
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Parle, John A. (2000) Phase domain transmission line modelling for 
EMTP-type studies with application to real-time digital simulation.  
 
PhD thesis 
 
 
 
 
http://theses.gla.ac.uk/3756/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/3756/


Phase Domain Transmission Line 
Modelling for EMTP-Type Studies with 

Application to Real-Time Digital 
Simulation 

by 

John A. Parte 

A Thesis submitted to the 
Department of Electronics & Electrical Engineering of 

The University of Glasgow , 
for the degree of Doctor of Philosophy 

January 2000 

© John A. Parte, 2000 



ABSTRACT 

Digital computer based simulation packages such as EMTP and EMTDC are 
extensively used for analysing the transient waveforms that arise as a result of abrupt 
changes in the otherwise steady-state operating conditions of the power network. In 
principal, the conclusions drawn from such analysis can be utilized to achieve effective 
system protection and insulation co-ordination to prevent equipment failures and 
unnecessary transmission line outages during these transient conditions. 
However, one of the most significant disadvantages of software based simulators such 
as these, arises as a consequence of their non-real-world time operation, i. e. the solution 
is obtained at a faster or slower rate than the dynamics of the phenomena under analysis 
dictate. The interfacing of external equipment to the simulator in these cases is therefore 
precluded. Since the control inputs necessary for the testing of physical control and 
protection equipment are dynamic in nature, meaningful testing of these devices 
requires the simulated waveforms to be input into the device in real-time. Simulation 
packages such as EMTP and EMTDC have therefore been of little use in these areas. 
Alternatively, analogue HVDC simulators and AC Transient Network Analyzers 
(TNAs) have been used in the past in this respect. However, due to their size, cost and 
time cycle required for a specific analysis, they are no longer in widespread use. 

Manufacturers, large utilities and research organisations have in the last decade adopted 
a new, more cost effective and flexible technology to replace the previous generation of 
analogue network analysers, namely real-time digital power system simulators with 
hardware-in-the-loop (HIL) capabilities. 
This research project is primarily concerned with the development of a new generation 
of power transmission lines for both non-real-time and real-time electromagnetic 
transient studies. The method proposed is entirely formulated in phase co-ordinates, 
avoiding the use of modal transformation matrices at every stage in the analysis. In 
comparison, the phase domain models presented thus far in the open literature have all 
incorporated the concept of modal decomposition in the initial frequency domain 
formulation of the problem. Only the time domain analysis is conducted in the phase 
domain. These models can therefore be regarded as a hybrid between the phase and 
modal methodologies. 
Algorithms are presented which allow accurate and efficient determination of the 
characteristic admittance matrix, Ye(w), and wave propagation matrix, H()), directly in 
phase co-ordinates. A Pade iteration scheme is used for evaluating the characteristic 
admittance matrix, derived by exploiting a relationship between the matrix sign 
function and the matrix square root. Pade techniques have also been used to 
approximate the matrix exponential in order to evaluate the wave propagation function. 
By evaluating Ye(w) and H((o) directly in, phase co-ordinates, any imbalances naturally 
present in the line will intrinsically be''täkeTL into account in these functions. Both 
methods have been extensively tested using. line configurations of different size and 
complexity and both algorithms are shown to be very robust, accurate and efficient in 
all cases. 

One of the main difficulties in formulating the analysis entirely in phase co-ordinates 
for multiconductor systems concerns the unwinding of the wave propagation matrix. 
This is addressed in this research by evaluating a matrix phase shift function in phase 
co-ordinates. Since the method inherently takes into account the coupled time delays of 

ii 



the line, the elements of H(w) can be successfully unwound, irrespective of the 
configuration of the line, e. g. single-circuit, multi-circuit or asymmetrical. 

The frequency-dependence of Y, ((o) and H(w), due to the presence of a resistive 
ground, are accurately taken into account by introducing numerical convolutions in the 
time domain between these impulse responses and the line end quantities. To increase 
the computational efficiency of the time domain simulation, Ye(w) and H(w) are 
approximated with rational functions using the method of Vector Fitting, thereby 
allowing a recursive formulation of the convolution integrals to be constructed. 
The phase domain model can be represented by a time-dependent vector of current 
sources in parallel with a constant admittance in the time domain, making it compatible 
with general electromagnetic transient programs. Time domain simulations are 
performed on a real-life transmission circuit and the results compared with actual field 
measurements to assess the accuracy of the proposed methodology. 
Finally, a real-time simulation environment for conducting electromagnetic studies has 
been developed on a commercially available simulator. The phase domain transmission 
line model has been successfully incorporated within this environment in addition to 
frequency-independent and frequency-dependent line models that utilise modal 
decomposition techniques. This represents the first time the phase domain methodology 
has been applied in the context of real-time digital simulation. 
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CHAPTER 1 

INTRODUCTION 

1.1 Foreword 
Power system networks are subjected to many forms of transient phenomena that arise 
as a result of abrupt changes to the otherwise steady-state operational condition of the 
network. Sudden changes in the voltage and current may arise as a result of a variety of 
disturbances, ranging from the deliberate operation of circuit-breakers for connecting 
and disconnecting various system components, to unforeseen events such as lightening 
discharges or the malfunctioning of system equipment [1-4]. 

The waveforms generated after a transient process can attain peak magnitudes after a 
very short time period, depending on the parameters of the system and the nature of the 
disturbance. The transient conditions arising from lightening discharges on or near a 
phase conductor typically have a duration of a few microseconds, while those 
associated with switching overvoltages, following line energization through circuit- 
breakers, typically have time periods of a few hundred microseconds [3,4]. The 
transient waveforms associated with these phenomena can produce damaging stresses 
on the system equipment, and they must therefore be limited to safe levels. 

In order to protect the power system equipment during abnormal operating conditions, 
devices such as surge arresters and protective relays are usually employed within the 
network to limit the duration of the transients associated with these conditions. As 
power systems become more complex and sophisticated, it is essential that the location 
and settings of these devices are well co-ordinated to provide effective system 
protection, while in no way interfering with the normal operation of the power system, 
e. g. during necessary switching operations. 

As transmission system voltage levels have increased, the limiting factor in insulation 
co-ordination is determined by system generated overvoltages [1,4]. Overvoltages 
arising from such events are directly proportional to the system voltage and their 
magnitudes increase as the system voltage increases. In particular, the overvoltages 
caused by the energization of transmission lines are particularly significant since, given 
the necessary conditions, overvoltage levels of over three times the phase to neutral 
voltage are possible [1-4]. In contrast, the power system voltage does not significantly 
affect the magnitude of lightening surges on power transmission lines [1]. 

The system insulation level must be sufficiently high in order not to endanger the 
reliability of the system, however, at the same time there are strong economic pressures 
for keeping it as low as possible. Thus, in order to optimise the system insulation levels 
and reduce the severity of system generated overvoltages, it is increasingly important to 
be able to predict system overvoltages at the planning stage [1-4]. 

In order to adequately study the performance of protective strategies in moderating 
transient conditions and the ability of the equipment to sustain the remaining transients, 
detailed representation of the power system components are required to accurately 
describe and predict the behaviour of the system during these periods. Transient 



simulations are therefore performed in order to examine these disturbed conditions and 
to evaluate what effects they will have on the system being studied. 

1.2 Power Transmission Line Modelling for Electromagnetic 
Transient Studies 
AC power transmission lines and underground cables constitute one of the most 
important components for the transmission and distribution of electrical energy in a 
power system. The accurate modelling of these power system components has been an 
area of constant interest ever since the first general program for calculating 
electromagnetic transients was introduced by Dommel [5,7] over thirty years ago. The 
detail with which the line is represented has increased considerably, from the initial 
lossless, frequency-independent transmission line [7] described by Dommel, to the 
sophisticated phase domain representations that have recently been presented [28-40]. 

The most widely used industrial computer programs available today for the calculation 
of transients in power systems, such as the EMTP [5] and EMTDC [6], are based on 
Dommel's algorithm. In these programs, the trapezoidal rule of integration is used to 
discretize the ordinary differential equations that describe the dynamic behaviour of 
lumped parameter elements. A complete network solution is then formulated from both 
the transmission line and the lumped parameter equations, with both sets of equations 
represented by simple equivalent impedance networks consisting of a current source in 
parallel with a constant admittance, i. e. a Norton equivalent [5,7,10]. The set of nodal 
equations can then be solved to obtain a solution vector of nodal voltages throughout 
the network, at every time step of the simulation. 

The principal properties influencing electromagnetic transients on power transmission 
lines are those of the wave transit time, wave attenuation, and characteristic impedance. 
These quantities can be determined from the four parameters that characterize a given 
line, namely the resistance, inductance, capacitance and conductance (which is usually 
negligible) [2,17,31]. For transmission systems with ground return, as is the general 
case, these basic properties may be very sensitive to variations in frequency [11-13]. 
The solution of the partial differential equations that describe the behaviour of the 
voltage and current along the line is therefore easier to construct when the variables are 
expressed as a function of frequency. 

However, despite the advantages of modelling transmission lines in the frequency 
domain, the solution for a complete power system, in which a large variety of 
components and conditions may be simulated, is more conveniently formulated directly 
in the time domain. For example, the incorporation of time dependent current and 
voltage sources, the opening and closing of circuit-breakers at specific times, as well as 
the effect of non-linearities due to surge arresters, magnetic saturation, corona and 
circuit-breaker arc, are more conveniently modelled in the time domain [1,3,17]. 
Furthermore, power electronics based devices, i. e. Flexible AC Transmission Systems 
(FACTS) and Custom Power technologies, which are increasingly being utilised in 
power networks, contain many time-dependent switching devices, e. g. Thyristors, 
IGBTs etc. that can be more efficiently analysed in the time domain [63]. Finally, if one 
considers performing real-time, hardware-in-the-loop dynamic simulations, then the 
power system model must obviously be constructed in the time domain. 

It follows therefore, that a recurring aspect in the development of electromagnetic 
transient modelling of power transmission lines has been that of accurately and 
efficiently incorporating the frequency-dependent characteristics of the line in a general 
time domain transient program [8,9,14-20,25-40]. 
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The original transmission line model developed in the EMTP assumed the transmission 
line to be lossless with the line parameters evaluated at a constant frequency (usually 
the power frequency) [7]. The transmission line in this case is characterized by a time 
delay and a characteristic impedance. The losses can be approximated by adding 
lumped resistances in the middle, and at both ends of the line [7]. 

In the general case, the transmission system cannot be assumed lossless if accurate 
results are required since the waves become distorted as they propagate along the line. 
The most widely applied methodology to take into account the distorting effects of the 
losses on the propagating characteristics of the line is through the use of impulse 
response functions, defined as the wave propagation function and the characteristic 
admittance, or alternatively the characteristic impedance. The transmission line model 
in these cases is then imbedded in the power network by means of convolutions 
between the impulse responses and the voltage and current quantities at each line end. 
The formulation of these models in general electromagnetic transient programs, such as 
the EMTP [5], occurs in much the same way as for lossless lines, in the sense'that they 
are interfaced to the power network by means of Norton equivalent representations. 
The main drawback of this approach concerns the practical evaluation of the 
convolution integrals. These integrals must be calculated at each time step of the 
simulation and as a consequence the resulting method is computational inefficient. This 
problem is compounded for power networks in which many lines are present. However, 
the computational efficiency of the travelling wave method can be greatly increased if 
the impulse responses of the line are approximated using rational functions in the 
frequency domain [16-17,25-28,30-31,39], z-domain [34-36], or piecewise linear 
functions in the time domain [19,29,37]. With the impulse responses approximated in 
this way, a recursive formulation of the convolution integrals can be constructed and 
significant savings in computational efficiency are thus obtained [18,19]. 

When the modelling of transmission lines is extended to multiconductor systems, the 
problem becomes significantly more complex due to the magnetic coupling that exists 
between the phase conductors. For an n conductor system, the equations governing the 
propagation of the voltage and current waves along the line form a coupled system 
involving complex matrix and vector quantities. 
The established approach for solving these coupled wave equations was proposed 
nearly forty years ago by Wedepohl [21] and Hedman [22]. Independently from each 
other they proposed using elegant numerical linear algebra techniques to transform the 
set of coupled partial differential wave equations into a set of uncoupled modal 
equations. At each frequency point of interest, the wave equation is diagonalized, using 
eigenvector analysis, into a set of n independent modes, where n is the number of phase 
conductors. The transformation matrix is, in general, frequency-dependent and therefore 
the diagonalization process must be conducted at each frequency point of interest to 
ensure the system is accurately diagonalized. The solution for the voltage and current 
for each independent mode can then be obtained with relative ease, in a manner similar 
to that for a single-phase system. The modal solution is then constructed in the phase 
domain using the transformation matrix of eigenvectors and its inverse [21]. 

Such was the impact of this methodology, that subsequent to it, almost every 
multiconductor transmission line model presented in the open literature for 
electromagnetic transient studies have incorporated some aspect of this technique in the 
modelling process [8,9,15-20,25-39]. 

While the complex transformation matrix is, in general, frequency-dependent, it is 
commonly assumed to be independent of frequency for many practical lines of interest. 
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This assumption has been justified on the grounds that the variation of the elements of 
the transformation matrix with frequency can be very small [16]. It has been judged to 
be sufficient in these cases to evaluate the transformation matrix at a single frequency, 
specified by the user. Neglecting the complex component, this transformation matrix is 
then used to decouple the system of equations over the frequency interval of interest 
(typically 10"2-106Hz for electromagnetic transient analysis). At frequency values other 
than the user specified frequency, the off-diagonal elements will not be zero, but are in 
general small compared to the diagonal and can be neglected [39] 

However, although the assumption of a real and constant transformation matrix can give 
acceptable results in the case of single-circuit overhead lines with a plane of symmetry, 
for multi-circuit or asymmetrical line configurations and cables, this assumption may 
result in significant inaccuracies [25,27,28]. The reason being that the transformation 
matrix is in general strongly dependent on frequency such that the contribution from the 
off-diagonal elements can no longer be assumed negligible in these cases. 
Furthermore, if significant geometric imbalances are present in the transmission system, 
i. e. unequal spacing between conductors, then the mutual coupling that exists between 
the phase conductors will not be well represented in these models. Since mutual 
coupling between phase conductors can impinge on the magnitude of overvoltages 
caused by transmission line energization [1], the geometric imbalances naturally present 
in the system must be accurately taken into account to reproduce these phenomena. 
In principle, the frequency-dependence of the transformation matrices can be taken into 
account in the time domain simulation through convolutions between the transformation 
matrices and the line end quantities. This approach has been applied in [25-26] for cable 
systems, in which the transformation matrices depend heavily on frequency. In a similar 
approach to that of [16,17], the transformation matrix is approximated with rational 
functions in the frequency domain so that a recursive formulation of the convolution 
integrals can be established. However, it has been observed that the eigenvectors of the 
transformation matrix can sometimes interchange between columns of the matrix when 
the diagonalization process is recalculated at a new frequency. The elements of the 
transformation matrix may therefore display a somewhat erratic behaviour, as functions 
of frequency. It is then very difficult to approximate these functions accurately with 
rational functions in the frequency domain [25-26]. Special diagonalization or 
`tracking' routines are therefore necessary to avoid the problem of eigenvector 
switchovers [34-35]. Also, while this methodology has been successfully applied to 
cable systems, in the case of overhead lines, it has been found that it may not always be 
possible to fit the elements of the transformation matrix using stable poles only 
[27,28,40]. 

A further problem that could arise in all methods employing modal decomposition at 
some stage in the analysis concerns the actual diagonalization process itself. It is tacitly 
assumed that the coupled equations governing the propagation of waves along the 
conductor can always be reduced to an uncoupled system. However, it was shown in 
(23,24] that in some instances this assumption does not hold, in which case the 
conventional modal theory breaks down. Since in reality this may only occur at a single 
frequency point (as noted in the discussion of [23]), the main difficulty may arise when 
the transformation is nearly singular for frequencies leading up to, and beyond the non- 
diagonalization frequency point. However, in such situations, a more generalized modal 
domain methodology may be employed involving a Jordan decomposition of the 
argument matrix [23,24]. 

An alternative approach that has seen considerable interest in recent years [28-40] is to 
represent the transmission line directly in the phase domain, essentially the natural co- 
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ordinates of the system. Since the rest of the network is formulated in the phase domain, 
this completely avoids the problem of using frequency-dependent transformation 
matrices in the solution process. The additional time domain convolutions required to 
incorporate the transformation matrices in the solution process are avoided making the 
phase domain approach slightly more computationally efficient [27,34]. Furthermore, 
any problems relating to the modal decomposition technique itself, such as non- 
diagonalization situations, are avoided, preserving the generality of the method. Also, 
since the analysis is conducted in the natural frame of reference of the system, any 
geometric imbalances present in the line will intrinsically be taken into account in the 
solution process. 

However, despite the interest that this methodology has received in recent times, the 
phase domain analysis of power transmission lines remains unsatisfactorily resolved. In 
all of the methods presented in the open literature thus far [28-40], the initial 
formulation of the problem in the frequency domain is still undertaken using the 
established method of modal decomposition to evaluate the transmission line' response 
functions. The phase domain analysis refers only to the solution of the equations in the 
time domain (see discussion in [28]). In essence these models can be considered as a 
hybrid of the modal and phase domain methods. , 
Thus, a complete phase domain transmission line model remains to be realized, and the 
development and application of such a model provides the focus of this research 
project. 

1.3 Real-Time Digital Power System Simulation 
Digital computer based simulation packages such as EMTP [5] and EMTDC [6] are 
widely used for analysing the overvoltages and overcurrents that arise as a result of 
abrupt changes in the otherwise steady-state operating conditions of the network, e. g. 
from switching operations or lightening discharges. In principle, the information 
obtained from such analysis can be utilized to achieve effective system protection and 
insulation co-ordination so that equipment failures and unnecessary transmission line 
outages are prevented during transient conditions. 

However, one of the most significant disadvantages of these software based simulators 
concerns the computational efficiency with which they operate. A transient disturbance 
in the network, which may only last for a period of milliseconds, may take the simulator 
many seconds or even minutes to perform the necessary computations and produce a 
solution for the given disturbance [48,49]. Since the simulator in this case does not 
operate in real-world time (i. e. the solution output is determined at either a slower or 
faster rate) external equipment cannot be interfaced directly to the simulator. Since the 
control inputs necessary for the testing of physical control and protection equipment are 
dynamic in nature, meaningful testing of these devices requires the simulated 
waveforms to be input into the device in real-time. Simulation packages such as EMTP 
[5] and EMTDC [6] have therefore been of little use in these areas [48,49]. 

In order to fulfill this aspect of dynamic simulation, the testing of physical control and 
protection equipment has instead been undertaken using special playback devices, or 
analogue simulators [48,49,53,58,59]. For the playback device, the results from an off- 
line electromagnetic transient simulation, or actual data obtained from Digital Fault 
Recorders (DFRs), are fed, in real-time, to the device under test. However, these 
devices are restricted to open-loop testing - there can be no dynamic interaction 
between the device under test and the simulator [48]. In addition, storage requirements 
can limit the length of the simulation that can be played back for a particular test [53]. 
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In order to conduct closed-loop testing of physical control and protection equipment, 
analogue HVDC simulators and AC Transient Network Analyzers (TNAs) have been 
widely used throughout the power system industry [48,49,53,58,59]. These simulators 
are essentially made up of scaled down power system components, with each 
component physically connected to the next in a similar manner to that of the real 
system. However, traditional analogue simulators can be very expensive to maintain 
and operate, and general accessibility is low since the time cycle for a particular study 
may occupy the analogue simulator for many weeks [48,49]. 

In the last decade, there has been a growing trend by manufacturers, large utilities and 
research organizations to adopt a new, more cost effective and flexible technology to 
replace the previous generation of analogue network analyzers - real-time digital power 
system simulators with hardware-in-the-loop (HIL) capabilities [43-52,54-62]. 

The term "real-time" as it relates in this context, requires that the digital computer 
simulation of the modelled power system is executed in real-world time (i. e. not faster 
or slower). Thus, these simulators can represent dynamic phenomena in the power 
system as they occur. This permits actual hardware to be mixed with computer models 
to replicate the total power network under investigation. In addition, the time cycle for 
performing such tests is reduced from weeks (for the case of analogue simulators) to 
days [48]. Furthermore, simulation results can be conveniently analysed as tabulated 
data or waveforms that can be displayed, printed, or saved for later analysis. 

The closed-loop operation of these simulators provides a very powerful tool for 
extensively evaluating and accurately testing new and existing equipment under normal 
and abnormal operating conditions to verify the equipment's performance and settings. 
This also enables the response of the power system to the operation, or miss-operation 
of the device under test to be analysed. With the increasing complexity of modern 
power systems, the effects and interactions of the various power system components on 
each other is increasingly important and real-time technology provides a convenient 
tool to analyze such problems [48,49,59]. 

1.4 Motivation Behind This Research 
This research is primarily concerned with the phase domain modelling of power 
transmission lines for both non-real-time and real-time electromagnetic transient 
studies. The modelling of transmission lines in the phase domain using conventional 
digital computers, i. e. non-real-time, has been an area of great interest in recent years 
[28-40]. Despite this however, there is to date no phase domain model available in the 
open literature in which the complete analysis is undertaken in phase co-ordinates. 
Thus far, the initial formulation of the problem in the frequency domain has involved 
evaluating impulse responses using the method of modal decomposition [28-40], a 
method presented over forty years ago [21,22]. As stated earlier, current phase domain 
models can therefore be regarded as a hybrid between the phase and modal 
methodologies. 

The very important aspect of unwinding the wave propagation matrix in the phase 
domain is still to be satisfactorily resolved. For asymmetrical and multi-circuit 
transmission line configurations, attempting to unwind the elements of the phase 
domain wave propagation matrix using modal domain type methods, as in current phase 
domain models, has not proved universally successful [28,30-33]. 

However, performing the analysis in the phase domain, which may be regarded as the 
natural frame of reference for the system, should provide inherent advantages over 
conventional modal domain approaches: - 
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1. Any geometric imbalances associated with the transmission line design, such as the 
spacing and configuration of the phase conductors, are intrinsically taken into 
account when the analysis is formulated in phase co-ordinates. 

2. Since the rest of the network is represented in the phase domain, performing the 
analysis in this frame of reference completely avoids the problem of having to 
include frequency-dependent transformation matrices in the time domain solution to 
exchange information between the modal and phase domains, and vice-versa. The 
number of time domain convolutions is therefore reduced for phase domain. models 
making the methodology slightly more computational efficient. 

3. Since modal transformations are not required at any point in the formulation of the 
problem, any difficulties that might arise concerning the non-diagonalization of the 
governing coupled wave equations (which would necessitate a more generalized 
modal approach using Jordan decompositions) can never arise, preserving the 
generality of the proposed method. 

4. With the use of modal transformations, a mathematical description of the 
transmission line is created which may prove difficult to relate to the actual 
electromagnetic transient phenomena. In contrast, conducting a similar analysis, but 
in the frame of reference of the phases should provide a closer resemblance to the 
actual electromagnetic transient phenomena under study. 

This research is therefore dedicated to developing a new overhead transmission line 
model for conducting electromagnetic transient simulations in which not only the 
frequency-dependent effects are accurately included, but also the transmission line 
imbalances. 

Concerning real-time applications, the cost effective, compact and flexible qualities 
associated with real-time digital power system simulators, as compared to traditional 
analogue simulators, will no doubt continue to see their adoption into manufacturing, 
utility and research organizations. The computational power of these simulators is 
increasingly expanding allowing more complex power networks and simulation 
scenarios to be investigated. Coupled with this, more accurate representations of the 
individual power system components can be realized. However, in order to make use of 
these expanded capabilities, the system models must be continually upgraded and 
improved upon. 
As a part of this drive for new and improved component models, this research project 
has focussed on the development of a new generation of transmission line models for 
performing general electromagnetic transient simulations. Unlike all previous line 
representations proposed for real-time digital simulation thus far, based on a modal 
domain methodology [43,44,46,47], the model presented in this thesis is formulated 
directly in the phase domain. 

It is proposed therefore to develop a real-time simulation environment in which the 
improved accuracy and generality afforded with the new phase domain representation 
of the line can be utilized, so as to provide a standard model for analysing 
electromagnetic transients in power transmission lines in real-time. 

1.5 Objectives and Purposes of the Present Work 
The objectives of the research carried in this thesis were as follows: 

" To construct both frequency-independent and frequency-dependent transmission 
line models, based on well-established methodologies, whose use has been 
widespread for performing electromagnetic transient studies, and to integrate these 
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models into a digital computer program. These models provide a comparable 
capability to what is available in existing industrial computer programs and provide 
a benchmark for assessing the accuracy of newly developed methods. 

" To develop a new transmission line model in which both the frequency and time 
domain analysis is undertaken entirely in phase co-ordinates, and which accurately 
takes into account all the frequency-dependent effects given in the available 
frequency domain data as well as any geometric imbalances naturally present in the 
transmission line. The development of such a model should provide improved levels 
of accuracy and generality over existing methods for performing electromagnetic 
transient simulations. 

" To develop accurate and efficient methods for evaluating the phase domain 
characteristic admittance and wave propagation functions in the frequency domain, 
completely avoiding the use of eigenvector transformation matrices in the process. 
The algorithms must be generally applicable and not restricted to certain 
transmission line topologies or number of phase conductors. As already stated, by 
evaluating these functions directly in the phase domain, any geometric imbalances 
naturally present in the line are intrinsically taken into account. This ensures a very 
high level of accuracy is achieved when evaluating these functions. 

" To develop a process whereby the phase domain wave propagation matrix, H(w), 
can be `unwinded', directly in phase co-ordinates, in such a way that accurate, 
rational function approximations can be made without requiring an excessive 
number of poles in the fitting process. By unwinding this function directly in the 
phase domain, the coupled travel times of the system are intrinsically taken into 

account in the process, ensuring the elements of H((o) are obtained as smooth 
functions of frequency. The method of Vector Fitting [41] is to be applied to obtain 
the low-order rational function approximations in the phase domain so that each 
element of a column of H(w) can be fitted with the same set of poles thereby 
increasing the efficiency of the final time domain algorithm by 2-fold [38] over 
element-by-element fitting. 

The phase domain transmission line model should be constructed in such a way that 
in can be interfaced directly into a general-purpose electromagnetic transient 
program. A digital program should then be developed to perform time domain 
electromagnetic transient studies, incorporating the new transmission line 
representation. 

" To assess the accuracy of the newly developed model by performing various 
electromagnetic transient simulations and comparing the results against those 
obtained using conventional transmission line representations utilizing modal 
domain decompositions and available field measurements to ensure model fidelity. 

" To develop an environment for performing accurate and reliable real-time 
electromagnetic transient simulations of practical transmission systems, 
incorporating the transmission line models implemented in this research. The 
efficiency and practical application of each line model for conducting real-time 
simulations should also be investigated. This will provide a means for accurately 
testing and developing new and existing power system components in an efficient 
manner. 

1.6 Publications 
The following publications were generated during the course of the present research: 
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1.6.1 Transaction-graded Papers 

" J. A. Parle and E. Acha: `Phase Domain Evaluation of Transmission Line Responses 
for Electromagnetic Transient Analysis Using Pade Approximation', Submitted to 
IEEE Transactions on Power Delivery, 2000. 

" J. A. Parle and E. Acha: `A Phase Domain Transmission Line Model for Real-Time 
Electromagnetic Transient Studies', Submitted to IEEE Transactions on Power 
Delivery, 2000. 

1.6.2 Conference Papers 

" J. A. Parle, E. Acha and C. R. Fuerte-Esquivel: ̀ Real-Time Digital Simulation of 
Electromagnetic Transient Phenomena in Power Transmission Lines', Proceedings 
of the International Conference on Advances in Power System Control, Operation 
and Management 1997 (APSCOM 99), Vol. 2, Hong Kong, November 11-14,1997, 
pp. 563-568. 

" J. A. Parle, E. Acha and C. R. Fuerte-Esquivel: `Real-Time Implementation of 
Transmission Line Models for Electromagnetic Transient Studies', Proceedings of 
the International Conference on Digital Power System Simulators 1999 (ICDS 99), 
Västeräs, Sweden, May 25-28,1999. 

" J. A. Parle, E. Acha and C. R. Fuerte-Esquivel: `Real-Time Simulation of 
Transmission Line Transients Using Vector Fitting', Proceedings of the Power 
Systems Computation Conference 1999 (PSCC 99), Vol. 2, Trondheim, Norway, 
June 28-July 2,1999, pp. 1033-1039. 

1.7 Contributions 
The main contributions of the research work are summarized below: 

" Algorithms are presented which allow accurate and efficient determination of both 
the characteristic admittance and wave propagation matrices directly in the phase 
domain using Pade approximation techniques. By conducting the analysis in this 
frame of reference, all the frequency-dependent effects associated with these 
functions, as well as any geometric imbalances in the line are intrinsically taken into 
account. The algorithms can be applied to single circuit, multi-circuit and 
asymmetrical line configurations, with no restriction on the number of phase 
conductors included. The algorithm for evaluating the characteristic admittance 
matrix is derived by exploiting a relationship between the matrix sign function and 
the matrix square root. The wave propagation matrix is evaluated directly in phase 
co-ordinates by applying a Pade approximation technique to the matrix exponential 
function. Computation of eigenvector transformation matrices is completely avoided 
in these methods. 

" The difficulty of `unwinding' the elements of the wave propagation matrix in the 
phase domain is overcome by applying a matrix phase shift function. Since the 
problem is formulated in phase co-ordinates, the coupled time delays of the system 
are intrinsically taken into account in the unwinding process. The elements of the 
phase domain wave propagation function can then be approximated with rational 
functions, with a relatively small number of poles used in the fitting process. The 
phase shift function is approximated in the time domain with scalar impulse 
functions. 
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" The equivalent circuit representation of the new phase domain transmission line 

model is compatible with general purpose electromagnetic transient programs and 
can be interfaced in a similar manner to existing models. 

"A digital computer program has been written to perform time domain 
electromagnetic transient simulations. The new phase domain model is incorporated 
within this program and test cases have been performed. The accuracy of the 
proposed method is further assessed by comparing the time domain results with 
actual field measurements [42]. 

A real-time simulation environment has been developed for performing real-time 
electromagnetic transient studies, using a commercially available real-time digital 
simulator. Conventional frequency-independent [7] and frequency-dependent 
[16,17] models utilizing modal decomposition have been incorporated within this 
simulation environment. The new phase domain model has been developed within 
the real-time simulation environment and the accuracy and efficiency of this 
approach is compared with both the frequency-independent and frequency- 
dependent line representations. 

1.8 Outline of the Thesis 
The thesis is organised into seven chapters as described below: 

Chapter 2 deals with the general formulation of two modal domain based 
transmission line models, which have been widely used for analysing 
electromagnetic transient problems. The models differ significantly in the degree of 
accuracy to which the line is represented. The first model assumes the parameters of 
the line are frequency-independent [7], while the second model takes into account 
the frequency-dependent characteristics of the parameters by approximating them 
with rational functions [16] using the method of Vector Fitting [41]. Time domain 
simulations are presented with the results compared against actual field 
measurements [42] and EMTP simulation results [5]. 

