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Abstract

The distribution of the current human population is the result of many complex historical

and prehistorical demographic events that have shaped variation in the human genome.

Genomic dissimilarities between individuals from different geographical regions can po-

tentially unveil something of these processes. The greatest differences lie between, and

within, African populations and most research suggests the origin of modern humans lies

within Africa. However, differing models have been proposed to model the evolutionary

processes leading to humans inhabiting most of the world.

This thesis develops a hypothesis test shown to be powerful in distinguishing between two

such models. The first (“migration”) model assumes the population of interest is divided

into subpopulations that exchange migrants at a constant rate arbitrarily far back in the

past, whilst the second (“isolation”) model assumes that an ancestral population iterat-

ively segregates into subpopulations that evolve independently. Although both models are

simplistic, they do capture key aspects of the opposing theories of the history of modern

humans.

Given single nucleotide polymorphism (SNP) data from two subpopulations, the method

described here tests a global null hypothesis that the data are from an isolation model.

The test takes a parametric bootstrap approach, iteratively simulating data under the

null hypothesis and computing a set of summary statistics shown to be able to distinguish

between the two models. Each summary statistic forms the basis of a statistical hypothesis

test where the observed value of the statistic is compared to the simulated values. The
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global null hypothesis is accepted if each individual test is accepted. A correction for

multiple comparisons is used to control the type I error rate of this compound test.

Extensions to this hypothesis test are given which adapt it to deal with SNP ascertainment

and to better handle large genomic data sets. The methods are illustrated on data from the

HapMap project using two Kenyan populations and the Japanese and Yoruba populations,

after the method has been validated by simulation, where the ‘true’ model is known.
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Chapter 1

Introduction

Wakeley (2009) describes population genetics as the study of allele frequencies in popu-

lations. Rather than concentrating on particular individuals, interest lies in how evolu-

tionary forces affect the frequencies over time in populations or in samples. Such forces

include mutation, selection, drift and population structure. Typically, data are collected,

modelled statistically and population parameters are estimated. Theoretically, genetic

variability may be modelled in terms of these forces, but, in many cases, even the most

simplistic scenarios are difficult to treat analytically, although it may be possible through

computational approaches.

This chapter begins by describing a coalescent approach to modelling genetic data and

approaches to parameter estimation. Possible problems with inference are described and

an overview of this thesis is provided.

1.1 The coalescent

In order to infer relationships between individuals or, more commonly, populations, meth-

ods in population genetics rely on theoretical constructions of their history that capture

1
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biological characteristics. The Wright-Fisher model is one such model that was first in-

troduced by Fisher (1930) and Wright (1931) and described well by Wakeley (2009).

This model considers a population of N haploid monoecious organisms and assumes non-

overlapping generations and a constant population size over time. Furthermore, at each

generation, the population is assumed to be a copy of a random sample of the previous

generation with replacement. For a biallelic locus with i copies of one allele, the probability

that there are j copies in the following generation is

pij =

(
N

j

)(
i

N

)j(
1− i

N

)N−j
, 0 ≤ j ≤ N.

Given a sample from a panmictic population in the present time, the coalescent process

describes the history of the sample backwards in time until the most common recent

ancestor of the sample has been found. At each event in the process, two random lineages

fission together decreasing the sample size by one. In a sample of size n from a population

of size N , a bifurcating tree can be simulated by n− 1 coalescent times T2, . . . , Tn where

Ti is the time during which there are i lineages present in the sample. Figure 1.1 shows

an example with n = 5. In a series of papers, ?? showed that as N →∞, the coalescent

● ● ● ● ●

T5

T4

T3

T2

Figure 1.1: Example of coalescent process with n = 5.
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times are independent and exponentially distributed with rates
(
i
2

)
, for i = 2, . . . , n, and

scaling time by N , therefore measuring time in N generations, the Wright-Fisher model

converges to the coalescent process.

By re-scaling time, the coalescent process also approximates other models. For example,

the Moran model, which allows overlapping generations has the coalescent as a limit

(scaling time by N2/2 generations). At each time point two individuals are chosen at

random with replacement; the first reproduces and the second dies. Many extensions of

the coalescent have been studied. For example, Donnelly and Tavaré (1995) allowed for a

variable population size over time. Suppose a population evolves according to the Wright-

Fisher model but, at each generation, the size of the population changes deterministically.

In a generation of size N , the probability that two lineages had their ancestor in the

previous generation is 1/N , and so as N increases this probability decreases. Therefore,

the changeable population size affects the rate at which lineages coalesce.

Two properties of a genealogy that are often of interest, since they provide useful sum-

maries, are the time to the most recent common ancestor of the sample TMRCA =
∑n

i=2 Ti

and the total length of the tree TTotal =
∑n

i=2 iTi.

1.1.1 Mutation models

Interest lies in detecting genetic variability between populations and mutation is a source

of variability. One common model for mutation is the infinite alleles model, as described

by Kimura and Crow (1964). In this model, each mutation generates a new allele, unlike

any allele already in existence. On the other hand, the k-alleles model restricts the number

of distinct alleles in the population to k. Each allele can mutate to the remaining k − 1

alleles with equal probability. The stepwise mutation model was defined by Kimura and

Ohta (1978), mutation occurs at rate µ per site per generation and when a mutation

occurs, the allele changes state by moving either one step forward or one step backwards

with probability 1/2. In addition, Kimura (1969) describes the infinite sites mutation
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model with each new mutation occurring at a homozygous site. This model is appropriate

when there is a large number of sites and a small mutation rate and so fits well modelling

mutations in DNA. In the human genome, SNPs have an estimated mutation rate of

2.7× 10−8 per site per generation as estimated by Nachman and Crowell (2000). This is

low enough to reasonably assume only a single mutation occurred in the ancestry of the

SNP.

The number of mutations to occur at a single site is a Poisson random variable with rate

per N generations equal to 1
2θ where θ is historically defined as 2Nµ with µ the mutation

rate per generation and N the diploid population size as described by Wakeley (2009).

1.1.2 Test for neutrality via summary statistics

The Wright-Fisher model describes a sample from a random mating population that is

unaffected by natural selection or population structure and it assumes that the population

size remains constant through time. That is, it makes many unrealistic assumptions. Any

deviations from these assumptions will impact analytical results assuming this so-called

standard neutral model. In order to test the standard neutral model, many statistics

have been invented to compare theoretical results under a neutral model to observed data.

Tajima (1989) used sequence data, an example of which is given below:

sequence 1 . . . ATGGGCA . . .

sequence 2 . . . ACGGACA . . .

sequence 3 . . . GCGGCTA . . .

sequence 4 . . . GTAGACA . . .

to compare the average number of pairwise differences between the sequences in the sample,

π, and the number of segregating sites, S, under the infinite sites model. In the example,

S = 5. The number of differences between sequence 1 and sequence 2 is 2, the number of
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differences between sequence 1 and sequence 3 is 4. Continuing in the way,

π =
2 + 4 + 3 + 3 + 3 + 4(

4
2

)
= 3.17.

Under the neutral model, Watterson (1975) found the distribution of S but in particular

showed E

(
S/
∑n−1

i=1 i

)
= θ. Also, Tajima (1983) showed E(π) = θ and hence a large

deviation of S/
∑n−1

i=1 i − π from 0 would indicate a violation of at least one of these

assumptions. Tajima approximated the distribution of the statistic

D =
π − S∑n−1

i=1 i√
V̂ ar

(
π − S∑n−1

i=1 i

) ,

under the standard neutral model as a Beta distribution and used this result to find

critical regions for this test. Interpretations of rejections of the model can be ambiguous,

the observed statistic will either be too large in a positive or negative direction. It is clear

that in either case, the neutral model can be rejected but it is not clear which assumption

has been violated as demonstrated by Simonsen et al. (1995). These authors simulated

data under several demographic scenarios and computed Tajima’s statistic. The aim of the

paper was to test the power of Tajima’s statistics, amongst others, to reject the standard

neutral model. Notably, the value of the statistics was not informative about the type of

model the data were derived from, only that it was inconsistent with the neutral model.

1.1.3 Population structure

In this thesis, two demographic models, described by Wright (1969) and Cavalli-Sforza

and Bodmer (1971), are considered. The first model considered assumes the population is

divided into subpopulations that exchange migrants at a constant rate arbitrarily far back
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in the past. The second model assumes that an ancestral population iteratively segregates

into two subpopulations that evolve independently. Both models are depicted in figure 1.2

with 5 subpopulations labelled 1 through to 5.

The two models are somewhat simplistic: the human population is most likely the result of

many complex demographic events that have led to complicated patterns of genetic vari-

ation. However, one of the models may be better than the other at capturing patterns of

variability. In any demographic model, there are unknown parameters that are of import-

ance, for instance, migration rates in the first model and population divergence times in

the second; populations sizes would be common to both classes of model. Given observed

4 5

21

3

(a)

1 2 3 4 5

(b)

Figure 1.2: Examples of (a) migration and (b) isolation models with 5 subpopulations.

SNP data from a set of subpopulations, Wright (1969) introduced Fst which measures the

amount of variation within subpopulation compared to the amount of variation between

subpopulations and this can be indicative of populations structure. Also, Patterson et al.

(2006) used principal components analysis to firstly reduce the dimension of the data

and secondly showed that, given the first few components are significant in capturing the

structure, they can cluster the data such that those within the same subpopulation are

clustered together. Methods of detecting population structure are presented in chapter 2.
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1.2 Estimating ancestral parameters

Inference about demographic history relies on past events impacting present-day popula-

tions in a distinct way so that genetic data may be informative about the evolutionary

history. It is often of interest to estimate a population divergence time or migration rates

for a given data set and many methods adopt either a maximum likelihood or Bayesian

framework. However, Wakeley and Hey (1997) use a method of moments approach to

estimate the population divergence time in an isolation model with two subpopulations

by considering different classes of segregating sites using sequence data. They partitioned

the segregating sites into four exclusive groups. Two of the groups comprise the sites that

are only variable in one of the two subpopulations. Another class consist of sites that are

segregating the same two bases pairs in both subpopulations and the last class consists

of sites that have a fixed difference between the two subpopulations, i.e., those that par-

tition the sample into n1 and n2 sequences, where n1 and n2 denote the sample sizes of

subpopulation one and two respectively. Wakeley and Hey derived expected values of the

number of sites in each class under a neutral model as a function of the model parameters

and estimated population parameters by equating the observed number to the expected

number.

Model-based methods in inference are based around calculating the likelihood function,

p(D|φ), where D denotes the data and φ the parameters in a particular model and then

either maximizing the likelihood function with respect to the components of φ or placing

a prior distribution π(φ) on φ and simulating from the posterior distribution p(φ|D) ∝

π(φ)p(D|φ).

However, the genealogy (the ancestral tree) of the sample is unobserved and is a high

dimensional nuisance parameter, g. Therefore, integration over all possible genealogies is

required in order to calculate the likelihood function. More precisely,

p(D|φ) =

∫
g∈G

p(D|g, φ)p(g|φ)dg, (1.1)
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where G is the set of all genealogies. A genealogy can be defined in terms of a topology

and a set of coalescent times. Disregarding the coalescent times, Wakeley (2009) discusses

the total number of possible topologies in a sample of size n. Consider the case n = 3,

then there are 3 possible rooted bifurcating branching structures:

1 2 3 2 3 1 1 3 2

Generally, beginning at the present time, there are
(
n
2

)
possible coalescent events. Once

two lineages have coalesced, the number of possible coalescent events is
(
n−1

2

)
and so forth,

until only two lineages are present and
(

2
2

)
= 1. The total number of possible genealogies

is

n∏
i=2

(
i

2

)
.

Figure 1.3 illustrates how quickly this number increases. For example, for n = 6 there

are already 2700 different possible genealogies. Including coalescent times, the set G is

uncountably infinite. For this reason, many attempts have been made to either estimate

the likelihood function or make inference without the use of the likelihood function.

As in equation (1.1), several statistical problems involve evaluating integrals of the form

E

(
f(X)

)
=

∫
x∈X

f(x)g(x)dx

for a random variable X with distribution function g(x) and some function f(x). By
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Figure 1.3: Number of branching structures in an samples of size n = 2, 3, 4, 5 and 6.

sampling {x1, . . . , xm} from g(x) then

E

(
f(X)

)
≈ 1

m

m∑
i=1

f(xi) (1.2)

is a Monte-Carlo approximation of the integral as described by Gelman et al. (2004).

Stephens (2007) demonstrates how Monte-Carlo methods can be used for ancestral infer-

ence, for example to estimate TMRCA. By simulating draws, T1, . . . , Tm, from p(G|D) and

considering the time of the most recent common ancestor of the ith genealogy TMRCA(Ti),

Stephens makes the approximation

E(TMRCA|D) ≈ 1

m

m∑
i=1

TMRCA(Ti).

Therefore, instead of considering the full set of genealogies, a random sample of genealogies

from p(G|D) is taken. Due to the complexities of g(x) it may be infeasible to simulate

from it. Importance sampling is a technique that employs another probability function

q(x) similar to g(x) but easier to sample from. Re-write E

(
f(X)

)
as

E

(
f(X)

)
=

∫
f(x)

g(x)

q(x)
q(x)dx
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which is approximated using Monte-Carlo:

E

(
f(X)

)
≈ 1

m

m∑
i=1

g(x̃i)

q(x̃i)
f(x̃i),

where {x̃1, . . . , x̃m} are samples from q(x).

Further approximate methods (Approximate Bayesian Computation) in population genet-

ics have been developed that use summary statistics for parameter estimation as described

by Tavaré et al. (1997) and Beaumont et al. (2002). Such methods sidestep computing the

full likelihood function and rely on suitable statistics η that may be used to replace p(D|φ)

by p(η(D)|φ) for parameters φ. These methods are often based on a Monte-Carlo scheme,

where parameter values are accepted or rejected depending on how closely summaries

derived from them match the observed values of the summaries.

1.2.1 Model selection

Given a data set x and two contending models M1 and M2, there are various ways to test

which model best fits using a frequentist or Bayesian approach with both methods equally

problematic.

A Bayesian hypothesis test computes the marginal likelihood of the data under the models,

a challenge in itself when dealing with high dimensional genetic data and their unknown

ancestry. The model comparison procedure considers the ratio

p(M1|x)

p(M2|x)
=

π(M1)p(x|M1)

π(M2)p(x|M2)

=
π(M1)

π(M2)
×B12,

where B12 is the Bayes factor comparing M1 and M2. B12 > 1 shows that the data provide

evidence to support M1 and B12 < 1 increases the supports for M2.
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A frequentist hypothesis test takes the form

H0 : data from M1

H1 : data from M2

with H0 the null hypothesis and H1 the alternative hypothesis. A test statistic is used to

assess how compatible the data are with H0, which is rejected if the measured value of the

statistic is unlikely under H0. If it is possible to estimate adequately the likelihood, then

the likelihood ratio often has good properties for model selection as used, for example, by

Nielsen and Wakeley (2001). In addition, for a specific model with maximum likelihood

value L and p the number of parameters in the model, the Akaike information criterion

(AIC) is defined to be

AIC = −2 lnL+ 2p

= D + 2p,

and can be computed for several potential models. The model that produces the lowest

AIC is deemed the most suitable (from the set of proposed models) since the value D

decreases as the likelihood L increases and more complex models, that is models with

more parameters, are penalised. Similarly, the Bayesian information criterion (BIC), in

which more complex models have a heavier penalty compared with AIC, is defined by

Congdon (2003) to be

BIC = D + p log(n),

in a sample of size n.
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1.3 Difficulties in inference

There are many difficulties in modelling population genetic data, some of which are high-

lighted in this section.

1.3.1 Ascertainment

Throughout this thesis, only single nucleotide polymorphism (SNP) data are considered.

Many large-scale SNP data sets have been invaluable to human population genetic studies.

However, theoretical results may not be directly applicable to SNP datasets because of

the non-random way SNPs have been identified or ascertained. SNP discovery tends to

begin by genotyping a small sample of individuals at a particular locus and, if there is

variability in this small sample, a larger sample is then genotyped. This type of procedure

introduces a bias towards SNPs with intermediate allele frequencies which can lead to

unreliable results when inferring demographic history using theoretical results. Different

ascertainment schemes have been analysed, for example, by Albrechtsen et al. (2010),

Nielsen (2004), Nielsen and Signorovitch (2003) and Nielsen et al. (2004).

