differences in 

Runx mRNA levels after MI, and whether there were (i) changes in different regions of 

the infarcted heart, (ii) temporal alterations as the MI developed, and (iii) whether the 

different Runx genes showed different patterns of expression.  It was also aimed to 

perform immunohistochemical experiments of heart tissue sections to visualise the 

localisation of RUNX within the cells of the heart.  Given the data on RUNX1 up-

regulation in human MI, it was hypothesised that a similar patten of increased Runx 

expression would occur in response to MI in the mouse model. 

3. The final set of aims were to characterise the structural and functional changes in two 

different but related animal models of cardiac disease – a rat model of hypertensive 

heart disease and novel congenic sub-strains of the hypertensive rat model for altered 

LV mass.  It was therefore aimed to characterise each model in terms of structural 

alterations through assessment of cardiac fibrosis and hypertrophy and assess LV 

function using PV methodology.  Runx1 mRNA levels were also quantified in these 

two models using qRT-PCR permitting: (i) investigation of altered patterns of Runx1 

expression and (ii) comparison with the MI model to further dissect the role of RUNX 

in the heart during cardiac disease and therefore assess its potential as a future 

therapeutic target.  It was hypothesised that the different congenic sub-strains would 

demonstrate different patterns of cardiac mechanical dysfunction and fibrosis patterns, 

and altered Runx gene expression levels in response to CVD similar to MI.
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All surgical procedures were performed in accordance with the Animals (Scientific 

Procedures) Act 1986 and were approved by the University of Glasgow’s ethics 

committee.  All animal experiments conformed to the Guide for the Care and Use of 

Laboratory Animals published by the US National Institutes of Health (NIH Publication 

No. 85-23, revised 1996). 

2.1 Experimental mouse model of MI 

After a period of approximately 1 year of microsurgical training by Dr Christopher 

Loughrey, MI was independently induced in mice using the CAL method.  This was a new 

model in our laboratory, therefore it was important to develop a method which was 

reproducible and efficient with low mortality; but most importantly that would demonstrate 

features of dysfunction and remodelling as described in human MI (Chapter 3).  

Development of this model therefore required rigorous optimisation and refinement.  Due 

to their small size, the use of mice presented additional challenges in the need for precise 

microsurgical skills and meticulous intra-operative technique.  A detailed description of the 

development of the mouse MI model is found in the sections that follow. 

2.1.1 Animals 

The strain of mice used was the C57Bl/6 strain.  All mice were obtained from a licensed 

commercial breeder in the U.K. (Harlan Laboratories, U.K.) and were housed 5-10 

animals per cage (or singly post-procedure) in the Biological Services facility at the 

University of Glasgow with 12/12 hour light and dark cycles and free access to water and 

food pellets.  Adult males were used (8-10 weeks of age; 18-25 g); at this age the 

developmental growth of the heart is complete (Tarnavski et al., 2004).   

2.1.2 Anaesthesia and pre-surgical preparation 

The surgical set-up and surgical instruments used for this procedure are shown in Figure 

2.4A and B, respectively.  As this was recovery surgery, the operations were performed 

under aseptic conditions as much as possible.  The surgical instruments were autoclaved 

once (at the beginning of the day prior to surgery) and decontaminated between surgeries 

using a hot-bead steriliser (Germinator 500, SouthPointe Surgical Supply Inc, USA).  The 

surgical operating area was disinfected with a chlorhexidine gluconate spray (Ecolab, 

U.K.) and sterile towels were laid down on the surgical table.  A sterile drape was used for 

the animal and a new pair of sterile gloves was used for each animal.  The mouse was 
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collected and weighed.  The type of anaesthesia used was isofluorane (Isoflo, Abbott 

Laboratories, USA) mixed with 100% oxygen.  Inhalable anaesthetics were preferred 

because these offer more precise control over depth of anaesthesia and have the least 

depressive effects on the cardiovascular and respiratory systems compared to other forms 

of anaesthetics (e.g. injectables) (Richardson & Flecknell, 2005).  Anaesthesia was induced 

by placing the mouse in a pre-filled closed induction box (Figure 2.4C).  Following loss of 

the righting reflex, animals were moved to a face mask (4% isofluorane; 1.5 L.min-1).  The 

fur was clipped from the entire chest area using an electric shaver and the skin was 

thoroughly cleansed with clean gauze swabs using a warm surgical skin disinfectant 

(Hibiscrub, Ecolab Ltd, U.K.) (Figure 2.4D).  To minimise body heat loss, the solution was 

prepared warm with very minimal wetting of the skin.  Pre-operative analgesia of 5 mg/kg 

carprofen (Rimadyl, Pfizer Animal Health, U.K.; injected 20 µl of the 5 mg/ml stock 

concentration) and 0.1 mg/kg buprenorphine (Vetergesic, Reckitt Benckiser Healthcare 

Ltd, U.K.; injected 30 µl of the 0.03 mg/ml stock concentration) along with sterile saline 

(0.9% sodium chloride; 500 ml bag) were administered at this stage as a single 

intraperitoneal injection - final combined volume of all three components was 0.4 ml 

(Figure 2.4E).  Pre-operative administration allowed sufficient time for the drugs to take 

effect in time for the animal awakening from surgery.  A sterile ocular lubricant (Lacri-

lube ointment, Allergen Inc, USA) was then applied to both eyes to protect corneal drying 

during the procedure (Figure 2.4F).   

2.1.2.1 Endotracheal intubation 

There are numerous methods for the intubation of mice described in the literature ranging 

from non-invasive oral intubation (Spoelstra et al., 2007;Hamacher et al., 2008) to more 

invasive tracheostomy (Moldestad et al., 2009).  The ability to intubate mice quickly, 

reproducibly and with as little damage as possible is imperative for a survival model.  For 

our model, we preferred not to use the tracheostomy approach as the animal would be 

subjected to further surgical intervention which could also lead to serious complications 

post-operatively such as bleeding, infection and incomplete tracheal seal (Spoelstra et al., 

2007).  In cases where the trachea was exposed through a cervical incision to guide 

intubation, this also led to fatal respiratory complications after the operation and it was for 

this reason that this method was no longer used.  The best success in our model with 

endotracheal intubation has been with direct visualisation of the glottis and vocal cords 

using a method which was quick, efficient and as minimally invasive as possible.  A 

number of different methods were adopted to achieve this.  The earliest method tried was 
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placing the mouse on a polystyrene board at a 45° angle and using a fibre optic light source 

shone on to the neck to illuminate the trachea.  However this did not provide sufficient 

visualisation of the structures of the throat and led to potential tissue trauma and incorrect 

placement of the tracheal cannula into the oesophagus.  The next step was to find a way to 

position the mouse under the microscope (at the appropriate height for x 25 magnification) 

to allow for improved visualisation of the vocal cords and tracheal opening.  This approach 

required the mouse to be held vertically so that the microscope could be used to look 

directly down into the oral cavity.  For this, an L-shaped stand made of acrylic plastic with 

a ring of thick silk suture (3-0) was utilised (Figure 2.1).  The (anaesthetised) mouse was 

suspended from a suture loop by its front incisors on the vertical side of the L-shaped 

support.  The tongue was held aside with the thumb and forefinger and the animal’s body 

was supported with the rest of this hand, freeing the other hand to insert the cannula 

(Figure 2.1B; Figure 2.4G).  Using this manoeuvre the opening of the oral cavity was 

parallel to the microscope lens and therefore provided a very clear view of the tracheal 

opening which ensured accurate placement of the cannula into the trachea and markedly 

reduced any tissue trauma or accidental placement into the oesophagus.  The cannula (0.8 

mm O.D.) was then gently inserted into the trachea until the Y-piece connector just entered 

the mouth.  By doing it this way, endotracheal intubation of the mouse took < 20s and 

therefore it was not necessary to maintain the supply of isofluorane to the animal during 

this time (mouse remained unconscious throughout intubation).  This method therefore 

proved to be a quick, non-invasive and reproducible approach to endotracheal intubation of 

the mice.  

 

Figure 2.1  Development of a method for endotracheal intubation of mice. 

(A)  Schematic illustration of the L-shaped plastic stand used to support the mouse during endotracheal intubation.  This 

consists of an acrylic plastic stand with a loop of thick suture fixed in place with tape.  (B)  Positioning of the mouse and 

retraction of the tongue for cannula insertion (all performed under a surgical microscope).  (C)  Tracheal cannula used 

with silicone tubing placed around the cannula (indicated) with connector Y-piece attached. 
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Tracheal cannula and ventilator settings 

The tracheal cannula was a stainless steel tube custom-designed (25 mm long; 0.8 mm 

O.D.) (Harvard Apparatus, U.K.) as shown in Figure 2.1C.  A number of different 

cannulae were tried previously including intravenous catheters and polyethylene (PE) 

tubing; however these were found to lack rigidity and resulted in greater dead space.  Metal 

cannulae manufactured for mice (Harvard Apparatus, U.K.) were found to be more 

suitable as their rigidity meant they remained in position within the trachea better.  A range 

of sizes of metal cannulae ranging in length and diameter were tested including (i) 1.0 mm 

O.D & 28 mm long; (ii) 1.2 mm O.D & 30 mm long but these were found to be too large in 

diameter that they caused too much trauma to the vocal cords and surrounding throat 

structures, and their long lengths were not suitable for the size of mice in our studies and 

risked damage to the bronchial bifurcation.  A 0.8 mm O.D cannula was manufactured 

courtesy of Harvard Apparatus, U.K. and the smaller O.D and shorter length were safer 

and minimised the risks of damage.  In order to increase the O.D of the shaft of the cannula 

(to improve fit within the trachea but minimise damage during insertion) a piece of thin 

silicone tubing was used over the cannula which served as a cuff-like design which also 

improved the ‘grip’ within the trachea.  Once inserted, the tube was connected (via the Y-

piece) to a mouse ventilator (Hugo-Sachs, Harvard Apparatus, Germany) and the animals 

were ventilated at 120 breaths per min with a tidal volume of 120 µl as recommended by 

the supplier (Harvard Apparatus, Germany) for mice of BW 20-25g by the equations 

below.  Chest movements in synchrony with the ventilator confirmed successful intubation 

and mechanical ventilation.  The connection tubes were taped down securely to prevent 

accidental extubation during the procedure. 

26.05.53 −×= BWmin)per(breathsRate nRespiratio    Eq. 1 

04.12.6)( BWlVolumeTidal ×=µ     Eq. 2 

Where BW is the body weight of the animal in g. 

2.1.3 Surgical procedure 

2.1.3.1 Positioning of the animal 

The mouse was then positioned for surgery on a warm heat mat (to maintain body heat 

throughout) in a supine position slightly turned towards its right side and left forearm 
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retracted with soft tubing (Figure 2.2; Figure 2.4H,I).  The remaining limbs on the right 

side were taped down (leaving the left leg free for toe-pinch checks to assess depth of 

anaesthesia).  The positioning of the animal was a key part of the procedure as it can 

largely influence the access to the heart and how much the left lung permits or impedes the 

window of access.  Where the animals were positioned supine or fully on their right side 

proved to be problematic as the sternum or left lung would restrict access to the heart, 

respectively.  Thus it was found that a positioning of the animal between supine and right 

lateral was the most suitable.  The orientation of the animal with respect to the surgeon was 

also found to be important, with lateral positioning proving to create problems with the 

lung collapse, requiring physical movement of the lung with a swab or tissue.  This was 

found to lead to problems with respiration post-operatively likely as a result of damage to 

the lung.  A longitudinal positioning of the mouse (with the head furthest away and the 

caudal end closest to the operator) meant that the manipulation and ligation of the coronary 

artery was at a more favourable angle and the lung would collapse away naturally without 

the need for swabs that could cause damage. 

 

Figure 2.2  Positioning of the mouse for CAL surgery. 

Photograph shows the view from operator’s point of view in which the animal is placed supine and turned slightly on its 

right side with right limbs taped down, the left arm retracted with tubing and the left leg left free for toe-pinch withdrawal 

reflex (anaesthesia depth) checks. 

2.1.3.2 Lateral left thoracotomy 

The surgical procedure was performed with the aid of a microsurgical microscope which 

was set up at the beginning of the surgical procedure by performing the following in this 

order: (1) the dioptre eyepieces were set to zero, (2) a small object (usually a pin tack) was 

placed in the centre of the field of view on a flat surface, (3) the highest magnification 

(x40) was selected and the object was focused using the coarse focus dial, (4) the lowest 
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magnification was then selected (x10) and the right eyepiece dioptre was adjusted until 

sharp focus of the object was achieved without altering the coarse focus dial, (5) the 

highest magnification was selected to ensure the object still remained in sharp focus, (6) if 

this was the case, the lowest magnification was selected and this time the left eyepiece 

dioptre was adjusted until sharp focus of the object, (7) it was then verified that the 

microscope was parfocal at each magnification by switching through each magnification 

ensuring the object remained in sharp focus at each.  Prior to incision, a final check for 

sufficient depth of anaesthesia was confirmed by lack of response to toe-pinch reflex 

(isofluorane was reduced to ~3.5% by this point gradually from 4% at induction; 

anaesthesia was continually reduced by 0.25% gradually to a minimum of 1.5% thereafter).  

A 1 cm-long incision was then made laterally across the left side of the chest perpendicular 

to the sternum in line with the ribs (approximately 5 mm above the xiphoid) (Figure 2.4J-

L).  The skin and thoracic muscles overlaying the rib cage were retracted using elastic 

blunt-hook retractors (Harvard Apparatus, U.K.) (Figure 2.4M,N).  The position of the left 

lung prior to opening the chest was noted by marking with a line either side of the incision 

using a surgical marker pen.  This was to ensure that the lungs were reinflated back to this 

point during close-up to limit complications due to insufficient lung reinflation.  The 

muscle between the ribs of the fourth intercostal space was perforated using angled forceps 

and incised using a battery-operated cauteriser (Harvard Apparatus, U.K.) taking care not 

to damage the heart or left lung.  This was achieved by gripping the rib above gently and 

pulling upwards to create distance between the cauteriser and major organs beneath (Figure 

2.4O).  The ribs were then retracted using a further two blunt-hook retractors to fully 

expose the heart (Figure 2.4P).  Due to the positioning of the animal, opening the thoracic 

cavity caused the left lung to fall away naturally and negated the need for any swabs and/or 

touching of the lung as described previously. 

2.1.3.3 Left anterior descending (LAD) coronary art ery ligation 

Experiments to improve visualisation of the LAD coronary artery 

Visualisation of the LAD coronary artery in mice is more difficult than in other species 

due to its very small size and deep embedment within the myocardium.  Intense lighting 

and high magnification were found to be essential for this.  Generally, the anatomy of the 

left coronary artery (LCA) in mice is believed to be comparable with other mammals; 

however it has also been known to be highly variable in mice even within inbred strains 

(Michael et al., 1995).  There are also discrepancies in the origin, course and branching 
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structures of the LCA in mice.  Through use of plastic casts, groups have found that the 

LCA does not branch into a septal portion (Kumar et al., 2005) whereas others have found 

it does (Fernandez et al., 2008) but what seems to be consistent is that whether there is a 

septal branch or not, ligation of the LCA tends to produce infarction of the LV only while 

the septum is still perfused (Salto-Tellez et al., 2004).  Although investigation into the 

anatomy of the LCA in mice was beyond the scope of this thesis, some experiments were 

performed on a cohort of isolated mouse hearts (n=6) in which a coloured dye was used to 

facilitate identification of the LAD coronary artery.  Briefly, hearts were excised and 

following an initial perfusion with saline to remove the blood, hearts were then perfused 

very gradually with a small amount of blue dye (Evan’s Blue) to highlight the location of 

the LAD, taking care only to perfuse as far as the arteries (not veins).  The hearts were 

then photographed and an example is shown in Figure 2.3.  This method was effective in 

identifying anatomical landmarks, reduce blind ligating, and improve reproducibility.   

 

Figure 2.3  Location of the mouse LAD coronary artery using Evan’s Blue dye. 

LCA indicated by arrow.  RA = right atrium, LA = left atrium and Ao = aorta. 

LAD ligation in vivo 

In vivo the LAD was visible as a bright orange tortuous-shaped vessel running through the 

LV from under the left atrium.  The pericardium was gently removed and tucked behind 

the heart and a 9-0 nylon non-absorbable suture (W2829 Ethilon, Johnson & Johnson, 

U.K.) was passed around the LAD coronary artery approximately 1.5 mm below the left 

atrium and tied to produce permanent occlusion (Figure 2.4Q).  Ligating any closer to the 

left atrium than this (<1.5 mm) was found to markedly affect survival and was often fatal, 
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most likely as a result of too severe an infarction (based on observation only).  This is in 

agreement with what others have found (Salto-Tellez et al., 2004).  Ligating at the 1.5 mm 

mark produced statistically reproducible infarct sizes (Chapter 3, Figure 3.8) within the 

threshold required for survival and produced adequate dysfunction and structural 

remodelling associated with MI (Chapter 3).  Ligation was deemed successful when the 

LV became pale in colour and in some animals by the ST-elevation on the ECG.   

2.1.3.4 Closing up 

The rib retractors were removed and three sutures were evenly pre-placed along the ribs 

using 6-0 non-absorbable prolene sutures (W8711, Johnson & Johnson, U.K.) (Figure 

2.4R).  The lungs were reinflated by pinching the expiration tube for 3-4 respiration cycles 

and then placing the tube underwater in a small beaker (250 ml water) to allow sufficient 

positive end-expiratory pressure (PEEP) to keep the lungs fully inflated during close-up.  

This action of placing the tube beneath a depth of ~200 ml water proved more successful 

than allowing it to remain attached to the machine as it led to a 65% reduction in 

respiratory-related deaths (data shown in Chapter 3, Figure 3.2).  The rib sutures were tied 

to seal the thoracic cavity, middle suture first, then the adjacent ones.  The thoracic 

muscles were returned back together with the aid of some drops of sterile saline (no 

sutures) and the skin was sutured with 5-6 simple interrupted sutures using absorbable 6-0 

vicryl (W9575, Johnson & Johnson, U.K.) (Figure 2.4S).  The isofluorane was gradually 

reduced before being switched off during skin suturing.  The mice were given at least 5 

min on 100% oxygen before switching to room air while still on the ventilator.  Animals 

were extubated only when they regained consciousness at which point they were placed 

into a warm recovery cage with soft bedding (Figure 2.4T).  The control for this procedure 

was a sham operation in which the animals underwent exactly the same procedure but 

without CAL.  The suture was initially placed but not tied in the sham animals; however 

this was found to (i) fall into the thorax and risk infection and (ii) risked causing local 

damage which may lead to some ischaemia.  Therefore sham animals underwent the 

procedure but without placement of the suture in the heart.   

2.1.3.5 Recovery and post-operative care 

Animals were monitored closely immediately after surgery to ensure sufficient warmth and 

oxygen provision if necessary until they were mobile, and then daily thereafter at least 

three times a day.  Post-operative analgesia was provided in the form of buprenorphine (0.1 

mg/kg) administered orally in a soft custard feed for three days after the operation and 
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wounds and body weight were also closely monitored according to Home Office 

regulations.  Mice were given the custard feed in the week before surgery to acclimatise 

them to it (which was found to improve their interest in it post-surgery) and the custard 

was provided in a small dish on the cage floor to enhance the animal’s ability to reach it.  

The eating habits and body weight of the animals were recorded daily to ensure the food 

was being eaten and the analgesia received.  After the first week the animals were then 

returned to normal cages and moved back to the housing area until the time of sacrifice.  

Any animals found dead underwent autopsy to ascertain the cause of death and a record of 

the date of death (as day post-operative) was logged. 
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Figure 2.4  Photographs of various stages of the surgical method used for inducing MI in mice. 

See details in Section 2.1 describing each image.  Dotted line in (J) indicates first incision site and arrows in (Q) indicates 

the LAD coronary artery. 
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2.2 Congenic rat model of altered LV mass 

2.2.1 Generation of congenic strains 

WKY and SHRSP animals, originally obtained from the University of Michigan, were 

brother-sister mated to produce colonies of WKY and SHRSP at Glasgow as previously 

described (Dominiczak et al., 1993).  Congenic strains were generated using a marker-

assisted speed strategy where segments of SHRSP chromosome 14 were introgressed into 

WKY (to produce a WKY-congenic) and segments of WKY chromosome 14 were 

introgressed into SHRSP (to produce an SHRSP-congenic).  The breeding protocols for 

these two congenic strains is outwith the scope of this thesis but details have been 

previously published (Davidson et al., 1995).   

2.2.2 Genotyping of congenic strains 

Genotyping was previously performed by Dr Delyth Graham’s laboratory at the University 

of Glasgow.  Animals were anaesthetised (isofluorane) and a 4 mm tip from the tail was 

removed at 4 weeks of age.  DNA was extracted from a tail biopsy and analysed using 

PCR around the 83 polymorphic microsatellite markers from total genomic DNA with the 

use of specific primer pairs (Research Genetics, Alabama, USA or Sigma Genosys 

Biotechnology, Cambridge, U.K.).  

2.3 PV measurements 

2.3.1 The PV loop 

LV pressure can be plotted against LV volume to produce the PV loop (Figure 2.5).  The 

PV loop diagram illustrates instantaneous PV points throughout an entire cardiac cycle and 

proceeds in an anticlockwise direction depicting the four main stages of the cardiac cycle. 
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Figure 2.5  LV pressure and volume and the PV loop. 

(A) Example pressure (upper blue) and volume (red line) recordings for two cardiac cycles with electrocardiogram (lower 

blue) also shown.  (B)  Example PV loop (red line) showing the four stages of a single cardiac cycle.  A, mitral valve 

opens; AB, filling phase; B, mitral valve closes; BC, isovolumetric contraction; C, opening of aortic valve; CD, ejection 

phase; D, closure of aortic valve; DA, isovolumetric relaxation.  Figure (A) taken from (Guyton & Hall, 2006) and (B) 

taken from (Burkhoff et al., 2005). 
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2.3.2 Principle of operation 

The catheter uses an electric field to measure the volume of blood in the heart.  Baan and 

colleagues (Baan et al., 1984) first proposed a method of correlating the changes in LV 

volume to the change in electrical resistance of the blood pool within the LV.  The 

conductance catheter has four electrodes located along its axis for the measurement of 

conductance; two outer excitation electrodes and two inner sensing electrodes.  A low-

amplitude constant current is applied from the two outer electrodes to produce a local 

electric field.  This electric field passes into the blood, the myocardium and the 

surrounding structures.  The voltage change across these electrodes is inversely 

proportional to the conductance and is measured by the two inner electrodes.  A pressure 

transducer is located between the two inner electrodes of the catheter for direct pressure 

measurements within the ventricle (Figure 2.6). 

 

Figure 2.6  Scisense PV catheter. 

The pressure transducer and electrodes for measuring volume are indicated.  Picture adapted from Scisense Inc. 

2.3.3 Volume signal correction 

The conductance signal is linearly proportional to the volume but requires appropriate 

calibration (correction) to provide accurate absolute volume measurements.  The 

conductance signal is converted to volume using the following equation described by Baan 

(Baan et al., 1984) : 

( )PCT VV
L

V −=
α

ρ 2

     Eq. 3 
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Where VT is the true volume (µl), VC is the volume measured by the catheter (µl) and VP is 

the parallel volume from surrounding conductive structures, ρ represents the resistivity of 

blood (Ωcm), L represents the length between the electrodes (mm) and α is a constant gain 

factor dependent on the SV.  As the resistivity of blood and the catheter recording segment 

length remained constant in all experiments, the equation could be simplified to the 

following (2): 

( )PCT VVV −=
α
1

     Eq. 4 

Two factors are required to correct the volume signal in the above equation, these are: the 

alpha gain coefficient (α) and the parallel volume offset correction factor (VP). 

2.3.3.1 αααα gain coefficient  

α is a correction factor used to calibrate the SV of the resulting conductance signal to 

match a standard of comparison (usually by use of a flow probe or echocardiography).  

This is required because the PV catheter uses point electrodes which means the electric 

current lines are not straight but curved, introducing non-linearity to the volume signal.  

α is calculated by adjusting stroke volume (or cardiac output – the product of SV and HR) 

measured by the catheter to that of stroke volume (or cardiac output) measured by an 

independent method.  Therefore: 

True

C

CO

CO
=α       Eq. 5 

Where COC is the cardiac output measured by the catheter and COTrue is the independently 

measured cardiac output. 

2.3.3.2 Parallel volume (V P) 

Conductance measurements should correspond to the LV blood pool alone but in reality 

some of the current leaks into the surrounding myocardium and other structures which are 

conductive.  This introduces an error into the volume calculations and must be corrected to 

avoid inaccurate over-estimation of the true volume.  This is commonly performed using 

the hypertonic saline dilution method.  This involves injecting a bolus of ~10 µl (mice) or 

~35 µl (rats) of high salt solution (e.g. 15% NaCl) intravenously into the animal to 

transiently increase the conductance with no effect on the pressure.  This leads to a 
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rightward shift in the PV loops.  VP was calculated by solving a series of linear equations 

to locate the intersection of two lines; one represented by the saline data (plotting EDV 

against ESV for each beat during the rise phase of the volume trace following the injection 

of hypertonic saline) and the other by plotting ESV = EDV.  The latter line (ESV = EDV) 

represents the LV chamber when ESV = EDV (i.e. LV devoid of blood).  The value of the 

intersection between the two lines is equal to the VP of the surrounding tissue and can be 

subtracted from the measured volume to obtain true volume – an example of this is shown 

in Figure 2.7 below. 

 

Figure 2.7  Example of parallel volume estimation. 

(A-i,ii) Pressure and volume during the hypertonic saline bolus injection and (A-iii) resulting PV loops showing a 

rightward shift in the loops corresponding to an increase in volume with no change in pressure. (B) ESV and EDV points 

during the hypertonic saline bolus are plotted and extrapolated – the intersection with the line of unity (ESV=EDV) 

represents the parallel volume.  This is an example taken from a stock rat.   
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2.3.4 Calibration of PV catheters 

Prior to in vivo PV experiments, the catheter was appropriately calibrated for pressure and 

volume. 

2.3.4.1 Pressure 

The catheter was pre-soaked in saline at 37°C in a water bath for at least 45 min before 

each experiment.  The reasons for this were to ensure adequate equilibration with the 

temperature at which the recordings will be made in vivo (37°C) and to ensure maximal 

stability of the pressure signal.  The equipment is also given the same amount of time to 

warm up before use to minimise electrical drift of the hardware.  The signal was calibrated 

prior to the start of the experiment by a 2-point linear calibration method using built-in 

values on the power unit (0 mmHg = -2.86 V; 100 mmHg = -0.56 V).  Additionally, the 

pressure sensor was tested using a pressure transducer calibration device (Delta-Cal 650-

950, Utah Medical Products, USA) which allowed the pressure sensor of the catheter to be 

calibrated against known output pressures.  Immediately prior to use, the sensor was 

balanced (reset to 0 mmHg) for any electrical drift that may have occurred since calibration 

by submerging it just below the surface of saline in a bijou at 37°C and adjusting the 

balance dial until the catheter read 0.00 mmHg. 

2.3.4.2 Volume 

There are two ways by which the volume signal can be calibrated prior to the beginning of 

the experiment; (i) using the in-built values on the catheter control unit or (ii) using two 

cuvette wells of known volume. 

(i)  Built-in volume calibration 

The Scisense Model FV898B power unit contains an in-built calibration scale for volume 

calibration.  These are electronic calibration voltage outputs that correspond to specific 

volumes (5 values for mouse and 5 for rat), two of which can be used for a 2-point 

calibration similar to the method described above for pressure calibration.  However, 

before using the in-built calibration system a series of calibration experiments were 

performed to verify the accuracy of this system. 

This involved calibrating the catheter with different combinations of two in-built values 

then measuring the volume read by the catheter in standard wells to assess how closely this 
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matched the true volume of the well.  This approach allowed (i) verification of the 

accuracy of the in-built system and (ii) selection of the two most suitable in-built values to 

use based on which combination gave the most accurate result.  A polycarbonate block 

containing cylindrical wells of known volume (ADInstruments, USA) were filled with 

either fresh heparinised blood obtained from rats or mice, depending on the catheter used 

(mouse blood for the mouse catheter and rat blood for the rat catheter), or using a mock 

blood solution (described below).  These experiments were performed by myself and Heidi 

Conrad (a summer undergraduate student).   

(ii)  Cuvette well calibration 

These experiments could also be performed using two cuvette wells of known volume for 

the 2-point calibration instead of calibrating with two in-built values from the machine.  

The two wells selected were those which corresponded to the normal upper and lower 

values for LV volumes observed in the mouse or rat heart.  

For both of these methods, the preparations were maintained at 37°C in a water bath, 

clotting of the harvested blood was minimised using low concentration heparin (60 U/ml) 

added to the blood immediately after collection and the catheter was always centred 

carefully within the well.  The results of these calibration experiments are shown in Figure 

2.8.  These data reveal that the in-built values 20 and 40 µl showed the greatest unity for 

the mouse calibrations, and 200 and 300 µl for the rat and were therefore suitable to use for 

volume calibrations. 
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Figure 2.8  Calibration curves using different calibration combinations from the in-built system and a cuvette 

calibration. 

(A-B)  Measurements were generated using a mouse or rat PV catheter with freshly harvested heparinised mouse or rat 

blood respectively in standard cuvette wells of known volume.  The combinations shown on the right are the different 

pairs of values used to calibrate the PV catheter and then the catheter was placed in cuvette wells of increasing known 

volume.  The different calibration curves were compared against a line of unity (black line) where measured volume = 

true volume to determine the best calibration values to use.  The dotted lines represent the normal ESV and EDV ranges 

for mouse and rat according to (Pacher et al., 2008). 
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Preparation of a mock blood solution 

Under ideal conditions, a sample of blood from the animal would be taken prior to the 

experiment and used to fill the wells for volume calibration.  However, rats and mice have 

very low circulating blood volumes and therefore would not provide enough blood 

required to fill the wells.  In order to eliminate the need for fresh animal blood before each 

experiment, an alternative ‘mock blood’ saline solution can be prepared to match the 

conductivity of blood and can be used for the calibrations instead.  Empirical data has 

shown that the conductivity of blood for mice and rats are as follows (this has also been 

verified by our experiments using direct measurement with a conductivity meter): 

Mouse blood at 37°C = 7.6 mS 

Rat blood at 37°C = 6.3 mS 

To prepare a solution that matched these values at 37°C, physiological saline (0.9% NaCl 

w/v) was diluted with double distilled water and monitored using a conductivity meter 

(Amber Science Inc, USA) calibrated with a standard solution of known conductivity (6.66 

mS; Amber Science Inc, USA).  This was done by submerging the measuring probe of the 

meter into ~25 ml of the standard solution, moving the probe up and down to dislodge any 

air bubbles which could affect the readings and adjusting the standardising dial to match 

the known conductivity.  This calibration was required to be performed at a temperature of 

25°C in order to be accurate therefore the calibration solution was heated to 25°C in a 

waterbath.  Once the mock blood solution was made it was stored at room temperature and 

used at 37°C. 

Final volume calibration methods used 

Prior to the in vivo experiments, the volume signal was calibrated either using the in-built 

volumes within the power unit (all rat experiments and stock mice experiments were 

calibrated this way), or using two standard cuvette wells (mouse MI studies were 

performed this way).  The two hardware units were different in that one had in-built 

volume values (FV866B) and the other did not (FV898B) and is designed to be used for 

variable segment length catheters.  The in-built volume unit (FV866B) was suitable for 

normal rats where physiological LV volumes were expected but in infarcted mouse hearts 
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post-MI where a dilated LV chamber is common the LV volumes were too large for the 

range of the FV866B and therefore the FV898B was used instead for these experiments. 

The in-built values used for a 2-point calibration were as follows: 20 and 40 µl for mouse, 

and 200 and 300 µl for rat.  These values were chosen based on verification using 

calibration experiments (see Section 2.3.4.2).  The in-built volumes were unsuitable for the 

mouse MI functional studies because the larger chamber volumes associated with MI were 

greater than the maximum volume the in-built system could read for mice.  As a result two 

cuvette volumes were used in combination with the FV898B VSL power unit for the 2-

point calibration and these were 31.81 and 88.36 µl cuvette wells which were chosen to 

represent the volume range expected in the mouse infarcted heart.  These values were also 

used for the sham animals.  The VSL unit has been previously calibrated in our laboratory 

and the results published (Elliott et al., 2012;Kelly et al., 2012).   

2.3.5 Surgical procedure for insertion of PV cathet er into the LV 
in vivo 

2.3.5.1 Different surgical approaches available for  PV catheter insertion 

There are two main surgical approaches which can be used for inserting the PV catheter 

into the LV of the rodent heart in vivo.  These are (i) an open-chest approach; involving a 

thoracotomy by transverse substernal incision of the diaphragm and subsequent insertion 

of the catheter into the LV via direct apical stab or (ii) a closed-chest approach; in which 

the catheter is inserted via the carotid artery and fed retrograde through the aortic valve 

into the LV.  Each method has both advantages and disadvantages and the surgical 

approach used tends to be largely dependent on the study and the experimental model of 

cardiac disease used (if applicable).   

The open-chest approach (via the apex of the heart) is frequently used as it tends to be 

quicker and allows for more direct control over catheter positioning within the heart.  

Furthermore in models where the aorta has been banded (e.g. in TAC models) or the aortic 

valve may be severely calcified (e.g. in advanced ageing models) this approach is the more 

appropriate over the carotid artery method.  However, the open-chest approach can be 

disadvantageous due to the associated lung collapse, compromised myocardial integrity 

and relatively large tissue trauma which can influence haemodynamic function.  In MI 

models this approach is not suitable as the apical region of the heart will have undergone 
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extensive remodelling and infarct formation making it inaccessible for the catheter with no 

stable hold.   

The closed-chest approach (via the carotid artery) is considered to be less invasive than 

the open-chest method as the lungs remain untouched, the myocardium intact with 

minimum tissue trauma.  This approach therefore tends to be favoured for prolonged 

experiments which require haemodynamic stability over a long period of time (e.g. drug 

testing) or for assessment of animals that have undergone MI to avoid damage to the 

infarcted area.   

2.3.5.2 Surgical approach chosen for the different animal models 

Mouse MI model:  For the reason outlined at the end of the previous paragraph, the 

closed-chest approach was used for the mouse MI model in this thesis (including control 

stock or sham mice for consistency).   

Hypertensive and congenic rat model:  For the hypertensive/congenic rat model study, 

there were no structural limitations associated with the phenotype to dictate which surgical 

method was to be used.  Therefore, as it was not clear how the surgical approach (including 

the choice of mechanical or spontaneous ventilation) could affect haemodynamic function, 

a series of experiments were performed using cohorts of stock control rats to test the 

suitability of the open or closed-chest surgical approaches using mechanical and 

spontaneous ventilation in order to ascertain which was the most appropriate to use.  The 

results from these experiments are covered later in this PV loop section of the chapter (see 

Section 2.3.10).  This work was published in abstract form at The Physiological Society 

Annual Meeting (Foote & Loughrey, 2010). 

The following sections describe the surgical procedure for inserting the PV catheter either 

via (a) a closed-chest approach or (b) an open-chest approach.  Where rats and mice were 

used is specified and any differences in the surgical protocol between the two species are 

clearly stated. 
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2.3.5.3 Closed-chest surgical procedure 

PV catheter preparation 

PV experiments were performed using either a 1.2F (mouse) or 1.4F (rat) PV catheter 

(112B-C002 and 212B-B097 respectively, Scisense Inc., Canada).  The catheter was 

connected to a Scisense PV Unit System (FV866B or FV898B, Scisense Inc., Canada) and 

given at least 45 min to equilibrate at 37°C prior to use.  The catheter was calibrated for 

pressure and volume at the start of the experiment as described previously (Section 2.3.4).   

Anaesthesia and surgical preparation 

Animals were anaesthetised with isofluorane (4%) in a closed induction chamber and 

sustained on a face-mask (4% isofluorane) while the skin from the neck region and upper 

abdominal areas was shaved and cleaned with a surgical disinfectant (Hibiscrub, Ecolab 

Ltd, U.K.).  Mice underwent endotracheal intubation with a 0.8 mm tracheal cannula 

(Harvard Apparatus, U.K.) and were ventilated under 1.5% isofluorane at a respiratory rate 

of 120 min-1 and a tidal volume of 120 µl (Hugo Sachs Elektronic MiniVent Type 845, 

Germany).  Rats were either kept on the face-mask for the rest of the experiment (closed-

chest, spontaneous breathing group) or were intubated via tracheostomy with an 18G 

cannula made from an intravenous catheter (closed-chest, mechanically ventilated group).  

Rats were ventilated under 1.5% isofluorane using a small animal ventilator (Model 683, 

Harvard Apparatus, U.K.) at a respiration rate of 70 breaths.min-1 and a tidal volume of 2.4 

ml.  Animals were positioned supine on a thermostatically-controlled heat pad controlled 

by a rectal probe to maintain core body temperature at 37.0 ± 0.5°C (Harvard Apparatus, 

U.K.) and the limbs taped down in place.  A midline cervical incision was made and the 

muscles were carefully retracted on the right side of the neck to expose the right carotid 

artery.  The carotid artery was dissected taking care to avoid damage to the vagus nerve or 

other blood vesslels.  Four silk sutures (6-0) were then placed around the carotid artery; 

one at the distal (cranial) end (tied firmly) to allow anchorage and manipulation of the 

artery as necessary; one at the proximal (caudal) end (retracted with haemostats to occlude 

but not tied) to occlude blood flow during cannulation; and two loosely placed middle 

sutures to secure the catheter in place once inserted.  In rats, an arterial clip was also used 

to provide additional support to the most caudal suture to minimise accidental blood loss; 

this was not required in the mice as the suture was sufficient for their smaller arteries.  

Before the catheter was inserted, the other blood vessels required for access during the 
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experiment (left jugular vein and inferior vena cava (IVC)) were exposed at this time to 

avoid accidentally moving the catheter during recordings later.  The left jugular vein was 

exposed by extending the cervical incision towards the left shoulder and bluntly dissecting 

the surrounding muscles to expose the vein.  The IVC was exposed following an upper 

abdominal incision (at the level of the xiphoid cartilage).  A suture was placed into the 

xiphoid cartilage as a means of retraction to expose the area better.  Warm swabs soaked in 

saline were placed on the incision sites for the jugular vein and IVC to avoid heat loss until 

they were needed.   

Catheter insertion 

The catheter was then prepared for insertion by rebalancing to zero to correct for any 

electrical drift and to ensure there was no offset error in the pressure readings.  A tiny cut 

was then made into the carotid arterial wall at the distal end and the tip of the catheter was 

then inserted into the carotid artery and pushed as far as the last suture (closest to heart 

end) where it was then tied in place.  The last suture was released (and clip removed for 

rat) and the catheter was advanced into the heart, guided by changes in pressure that were 

recorded during this time.  The time taken from catheter rebalance to entry into the heart 

was usually <5 min but if for any reason this took longer than 5 min, the catheter was 

rebalanced in warm saline in the bath.  The catheter was positioned optimally with fine 

movements left or right and advancing or retracting as necessary.  Optimal positioning was 

defined as the tallest and widest loop achievable with the straightest edges; a maximum of 

15 min was permitted to reach this.  Once positioning was complete, the catheter was 

secured into place with the sutures and with blu-tak if necessary.  Baseline measurements 

were recorded for 10 min in steady state.   

IVC occlusions 

During baseline recording, the IVC was occluded using blunt forceps (with plastic 

coverings over the tips) for ~ 5 beats to transiently reduce inflow to the heart (preload) for 

the offline calculation of load-independent indices of function.  At least three IVC 

occlusions were performed for each animal to allow a mean value to be taken.   
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Injection of bolus of hypertonic saline 

At the end of the experiment a series of intravenous injections of a small volume (10 µl for 

mouse; 35 µl for rat) of hypertonic saline (15% NaCl w/v) were administered using a 50 µl 

Hamilton precision syringe (Harvard Apparatus, U.K.) to the left jugular vein to allow 

subsequent correction for parallel conductance (VP).  15% NaCl was prepared by 

dissolving NaCl in double-distilled water in a final volume of 10 ml.  Three injections were 

performed for each animal to enable a mean value to be taken.  At the end of the 

experiment the animals were sacrificed. 

2.3.5.4 Open-chest surgical procedure 

This technique was applied to rats only.  Anaesthesia induction, skin preparation, 

intubation by tracheostomy and positioning of the animal with temperature control were all 

performed exactly as described in the previous section (Section 2.3.5.3).  A transverse 

substernal incision was made over the liver and a suture was placed through the xiphoid 

cartilage to allow retraction of the ribs upwards to expose the thorax.  The diaphragm was 

carefully cut transversely to expose the heart.  The catheter was rebalanced and secured on 

to the surgical table.  A small tear was made into the pericardium to free the heart and a 

23G needle was inserted into the LV through the apex to make a passage for the catheter 

which was subsequently inserted.  Optimal positioning was achieved following the same 

criteria as before (the tallest, widest loop with the straightest edges).  Baseline recording, 

IVC occlusions and hypertonic saline injections were all performed as described in the 

previous section.  At the end of the experiment the animals were sacrificed. 

2.3.6 Data acquisition 

PV data were acquired using the Scisense control system (either FV866B for stock mice 

and all rat work; or FV898B for sham and MI mice) connected via an A/D board to a Dell 

laptop using LabScribe2 software version 2.241 (iWorx, New Hampshire, USA).  All PV 

data were analysed offline using the PV module as part of the LabScribe2 programme.  

Data were taken from 20 beats in steady-state (after the 10 min stabilisation period). 

2.3.7 Calculation of volume 

As noted earlier, the conductance signal is converted to volume using the following 

equation: 
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( )PCT VVV −=
α
1

     Eq. 6 

Where VT is the true volume (µl), VC is the volume measured by the catheter (µl) and VP is 

the parallel volume (the mean of the three values taken) from surrounding conductive 

structures and α is a constant gain factor dependent on the SV. 

2.3.8 Calculation of alpha ( αααα) 

α gain coefficient 

α was ascertained using an independent measure of CO by assessing flow through the 

ascending aorta using a miniature ultrasonic aortic flow probe (Transonic Systems, USA).  

The Transonic flow probe is designed to be loosely hooked around a blood vessel and the 

operation is based on the transmission of ultrasound waves from transducers located 

opposite a reflecting plate for which the transit time is a function of volume flow 

intersecting the beam (i.e. blood flow through the vessel) as depicted in Figure 2.9.  The 

Transonic flow probe is made up of a probe body which contains two ultrasonic 

transducers on one side and an acoustic reflector positioned opposite, between the two 

transducers.  One transducer emits an ultrasound wave which intersects the blood vessel in 

the upstream direction, is reflected by the acoustic reflector, and intersects the vessel again 

before being received by the upstream transducer where it is converted into electrical 

signals by the flow meter based on the transit time from one transducer to the other.  This 

sequence of transmission is then repeated but in reverse where the transmitting/receiving 

roles of the transducers are reversed, followed by the reverse again and so on.  During the 

upstream cycle, the ultrasound wave travels against the flow (increased transit time) and 

the downstream cycle travels with the flow (decreased transit time by the same flow-

dependent amount).  The flow meter subtracts the downstream-direction transit time from 

the upstream-direction transit time and the integrated difference is a measure of the flow 

through the vessel (Transonic Systems Operations Manual). 
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Figure 2.9  Transonic flow probe and mechanism of operation. 

(A) Schematic representation of a Transonic flow probe.  Two transducers emit alternating signals which intersect the 

blood flow through the vessel in upstream and downstream directions reflected by the reflector plate located opposite the 

transducers. Also shown is the view of the probe around the blood vessel from a side-angle.  (B) Photograph of a 

Transonic flow probe for measuring flow in rodents (probe shown is the 1.5PSL for mouse ascending aorta which is the 

one used for the mouse experiments in this study).  Figure courtesy of Transonic Systems. 

This approach was used for both mouse and rat studies separately.  Stock control mice 

were used for the mouse experiments.  For the rat experiments (congenic rat study), the 

measurements were performed in the parental strains, WKY and SHRSP. 

Placement of aortic flow probe in vivo 

• Prior to use the aortic flow probe was soaked in saline at 37°C for at least an hour 

before use to allow equilibration with the temperature at which the recordings will be 

made.  Data were acquired using the Transonic System (Transonic Systems, NY, USA) 

with a TS420 flow meter (Transonic Systems) and a perivascular flow probe (1.5PSL 

for mouse and 2.5PSL for rat).  A two-point calibration was used using two in-built 

values (0V = 0 ml.min-1 and 1V = 5 ml.min-1 for mouse; 0V = 0 ml.min-1 and 1V = 20 

ml.min-1 for rat).   

• Animals were anaesthetised (4% isofluorane) in a closed induction box and then 

transferred to a face-mask (4% isofluorane) while the skin across the upper chest was 

shaved and cleaned with a skin disinfectant (Hibscrub, Ecolab Ltd, U.K.).   

For mice, the animals were intubated with a 0.8 mm O.D tracheal cannula and 

ventilated at a respiration rate of 120 breaths.min-1 with tidal volume of 120 µl per 

breath (1.5% isofluorane).   
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For rats, the animals were intubated via tracheostomy (18G IV cannula) and ventilated 

at a respiration rate of 70 breaths.min-1 with tidal volume of 2.4 ml per breath (1.5% 

isofluorane).   

• Animals were then positioned in a supine-to-left lateral position with the right arm 

retracted to expose the right side of the chest.  An incision was made laterally across 

the sternum at the level of the second intercostal space.  The muscles overlaying the 

ribs cage were bluntly freed and retracted using elastic blunt-hook retractors.  The 

second intercostal space was perforated and cauterised using a battery-operated cautery 

pen (Harvard Apparatus, U.K) and the ribs were held open using an additional two 

retractors.  The thymus was gently retracted to expose the aortic arch.   

• The pericardium was carefully perforated to aid clearing of tissue from around the 

aorta.  The ascending aorta was dissected and a silk suture was loosely placed around 

this portion to facilitate lifting the aorta into the flow probe.  Only the ascending 

portion of the aorta (prior to any branchings) was used for measurements; this meant 

that as little flow as possible was missed (only coronary flow was missed).  Once the 

probe was around the aorta, an ultrasound coupling gel (Surgilube, Transonic Systems, 

USA) was injected into the air space between the probe and the aorta to increase 

acoustic coupling.   

• The probe’s positioning was adjusted using a micromanipulator until the maximum 

flow was achieved, taking care not to lose coupling or impede flow.  Ascending aortic 

flow rate was measured by the flow meter and recorded on to a Dell laptop using 

LabScribe2 software (iWorx, New Hampshire, USA).  A 10 min stabilisation period 

was permitted before taking baseline CO measurements. 

Data analysis 

Values of CO were taken as the average maximal aortic flow over a 10 s period of trace, 

defined as the highest flow reading in steady state analysed using Origin 6.1 (OriginLab, 

USA).  The results of these measurements in mice and rats are shown in Figure 2.10 and 

Figure 2.11, respectively.  These results have revealed that the values for CO obtained 

using the flow probe were not significantly different from those obtained by the PV 

catheter for mice (7.83 ± 0.75 vs. 8.25 ± 0.53 ml.min-1; flow probe (n=15) vs. PV catheter 

(n=24); P>0.05; Figure 2.10).  The same was true for both strains of rat; WKY (52.45 ± 



Kirsty K. Foote, 2012  Chapter 2  

96 
 

4.76 vs. 46.51 ± 3.74 ml.min-1; flow probe (n=6) vs. PV catheter (n=5); P>0.05; Figure 

2.11) and SHRSP (37.94 ± 1.60 vs. 38.07 ± 4.18 ml.min-1; flow probe (n=6) vs. PV 

catheter (n=3); P>0.05; Figure 2.11).  The value for α was calculated to be 1.05 for mice, 

0.89 for WKY rats and 1.00 for SHRSP rats using Equation 3.  Therefore the CO measured 

by the PV catheter has been confirmed by the use of an independent measure and the two 

separate measures were found to be in agreement; therefore no correction for the volume 

data for α was required. 

 

Figure 2.10  Comparison of CO measurements obtained with a PV catheter and an aortic flow probe in mice. 

Measurements of CO closed-chest using the PV catheter (white circles; n=24) compared with measurements of CO open-

chest using an aortic flow probe (black circles; n=15) in control stock mice. 

 

Figure 2.11  Comparison of CO measurements obtained with a PV catheter and an aortic flow probe in rats. 