Chapter 3 presents the frequency domain formulation of a new transmission line 
model in which all the analysis is performed in the phase domain. Algorithms are 
presented which allow accurate and efficient determination of the characteristic 
admittance and wave propagation matrices directly in phase co-ordinates. There is 
no requirement to exchange information between the phase and modal domains 
when calculating these functions, since the latter is not used. A Pade iteration 
scheme is used for evaluating the characteristic admittance matrix, derived by 
exploiting a relationship between the matrix sign function and the matrix square 
root. Pade approximation techniques have also been used to approximate the matrix 
exponential in order to evaluate the wave propagation function. Both methods have 
been extensively tested using line configurations of different size and complexity. 

Chapter 4 describes the time domain formulation of the new phase domain 
transmission line model. The unwinding of the wave propagation matrix using a 
matrix phase shift function is discussed. The equivalent circuit representation in the 
time domain is compatible with general purpose electromagnetic transient 
programs, such as EMTP and EMTDC. 

" Chapter 5 presents the time domain simulations using the newly developed phase 
domain transmission line model. The accuracy and efficiency of the model is 
compared to the previous two transmission lines. The results obtained with this new 
model are compared against available field measurements [42] to assess the 
accuracy of the proposed methodology. 
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" Chapter 6 outlines the development of a real-time simulation environment for 
conducting electromagnetic transient simulations on a commercially available real- 
time simulator. The transmission line models presented in this thesis are 
implemented within this simulation environment and their suitability for performing 
real-time simulations is assessed. The results of a sequential energization of a real- 
life transmission circuit are presented and for the case of the phase domain 
transmission line model, compared against actual field measurements [42]. 

" Chapter 7 presents the conclusions and discusses areas that require further 
investigation and research effort. 
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CHAPTER 2 

MODAL DOMAIN POWER 
TRANSMISSION LINE MODELLING 

The accurate and efficient modelling of multiphase power transmission 
lines has been the subject of much interest in the development of 
electromagnetic transient programs, such as the EMTP for many 
decades. This chapter therefore provides a summary of the techniques 
proposed in the open literature for EMTP-type studies. A frequency- 
independent transmission line model is presented that represents the 
line as a pure delay and a characteristic impedance. A second, more 
detailed line model is also presented that takes into account the 
frequency domain variation of the line parameters by fitting them with 
low-order rational functions using the method of Vector Fitting. This 
enables a recursive formulation of the convolution integrals to be 
obtained, increasing the computational efficiency of the model. A 
sequential energization of a 345kV transmission system is performed 
to assess the relative accuracy of the frequency-independent and 
frequency-dependent models. Results are compared to those obtained 
using the EMTP and with available field measurements to assess the 
accuracy of the line models. 

2.1 Introduction 
The accurate and efficient representation of multiconductor power transmission lines 
has been the subject of much effort, even before the Electromagnetic Transients 
Program (EMTP) was introduced by Dommel in the 1960s [1,3]. The method of 
characteristics and the trapezoidal rule of integration are combined in this method to 
accurately simulate transients arising in power networks involving distributed as well as 
lumped parameter elements. The equations of both methods are represented by simple 
equivalent impedance networks comprising of a current source in parallel with a 
constant admittance, i. e. a Norton equivalent representation. This leads to the solution of 
a system of linear (nodal) equations at each time step of the simulation [1,3,4]. 

The initial line model presented in [3] represented the line as lossless, with the 
travelling waves propagating with velocities characteristic to the media in which they 
are travelling. The parameters of the line, namely the resistance, inductance, capacitance 
and conductance (which is usually negligible) [10] are assumed constant and evaluated 
at a user defined frequency. The line model is then represented as a time delay and a 
characteristic impedance. However, due to the presence of the ground, these line 
parameters may vary significantly with frequency and therefore this variation must be 
taken into account if accurate results are sought [5-13]. A comment to this end was 
made in Dommel's original paper [3]. 

General electromagnetic transient programs such as EMTP [1] and EMTDC [2] obtain 
the network solution in the time domain, since most aspects of transient operation in 
power systems are more conveniently formulated when the variables are expressed as 
functions of time, e. g. the operation of circuit-breakers [10], as stated in the 
introduction. However, the modelling of power transmission lines is usually made 
initially in the frequency domain in order to reflect the frequency-dependent 
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characteristics of the line. These transmission line responses are then incorporated in the 
time domain through numerical convolutions [5-10]. 

A direct evaluation of the numerical convolutions can be performed at each time step of 
the simulation, but the resulting computational efficiency of the method is poor [9-11]. 
However, if the line responses are approximated in the frequency domain with rational 
function approximations, or in the time domain with piecewise linear functions [12], 
then a recursive formulation of the convolution integrals can be constructed, 
significantly increasing the overall efficiency of the analysis [11]. 

For multiconductor transmission lines, the magnetic coupling that exists between phase 
conductors results in a system of coupled partial differential equations in time and 
space. In conventional EMTP [24] studies, this system of coupled equations is reduced 
to a set of uncoupled single-phase like equations using the method of modal 
decomposition [14-15]. Calculations related to travelling waves are performed for the 
decoupled modes and phase domain variables are obtained by inverse transformation. 

Although the transformation matrix is in general frequency-dependent, for improved 
efficiency it is common practice to use real and constant transformation matrices for 
performing the modal decomposition [9,18-20]. While a constant transformation matrix 
can obviously not provide perfect diagonalization over a wide frequency range, for 
single-circuit transmission line configurations the frequency-dependence of the 
transformation matrix is not significant [9]. The off-diagonal elements of the 
transformed transmission line responses may therefore be neglected, so that these 
matrices can essentially be assumed decoupled [39]. 

This chapter provides a summary of the main steps involved in power transmission line 
modelling for electromagnetic transient analysis. Both frequency-independent and 
frequency-dependent multiconductor transmission line models, based on well- 
established methodologies [3,9], are presented. In these models, the coupled equations 
that govern the behaviour of voltage and current waveforms along the line are 
decoupled into a set of independent modes using the method of modal decomposition 
[14,15]. The accuracy of both line models is assessed by performing a sequential 
energization of a real-life transmission system. The results are compared with those 
obtained using the EMTP and against available field measurements to assess modal 
accuracy [34]. 

2.2 Basic Transmission Line Theory 
The electromagnetic behaviour of a system of n parallel conductors in the frequency 
domain can be described by the following two matrix equations relating phase voltages, 
V(x, (o), to phase currents, I(x, (o), at a distance x along the line [1,6,9-10,18,22,24-26,31] 

- 
ay(x, _) 

= Z(w)1(x, Co) (2.1) 
äx 

- 
aI(x, Co) 

= Y(o)V(x, (0) (2.2) 
äx 

where Z(co) and Y(w) are the per unit length series impedance and shunt admittance 
matrices, respectively, which can be expressed as, 

Z(w) = R(co) + jcoL(w) (2.3) 

Y(co) = G(co) + jwC(w) (2.4) 

where the nxn matrices R(w), L(co), G(w) and C(w) are defined as the resistance, 
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inductance, conductance and capacitance, respectively. Both Z(c)) and Y(w) are 
complex nxn matrices. The vectors of voltage, V(x, o ), and currents, I(x, co), are 
complex quantities of dimension n. Differentiating both (2.1) and (2.2), with respect to 
x, and combining, yields the well known wave propagation equations in the frequency 
domain, 

aZV(x'w) 
= ax 2 

[Z(w)Y(w)]'(x, w) = i2(w)V(x, w) (2.5) 

äzI(x, (0) 
5xz = [Y(w)Z(co)}I(x, Co) = Yz (w)I(x, w) (2.6) 

2.2.1 Modal Decomposition 
The above system of equations represents the system in terms of coupled (matrix) phase 
quantities, due to the magnetic coupling that exists between the travelling waves 
propagating along the conductors of the transmission lines [10,31]. Therefore, while the 
general solution to (2.5) and (2.6) can be obtained with relative ease, the practical 
calculation of the solution for the voltage and current profiles along the line is very 
difficult, since matrix computations of the form, 

Y (o» = [Z(CO)Y() 2 (2.7) 
and 

e1(" (2.8) 

are required (the product Z(w)Y(w) being a full, complex nxn matrix). The accurate 
and efficient evaluation of (2.7) and (2.8) for calculating the phase domain characteristic 
admittance matrix, Y, ((o), and wave propagation matrix, H(w), for phase domain 
transmission line modelling is the subject of the next chapter. 
The established approach to the problem of solving the coupled wave equations of (2.5) 
and (2.6) for multicondutor lines was proposed over forty years ago. Wedepohl [14] and 
Redman [15] introduced elegant matrix algebra techniques to transfer the analysis from 
the coupled phase domain to the uncoupled modal domain. The resulting n independent 
single phase-like lines can then be solved directly in terms of modal parameters, in a 
similar manner to that of a single-phase system. The independent modal solutions are 
then recombined in the phase domain and the network solution is obtained in phase co- 
ordinates. 

A new, alternative approach has been developed in this thesis which does not require 
the use of matrix eigenvector/eigenvalue decompositions. The coupled wave equations 
describing the propagation of the voltage and current along the line are evaluated 
directly in the phase domain. The new method is developed in the proceeding chapters. 

The salient points of the method of modal decomposition are now described below: 

At each frequency point of interest, it is assumed that there exists a non-singular matrix 
of eigenvectors, Tv((o), that diagonalizes the matrix product 72 (w) in (2.5), as follows 
[14,15], 

T-' (co)y 2 (w)Tv (co) =y m2 (co) (2.9) 

where y'"= (w) is a diagonal matrix containing the eigenvalues of Z(w)Y(c)) (i. e. the 
squared modal propagation constants) along the diagonal. Since the matrices Z(w) and 
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Y(w) are both symmetric [14,15], the transformation matrix required to diagonalize the 

matrix product Y(w)Z(w) in (2.6) follows immediately, being given by, 

(2.10) TI-' (w)Y(w)Z(w)T, (w) =y m2 (Co) 

and the following relationship holds, 

Tý (uý)Ti (Co) =U (z. i 1) 

where U is defined as the nxn identity matrix. A new set of quantities can now be 
defined using the transformation matrices Ta((o) and TI (co) as follows, 

vm (Co) = T(co)V(o) (2.12) 

I (co) = 'Tý' (cO)I(w) (2.13) 

Thus, by applying the transformation matrices Tv((u) and TI (co), the reference system 
of the line is changed from phase co-ordinates to modal quantities (denoted by 

superscript m), with the advantage that all the travelling voltage and current waves are 
now uncoupled. Each mode has a distinctive pattern of propagation given by the modal 
propagation constant, 

7m (co) = a' (co) +jo, (co) (2.14) 

where am(w) is the modal attenuation factor and (3'(w) defines the phase velocity of 
each mode. Substituting (2.12) and (2.13) into the coupled wave equations of (2.5) and 
(2.6) respectively yields the following modal wave propagation equations, 

a2 
ax2 

' 0)) [T' (0)Z(w)Y((O)Tv (w)]V m (x, w) = Y'"2 (cw)Vm (x, w) (2.15) 

a2laz2'co) 
= 

[T, '(w)Y(w)Z(co)T1( ))]Im(x, w) = ym (w)Im(x, w) (2.16) 

Thus, to summarise, the original coupled system of equations, as defined by (2.5) and 
(2.6) have been reduced to a decoupled system, (2.15) and (2.16), using modal 
transformation matrices. Each independent mode can be solved in a similar manner to 
that for a single-phase system. The modal voltages and currents are then transformed 
back and forth from the modal domain to the phase domain, at each time step of the 

simulation, by making use of the relationships defined in (2.12) and (2.13). The network 
solution is subsequently obtained directly in phase co-ordinates. 

2.2.2 Frequency-Dependent Characteristics of T(w) 

As stated previously, the eigenvalue/eigenvector problem of (2.9) and (2.10) is solved at 
each discrete frequency point of interest [14,15]. In general, the modal transformation 
matrices will have complex elements that are functions of frequency [11,18-22]. 
However, the currently used transmission line models in transient programs such as the 
EMTP [1] and EMTDC [2] utilize modal decomposition assuming a real constant 
transformation matrix, To, calculated at a user defined frequency coo. By assuming a 
constant transformation matrix, a considerable increase in the computational efficiency 
of the time domain simulation is attained. 

This approach can be justified for many overhead lines of interest (in particular, 
horizontal line configurations with a plane of symmetry) because the frequency- 
dependence of the transformation matrix is weak. Therefore, at frequency values other 
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than wo the non-diagonal elements will not be zero, but are in general small compared to 
the diagonal and can be neglected [39]. 

If the transformation matrix is assumed constant, then the relationships defined in (2.12) 
and (2.13) can be transformed directly into the time domain to give, 

vm(t) = t�Iov(t) (2.17) 

im(t) = t-öi(t) (2.18) 

Therefore, only a series of multiplications are required to transform the solution back 
and forth between the modal and phase domains at each time step during the simulation, 
making this approach very computationally efficient. However, for multi-circuit lines, 
asymmetrical line configurations and cable systems, the frequency-dependence of the 
transformation matrix may be strong and should therefore be taken into account [18-32]. 

In principle, the frequency dependence of the transformation matrix can be included in 
the time domain simulation by introducing numerical convolutions, albeit with a 
decrease in the computational efficiency of the model. This method has been undertaken 
successfully for the simulation of electromagnetic transients in underground high 
voltage cable systems [18-19]. However, for overhead lines it may not always be 
possible to obtain an accurate rational function approximation of the elements of the 
transformation matrix using stable poles only [20,32]. 

An alternative approach, which is recommended in this thesis, is to formulate the line 
model directly in the phase domain, thereby avoiding the problem of frequency- 
dependent transformation matrices completely [21-32]. The development of this phase 
domain transmission line model is discussed in greater detail in the next chapter. 

2.2.2.1 Transposed Transmission Lines 
In the case of completely balanced lines, further simplifications can be made regarding 
the choice of the transformation matrix. For a transposed line, the system can be 
decoupled by means of real, constant matrices that are independent of the particular line 
under investigation [38]. Examples of these matrices are the Clark Transformation and 
Karrenbauer transformation, which is defined as, 

11 """ 1 

1 1-n """ 1 
TV = T, (2.19) 

11 """ 1-n 

where n is the number of phases. The Karrenbauer transformation has the advantage that 
it is not restricted to three-phase systems, but can be applied to any number of phases. 

2.3 Frequency-Independent Transmission Line Model 
If the losses are neglected (R=G=O), assuming the transmission system to be lossless, 
then the modal travelling wave equations, (2.15) and (2.16), can be transformed directly 
into the time domain to give, 

82 v(x, t) 
_ LC 

ö2 v(x, t) 
ax 0t2 

(2.20) 

ö2 i (X 
= CL - 2't) 2.21 
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where for convenience the subscript m is dropped. The solution of the above wave 
equations was first derived in the eighteenth century by d'Alembert and describes the 
solution as a sum of forward, fj (x-ut), and backward, f2(x+ut), travelling waves, moving 
with a velocity, u [1,3-4] 

i(x, t)= f, (x-ut)+ f2(x+ut) (2.22) 

v(x, t) =Zf, (x - ut) -Z f2 (x + ut) (2.23) 

The functions f (x-ut) and f2(x+ut) are defined completely from boundary and intial 
conditions. The parameters u and Z are defined as the velocity of propagation and surge 
impedance, respectively, 

u LC 
(2.24) 

z=C (2.25) 

Dommel [3] observed that the relation between the current and voltage at one end of the 
line (node 1) at a given time t is known from the past values of the corresponding 
quantities at the opposite end of the line (node 2) at tt units of time earlier, 

VI(t)+Z[-i1(t)]= V2(t-T)+ Z12(t-T) (2.26) 

and vice-versa, 
V2(t)-z[-12(t)1- Vß(t-t)+Zi1(t-'0 (2.27) 

where, for a line of length 1, the quantity T is termed the travel time and can be defined 
as the time taken for a wave to propagate from one end of the line to the other, 

1 

u 
Re-arranging (2.26) and (2.27) gives, 

(2.28) 

i, (t) =Iv, (t) + I, (t - t) (2.29) 

i2(t) = 
2v2(t)+I2(t-i) 

(2.30) 

where the current sources, Ij(t-T) and I2(t-ti) are completely defined from past history 
values of the line end voltages and currents, 

I, 
Zv2(t-i)-i2(t-T) 

(2.31) 

, 2(t-T) =-Zv, (t-T)-i, (t-t) (2.32) 

Figure 2.1 shows the corresponding equivalent impedance network, which describes the 
lossless line at its terminals. 
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i1(t)N 
O i2(t) 

Figure 2.1. Lossless line equivalent circuit in the time domain 

2.4 Frequency-dependent Transmission Line Model 
The transmission system cannot be assumed lossless if accurate results are needed, since 
the waves become distorted as they propagate along the line, due to the complex field 
phenomena in the ground and inside the transmission line conductors [39]. This results 
in the parameters of the line exhibiting a dependence on frequency. For example, the 
zero sequence resistance can increase by a factor of 103 as the frequency varies from 
60Hz to 1MHz [7,13]. 

The travelling wave method must therefore be modified to include these frequency- 
dependent characteristics of the line parameters. Indeed, the accurate and efficient 
modelling of multiphase transmission lines, taking into account this frequency- 
dependence, has been the subject of much effort in the EMTP development since its 
beginning [1,3,5-12]. The line model in these methods is embedded in the electrical 
network by means of convolutions between the line end quantities and impulse 
responses, which approximate the propagating characteristics of the line. In transient 
calculations, these models can be treated in much the same way as lossless lines, in the 
sense that they are interfaced to the electrical network by means of a constant resistance 
and a time-dependent current source. 

Budner [6] developed one of the earliest models for the frequency-dependent 
transmission line that could be introduced into general electromagnetic transient 
programs such as EMTP [1]. However, the time domain form of the weighting functions 
used in this model are made up of a series of peaks which tend to zero as time proceeds, 
but only after many travel times of the line have elapsed [7,9-10]. Evaluation of the 
convolution integrals, which is undertaken at each time step of the solution, therefore 
becomes very computationally expensive. 

Snelson [7] extended Bergeron's representation of the lossless, frequency-independent 
line model (as described in section 2.3), by defining a set of forward and backward 
travelling wave functions. The new set of weighting functions obtained using this 
approach attenuate more rapidly than those of [6], leading to a more efficient evaluation 
of the convolution integrals. However, the characteristic impedance of the line is 
approximated by its limiting value at high frequency. Snelson's analysis was further 
developed in [8], where again the characteristic impedance is approximated by a real 
constant, and the current sources are obtained from the weighted sum of the past history 
of the currents and voltages at both ends of the line. 

It was suggested in [9-10] that an equivalent network could represent the characteristic 
impedance of the line. The parameters of the network are chosen so that the frequency 
response of the approximating equivalent network, match closely the frequency 
response of the characteristic impedance of the line. This results in a simplification of 
one of the weighting functions and completely eliminates the need for a second. 
The direct numerical evaluation of the convolution integrals in [5-8] significantly 
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decreases the computational efficiency of these methods. A recursive formulation of the 
convolution integrals was therefore proposed in [11-12]. In [11], the time domain modal 
impulse responses were approximated with a sum of exponentials in order to formulate 
the recursive approach. In [12] the modal impulse responses are approximated using 
piecewise linear functions in the time domain. 

In [9-10], the characteristic impedance and weighting function are approximated in the 
frequency domain using rational functions. Written as a sum of partial fractions, this 
method has an additional benefit in that the frequency domain approximation of the line 
responses can be obtained directly in closed form in the time domain, without requiring 
numerical inverse Fourier Transforms. In the time domain, the approximations are 
obtained as a sum of exponentials, directly leading to a recursive formulation of the 
convolution integrals. A more detailed derivation of the line model presented in [7-8] is 
given below: 

The solution of the modal wave equations, (2.15) and (2.16), can be written directly in 
the frequency domain as [9,10,13], 

VI (to) = cosh[y(w)1]V2(Co) - Zc(03)sinh[y(w)1]I2(w) (2.33) 

I, (w)= 
Zcýw)sinn[Y(w)lýuz(w)-cosh[Y(ý)lýI2(w) 

(2.34) 

where the characteristic impedance, Z,. ((o), and wave propagation constant, y((0), are 
defined as, 

Zý(w) = 
Z« 

(2.35) 

7(w) = 4Z((O)Y(co) (2.36) 

A set of forward and backward travelling functions, to relate the currents and voltages 
in the time domain in a way which is analogous to Bergeron's interpretation of the 
simplified wave equations, are defined. The new variables can be expressed in the 
frequency domain as follows [9-10]: 

Fi (w) = Vi (0)) + Zeq (w) Iº (Co) (2.37) 

F2«0) = V2(w)+Zeq(0)I2(w) (2.38) 

and 

B, (o» = V, (w) - Zeq (0)) I1 (w) (2.39) 

B2 (Co) = V2 (w) - Zeq (Co) I2 (Co) (2.40) 

where the equivalent network Zeq(t)) is approximately equal to the characteristic 
impedance, Z, #o) of the line. Substituting the general solution of the wave equations in 
the frequency domain (2.33) and (2.34) into (2.39) and re-arranging leads to the 
following relationship, 

B1(w) = A(w)F, (Co) (2.41) 

and analogously at the far end of the line, 

B2 (w) = A(w)F2(6» (2.42) 
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where, in both (2.41) and (2.42) the weighting function A((o) (or impulse response 
function) is defined by, 

A(w) =e 
cosh[y(w)1]+ sinh[y(w)l] 

(2.43 

Transferring both (2.41) and (2.42) into the time domain yields the following 
convolution integrals, 

00 
b, (t) =f f2 (t - u) a(u)du (2.44) 

T 

co 
b2(t) = 

ff, (t -u)a(u)du (2.45) 

1 
The lower limit in the integrals of (2.44) and (2.45) is equal toi since this represents the 
travelling time (delay) of the fastest frequency component of the injected impulse [10]. 
The values of the functions b1(t) and b2(t) at a time t, are completely defined by the past 
history values of the functions f2 and f. 

b, (t) 
i2(t) 

Zeq 

V1(t) Ze9 
II 

Ze9 V2(t) 

b2(t) 

Figure 2.2. Equivalent circuit in the time domain for frequency-dependent model 

Transferring (2.37-2.40) into the time domain, the corresponding equivalent circuit is 
shown in Figure 2.2, with bi(t) and b2(t) computed using (2.44) and (2.45), respectively. 
This has the same form as that for the lossless line model (Figure 2.1) and can be 
incorporated directly into general purpose electromagnetic transient programs in the 
time domain, such as EMTP [1]. 

2.5 Synthesis of the Transmission Line Responses 
The inclusion of the time domain impulses, through the convolution integrals of (2.44) 
and (2.45) can significantly decrease the computational efficiency of frequency- 
dependent models, if at each time step, direct numerical evaluation of (2.44) and (2.45) 
is undertaken. Therefore, as mentioned previously, the concept of recursive 
convolutions [11-12] was proposed to increase the efficiency of the travelling wave 
method. In Marti's [9-10] approach, the transmission line responses are approximated 
with rational functions in the frequency domain. Expansion of the rational functions into 
a sum of partial fractions allows a closed form equivalent approximation to be obtained 
in the time domain. Each partial fraction block in the frequency domain is directly 
obtained as a weighted exponential in the time domain. In this form, a recursive 
formulation of the convolution integrals can be made. The process of evaluating (2.44) 
and (2.45) in a recursive manner is discussed in great detail in [9,10]. 

In this thesis, the method of Vector Fitting [33] has been used to obtain the rational 
function approximations of the transmission line responses. 
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2.5.1 Vector Fitting 
Vector Fitting [33] can be used to calculate a rational function approximation of a given 
frequency domain response. The method can be used to approximate both scalar and 
vector functions. In the latter case, all the elements of the vector will be fitted using the 
same set of poles, leading to an increase in efficiency when evaluating the time domain 
convolutions [33]. 

Vector Fitting has been found to be extremely useful for the modelling of frequency- 
dependent effects in power systems, e. g. for transformer modelling, network equivalents 
and transmission line modelling. One of the advantages of Vector Fitting is that it is 
possible to obtain a high-order approximation for data over a wide frequency range, 
without suffering from numerical instability problems [33]. Methods that rely on fitting 
a ratio of two polynomials to the given data are usually limited to low order 
approximations, particularly when the fitting is performed over a wide frequency range, 
due to ill-conditioning [33]. A general outline of the theory is presented below: 
For a given frequency response, F(s), Vector Fitting approximates the response with 
rational functions, expressed in the form of a sum of partial fractions, 

N 

F(s) =E 
a' +d+ sh (2.46) 

j=t s- aj 

where the residues, c,, and poles, a;, are real or complex conjugated quantities. The 
optional terms d and h are both real. Determination of the unknown coefficients (c;, a;, d 
and h) in (2.46) is accomplished in a two stage process and involves obtaining a least 
squares solution of two overdetermined sets of linear equations. 

2.5.2 Pole Identification 

The unknown set of poles, a;, in (2.46) is replaced with a set of starting poles, a,, which 
are logarithmically distributed in the frequency range of interest. In addition, the 
frequency response, F(s), is multiplied with an unknown function rl(s). The unknown 
function is itself approximated by a rational function, yielding the following expanded 
problem, 

N C, 

il(s)F(s) z. +d+ sh 
, _, s-ä, 
N (2.47) 

Il(s) E a'_ 
+1 

f=, s-a, 

Multiplying the second row in (2.47) with F(s) and re-arranging gives rise to the 
following relation, 

Z -' +d+ sh E"+1 F(s) (2.48) 
, =i s-C! i , al s- LT; ); e(, 

(2.48) can be expressed in a more convenient form as, 

(11F)fr (S) = lfi, (s)F(s) (2.49) 

On re-arranging (2.48), over the full frequency range of interest, the following set of 
overdetermined linear equations can be obtained, 

Ax= b (2.50) 
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where the unknown terms are contained in the solution vector x. (2.50) can be solved as 
a least squares problem using Singular Value Decomposition (SVD) techniques [35-37]. 

If the partial fraction form of (r1F)ft(s) and rl, (s) in (2.48/49) is re-written in a 
factorized form of the original rational functions then a rational function approximation 
for F(s) can be deduced immediately from (2.49), 

N+l 
fl (S-Z; ) 

F(S) h 'N (2.51) 
ýf" (S) fl (S- 

i=l 

Thus, an improved set of poles for fitting the original frequency response, F(s), is 

obtained by calculating the zeros of ;, (s). The calculation of the zeros in (2.51) from 
the partial fraction representations of (rlF)f, (s) and rv;, (s) in (2.48/49) can be undertaken 
as described in [33]. 

2.5.3 Residue Identification 
The residues for F(s) can be obtained directly from (2.51). However, for improved 
accuracy it is recommended [33] to solve the original overdetermined set of linear 
equations in (2.46) with the zeros of il(s) used as new poles, a;, for F(s). In this case, the 
solution vector x contains the unknown terms, c;, d and h. 

If necessary, the overall process can be repeated in an iterative procedure with the poles 
obtained at each iteration used as the starting poles in the next iterative cycle. 

2.6 Fitting Results 
The method of Vector Fitting [33], as described in the previous section, is used to 
approximate the frequency domain responses of the characteristic impedance and 
weighting functions. In order to illustrate the accuracy of the method, results are 
presented for the 345kV transposed single circuit line shown in Figure 2.3. The line is 
398km in length. The physical data for the transmission line is described in Appendix 
III [13,34]. 

12.5 m 

9.79 

13.1E 

Figure 2.3.345kV single-circuit transmission line 

The fitting for both Z, ((o) and A(w) is undertaken in the frequency interval 10-2Hz - 
106Hz. In all cases presented, real starting poles, logarithmically distributed in the given 
frequency range of interest are used. 

2.6.1 Synthesis of the Characteristic Impedance Zc(w) 
Figure 2.4 shows the real and imaginary parts of the positive sequence characteristic 
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impedance function for two different fitting orders. Table 2.1 summarises the details of 
the two fits. It can be seen from Figure 2.4 that both approximations are very accurate, 
despite the reduced number of poles used in Fit 2. 

Figure 2.5 shows the real and imaginary parts corresponding to the zero sequence 
characteristic impedance function using the same fitting orders as summarised in Table 
2.1. Again, a high degree of accuracy is observed for both fits. 

Table 2.1 Summary of Approximation Orders for Zc 
, 
(w) and P(co) 

FIT Z(c) o ZERO SE Q. Z(co) POS. SE Q. 

Fit 1 12 12 
Fit 2 8 2 

P(o)) ZERO SE Q. P(o) POS. SE Q. 

Fit 1 12 12 
Fit 2 6 6 77ý1 

2.6.2 Synthesis of the Weighting Function A(w) 
While the weighting function in (2.43) is less oscillatory than the corresponding 
functions used in [6,7], the high frequency region is still very oscillatory (this is 
illustrated in more detail in the next chapter). Subsequently, it is very difficult to fit this 
function directly in the frequency domain using a low-order rational function 
approximation. However, it was noted in [9-10] that the time domain form of the 
weighting function, a(t), can be expressed as, 

a(t) = p(t -, r) (2.52) 

where p(t) has the same form as a(t), but is delayed by ti (the travel time of the fastest 
frequency component) units of time. In the frequency domain this can be written as 

A((o) = P(co)e-icolt (2.53) 

The function P(w) is then given by, 

P(o))'= A(to)e1°''c (2.54) 

The real and imaginary parts of the function P(c)) are much smoother than those of the 
original weighting function A((o), in the frequency range of interest, and can therefore 
be approximated without using excessively large order rational function 
approximations. 

Figure 2.6 shows the real and imaginary parts of the positive sequence `shifted 
weighting function', P(co), for two different fitting orders. A summary of the order of 
the approximation functions can be seen in Table 2.1. Again, there is a good agreement 
with the rational function approximations and the original function, although a slight 
decrease in the accuracy of both fits can be observed in the higher frequency range (103_ 
106) for the imaginary part of P(a). 

Figure 2.7 shows the real and imaginary 
shifted weighting function using the same 
Both approximations agree very well with 
entire frequency range considered. 

parts corresponding to the zero sequence 
fitting orders as summarised in Table 2.1. 
the original function in this case, over the 

It is interesting to note that complex poles are usually obtained at high frequencies near 
the `toe portion' of the response, appearing better suited to approximating this region of 
the response than with real poles only. 
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2.7 Open/Short Circuit Tests in the Frequency Domain 
In order to further analyse the accuracy of the rational function approximations of the 
characteristic impedance and weighting function, open and short circuit tests are 
performed in the frequency domain. The open and short circuit terminations represent 
extreme loading conditions in a transmission system and provide a very effective way of 
assessing the accuracy of the rational function approximations in simulating the line 
responses. [9-10,18-19,23-24,31]. 

Open and short circuit responses are calculated for the single-circuit overhead 
transmission line shown previously in Figure 2.3 and described in Appendix III, for a 
line length of 398km. 

2.7.1 Open Circuit Response 
From the general solution of the line equations in the frequency domain (2.33) and 
(2.34), if the receiving end of the line is open, the receiving end voltage, V2, is given by, 

VZ (w_ 
2A(o) Vo 

(2.55) )1+ (A(w))2 

Equation (2.55) represents the open circuit response of the transmission system at a 
given frequency co. A constant 1 p. u. magnitude voltage source, Vo, is connected at the 
sending end of the line. From (2.55) the open circuited response of the line using the 
exact values of the modal characteristic impedance and weighting function can be 
compared with the responses obtained when these functions are approximated with 
rational functions using the method of Vector Fitting. 