Wang et al. (1998) discovered the location of 2227 SNPs in the human genome. In order

to identify SNPs, the authors began by selecting over 1000 regions across the genome and,

for each region, they genotyped an initial set of three individuals and then a pool of ten

individuals. If a position was variable in the initial set, they then classified this position

as a candidate SNP, and, if the allele frequency in the pool of individuals at the candidate

SNP was above a pre-determined threshold, then the SNP was included in the sample, i.e.

was considered ascertained.

Due to the bias towards positions with intermediate allele frequencies, ascertainment has

been shown to have a dramatic effect on the allele frequency spectrum, for example by

Nielsen et al. (2004). Allele frequency spectra are helpful in expressing the patterns of

variation in SNP data as many genetic factors can affect the shape of the spectrum.
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They are constructed by counting the number of SNPs with each possible number of

mutant alleles in the sample. For example, figure 1.4 shows an example of haploid size

five genotyped at six SNPs with the data displayed in the matrix on the left hand side.

individual

SNP



0 1 0 0 0
0 0 1 0 1
1 0 0 0 0
0 0 1 0 0
0 1 0 1 1
0 1 0 0 0


Allele Counts

F
re

qu
en

cy

0 1 2 3 4 5

0
1

2
3

4

Figure 1.4: Example of allele frequency spectrum (right) for SNP data (left) for five
haploids at six SNPs.

Assuming that only a single mutation has occurred, each entry of the matrix is in {0, 1}

with zero corresponding to those who carry the first allele and a one corresponding to

those who carry a copy of the other allele. At each SNP, it may not be known which allele

is ancestral and which was caused by the mutation. If the ancestral allele is known, the

mutation divides the sample, of haploid size n, into i mutant alleles and n − i ancestral

alleles. Across SNPs, Wakeley (2009) lets ξi denote the number of SNPs that divide the

sample in this way for 1 ≤ i ≤ n− 1. If it is unknown which allele is mutant and which is

ancestral, then it is not possible to distinguish SNPs that divide the sample into i mutant

(n − i ancestral) and n − i mutant (i ancestral) alleles. Therefore, it is only possible to

count the number of SNPs that divide the sample into i copies of one allele and n − i

copies of the other for 1 ≤ i ≤ [n/2]. The distribution of the row sums of the matrix is the

bases of the histogram on the right hand side of figure 1.4 (the allele frequency spectrum).

Under a neutral model, Nielsen and Signorovitch (2003) derived expressions for the sampling

distribution of allele frequencies under different ascertainment schemes. Namely when the

ascertainment panel is included in the final data set, when only some of the panel is in-

cluded in the final data set and when the final data set is exclusive of the panel. When
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the final sample includes the ascertainment panel, figure 1.5 illustrates how the allele fre-

quency spectrum is affected. As described, there is a bias towards intermediate valued

allele counts.

Allele Counts

F
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1 2 3 4 5 6 7 8 9 11 13 15 17 19

0
0.

05
0.

1
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15
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2
0.

25

ascertainment
no ascertainment

Figure 1.5: Example of allele frequency spectrum under a neutral model with sample size
n = 20 without ascertainment and with ascertainment of panel size 2.

1.3.2 Ghost populations

In estimating population parameters such as migration rates, it is assumed that samples

are available from all of the populations in existence rather than from a sample of the pop-

ulations. Beerli (2004) described ghost populations as the set of populations in existence

but unsampled from and examined their effects on parameter estimation. In particular,

he simulated data under several migration scenarios with three subpopulations and took

samples from only two. The study showed that if the ghost population had a high migra-

tion rate with the two sampled populations, this leads to poorer estimates of the migration

rates between the two sampled populations, whereas little or no migration between the

ghost and sampled populations leads to little bias in migration rate estimates. There-

fore, it will be assumed throughout that samples are available from all the populations

in existence. This is not an issue in simulated data but may impact inference using real

data.
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1.3.3 Sufficient statistics

Estimating a parameter φ given observed data x using a function T (x), ideally T would

contain all the information, from the data, about φ. A statistic T is a sufficient statistic

for a parameter φ if the conditional distribution of the data given T (x) = t is independent

of φ.

Given observed data x, The Neyman–Fisher theorem provides an equivalent condition for

sufficiency. It states that a statistic T is sufficient for φ if and only if there exist functions

a(x) independent of φ and b(t|φ) such that

p(x|φ) = b(t|φ)a(x).

For example, given data x1, . . . , xn ∼ N(µ, σ2) then an estimator of µ is T (x) = 1
n

∑n
i=1 xi

which is sufficient for µ since

p(x1, . . . , xn|µ) ∝
n∏
i=1

exp

(
− (xi − µ)2

2σ2

)
= exp

(
−

(
∑n

i=1 x
2
i − 2µ

∑n
i=1 xi + nµ2)

2σ2

)
= exp

(
−
∑n

i=1 x
2
i

2σ2

)
exp

(
−
−2µ

∑n
i=1 xi + nµ2)

2σ2

)
.

One recurring problem in population genetics is that it is often the case that estimators

of population parameters are not sufficient. A few examples are presented below.

Joyce (1998) described Ewens’ sampling formula. Given n objects divided into k distinct

objects or classes with ai the number of classes with i representatives, then the distribution

of a1, . . . , an is

P{a1, . . . , an} =
n!θk

θ(n)

n∏
j=1

1

jajaj !
,
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where θ(n) = θ(θ + 1) . . . (θ + n − 1). This scenario is analogous to the infinite alleles

mutation model, where each mutation introduces a unique allele with n the total number

of genes, k the total number of alleles in the sample, ai is the number of alleles which have

i copies in the sample and, in population genetics, θ is the scaled mutation rate. Wakeley

(2009), amongst others, shows k is sufficient for θ by showing the conditional distribution

of a1, . . . , an given k is independent of θ.

A possible estimator of a population divergence time is

T̂ = − log(1− F̂st),

derived by Cavalli-Sforza and Bodmer (1971). Nielsen et al. (1998) derived an expression

for the joint likelihood of T and F , where F is the ancestral frequencies which may be

estimated by the observed allele frequencies. Using this derived expression, values of the

log likelihood of T may be computed. The authors investigated whether this estimator

of T was a sufficient estimator and provided an example of two data set with the same

estimated Fst and F but had a different log likelihood value for T . Therefore, suggesting

that estimators that are functions of Fst are not a sufficient.

One parameter of interest is the scaled mutation rate θ. Tajima (1983) showed that

E(π) = θ,

var(π) =
(n+ 1)θ

3(n− 1)
+

2(n2 + n+ 3)θ2

9n(n− 1)
.

Therefore, Tajima showed that π is an unbiased estimator of θ but it is not consistent

since var(π) does not approach zero and n → ∞. In particular, Tajima examined the

relationship between the sample size and the variance of π̂ and showed when θ = 0.1, the

var(π) using 10 sequences was approximately equal to the variance using 200 sequences.

This estimator is not a consistent estimator of θ, Joyce and Marjoram (2008) examined

estimating the scaled mutation rate for a range of different estimators and suggest there

are no (known) sufficient statistics for θ.
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1.4 SNP data sets

Population structure patterns can emerge by analysing patterns of variation in the human

genome within and between populations. The International HapMap Consortium (2003)

describe the amount of variation in the human genome, in particular, it estimated that

two human genomes differ at approximately 0.1% of sites with most sites biallelic. The

consortium convey that in around 90% of variable sites, equating to around ten million

SNPs in the human population, both alleles have a frequency greater that 0.01 whereas

in the remaining 10%, one allele exhibits a frequency less that 0.01.

There are several different types of genetic data set. Section 1.1.2 shows an example of

DNA sequences data where positions in the sequences may be mutated producing SNPs.

This thesis will focus on this type of data. Some regions of the genome are highly poly-

morphic and short segments of DNA are found at high frequency. Microsatellites are short

repeats of DNA sequences.

Over the last decade, many genetic data sets have been compiled for example the 1000

genome project by the 1000 Genomes Project Consortium (2010), the HapMap project

by the International HapMap Consortium (2003) and the human genome diversity panel

by Cann et al. (2002).

The human genome diversity panel stored blood samples from around 1050 people from 52

countries in the Foundation Jean Dausset-CEPH in Paris with the intention of building a

genetic data base by distributing the samples to be genotyped by different investigators and

the results stored in a central database (http://www.cephb.fr/en/index.php). Currently,

the database contains around 660918 SNPs.

The international HapMap project was originally designed to discover patterns in DNA

sequences in the human genome to identify genes associated with diseases as outlined by

the International HapMap Consortium (2003). Over a seven year period, this project was

delivered in three phases. The first phase consisted of samples with ancestry from parts
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of Africa, Asia and Europe genotyping a total of 269 individuals. In the second phase,

the International HapMap Consortium (2007) improved the coverage of the genome by

genotyping the 269 samples at 3.1 million SNPs. In the third phase, the International

HapMap 3 Consortium (2010) genotyped samples from an addition 7 populations bringing

the total sample size to 1184.

The 1000 Genomes Project Consortium (2010) used samples from the third phase of the

HapMap project to compare sequencing strategies. The pilot projected compared three

strategies and their rate of discovery of variant positions in the genome. The consortium

used whole genome shotgun sequencing on unrelated individuals and on two trios, one from

the Yoruba population and the other from the CEU sample, consisting of individuals with

European ancestry. The last method targeted exons, short and functionally important

sequences that are thought to contain diseases causing mutations in the human genome.

For example Li et al. (2010) created a database of genetic data by targeting exons in 200

Danish individuals.

1.5 Overview of thesis

The remainder of this thesis is organised into eight chapters. Population structure and

methods of detecting any structure are explored in chapter 2. Chapter 3 presents the

details of simulating SNP data under the isolation and migration models introduced in

section 1.1.3 and also possible parameter estimation of the model parameters. Data are

simulated and examined under both models. Chapter 4 considers established ways of

distinguishing the two models and examines the effects of ascertainment on SNP data.

Further methods of parameter estimation are examined in chapter 5. Chapter 6 intro-

duces a summary statistic–based hypothesis test that may be used to distinguish between

the migration and isolation models. Details are given of the choice of summary statistics

and methods of treating multiple comparisons. The hypothesis test examines how distin-

guishable the two models are under certain SNP ascertainment schemes and also looks at
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the usefulness of the significant components from principal components analysis in chapter

7. This methods is applied to real data in chapter 8. Lastly, a discussion of the methods

employed in the thesis is presented with possible extensions and criticisms.



Chapter 2

Population structure

Cann et al. (1987) analysed mitochondrial DNA from 147 people from five geographical

regions. They reconstructed a genealogy using the parsimony method.1 The authors found

that, from the reconstructed genealogy, it is likely that human mitochondrial expanded

quite recently from Africa. Since then, the out-of-Africa theory has received support from

many different types of data, as summarised by Nei (1995). However, reconstructing

evolutionary history has led to much controversy. Two main theories that are at the

opposite ends of a spectrum of hybrid models, as discussed by Relethford (2008), are

1. the replacement theory and,

2. the theory of multiregional evolution.

The first posits that modern humans appeared in Africa around 200,000 years ago and

spread through Asia, Australasia and Europe after 100,000 years ago, replacing archaic

humans who already existed there. The second assumes that humans diverged from Africa

around two million years ago through Asia, Australasia and Europe and each settlement

1For each pair of sequences (x, y) out of a total of n sequences, the distance between the pair is the
number of difference between x and y, denoted by dxy. The parsimony score of a genealogy is

∑
dxy,

summed over all possible pairs. The maximum parsimony tree minimise the parsimony score.

20
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evolved into modern humans. Migration events occurred over time such that the sep-

arate settlements remained genetically similar instead of evolving into separate species.

Figure 2.1 shows both theories, as displayed by Cavalli-Sforza and Piazza (1993).

Homo habilis

African European Asian Indonesian
H. erectus H. erectus H. erectus H. erectus

Modern Modern Modern Modern
Africans Europeans Asians Australians

(a)

Homo habilis

African European Asian Indonesian
H. erectus H. erectus H. erectus H. erectus

Modern Modern Modern Modern
Africans Europeans Asians Australians

(b)

Figure 2.1: Reconstruction of the origins of humans as shown by Cavalli-Sforza and Piazza
(1993).

Although the two theories present different explanations of demographic history, it is clear

that the human population is structured in some way. This chapter aims to review some

methods that have been employed to detect population structure, in particular using SNP

data.

2.1 Inferring population structure

The most basic coalescent process assumes a sample from one random–mating population.

One deviation from this assumption is to assume that the larger population can be divided

into smaller subpopulations that are more or less genetically distinct. Many current meth-

ods in inferring population structure aim to quantify the amount of gene flow between two

or more populations. A limitation of these methods is the confounding of long–term and

historical events, namely recurrent gene flow with a small number of historical population

splits. The two different demographic scenarios can present similar characteristics in allele
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frequencies and other summary statistics, which can make differentiating between the two

difficult.

2.1.1 F-statistic

A commonly quoted statistic in population genetics is Wright’s Fst statistics, defined

vaguely to be “the correlation between random gametes within subdivisions, relative to

gametes of the total population” by Wright (1969). This statistic is a measure of pop-

ulation diversity since it compares the amount of genetic variability between and within

populations and is closely related to the so called inbreeding coefficient. It has since been

redefined in several ways and many different estimators of it have been proposed. Wright

(1969) showed that

Fst =
Fit − Fis
1− Fis

,

where Fis and Fit were defined to be the “correlation between uniting gametes relative to

those of their own subdivision” and “correlation between gametes that unite to produce the

individuals relative to the gametes of the total population”, respectively. Cavalli-Sforza

and Bodmer (1971) discussed the case of k subpopulations in Hardy–Weinberg equilibrium

so that the amount of genetic variation in each subpopulation remains constant over time.

The authors showed, under population structure, there is a deficiency in heterozygotes in

the entire population by deriving an expression for the average frequency of heterozygotes.

For a biallelic locus, let p̄ be the average sample allele frequency and σ2 be the variance

of the sample allele frequencies across subpopulations. Then,

F̂st =
σ2

p̄(1− p̄)
. (2.1)

Furthermore, Cavalli-Sforza and Piazza (1993) also provided an estimator of Fst by con-

sidering the heterozygosity in the whole population compared to that within populations.

At a single loci, they define pij to be the gene frequency, in the sample, of allele i in
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subpopulation j for i = 1, . . . , L and j = 1, . . . , S.

F̂st =
h− hs
h

,

where h is the heterozygosity of the sample,

h = 1−
L∑
i=1

[
1

s

S∑
j=1

pij

]2

,

and hs is the average heterozygosity in subpopulation s,

hs =
1

s

s∑
j=1

(
1−

L∑
i=1

p2
ij

)
.

Calculating Fst under the migration model, Wright (1969) assumed that a population

consists ofD random–mating islands or subpopulations. Each subpopulation is of the same

constant haploid population size N and a proportion of each subpopulation is accounted

for by migrants from other subpopulations. He defined the set of parameters {mij : i, j =

1, . . . , D} where mij is the probability that a lineage now in subpopulation i had its parent

in subpopulation j. Therefore, the number of individuals that migration from island i to

j in a single generation (backwards in time) is Nimij . If the migration rate is constant,

i.e. mij = m ∀i 6= j ∈ {1, . . . , D}, and reproduction occurs according to the Wright-Fisher

model, Wright derived an estimate F of Fst based on the migration rate:

F =
1

1 + 2Nm
. (2.2)

This formula was first introduced by Wright (1969) and produced a way of estimating the

amount of population diversity and also provided an estimate of the level of gene flow

between subpopulations

2Nm ≈ 1

F
− 1.

Although since reality often violates the assumptions in this model, Whitlock and Mc-
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Cauley (1998) demonstrated that it is often the case that Fst cannot be used to estimate

2Nm. This formula assumes that each subpopulations is of the same population size and

each pair of subpopulations exchange migrants at the same constant rate. Whitlock and

McCauley systematically illustrate the issues with these assumptions, for example, geo-

graphically closer subpopulations might exchange migrants at a higher rate than those

further apart. Even if these assumptions are valid, other factors, such as selection, may

affect allele frequencies within each subpopulation and hence Fst. As a result, if N and

m remain fixed, it is still possible to estimate different Fst values without accounting for

other possible factors.