Measurements of CO closed-chest using the PV catheter in WKY rats (white circles; n=6) compared with open-chest CO 

measurements with an aortic flow probe (black circles; n=5), and in SHRSP rats with the PV catheter (white circles; n=6) 

compared with open-chest aortic flow probe (black circles; n=3). 
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α calculation limitations 

(1) Unfortunately, simultaneous measurements of CO with the PV catheter and the aortic 

flow probe in the same animal were not possible as this was associated with a very 

high mortality due to the invasive nature of both procedures.   

(2) Furthermore, for the majority of PV measurements, the carotid artery route was used 

meaning that a portion of the catheter wire would be present inside the ascending 

aorta where the flow probe was required to measure from.  This was therefore 

another reason that simultaneous measurements using both the catheter and the flow 

probe together were not possible.  As the majority of the PV catheter measurements 

were performed under closed-chest conditions (only a proportion of rat experiments 

were performed open-chest), the aortic flow measurements were initially attempted 

closed-chest for consistency.  This involved accessing the aorta from a cervical 

incision and ‘hooking’ the aorta upwards (i.e. the chest cavity was never opened by 

this method).  However this was not feasible and led to difficulty obtaining good 

probe placement and was also associated with a high level of intra-operative 

mortality.   

(3) Failing this, the next attempt involved the probe being inserted open-chest by 

thoracotomy and then closing the chest with sutures; however this was also 

problematic for the following reasons: (i) the positioning of the probe was altered and 

often lost acoustic coupling evident by a reduced signal quality; (ii) the cable of the 

probe did not allow for a complete seal when closing the ribs therefore closed-chest 

conditions could not be guaranteed, and (iii) alterations in the CO after closing the 

chest were inconsistent as in some animals CO was found to increase while in others 

it decreased.   

Therefore in light of these problems and the observation that CO data between open and 

closed chest were not significantly different (data not shown) the open-chest flow probe 

measurements were used.  Placement of the aortic flow probe on the ascending aorta meant 

that very little of the CO was missed.  Only coronary flow (CF) would be missed which is 

estimated to make up 3-4% and 7% of the total CO in rats and mice, respectively.  

Therefore there was a slight underestimation of the CO measured by the flow probe; 

however due to the small percentage contribution of CF it was decided not to correct for 
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CF in light of the fact we also did not take CF measurements from these animals to verify 

against those from the literature. 

2.3.9 Calculation of V P 

VP was estimated offline using LabScribe2 software (iWorx, New Hampshire, USA) using 

the method described in Section 2.3.3.2.  For this calibration, only the volume data from 

the rising phase following the injection was used.  At least three injections were performed 

for each animal and each one calculated individually to allow a mean value to be taken per 

animal. 

2.3.10 Calculation of load-independent indices 

Load-independent indices were obtained by analysing the section of trace corresponding to 

the IVC occlusions.  This was performed offline using LabScribe2 software (iWorx, New 

Hampshire, USA).  The end-diastolic pressure-volume relationship (EDPVR) was assessed 

by fitting the following non-linear exponential equation to the end-diastolic pressure and 

volume points from the family of loops obtained during the occlusion: 

)*( EDVCexpEDP β=     Eq. 7 

 

Where EDP is the end-diastolic pressure, EDV is the end-diastolic volume, C is a curve-

fitting constant and β is the diastolic stiffness constant (Burkhoff et al., 2005). 

2.3.11 Baseline haemodynamic data from control anim als 

Following completion of all the calibration work, the PV system was then ready to be 

applied to the animals in the study.  Prior to use of the technique in the diseased animals, 

the system was first refined in a series of stock animals (mice and rats).  The main aim of 

these experiments therefore was to optimise and validate the PV technique and assess its 

suitability prior to applying the technique to the mouse and rat models of disease in this 

thesis. 

2.3.11.1 Baseline data from stock mice 

Aim:  Prior to the use of the PV system for functional studies on the MI model, PV 

measurements were performed using a closed-chest mechanically ventilated approach 
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(which was also used in sham and MI animals in control stock mice) to assess whether 

baseline data compared with normal published values for mice (to validate the technique).   

Results:  The results of these measurements are shown in Table 2.1 and demonstrate that 

the technique offers a reliable and reproducible approach to measuring LV function in 

mice with data which were comparable with published ranges for normal mice. 

Table 2.1  Baseline haemodynamic parameters of LV function in stock mice compared to published values. 

  
THIS STUDY                  

(n=24) 
PUBLISHED RANGE 

(Pacher et al., 2008) 

   
HR (bpm) 560.47 ± 12.0 470 - 620 

ESP (mmHg) 102.7 ± 1.4 92 - 118 

EDP (mmHg) 3.8 ± 0.6 1 - 6 

dP/dtmax (mmHg.s-1) 10015.9 ± 312.1 8,200 - 14,200 

dP/dtmin (mmHg.s-1) 9012.9 ± 419.9 6,700 - 10,500 

Tau (ms) 5.8 ± 0.3 4.4 - 7.6 

ESV (µl) 14.9 ± 1.3 7 - 21 

EDV (µl) 31.2 ± 1.9 25 - 53 

SV (µl) 17.7 ± 1.2 17 - 30 

CO (ml.min-1) 9.1 ± 0.7 8 - 16 

EF (%) 66.1 ± 3.1 55 - 72 

      

 

2.3.11.2 Comparison of baseine data in stock rats u sing different surgical 
techniques 

Aim:  In order to determine which was the best surgical approach for the rat study, PV 

measurements were performed in three groups (1-3) of control stock male Wistar rats (BW 

310.3 ± 7.2 g) each undergoing a different surgical approach: (1) open-chest approach with 

mechanical ventilation, (2) closed-chest approach with mechanical ventilation or (3) 

closed-chest approach with spontaneous ventilation.   

Results:  Baseline PV data from each group are shown in Table 2.2 and Figure 2.12.   

• There were no statistical differences in the following parameters of LV function 

between the three groups: ESP, EDP, dP/dtmin, SV, CO and EF (P>0.05 for all).  There 

were no significant differences in any parameter between the open-chest approach with 

mechanical ventilation and the closed-chest approach with mechanical ventilation.   
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• HR was significantly greater in animals that underwent closed-chest with spontaneous 

breathing approach compared to closed-chest with mechanical ventilation (9.2% 

greater; P<0.05) and compared to animals that underwent the open-chest approach with 

mechanical ventilation (11.0% greater; P<0.05).  The only differences in dP/dtmax 

observed were a significant increase (24.7% increase; P<0.05) in the closed-chest 

group with spontaneous breathing compared to the open-chest group with mechanical 

ventilation.  Similarly the relaxation time-constant (τ) was significantly reduced 

(12.2% lower; P<0.05) in the closed-chest with spontaneous breathing group compared 

to the open-chest with mechanical ventilation group.  It cannot be ruled out that these 

changes observed could be attributed to the differences in HR.   

• There was a leftward shift in the PV loops from the closed-chest with spontaneous 

breathing group compared to both other groups with significantly lower ESV (44.1 and 

39.6% lower compared to open-chest with mechanical ventilation and compared to 

closed-chest with mechanical ventilation, respectively; P<0.05 for both) and 

significantly lower EDV (32.3 and 21.1% lower compared to open-chest with 

mechanical ventilation and compared to closed-chest with mechanical ventilation, 

respectively; P<0.05 for both).   

Table 2.2  Haemodynamic PV indices of LV function in three different groups of rats. 

  
Open Chest         

(mechanical ventilation)                               
(n=9) 

Closed Chest         
(mechanical ventilation)                               

(n=4) 

Closed Chest         
(spontaneous ventilation)                               

(n=8) 

    
HR (bpm) 406.6 ± 7.5 413.4 ± 11.5† 451.5 ± 9.4* 

ESP (mmHg) 114.9 ± 3.3 118.0 ± 10.0 123.5 ± 4.2 

EDP (mmHg) 6.1 ± 0.6 3.9 ± 0.9 6.4 ± 0.8 

dP/dtmax (mmHg.s-1) 8208.8 ± 487.7 8462.9 ± 427.0 11238.8 ± 639. 7* 

dP/dtmin (mmHg.s-1) 9997.8 ± 510.8 9263.7 ± 682.3 10055.1 ± 289.6 

Tau (ms) 8.2 ± 0.2 7.6 ± 0.3 7.2 ± 0.3* 

ESV (µl) 99.9 ± 14.7 92.4 ± 10.1† 55.8 ± 10.0* 

EDV (µl) 252.1 ± 16.2 216.3 ± 3.1† 170.7 ± 13.5* 

SV (µl) 150.5 ± 16.4 122.9 ± 9.9 111.5 ± 10.4 

CO (ml.min-1) 61.3 ± 7.4 51.0 ± 4.9 50.6 ± 5.4 

EF (%) 62.0 ± 4.8 56.8 ± 4.5 66.7 ± 5.5 

        

* P<0.05 between closed-chest with spontaneous ventilation and open-chest with 

mechanical ventilation.  † P<0.05 between closed-chest with spontaneous ventilation and 

closed-chest with mechanical ventilation. 
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Figure 2.12  Comparison of haemodynamic parameters using different surgical approaches for PV catheterisation 

in rats. 

(A)  Representative PV loops using each method.  (B i-iii): Comparison of systolic functional parameters, (C i-iii): 

Diastolic functional parameters, (D i-iii) Volume parameters using the open-chest (apical) approach with mechanical 

ventilation (light grey bars n=8), the closed-chest approach with mechanical ventilation (dark grey bars n=4) and the 

closed-chest approach with spontaneous breathing (black bars n=8).  Data shown are mean ± SEM. *P<0.05.  Dotted 

lines represent the normal published range for rats under closed-chest conditions (Pacher et al., 2008). 
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Summary:  Collectively, these data demonstrate that when using mechanical ventilation 

there were no differences in LV performance between an open-chest and a closed-chest 

approach.  This observation however was not in agreement with other studies which have 

reported differences in LV function using PV methodology between open and closed-chest 

- it has been shown that ventilated mice undergoing open-chest approaches have larger EF, 

larger SV and a leftward shift in volume parameters compared to ventilated closed-chest 

approaches, which the authors state may be due to the reduced intra-thoracic pressures 

caused by opening the thorax (Lips et al., 2004).  This study is not however directly 

comparable with ours due to the differences in species use and the use of different 

anaesthesia (sodium pentobarbital and not isofluorane).  HR alterations in our study may 

be as a result of the mode of ventilation: animals maintained on the facemask have greater 

HR than mechanically ventilated animals (open and closed chest).  It is possible that by 

controlled artificial ventilation there is a more constant delivery rate and volume of 

anaesthesia owing to the more cardio depressive effect than spontaneous breathing.  

However exact measurements of rate and flow during spontaneous breathing were not 

measured.  In light of these data that the least cardio depressive LV pressure effects were 

observed when using the closed-chest approach (spontaneous breathing) group, this group 

was therefore selected as the method of choice for the congenic rat PV measurements in 

Chapter 5. 

2.4 ECG 

2.4.1 ECG as a method of assessing cardiac function  in vivo 

ECG is a non-invasive method for recording the electrical activity of the heart.  Electrical 

signals generated in the heart through depolarisation and repolarisation during the different 

phases of the cardiac cycle can be detected by placement of recording electrodes in a 

standard configuration on the body of the subject.  The ECG recording, displayed as 

changes in voltage over time, can then be used to measure electrical functioning of the 

heart.  ECG measurements in this study were used for to assess the frequency of cardiac 

arrhythmias in the mouse MI model.   

2.4.2 Protocol for measuring ECG 

Mice were anaesthetised with isofluorane in a closed induction box (4%; 1.5 L.min-1) and 

maintained under spontaneous breathing conditions through a face mask during recordings 

(1.5-2% isofluorane; 1.0 L.min-1).  Body temperature was maintained at 37 ± 0.5°C using a 
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rectal thermocouple probe connected to a feedback control unit with heat-pad (Harvard 

Apparatus, U.K.).  Animals were positioned supine and sub-dermal needle electrodes 

(Grass Technologies, USA) were placed subcutaneously into the right forelimb (positive 

electrode), the left hind limb (negative electrode) and the right hind limb (ground 

electrode) to form a lead II configuration.  Recordings were filtered through a high-pass 

filter of 0.03 Hz and a low-pass filter of 2 kHz at a sampling rate of 2000 samples.s-1 and 

recorded for a 5-min period after allowing ~ 1 min for stabilisation of the signal.  Electrical 

interference was minimised by switching off any electrical items on the recording table 

that were not required and by ensuring the electrode wires were not in contact with each 

other.  ECG measurements were taken 10 min prior to the induction of MI, during CAL 

and 10 min after CAL (this was only performed for a cohort of MI procedures), and was 

also performed at 4-wk/8-wk time points post-MI prior to PV catheter measurements.   

2.4.3 Data analysis 

ECG data were acquired using an ETH-256C amplifier unit (iWorx, New Hampshire, 

USA).  Signals were recorded on to a Dell laptop using LabScribe2 software (iWorx, New 

Hampshire, USA) and analysed offline by counting the number of arrhythmic events that 

occurred in the 5 min recording period only (excluding the initial 1 min stabilisation 

period).  Arrhythmic events were defined as any abnormal beats outside the normal sinus 

rhythm.  These were always counted as single beats even when they occurred one after the 

other.  Tachycardic episodes where normal P-QRS-T beats were not clear were rare and if 

encountered the episode was counted as one arrhythmic event. 

2.5 Organ harvest and weighing 

The protocol used for harvesting organs was the same for mice and rats.  Animals were 

killed using a Schedule 1 method (cervical dislocation) and the following organs were 

harvested: heart, lungs, liver and, in some cases thymus (more details on the individual 

organs are detailed below).  All organs were weighed using a precision electronic balance 

(readability 0.00001g). 

2.5.1 Heart 

The heart was rapidly excised and washed in a beaker of ice-cold saline (0.9% NaCl).  

Excess tissue was trimmed off and the aorta was cut transversely, mounted on to a cannula 

attached to a syringe and perfused retrograde with ice-cold saline to rinse all blood out of 
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the coronary vessels.  The whole heart (which included intact ventricles, atria and major 

vessels) was then blotted dry on tissue paper, photographed and weighed.  Heart tissue was 

then either fixed in formalin for histological experiments or snap-frozen in liquid nitrogen 

and stored at -80°C until needed for biochemical experiments.  Hearts fixed in formalin 

included the whole heart (intact ventricles, atria and major vessels).  Heart tissue that was 

snap-frozen was either intact ventricular tissue only (atria and major vessels removed) or 

dissected regions (infarct, peri-infarct, remote LV and RV). 

2.5.2 Lungs and liver 

For lung and liver measurements, the entire organ (including all lobes) was removed, 

blotted dry and weighed but not stored for any further experiments.   

2.5.3 Thymus 

For thymus harvest, the entire thymus was removed and rinsed in saline to remove any 

blood and then either fixed in formalin or snap-frozen in liquid nitrogen and stored at -

80°C until required.   

2.5.4 Tibial length for normalisation of organ weig hts 

The length of the animal’s left tibia was measured for normalisation of organ weights; this 

was performed post-mortem by making an incision along the length of the left leg and 

dissecting the tibia from surrounding muscle.  Tibial length was defined as the distance 

from the medial condyle to the medial malleolus.  

2.6 Preparation of histological sections of the hea rt 

2.6.1 Mouse heart sections 

All histological sectioning and sectioning of mouse tissue was performed by Mrs Lynn 

Stevenson at the University of Glasgow.  Hearts were given a minimum fixation time of 24 

hr in 10% neutral buffered formalin (CellPath, U.K.) after which time they were embedded 

into a wax block until required for sectioning.  The heart was sliced parallel to the long 

axis of the heart every 250-300 µm using a microtome to produce serial sections 1µm thick 

per heart (this equated to approximately half of the heart as a whole being used).  At every 

250-300 µm interval, two adjacent sections were taken, one for each histological stain: (i) 

Haematoxylin and Eosin (H&E), a stain in which the haematoxylin component stains cell 
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nuclei blue and the eosin component stains all other eosinophilic structures (generally 

intracellular and extracellular structures) in pink/red and (ii) Sirius red, a collagen-specific 

dye that stains nuclei black, muscle and red blood cells yellow and collagen in red (Section 

2.7.1.2 for full descriptions).  At the mid-point depth of the heart (defined by the largest 

ventricular cavity size), two sections were taken for RUNX1 staining (positive and 

negative) (see Section 2.11). 

2.6.2 Rat heart sections 

Histological sectioning and staining for the rat tissue was performed by Mr Andy Carswell 

at the University of Glasgow.  Harvested rat hearts were fixed in 10% neutral buffered 

formalin (CellPath, U.K.) for a minimum of 24 h to allow sufficient penetration of the 

tissue.  Hearts were then paraffin-embedded and sectioned transversely at the LV apex 

using a microtome to produce 3 µm-thick sections.   

2.7 Staining of heart sections 

2.7.1 Mouse heart sections 

Cut sections of the heart were deparaffinised in a clearing agent which removes alcohol 

and makes the section hydrophobic (Citroclear; TSC Biosciences, U.K.) and rehydrated 

through decreasing concentrations of ethanol: 100% ethanol for 2 min, 70% ethanol for 1 

min followed by cold tap water for 1 min.  Sections were then treated either using one of 

the following protocols depending on the stain required:   

2.7.1.1 H&E staining 

For H&E staining, the principle is as follows: Haematin is a complex formed from 

aluminium ions and an oxidation product of haematoxylin.  In acidic conditions, haematin 

binds to lysine residues of nuclear histones via a metallic ion (aluminium) mordant.  The 

stain is usually applied for longer than necessary to ensure saturation of the chemical 

binding sites and this leads to an undesirable over-staining – the discoloration is selectively 

removed by controlled leaching in acidic alcohol termed ‘differentiation’ (NovaUltra 

guidelines).  The protocol therefore involved submerging the sections in Gill’s 

haematoxylin for 5 min (which stains all nuclei blue), washed in tap water, differentiated in 

1% acid alcohol, and rinsed again in water.  Sections were then immersed in Scott’s Tap 

Water Substitute (STWS; a blueing reagent) to arrest differentiation and turn the nuclei 
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blue.  Normal tap water is not alkaline enough for this and is the reason for using STWS.  

This is followed by a 5 min treatment with Eosin to turn the eosinophilic structures shades 

of pink/red before a final wash in water. 

2.7.1.2 Sirius red staining 

For Sirius red staining, the principle is based on the affinity of the Sirius red dye with 

collagen fibrils.  Collagen has a high affinity for acid (anionic) dyes of large molecular size 

which can bind through electrostatic attraction via van der Waals forces (Lyon, 1991).  The 

protocol used was as follows: sections were submerged in Celestine blue (which stains 

nuclei) for 5 min, washed in tap water, placed in Gill’s haematoxylin for 5 min (also stains 

nuclei) and washed again with water.  The sections were placed in STWS (to arrest 

differentiation and turn the nuclei blue) followed by another wash in water before staining 

with Sirius red for 6 min (which stains collagen red/orange and muscle/cytoplasm yellow) 

and a final wash in water. 

After completion of one of the above protocols, the sections were dehydrated through 

increasing concentrations of alcohol (70% for 1 min, 100% for 2 min); this was to remove 

any residual water that could affect the clearing and mounting.  The sections were then 

cleared and mounted with dibutyl phthalate xylene (DPX) mounting medium which is a 

synthetic resin used to allow a coverslip to be attached to the section while preserving the 

stain. 

2.7.2 Rat heart sections 

For Sirius red staining, sections were deparaffinised using 2 x washes with a clearing agent 

(Histoclear, Fisher Scientific, U.K) followed by rehydration in 100% ethanol, 90% ethanol, 

70% ethanol then distilled water for 7 min in each solution.  Sections were then stained for 

1 h with Sirius red, followed by differentiation in 2 x washes of acid water (for 

differentiation) and 2 x washes of tap water for 5 min each.  Sections were then dehydrated 

through 70% ethanol, 90% ethanol, 100% ethanol and Histoclear (2 x washes) for 7 min 

each.  The dehydrated sections were then coverslip-mounted with a mounting agent 

(Histomount, Invitrogen, U.K.).  Rat tissue histology was performed in a different 

laboratory which is why some of the reagents were from different suppliers compared to 

the mouse tissue work; however the principles of the technique were the same. 
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2.8 Histological morphometry of the mouse heart 

For each mouse heart, at least five serial sections (taken from a depth of at least 250 µm 

into the heart; 250-300 µm apart) were examined for morphometric and infarct size 

measurements to ensure a range of depths through the heart were examined avoiding bias.  

All sections were examined with an Olympus BX51 microscope and images were captured 

with an Olympus DP71 camera with the use of Cell D (Olympus, Germany) software.  

H&E stained images were used to identify qualitative histopathologic features in 

myocardial tissue following MI. 

2.8.1 Infarct thickness 

Infarct wall thickness was measured using serial H&E sections of the heart as shown in 

Figure 2.13.  Infarct thickness was defined as the distance between the endocardium and 

epicardium of the infarcted myocardium indicated by the red area on the corresponding 

Sirius red image (or equivalent sham apex) disregarding any papillary muscles.  This was 

performed using a line drawn perpendicular to the curvature of the ventricular wall and the 

distance measured with ImageJ.  Measurements were calculated using at least 5 sections 

taken from middle of the heart 250-300 µm apart (each 1 µm thick) and averaging 3 

equally spaced measurements along the infarct wall (starting at the apex and taking one 

either side) in each slide to yield a final mean infarct thickness for each heart. 

2.8.2 LV chamber size 

LV chamber area was measured from the same H&E sections using ImageJ by tracing the 

area of the LV using the freehand tool as shown in Figure 2.13.  This was performed on all 

sections of the heart to yield a mean value for LV area per heart. 
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Figure 2.13  Diagram showing how measurements of infarct thickness and LV area were measured. 

Infarct thickness was taken at three points along the infarcted region (or equivalent sham region) as indicated by the 

arrows.  LV area was measured by drawing around the circumference of the LV cavity and calculating the area enclosed 

within, as indicated by the dotted lines.  Both infarct thickness and LV area were measured using ImageJ software. 

2.8.3 Infarct size measurements 

Infarct size was measured on sections stained with Sirius red using a length-based 

approach similar to the method published by Takagawa et al. (2007).  Briefly, four lengths 

were measured from each heart section: epicardial infarct length, endocardial infarct 

length, epicardial remaining LV circumference and endocardial remaining LV 

circumference as shown in Figure 2.14.  The infarct included all infarcted myocardium 

which was >50% of the total thickness of the myocardium.  Epicardial and endocardial 

infarct ratios were then calculated by dividing the sum of epicardial or endocardial lengths 

from all sections by the sum of all epicardial or endocardial circumferences from all 

sections respectively.  Infarct size was then calculated using the following equation: 

100
2

(%) ×+= ratioinfarctENDOratioinfarctEPI
sizeInfarct   Eq. 8 
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Figure 2.14   Measurement of infarct size using Sirius red sections of the heart. 

Four lengths were traced: epicardial infarct length (dark blue), endocardial infarct length (dark green), epicardial 

remaining LV circumference (light blue) and endocardial remaining LV circumference (light green).  These were used 

from all sections of the same heart to calculate the endocardial infarct ratio and epicardial infarct ratio (equations for each 

shown).  Infarct size was then calculated using the formula shown above. 

2.9 Collagen quantification 

Sections of the heart stained with Sirius red, either longitudinal whole heart sections 

(mouse) or transverse apical LV sections (rat) were examined and photographed under x 

10 magnification using an Olympus Bx40 microscope with a camera (3.3 RTV, QImaging, 

Canada) and associated software (QCapture, QImaging, Canada).  Images were analysed 

using ImageProPlus (Media Cybernetics, USA) software.   

2.9.1 Collagen quantification in rat hearts (periva scular vs. 
interstitial fibrosis) 

For the congenic rat model study, a square of fixed area (300 x 300 pixels which was 

equivalent to 102 µm2) was drawn and positioned over an area of interest (see below) and 

the number of red pixels, defined by a set colour threshold, was measured within this 

square by the software (Figure 2.15).  The amount of red staining inside this square could 

then be expressed as a percentage of the total pixels contained within the square (300 x 300 
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= 90,000).  Four areas were taken for each rat section (1 perivascular, 3 interstitial 

regions).  The square was placed either over a blood vessel or an area of interstitum 

adjacent to a blood vessel to assess differences in perivascular and interstitial cardiac 

fibrosis, respectively.  Perivascular fibrosis was assessed in at least 5 randomly selected 

vessels per heart.  Blood vessels with comparable lumen size were selected for as much as 

possible and only vessels which could fit into the box were used and only vessels which 

were ~<50% the size of the box  were used.  Interstitial fibrosis was measured in areas 

adjacent to the blood vessels; three separate adjacent areas to each blood vessel were used 

for this and a mean value taken.  Interstitial areas contained no obvious blood vessels or 

other structures.  All perivascular and interstitial measurements were then averaged to give 

a mean value of perivascular and interstitial fibrosis for each heart.  

 

Figure 2.15  Diagram showing how perivascular and interstitial fibrosis was measured in the rat hearts using 

ImageProPlus. 

(A) A box of fixed area (300 x 300 pixels or 100 µm2) was drawn around a blood vessel and three separate adjacent 

interstitial areas for each image.  Five different areas of each LV were performed like this. (B) Red pixels of a set 

threshold were selected to measure collagen-positive red areas.  Positive collagen area was expressed as the percentage of 

red pixels to total pixels (90,000) as defined by the fixed area box. 

2.9.2 Collagen quantification in mouse hearts 

For mouse (MI) model studies, the total number of red pixels in each heart was expressed 

as a percentage of the total pixels to measure the percentage of red-staining in each heart. 
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2.10   Mouse cardiomyocyte isolation 

2.10.1    Mouse cardiomyocyte isolation protocol 

Mice were killed by a Schedule 1 method (cervical dislocation) and then placed in a dorsal 

position with the arms and legs taped down.  The chest cavity was opened and the heart 

rapidly excised and immersed in ice-cold cell isolation buffer.  Cell isolation buffer was a 

Krebs-Henseleit (KH) solution containing the following (in mM): NaCl (130), HEPES 

(25), KCl (5.4), NaH2PO4 (0.33), MgCl26H2O (0.5) and glucose (22).  Using a dissection 

microscope, the ascending aorta was cleared of surrounding tissue and cut transversely 

(below the level of the branches), positioned on to the cannula (attached to the perfusion 

apparatus; Figure 2.16A) and secured with a silk suture (6-0).  Once the heart was secured, 

the perfusion was started and the cannula was moved to a vertical position held by a 

helping-hand device (Maplin Electronics, U.K.) (Figure 2.16B).  All perfusion solutions 

were maintained at 37°C through a heated water bath and water-jacketed perfusion system.  

The heart was initially perfused with KH solution for 2-3 min to remove all of the blood 

and then switched to KH solution containing 0.7 mg.ml-1 collagenase (type I, Worthington 

Chemicals, New Jersey, USA) and 0.07 mg.ml-1 protease (type XIV, Sigma Aldrich, U.K.) 

for 7 min at a flow rate of 4 ml.min-1.  After this time, the heart was then perfused with KH 

containing 0.7% bovine serum albumin (BSA; Sigma Aldrich, U.K.) for 6 min.  The heart 

was then cut down from the cannula and the atria and RV were removed.  The LV was cut 

into small pieces in KH with 0.7% BSA solution and gently triturated with a plastic 

transfer pastette with a large smoothed opening to minimise mechanical tearing during 

cardiomyocyte dissociation.  The cells were sedimented by gentle centrifugation and 

resupended in fresh BSA; this was repeated for a further time before finally pooling the 

two tubes of cells together.  The two tubes each contained a suspension of isolated 

cardiomyocytes; one containing the cells from the first trituration and the other from the 

second.  Ca2+ was added gradually and incrementally (by adding 0.1 mM of CaCl2 every 

10 min) to the cells until the final concentration reached 1 mM.   
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Figure 2.16  Apparatus for mouse ventricular cardiomyocyte isolation. 

(A)  Experimental set-up and (B) cannula showing mouse heart cannulated during digestion. 

2.10.2 Measurements of cardiomyocyte length, width and cross-
sectional area 

Isolated cardiomyocytes were viewed using a microscope (x 20 magnification; Nikon 

Eclipse TE2000-S) and captured using a camera (Rolera-XR, QImaging, Canada) and 

associated software (QCapturePro, QImaging, Canada).  Cardiomyocyte length and width 

was measured by drawing a line end-to-end and measuring the distance using ImageJ 

software as illustrated in Figure 2.17.  Measurements were calibrated using a stage 

micrometer used at the same magnification.  Cardiomyocyte cross-sectional area was 

estimated using the following equation:   

2

2







= widthcell
AreasectionalCross π    Eq. 9 

 

Figure 2.17  Diagram showing how cardiomyocyte width and length were measured. 
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2.10.3 Filtration of cardiomyocytes to remove other  cell types 

The filtration approach was based on a published method (Kosloski et al., 2009).  Isolated 

cells were kept on ice while a second cell isolation from a different heart using the same 

isolation protocol was performed.  The cells from the two hearts were then pooled to yield 

sufficient RNA for subsequent experiments.  All of the following steps were performed on 

ice to minimise RNA degradation.   

• A sample of the pooled cells was taken as a pre-filtration control (2 ml) and was lysed 

in Qiazol lysis buffer (Qiagen, U.K.) and stored at -80°C until required.  The remaining 

suspension (~ 8 ml) was poured through a 300 µm nylon mesh filter to separate large 

fragments of tissue from the cells.  5-10 ml ice-cold Hank’s Buffered Saline Solution 

was then poured through the filter to wash any trapped cells through the filter (HBSS; 

Invitrogen, U.K.).  The composition of HBSS was as follows (in mM): KCl (5.33), 

KH2PO4 (0.441), NaHCO3 (4.17), NaCl (137.93), Na2HPO4 (0.338) and glucose (5.56).   

• The filtrate was spun, supernatant removed, and resuspended in HBSS and then passed 

through a second filter mesh (40 µm).  Based on this method, cardiomyocytes were 

caught on this filter and the contents of the filter were rinsed off into a separate tube 

with ice-cold HBSS, spun and lysed in Qiazol lysis buffer and stored at -80°C until 

required as the purified cardiomyocyte sample.   

• The study on which this filtration method is based (Kosloski et al., 2009) recommends 

the use of RNAlater, a stabilising agent which permeates cells to protect RNA from 

degradation, for subsequent use of the cells in gene expression studies.  However they 

have used RNAlater as a tissue storage medium for their biopsy samples prior to the 

isolation of the cells; whereas in our study the heart was not stored prior to the 

dissociation of the cells (i.e. hearts were harvested fresh from the animal).  RNAlater 

was used initially to store the newly isolated cells based on Kosloski et al.’s paper 

which found that RNAlater significantly enhanced RNA yields; however the RNAlater 

solution was found to cause the cardiomyocytes to ‘clump’ together and due to the 

density of the solution this required higher force centrifugation to pellet the cells which 

causing greater loss of cells through mechanical damage.  Therefore RNAlater was no 

longer used; instead cells were continually kept on ice, rapidly lysed and stored at -

80°C which was sufficient to protect the RNA as was shown by comparable yields and 

quality as determined by the use of a NanoDrop spectrophotometer and Agilent 
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Bioanalyser technologies, both of which are covered in more detail in the later sections 

of this chapter (Section 2.12.2). 

2.11 Immunohistochemistry 

2.11.1 Staining protocol 

IHC refers to the process of detecting antigens (protein of interest) through the binding of 

antibodies.  A common approach to visualising this antibody-antigen interaction is using 

an antibody which is conjugated to an enzyme that catalyses a colour-producing reaction.  

This process typically utilises two antibodies, a primary and secondary antibody, which are 

added in a step-wise fashion.  The primary antibody is typically unlabelled (does not 

contain any conjugate molecules attached) and has been raised specifically against the 

antigen of interest.  The secondary antibody binds to immunoglobulins of the primary 

antibody and is conjugated to a reporter enzyme (e.g. peroxidase) which, in the presence of 

a chromogenic substrate, catalyses a colour-producing reaction to indicate the presence of 

the antigen.  A common reporter enzyme/chromogen combination is the horseradish 

peroxidase (HRP) enzyme with the chromogen 3,3’-diaminobenzidine tetrahydrochloride 

(DAB).  In the presence of HRP, DAB produces a brown precipitate which is insoluble in 

alcohol.  The overall process can therefore be summarised in three steps: (i) application of 

a primary antibody; (ii) application of a HRP-labelled secondary antibody and (iii) 

application of DAB to produce the brown colour (Figure 2.18).  Prior to this 3-step process 

the tissue often needs specific preparatory steps: these include antigen retrieval and 

blocking of endogenous peroxidase activity.  Antigen retrieval is necessary to expose the 

epitopes of the antigen which may have become obscured during the fixation process; this 

is usually performed by heating which breaks the protein cross-links formed by formalin 

thereby uncovering epitopes.  Blocking of endogenous peroxidase is necessary when using 

DAB which could react non-specifically and lead to background staining; therefore it is 

normal procedure to treat the samples with a blocking agent (commonly hydrogen 

peroxide) to block endogenous peroxidase activity.   
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Figure 2.18  Schematic representation of the principle of IHC staining. 

Sequential binding of primary antibody to antigen (A) followed by an enzyme-labelled secondary antibody.  HRP 

catalyses the conversion of the chromogen DAB into a brown coloured precipitate.  A; antigen. HRP; horseradish 

peroxidase. DAB; 3,3’ diaminobenzidine tetrahydrochloride.  Diagram adapted from Leinco Technologies Inc. 

All IHC was performed by Mrs Lynn Stevenson at the University of Glasgow.  Sections 

were cut, dewaxed and rehydrated as described in the previous sections (Section 2.6.1 and 

2.7.1).  The buffer used for washing sections between applications was tris-buffered saline 

(TBS) with 0.05% Tween at pH 7.5 and is used as it lowers surface tension allowing more 

complete coverage of the reagents applied.  Sections were rinsed with buffer and incubated 

in a pressure cooker for 1 min 40 s at 125°C for antigen retrieval.  Sections were loaded 

into an autostainer machine (Dako, Glastrup, Denmark) and the following steps were 

performed by the machine all at room temperature: 1 x buffer rinse, treatment with 

peroxidase blocking reagent (Dako, Glostrup, Denmark) for 5 min followed by 3 x 5 min 

buffer rinses.  Sections were then incubated for 60 min with the primary antibody (rabbit 

polyclonal 1:400, ab61753 or ab35962; Abcam, U.K.) for RUNX1 or with antibody 

dilution buffer (negative control) followed by 2 x 5 min buffer washes.  The primary 

antibody was then labelled with a secondary antibody (anti-rabbit) attached to an HRP 

conjugate (Dako EnVision system, Dako, Denmark) for 30 min.  After 2 x 5 min further 

buffer washes, the sections were treated with 2 x 5 min incubations with the chromogen 

DAB (K5007 Dako, Denmark).  After 3 washes in water, counterstaining was performed 

using Gill’s haematoxylin for 26 s followed by one last wash with water – counterstaining 
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provides contrast to aid visualisation of the primary stain.  Sections were then dehydrated 

and mounted using DPX mounting medium.   

2.11.2 Quantification of IHC staining 

Positive RUNX1 staining was quantified by counting positively-stained nuclei (brown) as 

a percentage of the total nuclei within fields at different regions of the heart.  Sections were 

examined under a microscope (x60 lens; Olympus Bx51) and photographed using a camera 

(Olympus DP71) with accompanying software (Cell D).  Images were imported into 

ImageJ and a grid (5 boxes long x 4 boxes wide) was fitted over the full size of the image 

to facilitate nuclear counting.  Three photographs were taken from each region of the heart 

(infarct, peri-infarct, remote LV and RV) resulting in 12 in total per heart.  The total 

number of positively-stained nuclei (brown coloured) and negatively-stained nuclei (blue 

coloured) were counted in each region and the percentage positive staining was calculated 

using the following equation:              

( ) 1001% ×








+
=

nucleiblueofnumbernucleibrownofnumber

nucleibrownofnumber
stainingpositiveRUNX

Eq. 10 

As the different cell types present were not specifically labelled with markers, no 

discrimination was made to exclude positive nuclei from any cell type.  Positive staining 

included any nucleus which was predominantly brown.  Where it looked like there may be 

two overlapping nuclei, this was counted as one only.  This was repeated for three areas 

per region and a mean value taken.   

2.12   RNA extraction, cDNA synthesis and qRT-PCR 

2.12.1 Gene expression based on quantification of m essenger 
RNA levels 

The level at which a particular gene is expressed in a given tissue can be measured by 

quantifying that gene’s messenger RNA (mRNA) levels.  An mRNA molecule contains the 

sequence of a particular gene (or the ‘blueprint’) which will later be translated into a 

protein.  A cell’s total mRNA therefore contains all the mRNA from all the genes which 

are actively being transcribed in that particular cell.  By isolating the total mRNA from a 

tissue sample and then selecting the mRNA for a particular gene only, the levels of mRNA 

can be quantified and the amount of gene expressed in that sample determined.  This is 
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achieved by the technique of qRT-PCR.  If a gene is expressed at higher levels, there will 

be a greater abundance of mRNA for that gene, therefore a greater number of cDNA 

molecules which will be detected quicker during the qRT-PCR reaction.  As RNA cannot 

serve as a template for qRT-PCR it must be synthesised into double-stranded 

complementary DNA (cDNA) by a method called reverse transcription (RT).  Therefore 

the entire process from the biological sample to gene expression data consists of three main 

stages: (i) extraction of RNA from the biological sample, (ii) synthesis of cDNA from the 

RNA template, and (iii) qRT-PCR using the cDNA.  Each of these steps will be described 

in turn and for each, the principle behind the technique will be described followed by the 

laboratory protocol used for each.   

2.12.2 RNA extraction 

2.12.2.1 Principle of the procedure of RNA extracti on 

RNA extraction is the isolation and purification of RNA from biological samples.  One of 

the most common ways to do this is using a guanidine thiocyanate/phenol/chloroform 

extraction method.  Cells or tissue are homogenised in a lysis buffer containing guanidine 

thiocyanate which dissolves cells membranes releasing the cellular contents into the lysate.  

After lysis, a phenol/chloroform extraction is performed on the lysate.  The lysis buffer 

contains phenol and when chloroform is added these solvents separate into two phases by 

centrifugation: a clear upper aqueous phase (chloroform) and a bright pink lower organic 

phase (phenol).  RNA partitions to the upper phase, DNA to the interphase and proteins to 

the lower phase.  The upper phase (containing the RNA) can then be collected with a 

pipette and added to a spin column for purification.  A spin column is a small plastic 

capped tube similar to an eppendorff containing a silica membrane to which the RNA 

binds while other substances can be washed away thus permitting the purification of the 

RNA.  Ethanol is added to provide appropriate binding conditions for the RNA to bind to 

the membrane of the column followed by various wash buffers designed to support binding 

of the RNA and wash away any contaminants (such as phenol or proteins).  Finally, the 

RNA is eluted (released) from the membrane by addition of water which neutralises the pH 

and reduces the affinity for RNA-binding to the membrane.  The purified RNA can then be 

collected and used for downstream reactions. 
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2.12.2.2 Full procedure for RNA extraction 

The RNA extraction procedure was the same for mouse and rat tissue.  RNA extraction is 

complicated by the ubiquitous presence of ribonuclease enzymes (RNases) which are 

naturally present on the skin of users and can also be present on laboratory benches and 

glassware.  RNases can rapidly degrade RNA if appropriate laboratory practice is not 

adopted throughout the RNA extraction procedure.  Therefore for all RNA work, gloves 

were worn at all times, the bench was cleaned with a spray that eliminates RNases 

(RNAZap, Ambion, U.K.) and RNase/DNase-free tubes and pipette tips were used 

throughout to minimise degradation of RNA.  Total RNA was extracted from frozen heart 

tissue using the miRNeasy Mini Kit (Qiagen, U.K) according to the protocol included with 

the kit.  This kit contains the necessary reagents for the full extraction protocol: lysis 

buffer, two wash buffers (Buffer RWT and Buffer RPE), RNase-free water and spin-

columns.  The exact composition of buffers RWT and RPE are protected by the supplier 

(Qiagen) but they both contain high concentrations of ethanol and guanidine thiocyanate to 

facilitate binding of RNA to the silica membrane and remove traces of proteins and organic 

salts, respectively.  Chloroform was not supplied by the kit and was acquired separately 

(Fisher Scientific, U.K.).  The full protocol was as follows: 

• The tissue was weighed and then homogenised in 700 µl of lysis buffer provided by 

the kit through high-speed shaking (TissueLyser, Qiagen, U.K.) with steel beads 

(supplied ready-made by Qiagen, U.K.).  Homogenisation was performed in 30s 

intervals and checked after each shake to assess level of tissue breakdown and 

minimise over- homogenisation.  Homogenisation was deemed complete when no 

solid tissue pieces remained (this usually took < 5 min).   

• The steel bead was removed and the samples were treated with 140 µl chloroform 

(Fisher Scientific, U.K.) and spun at 4°C for 15 min using a temperature-controlled 

centrifuge (Model 5415R, Lab Mark, Czech Republic) for phase separation.  After this 

time, the uppermost layer containing RNA was collected with a pipette into a separate 

tube, leaving DNA (middle layer) and proteins (bottom layer) behind.   

• RNA was then treated with ethanol and applied to a spin column where the ethanol 

facilitates binding of the RNA to the silica membrane of the column.  The spin column 

was then treated with washing buffers (buffer RWT and buffer RPE) to remove any 

contaminants (e.g. proteins or organic salts) followed by a 15-min on-column digestion 
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with DNase (DNase I, Qiagen, U.K.) (i.e. DNase is added directly to the silica 

membrane of the column) to remove any accidental carry-over of genomic DNA.   

• RNA was then eluted in RNase-free water – this means that the RNA is lifted from the 

silica membrane by the water which raises the pH to >8.5 increasing the charge on the 

surface of the membrane reducing the affinity for RNA-binding which means it can be 

collected in the water that passes through the membrane.  The RNA extracted at this 

stage represents the total RNA (including all mRNA from all different genes) that was 

present in the tissue sample.   

Once the RNA has been extracted, there are three quality control checks to be performed 

which are recommended at this stage prior to further use in downstream reactions.  These 

include assessment of (i) RNA quantity (yield), (ii) RNA purity and (iii) RNA integrity.  

These factors are important because cDNA synthesis requires a minimum template amount 

(yield is important), any chemical impurities can adversely affect the reverse transcriptase 

enzyme (purity is important) and degraded RNA can lead to shorter cDNA fragments 

which could underestimate the results (integrity is important).   

(i)-(ii)  The quantity and purity  of the RNA were measured using a Nanodrop ND-1000 

Spectrophotometer (Nanodrop Technologies/Thermo Scientific, U.K.).  The Nanodrop 

ND-1000 is a spectrophotometer which measures the absorbance of light between 220-320 

nm of a sample of nucleic acid - the absorbance is linearly proportional to the 

concentration of molecules within the sample and can be used to quantify the 

concentration of nucleic acid in a sample based on this (Beer-Lambert law).  The machine 

requires only a small amount of sample (0.5-1 µl) which is pipetted on to a measurement 

pedestal.  An ‘arm’ is closed down on to the pedestal and a liquid sample column is 

formed between the two surfaces through which UV light can be passed and the 

absorbance measured.  RNA absorbs light maximally at 260 nm and the absorbance ratios 

260/280 nm and 260/230 nm provide information on the purity of the RNA sample.  Pure 

RNA will have a 260/280 ratio of 1.9-2.1 (<1.9 indicates protein contamination) and a 

260/230 ratio of 1.8-2.3 (<1.8 indicates organic contamination by phenol).  

(iii)  RNA integrity  was determined using the Agilent Bioanalyzer 2100 (Agilent 

Technologies, U.K.); this step was performed by Julie Galbraith or Jing Wang at the 

Functional Genomics Centre at the University of Glasgow.  This method is based on 

capillary electrophoresis with a fluorescent dye that binds to RNA.  Capillary 
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electrophoresis of a (total) RNA sample shows two distinct peaks corresponding to the two 

ribosomal RNA (rRNA) species in the sample: 18S and 28S and in a sample with low 

degradation the baseline between the peaks should be relatively flat (Figure 2.19).   

How the Agilent Bioanalyzer 2100 works:  The machine uses a chip which contains wells 

for the samples with micro-channels between the wells.  The chip is prepared by filling the 

micro-channels with a sieving polymer matrix gel and a fluorescence dye and the samples 

of RNA are then loaded into the wells along with a size ladder.  Once the micro-channels 

and wells are filled, a 16-electrode pin cartridge fits into the wells of the chip and the 

charged molecules of RNA are driven by the voltage gradient, separated according to size 

with smaller fragments migrating further than larger ones.  The dye molecules intercalate 

into the RNA strands which allows them to be visualised by laser-induced fluorescence.  

The result is visualised as an electropherogram where the amount of fluorescence is 

proportional to the amount of RNA at a given size.  An algorithm known as the RNA 

Integrity Number (RIN) has been developed to indicate the integrity of the RNA sample 

based on 8 different features of the electrophoretic output trace (total 28S/18S ratio, 28S 

peak height, area under 28S peak, 18S and 28S area compared to area of the fast region, 

linear regression of end-point of fast area, number of detectable fragments in fast region, 

presence or absence of 18S peak and relation of the overall mean to the median) 

(Schroeder et al., 2006).  Based on these criteria, computer software calculates the RIN 

number on a scale from 1-10 by order of increasing RNA integrity (1-badly degraded; 10-

highly intact).  It is generally accepted that samples with a RIN >5 (but preferably >8) are 

suitable for qRT-PCR experiments (Fleige & Pfaffl, 2006) although this is largely 

dependent on the individual study.  For this thesis, only RNA that met the following 

criteria were used (A260/A280 > 1.8 and RIN>7). 



Kirsty K. Foote, 2012  Chapter 2  

121 
 

 

Figure 2.19  Example electrophoresis output traces from the Agilent Bioanalyzer showing analysis of RNA 

integrity. 

(A) Good quality RNA is visible with two prominent 18S and 28S peaks with a 28S/18S ratio of ~2 and a flat baseline – 

RIN value of 9.8. (B) Example where RNA degradation is visible as a decrease in the 18S and 28S peaks with an increase 

in smaller degradation fragments resulting in a noisier baseline – RIN value of 5.1.  Figure courtesy of Agilent 

Technologies. 

2.12.3 Synthesis of cDNA 

2.12.3.1 Principle of procedure of cDNA synthesis 

RNA is not a suitable template for a qRT-PCR experiment which requires double-stranded 

DNA to work therefore the RNA must be transcribed into cDNA.  This is performed by the 

process of reverse transcription in which single-stranded mRNA is transcribed into double-

stranded DNA (i.e. the reverse to the normal transcription process in which DNA is 

transcribed to mRNA) as depicted in Figure 2.20.  This is performed using oligonucleotide 

primers of poly-thymine (oligo-dT primers) that specifically bind to the poly-A tail of all 

mRNAs and direct the enzyme reverse transcriptase (RNA-dependent) to synthesise a new 

strand using dNTPs (A, T, C and G).  This forms an mRNA:DNA hybrid (one strand is the 

mRNA and the other the newly synthesised cDNA strand) for all the mRNAs in the 

sample.  In order to synthesise a new cDNA strand to replace the mRNA strand, the 

mRNA must be digested with an enzyme, usually RNase H.  Once the mRNA strand is 

digested, the single-stranded cDNA forms a hairpin loop on itself due to its hydrophobic 

nature and this serves as the ‘primer’ to direct synthesis of the complementary new strand 

of cDNA by a DNA-dependent DNA polymerase.  The result is double-stranded cDNA 

derived from the original template mRNA sequence.  
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Figure 2.20  cDNA synthesis by reverse transcription. 