Figure 2.8 shows the magnitude of the open circuit response for the positive sequence. 
The order of the rational function approximations for Zc((o) and A((O) in (2.55) 
correspond to those of Fit 1 for the positive sequence parameters, summarized earlier in 
Table 2.1. It can be seen from Figure 2.8 that the approximation is in general in good 
agreement with the exact value of (2.55). 

The magnitude of the open circuit response for the zero sequence is shown in Figure 
2.9. Again, the order of the rational function approximations for Zc(w) and A(w) in 
(2.55) correspond to those of Fit 1 for the zero sequence parameters. From Figure 2.9 it 
can be seen that the approximated value of the receiving end voltage compares 
extremely well with the exact values over the entire frequency range under 
consideration. 

2.7.2 Short Circuit Response 
If the receiving end of the line is short circuited (V2=0), then the current at the receiving 
end of the line, I2, is given by, 

_ 
2V0 A(w) 

IZ (ý) (2.56) 
Zý, (1-AZ (w) 

Equation (2.56) represents the short cicuit response of the transmission system at a 
given frequency co. The voltage source, Vo, as with the rational function approximations 
of, Z, ((o) and A(w), are the same as those used for the open circuit case presented 
above. 
Figure 2.8 also shows the magnitude of the short circuit currents for the positive 
sequence component. As for the open circuit case, the approximation matches the exact 
function quite well over the frequency range of interest. The magnitude of the short 
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circuit currents for the zero sequence component can be seen in Figure 2.9. Again, the 
approximation is seen to compare very well with the exact function. 

2.8 Time Domain Simulations 
The theory related to the modelling of frequency-independent and frequency-dependent 
transmission lines using model decomposition has been discussed so far in this chapter. 
Both models presented are based on those which have been widely used for analysing 
electromagnetic transient problems in power networks, having been incorporated in 
general transient programs such as EMTP [1] and EMTDC [2]. The frequency- 
independent line model represents the line as a pure delay and a characteristic 
impedance. The model assumes that the parameters of the transmission line are 
frequency-independent. However, in general, the series resistance and inductance are 
dependent upon frequency and this must be taken into account in the time domain 
simulation in order to avoid a significant loss of accuracy. This is accomplished in the 
second line model by approximating the frequency domain variation in the transmission 
line parameters with low-order rational functions using the method of Vector Fitting 
[33]. The accuracy of these approximations has been confirmed by performing open and 
short circuit tests in the frequency domain and comparing the results with the exact 
functions. 

To further validate the two line models and to demonstrate the relative accuracy of both 
transmission line representations, time domain simulations under transient conditions 
have been performed. The test cases and corresponding results, including a comparison 
with field measurements, are discussed in the following sections. 

2.8.1 Time Domain Implementation 
Both transmission line models discussed in this chapter have been implemented in a 
computer program for the purpose of testing the models in time domain electromagnetic 
transient simulations. The FORTRAN programming language was adopted since it 
provides a convenient means to export the transmission line models for execution within 
the Applied Dynamics International (ADI) real-time simulation environment. The 
development of these models for real-time simulations is discussed in chapter six. 

The developed program allows the line models to be embedded in a simulated power 
network in which the elements are represented as current sources in parallel with a 
conductance, in accordance with the approach in the EMTP [1]. The line models are 
introduced into this network model using their associated equivalent circuits, as 
discussed earlier in sections 2.3 and 2.4 (see Figures 2.1 and 2.2). 

2.8.2 Sequential Energization Test 
In the following section the calculated results of a sequential energization of the 345kV 
Jaguara-Taquaril power transmission system in the State of Minas Gerais, Brazil are 
presented. The transmission system is illustrated in Figure 2.10. The single-circuit 
transmission line is 398km in length and is assumed to be transposed. The 
transformation from phase to modal components and vice-versa is undertaken using the 
Karrenbauer transformation matrix (2.19). Details of the transmission system can be 
found in Appendix III [13,34]. 

The sequential energization is performed for both the frequency-independent and 
frequency-dependent transmission line models. The line parameters for the frequency- 
independent model are calculated at 60Hz. Table 2.2 provides a summary of the 60Hz 
data used. The contacts of the circuit breakers are closed according to the sequence 
given in Table 2.3. The simulations were conducted initially with the frequency- 
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independent line model and then subsequently repeated using the frequency-dependent 
transmission line model. A time step of 34µsec was used for both line models in the 
time domain simulation. 

anno 20052 

Figure 2.10. Jaguara-Taquaril 345kV transmission system 

Table 2.2 Line parameters calculated at 60Hz. 

PARAMETER ZERO SE Q. POS. SE Q. 

R 0.32183 S2/km 0.03419 O/km 
X 1.26693 S2/km 0.37478 S2/km 
C 0.008 F/km 0.0118 F/km 

Table 2.3 Circuit breaker switching data 
PHASE AUX. CONTACTS MAIN CONTACTS 

a 8.50 ms 15.98 ms 
b 7.14 ms 14.28 ms 
c 8.16 ms 14.96 ms 

Figures 2.11,2.12 and 2.13 show the simulated transient voltages for phase a, b and c 
respectively, obtained at the far end of the line due to the sequential energization of the 
Jaguara-Taquaril transmission system, as outlined above. The corresponding results for 
the frequency-dependent transmission line model are shown in Figures 2.14,2.15 and 
2.16, respectively. The order of the rational function approximations for the modal 
characteristic impedance and weighting functions correspond to those of Fit 1, as 
described in Table 2.1. The results from both models are superimposed upon those 
obtained using the frequency-independent and dependent transmission line 
representations in the EMTP [1]. 

Both sets of results compare well with those obtained using the EMTP for all phases, 
confirming the accuracy of the line models implemented in this chapter. The attenuation 
of all three phases, due to the inclusion of the frequency-dependent effects of the line 
parameters, can clearly be seen from a comparison of Figures 2.11-13 and 2.14-16. The 
peak voltages for all three phases of the frequency-independent model are higher than 
those of the corresponding frequency-dependent model. It can also be seen that there is, 
in general, a magnification of the higher harmonics contained within the voltage 
waveforms using the frequency-independent model. 

2.8.3 Comparison with Field Measurements 
In order to further assess the accuracy of the above results, a comparison with the actual 
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field recordings of the sequential energization of the Jaguara-Taquaril transmission 
system, as described in [34], can be made. 
Figure 2.17 (top) shows the receiving end voltages for all three phases, obtained using 
the frequency-dependent model. The bottom graph corresponds to the results obtained 
from the field measurements, superimposed with those calculated using an 
electromagnetic transients program [13]. 
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Figure 2.17. (Top) Energization results for frequency-dependent line model (Bottom) 

Actual field measurements (solid line) and EMTP results (dotted line) 

It can be seen from Figure 2.17 that there is, in general, a good agreement with the 
results obtained from the frequency-dependent transmission line model and the field 
measurements. The measured peak voltages after energization show a greater 
attenuation and an approximate Ims delay than the voltages obtained with the 
frequency-dependent model. The differences could be due a variety of sources, such as 
the assumption of constant earth conductivity, assumption of a perfectly transposed line, 
losses in the reactor and generator-transformer source and inaccuracies in the actual 
field measurements. 

2.9 Conclusions 
This chapter has focused on the modelling of multiconductor transmission lines for 
electromagnetic transient studies using modal decomposition methods. Wedepohl [14] 
and Hedman [15] first applied numerical linear algebra techniques to the analysis of 
multiconductor transmission lines over forty years ago. The method transforms the 
governing wave equations in the coupled phase domain to the uncoupled modal domain. 
Each independent mode is then solved in a similar manner to that of a single-phase 
system. The solution is then back transformed from modal co-ordinates to the phase 

36 



domain where the overall network solution is obtained. The transformation between 
modal and phase quantities is performed at each time step of the simulation. 
Two transmission line models, which differ significantly in model complexity, are 
described and implemented. The first model simplifies the line somewhat by assuming 
the parameters of the transmission line are constant and represents the line by a time 
delay and a characteristic impedance. The method is based on a travelling wave 
approach. However, the presence of an imperfect ground return path for the travelling 
waves and the skin effect in the conductors result in the line parameters displaying a 
strong dependence with frequency. Therefore, models which assume constant 
parameters cannot adequately simulate the response of the line over the wide range of 
frequencies that are present in the transient voltages and currents. Thus, in order to 
avoid a significant loss of accuracy, the frequency-dependent characteristics of the line 
parameters must be taken into account. 

This is accomplished in the second model by approximating the characteristic 
impedance, Z 

. 
(w), and weighting function, A(w) with partial fraction approximations. 

By fitting the transmission line responses in this way, a closed form approximation is 
obtained directly in the time domain, circumventing the need for numerical inverse 
Fourier Transforms. The rational function approximations are represented in the time 
domain by a sum of exponentials. In this form, a recursive formulation of the 
convolution integrals can be directly performed, significantly increasing the overall 
efficiency of the algorithm. 

The method of Vector fitting has been applied to approximate the transmission line 
responses with rational functions. Unlike conventional Marti-type fitting, which is 
restricted to negative, real poles, Vector Fitting allows both real and complex 
conjugated poles to be used in the fitting process. This has been found to be particularly 
advantageous in obtaining accurate low order approximations of the weighting function. 
The complex poles are well suited to fitting the `toe portion' of the weighting, or 
impulse response function. 

Open and short circuit tests have been performed in the frequency domain to confirm 
the accuracy of the rational function approximations. The time domain energization of 
a 345kV test transmission system has been performed to assess the validity and 
accuracy of the two line models. The results from both models are compared with those 
obtained from the EMTP and are shown to be in good agreement. 
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CHAPTER 3 

PHASE DOMAIN TRANSMISSION LINE 
MODELLING - FREQUENCY DOMAIN 

FORMULATION 

The following chapter introduces a model for overhead power 
transmission lines in which the analysis is performed entirely in phase 
co-ordinates. This differs from the approach adopted in the phase 
domain models presented in the open literature, in which the initial 
evaluation of the line responses in the frequency domain is performed 
using established modal decomposition techniques. The phase 
domain analysis in these models Is restricted to the final time domain 
simulations. These models can in effect be considered as a hybrid of 
the modal and phase domain methods. Algorithms are presented 
which allow accurate and efficient determination of both the phase 
domain characteristic admittance and wave propagation matrices for 
physically realizable transmission line configurations over the 
frequency range considered for electromagnetic transient studies. The 
algorithm for evaluating the characteristic admittance matrix is derived 
by exploiting a relationship between the matrix sign function and the 
matrix square root. The wave propagation matrix is evaluated directly 
in phase co-ordinates by applying a Pade approximation technique to 
the matrix exponential function. The properties of both algorithms are 
thoroughly analysed, frequently making use of matrix decomposition 
techniques to highlight specific algorithm characteristics. However, it 
should be emphasised that explicit computation of eigenvalues or 
eigenvectors is not required when applying these methods. Results 
are presented for single, double and highly asymmetrical transmission 
line configurations to highlight the accuracy, efficiency and 
robustness of the proposed phase domain methods. 

3.1 Introduction 
Accurate simulation of electromagnetic transients in power systems requires the 
frequency-dependent effects of transmission lines to be taken into account [1-23]. The 
currently used frequency-dependent modal domain approaches, as discussed in chapter 
two, have long been used for this type of analysis [13-23]. In these methods, the 
numerical calculations are conducted in the modal domain with the solution 
transformed into the phase domain by means of a real and constant transformation 
matrix. Under this assumption, these algorithms attain a high level of computational 
efficiency. However, though these models provide a very dependable way of analysing 
many overhead lines of interest, the solution accuracy can deteriorate substantially 
when modelling, for example, multi-circuit overhead lines, strongly asymmetrical 
configurations and underground cable systems [1-12,21-22]. In these cases, the 
transformation matrix may depend strongly on frequency and therefore the assumption 
of a constant transformation matrix is no longer valid. 

In principle, this problem can be overcome by introducing a convolution for the 
transformation matrix in the time domain, albeit with a reduction in the overall 
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efficiency of the algorithm. This method was applied successfully to underground cable 
systems in [21-22]. One of the difficulties with this approach is that the elements of the 
transformation matrix, in general, are not obtained as smooth functions of frequency. 
This is due to eigenvector switchovers taking place in the diagonalization process at a 
new frequency point, causing abrupt changes to be observed in the calculated elements. 
Therefore, `tracking' [21-22] or special diagonalization routines [3-4,21-22] are 
required so that the elements of the transformation matrix can be obtained as smooth 
functions of frequency. It has also been shown that, unlike cable systems, for overhead 
lines it may not always be possible to obtain an accurate rational function 
approximation for the elements of the transformation matrix using stable poles only 
[12-13]. 

An alternative approach, which has seen considerable interest in recent years, is to 
model the transmission line system directly in the phase domain [1-12]. This frame of 
reference offers the most natural co-ordinates for modelling the transmission line, since 
the rest of the network is also represented in phase quantities. As there is no 
requirement to transfer the transmission line solution between modal and phase 
domains, the problem of including frequency-dependent transformation matrices is 
completely avoided. Also, since the number of convolutions to be evaluated in the 
solution is reduced, the method is more computationally efficient than full frequency- 
dependent modal decomposition methods [8,13]. 

However, despite the recent attention phase domain transmission line modelling has 
received, the situation remains somewhat unsatisfactorily resolved. The phase domain 
method implies that evaluation of the transmission line responses does not require the 
calculation of eigenvalues and eigenvectors at any stage in the analysis, as in modal 
decomposition techniques. However, in all of the models presented thus far, the phase 
domain analysis refers only to the solution of the equations in the time domain 
simulation. In the formulation of the transmission line equations in the frequency 
domain the transmission line responses are still evaluated using established 
eigenvector/eigenvalue based methods [24-25] before being transformed into phase co- 
ordinates using frequency-dependent transformation matrices. In essence these models 
can be considered as a hybrid of the modal and phase domain based methods. 

A further limitation concerns the unwinding of the wave propagation matrix, H(w), in 
the phase domain. The function can be thought of as being composed of modal 
components which are, in general, associated with different time delays [12]. However, 
for many practical overhead lines of interest, the modal time delays are very similar, 
which makes it possible to unwind the elements of H((o) using a common scalar phase 
shift function, corresponding to the fastest mode [1,3,7,12]. However, for multi-circuit 
lines, asymmetrical configurations and cable systems, this assumption may not hold and 
the elements of the wave propagation matrix will still contain a significant oscillatory 
component as a function of frequency. Subsequently it is not possible to fit the elements 
of H((o) with low order rational functions [1,12]. 

The following chapter introduces a model for overhead transmission lines in which the 
analysis is performed entirely in phase co-ordinates. Algorithms are presented which 
allow accurate and efficient determination of both the characteristic admittance and 
wave propagation matrices, without restrictions on the transmission line topology, over 
the entire frequency range required for electromagnetic transient studies. The 
determination of these transmission line responses does not require the eigenvalues or 
eigenvectors of the matrices to be evaluated at any point in the solution process. The 
algorithms are based on Pade approximation techniques for approximating the matrix 
square root and the matrix exponential functions. 
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The new phase domain transmission line model will be developed over several chapters, 
with the emphasis in the following chapter on the frequency domain formulation of the 
problem. Chapter four will discuss the development of the time domain analysis, 
including a method to unwind the wave propagation matrix in the phase domain, and 
chapter five will present the time domain numerical results obtained. Application of the 
model for undertaking closed loop, real-time digital power system simulations will be 
presented in chapter six. 

3.2 Wave Propagation in Transmission Lines 
The series impedance matrix, Z(w), and the shunt admittance matrix, Y(o), as defined 
in chapter two, exhibit a dependence on frequency in the range analysed for 
electromagnetic transient studies. A closed form solution to the differential equations 
that describe the propagation of waves along the transmission line cannot, therefore, be 
obtained directly in the time domain due to the frequency domain characteristics of the 
line responses. Indeed, the time domain form of the governing equations is still very 
complicated even when the frequency-dependent nature of Z(c)) and Y(w) is neglected 
[17,18]. 

In the frequency domain, however, a solution for the wave propagation equations can be 
constructed. The time domain solution is then found by transforming the solution into 
the time domain by means of the inverse Fourier transform. The following section 
presents a brief analysis of the formulation of the wave equations in the frequency 
domain: 

Consider the n-conductor transmission line system of length 1 as shown in Figure 3.1. 
Let Z(o) be the series impedance matrix and Y(w) the shunt admittance matrix per unit 
length of the line. The electromagnetic behaviour of the system can be described in the 
frequency domain by Z(c) and Y(w), defined in the following set of partial differential 
equations [4-6,7-8,11,18,22], 

ay(x, w) 
= Z(uý)I(x, co) (3.1) 

ax 

- 
aI(x'w) 

äx = Y(w)V(x, Co) (3.2) 

where V(x, (w) and I(x, o)) are the voltages and currents at a distance x from the sending 
end of the transmission line. V(x, (o) and I(x, cu) are complex vectors of dimension n. 
Z(w) and Y((o) are complex, symmetric matrices of dimension nxn. 
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Figure 3.1. Multiphase distributed-parameter transmission line system 
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Differentiating (3.1) and (3.2) with respect to x, yields the following wave propagation 
equations, 

a2V(x, w) 
_ [Z(w)Y(w)}V(x, Co) (3.3) 

axe 

ä2I(x, w) 
= [Y(w)Z(w)]I(x, (0) (3.4) 

öx2 

The general solution for (3.4) in the frequency domain can be obtained as, 

I(x, W) = e-r(w)'I+ + er()'I- (3.5) 

where I+ and I- are the vectors of forward and backward travelling currents, with respect 
to the positive x direction and are defined by the boundary conditions at both ends of 
the transmission line (x=0 and x=1). The propagation constant matrix, r(w), is defined 
as, 

F(CO) = Y((O)Z((O) (3.6) 
The voltage vectors of the line can be obtained by substituting (3.5) into (3.2) to give, 

V(x, (o) = Y_ t ((o)(e-r(w)xl+ - er(w)XI-) (3.7) 

where the characteristic admittance matrix, Y, (co), is defined as, 

1e(w) _ ýY(w)Z(w)rlY(ý) (3.8) 

Multiplying (3.7) by Y, (co) and adding the result to (3.5) gives, 

Yc ((o)V(x, co) + I(x, c) = 2e-r(W)xl+ (3.9) 

Applying the boundary conditions at the sending and receiving ends of the transmission 
line, respectively, gives rise to the following set of equations, 

Yc(w)V(O, co)+I(0, w) = 2I+ ;x=0 (3.10) 

Yc(w)V(l, w)-I(l, o) = 2e-r(c°)'I+ ;x =1 (3.11) 

For convenience, let V, (w)=V(O, (o) and V2(w)=V(l, c)) be defined as the vectors of 
sending and receiving end voltages, respectively. Similarly, let I, (co)=I(0, c)) and 
I2((O)=I(l, w) be defined as the vectors of sending and receiving end currents, 
respectively. The solution of the travelling wave equations at the receiving end of the 
transmission line can then be obtained by substituting (3.10) into (3.11) and re- 
arranging, 

12(0)) = Yc(w)V2(0)) - H(w)[Yc(w)V1(w) +I (Co)] 

Analogously for the currents at the sending end of the line (node 1), 

It(w) = Yc(w)Vt(C))-H((O)[Yc((D)V2((O)+I2((O)] 

where the wave propagation matrix, H((o), is defined in both (3.12) and (3.13) as, 

H((o) = e0' 

(3.12) 

(3.13) 

(3.14) 
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The remainder of this chapter is devoted to the calculation of the characteristic 
admittance matrix (3.8) and the wave propagation matrix (3.14) directly in phase co- 
ordinates for electromagnetic transient studies. 

3.3 Phase Domain Evaluation of Y, (co) and H(w) 
A transmission line can be characterized by the characteristic admittance, YY(co), and 
wave propagation functions, H(co). Both matrix transfer functions exhibit a significant 
dependence on frequency over the frequency range of interest for typical 
electromagnetic transient studies (10"Z-106Hz). In practice, Y, ((o) and H(a) are 
calculated as discrete functions in the frequency domain using the line parameters, 
which are evaluated from well known formulations [26-29]. A time domain simulation 
can then be carried out using convolutions involving the transmission line end 
quantities and the time domain impulse responses of the characteristic admittance 
matrix, y, (t), and the wave propagation matrix, h(t), which are obtained via an inverse 
Fourier transform. 

In all the phase domain methods presented thus far [1-12], Y, #o) and H(w) are 
evaluated using matrix decomposition techniques in a similar fashion to that used in 
modal domain models [13-23]. The modal analysis of overhead transmission lines was 
pioneered by Wedepohl [24] and Hedman [25] over forty years ago. This analysis is 
based on the matrix eigenvalue-eigenvector problem (involving the matrix product of 
the per unit length shunt admittance matrix and the series impedance matrix of the line), 
whose numerical solution provides, for a given frequency, the characteristics of the 
propagation modes travelling along the line. A brief review of modal analysis for 
evaluating Y, (w) and H(w) is given below (see section 2.2.1 of chapter two for more 
details): 

The matrix product Y(co)Z(w) is first diagonalized, at every frequency point of interest, 
using eigenvector theory: 

Y(w)Z(w) = T((o)y 2(w)T-i (co) (3.15) 

where y((o) is a diagonal matrix containing the eigenvalues of Y(co)Z(c)) and T(w) is the 
corresponding transformation matrix of eigenvectors which depends on frequency. The 
elements of y(cu) can be expressed as a modal attenuation a(w) and a modal velocity 
u((o): 

Yi, t(Co)=a; (w)+ j (3.16) 
U; (Co) 

The wave propagation matrix, H(co), is then calculated as, 

H(u) = T(co)e"r(')'T-'(co) (3.17) 

where exp(-y(w)l) is a diagonal matrix with diagonal elements exp(-y,; ((o)l). In a similar 
manner, the characteristic admittance, Y, ((o), can be evaluated as, 

Yc (co) = T(w)y -' ((o)T-l ((o)Y((o) (3.18) 

3.3.1 NON-DIAGONALIZATION SITUATIONS 

The above modal decomposition analysis assumes that the matrix product Y((o)Z(w) is 
diagonalizable for every frequency point considered in the evaluation of (3.17) and 
(3.18). However, it has been shown in [30,31] that there are transmission lines for 
which it may not be possible to diagonalize Y(w)Z(oo). The theoretical difficulty occurs 
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when Y((o)Z(co) does not have a complete set of linearly independent eigenvectors and 
is thus defective. In this case there is no invertible matrix of eigenvectors T(w) and 
conventional modal theory breaks down (in such cases a more generalized modal 
domain approach using Jordan decompositions can be used [30,31]). However, this 
situation may only occur at a single frequency (as discussed by Semlyen in [30]), so in 
practice a more likely difficulty will arise when Y(w)Z(w) is `nearly' defective over a 
range of frequencies. This can be defined more precisely using the matrix condition 
number with respect to inversion, 

cond (T(w)) = IIT(w)IIIIT-t ((0)II (3.19) 

If Y((o)Z(w) is nearly (exactly) defective, then cond(T(co)) is large (infinite). Any errors 
in Y(w)Z((o), including roundoff errors in its computation and roundoff errors from the 
eigenvalue decomposition may be magnified in the final result by cond(T(c»)). 
Consequently, when (3.19) is large, the computed Y, ((o) and H(co) will most, likely be 
inaccurate. 

Transmission line models that are conducted in phase co-ordinates will not be affected 
by the above considerations, since explicit calculation of eigenvalues and eigenvectors 
are not required to evaluate (3.8) and (3.14). However, as discussed previously, all the 
current phase domain models available today make use of the above analysis to evaluate 
Y, (co) and H(co), and as such, would suffer the same problems associated with this 
method under non-diagonalization conditions. 

3.3.2 Pade Approximation 
The Pade approximant to a function, J(x), is the rational function constructed from the 
coefficients of the Taylor series expansion of J (x). Pade approximation has a long 
history (Baker [63] provides details of the development of these approximants from 
Cauchy (1821) through Jacobi (1846) and Frobenius (1881) to Pade (1892)) with 
applications in a variety of areas, such as theoretical physics [64], control theory 
[40,65], mechanics etc., [63]. A brief description of Pade approximation theory is given 
below. 

If a given functionJ(x) can be represented by a power series [40,63], 

OD 
f(x) _ aix" 

n=o 
(3.20) 

then the [LIM] Pade approximant to J(x) can be denoted by the following rational 
function, 

[LIM]= PL(x) 
(3.21) 

QM (x) 

where PL(x) and QM(x) are polynomials of degree at most L and M, respectively, and can 
be defined as follows, 

'L (x) = Po + Pax +' "+ PLxL (3.22) 

QM(x)=qo+q1x+... +q xM (3.23) 

The coefficients of (3.22) and (3.23) can be found by setting, 

QM (x) 
(3.24) 

. 
fi(x) - 

PL (x) 
=0 
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and equating coefficients. Since the numerator and denominator can be multiplied by 

any constant with [LIM] left unchanged, the normalization condition, QM(0)=1, can be 
imposed. Expanding (3.24) gives the following set of equations, 

ao = Po 

a1 + aogl = Pl 

a2 + algl + aog2 = P2 

(3.25) 
aL + aL-1q1 +. " "+ aogL = PL 

aL+l +aLgI +... +aL-M+1qM =0 

aL+M + aL+M-191 +. "+ aLgM =0 

where a� =0 if n<0 and q. =0 if n>M. If the defining equations are nonsingular, then 
they can be solved directly to obtain [63], 

aL-M+1 aL-M+2 "' aL+l 

det aL aL+l aL+M 
LLL 

la. -Mx" Ian-M+IXn 
"' 

Lanxn 

[L I M] = n=M n=M-1 n=0 

aL-M+I aL-M+2 "' aL+l 

det 
aL aL+l "' aL+M 

xM xM-1 .,, 1 

(3.26) 

where summations are replaced with zero if the lower index exceeds the upper and the 
equivalence conditions stated above hold. 

3.4 Phase Domain Calculation of Ye(w) 
The characteristic admittance matrix, Y, (w), is a complex, symmetric matrix which 
defines the relation between the current and voltage waves propagating in the same 
direction. From (3.8) it can be seen that in order to evaluate Y, ((o) directly in phase co- 
ordinates requires evaluation of the matrix square root of, 

A= [Y(w)Z(w)rl 

(3.27) A number of methods have been proposed to evaluate the square root of a matrix. These 
methods are usually based on applying Newton's method, either directly, or via the 
matrix sign function [42-48,50-53]. These methods have the advantage of not requiring 
knowledge of the eigenvalues or eigenvectors of the matrix, which may even be 
defective. 

Other methods are based on eigen-analysis techniques, such as performing a Schur 
decomposition [49], however, this involves evaluation of the matrix eigenvalues, and is 
thus not desirable for the proposed phase domain model. 

The proposed method to evaluate the square root of (3.27), in this research is a Pade 
approximation to the matrix square root. The method can be derived from an iteration 
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for the matrix sign function, which itself is derived from Newton's iteration to compute 
(3.27). The following sections provide an introduction to the matrix square root, with an 
explanation of how to calculate the principle square root of a matrix. A definition of the 
matrix sign function is given and the Pade iteration to the matrix square root is then 
derived from the iteration for the matrix sign function. It is then shown how 
manipulation of the algorithm for computing the square root of a matrix can be used to 
evaluate the phase domain characteristic admittance matrix. 

3.4.1 The Matrix Square Root 
Given the matrix AE C"", ", as defined in (3.27), a matrix X is a square root of A if it is 

a solution of the quadratic matrix equation [42-53], 

F(X)=X2 -A=O (3.28) 

For n=1, the square root of any complex number exists and every nonzero complex 
number has two distinct square roots, but for n >_ 2 the problem is less straightforward, 
and a solution to (3.28) may not even exist [42-45,49]. 

If A is nonsingular and has s distinct eigenvalues then it has precisely 2' square roots 
[45]. To illustrate this, consider the overhead line configuration given in Figure 3.4 (see 
page 54). At an arbitrary frequency, f= 1kHz, the matrix in (3.27) is, 

-5.4444e-04+35393e-05i 
A= -8.8737e-05+2.9687e-051 

-8.2645e-05+3.0149e-051 

-7.8137e-05+2.5 878e-05i 

- 5.2886e - 04 + 3.1373e - 05i 

-7.8010e-05+2.5863e-05i 

- 8.2577e-05+3.0142e-05i 

-8.8519e-05+2.9665e-051 
-5.4404e-04+3.536le-051 

(3.29) 

which has three distinct eigenvalues, X, =-7.0529e-04+9.1187e-05i, X2=-4.6163e- 
04+5.2315e-06i and ?, 3=-4.5042e-04+5.7089e-06i. In this case, A has eight square roots, 
four of which are given by, 

6.8144e - 04 + 23224e - 021 
Xl = 5.4813e-04+1.8762e-03i 

55955e-04+1.7350e-03i 

-53867e-04+4.7461e-031 
X2 = -6.2963e-04-1.6653e-02i 

-6.8668e-04-1.671 le-021 

55492e - 04 +1.7455e- 03i 
X3 = 5.4044e-04+19194e-03i 

6.7954e - 04 + 23230e- 02i 

4.7716e-04+1.6518e-03i 5.5948e-04+1.7336e-031 
6.0696e-04+2.2882e-02i 5.4785e-04+1.8716e-03i 
4.7697e-04+1.6492e-03i 6.8107e-04+23216e-02i) 

-5.0946e-04-1.465le-021 -6.8946e-04-1.6698e-021 
-3.2437e-04+6.5337e-031 -63892e-04-1.661 le-021 

-5.1524e-04-1.4625e-02i -5.7395e-04+4.8172e-03i) 

4.7089e-04+1.6909e-03i 6.8300e - 04 + 23211e - 02i 
6.0699e-04+2288le-02i 5.5554e-04+1.8284e-03i 
4.8325e-04+1.610le-03i 5.6408e-04+1.7232e-03i 

-5.1572e-04-1.4612e-021 -5.6593e-04+4.7794e-03i 
-3.2434e-04+6.5336e-03i -63123e-04-1.6654e-02i 
- 5.0896e - 04 -1.4664e - 021 -6.9094e-04-1.6676e-02i) 

(3.30) 

-6.8519e-04-1.6733e-02i 
X4 = -6373le-04-1.6610e-02i 

- 5.6670e - 04 + 4.7839e - ON 

The remaining four roots are given by -X� -X2, -X3 and -X4. Thus, a further problem 
arises with regards to the selection of the `correct' square root for the physical system 
under investigation. This can be undertaken as outlined in section 3.4.2. 
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3.4.2 Obtaining the Principal Matrix Square Root 
As shown above, if the matrix square root exists then it is never unique. However, if the 
matrix product given in (3.27) has no negative real eigenvalues, then there is a unique 
square root for which every eigenvalue has positive real part (this can be verified by 
obtaining the eigenvalues of all the roots above) [44-45,47,50]. This square root is 
called the principal square root, denoted by A"2, and is the square root that is required. 
The principle square root can be defined formally as, 

(A1u'2)2=A and ReXk(A1h'2)>0 for all k, (3.31) 

where Xk(A) denotes an eigenvalue of A. To clarify the issue of which square root is 
required, it is necessary to re-examine the eigenvalues given in (3.16) for the modal 
case. 