Cavalli-Sforza (1969) considered expected values of Fst under different models. In partic-

ular, in the isolation model with k subpopulations all diverging from a common ancestral

population t generations ago, a relationship between E[Fst] and the population divergence

time t was derived;

E[Fst] = 1−
(

1− 1

N

)t
E[Fst] ≈ 1− e−

t
N , (2.3)

with N is the haploid population size of each subpopulation. This formula is examined

more closely in chapter 5.

2.1.2 Genetic distance

Genetic distance can be used to convey the difference between two populations as dis-

cussed by Weir (1996). Any distance measure d should satisfy four axioms:

For three points A,B and C,

1. d(A,B) ≥ 0,

2. d(A,A) = 0,
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3. d(A,B) = d(B,A) and,

4. the triangle inequality d(A,B) + d(B,C) ≥ d(A,C).

In this context, points A,B and C can correspond to individuals or populations.

Weir (1996) provides some examples of possible distance measures between populations.

The Euclidean distance between sample allele frequencies may be used. For example, at a

particular biallelic locus, if p1 and p2 are the frequencies of one of the alleles in the sample

from subpopulation 1 and subpopulation 2 respectively, then

d(subpopulation 1, subpopulation 2) =
√

2(p1 − p2)2.

Fst between two populations can be considered as a distance measure. Genetically similar

populations have smaller pairwise Fst values and genetically diverse subpopulations have

larger pairwise Fst. Since Fst is in the range [0, 1], whereas a distance measure should be

in the range [0,∞), a Fst based distance measure can be defined by

D = − log(1− Fst). (2.4)

Consider data from the HGDP-CEPH diversity panel and exploiting equation 2.4 as a

distance measure, a neighbour–joining tree can be constructed as illustrated in figure 2.2.

The subset of populations (from the 52 in the panel) are labelled from 1 to 27 and the

colour of each label is determined by the continent of the corresponding population. The

neighbour–joining algorithm, introduced by Saitou and Nei (1987) and modified by Studier

and Keppler (1988), attempts to reconstruct a tree which matches the observed pairwise

distances as closely as possible by iteratively joining the nodes that minimise

Sij = (N − 2)dij −Ri −Rj ,
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Figure 2.2: Neighbor joining tree of populations from HGDP-CEPH data

where N is the total number of nodes (or populations), Ri =
∑N

j=1 dij and dij is the

distance between node i and node j.
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2.1.3 Principal components analysis

More that 30 years ago, Cavalli-Sforza and Piazza (1978) studied the relationship between

genetic differences and evolutionary history. To represent the evolutionary history of a

large area, they applied principal components analysis to gene frequency data and con-

structed “synthetic maps” based on the components’ values. Higher component values

were expected to correspond to the place of origin of the sample and the authors hypo-

thesised that patterns of migration would emerge as gradients in the maps. One famous

application was to migration events of farmers from the Middle East to Europe by Cavalli-

Sforza et al. (1993). However, by simulating data from a set of populations arranged in

a square lattice and allowing for migration between neighbouring populations, Novembre

and Stephens (2008) illustrated that principal components under this model demonstrated

a sinusoidal patterns and hence, peaks and troughs in a principal component map do not

necessarily show underlying migration patterns. Although principal components may not

show patterns of migration, the use of such dimension reduction techniques has become

widespread in the analysis of population structure. In particular, it provides a way of

graphically displaying vast amounts of SNP data. In a structured population, such graph-

ical summaries are correlated to geographical distance. For example, using SNP data

from Europeans, Novembre (2008) produced a plot of individuals’ SNP profiles’ projected

onto the first two principal components and demonstrated how it resembled a map of the

individuals’ location in Europe.

Principal components analysis is a common statistical tool that reduces the dimension of

high dimensional data through linear combinations of the original variables. Consider a

data set that consists of relatively few individuals compared to the number of independent

variables p. Let Y = (y1, . . . , yp)
T be the variable measurements for a single individual.

The objective is to find uncorrelated ‘synthetic’ variables, denoted by PC1, . . . , PCp, which

are linear combinations of the original p variables ordered such that PC1 accounts for most

of the variance in the data and PCp accounts for the least amount of the variance. Each
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component, PCi (i = 1, . . . , p), is of the form

PCi =

p∑
j=1

aijyj .

The vector ai = (ai1, . . . , aip) is equal to the eigenvector of the corresponding ith largest

eigenvalue of the covariance matrix X = Y Y T as shown by, for example Dunteman (1989).

A test for the presence of population structure was present by Patterson et al. (2006).

This method supposes the data consist of L SNPs and n individuals where L � n. The

n× L matrices C and M̃ were defined with elements

Ci,j = the number of variant alleles for SNP j in individual i,

M̃i,j =
C(i, j)− µj√
pj(1− pj)

,

where µj is the average allele count and pj =
µj
2 the allele frequency of the jth SNP.

Principal components analysis is performed on the n × n covariance matrix M̃M̃T and

any evidence of population structure is tested based on results of the distribution of the

largest eigenvalue of a covariance matrix given by Johnstone (2001). Given the ordered

eigenvalues λ1 > λ2 > . . . > λnT−1 of covariance matrix M̃M̃T , the Patterson et al. (2006)

set parameters

µ(n,L) =
(
√
L− 1 +

√
n)2

L
,

σ(n,L) =
(
√
L− 1 +

√
n)

L
(

1√
L− 1

+
1√
n

)
1
3 ,

and scale the eigenvalues by

x =
λ1 − µ(n− L)

σ(n,L)
.

Under the null model of no population structure, the statistic x approximately follows
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a Tracy-Widom distribution. The density function is given in figure 2.3. Testing at

significance level 0.05, eigenvalues are rejected if the corresponding value of x falls in the

red tail of the distribution . If λ1 is found to be significant, the next eigenvalue is tested by
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Figure 2.3: Tracy-Widom density.

recalculating x with n = n−1 continuing until an eigenvalue is found to not be significant.

Astle and Balding (2009) provide an interpretation of components from principal compon-

ents analysis. Concentrating on the first component, they note that it will be “correlated

with many SNPs”. In an example with two populations that exchange migrants, they

suggests that the first component will predict population origins for the individuals in the

sample since it will be correlated with SNPs that show the most discrepancy between the

populations. Generally, in such a model with S populations, the first S − 1 components

may predict population memberships.

2.1.3.1 Human Genetic Diversity Panel

Using SNPs from the HGDP-CEPH panel from only chromosomes 1 to 22 and 1043 in-

dividuals from 27 countries out of the 52 in the panel, the first two components from

principal components analysis are plotted in figure 2.4(a). In this figure, individuals from

the same countries are clustered together. More generally, clusters geographically close

appear closer in this plot, corresponding to the results by Novembre (2008) in Europe. A

plot of the 3rd and 4th eigenvectors is given in figure 2.4(b) and shows three main cluster.
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Figure 2.4: (a) Biplot of first two components using data from the HGDP-CEPH diversity
panel. Each point on the plot is representative an individual and is shaped and coloured
associatively to one of 27 countries. (b) Biplot of the 3rd and 4th components.

The first consists of individuals from the New Guinea and Bougainville populations, the

second of individuals from South America, with the remaining individuals forming the last

cluster. In total, 80 components were found to be significant.

In order to gauge a range of Fst values applicable to the human population, pairwise Fst

values are also computed using the program SMARTPCA introduced by Patterson et al.

(2006), and are summarized in table 2.1. This program uses a jacknife estimator of Fst.

The smallest Fst was found to be between the two Italian populations (0.005) followed

closely by the Fst between France and Italy, 0.007, highlighted by red on the table. The

largest Fst values were found to be between African and South American populations,

for example Fst = 0.343 between Brazil and Namibia, followed closely by those between

African and Oceania populations, for example Fst = 0.312 between New Guinea and

Namibia.
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2.1.4 Bayesian clustering approach

Another method of detecting population structure is STRUCTURE, originally introduced

by Pritchard et al. (2000). This is a model-based clustering technique used to cluster

individuals into populations. This program assumes that the number of clusters (or pop-

ulations), k, is unknown and uses a Dirichlet distribution to model the allele frequencies

of the alleles at a particular locus in each of the k populations. Draws from the joint

distribution of the allele frequencies for each population, P and individual population

allocations, Z given the data, X are made using an MCMC algorithm that iteratively

samples P from Pr(P |X,Z) and then Z from Pr(Z|X,P ). Initial values of Z are chosen

by assuming that the probability an individual belongs to the kth population is equal to

1
k . This method was extended to allow for admixture. Each individual is associated with

a vector q = {q1, . . . , qk}, where qi is the proportion of that individual’s genome belonging

to population i.

In order to infer k, the number of populations, the authors approximate the posterior

distribution of k given data X although they also suggest their estimation may not be

accurate. Given a prior p(k) on k and the likelihood of data X given k p(X|k) then

p(k|X) ∝ p(X|k)p(k).

The troublesome aspect of this approach is finding p(X|k), however, the authors provide

an estimation of this probability.

An example is given in figure 2.5(a) from individuals from the Mexican (coloured green),

Italian (red) and Central African Republic (blue) populations in the HGDP-CEPH di-

versity panel. The program labels the clusters cluster 1, cluster 2 and all others. This

simple example shows the results with k = 3. Each point in the equilateral triangle rep-

resents an individual in the sample and is coloured depending of its origin. The position

of each point is determined by qi = {qi1, qi2, qi3}, such that
∑3

j=1 qij = 1, and qij is the

perpendicular distance from side j of the triangle, and represents the estimated ancestry
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(a)

(b)

Figure 2.5: (a) STRUCTURE clustering results with k = 3 using data from 3 populations
from the HGDP-CEPH diversity panel (b) Another graphical representation of the data.

of individual i in component j. Individuals are clustered depending on their originating

population, with only one person from the Central African Republic, in blue, clustered

with people from Italy, shown as cluster one. Figure 2.5(b) gives another graphical rep-

resentation of the results for each individual as described by Rosenberg (2004). In this

diagram, each individual is represented through a bar and each bar is coloured depending

on the individual’s estimated ancestry.
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Chapter 3

Data simulation

This thesis will look in particular at SNP data. Therefore, this chapter begins by intro-

ducing some software for simulating SNP data. Data simulation is an invaluable tool in

many fields to examine characteristics of statistical models.

Two demographic models are to be considered in this thesis: the island model (or mi-

gration model) and an isolation model. Particulars on each model are provided including

assumptions and methods of simulating SNP data.

In both models, let D denote the number of subpopulations with Ni and ni the population

sample sizes of subpopulation i, respectively, and
∑D

i=1Ni = NT ,
∑D

i=1 ni = nT .

3.1 Software for simulating data

Many computer programs are available to simulate genetic data, many of which take a

coalescent approach, simulating backwards in time, although others adopt a forward-in-

time approach. An in-depth review of many of these programs is given by Excoffier and

Heckel (2006). Data simulators include ‘ms’ by Hudson (2002), ‘SimCoal’ by Excoffier

et al. (2000) and ‘Fregene’ by Chadeau-Hyam et al. (2008).

34
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Hudson’s ms program uses a coalescent approach to simulate sequence data with an infinite

sites mutation model for a wide range of population structure scenarios, for example

migration, divergence and variable population size. There are more such backwards-in-

time simulators such as ‘SimCoal’, a coalescent simulation of different types of genetic data,

originally DNA sequences and microsatellite repeat counts under complex demographic

histories such as population expansion, bottlenecks, divergence and migration. ‘SimCoal2’

by Laval and Excoffier (2004) was later introduced to simulate SNP data and incorporate

ascertained data. ‘Serial SimCoal’ by Anderson et al. (2005) is an extension of SimCoal,

which allows multiple sampling time points, where present-day and ancestral data may

be generated in order to compare the amount of diversity of a set of populations through

time.

Similarly, Fregene by Chadeau-Hyam et al. (2008) simulates DNA sequence data from

a possibly subdivided population. However, Fregene adopts a forward-in-time approach.

The authors argue that simulating forward in time allows for more flexibility in model-

ling recombination and selection, neither of which will be considered here. Naturally, it

incorporates the other factors such as changing population size, mutation and migration.

This list is in no way exhaustive. In this thesis, data simulation was approached using

the backwards-in-time coalescent model and were implemented in the statistical software

package, R, R Development Core Team (2008).

3.2 Strategy for simulating data

Hudson (1991) describes simulating a genealogy and then adding mutations. In a sample

of haploid size n from a population of haploid size N with N � n, beginning at time 0, the

time until the next coalescent event measured in units of N generations, backwards in time,

is exponentially distributed with rate
(
n
2

)
and each of the

(
n
2

)
pairs have equal probability

of being chosen to coalesce. That is, a pair of lineages are chosen to coalesce at time

Tn ∼ Exp
((

n
2

))
. After this time, the sample size reduces by one and, from the remaining
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n − 1, a pair are randomly chosen to coalesce after a further time Tn−1 ∼ Exp

((
n−1

2

))
.

This process continues until the final pair coalesce at time TMRCA =
∑n

i=2 Ti. Figure 1.1

illustrates the coalescent process with n = 5.

Once the genealogy has been simulated, a Poisson number of mutations are added to the

tree. Let S denote the number of mutations. On a branch of length t generations, the

number of mutations is a Poi(µt) random variable where µ is the total mutation rate per

generation. On a genealogy of length Ttotal, assuming mutations occur independently on

each branch and measuring time in N generations,

E(S) = µN

n∑
i=2

iTi

=
θ

2
Ttotal,

where θ = 2Nµ. In the simulation, S ∼ Poi(1
2θTtotal) mutations are randomly places on

the genealogy.

Depaulis and Veuille (1998) simulated data in a slightly different manner. They were

interested in the distributions of some statistics under a neutral model, hoping to show

the statistics are powerful in testing whether observed data are consistent with a neutral

model, for a given number of mutations so they simulated genealogies and added the fixed

number of mutations. However, the number of mutations depends on θ and the total

length of the tree. For example, given θ, longer trees are expected to have more mutations

than shorter trees. Markovtsova et al. (2001) show that the distribution of a statistic given

S is not independent of θ, suggesting the power of the test depends on θ. By simulating

data under the fixed S method employed by Depaulis and Veuille (1998) to find rejection

regions (at the 5% level) for some statistics and testing data simulated under the method

used by Hudson (1991), Wall and Hudson (2001) found that the type I error rate of the

various statistics was around 5% for a range of values of θ. They suggest that the fixed

number of mutations method was acceptable assuming the true value of θ was not too

large or too small. Specifically, Depaulis and Veuille (1998) illustrated their test using
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data with S = 44 and n = 20 and found the data to be inconsistent with the neutral

model. Using Hudson’s method of simulation, Markovtsova et al. (2001) found similar

results when

θ ≤ S∑n−1
i=1

1
i

,

where the right hand side is just the estimator of θ given by Watterson (1975). Therefore,

Markovtsova et al. (2001) suggest that the fixed number of mutations method is adequate

assuming θ is less than Watterson’s estimate. The method, although approximate, is

algorithmically convenient.

Attention in this thesis is given to biallelic SNP data. The method of Depaulis and Veuille

(1998) is employed with S = 1. A genealogy is simulated under a specific model and a

single mutation randomly added to the tree. Given Hudson’s method for simulating data

under the standard neutral model, details are now given for simulating a genealogy under

the migration and isolation models respectively.

3.3 Migration model

This model was first described by Wright (1969) and an example with 4 subpopulations is

illustrated in Figure 3.1. ConsiderD subpopulations, with the ith subpopulation of haploid

population size Ni. In each generation, migration events occur between subpopulations at

a constant rate qij for i 6= j ∈ {1, . . . , D}. More specifically,

qij = the probability that a parent in population i has its child in population j.