 

2.12.3.2 Full protocol for cDNA synthesis 

As was the case with the RNA extraction protocol, the cDNA synthesis protocol was the 

same for mouse and rat samples.  Prior to the synthesis of cDNA, the RNA was given a 

second treatment of DNase to ensure complete removal of contaminating genomic DNA; 

this was done by incubating the RNA with a different DNase I (Turbo DNA-free, Ambion, 

U.K.) for 25 min at 37°C.  After this time a DNase-inhibitor was added to inactivate the 

DNase enzyme (DNase Inactivation Reagent provided with Turbo DNA-free kit, Ambion, 

U.K.).  First strand cDNA was synthesised from 1 µg RNA (measured by the Nanodrop 

Spectrophotometer as previously described) by reverse transcription using the Omniscript 

Reverse Transcription kit (Qiagen, U.K.).  This kit contains the reagents necessary for the 

protocol including the reverse transcriptase enzyme (catalyses synthesis of cDNA strands 

and degrades RNA in RNA:cDNA hybrids), dNTPs (‘building blocks’ for the new cDNA 

strands), buffer RT (contains Mg2+ for optimal reverse transcriptase activity) and 

RNase/DNase free water for dilutions or as a substitution for the reverse transcriptase 

enzyme in control reactions.  The Omniscript reverse transcriptase enzyme contains three 

distinct enzymatic functions: (i) RNA-dependent reverse transcription (catalyse the 
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synthesis of cDNA from an RNA template), (ii) DNA-dependent reverse transcription 

(catalyse the synthesis of cDNA from a cDNA template) and (iii) RNase H (degradation of 

RNA in RNA:cDNA hybrids only).  Additional reagents that were not provided in this kit 

but were necessary for the reaction were oligo-dT primers (Qiagen, U.K.) and an RNase 

inhibitor (RNase-Out, Invitrogen, U.K.) for removal of contaminating RNases (this does 

not affect the RNase activity of the Omniscript reverse transcriptase enzyme).  The final 

composition of the reaction is shown in Table 2.3 to give a final volume of 50 µl and the 

reaction was performed in an incubator at 37°C for 1 h.  Reactions containing 

RNase/DNase-free water instead of reverse transcriptase enzyme served as negative RT 

controls (denoted RT-).  The resulting cDNA produced at this stage contains all the cDNA 

of all the genes that were present in the original tissue sample, transcribed from all the 

mRNAs in the sample.  The cDNA corresponding to the gene of interest (e.g. Runx or 

Gapdh) is selectively amplified in the final stage using gene-specific primers by qRT-PCR 

allowing quantification of the expression of the gene of interest. 

Table 2.3  Reverse transcription reaction components. 

Component Volume (per reaction) Final concentration 
Master mix   
10x Buffer RT 5 µl 1x 
dNTP mix (5 mM each 5 µl 0.5 mM each dNTP 
Oligo-dT primer (10 mM) 5 µl 1 µM 
RNase inhibitor (10 units/ul) 2.5 µl 25 units (per 50 µl reaction) 
Reverse transcriptase 2.5 µl 10 units (per 50 µl reaction) 
RNase-free water Variable* - 
   
RNA Variable* 1 µg 
Total Volume 50 µl - 

* Variable depending on available RNA concentration.  Final volume is made up with 

RNase/DNase-free water. 

2.12.4 Verification of cDNA synthesis 

Prior to qRT-PCR, newly synthesised cDNA (including RT- controls) were tested for the 

presence of double-stranded DNA to verify successful reverse transcription.  This was 

done using conventional PCR amplification.  Conventional PCR amplification is based on 

the same principle of exponential amplification by the three-step process of denaturing, 

primer annealing, and strand extension as previously described.  It differs from qRT-PCR 

in that the reactions do not contain any fluorescence labelling therefore the product is not 

detected as it accumulates but rather at the end-stage post-amplification by agarose gel 
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electrophoresis.  Conventional PCR was sufficient for this stage in verifying presence of 

cDNA.  The protocol for this was as follows:   

Conventional PCR:  For these experiments the PCR was run beyond 27 cycles to ensure 

the product is collected from the plateau phase (maximum accumulated product).  PCR 

reactions were conducted in 10 µl final volume containing 0.5 µl cDNA, 1 µl PCR custom-

made master mix (Thermo Scientific, U.K.), 2 µl primers (10 µM) for Runx1 (rat-specific 

or mouse-specific as appropriate; Quantitect, Qiagen, USA) or glyceraldehyde-3-phosphate 

dehydrogenase (Gapdh) (Eurofins MWG Operon, Germany) and 0.1 µl Taq DNA 

polymerase (Thermo Scientific, U.K.).  A layer of oil was placed on the top of the reaction 

mix to avoid loss of solution by evaporation in the machine.  Reactions were performed 

using a Stratagene RoboCycler PCR machine (which provided cyclic heating conditions) 

for either 30 cycles (Gapdh) or 40 cycles (Runx1) to ensure analysis was taken from the 

plateau phase of the reaction (Figure 2.23).  Each cycle was 50s at 95°C, 50s at 55°C and 1 

min at 65°C.  Amplified PCR products were then visualised by gel electrophoresis.   

Gel electrophoresis:  Gel electrophoresis can be used to separate DNA fragments by size 

and charge.  DNA from the PCR reaction can be loaded into wells of an agarose gel and by 

application of an electric field, the negatively-charged DNA moves through the agarose 

matrix towards the positive electrode with shorter fragments migrating further than longer 

fragments.  The gel is treated with a fluorescent dye called ethidium bromide which allows 

the final bands on the gel to be visualised under UV light.   

Preparation of the gel:  A 2% agarose gel was prepared fresh using powdered agarose 

(NuSieve; Fisher Scientific, U.K.) dissolved in 0.5x Tris/Borate/EDTA (TBE) buffer in a 

final volume of 250 ml and heating in a standard microwave for approximately 2.5 min.  

The composition of TBE buffer for a 0.5x stock was (in mM): Tris (44.5), boric acid (44.5) 

and EDTA (1.0).  Once the agarose was completely dissolved the liquid gel was cooled 

prior to pouring to prevent damage to the plastic gel tray (to approximately below 60°C) by 

holding the bottle containing the gel under cold running tap water for 5 min.  After this 

time, 10mg/ml EtBr (Invitrogen, U.K.) was added to the liquid gel, swirled to mix, and the 

gel was then poured into a Perspex gel tray and left for 30 min to set with gel combs in 

place to create the wells.  Once the gel was set, the gel combs were removed and the gel 

was placed into a gel tank with 0.5x TBE buffer.   
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Loading and running the gel:  3 µl PCR product (final amplified cDNA) was mixed with 2 

µl loading dye and added to each well.  Loading dye (6x; Promega, U.K.) contains 

bromophenol blue dye (which allows coloured visualisation of the gel electrophoresis 

progress) and Ficoll, a high molecular weight (MW) polysaccharide (which increases the 

density of the sample to a level greater than the surrounding TBE buffer to ensure it falls to 

the bottom of the well).  A 100 bp DNA size ladder (5 µl) was run alongside each run 

(Promega, U.K.) to allow size comparisons of the fragments to be made.  The gel 

electrophoresis was run for 30 min at 160V.  Successful RT reactions were confirmed by 

positive single bands of correct size for RT+ samples (120 bp for Runx1 and 140 bp for 

Gapdh) and no band in RT-  control samples (RT negative reaction - water instead of RT 

enzyme) (Figure 2.21). 

 

Figure 2.21  Example gels from DNA gel electrophoresis to verify reverse transcription and appropriate size 

products. 

(A) Samples of cDNA from positive (+) and negative (-) reverse transcription reactions amplified with conventional PCR 

using Gapdh primers.  Positive samples show a single, distinct band of appropriate length (140 bp) with no bands present 

in negative control reactions.  (B) Samples of cDNA from positive (+) samples only to verify a single, distinct band of 

appropriate size for Runx1 amplicons (120 bp). Primers for Gapdh were used to confirm positive and negative samples 

(Runx1 primers were used when confirming amplicon length for Runx1).  

2.12.5 qRT-PCR 

2.12.5.1 Principle of PCR 

The principle of PCR (both qRT-PCR and conventional PCR) is based on the amplification 

or replication of DNA (derived from the mRNA) to produce more DNA.  This involves 

first denaturing double-stranded DNA by applying a high temperature (~90-98°C) which 

separates the DNA into two single strands.  Short DNA sequences known as primers which 

have been selected to flank the DNA sequence of interest can then anneal to the single 

strands when the temperature is reduced to 50-65°C.  At a slightly higher temperature of 

72-80°C an enzyme known as DNA polymerase begins synthesising two new strands 
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which are complementary to the template strands by incorporating nucleotide bases 

(adenine, thymine, cytosine and guanine) provided in the reaction (this process is directed 

by the primers which indicate the start site).  This results in two new strands and doubling 

of the original DNA (1 copy to 2 copies of DNA).  This represents two new templates for 

the next cycle in which these three main temperature-dependent steps are repeated again.  

The entire process is continually repeated in cycles to produce exponential doubling of 

DNA at each cycle for the sequence of interest.  PCR reactions take place in plastic tubes 

within a thermal cycler machine and require the following components: 

Component Function 

Master-mix:  

Buffer Maintains the master-mix at the appropriate pH for the 

reaction. 

Deoxynucleotide triphosphates 

(dNTPs) 

Provide energy and nucleotides for the synthesis of 

DNA.  Each nucleotide base must be added in equal 

concentration to avoid mismatch of bases. 

Primers specific to gene of 

interest 

Short pieces of DNA (20-30 bp) that bind to the DNA 

allowing the polymerase enzyme to initiate the 

incorporation of dNTPs. 
Polymerase A heat-stable enzyme that adds dNTPs to the DNA 

template strand. 
DNA sample: 
Template DNA Sample of DNA to be amplified by the PCR reaction. 

 

The PCR process:  PCR usually consists of 20-40 repeated cycles with each cycle made 

up of a defined series of temperature steps depending on the activity of the DNA 

polymerase, the concentration of dNTPs and divalent cations, and the melting temperature 

of the primers, as outlined below and summarised in Figure 2.22: 

(1) Initiation : This step involves heating the reaction to 94-98°C and held for 1-9 min 

and is only required if the DNA polymerase requires ‘heat-start’ activation. 
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(2) Denaturation: The reaction is then heated to 94-98°C for 20-60s which disrupts 

the hydrogen bonds between the complementary bases which hold the two DNA 

strands together, therefore causing the two strands to separate (or ‘melt’). 

(3) Annealing: The reaction is lowered to 50-65°C for 20-60s which allows the 

primers to anneal to the single-stranded DNA template.  DNA polymerase then 

binds to the primer-template hybrid. 

(4) Elongation (extension): The reaction is then heated to 72-80°C which is the 

optimum temperature for DNA polymerase (a temperature of 72°C is used for Taq 

polymerase).  The DNA polymerase synthesises a new strand by adding dNTPs to 

the template strand in the 5’ to 3’ direction.  Under optimal conditions the amount 

of target DNA doubles at each extension step.  

(5) Final elongation: A single step may be performed after the last cycle to ensure any 

remaining single-stranded DNA is fully extended.  This step usually involves 

heating to 70-74°C for 5-15 min. 

(6) Final hold: The final step can be applied for an indefinite time at 4-15°C which 

holds the reaction until the user is ready to collect it from the machine. 
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Figure 2.22  Schematic representation of the PCR process.  

(1) Denaturation at 94-98°C (2) Annealing at 50-65°C (3) Elongation at 72-80°C.  Three cycles are shown.  Blue lines 

represent the DNA template to which primers (red lines) anneal and are extended by DNA polymerase (green circle) to 

produce shorter DNA products (green lines) which are then used as templates as the PCR progresses. 

Stages of a PCR reaction:  The complete PCR process can be divided into three main 

phases; (1) exponential phase, during which there is exact doubling of the product after 

each cycle; (2) linear phase, during which the reaction components are being consumed 

and the reaction is slowing; and (3) plateau phase, during which the reaction components 

have been exhausted and no more product is being made (Figure 2.23).  
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Figure 2.23  Phases of a conventional PCR reaction. 

 

Conventional vs. quantitative qRT-PCR:  Conventional PCR uses agarose gel with 

ethidium bromide for detection of PCR product (which is the amplified DNA) at the final 

phase or end-point of the reaction as described previously in Section 2.12.4.  Conventional 

PCR is sufficient for simply detecting the presence of double-stranded cDNA to verify 

appropriate RT as described; however for gene expression studies it is limited in that it 

permits only semi-quantitative analysis of target gene levels (due to the insensitivity of the 

ethidium bromide) and since the analysis is taken from near the end-point of the reaction it 

is often associated with poor precision as the reaction has often proceeded past the 

exponential stage and products may therefore have begun to degrade.  Conventional PCR 

has been replaced by real-time quantitative reverse transcription PCR (qRT-PCR) which 

differs in that it includes a fluorescent dye into the reaction to allow detection of target 

DNA as the reaction is occurring (i.e. in real time) rather than at the end-point of the 

reaction.  This makes qRT-PCR more accurate than the conventional PCR method.  

Reporter dyes may be sequence-specific, for example the well-known Taqman probe, an 

oligonucleotide specific to the target sequence labelled with two fluorophores (a reporter 

and a quencher dye).  As long as the two fluorophores remain in close proximity they do 

not emit a fluorescence signal; however during the extension phase of replication the 

action of Taq polymerase cleaves the 5’ end of the probe allowing the two dyes to become 

separated therefore as product accumulates the fluorescence increases.  Reporter dyes may 

also be non-specific, for example SYBR green, which binds to the minor groove of double-

stranded DNA and as the reaction proceeds and product increases the fluorescent signal 

also increases (Figure 2.24).  Further details on the processing of qRT-PCR data is covered 

in the later sections. 
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Figure 2.24  SYBR green binding during PCR amplification. 

SYBR green (green circles) binds to double-stranded DNA and can be used to measure the abundance of template DNA 

at the end of the extension step of the PCR reaction. 

2.12.5.2 Full protocol for qRT-PCR 

For this thesis, qRT-PCR was used to assess Runx mRNA levels in either whole heart 

samples (LV + RV) or in dissected regions of the heart (infarct, peri-infarct, remote LV 

and RV).  For regional work, the RV was selected as the region to which other regions 

were compared as the RV represented a comparison for the LV and represented the furthest 

region from the infarcted region.   

Preparation for qRT-PCR:   All reagents were thawed and kept on ice and all qRT-PCR 

reactions were prepared in a laminar flow hood to prevent aerosol contamination of cDNA 

or primers.  Gloves and a laboratory coat were worn at all times to further minimise any 

contamination.  Synthesised cDNA was diluted 1:5 with RNase/DNase-free water (final 

volume 30 µl) to allow a manageable volume (2 µl) for pipetting to reduce error.  Either 

96-well or 384-well plates specifically designed for qRT-PCR were used (Applied 

Biosystems, U.K.) depending on the number of samples.  Runx was detected with the 

appropriate Runx-specific primers (Qiagen, U.K.).  These primers have also been 

bioinformatically validated for high sensitivity (excludes short nucleotide polymorphisms 

(SNP) therefore more accurate), have high efficiency and high specificity with short 
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amplicon length (120bp) which have better efficiency as less SYBR green is incorporated.  

A master-mix was prepared to minimise variation of reagent concentration between wells; 

two were prepared, one for each gene (Runx1 and the housekeeper, Gapdh) enough to 

contain the following in each well: 

Table 2.4  qRT-PCR mastermix reaction components. 

 Gapdh Runx 

Master-Mix:    

RNase/DNase-free H2O 4 µl 6 µl 

SYBR green mix* 10 µl 10 µl 

Forward Primer (F) 2 µl 

Reverse Primer (R) 2 µl 
2 µl (F & R) 

cDNA:   

cDNA (2 µl) (2 µl) 

Final Volume: 20 µl 20 µl 
 

*The SYBR green mix (Applied Biosystems, U.K.) contains SYBR Green dye (the main 

reporter dye which intercalates with double-stranded DNA to indicate the quantity of DNA 

accumulating during the amplification process), an Amplitaq Gold DNA polymerase 

(catalyses synthesis of new DNA), dNTPs (the building blocks of the new strand) and a 

ROX dye (an internal passive reference dye to normalise non-PCR related fluorescence 

fluctuations that may be caused by pipetting error or sample evaporation).   

Sample loading:  2 µl of cDNA sample was added to each well followed by 18 µl of the 

master-mix (final volume 20 µl) with centrifugations of 1500 rpm between the addition of 

cDNA and master-mix to ensure all drops of solution fall to the bottom of the well.  An 

optical adhesive cover film was applied to the top of the plate to prevent loss of solution 

through evaporation.   

qRT-PCR reaction:  The qRT-PCR reaction was then performed in an ABI 7500 machine 

with Sequence Detection software (Applied Biosystems, U.K.) to measure relative gene 

expression.  The cycle conditions were as follows: initial 2 min at 50°C followed by 10 

min at 95°C to heat-start (activate) the Taq polymerase enzyme, then 40 cycles where each 

cycle was 95°C for 10 min, 60°C for 1 min.  Runx was detected using Runx primers 

(Qiagen, USA) normalised to Gapdh (Eurofins MWG Operon, Germany).  At the end of 

the 40 cycles, the machine was set to perform a melting curve.  This is an important step 

for SYBR green based detection as SYBR green will bind to any double-stranded DNA 
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therefore this stage was performed to ensure that no contaminating DNA is present in the 

sample which could affect the results.  The melting step is performed immediately after the 

40 cycles by slowly ramping up the temperature of the reaction from 60-95°C causing the 

DNA to denature while continually collecting fluorescence during this time.  The melting 

point is the temperature (Tm) at which the two DNA strands separate causing the 

fluorescence to rapidly decrease.  Melting curve analysis is described in the section that 

follows (Section 2.12.6.1).  In all qRT-PCR experiments, template-free (no cDNA) 

controls and RT- controls were always run in parallel with positive samples and each 

sample was run in triplicate for each experiment.  Baselines and thresholds were calculated 

automatically by the software (see below for more detail on these parameters).  

2.12.6 Interpretation of qRT-PCR data 

This section aims to cover the interpretation of qRT-PCR data and covers the following:  

(i) the theory behind the qRT-PCR amplification curve; (ii) analysis of the qRT-PCR data 

followed by (iii) example calculations showing how the data was analysed for the different 

areas of the study. 

2.12.6.1 Theory of the qRT-PCR amplification curve 

Figure 2.25 shows graphical representations of typical qRT-PCR output amplification 

plots.  An amplification plot is the normalised fluorescence signal of the reporter dye (e.g. 

SYBR green) plotted against the PCR cycle number.  DNA is being amplified at each cycle 

therefore as the PCR reaction proceeds (cycle number increases) the number of DNA 

products increases and as fluorescence is directly proportional to DNA concentration 

(more fluorescence with more DNA), the fluorescence also increases (Figure 2.25A).   

Baseline fluorescence:  In qRT-PCR, the fluorescence does not become detectable for the 

initial cycles of the reaction as the DNA concentration has not accumulated to a level 

where the fluorescence is detectable by the machine; the fluorescence during the initial 

cycles of the reaction where it is not changing is referred to as the baseline fluorescence 

(Figure 2.25A).  The fluorescence signal shown in the amplification plot is the normalised 

fluorescence of the reporter dye (Rn).  Rn is the ratio of the fluorescence by the reporter 

dye (e.g. SYBR green) to the fluorescence of a passive reference dye.  A passive reference 

dye is required to normalise non-PCR related fluctuations in fluorescence due to pipetting 

or sample evaporation, a commonly used example is the ROX dye for use in Applied 

Biosystems machines.  The software automatically normalises this.  Typically the delta-Rn 
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(∆Rn) is used in amplification plots which is Rn with the baseline fluorescence subtracted 

(∆Rn = Rn – baseline).   

Cycle threshold (Ct):  Following the initial cycles whereby the fluorescence is 

unchanged, the amount of DNA accumulating during the amplification process will begin 

to reach detectable fluorescence levels and there is a sudden increase in the fluorescence 

signal.  The cycle at which this increase in fluorescence becomes detectable is known as 

the threshold cycle (Ct).  It is the Ct which defines the quantification of gene expression.  

The higher the starting copy number of a gene (greater number of cDNA molecules 

containing the gene sequence) the earlier the increase in fluorescence (i.e. the earlier the 

Ct).  Therefore the Ct is inversely related to the level of gene expression - the smaller the 

Ct, the higher the gene expression.  The Ct is defined by a threshold fluorescence set either 

manually by the user or more often by the software package which has auto-threshold and 

auto-baseline features.  The threshold is the ∆Rn used for which above this defines the Ct 

of the reaction.  The threshold must be set above the baseline but low enough to be within 

the exponential phase of the amplification curve.  The Ct is derived from the intersection of 

the amplification plot with this threshold line (Figure 2.25A-B).      

 

Figure 2.25  Graphical representation of qRT-PCR data. 

(A) A typical qRT-PCR amplification curve where ∆Rn is plotted against PCR cycle number (Rn is the normalised 

reporter fluorescence; ∆Rn is the Rn minus the baseline).  During the initial cycles the fluorescence does not reach a 

detectable level, this is known as the baseline (indicated).  The cycle at which the amplification curve intersects the 

threshold (green line) is the Ct, as shown.  (B) An example amplification curve plotted using the log (∆Rn) against PCR 

cycle for two samples (A; blue and B; red).   The green line is the threshold (set at the same level for both samples); the 

gray line is the baseline.  As the Ct determines the expression levels of the gene present in the sample in an inverse 

manner (lower Ct, higher gene levels) and sample B has an earlier (lower) Ct (CtB) than sample A (CtA), sample B 

therefore has higher expression of the gene of interest than sample A.  Figure adapted from Applied Bioysystems guide 

Real-time PCR: understanding Ct. 
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Melting curve analysis:  Melting curves show the melting temperature (Tm) for samples 

which is dependent on the base composition and length of the DNA present in the sample.  

All DNA from the same primers should have the same Tm resulting in a single peak in the 

melting curve; the presence of other peaks indicates contamination – this may be from 

contaminating DNA or from primer-dimers (which are formed when primers anneal to 

themselves).  Primer-dimers are easily identified by smaller peaks to the left of the main 

peak as they are smaller in size and therefore have lower Tm.  An example of melting curve 

analysis is shown in Figure 2.26.  For this thesis, primer-specificity was confirmed in 

samples by single peak melting curves with no primer-dimer formations.  Only samples 

with a single peak on a melting curve were included. 

 

Figure 2.26  Example melting curves from the qRT-PCR dissociation stage. 

Melting curves are plotted as the derivative of fluorescence d(rfu)/dT against temperature.  The derivative is often plotted 

as it is useful for identifying different peaks.  (A) Melting curves with a single peak at the same Tm indicating no 

contamination.  The no template control (NTC) samples should have a straight line as there should be no DNA in the 

sample.  (B) Multiple peaks present indicating contamination.  Some of the peaks on the left may be from primer-dimers 

as there are smaller peaks melting at a lower temperature.  All samples in this thesis were tested by melting curve 

analysis and only those which showed a single peak were included.  Figure adapted from Gunster Biotech Ltd. 

2.12.6.2 Analysis of qRT-PCR data 

There are two different methods which can be used to quantify qRT-PCR data: absolute or 

relative quantification.  Absolute quantification provides an exact copy number of the gene 

using a standard curve approach whereas relative quantification presents the expression 

levels relative to a specific control (e.g. treated vs. non-treated).  Absolute quantification is 

only usually used when the precise quantity of amplified DNA is required (e.g. for viral 

load studies where the absolute number of viral copies in the sample is to be determined).  

But when comparing between groups, relative quantitation is sufficient.   



Kirsty K. Foote, 2012  Chapter 2  

135 
 

2.12.6.3 Analysis of qRT-PCR data by the comparativ e Ct method 

One of the most common methods of analysing relative qRT-PCR data is using the 

comparative Ct method (known as the 2-∆∆Ct method) (Schmittgen & Livak, 2008).  The 

equation for this is: 

CtchangeFold ∆∆−= 2      Eq. 11 

Where ∆∆Ct = [(Ct target gene – Ct reference gene)SAMPLE A - (Ct target gene – Ct reference 

gene)SAMPLE B].  The derivation of this formula can be found in the appendix.   

The result is the fold change in expression of the gene of interest between one sample and 

another (e.g. treated vs. untreated).  The sample to which the others are compared against is 

known as the calibrator sample and is typically the control, for example a healthy subject 

in a disease study.  Where the data is required to be as single data points (i.e. not compared 

to a calibrator sample) it is acceptable to use 2-∆Ct or 2-Ct.  Where samples have been run in 

triplicate, the mean Ct is used for the equations above.  For this thesis qRT-PCR results 

were analysed using comparative Ct calculations; either 2-∆∆Ct (regional comparisons 

relative to RV region), 2-∆Ct (whole heart or RV region between sham and MI) or 2-Ct 

(Gapdh stability) as recommended by accepted published methods (Schmittgen & Livak, 

2008).  Example calculations for each of these are detailed below.  Statistical significance 

between regions within the same heart was tested using ANOVA with multiple regression 

analysis performed with SPSS software.  This involved selecting the RQ as the dependent 

variable for the analysis.  An example of how this was calculated is shown in Figure 2.27. 
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Figure 2.27  Example outputs of statistical analysis of qRT-PCR data using SPSS software. 

(A) The data set as a grid of dummy variables by a yes (1) or no (0) system – where there is 1.00 means the RQ 

corresponds to the appropriate region in the column; RQ is selected as the dependent variable to assess whether there is a 

statistical difference between the RQ in each region.  (B) Output view showing the overall ANOVA P value and the 

individual P values for each region.  These results were also verified with separate ANOVA testing. 
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For comparisons of specific regions between sham and MI using unpaired samples, the 

student’s t-test was used.  A value of P<0.05 was considered significant.  All data were 

tested for normal distribution using a histogram plot and by plotting residuals. 

Example 1: analysis of gene expression between sham and MI – whole heart samples. 

SHAM  MI 

 Runx 
CT 

Gapdh CT ∆∆∆∆CT                                                2-∆∆∆∆CT 
 

 Runx 
CT 

Gapdh CT ∆∆∆∆CT                                                2-∆∆∆∆CT 

  17.37 17.80       15.16 17.68    

  16.99 17.41       15.03 17.78    

  16.89 17.94       15.22 17.87    

Mean 17.08 17.72 -0.63 1.55  Mean 15.14 17.78 -2.64 6.25 

Figure 2.28  Sample qRT-PCR data analysis of mouse MI tissue using the 2-∆∆∆∆Ct method.   

Samples were analysed using qRT-PCR and the Ct data from the SDS software was imported into Microsoft Excel.  Each 

sample was performed in triplicate, represented by three Ct values for each gene in this example.  Two samples are 

shown; whole heart (LV + RV) homogenate for a (i) 4-wk sham heart and a (ii) 4-wk MI heart. 

As the whole heart samples were from separate animals, there was no means to justify 

pairing any MI sample with a particular sham sample; therefore it was not appropriate to 

use the 2-∆∆Ct method, and instead the 2-∆Ct value for MI was used for the calculations.  The 

individual 2-∆Ct value (mean of the triplicates) for each MI heart was divided by the mean 

sham value (mean of all sham 2-∆Ct values) and then multiplied by 100 to calculate the 

percentage change in Runx expression using the formula shown below.  In the above 

example, Runx expression in the MI heart is increased to 403% of levels in the sham heart.   

( )
( ) 100
2

2
% ×= ∆−

∆−

Ct

Ct

Shammean

MI
change    Eq. 12 
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Example 2: analysis of gene expression between sham and MI – heart region samples. 

MI - RV region  MI - Peri infarct region 

 Runx 
CT 

Gapdh 
CT ∆∆∆∆ CT                                                ∆∆∆∆∆∆∆∆ CT                                                2-∆∆∆∆∆∆∆∆CT 

 

 Runx 
CT 

Gapdh 
CT ∆ ∆ ∆ ∆ CT                                                ∆∆∆∆∆∆∆∆ CT                                                2-∆∆∆∆∆∆∆∆CT 

  25.04 18.24          24.09 18.19       

  24.92 18.19          24.86 17.94       

  25.54 18.58          24.28 18.19       

Mean 25.16 18.34 6.83 0.00 1.00  Mean 24.41 18.11 6.30 -0.53 1.44 

Figure 2.29  Sample qRT-PCR data analysis of mouse MI tissue using the 2-∆∆∆∆∆∆∆∆Ct method. 

Samples were analysed using qRT-PCR and the Ct data from the SDS software was imported into Microsoft Excel.  Each 

sample was performed in triplicate, represented by three Ct values for each gene in this example.  Two regional samples 

are shown, both from the same heart; the RV region and the peri-infarct region.  The RV region was the region to which 

all other regions of the respective hearts were normalised. 

For regional heart samples, the 2-∆∆Ct method was used to compare the infarct, peri-infarct 

and remote LV (or equivalent sham regions) to the RV region of that respective heart.  An 

example of this is shown in the table above where data from the RV region and the peri-

infarct of an MI heart is shown (both regions have come from the same heart).  The 

calculation is performed in a step-wise order:  (1) Calculate ∆Ct (mean Runx Ct – mean 

Gapdh Ct) for the region; (2) Calculate ∆∆Ct (∆Ct of region of interest – ∆Ct of RV); (3) 

Calculate 2-∆∆Ct, the value is expressed as the relative quantitation (RQ) value.  In the 

example above, Runx expression is 1.44-fold higher in the peri-infarct region of the MI 

heart than the respective RV.    

Example 3: analysis of gene expression between the four different rat strains – whole 

LV samples. 

WKY  WKY-congenic 

 Runx 
CT 

Gapdh CT ∆∆∆∆ CT                                               2-∆∆∆∆CT 
 

 Runx 
CT 

Gapdh CT ∆∆∆∆ CT                                                2-∆∆∆∆CT 

  15.34 14.62       16.44 14.63    

  15.25 14.38       16.39 14.88    

  15.20 14.84       16.58 14.69    

Mean 15.26 14.61 0.65 0.64  Mean 16.47 14.73 1.74 0.30 

Figure 2.30  Sample qRT-PCR data analysis of congenic rat tissue using the 2-∆∆∆∆Ct method. 

Samples were analysed using qRT-PCR and the Ct data from the SDS software was imported into Microsoft Excel.  Each 

sample was performed in triplicate, represented by three Ct values for each gene in this example.  Two samples are 

shown; whole LV homogenates for a (i) WKY heart and a (ii) WKY-congenic heart. 



Kirsty K. Foote, 2012  Chapter 2  

139 
 

Runx expression between the different rat strains was compared using the 2-∆Ct method.  

This method was chosen because, like the whole heart MI samples, there was no reason to 

pair samples with each other therefore the 2-∆∆Ct method was not appropriate to use.  

Instead the mean ± SEM for each strain was calculated from single data points using the 2-

∆Ct value.  In this example above, the WKY-congenic shows a 2-fold reduction in Runx1 

expression compared to WKY. 

2.12.7 Limitations of the technique 

qRT-PCR has several advantages in that it is fast, extremely sensitive, highly reproducible 

and can be integrated into high-throughput systems making it a very powerful tool for 

performing accurate gene expression.  However despite these advantages there are caveats 

associated with qRT-PCR.  The most common is the selection of a suitable reference gene.  

It is necessary to use a housekeeping/reference gene in qRT-PCR as a normalisation 

strategy to control for error between samples.  Performing each well in triplicate controls 

for pipetting error but the housekeeping gene is required to control for differences in 

cDNA concentration not due to pipetting error.  Housekeeping genes are usually cellular 

maintenance genes that regulate basic functions of the cell and are therefore ubiquitously 

and ideally uniformly expressed during all experimental conditions.  They serve as a 

‘common denominator’ to which the target gene is normalised and control for variation in 

the amount of starting material between samples, e.g. from variation in (i) RNA integrity, 

(ii) differences in RT efficiencies, and (iii) cDNA sample loading variation.   

(i) Variations in RNA integrity (and purity) can occur if the RNA becomes degraded due 

to exposure to RNases or improper storage, and contaminants (phenol or proteins) may 

be present from incomplete purification during the RNA extraction process.  Degraded 

RNA can lead to shorter cDNA products and contaminants in the RNA can affect the 

activity of the reverse transcriptase enzyme therefore leading to reduced cDNA.  This 

would result in a lower gene expression of the housekeeping gene and would indicate 

that the altered expression of the target gene of interest would be questionable.   

(ii) The reverse transcription process should occur with 100% efficiency (that is, 1 µg 

RNA is converted into 1 µg cDNA).  In reality, this is not always the case and this may 

be due to factors that affect the activity of the transcriptase enzyme such as the 

presence of contaminants (as described before), incorrect temperature (>42°C reduces 

the activity of the Omniscript transcriptase enzyme; Qiagen Omniscript Kit handbook) 
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or incorrect concentration of primers (including degradation of primers) and dNTPs.  

To minimise these problems, only RNA of minimum purity (A260/A280 >1.8) was 

used, reactions were performed in a controlled incubator at 37°C and reagents were 

kept on ice and stored at -20°C to minimise degradation, and primers/dNTPs were 

always mixed by gentle vortex prior to use to ensure thorough mixing.  If the efficiency 

of the reaction was markedly affected this would lead to a reduction in the 

concentration of cDNA, which would result in a lower gene expression of the 

housekeeping gene and therefore indicate that the altered expression of the target gene 

of interest would be questionable.   

(iii) The third source of variation could arise from cDNA sample loading – this means that 

if unequal cDNA concentrations were used between different samples, for example if 

the cDNA was not diluted correctly or if too little/too much was added (this does not 

include minor errors which are not always avoidable due to the nature of pipetting).  

Incorrect starting cDNA template could bias results leading to over/under-

representation of true gene expression levels which would be informed by the 

over/underexpression of the housekeeping gene.  This was avoided as much as possible 

by ensuring dilutions of 1:5 of cDNA were always performed as accurately as possible.   

2.12.7.1 Choice of suitable housekeeping gene 

Without appropriate normalisation to a housekeeping gene, small differences between 

genes of interest may be missed (variability in the housekeeping gene would obscure small 

changes making them difficult to detect), or results may be misrepresented – for example 

fluctuations in the housekeeping gene can lead to over/under-estimation in the expression 

of the gene of interest (if the housekeeper expression is reduced or increased respectively) 

and this can make it extremely difficult to interpret the real changes.  A suitable 

housekeeping gene is one which shows no differences in expression between the treatment 

groups.  It is best practice to test a number of different housekeeping genes and choose the 

most suitable rather than arbitrarily selecting a single unvalidated gene.  For this thesis a 

preliminary study was performed to test three different housekeeping genes based on some 

of the most stable in mouse MI according to previous housekeeping gene studies: Gapdh (a 

glycolysis enzyme), ribosomal protein P0 (Rplp0) and hypoxanthine-guanine 

phosphoriboyltransferase (Hprt; an enzyme involved in purine nucleotide generation).   
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Gapdh is widely used in cardiovascular studies and is the most frequently reported 

housekeeping gene in the literature for MI (as researched by Brattelid et al.,2010).  

However there are discrepancies in the literature in the suitability of Gapdh in mouse MI; 

for example Gapdh has been reported to be one of the most stable genes in mouse MI 

(Brattelid et al., 2010) but contrary to this, it has also been revealed as the one of the least 

stable in mouse infarcted tissue (Everaert et al., 2011).  Gapdh was also found to be the 

most stable housekeeping gene in rat infarcted and peri-infarct tissue (Zhao et al., 2011).  

However it is being increasingly accepted that housekeeping genes behave very differently 

depending on the study design and the experimental conditions involved.  Therefore while 

a housekeeping gene may be unsuitable for one study, it may be acceptable under similar 

conditions of another.  Following the advice of Everaert et al., 2011 which warned against 

the use of Gapdh in mouse infarction tissue, we also tested their recommended alternative 

gene reported to be the least variable in mouse MI (Hprt).  Rplp0 was additionally chosen 

as it has been shown to be stable regardless of cardiac disease state (Moniotte et al., 2001) 

and ribosomal genes also feature highly as non-variable genes in MI (Everaert et al., 

2011;Perez et al., 2007).  These three housekeeping genes (Gapdh, Rplp0 and Hprt) were 

therefore quantified using qRT-PCR and were ranked based on a criteria of low variance 

published by Mane et al., 2008 (Mane et al., 2008).  This method is based on the idea that 

under ideal conditions, fluctuations in housekeeping gene expression would not vary much 

from a mean (i.e. have low standard deviation (SD)).  Therefore the variance was assessed 

in the Ct and each candidate gene was ranked based on the SD (see example calculation 

below).   

Example 4: analysis of stability of the housekeeper gene 

MI Model – whole heart samples: 

Using the data from Example 1 above, the Gapdh Cts for sham whole heart were (17.8, 

17.4, 17.9) and whole heart MI were (17.7, 17.8, 17.9).  The method for assessing the 

suitability of the housekeeping gene between whole heart groups (sham vs. MI) was based 

on comparing the fold change between groups using the mean (of the triplicates) Ct for 2-Ct 

as recommended by published methods (Schmittgen & Livak, 2008).  For the values given 

in this example, the mean Gapdh Ct for sham and MI were 17.7 and 17.8 respectively.  

The fold change between the two is MI/sham (17.8/17.7) = 1.01 which equates to 1% fold-

change between sham and MI and by using the P value to indicate whether the differences 

were significant also aided in determining the suitability of the housekeeping gene – in this 
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example therefore it was suitable between this pair.  This method was used for all animals 

by taking the mean 2-Ct value for all animals (sham and MI).   

MI Model – regional heart samples (SD method): 

For regional variations, as there were more than two samples, fold-change between all four 

was not possible using the above method.  Therefore the method used was based on the SD 

between the regions as mentioned above and published by Mane et al. (2008).  The SD 

calculation was performed as follows: (i) firstly, the mean Ct for each individual region 

from all hearts (sham and MI) were compared and tested for stastical significant 

differences using ANOVA (with Tukey post-test) to yield a P value as shown in Figure 

2.31A(i),B(i); a P value of <0.05 signified that the raw Ct values between sham and MI 

were significantly different and the housekeeping gene being tested was unsuitable (ii) 

secondly, the regional mean Ct values were pooled to yield a single mean Ct for either 

sham or MI; (iii) the SD between this single sham and single MI mean Ct value was 

calculated using the standard formula for SD:    

1

)( 2

−
−∑=

n

xx
SD      Eq. 13 

Where ∑ is the sum of, x  is a value in the data set, x is the mean of all values in the data 

set, n is the number of values in the data set. 

The resulting SD of each housekeeping gene is shown in red in Figure 2.31; the SD value 

was used to rank the genes in order with lowest SD being most suitable and highest SD the 

least suitable gene.   

Results:  The results of this method are shown in Figure 2.31 and these data have shown 

that Gapdh was the most stable gene of the three with the lowest SD and showed no 

significant differences in expression between sham and MI.  Hprt was tested in the infarct 

region and showed that there was a small but significant difference in the Ct values 

between sham and MI with a high SD, therefore Hprt was considered the least suitable in 

this study.  Rplp0 was the neither the best nor worst of the three, however data was only 

available from n=1 sham therefore the results were somewhat inconclusive for this gene.  

Based on these validation experiments, Gapdh was chosen as the housekeeping gene for all 

mouse qRT-PCR experiments.  Based on these results, Gapdh was also tested for 
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suitability in the different strains of rat heart tissue for the congenic rat model studies and 

was also found to be stable with no significant differences observed between the 4 strains 

(Figure 2.32). 

 

Figure 2.31  Comparison of different housekeeping genes for qRT-PCR between sham and MI hearts. 

(A-i)  Comparison of raw Ct values from different regions of 4-wk sham hearts (n=5) and 4-wk MI hearts (n=8) and (A-

ii) values for the regions combined using Gapdh.  (B-i)  Comparison of raw Ct values from different regions of 4-wk 

sham hearts (n=1) and 4-wk MI hearts (n=5) and (B-ii) values for the regions combined using RPL0.  (C) Comparison of 

raw Ct values from 4-wk sham apex (n=3) and 4-wk MI infarct region (n=3).  The standard deviations (SD) between the 

two groups for each housekeeping gene are shown in red.  The P value indicates whether there were any significant 

differences in the mean Ct value between groups overall and was used in conjuction with the SD method.  *P<0.05 using 

ANOVA for more than two groups (regional data) or student’s unpaired t-test for comparisons between two groups only 

(combined regions).  
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Figure 2.32  Validation of Gapdh as a suitable housekeeping gene between four different rat strains. 

Raw Ct values are shown for each group; WKY (white bar; n=5), WKY-congenic (light grey bar; n=5), SHRSP (black 

bar; n=5) and SHRSP-congenic (dark grey bar; n=5).  Statistical significance was tested using ANOVA with a Tukey 

multiple comparisons post-test.  The resulting P  value from this ANOVA test across the four groups is shown.  These 

data indicate that there was no significant difference in the Ct value of Gapdh between the hearts from the four different 

rat strains overall.



    

 

 

 

 

 

 

 

CHAPTER 3 

Characterisation of a mouse model of myocardial 

infarction
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3.1 Introduction 

3.1.1 MI is a serious public health problem 

CVD is the leading cause of death in Europe and the U.S. estimated to account for 49% 

and 37% of all mortalities respectively (Petersen et al., 2005;Thom et al., 2006).  The 

majority of CVD-related deaths are due to coronary heart disease (Petersen et al., 

2005;Thom et al., 2006) which is the atherosclerotic narrowing or thrombus occlusion of 

coronary arteries, both of which can lead to MI and eventual HF (Libby, 2001) .  Despite 

considerable progress in the prevention and treatment of CVD, MI leading to HF continues 

to be a highly prevalent source of morbidity and mortality (Allender et al., 2006).  Current 

treatments for MI such as coronary artery bypass, percutaneous interventions and 

dissolution thrombotic therapies are successful in slowing the disease and improving 

patient symptoms and quality of life (Hermanides & Ottervanger, 2008), however, 

paradoxically the advances in the treatment of MI have led to an increased prevalence of 

chronic HF; this is because patients are surviving the initial insult but have to live with a 

severely compromised heart (Thomas et al., 2008).  More effective treatments are therefore 

required to slow the progression of HF.   

3.1.2 Need for an animal model of MI 

In order to manage and treat MI and HF more effectively, it is important to understand the 

pathophysiology and underlying mechanisms of the disease so that suitable therapeutic 

treatments can be developed.  Experimental animal models that closely resemble human 

disease characteristics have proven invaluable for this (Hasenfuss, 1998;Klocke et al., 

2007).  Much of the work that has advanced our understanding of MI and HF over the past 

four decades would not have been possible without the use of animal models.  CVD 

research performed on animals has yielded invaluable information about alterations in 

neurohormonal activity (McCullagh et al., 1972), myocardial function (Magovern et al., 

1992) and molecular changes (Dodd et al., 1993) that occur in the failing heart after MI.  

Animal models of MI and HF are therefore highly beneficial for CVD research. 

3.1.3 Surgical methods of inducing MI in an animal model 

As mentioned previously, human MI is characterised by atherosclerotic narrowing of 

coronary arteries (Libby, 2001).  Animal models of MI are therefore based on methods that 

result in partial or complete occlusion of a coronary artery.  This is typically performed 
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through the use of surgical intervention methods.  The advantage of using a surgical 

approach rather than alternative methods such as dietary (Wilson & Hartroft, 1970) or 

genetic-inducing strategies (Chu et al., 2002) to induce natural atherosclerotic development 

is that surgical methods allow more precise control over timing, location and extent of 

infarction which provides more reproducible results.  Depending on the nature of 

ischaemic injury required for the purposes of the study, a number of different methods 

have been described utilising physical occluders, freezing and ligation approaches.  Most 

surgical interventions involve placing the animal under anaesthesia, performing a left 

thoracotomy to expose the heart and implementing the relevant coronary artery occlusion 

method (Klocke et al., 2007). The most widely used method of inducing MI in an animal is 

by ligating a coronary artery using a band (large animals) or thin suture (small animals) 

(Klocke et al., 2007).  Alternative methods have been reported and each method has 

numerous advantages and disadvantages associated with the suitability of inducing MI 

similar to the human phenotype, descriptions of each are detailed below. 

3.1.3.1 Occluding devices 

Occluder devices such as hydraulic or ameroid occluders have been described in large 

animal models, for example swine (Harada et al., 1994) as a method of inducing MI 

through coronary artery stenosis (Roth et al., 1987).  These occluders are constriction 

devices that are implanted around the coronary artery and either inflated (balloon occluder 

or hydraulic occluder) or constricted (ameroid) to a controlled extent to cause partial or 

complete occlusion.  These occluders are useful in that they can gradually occlude over a 

long period of time that will allow formation of collaterals therefore mimicking human MI 

(St Louis et al., 2000), however implantation requires a high level of surgical expertise and 

moreover due to their size are restricted to use in larger animals only (Dixon & Spinale, 

2009).   

3.1.3.2 Embolisation 

Another example of an animal model of MI is based on intracoronary embolisation with 

microspheres or agarose beads using catheter-mediated injections (Sabbah et al., 1991).  

This technique is advantageous in that it closely resembles the clinical cause of MI in 

humans due to the embolisation of athereoscletoric and thrombus plaques that build up 

inside the artery wall (Topol & Yadav, 2000).  There is also the added advantage that the 

embolising agents are administered percutanously, therefore the risk of infection or 

inflammation associated with thoracotomy is reduced (Erbel & Heusch, 2000).  The 
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technique has been successful at inducing LV dysfunction, myocardial fibrosis and 

hypertrophy in dogs (Sabbah et al., 1991) however due to the nature of the technique it is 

also restricted to larger animal models only (Grund et al., 1999). 

3.1.3.3 Cryoinjury 

Cryoinjury is another method of inducing infarction which has been described in smaller 

animal models such as rats (Ciulla et al., 2004) and mice (van den Bos et al., 2005).  This 

involves applying a cryoprobe to the LV free wall for approximately 10 s and the freezing 

temperature (-175 to -190°C) disrupts coronary blood flow.  Cryoinjury is unique among 

these methods in that cell death occurs immediately as a result of the freezing insult, rather 

than from a developing ischaemia process and therefore it does not induce the injury in the 

same way that a naturally developing ischaemia-induced injury occurs in human MI (van 

den Bos et al., 2005).  Cryoinfarctions in mice have been shown to cause reduced 

contractility and diastolic dysfunction to a similar extent as coronary artery ligation after 8 

weeks, however the injury results in smaller infarct sizes, not always transmural and with 

only modest LV structural remodelling (van den Bos et al., 2005). 

3.1.3.4 Coronary artery ligation 

CAL is the most commonly used approach for surgically inducing MI; this involves tying a 

ligature around a coronary artery for either transient or permanent occlusion (Klocke et al., 

2007).  CAL has been extensively used for a large number of years as a very effective 

method of inducing MI in a variety of animal species including dog (Hood, Jr. et al., 

1967), sheep (Gorman, III et al., 1998), rabbit (Smith et al., 2006), rat (Pfeffer et al., 

1979b) and mouse (Michael et al., 1999).  CAL does have some drawbacks, one being the 

damage made around the ligature; inserting a suture into the myocardium inevitably will 

include muscle mass as well as veins, nerves and lymphatic vessels which could affect the 

level of coronary artery stenosis (Klocke et al., 2007).  CAL is subject to infarcts with 

varying size which may mean a large group of animals may be required (Zimmer et al., 

1990).  Despite its limitations, the CAL technique has many advantages which make it a 

very attractive choice for surgical MI methods.  Firstly, the ability to produce a range of 

infarct sizes can also be considered a strength of the technique as it provides flexibility in 

the extent of infarction that may be useful for the study.  Secondly, CAL is not restricted to 

larger animals as some of the other techniques are, and is therefore suitable for rodents 

including mice, which have become increasingly popular in the field of cardiac research 

due to the availability of transgenic strains in this species (Rockman et al., 1994;Svenson 
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et al., 2003).  The ligature can be placed for either permanent or temporary occlusion and 

therefore can be used for ischaemia-reperfusion (I/R) models as well as permanent 

occlusion models providing greater scope for use (Michael et al., 1995). 

3.1.4 How well does CAL-induced experimental MI res emble 
human MI? 

If an animal model is to be used to study human disease it is imperative that the animal 

model closely resembles the human disease as far as possible.  MI is caused by acute 

occlusion of coronary arteries in human patients by thrombosis and leads to a cascade of 

events that ultimately alter the functional and structural properties of the heart that can 

eventually lead to the development of HF.   

3.1.4.1 Characteristics of human MI 

The loss of contractile mass from the infarcted area causes an acute reduction in cardiac 

pump function.  Stroke volume and cardiac output however are initially maintained 

through the action of adrenergic signalling pathways which increase Ca2+ influx and SR 

activity to increase contractility in the surviving cardiomyocytes (Levick, 2010).  

Enhanced contractility in the surviving myocardium is believed to induce cardiomyocyte 

hypertrophy, whereby individual cardiomyocytes through the action of increased 

sarcomeres have the ability to increase in cell size, thereby increasing contractile mass and 

offering further support against the wall stress demands (Pfeffer & Braunwald, 1990).  