It was shown in (3.16) that the eigenvalues of y(w) can be expressed as, a modal 
attenuation, a((o), and a modal velocity u(w). This represents the propagating mode as a 
wave travelling with a positive velocity which is attenuated along the length of the line. 
If, a(co) is not positive, clearly from the definition of the wave propagation function, 
H(o) in (3.14), the wave will be amplified rather than attenuated, which for a lossy 
transmission system cannot be the case. Thus, the eigenvalues of the calculated matrix 
square root must have positive real part, which, if none of the eigenvalues of the 
original matrix (3.27) are negative and real, corresponds to the principal square root, 
A", which in this case, as stated above, is unique. 

3.4.3 The Matrix Sign Function 
The matrix sign function, introduced by Roberts' [54], has many interesting algebraic 
properties which can be used to determine solutions to problems which frequently arise 
in systems and control theory applications, such as solving the Lyapunov and algebraic 
Ricatti equations [54,57-59,61,66]. 

One of the most unique features of the matrix sign function is that it partitions the space 
spanned by the eigenvectors of a matrix into two subspaces, according to the sign of the 
real part of the eigenvalues of the matrix [54-56,58,61]. This partitioning allows the 
determination of the solutions of several algebraic matrix equations without explicit 
knowledge of the individual eigenvectors. In particular, positive definite solutions of 
algebraic Ricatti equations can be found without knowledge of the corresponding 
eigenvectors. In addition to the algebraic matrix equations, the sign function can be 
used for the computation of the positive definite square root of a matrix [44-45,58,61]. 
This result is of particular interest in power transmission line modelling, since it enables 
the wave propagation matrix and characteristic admittance matrix to be determined 
directly in phase co-ordinates without resorting to model decomposition techniques. 

A Newton-Raphson type algorithm, proposed by Roberts [54], has been a standard 
algorithm for computing the matrix sign function. The sign of the matrix B is defined 
constructively as the limit of the iteration, 

Xk+l =2 (Xk + X-$ Xo =A (3.32) 

which converges quadratically to sign(A) for any AE C"" having no pure imaginary 
eigenvalues. From (3.32) it can be seen that an additional advantage of using the matrix 

' [54] is based on a technical report concerning the matrix sign function, written by Roberts in 1971 at 
Cambridge University. 
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sign function is that it can be evaluated efficiently using relatively simple numerical 
methods. 

3.4.4 Matrix Sign Function Definition 
The matrix sign function is an extension of its scalar counterpart, which, for a complex 
scalar, z, with Re(z): P, -O, is defined as follows [45,48,54,56-57,59-61], 

I+ 1 if Re(z) >0 
sign(z) 1 if Re(z) <0 

(3.33) 

The corresponding matrix sign function is restricted to square matrices, A, and is 
defined only for AEC.. " having no pure imaginary eigenvalues. The matrix sign 
function can be defined in several different ways e. g. making use of eigen 
decompositions such as the Jordan canonical form or Schur form, matrix iteration based 
definitions, etc., [61]. In a recent paper [44], a new representation of the matrix sign 
function was introduced in terms of the matrix square root, using the following matrix 
sign decomposition, 

A= SN (3.34) 

where S= sign(A) and AE Cn xn assuming A has no pure imaginary eigenvalues. The 
decomposition (3.34) is uniquely defined because S= sign(A) is uniquely defined and 
nonsingular (its eigenvalues are ±1), so that N= S-'A. Since S is involutary (S2 = I), N= 
SA [44]. This is similar to the polar decomposition, A= UH, where U is orthogonal and 
H is Hermitian. 

For the matrix sign decomposition, (3.34), A2 = SNSN = S2NZ = N2, and since A is 
assumed to have no pure imaginary eigenvalues, AZ is nonsingular and has no real, 
negative eigenvalues. Therefore, N= (A2)'"2, where for a nonsingular matrix B with no 
real, negative eigenvalues, B'n denotes the unique square root all of whose eigenvalues 
lie in the open right half plane. This characterization of N provides the following 
definition of the matrix sign function [44-45,61], 

sign(A) = A(A2)-112 (3.35) 

where A2 has no negative real eigenvalues. Hence, from (3.31) there is a unique square 
root of A2 (the principle root) which has all its eigenvalues in the open right-half 
complex plane. 

In [48,59-60] an algorithm is presented for computing the sign of a matrix based on a 
Pade approximation to the hypergeometric function f(1) = (1- 4)-1/2, which leads to a 
rational function approximation of the sign function. By expanding the rational function 
into partial fraction form it is possible to obtain an algorithm for computing the matrix 
sign function, which is particularly suitable for parallel implementation [45,48,59-60]. 
The iterates have the form, 

Xk+l =1 Xk E1 (Xk 
+ a? Ur', X0 =A (3.36) 

P 1-14, 

where 

50 



21+ cos`(2i2 
1)7r 

p for i =1: p (3.37) 

a? =`-1 

3.4.5 Pade Iteration for Evaluating Y. (co) 
The above iteration for computing the matrix sign function using Pade approximation 
can be used to obtain an iteration for computing the characteristic admittance, Y,, (( o), by 
exploiting the relationship between the matrix sign function and the matrix square root 
given in (3.35). Consider the following block 2x2 matrix [45], 

0 Y(w B(am) = Z(w) 0 (3.38) 

where, as before, Y(w) and Z(w) are defined as the per unit length shunt admittance and 
series impedance matrices, respectively. Substitution of (3.38) into (3.35) gives the 
following relation, 

0 Y(w) 0 Y(co1)[(Z(co) 0 Y(w 2 -lie 
sign 

([Z(co) 

0 lZ(co) 00 

0 Y(w) Y(c))Z((O) 0 

J-1/2 Zw 0 

)C 

0 ZwYco C 
0 Y(w) [y((O)Z(w)]-112 0 

Z((O) 00 [Z(co)Y(O))]-in 

0 Y(w)ýZ(w)Y(w)ý-tie 
= 

Z(w)[Y(w)Z(w)J-týý 0 

(3.39) 
Thus, if we calculate the matrix sign function for the 2x2 block matrix given in (3.38) it 
is possible to obtain the characteristic admittance matrix Ye(w)=Y(()[Z(w)Y(w)]-'I 
(which is equivalent to (3.8)), and the characteristic impedance matrix 
Z, (co)=Z(w)[Y(w)Z(w)]''n directly. Hence, the Pade iteration for the matrix sign 
function discussed above can be manipulated to obtain an iteration for evaluating the 
characteristic admittance matrix, Ye(w), directly in phase co-ordinates. 

Applying the Pade iteration to. the matrix sign function (3.36-3.37) to the 2x2 block 
matrix in (3.38) we find the iterates have the form, 

Xk =0 
Yak (w 

[zck 
(Co) 0 (3.40) 

and the following Pade iteration for evaluating the phase domain characteristic 
admittance, Ye(w), is obtained, 
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P 1 [Zck 
((ý)Yck (co) + OLD Ü1I Yak+1((o) 

1 
YCk (0»z 

P i=1 k=0,1,2,... (3.41) 
Zak+l (co) =p Zck ((0)Y 

1 [Yck 
(W)Zck (co) +a u11 

with Yo((o)=Y((o) and Z,, ((o)=Z((u). 

3.4.6 Convergence Characteristics 
In order to determine a value for the order of the Pade iteration in (3.41) that will 
provide computational efficiency and accuracy, it is necessary to analyse the 
convergence characteristics of the algorithm for different values of p, over the entire 
frequency range of interest. This can be done at each iteration by monitoring-the 
convergence using the relative residual, 

! U-Xk 
res(X k) =I UIIr 

F (3.42) 

where II. 11. is the Frobenius2 norm, U is the unit matrix and, 
Xk=Z ck . Yck (3.43) 

denotes the iterate converging to the product of the characteristic admittance, Y,, and 
characteristic impedance, Z., so that Xk -a U as k-> oo. 

Consider the single-circuit transmission line configuration as described in section 3.5.1. 
The characteristic admittance is calculated using iteration (3.41) with the order of the 
Pade approximation varied fromp=l top=7. The tolerance to measure converge is set at 
1.0E-15. The convergence characteristics are shown in Figure 3.2. 
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Figure 3.2. Convergence characteristics for a single-circuit transmission line with a 
varying order, p, Pade approximation. 

2 
'The Frobenius norm is defined as 

IIAII 
=Ia ij 

F--l 
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It can be seen from Figure 3.2 that convergence is achieved in at most 2p iterations, 
over the entire frequency range, for values of p>3. Furthermore, as the frequency 
increases, a more rapid convergence is observed. Figure 3.2 also highlights the stability 
of the algorithm - even for very small orders, p=1 and p=2, convergence is achieved, 
albeit with an increased number of iterations, with no instability problems occurring at 
any stage in the frequency interval. A similar result was obtained using a double-circuit 
transmission line configuration, with convergence obtained for all values of p used in 
(3.41). 

3.4.7 Scaling 
As discussed above, although the algorithm in (3.41) has at most a convergence of 2p 
for p>3, accelerated convergence is not guaranteed since the method may not 
necessarily converge rapidly in the initial stages. This is because the error can take 
several iterations to become small enough for rapid convergence to be observed. 
However, if required, the number of iterations can be reduced by introducing scaling 
techniques into the algorithm of (3.41). 

Several different scaling strategies have been suggested for the matrix sign function 
[45], and these can be used for the iteration of (3.41) by making use of the relationship 
between the matrix sign function and matrix square root (3.35). The scaled Pade 
iteration has the form, 

Yck+i (ý) =p Yklck (w) 

iý ' 

[YkZck 
(w)Yck (w) + a? Ur 

ZCk+l (w) =1 Ykzck (0)z 1 [YkYck (w)Zck (Co) + a? Urt k=0,1,2,... (3.44) 
P i=14; 

Yk = 
[(det(YCk )Xdet(ZCk ))} 2 

where the initial conditions are also YO((o)=Y((o) and Z. (w)=Z(w). 

Applying the scaled iteration (3.44) to the single-circuit transmission line configuration 
the convergence characteristics of the new iteration can be examined in a similar 
manner as above. The results are shown in Figure 3.3. 
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Figure 3.3. Convergence characteristics for a single-circuit transmission line with a 
varying order, p, Pade approximation using scaling 
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It can be seen from Figure 3.3 that the introduction of scaling has a dramatic effect on 
the number of iterations required for convergence. For p<3, the effect of introducing 

scaling is significant over the entire frequency range. For p=3,4,5,6 and 7 convergence 
is achieved in just four iterations, up to frequencies of - 200Hz. 

3.5 Test Examples 
To illustrate the accuracy, efficiency and robustness of the Pade iteration (3.41) for 

calculating the characteristic admittance matrix, Y, ((u), directly in phase co-ordinates, 
the results for several test cases are presented in this section. The test cases correspond 
to single, double and asymmetrical transmission line configurations. 

For all the results presented, the order of the Pade approximation is taken to be p=4. 
The frequency interval considered has been taken to be 10-'Hz-106Hz, with 241 
frequency points and 30 frequency points per decade. 

The tolerance used for measuring convergence in each test case, and at all frequencies, 
is taken to be 10-15. 

3.5.1 Single-Circuit Transmission Line Configuration 
Consider the case of the 345kV, single-circuit untransposed overhead transmission line 

system, with a bilateral symmetry, as shown in Figure 3.4. The physical data for the 
system can be found in Appendix III. 

12.5 m 

8.5 m 
9.79 m . 4---f 

OO 0 

13.18 m 

p= 100f1m 

Figure 3.4.345kV single-circuit overhead line 

Figures 3.5 and 3.6 show the real and imaginary parts of the elements of the 

characteristic admittance matrix, Yjuw), respectively, as calculated by iteration (3.41). 
The corresponding magnitude and phase angles are shown in Figures 3.7 and 3.8, 
respectively. An analysis of the results can be made as follows: 

The definition of the characteristic admittance in (3.8) can be re-written in the following 
form (assuming the conductance is zero) as follows, 

Yc ((o) = l�wC(w)(R((o) + JwL(w))]-112 jWC((O) (3.45a) 

As the frequency tends to zero, series impedance converges to the DC value of the 
resistance and the elements become complex, and proportional to the square root of the 
frequency. In this case, (3.45a) is reduced to, 

Yc(co->0)= jw(CRDC)-li2C (3.45b) 

At high frequencies (above approximately 100Hz for this example) the significant 
contribution to the series impedance, Z(co), arises from the reactance. As the frequency 
tends to infinity the series inductance matrix tends to a constant, since the complex 
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depth in the conductors and ground approach zero. The characteristic admittance matrix 
can therefore be written as [I I], 

Y, (c) -> co) = (CLco )-1/2C (3.46) 

From (3.46) it follows that at high frequency the elements of Yc((0) become real and 
constant. It can be seen from Figures 3.5 and 3.6 that the behaviour of the elements of 
Y, (c)) follows that of the above discussion. However, at 106Hz, the complex depth in 
the ground is still sufficiently high, so that the elements of Yc(c)) are still tending 
towards a constant. 

3.5.2 Double-Circuit Transmission Line Configuration 
Consider the case of the 220kV, double-circuit untransposed overhead transmission line 
system, as shown in Figure 3.9. The physical data for the system can be found in 
Appendix III. 

The real and imaginary elements of the first column of the characteristic admittance 
matrix, Y, (c)), as calculated by iteration (3.41) are shown in Figure 3.11. The 
corresponding magnitude and phase angle is shown in Figure 3.12. The results can be 
seen to agree with the theoretical considerations discussed previously for the single- 
circuit case. 
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Figure 3.9.220kV double-circuit overhead line 

3.5.3 Asymmetrical Transmission Line Configuration 
Figure 3.10 shows a 6-circuit (18 phase conductor), 230kV overhead transmission line 
system on the same right-of-way [ 12]. The physical data for the system can be found in 
Appendix III. 
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Figure 3.10.230kV 6-circuit overhead line 
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Despite the increased size (18x18 matrix) of, Y, (a ), in this test case, the proposed 
algorithm for evaluating the phase domain characteristic admittance, Ye(w) performs 
very well. The algorithm does not fail to converge for any order of the Pade 
approximant. Using the scaled version of the iteration (3.44), the maximum number of 
iterations required, using an order of p=1, was 13 iterations. Using an order of p=4, the 
maximum number of iterations occurring throughout the entire frequency interval is just 
6 iterations. 

3.6 Phase Domain Calculation of H(co) 
The propagation matrix, H(co), defines the transfer of travelling waves from one end of 
the transmission line to the other. The matrix is complex, and unlike the characteristic 
admittance matrix, it is unsymmetric. From (3.14) and the definition of F(w) in (3.6), it 
can be seen that in order to evaluate the wave propagation matrix directly in the phase 
domain requires evaluation of the matrix square root and matrix exponential functions, 
at each frequency point of interest. The matrix square root in (3.6) can be' obtained 
directly from the result for the characteristic admittance (3.8) after some matrix 
manipulation. The following section focuses on the approximation of the matrix 
exponential operator so that H(co) can be accurately and reliably evaluated directly in 
phase co-ordinates. 

3.6.1 The Matrix Exponential 
Like its scalar counterpart, the matrix exponential can be defined directly through a 
convergent power series expansion [32-33,36,38-39,41,62], 

0° A 

(3.47) 
ý=o k 

The evaluation of this matrix function is an important problem that arises in the solution 
of many physical, biological and economic processes that are modelled with systems of 
ordinary differential equations [32]. A variety of different methods have been proposed 
to evaluate the matrix exponential based on truncated power series representations, 
rational function approximations, as well as matrix decomposition methods [32- 
39,41,62]. However, there are few numerical methods that can be applied in a reliable 
and efficient way to any class of matrix [32]. The choice of which method to use is 
therefore very much dependent upon the particular problem under investigation. For 
example, for problems involving very large sparse and symmetric matrices, matrix 
decomposition techniques are very efficient. However, as discussed earlier, for matrices 
that do not have a complete set of linearly independent eigenvectors, these methods are 
likely to produce inaccurate results due to roundoff error [32]. 

With these considerations in mind it is proposed in the following sections to apply a 
Pade approximation technique to evaluate the wave propagation matrix in (3.14). 

3.6.2 Pad6 Approximation for Evaluating H(co) 

The (p, q) Pade approximation to (3.14) can be defined by [32,34-37,41,62] 

Npg (A) 
Rpq (A) 

Dpq(A) (3.48) 

where 

A=- ýYiw)Z(w)ýI (3.49) 
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and 

P (p+q-k)! pi k Npq(A)- Z(P+4)! 
k! (P-k)! 

A (3.50) 

and 

D (A)_ Z (P+9-k)! q! (-A)k 
e, 

(3.51) P9 k_o(P + q)! k! (q - k)! 

Several important points should be made about the above algorithm. 
(1) NPq(A) approaches the series for exp(A/2) as p tends to infinity whereas [Dpq(A)]-' 

approaches the series for exp(-A/2) as q tends to infinity, for the argument matrix A, 
as defined in (3.49) [32]. 

(2) The explicit computation of the matrix exponential function is difficult when the 
eigenvalues of the argument matrix (3.49) are widely spread, the norm of the 
argument matrix is large and also when the order of the argument matrix is high [32]. 
The latter problem is of little consequence for transmission line modelling, since the 
argument matrix will always be of a relatively low order. However, the two former 
problems can severely affect the accuracy of the Pade approximation technique for 
evaluating H(0)). This is particularly true in the mid to high frequency range, and for 
lines of very long length, as discussed below. 

3.6.3 Widely Spread Eigenvalues 
If the argument matrix (3.49) has widely spread eigenvalues, then (3.48) will most 
likely produce an inaccurate result because the denominator matrix DP9(A) becomes 
very poorly conditioned with respect to inversion. In order to better illustrate the effect 
of widely spread eigenvalues on the conditioning of the matrix Dpq (A), consider again 
the single circuit overhead transmission line configuration given in Figure 3.4. 

e 

N 

40 

Figure 3.13. Spread of the eigenvalues of the wave propagation constant 

The eigenvalues of the propagation constant matrix r(w), as defined in (3.6), can be 
calculated by diagonalizing r(co) over the whole frequency range of interest. The 
behaviour of the eigenvalues as functions of frequency is shown in Figure 3.13. The 
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separation of the eigenvalues (at -' 300Hz) as the frequency increases is very evident. 
This separation can be attributed to the presence of the ground, which causes the mode 
associated with ground to be greatly attenuated as compared with the remaining aerial 
modes. 
As mentioned above, the denominator matrix, D., 9(A) tends to the series for the function 

H1/2 = e-Ai2 (3.52) 

with A defined as in (3.49). At an arbitrary frequency, f= 250000Hz, the eigenvalues of 
the diagonalized wave propagation constant, r(w), are %j=2.0659e-01+5.4657e+00i, 
X2=2.3105e-02+5.3321e+00i and ?32.9448e-03+5.3051e+00i. These eigenvalues can 
be used to obtain a diagonalized version of (3.52). At 250kHz we have, 

H//2(/,, ) =e 
Aý/ýýý12 

e- 
Y(w)Z(w)("')1 00 

0 e- 
Y(O)Z(w)(2,2)1 

0 = 

00e 
Y((u)Z(cO)(3,3)/ 

5.5715e+17+4.4836e+17i 00 

=0 71438e+01- 6.8931e+ 01f 0 

001.7784e + 00 + 2.5639e - 01i 
(3.53) 

It is clear from (3.53) that H112(,,, ) » H�2(2,2) and H112(3,3). Subsequently, when matrix 
(3.53) is transformed into phase co-ordinates we obtain the following matrix, 

1.8743e + 17 + 0.5427e + 17i 1.9454e-i- 17 + 1.5713e + 17i 1.8728e + 17 + 1.5307e + 171 
Dp9(A)= 1.7604e+17+1.4020e+17i 1.8267e+17+1.4275e+17i 1.7588e+17+13909e+171 

1.8721e+17+1.5254e+171 1.9430e+17+1.5535e+171 1.8705e+17+1.5135e+17i 

(3.54) 

which is very nearly singular, with a condition number with respect to inversion of 
cond(Dpq(A))=6.3609e+16. 
The reciprocal of the condition number, rcond(A), of the denominator matrix Dpq(A) 
over the whole frequency range is shown in Figure 3.14. For frequencies below 1Hz, it 
can be seen that rcond(A) is approximately equal to one and Dp9(A) is well conditioned. 
However, as the frequency increases and the eigenvalues begin to separate, 
rcond(A)-+O and Dpq(A) becomes increasingly badly-conditioned with respect to 
inversion so that the accuracy of (3.48) deteriorates significantly. 

3.6.4 Large Matrix Norm 
The problem associated with widely spread eigenvalues will most likely not be 
observed in practice due to an additional problem concerning the magnitude of the norm 
of the argument matrix (3.49). This problem manifests itself in the summation of the 
series for both NB(A) and DPq(A). 

Figure 3.14 clearly illustrates the frequency-dependent nature of the magnitude of the 
norm of the argument matrix (3.48). This frequency-dependent behaviour can be 
expected since the elements of (3.48) are increasing with frequency. 

In the summation of the series for both NP9(A) and Dpq(A) the argument matrix is 
repeatedly raised to the power of the corresponding term in the summation, up to the 
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order of the approximation, p. However, when the magnitude of the norm of the 
argument matrix is relatively large, intermediate matrices in the summation will have 
elements with large magnitude, but possibly of opposite sign. This results in 
cancellation of the intermediate terms in the series causing the final result to be 
corrupted with errors. 
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Figure 3.14. (Top) Condition number of Dpq(A) over the frequency range of interest, 
(Bottom) 2-Norm of the argument matrix of H(co) for different line lengths 

3.6.5 Scaling and Squaring 
Fortunately, the numerical problems discussed above can be overcome by exploiting a 
fundamental property unique to the exponential function, namely, 

Am 

eA =e m" (3.55) 

where A is defined as in (3.49), a method which is referred to as ̀ Scaling and Squaring' 
[32,41,62]. The general idea is to scale the argument matrix, A, by dividing it by some 
power of two, denoted by m, so that the wave propagation matrix, exp(A/m), can be 
reliably and efficiently computed [32,62]. This can be visualized as dividing the 
transmission line, of length 1, into N identical segments of length Al =1/N. The original 
wave propagation matrix is then obtained by repeated squaring. The value of m can be 
chosen by making it the smallest power of two for which the following inequality, 

A<, 
(3.56) 

m 
holds [32,62]. With this restriction, Pade approximation provides a very accurate means 
of evaluating H((o) over the entire frequency range of interest for electromagnetic 
transient analysis. 

As discussed in the previous section, since the norm of the arugment matrix (3.49) 
increases with frequency, it follows that the value of m required for inequalty (3.56) to 
hold will similarly increase. The amount of scaling required will be further dependent 
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on the length of the transmission line under consideration, since the magnitude of the 
elements of the argument matrix, A, are proportional to the length of the line. 

In order to give an indication as to the number of squaring operations typically required 
to evaluate H(w), the wave propagation function for the single-circuit transmission line 
described in section 3.5.1 is evaluated for line lengths of 1=10km, 50km, 100km, 
300km, 600km and 1000km in the frequency interval 10"2Hz-106Hz. The choice of a 
1000km line, though unrealistic, is useful for the purposes of analysing the 
characteristics of the algorithm. The results are shown in Figure 3.15. 

The algorithm is clearly at its most efficient when no squaring operations are required. 
For the shortest line length considered (1=10km) this is the case up to frequencies of 
approximately I. 1kHz. This `no squaring' limit is reduced steadily as the length of the 
line increases, with the limit for the longest line length (1=1000km) at approximately 
11Hz. After these respective frequencies, the number of squaring operations increases 
so that the inequality of (3.56) is always satisfied. For the 10km line the maximum 
number of squaring operations required is eight, rising to 16 for the 1000km 
transmission line. 

N 
G 
C 

N 

I 

E 

z 
0 

100km r 
. r-1 

1-1000km "r . »-"' 
1=30Okm 

/=600km ". "ý -a . _. l=50km 

1=10km 

16 

14 

12 

10 

8 

6 

4 

10-2 10', 100 10t 102 103 104 105 106 
Frequency [Hz] 

Figure 3.15. Number of squaring operations required for different line lengths as a 
function of frequency 

Though the squaring results presented in Figure 3.15 are for a single-circuit line 
configuration, the results can be regarded as fairly well representative for most 
transmission line configurations. For the double-circuit transmission line configuration 
of section 3.5.2, the number of squaring operations required follows a similar trend to 
that of Figure 3.15. 

3.6.6 Order of the (p, q) Pade Approximant 
There are several reasons why the diagonal Pade approximants (p=q) should be used in 
(3.48) rather than the off-diagonal approximants (p#q). In terms of stability, if all the 
eigenvalues of the argument matrix are in the left hand side of the complex plane, then 
the computed approximants with p>q tend to have larger rounding errors due to 
cancellation of the terms in the summation of the series (3.50) and (3.51). For 
approximants with p<q, the problem of a badly-conditioned denominator matrix, 
Dpq(A), is increased further [32,62]. 
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From the discussion of section 3.4.2, it is known that the eigenvalues of the wave 
propagation constant (3.6) have both positive real and imaginary parts. Therefore, the 
argument matrix (3.49) of the wave propagation matrix, H(O)), can be expected to have 
eigenvalues lying in the left hand side of the complex plane. Thus, in this case, and 
from the discussion above it is recommended to use a diagonal Pade approximant for 
evaluating H(o)). 

In terms of efficiency, it is further recommended to use the diagonal Pade 
approximants, since they yield a higher order approximation than the off-diagonal 
approximants, for the same amount of computation time [32,62]. For example, suppose 
p<q, about qn' flops are required to evaluate Rpq(A), an approximation of order p+q. 
However, the same amount of work is needed to compute Rpp(A) and this approximation 
has order 2p > p+q [32,62]. A similar argument can be applied to the superdiagonal 
approximants (p > q). 

Assuming a diagonal Pade approximant (p=q), then (3.48) can be re-defined as follows, 

where, 

and 

N (A) 
R pp 

(A) 
Np (_A) 

(3.57) 

PCkAk 
NPp(A)= (3.58) 

k=0 

'Ck - 'Ck-I 
p+1-k 

(2p+ 1- k)k 
(3.59) 

and c0=1. The algorithm can be quickened further by applying Homer's Rule to 
evaluate the numerator and denominator in (3.57) [62]. 

3.6.6.1 Horner's Rule 
Homer's Rule is a method for polynomial calculation which reduces the number of 
necessary multiplications. The rule factors out powers of x, giving [62], 

anx" +a�-, x"-' +... +a0 =((a�x+a,, -1)x+... 
)x+ao (3.60) 

3.6.6.2 Error Analysis 
The accuracy of (3.57) over the full frequency region of interest for a given orderp can 
be investigated by calculating the following relative error, 

IIRh (A)-Rpp(A)II E= llR(A)ll (3.61) 

where R pp (A) is a high order approximation to H(co) and Rpp(A) is as defined in (3.57). 

The order of (3.57) is varied from p=1 to p=9 and H(co) is evaluated for both the single 
and double-circuit transmission line configurations as described in sections 3.5.1 and 
3.5.2, respectively. The results can be seen in Figure 3.16. 

It can be seen from Figure 3.16, that for both transmission line cases, for p>4, (3.57) 
provides a very accurate method for evaluating the wave propagation matrix, H(co) over 
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the whole frequency interval. For the shorter (1=152.9km) double-circuit line, values of 
p=3 and p=4 still provide very accurate results up to a frequency of almost 100kHz. 

For all the cases presented in this research, a value of p=6 has been used in (3.57) and 
provides a very accurate and efficient order for the Pade approximation method for 
evaluating H(w). 
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Figure 3.16. Relative error of Rp, (A) for different orders of p. 

A principal drawback of the algorithm may come from the fact that if s»1 then, 
computed squares can be contaminated by rounding errors and the cost becomes large. 
However, in all the cases considered, s has never exceeded 16, and high values of s are 
restricted only to the high frequency range, so that the overall algorithm remains 
efficient and the result obtained accurate. 

3.7 Test Examples 
The accuracy, efficiency and robustness of the Pade scheme (3.57) for evaluating the 
wave propagation matrix, H(co), directly in phase co-ordinates, can be illustrated by 
returning to the single, double and asymmetrical line of sections (3.5.1), (3.5.2) and 
(3.5.3). 

For all the results presented, the order of the Pade approximant is taken to be p=6. The 
frequency range under consideration is again assumed to be 10-'Hz-106Hz, with 241 
frequency points and 30 frequency points per decade. 

3.7.1 Single-Circuit Transmission Line Configuration 
Consider the 345kV, single-circuit untransposed overhead transmission line system, as 
shown in-Figure 3.4. The physical data for the system can be found in Appendix III. 
Figures 3.17 and 3.18 show the real and imaginary parts of the elements of H((O), as 
calculated by (3.57). Figures 3.19 and 3.20 show the corresponding magnitude and 
phase angles. 
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Expanding the wave propagation matrix using the matrix exponential power series 
(3.47) for the argument matrix defined in (3.49) gives [I I], 

2 

H(w) = e- Y(w)Z(°))l =U- 
[JOCR 

- w2CL]/21 + 
[JoCR 

- w2CL] 
2ý 

- 
(3.62) 

[jcoCR-0)2CLP/213 
-+... 3! 

where U is defined as the identity matrix and Z(o) and Y(co) are defined as in (2.3) and 
(2.4) respectively, assuming the conductance G(co) is negligible. From (3.62) it can be 

seen that as the frequency tends to zero, H(w) becomes real and tends toward the 
identity matrix with the real off-diagonal and imaginary elements becoming zero. This 
is clearly evident from Figures 3.17 and 3.18. As the frequency increases, the travelling 
waves are subjected to increasing attenuation due to the skin effect in the conductors 
and earth, such that all the elements of H(co) tend to zero. Again this can be clearly seen 
in Figures 3.17 and 3.18. 

Also evident from Figures 3.17 and 3.18 is the oscillatory component of the wave 
propagation matrix in the high frequency region, due to the time delays of the line. As 
discussed in the introduction, H((o), can be thought of as being composed of a sum of 
modal components that, in general, have different time delays. It is proposed in the next 
chapter to apply a matrix phase shift function to smooth the elements of H((O), in the 
frequency range of interest. A rational function approximation for H((o) can then be 
obtained without using an excessively large number of poles. 

3.7.2 Double-Circuit Transmission Line Configuration 
A further test of the accuracy and efficiency of the algorithm can be performed using 
the 220kV untransposed, double-circuit transmission line system as described in section 
(3.5.2) and illustrated in Figure 3.9. The physical data for the system can be found in 
Appendix III. 

By way of example, Figure 3.21 shows the real and imaginary parts of element (1,1) of 
H((o), as calculated by (3.57). Figure 3.22 shows the magnitude of the elements of the 
first column of H(co) and, for ease of viewing, only the phase angle of element (1,1). As 

expected, the behaviour of the wave propagation function follows a similar pattern to 
that described above for the single-circuit transmission line. 

The remaining elements of the H((o) (36 elements in total) show a similar degree of 
accuracy to that of element (1,1), although for practicality reasons they are not shown. 
The behaviour of the these elements follows a pattern as expected from the theoretical 
discussion of above. 

3.7.3 Asymmetrical Transmission Line Configuration 

Consider again the 230kV, 6-circuit (18 conductor) transmission line system as 
described in section (3.5.3) [12]. The physical data for the system can be found in 
Appendix III. 