In each generation, each individual produces a finite number of offspring. In subpopulation

i, the expected number of offspring to migrate to subpopulation j in a generation is equal

to Niqij . Simulating under the coalescent begins at the present and works backwards in

time, therefore migration events need to be defined backwards in time. Given an individual
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Figure 3.1: Example of migration model with 4 subpopulations. Arrows show possible
migrations between each subpopulation.

in subpopulation i, the probability that their parent belonged to subpopulation j in the

previous generation is denoted by mij . The probability that the parent of an individual in

subpopulation i did not belong to subpopulation i is equal to
∑

j 6=imij . The parameters

mij are related to qji by applying Bayes theorem:

mij =
Njqji∑D
k=1Nkqki

. (3.1)

This expression for mij is the number of migrants from j to i, Njqji, divided by the total

number to migrate to i in a single generation. It is assumed that the population size in

each subpopulation remains constant through time. If subpopulation i is of size Ni in the

current generation then, in the next generation, after all migration events occur, it is then

of size

N
′
i =

(
Ni −

∑
j∈J

Nimij

)
+
∑
j∈J

Njmji,

where J = {1, . . . , i − 1, i + 1, . . . , D}. In the case that N1 = · · · = ND and there is a

constant migration rate between all subpopulations, then the population size in the next

generation will be Ni. Otherwise, a sample of size Ni is taken, with replacement, from N
′
i .
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Measuring time in NT generations and allowing NT →∞, this structured model converges

to the structured coalescent. The structured coalescent is a continuous-time Markov pro-

cess with state space equal to the set of vectors α = {α1, . . . , αD}, where αi is the number

of lineages in subpopulation i in a particular generation. In the structured coalescent,

only two possible events can occur: either two individuals from the same subpopulation

coalesce or an individual migrates from one subpopulation to another. Coalescent and

migration events occur as independent Poisson processes. Coalescent events occur at rate

D∑
i=1

1

ci

(
αi
2

)
,

where ci = Ni
NT and αi is the sample size in subpopulation i at the given time. Migration

events occur at rate

NT
D∑
i=1

αimi.

Event times are exponential draws with rate given by the sum of the rates of all possible

events, i.e.,

Λ = NT
D∑
i=1

αimi +
D∑
i=1

1

ci

(
αi
2

)
.

3.3.1 Simulation

The details of simulating data under the structure coalescent are given by Nordborg (2007).

The sample is considered in the present time, time zero. At each step in the simulation,

an exponential event time of rate Λ is drawn and either a migration or coalescent event

occurs. The event is a coalescent event with probability

PC =

∑D
i=1

1
ci

(
αi
2

)
Λ

,
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and is a migration event with probability

PM =
NT

∑D
i=1 αimi

Λ
.

If a migration event takes place, then a random pair of subpopulations is selected with

probabilities {mij : i 6= j ∈ 1, . . . , D}, with one of the subpopulations the originating pop-

ulation and a lineage chosen randomly to migrate to the other subpopulation. The sample

size of the originating subpopulation decreases by one and the receiving subpopulation

sample size increases by one. If the event is a coalescent event, a subpopulation is selected

with probability 1
D and two distinct lineages within that subpopulation are selected to co-

alesce. The sample size of that subpopulation decreases by one. This process is repeated

until the most common recent ancestor of the sample in reached, when a genealogy of a

sample of size nT has been simulated. At this stage, a single mutation time is drawn from

a Un(0, Ttotal) distribution and randomly placed on one of the branches in the genealogy

at that time. For instance, consider the example shown in figure 1.1. Figure 3.2 illustrates

the procedure used to add a mutation to the simulated genealogy. Firstly, the tree is

partitioned, as shown on the left hand side, where each element of the partition is differ-

ently coloured. The elements are placed side by side creating the bottom line in figure 3.2

of length Ttotal (not drawn to the same scale). A mutation time is drawn uniformily, as

shown by the red bar, and added to the corresponding branch on the genealogy shown on

the right hand side, as a red square.

3.3.2 Example of simulated data set

In order to illustrate this method of simulation, data were simulated under the migration

model with four subpopulations with each of population size 500 and sample size 50. The

general case would have
(

4
2

)
= 6 migration rates. In this example the rates are chosen sym-

metrically, hence mij = mji, which requires 3 migration rates to be defined. By choosing a

high migration rate, m1, between subpopulations 1 and 2, these two subpopulations will be

more genetically similar. Subpopulation 3 will be more genetically distinct from subpopu-
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Figure 3.2: Adding mutation to genealogy with n = 5.

lations 1 and 2 by choosing an intermediate migration rate m2 between {1, 3} and {2, 3}.

Subpopulation 4 will be the most distinct subpopulation in this sample by choosing a low

migration rate, m3, between subpopulation 4 and the other subpopulations in the sample.

1000 SNPs were simulated under this model with {m1,m2,m3} = {0.08, 0.008, 0.0005}

and principal components analysis was performed with figure 3.3(a) showing the structure

of this example and figure 3.3(b) showing a plot of the first two components. The first

two components are unable to distinguish subpopulations 1 and 2. The first component

isolates subpopulation 4 from the other subpopulations and the second component sep-

arates {1, 2}, 3 and 4. In this example, only the first two components were found to be

significant in capturing structure.
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Figure 3.3: Example of migration model with 4 subpopulations and three migration rates
m1 < m2 < m3, corresponding to high, intermediate and low migration between subpop-
ulations.

3.3.3 25 population example

To demonstrate how genetic distances mirror geographical distances, as shown by Novembre

(2008) in the case of Europeans, a lattice of 25 subpopulations was constructed such that

each subpopulation can exchange migrants with neighbouring populations. In addition,

migration was restricted in certain places to mimic barriers to gene flow such as a chal-

lenging topography. Figure 3.4(a) illustrates the construction of this example.

1000 SNPs were simulated under this model with a sample size of 10 from each subpop-

ulation. Three migration rates were set and the red dotted lines correspond to areas of

restricted migration. High levels of migration were assigned between neighbouring pairs

of subpopulations from the same set within {1, 2, 3, 6, 7, 8, 11, 12, 13}, {4, 5, 9, 10, 14, 15},

{16, 17, 18, 21, 22, 23} and {19, 20, 24, 25} shown with blue arrows and lower migration

between the remaining neighbouring pairs of subpopulations, corresponding to the green

and yellow arrows in figure 3.4(a). Figure 3.4(b) shows a plot of the first two components

from principal components analysis performed on the simulated data set. The resulting

clustering shows a similar pattern to the original construction. The red dotted lines, shown
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Figure 3.4: (a) 5 × 5 lattice of 25 subpopulations with migration between neighbouring
populations. Blue arrows correspond to higher migration whereas green and yellow ar-
rows correspond to restricted migration. (b) Plot of first two components from principal
components analysis.

on the left, separate the 25 subpopulation into four groups. The plot on the right shows

four main clusters corresponding to these groupings. The high level of migration within

each group results in subpopulations within groups being less distinct than subpopulations

taken from different groups.

3.4 Isolation model

The second model to be considered is a model of isolation. In the beginning, only a single

population existed. At a given time in the past, τ , the population split into two subpopu-

lations which subsequently evolved independently, i.e. without exchanging migrants. The

further back in time the population split occurs, the more genetically diverse the subpop-

ulations are. An example of this model is shown in figure 3.5(a) showing three splitting

episodes.

This model assumes that individuals can only coalesce if they belong to the same subpop-

ulation. Once two subpopulations join together, backwards in time, they are consider to
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Figure 3.5: (a) Isolation model with fout subpopulations. (b) Populations labelled from
the present time backwards until there is a single ancestral population.

be a single subpopulation. As in the previous case of migration, within subpopulation i,

individuals coalesce at the rate
NT

Ni

(
αi
2

)
,

where αi is the number of lineages present in subpopulation i at the given time. In this

case, the intensity of this process depends on time through the number of lineages present

in the sample as well as the number of subpopulations in existence. If I(t) is the set of

populations in existence at time t, the waiting time till a coalescent event in any of the

members of I(t) is exponentially distributed with rate

R(t) =
∑
i∈I(t)

NT

Ni

(
αi(t)

2

)
. (3.2)

Furthermore, the probability that the event occurs in the ith subpopulation at time t is

1

R(t)

NT

Ni

(
αi
2

)
. (3.3)
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3.4.1 Simulation

In simulating data under this model, the sets I(t) are recorded by labelling the subpop-

ulations from 1 to 1
2D(D + 1) as illustrated in figure 3.5(b), since D populations in the

present are generated from D − 1 binary splits, and, at each split, a relabelling with one

fewer populations is made. In this example, there are three population split times, τ1, τ2

and τ3. Hence

I(t) =



{1, 2, 3, 4}, 0 ≤ t < τ1;

{5, 6, 7}, τ1 ≤ t < τ2;

{8, 9}, τ2 ≤ t < τ3;

{10}, τ3 ≤ t.

To generate the first event time tnT (the time during which there are nT lineages present

in the sample), a draw, t∗
nT

, is made from an exponential distribution with rate R(0). The

difficulty lies in whether t∗
nT

is more or less recent than the first split time, τ1.

1. If t∗
nT

< τ1 then tnT = t∗
nT

and we may proceed to select a subpopulation for the

coalescent event to occur with the probabilities in (3.3).

2. If t∗
nT
≥ τ1 then the additional time, from τ1, until the coalescent event needs to be

considered.

The procedure used in scenario two is described by Ross (1997). Let F (x) and Fτ1(x) be

the distribution functions of the time until the next coalescent event and the additional

time from τ1 until the next coalescent event, respectively. Then,

Fτ1(x) = P{time from τ1 until next coalescent event is less than x | event time ≥ τ1}

= P{event occurred in (τ1, τ1 + x)}

= 1− P{no event occurred in (τ1, τ1 + x)}

= 1− P{event time > τ1 + x | event time ≥ τ1}

= 1− P{event time > x} (3.4)
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= P{event time < x}

= F (x).

This proof implements the memoryless property of the exponential distribution at (3.4).

That is, any random variable, X ∼ Exp(θ),

P (X > x+ y|X > x) = P (X > y) for any x, y ≥ 0.

Therefore, if the coalescent time is greater than τ1 then the additional time after τ1 until the

event time is independent of τ1. Hence, the first event after τ1 would occur at tnT = τ1 +x,

where x ∼ Exp
(
R(τ1)

)
.

From here, we wish to simulate the remaining tnT−1, . . . , t2 events times. Let nsplit = the

number of population split times and τ0, . . . , τnsplit be the ordered split times with τ0 = 0

and 0 < τ1 ≤ . . . ≤ τnsplit . For waiting time ti, identify k such that

nT∑
j=i

tj < τk and

nT∑
j=i

tj ≥ τk−1.

To find the next waiting time, make draw t∗ from Exp

(
R(ti)

)
.

1. If
nT∑
j=i

tj + t∗ < τk,

then ti−1 = t∗.

2. If
nT∑
j=i

tj + t∗ ≥ τk,

then ti−1 = τk + x where x is an exponential draw with rate R(τk).
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3. If
nT∑
j=i

tj + τk + x > τk+1,

then another draw x1 ∼ Exp
(
R(τk+1)

)
is made and ti−1 = τk+1 + x1.

It is possible that
∑nT

j=i tj + τk+1 + x1 > τk+2, in which case, ti−1 = τk+2 + x2 for x2 ∼

Exp

(
R(τk+2)

)
. This step is repeated until q(≥ k) is found such that

nT∑
j=i−1

tj < τq and

nT∑
j=i−1

tj ≥ τq−1.

The process is applied for all i = nT , . . . , 2, until the most recent common ancestor of

the sample is reached and then a single mutation is added randomly to the genealogy, as

before.

3.4.2 Example of simulated data set

To illustrate, data were simulated from four subpopulations, each with population size

500 and sample size 50 under the isolation model. Figure 3.6(a) shows the model. Popu-

lation divergence times τ1 (between subpopulations 1 and 2), τ2 (between subpopulations

6 and 7) and τ3 (between 8 and 9) were specified such that τ1 is the most recent, τ3

the oldest and τ2 an intermediate time. Simulating 1000 SNPs under this model with

{τ1, τ2, τ3} = {0.003, 0.03, 0.4}, figure 3.6(c) displays the first two components from prin-

cipal components analysis and figure 3.6(d) shows the first and third components. The first

component separates subpopulations 1 and 2 from subpopulations 3 and 4. The second

component separates {1, 2}, 3 and 4 and the third component separates 1,2 and {3, 4}.
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Figure 3.6: (a) Isolation model with 4 subpopulations and 3 population divergence times.
(b) Labelling of subpopulations from 1 to 10. (c) Biplot of first two components from data
simulated under the isolation model. (d) Biplot of first and third components.

3.5 Computing Fst

It is possible to simulate data from both the migration and isolation models to produce

similar Fst values between subpopulations. Section 2.1.1 showed ways of estimating a

migration rate, through (2.2), and population divergence times, via (2.3). Slatkin (1991,

1993) approximated Fst through coalescent times by considering a definition of Fst in terms

of identity by descent, the probability that two genes reach their most recent common
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ancestor unaffected by any mutation. That is,

Fst =
f0 − f̄
1− f̄

, (3.5)

where f0 is the probability of identity by descent of two genes sampled from the same

subpopulation and f̄ is the probability of identity by descent of two genes sampled from

the whole population, regardless of subpopulation. Wakeley (2009) writes the probability

of identity by descent as an infinite sum:

P{IBD} =

∞∑
t=1

(1− µ)2t

(
1− 1

N

)t−1 1

N

=
∞∑
i=1

(1− µ)2tP (t), (3.6)

where µ is the mutation rate per generation. P (t) is the probability that the two lineages

reach their most common recent ancestor in generation t and (1− µ)2t is the probability

that neither lineage is affected by a mutation up to and including generation t. For a small

mutation rate, Slatkin (1993) approximated (3.6) by

f̄ ≈
∞∑
t=1

(1− 2tµ)P (t)

= 1− 2µt̄.

and showed from (3.5) that

Fst =
f0 − f̄
1− f̄

≈ (1− 2µt0)− (1− 2µt̄)

1− (1− 2µt̄)

=
t̄− t̄0
t̄

, (3.7)
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where t̄0 is the average coalescent time between two genes from the same subpopulation

and t̄ is the average coalescent time between two genes samples from the whole population.

3.5.1 Migration model

An in-depth analysis of the migration model with D subpopulations was given by Slatkin

(1991). Suppose each subpopulation is of haploid size N . In this model the migration

and coalescent processes occur independently. Slatkin (1991) presents the result that if

subpopulations exchange migrants at constant rate m, then t̄0 = NT = DN , that is the

total population size. Using this results, the probability that two genes from the same

subpopulations coalesce in the next generation is 1
DN and so, measuring time in DN

generations,

t̄0 = 1.

In the case of two genes that are from different subpopulations, Slatkin considered the

probability that the two genes were in the same subpopulation in the previous generation.

Let m be the probability that a gene migrates to any of the other D − 1 subpopulations,

so the probability that a gene migrates to a specific subpopulations is 1
D−1 . There are

three possible ways that two genes, now in different subpopulations, were in the same

subpopulation in the previous generation as demonstrated below. The first two scenarios

●●

● ●

●●

● ●

●●

●●

are the cases of one gene migrating, backwards in time, into the occupying subpopulation of

the other gene. The last is the case that both genes migrate from different subpopulations

in the current generation to the same subpopulation in the previous generation. When
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m→ 0, the last scenario has negligible probability. Therefore,

Pr{two genes in same subpopulation in the previous generation} = 2m(1−m)
1

D − 1

≈ 2m

D − 1
,

for small m. Hence,

t̄1 = the time until two genes are in the same subpopulation

+ the average time until two genes in the same subpopulation coalesce

=
D − 1

2m
+DN.

Measuring time in DN generations leads to

t̄1 = 1 +
D − 1

2DNm
.

Lastly, to find t̄, Slatkin applied the law of total probability, namely

t̄ = Pr{two genes in same subpopulation}t̄0

+ Pr{two genes from different subpopulation}t̄1

=
1

D
t̄0 +

(
1− 1

D

)
t̄1

= 1 +
(D − 1)2

2D2Nm
.

As a result, by applying (3.7),

Fst =

(
1 +

2NmD2

(D − 1)2

)−1

. (3.8)
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3.5.2 Isolation model

In the isolation model, to find t̄0 consider two genes belonging to the same subpopulation.

Within each isolated subpopulation, it is assumed that the lineages coalesce according

to a neutral Wright-Fisher model with population size N , as illustrated in figure 3.7.