Over time, the ventricles dilate further increasing the work of the surviving myocardium 

(Weisman & Healy, 1987).  The dilated ventricle is further supported by increased 

deposition of collagen within the infarcted region to provide structural support and 

preserve the structural integrity of the myocardium (French & Kramer, 2007).  These 

adaptive responses which maintain SV and CO within normal physiological ranges are 

collectively known as compensatory remodelling.  However, persistent strain on the 

surviving cardiomyocytes leads to abnormalities in their Ca2+-handling properties: Ca2+ 

transient and action potential durations are prolonged and SR Ca2+ uptake rates are slowed 

(Pogwizd et al., 2001).  Initially this can cause diastolic dysfunction but with preserved 

systolic function.  These changes are responsible for the slowing of contraction and 

relaxation rates and prolonged relaxation duration that ultimately lead to impaired 

contraction and relaxation of the ventricles.  As contraction and relaxation abnormalities 

worsen to the point where the heart cannot maintain a sufficient CO, this is classified as 

HF (McMurray & Pfeffer, 2005).  Therefore in summary, human MI can present 
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diminished systolic and diastolic function, ventricular dilation and infarct thinning with 

increased collagen deposition (French & Kramer, 2007). 

3.1.4.2 CAL-induced experimental MI 

The CAL method has been applied to large animals such as the dog and pig but it is 

reportedly problematic in these species due to high mortality rates (>50% in dog) mainly 

from ventricular tachycardia (Hood, Jr. et al., 1967).  Moreover, dogs have a very 

extensive collateral coronary circulation which therefore restricts infarct size to only 20% 

of the LV in many cases and as a result produces only minor haemodynamic alterations 

(Hood, Jr. et al., 1967).  Therefore CAL-induced MI is commonly used in smaller 

laboratory species such as the rat and mouse largely because of the lower costs associated 

and with the recent technological advances in miniature instruments for measuring cardiac 

parameters they have become popular species for use in cardiac research (Patten & Hall-

Porter, 2009).  CAL models in the rat have been well-documented.  CAL-induced MI 

results in impaired LV function with reduced systolic function and increased filling 

pressures in rats (Pfeffer et al., 1979b).  Rats with infarctions greater than 46% of the LV 

develop congestive HF after 3-6 weeks with elevated filling pressures and reduced cardiac 

output (Pfeffer et al., 1991b).  As mentioned previously, the mouse has become a popular 

species of choice for the MI model as it carries the unique ability to manipulate specific 

genes that may be important for post-infarction remodelling not possible with any other 

species (Svenson et al., 2003).  The mouse, like the rat, demonstrates both systolic and 

diastolic dysfunction (Shioura et al., 2007) with evidence of LV remodelling (Sam et al., 

2000).  Further details of the phenotype of murine models of MI reported by others are 

described in Table 3.1. 
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Table 3.1  Characteristics of murine models of MI using the permanent CAL method. 

Animals Phenotype Reference 

Male and female Kumming 
mice (24-30g). 

Myocardial necrosis after 24h 

Infarct size 44.3 ± 2.9% of LV after 24h 

Wang et al. A simple and fast 
experimental model of 
myocardial infarction in the 
mouse (2006). 

Male C57Bl/6 mice (20-
25g; 6-10 wk old). 

 

 

33% survival after 1-wk 

30.8% reduction in ESP compared to sham after 1-wk 

Degabriele et al. Critical 
appraisal of the mouse model 
of myocardial infarction 
(2004). 

Male Swiss mice (30-45g; 
10-12 wk old). 

 

 

3-fold reduction in LV wall thickness (5-wk post-MI) 

2.1-fold increase in LV diameter (5-wk post-MI) 

Infarct size 47.7 ± 5.2% of LV circumference (5-wk post-MI) 

Positive Sirius red collagen levels peaked 7.8-fold higher than sham 
at 2-wk, dropped therafter but remained ~2-fold higher at 3-wk and 
5-wk 

No differences in HW/BW ratio by 5-wk post-MI 

Reduction LV ESP, dP/dtmax, dP/dtmin (exact fold change not 
available) 

Lutgens et al. Chronic 
myocardial infarction in the 
mouse: cardiac structural and 
functional changes (1999). 

Male and female C57Bl/6 
mice (18-22g; 8-10 wk 
old). 

 

 

At 2-wk post-MI : 

60% survival 

1.7-fold increase in LV mass compared to sham 

Increased systolic (1.7-fold) and diastolic (1.3-fold) diameter (echo) 
compared to sham. 

Fractional shortening reduced by 30.9% of sham (echo). 

Kumar et al. Distinct mouse 
coronary anatomy and 
myocardial infarction 
consequent to ligation (2005). 

Female C57Bl/6 mice (20-
25g; 4-6 wk old). 

At 9-days post-MI: 

60% survival 

2.5-fold increase in EDV (MRI) 

6.6-fold increase in ESV (MRI) 

EF reduced from 72 to 31% 

Caiani et al. Analysis of 
regional left ventricular 
function in the post-infarct 
mouse by magnetic resonance 
imaging with retrospective 
gating (2008). 

Male C57Bl/6 mice (6 wk 
old). 

Apoptosis of cardiomyocytes at 48h 

 

Bialik et al. Myocyte apoptosis 
during myocardial infarction in 
the mouse localizes to hypoxic 
regions but occurs 
independently of p53 (1997). 

Male C57Bl/6 mice (20-
25g; 8-10 wk old) 

At 6-wk post-MI : 

68% survival 

Infarct size 38.6 ± 15.2% 

12.4% reduction in SBP 

41.0% increase in EDP 

24.1 and 28.2% reduction in dP/dtmax and dP/dtmin 

14% increase in LV mass/BW ratio 

25.6% increase in end-diastolic diameter (echo) 

40.7% increase in end-systolic diameter (echo) 

36.4% reduction in fractional shortening (echo) 

Patten et al. Ventricular 
remodelling in a mouse model 
of myocardial infarction 
(1998). 

Male C57Bl/6 mice (10-12 
wk old). 

Collagen accumulation at days 7-14, scar completed by day 21 

Infarct size 47.3 ± 5% (4-wk), 45.3 ± 5% (8-wk) 

60% increase in HW/BW ratio at 4-wk post-MI 

No change in lung weights at 4-wk or 8-wk nor by 24-wk 

Yang et al. Myocardial 
infarction and cardiac 
remodelling in mice (2002). 

Male C57Bl.6 mice (20-
30g; 10 wk old). 

Survival after 12-mo 70% 

Decrease in EF from 64% to 33% at 6-mo 

100% increase in EDP at both 6- and 12-mo 

38% increase in LV hypertrophy at 6-mo 

53% increase in LV chamber size at 6-mo 

Infarct size 40.7 ± 1.9% 

Pons et al. Survival, 
haemodynamics and cardiac 
remodelling follow up in mice 
after myocardial infarction 
(2003). 
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Given the well-documented success of the CAL method in mouse models of MI and its 

close similarities to the human disease phenotype, the CAL model was the choice of 

method for inducing experimental MI in mice for the work in this thesis.  Furthermore, 

there are also a number of projects anticipated that require genetic manipulation in this 

model and therefore the mouse was the best species to use for this. 

3.1.5 Aims 

The aims of the work presented in this chapter were to perform a detailed characterisation 

of the mouse model of MI in terms of (i) cardiac structural and functional alterations and 

(ii) associated surgical success rates and survival characteristics of the model.  As this was 

a new model in our laboratory, it was necessary to characterise the phenotype (including 

both mechanical and electrical activity) to ensure the model developed LV dysfunction.  It 

was hypothesised that inducing MI in mice by CAL would produce a model of LV 

dysfunction and structural remodelling comparable with other published mouse models of 

MI using the CAL method. 

3.2 Methods 

3.2.1 Induction of MI 

Adult male C57Bl/6 mice (aged 8-10 weeks; 20-25 g) underwent MI by CAL as previously 

detailed in the General Methods Section 2.1.  Control sham-operated mice underwent the 

same procedure but without CAL.  Mice were permitted to recover up to 4 or 8 weeks 

following the procedure at which point they underwent in vivo functional assessment (PV 

loop and analysis) and their hearts were harvested for subsequent morphological and 

histological analyses as described in the General Methods Section 2.3 and 2.4.  Animals 

were inspected daily for mortality and any found dead underwent post-mortem analysis to 

identify the cause of death. 

3.2.2 Experimental timeline 

A schematic of the experimental timeline is shown in Figure 3.1.  Following CAL, animals 

were randomly assigned to one of the two following groups: (i) 4-wk group and (ii) 8-wk 

group as detailed above.  Sham-operated animals were also randomly assigned to one of 

the two study groups (4-wk or 8-wk). 
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Figure 3.1  CAL model experimental time line. 

 

3.2.3 Haemodynamic assessment of LV function  

Mice underwent PV measurements either at 4 wk or at 8 wk after MI as described in the 

General Method Section 2.3.  Briefly, mice were anaesthetised (4% isofluorane), intubated 

with a 0.7 mm cannula and ventilated using a rodent respirator (1.5-2% isofluorane, 120 µl 

tidal volume, 120 breaths per minute).  A rectal thermocouple probe connected to a 

feedback control unit maintained core body temperature of the animal between 37.0 ± 

0.5°C throughout the procedure.  Following a midline cervical incision, a 1.2F PV catheter 

(SciSense, Ontario, Canada) was inserted into the LV of the heart via the right common 

carotid artery.  PV data were recorded at baseline and during reduced preload by transient 

vena cava occlusion.  The parallel conductance of surrounding conductive structures was 

offset by administering an intravenous 10 µl bolus of 15% hypertonic saline. 

3.2.4 Assessment of electrical cardiac function  

Mice underwent ECG assessment either during the CAL surgery, and/or at 4 wk or at 8 wk 

after MI as described in the General Methods Section 2.4.  Briefly, mice were 

anaesthetised and sustained under spontaneous breathing conditions through a face mask 

(1.5-2% isofluorane) while a rectal thermocouple probe connected to a feedback control 

unit  maintained core body temperature at 37.0 ± 0.5°C.  Subdermal needle leads were 

placed on the front and hind forelimbs in a lead II configuration and ECG measurements 

were recorded for a 5 minute time period. 

3.2.5 Harvesting of hearts 

Animals were sacrificed at 4 or 8 wk after MI and the heart was removed and washed in 

ice-cold saline (0.9% NaCl w/v).  The aorta was cut transversely, mounted on to a 23G 
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cannula attached to a syringe and perfused retrograde with ice-cold saline to rinse blood 

out of the coronary vessels.  Hearts were blotted dry on tissue paper and weighed using a 

precision electronic balance and subsequently either fixed in formalin for histological 

analysis or snap-frozen in liquid nitrogen and stored at -80°C until needed for biochemical 

experiments. 

3.2.6 Preparation of heart sections 

Hearts taken for histological analysis included the whole intact heart (atria, ventricles and 

major blood vessels).  Hearts were given a minimum fixation time of 24 hr in formalin to 

allow sufficient time for fixative to penetrate the tissue.  After sufficient fixation, hearts 

were embedded into a wax block until required for sectioning.  The heart was sliced 

parallel to the long axis of the heart to produce multiple sections 1µm thick with an 

interval of 250-300 µm between each section.  At each interval, adjacent sections were 

taken, one for each stain: (i) H&E, (ii) Sirius red and (iii) RUNX1-specific antibody (for 

work detailed in Chapter 4). 

3.2.7 Morphometry and infarct measurements 

For each heart, at least five serial sections (approximately 250-300 µm between each 

section) were taken for morphometric and infarct size measurements to ensure a range of 

depths through the heart.  All sections were examined with an Olympus BX51 microscope 

and images were captured with an Olympus DP71 camera with the use of Cell D software.   

3.2.7.1 LV wall thickness and LV area 

LV wall thickness and LV area were measured using serial H&E sections of each heart as 

described in the General Methods Section 2.8.1 and 2.8.2.  The wall thickness was 

measured as the distance between the endocardium and epicardium of the infarcted 

myocardium using a line perpendicular to the curvature of the ventricular wall.  LV area 

was measured from the same sections by tracing around the endocardium inside the LV.  

Both chamber size and wall thickness were measured using ImageJ software and 

measurements were performed on all sections of each heart to yield a mean value for each 

heart.  Qualitative histopathological changes in myocardial tissue following MI were 

assessed using H&E and Sirius red stained sections of the heart. 
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3.2.7.2 Infarct size 

Infarct size was measured on sections stained with Sirius red using a length-based 

approach similar to the method published by Takagawa et al., 2007 as described in the 

General Methods Section 2.8.3.  Briefly, four lengths were measured from each heart 

section: epicardial infarct length, endocardial infarct length, epicardial total circumference 

and endocardial total circumference.  The infarct included all infarcted myocardium which 

was >50% of the total thickness of the myocardium.  Epicardial and endocardial infarct 

ratios were then calculated by dividing the sum of epicardial or endocardial lengths from 

all sections by the sum of all epicardial or endocardial circumferences from all sections 

respectively.  Infarct size was then calculated using the following equation: 

100
2

(%) ×+= ratioinfarctENDOratioinfarctEPI
sizeInfarct   Eq. 14 

3.2.7.3 Collagen levels 

Collagen levels in the heart were estimated from Sirius red sections using ImageProPlus 

software as described in the General Methods Section 2.9.2.  The number of red pixels 

above a set threshold of red colour were counted and expressed as a percentage of total 

pixels in the heart.   

3.2.8 Lung and liver weights 

The lungs and liver were harvested, blotted dry on tissue paper and weighed using a 

precision electronic balance as described in the General Methods Section 2.3.  Tibial 

length measurements were also taken as a normalising reference for lung, liver and heart 

weights.  Since the animals were at an age where they may still be growing, the tibial 

length was used as a more accurate normalising reference than body weight. 

3.2.9 Cardiomyocyte isolation and measurements of c ell length, 
width and estimated cross-sectional area 

Cardiomyocytes were isolated using a standard digestion protocol with collagenase and 

protease from 4-wk sham and 4-wk MI hearts as described in the General Methods Section 

2.10.1.  Briefly, hearts were removed and perfused retrogradely at 4 ml.min-1 with a 

modified KH solution containing 0.7 mg.ml-1 collagenase (type I, Worthington, New Jersey 

USA) and 0.07 mg.ml-1 protease (type XIV, Sigma Aldrich, UK) for 7 minutes followed by 
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6 minutes of KH solution containing 0.7% bovine serum albumin (BSA, Sigma Aldrich, 

UK).  The perfusion was then stopped and the LV free wall cut into strips and mixed in KH 

solution with 0.7% BSA to yield a cell suspension of single cardiomyocytes.  Isolated 

cardiomyocytes were visualised by light microscopy and captured using a camera (Q 

imaging Rolera-XR) and QCapturePro software.  Cardiomyocyte length and width was 

determined from a group of hearts using ImageJ software and cross-sectional area was 

estimated using the equation as detailed in the General Methods Section 2.10.2. 

2

2







= widthcell
AreasectionalCross π    Eq. 15 

3.2.10 Data recording and statistical analysis 

All PV and ECG data were recorded on a Dell laptop using LabScribe2 software at a 

sampling rate of 1000 samples.s-1 and analysed offline using LabScribe2 software.  All data 

in the text and figures are expressed as mean ± SEM.  Statistical significance was 

measured using student’s paired or unpaired t-test for comparisons between a maximum of 

two groups, or ANOVA followed by the Bonferroni or Tukey post-hoc test where 

appropriate for comparing more than two groups.  For the survival study, Kaplan-Meier 

analysis was used and statistical significance tested using the Log-rank (Mantel-Cox) test.  

A P value of <0.05 was considered statistically significant. 

3.3 Results 

3.3.1 Survival following MI 

Mice underwent surgically induced MI (n=137) or a sham operation (n=60).  Survival data 

for these procedures are presented in Figure 3.2.  As shown in Figure 3.2A (i), MI leads to 

significantly reduced survival (end-point survival rate 63% after MI vs. 100% for sham 

operations; P<0.05).  Of the 197 mice that underwent surgery, 73 did not survive to the end 

of the study and reasons for this are shown in Figure 3.2A (ii).  50% of the deaths were due 

to cardiac rupture, 45% occurred intra-operatively (28% of these were attributable to 

mechanical ventilation issues; the other 17% were related to another unidentified aspect of 

the surgical procedure), 4% developed severe clinical symptoms within the first week of 

MI (extreme dyspnoea, lethargy and rapid weight loss) and were killed humanely using an 

appropriate Schedule 1 method; the remaining 1% died after the first week of the 

procedure for reasons that could not be identified from a post-mortem.  The majority of 
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deaths following MI occurred within the first week of the operation (99%) and it was very 

rare to lose animals beyond the first week (1%).  As this was a new model in our 

laboratory, efforts were made to minimise mortalities to achieve the highest possible 

success (survival) rates.  Figure 3.2A (iii) shows how mortality changed over the course of 

learning the technique and how this affected the overall survival.  The current values are 

denoted by the last point on the graph of Figure 3.2A (iii).  It can be seen that with 

experience of the technique, deaths from ventilation issues and from cardiac rupture were 

reduced by 64.8% and 86.1% respectively (current vs. highest incidence).  Intra-operative 

deaths were reduced by 100% to zero (current vs. highest incidence).  In reducing 

mortalities over the course of developing the technique, the overall survival rate of the 

model was increased by 63.3% (current vs. lowest incidence).  Current survival success 

rates were 78% for MI and 100% for sham-operated animals.   

3.3.1.1 Cardiac rupture 

The most common cause of mortality in this model was cardiac rupture.  All animals were 

monitored daily and any animals found dead were examined by autopsy for evidence of 

cardiac rupture. Cardiac rupture was confirmed by the presence of a pool of clotted blood 

surrounding the heart within the chest cavity (Figure 3.2B(i-a) and by the presence of a 

visible tear on the LV free wall of the heart (Figure 3.2B(i-b).  Cardiac rupture always 

occurred in the first week of MI between day 3-6 (Figure 3.2B (ii)); it did not occur before 

day 3 nor after day 7. 
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Figure 3.2  Survival following MI.   

(A-i) Kaplan-Meier survival curves for mice undergoing CAL to produce MI (red line) compared to sham procedure 

(black line).  Animals removed from the study at their respective time points (4 or 8 weeks) are represented by ticks at 

these time points on the survival curve to indicate removal from the study rather than death from the CAL procedure.  

*P<0.05 Log-rank (Mantel-Cox) test.  (A-ii) Reasons why mice did not survive CAL.  (A-iii) Success rates associated 

with experience of the CAL technique.  (B-i)  Photograph of an animal that died as a result of cardiac rupture showing 

blood in the chest cavity (white arrows; (a)) and the site of rupture on the heart (black arrow; (b)).  (B-ii) Incidence of 

cardiac rupture showing the frequency of rupture in the days following MI. 
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3.3.2 Effect of MI on haemodynamic LV function 

LV PV loop measurements were used to assess changes in LV function 4-wk and 8-wk 

post-MI.  The results of these measurements are presented in Figure 3.3, Figure 3.4 and 

summarised in Table 3.2 and described below.  Results are expressed as the percentage 

change compared to the respective time-matched sham. 

3.3.2.1 Effect of MI on LV pressure and volume trac es and HR 

Figure 3.3A (i-iv) shows typical LV pressure and volume traces from 4-wk sham, 4-wk 

MI, 8-wk sham and 8-wk MI.  The resultant PV loops from these traces are summarised in 

Figure 3.3B.  Heart rate was not statistically different across the four groups (545.1 ± 13.3 

(4-wk sham; n=10); 552.7 ± 10.2 (4-wk MI; n=13); 572.0 ± 14.6 (8-wk sham; n=5); 546.2 

± 18.0 (8-wk MI; n=7) bpm; P>0.05; Figure 3.3C).   
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Figure 3.3   Effects of MI on pressure, volume and heart rate. 

(A-i-iv) Representative pressure and volume traces from sham and MI hearts at 4-wk and 8-wk time points.  (B)  

Representative PV loops from sham and MI hearts at 4-wk and 8-wk time points.  (C)  Heart rates from 4-wk sham 

(n=10), 4-wk MI (n=13), 8-wk sham (n=5) and 8-wk MI (n=7). 

3.3.2.2 Effect of MI on systolic functional paramet ers of the heart 

Figure 3.4A shows the effect of MI on parameters of systolic function.  LV end-systolic 

pressure (ESP), a measure of contractility, was significantly reduced to 88.0% of control 

sham levels at 4-wk post-MI (4-wk MI (n=13) vs. 4-wk sham (n=10); P<0.05) and to 

82.0% of control sham levels at 8-wk post-MI (8-wk MI (n=7) vs. 8-wk sham (n=5); 

P<0.05; Figure 3.3A (i-iv), B; Figure 3.4A (i)).  Similarly, the maximum rate of rise of LV 

pressure (dP/dtmax) which is another index of contractility, was significantly reduced to 

78.6% of control sham levels at 4-wk post-MI (4-wk MI (n=13) vs. 4-wk sham (n=10); 

P<0.05) and to 59.7% of control sham levels at 8-wk post-MI (8-wk MI (n=7) vs. 8-wk 
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sham (n=5); P<0.05; Figure 3.4A (ii)).  Another measure of systolic performance is the 

ejection fraction (EF) which is equal to (stroke volume/end-diastolic volume)*100; MI led 

to a significant reduction in EF to 63.5% of control sham levels at 4-wk post-MI (4-wk MI 

(n=13) vs. 4-wk sham (n=10); P<0.05) and to 65.2% of control sham levels at 8-wk post-

MI (8-wk MI (n=7) vs. 8-wk sham (n=5); P<0.05; Figure 3.4A (iii)).  Cardiac output, 

however, remained unchanged following MI after 4-wk post-MI (7.9 ± 1.3 vs. 9.5 ± 1.2 

ml.min-1; 4-wk MI (n=13) vs. 4-wk sham (n=10): P>0.05) and 8-wk post-MI (10.1 ± 1.4 

vs. 10.1 ± 0.6 ml.min-1; 8-wk MI (n=7) vs. 8-wk sham (n=5); P>0.05; Figure 3.4A (iv)).  

There was no further decline in systolic function from 4-wk to 8-wk post-MI for any 

parameter. 

3.3.2.3 Effect of MI on diastolic functional parame ters of the heart 

Figure 3.4B shows the effect of MI on parameters of diastolic function.  LV end-diastolic 

pressure (EDP) is a measure of diastolic function and was significantly increased to 

198.1% of control sham levels at 4-wk post-MI (4-wk MI (n=13) vs. 4-wk sham (n=10); 

P<0.05) and to 280.8%  of control sham levels at 8-wk post-MI (8-wk MI (n=7) vs. 8-wk 

sham (n=5); P<0.05; Figure 3.3A (i-iv), B; Figure 3.4B (i)).  Similarly, the maximum rate 

of fall of LV pressure (dP/dtmax) which is another measure of diastolic function was 

significantly reduced to 58.9% of control sham levels at 4-wk post-MI (4-wk MI (n=13) vs. 

4-wk sham (n=10); P<0.05) and to 58.3% of control sham levels at 8-wk post-MI (8-wk 

MI (n=7) vs. 8-wk sham (n=5); P<0.05; Figure 3.4B (ii)).  Another index of diastolic 

function is the time constant Tau (τ) which describes the rate of LV pressure decay during 

isovolumetric relaxation - τ was significantly increased to 155.9% of control sham levels at 

4-wk post-MI (4-wk MI (n=13) vs. 4-wk sham (n=10); P<0.05) and to 168.0% of control 

sham levels at 8-wk post-MI (8-wk MI (n=7) vs. 8-wk sham (n=5); P<0.05; Figure 3.4B 

(iii)). 

3.3.2.4 Effect of MI on load-independent measures o f LV function 

The end-diastolic pressure-volume relationship (EDPVR) was measured to assess a load-

independent measure of diastolic function in terms of myocardial compliance and stiffness.  

The myocardial stiffness constant (β; calculated from an exponential fit of the end-diastolic 

PV data points) is a load-independent measure of diastolic function in terms of stiffness of 

the myocardium and was significantly increased by 2.5-fold of control sham levels at 4-wk 

post-MI (4-wk MI (n=13) vs. 4-wk sham (n=10); P<0.05) and by 13.8-fold of control sham 

levels at 8-wk post-MI (8-wk MI (n=7) vs. 8-wk sham (n=5); P<0.05; Figure 3.4B (iv)).  
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Hearts were progressively stiffer by 2.5-fold at 8-wk compared to 4-wk post-MI (8-wk MI 

(n=7) vs. 4-wk MI (n=5); P<0.05; Figure 3.3B (iv)).  EDPVR was the only diastolic 

parameter that was found to progressively change from 4-wk to 8-wk post-MI; no other 

parameters of diastolic function were found to change between 4-wk and 8-wk post-MI. 

3.3.2.5 Effect of MI on volume parameters 

Figure 3.4C shows the effect of MI on LV volume parameters.  LV end-diastolic volume 

(EDV) and end-systolic volume (ESV) are measured of the LV blood volumes at end-

diastole and end-systole, respectively and are useful indicators of any change in LV 

volume as a result of chamber dilation for example.  EDV was significantly increased to 

141.1% of control sham levels at 4-wk post-MI (4-wk MI (n=13) vs. 4-wk sham (n=10); 

P<0.05) and to 168.4% of control sham levels at 8-wk post-MI (8-wk MI (n=7) vs. 8-wk 

sham (n=5); P<0.05; Figure 3.3A (i-iv); Figure 3.4C (i)).  Similarly, ESV was significantly 

increased to 215.0% of control sham levels at 4-wk post-MI (4-wk MI (n=13) vs. 4-wk 

sham (n=10); P<0.05) and to 301.2% of control sham levels at 8-wk post-MI (8-wk MI 

(n=7) vs. 8-wk sham (n=5); P<0.05; Figure 3.3A (i-iv); Figure 3.4C (ii)).  Stroke volume 

(SV) was unchanged after MI at both 4-wk post-MI (15.0 ± 2.2 vs. 17.6 ± 2.1 µl; 4-wk MI 

(n=13) vs. 4-wk sham (n=10): P<0.05) and at 8-wk post-MI (18.7 ± 2.1 vs. 17.8 ± 1.3 µl; 

8-wk MI (n=7) vs. 8-wk sham (n=5): P>0.05; Figure 3.4C (iii)).  There was no further 

change in volume parameters from 4-wk to 8-wk post-MI. 
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Table 3.2  Effect of myocardial infarction on haemodynamic indices of LV function in mice. 

  4-wk                                
SHAM  

4-wk                        
MI    8-wk                                

SHAM  
8-wk                                

MI  

      
HR (bpm) 545.1 ± 13.3 552.7 ± 10.2  572.0 ± 14.6 546.2 ± 18.0 

ESP (mmHg) 98.2 ± 1.8 86.4 ± 4.4*  100.1 ± 7.4 82.1 ± 3.9* 

EDP (mmHg) 5.2 ± 0.9 10.3 ± 1.7*  2.6 ± 0.2 7.3 ± 1.4* 

dP/dtmax (mmHg.s-1) 9872.8 ± 489.2 7761.5 ± 516.3*  11023.0 ± 893.9 6575.9 ± 399.9* 

dP/dtmin (mmHg.s-1) 8663.3 ± 292.0 5106.8 ± 351.4*  8826.9 ± 804.7  5141.7 ± 711.2* 

Tau (ms) 5.9 ± 0.3 9.2 ± 0.9*  5.0 ± 0.4 8.4 ± 0.6* 

EDPVR 0.038 ± 0.011 0.097 ± 0.018*  0.018 ± 0.002 0.246 ± 0.05*† 

ESV (µl) 12.7 ± 2.2 27.4 ± 3.4*  8.5 ± 2.0 25.6 ± 4.4* 

EDV (µl) 29.7 ± 3.9 41.9 ± 3.3*  26.3 ± 3.3 44.3 ± 5.5* 

SV (µl) 17.6 ± 2.1 15.0 ± 2.2  17.8 ± 1.3 18.7 ± 2.1 

CO (ml.min-1) 9.5 ± 1.2 7.9 ± 1.3  10.1 ± 0.6 10.1 ± 1.4 

EF (%) 58.7 ± 4.0 37.3 ± 4.6*  69.3 ± 3.5 45.2 ± 6.4* 

            
 
HR = heart rate; ESP = end-systolic pressure; dP/dtmax = maximal rate of rise of pressure; EF = ejection fraction; CO = 

cardiac output; EDP = end-diastolic pressure; -dP/dtmin = maximal rate of fall in pressure; Tau = time relaxation constant; 

EDPVR = end-diastolic pressure-volume relationship stiffness constant.  Values are expressed as mean ± SEM. * P < 

0.05 vs. time-matched sham control.  † P < 0.05 between 4-wk MI vs. 8-wk MI.
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Figure 3.4  Effects of MI on haemodynamic indices of LV function in mice. 

Effect of MI on systolic functional parameters (A i-iv), diastolic functional parameters (B i-iv) and volume parameters (C 

i-iii) in 4-wk sham (white bar; n=10), 4-wk MI (black bar; n=13), 8-wk sham (white bar; n=5) and 8-wk MI (black bar; 

n=7).  Data shown are mean ± SEM; *P<0.05.
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3.3.3 Effect of MI on the electrical properties of the heart 

ECG measurements were used to measure changes in the electrical properties of the heart 

after MI.  ECG was used during the induction of MI in a cohort of animals as a method of 

validating successful CAL.  Representative ECG recordings before, during and after CAL 

are shown in Figure 3.5 which show an increase in the ST-segment during CAL which can 

still be seen 10 min after CAL (Figure 3.5A (i-iii)).  ECG measurements were also 

recorded 4-wk and 8-wk after MI.  Representative ECGs from sham, 4-wk MI and 8-wk 

MI are shown in Figure 3.5B.  It can be seen from these recordings that MI causes the 

development of a negative Q wave, ST depression and T-wave inversion, based on the 

morphology of the ECG alone (not quantified).  Any arrhythmic events that occurred in the 

5 min recording period were counted offline.  Sham animals showed no arrhythmic events 

and therefore the 4-wk and 8-wk shams were combined into a single group.  Animals with 

MI were found to have a significantly increased frequency of arrhythmias in the form of 

ventricular premature complexes (VPC) both at 4-wk (0.10 ± 0.04; 4-wk MI (n=18) vs. 

sham (n=18); P<0.05; Figure 3.5C (ii)) and 8-wk post-MI (0.04 ± 0.02; 8-wk MI (n=7) vs. 

sham (n=18); P<0.05; Figure 3.4C (ii)).  These arrhythmias were identified as VPC by 

their larger QRS complexes with a deflection in the opposite direction to the normal sinus 

rhythm and a larger T wave consistent with a VPC.  These were identified based on their 

morphology alone.  There were no statistical differences in the frequency of VPC 

arrhythmias between 4-wk and 8-wk post-MI (P>0.05). 
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Figure 3.5  Effect of MI on the electric properties of the heart. 

(A-i-iii) Representative electrocardiograms from mice before (i), during (ii) and after CAL (iii). (B-i-iii)  Representative 

electrocardiograms from (i) sham, (ii) 4-wk MI and (iii) 8-wk MI. (C-i) Representative electrocardiograms for arrhythmia 

analysis from 4-wk sham and 4-wk MI after MI. (C-ii) Frequency of VPC arrhythmias in sham (both 4-wk and 8-wk 

shams; n=18; red circles), 4-wk MI (n=18; black circles) and 8-wk MI (n=7; open circles). 
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3.3.4 Effect of MI on the structural properties of the heart 

3.3.4.1 Heart weight 

Heart weight relative to TL was found to be significantly increased 4-wk post-MI (10.7 ± 

0.5 vs. 8.9 ± 0.4 mg/mm; 4-wk MI (n=15) vs. 4-wk sham (n=22); P<0.05; Figure 3.6A-B) 

and 8-wk post MI (13.4 ± 1.4 vs. 9.3 ± 0.4 mg/mm; 8-wk MI (n=12) vs. 8-wk sham (n=11); 

P<0.05; Figure 3.6A-B).  Hearts were also found to be progressively heavier as the MI 

developed from 4-wk to 8-wk (13.4 ± 1.4 vs. 10.7 ± 0.5 mg/mm; 8-wk MI (n=12) vs. 4-wk 

MI (n=15); P<0.05; Figure 3.6A-B). 

3.3.4.2 Cardiomyocyte size 

One factor that may be contributing to an increase in the weight of the heart after MI is an 

increase in the size of the individual cardiomyocytes.  Cardiomyocyte cell dimension 

measurements (measured at 4-wk post-MI only) indicated a small but significant increase 

in cardiomyocyte length 4-wk post-MI (148.9 ± 3.2 vs. 130.7 ± 3.1 µm; 4-wk MI (n=3 

hearts; n=63 cells) vs. 4-wk sham (n=3 hearts; n=79 cells); P<0.05; Figure 3.6C(i-ii).  

Conversely, there were no statistical differences observed in cardiomyocyte width at 4-wk 

post-MI (30.4 ± 1.3 vs. 28.1 ± 0.9 µm; 4-wk MI (n=3 hearts) vs. 4-wk sham (n=3 hearts); 

P>0.05; Figure 3.6(i,iii).  There was also no significant differences in cardiomyocyte cross-

sectional area at 4-wk post-MI (809.9 ± 73.1 vs. 665.0 ± 40.9 µm2; 4-wk MI (n=3 hearts) 

vs. 4-wk sham (n=3 hearts); P<0.05; Figure 3.6C(i,iv). 
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Figure 3.6  Effect of MI on heart weight and cardiomyocyte size. 

(A-a-c) Representative photographs of the heart from (a) 4-wk sham, (b) 4-wk MI and (c) 8-wk after MI.  (B) Effect of 

MI on heart weight (normalised to tibial length) for 4-wk sham (n=15), 4-wk MI (n=22), 8-wk sham (n=12) and 8-wk MI 

(n=11).  (C-i) Typical cardiomyocytes from a 4-wk sham and 4-wk MI heart. C (ii-iv) Effect of MI on (ii) cell length, (iii) 

cell width and (iv) estimated cross-sectional area for 4-wk sham (n=79 cells; n=3 hearts) and 4-wk MI (n=63 cells; n=3 

hearts).  Data shown are mean ± SEM. *P<0.05. 

3.3.4.3 LV dimensions 

Histological H&E-stained sections of the heart were used to quantify LV wall thickness 

and LV chamber area (Figure 3.7A (i-iii)).   

LV wall thickness was found to be unchanged in sham-operated animals from 4-wk to 8-

wk (1.96 ± 0.46 vs. 1.30 ± 0.06 mm; 4-wk sham (n=4) vs. 8-wk sham (n=5); P>0.05; 

Figure 3.7B).  MI resulted in thinning of the LV free wall after 4-wk compared to the 

respective time-matched sham (0.19 ± 0.02 vs. 1.96 ± 0.46 mm; 4-wk MI (n=5) vs. 4-wk 

sham (n=4); P<0.05; Figure 3.7B) and after 8-wk (0.32 ± 0.10 vs. 1.30 ± 0.06 mm; 8-wk 

MI (n=4) vs. 8-wk sham (n=5); P<0.05; Figure 3.7B).  There were no statistical differences 

in the degree of LV wall thinning between 4-wk MI and 8-wk MI (0.19 ± 0.02 vs. 0.32 ± 

0.10 mm; 4-wk MI (n=5) vs. 8-wk MI (n=4); P<0.05; Figure 3.7B). 

LV chamber area in sham-operated animals was not statistically different from 4-wk to 8-

wk (5.3 ± 0.7 vs. 7.0 ± 0.3 mm2; 4-wk sham (n=4) vs. 8-wk sham (n=5); P>0.05; Figure 

3.7C).  After MI, LV area was significantly increased at 4-wk compared to the respective 
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time-matched sham (19.3 ± 3.7 vs. 5.3 ± 0.7 mm2; 4-wk MI (n=5) vs. 4-wk sham (n=4); 

P<0.05; Figure 3.7C) and at 8-wk (17.2 ± 3.5 vs. 7.0 ± 0.3 mm2; 8-wk MI (n=4) vs. 8-wk 

sham (n=5); P<0.05; Figure 3.7C).  There were no significant differences in LV area 

observed between the 4-wk MI and 8-wk MI groups (19.3 ± 3.7 vs. 17.2 ± 3.5 mm2; 4-wk 

MI (n=5) vs. 8-wk MI (n=4); P>0.05; Figure 3.7C). 

 

Figure 3.7  Altered LV dimensions after MI. 

A (i-iii) Representative H&E sections of the heart from 4-wk sham, 4-wk MI and 8-wk MI.  (B) LV infarct thickness and 

(C) LV chamber area measured using H&E sections for 4-wk sham (white bar; n=4), 4-wk MI (black bar; n=5), 8-wk 

sham (white bar; n=5) and 8-wk MI (black bar; n=4). * P<0.05 
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3.3.4.4   Infarct size 

Sirius red sections of the heart were used to quantify infarct size (Figure 3.8A (i-iii)).  The 

mean infarct size after 4-wk and 8-wk post-MI was 36.6 ± 4.2 and 39.4 ± 5.4% of the LV 

respectively (Figure 3.8B) indicating that there were no differences in the infarct size 

between the two time points (36.6 ± 4.2 vs. 39.4 ± 5.3%; 4-wk MI (n=4) vs. 8-wk MI 

(n=3); P>0.05; Figure 3.8B).  Sham animals showed no infarction.  

3.3.4.5 Collagen deposition (cardiac fibrosis) 

Collagen content was measured from the collagen positive (red-stained) area in Sirius red 

sections of the heart (Figure 3.8A (i-iii)).  4-wk and 8-wk shams were combined.  Collagen 

levels were expressed as a percentage of the whole heart.  After MI there was a significant 

increase in collagen content in the heart after 4-wk (13.2 ± 2.2 vs. 4.4 ± 0.7%; 4-wk MI 

(n=4) vs. sham (n=3); P<0.05; Figure 3.8C) and after 8-wk (20.5 ± 4.5 vs. 4.4 ± 0.7%; 8-

wk MI (n=3) vs. sham (n=3); P<0.05; Figure 3.8C).  There were no significant differences 

in collagen content between 4-wk and 8-wk hearts post-MI. 
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Figure 3.8  Infarct size and collagen content after MI. 

(A i-iii) Representative Sirius red sections of the heart from (i) sham, (ii) 4-wk MI and (iii) 8-wk MI. (B) Infarct size after 

4-wk MI (n=4; light grey bar) and 8-wk MI (n=3; dark grey bar).  * P<0.05 compared to sham (dotted line).  (C) 

Collagen levels in the heart as a percentage of the whole heart in sham (n=3; white bar), 4-wk MI (n=4; grey bar) and 8-

wk MI (n=3; black bar). * P<0.05 between two groups indicated by connecting bars. 

3.3.5 Effect of MI on lung and liver weight 

There were no statistical differences in lung weight at 4-wk post-MI (7.1 ± 0.4 vs. 7.2 ± 0.4 

mg/mm; 4-wk MI (n=22) vs. 4-wk sham (n=15) P>0.05; Figure 3.9A) nor at 8-wk post-MI 

(7.2 ± 0.7 vs. 6.8 ± 0.2 mg/mm; 8-wk MI (n=11) vs. 8-wk sham (n=12) P>0.05; Figure 

3.9A).  Similarly, there were also no statistical differences in liver weight at 4-wk post-MI 

(67.5 ± 1.8 vs. 66.6 ± 2.8 mg/mm; 4-wk MI (n=22) vs. 4-wk sham (n=15) P>0.05; Figure 

3.9B) and at 8-wk post-MI (70.0 ± 2.1 vs. 65.9 ± 2.6 mg/mm; 8-wk MI (n=11) vs. 8-wk 

sham (n=12) P>0.05; Figure 3.9B). 
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Figure 3.9  Lung and liver weights after MI. 

(A) Lung weight in 4-wk sham (n=15), 4-wk MI (n=22), 8-wk sham (n=12) and 8-wk MI (n=11).  (B) Liver weight in 4-

wk sham (n=15), 4-wk MI (n=22), 8-wk sham (n=12) and 8-wk MI (n=11). 

3.4 Discussion 

For this study, a model of MI was produced in the mouse using the well-established CAL 

method.  The results presented in this chapter demonstrate that this method produced a 

model with altered cardiac functional and structural properties consistent with LV 

remodelling during MI. 

3.4.1 Inducing MI leads to reduced survival 

Inducing MI in mice experimentally is known to be associated with a higher incidence of 

mortality compared to animals undergoing the sham procedure (Sam et al., 2000;van 

Laake et al., 2007).  The current mortality in our model was 27% for animals undergoing 

CAL (compared to 0% in shams); which saw an improvement in survival by approximately 

3-fold since first learning the technique for the study.  Mortality associated with CAL-

induced MI in mice is about 32-50% (Gehrmann et al., 2001;Kuhlmann et al., 2006) 

therefore the mortality for our model was low compared with the published literature for 

this species. 

3.4.1.1 Reasons for reduced survival 

Nearly all (99%) of the deaths from CAL occurred within the first week of the operation 

which is a consistent finding in mouse MI models (Lutgens et al., 1999;Patten, 1998).  

Sudden deaths beyond the first week were uncommon in our model (1% of all deaths) but 
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these have been known to occur in murine MI models beyond the first week although these 

tend to be a significantly smaller proportion compared to the first week drop-out: Patten 

reported a small proportion of deaths (8.8% of their deaths) which occurred at days 20, 28 

and 32 post-operative (Patten, 1998) and Yang have reported 1% of sudden deaths at 2-wk, 

4-wk and 8-wk with 3% of sudden deaths at 16-wk and 24-wk (Yang et al., 2002).   

Intra-operative mortality:  In the present study, nearly half of all mortalities (45%) 

occurred intra-operatively and were mainly due to respiratory problems from mechanical 

ventilation.  It was necessary to mechanically ventilate the animals to prevent respiratory 

insufficiency from lung collapse during thoracotomy; however, due to the animal’s small 

size and complex respiratory patterns (e.g. high respiration rate (RR) and low inspiratory 

time to total time of the respiratory cycle (Ti/Tt)), mechanical ventilation in mice can be 

inherently difficult (Schwarte et al., 2000).  There is also the associated high risk of 

pneumothorax with open-chest procedures which occurs when air is not fully displaced 

from the chest and the lungs cannot fully inflate which can also lead to respiratory 

insufficiency.  In this model, deaths from mechanical ventilation were either due to (i) 

pneumothorax as previously described, or (ii) an over-inflation of the lungs, which may 

have been caused by too great a pressure at the inlet port.  Efforts were made to minimise 

ventilation-related deaths and improve overall survival.  These included (i) placing the 

expiratory tube under water during closing up to increase PEEP and reduce the chance of 

lung collapse, (ii) ensuring patency in the tracheal cannula and associated tubing at all 

times, (iii) use of appropriate tidal volumes and respiration rates for the body weight of the 

animal (as recommended by the manufacturer of the ventilator, Harvard Apparatus, 

Germany).  Together these methods were successful in reducing ventilation-related deaths 

to 0% and improved overall survival by 65% during the course of refining the model as 

shown in Figure 3.2A(iii).  Novel methods for inducing CAL in mice without the need for 

mechanical ventilation are emerging like the method by Gao et al., (2010) in which a 

“heart pop-out” approach is used to eliminate the need for ventilation and is found to 

produce identical infarct sizes and a similar level of dysfunction as the conventional 

method but with less tissue damage and better survival.  This may be beneficial to 

investigators using mouse MI models to help reduce intra-operative mortality (Gao et al.’s 

method showed reduced mortality from 52.3% to 32.5% without need for mechanical 

ventilation).  The other intra-operative deaths observed in the present study that were not 

caused by respiratory problems were for reasons that could not be identified; it’s possible 

that the CAL may have triggered fatal arrhythmias.  Alternatively, as Figure 3.2A(iii) 
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shows, these deaths were highest at the beginning of the course of learning the technique 

therefore it may have been related to inexperience. 

3.4.1.2 The main cause of reduced survival was card iac rupture 

The largest loss of animals after the CAL procedure was from cardiac rupture which 

occurred in 27% of animals overall (constituting 50% of all deaths) as shown in Figure 

3.2A(ii).  Cardiac rupture is a feature of acute MI which is believed to occur from 

persistent stretching of weakened myocardium causing it to rupture (Schuster & Bulkley, 

1979).  The increased abundance and activity of MMP enzymes in the early stages of acute 

MI is believed to be the major contributor to this event (Heymans et al., 1999;Matsumura 

et al., 2005).  Cardiac rupture can occur in human patients with MI although it is rare 

(occurs in 3% of MI patients) (Brener & Tschopp, 2009) and is also a feature of mouse 

models of MI; the mouse is the only laboratory species reported to demonstrate cardiac 

rupture like humans (Gao et al., 2010b;Sane et al., 2009).  Mouse rupture models have 

provided valuable insight into the principal mechanisms of rupture as well as the 

associated risk factors for developing rupture.  A common finding appears to be that the 

occurrence of rupture requires a critical extent of infarction (Gao, 2005;Gao et al., 2010b).  

It has also been reported that the gender and strain of mice plays a role in the risk of 

rupture with males being at greater risk than females (59% for males vs. 23% for females) 

(Gao, 2005) and the greatest incidence occurring in the 129sv strain compared to the 

C57Bl/6 strain (62% for 129sv vs. 33% for C57Bl/6) (Gao, 2005).  Ageing is also a factor 

for rupture incidence; older mice (12 months old) demonstrated greater LV remodelling 

with a higher incidence of rupture (40.7%) compared to younger mice (3 months old; 

18.3%) (Yang et al., 2008).  In light of these reports, a lower risk strain (C57Bl/6) and 

younger animals (8-10 weeks of age) were used for this study to try to minimise the 

incidence of rupture and promote full recovery to the 4-wk and 8-wk time points.  From 

these studies, rupture incidence for male C57Bl/6 mice were reported to be 27% and 33% 

(Gao, 2005;Gao et al., 2010b) which is very comparable with our rupture rate (27%).  

Cardiac rupture was easily identifiable at autopsy following sudden death by the presence 

of blood clots within the chest surrounding the heart and by the presence of a visible tear 

on the LV free wall, although the latter was not always clearly evident.  The time-window 

for this event was always within the first week of MI peaking at day 3-5 which is 

consistent with what others have seen in mouse models of post-infarct rupture (Gao, 

2005;van der Borne, 2009). 
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3.4.2 MI alters the structural properties of the he art 

3.4.2.1 MI causes LV chamber dilation and wall thin ning 

MI induces a series of complex changes to the size, shape and function of the heart as part 

of LV remodelling (Pfeffer & Braunwald, 1990).  One of the earliest features of 

remodelling after MI is LV chamber dilation caused by infarct expansion through loss of 

cardiomyocytes (Weisman et al., 1988) or side-to-side slippage of cardiomyocytes (Gerdes 

& Capasso, 1995;Olivetti et al., 1990).  Side-slippage of cardiomyocytes occurs because of 

the loss of collagen holding the cells together through degradation by MMPs which 

permits them to move (Whittaker et al., 1991).  Cardiomyocyte cell death also contributes 

to the process because as they die, the neighbouring viable cells are no longer held in place 

and are also able to slip (Gajarsa & Kloner, 2011).  In the present study, it was found that 

after 4-wk and 8-wk post-MI, mice displayed a ≈3.6-fold and ≈2.5-fold increase 

respectively in LV chamber area together with reduction in LV infarct thickness by 90% 

and 75% respectively, findings which are consistent with a dilated LV chamber.  These 

measurements were taken from histological slices post-mortem which are acceptably less 

accurate than for example in vivo imaging methods such as echocardiography and MRI due 

to the tissue shrinkage associated with histological processing which may underestimate 

true dimensions.  However, efforts were made to enable as accurate measurements as 

possible using histology methods by use of serial sections and using area-based chamber 

size measurements rather than radius/diameter which could be subject to error if there was 

any deformation of the heart on the slide.  Despite histological limitations, a study by 

Nahrendorf et al. (2000) found that MRI vs. histologic-based methods of LV dimensions 

correlated well (R=0.97) in a rat MI model which is encouraging for the measurements in 

our study (Nahrendorf et al., 2000).  Furthermore the findings are further supported by 

increased end-diastolic LV volumes observed by PV methodology in the 4-wk and 8-wk 

infarcted heart also consistent with LV chamber dilation.  Chamber dilation leads to an 

increase in systolic and diastolic wall stress; this occurs because the increase in LV radius 

increases the wall stress and oxygen demand by Laplace’s law (Pfeffer et al., 1991a).  