As for the algorithm for computing the characteristic admittance, it has been found that 
the accuracy and efficiency of (3.57) for evaluating this test case is maintained at a high 
level, despite the increased size of the system under investigation. In this case, the 
maximum number of squaring operations required was found to be 13. The `no 
squaring' limit is attained at approximately 130Hz. 
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3.8 Conclusions 
The frequency domain implementation of a new phase domain transmission line model 
suitable for electromagnetic transient studies has been presented in this chapter. 
Algorithms are introduced for calculating the characteristic admittance matrix and wave 
propagation matrices. In contrast to current methods reported in open literature, the 
proposed algorithms do not require the evaluation of frequency-dependent modal 
transformation matrices in order to evaluate the functions in the modal domain before 
transforming the solution into the phase domain. Instead, the proposed algorithms 
perform all the calculations directly in phase co-ordinates. Both algorithms have the 
added advantage of having a very simplistic form, making them very easy to implement 
in a computer program. 

The algorithm for calculating the characteristic admittance matrix is derived' by 
exploiting a relationship between the matrix sign function and the matrix square root. 
The efficiency of the algorithm, particularly in the lower frequency range, can be 
further enhanced by introducing scaling techniques. 

The algorithm proposed for evaluating the wave propagation matrix is based on a Pade 
approximation to the matrix exponential function. A `scaling and squaring' technique is 
employed by exploiting a fundamental property of the exponential function. The 
efficiency of the algorithm is investigated for lines of different length and an error 
analysis is presented to enable the optimum order of approximation to be chosen for a 
given transmission line configuration. 

Although extensive use has been made of matrix decomposition techniques to analyse 
the properties and behaviour of the algorithms presented, it should be stressed that 
calculation of eigenvalues and eigenvectors is not required in either algorithm. 
Test cases corresponding to single, double and a highly asymmetrical transmission line 
configuration have been used to test the robustness of the proposed algorithms. The 
accuracy of both algorithms compare well with conventional modal decomposition 
techniques. The test cases also serve to confirm the generality of the methods. 

The efficiency of the proposed algorithms have not been tested against the alternative 
methods, i. e. performing a modal decomposition at each frequency point. However, due 
to the very simplistic form of the algorithms, it is expected that they would be 
comparable to existing methods in terms of computational efficiency. 
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CHAPTER 4 

PHASE DOMAIN TRANSMISSION LINE 
MODELLING -TIME DOMAIN 

FORMULATION 
This chapter describes the time domain formulation of a new phase 
domain model to study electromagnetic transient phenomena on 
multiphase power transmission lines. One of the main difficulties in 
conducting the analysis directly In the phase domain concerns the 
unwinding of the wave propagation matrix. The elements of this matrix 
are associated with coupled time delays that, In general, differ in 
magnitude. At present, a common scalar time delay, corresponding to 
the fastest mode of the system, is used to unwind the wave 
propagation matrix in the phase domain. However, for multi-circuit and 
asymmetrical transmission lines, the modal travel times may be widely 
different and compensating for a common time delay will not 
completely remove the oscillations present in these functions. In order 
to overcome this, a matrix phase shift function Is proposed to unwind 
the elements of the wave propagation matrix. The function is evaluated 
directly in the phase domain, Intrinsically taking into account the time 
delays of the line. The elements of the wave propagation matrix are 
then obtained as relatively smooth functions of frequency, and as such 
can be approximated with comparatively low-order rational functions. 
The method of Vector Fitting Is used to obtain the rational function 
approximations of the characteristic admittance and wave propagation 
matrix. A columnwise realization can be obtained using this method, 
which increases the computational efficiency for the time domain 
simulation. The final phase domain model can be represented in the 
time domain by a Norton equivalent circuit. 

4.1 Introduction 
Power transmission lines may be characterized in the phase domain by two matrix 
response functions, namely the characteristic admittance matrix, Ye(w), and the wave 
propagation matrix, H((o) [11,12]. The frequency-dependent behaviour of both 
functions can be taken into account in a time domain simulation by introducing 

numerical convolutions between the electrical quantities at the ends of the line and the 
transmission line responses [1]. A recursive formulation of the convolution integrals 
can be obtained in phase co-ordinates if both the characteristic admittance and the wave 
propagation matrices are approximated using either rational functions in the frequency 
domain [1,3,4,12,14-18], z-domain [7-9] or piecewise linear functions in the time 
domain [10,19]. With the frequency responses approximated in this way, a recursive 
formulation of the convolution integrals can be realized, greatly increasing the 
computational efficiency of the resulting time domain model [19,20]. 

The elements of the characteristic admittance matrix are in general smooth functions of 
frequency and can therefore be accurately fitted with low-order rational functions 
directly in phase co-ordinates. However, for multi-conductor systems, the elements of 
the wave propagation matrix are obtained as oscillating functions of frequency, due to 
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the time delays of the line. For convenience, the elements of H(o) can be regarded as 
being composed of a sum of modal contributions that, in general, are associated with 
different time delays [1,3,7,8,11]. As a result, it is very difficult, if not impossible, to 
obtain an accurate approximating function without using an excessively large number of 
poles in the fitting process. 
For single or multiphase modal domain models, this problem can be overcome with 
relative ease since there is only a single time delay associated with each mode of 
propagation [15]. The modal time delays can therefore be removed from each 
independent modal wave propagation function by multiplying each mode with a scalar 
phase shift factor, exp(jcor), in the frequency domain, where i corresponds to the fastest 
frequency component of the corresponding mode [1,15]. The elements of the 
`unwinded' modal propagation function are subsequently obtained as smooth functions 
of frequency that can be fitted with low-order approximating functions, e. g. with 
rational functions [14,15]. Note that, for the case of a line containing a single-phase 
conductor the unwinding of the wave propagation function in the phase domain would 
also be relatively easy to perform, since only a single travel time would be required. 
For multiconductor systems the problem becomes somewhat more involved since, for 
the purposes of description, each element of the wave propagation matrix is associated 
with a sum of modal travel times. However, almost all of the phase domain 
transmission line models proposed thus far in the open literature [1,3,4,7,8] attempt to 
unwind H(co) in the phase domain using a single phase shift, exp(ju r), where i in this 
case corresponds to a common time delay, usually determined as the shortest travel time 
of all the system modes. For single-circuit transmission lines, this approach will 
invariably succeed in unwinding the elements of H(c)) since the magnitude of each 
corresponding modal travel time is usually very similar. The elements of the phase 
domain wave propagation matrix are then unwound in a similar way to that proposed 
for modal domain methods [1,3,7,8]. However, if the transmission system under 
investigation has very different travel times associated with each mode, as will in 
general be the case for multi-circuit or asymmetrical overhead line configurations, and 
cable systems, application of a single common time delay to all the elements of H(w) 
will not completely remove all these oscillations. In these cases, compensating for a 
common time delay may not permit a low-order fitting of H(cw), due to the 
uncompensated part of the time delays [1]. 

In this chapter, a direct phase domain solution to this problem is introduced. The 
method is based on the evaluation, in the phase domain, of a matrix phase shift 
function. A coupled matrix of time delays is evaluated in phase co-ordinates to 
intrinsically take into account the effect of non-confluent travel times. The method is 
therefore applicable to line configurations in which the time delays of the system are 
very different from each other, such as multi-circuit and asymmetrical line systems. As 
a result of introducing the matrix phase shift function, the wave propagation matrix is 
obtained as a smooth function of frequency. This enables an accurate fitting of H(w) to 
take place, using a reduced-order approximating function. 

The characteristic admittance and wave propagation matrices are accurately 
approximated in the frequency domain using rational function approximations. The 
method of Vector Fitting [18] is employed to fit these functions directly in phase co- 
ordinates. Vector Fitting, as described in chapter two, allows the elements of each 
column of Y, (co) and II(w) to be fitted with the same set of poles. A columnwise 
realization for Ye(w) and H(o) can then be obtained, leading to an approximately 2-fold 
increase in efficiency as compared to an element-by-element realization [11]. 
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The final transmission line model is represented in the time domain by means of a 
Norton equivalent representation, making it compatible with general purpose 
electromagnetic transient programs such as EMTP [21]. 

4.2 Time Domain Formulation 
Consider the multiphase distributed-parameter transmission system described in section 
3.2 and illustrated again in Figure 4.1. As described in the previous chapter, the solution 
of the travelling wave equations at the sending and receiving ends of the line can be 
written in the frequency domain as [7,8], 

I, (w) = Y, ((o)V1(w)-H(w)[Yjw)V2(w)+12((O)] (4.1) 

12(w)=Yý(w)V2(o)-H(w)[Yr(w)V(w)+I(ý)ý (4.2) 

where 1 (co) and I2(co) are the vectors of sending and receiving end currents, 
respectively, V, (co) and V2((o) are the vectors of sending and receiving end voltages, 
respectively, Y, ((o) is the characteristic admittance matrix and H(CO) is the wave 
propagation matrix. 
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Figure 4.1. Multiphase distributed-parameter transmission line system 

Transforming (4.1) and (4.2) into the time domain yields the following equations, 

is(t) = Y, (t) * v1(t) -J I (t) (4.3) 

i2(t) = Yc(t) * v2(t) - J2(t) (4.4) 

where, 

J, (t) = h(t) * [yc(t) *V2 (1) + i2(t)] = h(t) * f2(t) (4.5) 

J2 (t) = h(t) * [y, (t) * VI(t)+i I (t)] = h(t) * f, (t) (4.6) 

and y, (t) and h(t) correspond to the time domain impulse responses of Y, ((O) and H(c)) 
respectively and the symbol `*' represents matrix-vector convolutions. Thus, from 
(4.3)-(4.6), it can be seen that the frequency-dependent characteristics of the 
transmission line responses, Y, ((o) and H((o), are taken into account in the time domain 
by means of numerical convolutions between the electrical quantities at both ends of the 
line and the line impulse responses, y, (t) and h(t). 

A direct evaluation of the numerical convolution integrals in (4.3)-(4.6) is always 
possible [ 1,11,18]. However, the computational effort required can become excessive 
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for calculations requiring a large number of time steps since these integrals must be 
evaluated at each discrete time step of the simulation [18]. In order to increase the 
computational efficiency of the time domain model it is recommended to develop a 
recursive formulation of the convolution integrals [19,20]. 

4.3 Rational Function Approximations 
In this research, a recursive formulation of the convolution integrals is obtained by 
approximating the time domain impulse responses (y, (t) and h(t)) with a sum of 
exponentials. The fitting is performed in the frequency domain, where the 
corresponding approximation can be written as a rational function in partial fraction 
form. Thus, the advantage of performing the approximation in the frequency domain, is 
that the time domain form of the functions, ye(t) and h(t) can be obtained directly in a 
closed form, without having to apply inverse Fourier transform techniques [14,15]. 

A further advantage is that the actual approximation of Ye((O) and H(w) with rational 
functions in the frequency domain is much easier to perform than the corresponding 
time domain approximation of y, (t) and h(t) with a sum of exponentials [10,15]. 

The following sections describe the approximation of Y, (o) and H(o)) with rational 
functions to facilitate a recursive formulation of the convolution integrals in (4.3)-(4.6). 

4.3.1 Application of Vector Fitting for Phase Domain Analysis 

The method of Vector Fitting [22] can be used to obtain the rational function 
approximations of the characteristic admittance and wave propagation functions in 
phase co-ordinates [1]. Details of the method have been described earlier in section 
2.5.1, for the approximation of modal domain transmission line responses. 

For the synthesis of Ye(w) and H(co) in the phase domain, Vector Fitting approximates 
each column of these matrices with rational functions using the same set of poles for 
each element of a given column. Thus, the poles obtained are an approximation of the 
natural frequency response of the system. It is only the residues of each element in a 
column that differ. The formulation is briefly described below for the case of a two 
element vector, further details of the formulation can be found in [22]. 

For a two element vector, the rational function approximation given in (2.46) can be 
replaced with the following [22], 

N 
E CI 

rF, (s) s-a; 
F2 (s) ! 

j=, s-a; 

Assuming the optional terms d and h in (2.46) are zero and the residue superscripts I 

and 2 refer to the corresponding elements of the frequency responses F1(w) and F2(w) 
respectively. If the same set of starting poles are selected for both vector elements, and 
a common unknown scaling function, il(s), is multiplied to both frequency responses, 
then, on introducing a rational function approximation for the unknown scaling function 
the expanded problem of (2.47) now becomes [22], 

NN 
Z C11 F, (s)E Ct 

t , 
(s) 

t=, s-at s-a F 

C12 IIF2(S) N (4.8) 
2: ZF 2(S) 

t=ýS-aj t=is - ar 
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For each frequency point of interest, (4.8) can be written as a set of overdetermined 
linear equations (Ax=b), analogously to (2.50). After solving this set of linear 
equations, an improved set of poles for fitting the original frequency response, F((O) can 
be obtained from the zeros of the unknown scaling function, rl(s), the details of which 
are described [22]. 

Finally, in order to obtain a set of residues for each frequency response, F#0) and 
F2((o)) the elements are fitted independently using the new poles as known quantities in 
(4.7). As for the scalar case, the overall process can be repeated in an iterative 
procedure with the poles obtained at each iteration used as starting poles in the next 
iterative cycle. 

4.3.2 Synthesis of the Characteristic Admittance Matrix Y,, (() 
As stated in the introduction, the elements of the characteristic admittance matrix Y, (w) 
are in general very smooth functions of frequency over the range of interest for 
electromagnetic transient studies. This has been shown in the previous chapter, where 
the characteristic admittance is evaluated for both single and double-circuit 
transmission line configurations (c. f. Figures 3.5-3.8). The elements of Y, (()) can 
therefore be accurately approximated using very low-order rational functions in the 
phase domain. 

In the following section, the results of fitting the characteristic admittance matrix with 
rational functions using the method of Vector Fitting [22] are presented. As discussed 
previously, Vector Fitting allows each individual column of the matrix to be 
approximated by the same set of poles, which leads to a more efficient time domain 
formulation [ 1,11,18] as compared to element-by-element fitting. 

The results described below correspond to a 220kV, 152.90km double-circuit 
transmission line configuration. The physical data for the transmission system can be 
found in Appendix III. 

4.3.3 Double-Circuit Transmission Line Configuration 
Figures 4.3 and 4.4 show the magnitude and phase angle of columns 1,3,4 and 6, 
respectively, of Y, ((o) for the vertical double-circuit line configuration shown in Figure 
4.2, when each column is approximated by a 10th order rational function using the 
method of Vector Fitting. The approximated results are superimposed on the accurate 
results, as calculated using the algorithm described in section 3.4.5. The starting poles 
used in the fitting process are, for all columns of Yc(ce), real and negative, 
logarithmically distributed between 1Hz and 1MHz. 
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Figure 4.2.220kV Double-circuit transmission line 
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As can be seen from Figures 4.3 and 4.4, the approximation is very accurate for each 
column of the matrix Y, ((o), for both the magnitude and the phase angle. A similar 
degree of accuracy is obtained for the remaining columns (2 and 5) of Y, ((O) (not 
shown). Real poles and residues were obtained for all the columns of Ye(w), which is to 
be expected since the elements of the function are smooth throughout the frequency 
range considered. In general, complex conjugated poles will only be obtained in the 
rational function approximation if the frequency response to be fitted contains 
resonance peaks [1,22]. 

4.3.4 Equivalent Circuit in the Time Domain 
If the elements of the characteristic admittance matrix, Y, ((o), are approximated with 
rational functions in the frequency domain, as outlined in the previous section, then 
each element of y, (t) can be written as a sum of exponentials in the time domain with a 
constant term. With y, (t) approximated in this form, it is shown in Appendix I that the 
matrix-vector convolution of the impulse response and the vector of voltages, ye(t)*v(t), 
can be performed recursively as, 

yý (t) * v(t) = Ca(t) = ye9V (t) + Ja (t) (4.9) 

where y., is a real, constant and symmetric matrix of order nxn. The second term on 
the right hand side of (4.9), J1(t), is a history current vector, evaluated from the known 
values of fi(t) and v(t) at the previous time step. By way of example, the convolution 
between element y, 11(t) and the first element of v(t) can be given in a more detailed 
form as shown below, 

YC� (t) * Va(t) = ýJ 
j(t) = zva (t) + Ja (t) (4.10) 

where, 

z=d+jpj (4.11) 

and, 
N 

Jai (t) _ q1 1 1, (t -- At) +r v° (t - At) (4.12) 
1=t 

The coefficients p;, q, and r1 are constants which depend on the time step, At, for a given 
simulation (see Appendix I for details) [14]. Note from (4.12), and as stated above, 
J,, , (I) is determined exclusively from the known values of c� (t) and v°(t) at the previous 
time step. 
From (4.9), equation (4.3) and (4.4) can be re-written as follows, 

il(t) = ygv1(t)-J, (t) (4.13) 

i2 (t) = ygv2 (t) - JZ (t) (4.14) 

where, 

Ji(t) = Je(t)-Ja1(t) (4.15) 

J2 (t) = J2 (t) - Jae (t) (4.16) 

Equations (4.13)-(4.16) can be represented in the time domain by an equivalent circuit 
expressed at each end of the line by an n-terminal admittance in parallel with an n- 
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terminal current source, as shown in Figure 4.5 [7,8]. With this representation, the 
model can be introduced into general purpose electromagnetic transient programs, such 
as EMTP [21], based on a nodal admittance representation. The constant admittance 
matrix, y,, is added to the network conductance matrix before the time domain 
simulation is executed. 

i11(t)_ 0 O 
_iz, 1(t) 
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5J(t) 

J2(t) 

yeq 
, I(t) 

Figure 4.5. Multiphase transmission line equivalent in the time domain 

4.4 Synthesis of the Wave Propagation Matrix H(w) 
As stated in the introduction, one of the most difficult aspects of modelling multiphase 
power transmission lines directly in the phase domain concerns the fitting of the 
elements of the wave propagation matrix, H(co) [1,3,7,8,11,17]. The elements of H(c)) 
exhibit a highly oscillatory nature in the frequency domain, due to the time delays of the 
line [ 1,3,7,8,11 ]. For the purposes of description, each element of H((o) can be thought 
of as being composed of a sum of modal components that will in general have different 
travel times. In this form therefore, it is extremely difficult, if not impossible, to fit the 
elements of H(co) directly in the phase domain, without using very high-order rational 
function approximations [ 11 ]. 

Thus, in order to obtain an accurate approximation of the elements of H(co), it is 
necessary to remove these oscillations before the fitting process takes place [1,3,4,7- 
9,11 ]. If the elements of H(co) can be obtained as smooth functions of frequency, then it 
follows that relatively low-order rational function approximations can be obtained. With 
the elements of the wave propagation matrix approximated with in this form, then a 
recursive formulation of the convolutions integrals, (4.5)-(4.6), can be obtained, greatly 
increasing the computational efficiency of the proposed line model. The process of 
unwinding the wave propagation matrix directly in the phase domain is the subject of 
the following sections. 

4.4.1 Unwinding the elements of H((o) 
In order to facilitate a low order rational function approximation of the elements of 
H(cw), the elements must be `unwound' before the fitting process takes place. The 
elements are then obtained as relatively smooth functions of frequency and more 
amenable to approximation by low-order rational functions. Current phase domain 
transmission line models [1-13] make use of modal components in order to unwind the 
elements of the propagation matrix. It is proposed in this research to formulate a 
solution to this problem directly in the phase domain, without resorting to modal 
components, making use of the inherent coupling between phases to unwind the 
elements of H(w). 

In modal domain based models, each mode of the weighting function A((O) can be 
unwound with relative ease, since a single time delay can be associated with each mode 
[14]. The procedure for unwinding the elements of A(w) has been discussed previously 
in section 2.6.2 of chapter two. 
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In the phase domain, the situation is somewhat more complicated. Each element of 
H(co) can be thought of as being composed as a sum of modal components which in 
general will have different time delays. Therefore, applying a common scalar phase 
shift, exp(jw r), in a similar manner to that undertaken for modal domain based models, 
will not completely remove all the oscillations present in the elements of H(w) 
[1,3,4,7,8,11]. 

If the time delays associated with the modal components of each element of H(w) are 
quite similar in magnitude, then it is usually possible to unwind the elements of H(co), 
with a common factor exp(j(ot) (where r is selected as the smallest of the modal travel 
times) and indeed this approach has previously been used in [1,3,4]. However, for 
multi-circuit lines, asymmetrical configurations and cable systems this approach may 
fail since the travel times may vary significantly between modes. As a result, 
multiplication by a common scalar phase shift, exp(jwt), will not remove all these 
oscillations from the elements of H(co) and it will not be possible to obtain a low order 
approximation [11]. 

Several alternative approaches have been suggested to solve this problem, however, 
since explicit computation of modal parameters is required, these methods cannot be 
regarded as a direct phase domain approach. In [7,8], the wave propagation matrix fl(co) 
is expressed as a sum on n modal components so that a separate time delay can be 
assigned to each mode. Since the process is undertaken in the z-domain, if the time step 
for the time domain simulation is changed, it is necessary to re-fit the elements of the 
wave propagation matrix. A similar approach has been undertaken in [11] with the 
analysis performed in the frequency domain, however, modal parameters are again 
required in the formulation. 

In order to overcome these difficulties, it is therefore proposed in this work to unwind 
the elements of H(w) directly in the phase domain. This is achieved by evaluating a 
matrix phase shift function in phase co-ordinates that enables relatively low-order 
rational function approximations of the elements of H(w) to be obtained. The method is 
described in more detail in the following sections. 

4.4.2 Matrix Phase Shift Function 
When evaluated in phase co-ordinates, the travel time function, ti, is a real nxn matrix 
(where n is the number of conductors) containing off-diagonal elements due to the 
mutual coupling that exists between the phase conductors, 

Intuitively, rather than seeking a common scalar phase factor, it is proposed in this 
research to unwind the elements of H(w) directly in the phase domain using a coupled 
matrix phase shift function. Since the matrix phase shift is evaluated directly in phase 
co-ordinates, the travel times of the transmission system are intrinsically taken into 
account in the unwinding process. The method is therefore applicable to a wide variety 
of transmission systems, including multi-circuit and asymmetrical line systems, in 
which the travel times may vary significantly in magnitude for each mode 

When evaluated directly in phase co-ordinates, the elements of H(w) can be unwound 
by multiplication with the matrix phase shift function, '(w), as follows, 

P(cu) = ebo'T H((u) = c(co)H(w) (4.17) 

The matrix r may be regarded as the phase domain "equivalent" of the modal travel 
time function, t, however, the function is used here purely as a mathematical tool, 
rather than an attempt to provide a physical description of the problem. 
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The elements of the resulting matrix P(co) are relatively smooth throughout the required 
frequency range and can thus be approximated with relatively low-order rational 
functions. The original function is then obtained as follows, 

H(co) =e 'w` p(w) = (w)P(co) (4.18) 

4.4.2.1 Evaluation of the Phase Domain Travel Time Function ti 
For a transmission line of length, 1, the phase domain travel time matrix (or PDTT), 'r, 
can be defined directly in phase co-ordinates as follows, 

=1v-1(wo) =1 C(wo)L(COO) (4.19) 

where L(wo) and C(c)0) are the series inductance and shunt capacitance matrices, 
respectively, evaluated at some high frequency point (oo. L(wo) and C(wo) are both nxn 
matrices, where n is the number of equivalent phase conductors of the system. Finally, 
u(c)o) is the phase velocity of the system (assuming: R(coo)=0 and G(o)o)=O) defined as, 

»(WO) = [C((OO)L((OO)rl (4.20) 

It can be seen from (4.19) that in order to evaluate the PDTT function at the specified 
frequency point coo, requires the evaluation of a matrix square root. This can be 
accomplished by exploiting the relationship between the matrix sign function and the 
matrix square root [23-25], in a similar manner as that proposed to evaluate the 
characteristic admittance matrix, described in section 3.4.5. The result is an accurate 
and efficient iteration for evaluating r, directly in phase co-ordinates. The procedure is 
described below: 

Consider the following block 2x2 matrix [24], 

B_0 
C(coo)L(wo) 

(4.21) 
[I-2u 

0 

where U is the nxn unit matrix and 1 is the length of the line. By substituting (4.21) 
into (3.35), the sign of the matrix can be defined in terms of the PDTT function, giving 
the following relationship, 

0 C(coo)L(WO) 0 IU{C(wo)L(wo)]ý"2 
sign([, _2U 0 1-'U[C(wo)L(wo)rii2 0 

(4.22) 

Applying the Pade iteration scheme, as described in section 3.4.4 to evaluate the matrix 
sign function, to the 2x2 block matrix in (4.21) leads to the following algorithm for 
computing the PDTT function, 

Yý. i(w) =p Yý (w)ý ýZký (w)Ykt (w) + a? ur1 

P k=0,1,2,... (4.23) 
Zk+i (w) =p Zk (W)Y 

, 

[yki (w)Zk' (Co) +a Uri 

In this case, algorithm (4.23) converges to the following: Yk -), T and Zk with 
initial conditions given by Yo L(wo)C(o)0) and Z 0t2U. 
4.4.2.2 Convergence Properties 
A summary of the convergence characteristics of algorithm (4.23), for evaluating the 
PDTT function for different orders, p, of the Pade approximation, is shown in Table 4.1. 
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Two sets of results are presented in Table 4.1, corresponding to the evaluation of ti for 
both single and double-circuit transmission line systems. The single-circuit line 
corresponds to that of section 3.5.1 (c. f. Figure 3.4) and is 398km in length. The double- 
circuit line in comparison is 152.901an in length and is illustrated in section 4.3.3 (c. f. 
Figure 4.2). 

A pre-specified tolerance of 1.0E-15 was selected to measure convergence for all the 
cases presented. 

Table 4.1. No. of iterations required to evaluate t 
Double-c ircuit line Single-circuit line 

p Unscaled Scaled Unscaled Scaled 
1 30 4 31 3 
2 15 2 16 2 
3 12 2 12 1 
4 10 2 11 1 
5 9 1 10 1 

As for the case of evaluating the characteristic admittance matrix, it can be seen from 
Table 4.1 that algorithm (4.23) will always converge, irrespective of the order of the 
Pade approximation. Again, employing the same scaling strategy of section 3.4.7 
significantly decreases the number of iterations required to obtain convergence and it is 
recommended to employ this scaling strategy when evaluating ti [24]. For the remainder 
of the results presented in this thesis, the evaluation of the PDTT function, 'r, is 
performed using a value ofp=3, for the Pade approximation order in (4.23). The scaling 
technique described in section 3.4.7 is also applied in the evaluation oft. 

4.5 Evaluation of the Matrix Phase Shift Function t(w) 
In order to unwind the elements of the wave propagation matrix, H(w), directly in phase 
co-ordinates, it is proposed to calculate a matrix phase shift function, c(w), formerly 
defined as follows, 

(D(o)) = e'`)` (4.24) 

where z, is anxn matrix. The evaluation of (4.24) can be undertaken using the Pade 
approximation scheme developed in the previous chapter to calculate the wave 
propagation matrix. The argument matrix in this case is defined as follows, 

S(o) = jwl C(wo)L(wo) (4.25) 

where L(wo) and C((oo) are nxn matrices evaluated at some high frequency point (0, 
and 1 is the length of the line. Again, the diagonal Pade approximants (p=q) are used in 
order to increase the overall efficiency and stability of the algorithm (see section 3.6.6 
for more details) [26,27]. Assuming a diagonal Pade approximant (p=q), then the 
following algorithm is obtained for evaluating mo(w), directly in the phase domain [26], 

Rpp(S) - 
NPP(S) 

(4.26) 
Npp(-S) 

where, 
P 

NpP(S) _ ZckSk (4.27) 
k=0 
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and, 

p+l-k 
Ck - Ck-t (2p + 1- k)k 

with co=1. Again, Homer's Rule can be applied to increase the efficiency of the 
algorithm when evaluating the numerator and denominator in (4.26) [27]. 

It was found that numerical stability problems arise when evaluating (4.26) directly. 
This can be attributed to norm of the argument matrix (4.25) increasing in magnitude 
with frequency [26]. A similar problem was found when evaluating the wave 
propagation matrix. This problem was discussed in detail in section 3.6.4 of the 
previous chapter. 

From (4.25) it can be seen that the length of the transmission line will influence the 
magnitude of the norm of S(c)). Following the discussion of section 3.6.5, once the 
magnitude of the norm increases above a certain threshold value, the accuracy of 
algorithm (4.25) will deteriorate substantially. 
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Figure 4.6 (Top) Norm of the matrix S(co) and (Bottom) Number of squaring operations 
required to evaluate I(co), for different line lengths. 

Figure 4.6 highlights the variation of the norm of the argument matrix, S(O)), with 
frequency for line lengths of 1=10km, 50km, 100km, 300km, 600km, and 1000km using 
the single-circuit transmission line described in section 3.5.1. The choice of the 1000km 
line, while unrealistic in a practical sense is useful for the purposes of analysing the 
characteristics of algorithm (4.26). 

Again, following the discussion of section 3.6.5, the matrix phase shift function, cb((o), 
can only accurately be evaluated when the norm of the argument matrix is less than one 
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[26-28]. From Figure 4.6 it can be seen that this relationship is only satisfied up to 
frequencies in the approximate range 70Hz-8000Hz, the lower frequency point 
corresponding to the longest line investigated. Therefore, in order maintain a high level 
of accuracy over the entire frequency range of interest, the scaling and squaring 
technique described in section 3.6.5 must be applied at frequencies in which the norm 
of S((o) exceeds one. 
In order to give an indication as to the number of squaring operations required to 
accurately evaluate I((o), the function is evaluated for the same single-circuit 
transmission line configuration with different line lengths as described above. The order 
of the Pade approximation is set at p=4. With this value, CD(w), can be accurately and 
efficiently evaluated over the entire frequency range of interest. 

From Figure 4.6, the number of squaring operations, as a function of frequency, shows a 
similar pattern to that of the wave propagation matrix (c. f. figure 3.15). The maximum 
number of squaring operations required to accurately evaluate (4.26) can be anticipated 
to increase as power lines of longer length are considered. However, the number of 
squaring operations should be expected to reach some limiting value, irrespective of the 
transmission line configuration, frequency interval and line length under consideration. 
4.6 Time Domain Form of the Matrix Phase Shift Function 

After the elements of the matrix P(c)) have been successfully synthesized with rational 
functions in the frequency domain, the approximated wave propagation matrix, Hl(a ), 
can then be obtained as, 

Hf (co) =e J""P 
f (co) = c' (o)P1(w) (4.29) 

where the subscript `f denotes the approximated function and 0'((0) is termed the 
negative phase shift function and is an nxn matrix. In the time domain, 0-(c)) 
corresponds to a matrix of coupled, time delayed impulses. 

To recap, in modal domain based methods, the weighting function, A((O), is unwound in 
the frequency domain by introducing a scalar phase shift factor, exp(/(OT ), where Tk 
corresponds to the fastest frequency component for each mode k [14,15,18]. The 
elements of P(a) are then obtained as relatively smooth functions of frequency and can 
be accurately approximated using low-order rational functions. The rational function 
approximation of P(o) is then multiplied with a negative phase shift exp(j(oik) to return 
an approximation of the original weighting function [14,15,18]. In the time domain, the 
factor exp(jo tt) corresponds to a unit impulse, S(t-tik), delayed by a interval equal to 
the modal travel time;. 
For multi-conductor transmission line systems, modelled directly in phase co-ordinates, 
the determination of the correct time delays for each element of the approximated wave 
propagation matrix is less straightforward. The difficulty arises in interpreting the time 
domain form of the negative phase shift function V (o)). Each element of 4-(t) is 
composed of n coupled time delays, where n is the number of phase conductors of the 
system, rather than with a single time delay as in the modal approach. The exact 
`weight' of each impulse, and the corresponding delay cannot be pre-determined 
directly in phase co-ordinates from the frequency domain form of the function. 