Measuring time in generations, the probability that the two genes coalesce in the previous

generation is 1
N . Since it has been assumed the ancestral population size is also N , the

average time till the two genes coalesce is N whether or not they coalesce before or after

the split. Measuring time in DN generations,

t̄0 =
1

D
.

Two genes from different subpopulations can only coalesce after the population split time,

τ . Therefore, the expected coalescent time of two genes that belong to different subpopu-

lations, t̄1, equals the expected time that two genes coalesce from the same subpopulation

plus the population split time τ ,

t̄1 = τ +
1

D
.

To find the average time until two genes coalesce from the entire sample, then either the

genes belong to the same or different subpopulations with equal probability. Therefore,

N N

N

● ●

Figure 3.7: Isolation model with two subpopulations.
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t̄ = 1
2(t̄1 + t̄0) and so

t̄ =
1

D
+
τ

2
.

From (3.7),

Fst =
τ

2D−1 + τ
. (3.9)

As a result, it is possible to choose the parameters τ and m to simulate SNP data from D

subpopulations that produce similar pairwise Fst values. In the case of two subpopulations,

for a given Fst, the appropriate estimates are, from (3.9) and (3.8), respectively

τ̂ =
Fst

1− Fst
, (3.10)

m̂ =
1− Fst
8NFst

. (3.11)

Simulation results are shown in figure 3.8. In each case, D = 2, N1 = N2 = 500 and

n1 = n2 = 50. For a range of Fst values, the migration rate m and
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Figure 3.8: Estimates of Fst under migration and isolation models with two subpopulations
and m and τ estimated using (3.10) and (3.11).
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population split time τ were calculated using (3.11) and (3.10) and data were simulated

under both models and Fst estimated using (3.7). Under the isolation model, the estimated

Fst values appear almost identical to the predetermined Fst values as expected, whereas

under the migration model, there is a slight underestimation for larger Fst values.
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Distinguishing models

For a given data set, it is often possible to fit both an isolation model and a migration

model. In order to infer demographic history, it is important to be able to distinguish

between these models. Consider the two models shown in figure 4.1. Figure 4.1(a) shows

a two subpopulation migration model. The two subpopulations exchange migrants at rate

m per generation. Figure 4.1(b) shows the isolation model with two subpopulations that

diverged at time τ in the past. In both cases, assume each of the two subpopulations are

of haploid size N and time is measured in units of 2N generations.

4.1 Methods of distinguishing migration from isolation

This section introduces and briefly describes established ways of distinguishing these mod-

els.

4.1.1 Pairwise differences

Wakeley (1996) showed that the isolation model can be identified by a hypothesis test

involving the variance of pairwise differences within and between subpopulations. Suppose

55
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Figure 4.1: (a) An example of the migration model with two subpopulations that exchange
migrants at rate m. (b) An example of the isolation model with 2 subpopulations that
diverged at time τ .

DNA sequence data are available from two populations with sample sizes n1 and n2 and

let kjj′ be the number of differences between sequences j and j′. Wakeley defined the

average pairwise differences between sequences within subpopulation i as

di =
1(
ni
2

) ni−1∑
j=1

ni∑
j′=j+1

kjj′ ,

where j, j′ ∈ {1, . . . , ni} and i = 1, 2. He also defined the average pairwise difference

between the two subpopulations as

d12 =
1

n1n2

n1∑
j=1

n2∑
j′=1

kjj′ ,

where j ∈ {1, . . . , n1} and j′ ∈ {1, . . . , n2}. He further provided an expression for a

variance of the average pairwise differences (within and between subpopulations):

s2
i =

1(
ni
2

) ni−1∑
j=1

ni∑
j′=j+1

(kjj′ − di)2 and,

s2
12 =

1

n1n2

n1∑
j=1

n2∑
j′=1

(kjj′ − d12)2,
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respectively.

Wakeley considered many function of the intra populations statistics s2
1/d1 and s2

2/d2 that

may be used to distinguish the two model. From the set of functions considered, he found

that when the migration rate was high, or a low population divergence time,

Ψ =

[
n1(n1 − 1)

s1

d1
+ n2(n2 − 1)

s2

d2
+ 2n1n2

s12

k

]
,

was most successful in distinguishing the two models. He compared the expectation of Ψ

over a range of migration rates. As the migration rate increased, the expectation under

both models converged to the same value, whereas for smaller migration rates, and so

more ancestral population divergence times, the expectation under the migration model

is higher and so the isolation model is rejected for ‘large’ values of Ψ.

4.2 MCMC approach

Nielsen and Wakeley (2001) described an isolation with migration (IM) model consisting

of three populations: the ancestral population of population size NA that branches into

two subpopulations (1 and 2) at some time in the past with migration occurring between

the two subpopulations. This model assumes constant population size over time, that the

populations evolve according to the Wright-Fisher model and that there are no further

population subdivisions. Let {m12,m21} denote migration rates, with mij the rate from

subpopulation i to j for i 6= j ∈ {1, 2} and let τ denote the population split time, as

illustrated in figure 4.2.

Neilsen and Wakeley developed a method for distinguishing this model to one with no

migration by firstly fitting the IM model to observed sequence data x and, measuring time

in units of N1 generation, where N1 is the population size of subpopulation 1, estimating

the (scaled) parameters in the model, namely φ = {θ,M1,M2, T,
N2
N1
, NAN1
} where θ is the

scaled mutation rate, Ni the population size of subpopulation i, Mi is the scaled migration
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subpopulation 1 subpopulation 2

ττ

m12

m21

Figure 4.2: Example of isolation with migration model described by Nielsen and Wakeley
(2001).

rate of migrants from subpopulation i and T the scaled population divergence time.

In order to estimate the parameters, the authors estimate the likelihood function L(φ) =

p(x|φ). Taking a Bayesian approach and placing uniform priors on the components of φ

then, p(φ|x) ∝ p(x|φ). Therefore, this problem reduces to that described in section 1.2

and is fully described by Beerli and Felsenstein (2001). Treating the likelihood as an

expectation, then

L(φ) =

∫
G
p(x|g)p(g|φ)dg

= Ep(f),

where f and p are defined as

p = p(g|φ) and

f = p(x|g).

Importance sampling simulates from another function q similar to p. Neilsen and Wakeley
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simulating φ0 from π(φ) and they set

q =
p(g|φ0)p(x|g)∑
g∈G p(g|φ0)p(x|g)

=
p(g|φ0)p(x|g)

L(φ0)
.

Therefore, from (1.2),

L(φ) = E(f)

≈ 1

m

m∑
i=1

p

q
f

= L(φ0)
1

m

m∑
i=1

p(gi|φ)

p(gi|φ0)
,

where {g1, . . . , gm} are draws from a Markov chain with stationary distribution propor-

tional to p(x|φ,G)p(G|φ).

By use of the likelihood ratio test, they compared a model of isolation with migration

against a model with no migration, that is the scaled mutation rate M between the

two subpopulations equals zero. Given data x and parameters φ0 = {θ,M1 = 0,M2 =

0, T, N2
N1
, NAN1
}, they used the log likelihood ratio

T = log

[
p(x|φ0)

p(x|φ)

]
.

The test statistic, −2T , has an approximate χ2 distribution with degree of freedom equal

to the difference in the number of parameters in the two models under the usual asymptotic

theory described by Cox (2006) which requires independent data. However, because of the

shared ancestry, genetic data are not independent. Therefore, this standard result is not

applicable in this context. Beerli and Felsenstein suggested that the distribution under

the null hypothesis may be approximated through simulation.
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4.3 Allele frequency spectrum

The allele frequencies under the isolation and migration model are expected to act in

similar ways for a range of migration rates and population split times. High migration

rates correspond to low Fst values and hence subpopulations in the sample will tend to

resemble a single panmictic population. Similarly, subpopulations arising from a recent

population split again corresponding to a low Fst value, will mimic a single panmictic

population. On the other hand, for low migration rates (and a more ancestral population

split time), it becomes more likely that the subpopulations are more distinct. Figure 4.3

illustrates possible genealogies under the migration (LHS) and isolation (RHS) models.

Migration events are represented by red dashed arrows. The top figures correspond to

a low migration rate and a large ancestral population split time. Both genealogies have

similar characteristics in that the subpopulations find their most common recent ancestor,

with an extended T2. On the left, T2 is extended due to the time required for the last

two lineages to meet in the same populations, whilst on the right, it is extended until the

isolated daughter populations have merged.

Data were simulated under both the isolation and migration models, from two subpopula-

tions each of sample size n = 50. Figure 4.4 shows allele frequency spectra for a range of

migration rates and population split times chosen to produce similar Fst values. For small

Fst values between 0.001 and 0.005, given in the first row of figure 4.4, the distributions of

allele frequencies are more or less indistinguishable between the two models. In the second

row, with Fst ranging between 0.01 and 0.05, slight differences in distributions between

the two models develop. In particular, the isolation model’s sample has a larger number

of SNPs with an allele count less than 5. Also, the variance is greater in the migration

model, with a more dramatically right skewed distribution. Lastly, for higher Fst values,

given in the last row, both models show an increase in the number of SNPs with allele

count around 50. This can be explained by considering figure 4.3. The first row gives

examples of genealogies from the migration model with a low migration rate, and the

isolation model with an ancient population split time τ .
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Figure 4.3: Example of genealogies under migration and isolation. The left hand side
shows the migration model with low migration (top) and high migration (bottom). The
right hand side shows the isolation model with a long population split time (top) and
recent population split time (bottom).

In the isolation model, since the population divergence time is large then

E(T2) = τ + t, where t ∼ Exp(1).

Therefore, as τ increase, the time during which there are two lineages increase hence

as τ → ∞, E(T2) → ∞. If it is assumed that a mutation occurred randomly at some

point on this genealogy, as shown in figure 3.2, it becomes more probable that is occurs

during T2. Therefore separating the sample into n copies of the mutant allele and n copies

of the ancestral allele (with n the sample size in each subpopulation). Likewise, in the
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migration model, as the migration rate decrease, the time during which there are two

lineages increases since the waiting time until a migration event increases. The second

row of figure 4.3 shows examples of genealogies with a higher migration rate (LHS) and

a lower divergence time (RHS). As the migration rate increase, there is more gene flow

between the two subpopulations. As the divergence time approaches zero, the time during

which the two subpopulations evolve independently decreases. In both models, the sample

increasingly resembles a single panmictic population.

4.3.1 Ambiguities in allele frequency spectra

Data simulated under the isolation model produced an allele frequency spectrum with an

excess of rare SNPs but this may be the result of several different demographic charac-

teristics, for example, population growth or natural selection. Williamson et al. (2005)

described patterns of allele frequencies under positive, negative and balancing selection.

In particular, negative selection leads to an access of rare alleles. Similar results are found

under population growth.

4.4 Effects of ascertainment on allele frequency spectrum

Locus ascertainment has a noticeable effect on the allele frequency spectrum, as shown

for the neutral model in section 1.3.1, with the degree of the effect depending on the

size of the ascertainment sample and, in a structured population, on the subpopulation

involved in the SNP discovery process. Nielsen (2004) considered a migration model with

two subpopulations. He assumed the ascertainment sample was taken equally from both

subpopulations and showed there are no difference in the expected distributions of allele

frequencies between the two subpopulations. However, when the ascertainment sample is

taken from only one of the subpopulations, the differences between the two subpopulations

are more dramatic. In order to see how ascertainment affects the distribution of allele

frequencies, data will be simulated under both models with ascertainment.
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Figure 4.4: Allele frequency spectra from 1000 SNPs simulated from isolation model (white
bars) and migration model (red bar) with two subpopulations each of sample size 50 for
a range of corresponding Fst values

4.4.1 Simulating samples under ascertainment

Consider a sample from a single population of haploid size N , Figure 4.5(a) presents a

possible genealogy of a sample of size 10. Once the genealogy has been simulated, a Poisson

number of mutations are added to the tree with rate θTtotal/2 where θ = 2Nµ, µ is the

mutation rate, per generation and Ttotal is the total length of the tree. This simulation

incorporates an infinite-alleles model and so every mutation gives rise to a distinct allele.
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The red square in figure 4.5(b) represents a mutation on this tree. This particular locus

is ascertained by genotyping only a small sample, of size b, of individuals. If there is

variability in the ascertainment sample, then a larger sample is genotyped at this locus. In

the simulation, the b ascertainment samples corresponding to the blue dots in figure 4.5(c)

with b = 3. Considering only the branches connecting the ascertainment sample, shown

in figure 4.5(d), if there is variability in this small sample, then the remaining n− b nodes

are genotyped and only biallelic sites are included in the final sample. In this example,

the ascertainment sample shows variability and hence, the remaining nodes are genotyped.

Figure 4.6 shows the final data at this locus excluding the ascertainment data.

● ● ● ● ● ● ● ● ● ●

(a)

● ● ● ● ● ● ● ● ● ●

(b)

● ● ● ● ● ● ● ● ● ●●●●

(c)

●●●

(d)

Figure 4.5: Example of simulating data with ascertainment. Blue dots and the red square
represent ascertainment sample and a mutation respectively.
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Figure 4.6: Final SNP data from a particular locus under the ascertainment process
described in figure 4.5.

4.4.2 Simulating ascertained samples under migration and isolation

1000 SNPs were simulated from the migration and isolation models with a sample size of

50 from each subpopulation for the range of migration rates and population split times

used in figure 4.4. As the ascertainment sample size decreases, the bias towards SNPs

with intermediate allele counts increases. To see the full extent of this bias under the

isolation and migration models, ascertainment samples of size 2 were taken from each

subpopulation in both models.

Figure 4.7 shows allele frequency spectra from data simulated under the migration model

with and without ascertainment. As the migration rate decreases (or equivalently, as Fst

increases), the number of SNPs with an allele count around 50 increases, as in the case of

no ascertainment. Similar patterns emerge in the case of the isolation model (figure 4.8).

Figure 4.9 compares data simulated under the isolation (white bars) and migration (red

bars) models with ascertainment. In terms of distinguishing the two models, similar

comparisons can be made to the case of no ascertainment (figure 4.4). As Fst increases

(corresponding to a decreasing migration rate or an increasing population divergence time),

slight differences emerge between the two models. In the second row, the isolation model
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shows more alleles with a count less that 5 and shows a bigger increase in alleles with a

count equal to 50 in the last row.

Fst = 0.001

10 30 50 70 90

0
20

0
60

0
0

20
0

50
0

80
0

Fst = 0.003

10 30 50 70 90

0
20

0
60

0
0

20
0

50
0

80
0

Fst = 0.005

10 30 50 70 90

0
20

0
60

0
0

20
0

50
0

80
0

Fst = 0.01

10 30 50 70 90

0
20

0
60

0
0

20
0

50
0

80
0

Fst = 0.03

10 30 50 70 90

0
20

0
60

0
0

20
0

50
0

80
0

Fst = 0.05

10 30 50 70 90

0
20

0
60

0
0

20
0

50
0

80
0

Fst = 0.1

10 30 50 70 90

0
20

0
60

0
0

20
0

50
0

80
0

Fst = 0.3

10 30 50 70 90

0
20

0
60

0
0

20
0

50
0

80
0

Fst = 0.5

10 30 50 70 90

0
20

0
60

0
0

20
0

50
0

80
0

Figure 4.7: Allele frequency spectra from 1000 SNPs simulated from the migration model
without any ascertainment (red bars) and with an ascertainment sample of size 2 from each
of the two subpopulations (yellow bars) for the range of Fst values selected in figure 4.4.

4.5 Example using four subpopulations

In order to explore the similarities and difference between data from the migration and

isolation models, an example with four subpopulations was conctructed and data simulated
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Figure 4.8: Allele frequency spectra from 1000 SNPs simulated from the isolation model
without any ascertainment (white bars) and with an ascertainment sample of size 2 from
each of the two subpopulations (yellow bars) for the range of Fst values.

under both models. Plots of components from PCA, as well as allele frequency spectra with

and without ascertainment, are provided. Since the PCA method described in section 2.1.3

finds the components that are significant in capturing the structure in data, we explore

how well the data projected onto the significant components are able to preserve the

similarities and difference between the models.