Elevated wall stress triggers eccentric hypertrophy (end-to-end lengthwise cell 

enlargement) in the non-infarcted myocardium by causing altered expression of genes 

which encode contractile proteins (e.g. β myosin heavy chain) for assembly of new 

sarcomeres (Sadoshima et al., 1992).  Over time however as the heart undergoes ongoing 

remodelling, cardiac function significantly deteriorates as the LV chamber becomes so 

enlarged that it begins to severely impair contractile function.  Dilated cardiomyopathy is a 
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serious problem for patients as once this stage is reached it is very difficult to reverse; 

approximately 1 in 3 cases of congestive HF are due to a dilated cardiomyopathy (Jameson 

et al., 2005). 

3.4.2.2 MI leads to cardiac hypertrophy 

A dilated ventricle can trigger hypertrophy of surviving myocardium in attempts to 

attenuate further dilation, offset the elevated load and wall stress resulting from infarct 

expansion and stabilise contractile function (Sutton & Sharpe, 2000).  There are two forms 

of hypertrophy (concentric and eccentric) which is determined by the type of load applied 

to the heart.  Pressure overload causes cardiomyocyte thicknening (concentric 

hypertrophy) by the parallel addition of new sarcomeres, while volume overload elicits 

cardiomyocyte lengthening (eccentric hypertrophy) by the in-series addition of new 

sarcomeres.  LV remodelling post-MI is primarily a state of volume overload and thus 

leads to cardiomyocyte lengthening as part of eccentric hypertrophy (French & Kramer, 

2007).  Cardiomyocytes in the non-infarcted regions can increase in length as a result of in-

series addition of sarcomeres as described previously (Gerdes & Capasso, 1995) which at 

the organ level manifests as an increase in heart weight.  In the present study, hearts 

showed a progressive increase in heart weight (increased heart weight-to-tibial length 

ratio) after MI, with heavier hearts after 4-wk which continued to increase by 8-wk.  

Concurrent with the increased heart weight was a 14% increase in cardiomyocyte length 

but no change in cardiomyocyte width at 4-wk post-MI (but no significant differences in 

cardiomyocyte cross-sectional area) as shown in Figure 3.6C(ii-iii).  This is in agreement 

with what others have found, for example Zhang et al. (1998) reported a 10% increase in 

cardiomyocyte cell length with no change in cell width 3-wk post-MI in a rat model 

(Zhang et al., 1998) and Scherrer-Crosbie et al. (2001) also found no change in 

cardiomyocyte width in a mouse model of MI after 4-wk (Scherrer-Crosbie et al., 2001).  

An increase in cardiomyocyte length with no change in cell width is consistent with 

eccentric hypertrophy observed in MI, although concentric hypertrophy has been known to 

occur during MI in addition to eccentric hypertrophy (Runge & Patterson, 2006).  Together 

these results demonstrate the hearts have undergone hypertrophy consistent with LV 

remodelling after MI and that cardiomyocyte elongation is likely to be contributing to the 

increase in heart weight observed. 
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3.4.2.3 MI causes increased collagen deposition 

Another important characteristic of remodelling is the increased synthesis and deposition 

of collagen to support the weakened myocardium and stabilise the infarct (Van et al., 

2000).  After MI, collagen levels in the heart were found to increase 3-fold and 4.7-fold 

after 4-wk and 8-wk respectively.  Collagen levels tended to be higher at 8-wk (compared 

to 4-wk) however this did not reach statistical significance.  This may be due to low n 

numbers for this group (sham n=3, 8-wk MI n=3) and larger numbers may have shown a 

statistical difference.  Increased collagen deposition could explain why no further dilation 

was observed from 4-wk to 8-wk as collagen can prevent cardiomyocyte slippage, one of 

the primary causes of LV expansion and dilation (Whittaker et al., 1991).  Fibrosis after 

MI can also decrease the compliance of the ventricle leading to stiffer myocardium during 

diastole (Raya et al., 1988;Litwin et al., 1991).  This occurs because excessive 

accumulation of collagen around myofibres reduces the passive viscoelasticity of the 

myocardium which limits normal diastolic recoil, impairs tissue compliance and 

compromises length-dependent muscle fibre shortening (Burlew & Weber, 2002).  

Therefore, the increased cardiac collagen observed may explain why the ventricles were 

stiffer after MI as PV data using the EDPVR demonstrated.  A trend towards higher 

collagen levels at 8-wk would parallel with the progressively stiffer ventricle at 8-wk.  

Increased myocardial stiffness has been known to occur in the post-MI heart during the 

healing phase in humans (Diamond & Forrester, 1972) and experimental animal models 

(Hood, Jr. et al., 1970) which is in agreement with the results found in this present study.  

However investigations have also led to variable findings regarding cardiac stiffness post-

MI, these refer to the very early stages of MI (<1 day).  Forrester et al. (1972) found a 

significant increase in LV compliance (reduced stiffness) 1 hr after induction of MI in the 

canine model (Forrester et al., 1972).  Increased myocardial stiffness is a major cause of 

diastolic dysfunction which is important because diastolic dysfunction is considered an 

independent predictor of mortality in CVD patients (Aljaroudi et al., 2012). 

 

3.4.2.4 The CAL technique produces comparable infar ct sizes 

Data from other mouse MI models have reported that the CAL method can produce infarct 

sizes from 25-50% (Lutgens et al., 1999;Patten, 1998).  Using the CAL method in our 

model produced a mean infarct size of 37.6 ± 4.2 and 39.4 ± 5.4% at 4-wk and 8-wk 

respectively.  This model therefore had infarcts of comparable size with other mouse 

infarct models.  Infarct size was not different between 4-wk and 8-wk.  This suggests that 



Kirsty K. Foote, 2012  Chapter 3  

178 
 

the size of the infarct had reached completion by 4-wk with no further increase in size 

thereafter to 8-wk.  Yang et al. (2002) reported a similar finding with identical infarct sizes 

in mice post-MI of (as % of LV) 47.3 ± 5% at 4-wk and 45.3 ± 5% at 8-wk (P>0.05) – 

through further examinations at different time points (3-wk, 4-wk, 8-wk, 16-wk and 24-

wk) they found that the infarct formation was complete by 3-wk and infarct size did not 

increase after this point (Yang et al., 2002).  Based on these findings this may explain why 

no change in infarct size was observed in our model from 4-wk to 8-wk as the infarct may 

have reached its full size by 3-wk.  Despite equivalent infarct size, the progressive increase 

in cardiac weight observed between 4-wk and 8-wk suggests the hypertrophic response 

could have occurred independently of infarct size and may be a time-related response.  

This result does however differ from previous reports: for example the current view is that 

after MI, the extent of cellular hypertrophy in surviving tissue is proportional to the 

magnitude of cardiomyocyte loss which has been demonstrated in a number of studies 

showing a positive correlation between the extent of cardiomyocyte hypertrophy with 

infarct size in rats (Anversa et al., 1986;Anversa et al., 1990).  However hypertrophy is 

known to be a progressive process which can increase over the course of the remodelling 

period with time and may not be strictly regulated by the degree of infarction as has been 

shown in mice where heart weight continued to increase with no change in infarct size 

(Yang et al., 2002). 

3.4.3 Early onset of structural remodelling can hav e adverse 
effects 

A small percentage (5%) of animals undergoing CAL developed very severe symptoms in 

the first week after the procedure including severe respiratory distress which autopsy 

assessment revealed may be due to severe adverse remodelling.  These animals displayed a 

marked increase in heart weight (32% greater than 4-wk MI P<0.05; data not shown) 

which was comparable to the level seen at 8-wk (15.7 ± 3.0 vs. 13.4 ± 1.4 mg/mm; severe 

MI (n=4) vs. 8-wk MI (n=11); P<0.05; data not shown).  However, these hearts developed 

a greater degree of adverse remodelling in terms of significantly greater chamber dilation 

(than 4-wk and 8-wk hearts; see below) and also evidence of severe pulmonary congestion 

in these animals which showed 65% increase in lung weight when compared to both 4-wk 

and 8-wk animals respectively.  This may explain why animals at 8-wk MI (which had 

comparable HW/TL ratio to the animals with the severe phenotype) did not exhibit the 

same symptoms.  It is likely that these animals were suffering from acute congestive HF, 

however due to the severity of their condition it was not possible to perform any functional 
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measurements on them to confirm this.  Examination of histological heart sections also 

revealed that these animals had severe LV chamber dilation compared to animals that 

survived to 4-wk and 8-wk post-MI, as mentioned above, with 1.9-fold and 2.1-fold greater 

chamber area respectively.  Advanced dilation and wall thinning does not usually occur 

until the chronic phase of MI in mice (Bayat et al., 2002), however the level of acute 

adverse remodelling observed in these animals may explain their symptoms.  Severe 

dilation causes an increase in systolic wall stress (Pfeffer & Braunwald, 1990) and loss of 

cardiomyocyte contractility (Gomez et al., 2001) to a level that significantly affects the 

pump function of the heart and reduce the EF and CO to a level insufficient to meet the 

demands of the body, leading to HF (Isaaz et al., 1989).  The findings from this small 

subset of animals (n=2) are consistent with a study by Gao et al., 2000 who have reported a 

similar small subset of mice that did not survive past the first week of CAL and showed 

significant chamber dilation compared to mice that survived to longer time points (Gao et 

al., 2000).      

3.4.4 MI leads to impairment of cardiac function 

After chronic MI in mice, chamber dilation and infarct thinning can adversely lead to 

systolic and diastolic dysfunction (Pfeffer et al., 1991b).  LV PV measurements are 

considered the ‘gold standard’ for measuring cardiac function in vivo and in this model, PV 

measurements revealed an overall decline in cardiac function after MI.  There was a 

significant reduction in contractile function at 4-wk and 8-wk post-MI as evidenced by 

reduced LVESP and reduced dP/dtmax.  There was also a significant decrease in diastolic 

function with raised LVEDP and reduced relaxation rates (-dP/dtmin) and duration of 

relaxation (τ) consistent with impaired relaxation and filling.  Systolic and diastolic 

function were reduced to the same degree at 4-wk and 8-wk, suggesting there was no 

further deterioration in function from 4-wk to 8-wk after MI.  This has been observed by 

others; one study reported no further decline in dP/dtmax and EF beyond 12-wk post-MI in 

mice (Pons et al., 2003) while another showed no further worsening of function in terms of 

ESP, dP/dtmax and dP/dtmin between 1-wk and 3-wk post MI in mice (Lutgens et al., 1999).  

This finding is consistent with the sustained structural properties between 4-wk and 8-wk 

such as infarct size, degree of LV dilation and infarct thickness.  The progressive increase 

in cardiac weight did not improve function between 4-wk and 8-wk; however it may have 

contributed towards protecting the heart from further decline.  Alternatively, it may be that 

the degree of remodelling had not reached advanced stages and the heart was still well 

compensated.  This is confirmed by the finding that, despite marked LV dysfunction, 
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hearts had preserved SV and CO after 4-wk and 8-wk.  This is known to occur during 

compensated remodelling post-MI where there is surprisingly little change in the SV due to 

a compensatory rise in LV filling pressure – an increase in both EDP and EDV (the latter 

through dilation) shifts the ventricular function curve upwards restoring contractile energy 

through the Frank-Starling mechanism allowing SV and CO to be near normal (Levick, 

2010).  Although there are reports which have observed a reduction in CO in mouse 

models of MI by 8-wk (Shioura et al., 2007), it has also been found that CO is conserved 

after 8-wk in mice with MI similar to the findings of the present study; for example it has 

been previously shown from PV loop measurements in a mouse model of MI that there 

was no reduction in CO by 12-wk post-MI compared to sham (Pons et al., 2003).  In our 

mouse model conservation of SV and CO would suggest the hearts had not reached the 

stages of HF by 8-wk.  Examinations of the liver and lung weights have further confirmed 

this by the absence of any signs of systemic or pulmonary congestion.  These findings are 

not unusual as it has been reported that it can take up to 18 weeks for mice with MI to start 

showing signs of HF (Bayat et al., 2002). 

  

3.4.5 MI alters electrical activity and increases t he frequency of 
cardiac arrhythmia 

As well as mechanical dysfunction, MI can alter the normal electrical functioning of the 

heart.  This occurs because the infarcted myocardium represents an area of altered 

substrate for the normal depolarisation and repolarisation of the heart leading to conduction 

disturbances (Peters, 1995).  Our model demonstrated conduction abnormalities associated 

with ventricular depolarisation and repolarisation such as negative Q waves, ST depression 

and T-wave inversion.  These findings are consistent with what has been reported on 

changes in ECG seen in mouse MI (Wehrens et al., 2000).  These morphological changes 

observed on the ECG were very similar between 4-wk and 8-wk.  The model also showed 

an increased propensity for ventricular arrhythmias in the form of VPC.  VPC arrhythmias 

are the most common type of cardiac arrhythmia in MI and occur when an action potential 

is fired from a region other than the SA node prior to normal conduction resulting in a 

premature or ectopic beat (Horan & Kennedy, 1984).  These occur during MI as a result of 

the myocardial scarring disrupting the normal conduction system of the heart.  Furthermore 

due to the loss of cell-cell communication by the scarred tissue (Peters, 1995) neighbouring 

cardiomyocytes are more likely to depolarise spontaneously (‘irritated myoctes’) and fire 

off premature beats – this explains why VPCs usually arise from the infarct or peri-infarct 
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regions (Bogun et al., 2008).  At the molecular level, VPCs largely occur due to the 

remodelling of (i) ion channels, (ii) Ca2+ handling proteins and (iii) gap junction proteins 

which predispose the heart to electrical disturbances mainly after depolarisations.  For 

example, during MI NCX is known to be up-regulated which increases the inward INa/Ca 

during SR release leading to extrusion of a larger fraction of released Ca2+ (increasing the 

transient inward Na+ current, Iti).  There is also a reduction in the inward rectifier K+ 

current (IK1) which for any given Iti could produce a greater depolarisation which means 

that it may be more likely to trigger an AP (Pogwizd et al., 2001).  The incidence of VPC 

arrhythmias is markedly increased in heart disease (by 90% in patients with coronary 

artery disease and ischaemia) (Ghuran & Camm, 2001).  VPCs are an important predictor 

of adverse outcome; in patients with MI, a frequency of >10 VPC per hour is associated 

with a greater risk of sudden death (Laidlaw et al., 2007).  In our model, the frequency of 

VPC arrhythmia was not different between 4-wk and 8-wk which is not surprising given 

the similar degree of LV remodelling between these two groups.  Collectively, the findings 

reveal that our mouse model demonstrates cardiac arrhythmias consistent with MI. 

 

3.4.6 Summary 

In summary, these data show that the mouse model of MI developed for this study 

demonstrates both structural and functional alterations of the heart comparable with other 

published mouse models of MI using the CAL method. This model is therefore a suitable 

model of MI for use in subsequent studies in this thesis.
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4.1 Introduction 

MI is the leading cause of HF and premature death (Scarborough, 2010).  The loss of 

viable myocardium after MI triggers a sequence of structural and geometric alterations to 

the heart as part of LV remodelling which can eventually lead to progressive dysfunction 

and the inability of the ventricle to maintain output sufficient for the body’s metabolic 

needs (Weber et al., 1991a).  LV remodelling is a complex process involving a multitude 

of cellular and molecular mechanisms (Colucci, 1997).  While these mechanisms are 

believed to be beneficial initially, many of them can become detrimental and lead to long-

term adverse effects in patients (Pfeffer & Braunwald, 1990).  Despite extensive 

investigations, the specific pathophysiological pathways responsible for the decline into 

HF are not fully understood.  Novel insight into the regulatory mechanisms that contribute 

to the subsequent decompensatory processes of post-infarction remodelling are therefore 

required to slow this deterioration process and improve treatment strategies. 

4.1.1 Altered gene expression in MI 

Clinical and animal studies of MI have revealed a number of cellular changes that 

contribute to the functional and structural changes of remodelling including cardiomyocyte 

hypertrophy (Litwin et al., 1991) and ECM alterations (Van et al., 2000).  Although the 

molecular mechanisms involved in remodelling are numerous and complex, it is clear that 

substantial alterations in gene expression are involved to afford the changes observed.  

Altered gene expression after MI has been widely reported in both human and 

experimental animal models (Stanton et al., 2000;Gidh-Jain et al., 1998;LaFramboise et 

al., 2005).  Studies have revealed that MI can modify the expression of genes involved in 

calcium-handling (Swynghedauw, 1991), contractile function (Yue et al., 1998), the ECM 

(Weber, 1997) and the RAA system (Holtz, 1998).   

4.1.1.1 Altered gene expression in different region s of the heart in MI 

Changes in gene expression can be seen as a global change across the whole heart but 

studies particularly from rodent models of MI have shown that altered gene expression 

post-MI can occur differentially and tends to be selective for specific regions of the heart 

(Melle et al., 2006;Xu et al., 2004;Schneider et al., 2007).  Most commonly, genes are 

altered differently in the infarcted versus non-infarcted regions.  In the early post-infarction 

period (24-48 h) a broad range of genes are activated or up-regulated in the remote region 

while many are repressed in the infarct region; the specific cell types were not specified 
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(LaFramboise et al., 2005).  Early remote gene expression is largely activation of genes 

involved in the inflammatory response including the interkeukins (IL1α, IL1β, IL6, IL12α, 

IL18) which can increase 1.5 – 5 fold and the TNFα superfamily which have been 

observed in mice to increase ~2 fold compared to sham equivalent regions (LaFramboise et 

al., 2005) as part of the initial compensatory phase to limit injury expansion (Brivaniou & 

Darnell, 2002;Frangogiannis et al., 2002).  Other genes which show increased expression 

in the remote region at this early time point include homeobox genes which encode 

homeobox transcription factors which are involved in developmental processes (RAX, 

LH2, HOXA1; 2-4 fold increase compared to sham) and zinc finger factors which are a 

group of transcription factors (ZPF103, HR, GATA1; 2-3 fold increase compared to the 

matching sham region) (LaFramboise et al., 2005).   

Conversely, at a later stage of the MI (4-wk) the reciprocal pattern between infarct and 

remote regions is reversed, and many genes are up-regulated in the infarcted region while 

expression in the remote is reduced.  Genes up-regulated in the infarct region are mainly 

ECM genes (collagen 5A3, MET1A, P4HB, contactin, osteoadherin, osteopontin) 

(Frangogiannis et al., 2002a;Jugdutt, 2003).  Genes which show early increase in the 

remote but low expression in the infarct (24h) but then lower in the remote and higher in 

the infarct at the later time point (4-wk) include the genes encoding MMPs which degrade 

collagen (MMPs 2, 9, 12, 23; 2-5 fold higher in infarct compared to sham), ADAM15 

(glycoproteins for cell adhesion; up 2 fold in infarct compared to sham) and 

metallothioneine 1 and 3 involved in zinc binding which increase 2 fold in the infarct 

compared to the equivalent sham region (LaFramboise et al., 2005).  In the weeks after the 

MI, a large number of gene expression alterations are reported to occur in the infarct and 

peri-infarct regions only with little or no change in areas remote; these include genes 

encoding TGF-β1, part of a super family of cytokines although the cell type was not 

specified (Vandervelde et al., 2007), fibulin-2, a Ca2+-binding glycoprotein located in the 

vascular endothelial cells only (Tsuda et al., 2012) and fibroblast growth factor receptor 1 

(FGFR-1) found to be 1.4 fold higher in cardiomyocytes (Wang et al., 2007) which all 

show increased levels in the peri-infarct alone.  Regional patterns of altered gene 

expression are not surprising given the disparate remodelling processes in each region of 

the infarcted heart, more details on this are discussed later (French & Kramer, 2007).  This 

may largely be contributing to the difficulty in trying to resolve the molecular mechanisms 

associated with adverse remodelling and HF.   
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4.1.2 Transcription factors in MI 

Microarray technology has emerged as a large-scale approach for the identification of 

altered target genes during MI (Kaab et al., 2004).  In one study, this approach identified 

over 700 different genes which were altered after MI in the remodelled myocardium alone 

(Stanton et al., 2000) and this is believed only to represent a fraction of the genes which 

show altered expression patterns after MI.  However gene expression profiles are complex 

and require detailed understanding of the precise regulatory mechanisms underlying the 

control of their expression patterns. Transcription factors have therefore emerged as 

important targets in cardiac disease as they directly regulate the expression of many 

cardiac genes in response to specific physiological and pathophysiological signals.  

Furthermore, one of the earliest responses following cardiac injury is the activation of 

transcription factors (LaFramboise et al., 2005).  Transcription factors are therefore key for 

understanding the regulatory mechanisms and coordinated changes in cardiac gene 

expression during disease (Buermans et al., 2005;Bruneau, 2002).  Examples of 

transcription factors which have been shown to have altered expression post-MI are 

detailed below.   

CARP and TSC-22:  Additionally, the transcription factors CARP and transforming 

growth factor-β-stimulated clone (TSC)-22 both show elevated levels of expression in rat 

remodelled myocardium and have specific roles in cardiac gene regulation (Stanton et al., 

2000).  CARP is constitutively expressed in the heart (within the nucleus of 

cardiomyocytes) and is up-regulated in a variety of different cardiac pathologies; including 

failing canine ventricular tissue (Zolk et al., 2002), hypertrophied mouse hearts (Ihara et 

al., 2002), hypertrophied rat models (aortic banding, SHR and Dahl salt-sensitive rats) 

(Aihara et al., 2000) and also in explanted ventricular tissue from human HF patients (Zolk 

et al., 2002).  CARP is believed to be induced by both acute and chronic pressure-overload 

and stress pathways (Aihara et al., 2000) and leads to contractile disturbances through 

repression of genes encoding contractile proteins.  TSC-22 is also over-expressed in rat 

remodelled cardiac tissue and is believed to be important for mediating cardiac 

myofibroblast differentiation (Yan et al., 2011). 

HIF1- αααα:  Another example of a transcription factor which has been characterised during 

MI is the hypoxia-inducible factor 1 alpha (HIF1-α) which activates gene expression of 

glycolytic enzymes and glucose transporters (Semenza et al., 1994;Semenza, 1996).  HIF1-

α levels are increased in the nuclei of cardiomyocytes of the heart by ~ 2 fold in a rat 
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model of MI and hamster model of cardiomyopathy and HF (Kakinuma et al., 2001).  The 

same study revealed that HIF1-α mRNA was increased ~3.3 fold in cultured rat 

cardiomyocytes that were treated with a mitochondrial inhibitor Cobalt(II) Chloride 

(CoCl2), therefore this degree of mRNA increase in HIF1-α led to an increase in glycolysis 

believed to be a protective response against impaired energy metabolism during MI 

(Kakinuma et al., 2001).  Transgenic studies with HIF1-α in mice have revealed that HIF1-

α is required to reduce the extent of infarction (infarct size) and limit the progression of 

dysfunction in mice post-MI by promoting angiogenesis (Kido et al., 2005). 

WT-1:   Recently the transcription factor Wilms’ tumour protein (WT-1) has also been 

shown to have altered expression in MI (Finsen et al., 2004).  WT-1 expression was 

increased in non-infarcted myocardium (cell type not specified).  WT-1 is known to be a 

transcriptional regulator of syndecans, a family of transmembrane proteoglycans which 

have also themselves been implicated in MI (Finsen et al., 2004) as having increased 

expression in non-infarcted mouse myocardium post-MI and have been shown to be 

critical mediators in cardiac fibrosis (Frangogiannis, 2010). 

4.1.3 RUNX transcription factors 

As detailed in Introduction chapter (Chapter 1) RUNX proteins are novel transcription 

factors in the context of myocardial injury.  RUNX1 has been shown to be up-regulated in 

the human heart in response to MI relative to healthy hearts (Gattenlohner et al., 2003) and 

may represent a novel candidate gene for myocardial injury.  RUNX1 has been shown to 

selectively regulate the expression of genes that encode important muscle proteins during 

disrupted electrical activity (e.g. in skeletal muscle) which are also found in cardiac tissue 

such as phospholamban, sodium channel type V, osteopontin and thrombospondin (Wang 

et al., 2005).  During these conditions RUNX1 elicited a protective role in the diseased 

muscle which may also be applicable to similar conditions of disrupted electrical activity 

in cardiac injury.  RUNX2 has also been shown to have negligible expression in the 

healthy heart (negative with IHC in normal rat cardiomyocytes) (Custodio et al., 2012) but 

is up-regulated under conditions of myocardial disease such as human DCM and HCM 

(Sanoudou et al., 2005), aortic valve calcification (Garg et al., 2005), atherosclerosis 

plaque formation (Tyson et al., 2003) and during myocardial fibrosis and dysfunction 

(Elsherif et al., 2008).  RUNX3 expression during cardiac disease is virtually unknown.  

However, due to its links with RUNX1 cross-regulation (Levanon et al., 2001a) and, like 

RUNX2, it is a direct target of Notch signalling pathways which are known to be altered in 
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cardiac disease (Fu et al., 2011) it is therefore possible there may be altered expression 

patterns of RUNX3 like the other RUNX proteins.  Despite this information, knowledge of 

the expression of RUNX proteins within the heart during CVD is limited.  RUNX 

expression has not clearly been investigated in terms of its altered expression during 

cardiac disease in an animal model of MI.  No evidence currently exists on their expression 

in different regions of the heart, over different time-points post-MI or any links with the 

cardiac expression in relation to the functioning of the heart. 

4.1.4 Aims 

The aims of the work in this chapter were to perform a detailed characterisation of the 

expression of Runx gene/protein expression in a mouse model of MI in terms of changes in 

expression, including how these changes develop over time, and in particular regions of the 

heart, and examine the links with dysfunction in response to MI. 

4.2 Methods 

4.2.1 Induction of MI 

Mice underwent MI as described previously in the General Methods Section 2.1.  Sham 

controls underwent the same procedure but without ligation.  All subsequent experimental 

measurements detailed in this chapter were carried out either 4-wk or 8-wk post-MI except 

in the case of animals which developed severe MI (characterised by symptoms of laboured 

breathing, lung congestion and significant LV chamber dilation) which were sacrificed 

after 1-wk. 

4.2.2 Tissue harvest 

4.2.2.1 Heart tissue 

At the appropriate time-point after MI, hearts were rapidly excised and perfused retrograde 

via the aorta with ice-cold saline to remove the blood.  For heart tissue required for qRT-

PCR, the atria and blood vessels at the base of the heart were removed and then either the 

intact ventricles were snap-frozen (whole heart measurements) or hearts were dissected 

into regions (regional measurements).  This was performed using a microsurgical 

microscope by carefully dissecting away the infarct region (easily distinguishable as the 

whitened/fibrous thinned area), the peri-infarct (defined as the ring of myocardium around 

the infarct ~1mm in width; Sirius red stained images of the heart provided knowledge of 
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the location of the peri-infarct in relation to the scar), an area of remote LV furthest from 

the infarct at the base of the heart and an area of RV free wall to yield four different 

regions which were snap-frozen separately in liquid nitrogen.  Care was taken not to 

include any scar tissue in any regions other than the infarct by removing the whole scar 

region first and examining that the other regions did not contain any fibrous (whitened) 

tissue under high magnification (x25).  The ‘equivalent∗’ regions of the sham heart were 

harvested as controls by dissecting a region of apex (to match the infarct), a 1 mm region 

adjacent to the apex (to match the peri-infarct) and similar regions of remote LV and RV 

free wall as in the infarcted heart.  These will be labelled sham apex, sham ‘peri-infarct’ 

and sham remote LV throughout.  All heart tissue was stored at -80°C until needed.  Hearts 

for IHC were also perfused to remove all blood and the whole intact heart (including 

ventricles, atria and major blood vessels) was placed into 10% neutral buffered formalin 

for a minimum of 24 h. 

4.2.2.2 Positive and negative control tissue 

Adult mouse thymus was harvested either from stock mice or sham mice as positive 

control tissue for IHC as all RUNX proteins are highly expressed in adult thymus (Satake 

et al., 1995;Woolf et al., 2003).  The thymus is located in the upper thoracic region and lies 

close to the base of the heart (as shown in Figure 4.1).  Briefly, the entire thymus (both 

lobes) was removed and rinsed in ice-cold saline to remove any blood and placed in 10% 

neutral buffered formalin for a minimum of 24 h. 

 

Figure 4.1  Location of mouse thymus in the upper thorax above the base of the heart. 

Arrow indicates the location of the thymus.             

                                                      
* When referring to corresponding sham heart regions that do not by definition exist (e.g. peri-infarct) but are necessary 
to show control for the same region in the MI heart, these will be indicated by single inverted commas (e.g. sham ‘peri-
infarct’) where appropriate.  The sham control region for the infarct will be denoted as the sham apex.  Remote LV will 
be stated the same for both sham and MI hearts. 
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4.2.3 Cardiomyocyte isolation and purification 

Adult male C57Bl/6 control stock mice which had not undergone any previous surgery 

were used for these set of experiments.  LV cardiomyocytes were isolated as described 

previously in the General Methods Section 2.10.1.  The cells were kept on ice while a 

second cell isolation from a different heart using the same procedure was performed.  The 

cells from the two hearts were then pooled to yield sufficient RNA for subsequent 

experiments.  Cardiomyocytes were separated from other cell types using a filtration 

method as detailed in Section 2.10.3 of the General Methods.  All of the following steps 

were performed on ice to minimise RNA degradation.  A sample of the pooled cells (2 ml) 

was taken prior to any filtration as a pre-filtration control (i.e. containing all cell types) and 

was lysed in Qiazol lysis buffer and stored at -80°C until required.  The remaining 

suspension was passed through a series of filters:  firstly, a 300 µm nylon filter to separate 

large fragments of tissue from the cells followed by a 40 µm nylon filter to catch the 

cardiomyocytes with washes in between with ice-cold HBSS.  Cardiomyocytes caught on 

the 40 µm filter were rinsed off into a separate tube with ice-cold HBSS, spun and lysed in 

Qiazol lysis buffer and stored at -80°C until required as the purified cardiomyocyte 

sample.  This method was performed in order to verify the presence of Runx in 

cardiomyocytes alone by separating cardiomyocytes from other cell types (mostly 

fibroblasts and smooth muscle cells) using a filtration method published by (Kosloski et 

al., 2009).  The authors of this method report that this produces a purified population of 

>98% cardiomyocytes. 

4.2.4 IHC and quantitative imaging 

4.2.4.1 IHC 

The heart was removed, perfused to remove all blood and placed into 10% neutral buffered 

formalin as noted in Section 4.2.2.1 above before being submitted to the Histopathology 

Unit.  All immunohistochemistry was performed by Mrs Lynn Stevenson at the 

Histopathology Unit at the University of Glasgow as described fully in the General 

Methods Section 2.11.  Briefly, following adequate fixation hearts were embedded in 

paraffin wax and 1 µm-thick longitudinal sections were cut parallel to the long axis of the 

heart.  Sections were incubated for 60 min with a primary antibody (rabbit polyclonal 

1:400, Abcam, U.K.) for RUNX1 or with antibody dilution buffer (negative control) 

followed by 30 min with a biotinylated secondary antibody (anti-rabbit) attached to a HRP 

conjugate (Dako EnVision system, Dako, Denmark).  Sections were then treated with 2 x 5 
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min incubations with the chromagen DAB (K5007 Dako, Denmark) before the final 

dehydration and mounting.   

4.2.4.2 Quantification of IHC staining 

Sections were examined under a microscope (Olympus Bx51) and photographed using a 

camera (Olympus DP71) with accompanying software (Cell D) and analysed using ImageJ.  

A 5x4 grid (ImageJ plug-in) was fitted over the image to facilitate counting.  The total 

number of positively-stained nuclei (brown coloured) and negatively-stained nuclei (blue 

coloured) were counted in each region (using a 60x lens) and the percentage positive 

staining was calculated using the following equation: 
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
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
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+
=
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nucleibrownofnumber
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Eq. 16 

As the different cell types present were not specifically labelled with markers, no 

discrimination was made to exclude positive nuclei from any cell type.  Positive staining 

included any nucleus which was predominantly brown.  Where it looked like there may be 

two overlapping nuclei, this was counted as one only.  This was repeated for three areas 

per region and a mean value taken.   

4.2.5 RNA extraction 

Total RNA was extracted from frozen heart tissue or frozen cell lysates using the 

miRNeasy Mini Kit (Qiagen, U.K.) based on a guanidine thiocyanate/phenol/chloroform 

extraction method followed by ethanol precipitation according to the manufacturer’s 

protocol (full details are described in the General Methods Section 2.12). RNA extraction 

included on-column treatment with DNase I (Qiagen, U.K.) for 15 min at room 

temperature to remove genomic DNA.  RNA yield and purity was determined by 

measuring the absorbance at 260 nm and absorbance ratio 260/280 nm, respectively with a 

Nanodrop ND-1000 Spectrophotometer (Nanodrop Technologies/Thermo Scientific, U.K.).  

RNA integrity was further determined by UV spectrophotometry and electrophoretogram 

(Bioanalyzer 2100, Agilent Technologies, U.K.).  Only RNA that met minimum purity 

standards (260/280 >1.8 and RIN >7) was used for subsequent experiments.  RNA was 

then incubated with a second DNase I treatment (Turbo DNA-free, Ambion, U.K.) for 25 

min at 37°C. 
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4.2.6 cDNA synthesis   

First strand cDNA was synthesised from 1 µg RNA by reverse transcription (RT) 

performed at 37°C for 1 h with Omniscript reverse transcriptase (Qiagen, U.K.) in a final 

volume of 50 µl containing dNTP, RNase inhibitors and oligo dT primers (Omniscipt 

Reverse Transcription kit, Qiagen, U.K.).  Reactions containing RNase/DNase-free water 

instead of reverse transcriptase enzyme served as negative RT controls (denoted RT-).   

4.2.7 Verification of cDNA synthesis 

cDNA (and RT- controls) samples were tested to verify successful RT using conventional 

PCR amplification.  PCR reactions were conducted in 10 µl final volume containing 

cDNA, PCR master mix (Thermo Scientific, U.K.), appropriate primers for Runx 

(Quantitect, Qiagen, USA) or Gapdh (Eurofins MWG Operon, Germany) and Taq DNA 

polymerase (Thermo Scientific, U.K.).  Reactions were performed using a Stratagene 

RoboCycler PCR machine for either 30 cycles (Gapdh) or 40 cycles (Runx1) to ensure 

analysis was taken from the plateau phase of the reaction.  Each cycle was 50s at 95°C, 50s 

at 55°C and 1 min at 65°C.  Amplified PCR products were then visualised by gel 

electrophoresis on a 2% agarose gel (NuSieve; prepared fresh) treated with EtBr and using 

3 µl PCR product mixed with 2 µl loading buffer into each well.  A DNA size ladder was 

run alongside each run (Promega, U.K.).  Successful RT reactions were confirmed by 

positive single bands of correct size for RT+ samples and no band in RT- control samples. 

4.2.8 qRT-PCR 

qRT-PCR was performed with cDNA and SYBR Green master mix (Applied Biosystems, 

U.K.) in 20 µl final volume reactions using the ABI 7500 machine with Sequence 

Detection software (Applied Biosystems, U.K.) to measure relative gene expression. Runx1-

3 were detected using appropriate Runx primers (1, 2 or 3; all Qiagen, USA) normalised to 

Gapdh (Eurofins MWG Operon, Germany) for heart tissue studies or PPIA (Qiagen, U.K.) 

for purified cardiomyocyte preparations.  (Gapdh was found to be the most stable gene for 

the MI heart tissue work while PPIA was recommended as a stable gene for the cell 

preparations according to the published method used for the protocol by (Kosloski et al., 

2009)).  In all qRT-PCR experiments, template-free (no cDNA) controls and RT- controls 

were always run in parallel with positive samples and each sample was run in triplicate for 

each experiment.  
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4.2.9 Interpretation of qRT-PCR data 

qRT-PCR results were analysed using comparative Ct calculations; either 2-∆∆Ct (regional 

comparisons relative to RV region), 2-∆Ct (whole heart or RV region between sham and MI) 

or 2-Ct (Gapdh stability) as recommended by accepted published methods (Schmittgen & 

Livak, 2008).  Statistical significance between regions within the same heart was tested 

using multiple regression analysis performed with SPSS software.  For comparisons of 

specific regions between sham and MI using unpaired samples, the student’s unpaired t-

test was used.  A value of P<0.05 was considered significant.  All data were tested for 

normal distribution using a histogram plot and by plotting residuals.  Triplicate 

measurements of Ct were assessed and any outliers removed using the Grubb’s Test for 

removing outliers as an accepted published method for normalising qRT-PCR data (Burns 

et al., 2005b).  This was only used when Cts were >1 Ct different to the others in the 

triplicate set.  A Grubb’s statistic of >1.00 was the criteria for removing an outlier value.  

The formula for the Grubb’s test is as follows: 

SD

YY
G i

−

−
=      Eq. 17 

 
Where G is the test statistic associated with the Grubb’s Test, Yi is the ith observation from 

the data set (suspected outlier), Ῡ is the sample mean (with outlier included) and SD is the 

standard deviation of the data set (with outlier included). 
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4.3 Results 

4.3.1 Expression of Runx1 in the whole heart post-MI 

Runx1 mRNA levels were assessed in whole heart homogenates (LV + RV) 4-wk post-MI 

using qRT-PCR.  The results demonstrated firstly that Runx1 was present in sham hearts 

indicating a basal expression of Runx1 in the normal mouse heart (mean Runx1 Ct value of 

20.6 ± 0.7).  Although acceptable Ct ranges for detectable expression have not been 

specifically defined, it is generally considered in the literature (and from personal 

communication with companies specialising in qRT-PCR) that Cts ≤30 represent strong 

abundance of the gene, Cts of 31-35 indicate very low expression but in some cases can 

still be acceptable, and Cts of 38-40 indicate extremely weak/barely detectable expression 

(Goni et al., 2009;Sigma Aldrich, 2010).  The second finding was that Runx1 expression 

was significantly increased in the MI heart 4-wk post-MI to 247.7% of levels in 4-wk sham 

hearts (247.7 ± 66.3% increase; 4-wk MI (n=7) compared to 4-wk sham (100%; n=6); 

P<0.05; Figure 4.2A).  This was calculated using the ratio of (2-∆Ct (MI)/mean 2-∆Ct (sham)) 

* 100.  Expression of the housekeeping gene Gapdh was not different between sham and 

MI for whole heart expression as shown by equivalent Ct values (15.7 ± 0.5 vs. 15.6 ± 0.3 

raw Ct; 4-wk sham (n=6) vs. 4-wk MI (n=7); P>0.05; Figure 4.2B(i)) and equivalent 

expression (2.6 x 10-5 ± 8.9 x 10-6 vs. 2.3 x 10-5 ± 6.1 x 10-6; 2-Ct (Gapdh); 4-wk sham (n=6) 

vs. 4-wk MI (n=7); P>0.05; Figure 4.2B(ii)) between sham and MI indicating that Gapdh 

was a suitable internal control gene for these measurements.
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Figure 4.2  Runx1 expression and Gapdh stability in the whole heart 4 weeks post-MI. 

(A) Runx1 gene expression measured by qRT-PCR using Runx1 specific primers on whole heart homogenates (LV + RV) 

from 4-wk MI hearts (n=7; black bar) relative to 4-wk sham hearts (n=6; dotted line).  (B (i)) Raw Ct values for the 

housekeeping gene Gapdh between sham (n=6; white bar) and 4-wk MI hearts (n=7; black bar).  (B (ii)) Resulting fold 

change in Gapdh between sham (n=6; white bar) and 4-wk MI hearts (n=7; black bar). Data presented are mean ± SEM. * 

P<0.05. 
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4.3.2 Expression of Runx1 in different regions of the heart post-
MI 

Runx1 expression was measured in different regions of the heart: infarct, peri-infarct, 

remote LV and RV to assess regional variation at 4-wk post-MI.  Expression in each region 

was normalised to Gapdh and expressed relative to the non-infarcted RV region of the 

same heart (RV set to 1.0) using the comparative Ct (2-∆∆Ct) method.  Runx1 levels in the 

RV region were not different between 4-wk sham and 4-wk MI as analysed using the 2-∆Ct 

method (0.23 ± 0.06 vs. 0.20 ± 0.09 2-∆Ct; 4-wk sham (n=5) vs. 4-wk MI (n=6); P>0.05; 

Figure 4.3A(ii)) which permitted regional comparisons between sham and MI.   

4.3.2.1 Runx1 expression in regions of the 4-wk sham heart 

Results from qRT-PCR revealed that Runx1 expression was uniform across all regions of 

the sham heart with no differences between any of the regions compared to the sham RV 

which was set to 1.0.  These differences were measured using the 2-∆∆Ct method.  This was 

true for the sham apex (1.4 ± 0.2 vs. 1.0 RQ; sham apex (n=4) vs. sham RV (n=4); P>0.05; 

Figure 4.3A(i)), the ‘peri-infarct’ equivalent sham region (1.1 ± 0.1 vs. 1.0 RQ; sham ‘peri-

infarct’ (n=4) vs. sham RV (n=4); P>0.05; Figure 4.3A(i)) and the sham remote LV (1.2 ± 

0.1 vs. 1.0 RQ; sham remote LV (n=4) vs. sham RV (n=4); P>0.05; Figure 4.3A(i)).      

4.3.2.2 Runx1 expression in regions of the 4-wk MI heart 

Runx1 expression was significantly increased in the infarct region of 4-wk MI hearts 

compared to the MI heart’s respective RV (5.1 ± 1.0 vs. 1.0 RQ; MI infarct (n=8) vs. MI 

RV (n=8); P<0.05; Figure 4.3A(i)).  The peri-infarct region of 4-wk MI hearts showed 

significantly higher Runx1 expression compared to its own RV region (1.8 ± 0.2 vs. 1.0 

RQ; MI peri-infarct (n=8) vs. MI RV (n=8); P<0.05; Figure 4.3A(i).  There were no 

significant differences observed between the remote LV region of the 4-wk MI heart 

compared to its respective RV region (1.4 ± 0.2 vs. 1.0 RQ; MI remote LV (n=8) vs. MI 

RV (n=8); P>0.05; Figure 4.3A(i).               

4.3.2.3 Comparison of regional Runx1 expression between 4-wk MI and 4-
wk sham 

Comparing each region between sham and MI (both at the 4-wk time point) showed that 

the infarct region of the MI heart had significantly higher levels of Runx1 expression than 

the equivalent apical sham region (5.1 ± 1.0 vs. 1.4 ± 0.2 RQ to its respective RV region; 
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4-wk MI (n=8) vs. 4-wk sham (n=4); P<0.05; Figure 4.3A(i)).  Runx1 was significantly 

increased in the peri-infarct region of 4-wk MI hearts compared to the equivalent ‘peri-

infarct’ region of the 4-wk sham heart (1.8 ± 0.2 vs. 1.1 ± 0.1 RQ to its respective RV 

region; 4-wk MI (n=8) vs. 4-wk sham (n=4); P<0.05; Figure 4.3A(i)).  Runx1 expression 

was not significantly different in the remote LV of 4-wk MI hearts compared to the remote 

LV region of 4-wk sham hearts (1.4 ± 0.2 vs. 1.2 ± 0.1 RQ to its respective RV region; 4-

wk MI (n=8) vs. 4-wk sham (n=4); P>0.05; Figure 4.3A(i)). 

 

Figure 4.3  Regional expression of Runx1 4 weeks post-MI. 

(A (i)) Runx1 expression measured by qRT-PCR in different regions of the heart in 4-wk sham (n=4) and 4-wk MI hearts 

(n=8); infarct, peri-infarct and remote LV were expressed relative to their respective RV region (dotted line). (A (ii)) 

Runx1 expression in the RV regions between 4-wk sham (n=5) and 4-wk MI (n=6). #P<0.05 between region of interest 

and the RV of the same heart; *P<0.05 between MI and sham. 
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4.3.3 Expression of Runx1 at different time points post-MI 

Regional Runx1 gene expression levels were additionally determined at different time 

points post-MI (Figure 4.4).  Regional expression at the 4-wk time point has been 

described in the previous section (Section 4.3.2).     

At the 8-wk time point Runx1 expression in the RV region between 8-wk sham and 8-wk 

MI was not different as analysed using the 2-∆Ct method (0.010 ± 0.004 vs. 0.010 ± 0.005 2-

∆Ct; 8-wk sham vs. 8-wk MI; P>0.05; Figure 4.4A(ii)).  This allowed for comparisons 

between 8-wk sham and 8-wk MI to be made. 

4.3.3.1 Runx1 expression in regions of the 8-wk sham heart 

As was observed in the sham heart at 4-wk, there were no differences in Runx1 expression 

between the different regions of the 8-wk sham heart (compared to the 8-wk sham heart’s 

respective RV) as measured using the 2-∆∆Ct method.  This was the case for the 8-wk sham 

apex (1.1 ± 0.2 vs. 1.0 RQ; sham apex (n=4) vs. sham RV (n=4); P>0.05; Figure 4.4A(i)), 

the ‘peri-infarct’ equivalent 8-wk sham region (1.2 ± 0.2 vs. 1.0 RQ; sham ‘peri-infarct’ 

(n=4) vs. sham RV (n=4); P>0.05; Figure 4.4A(i)) and the sham remote LV (0.8 ± 0.2 vs. 

1.0 RQ; sham remote LV (n=4) vs. sham RV (n=4); P>0.05; Figure 4.4A(i)). 

4.3.3.2 Runx1 expression in regions of the 8-wk MI heart 

All regions of the 8-wk MI heart were also compared relative to their non-infarcted RV 

region within the same heart using the 2-∆∆Ct method.  8-wk MI hearts demonstrated a 

significant increase in Runx1 expression in the infarct region compared to the respective 

RV of the 8-wk MI heart (3.7 ± 0.9 vs. 1.0 RQ; MI infarct (n=8) vs. MI RV (n=8); P<0.05; 

Figure 4.4A(i).  Runx1 expression was also significantly increased in the peri-infarct region 

compared to the respective 8-wk MI RV (2.2 ± 0.3 vs. 1.0 RQ; MI peri-infarct (n=8) vs. MI 

RV (n=8); P<0.05; Figure 4.4A(i)).  The remote LV region of the 8-wk MI heart also 

showed significantly elevated levels of Runx1 expression compared to the respective 8-wk 

MI RV (2.7 ± 0.6 vs. 1.0 RQ; MI remote LV (n=8) vs. MI RV (n=8); P<0.05; Figure 

4.4A(i)).    
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4.3.3.3 Comparison of regional Runx1 expression between 8-wk MI and 8-
wk sham 

Also similar to 4-wk MI, 8-wk MI hearts also demonstrated a significant increase in Runx1 

expression in the infarct region compared to the equivalent region in 8-wk sham (3.7 ± 0.9 

vs. 1.1 ± 0.2 RQ to respective RV region; 8-wk MI (n=8) vs. 8-wk sham (n=4); P<0.05; 

Figure 4.4A(i)).  Similar to the situation at 4-wk, the level of Runx1 expression in the peri-

infarct region at 8-wk post-MI was significantly higher compared to the corresponding 8-

wk sham region (2.2 ± 0.3 vs. 1.2 ± 0.2 RQ; 8-wk MI (n=8) vs. 8-wk sham (n=4); P<0.05; 

Figure 4.4A(i)).  Interestingly at 8-wk, Runx1 expression was significantly elevated in the 

remote region of the 8-wk MI heart compared to 8-wk sham remote (2.7 ± 0.6 vs. 0.8 ± 0.2 

RQ to respective RV region; 8-wk MI (n=8) vs. 8-wk sham (n=4); P<0.05; Figure 4.4A(i)).  

This finding of increased expression in the 8-wk remote LV compared to 8-wk sham 

remote is in contrast to the observations at 4-wk in which there was no significant change 

in Runx1 levels in the remote region between 4-wk MI and 4-wk sham.   

4.3.3.4 Runx1 expression between 4-wk MI and 8-wk MI 

Expression levels of Runx1 in the infarct region between 4-wk MI and 8-wk MI were not 

significantly different (5.1 ± 1.0 vs. 3.7 ± 0.9 RQ to respective RV region; 4-wk MI (n=8) 

vs. 8-wk MI (n=8); P>0.05; Figure 4.4B).  There were also no significant differences in the 

expression of Runx1 in the peri-infarct regions in the 4-wk and 8-wk MI heart (1.8 ± 0.2 vs. 