Therefore, in order to determine the appropriate phase shifts (time delays) that must be 
introduced into the elements of P, (w) (p, ((t)), to obtain a time domain approximation of 
the original wave propagation matrix, H(a ), it is necessary to apply an inverse Fourier 
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transform on the elements of Since the elements of 0-(0)) are obtained as 
discrete functions of frequency, a discrete form of the inverse Fourier transform is used. 
Figure 4.7 shows the time domain form of four elements of the negative phase shift 
function, 4-(t), evaluated for the 152.9km double-circuit transmission line illustrated in 
Figure 4.2. The PDTT function, i, in this case is evaluated at a frequency of coo 1MHz, 
using the Pade iteration scheme of (4.23). The order of the Pade approximant in this 
case is p=3. 

It can be seen from Figure 4.7 that each element of 4'(t) is composed of a series of 
weighted impulses, with a different time delay associated with each impulse. The time 
delays of the impulses correspond exactly to the eigenvalues of the PDTT function, ti. 
For the double-circuit transmission line under consideration, t, is 6x6 matrix and thus 
has six eigenvalues. It should be expected, therefore, that each element of Oi-(t) be 
composed of six impulses, each associated with a different time delay and weight. 
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Figure 4.7 Elements of the time domain form of the negative phase shift function, 
for a double-circuit overhead line 

However, it can been see from Figure 4.7 (particularly evident from the diagonal 
elements shown) that there are less than six weighted impulses present. This can be 
attributed to the system possessing a group of confluent eigenvalues (the eigenvalues of 
r can be regarded as `equivalent' to the modal travel times of the system). For the 
diagonal elements, all the impulses have the same sign and are resolved as a lumped 
impulse, centred on the time delay of the dominant impulse in the group (in respect to 
the magnitude of the weights of the impulses). This is evident from the diagonal 
elements illustrated in Figure 4.7. 
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In contrast, the off-diagonal elements are composed of a series of positive and negative 
impulses. Again, not all the impulses in a confluent group will appear visible since the 
weight of any particular impulse may be negligible as compared to the remaining 
impulses of the group. This is illustrated for the off-diagonal elements shown in Figure 
4.7. 

In order to clarify the above comments and better describe the form of the elements of 
4'(t), in Figure 4.7, the negative phase shift function is defined below in the frequency 
domain, in terms of the eigenvalues of the system. 
The matrix V(0) can be defined in terms of the eigenvalues of the PDTT function, r, as 
follows (see Appendix II for details), 

(D (D 
12 

(o)) cI 3 
(w) 

-(co) ý= e J° = cp21((0) (D 22(w) (Ds3(co) (4.30) 
(D3 

L 
(co) (D32 (co) t33 (ü) 

where, 

mo (w) _ Tk (w)Tk, (w)e ')T k (4.31) 
k-1 

From (4.31), the composition of each element of V(w) can be seen to be made up of a 
series of weighted phase shifts. The values of 'rk are equal to the eigenvalues of the 
PDTT function, T. 

Thus, in the time domain, each element of 4-(t) will be composed of n weighted 
(()1(. o)), delayed impulses, where n is the number of phase conductors of the 

system. However, if some of the eigenvalues of the matrix r are very similar, then in 
practice there will be less than n impulses observable, due to the grouping of impulses. 
In the case of the diagonal elements, the confluent eigenvalues will generally form a 
single weighted impulse (all the weights are of positive sign), centred on the time delay 
of the dominant mode. 
For the off-diagonal elements, the weights associated with each impulse will in general 
differ in sign and several dominant impulses will be seen to emerge. 

This can be elaborated on further by analysing the actual eigenvalues of the PDTT 
function for the case of the double-circuit transmission line, discussed above. The 
eigenvalues of r, are shown in Table 4.2. 

Table 4.2. Eigenvalues of matrix ti for a double-circuit line 

Ei envalues of T 

, r, =0.000536129 
t =0.000517175 
, c, =0.000514662 
, r4=0.000516173 
, r, =0.000515693 
-r6=0.000515975 

From Figure 4.7, the last impulse for each element can be seen to be associated with T,. 
Observing element (4,1) in more detail, it can be seen that the first impulse is associated 
with eigenvalue r3, and is negative in sign. This is followed shortly after with a 
dominant positive impulse that is associated with eigenvalues is and 'r6. The final two 
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impulses in this confluent group are associated with eigenvalues T4 and tie that are 
negative and positive in sign, respectively. The weight of the impulse associated with r5 
is greater in this case. 
The characteristics of the elements of 4'(t), as described above, can clearly be seen in 
Figure 4.7. One additional observation that can be made concerns the sum of the 
weights for each element of 4'(t). It can be see from Figure 4.7 that the sum of the 
weighted impulses for the diagonal elements is approximately equal to one, whereas 
that for the off-diagonal elements, is zero. This is consistent for the remaining elements 
of the matrix 4-(t). 

4.6.1 Scalar Impulse Functions 
In the recursive formulation of the convolution integrals in (4.5) and (4.6) it is 
necessary to know the exact value of both the time delays, and weights of the impulses 
that make up each element of the negative phase shift function, 0-(co). This can be 
accomplished by approximating each element of 4-(t) with a sum of weighted scalar 
impulse functions (or weighted negative phase shifts in the frequency domain). The 
time domain form, of 0'((o) can be obtained by applying a discrete inverse 
Fourier transform routine on the elements of (D'(w), as described in the previous 
section. With the time delays and weights of each element that make up i-(t) known, 
the recursive formulation of (4.5) and (4.6) can then be obtained. 

In the frequency domain, each element of 0-(co) can be approximated with a sum of 
weighted scalar phase shifts as written below, 

M 

WV te 
j("k (4.32) 

where n is the number of phase conductors of the system, w is the weight of each 
impulse and Tt is the approximation of the time delay of the k'th impulse. Each ikcan be 
regarded as equivalent to the modal travel times of the system. 

With experience, the values of wk and Tk in (4.32) can be determined in the frequency 
domain, in a `trial and error' fashion, with relative ease. In the time domain this 
corresponds to a sum of scalar impulse functions, 6(t-Tk). It should be noted that a 
discrete inverse Fourier transform need not be applied to transform each approximating 
function into the time domain. In order to ascertain whether the sum of weighted phase 
shifts are an accurate approximation for each corresponding element of 0-((0) it is 
sufficient to observe both the functions in the frequency domain. If the approximation is 
sufficiently accurate as a function of frequency, then the corresponding time domain 
form of both functions will exhibit a similar degree of accuracy. This saves a 
considerable amount of computational effort, given the time required to perform the 
inverse Fourier transform with a sufficiently high degree of accuracy. 

In order to compliment the above comments, consider the following example pertaining 
to the 345kV single-circuit transmission line system described earlier in section 3.5.1 
(c. f. Figure 3.4). The line is taken to be 398km in length and is assumed untransposed in 
this example. The PDTT function, t, is evaluated at 1MHz, using the algorithm 
described in section 4.4.2.1. As with previous examples, the order of the Pade 
approximant is taken to bep=3. 

Four elements of the time domain form of the negative phase shift function, 4"(t), are 
shown in Figure 4.8. Also, superimposed on the exact functions are the approximations 
using scalar impulse functions. In order to highlight the accuracy of the time domain 
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approximation of each element of the scalar impulse functions are also 
transformed into the time domain using an inverse Fourier transform routine. Although, 
as stated above, in practice this is not required. From Figure 4.8, the accuracy of each 
approximation can be seen to be very good. For the diagonal elements presented, three 
weighted impulses are clearly visible, however the magnitude of the first impulse in 
both cases is much less than that of the remaining two. 
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Figure 4.8. Approximation of the elements of 4-(t) in the time domain with scalar 
impulse functions, for a single-circuit transmission line 

For element 413(1), three impulses can be observed, again the magnitude of the first 
impulse is very small compared to the two subsequent impulses. Finally, for element 
ý, (t) , two impulses are can be observed. In this case, the magnitude of the third 
impulse can be assumed negligible 

4.7 Synthesis of the Wave Propagation Matrix H(w) 

After multiplication of the matrix phase shift function, b((o), the elements of the shifted 
wave propagation matrix, P(u)), are obtained as relatively smooth functions of 
frequency and can be synthesized using comparatively low-order rational functions. 

In the following section, the results of fitting P(co) with rational functions using the 
method of Vector Fitting [22] are presented. As for the case of the characteristic 
admittance matrix, each individual column of the matrix is approximated by the same 
set of poles, only the residues for each element differ. This leads to a 2-fold increase in 
efficiency in the time domain formulation as compared to element-by-element fitting 
[11]. 
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The results described below correspond to a 220kV double-circuit transmission line 
configuration. The line is 152.90km in length. The physical data for the transmission 
system can be found in Appendix III. The double-circuit transmission line system has 
been illustrated previously in section 4.3.3 (c. f. Figure 4.2). 

4.7.1 Double-Circuit Transmission Line Configuration 
Figures 4.9 and 4.10 show the magnitude and phase angle of columns 1,3,4 and 6, 
respectively, of P(co) for the vertical double-circuit line configuration shown in Figure 
4.2, when each column is approximated by a 39`s order rational function using the 
method of Vector Fitting. The approximated results are superimposed on the accurate 
results, as calculated using the algorithm described in section 3.6.6. The starting poles 
used in the fitting process are, for all columns of P(o)), real and negative, 
logarithmically distributed between IHz and 1MHz. 

As can be seen from Figures 4.9 and 4.10, a high degree of accuracy is achieved for 
each column of the matrix P(o)), for both the magnitude and the phase angle. A similar 
level of accuracy is obtained for the remaining columns (2 and 5) of P(co) (not shown). 
Real and complex conjugated poles are obtained for all the elements of P(O)), with the 
complex conjugated poles arising in the high frequency range. 

4.8 Evaluation of the Phase Domain Convolution Integrals 
As discussed previously, the computationally efficiency of the time domain model can 
be significantly increased if the numerical convolutions of (4.3)-(4.6) are formulated in 
a recursive manner. This is achieved in this research by fitting the elements of both the 
characteristic admittance and wave propagation matrices with rational functions using 
the method of Vector Fitting [22]. The recursive evaluation of the characteristic 
admittance function has already been addressed in section 4.3.4 and Appendix I. The 
following section therefore concentrates on the evaluation of the convolution integrals 
involving the wave propagation matrix, namely (4.5) and (4.6). 

A sum of exponentials is obtained in the time domain if the fitting of the wave 
propagation matrix [4] (after the matrix phase shift has been applied as in (4.17)) is 
performed in the frequency domain using rational functions. With h(t) approximated in 
this way, it is shown in Appendix I that the matrix-vector convolution of the wave 
propagation matrix and the forcing function f(t), can be evaluated recursively as, 

h(t) * f(t) = fi(t) = Jb(t) (4.33) 

where Jb(t) is a vector of past history determined from previous values of f(t) and 4(t). 
The convolution between the 0 element of h(t) and the first element of the forcing 
function, f(t), can be expressed as 

ho (t) * f* (t) =fi(t) = Jb (t) (4.34) 

where, 

J 
bijW =1: 

ýEwikiCkjm`am4,, (t-ý) }Nmfa(t-ti! )+YmJ (4.35) 
k. I m-1 i-I 

The coefficients a,,, P. and X. are constants that depend on the time step, At, for a given 
simulation [14], w corresponds to the weight of the respective scalar phase shift, and cm 
are the residues for the j`' element of h(t), obtained from the rational function 
approximation. Again, note that (4.35) is determined completely by past values of 
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and f° (t) . More detail of the derivation of (4.34) and (4.35) can be found in Appendix 

Substituting (4.33) into (4.5) and (4.6) gives the following expression for the nodal 
equations, (4.3) and (4.4), at each end of the line, 

i, (t)=yegv, (t)-J, (t) (4.36) 

i2 (t) = yeq '2 (t) - J2(t) (4.37) 

where, 

Je(t) = Jbl(t) -j aI 
(t) (4.38) 

J2 (t) = Jb2 (t) - Jae (t) (4.39) 

4.8.1 Final Time Domain Equivalent Circuit 
As discussed in section 4.3.4, equation (4.36)-(4.39) can be represented in the time 
domain by a constant admittance in parallel with a time dependent current source, i. e. a 
Norton equivalent circuit, as illustrated in Figure 4.11. 

Figure 4.11 represents the complete equivalent circuit representation of the newly 
developed phase domain transmission line model. With the model represented in this 
form, it can be introduced into general electromagnetic transient programs such as 
EMTP [21], based on a time dependent current source in parallel with a constant 
admittance. As stated previously, the constant equivalent admittance, ycq, is included in 
the network admittance matrix before the time domain simulation is executed. 

v1.1(1) 

n n 
, (t) 

t) 

Figure 4.11 Norton equivalent representation for the phase domain transmission line 
model 

4.8.2 Scalar Impulse Grouping 
The phase domain convolutions involving the wave propagation matrix requires 
evaluation of n3 scalar convolutions per line end. An additional n2 convolutions are 
required for the characteristic admittance matrix, giving a total of (n3+n2) convolution 
operations per line end in the new model. For comparison, there are (2n2+2n) 
convolutions per line end in the modal domain model of [17] where the frequency- 
dependent transformation matrix is also approximated with rational functions. Using a 
constant transformation matrix, this is further reduced to 2n convolutions per line end 
[14]. Phase domain transmission line models using a common scalar phase shift to 
unwind the elements of the wave propagation function utilize 2n2 convolutions per line 
end. 
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However, in practice, the actual number of convolutions required to evaluate (4.5) and 
(4.6), is likely to be less than this maximum value. The time domain form, n-(t), of the 
negative phase shift function has been described and illustrated previously in section 
4.6. Each element of 4"(t) can be seen to be composed of a series of weighted impulses 
(c. f. Figures 4.7 and 4.8). The time delay of each impulse can be regarded as equivalent 
to the modal travel times of the system. If a group of travel times for a given system 

, 
have a similar magnitude, then it is likely that the number of impulses observable will 
be less than that anticipated. 

For an n conductor system, n weighted impulses should be anticipated in the time 
domain form of the negative phase shift function. However, a reduced number of 
weighted impulses will generally occur when one of the following situations arises: 
1) A single impulse within a confluent group is dominant, in terms of the magnitude of 

its corresponding weight. In such cases, the remaining impulses will, in general, 
have negligible weights and for the purposes of analysis can be assumed zero. 

2) If the travel times are very similar in magnitude the impulses will, in general, be 
lumped together, so that a reduced number of impulses are visible. 

If either one of the above situations manifests itself, then it can generally be assumed 
that the number of scalar convolutions required to evaluate (4.5) and (4.6) will be less 
than n'. This is illustrated in Figure (4.7) for a double-circuit line configuration. The 
number of weighted impulses expected in this case is six. However, for the diagonal 
elements, only three impulses are visible. A similar situation arises for the off-diagonal 
elements, where three peaks are evident. The remaining impulses in this case can be 
assumed negligible, without loss of accuracy. The computational efficiency of the 
proposed line model in these cases can therefore be expected to improve considerably. 

Further savings in computation time are obtained by fitting the elements of each column 
of Ye(w) and H(co), with the same set of poles using the method of Vector Fitting 
[1,18,22]. With the elements of each column fitted with the same set of poles, the 
efficiency of the new model should increase by about a factor of 2 [11] as compared to 
conventional element-by-element fitting techniques. 

4.9 Conclusions 
This chapter has described the time domain development of a new power transmission 
line model for conducting electromagnetic transient studies in which the analysis is 
undertaken entirely in frame of reference of the phases. 

Both the characteristic admittance matrix, Y#o), and the wave propagation matrix, 
H(o)), have been approximated with rational functions in the frequency domain using 
the method of Vector Fitting. The elements of Y#o) are in general smooth throughout 
the entire frequency range of interest and can therefore be approximated with low-order 

rational functions. However, for multi-conductor transmission systems, one of the main 
difficulties in conducting the analysis directly in the phase domain concerns the 

unwinding of the elements of H(co). Unlike the characteristic admittance, the elements 
of the wave propagation matrix exhibit a highly oscillatory behaviour in the frequency 
domain due to the time delays of the line. These oscillations must be removed from 
H(co) before the fitting process is undertaken in order to fit the elements of H(ca) using 
relatively low-order rational functions. 

The elements of H((o) have a series of travel times associated with them, due to the 
coupling between the phase conductors. In general, each coupled time delay will be 
associated with a different travel time. Therefore, unwinding the elements of H(w) with 
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a common, scalar phase shift corresponding to the fastest mode of the system (as is 
undertaken in current phase domain models) will not completely remove these 
oscillations. 
In order to overcome these difficulties, a matrix phase shift function has been proposed 
to unwind the elements H(w) directly in phase co-ordinates. The coupled time delays of 
the line are intrinsically taken into account when the analysis is undertaken in the phase 
domain. The elements of the resulting shifted wave propagation matrix, P((w), are 
obtained as relatively smooth functions of frequency and can therefore be approximated 
using relatively low-order rational functions. 

In the time domain, the approximation of the original wave propagation matrix is 
returned by assigning the appropriate time delays to the elements of p(t). At this point 
in time, a drawback with this approach is that in order to determine the appropriate 
coupled time delays, a negative phase shift function must be evaluated and transformed 
into the time domain using a discrete inverse Fourier transform routine. The 
corresponding time delays associated with each element of 4'(t) can then be 
approximated in the time domain by weighted scalar impulse functions. 

The final phase domain transmission line model can be implemented in general purpose 
electromagnetic transient programs, such as EMTP, by means of a Norton equivalent 
representation. 

Notwithstanding its many advantages, the computational efficiency of the proposed 
method is less than that of existing methods (with the possible exception of [11]) since 
additional convolutions are required to be performed. However, in most cases, the 
number of convolutions involving the wave propagation matrix will be less than the 
maximum expected since travel time grouping reduces the number of time delayed 
impulses. Additional time savings are obtained because a columnwise realization for 
H(a) is utilized. 
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CHAPTER 5 

TIME DOMAIN SIMULATIONS 
This chapter is concerned with the time domain testing of the new 
phase domain model of power transmission lines suitable for 
conducting electromagnetic transient studies. The development of this 
phase domain model has been the theme of the previous two chapters. 
The model is formulated entirely in phase co-ordinates such that any 
geometric imbalances inherent in the line are automatically taken into 
account. The attenuation and distortion of the waves as they 
propagate along the line over a resistive ground are taken into account 
by fitting the transmission line responses as a function of frequency 
with rational functions using the method of Vector Fitting. The 
frequency-dependent nature of these functions is then included in the 
time domain simulation through convolutions between the line end 
quantities and the impulse responses. The model is finally 
incorporated within general purpose electromagnetic transient 
programs by means of a time dependent vector of current sources in 
parallel with a constant admittance matrix. This chapter details the 
simulation of a sequential energization of a real-life transmission 
circuit. The results obtained from the newly developed phase domain 
line model are compared against those obtained using frequency- 
Independent and frequency-dependent transmission lines based on a 
modal decomposition methodology. The results compare favourably 
with available field measurements and highlight the accuracy attained 
when conducting the analysis entirely in phase co-ordinates. 

5.1 Introduction 
The formulation of a new phase domain model suitable for analysing electromagnetic 
transient phenomena arising in power transmission lines has been the main theme of the 
previous two chapters. The application of this phase domain transmission line for time 
domain simulations is the subject of this chapter. 
Conducting the analysis entirely in the frame of reference of the phases has a number of 
advantages. Firstly, since the rest of the network is represented in phase co-ordinates, 
there is no requirement to introduce frequency-dependent modal decompositions 
[23,24] at any point in the analysis. However, all the phase domain models presented in 
the open literature thus far, make use of the modal domain at some stage in the initial 
formulation of the problem in the frequency domain [9-21]. The phase domain aspect of 
these models concerns the final time domain simulations. The models can therefore be 
regarded as a mixture of the phase and modal methodologies. 

Formulating the problem directly in the phase domain also avoids any problems that 
might arise when the governing coupled equations describing the propagation of the 
travelling waves along the transmission line are non-diagonalizable, at which point 
conventional modal decomposition theory breaks down [4,5]. In such cases, a more 
generalised approach must be taken which involves the use of Jordan Decompositions 
[4,5]. 

The frequency domain data (the series impedance and shunt admittance) required to 
evaluate the transfer functions that may characterise a given line, namely the 
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characteristic admittance and the wave propagation matrices [ 19,20], is initially 
obtained directly in phase co-ordinates. Thus, since from this point forward the analysis 
remains in this frame of reference, any geometric imbalances that are naturally present 
in the original frequency domain data are inherently taken into account throughout the 
rest of the model formulation. 

The ability to incorporate these imbalances is important, for example, when simulating 
transient overvoltages arising from the sequential energization of an overhead line [1]. 
The mutual coupling that exists between phase conductors can impinge on the 
magnitude and wave-shape of the transient overvoltages produced during such 
disturbances in the power network. The magnitude of induced voltages that may appear 
on the still open phases of the line during energization [1] are dependent upon the 
values of the off-diagonal terms of the characteristic impedance matrix, which is in turn 
dependent upon the spacing and configuration of the phase conductors [25-28]. 

This chapter presents the results of a sequential energization of a real-life 345kV single- 
circuit transmission network, obtained for the newly developed phase domain 
transmission line model and compared against those obtained using frequency- 
independent [2,3] and frequency-dependent [6,7] methods incorporating modal 
decomposition methodology [23,24]. Both models have been described previously in 
chapter two. 

The 345kV single-circuit transmission system has been chosen since actual field 
measurements are available [8] with which to assess the accuracy of the proposed phase 
domain model. The results are shown to be in good agreement with these field 
measurements, and highlight the improved accuracy attained with this methodology as 
compared to those of conventional modal approaches that assume the transformation 
matrices are at a constant frequency. 

5.2 Time Domain Implementation 
The phase domain transmission line model that has been described over the previous 
two chapters has been written as a computer program for the purpose of testing the 
model in time domain electromagnetic transient simulations. As with previous models, 
the FORTRAN programming language has been adopted to provide a convenient means 
to export the phase domain transmission line model into the simulation environment 
required for real-time model execution. The incorporation of this model for real-time 
digital simulations is discussed in the next chapter. 

The newly developed phase domain transmission line model can be embedded in a 
simulated power network in which the elements are represented as time dependent 
current sources in parallel with a constant admittance, in accordance with the approach 
in the EMTP [2,3]. The line model is then introduced into this network model using a 
Norton equivalent circuit, as discussed earlier in section 4.8.1 (c. f. Figure 4.11). 

5.3 Sequential Energization Test 
In the following section the calculated results of a sequential energization of the 345kV 
Jaguara-Taquaril power transmission system in the State of Minas Gerais, Brazil are 
presented. The transmission system is illustrated in Figure 5.1. The single-circuit 
transmission line is 398km in length and for the case of the frequency-independent and 
frequency-dependent transmission line models, it is assumed transposed. The 
transformation from phase to modal components and vice-versa is undertaken using the 
Karrenbauer transformation matrix (see section 2.2.2.1). Details of the transmission 
system can be found in Appendix III [8,29]. 
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The contacts of the circuit breakers are closed during the energization according to the 
sequence given Table III. 1 of Appendix III. The line parameters for the frequency- 
independent models are calculated as given in Table 111.2, also shown in Appendix III. 
In this case, the earth is assumed homogeneous with a resistivity of 1000m. 

The simulated transient voltages presented in this chapter have all been obtained 
assuming a time step of 34µs. 

? nno 20052 

Figure 5.1. Jaguars-Taquaril 345kV transmission system 

5.3.1 Order of the Rational Function Approximations 
The order of the rational function approximations used to approximate the frequency 
domain variation of the line responses for the frequency-dependent and phase domain 
transmission line models are summarised in Tables 5.1 and 5.2, respectively. The 
frequency responses are calculated in the interval 10"2Hz-106Hz. 

The method of Vector Fitting [22] has been used to obtain the rational function 
approximations of the line responses for both models. In the case of the phase domain 
model, the characteristic admittance, Y, (co), and the shifted wave propagation function, 
P(o)), are approximated in the phase domain. The elements in each column of these 
matrices are fitted with the same set of poles, only the value of the residues for each 
element of a column differs in magnitude. This columnwise realization is expected to 
bring about a 2-fold increase in the computational efficiency of the time domain model 
when evaluating the time domain matrix-vector convolutions, as compared to element- 
by-element fitting [ 19]. 

Table 5.1. Summary of the approximation orders for Z, ()) and P(co) 

Mode Z. (co) P(w) 
Zero 12 12 

Positive 12 12 

Table 5.2. Summary of the approximation orders for Ye((o) and P((u) 

Column Yc w P(O)) 
1 10 35 
2 10 35 
3 10 35 
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5.3.2 Sending End Results 
Figures 5.2,5.3 and 5.4 show the simulated transient voltages for phases a, b and c 
respectively, obtained at the sending end of the line for the frequency-independent, 
frequency-dependent and phase domain transmission line models, following the 
sequential energization of the line. 

It can be seen that up until approximately 20ms, the simulated transients predicted from 
the three line models are very similar. In the time interval -16-18ms, the phase c 
voltage predicted by the phase domain transmission line model shows a greater 
attenuation than that calculated by the frequency-independent and frequency-dependent 
line representations. 

After this time period, it can be seen that the phase b and c transient voltages computed 
with the phase domain model are delayed by almost lms as compared to the other line 
models. It can also be seen that there is, in general, a magnification of the higher 
harmonics contained within the voltage waveforms of the frequency-independent model 
after 20ms. A summary of the peak phase voltages when calculated using the three 
different line representations is provided in Table 5.3. 

Table 5.3. Peak voltage magnitude (sending end) 

d M h Peak voltage magnitude (p. u. ) et o Phase a Phase b Phase c 
Phase domain model 1.287 1.336 1.315 

Frequency-dependent model 1.312 1.369 1.422 

Frequency-independent model 1.345 1.505 1.45 

5.3.3 Comparison with Field Measurements (Sending End) 
The simulated phase voltages at the sending of the line for the frequency-dependent and 
phase domain transmission line models are compared further with the actual field 
recordings of the sequential energization of the Jaguara-Taquaril transmission system, 
as described in [8]. 

Figure 5.5 shows the computed transient voltages of the three phases at the sending end 
of the line for the phase domain transmission line model (solid line), superimposed on 
those of the frequency-dependent model (dashed line). Figure 5.6 shows the 
corresponding phase voltages obtained from the available field measurements [8] (solid 
line), superimposed on those from the EMTP (dashed line) [2]. 

From a comparison of Figures 5.5 and 5.6 it can be seen that there is, in general, a good 
agreement with the simulated transients obtained with both line models and those of the 
field measurements. After approximately 20ms there is a noticeable time delay in the 
waveforms of both the phase domain transmission line model and the actual field 
measurements, when compared against the transient voltages computed by the 
frequency-dependent line model. 

5.3.4 Receiving End Results 
Figures 5.7,5.8 and 5.9 show the simulated transient voltages for phases a, b and c 
respectively, obtained at the receiving end of the line for the frequency-independent, 
frequency-dependent and phase domain line models, following the sequential 
energization of the line. 

The amplification of the peak voltage magnitudes, as computed by the frequency- 
independent line model, is immediately noticeably from Figures 5.7,5.8 and 5.9. This is 
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a direct consequence of assuming the line is lossless and the parameters of the line 
constant, with respect to frequency [8,29]. However, as the waves travel along the line, 
they are subjected to both attenuation and distortion due to the presence of the resistive 
ground [7]. Neglecting this frequency-dependence can be seen to significantly effect the 
accuracy of the time domain solution. 
For the phase a voltage, both the frequency-dependent and the phase domain 
transmission line models exhibit similar characteristics. After 20ms, a small delay is 
apparent in the transient voltage computed with the phase domain model, when 
compared to that of the frequency-dependent method. For phase b and c this delay is 
more clearly visible, also the peak voltage magnitudes for both phase b and c are also 
reduced as compared to the frequency-dependent line. A summary of the peak voltage 
magnitudes for the phase domain, frequency-dependent and frequency-independent line 
models is provided in the following section. 

5.3.5 Comparison with Field Measurements (Receiving End) 
The accuracy of the newly developed phase domain transmission line model is assessed 
further by comparing the simulated phase voltages with the actual field recordings of 
the sequential energization of the Jaguara-Taquaril transmission system, as described in 
[8]. 

Figure 5.10 shows the computed transient voltages of the three phases at the receiving 
end of the line for the phase domain transmission line model (solid line), superimposed 
on those of the frequency-dependent model (dashed line). Figure 5.11 shows the 
corresponding transient voltages obtained from the available field measurements (solid 
line), superimposed on those from an electromagnetic transient program (dashed line) 
[29]. A summary of the peak voltage magnitude for each phase, within the time period 
of the available field measurements, is provided in Table 5.4 for the three line models 
and the field measurements. 

Table 5.4. Peak voltage magnitude (receiving end) 

Peak vol ts e magnitude (p. u. ) Method 
Phase a Phase b Phase c 

Field Measurements 1.88 1.6 1.35 
Phase domain model 1.726 1.736 1.314 

Frequency-dependent model 1.738 1.846 1.468 
Frequency-independent model 2.01 1.82 1.501 

Table 5.5. Error in peak voltage magnitude (receiving end) 

Error in peak voltage magnitude N1cthod Phase a Phase b Phase c 
Phase domain model 8.19 8.5 2.67 

Frequency-dependent model 7.55 15.375 8.74 

Table 5.6. Time of peak voltage magnitude (receiving end) 
Peak voltage magnitude (ms) 

Method Phase a Phase b Phase c 
Field Measurements 21.28 19.5 18.2 
Phase domain model 21.25 19.142 17.34 

Frequency-dependent model 21.18 18.768 17.27 
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From Table 5.4 it can be seen that the predicted peak voltage magnitudes using the 

phase domain model are, in general, in better agreement than those of the frequency- 
dependent line representation when compared against the available field measurements. 
The exception is with the phase a voltage, where the value predicted by the frequency- 
dependent model is in slightly better agreement with the actual field measurement (by 
0.012pu). The increased magnitude of the peak voltages associated with the frequency- 
independent method is due to the assumption of constant line parameters and a lossless 
line, as discussed previously. 
A summary of the error for each peak voltage when compared to the measured values, 
for the frequency-dependent and phase domain models is shown in Table 5.5. The 

maximum error in peak voltage for the phase domain model is 8.5%, while that of the 
frequency-dependent line is 15.375%. 

The corresponding times at which the peak voltages occur are presented in Table 5.6. It 

can be seen that the timings of the peak voltages for the phase domain model are closer 
to those of the actual field recordings. Both the measured values and those predicted by 
the phase domain model are delayed with respect to the transient voltages calculated 
with the frequency-dependent transmission line model. 

5.4 Discussion 
The receiving end transient voltages computed using the phase domain transmission line 
model show a greater attenuation of the peak voltage magnitudes, in comparison to the 
frequency-dependent transmission line. In this respect there is a better agreement 
between the field measurements and the computed transient voltages using the phase 
domain model, with the exception of the phase a voltage. In this case, the value 
predicted by the frequency-dependent model is in slightly better agreement with that of 
the field measurement. 
The measured peak voltages are delayed in all phases as compared to the predicted 
transient voltages using both the frequency-dependent and phase domain line 
representations. However, the timing of each peak voltage using the phase domain 
model is in better agreement with those of the actual field measurements. 