Three symmetric migration rates, {m1,m2,m3} and three divergence times, {T1, T2, T3}

were specified in the models portrayed in figure 4.10. Migration rate m3 was chosen at a
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Figure 4.9: Allele frequency spectra from 1000 SNPs simulated from the isolation model
(white bars) and migration model (red bars) with an ascertainment sample of size 2 from
each of the two subpopulations for the range of Fst values.

high value, m2 at an intermediate value and m1 at a low value, in order to imitate the

structure of figure 4.10(a), which has a recent divergence time T3 between subpopulations

2 and 3, an intermediate divergence time T2 between subpopulation {2, 3} and 4 and the

longest time T1 between subpopulation 1 and the others.

1500 SNPs were simulated under each model, with sample size 50 from each of the sub-

populations, {T1, T2, T3} = {0.4, 0.03, 0.003} and {m1,m2,m3} = {0.0006, 0.008, 0.08}.

Principal components analysis performed on the simulated data. The first two compon-
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Figure 4.10: Example of the migration model and the isolation model with 4 subpopula-
tions as described in text.

ents were found to be significant and are given, for each model separately, in figure 4.11.

There is very little difference between 4.11(a) and 4.11(b), suggesting that, although the

derived components, from PCA, capture the population structure present in the data,

they are unable to provide evidence of the underlying history of that data.

In addition, 1500 SNPs were simulated from both models with ascertainment as described

in section 4.4.1 with b = 8, 2 from each of the 4 subpopulations. Plots of the first two

components from principal components analysis are given in figures 4.11(c) and 4.11(d).

Ascertainment has little effect on the first two components in this example.

Pairwise Fst values were computed and are reported in table 4.1. Both data sets produce

similar pairwise Fst values with the smallest between subpopulations 2 and 3, Fst = 0.02

(isolation model) and 0.03 (migration model). The largest values lie between subpopu-

lation 4 and the remaining three subpopulations, Fst ≈ 0.25 (isolation model) and 0.18

(migration model). Similar patterns are found in the pairwise Fst’s from the ascertained

data. Comparing Fst from non-ascertained and ascertained data, since ascertainment ef-

fects the allele frequencies, the values are Fst calculated from the ascertained data are

larger than those calculated from data with no ascertainement.

Lastly, the allele frequency spectra of the four data sets, from the isolation and migration
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Figure 4.11: Plots of the first two components from principal components analysis from
simulated data from the isolation model (left) and the migration model (right) without
(top) and with (bottom) ascertainment.

models with and without ascertainment, were computed and are shown in figure 4.12.

Considering the case with no ascertainment (left), the distributions are rather similar.

However, the isolation model displays more SNPs with allele count less than 10 com-

pared to the migration rate. Also, the isolation model displays a steeper decline in allele

frequencies. A similar pattern is present in the case with ascertainment (right).

4.5.1 Projected data

Attempts have been make to infer demographic history based on projected data. For

example, McVean (2009) shows that many different demographic scenarios result in similar

biplots, as demonstrated in section 3.5. However, this may not be the case under certain

scenarios. Patterson et al. (2006) simulated data with four subpopulations, A,B,C and D,

with C an admixture of A and B and performed principal components analysis. The plot of
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1 2 3 4

1
- 0.11 (0.13) 0.10 (0.14) 0.25 (0.35)
- 0.10 (0.20) 0.10 (0.20) 0.20 (0.34)

2
0.11 (0.13) - 0.02 (0.02) 0.26 (0.35)
0.10 (0.20) - 0.03 (0.04) 0.17 (0.31)

3
0.10 (0.14) 0.02 (0.02) - 0.25 (0.35)
0.10 (0.20) 0.03 (0.04) - 0.18 (0.31)

4
0.25 (0.35) 0.26 (0.35) 0.25 (0.35) -
0.20 (0.34) 0.17 (0.31) 0.18 (0.31) -

Table 4.1: Pairwise Fst values of the four subpopulations. Values in blue are from the
isolation model and values in red are from the migration model. Values in brackets are
taken from data simulated with an ascertainment sample of size 2 from each subpopulation.

the first two components are compared to principal components analysis from three Asian

populations from the Hapmap project (the International HapMap Consortium (2003))

namely China, Japan and Thailand. The results from the paper are displayed in figure 4.13.

The authors find two significant components and comment on the likeness of the plot

produced from the simulated data and that from the data from the HapMap project

although this may not be the only demographic scenario to produce such components. In
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Figure 4.12: Allele frequency spectra of data simulated under the migration (red bars)
and isolation (white bars) model without any ascertainment (a) and with ascertainment
(b).
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the simulated data, population A was not included in the principal components analysis

but the authors suggest population A would correspond to a cluster lying along the same

line as the red and green clusters.

Admixture
In an admixed population, the expected allele frequency of

an individual is a linear mix of the frequencies in the parental
populations. Unless the admixture is ancient—in which case
the PCA methods will fail as everyone will have the same
ancestry proportion—then the mixing weights will vary by
individual. Because of the linearity, admixture does not
change the axes of variation, or, more exactly, the number of
‘‘large’’ eigenvalues of the covariance is unchanged by adding
admixed individuals, if the parental populations are already
sampled. Thus, for example, if there are two founding
populations, admixed individuals will have coordinates along
a line joining the centers of the founding populations.

We generated simulated data, by taking a trifurcation
between populations (A,B,D) 100 generations ago. Population
C is a recent admixture of A and B. The mixing proportion of
A in an individual from C is Beta-distributed B(3.5,1.5) so that
the average contribution of population A in an individual of
population C is .7 (see Figure 7). Effective population sizes are
10,000 for each population. We then simulated data for
10,000 unlinked markers (more details are in the Methods

section). FST between any pair of A,B,D is .005. We are
attempting to mimic the data of Figure 5, and chose to run
our analysis on simulated samples from populations B,C,D,
not using samples from A. We expect two significant
eigenvalues corresponding to the splits of populations B,C,
and D. If population A is included in the analysis, we also get
just two significant eigenvalues, as predicted by theory. This is
what is observed (unpublished data), with, as predicted, the
admixed population not adding to the number of axes of
variation (the third eigenvalue is not significant). In Figure 8
we show a plot of the first two eigenvectors. Note the
dispersion of population C along a line. This is diagnostic of
admixture. The resemblance of Figures 5 and 8 is striking.
There remain issues to resolve here. Firstly, recent

admixture generates large-scale LD which may cause diffi-
culties in a dense dataset as the allele distributions are not
independent. These effects may be hard to alleviate with our
simple LD correction described below. STRUCTURE [10]
allows careful modeling. Secondly, more ancient admixture,
especially if the admixed population is genetically now
homogeneous, may lead to a causal eigenvalue not very
different from the values generated by the sampling noise.
Suppose, for example, in our simulation above, we let
population C mate panmictically for another 20 generations.
Then we will get three clusters for A, B, C that are nearly
collinear, but not exactly because of the recent 20-generation
divergence, which is reflecting genetic drift unique to that
population.
A third issue is that our methods require that divergence is

small, and that allele frequencies are divergent primarily
because of drift. We attempted to apply our methods to an
African-American dataset genotyped on a panel of ancestry-
informative markers [34]. The Tracy–Widom theory breaks
down here with dozens of ‘‘significant’’ axes that we do not

Figure 7. Simulation of an Admixed Population

We show a simple demography generating an admixed population.
Populations A,B,D trifurcated 100 generations ago, while population C is
a recent admixture of A and B. Admixture weights for the proportion of
population A in population C are Beta-distributed with parameters
(3.5,1.5). Effective population sizes are 10,000.
doi:10.1371/journal.pgen.0020190.g007

Figure 8. A Plot of a Simulation Involving Admixture (See Main Text for Details)

We plot the first two principal components. Population C is a recent admixture of two populations, B and a population not sampled. Note the large
dispersion of population C along a line joining the two parental populations. Note the similarity of the simulated data to the real data of Figure 5.
doi:10.1371/journal.pgen.0020190.g008
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(a) Simulated data

disease study, though here we focus on the population
genetics. Our analysis of these data used 40,560 SNPs.

In Figure 5 we plot the first two eigenvectors. Notice that
the population separation is clear, but that the natural
separation axes are not the eigenvectors. Further, the Thai
and Chinese populations appear to show a cline, rather than
two discrete clusters grouped around a central point. We
suspect that this shows some evidence of genetic admixture,
perhaps involving a population in Thailand that is related to
the Chinese. (See also Figure 8, which we describe later.)
Table 2 shows the eigenvalues, the TW significance, and an
ANOVA p-value for the first three eigenvectors. Again there
is excellent agreement between the supervised and unsuper-
vised analyses.

In the third dataset, which was created and analyzed by
Mark Shriver and colleagues [5], we have data from 12
populations. The missing data pattern showed some evidence
of population structure, with the missing data concentrated
in particular samples, populations, and SNPs. For this reason,
we only used markers for analysis for which there was no
missing data, and we corrected for LD using our regression
technique (see below). The details of the data preprocessing

steps are described in Methods. We analyzed samples from
189 individuals on 2,790 SNPs. On this dataset, we find the
leading eigenvalue statistics to be as shown in Table 3.
In all the datasets mentioned above, we have very good

agreement between the significance of the TW statistic, which
does not use the population labels, and the ANOVA, which
does. This verifies that the TW analysis is correctly labeling
the eigenvectors as to whether they are reflecting real
population structure.
Shriver and colleagues [5], using different principal

components methods and broken stick statistical analysis
[27,28], recovered four significant components on this data-
set. Our analysis has clearly recovered more meaningful
structure, providing empirical validation of the power of this
approach.

Figure 5. Three East Asian Populations

Plots of the first two eigenvectors for a population from Thailand and Chinese and Japanese populations from the International Haplotype Map [32].
The Japanese population is clearly distinguished (though not by either eigenvector separately). The large dispersal of the Thai population, along a line
where the Chinese are at an extreme, suggests some gene flow of a Chinese-related population into Thailand. Note the similarity to the simulated data
of Figure 8.
doi:10.1371/journal.pgen.0020190.g005

Table 2. Statistics from Thai/Chinese/Japanese Data

Number Eigenvalue TW Statistic TW p-Value ANOVA p-Value

1 2.21 92.34 ,10�12 ,10�12

2 1.47 31.15 ,10�12 ,10�12

3 1.23 �1.61 .61 .97

doi:10.1371/journal.pgen.0020190.t002

Table 3. Statistics from Shriver Dataset

Number Eigenvalue TW Statistic TW p-Value ANOVA p-Value

1 22.36 76.091 ,10�12 ,10�12

2 8.20 106.870 ,10�12 ,10�12

3 5.09 106.071 ,10�12 ,10�12

4 3.81 103.146 ,10�12 ,10�12

5 3.33 115.239 ,10�12 ,10�12

6 2.09 60.090 ,10�12 ,10�12

7 1.89 51.768 ,10�12 ,10�12

8 1.44 14.658 ,10�12 ,10�12

9 1.30 2.038 .010 1.09 3 10�7

10 1.27 0.084 .084 0.78

doi:10.1371/journal.pgen.0020190.t003
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(b) Data from HapMap project

Figure 4.13: Reconstruction of figures produced by Patterson et al. (2006) described in
text.

In order to establish if the first few components capture the differences present in the allele

frequency spectra from the data simulated from both models with four subpopulations,

singular value decomposition was used to truncate the data matrix, C. The matrix C can

be decomposed such that

C = USV T ,

where the columns of U are the eigenvectors of CCT , the columns of V are the eigen-

vectors of CTC and S is a diagonal matrix consisting of the ordered singular values of

CCT . By only considering a small number, k, of the largest singular values, the matrix

S can be estimated. Let Sk denote the matrix with the first k diagonal entries non zero,

corresponding to the first k singular values, and the remaining nT − k entries set to zero.
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That is,

S =



λ1 . . . 0 0 . . . 0
...

. . . 0 0 . . . 0

0 0 λk 0 . . . 0

0 0 0 λk+1 . . . 0
...

...
...

...
. . . 0

0 0 0 0 0 λnT


≈



λ1 . . . 0 0 . . . 0
...

. . . 0 0 . . . 0

0 0 λk 0 . . . 0

0 0 0 0 . . . 0
...

...
...

...
. . . 0

0 0 0 0 0 0


= Sk.

Consequently,

C = USV T

≈ USkU
T .

Figure 4.14 illustrates the allele frequency spectra produced through estimating the matrix

C with k = 1, 2 and 3. There is very little difference between the allele frequency spectra

when k = 1, 2, 3 or using all the singular values. In addition, the differences in allele

frequencies between the two models is mirrored in the projected data.

4.6 Summary

This chapter has presented some methods of distinguishing the two demographic models,

presented by Wakeley (1996) and Nielsen and Wakeley (2001), as well as drawing attention

to some problematic areas such as ascertainment. By comparing allele frequency spectra

from both models for a range of Fst values, both with and without ascertainment, it is

possible to distinguish the models by comparing particular aspects of these distributions.

The remainder of this thesis aims to provide adequate estimation of the parameters of

these models and then explores some descriptive statistics which, combined, are shown to

be powerful in distinguishing these models.
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Figure 4.14: Allele frequency spectra of projected data under the isolation (white bars)
and migration (red bars) models. The number of components considers is 1 (a), 2 (b) and
3 (c).



Chapter 5

Estimating population parameters

In both the isolation and migration models, there are unknown parameters of interests, re-

spectively, the population divergence times and the migration rates (figure 4.1). Attention

here is primarily given to estimation of the parameters in an isolation model. Methods

for estimating population divergence range from estimators based on summary statist-

ics, maximum likelihood estimators, method of moments estimators, as well as Bayesian

inference from the posterior distribution.

This chapter begins by examining estimates of the population divergence time of two sub-

populations looking firstly at estimators based on Fst and then exploring an approximate

Bayesian computation approach.

5.1 Estimating population divergence time

Given data from two subpopulations, each of haploid population size N , that diverged at

some unknown time τ in the past with time measured in units of 2N generations, there

are several ways to estimate τ .

75



CHAPTER 5. ESTIMATING POPULATION PARAMETERS 76

5.1.1 Estimating population divergence using Fst

It is possible to estimate τ given Fst, as previously described in equations (2.3) and (3.9).

However, there are several ways to define Fst and several estimators of it. One such

estimator was proposed by Reynolds et al. (1983) and used by Nielsen et al. (1998), for

two subpopulations with equal sample size, n:

F̂st1 =

∑L
i=1

[
1
2

∑2
j=1 (pij1 − pij2)2 − 1

2(2n−1)

(
2−

∑2
j=1 (p2

ij1
+ p2

ij2
)

)]
∑L

i=1

[
1−

∑2
j=1 pij1pij2

] , (5.1)

where pijk is the allele frequency of allele j at locus i in subpopulation k. Reynolds et

al derived (5.1) under a “drift model”. This model is an isolation model whereby allele

frequencies are only affected by drift, so that is assumes no mutation occurred after time

τ . Therefore, this estimator may only be suitable if it is thought that the population

divergence time is relatively recent.

Another estimator of Fst was presented by Hudson et al. (1992):

F̂st2 = 1− Hw

HT
, (5.2)

where Hw is the average heterozygosity within a subpopulation and HT is the average

heterozygosity in the total population. F̂st2 is used in the packages DIYABC (Cornuet

et al. (2008)), described in section 5.3.2.

The last commonly-quoted estimator to be considered is:

F̂st3 =
1

L

L∑
i=1

σ̂2
i

p̄i(1− p̄i)
., (5.3)

where p̄i is the mean allele frequency across subpopulations at SNP i and σ̂2
i is the variance

of allele frequencies across subpopulations at that SNP, for i = 1, . . . , L.

Figure 5.1 presents central 95% confidence bands for F̂st for a range of τ values using the
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three estimators. The three methods produce similar values of Fst. F̂st2 has the largest

estimated standard error. For τ close to zero, F̂st1 and F̂st2 produce similar values with

F̂st3 sitting slightly higher. For values of τ around one, F̂st1 begins a steady plateau

whereas F̂st3 and F̂st2 both continue to increase. Values of Fst one would expect to find

within the human population may be in the range [0.0001, 0.4] as seen in table 2.1. Within

this range, the three estimators are fairly consistent.