2.2 ± 0.3 RQ to respective RV region; 4-wk MI (n=8) vs. 8-wk MI (n=8); P>0.05; Figure 

4.4B).  However, in contrast to the similar expression levels in the infarct and peri-infarct 

regions, there was a significantly greater level of Runx1 expression in the remote LV at 8-

wk MI than the remote LV at 4-wk MI (1.4 ± 0.2 vs. 2.7 ± 0.6 RQ to respective RV region; 

4-wk MI (n=8) vs. 8-wk MI (n=8); P<0.05); Figure 4.4B). 

4.3.3.5 Runx1 expression at 1-wk in a severe MI phenotype 

The highest level of Runx1 expression was observed at a 1-wk time point following a 

severe MI phenotype (as defined by symptoms of laboured breathing, severe infarct 

thinning and lung congestion; see Section 3.4.3 Chapter 3).  It is believed that animals in 

this condition were suffering from acute HF although it was not possible to confirm this by 

functional assessment due to the severity of their condition.  These animals were killed in 

the interest of their welfare and the hearts excised immediately and treated in the same way 

as the other time points.  However, due to the small proportion of animals developing this 

phenotype, only one heart was available for qRT-PCR analysis from this group (n=1).   
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1-wk sham:  The control 1-wk sham heart showed the following levels of Runx1 

expression across the four regions: sham apex (0.3 vs. 1.0 RQ to respective RV; sham apex 

(n=1) vs. sham RV (n=1); Figure 4.4C(i)), the peri-infarct (1.1 vs. 1.0 RQ to respective 

RV; sham ‘peri-infarct’ (n=1) vs. sham RV (n=1); Figure 4.4C(i)) and the remote LV (1.4 

vs. 1.0 RQ to respective RV; sham remote LV (n=1) vs. sham RV (n=1); Figure 4.4C(i)). 

1-wk MI heart:  The 1-wk MI heart with the severe MI phenotype showed a high level of 

Runx1 expression in the infarct region compared to the respective MI RV (12.0 vs. 1.0 RQ; 

MI infarct (n=1) vs. MI RV (n=1); Figure 4.4C(i)).  A similar high level of Runx1 was 

found in the peri-infarct region (11.5 vs. 1.0 RQ; MI peri-infarct (n=1) vs. MI RV (n=1); 

Figure 4.4C(i)).  The remote LV showed the following (1.9 vs. 1.0 RQ; MI remote LV 

(n=1) vs. MI RV (n=1); Figure 4.4C(i)). 

1-wk sham vs. 1-wk MI:  Comparing the 1-wk MI with the 1-wk sham showed higher 

levels of Runx1 in the infarct region (12.0 vs. 0.3 RQ; MI infarct (n=1) vs. sham apex 

(n=1); Figure 4.4C(i)) and in the peri-infarct region (11.5 vs. 1.1 RQ; MI peri-infarct (n=1) 

vs. sham ‘peri-infarct’ (n=1); Figure 4.4C(i)).  The remote LV between the MI and sham 

were as follows: (1.9 vs. 1.4 RQ; MI remote LV (n=1) vs. sham remote LV (n=1); Figure 

4.4C(i)).  However due to a very small proportion (n=3) of animals developing this very 

severe phenotype and only 1 heart (n=1) being available for qRT-PCR measurements, this 

observation represents data from only one animal for sham and MI and therefore it was not 

possible to perform any statistics on this data set.  
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Figure 4.4  Regional Runx1 expression at different time points post-MI. 

(A (i)) Regional Runx1 expression in 8-wk MI hearts (n=6; black bars) compared to 8-wk sham hearts (n=4; white bars) 

measured by qRT-PCR using Runx1 specific primers; each region is expressed relative to its respective RV region (dotted 

line).  A (ii) Runx1 expression in the RV region (normalising region) between groups.   (B) Comparison of Runx1 

expression in different regions of the infarcted heart between 4-wk (light grey bars) and 8-wk MI (dark grey bars) hearts 

as compared to the respective RV region (dotted line). (C (i)) Runx1 expression in 1-wk animals showing symptoms of 

severe MI (n=1; black bars) compared to 1-week sham (n=1; white bars); each region expressed relative to its respective 

RV region (dotted line) and (ii) Runx1 expression in the infarct and peri-infarct only of 1-wk severe MI animals using the 

mean 2-∆Ct of infarct and peri-infarct for each animal (sham; n=1) and (MI; n=1). # P<0.05 between region of interest and 

the respective RV.; *P<0.05 between MI and sham. 
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4.3.4 Comparison of regional expression of differen t Runx 
genes post-MI 

In addition to Runx1, the other Runx genes (Runx2 and Runx3) were also measured in 

regions of the infarcted heart 4-wk post-MI to compare mRNA expression patterns 

between the different genes of the Runx family.  Regional Runx1 expression data at 4-wk 

post-MI has been discussed previously in Section 4.3.2.   

4.3.4.1 Regional expression of Runx2 at 4-wk post-MI 

4-wk sham heart:  As has previously been observed with Runx1, the expression of Runx2 

was not different between regions of the 4-wk sham heart.  This was ascertained by 

comparing expression levels in each region relative to each heart’s respective RV using the 

using the 2-∆∆Ct method.  No differences were observed in the 4-wk sham apex (1.1 ± 0.3 

vs. 1.0 RQ; sham apex (n=3) vs. sham RV (n=3); P>0.05;Figure 4.5A), or the ‘peri-infarct’ 

equivalent 4-wk sham region (0.9 ± 0.1 vs. 1.0 RQ; sham ‘peri-infarct’ (n=3) vs. sham RV 

(n=3); P>0.05;Figure 4.5A) nor the sham remote LV (1.2 ± 0.2 vs. 1.0 RQ; sham remote 

LV (n=3) vs. sham RV (n=3); P>0.05;Figure 4.5A). 

4-wk MI heart:  Runx2 expression was also compared in different regions of the 4-wk MI 

heart.  Each region was expressed relative to the respective non-infarcted RV region within 

the same heart using the 2-∆∆Ct method.  As was observed with Runx1, Runx2 expression 

was significantly elevated in the infarct region of the heart 4-wk post-MI compared to its 

respective RV of the MI heart (5.3 ± 1.1 vs. 1.0 RQ; MI infarct (n=7) vs. MI RV (n=7); 

P<0.05; Figure 4.5A).  Runx2 was not altered in the peri-infarct region 4-wk post-MI with 

no significant differences in expression compared to the respective RV (1.4 ± 0.5 vs. 1.0 

RQ; MI peri-infarct (n=7) vs. MI RV (n=7); P>0.05; Figure 4.5A).  Similarly there was 

also no significant differences in Runx2 expression in the 4-wk MI remote LV compared to 

the respective RV (1.2 ± 0.3 vs. 1.0 RQ; MI remote LV (n=7) vs. MI RV (n=7); P>0.05; 

Figure 4.5A). 

4-wk sham vs. 4-wk MI:  Comparing Runx2 expression between 4-wk MI regions and the 

corresponding region of the 4-wk sham heart revealed that Runx2 expression was higher in 

the infarct region versus the 4-wk sham apex (5.3 ± 1.1 vs. 1.1 ± 0.3 RQ to respective RV; 

MI infarct (n=7) vs. sham apex (n=3); P<0.05; Figure 4.5A).  Runx2 expression in the 4-

wk MI heart was not significantly different to the 4-wk sham heart in the peri-infarct 

region (1.4 ± 0.5 vs. 0.9 ± 0.1 RQ to respective RV; MI peri-infarct (n=7) vs. sham ‘peri-
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infarct’ (n=3); P>0.05; Figure 4.5A) or the remote LV region (1.2 ± 0.3 vs. 1.2 ± 0.2 RQ to 

respective RV; MI remote LV (n=7) vs. sham remote LV (n=3); P>0.05; Figure 4.5A). 

4.3.4.2 Regional expression of Runx3 at 4-wk post-MI 

4-wk sham heart:  Similar to the results from Runx1 and Runx2, the results for Runx3 

expression showed no significant differences across the regions of the 4-wk sham heart.  

This was true for the sham apex compared to the respective RV (0.9 ± 0.2 vs. 1.0 RQ; 

sham apex (n=3) vs. sham RV (n=3); P>0.05; Figure 4.5B), for the sham ‘peri-infarct’ 

region (1.1 ± 0.1 vs. 1.0 RQ; sham ‘peri-infarct’ (n=3) vs. sham RV (n=3); P>0.05; Figure 

4.5B), and for the sham remote LV (1.0 ± 0.3 vs. 1.0 RQ; sham remote LV (n=3) vs. sham 

RV (n=3); P>0.05; Figure 4.5B). 

4-wk MI heart:  In the 4-wk MI heart, Runx3 expression was significantly elevated in the 

infarct region compared to the non-infarcted RV of the MI heart (11.0 ± 2.0 vs. 1.0 RQ; MI 

infarct (n=7) vs. MI RV (n=7); P<0.05; Figure 4.5B).  Runx3 levels were also significantly 

elevated in the peri-infarct region compared to the RV of the MI heart (4.3 ± 1.0 vs. 1.0 

RQ; MI peri-infarct (n=7) vs. MI RV (n=7); P<0.05; Figure 4.5B).  No differences were 

observed in Runx3 expression between the LV remote and the RV of the MI heart (2.0 ± 

0.8 vs. 1.0 RQ; MI remote LV (n=7) vs. MI RV (n=7); P>0.05; Figure 4.5B). 

4-wk sham vs. 4-wk MI:  In addition to the regional expression within the 4-wk sham and 

4-wk MI heart individually (comparing each to their respective RV of the same heart), the 

regional differences were also compared between 4-wk MI and the corresponding region of 

the sham heart.  Runx3 was found to be significantly higher in the infarct region of the MI 

heart compared to the equivalent sham apex region (11.0 ± 2.0 vs. 0.9 ± 0.2 RQ to 

respective RV region; MI infarct (n=7) vs. sham apex (n=3); P<0.05; Figure 4.5B).  Runx3 

was also significantly higher in the peri-infarct region of the MI heart compared to the 

sham ‘peri-infarct’ region (4.3 ± 1.0 vs. 1.1 ± 0.1 RQ to respective RV region; MI peri-

infarct (n=7) vs. sham ‘peri-infarct’ (n=3); P<0.05; Figure 4.5B).  No differences were 

observed in the levels of Runx3 between the LV remote of the MI heart with the LV 

remote of the sham heart (2.0 ± 0.8 vs. 1.0 ± 0.3 RQ to respective RV region; MI remote 

LV (n=7) vs. sham remote LV (n=3); P>0.05; Figure 4.5B). 
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4.3.4.3 Comparison of Runx1-3 expression in the 4-wk MI heart 

Expression patterns of the three Runx genes (1-3) were assessed to compare how their 

regional differences in MI compared with each other.  Runx3 showed the greatest degree of 

elevated expression in the infarct region with expression levels significantly greater than 

Runx1 (11.0 ± 2.0 vs. 5.1 ± 1.0 RQ to respective RV region; Runx3 MI infarct (n=7) vs. 

Runx1 MI infarct (n=8); P<0.05; Figure 4.5C) and Runx2 (11.0 ± 2.0 vs. 5.3 ± 1.1 RQ to 

respective RV region; Runx3 MI infarct (n=7) vs. Runx2 MI infarct (n=7); P<0.05; Figure 

4.5C).  Runx3 also showed the greatest degree of elevated expression in the peri-infarct 

post-MI compared to Runx2 only (4.3 ± 1.0 vs. 1.4 ± 0.5 RQ to respective RV region; 

Runx3 MI peri-infarct (n=7) vs. Runx2 MI peri-infarct (n=7); P<0.05; Figure 4.5C) but not 

compared to Runx1 (4.3 ± 1.0 vs. 1.8 ± 0.2 RQ to respective RV region; Runx3 MI peri-

infarct (n=7) vs. Runx1 MI peri-infarct (n=8); P>0.05; Figure 4.5C).  Runx1 and Runx2 

were altered to the same degree as each other post-MI with equivalent expression levels in 

the infarct (5.1 ± 1.0 vs. 5.3 ± 1.1 RQ to respective RV region; Runx1 MI infarct (n=8) vs. 

Runx2 MI infarct (n=7); P>0.05; Figure 4.5C) and peri-infarct regions (1.8 ± 0.2 vs. 1.4 ± 

0.5 RQ to respective RV region; Runx1 MI peri-infarct (n=8) vs. Runx2 MI peri-infarct 

(n=7); P>0.05; Figure 4.5C).  All three Runx genes showed a similar level of expression in 

the remote LV with no significant differences between the three (1.4 ± 0.2 vs. 1.2 ± 0.3 vs. 

2.0 ± 0.8 RQ to respective RV region; Runx1 MI remote LV (n=8) vs. Runx2 MI remote 

LV (n=7) vs. Runx3 MI remote LV (n=7); P>0.05 between all three; Figure 4.5C).   
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Figure 4.5  Expression of different Runx genes post-MI. 

(A)  Expression of Runx2 in different regions of sham (n=3) or 4-wk MI (n=7) hearts using qRT-PCR.  (B)  Expression of 

Runx3 in different regions of sham (n=3) or 4-wk MI (n=7) hearts using qRT-PCR.  (C)  Comparison of all three Runx 

genes for each region of the infarcted heart after 4-wk.  Data presented are mean ± SEM.  # P<0.05 between region of 

interest and the RV of the same heart; *P<0.05 between MI and sham. 
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4.3.5 Links with Runx expression and LV function 

Further analysis was performed to assess whether changes in Runx gene expression 

correlated with the extent of LV dysfunction.   The functional parameters selected for this 

analysis were the maximal rate of LV pressure rise (dP/dtmax) and the maximal rate of LV 

pressure decay (dP/dtmin).  These parameters are widely accepted as reliable indicators of 

myocardial inotropic (dP/dtmax) or lusitropic (dP/dtmin) state (Kass et al., 1987) and were 

therefore considered suitable indices of LV function for this part of the study.  The RQ 

values for the three regions of each heart were added up together then divided by 3 to give 

a single mean RQ value for Runx expression per heart for 4-wk sham and for 4-wk MI – 

calculated as shown below.  This value was then paired with the function of that heart to 

assess the correlation.  This was performed for each Runx gene (i.e. Runx1, Runx2 and 

Runx3). 

3

)( LVremoteRQinfarctperiRQRQinfarct
studyncorrelatioforusedvalueRQ

++=

 Eq. 18 

 

4.3.5.1 Correlations between Runx1and LV function 

These results revealed that the rise in Runx1 expression in the heart showed a significant 

negative correlation with LV function for both parameters investigated.  As dP/dtmax 

decreased (myocardial contractility reduced), the expression of Runx1 increased (y=-4.4 x 

10-4x + 6.0; R=-0.74; P<0.05; Figure 4.6A(i)).  Similarly as dP/dtmin decreased (myocardial 

relaxation impaired), the expression of Runx1 also increased with significant negative 

correlation (y= -4.4 x 10-4x + 5.1; R=-0.95; P<0.05; Figure 4.6A(ii)).  

4.3.5.2 Correlations between Runx2 and LV function 

The results revealed that there was no significant relationship between Runx2 expression 

and either dP/dtmax (y=1.68 x 10-4 x + 0.1; R=0.32; P>0.05; Figure 4.6B(i)) or dP/dtmin (y=-

5.7 x 10-4x + 1.9; R=-0.24; P>0.05; Figure 4.6B(ii)). 

4.3.5.3 Correlations between Runx3 and LV function 

Although a similar trend was observed between Runx3 and dP/dtmax (as had been observed 

with Runx1) the relationship between Runx3 and dP/dtmax did not attain statistical 

significance (y=-1.7 x 10-3x + 17.8; R=-0.69; P>0.05; Figure 4.6C(i)).  There was however 
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a strongly significant negative correlation between Runx3 expression and dP/dtmin (y=-1.1 x 

10-3x + 10.6; R=-0.99; P<0.0001; Figure 4.6C(ii)). 

4.3.5.4 Correlations with Runx expression and LV function excluding the 
infarct 

To assess whether the trends observed were related to size of the infarct, the contribution 

of Runx expression from the infarct region was removed from the analysis.  As Figure 4.7 

shows the same trends remain even with the contribution of Runx expression from the 

infarct removed.
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Figure 4.6  Correlations with Runx gene expression and LV function. 

(A)  Linear regression of the mean RQ value for Runx1 expression of all LV regions relative to their respective RV 

region in individual MI (4-wk n=6; 8-wk n=1) and 4-wk sham hearts (n=3) 4-wk post-MI plotted against (i) dP/dtmax or 

(ii) dP/dtmin (infarct size was not variable between hearts).  For dP/dtmax (y=-6.0 x 10-4x + 7.5; R=-0.83; P<0.05) and for 

dP/dtmin (y=-5.5 x 10-4x + 8.6; R=-0.92; P<0.05).  (B) Linear regression of the mean RQ value for Runx2 expression of all 

LV regions relative to their respective RV region in individual 4-wk MI (n=4) and 4-wk sham hearts (n=2) plotted against 

(i) dP/dtmax or (ii) dP/dtmin (infarct size was not variable between hearts).  For dP/dtmax (y=1.7 x 10-4x + 0.1; R=0.32; 

P>0.05) and for dP/dtmin (y=-5.7 x 10-5x + 1.9; R=-0.24; P>0.05).  (C) Linear regression of the mean RQ value for Runx3 

expression of all LV regions relative to their respective RV region in individual 4-wk MI (n=4) and 4-wk sham hearts 

(n=2) plotted against (i) dP/dtmax or (ii) dP/dtmin (infarct size was not variable between hearts).  For dP/dtmax (y=1.7 x 10-

3x + 17.8; R=-0.69; P>0.05) and for dP/dtmin (y=-1.1 x 10-3x + 10.6; R=-0.99; P>0.05).  Each point in the graph 

represents an individual heart. 
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Figure 4.7  Correlations with Runx gene expression and LV function (excluding the infarct) 

(A)  Linear regression of the mean RQ value for Runx1 expression of all LV regions except the infarct relative to their 

respective RV region in individual MI (4-wk n=6; 8-wk n=1) and 4-wk sham hearts (n=3) 4-wk post-MI plotted against 

(i) dP/dtmax or (ii) dP/dtmin (infarct size was not variable between hearts).  For dP/dtmax (y=-3.3 x 10-4x + 4.4; R=-0.73; 

P<0.05) and for dP/dtmin (y=-2.6 x 10-4x + 3.4; R=-0.71; P<0.05).  (B) Linear regression of the mean RQ value for Runx2 

expression of all LV regions relative to their respective RV region in individual 4-wk MI (n=4) and 4-wk sham hearts 

(n=2) plotted against (i) dP/dtmax or (ii) dP/dtmin (infarct size was not variable between hearts).  For dP/dtmax (y=-2.1 x 10-

4x + 2.8; R=-0.31; P>0.05) and for dP/dtmin (y=-4.9 x 10-5x + 0.60; R=-0.29; P>0.05).  (C) Linear regression of the mean 

RQ value for Runx3 expression of all LV regions relative to their respective RV region in individual 4-wk MI (n=4) and 

4-wk sham hearts (n=2) plotted against (i) dP/dtmax or (ii) dP/dtmin (infarct size was not variable between hearts).  For 

dP/dtmax (y=1.7 x 10-3x + 17.8; R=-0.84; P>0.05) and for dP/dtmin (y=-8.1 x 10-3x + 7.7; R=-0.84; P>0.05).  Each point in 

the graph represents an individual heart. 
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4.3.5.5 Infarct size measurements 

To further assess whether the differences observed may be related to infarct size, hearts 

were photographed with a digital camera and the area of infarction was estimated using 

ImageJ by drawing a line around the infarct (whitened, thinned area) and expressing the 

area of infarction as a percentage of the total heart (it was not possible to delineate LV 

from RV in these photographs and this was the reason for expressing infarct size as a 

percentage of the whole heart i.e. LV + RV).  It was not possible to quantify infarct size 

histologically as previously described in other sections of this thesis for this part of the 

study as the hearts were to be dissected and snap-frozen (and not be sent for histology).  

Therefore this method was more limited and permitted only approximation measurements.  

Infarct size measurements by this method were only possible from 3 out of 6 hearts and the 

infarct sizes were 31.9, 33.2 and 37.2% (as a % of the total heart) for these hearts.  The 

results revealed that for these specific hearts, no correlation was found between Runx1 

expression and infarct size (y=0.03x + 2.9; R=0.06; P>0.05; Figure 4.8). 

 

Figure 4.8  Correlation between infarct size and Runx1 expression. 

(A)  Example of infarct sizes for individual hearts used for Runx1 vs. LV function study; y=-6.0 x10-4x + 7.5, R=-0.83; 

P<0.05.  Infarct size was estimated for hearts using ImageJ and visual inspection.  (B)  Correlation between Runx1 

expression and infarct size in individual hearts used for the Runx1 vs. LV function study.  Each point on the graph 

represents individual hearts; y=0.04x + 1.9; R=0.14; P>0.05. 
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4.3.6 IHC localisation of RUNX1 and quantification of expression 

IHC staining was used to visualise the location of RUNX1 in cardiac tissue in sham vs. MI 

(4-wk and 8-wk post-MI).  Using two separate RUNX1-specific antibodies, IHC confirmed 

the presence of RUNX1 in cardiomyocytes (Figure 4.9C(l)), with positive nuclear staining 

consistent with the nuclear localisation of RUNX1.  IHC has confirmed that within the 

infarct there are surviving cardiomyocytes expressing RUNX1 (Figure 4.11A).  Other cell 

types within the infarct region also showed positive RUNX1 staining; these are believed to 

be inflammatory cells (lymphocytes) and fibroblasts which were confirmed by examination 

from an expert pathologist although these types were not labelled with specific markers.  

RUNX1-positive staining was identified in the sham heart (both 4-wk and 8-wk sham time 

points) further confirming a basal expression of RUNX1 in the mouse heart before insult.  

Positive RUNX1 staining was quantified in hearts at 4-wk and 8-wk post-MI using a grid 

counting method and the percentage positive nuclei in each region was expressed relative 

to the RV from the same heart using the following ratio (region of interest/RV).  Figure 

4.9A shows where each region was chosen for analysis in sham hearts and MI hearts.  An 

example of the grid system fitted over the image is shown in Figure 4.9B.  Representative 

images from each region are shown in Figure 4.9C for sham (Figure 4.9C(a-c)), 4-wk MI 

(Figure 4.9C(d-f)) and 8-wk MI (Figure 4.9C(g-i)), including negative heart tissue control 

(Figure 4.9C(j)) confirming no positive staining and positive thymus control tissue (Figure 

4.9C(k)) showing largely positive staining.  IHC results revealed that RUNX1 expression 

was not found to be different between regions of the sham heart, both at 4-wk (Figure 4.9D 

(i)) and at 8-wk (Figure 4.9D (ii)).   

4.3.6.1 RUNX1-positive staining 4-wk post-MI 

The results for RUNX-1 positive staining at the 4-wk time point are shown in Figure 

4.9D(i).   

4-wk sham hearts:  4-wk sham hearts demonstrated no significant differences in the 

proportion of RUNX1-positive cells across the different regions (each region is expressed 

relative to the RV of that heart).  This was the case for the sham apex (0.86 ± 0.07 vs. 1.00 

ratio to respective RV region; 4-wk sham apex (n=3) vs. 4-wk sham RV (n=3); P>0.05; 

Figure 4.9D(i)), the sham ‘peri-infarct’ equivalent (0.85 ± 0.02 vs. 1.00 ratio to respective 

RV region; 4-wk sham ‘peri-infarct’ (n=3) vs. 4-wk sham RV (n=3); P>0.05; Figure 

4.9D(i)) and the sham remote LV (0.83 ± 0.04 vs. 1.00 ratio to respective RV region; 4-wk 

sham remote LV (n=3) vs. 4-wk sham RV (n=3); P>0.05; Figure 4.9D(i)). 
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4-wk MI hearts:  After 4-wk MI, IHC showed that the proportion of RUNX1-positive 

nuclei was significantly higher in the infarct region of the MI heart compared to its 

respective RV region (1.81 ± 0.31 vs. 1.0 ratio to respective RV region; 4-wk MI infarct 

(n=5) vs. 4-wk MI RV (n=5); P<0.05; Figure 4.9D(i)).  Similarly RUNX1-positive cells 

were significantly higher in the peri-infarct region compared to the respective RV (1.57 ± 

0.20 vs. 1.0 ratio to respective RV region; 4-wk MI peri-infarct (n=5) vs. 4-wk MI RV 

(n=5); P<0.05; Figure 4.9D(i)).  There were no differences in RUNX1 positive nuclei 

present in the remote LV compared to the respective RV (1.05 ± 0.08 vs. 1.0 ratio to 

respective RV region; 4-wk MI remote LV (n=5) vs. 4-wk MI RV (n=5); P>0.05; Figure 

4.9D(i)).  

4-wk sham vs. 4-wk MI:  Comparisons between 4-wk MI and 4-wk sham by region 

demonstrated that there was a significantly greater proportion of RUNX1-positive staining 

in the infarct region compared to the corresponding sham apical region (1.81 ± 0.31 vs. 

0.86 ± 0.07 ratio to respective RV region; 4-wk MI infarct (n=5) vs. 4-wk sham apex 

(n=3); P<0.05; Figure 4.9D(i)).  This finding was also true for the peri-infarct region 

compared to the corresponding sham ‘peri-infarct’ region (1.57 ± 0.20 vs. 0.85 ± 0.02 ratio 

to respective RV region; 4-wk MI peri-infarct (n=5) vs. 4-wk sham ‘peri-infarct’ (n=3); 

P<0.05; Figure 4.9D(i)).  There were no statistical differences between the 4-wk remote 

LV between sham and MI (1.05 ± 0.08 vs. 0.83 ± 0.04 ratio to respective RV region; 4-wk 

MI remote LV (n=5) vs. 4-wk sham remote LV (n=3); P>0.05; Figure 4.9D(i)). 

4.3.6.2 RUNX1-positive staining 8-wk post-MI 

8-wk sham heart:  As was observed in the 4-wk sham, the 8-wk sham showed no 

significant differences in the proportion of RUNX1-positive staining between the different 

regions, with respect to the RV of the same heart.  This was observed for the sham apex 

region (1.05 ± 0.04 vs. 1.00 ratio to respective RV region; 8-wk sham apex (n=5) vs. 8-wk 

sham RV (n=5); P>0.05; Figure 4.9D(ii)), was also observed for the ‘peri-infarct’ region 

(0.99 ± 0.03 vs. 1.00 ratio to respective RV region; 8-wk sham ‘peri-infarct’ (n=5) vs. 8-wk 

sham RV (n=5); P>0.05; Figure 4.9D(ii)) and for the remote LV region (0.91 ± 0.10 vs. 

1.00 ratio to respective RV region; 8-wk sham remote LV (n=5) vs. 8-wk RV (n=5); 

P>0.05; Figure 4.9D(ii)). 

8-wk MI heart:  In the 8-wk MI heart, RUNX1-positive staining was significantly higher in 

the infarct region compared to the RV of the same heart (1.93 ± 0.34 vs. 1.00 ratio to 
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respective RV region; 8-wk MI infarct (n=4) vs. 8-wk MI RV (n=4); P<0.05; Figure 

4.9D(ii)).  The same was also true for the peri-infarct region with significantly higher 

positive staining for RUNX1 compared to the respective RV (1.63 ± 0.30 vs. 1.00 ratio to 

respective RV region; 8-wk MI peri-infarct (n=4) vs. 8-wk MI RV (n=4); P<0.05; Figure 

4.9D(ii)).  There was no significant difference in RUNX1 positive nuclei present in the 8-

wk remote LV post-MI compared to the respective RV (1.27 ± 0.40 vs. 1.0 ratio to 

respective RV region; 8-wk MI remote LV (n=4) vs. 8-wk MI RV (n=4); P>0.05; Figure 

4.9D(ii)).    

8-wk sham vs. 8-wk MI:  Comparisons between 8-wk sham hearts and 8-wk MI hearts 

revealed that there was significantly greater RUNX1-positive staining in the infarct region 

of the 8-wk MI heart compared to the equivalent sham apical region (1.93 ± 0.34 vs. 1.05 ± 

0.04 ratio to respective RV region; 8-wk MI infarct (n=4) vs. 8-wk sham apex (n=5); 

P<0.05; Figure 4.9D(ii)).  Furthermore, positive RUNX1 staining was also significantly 

higher in the peri-infarct region of the 8-wk MI heart compared to the corresponding 

region of the 8-wk sham heart (1.63 ± 0.30 vs. 0.99 ± 0.03 ratio to respective RV region; 8-

wk MI peri-infarct (n=4) vs. 8-wk sham ‘peri-infarct’ (n=5); P<0.05; Figure 4.9D(ii)).  

There were no differences between the 8-wk LV remote of the MI heart compared to the 

LV remote of the 8-wk sham heart (1.27 ± 0.40 vs. 0.91 ± 0.10 ratio to respective RV 

region; 8-wk MI remote LV (n=4) vs. 8-wk sham remote LV (n=5); P>0.05; Figure 

4.9D(ii)).  

4.3.6.3 Comparisons between RUNX1 positive staining  between 4-wk and 8-
wk MI 

RUNX1 was increased in the infarct region to the same extent at 4-wk and 8-wk post-MI 

(1.81 ± 0.31 vs. 1.93 ± 0.34 ratio to respective RV region; 4-wk MI infarct (n=5) vs. 8-wk 

MI infarct (n=4); P>0.05; Figure 4.9D(iii)).  Similarly the levels of RUNX1 were 

increased by the same degree in the peri-infarct zone between 4-wk and 8-wk MI (1.57 ± 

0.20 vs. 1.63 ± 0.30 ratio to respective RV region; 4-wk MI peri-infarct (n=5) vs. 8-wk MI 

peri-infarct (n=4); P>0.05; Figure 4.9D(iii)).  There was no significant difference in the 

level of RUNX1 positive staining in the 8-wk remote LV compared to 4-wk remote LV 

post-MI (1.05 ± 0.08 vs. 1.27 ± 0.40 ratio to respective RV region; 4-wk MI remote LV 

(n=5) vs. 8-wk MI remote LV (n=4); P>0.05; Figure 4.9D(iii)).    
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Figure 4.9  IHC expression of RUNX1 at 4-wk and 8-wk post-MI. 

(A)  Diagram showing where the different regions were analysed for RUNX1 expression in the (i) sham and (ii) MI heart 

(the peri-infarct region was chosen as accurately as possible with the aid of adjacent Sirius red sections  (iii) for each 

respective heart as they clearly showed where the fibrous infarct (red colour) interfaced the normal myocardium (yellow 

colour)).  (B)  Example diagram showing how a grid was fixed over the image to facilitate counting of positively (brown) 

versus negatively (blue) stained nuclei. (C)  Typical images showing expression within the different regions for sham (a-

c), 4-wk MI (d-f) and 8-wk MI hearts (g-i).  Negative control for heart tissue (antibody dilution buffer instead of primary 

antibody; j) and positive control tissue (thymus; k) are also shown. Immunohistochemistry of a 4-wk MI heart with a 

RUNX1-specific antibody – positive nuclear staining in cardiomyocytes indicated by arrows  (l).  (D (i)) Quantification 

of RUNX1 expression in each region after 4-wk and (ii) 8-wk MI compared to sham and (iii) comparison of 4-wk MI 

with 8-wk MI.  Each region is expressed relative to the respective RV region (dotted line). 
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4.3.6.4 Cytoplasmic staining of RUNX1 

RUNX1-postive staining was predominantly located within the nuclei of cardiomyocytes; 

however upon closer inspection it could be seen that some cardiomyocytes showed 

cytoplasmic staining as well as nuclear staining (Figure 4.10A).  The same images for each 

region (as used for the previous section 4.3.6) were examined and given a score of 0 or 1 

(indicating absence (0) or presence (1) of cytoplasmic staining) which was then used to 

calculate the percentage of hearts that showed cytoplasmic staining per region for each of 

the four groups (4-wk sham, 4-wk MI, 8-wk sham and 8-wk MI).  The results from these 

data are shown in Figure 4.10B.   

4-wk:  4-wk sham hearts showed no cytoplasmic staining in any region of the heart (0% of 

hearts showed cytoplasmic staining in the 4-wk sham apex, ‘peri-infarct’, remote LV and 

RV; n=3; Figure 4.10B).  In 4-wk MI hearts, cytoplasmic staining was present in 

cardiomyocytes of the infarct region (60% of 4-wk MI hearts) and peri-infarct region (20% 

of 4-wk MI hearts) only; this was not found in the remote LV (0% of 4-wk MI hearts) or 

RV regions (0% of 4-wk MI hearts); n=5; Figure 4.10B.  

8-wk:  8-wk sham hearts, like 4-wk sham hearts, showed no cytoplasmic staining of 

RUNX1 in any region of the heart (0% of hearts showed cytoplasmic staining in the 8-wk 

sham apex, ‘peri-infarct’, remote LV and RV; n=5; Figure 4.10B).  In 8-wk MI hearts 

RUNX1-positive cytoplasmic staining was present in the infarct region only (in 75% of 8-

wk MI hearts) but not in any other region (0% of hearts for peri-infarct, remote LV or RV); 

n=4; Figure 4.10B.  

 

Figure 4.10  Cytoplasmic staining of RUNX1. 

(A)  Representative examples of IHC staining with RUNX1-specific antibody from (i) a control 4-wk sham apex showing 

nuclear staining only and (ii) a 4-wk infarct showing nuclear and cytoplasmic staining.  Arrows indicate cytoplasmic 
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staining.  (B)  Quantification of hearts demonstrating cytoplasmic staining from each group; 4-wk sham (n=3), 4-wk 

sham (n=5), 8-wk sham (n=5) and 8-wk MI (n=4). 

4.3.7 Verification of RUNX1 expression in cardiomyo cytes 

4.3.7.1 RUNX1-specific antibody staining 

In order to verify that RUNX1 was present in cardiomyocytes prior to the arrival of the 

infiltrating cells, IHC and cardiomyocyte purification with qRT-PCR approaches were 

utilised.  As previously shown, IHC showed positive nuclear staining in cardiomyocytes 

(Figure 4.9C(l)); this has been confirmed using two commercially available and tested 

polyclonal RUNX1-specific antibodies (61753 and 35962, Abcam, U.K.; Figure 4.11A(i-

ii)).  Some cytoplasmic localisation of RUNX1 was also identified in the surviving 

cardiomyocytes of the infarct region as shown in Figure 4.11B(i), an observation 

commonly observed in this region as described in Section 4.3.6.4 previously.  Figure 

4.11B(ii) shows the presence of viable cardiomyocytes in the infarct region as identified by 

the yellow colour in Sirius red staining.   

4.3.7.2 Runx1-specific primers tested on purified cardiomyocytes  

Runx1 mRNA levels were measured in a purified population of cardiomyocytes (>98%) 

according to a published method (Kosloski et al., 2009).  Runx1 was found to be present 

within this purified population with mean Ct values before purification 27.4 ± 1.0 (n=2) 

and after purification 29.1 ± 0.6 (n=2) confirming levels of Runx1 present in the purified 

population (Cts <30; Figure 4.11C).  These Ct values are significantly greater than those 

obtained from whole heart (27.4 ± 1.0 vs. 20.6 ± 0.7 raw Runx1 Ct values; cell preparations 

prior to filtration (n=2) vs. whole heart homogenates (n=6); P<0.05) or regional 

homogenates (27.4 ± 1.0 vs. 22.8 ± 1.2 raw Runx1 Ct values; cell preparations prior to 

filtration (n=2) vs. regional heart homogenates (n=4); P>0.05) indicating lower gene 

expression, which is expected given that the starting material is less (cells rather than intact 

tissue).  As described previously (Section 4.3.1), Ct values of less than 30 are generally 

regarded to represent detectable gene expression.  These results revealed that Runx1 

expression decreased following purification, which was expected given the removal of 

other Runx1-containing cell types but expression in the remaining cardiomyocyte 

population remained evident. 
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4.3.7.3 Runx1 expression in LV areas which predominantly contain 
cardiomyocytes (peri-infarct and remote only) 

To assess the levels of Runx1 gene expression without the contribution from the infarct 

region, expression levels were examined in the combined regions of the LV excluding the 

infarct by taking the average RQ of the peri-infarct and remote LV (calculated from the 2-

∆∆Ct method relative to the respective RV) for each heart – calculation shown below. 

2

LVremoteRQinfarctperiRQ
valueRQ

+=    Eq. 19 

 

4-wk hearts:  These data revealed that the 4-wk sham hearts showed no significant 

difference in the combined ‘peri-infarct’ and remote LV compared to the RV (1.1 ± 0.1 vs. 

1.0 RQ to respective RV region; 4-wk sham combined ‘peri-infarct’ and remote LV vs. 4-

wk sham RV; n=4; P>0.05; Figure 4.11C).  However, the combined peri-infarct and 

remote LV in the 4-wk MI heart showed significantly higher expression of Runx1 than the 

RV of the same heart (1.6 ± 0.1 vs. 1.0 RQ to respective RV region; 4-wk MI peri-infarct 

and remote LV vs. 4-wk MI RV; n=8; P<0.05; Figure 4.11D).  In summary, the results 

showed that there was 41.2% greater expression of Runx1 in the combined regions of the 

4-wk MI heart. 

8-wk hearts:  The combined expression in the 8-wk sham ‘peri-infarct’ and LV remote 

showed no significant differences when compared to the RV of the same heart (1.1 ± 0.3 

vs. 1.0 RQ to respective RV region; 8-wk sham combined ‘peri-infarct’ and remote LV vs. 

8-wk sham RV; n=4; P>0.05; Figure 4.11D).  In the 8-wk MI heart, the combined peri-

infarct and remote LV regions showed significantly greater Runx1 expression compared to 

the RV of the same heart (2.4 ± 0.4 vs. 1.0 RQ to respective RV region; 8-wk MI combined 

peri-infarct and remote LV vs. 8-wk MI RV; n=6; P<0.05; Figure 4.11D) which represents 

a 114.3% increase compared to sham (2.1-fold greater; P<0.05).  Collectively these data 

have confirmed that Runx1 expression remains higher in the MI hearts (both at 4-wk and 8-

wk) compared to sham even without the contribution from the infarct region (Figure 

4.11D). 
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Figure 4.11  Verification of RUNX1 expression in cardiomyocytes. 

(A) Examples of nucleic localisation of RUNX1 in cardiomyocytes (identified by striated structure alone) using two 

different commercially available RUNX1-specific antibodies ((i) ab61795; Abcam, U.K.; and (ii) ab35962; Abcam, U.K.).  

(B i) Positive RUNX1 staining in cardiomyocytes present within the infarct region (arrows indicate cardiomyoctes) and 

(ii) Confirmation of presence of viable cardiomyocytes (yellow) in the infarct region by Sirius red staining (areas of 

fibrosis stained red; arrows indicate viable cardiomyocytes).  (C) Results of qRT-PCR performed on unpurified (black 

bar) and a purified population of cardiomyocytes (grey bar) isolated from a normal mouse heart (n=2) and expressed 

relative to the housekeeping gene PPIA.  (D) The mean RQ values for Runx1 expression of the LV regions excluding the 

infarct (peri-infarct and remote LV) obtained by qRT-PCR at 4-wk and 8-wk post- MI.  #P<0.05 between region and 

respective RV (dotted line); *P<0.05 between sham and MI. 
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4.4 Discussion 

Runx genes encode RUNX proteins which are best known as transcriptional regulators of 

gene expression in major developmental pathways with putative roles in cancer 

development (Coffman, 2003;Blyth et al., 2005).  However more recently the Runx genes 

have been increasingly implicated in specific conditions of tissue injury and/or metabolic 

stress (Wang et al., 2005;Ghosh et al., 2010;Custodio et al., 2012).  RUNX1, a member of 

the RUNX family and an important regulator of the haematopoietic system, has previously 

been shown to be up-regulated in damaged muscle including post-ischaemic myocardium 

of the human heart during ischaemic cardiomyopathy (Gattenlohner et al., 2003).  At 

present, no quantitative data exists on the altered expression of Runx1 in the heart during 

MI.  This chapter provides quantification and detailed characterisation of the expression of 

RUNX genes/proteins in response to myocardial injury providing a basis for further 

investigation into the role the RUNX family plays in the heart under these conditions. 

4.4.1 Runx1 expression is increased post-MI 

Firstly, knowledge of RUNX in the heart even under normal conditions is very limited.  

Runx1 is known to be expressed in the mammalian heart; this has been demonstrated in 

embryonic mouse tissue using β-galactosidase-tagged staining (Levanon et al., 

2001a;Telfer & Rothenberg, 2001;Levanon et al., 2003) and results from the present study 

have confirmed a basal expression of Runx1 in the normal mouse heart.  However the 

major finding from this work is an increased expression of Runx1 in the heart after MI in a 

mouse model.  In whole ventricular myocardium 4-wks post-MI, Runx1 mRNA levels 

were more than double that of sham hearts.  An up-regulation of Runx1 following MI 

concurs with a previous publication which revealed that in hearts taken from human MI 

patients there was a significant increase in RUNX1 expression compared to normal human 

heart tissue (Gattenlohner et al., 2003).  These findings combined with those in our mouse 

model suggest that RUNX1 may be activated by myocardial injury which could indicate a 

potential role for RUNX1 in the heart following MI.  It is possible that increased RUNX1 

in the heart can be attributed in part from infiltrating or deposited cells that arrive during 

the MI injury (e.g. lymphocytes and fibroblasts, respectively) as RUNX1 is known to be 

present in lymphocytes (Himes et al., 2005) and in cardiac fibroblasts (Wotton et al., 2004) 

which are present in the heart during remodelling (Nian et al., 2004;McCormick et al., 

1994).  By examination of the structure of these cell types using IHC and with 

confirmation from a pathologist we believe these to be lymphocytes (identified by their 
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small round mononuclear shape) and fibroblasts (identified by their spindled shape with 

minimal cytoplasm and wavy nuclei).  These cell types were not labelled with specific 

markers so it was not possible to positively confirm their presence.  However, the work 

from this study has shown that the RUNX1 expression does not come solely from the 

invading cells as we have evidence that RUNX1 is present in cardiomyocytes prior to any 

injury or infiltration: (i) firstly, using qRT-PCR and IHC we have shown that Runx1 

(RUNX1) is present in the normal mouse sham heart (Figure 4.3 & Figure 4.9) and (ii) 

secondly, by qRT-PCR Runx1 has been shown to be expressed in a purified population of 

healthy mouse cardiomyocytes (Figure 4.11).  Therefore a proportion of the RUNX1 

expression is attributable to invading cell types as well as existing cardiomyocytes already 

there.  As Figure 4.11 shows, RUNX1 is expressed in the surviving cardiomyocytes 

present in the infarct which are visible as layers or islets distributed throughout this region.  

Cell purification studies in which qRT-PCR was performed on a purified cardiomyocytes 

population demonstrated that cardiomyocytes contain Runx1 mRNA confirming that the 

RUNX1 protein is expressed in cardiomyocytes and not taken up from surrounding cell 

types which can occur for other proteins during MI (e.g. S100A4) (Schneider et al., 2007). 

4.4.2 Elevated Runx1 expression is localised to areas within and 
adjacent to the injury 

At present, studies that have examined Runx1 levels in the heart have been from whole 

heart homogenates only and no information is available on altered Runx1 expression within 

different regions of the heart post-MI.  The hypothesis that Runx1 expression in the heart is 

triggered by myocardial injury is further supported by the observations that increased 

Runx1 expression in the mouse heart post-MI was localised to regions within or adjacent to 

the area of injury (the infarct).  As Figure 4.3 shows, higher levels of Runx1 were observed 

in the infarct region and in the peri-infarct region compared to areas remote after 4 weeks 

(this was in contrast to sham hearts which showed no differences in expression in any 

particular region of the heart).  This observation of altered regional distribution of gene 

expression is a recurrent finding in hearts post-MI.  For instance, genes which are down-

regulated in the infarct are often increased in the remote zone (e.g. inflammatory genes as 

described previously) and vice versa (when compared to matching sham regions) 

(LaFramboise et al., 2005).  The initial up-regulation of genes in the remote region is 

important as these tend to be switched on as a compensatory response against the adjacent 

tissue injury.  Regional differences can result from variations in the mechanical, electrical, 
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remodelled and/or metabolic properties of each region (Kramer et al., 1993;McCormick et 

al., 1994) as detailed below. 

4.4.2.1 Potential triggers in the infarct region 

The infarct region represented the region with the highest levels of Runx1, Runx2 and 

Runx3 in the heart post-MI compared to an area remote (RV) and compared to the 

equivalent region of the sham heart.  The infarct is primarily made up of a collagen-based 

matrix and contains infiltrating macrophages, monocytes and neutrophils as part of the 

inflammatory cascade during infarct repair (Frangogiannis et al., 2002b).  These cells are 

known to express RUNX1 and therefore a contribution of the RUNX1-positive signal in 

the infarct may be coming from these invading cell types (Himes et al., 2005;Wotton et al., 

2004).  The repair process and early infarct expansion (characterised by slippage and/or 

loss of cardiomyocytes) can also trigger changes in gene expression within the surviving 

cardiomyocytes of the infarct zone (Swynghedauw, 1999).  Due to loss of contractile mass 

in the infarcted region, mechanical function in this region is markedly reduced (Fomovsky 

& Holmes, 2010).  Mechanical instability is known to induce Runx2 expression in arthritic 

cartilage (Kamekura et al., 2006); the same may be true for the infarct region and may 

contribute to the increase in Runx2 expression in the infarct region.  Runx2 has also been 

shown to be up-regulated in cardiomyocytes under conditions of myocardial fibrosis 

during high phosphorous conditions or parathyroid hormone infusion (Custodio et al., 

2012) – this is relevant to the present work as the model in our study has been shown to 

demonstrate myocardial fibrosis and therefore it is possible that the increase in Runx2 may 

also be attributed to conditions of myocardial fibrosis in the infarct region in the same way. 

4.4.2.2 Potential triggers in the peri-infarct myoc ardium 

The peri-infarct region also demonstrated a significant increase in Runx1 expression post-

MI compared to areas remote and when compared to the equivalent region of the sham 

heart.  The possible triggers for Runx up-regulation in the peri-infarct during MI are 

unclear.  Studies investigating the over-expression of NCAM (believed to be linked to 

RUNX1) in MI have postulated that possible triggers may be related to (i) “communication 

failures” from disrupted electrical activity in the infarct and peri-infarct, (ii) increased wall 

stress, or (iii) loss of cell-cell interaction. 

(i)  Disruptions in electrical activity may be a key stimulus for Runx1 expression.  This 

has been shown to be the case in injured skeletal muscle in which disruptions in electrical 
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activity (via denervation) are responsible for an increased expression of RUNX1 (Wang et 

al., 2005).  It’s possible that alterations in electrical activity which are known to occur in 

the infarct and peri-infarct (due to loss of cardiomyocytes and remodelling of gap junctions 

as described previously) (Peters, 1995) may relate to increased RUNX1 expression in the 

same way.   

(ii)  Increased wall stress:  Close contact between thin-walled infarct and viable 

myocardium results in an abnormally increased radius of curvature of the myocardium at 

the infarct margin, leading to elevated wall stress and associated energy demands in the 

peri-infarct region (Buda et al., 1986;Guccione et al., 2001;Walker et al., 2005).  Therefore 

the peri-infarct is also exposed to high mechanical stress which could also be a trigger for 

Runx2.  This is because RUNX2 over-expression during injury, for example in the 

pathogenesis of osteoarthritis, has been linked to mechanical instability and tensile strain 

factors (Kamekura et al., 2006).  Interestingly, the over-expression of RUNX2 under these 

conditions was limited to the affected areas with little or no change in the unaffected 

regions of the tissue at a distance from the injury.  These findings further support the up-

regulation of Runx genes under conditions of insult and a similar pattern of expression 

bordering areas of the injury.   

(iii)  Persistent ischaemia in infarct and peri-infarct and the infarct may also be an 

important trigger for altered Runx levels.  At present little is known about how the 

mechanisms by which ischaemic stimuli can regulate gene expression but it may be related 

to the activation of specific protein kinase cascades (Shimizu et al., 1997).  Hypoxia may 

be an important stimulus but given that RUNX3 is known to be down-regulated in 

response to hypoxia this may not be the case (Lee et al., 2009).   