The differences between the computed transient voltages using the frequency-dependent 
and phase domain transmission line models are likely to be due to the assumption of a 
perfectly transposed line, in the case of the former. Assuming the line to be transposed 
will not accurately represent the imbalances naturally present in the transmission line, 
e. g. due to unequal conductor spacings and configuration. As discussed in the 
introduction to this chapter, the transient overvoltages arising from a sequential 
energization can be affected by the mutual coupling effects between the phase 
conductors [1]. Thus, if this coupling is not accurately taken into account, inaccuracies 
will inevitably be introduced in the final solution. This can be overcome by including 
the frequency-dependent behaviour of the transformation matrices by including 
additional time domain convolutions. In this case, the accuracy of the modal domain 
approach will be comparable to that of the newly developed phase domain model, where 
any imbalances in the transmission line are intrinsically taken into account as the 
analysis is conducted entirely in the frame of reference of the phases. 

While the results obtained with the new phase domain transmission line model, in 
general, agree well with those of the field measurements, some differences can still be 
observed when compared to the measured transients. These discrepancies may be 
attributed to a variety of sources, such as the assumption of a constant earth 
conductivity [1,8]. Non-linear effects such as the magnetizing impedance and saturation 
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of the transformers, and corona are not represented in the time domain simulations. All 
of these phenomena will cause extra losses in transmission system. 
Further discrepancies could also have arisen, as a result of inaccuracies in the original 
field measurements [8]. 

5.5 Conclusions 
The newly proposed phase domain transmission line model that has been developed 
over the previous two chapters is applied here to simulate the transient voltages arising 
from the sequential energization of a real-life transmission circuit. The 345kV single- 
circuit system has been used to illustrate the accuracy of the proposed phase domain 
methodology, since actual field measurements for the sequential energization test are 
available. 
Since the analysis is conducted in phase co-ordinates, any imbalances in the 
transmission line will be inherently taken into account in the solution process. This can 
be important when simulating transient overvoltages arising from the sequential 
energization of an overhead line, since the mutual coupling that exists between phase 
conductors can impinge on the magnitude and wave-shape of the transients produced 
during such disturbances. In order to accurately simulate the system under study, it is 
therefore necessary to incorporate the line imbalances in the analysis. 
The results obtained from the phase domain transmission line are shown to be in good 
agreement with the measured transient voltages. For the frequency-dependent line 
model, the effect of using a constant transformation matrix to exchange information 
between the modal and phase domains (and vice-versa) and the assumption that the line 
is transposed is seen to influence the accuracy of the computed waveforms. Both the 
phase domain model and the measured transient voltages are delayed with respect to the 
waveforms generated by the frequency-dependent line. The degree of delay is quite 
similar for the phase domain model and the measured field data. If the frequency- 
dependence of the transformation matrices in the modal method is included, a similar 
degree of accuracy to that of the phase domain model would be expected. 
The field recordings and the phase domain model also show, in general, a similar degree 
of attenuation as compared to the frequency-dependent line model utilizing a constant 
transformation matrix. The maximum error in peak voltage for the phase domain 
transmission line as compared to the field recordings is 8.5% (for phase b), this 
compares to 15.375% for the frequency-dependent line model (also for phase b). 
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CHAPTER 6 

REAL-TIME DIGITAL POWER SYSTEM 
SIMULATION 

This chapter describes the development of a real-time simulation 
environment for conducting electromagnetic transient simulations on 
a commercially available real-time digital simulator. The 
implementation of three different transmission line models, of varying 
degrees of sophistication, is described and their suitability for 
sustained real-time electromagnetic transient simulations assessed. 
The first transmission line model represents the line as a pure delay 
and a characteristic impedance. The model assumes that the 
parameters of the line are frequency-independent. The second model 
takes into account the frequency domain variation of the line 
responses by fitting them with rational functions using the method of 
Vector Fitting. The final model represents the transmission line directly 
in the phase domain, intrinsically taking into account any geometric 
imbalances and frequency-dependent effects of the line. By 
conducting the analysis directly in phase co-ordinates the use of 
transformation matrices to exchange information between the modal 
and phase domains, and vice-versa, at every time step in the 
simulation is completely avoided. This is the first time that such a line 
representation has been developed for real-time simulations. The real- 
time sequential energization of a real-life transmission network is 
performed and the results for the different line models presented. The 
actual frame times are recorded during this test simulation and the 
difference in computational efficiency between the three line 
representations Is discussed. The accuracy of the real-time phase 
domain transmission line model Is assessed by comparing the 
simulated results with available field measurements. 

6.1 Introduction 
Digital computer based simulation packages such as EMTP [1] and EMTDC [2] have 
been used extensively for analysing the transient phenomena that arise as a result of 
disturbances to the otherwise normal steady-state operation of power system networks. 
In principal, the results obtained from performing such analysis can be utilized to 
achieve effective system protection and insulation co-ordination. This is essential if the 
transient waveforms injected into the system are to be limited to safe levels to ensure 
that equipment failures and unnecessary transmission line outages are avoided during 
these conditions [3-6]. 

Since a transient disturbance in the power system may only last for a period of 
milliseconds [5,6], a principal drawback of these software based simulators concerns the 
computational efficiency with which they operate. In evaluating the response of the 
network to a switching transient, for example, the simulator may take many seconds or 
even minutes to perform the necessary computations and produce a solution for the 
disturbance [12,13]. This non-real-world time operation (i. e. the solution output is 
determined at either a faster or slower rate) precludes the interfacing of external 
equipment to the simulator. 
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Effective testing of physical control or protection equipment requires the simulated 
waveforms to be input into the device in real-time, since in most cases the control inputs 
required are dynamic in nature. Simulation packages such as EMTP [1] and EMTDC [2] 
are therefore of little use in these areas. 
Physical control and protection testing has instead been undertaken using special 
playback devices, or analogue simulators [12,13,17,22,23]. A typical playback device 
feeds the results from an off-line simulation, or actual field data obtained from Digital 
Fault Recorders (DFRs), in real-time, to the device under test. However, since no 
dynamic interaction between the simulator and the external equipment can take place, 
these simulators are limited to open loop testing only [12]. Furthermore, storage 
requirements can limit the length of the simulation that can be played back for a 
particular test [17]. 

Analogue HVDC simulators and AC Transient Network Analyzers (TNAs) have been 
widely used throughout the power system industry for testing physical control and 
protection devices [12,13,17,22,23]. These simulators consist of scaled down power 
system components, with each component physically connected to the next in a similar 
manner to that of the real system. However, associated with analogue simulators are 
high capital and operating costs. Also, a single study may occupy the simulator for 
many weeks so that general accessibility is very low [12,13]. 

Since the beginning of the last decade, manufacturers, large utilities and research 
organizations have increasingly turned to a more cost effective and flexible alternative 
to the previous generation of analogue network analyzers - real-time digital power 
system simulators with hardware-in-the-loop (HIL) capabilities [7-16,18-26]. 

These simulators operate in real-world time so that actual physical hardware can be 
mixed with computer models to replicate the total power network under investigation, 
providing a very powerful tool for extensively evaluating and accurately test the 
performance of new and existing equipment under various operating conditions. This 
closed loop performance also permits the response of the power network, to the 
operation, or miss-operation of the actual device under test, to be thoroughly analysed. 
The ability to assess the interactions and effects of the various power system 
components on each other is increasingly important, particularly since the complexity of 
modem power systems is increasing. Real-time digital simulators provide a convenient 
tool to analyze such phenomena (12,13,23]. 

This chapter describes the development of a real-time environment for conducting 
electromagnetic transient simulations on a commercially available real-time digital 
simulator. The newly developed phase domain transmission line model is incorporated 
within this environment and the accuracy and computational efficiency of this model is 
assessed against conventional frequency-independent [28] and frequency-dependent 
[29] line models utilizing modal decomposition methods [30,31]. The development of 
this phase domain model, in the context of real-time simulations, represents the first 
time that such a methodology has been applied to perform electromagnetic transient 
studies. 
The results of a real-time sequential energization of a real-life, single-circuit 
transmission system are presented and the actual frame times recorded for the three 
transmissions line models, with the computational efficiency of each line model 
subsequently assessed. The time domain simulations presented in this chapter are 
restricted to single-circuit systems, for practicality reasons. With the current hardware 
and software configuration of the Real-Time Station (RTS), it would be very difficult to 
simulate multi-circuit transmission line configurations. However, due to the open 
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architectural design of the simulator, it is envisaged that these restrictions could be 
relaxed in the near future with additional hardware installed and software upgraded. 
The following section provides an overview of the real-time station and describes the 
current hardware and software configuration of the simulator. 

6.2 Real-Time Station (RTS) 
The Real Time Station (RTS) is a commercially available simulator, developed by 
Applied Dynamics International (ADI), and designed specifically for real-time, 
hardware-in-the-loop dynamic simulation. Unlike the majority of real-time digital 
simulators presented in the open literature in this research area, the RTS is not 
specifically designed for power system analysis. Indeed, the primary use of the 
simulator has been in the development of sophisticated control systems for the 
automotive and aerospace industries. There are a wide range of functional blocks 
(summers, dividers, wave generators, integrators, etc. ), as well as extensive pre-defined 
components (pumps, gears, engines, etc. ) and application libraries (aerospace vehicle, 
multiphase fluid, thermal hydraulic etc. ) ideally suited for control system applications. 
However, the software is also very flexible in that user-defined source code can be 
imported directly into special FORTRAN components within the GUI, or dynamically 
linked during compilation. This enables a wide variety of dynamical systems to be 
analyzed in real-time, including power systems, with relative ease. 
The Real-Time Station is a multiprocessor system, capable of parallel processing and 
1/0 interactions in real-time. This is coupled with the host workstation (Sun 
SPARCstation 4) which serves as the driver for the GUI based simulation package in 
which the power system models are constructed. The real-time simulation is also 
initiated directly from the host workstation. The following sections provide a 
description of the current hardware and software setup of the RTS. 

6.2.1 Real-Time Station Hardware 
The Real Time Station is an open architecture system, consisting of several types of 
processors coupled to a common VNIEbus backplane. There are three different types of 
processor within the RTS, namely: Communication (COP), Simulation (SP) and 
Compute Engine (CE) processors, each designed for a specific task. The current 
configuration of the RTS is given in Figure 6.1. 

6.2.1.1 Communication Processor (COP) 
The Communication Processor (COP) is a Am2900 processor whose primary function is 
to direct all data traffic within the RTS and between the RTS and the host workstation. 
The COP is also responsible for synchronizing all the processors within the RTS to 
enable a regular frame time to be attained across all the processors. 

6.2.1.2 Compute Engine (CE3/CE4) 
The Compute Engine is used to perform the computations required to model the 
particular dynamic system under investigation. The current standard CE's include 
several versions of the Motorola PowerPC family of VMEbus-based single board 
computers. In its current configuration, the RTS has two such CE's -a 133MHz CE3 
and the faster 333MHz CE4. The open architecture design of the RTS allows expansion 
of further CE's. Models can be distributed across multiple CE's through highly efficient 
shared memory exchanges using ADI's Integrated Development Environment (IDE). 

For the work undertaken in this research project, the IDE software has not been 
available for use. However, at this time the software has been installed on the host 
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workstation and promises to provide a significant increase in the capabilities of the RTS 
in conducting real-time electromagnetic transient studies. The advantages of using the 
integrated development environment will be discussed later in this chapter. 
6.2.1.3 Simulation Processor (SP) 
The computational power of the SP is available for general interfacing activities such as 
filtering signals to remove unwanted high frequency components (signal conditioning), 
and synchronizing the signals on all channels. 
The SP is contained within a Parallel Intelligent Resource (PIR). The PIR allows the I/O 
to be operated in parallel with model execution, to reduce VMEbus traffic. The PIR also 
comprises Analogue (AIM) and Digital (DIM) Interface Modules. These modules can 
be used to interface the power system components modelled on the RTS to external 
devices. Only fully refined data appears on the system bus instead of all the 
intermediate activity. This reduces the processing load on the compute engine(s). The 
simulation processor has a dual-ported memory, which allows the COP to efficiently 
accomplish all VMEbus transactions for the PIR. 
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Figure 6.1 Real-Time Station (RTS) Configuration 

6.2.1.4 Analogue Interface Module (AIM) 
This module is used for conversion of the analogue signals (±10V peak) from external 
equipment into digital data for transmission to the RTS. The AIM is also responsible for 
conversion of the digital information generated by the RTS into analogue waveforms 
that will be applied to any device under test. The AIM converts the digital data into low 
level analogue signals (±10V peak) required for the main amplification units. Each AIM 
has 8 A/D and DIA converters with a 12-bit resolution for each channel. The sampling 
frequency of the converters is approximately 116kHz. 

6.2.1.5 Digital Interface Module (DIM) 
This module provides a 64-bit bi-directional interface for digital I/O. 
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The PIR may be expanded to include a combination of up to six AIMS and DIMs using 
the VAME Subsystem Bus. This allows the processing power of a single SP to be applied 
to many interface tasks, without effecting the primary system bus. 

6.2.1.6 Power Amplification Units 
The output signals from the real-time station must be delivered to any external 
equipment under test at the appropriate in-service operating levels required by the 
device. Since the RTS can only output low-level analogue signals (±10V peak), in 

general, amplification units are required for this purpose. 

At the present time, the hardware resources available in this respect are three single- 
phase voltage amplification units, designed by Techron (TEC3622). The output signals 
can be amplified to a maximum peak voltage of 305V. The actual level of amplification 
is determined by scaling the output signals from the RTS. 

6.2.1.7 VMEbus Interact Manager (VIM) 
Although the RTS is run as a stand-alone resource, it can be configured as a shared 
network resource, connecting to the Local Area Network (LAN) through the VMEbus 
Interact Manager (VIM). The VIM communicates with the host computer workstation 
(or workstations on the LAN, if the RTS is run as a network resource) for program 
loading and run-time interaction. The user retains the ability to communicate 
nonintrusivcly with the simulation during run-time to select variables for display, data 
logging, or parameter adjustment. The VIM does not actively take part in the power 
system solution but instead functions as an interface and simulation control device. This 
allows a high level of interactive control and display without interfering with real-time 
simulation. 

6.2.2 Software 
All the interaction between the user and the Real-Time Station is performed using a 
sophisticated, GUI-based software (EASYS) developed by BOEING Inc. The EASYS 
software can be used to model, analyze and design dynamic systems containing 
hydraulic, pneumatic, mechanical, thermal and digital sub-systems. As discussed 
earlier, systems can be constructed using the large variety of functional blocks and pre- 
defined components - particularly suitable for control system studies. Alternatively, 
user defined code can be inputted directly into FORTRAN components within the 
EASYS GUI. External FORTRAN and C source code can also be called from within a 
FORTRAN component. This flexibility makes it possible to simulate a large variety of 
dynamical systems, without restricting the analysis to control system based studies. It is 
by using these FORTRAN components that the power transmission line models have 
been implemented within EASY5, for real-time electromagnetic transient studies. 
Models can be executed 'off-line' on the host workstation, or run in real-time on the 
RTS. This capability permits user models to be thoroughly analysed, verified and 
debugged off-line, avoiding such problems in the real-time execution. The appropriate 
mode (offline/rcal-time) is selected within EASY5 before the model executable is built. 
If the model is to be run in real-time, then additional components are required, which 
represent the real-time hardware that is being used. These components include blocks 
for defining the analogue and digital 1/0 and compute engines in use. There are 8, 
scaleable 1/0 analogue channels (±10V). Each analogue I/O channel has a numbered 
address, which can be set in the Analogue VO (AI/AO) blocks. A DC offset can also be 
applied to the I/O signals by adjusting the appropriate parameter in the AI/AO 
components. Figure 6.2 shows a typical schematic diagram of an EASY5 real-time 
model. 
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After all component parameters have been set, the EASY5 code-generator translates the 
interconnected blocks and components in the schematic model into either Fortran or C 
source code. The executable model is then executed from within EASY5 when an 
analysis is launched. 

If a real-time simulation is selected, the model source code is automatically downloaded 
onto the real-time station and converted into real-time code, when the simulation is 
initiated from within EASY5. The source code is converted into COSIM - ADI's 
scheduling, synchronization, and communications-control software for the RTS. 
COSIM is a high-level coordination language used to manage data flow and to 
coordinate and synchronize the parallel processors in the RTS as they execute 
simulation and I/O-related tasks. 

The integration between EASY5 and the real-time station is seamless - no extra work is 
required by the user to run the model in real-time, other than including the appropriate 
real-time icons in the schematic model. 

Simulation results can be viewed at the end of the analysis using the plotting 
capabilities within EASY5. If required, the results can also be viewed in real-time using 
ADI's SIMplot as the simulation proceeds. The appropriate plot mode is set before 
entering the EASY5 environment. 

Zoon 

Zote : p1-An3loýI Lltf'ut 

x AO sad z 

w FnWt 
cýýc ® 1 Dlt" 

Fredu -Degen nITLM 

Cary Ginn, u En 

Th . nc x 
era 

äl 
CýMN 4 

ý111- 11 -- t L3 

Figure 6.2 EASY5 Graphical User Interface (GUI) 

Information regarding the actual time the simulator takes to compute each time-step in 
the analysis is available at the end of each simulation. The Actual Frame Time (AFT) 

can be plotted as a function of simulation time and from this plot it can be seen whether 
or not the AFT has exceeded the time-step chosen for the simulation. If this is the case, 
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then real-time operation has failed to be maintained. This problem can be resolved, 
albeit with a decrease in accuracy, by increasing the time available for the simulator to 
compute each time-step. 

6.3 Real-Time Model Implementation 
The three transmission line models described before in previous chapters, namely the 
frequency-independent [28], frequency-dependent [29] and phase domain line 
representations, were initially developed `off-line' within the EASYS simulation 
environment. The benefit of proceeding in this way is that almost all the testing and debugging of the models can be performed in a more efficient way, with real-time and 
non-real-time compilation and execution errors isolated. 
Once confidence is gained in the fidelity of the model it is incorporated within EASYS 
to operate in real-time. In order to do this, the four components necessary for real-time 
operation, as described in section 6.2.2, are combined with the existing model by 
connecting the appropriate I/O. 

Due to the very stringent CPU requirements imposed by real-time electromagnetic 
transient analysis (a time step of 50-100µs is usually aimed for [10]) incorporation of 
these models into a real-time environment is not straightforward. Procedures which are 
regarded as standard in non-real-time studies may be completely unsuitable when 
applied to real-time simulations. An important point in case is the inversion of the 
network admittance matrix, which is discussed in more detail below. 

6.3.1 Inversion of the Network Admittance Matrix 
One of the major difficulties encountered when performing real-time electromagnetic 
transient simulations, concerns the inversion of the network admittance matrix Y 
[22,24,32,33]. Inversion of Y must take place at the initial time step of the simulation 
and when the topology of the network changes, e. g. during switching operations. The 
opening and closing of one or more switches brings a change in the system admittance 
matrix and thus requires the recalculation of its `inverse' in order to determine the 
solution vector of voltages. For an `off-line' simulation this matrix inversion can be 
performed using any conventional matrix decomposition technique, e. g. LU 
decomposition. The difficulty posed in real-time simulations, however, is to both invert 
the network admittance matrix, and complete all the necessary computations for the 
model, within the 50-100µs frame time usually aimed for in electromagnetic transient 
simulations [10]. 

In the initial development of the frequency-independent transmission line model, a full 
LU decomposition subroutine was employed to compute the inverse of Y. However, it 
was found that the frame time required to compute each time step involving an 
inversion of the network admittance matrix was extremely high. This is clearly 
illustrated in Figure 6.3 which shows the frame time obtained when simulating the 
sequential energization of a real-life transmission system [34], using the 133MHz CE3 
compute engine. The test system corresponds to the 345kV Jaguara-Taquaril 
transmission system described in Appendix III. The network is comprised of 5 three- 
phase nodes, i. e. 15 nodes, and contains 6 switches. 

Seven peaks in Actual Frame Time (AFT) are clearly visible, each one associated with a 
call to the LU decomposition subroutine. The largest peak has a maximum value of 
approximately 665µs. The magnitude of subsequent peaks in the AFT are seen to be 
progressively smaller, since the order of network admittance matrix is reduced with the 
closing of each switch. Real-time operation can only be maintained as long as the AFT 
is less than the selected time step for the simulation. Thus, if the frequency-independent 
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transmission line model is implemented in this way, using a full LU decomposition 
approach, it would not be possible to set a time step of less than 665µs for real-time 
operation to be sustained throughout the simulation. This is evidently much greater than 
the preferred time step usually considered (50-100µs) and subsequently the accuracy of 
the solution in this case would be severely reduced. 

In order to rectify this problem, several alternative methods were investigated to 
efficiently invert the network admittance matrix and solve the nodal voltage equations 
in real-time. The first method attempted was to try and exploit the sparsity, of the 
network admittance matrix in the solution process. However, the frame time obtained 
using this method was essentially the same as that obtained using the original LU 
decomposition method. It was concluded that for the practical power networks under 
consideration for real-time analysis, sparsity orientated solution techniques produce few 
advantages in terms of computational efficiency over the existing LU decomposition 
technique. 

700 

500 

j400 

600 

Co 300 
Ü 

200 

100 

Admittance based model 

°----- Impedance based model 

0" 
0 0.01 0.02 0.03 

Time [secs. ] 

Figure 6.3. Comparison of the actual frame time obtained when using admittance and 
impedance based methods for the sequential energization of a real-life transmission 

circuit in real-time 

A second method employed a Cholesky factorization on the network admittance matrix, 
assuming the network admittance matrix is symmetric positive definite [32]. However, 
as for the sparsity approach, the technique was found to provide little improvement in 
the AFT when compared with the original LU decomposition method. 

A viable approach to this problem was obtained by pre-calculating the network 
impedance matrix, Z, before the real-time simulation was run [7,32,33]. The resulting 
impedance matrix data is stored within input arrays, defined in the FORTRAN 

component in EASYS, and in which the transmission line code is contained. The data is 
then read from the specified array when required during the real-time simulation. The 
solution vector of voltages is then obtained from efficient matrix-vector multiplications 
during the simulation. 
Figure 6.3 also illustrates the frame times associated with this impedance matrix 
approach, again using the CE3 compute engine. It can be seen from Figure 6.3 that the 
reduction in the AFT at the initial time step, and during the sequential switching 
operations, is considerable. The maximum value in the AFT is now approximately 
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165µs. Since the time step chosen for both simulations was 190µs, only the impedance 

matrix based technique has managed to maintain real-time operation throughout the 
simulation. A summary of the frame times for each method is shown in Table 6.1, 
including an average value for the frame time over the whole simulation. The initial 
maximum peak in actual frame time and its implications in terms of conducting 
electromagnetic transient simulations is discussed in more detail in section 6.5.1. 

Table 6.1. Summary of frame times for admittance and impedance matrix based 
methods using the CE3 compute engine 
AFT of Switching O eration AFT s Avera e Method initial time 
step s 

1 2 3 4 5 6 
g 

AFT (µs) 

Admittance 665 582 518 479 456 428 410 178.7166 
Impedance 165 145 139 133 139 135 130 127.66 

All the transmission line models presented in the following sections have been 
implemented in real-time using this impedance matrix based approach. 

6.4 Real-Time Simulations 
In the following sections, an analysis of the accuracy and efficiency of the transmission 
line models described in this thesis, in the context of real-time simulation, is discussed. 
These transmission line models correspond to a frequency-independent [28], frequency- 
dependent [29] and phase domain representation of the line. 

A test system corresponding to the 345kV Jaguara-Taquaril transmission system, 
described in Appendix III, is used for the real-time simulation tests. The transmission 
line is 398km in length [34]. The system is comprised of 15 nodes and 6 switches and 
represents a typical size of power network that can be analysed on the real-time 
simulator with its current hardware and software configuration. The configuration of the 
transmission system has been illustrated in the previous chapter, but is reproduced again 
here for convenience in Figure 6.4. Data pertaining to the closing of the circuit breakers 
can be found in Appendix III 

20052 

Figure 6.4. Jaguara-Taquaril 345kV transmission system 

All the simulations performed in the following sections are undertaken using the latest 
333MHz CE4 compute engine. 
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6.4.1 Modal Domain Transmission Line Models 
The first two models to be implemented on the real-time station (RTS) were the 
frequency-independent and frequency-dependent transmission line models, as described 
previously in chapter two. The results of a validation test with EMTP [1] for both 
models were shown in section 2.8.2 and, in the case of the frequency-dependent model, 
against actual field measurements [34] in section 2.8.3 of chapter two. 

Both models were implemented within EASY5 using the network impedance matrix 
based approach, as discussed earlier, in order to avoid directly inverting the network 
admittance matrix in real-time. The pre-calculated network impedance matrices are 
conveniently stored within arrays, defined in the single FORTRAN component that 
contains the main transient program. The frequency-independent transmission line 
model has 262 lines of code contained in the FORTRAN component, while ' the 
frequency-dependent model has 513. Both models also have seven supporting 
subroutines that are pre-compiled and linked with the real-time executable generated by 
EASY5. 

For the frequency-dependent model, the real-time simulations were performed with 
different order approximations of the modal characteristic impedance, Z, ((O), and shifted 
weighting function, P(c»). The elements of the weighting function, A(t)), are unwound 
as discussed in section 2.6.2 before the fitting process takes place so that the elements of 
A(o) are found as smooth functions of frequency and amenable to low-order 

approximations [29]. The transmission line responses are approximated in the frequency 
domain with rational functions using the method of Vector Fitting [27], as described in 

section 2.5.1 of chapter two. 

For real-time simulations, if the network solution is to be obtained in the given 50- 
100µs interval, the order of the approximating rational functions must be kept as low as 
possible, while still maintaining a high degree of accuracy (10]. A direct relationship 
exists between the order of rational function approximations and the minimum step size 
that can be selected for continuous real-time operation. As the number of poles 
contained in the rational functions is increased, (therefore improving the level of 
accuracy of the approximations), so does the time required to compute each time step of 
the simulation. A balance must therefore be sought between the accuracy of the rational 
function approximations, and the minimum time step that can be selected, for 

continuous real-time operation to be achieved [10]. 

Table 6.2. Summary of Approximation Orders for Z, (w) and P(w) 

Fit Zc w zero se q. Z,, w pos. se . 
Fit 1 12 12 
Fit2 8 2 

P(co) zero se q. P(o)) pos. se . 
Fit 1 12 12 

Fit 2 6 6 

The number of poles and residues used in the fitting of both Z, ((o) and P(a) are as 
described previously in Table 2.1 of chapter two, and repeated in Table 6.2 for 

convenience. The frequency responses are approximated in the interval 10"2-106Hz. 

6.4.2 Real-Time Sequential Energization Results 
Figures 6.5-6.7 show the simulated phase voltages at the receiving end of the line after a 
sequential energization test for both the frequency-independent and frequency- 
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dependent line models. For the frequency-dependent line representation, the results 
corresponding to the two different sets of approximating functions, as described in 
Table 6.2, are presented. The time step chosen for both simulations is 190µs. In this 
simulation, the reactor at the sending end of the line, as illustrated in Figure 6.2, is not 
included. The transmission line in these cases is assumed to be perfectly transposed. 

It can be seen from Figures 6.5-6.7 that there is little difference in the accuracy of the 
results for the frequency-dependent model using the two different sets of rational 
function approximations, despite the increased accuracy obtained with Fit 1. However, 
as expected, the results can be seen to be much more accurate than those obtained using 
the frequency-independent line model, which shows an increase in the peak magnitudes 
of the phase voltages as well as an amplification of the higher harmonics contained in 
the waveforms. This is a consequence of assuming the parameters of the transmission 
line are constant, evaluated at the power frequency, and neglecting the losses inherent in 
the system [35]. 

Figure 6.8 shows the actual frame time (AFT) associated with each time step of the 
sequential energization simulation for the three different cases, as a function of 
simulation time. As expected, the frequency-independent model, having the least 
amount of computations to perform (there are no convolution operations required in this 
case), requires the least time to compute each time step of the simulation. The average 
frame time for the whole simulation is approximately 52.6611µs. For the frequency- 
dependent line model using the low order approximation (Fit 2), there is an increase of 
approximately 4.1µs, with an additional 5.2µs on top of this for the higher order 
approximation (Fit 1). 

The higher order set of approximations (Fit 1) can be seen to have a significant 
influence on the time required to compute each time step of the simulation. Indeed, the 
increase in frame time for the frequency-dependent model, using the two different sets 
of approximations, is greater than that between the frequency-dependent model using fit 
2 and the frequency-independent line representation. This reaffirms the importance of 
seeking the lowest order possible for the approximating functions used in the frequency- 
dependent model when performing real-time electromagnetic transient simulations. 
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Figure 6.8. Actual frame time (AFT) when simulating a sequential energization of the 
Jaguara-Taquaril transmission using modal domain models 
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6.4.3 Phase Domain Transmission Line Model 
The sequential energization test case described previously was repeated (including the 
reactor at the sending end of the line) using the phase domain transmission line model 
that has been developed over the previous three chapters. The transmission line in this 
case is intrinsically modelled as untransposed, accurately taking into account any 
geometric imbalances naturally present in the line. The frequency-dependent effects of 
the line are also taken into account by approximating the transmission line responses 
with rational functions in the frequency domain. 

The elements of the characteristic admittance, Yc(w), and shifted wave propagation 
matrices, P(co), are approximated using the method of Vector Fitting [27] directly in 
frame of reference of the phases. The elements of each column of Y, ((O) are 
approximated with the same set of poles, and similarly for P(w). Only the residues for 
each element of a given column differ from each other. This columnwise realization is 
expected to provide a 2-fold increase in the efficiency of the time domain simulation as 
compared to conventional element-by-element fitting [36]. 

As for the modal domain based transmission line models described earlier, the real-time 
application of this phase domain model is based on the network impedance based 
approach. 

The code for the phase domain model is directly incorporated within a single 
FORTRAN component in EASY5, with 1486 lines of code in the main transient 
program. Seven supporting subroutines are also pre-compiled and linked with the real- 
time executable generated by EASY5. As with previous simulations, the step size in this 
case is selected at 190µs. 

The real-time simulations were performed with different order approximations of the 
characteristic admittance matrix, Y, ((o), and shifted wave propagation matrix, P(co). The 

number of poles and residues used in the fitting of both Y, ((o) and P((o) are described in 
Table 6.3. The characteristic admittance was approximated in the interval 1-106Hz, 
while the shifted wave propagation matrix was fitted in the interval 1-105Hz. 

The maximum frequency under consideration when fitting the shifted wave propagation 
matrix was selected at 105Hz in order to ensure a sufficiently reduced order rational 
function approximation for P(w) was obtained, suitable for real-time simulations. 

Table 6.3. Summary of Approximation Orders for Y, (w) and P((o) 

i Number of poles t F 
Y(co) (all columns) P(o) ( all columns) 

Fit 1 10 10 
Fit 2 8 10 
Fit 3 5 10 

As discussed earlier, the order of the approximating functions play a very important role 
in the selection of the integration time step for a given real-time simulation. The higher 
the order of the approximating functions, the less likely it is that real-time operation can 
be performed continuously using a time step in the desired range (50-100µs) [10]. 
Bearing this in mind, it was felt that real-time operation could only be performed with a 
sufficiently small time step if the frequency range considered for approximating the 
shifted wave propagation matrix was reduced to (1 Hz-l05Hz). By fitting the elements of 
P(w) in this frequency range, a very low-order rational function approximation could 
always be obtained. 
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In contrast, since the elements of the characteristic admittance matrix are smooth functions of frequency, it is not difficult to obtain an accurate, very low-order 
approximation for this function up to frequencies of IMHz. 