Given an estimate of Fst, it is possible to estimate τ in at least two separate ways. Firstly,

the method outlined in section 3.5 gives:

τ̂ =
F̂st

1− F̂st
. (5.4)

Secondly, suppose there are D subpopulations, each of haploid population size N , that

diverged at time t in the past (in generations so that t = DNτ) and since evolved inde-

pendently under the Wright-Fisher model as illustrated in figure 5.2.

At a particular locus in a single population suppose two alleles, A and a, are present. Let

Pj and pj denote the number of copies of allele A and the corresponding allele frequency

in generation j and let P0 = i and p0 = i
N . In the first generation, the number of copies

of allele A is a random sample, of size N , from the population in generation 0. Hence,
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Figure 5.1: Central 95% confidence bands for the three estimates, F̂st1 , F̂st2 and F̂st2 , of
Fst for a range of values of τ ∈ [0, 1].
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t

● ● ●

Figure 5.2: Example of D subpopulations diverging at time t in the past.

P1 ∼ Bi(N, p0). Generally, Pk ∼ Bi(N, pk−1) and

1. E(pk) = p0,

2. V ar(pk) = p0(1− p0)

(
1− (1− 1

N )k
)

for k = 0, 1, 2, . . ..

Consider the case k = 1, then E(p1) = E

(
P1
N

)
= 1

N (Np0) = p0. When k = 2,

E(p2) = E(E(p2|p1)) = E

(
E

[
P2

N
|p1

])
= E(p1) = p0.

Iteratively, E(pk) = E(E(pk|pk−1)) = E(pk−1) = · · · = p0.

Generally,

V ar(pk) = p0(1− p0)

(
1−

[
1− 1

N

]k)
. (5.5)

For instance, when k = 1, V ar(p1) = 1
N2V ar(P1) = 1

N p0(1 − p0). When k = 2, since

V ar(x) = E(V ar[x|y]) + V ar(E[x|y]),

V ar(p2) = E

(
V ar(p2|p1)

)
+ V ar

(
E(p2|p1)

)
= E(

1

N2
V ar(P2|p1)) + V ar(p1)
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=
1

N
E(p1 − p2

1) + V ar(p1)

=
1

N
(E(p1)− V ar(p1)− E(p1)2) + V ar(p1)

=
1

N
p0(1− p0) +

1

N

(
1− 1

N

)
p0(1− p0)

= p0(1− p0)

(
1−

[
1− 1

N

]2)
.

Assume (5.5) to be true for k = k − 1, and so

V ar(pk−1) = p0(1− p0)

(
1−

[
1− 1

N

]k−1)
.

Therefore,

V ar(pk) = E

(
V ar(pk|pk−1)

)
+ V ar

(
E(pk|pk−1)

)
=

1

N
p0(1− p0) +

(
1− 1

N

)
V ar(pk−1))

=
1

N
p0(1− p0) +

(
1− 1

N

)
p0(1− p0)

(
1−

[
1− 1

N

]k−1)
= p0(1− p0)

(
1−

[
1− 1

N

]k)
≈ p0(1− p0)(1− e−k/N ).

Therefore, given p0 in any subpopulation at some locus at generation t:

E(pt) = p0,

V ar(pt) ≈ p0(1− p0)(1− e−
t
N ),

since each subpopulation evolves according to the Wright-Fisher model and the subpopu-

lations evolve independently,

E(p̄t) = p0,

V ar(p̄t) ≈
1

D
p0(1− p0)(1− e

t
N ), (5.6)
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where p̄t is the mean of pt across the subpopulations. Consider the expectation of estimator

(5.3):

E(F̂st3) = E

[
1

L

L∑
i=1

σ̂2
i

p̄i − p̄2
i

]
≈ 1

L

L∑
i=1

E(σ̂2
i )

E(p̄i − p̄2
i )

where σ̂2
i =

∑D
d=1

p2id
D − p̄

2
i . At a single locus at time t, from (5.6),

E(p̄t)− E(p̄2
t ) = E(p̄t)− E(p̄t)

2 − V ar(p̄t)

≈ p0(1− p0)

(
1− 1

D
(1− e−

t
N )

)
.

E(σ̂2
t ) =

D∑
d=1

1

D
E(p2

dt)− E(p̄2
t )

= E(p2
t ) + V ar(pt)− E(p̄t)

2 − V ar(p̄t)

= p0(1− p0)(1− e−
t
N )

(
1− 1

D

)
.

Therefore,

E(F̂st3) ≈
p0(1− p0)(1− e−

t
N )(1− 1

D )

p0(1− p0)

(
1− 1

D (1− e−
t
N )

)
= 1− e−

t
N

1− 1
D (1− e−

t
N )
.

As D →∞, E(F̂st3)→ 1− e
t
N , as described by Cavalli-Sforza (1969). Measuring time in

DN generations, at time τ ,

E(F̂st3) = 1− e−Dτ

1− 1
D (1− e−Dτ )

.

Rearranging for τ leads to the following estimator in terms of an estimator of Fst:

τ̂ = − 1

D
ln

[
(1− 1

D )(1− Fst)
(1− 1

D ) + Fst
D

]
.
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In particular, when D = 2,

τ̂ = −1

2
log

[
1− F̂st
1 + F̂st

]
. (5.7)

For a range of Fst values, figure 5.3 illustrates the degree to which the two estimators

(5.4) and (5.7) coincide. For small Fst values, the two functions are comparable but they

diverge from each other as Fst increases with (5.4) producing higher values of τ̂ .

In order to assess how well the two Fst-based estimators perform in estimating τ , data were

simulated under the isolation model with D = 2 for a range of τ ’s. Fst was estimated using

(5.1) and τ estimated using (3.10) and (5.7). For each τ , 100 data sets were simulated

and Fst estimated. The results are presented in figure 5.4. The plots show central 95%

confidence bands for τ̂ for each combination of Fst-based estimator and the two estimators

of τ . Figure 5.4(a) shows τ estimated by (5.7) and figure 5.4(b) shows τ estimated using

(3.10). Estimator (5.4) follows more closely with the true τ values with Fst estimated

using (5.1) but, it diverges for larger values of τ as may be expected since Reynolds et al.

(1983) explains this estimate is appropriate for recent population divergence times.

Fst

τ̂

0 0.04 0.08 0.12 0.16 0.2

0
0.

06
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12
0.

18
0.

24

τ̂ =
Fst

1 − Fst

τ̂ = −
1

2
ln(

1 − Fst

1 + Fst

)

Figure 5.3: Comparison of two Fst-based estimators of τ described in equations (3.10) and
(5.7).
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Figure 5.4: 95% central confidence bands of τ for a range of true τ values in [0, 1] from
data simulated under the isolation model. τ is estimated used (5.7) (a) and (3.10) (b).
The brown line shows τ = τ̂ .

5.1.2 Difficulties with Fst-based estimators

There are limitations in Fst-based estimators. More precisely, the proposed estimator

performs poorly when τ is close to zero as illustrated in figure 5.5(a). The brown line

shows τ = τ̂ and lies (almost) completely below the confidence bands. In addition to

overestimating τ for relatively recent population split times, more ancient population split

times are underestimated, as shown in figure 5.5(b). On the other hand, the range of

Fst values actually encountered between human populations is approximately (0, 0.35] (as

shown in table (2.1)). In this range, the corresponding τ̂ values are approximately (0, 0.5]

as exemplified by the pink bands in figure 5.1. As a result, it is unproductive to focus on

values outwith this range, and certainly τ > 1.

To understand why Fst-based estimators perform in this manner, think of range of Fst

compared to that of τ or m. Fst is in the range [0, 1], whereas the migration rate m and

divergence time τ are in the range [0,∞). Figure 5.6 demonstrates the relationships using

equations (3.10) and (3.11). As τ →∞ there is little change in Fst with Fst approaching

one as shown in figure 5.6(a). Likewise, figure 5.6(b) shows as m → ∞ there is little

change in Fst with Fst approaching zero. Therefore, for increasing values of τ there is
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Figure 5.5: 95% central confidence bands for τ̂ in the range (0,0.007] (a) and [0.5,2] (b).
The brown line shows τ = τ̂ and τ estimated using (5.4).

little change in Fst, hence, little change in τ̂ . This may account for the underestimation

of τ̂ in figure 5.5(b).

Generally, Fst-based estimators do not provide the best accuracy but are convenient due

to their simplicity. Maximum likelihood estimators, as described in section 1.2, have been

shown by Nielsen et al. (1998) to provide more accurate estimates based on a comparison

of the estimated standard errors for the two estimators.
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Figure 5.6: Relationship between Fst and (a) τ̂ and Fst and (b) m̂ using equations (3.10)
and (3.11).
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5.2 Software for estimating population parameters

There are several computer programs available that estimate population parameters such

as migration rates and population divergence times. For example, MIGRATE, originally

introduced by Beerli and Felsenstein (2001), estimates migration rates from sequence

data. IM (with extensions IMa and IMa2) which fits the isolation with migration model,

originally with two subpopulations, as described by Nielsen and Wakeley (2001), and was

later extended to incorporate more than two subpopulations, as described by Hey (2010).

In this model, Hey assumes that the structure can be represented in a phylogenetic tree,

with migration occurring between all pairs populations in existence at each time point

as described in section 4.2. However, the remainder of this chapter will concentrate on

Bayesian approaches to parameter estimation.

5.3 Bayesian approaches to parameter estimation

Taking a Bayesian approach, estimating parameters from a model parameterised by φ

given observed data xobs involves, for example, sampling from the posterior distribution

p(φ|xobs). If it is not possible to do this directly, Gelman et al. (2004) provide details of

methods used to simulate from p(φ|xobs). One method simulates draws from p(φ|xobs) by

evaluating p(φ|xobs) on a grid of values φ1, . . . , φNsim covering a broad range of the para-

meter space of φ. Another method is to sample from a distribution g(φ) for which there

exists M > 0 such that p(φ|xobs)/g(φ) ≤M for all φ. The idea behind this method is depic-

ted in figure 5.7. The curve Mg(φ) completely contains p(φ|xobs). The algorithm samples

φ
′

from g(φ) and accepts it as a draw from p(φ|xobs) with probability p(φ′|xobs)/Mg(φ′).

Markov-chain Monte-Carlo methods devise a Markov chain with stationary distribution

equal to the target distribution p(φ|xobs). Starting from an initial value φ0, for example,

drawn from the prior distribution π(φ), the algorithm iteratively sample φ
′
, given the

previous draw, for long enough until it is thought that the draws are from the target
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Mg(φ)

φ'

accept

reject

φ

Figure 5.7: Example of rejection sampling.

distribution.

Bayesian inference relies on the computation of the likelihood function p(xobs|φ), but, as

shown in section 1.2, this may not always be feasible given a reasonably large sample of

SNP data. One method of overcoming this issue is to replace the full data by summaries of

the data. The remaining sections in this chapter discuss a Bayesian approach to estimating

population parameters using summary statistics.

5.3.1 Approximate Bayesian Computation

Approximate Bayesian Computation (ABC) has been developed over the last 10 years

in population genetics in order to estimate parameters of interest when the likelihood

cannot be estimated or is computationally intractable. Given a sample of SNP data with

an unknown genealogy then the likelihood function requires integrating over all possible

genealogies. Figure 1.3 shows that in a sample of size 6 from a neutral model, there are

2700 possible branching structures. For parameter φ to be estimate, this method computes

a set of summary statistics denoted by Sobs from observed data and then, loosely speaking,

simulates data under the proposed model for a range of values of φ computing Ssim and

accepts values of φ when η(Sobs, Ssim) ≈ 0 for some distance measure η(·, ·) and so replacing

the full likelihood function p(x|φ) by p(S(x)|φ) for observed data x.
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More precisely, Robert et al. (2011) provide the underlining ABC procedure. Given ob-

served data x ∈ X , summary statistics S and distance measure η, then samples {φ1, . . . , φm}

are simulated from

f(φ, S(z)|x) ∝ π(φ)f(S(z)|φ)IAηε,x(z),

where

Aηε,x = {z ∈ X |η{S(z), S(x)} ≤ ε},

and

IAηε,x(z) =

 1, if z ∈ Aηε,x ;

0, otherwise,

is an indicator function and ε chosen to be ’close’ to zero. The performance of this method

depends on the choice of η and S. Stephens (2007) suggests that using statistics that are

directly affected by the parameter of interest will increase the efficiency of this method.

However, it is useful to consider not only how informative a statistic is in parameter estim-

ation but also how informative the statistic is given the set of statistics already included in

the analysis. Joyce and Marjoram (2008) assess the question: given statistics S1, . . . , Sk−1,

then how beneficial will an additional statistic Sk be? They compare the log likelihood

function l{S1, . . . , Sk−1|φ} to l{S1, . . . , Sk−1, Sk|φ}, the difference being the latter function

contains the additional term l{Sk|S1, . . . , Sk−1, φ}. They attached a score δk to each new

statistic Sk given S1, . . . , Sk−1 and φ. Once a score falls below a pre-specified threshold

then the corresponding statistic is not included in the inference. Their methodology was to

find a set of approximately sufficient statistics. For example, if S1, . . . , Sk−1 are sufficient

statistics then l(Sk|S1, . . . , Sk−1, φ) = l(Sk|S1, . . . , Sk−1) and so Sk adds no additional in-

formation about φ. Barnes et al. (2011) take an information theory approach to finding

the set of statistics that minimise the consequent loss of information that results from in-

corporating summary statistics into any inference as opposed to using the full data. Given
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a larger set S of statistics they devise an algorithm to find the minimal set U ⊂ S such

that S contains no more information about φ given U . In order to assess the performance

of the set of statistics S, Nunes and Balding (2010) implemented the square root of the

sum of squared errors, RSSE;

RSSE =

(
1

na

ns∑
i=1

Ii|φi − φobs|2
)1/2

,

where ns is the number of simulations in the ABC algorithm, na is the number of accepted

draws and

Ii =

 1, if φi is an accepted draw;

0, otherwise.

For each subset U ⊆ S, the ABC algorithm is repeated no times and RSSE computed

with the intention to find the set U∗ which minimises

MRSSE =

no∑
j=1

RSSEj .

With attention given to methods of selecting the optimal set of statistics, the focus now

moves to describing the evolution of ABC algorithms. Beaumont et al. (2002) proposed a

method of inference based on summary statistics as an extension to a method described

by Tavaré et al. (1997) who were interested in estimating the time to the most recent

common ancestor of a sample conditioning on the observed number of segregating sites

Sn. They specified priors πN and πµ on the population size N and mutation rate µ per

site per generation. In a genealogy of length L, Sn ∼ Poi(1
2Lθ). The algorithm used was:

1. Simulate N and µ from πN and πµ.

2. Simulate data under the standard coalescent model to find coalescent waiting times

{W1, . . . ,Wn}.

3. Find the time to the most recent common ancestor TMRCA and the total length of

the genealogy Ttotal using {W1, . . . ,Wn}.
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4. Keep TMRCA, N and µ with probability

u ∝ Pr(Sn = k|Ttotal = L)

=
1

k!
e−

Lθ
2

(
Lθ

2

)k
.

This process simulates samples {TMRCA1 , . . . , TMRCAnsim
} from distribution of TMRCA,

given N and µ|Sn = k and an estimate of TMRCA is T̂MRCA = 1
nsim

∑nsim
i=1 TMRCAi .

Pritchard et al. (1999) studied an ancestral population of size NA that underwent a period

of exponential expansion at rate r that began at time t0. They used three summary

statistics, namely the average heterozygosity H̄, the number of distinct haplotypes, n,

and the mean of the variance in repeat numbers (using microsatellite data), V̄ . The

rejection algorithm implemented was:

1. Calculate observed statistics, s = {n, H̄, V̄ }.

2. Simulate φ′ from the prior distribution πφ with φ′ = {N ′A, t′0 and r′}.

3. Given φ′, simulate a genealogy under the required model and then microsatellite

data.

4. Computed the statistics s
′

= {n′ , H̄ ′ , V̄ ′} on the simulated data.