Importance of altered Runx expression in the peri-infarct region:  Altered levels of 

Runx in the peri-infarct region is of particular significance because the peri-infarct region 

has been the subject of intense investigation in MI and is believed to contribute to the 

decompensatory process that eventually leads to HF (Jackson et al., 2002;Jackson et al., 

2003;Narula et al., 2000).  Importantly adverse peri-infarct remodelling is believed to be 

responsible for almost 70% of HF cases (Gheorghiade & Bonow, 1998) and is a major 

determinant of poor patient outcome as it is very difficult to reverse once established 

(Gavazzi et al., 1993).  Given the importance of the peri-infarct region in the progression 

to HF, the increased levels of RUNX1 that were observed in this region support the need 

for further investigation in the role RUNX1 plays in this region during MI. 
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4.4.2.3 Potential triggers in the remote region 

Changes in Runx1 were not evident in the remote region after 4-wk MI but were 

significantly increased in this region by 8-wk.  The remote region can be defined as the 

area of non-infarcted myocardium found beyond the peri-infarct region at a distance from 

the infarcted region.  Remote myocardium is largely normal muscle but due to the 

alterations in ventricular geometry and increased wall stress imposed by the loss of 

myocardium in the infarcted region this can lead to a hypertrophic response in the remote 

region which can be a trigger for altered mRNA expression levels.  Results from Chapter 3 

in this thesis have shown that hearts post-MI show evidence of cardiomyocyte 

hypertrophy, although it cannot be confirmed definitively if these came from the remote 

region.  However, based on the findings that the hearts showed an overall increase in heart 

weight despite loss of myocardium in the infarct, this would strongly suggest that the 

surviving myocardium had undergone hypertrophy.  However despite this, Runx 

expression in the remote LV after 4-wk MI was comparable to those seen in the equivalent 

sham heart suggesting that hypertrophy observed at 4-wk does not seem to have triggered 

changes in Runx expression.  It may be that the hypertrophy signals could repress Runx1 

expression (as has been shown in a different animal model of hypertrophy in this thesis; 

Chapter 5).  However Runx1 was found to be higher in the remote LV region at 8-wk; and 

from the heart weight data the hearts showed greater muscle mass at 8-wk (compared to 4-

wk) therefore it is also possible there may be a hypertrophic threshold below which Runx1 

is not affected. 

A further possible trigger for Runx1 over-expression may be linked to the reactivation of 

the foetal gene programme commonly observed in the metabolically stressed heart, which 

has been found to be responsible for regional over-expression of other genes in the mouse 

infarcted heart (e.g. NCAM) (Iwamura et al., 1977). 

4.4.3 RUNX1 may be mislocalised in injured cardiomy ocytes 

IHC has further confirmed that RUNX1 expression is confined to areas within and around 

the area of injury in the 4-wk infarcted heart.  The RUNX antibodies used in this study 

have been previously published - ab61753 (Abcam, U.K.) was used to detect RUNX1 in 

the cells of the inferior vena cava in mouse embryos (Nagamachi et al., 2010) and ab35962 

(Abcam, U.K.) was used to detect RUNX1 in haematopoietic progenitor cells in mouse 

embryos (Tsunoda et al., 2010).  Immunohistochemical analysis has demonstrated that the 

expression of RUNX1 is localised predominantly to the nuclei of cardiomyocytes, but 



Kirsty K. Foote, 2012  Chapter 4  

223 
 

upon closer inspection RUNX1 can also be found within the cytoplasm of a proportion of 

cardiomyocytes within and around the infarct - a difference observed only in the infarcted 

heart and not present in sham hearts.  This may represent a mislocalisation of RUNX1 as 

RUNX proteins are normally expressed exclusively within the nucleus only (Lu et al., 

1995).  There are transcription factors which can be expressed both in the nucleus and 

cytoplasm, for example RBCK1, a protein kinase C-interacting transcription factor located 

in human embryonic kidney cells (HEK293) (Tatematsu et al., 2005) and HOXA10, a 

regulator of RUNX2 transcriptional activity located in endometrial stromal cells (Bae et 

al., 2004).  The FOXO transcription factors (FOX01 and FOX03) are present in both the 

nucleus and cytoplasm of embryonic cardiomyocytes (Sengupta et al., 2009).  However, 

RUNX transcription factors have a unique targeting signal in the C terminus called the 

NLS which is responsible for directing RUNX to discrete foci within the nucleus (Choi et 

al., 2001) and the sole presence of RUNX protein in the cytoplasm can render it inactive 

(Choi et al., 2001).  Mislocalisation of RUNX1 into the cytoplasm has been reported 

previously under disease conditions e.g. translocation of the CBFβ partner can lead to a 

CBFβ-MYH11 fusion gene (Liu et al., 1995) which has the ability to sequester RUNX1 in 

the cytoplasm increasing leukamogenic potential (Adya et al., 1998;Lukasik et al., 2002).  

RUNX3 mislocalisation to the cytoplasm is present in 38% of gastric cancer tumour cells 

and interestingly it has been shown that hypoxic culture conditions can induce this 

mislocalisation to the cytoplasm in gastric tumour cells, identified by IHC (Lee et al., 

2009).  It may be therefore that the hypoxic conditions within the infarcted region of the 

heart could be responsible for RUNX1 expression within the cytoplasm; this is further 

supported by the finding that this occurs in cardiomyocytes within the infarct and peri-

infarct region only and not in the areas remote.  Another possibility is that RUNX1 can be 

mislocalised to the cytoplasm bound to CBFβ, the precise mechanisms by which this 

occurs remain to be fully elucidated but it is thought to be related to a direct disruption of 

the NLS (Michaud et al., 2002). CBFβ is normally cytoplasmic (Tanaka et al., 1997) and 

its entry into the nucleus required interaction with the Runt domain (Lu et al., 1995) but 

the regulatory mechanism involved in this is not clear, it has been proposed that a portion 

of CBFβ remains in the nucleus (Lu et al., 1995); Figure 4.12.  Therefore it may be 

complex underlying pathways initiated as a result of the injury to the heart that could be 

responsible for causing this mislocalisation. 
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Figure 4.12  Diagram showing possible mechanism for how the CBFββββ partner unit enters the nucleus to permit 

formation of the heterodimer complex required for transcription. 

(A) CBFβ resides in the cytoplasm but a portion is believed to remain inside the nucleus to permit binding to the Runt 

domain which allows CBFβ to enter the nucleus and (B) form a heterdimeric complex to mediate transcription. 

4.4.4 Localised regional expression of other genes in MI 

Expression in areas of close contact with the injury has been reported by others for 

example the neural cellular adhesion molecule NCAM is also up-regulated in human MI 

(Gattenlohner et al., 2003) and in a mouse model of MI (Nagao et al., 2010) and is 

restricted only to the cardiomyocytes within the infarcted or peri-infarct regions.  RUNX1 

is believed to have a binding site within the promoter of NCAM and may therefore be 

involved in the control of its expression.  This seems very likely given the strikingly 

similar pattern in expression between the two.  The over-expression of nestin, an 

intermediate filament protein, after MI is predominantly in the infarct and peri-infarct of 

mouse infarcted hearts and human end-stage heart failure; this has been shown by 

immunofluorescence confocal microscopy to be present in cardiomyocytes as well as 

endothelial cells, smooth muscle cells, neuronal cells and fibroblasts (Scobioala et al., 

2008).  The multifunctional Ca2+-binding protein S100A4 as also been reported to show 

increased expression in injured cardiomyocytes localised to the peri-infarct in rat MI (twice 

as high compared to the remote region within the same heart and nearly 5 times higher than 

the matching sham regions) (Schneider et al., 2007).  Although S100A4 is detectable by 

immunofluorescence confocal microscopy in inflammatory cells (macrophages and 

leukocytes), fibroblasts and endothelial cells, the staining within cardiomyoctes was 

exclusively in the peri-infarct; interestingly S100A4 mRNA was not detectable by qRT-

PCR in the cardiomyocytes therefore it is believed to be uptaken by the cardiomyocytes 

rather than expressed by them (Schneider et al., 2007). 
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4.4.5 Temporal alterations in Runx1 expression post-MI 

4.4.5.1 How do Runx1 levels compare between 4-wk and 8-wk post-MI?  

Runx1 levels remained high in the infarct region by 8-wk post-MI but were not 

significantly different to those observed in the 4-wk infarct (as shown in Figure 4.4).  

Similarly, levels of Runx1 also remained high in the peri-infarct at 8-wk but were not 

significantly different to those observed at 4-wk MI.  It is possible however that the 

regional distribution is changing by 8-wk as we begin to see higher levels of expression in 

the remote LV at 8-wk.  Interestingly, this is in contrast to normal levels in the remote 

region at 4-wk signifying a possible temporal response which may be linked to advanced 

remodelling.  In our mouse model, 8-wk MI hearts do show a greater degree of 

remodelling compared to the 4-wk hearts in terms of greater muscle mass and a trend 

towards higher cardiac fibrosis (Chapter 3) and therefore this could explain the altered 

expression seen in the 8-wk remote.  Up-regulation of Runx1 in the remote region at 8-wk 

is important because it may indicate that Runx1 up-regulation is not triggered as a result of 

the initial ischaemic injury, as the remote LV region represents an area which is not subject 

to the ischaemia (still perfused).  Although Runx1 mRNA was increased in the 8-wk 

remote region, the level of RUNX1-positive staining by IHC was unchanged.  

Unfortunately one of the limitations of IHC is that it simply indicates presence or absence 

of the antigen of interest (in this case RUNX1) and does not provide indication of the 

quantity of the protein present within each cell.  Therefore it is possible that IHC may be 

underestimating the true abundance which could explain the discrepancy between high 

mRNA but unchanged RUNX1-positive IHC in 8-wk post-MI remote regions.  Other 

techniques that may have been utilised for this include Western Blotting, but for more 

specific analysis of RUNX1 levels this could involve utilising techniques designed to 

examine proteins expressed within the nucleus such as isolating nuclear extracts followed 

by electrophoresis mobility shift assay.  Other transcription factors have shown delayed 

expression post-MI similar to the RUNX1 8-wk remote result in this study; these include 

the Fox transcription factors for which the Fox03 and FoxJ2 members only begin to show 

elevated expression at 8-wk post-MI in the nuclei of cardiomyocytes in the peri-infarct 

region (Philip-Couderc et al., 2008).  Others take even longer; the FoxF2 does not appear 

higher until 20-wk post-MI (Philip-Couderc et al., 2008). 
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4.4.5.2 High levels of Runx1 in 1-wk animals with severe MI phenotype 

Interestingly, the greatest degree of Runx1 was observed during early severe MI at 1-wk 

indicating there may be a potential link with onset of HF.  As Figure 4.4 shows, Runx1 was 

over twice as high in the 1-wk infarct compared to 4-wk infarcts, and over three times 

higher than 8-wk infarcts.  1-wk animals also showed ≈ 6.5-fold and ≈ 5-fold higher Runx1 

in the peri-infarct compared to the equivalent regions in the 4-wk and 8-wk hearts, 

respectively.  Although it was not possible to functionally confirm HF in the animals that 

developed a severe phenotype at 1-wk (n=3 in total including the animals for which the 

hearts were taken for histological assessment described in the previous Chapter 3, Section 

3.4.3), previous measurements have revealed they show a marked increase in heart weight 

with severe lung congestion consistent with congestive HF (Chapter 3).  These animals 

also showed very advanced acute remodelling (substantial infarct thinning; Chapter 3) 

which may indicate a link with the high levels of Runx1 expression observed in these 

circumstances.  Unfortunately it must be noted that due to the small number of animals that 

develop this severe phenotype, the animals are limited to test this further.  It is unclear 

what may be responsible for these high levels of Runx1 expression whether it is related to 

an inflammatory response which is known to peak at this time (1-wk) (Bonvini et al., 

2005;Frangogiannis et al., 2002) or whether it is related to a more severe remodelling of 

this condition.  Genes are known to show higher levels of mRNA within the infarct and 

peri-infarct at 1-wk and fall by later time points (4-wk); this has been shown to be the case 

for a number of genes involved in inflammation, angiogenesis and stem cell factors (as 

measured by qRT-PCR) including IL-8, TGF-β1, βFGF, MIP-1α and IL-10 (Vandervelde 

et al., 2007). 

4.4.6 Other RUNX genes show similar altered expression but to 
varying extents 

Knowledge on the altered expression patterns of the other members of the RUNX family 

(RUNX2 and RUNX3) in the heart during MI is also extremely limited.  RUNX2 has been 

found to be barely detectable in normal rat heart (negative with IHC), however during 

conditions of elevated phosphorous or parathyroid hormone (both features of chronic 

kidney disease which can lead to cardiac disease), RUNX2 is found to be up-regulated in 

cardiomyocytes and coronary arteries (Custodio et al., 2012).  This finding is another 

example linking tissue stress with RUNX expression.  Tissue stress in this context refers to 

damage, injury or overload of the specialised functioning of the tissue that disturbs normal 

nutrient and/or energy supply.  In our study, all three Runx genes showed increased mRNA 
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levels post-MI with a very similar regional distribution pattern.  This is not surprising 

given that all three RUNX proteins bind via the same highly conserved DNA motif known 

as the Runt domain located at the N-terminus of the RUNX protein (Kagoshima et al., 

1993;Crute et al., 1996) and all require the CBFβ for DNA binding (Ogawa et al., 1993).  

As a result the RUNX genes employ very similar roles, albeit in different lineages.  Runx2 

showed increased expression within the infarcted region of the heart post-MI only.  The 

Notch1 gene, a member of the Notch signalling family, has been reported to be up-

regulated ~3-fold in cardiomyocytes of the peri-infarct of mice 4-days post-MI (Gude et 

al., 2008); as Notch is known to inhibit Runx2 (Zamurovic et al., 2004) this may explain 

why Runx2 showed no change in expression in this region (while the other Runx genes 

did).  Runx1 and Runx3 demonstrated expression within both the infarct and the peri-

infarct with no change in remote LV expression after 4-wk.  RUNX3 is also a known direct 

target of the Notch signalling pathway but unlike RUNX2, is activated by increased Notch 

(Fu et al., 2011).  This could explain the increased levels of Runx3 mRNA in the peri-

infarct region as Notch is activated in this region post-MI in mice (Gude et al., 2008) as 

described above which could be contributing to an increased expression of Runx3 in this 

region.  The similarity in pattern between Runx1 and Runx3 is not unusual as the two have 

been known to overlap or cross-regulate in other systems e.g. both the haematopoietic 

system and during thymopoiesis more than they do with Runx2 (Levanon et al., 

2001a;Woolf et al., 2003).  Furthermore, during murine embryogenesis Runx3 is only 

detected in organs that also express Runx1 (Levanon et al., 2001a) which also supports the 

possibility of cross-regulation.  In gastric cancer, both RUNX1 and RUNX3 are down-

regulated while no changes were observed in RUNX2 (Sakakura et al., 2005).  Although 

there were similarities to Runx1 in the expression pattern, Runx3 showed a more 

exaggerated response than the other two Runx genes within the infarct and peri-infarct 

regions, the reasons for this however are not clear.  Together these findings further support 

the idea that the RUNX family are differentially altered in the heart during MI which 

therefore warrants further investigation into the possible role RUNX may have in the heart 

during MI. 

4.4.7 Functional role of RUNX1 in cardiomyocytes 

The functional role of RUNX in the heart remains to be fully elucidated.  From Runx1-

knockout studies in skeletal muscle, a small group of 29 genes were identified as 

transcriptional targets for RUNX1, many of which are also not only important for cardiac 

myocardial structure, but demonstrate altered patterns of expression during cardiac disease.  
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For example RUNX1 can activate the expression of the gene for osteopontin (Sbp1) (Wang 

et al., 2005), a matricellular protein which is expressed at low levels in the healthy, 

unstressed heart but increases in cardiomyocytes during the onset of cardiac hypertrophy 

(Graf et al., 1997), MI (Trueblood et al., 2001) and advanced heart failure (Stawowy et al., 

2002).  RUNX2 is also known to regulate osteopontin by activating its expression (Ducy, 

2000).  This may be important as osteopontin is believed to be involved in the coordination 

of intracellular signals required to integrate myofibroblast proliferation, migration, and 

ECM deposition in the post-infarcted heart to ensure the mechanical properties of the heart 

are not compromised further (Singh et al., 2010).  There are also links to sodium channel 

type V (Scn5a) which is activated by RUNX1 (Wang et al., 2005) and mutations of the 

Scn5a gene have been associated with Long QT syndrome and fatal cardiac arrhythmias 

(Zhang et al., 2007).  Thrombospondin-1 and 4 (Tsp) are secretory proteins which are also 

induced by RUNX1 (Wang et al., 2005) and selectively over-expressed in the peri-infarct 

myocardium post-MI in cardiomyocytes as well as endothelial cells and macrophages 

(Dewald et al., 2005;Paoni & Lowe, 2001;Sezaki et al., 2005) and is believed to prevent 

adverse remodelling by regulating the inflammatory response during MI (Sezaki et al., 

2005). 

4.4.7.1 Phospholamban a key target? 

A particular key target for RUNX1 may be phospholamban (Pln), an integral regulatory 

protein which controls the rate of Ca2+ movement across the SR membrane through 

association with SERCA.  When Pln is unphosphorylated, the rate of Ca2+ movement is 

reduced through inhibition of SERCA, and upon phosphorylation of Pln, Ca2+ movement 

increases.  Failing heart muscle exhibits distinct changes in intracellular Ca2+ handling, 

including impaired removal of cytosolic Ca2+; reduced Ca2+ loading of the SR with down-

regulation of SERCA2; and defects in SR Ca2+ release (Marx et al., 2000;Morgan, 1991).  

Thus contractility impairment in heart failure has been linked to increased inhibition of 

SERCA due to (i) increases in phospholamban/SERCA2 expression and (ii) decreases in 

Pln phosphorylation (Chu & Kranias, 2006).  Increased RUNX1 levels could therefore be 

affecting the expression of Pln which may be having detrimental consequences for the 

heart during post-MI remodelling.  In denervated skeletal muscle, knockout of Runx1 led 

to an 82% reduction in Pln gene expression compared to wild-type denervated muscle 

(Wang et al., 2005).  Therefore these data suggest that Pln gene expression is activated/ 

maintained by Runx1.  It is not known whether Runx1 up-regulation in cardiac muscle 

would affect Pln to the same extent; however it is known that transgenic mice with a 2-fold 
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cardiac-specific over-expression in Pln protein (2-9 extra copies of Pln gene) demonstrate 

reduced cardiomyocyte contractility with reduced Ca2+ transient amplitude (to 83% of 

wild-type) and significant prolongation of Ca2+ decay (to 131% of wild-type) (Kadambi et 

al., 1996).  Therefore, an elevation in the Runx1 observed in the heart post-MI could lead 

to an increase in Pln expression and subsequently alter normal Ca2+ handling and overall 

functioning of the heart.   

Preliminary data supporting a link with phospholamban:  Further to potential links 

between RUNX over-expression and cardiac dysfunction, preliminary data from our 

laboratory has shown that rabbit cardiomyocytes over-expressing RUNX1 demonstrate 

altered Ca2+ handling with reduced peak systolic Ca2+, slower decay of the Ca2+ transient 

and reduced SR content all consistent with reduced contractile function (data not shown).  

These data suggest elevated RUNX1 levels may have a detrimental effect in 

cardiomyocytes.  These data would support the hypothesis of potential over-expression of 

Pln and subsequent inhibition of SERCA which may be responsible for the altered 

handling and reduced cardiomyocyte contractions observed.  These data have revealed that 

RUNX1-overexpression shows adverse effects in cardiac muscle which is in contrast to the 

protective effects of RUNX1 observed in skeletal muscle during injury.  In skeletal muscle 

RUNX1 was necessary in the muscle after denervation to protect against wasting, 

myofibrillar disorganisation and autophagy; however the data from our group suggests that 

the situation is different in cardiac muscle and that unlike skeletal muscle, RUNX1 shows 

a detrimental effect rather than a positive protective one. 

4.4.7.2 Possible links with Runx expression and degree of dysfunction. 

The work in this thesis has shown that there are significant correlations between mean 

regional Runx1 and Runx3 expression and cardiac function in the heart post-MI i.e. higher 

Runx1 and Runx3 expression in hearts with greatest dysfunction (with and without shams 

included in the analysis).  Runx2 shows no correlations with cardiac function.  However, 

the degree of LV dysfunction can be influenced by the size of the infarct which has been 

shown to be the case in a separate small cohort of hearts (in which infarct size was 

measured histologically) i.e. larger infarct size, lower function.  Runx mRNA levels are 

highest in the infarct region - therefore it becomes difficult to ascertain whether it is the 

larger infarct size or the increased Runx expression that leads to reduced cardiac function. 
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1) One way to test this would be to assess the infarct size of the hearts that have been 

used for Runx expression experiments.  If the infarct size was not different between 

hearts, it would give more confidence that the relationship is not as a result of the 

infarct size.  However, due to the nature of the tissue preparation for these experiments 

(fresh hearts dissected and immediately snap-frozen) it was not possible to accurately 

assess infarct size histologically in these hearts.  Infarct size therefore could only be 

estimated from photographs of the heart under magnification and estimated based on 

the percentage of infarcted area by means of tracing around the surface of the infarct 

using image analysis software – this was only possible from a very small number of 

hearts (n=3).  Using these three hearts by this method, there were no significant 

differences observed in infarct size and no correlation observed between infarct size 

and Runx1 expression.  This would suggest that the relationship between Runx 

expression and level of cardiac dysfunction was not influenced by infarct size.  

However when infarct size was measured histologically in a separate group of hearts 

the level of dysfunction was proportional to the infarct size.  The reasons for the 

discrepancy may be related to the method of measuring infarct size with the ‘tracing 

round’ method being less accurate than the more thorough length-based quantification 

from serial histology sections where the infarct is clearly delineated from Sirius red 

staining.  Furthermore the small sample size is a limiting factor in the accuracy of the 

results. 

2) A similar approach would be to assess whether the degree of Runx expression in the 

infarct region itself changes with degree of dysfunction; although this region shows the 

highest levels of Runx1, Runx2 and Runx3, if no correlations with function and Runx 

gene expression were observed in this region it would invalidate the original problem 

of the infarct’s contribution to Runx/dysfunction.  Following analysis however this was 

found not to be the case - when assessing the infarct alone, Runx1 and Runx3 correlate 

significantly with dysfunction (with and without shams included) indicating hearts 

with greatest dysfunction express more Runx1 and Runx3 in the infarct alone.  There 

was no correlation with Runx2 expression and function in the infarct region.  In 

attempts to eliminate the influence of the infarct on the analysis, the contribution of 

Runx expression from the infarct was removed from the analysis and the relationship 

between Runx expression and dysfunction was still the same.  This indicates that there 

was still a significant correlation between Runx expression and level of dysfunction 

even without the contribution from the infarct.  There are however some points to 

consider with this observation: (i) firstly the infarct size may have already affected the 
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function of the heart (larger infarcts do lead to reduced function) but it is unclear if this 

would play a part in the peri-infarct and remote LV Runx expression.  It is possible that 

with greater damage there was reduced function and a subsequent increase in Runx in 

the surviving regions as well as the infarcted tissue – therefore this point may only 

affect the functional side of the relationship; (ii) secondly, the peri-infarct could be 

contaminated with infarct expression (although efforts were made to ensure careful 

dissection of the infarct and peri-infarct from each other during tissue collection, it is 

very difficult to be completely certain that no overlap of scar tissue was present in the 

peri-infarct).  However, it was tested to see whether there was any correlation between 

Runx expression in the infarct and peri-infarct region of the same heart (i.e. did the 

hearts with the highest level of Runx in the infarct also have the highest level of Runx 

in the peri-infarct of the same heart?).  The results showed that there were no 

significant correlations suggesting that the peri-infarct expression had not been 

affected by the infarct of the same heart (and contamination therefore was unlikely).  

Furthermore, the remote region was tested as there would be no risk of contaminating 

scar tissue in this region, but no correlations were found between the expression of any 

Runx gene and cardiac function in this region - it must be noted that these were 4-wk 

post-MI hearts and Runx1 levels are not different from basal sham levels in the remote 

LV at 4-wk.  

3) In a separate animal model of cardiac disease in which there is no infarct 

(hypertension/LVH) the model showed the same pattern with significantly higher 

Runx1 expression in hearts with greatest dysfunction therefore owing more strength 

that it may not be related to the infarct.  This data is discussed in more detail in 

Chapter 5.  Although infarct size post-MI is an important determinant of the extent of 

dysfunction in humans (Masci et al., 2011) and mouse models (Gao et al., 

2000;Patten, 1998;Takagawa et al., 2007), the degree of adverse remodelling is not 

always solely related to the amount of damage sustained (Ambler et al., 2008).  Genes 

can influence function independently of infarct size; this has been shown in transgenic 

mouse studies: mice deficient in the gene for myeloperoxidase had improved function 

compared to wild-type mice despite equivalent infarct size (Vasilyev et al., 2005) and 

over-expression of the gene for glutathione peroxidase in mice reduces adverse LV 

remodelling independently of infarct size (Shiomi et al., 2004).  Therefore it is 

possible for Runx genes to have a potential role in the dysfunction observed 

independent of infarct size, however at present it is not clear whether infarct size is 

contributing to the effects seen in this study.  
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4.4.8 Summary 

Collectively, the findings described in this chapter have revealed in detail that during MI 

there are changes in the expression of the Runx genes in terms of abundance, regional 

distribution, time course and (very preliminary indications of) association with onset of 

severe MI and HF.  Additionally there were similarities in the regional expression pattern 

of the other Runx genes but differences in their extent of altered expression.  One of the 

first areas to investigate further would be to ascertain that RUNX1 increases in 

cardiomyocytes during MI.  The work in this chapter has shown that RUNX1 is increased 

in the heart post-MI and is present in cardiomyocytes during MI but it remains to be shown 

that the levels of RUNX in the cardiomyocytes increase.  Further experiments for this work 

would involve further over-expression of recombinant RUNX protein within cultured 

mouse cardiomyocytes to verify that the changes in Ca2+ handling could be repeated in the 

mouse (rabbit cardiomyocytes survive better in culture than mouse cardiomyocytes which 

is the reason why the preliminary experiments were performed in rabbit).  To evaluate 

whether increased expression of Runx1 is having an adverse effect on function post-MI, 

two approaches could be taken; (i) genetic over-expression of Runx1 into the heart via in 

vivo adenoviral vector delivery prior to the induction of MI (followed by functional 

measurements in vivo and at the cardiomyocyte level after MI) or (ii) genetic ablation of 

Runx1 using transgenic mice with cardiac-specific knockout of Runx1 (global knockout is 

embryonically lethal) followed by functional measurements.  Biochemical analyses of Pln 

expression (both phosphorylated and unphosphorylated forms) in the mouse MI cardiac 

tissue would also be very informative to assess whether levels of the phosphorylated Pln 

were reduced and unphosphorylated levels increased as a means to explain a possible 

mechanism by which RUNX1 may be adversely affecting cardiomyocyte function. 

Conclusion:  In conclusion, the up-regulation of RUNX in the heart post-MI may reflect 

an important role in the regulation of post-infarction remodelling and warrants further 

investigation.   
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5.1 Introduction 

5.1.1 Altered RUNX gene expression in cardiac disease 

Experimental animal models of cardiac disease can provide valuable insight into the 

underlying molecular mechanisms associated with the development of HF.  This includes 

the identification of causative genes related to a particular disease or the alteration of 

specific genes during the disease.  The adverse LV remodelling process that occurs in 

response to cardiac disease can trigger changes in cardiac gene expression, for example 

genes regulating calcium (Ca2+) handling (Swynghedauw, 1991), contraction (Yue et al., 

1998), the ECM (Weber, 1997) and the RAA system (Holtz, 1998).  More recently, 

transcription factors have emerged as important targets in elucidating the mechanisms of 

altered gene expression as many genes affected during remodelling are under the control of 

transcription factors (Kaab et al., 2004).  As the previous chapter in this thesis has shown, 

the gene encoding RUNX1, a transcriptional regulator of the RUNX family is over-

expressed in the mouse heart during MI, similar to what has been shown previously in 

human MI (Gattenlohner et al., 2003).  However, although knowledge of cardiac RUNX1 

expression during MI is emerging, very little is known about its altered expression in other 

forms of cardiac disease.  By examining how RUNX1 expression is altered during different 

forms of cardiac disease, this could provide important insight into the regulatory stimuli of 

the gene and allow for comparisons between different disease models.  Therefore, to 

further characterise the altered expression of Runx1 during cardiac disease and compare it 

with the previous MI model, this involved utilising a rat model of hypertension (SHRSP) 

and congenic rat models of altered LV mass. 

5.1.2 LV mass and hypertension 

LV hypertrophy (LVH) is an accepted independent predictor of cardiovascular morbidity 

and mortality (Devereux et al., 1994;de et al., 2002).  LVH occurs in response to injury or 

elevated load as part of LV remodelling, however while initially compensatory, LVH can 

eventually lead to HF.  The pathophysological mechanisms underlying the progression of 

LVH to HF remain poorly understood.  Although the most common cause of LVH is an 

elevated BP, the correlation between the two remains very complex.  The intensity of BP 

load has been found not to always correspond to the degree of LVH observed in humans; 

for example, it has been documented that individuals with comparable levels of high BP 

demonstrate largely variable extents of LVH (Nunez et al., 1996).  Furthermore, one report 
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revealed that there was no evidence of LVH in 50% of hypertensive patients (Devereux et 

al., 1994).   

5.1.2.1 Genetic basis for LV mass 

These differences are believed to be as a result of the complex polygenic nature of LV 

mass inheritance.  Studies on twin children have revealed that LV mass is genetically 

determined in childhood (Verhaaren et al., 1991).  Body weight, BP, SV, sodium intake 

and physical activity are all known to be a strong correlate of LV mass in adults (Kupari et 

al., 1994), with >90% of the correlation between LV mass and body weight as a result of 

common genes (Verhaaren et al., 1991).  Therefore, within a normal adult population LV 

mass has a significant genetic determination (Swan et al., 2003).  One way to study 

complex genetic factors such as LV mass which could be important for cardiac disease is 

using inbred animal models. 

5.1.3 Rat model of hypertension 

Experimental models of hypertension have been developed in the rat over the last forty 

years including the spontaneously hypertensive rat (SHR) (OKAMOTO & AOKI, 1963) , 

the stroke-prone SHR (SHRSP) (Okamoto et al., 1974), Dahl salt-sensitive (DAHL et al., 

1962) and Sabra rats (Lutsky et al., 1984).  These models demonstrate many of the clinical 

features of human hypertension including LV hypertrophy (Yamori et al., 1979), impaired 

myocardial function (Conrad et al., 1991), increased susceptibility to stroke (Jeffs et al., 

1997) and renal failure (Kawabe et al., 1978).  Inbred animal models offer the advantage of 

genetic homogeneity and complete control of environmental factors but most importantly 

they allow for specific inter-crosses to generate sub-strains which can provide insights into 

genetic determinants of hypertension which are beyond the scope of human studies.  These 

sub-strains are useful for the study of specific genetic regions important for hypertension 

such as altered LV mass.  This approach involves the identification of quantitative trait loci 

(QTL), which are regions of a chromosome containing genes for a particular trait.  This 

then makes it possible to narrow down the genes contained within the QTL interval.   

5.1.3.1 Congenic strains 

In order to dissect out the QTL of interest, this usually involves the construction of a 

congenic strain whereby a chromosomal segment containing the QTL from a donor strain 

is introgressed into a recipient strain using a backcrossing breeding scheme.  If the QTL of 
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interest is successfully moved then the resulting congenic strain will be identical to the 

recipient strain except for the QTL.  The congenic strain can then be used to assess the 

QTL-related phenotype alterations.  According to Mendelian laws it can take up to 8-10 

crosses to dilute the donor genome to >99% of the recipient.  Brother-sister mating can 

then fix the congenic strain as homozygous.  This is known as the traditional congenic 

breeding method.  However this method can take up to 3-4 years to produce the desired 

congenic strain (Frantz et al., 1998).  A faster method has been developed which involves 

selecting male offspring that contain the fewest donor alleles and using these for the 

breeding; this is called marker-assisted speed breeding (Figure 5.1) and can reduce the time 

taken to produce the congenic strain by approximately half (~ 2 years) (Jeffs et al., 2000). 

5.1.3.2 QTL for LV mass 

QTLs for LV mass have been identified using this approach.  This is important for the 

study of LVH because a detailed study by Tanase et al. revealed from a study of 23 inbred 

strains of normotensive and hypertensive rats that an estimated 65-75% of the difference in 

cardiac mass between strains was genetically linked (Tanase et al., 1982).  Therefore, 

through the use of genetic crosses between normotensive and hypertensive strains 

numerous linkage studies have revealed the existence of QTL for LV mass, some BP-

dependent and others independent of BP in a number of chromosomal regions.  For 

example, BP-independent QTL for LV mass have been mapped along several different 

regions of chromosome 17 (Deng et al., 1994;Pravenec et al., 1995;Tsujita et al., 2000).  

QTL for LV mass which are found to be dependent on BP have been identified on 

chromosomes 2, 4, 19 (Pravenec et al., 1995) and 7 (Tsujita et al., 2000;Garrett et al., 

1998). 
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Figure 5.1  Traditional and speed congenic breeding. 

Construction of congenic strains showing the differences between traditional and marker-assisted speed breeding.  

Arrows indicate the backcross at which the background heterozygosity is theoretically the same.  Decreasing shades of 

grey represent dilution of the donor genome.  D=donor strain alleles, R=recipient strain alleles, B=backcross, F1=first 

filial generation.  Taken from (Graham et al., 2005). 

5.1.3.3   Chromosome 14 congenic strains 

Through the use of genome-wide linkage analysis, groups here at the University of 

Glasgow previously identified a QTL for LV mass on chromosome 14 of the stroke-prone 

spontaneously hypertensive rat (SHRSP) (Clark et al., 1996).  To explore this, two 

congenic strains have been produced using SHRSP and its normotensive control strain, 

Wistar Kyoto (WKY): 

(i) WKY.SPGla14a in which the QTL on chromosome 14 from SHRSP has been 

introgressed into WKY rats (denoted WKY-congenic); 

(ii)  SP.WKYGla14a in which the QTL on chromosome 14 from WKY has been 

introgressed into SHRSP (denoted SHRSP-congenic). 
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The nomenclature for these strains includes the recipient strain (first abbreviation) 

followed by the donor strain (second abbreviation); Gla denotes that the strains originate 

from Glasgow colonies and the number 14 refers to the chromosome number.  For 

simplicity, these strains will be referred throughout the rest of the thesis as WKY-congenic 

and SHRSP-congenic. 

5.1.4 Functional assessment of the models using PV 
methodology 

These congenic strains can be utilised for the identification of genes within this QTL which 

could be potential targets for hypertension therapy; however, this model also represents a 

very effective model for the investigation of Runx expression patterns during different 

cardiac diseases which will be the main focus for this thesis.  Previous phenotype 

measurements (echocardiography and radiotelemetry) of these congenic strains have 

revealed that they each show alterations in LV mass with little change in their systolic BP.  

Therefore it is likely that this QTL is being regulated without influence by BP.  However 

the measurements that were performed to measure this were largely dependent on loading 

conditions.  One way to measure LV function without the influence of BP load is using 

pressure-volume analysis.  This allows assessment of LV performance in vivo without the 

influence of load.  This method has been widely used in humans and large animals (Kass et 

al., 1988b;Little & Cheng, 1993), however the recent development of miniature PV 

catheters has made the technique applicable to smaller animals such as rodents (Pacher et 

al., 2008). 

5.1.5 Cardiac fibrosis can alter normal functioning  in these 
models 

LV function in hypertensive heart disease models can be largely influenced by the level of 

structural remodelling, for example the degree of LVH as previously discussed but also 

patterns of ECM remodelling which are also characteristic of this model (Weber et al., 

1991a;Weber et al., 1991b).  The accumulation of fibrillar collagen, representing 

myocardial fibrosis is a major determinant of the LV diastolic properties: during 

hypertensive pressure-overload, the ventricles enlarge to accommodate the increased wall 

stress and this is usually accompanied by disproportionate deposition of collagen around 

the myocardial arteries and muscle fibres as a means of conferring tensile strength to the 

myocardium to further support the heart during increased load (Kai et al., 2005).  

Myocardial fibrosis affects diastolic performance in that it can limit normal diastolic 
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‘suction’, impair myocardial compliance and compromise the length-dependent muscle 

fibre shortening during contraction (Burlew & Weber, 2002). 

5.1.6 Aims 

The aims of the work presented in this chapter were therefore as follows: 

(i) Characterise systolic and diastolic function at baseline and at different preloads 

in each strain using the PV catheter system in order to assess load-independent 

analysis of cardiac function.  This would allow a functional characterisation of 

the different strains to assess the differences in phenotypes, and segregate the 

strains into different functional models of cardiac disease for the investigation 

of Runx expression levels. 

(ii)  Measure Runx1 expression in these strains and identify whether the different 

models show different patterns of expression. 

(iii)  Assess changes in structural cardiac fibrosis of the heart in these strains to 

characterise differences between the strains, identify possible links with 

function and assess possible links with Runx1 expression.  

5.2 Methods 

The congenic strains have been bred and maintained at the University of Glasgow since 

1991.  Genotyping and radiotelemetry probe implantation was performed by Dr. Delyth 

Graham and arterial BP and LVMI measurements were previously collected by Dr. Delyth 

Graham and Dr. Kirsten Douglas as described in the General Methods chapter. 

5.2.1 Blood pressure determination 

Radiotelemetry transmitter probes (Dataquest IV telemetry system, Data Sciences 

International) were surgically implanted into the abdominal aorta when the animals 

reached 12 weeks of age for the measurement of systolic BP over the subsequent 4 weeks.  

Measurements were taken for 10 s every 5 min and these measurements were averaged for 

each hour. 
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5.2.2  LV mass measurements 

LV mass was measured using echocardiography when the animals were 16 weeks of age.  

Animals were anaesthetised (isofuorane) and short axis 2D M-mode images were taken 

through the left parasternal window at the papillary muscle level using ACUSON Sequoia 

C512 echocardiograph.  Mean data from six consecutive cardiac cycles from each M-mode 

image were used to calculate LV mass using the ASE-cube formula with Devereux 

correction factor as previously published (Devereux et al., 1986): 

6.0)))(04.1(8.0 33 +−++= EDDAWTPWTEDDmassLV             Eq. 20 

Where EDD is the end-diastolic dimension (mm), PWT is the posterior wall thickness 

(mm), AWT is the anterior wall thickness (mm).  LV mass was normalised to tibial length 

(TL). 

5.2.3 LV PV Measurements 

16 week-old animals were induced and maintained with isofluorane on a face-mask (1.5-

2%). Body temperature was maintained at 37°C ± 0.5 using a rectal probe connected to a 

homeothermic heat blanket system (Harvard Apparatus 507221F). A 1.9F pressure-

volume catheter (SciSense) was inserted into the carotid artery and advanced through the 

aortic valve into the left ventricle guided by changes in pressure. Following a ten-minute 

stabilisation period, pressure and volume measurements were recorded in steady state and 

during reduced preloads by temporarily occluding the inferior vena cava. To offset parallel 

volume (Vp) from surrounding conductive structures, three bolus injections (35 µl each) of 

15% hypertonic saline was administered into the left jugular vein at the end of the 

experiment to allow a mean value for Vp to be taken. 

5.2.4 Harvesting of hearts 

Animals were sacrificed by cervical dislocation and the heart was removed and washed in 

ice-cold saline (0.9% sodium chloride w/v).  The aorta was cut transversely, mounted on to 

a 19G cannula attached to a syringe and perfused retrogradely with ice-cold saline to rinse 

blood out of the coronary vessels.  Hearts were blotted dry on tissue paper and weighed 

using a precision electronic balance.  The LV free wall was then dissected free and also 

weighed.  The LV free wall was then cut into small pieces approximately 5mm2 and each 

were snap-frozen in liquid nitrogen and stored at -80°C until needed for biochemical 

experiments. 
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5.2.5 Preparation of heart sections for Sirius red staining 

Harvested hearts were fixed in 10% neutral buffered formalin for a minimum of 24 h to 

allow sufficient penetration of the tissue.  Sectioning and staining of the sections was 

performed by Mr Andy Carswell.  Briefly, the hearts were paraffin-embedded and 

sectioned using a microtome (3 µm thick).  Sections were deparaffinised and hydrated 

using a clearing agent (Histoclear, Fisher Scientific, U.K) for 2 x washes followed by 

100% ethanol, 90% ethanol, 70% ethanol then distilled water for 7 min in each solution.  

Sections were then stained for 1 h with picrosirius red, which is a collagen-specific dye 

that stains collagen red, followed by 2 x washes of acidified water and 2 x washes of tap 

water for 5 min each.  Sections were then dehydrated through 70% ethanol, 90% ethanol, 

100% ethanol and Histoclear (2 x washes) for 7 min each.  The dehydrated sections were 

then coverslip-mounted with a mounting agent (Histomount, Invitrogen, U.K.). 

5.2.6 Measurement of cardiac fibrosis 

Transverse sections of LV apex stained with Sirius red were examined with an Olympus 

BX41 microscope (x20 magnification) and images were captured with a Qimaging Go-3 

camera with the use of QCapturePro software.  Collagen was quantified using 

ImageProPlus software which counted the number of red pixels of a set threshold of red 

colour using a histogram scale within a fixed area (300 x 300 pixels) for the blood vessels 

(perivascular fibrosis) and the adjacent interstitial areas (interstitial fibrosis).  Perivascular 

fibrosis was assessed in at least 5 randomly selected vessels per heart.  Blood vessels with 

comparable lumen size were selected for as much as possible and only vessels which could 

fit into the box were used and any that were <50% the size of the box were not included.  

Interstitial fibrosis was measured in areas adjacent to the blood vessels; three separate 

adjacent areas to each blood vessel were used for this and a mean value taken.  Interstitial 

areas contained no obvious blood vessels or other structures.  All perivascular and 

interstitial measurements were then averaged to give a mean value of perivascular and 

interstitial fibrosis for each heart. 

5.2.7 qRT-PCR 

RNA extraction, cDNA synthesis and qRT-PCR were performed as described in the 

General Methods Section 2.12.  RNA was extracted using a phenol-chloroform extraction-

based method using the miRNeasy RNA Extraction Kit (Qiagen) according to the 

supplier’s protocol.  Following DNase treatment of the extracted RNA, first-strand cDNA 
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was synthesised from 2 µg of RNA using the Omniscript Reverse-Transcription Kit 

(Qiagen).  Runx1 gene expression in cDNA samples was measured by qRT-PCR with 

Runx1-specific primers in a SYBR green assay using a thermal cycler with accompanying 

software (ABI 7500 sequence detection system).  GAPDH was used to normalise cDNA 

levels. 

5.2.8 Data recording and statistical analysis 

All PV data were recorded on a Dell laptop using LabScribe2.0 software version 2.241 at a 

sampling rate of 2000 samples.s-1 and analysed offline using LabScribe2.0 software.  All 

data in the text and figures are expressed as mean ± SEM.  Statistical significance was 

measured using student’s paired or unpaired t-test for comparisons between a maximum of 

two groups, or ANOVA  followed by the Bonferroni or Tukey post-hoc test where 

appropriate for comparing more than two groups.  A P value of <0.05 was considered 

statistically significant. 

5.3 Results 

5.3.1 LV mass and systolic blood pressure 

Age, BW, tibial length, LV mass index (LVMI) and systolic blood pressure (SBP) for each 

strain are shown in Table 5.1.  The WKY-congenic, SHRSP and SHRSP-congenic were all 

significantly smaller in BW (P<0.05 for each strain) and had significantly shorter tibial 

lengths (TL) compared to WKY (P<0.05 for each strain).  LV mass was estimated using 

echocardiography and expressed relative to TL.  LV mass and SBP measurements were 

performed by Dr Kirsten Douglas and Dr Delyth Graham.  SHRSP demonstrated 

significantly greater LVMI than WKY (increased by 25.6% of WKY; P<0.05).  The 

WKY-congenic showed a significant increase in LVMI compared to WKY (by 17.3%; 

P<0.05) and the SHRSP-congenic demonstrated a significant decrease in LVMI compared 

to SHRSP (by 16.4%; P<0.05).  SBP was unchanged between the SHRSP and SHRSP-

congenic; both of these strains had significantly elevated SBP compared to WKY and were 

considered hypertensive as defined by SBP>150 mmHg.  The WKY-congenic showed a 

small but significant increase in SBP (by 6.1%) when compared to WKY; however both of 

these strains remained normotensive with SBP within the normal range for rats (119-146 

mmHg; (Pacher et al., 2008)). 
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Table 5.1  LVMI and SBP in the congenic and background strains. 

Animals Age                                       
(weeks) 

BW                                     
(g) 

Tibial Length              
(mm) 

LV MI                                     
(g/mm) 

SBP                                      
(mmHg) 

      
WKY ( n=10) 16 337.70 ± 9.51 47.70 ± 1.25 16.33 ± 0.29 136.46 ± 2.88 
WKY-congenic 
(n=13) 16 319.46 ± 4.79* 44.31 ± 0.40* 19.16 ± 10.34* 144.83 ± 2.45* 
      
SHRSP (n=6) 16 257.83 ± 4.01† 40.00 ± 1.00† 20.51 ± 1.03† 192.06 ± 3.66† 
SHRSP-congenic 
(n=5) 16 247.40 ± 9.45† 39.20 ± 0.49† 17.14 ± 0.42* 181.87 ± 7.16*† 

            
BW = body weight; LVMI = left-ventricular mass index (LV mass normalised to tibial length) measured using 

echocardiography; SBP = systolic blood pressure, daytime recordings using radiotelemetry. * P<0.05 between the 

congenic and respective background strain.  † P<0.05 when compared to WKY. 

5.3.2 Haemodynamic LV function 

LV PV measurements were used to assess changes in LV function in each of the four 

strains.  The results of these measurements are presented in Figure 5.2, Figure 5.3 and 

summarised in Table 5.2.   

5.3.2.1 Systolic functional parameters of the heart  

Figure 5.2A shows typical pressure traces from each of the four strains and typical PV 

loops from each strain are shown in Figure 5.2B.  Figure 5.3 shows the results of systolic 

parameters of cardiac function between the groups.  Heart rate was the same in all four 

strains with no statistical differences observed (P>0.05; Figure 5.3A (i)).  Both the SHRSP 

and SHRSP-congenic showed significantly elevated ESP compared to WKY (to 148% and 

154% of WKY levels for SHRSP and SHRSP-congenic respectively; P<0.05 for both; 

Figure 5.2A-B & Figure 5.3A (ii)) and the WKY- congenic (to 133% and 138% of WKY-

congenic levels for SHRSP and SHRSP-congenic respectively; P<0.05 for both; Figure 

5.2A & Figure 5.3A (ii)).  SHRSP and SHRSP-congenic were both hypertensive with 

ESP>150 mmHg (Figure 5.2A-B & Figure 5.3A (ii)).  ESP was not different between the 

SHRSP and SHRSP-congenic (P>0.05).  The WKY-congenic showed a small but 

significant (to 111% of WKY levels) increase in ESP in the WKY-congenic compared to 

WKY (P<0.05; Figure 5.3A (ii)) but both WKY and WKY-congenic were normotensive 

ESP< 146mmHg).  There were no differences in the maximal rate of rise in pressure 

(dP/dtmax) between the WKY-congenic and WKY (P>0.05), nor between the SHRSP-

congenic and SHRSP (P>0.05; Figure 5.3A (iii)).  Both the SHRSP and the SHRSP-

congenic showed higher dP/dtmax compared to WKY (to 142% and 143% of WKY levels 

for SHRSP and SHRSP-congenic respectively; P<0.05 for both; Figure 5.3A (iii)) and 
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WKY-congenic (to 138% and 139% of WKY-congenic for SHRSP and SHRSP-congenic 

respectively; P<0.05 for both; Figure 5.3A (iii)).  CO was significantly reduced in the 

WKY-congenic compared to WKY (to 71% of WKY; P<0.05; Figure 5.3A (iv)) but 

conserved between the SHRSP-congenic and SHRSP (P>0.05; Figure 5.3A (iv)). 