6.4.4 Real-Time Sequential Energization Results 
Figures 6.9-6.11 show the simulated phase voltages at the receiving end of the line after 
a sequential energization, obtained using the phase domain transmission line model 
using the approximating functions obtained in fit 3, as described in Table 6.3. Only the 
results pertaining to fit 3 are shown in Figures 6.9-6.11 since the differences between 
the three fitting approximations are negligible. The results from fit 3 are superimposed 
on those obtained using the frequency-dependent model using the fit 2 data. 
It can be seen from Figures 6.9-6.11 that there is little difference in the accuracy ofnthe 
phase a and b voltages for both methods up to approximately 25ms, although both of 
these phase domain voltages are seen to slightly lag those of the frequency-dependent 
model. A significant difference can be observed in phase c however. A peak voltage of 
1.963pu is obtained at a time t 22.8ms for the frequency-dependent method. For the 
phase domain model, the peak voltage has a magnitude of 1.598pu and is delayed by 
approximately 0.57ms. 

6.4.5 Comparison with Field Measurements 
A further analysis of both results can be obtained by comparing the results with actual 
field measurements [34]. 
Figure 6.12 shows the receiving end results for all three phases obtained using the phase 
domain transmission line model using the fit 3 data. Superimposed on these results are 
those of the frequency-dependent line model using the approximating functions 
obtained with fit 2, as described in Table 6.2. Figure 6.13 corresponds to the results 
obtained from the actual field measurements, superimposed with those calculated using 
an electromagnetic transients program [35]. 

Comparing the results of both line models with those of the field measurements it can 
be seen that in general the results corresponding to the phase domain transmission line 
compare better with those of the field recordings. The peak magnitude of the phase c 
voltage has a value of 1.287pu for the phase domain model compared with 1.498pu for 
the frequency-dependent line model. The corresponding value obtained from the field 
data is approximately 1.35pu. After 20ms, at the zero crossing of phase c, the field 
measurements are delayed by 0.9ms when compared to the frequency-dependent phase 
c voltage. In the case of the phase domain model, the phase c voltage lags that of the 
frequency-dependent line by approximately 0.2ms. 

6.4.6 Actual Frame Times for Phase Domain Model 
Figure 6.14 shows the values of the Actual Frame Time (AFT) obtained for the 
sequential energization test using the phase domain model with the three different fitting 
orders, as summarized in Table 6.3. 

The influence of the fitting order can be seen to significantly effect the frame time over 
the time period of the simulation. There is an increase in frame time of approximately 
15µs using the approximating functions of fit 1, as compared to the other two data sets 
of reduced order (fit 2 and fit 3). The initial peak values in AFT are approximately 
2281is, 176µs and 173µs for fit 1, fit 2 and fit 3, respectively. The initial peak in frame 
time will be discussed in more detail in section 6.5.1. 
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Figure 6.9. Receiving end voltage after simulated sequential energization - Phase a 
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Figure 6.10. Receiving end voltage after simulated sequential energization - Phase b 
(Real-time frequency-dependent model and phase domain model) 
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electromagnetic transient program (dashed line) 
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Figure 6.14 Actual frame time obtained for a sequential energization of a real-life 
transmission circuit using the phase domain transmission line model 

6.5 Summary of AFT for Transmission Line Models 

A summary of the Actual Frame Times (AFT) obtained for each model when using the 
CE3 and CE4 computes engines for the sequential energization simulation described in 
the previous sections, is provided in Tables 6.4-6.6. The AFT for each simulation case 
was obtained using a step size of 190µs. The phase domain transmission line model was 
only executed in real-time using the CE4 compute engine, hence there is no data 

referring to the CE3 compute engine given in Table 6.6. 

The performance enhancement of the CE4 compute engine over the CE3 is quite clearly 
shown in Tables 6.4 and 6.5. For the frequency-dependent transmission line model, 
using the CE3 it was not possible to maintain real-time operation with the desired step 
size, despite the small number of poles used in the second fitting. For both cases, a 
single frame overrun occurred at the initial time step. However, when using the CE4 

compute engine, no overruns were recorded, and the average value of the AFT for both 

fits was at least 120µs smaller than the actual step size used for the simulation. The 
initial peak in frame time does, however, preclude a reduction in step size to no less 

than approximately 140µs, taking into account any `hidden' frame time. 

For the frequency-independent transmission line model, continuous real-time operation 
was attained with both compute engines, with no frame overruns recorded. The step size 

of 190µs does however represent the lowest At possible to maintain real-time operation 
using the CE3 compute engine, again bearing in mind there may be some hidden frame 

time. 

Table 6.4. Summary of AFT for frequency-independent transmission line model 

CE3 (133MHz) CE4 (333MHz) 
AFT for initial 
time step s 

Average 
AFT s 

Frame 
Overruns 

AFT for initial 
time step s 

Average 
AFT fits) 

Frame 
Overruns 

170 138 0 112 52.6611 0 

Fit I 

-------- Fit 2 

........... Fit 3 
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Table 6.5. Summary of AFT for frequency-dependent transmission line model 
No. of poles C E3 133MHz C E4 333MHz 

Zero seq. Pos. seq. initial nitial 
AFT for 

time Average Frame initialAFT 
for 
time 

Average Frame 
Z P Z P step (µs) AFT (As) Overruns 

step (µs) AFT (µs) Overruns 

12 12 12 12 255 175 1 125 62.016 0 
8 6 2 6 240 155 1 118 56.7944 0 

Table 6.6. Summary of AFT for phase domain transmission line model 
No. of poles (a ll columns) CE4 (333MHz) 

Ye(w) H(w) AFT for initial Average 
time step AFT 61s) 

Frame 
overruns 

10 10 228 165.155 43 
8 10 176 151.044 1 
5 10 173 151.82 0 

The computational efficiency of the newly developed phase domain transmission line 
can be assessed against the two conventional modal domain approaches from analysing 
Table 6.6. For the three test cases run, with varying order approximations of the 
transmission line responses, only the third case (with the lowest order approximation of 
the characteristic admittance) achieved continuous real-time operation. The initial peak 
in this case was recorded at 173µs, with the average AFT for the rest of the simulation 
at 151.82µs. This represents and increase of approximately 89-95µs as compared to the 
frequency-dependent transmission line, depending on the number of poles chosen in the 
fitting process. When compared to the frequency-independent line model, the phase 
domain method requires an extra 99µs to execute. 

It should be noted however, that both the frequency-independent and frequency- 
dependent transmission line models assume that the transmission line is perfectly 
transposed, so that a constant transformation matrix can be used to exchange 
information between the phase and modal domains, and vice-versa [29]. This 
assumption considerably increases the efficiency of the time domain model, since the 
numerical burden in evaluating the time domain solution is reduced [29]. 

6.5.1 Initial Peak in AFT 
In all of the real-time simulations presented, an initial peak in the actual frame time 
(AFT) has always occurred. For all these cases, this initial peak in AFT has been the 
limiting factor in determining the time step chosen for the real-time simulation. This is 
inevitably the case since continuous real-time operation can only be maintained as long 
as the frame time remains below that of the selected integration time step over the 
complete time period of the simulation. Thus, if the time step is chosen below the value 
of the peak AFT (which in this case arises at the initial tine step) then real-time 
operation has not been sustained. 

The peak in AFT appears to be caused by a necessary initialization and synchronization 
phase for the processors in the RTS as the simulation is initially executed. Investigations 
have shown that as much as 1201As is generated at the initial time step as a result of 
these activities, in addition to the frame time required to compute the modelled system 
equations. 

A possible way forward could arise by instructing the processors to delay the actual 
initiation of the transient simulation, until such time as the processors have settled to 
what could be regarded as a `steady-state' operating condition. In doing so, the initial 
peak in frame time would be avoided and the time step for a simulation could be 
reduced significantly. However, it has not been possible to attempt to try this strategy at 
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the current time. 

6.5.2 Integrated Development Environment 
At the present time, it is not possible to combine the computational power of both 
compute engines (CE3 and CE4) during a simulation. The executable model must be 
built using either the 133MHz CE3 or 333MHz CE4 compute engines. However, in the 
near future it will be possible to incorporate both the compute engines currently 
available in the RTS (and any subsequent additional CEs) within a real-time model, by 
making use of ADI's newly developed Integrated Development Environment (IDE). 

Using IDE, specific computations performed during the simulation can be executed on a 
specific processor, e. g. the initialization of model arrays at the initial time step could be 
split between the two processors. This is expected to reduce the AFT that occurs at. the 
start of a simulation. The required I/O is then transferred at the appropriate time 
between compute engines. 

This software enhancement is expected to significantly improve the overall performance 
of the real-time simulator. In particular, it is anticipated that the phase domain 
transmission line model could be successfully operated with a time step in the 50-100µs 
range, usually aimed for in electromagnetic transient simulations [10]. 

6.6 Future Real-Time Simulation Applications Overview 
Real-time digital simulators have increasingly been adopted by manufacturers, large 
utilities and research organizations over the last decade since they provide a cost 
effective and flexible technology to replace the previous generation of analogue 
simulators. Real-time digital simulators are being used more and more in many areas of 
power systems analysis, such as for the closed-loop testing of control and protection 
equipment [13-18]; to perform analytic system studies [13]; and to educate operators, 
engineers and students. 
With further development, and utilizing the real-time simulation environment that has 
been developed for conducting electromagnetic transients as a part of this research, the 
real-time station is expected to be applied to the following future activities. 

6.6.1 Protection Equipment Testing 
The electromagnetic transient simulation environment that has been developed within 
the real-time station (RTS), incorporating frequency-independent, frequency-dependent 

and phase domain representations of power transmission lines provides an accurate and 
flexible means to perform hardware-in-the-loop testing of protection and control 
systems. 

However, in order to maintain a good degree of accuracy it will be necessary to model 
instrument transformers, such as the current transformer (CT) and Capacitive Voltage 
Transformer (CVT), since during transient conditions these devices may significantly 
effect the wave-shapes that are seen by the protective relay. 

6.6.2 Harmonic Waveform and Power Quality Disturbance 
Generator 
The study of power quality in power systems has become a very important area of 
power system engineering. Many industrial and commercial electric customers now 
require a high level of power quality due to the increasing sensitivity of sophisticated 
process controls and the growing reliance on computers. These new customers are very 
sensitive to electric disturbances, principally to voltage sags. Power Quality (PQ) is a 
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new area in electric power systems which has assumed considerable importance in the 
1990's. The focus of PQ has been on subjects such as harmonics, sags, swells, 
overvoltages, interruptions, flickers, transients, noise, etc., in power systems. 
The Real-time station (RTS) provides an excellent platform to investigate PQ issues in 
real-time. Waveforms with transient, dynamic and harmonic characteristics can be 
generated using the RTS and fed through amplifiers to the external equipment under 
test, e. g. energy meters, protection devices, sensitive loads etc., to ensure proper 
operation. Field data from Digital Fault Recorders (DFRs) could also be used, directly 
by the simulator for open loop testing of equipment. 

6.6.3 FACTS and Custom Power Applications 
Flexible AC Transmission Systems (FACTS) utilize power electronics technology to 
allow a greater control of power flow and a secure loading of High Voltage transmission 
lines to levels nearer to their thermal limits. Custom Power devices are the low voltage 
equivalents of FACTS devices and are used to enhance the reliability and quality of 
power flow in distribution systems. The new generation of FACTS and Custom Power 
devices are centred on Voltage Source Inverter (VSI) based controllers. 
The application of the real-time station in this area would be for the testing of scaled 
down, low power prototypes of the FACTS and Custom Power devices mentioned 
above. For example, with a practical power network modelled within the RTS the 
simulated network can be combined with the actual prototype for performing closed- 
loop testing of the physical control scheme under the normal and abnormal operating 
conditions of the power system. 

6.7 Conclusions 
This chapter has described the development of an environment for performing accurate 
and reliable real-time electromagnetic transient simulations of practical transmission 
systems using a commercially available real-time digital simulator. Three transmission 
line models corresponding to frequency-independent, frequency-dependent and phase 
domain representations have been incorporated within this environment. 
One of the main difficulties that must be overcome when performing real-time 
electromagnetic transient simulations concerns the `inversion' of the network 
admittance matrix. This must take place at the initial time step of the solution and 
subsequently when the topology of the network changes, e. g. during a scheduled 
switching operation. The frame time required to perform this operation in real-time is 

considerably higher than the time step usually selected for real-time EMTP-type 

simulations (50-100µs). This problem has been overcome by calculating the network 
impedance matrix `off-line'. The data is then stored in arrays until such time as it is 

required during the analysis. This method considerably reduces the frame time for each 
time step in the simulation, allowing a smaller integration step-size (and hence more 
accurate solution) to be selected for a given simulation. 

The results of a sequential energization of a real-life transmission circuit have been 
presented for all three models. The results obtained from the phase domain and 
frequency-dependent line models are compared to those obtained from actual field 
recordings. In general, the results of both line models agree well with the field 
measurements, however overall, the phase domain results show a better agreement. 

In order to determine the computational efficiency of the newly proposed phase domain 
model the Actual Frame Time (AFT) for this test case has been compared against that of 
the frequency-independent and frequency-dependent line models. In the case of the 
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phase domain and frequency-dependent line models, the effect of the order of the 
approximating functions on the AFT is investigated by conducting the analysis using 
several different fitting accuracies. 

The AFT for the phase domain model is increased by about 89-95µs as compared to the 
frequency-dependent line representation, depending on the order of the approximating 
functions in both cases. In the case of the frequency-independent representation, the 
phase domain model requires an extra 99µs to execute. It should be emphasized 
however, that the phase domain model intrinsically takes into account any geometric 
imbalances naturally present in the line, whereas the frequency-independent and 
frequency-dependent modal domain methods were assumed transposed. A constant 
transformation matrix was then used to exchange information between the modal and 
phase domains, and vice-versa, which provides a further increase in computational 
efficiency for these models. 

Although the time step used for all the results presented in this chapter were outside the 
recommended range of 50-100 microseconds for EMTP-type studies, it is anticipated 
that this could be overcome with the introduction of the Integrated Development 
Environment (IDE). 
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CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS FOR 
FUTURE RESEARCH WORK 

7.1 General Conclusions 
The research work presented in this thesis has been directly oriented to develop a 
fundamental methodology for modelling power transmission lines for electromagnetic 
transient studies directly in the phase domain. Additional work has been directed toward 
developing a simulation environment for conducting real-time, hardware-in-the-loop 
dynamic simulations, incorporating this newly developed phase domain methodology. 
Two algorithms have been presented for evaluating the characteristic admittance and 
wave propagation functions. Both algorithms do not require calculation of eigenvalues 
or eigenvectors at any point in the solution process and as such can be regarded as truly 
evaluated in phase co-ordinates. In addition, both algorithms have a very simplistic 
form, making them very easy to program unlike the eigen-analysis routines used in 
current `phase' domain models. 

The algorithm for calculating the characteristic admittance matrix is derived by 
exploiting a relationship between the matrix sign function and the matrix square root. A 
Pade iteration scheme to evaluate the matrix sign function is used to formulate an 
algorithm for evaluating the characteristic admittance matrix, directly in phase co- 
ordinates, using this relationship. The algorithm is numerically stable, inheriting its 
stability from the sign function from which it is derived. So far, the algorithm has never 
failed to converge, for any approximation order, having been tested rigorously for a 
variety of practical transmission line configurations. 
The algorithm proposed to evaluate the wave propagation matrix is based on a Pade 

approximation to the matrix exponential. It was found that the method is particularly 
sensitive to the characteristics of the eigenvalues and norm of the argument matrix, as 
functions of frequency. However, by making use of a `scaling and squaring' technique, 
the problems associated with the eigenvalues of the propagation constant diverging with 
frequency (due to the skin effect in conductors and ground), and a large magnitude of 
the argument matrix norm are overcome. The algorithm is shown to provide a very 
robust, accurate and efficient method for evaluating the wave propagation matrix for 

any practical transmission line configuration. It should be noted that in the practical 

evaluation of H((o), the eigenvalues of the system are not required in the calculation. 
However, in terms of explaining the characteristics of the algorithm, as a function of 
frequency, it is convenient to make reference to the eigenvalues of the argument matrix. 

One of the most challenging aspects of modelling multiconductor transmission lines in 
the phase domain concerns the unwinding of the wave propagation matrix. The 

elements of H(w) are obtained as oscillating functions of frequency due to the time 
delays of the line. Therefore, in order to obtain accurate, relatively low-order 

approximations of the elements of H(o)), the function must be unwound to remove these 
oscillations. The elements are then obtained as smooth functions of frequency. In 
current phase domain line models, the modal travel times of the system are required for 
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this purpose. In this research, the problem has been solved directly in phase co- 
ordinates by evaluating a matrix phase shift function to remove the oscillations. By 
conducting the analysis directly in the phase domain, the time delays of the line are 
intrinsically taken into account. The coupled time delays are then approximated in the 
time domain with a series of scalar impulse functions. At this point in time, a 
disadvantage with this approach is the necessity of having to apply an inverse Fourier 
transform in order to establish the time domain form of the elements of matrix phase 
shift function. 

The phase domain transmission line model can be interfaced with existing general time- 
based electromagnetic transient programs, such as EMTP. The line model is 
incorporated within this environment as with other line representations, as a time- 
dependent current source in parallel with a constant admittance, i. e. a Norton equivalent 
representation. 

A particular application of the developed phase domain methodology is shown for the 
analysis of transmission line switching transients. The time domain sequential 
energization of a 345kV-transmission system is performed and the results are obtained 
when using conventional modal domain approaches and the new phase domain line 
model. A comparison of these results with available field measurements highlights the 
accuracy of the method. 
An environment for conducting real-time electromagnetic transient simulations has 
been developed on a commercially available real-time digital simulator. Existing modal, 
frequency-independent and dependent transmission line models have been incorporated 
within this environment, as well as the newly developed phase domain model. The 
computational efficiency of each model is assessed by analysing the actual frame times 
obtained during transient simulations. While the phase domain transmission line model 
is shown to be 2-2.5 times slower, in terms of computational efficiency, than existing 
methods, the accuracy and generality afforded with this methodology surpass those of 
existing line representations currently available for real-time analysis. 

7.2 Future Research Work 
The work presented in this research provides a fundamental methodology for the phase 
domain representation of power transmission lines for electromagnetic transient studies 
with application to real-time digital simulation. Related research that could be 
developed further, concerning the modelling of additional power system components, is 

outlined below. 

7.2.1 High Voltage Underground Cable Modelling 
The emphasis of this research has been on the modelling of overhead transmission lines 

with no reference to underground power cables. However, high-voltage underground 
cable circuits are used extensively as a means of conveying bulk electrical power into 

large centres of population for aesthetic, safety and economic reasons. The accurate 
modelling of high-voltage underground cables is therefore of increasing importance in 

the calculation of transient overvoltages. As was the case for overhead transmission 
lines, a complete phase domain underground cable model for electromagnetic transient 
analysis is still to be realized. However, the author feels that the methodology 
presented in this thesis for the modelling of overhead lines could be extended to high- 

voltage cables. 

As is the case for overhead line modelling, the unwinding of the phase domain wave 
propagation matrix is likely to provide the greatest challenge. This particularly true for 
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cables since in this case the modal velocities will show a much greater variation 
between modes. 

7.2.2 Transformer Modelling 
The electromagnetic transient behaviour of power transformers is very difficult to 
model accurately since the current and voltage characteristics at the terminals are 
strongly frequency-dependent and usually involve nonlinear phenomena, such as those 
attributed to saturation effects and hysteresis. A recent model has been presented for 
both phase and modal domains using Vector Fitting to include these frequency 
responses. However, non-linearities were not taken into account. The phase domain 
modelling of transformers for performing real-time electromagnetic transient 
simulations, including any nonlinear effects, therefore provides an interesting 
background for future research. 

7.2.3 Transient Modelling of Instrument Transformers 
Testing of equipment, such as control and protection devices in real-time, hardware-in- 
the-loop simulations requires not only accurate network transients to be evaluated, for a 
given system disturbance, but also the appropriate instrument transformer transients 
which are `seen' directly by the equipment under test. Accurate modelling of these 
instrument transformers, such as the current transformer (CT) and the capacitor 
coupling transformer (CCVT) under transient conditions is therefore essential for 
performing such tests. 
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APPENDIX 

PHASE DOMAIN RECURSIVE 
CONVOLUTION INTEGRAL 

FORMULATION 

11.1 Characteristic Admittance Convolutions 
If the elements of the characteristic admittance matrix, Y, ((O) are approximated using 
rational functions, then the numerical convolution of (4.9) has the following form, 

Yc(t) * v(t) = W) - YegV(t)+Ja(t) (1.1) 

where Ja(t) is a history current vector evaluated from previous values of ý(t-Ot) and v(t- 
At), and yeq is a real, constant and symmetric matrix. With each element of YY((o) 
approximated by rational functions in the frequency domain, the corresponding the time 
domain form, ye(t), can be written as, 

N 

Y,; (t) =d i6(t) +I ctik e Q'k ̀u(t) 
k=1 

(I. 2) 

For element y, �(t) and phase a of v(t), the convolution integral of (I. 1) can be performed 
recursively as follows, 

N 

. 
v11 

`t)*v°(t)=ý11(t)=d, lv°(t)+1: C11ke -alk' *v°(t) (I. 3) 

k=1 

For each k in the summation of (I. 3) the following convolution integral is obtained, 

00 
911k(t)=Cl 

'k Jv°(t-u)e °1kudu (I. 4) 
0 

From [MARTI], it is shown that (1.4) can be written in the following recursive form, 

where, 

ý11(t)=qkC, 
ik(t-&)+pkV7(f)+rv 

(t-At) (1.5) 

9k =e °lk (1.6) 

Pk =c�k 
1- lZ (1-e 

°lk°` (1.7) 
Qlk Ota, 

k 

rk=cllk ý1e 
°Ik&+ýtQ2 

`1-e 
-alk &) (1.8) 

Ik lk 

Therefore, (1.3) can be written as, 

Ycl I (t) * v° (t) = ý' I (t) = zv° (t) + J01 
I 
(t) (I. 9) 

142 



where, 
N 

z=d�+LPk 
k=l 

(I. 10) 

N 
�al 

i 
(t) - qX 1lk 

(t 
- At) + rv' (t - At) (I. 11) 

k=t 

1.1 Wave Propagation Convolutions 
After the elements of the matrix P((o) have been successfully synthesized with rational 
functions in the frequency domain, the approximated wave propagation matrix, H, (ca), 
can then be obtained as, 

Hf(w) = e-'wTPf(o) =, D-(w)Pf(co) (I. I2) 

This can be re-written in the following form, dropping the subscript f for convenience, 

cI (o) (D12 (w) (D13 (w) PI ((O) liz (O)) P3 (w) 
H(am) _ 121((a) 12 (w) t23 (w) P 1(co) p2200) P23 (w) (1.13) 

cI (co) 
31 (D32 (co) (D33 (oD) P 

1(w) 
P2 (CO) P3 (ý) 

With each element of P(co) approximated with a sum of partial fractions, and each 
element of V()) approximated with a sum of scalar phase shifts (in the frequency 
domain), then (11.2) can be written as in a more compact form as follows, 

nnNC 

HAU M= fd E 1: wikt e jars rj (I. 14) 
k-I 1=1 m=l 

[s_aim] 

In the time domain this can be written as, 
nnN 

1: 2: Z 
w. klcklme-alm(ý-TI) hýýt)= 

k=1 1=1 m-1 

Equation (1.15) can be written in a slightly expanded form as, 
nNnNnN 

h(t) = wkICkJme 
aJm(i-tl) +2: 

2: 
Wik2%. e 

ajm(1-t2) + Wj 
3Cklme_QJm(1-13) 

k=1 m-1 k=l m=l k=l m=i 

Consider now the matrix-vector convolution involving the wave propagation matrix, 
h(t), and the forcing vector, f(t), 

h(t) * f(t) _ 4(t) (1.17) 

The convolution in (I. 17) is carried out as a normal matrix multiplication, but each 
multiplication involves scalar convolutions. For example, consider the convolution 
between the V' element of h(t), and the first element of the forcing function, f °(t), as 
follows, 
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nN 
hij Zj Zj 

wikl Ckjm e 
Qjm (i-t l) * fa 

\t) 
k=I m=I 

N 
EWk2Ckjme °jm(1-T2) * fa(t) 

k=l m=1 
Jl 

nN 
+ý 

+ Wk3 CkJm e-°jm 
(1-73) 

*�a 
\t) 

k=1 m=1 

Each individual convolution element can be written as follows [1], 

Co 
(t) = 

jf °(I -uk)e ,7 Jm(1-uk)du (1.19) 
tk 

This can be written in a recursive manner as follows (l], 

4(t)=cc«(t-et)+pf°(t-i. k)+xf°(t-; -At) (I. 20) 

where, 

a=e °j'"`ý (I. 21) 

o=[-L- 
1i (1_e'JmAl (1.22) 

a1 a&a 

)2 

x_-1e °fm °t + 
12 (1- 

e-°1m (1.23) 
Ulm dlajm 

Combining (I. 20)"(I. 23) in (I. 18) gives rise to the following, 

a ho(t) /t) 
Jl */'/t) _4 Jj(/t) =r w+klckJmL 

fam4rfl(/t_ 
Ot)F'+ (ýmf°(t 

-r1)+Ymf°(t-rl -At)] 

k-I m=1 

FaYa 
22) 

+'Ymf ° (t - r2 - At)] + wik2 Cklm 
la'm4ij(t - Qt) + 1'mf° 

(t -T 
kýl m=1 

+ 2: ik3 Ckm [am4ii3 (t - et) + Pm. f ° (t - r3) + Ym f° (t - r3 - At)I 
k'! m-1 

(1.24) 

Finally, the recursive convolution of the 14h element of h(t) and the first element of the 
forcing function, f(t), can be written in more compact form as, 

by(1)*l°(t)=4y (t) 
2: 

WiklCklm[a'm4ij1(t'-&)+Pmfa(t -Td +Ymf°(t-Tl -Ot)J 
(I. 25) 

k-i m-1 1-1 

_ "Ibif 
(') 
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APPENDIX 11 

NEGATIVE PHASE SHIFT FUNCTION 

11.1 Eigenvalue Description of Negative Phase Shift Function 
In order to aid the discussion of section 4.6 concerning the time domain form of the 
negative phase shift function, the matrix is described below in terms of the eigenvalues 
of the phase domain travel time (PDTT) matrix, T. 

The negative phase shift function, V(o ), can be expressed in terms of the eigenvalues 
of the PDTT function as outlined below. The case illustrated is for a 3-phase system, 
but the idea can be extended to any multi-phase system with ease. 
The PDTT function is diagonalized as follows, 

T-'tT = tD (11.1) 

where T. is a diagonal matrix. The elements of rD can be regarded as equivalent to the 
modal travel times of the system. The negative phase shift function can now be obtained 
as follows, 

(C0)tD1 0 0 

e-; c, t T 0 e-i(OIDI 0 T-' (11.2) 

0 0 e-'`O`°' 

TI T2 B e 0 0 TI TZ T3 

= Tit Tn T23 0 e jo, to2 0 TZ; T22 T'23 (11.3) 

T1 T2 ý, 
T33 

11 
0 0 e-'0t03 Tai T3? T3 

Therefore, each element of (D-((o) can be written as follows, 

(Dil(w)=TIe ýWTý T�+T, 2eý'tý Til+T3e; -Ig T3 

(D- (w) =T I2 - 1! 

(D =T e JO)tF 
! 3(w) - Il 

c= Te J°'T °' 2-1(co) 2l 

D 222 (w)=T e'`Ü`°' - 21 

T,.. +T e''W 12 12 

T' +T I2 13 12 

T' +T e°2 11 22 

T' +T e'""°2 12 22 

+T e''W ̀1 22 13 

T., + e''tt°' 23 13 

T' +T e '`Ü_°' 
21 23 

T' +T e'r'T° 22 23 

T' 32 

T' 33 

T' 31 

T' (11.4) 32 

(D 23 (w) = T21e 1 T13 + T22e 'w`° 
23 

T' + T23-j ý`D T33 

I- -T e 31«o) - 31 

(D co Te f"`°' 
32( 

)= 
31 

ý (w)= Te 3 33 3l 

+T e'`)`°2 11 32 

T' +Te Jw`°2 
12 32 

T'+T e'"1°2 13 32 

T' + Te 21 33 

T' +T e 1wt°' 
22 33 

e T23 +T33 

T' 31 

T' 32 

' T3 3 

It follows that each element of (D-((o) can be written in the frequency domain in a more 
compact form as, 

M 

mo (w) = j: T, kT e '`°T t (II. 5) 
k=1 
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Thus each element of 1r(w) is composed of n weighted scalar phase shifts (where n is 
the number of phase conductors in the system). 
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APPENDIX III 

TRANSMISSION LINE DATA 

111.1 Jaguara-Taquaril Transmission System 
The following test system corresponding to the 398 km, 345kV Jaguara-Taquaril power 
transmission system in the State of Minas Gerais, Brazil that is used for time domain 
simulations. The system is illustrated in Figure 111.1. 

ýnný 200Q 

Figure III. 1 Jaguara-Taquari1345kV transmission system 
The power plant is represented by a 3-phase voltage source behind a 3-phase coupled 
inductance having self-inductance L$ = 0.206H and mutual inductance Lm = -0.058H. 
The 3-phase shunt reactor is modelled by a coupled 3-phase inductor having self 
inductance L. = 4.4192 H and mutual inductance Lm = -1.228H. 
The line is energized by the following source voltage: 

v° (t) = 0.95 cos(cot +2 ) 

vb(t) = 0.95cos(c)t - 
71) (III. 1) 
6 

v` (t) = 0.95 cos(cot +7) 
6 

For the time domain simulations, the contacts of the circuit breakers are closed 
according to the sequence given in Table (111.1). 

Table 111.1. Circuit breaker switching data 

Phase Aux. Contacts Main Contacts 

a 8.50 ms 15.98 ms 
b 7.14 ms 14.28 ms 
c 8.16 ms 14.96 ms 
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The line parameters for the system, evaluated at 60Hz, for the frequency-independent 
transmission line are given in Table (111.2). 

Table 111.2. Line parameters calculated at 60Hz. 

Parameter Zero Se q. Pos. Se q. 
R 0.32183 S2/km 0.03419 S2/km 
X 1.26693 92/km 0.37478 )/km 
C 0.008 F/km 0.0118 F/km 

The single-circuit transmission line configuration is shown in Figure 111.2. 
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Figure 111.2 Single-circuit transmission line configuration 

111.2 Double-Circuit Transmission Line Configuration 
Figure 111.3 illustrates the 220kV double-circuit transmission line used. The line is taken 
to be 152.90km in length. 
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Figure 111.3 Double-circuit transmission line configuration 

111.3 Six-Circuit Transmission Line Configuration 
Figure 111.4 illustrates the six-circuit 230kV transmission line used. The line is taken to 
be 100km in length. 
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Figure 111.4 Six-circuit transmission line configuration 
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