5.3.2.2 Diastolic functional parameters of the hear t 

The WKY-congenic showed an increase in EDP to 146% of WKY levels (P<0.05; Figure 

5.3B (i)) and the SHRSP-congenic showed a decrease in EDP to 60.7% of SHRSP levels 

(P<0.05; Figure 5.3B (i)).  Compared to WKY, the maximum rate of fall in pressure 

(dP/dtmin) increased in the SHRSP to 140% of WKY levels (P<0.05; Figure 5.3B (ii)) and 

in the SHRSP-congenic to 140% greater of WKY (P<0.05; Figure 5.3B (ii)).  Similarly, 

when compared to the WKY-congenic, dP/dtmin was increased in the SHRSP to 137% of 

WKY-congenic (P<0.05; Figure 5.3B (ii)) and in the SHRSP-congenic to 137% of WKY-

congenic (P<0.05; Figure 5.3B (ii)).  However, there were no differences in dP/dtmin 

observed between each congenic and their respective background strains (WKY-congenic 

vs. WKY P>0.05; SHRSP-congenic vs. SHRSP P>0.05; Figure 5.3B (ii)).  No differences 

in the relaxation time constant Tau (τ) were observed between the four strains (P>0.05; 

Figure 5.3B (iii)).  The EDPVR stiffness constant (β) was found to be significantly higher 

in the WKY-congenic compared to WKY (3.0-fold higher; P<0.05) and significantly lower 

in the SHRSP-congenic compared to SHRSP (3.5-fold lower; P<0.05).  SHRSP showed 

significantly greater LV stiffness than WKY (3.0-fold higher; P<0.05; Figure 5.3). 

5.3.2.3 Volume parameters 

No differences were observed in ESV between the four strains (P>0.05; Figure 5.3C (i)).  

EDV was significantly reduced in the WKY-congenic compared to WKY (by 26.2% of 

WKY; P<0.05 Figure 5.3C (ii)).  No differences in EDV were observed between the 

SHRSP-congenic and SHRSP (P>0.05) nor between SHRSP and WKY (P>0.05; Figure 

5.3C (ii)).  SV was significantly reduced in the WKY-congenic compared to WKY (to 

68.8% of WKY levels; P<0.05), however SV was not different in the SHRSP-congenic 

compared to SHRSP (P>0.05) nor between SHRSP and WKY (P>0.05; Figure 5.3C (iii)).  

EF was unchanged across all four strains (P>0.05; Figure 5.3C (iv)). 
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Figure 5.2  Representative LV pressures and PV loops. 

A (i-iv).  LV intra-ventricular pressures from WKY, WKY-congenic (red), SHRSP and SHRSP-congenic (red).  B (i).  

Typical PV loops from WKY (black) and WKY-congenic (red).  B (ii) Typical PV loops from SHRSP (black) and 

SHRSP-congenic (red). 
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Figure 5.3  Haemodynamic PV indices of LV function. 

Systolic functional parameters (A i-iv), diastolic functional parameters (B i-iv) and volume parameters (C i-iii) in WKY 

(n=7; white bar), WKY-congenic (n=5; light grey bar), SHRSP (n=7; black bar) and SHRSP-congenic (n=7; dark grey 

bar).  Data shown are mean ± SEM *P<0.05.
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Table 5.2  Haemodynamic PV data from the congenic and background strains. 

  
WKY                               
(n=7) 

WKY- congenic              
(n=5) 

  SHRSP                          
(n=7) 

SHRSP-
congenic               

(n=7) 

      
HR (bpm) 325.8 ± 9.0 336.6 ± 1.8  350.9 ± 11.8 340.6 ± 7.2 
ESP (mmHg) 125.2 ± 3.1 139.9 ± 1.5*  185.6 ± 4.0† 193.3 ± 10.4† 
EDP (mmHg) 7.7 ± 0.9 11.2 ± 1.1*  11.2 ± 1.6 6.8 ± 1.1* 
dP/dt max (mmHg.s-1) 7796.4 ± 393.5 8042.9 ± 222.8  11092.7 ± 501.1† 11208.8 ± 477.3† 
dP/dt min (mmHg.s-1) 8085.0 ± 272.3 8243.0 ± 222.7  11309.4 ± 479.2 † 11293.7 ± 478.2† 
Tau (ms) 10.4 ± 0.4 10.4 ± 0.4  9.7 ± 0.3 9.8 ± 0.3 
EDPVR 0.011 ± 0.004 0.034 ± 0.006*  0.034 ± 0.009† 0.010 ± 0.03* 
ESV (µl) 71.3 ± 13.1 59.8 ± 2.6  98.2 ± 15.2 78.8 ± 18.8 
EDV (µl) 214.2 ± 21.9 158.1 ± 10.0*  221.7 ± 26.2 188.8 ± 15.9 
SV (µl) 142.9 ± 16.8 98.3 ± 7.9*  123.5 ± 18.8 122.3 ± 6.7 
CO (ml.min-1) 46.5 ± 3.7 33.1 ± 2.8*  38.1 ± 4.2 41.9 ± 2.1 
EF (%) 68.8 ± 6.5 60.7 ± 3.7  55.2 ± 4.8 63.5 ± 4.3 

            
HR = heart rate; ESP = end-systolic pressure; EDP = end-diastolic pressure; dP/dtmax = maximal rate of rise of 

pressure; -dP/dtmin = maximal rate of fall in pressure; Tau (τ) = relaxation time constant;  EDPVR = end-diastolic 

pressure-volume relationship stiffness constant.  ESV = end-systolic volume; EDV = end-diastolic volume; SV = 

stroke volume; EF = ejection fraction; CO = cardiac output.  Values are expressed as mean ± SEM. * P < 0.05 vs. 

time-matched sham control.  † P < 0.05 compared to WKY.
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5.3.3 Collagen content 

Collagen levels in the heart were assessed by measuring the positive collagen area from 

Sirius red histology sections of the heart.  When compared to WKY, the WKY-congenic 

showed significantly higher levels of perivascular collagen levels (13.9 ± 2.6 vs. 5.8 ± 0.4 

%; WKY-congenic (n=5) vs. WKY (n=3); P<0.05; Figure 5.4B) and interstitial collagen 

levels (4.6 ± 0.8 vs. 1.7 ± 0.2 %; WKY-congenic (n=5) vs. WKY (n=3); P<0.05; Figure 

5.4C).  Compared to SHRSP, the SHRSP-congenic demonstrated significantly reduced 

levels of interstitial fibrosis (1.9 ± 0.3 vs. 3.3 ± 0.5 %; SHRSP-congenic (n=4) vs. SHRSP 

(n=4); P<0.05; Figure 5.4B) but had significantly elevated levels of perivascular fibrosis 

(17.7 ± 2.8 vs. 8.0 ± 1.7 %; SHRSP-congenic (n=4) vs. SHRSP (n=4); P<0.05; Figure 

5.4C). 
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Figure 5.4  Collagen levels in the congenic and background strains. 

A. Representative photographs of Sirius red sections showing areas of collagen (red) in WKY, WKY-congenic, SHRSP 

and SHRSP-congenic. B. Interstitial fibrosis measured from Sirius red sections from WKY (n=3), WKY-congenic (n=5), 

SHRSP (n=4) and SHRSP-congenic (n=4). C. Perivascular fibrosis measured from Sirius red sections from WKY (n=3), 

WKY-congenic (n=5), SHRSP (n=4) and SHRSP-congenic (n=4). Data shown are mean ± SEM. * P<0.05. 

5.3.4  Runx1 gene expression 

Runx1 mRNA levels were measured using qRT-PCR on whole LV free wall taken from 

each of the four strains.  The WKY-congenic showed a significant reduction in Runx1 

levels compared to WKY (0.11 ± 0.05 vs. 0.47 ± 0.06 RQ; WKY-congenic (n=5) vs. WKY 

(n=5); P<0.05; Figure 5.5).  There were no differences in Runx1 expression between the 

SHRSP-congenic and SHRSP (0.19 ± 0.07 vs. 0.27 ± 0.05 RQ; SHRSP-congenic (n=5) vs. 

SHRSP (n=5); P<0.05; Figure 5.5).  WKY also showed higher levels of Runx1 compared 

to the SHRSP-congenic (0.47 ± 0.06 vs. 0.19 ± 0.07 RQ; WKY (n=5) vs. SHRSP-congenic 
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(n=5); P<0.05; Figure 5.5).  Although there also appears to be a trend towards lower 

expression in the SHRSP compared to WKY, this did not reach statistical significance. 

 

 

Figure 5.5  Runx1 expression in the congenic and background strains. 

Runx1 expression as measured by qRT-PCR using Runx1-specific primers for WKY (n=5; white bar), WKY-congenic 

(n=5; light gray bar), SHRSP (n=5; black bar) and SHRSP-congenic (n=5; dark gray bar).  Runx1 levels are expressed 

using the 2-∆Ct method. * P<0.05 using ANOVA with the Tukey-Kramer multiple comparison’s post-hoc test. 

5.3.5 Links with Runx1 expression and LV function 

Regression analysis was performed to assess whether a relationship existed between Runx1 

expression and LV function.  The functional parameter used was the relaxation time 

constant (τ) as it was found to be the most sensitive to small changes in the relationship 

between function and Runx expression.  The value for τ was paired with the 2-∆Ct for the 

same heart across the different strains.  The 2-∆Ct value was used as this was the method of 

analysis for the congenic study as a single value for each heart.  Unfortunately there were 

no samples available for the WKY-congenic for this part of the study.  The results are 

shown in Figure 5.6 which revealed that a significant correlation between Runx1 

expression and dysfunction in terms of impaired relaxation: i.e. as τ increased, Runx1 

expression increased (y=0.13x-1.03; R=0.82; P<0.05). 
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Figure 5.6  Relationship between Tau (ττττ) and Runx1 expression in the WKY, SHRSP and SHRSP-congenic 

strains. 

Linear regression analysis of the relationship between the 2-∆Ct value for Runx1 expression and the value for τ for each 

heart.  Each point on the graph is an individual heart.  WKY hearts (n=2; black circles), SHRSP hearts (n=2; open circles) 

and SHRSP-congenic hearts (n=3; red circles). 

5.4 Discussion 

QTLs that regulate LV mass are important for the study of LVH which is known to be an 

independent predictor of adverse cardiovascular outcome clinically (Devereux et al., 

1994;Verdecchia et al., 1995).  Previous work at the University of Glasgow has identified 

a QTL for LVMI on chromosome 14 of the SHRSP (Clark et al., 1996).  This QTL is 

localised between markers D14Mgh3 and R58 which are ≈12.3 cM apart (Clark et al., 

1996).  This has been verified through the construction of congenic strains: (i) 

WKY.SPGla14a (denoted WKY congenic) in which the QTL on chromosome 14 of SHRSP 

has been introgressed into WKY and (ii) SP.WKYGla14a (denoted SHRSP congenic) in 

which the QTL from WKY has been introgressed into SHRSP.  Both of these congenic 

strains demonstrate alterations in LV mass; the WKY-congenic shows increased LV mass 

and the SHRSP-congenic shows decreased LV mass.  RUNX1 has been previously shown 

to have altered expression in the heart during cardiac disease; for example in human MI 

cardiac tissue (Gattenlohner et al., 2003) and as the work in this thesis has revealed, in a 

mouse model of MI.  The hypertensive rat model (SHRSP) and the associated congenic 

strains described in this study represent two further animal models of cardiac disease for 
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which altered Runx levels have not been previously reported and offer potential further 

insight into altered patterns of Runx expression in the heart during disease. 

5.4.1 Congenic strains demonstrate a separation bet ween LV 
mass and BP 

Changes in LVMI with little change in BP:  The chromosome 14 congenic strains 

demonstrate alterations in LVMI; however these changes occur with little (less than 12%) 

or no change in SBP.  This has been verified through both radio telemetry measurements 

and LV PV measurements which have independently shown a small but significant 

increase in SBP in the WKY-congenic (compared to WKY), although the extent of this 

change does differ between the two methods.  One reason for this discrepancy may be the 

effects of anaesthesia as PV measurements are performed under anaesthesia while radio 

telemetry measurements are recorded from conscious animals.  Isofluorane anaesthesia is 

known to reduce blood pressure as a direct result of vasodilation and depressed myocardial 

contractility (Conzen et al., 1992).  Indeed the ESPs observed from animals that underwent 

PV analysis under anaesthesia showed lower ESP than arterial SBP from radio telemetry in 

conscious animals.  Despite this, both sets of measurements have independently shown that 

although the WKY-congenic showed a small increase in arterial SBP and LVESP it 

remained normotensive, despite an increased LVMI.  Similarly, the SHRSP-congenic 

showed no differences in arterial SBP or LVESP compared to SHRSP despite having 

significantly reduced LVMI.  Changes in LV mass therefore occurred with no change in 

the normotensive or hypertensive status of the animal.   

Separation between LVMI and BP:  QTLs for LV mass can either be BP-dependent or 

BP-independent.  BP-independent QTL for LV mass can increase LVMI in normotensive 

individuals or reduce LVMI in hypertension (Llamas et al., 2005).  This is important for 

the study of LVH in which there are discrepancies in the correlation between LVH and BP 

(Nunez et al., 1996).  Elevated BP in hypertension is the most common cause of LVH; 

however the intensity of BP load does not always correspond to the degree of LVH 

observed in patients (Devereux et al., 1994).  In individuals with comparable high BP the 

level of LVH can be largely continuous (Cohn, 1998).  Similarly one report revealed no 

evidence of LVH in 50% of hypertensive patients (Devereux et al., 1994).  Several genetic 

linkage studies have identified QTL for LV mass, some of which are regulated by BP and 

others which are regulated independently of BP - for example several groups have 

identified various BP-independent QTL for LV mass at different locations on chromosome 
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17 (Deng et al., 1994;Pravenec et al., 1995;Tsujita et al., 2000;Yagil et al., 1998).  QTL 

for LV mass which are dependent on BP have been identified on chromosomes 2, 4, 19 

(Pravenec et al., 1995) and 7 (Tsujita et al., 2000;Garrett et al., 1998).   

Model of segregated LVMI and BP:  In this study, QTL on chromosome 14 for LVMI 

causes changes in LVMI without alterations to the hypertensive (or normotensive) status of 

the animal.  This is similar to the findings of Pravenec et al. (1995) who reported that for 

the LVMI QTL on chromosome 17, there was a significant correlation with LV mass but 

no correlations with systolic, diastolic or MAP;  furthermore, no correlation was found 

between BP and LV mass.  Furthermore in our study, the changes in LVMI are evident at 5 

weeks of age (data not shown) before the onset of hypertension.  This would suggest there 

is a BP-independent element to the regulation of this QTL for LVMI.  Therefore utilising 

these congenic strains represents a model which has segregated LV mass from BP.  This 

could allow for the identification of novel candidate genes for LVMI unaffected by BP in 

hypertension. 

5.4.2 Congenic strains with altered LV mass show BP -
independent diastolic dysfunction  

It is well-documented from clinical studies and data from animal models that alterations in 

LV mass can affect the systolic and diastolic functioning of the heart (Lorell & Carabello, 

2000a;Cingolani et al., 2003).  Both systolic and diastolic function can be influenced by 

the load on the heart.  In order to measure changes in cardiac function independently of 

load, the PV catheter system was utilised as a method which allows assessment of diastolic 

LV performance independently from loading conditions. 

5.4.2.1 Systolic function 

SHRSP-congenic:  These measurements confirmed enhanced systolic performance in the 

hypertensive animals (SHRSP and SHRSP-congenic) which both demonstrated elevated 

ESP of >150 mmHg confirming that they have high BP consistent with hypertension.  

These findings were in agreement with arterial SBP measurements which were generated 

using a separate method, radiotelemetry.  This was further supported by elevated dP/dtmax 

in these animals.  Both SHRSP and SHRSP-congenic were therefore confirmed as 

hypertensive with enhanced contractility; however these strains showed no differences in 

systolic parameters with each other and were hypertensive to the same degree.   
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WKY-congenic:  Despite a small increase in ESP, the WKY-congenic showed normal 

ESP (119-146 mmHg; (Pacher et al., 2008)) and was therefore considered normotensive 

like WKY.  It is unclear the cause of this slight elevation in BP however the WKY-

congenic had normal dP/dtmin not different to WKY.  Despite having normotensive 

properties of systolic function there was an overall decline in CO in the WKY-congenic 

strain which is likely because the EDV was smaller and despite equivalent EF this led to 

diminished SV as well as CO (heart rate was unchanged).  Reduced EDV indicates a 

smaller luminal LV which may be due to increased wall thickness consistent with 

concentric remodelling (Lorell & Carabello, 2000a).  Although wall thickness data was not 

available to confirm this, this finding is consistent with the increased LV mass observed in 

these animals.  As the WKY-congenic was the only strain to show any differences in EDV, 

it would suggest that introducing the QTL on chromosome 14 can alter LV mass through 

what is potentially by concentric wall thickening – however, by removing the QTL on 

chromosome 14 this does reverse the effect as no changes in EDV were observed in the 

SHRSP-congenic.  The reasons for this would require further investigation.  EF was 

unchanged across all four strains which may be as a consequence of compensatory 

remodelling (increased LVH) which is known to preserve EF (Aurigemma et al., 1995).  

This finding is not unusual for hypertensive rats at 16-wk as others have shown that EF 

remains normal in the SHR until 72-wk of age when HF begins to develop (Mirsky et al., 

1983).  Similarly CO and SV also do not begin to reduce until 90-wk in the SHR (Pfeffer 

et al., 1979a), consistent with the finding in this present study for SHRSP (and SHRSP-

congenic).    

5.4.2.2 Diastolic function 

SHRSP-congenic:  Despite no change in systolic performance between the SHRSP-

congenic and SHRSP there were alterations in diastolic function.  The SHRSP-congenic 

demonstrated reduced LV mass, despite equivalent systolic function to SHRSP showed 

improvements in diastolic function (to control WKY levels for EDP and EDPVR).  This 

was evident from a lower EDP consistent with improved filling and load-independent 

reduced end-diastolic stiffness.  In vivo measurements of diastolic dysfunction for the 

SHRSP in the literature are extremely limited, there are however findings described by 

others for this in the SHR model: for example 40-wk old SHR function characterised by 

Millar PV measurements showed increased myocardial stiffness (derived from the 

EDPVR) and impaired relaxation (Cingolani et al., 2003).  These findings were also 

confirmed by other studies in the SHR (Nishimura et al., 1985;Pfeffer et al., 1979a).  In an 
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ex vivo SHRSP working heart of the same age as the animals in this study (16-wk) there 

was a significant increase in EDP, consistent with our findings in vivo (Chen et al., 2001).  

Interestingly, the relaxation time constant (τ) was unaltered between all four strains 

suggesting the time to relax was not different between all strains despite altered filling 

pressures and myocardial stiffness.  This was an unusual finding as τ usually increases in 

hypertensive heart disease due to increased LVH and fibrosis (Leite-Moreira et al., 1999).  

This has been demonstrated in the SHR model with prolongation of τ concurrent with 

increased LVH and fibrosis (Nishimura et al., 1985;Cingolani et al., 2003).  However, in 

both of these studies the animals were at a greater age (28-50 wk and 40-wk of age) than 

the animals in our study (16-wk old).  Therefore it may be that τ is only affected when the 

animals are older and/or reached a critical threshold of hypertensive heart disease.  In dogs, 

τ is unchanged as hypertension is developing (2-4 wk) and is only increased when the 

animals reach a stable hypertensive state (>14-wk) (Gelpi et al., 1991).  It is therefore 

possible that it may take longer than 16-wk to see changes in τ in the rat model.  An 

elevated EDP and raised EDPVR with a normal τ is not uncommon as it has been 

described previously in humans (Maurer et al., 2004).  However with reduced rates of 

relaxation (using dP/dtmin) in the SHRSP in this study it does question the lack of change in 

the τ – at present the reasons behind this discrepancy are not clear.   

WKY-congenic:  In contrast, the WKY-congenic which had an increased LV mass and 

was normotensive like WKY demonstrated reduced diastolic performance with raised EDP 

and higher LV stiffness.  These data show that there were both load-dependent and load-

independent alterations in LV diastolic function in both strains.  Collectively, other than τ, 

the diastolic indices revealed diastolic dysfunction in the WKY-congenic with no change 

in systolic dysfunction.  Diastolic dysfunction with preserved systolic function is being 

increasingly recognised in humans (Redfield et al., 2003); a recent population-based 

survey revealed that diastolic dysfunction was observed 5 times more than systolic 

dysfunction (Fischer et al., 2003).  Diastolic dysfunction has become an early marker of 

cardiac damage in hypertension and is well known to precede HF during hypertensive 

heart disease (Grossman, 2000;Zile & Brutsaert, 2002). 

5.4.2.3 Volume data 

LV volumes (both ESP and EDP) were not different between SHRSP-congenic and 

SHRSP suggesting the two strains were operating at equivalent LV volumes.  These were 

also no different to WKY which suggests that, despite increased LV mass in SHRSP this is 
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not affecting LV luminal volume.  This is not uncommon as LV mass can increase with no 

change in the chamber radius (Lorell & Carabello, 2000b).  However in the WKY-

congenic reductions in EDV are present with increased LV mass suggesting that in these 

animals there is evidence of concentric hypertrophy accompanied by reduced chamber 

volume.  This would suggest that the QTL segment which has been introgressed into these 

animals may have led to concentric hypertrophy therefore this phenotype could be linked 

to the specific QTL.  When the QTL is removed (SHRSP-congenic) the effect is lost as 

EDV is found to be unchanged compared to SHRSP which further supports that there may 

be genes on the QTL linked to this phenotype observed. 

5.4.3 Altered diastolic dysfunction may be linked t o altered 
cardiac fibrosis 

Possible triggers for cardiac fibrosis:  Myocardial stiffness, although influenced by many 

factors, is largely believed to be related to myocardial structural components, particularly 

myocardial fibrosis which is the accumulation of collagen within the myocardium (Brilla et 

al., 1991a).  Increased myocardial fibrosis is common during hypertension as a mechanism 

to increase tensile strength and support hypertrophied cardiomyocytes to prevent LV 

deformation during conditions of elevated load (Weber et al., 1987).  However, prolonged 

overloading can lead to excessive and/or disproportionate myocardial fibrosis which can 

reduce the compliance of the myocardium and be responsible for increased stiffening of 

the ventricle that can lead to diastolic dysfunction (Brilla et al., 1991a).  In early 

hypertensive heart disease, fibrotic collagen is observed mainly in the perivascular space 

surrounding the myocardial blood vessels (perivascular fibrosis) usually as a result of 

overload-induced vascular inflammation.  Pressure-overload occurs because the narrowed, 

stiffened arteries in the vasculature have increased MAP in hypertension (due to reduced 

arterial diameter) which creates an elevated load on the ventricles of the heart which must 

work harder to provide adequate circulation to the body’s tissues.  The increase in arterial 

pressure and elevated mechanical strain on the coronary vessels are believed to initiate a 

series of inflammatory changes in the coronary arterial wall including the activation of the 

chemokine, monocyte chemoattractant protein-1 (MCP-1) which recruits macrophages to 

the area which produce profibrotic cytokines that stimulate fibrosis in the perivascular 

space (Nicoletti & Michel, 1999).  Perivascular fibrosis can then subsequently spread into 

the adjacent interstitium (interstitial fibrosis) as part of a “reactive fibrosis” (Brilla et al., 

1991a).  Increased fibrosis during cardiac remodelling can be classified as either reactive, 

which relates to the progressive spread of collagen in the interstitial space and adventitia of 
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intramyocardial coronary arteries or reparative which occurs when areas of cardiomyocyte 

loss are replaced by fibrosis (e.g. following necrosis in myocardial infarcts).  Presence of 

interstitial fibrosis is therefore usually secondary to perivascular fibrosis and therefore by 

examining levels of both perivascular and interstitial fibrosis this allows for assessment of 

the progression of fibrosis.     

Differences in cardiac fibrosis in the congenic models:  Cardiac fibrosis was measured 

in the four strains for this study by quantifying collagen-positive areas in Sirius red 

sections of the LV.  Comparing the background strains, SHRSP shows increased levels of 

both perivascular and interstitial fibrosis compared to WKY consistent with a hypertensive 

model - increased cardiac fibrosis (both perivascular and interstitial) is a prominent feature 

of hypertensive rat models of hypertension as has been shown in SHR (Brilla et al., 

1991a;Nishimura et al., 1985) and SHRSP (Sawamura et al., 1990).  Additionally, both 

congenic strains demonstrated alterations in the level of fibrosis compared to their 

respective background strains.  The WKY-congenic showed significantly higher levels of 

both perivascular and interstitial fibrosis compared to WKY, indicating both an increase in 

collagen deposition but also to a more advanced stage (as evidenced by high interstitial in 

addition to high perivascular fibrosis).  Higher levels of interstitial fibrosis could be 

contributing to the increased myocardial stiffness observed in these animals as evidenced 

by the EDPVR measurements.  The SHRSP-congenic demonstrated reduced levels of 

interstitial fibrosis compared to its respective SHRSP which would also explain the 

reduced myocardial stiffness in these animals.  Interestingly, while there was reduced 

interstitial fibrosis in the SHRSP-congenic, there was an increase in the level of 

perivascular fibrosis.  Given that perivascular fibrosis can be associated with increased 

inflammation, it’s possible that the SHRSP-congenic, like the WKY-congenic, is sensitive 

to increased inflammation of the myocardial blood vessels.  The cause of this however 

remains unclear.  This finding would support the hypothesis that these animals have more 

inflamed blood vessels which seems likely given that when fed a salt diet they show a very 

high incidence of stroke within 24 h compared to SHRSP (personal communication with 

Dr. Delyth Graham; data not shown).  It may also be that the SHRSP-congenic is at an 

earlier stage of the fibrosis process by the absence of any spread into the interstitial areas 

or that the fibrosis is more concentrated around the perivascular space.  Increased 

perivascular fibrosis with reduced interstitial collagen has been previously reported in rats, 

albeit in volume-overload hypertrophy (Hutchinson et al., 2010;Voloshenyuk & Gardner, 

2010). 
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5.4.4 Runx1 expression is altered in the congenic strain of 
increased LV mass 

Genes may be regulated differently under different cardiac disease conditions:  

Samples of LV from each of the four strains were tested for the expression of the Runx1 

gene which has been previously shown to have altered expression in the heart during 

cardiac disease; for example in human MI cardiac tissue (Gattenlohner et al., 2003) and as 

the work in this thesis has revealed, in a mouse model of MI.  It is possible for cardiac 

genes to be regulated differently under different conditions of disease.  Some genes may be 

altered as a result of specific stimuli only and may not show the same pattern in different 

models of cardiac diseases.  For example, the gene for NCAM (CD56), a neural cellular 

adhesion molecule, is over-expressed during chronic ischaemic HF which is found to be 

specific for ischaemic damage compared to other cardiac diseases including congestive 

cardiomyopathy, hypertrophic obstructive cardiomyopathy, myocarditis and sarcoidosis 

(Gattenloner et al., 2004).  However, another study revealed that NCAM was also up-

regulated during remodelling of hypertrophy to HF in a Dahl salt-sensitive rat model 

(Ventura-Clapier et al., 2004) suggesting that the stimulus may not be ischaemia-specific. 

Differences in Runx1 expression between the congenic models and the MI model:  

While there were no differences found in the expression of Runx1 between the SHRSP-

congenic and SHRSP, there was a marked reduction in expression in the WKY-congenic 

compared to WKY.  The two congenic strains both showed lower levels of Runx1 

compared to WKY.  Runx1 expression was decreased within the rat model of increased LV 

mass and fibrosis compared to an up-regulation observed the in the mouse MI model 

suggesting there are different triggers in the different models contributing to Runx1 

expression levels.  It is possible that like NCAM, Runx1 could be sensitive to ischaemic 

insult triggering greater expression levels, and under conditions of overload-induced 

hypertrophy the Runx1 gene is repressed.  The molecular mechanism by which ischaemic 

stimuli are converted into intracellular signals are not clear, but one study has shown that 

ischaemia may preferentially activate specific protein kinase cascades which may be 

responsible for specific gene activation (Shimizu et al., 1997).  Differences in the 

expression pattern of the same gene have also been reported previously in a similar two 

models: for example an increase in mRNA for the T-type Ca2+ channel occurs in post-MI 

remodelling rat myocardium (Qin et al., 1995) but not in a rat model of overload 

hypertrophy (Vassort & Alvarez, 1994).   
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Reasons for the differences in expression patterns between the models:   

(i)  One potential reason for the differences in gene expression between an MI-induced 

injury and a pressure-overload injury may be related to the differences in the hypertrophy 

response between the models.  Hypertrophy is known to be a major cause of altered gene 

expression in the heart, particularly for transcription factors which are induced by 

hypertrophic stimuli to orchestrate the synthesis of new contractile sarcomeres for the 

protection of the heart (Akazawa & Komuro, 2003).  MI results in a regional hypertrophy, 

mainly confined to the surviving myocardium which is largely eccentric due to volume 

overload (Sadoshima et al., 1992).  Pressure-overload (like in the case of hypertension) 

results in a global hypertrophy which is largely a concentric hypertrophy (Lorell & 

Carabello, 2000a).  Therefore one possibility is that the differences in mechanical stimuli 

between the two models could explain the differences in gene expression patterns – the 

same may also be true for Runx1.   

(ii)  Another major difference in the remodelling between the two models which may 

contribute to the opposing gene expression patterns may be related to the ECM 

remodelling pattern – namely cardiac fibrosis.  In the MI heart, cardiac fibrosis is primarily 

reparative meaning that the increased collagen levels are intended to replace the lost 

cardiomyocytes (French & Kramer, 2007), while in the pressure-overload model the 

fibrosis is predominantly a reactive fibrosis whereby collagen accumulates and spreads as 

part of an inflammatory response (Brilla et al., 1991b).  It is possible therefore that the 

differences in fibrosis patterns could also contribute to the differences in Runx1 expression 

between these two models.  RUNX1 is known to be expressed in fibroblasts (Wotton et al., 

2004); however given that these two models both contain fibroblasts but show opposite 

effects on Runx1 expression it would indicate that there are other mechanisms involved 

than just Runx1 being present in fibroblast cells.     

5.4.5 Potential links with Runx1 and degree of LV dysfunction 

As was observed in the MI model, Runx1 levels correlated significantly with degree of 

cardiac dysfunction among the rat strains (in hearts with greatest diastolic dysfunction, 

Runx1 levels were highest).  Utilising a different animal model of cardiac disease (other 

than MI) offered another approach to assessing the relationship between Runx1 expression 

with cardiac dysfunction without the influence of the infarct associated with MI.  Although 

a single gene may be altered differently in different forms of cardiac disease which is an 

important consideration, it may also reveal similar patterns between expression levels of 
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the gene and its relationship with cardiac dysfunction.  Unfortunately n numbers were low 

(n=2 or 3) but from these small groups, similar trends to the MI model were observed in 

the WKY and SHRSP groups in regards to the relationship between Runx1 mRNA levels 

and degree of cardiac dysfunction – i.e. lower function (prolonged τ), higher Runx1 – 

despite differences in the overall expression pattern of Runx between the two models: a 

lower expression in the diseased state in the rat model, which was the opposite to the MI 

model (higher expression in the diseased state).  The conclusion to make from the 

comparison with the different models is that the correlation between Runx1 expression and 

degree of LV function is identical – reduced function, higher Runx1 which further supports 

a link between Runx1 expression and cardiac function without influence of an infarct size
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6.1 Rationale for the study 

The main aim of this thesis was to examine the altered expression patterns of the RUNX 

genes in different experimental models of heart disease.  The RUNX family of 

transcription factors are essential regulators of normal functioning during development but 

have received increased interest as important markers in human disease.  RUNX genes are 

up-regulated in response to injury or insult which has been observed in striated muscle 

types.  In skeletal muscle, levels of RUNX1 are relatively low but during disrupted 

electrical activity the expression increases nearly 100-fold and was shown to be a 

protective mediator in the muscle preventing harmful atrophy and further deterioration 

(Wang et al., 2005).  When the work by Gattenlohner et al. in 2003 (Gattenlohner et al., 

2003) identified an up-regulation of RUNX1 in the heart of patients with MI this raised a 

similar idea about the protective potential of RUNX1 over-expression in the heart.  The 

work from this thesis set out to characterise the altered expression in two different 

experimental models of cardiac disease; MI as had been observed for the human patient 

study, and a rat model of hypertension with further genetically altered strains with more 

specific altered LV mass.  These different models allowed a more thorough dissection of 

the expression patterns of the Runx genes in heart disease arising from different insults 

with differing patterns of remodelling and dysfunction.  The study therefore aimed to 

provide novel information on the levels of Runx gene expression in heart disease and the 

potential implications for its role during the disease.  Knowledge of the expression of 

RUNX in the heart even under healthy conditions is at present very limited and the work 

therefore aimed not only to improve knowledge of Runx levels in the normal heart and 

during disease but inform potential relevance of RUNX in future therapeutic treatments of 

CVD. 

6.2 Major aims and findings 

6.2.1 Suitability of animal models 

One of the important aspects that the work in this thesis has demonstrated is the value of 

utilising experimental animal models in research.  Each of the animal models used for this 

study conformed to the main set of criteria considered necessary for their use as disease 

models in that they mimicked the human phenotype closely, produced symptoms which 

were predictable and controllable, permitted study in a stable, chronic condition and 

allowed for relevant cardiac, haemodynamic and biochemical parameters to be measured 

(Doggrell & Brown, 1998;Houser et al., 2012).  In particular the mouse MI model was not 
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previously available in the laboratory and has since been developed with great success 

which has been made possible by a capacity building Integrative Mammalian Biology 

(IMB) award from the BBSRC designed to build and consolidate best practice in vivo 

research.  It was therefore mandatory that a significant component of this thesis involved in 

vivo studies. 

6.2.2 Development and characterisation of a mouse m odel of MI 

Animal models of disease are highly valuable as they allow study of the disease in a 

controlled manner.  In characterising gene expression changes in animal models for the 

future of human medicine it is imperative that the animal model mimics the human 

condition as closely as possible and represents a clinically relevant disease model for these 

experiments.  Therefore one of the initial aims of the thesis was to develop and characterise 

a model of MI in the mouse which would allow for potential genetic manipulations at a 

later stage of the project for the extended study of Runx genes in MI through knockout 

transgenic models.  Animal models of MI have been widely investigated however it was 

important to ensure the model developed a sufficient level of dysfunction and structural 

remodelling associated with this disease for subsequent gene expression studies using the 

model.  It was hypothesised that the model would reproducibly present the clinical features 

of MI and therefore be a suitable platform for the study of altered Runx expression under 

the conditions of this disease.  The mouse model of MI was successfully established in the 

laboratory using the CAL method producing a model with reproducible infarct sizes and 

low mortality that demonstrated not only features consistent with other published murine 

models but most importantly with human MI including LV systolic and diastolic 

dysfunction, altered electrical activity with increased frequency of VPC arrhythmias, 

cardiac structural remodelling including hypertrophy, wall thinning, chamber dilation and 

collagen deposition.  The model was therefore considered suitable for subsequent RUNX 

studies in the context of MI. 

6.2.3 Characterisation of congenic rat strains of a ltered LV mass 

The rat hypertensive model (SHRSP) developed enhanced systolic performance with 

diastolic dysfunction and increased cardiac fibrosis consistent with other published SHRSP 

models and with human hypertension.  The genetically-induced chromosome 14 congenic 

strains showed a BP-independent diastolic dysfunction or improvement in diastolic 

function with links with myocardial stiffness believed to be due to the patterns of cardiac 
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fibrosis observed.  These models therefore represented different models for further Runx 

expression studies. 

6.2.4 Runx and MI 

This is the first study to examine changes in Runx expression in the heart using an animal 

model of MI.  Present data on Runx in the heart was limited, even in the healthy non-

diseased heart.  RUNX expression in the diseased heart was also relatively unknown with 

studies that had investigated this unable to provide information on quantitative changes, 

disease progression alterations and in some cases precise cellular locations of the changes 

in expression in the heart was not available.  This work has provided novel information on 

many of these areas in which previously knowledge was lacking.  One of the first key 

findings was that Runx is present in control sham hearts therefore indicating a basal level 

of Runx in the healthy adult mouse heart.  Furthermore RUNX1 has been immunolocalised 

to cardiomyocytes as well as other cell types such as inflammatory cells and fibroblasts 

based on structural identification and observations from a qualified pathologist.  To our 

knowledge this is the first study to show the presence of RUNX1 in adult cardiomyocytes. 

Key findings:  The study findings have revealed that in hearts from mice post-MI there is 

a significant increase in the expression of all three Runx genes which was consistent with 

the finding from the human patient study, however work from the mouse model revealed 

that these changes were confined to the areas within and around the injury i.e. the infarct 

(all three Runx genes) and peri-infarct region (Runx1 and Runx3) with no change in 

expression within regions remote from the infarct (namely the remote LV and RV).  This 

was true at 4-wk after the initial insult.  At 8-wk post-insult, expression levels of Runx1 

were not different to the observations at 4-wk with higher levels of Runx1 in the infarct and 

peri-infarct; however with up-regulation in the remote LV region in addition which was 

not observed at 4-wk.  Increased expression of Runx genes in the heart post-MI does not 

solely arise from cardiomyocytes, it is accepted that there are other cell types (such as 

fibroblasts and inflammatory cells as mentioned above) that are also contributing to the 

increased expression.  It would be an important step to further dissect out the relative 

contributions from the cell types, which would be of particular relevance to potential 

altered functioning in cardiomyocytes.  This could be done by a means of cell separation 

utilising filtration techniques or FACS methods on the digested infarcted heart.  

Collectively however the results have identified spatial and temporal alterations of Runx 
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expression in the infarcted heart post-MI in a murine model warranting further 

investigation into the potential functional relevance of this. 

Possible implications:  These findings indicate that Runx expression is altered as a result 

of MI however the functional significance of this to the heart remains unclear.  Data from 

this thesis have shown there are significant correlations between the level of Runx increase 

with extent of dysfunction in that hearts with the highest level of Runx show the greatest 

dysfunction (for Runx1 and Runx3).  However the main problem with interpreting this 

finding is that there may be potential influence from the infarct size; there is a positive 

correlation with degree of dysfunction and increasing infarct size and the levels of Runx 

are known to be highest in the infarct region – therefore it became difficult to ascertain 

whether the degree of dysfunction in the heart was as a result of infarct size or increased 

Runx expression.  One thing that became evident was that when the influence from the 

infarct was removed the trends were the same.  This was performed firstly by removing the 

contribution of Runx expression from the infarct from the analysis and the relationships 

were as before with the infarct included and secondly, in a separate disease model without 

an infarct the trend also remained further giving weight to a direct link with Runx and 

function.  A direct link would be an exciting prospect in the field of cardiac medicine as it 

may indicate that Runx may be an important candidate for potential future biomarkers or a 

therapeutic target of heart disease.  However it is important to emphasise that this area 

requires a greater deal of further investigation in identifying the precise links but may 

represent a crucial component for further work. 

Further direction:  In terms of the functional role of Runx in cardiomyocytes this remains 

at present relatively unknown.  Studies have indicated that Runx2 may contribute to 

fibrosis and calcification through Notch signalling in atherosclerotic hearts.  It was 

originally hypothesised that RUNX may exhibit a similar role in cardiac muscle as had 

been shown in skeletal muscle on the basis that both muscle groups share similarities in 

structure and function and the triggering insult is very similar in the disturbances of 

electrical activity.  Preliminary data from our laboratory has shown that over-expression of 

RUNX1 in rabbit cardiomyocytes led to significantly reduced Ca2+ transient amplitudes 

and prolonged decay of Ca2+ transients versus control cardiomyocytes.  Based on these 

observations it would suggest that the increased expression of RUNX1 led to poorer 

contraction and impaired relaxation in the cardiomyocytes, which would indicate a 

detrimental rather than protective effect by RUNX1 meaning that the original point on 

similar protective features in cardiac muscle was disproved.  Given the knowledge that 
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RUNX1 is an activator of the phospholamban gene in injured skeletal muscle, it is feasible 

that RUNX1 may regulate Pln in cardiac muscle.  Pln is a key player in Ca2+ handling 

during EC coupling and an increased Pln would lead to the changes observed above which 

has been showed in Pln over-expressing mice.  It is however not clear from the data alone 

that this is the case and this would require the use of transgenic mice and measurements of 

Pln expression in the RUNX-overexpressing cells, importantly phosphorylated and 

unphosphorylated states which is essential for making the link with the Ca2+ alterations 

observed. 

6.2.5 Runx and hypertension/altered LV mass 

RUNX1 levels were also assessed in a separate experimental animal model of cardiac 

disease, in rat strains of genetic hypertension and in strains of altered LV mass.  In contrast 

to the results observed in MI, Runx1 was down-regulated in the diseased animals in the rat 

models.  Normotensive control WKY rats showed the highest levels of Runx1 expression 

in the whole LV where the WKY-congenic and SHRSP-congenic showed significantly 

reduced levels of Runx1 LV expression.  The functional significance of this has also yet to 

be investigated.  As with the MI model, a significant correlation was observed in with 

abundance of Runx1 and level of dysfunction (higher Runx1 in heart with greatest 

dysfunction) in this model. 

6.2.6 Differences in Runx expression between the different 
models 

By assessing how the behaviour of a single gene changes (in terms of its expression) in 

different cardiac diseases can provide a greater deal of information regarding the triggers 

for the gene of interest in CVD.  The assessment of Runx expression in not just a different 

animal model of CVD i.e. hypertensive rat (SHRSP) but also in specific congenic sub-

strains of this model to further dissect out the significance of Runx expression in CVD (in 

terms of a different phenotype) is highly advantageous and offers more insight into the 

behaviour of Runx in cardiac disease.  Neither of the Runx genes are located on 

chromosome 14 therefore the effects on Runx expression are likely to be related to the 

resulting phenotype rather than the manipulations to chromosome 14. 
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6.3 Future directions 

There are several directions for future work that have arisen from this work.  (i)  The first 

would be to further explore the functional relevance of altered Runx in the heart.  This is of 

crucial importance to achieve a more complete understanding of the potential clinical 

relevance of Runx in the context of heart disease.  The functional role of Runx in the heart 

could be addressed by further experimentation on RUNX over-expression in 

cardiomyocytes or by direct cardiac injection into the heart in vivo.  It would be important 

to induce over-expression to similar levels observed that endogenous RUNX was up-

regulated to within the disease model to allow for accurate comparisons.   

(ii)  Another route to further explore RUNX function in the heart would be through the use 

of a Runx-knockout model.  Transgenic animals with a cardiac specific knockout (global 

knockouts of Runx would be embryonically fatal) could be assessed for any functional 

alterations in response to MI.  This would involve inducing MI in these transgenic animals 

and assessing the effects on cardiac function as a result of this.  Based on the observations 

from this thesis the hypothesis is that Runx-ablation would lead to a reduced extent of 

dysfunction post-MI given the preliminary data indicating that RUNX1 over-expression in 

cardiomyocytes led to greater dysfunction.  The next stage from the functional 

investigation would be to investigate the mechanism of functional improvement.  The links 

with phospholamban have been proposed but a greater deal of work would be needed to 

fully elucidate this.  This could be investigated by assessing expression levels of 

phospholamban protein in its unphosphorylated and phosphorylated forms using specific 

antibodies sensitive to the two states in Western blots.  Based on the possible link with 

increased Runx1 leading to increased Pln gene expression and subsequent contractility 

impairment, it is hypothesised that an increase in Pln protein expression and a reduction in 

phosphorylated Pln would be observed in RUNX-overexpressing hearts which could 

contribute to the impairment in systolic function.  With knowledge on altered expression, 

functional role and mechanistic actions this would offer a more completed picture of the 

clinical relevance of Runx in cardiac disease.   

(iii)  The 1-wk animals which developed a severe MI phenotype and were possibly 

showing early signs of CHF have shown interesting results in the level of remodelling but 

also in the levels of Runx expression.  It is possible that Runx levels are greater in HF 

however this remains to be investigated fully.  If it were possible to produce more animals 
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with this phenotype or extend the MI period to a point where animals entered into CHF it 

could further assist in the links with Runx up-regulation.   

(iv)  The problem with contaminating cells in the infarcted heart (such as fibroblasts and 

inflammatory infiltrate) poses problems in identifying the relative contribution from the 

cardiomyocytes which is relevant for functional implications in these cells.  This could also 

be further assessed using rigorous separation techniques on the infarcted heart cells such as 

filtration or plating methods to allow gene expression measurements to be performed on 

pure populations of cardiomyocytes from the infarcted heart. 

(v)  There could also be future potential to assess Runx expression in more disease models 

such as alternative models of pressure-overload for example (e.g. transverse aortic 

constriction (TAC) models) and observe the comparisons with the pressure-overload 

models in this study.  Disease models of myocarditis and further work on valvular disease 

could also be investigated, all giving a fuller picture for triggers of Runx expression during 

heart disease.   

(vi)  Another avenue to take with this work would be to try and identify the specific stimuli 

which trigger RUNX over-expression using experiments designed to provide specific 

conditions that may be possible triggers for example: ex vivo preparations (to assess 

changes independent of neurohormonal influence present in vivo) for example use of a 

Langendorff-perfused heart subjected to various conditions present in MI including: 

hypoxia (95% N2/5% CO2 incubation ± sodium cyanide (NaCN)), oxygen radical 

production (hydrogen peroxide, H2O2), deprivation of energy sources (ATP, glucose), 

acidosis and osmotic stressors.  Furthermore a cultured papillary muscle preparation would 

allow insight into whether electrical stimulation of the heart influences RUNX1 expression 

as we can expose the muscle to pacing and non-pacing conditions.  Furthermore, we can 

use cultured papillary muscles to examine the effects of cell necrosis on RUNX1 

expression through a cryoinjury approach. 

6.4 Final conclusion 

Overall the work from this thesis has shown the value of using animal models in the ability 

to reproduce human heart disease and its many clinically relevant features for cardiac 

research, and has for the first time shown the relevance of the Runx genes in heart disease 

through use of such animal models.  The experimental data shows that in response to MI in 
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a mouse model there is an up-regulation of Runx genes in the heart located predominantly 

within and around the areas of injury that can extend into remote regions as the MI 

progresses.  In contrast to MI, in response to hypertension in rats and in genetically-altered 

sub-strains with altered LV mass there is a down-regulation of Runx1.  In both models the 

same observation was evident that Runx expression correlated positively with deterioration 

of function.  However, future work should aim to: (i) establish whether a direct link exists 

between Runx expression and level of dysfunction, and (ii) explore the functional and 

mechanistic roles of Runx in the heart.  Such work would enable us to determine the 

potential therapeutic value of the Runx family in heart disease.
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Appendix 

Derivation of the 2-∆∆∆∆∆∆∆∆Ct formula: 

The derivation for this equation has been published in the Applied Biosystems User 

Bulletin No. 2 (P/N 4303859) (Applied Biosytems, 1997) and can be described as follows: 

1. The exponential amplification of a PCR reaction can be described as: 

( )n
xn EXX +×= 10  

Xn Number of target molecules at cycle number n 
X0 Initial number of target molecules 
Ex Efficiency of the amplification 
n Number of cycles 

 

2. The Ct describes the cycle number at which the fluorescence reaches a fixed threshold, 

therefore (for target gene X and housekeeping gene H): 

( ) x
C

xT KEXX XT =+×= ,10  

XT Threshold number of target molecules 
CT,X Threshold cycle for target amplification 
Kx Constant 

 

( ) H
C

HT KEHH HT =+×= ,10  

Xn Threshold number of housekeeping molecules 
X0 Initial number of housekeeping molecules 
Ex Efficiency of housekeeping reaction 
n Threshold cycle for housekeeping amplification 
KH Constant 

 

3. To normalise to the housekeeping gene, the target gene (XT) is divided by the 

housekeeping gene (HT): 
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( )
( ) K

K

K

EH

EX

H

X

H

x
C

H

C
x

T

T

HT

XT

×=
+×
+×

=
,

,

1

1

0

0  

XN X0/R0 normalised amount of target 
∆CT CT,X – CT,R difference in threshold cycles for target and 

 

As the 2-∆∆Ct method assumes the same efficiency of the reaction between the target gene 

and the housekeeping gene, i.e. Ex = EH = E, thus: 

KE
H

X HTXT
CC =+× − ,,)1(

0

0      or   KEX TC
N =+× ∆)1(     or    TC

N EKX ∆−+×= )1(  

∆∆CT ∆CT,X – ∆CT,R 
 

The last step is to divide the XN for any sample Y by the calibrator CL (sample to which 

other samples are to be expressed relative to), i.e. 

T

CLT

YT

C

C

CLN

C
YN E

EKX

EKX ∆∆−
∆−

∆−

+=
+×=

+×=
)1(

)1(

)1(
,

,

,

,  

Since the efficiency is assumed to be close to 1, the final equation becomes 2-∆∆CT. 
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