5. If |s′i − si| < δ for all i = 1, 2 and 3, then accept φ′.

Again, this process produces draws from the joint distribution of the parameters of interest

φ given the observed summary statistics s. Beaumont et al. (2002) extended this method

by following the first four steps to produce draws (φi, si) for i = 1, · · · , ns and weighting

draw φi by |si − s|. They assume that φi can be modelled by

φi = α+ (si − s)Tβ + ei for i = 1, · · · , ns.
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for some coefficients α and β to be estimated and independent errors ei Since E(φ|S =

s) = α, the authors write

φ∗ = φ− (si − s)β̂

as a random sample from p(φ|S = s). Although the relationship between {φi} and {si}

may not be linear, the authors assume that the relationship is linear locally to s. They

estimate (α, β) by minimising

ns∑
i=1

(φi − α− (si − s)β)2Kδ(|si − s|)

for band–width δ (synonymous with the last step of the above algorithm) and kernel

function Kδ.

Fearnhead and Prangle (2012) describe ABC algorithms based on rejection and MCMC

sampling methods. If interest lies in estimating a parameter φ given observed data xobs,

the Metropolis-Hastings algorithm, detailed by Gelman et al. (2004), aims to make draws

φ1, . . . , φNsim from the target distribution p(φ|xobs). Given a prior distribution π(φ), the

algorithm begins by drawing φ0 from π(φ) and, for i = 1, . . . , Nsim, a draw φ
′

is made

from a proposal distribution q(φ
′ |φi−1) and is accepted with probability min(α, 1) where

α =
p(φ

′ |xobs)/q(φ
′ |φi−1)

p(φi−1|xobs)/q(φi−1|φ′)
.

The algorithm described by Fearnhead and Prangle requires specification of statistics S(x)

with sobs = S(xobs) and a density K(x). It is initiated by simulating φ0 from π(φ) and

calculating sobs, and for i = 1, . . . , nsim,

1. Simulate φ
′

from proposal distribution q(φ
′ |φi−1).

2. Simulate data xsim, from the required model, and calculate S(xsim) = ssim.
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3. With probability

α = min

[
1,
K{(ssim − sobs)/h}
K{(si−1 − sobs)/h}

π(φ
′
)g(φi−1|φ

′
)

π(φi−1)g(φ′ |φi−1)

]

set φi = φ
′
, otherwise set φi = φi−1, for some pre-specified bandwidth h > 0.

This algorithm may be used to estimate the population divergence time τ by setting

• S = Fst(=F say),

• a N(τi−1, σ
2) proposal distribution,

• a Uni(0.00001, 0.7) prior distribution for τ , and,

• K(x) =

 1, if |x| ≤ 0.5;

0, otherwise.

Therefore,

α = min

[
1,

K{(Fsim − Fobs)/h}π(τ)g(τi−1|τ)

K{(Fi−1 − Fobs)/h}π(τi−1)g(τ |τi−1)

]

and

K{(Fsim − Fobs)/h} =

 1, if |(Fsim − Fobs)/h| < 1
2 ;

0, otherwise.

Necessarily, K{(Fi−1 − Fobs)/h} = 1 and

π(τ)

π(τi−1)
=

 1, if τ ∈ (0.00001, 0.7);

0, otherwise.

Since the proposal distribution is normal, g(τi−1|τ) = g(τ |τi−1) and α = 1 or 0. The

ABC MCMC algorithm details how to estimate τ .



CHAPTER 5. ESTIMATING POPULATION PARAMETERS 91

Algorithm 1 (ABC MCMC).

For i = 1, . . . , Nsim :

1. Simulate τ from N(τi−1, σ
2).

2. Simulate data using τ and calculate Fst = Fsim.

3. If α = 1 then set τi = τ and Fi = Fsim. If α = 0 set τi = τi−1 and Fi = Fi−1.

This algorithm produces a set of draws τ1, τ2, . . . , τNsim . Figure 5.8 shows density estimates

of simulated τ ’s for a range of true τ values using this algorithm. On each plot, the red

dot shows the true value of τ . For most values of τ , the density peaks around the true

values with a few exceptions. By taking the lower and upper 2.5% of each distribution,

figure 5.9 shows 95% credible bands for the range of τ values. This algorithm estimates

τ well; the bands contain of the line τ = τ̂ and are narrower than those produced by the

Fst-based estimator (figure 5.4).

5.3.2 ABC packages

There is a battery of summary statistics that are extensively used in population genetics.

Several packages use ABC to infer aspects of demographic history, for example, DIY

ABC (Cornuet et al. (2008)), PopABC (Lopes et al. (2009)) and ABCtoolbox (Wegmann

et al. (2010)). The statistics employed in these packages are discussed in chapter 6.

Although each program aims to make inferences about population parameters via summary

statistics, the methods adopted in each are different.

Cornuet et al. (2008) model the demographic history of a sample by firstly specifying the

population size, population divergence times (backwards in time) and population admix-

ture (backwards in time, a population splits into two other populations in the sample).

Data is then simulated under this pre-specified history and a set of summary statistic
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Figure 5.8: Density plots of simulated τ ’s for a range of true τ values (red dot) using
ABC MCMC algorithm.

computed. Simulated data set i is compared to the observed data using distance measure

di =

√√√√ m∑
j=1

(sij − sobsj )2

V arj
,

where m is the number of statistics, V arj the variance of the jth statistic across statistics,

sij is the value of statistic j in simulation i and sobsj is the observed value of statistic j.

This program then uses the algorithm given by Beaumont et al. (2002) to estimate the
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Figure 5.9: 95% credible bands for τ , and the line of equality.

parameters.

Lopes et al. (2009) fit the isolation with migration model presented originally by Nielsen

and Wakeley (2001) and described in section 4.2. It aims to estimate the tree topo-

logy (treated as a categorical variables with several possible topologies), population size,

population split times, migration, mutation and recombination rates, by implementing a

rejection based algorithm.

Once specifying a model (to simulate from) and a set of summary statistics, Wegmann

et al. (2010) use partial least squares (PLS) to make linear combinations of the summary

statistics in order to find an optimal set of statistics. This methods was motivated by Joyce

and Marjoram (2008) who showed that although it may be beneficial to include as many

summary statistics thought to be informative about the parameters of interest, adding too

many contribute more noise. A further discussion of the matter is given in section 6.2.4.

PLS regression has two main steps as described by Boulesteix and Strimmer (2007). The

first is a dimension reduction step. It is assumed that there are q continuous response

variables Y1, . . . , Yq and p continuous explanatory variables X1, . . . , Xp with observed data

yi = {yi1 , . . . , yiq} and xi = {xi1 , . . . , xip} for i = 1, . . . , nsim. Wegmann et al. (2010)

consider the summary statistics as the explanatory variables and the parameters of interest
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the response variables. The general underlying model of PLS is to write

X = TP T + E and

Y = TQT + F,

where T is a matrix of latent components, P and Q are matrices of dimension p × c and

q×c, respectively, and E and F are error matrices. As with principal components analysis,

linear combinations of the columns of the matrix X, of dimension n × p, can be found

that are independent and contain most of the variability in the data. For example, in the

notation of Boulesteix and Strimmer (2007),

Tj = w1jX1 + . . .+ wpjXp, for j = 1, . . . , c,

where T1, . . . , Tc are the components, c is the chosen number of components that are

thought to explain most of the variation in the data and the columns of the matrix W =

{wij} of dimension p× c are such that the latent components explain the variation in the

explanatory and response data. Therefore,

T = XW, and hence X = TW T .

The second stage is to model the data. As in the case of multiple linear regression, the

matrix QT can be estimated by QT = (T TT )−1T TY . In particular, Y can be modelled by

Y = TQT + F = XWQT + F

and so a least squares estimation of the matrix of regression coefficients

WQT = W (T TT )−1T TY . This approach was implemented to find a minimal number

of independent statistics, with the authors also suggesting this procedure recovers an op-

timal set of summary statistics.
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5.4 Model selection

The probability of a model given data provides the natural Bayesian tool to assess which

model provides the better fit to the data. To illustrate, data were simulated from the isol-

ation model with two subpopulations diverging at time 0.7. The ABC MCMC algorithm

was used to estimate p(τ |Fst), as illustrated in figure 5.8, but also p(m|Fst), the posterior

distribution of the migration rate between the two subpopulations given Fst under the

(misspecified) migration model. Figure 5.10 shows the posterior density estimate of m

given Fst with the red dot showing the posterior mean value.
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Figure 5.10: Estimate of p(m|F̂st) using the ABC MCMC algorithm.

Robert et al. (2011) provide an algorithm to calculate the probability of a model given the

data, or summaries of the data. In this application, let M1 denote the isolation model and

M2 denote the migration model. The algorithm produces a vector m = (m1, . . . ,mNsim).

At the ith step, m∗ is generated from π(M) the prior distribution on the models, for

example p(M = M1) = p(M = M2) = 0.5, and, using a draw φm∗ ∼ π(φm∗), data are

simulated under model m∗ and the summary statistics Ssim computed. These steps are

repeated until the distance between Sobs and Ssim is less that ε and they set mi = m∗.

They estimate the probability of model j, for j = 1, 2, given Sobs as

Pr{Mj |Sobs} =
1

Nsim

Nsim∑
i=1

Imi=j .
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Using the algorithm, with Nsim = 1000 and both models a priori equally likely, the

probabilities of the isolation and migration models are estimated to be:

Pr{migration|Fst} = 0.24

Pr{isolation|Fst} = 0.76.

If M1 and M2 correspond to the isolation and migration models, respectively, then the

Bayes factor

B12 =
Pr{M1|Sobs}p(M = M1)

Pr{M2|Sobs}p(M = M2)

= 3.2,

providing evidence in favour of the isolation model over the migration model.

In population genetics, it is often the case that the statistics implemented in ABC (for

example, Tajima’s D) are not sufficient which presents problems when estimating the

likelihood function p(x|φ) since the observed data x are replaced by a statistic S(x).

In particular, Bayesian model selection methods require the likelihood function to be

evaluated as discussed by Robert et al. (2011) and Barnes et al. (2011).

The issue is made explicit by Barnes et al. (2011). The authors define sufficiency in terms

of the likelihood function. A statistic S is sufficient if

f

(
x|S(x), φ

)
= g

(
x|S(x)

)
,

where f

(
x|S(x), φ

)
is the likelihood of data x given parameter φ and statistic S(x) and

g(x|S(x)) is the probability of the data given the statistic, independent of φ. For two

prospective models, M1 and M2, the posterior probabilities of the models p(Mi|x) for

i = 1, 2 given the data are estimated. The model comparison considers the ratio

B12 =
p(x|M1)

p(x|M2)
=
p(M1|x)π(M1)

p(M2|x)π(M2)
.
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In particular, in the case of k models, the posterior probability of the ith model is

Pr(Mi|x) =
π(Mi)

∫
ΘMi

p(x|φMi)π(φMi)dφMi∑k
j=1 π(Mj)

∫
ΘMj

p(x|φMj )π(φMj )dφMj

, (5.8)

where π(Mi) is the prior probability that the data are from model Mi with parameters

φMi ∈ ΘMi . If the observed data x is replaced by simulated data y then as, ε→ 0,

∫
y∈X

p(y|φMi)π(φMi)I{η(x,y)<ε}dy ∝
∫
y∈X

π(φMi , y|x)I{η(x,y)<ε}dy

(5.9)

→ p(φMi |x),

where

I{η(x,y)<ε} =

 1, if η(x, y) < ε;

0, otherwise.

As a results, as ε→ 0, (5.8) can be approximated by

π(Mi)
∫

ΘMi

∫
y∈X p(y|φMi)π(φMi)I{η(x,y)<ε}dydφMi∑k

j=1 π(Mj)
∫

ΘMj

∫
y∈X p(y|φMi)π(φMi)I{η(x,y)<ε}dydφMj

.

In the context of ABC where the observed data x is replaced by a summary of the simulated

data S(y), Barnes et al. (2011) note that (5.9) becomes

∫
S(X )

p(S(y)|φMi)π(φMi)IAηε,x(y)dS(y).

If S is a sufficient statistic, then p(S(y)|φMi) ∝ p(y|φMi). However if S is not sufficient,

as is often the case, then Pr(Mi|x) cannot be approximated by

π(Mi)
∫

ΘMi

∫
S(X ) p(S(y)|φMi)π(φMi)IAηε,x(y)dS(y)dφMi∑k

j=1 π(Mj)
∫

ΘMj

∫
S(X ) p(S(y)|φMj )π(φMj )IAηε,x(y)dS(y)dφMj

.
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Therefore, although using non–sufficient statistics to estimate the joint distribution of

f(φ, z|x) for {z ∈ X |η(S(x), S(z)) < ε} is valid, there are problems in computing Bayes

factors. Barnes et al. (2011) argue that the problems with using insufficient statistics in

model selection are reflected in parameter estimation evidenced in an example estimating

the mean from a N(µ, 1) distribution. They consider four separate statistics to estimate

µ namely the sample mean, variance, the minimum value and the maximum value. They

show using the sample mean produces the most accurate results.

5.4.1 Model misclassification

Csilléry et al. (2012) wrote the abc package in R, (R Development Core Team (2008)),

which performs parameter estimation and model selection. In particular, the model selec-

tion procedure estimates the posterior probability of a model given the observed summary

statistics. They measure the success of ABC in model selection by estimating misclas-

sification rates. Fitting the observed data to each of the prospective models, they store

the summary statistics’ values at each iteration. For each model they select one set of

summary statistics, to be treated as the observed data, and find the posterior probability

of each model using the values from the leftover simulations and assign the data to the

model with the highest probability. This is repeated a specified number of times. The

function output consists of a confusion matrix with the diagonal entries showing the num-

ber of correctly classified simulations and the off-diagonal entries showing the number of

misclassifications and also a matrix of posterior probabilities. The diagonal entries are the

average posterior probabilities of the simulations where the correct model gave the highest

posterior probability.

Repeating this process 1000 times for each model, the following matrices are produced:

Isolation Migration

Isolation 648 352
Migration 390 610

(a) Confusion matrix.

Isolation Migration

Isolation 0.58 0.42
Migration 0.48 0.52
(b) Average posterior probabilities.
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The isolation and migration model were correctly identified 648 and 610 out of the 1000

repetitions. The average posterior probability of those simulations from the isolation

model with Pr{isolation |Sobs} > Pr{migration |Sobs} was 0.58 and the corresponding

probability from the migration model was 0.52. This provides evidence, although not

overwhelming, that the ABC model selection procedure using only Fst can assign the

correct model the highest posterior probability. Inevitably, the performance of this method

depends on how informative the summary statistics are about the full data. For example,

Nielsen et al. (1998) showed Fst was not sufficient in estimating the population divergence

time and so these results may not be too surprising.

5.5 Summary

This chapter has presented different estimators of the population divergence time τ between

two subpopulations in the isolation model. In particular, the ABC MCMC algorithm de-

scribed by Fearnhead and Prangle (2012) estimates τ well as shown in figure 5.9 but also

the Fst-based estimator (3.10), with Fst estimated by (5.1), was shown in figure 5.4 to also

estimate τ well although this method produces wider 95% confidence bands. This chapter

also touched upon distinguishing between the migration and isolation models taking an

ABC approach. If it is possible to implement sufficient statistics then Bayes factors may

be used to calculate the posterior probabilities of both models but Robert et al. (2011)

showed that if the summary statistics used are not sufficient then this method may be

invalid. It is clear that some carefully chosen statistics do contain valuable information in

relation to parameter estimation and model selection and so this line of enquiry is adapted

in the next few chapters.



Chapter 6

A hypothesis test for demography

There are two general approaches to statistical inference. As described in the previous

chapter, the Bayesian approach depends on the evaluation of the likelihood function,

p(x|φ), and when this function is computationally unattainable for example, in the pres-

ence of complex missing data such as the genealogy of a locus. One strategy is to replace

the data x by summaries. However, problems have been highlighted with this ABC ap-

proach to model comparison (e.g by Robert et al. (2011)), for example when the summaries

are not sufficient. On the other hand, by considering a frequentist approach, our attention

is deflected to testing the hypothesis that the observed data are consistent with a partic-

ular demographic model. This chapter begins by finding a set of test statistics that may

maximise the power of a frequentist hypothesis test to distinguish the isolation and mi-

gration models. With a suitable set of test statistics, of size m, having been identified, the

observed value of each is individually compared to values simulated under the null model

(one of the two models under consideration). Formally, m null hypotheses, H01 , . . . ,H0m ,

are tested, one concerning the value of each test statistic, with the overall intention of

testing the global hypothesis equal to the intersection of the individual m hypotheses:

H0 =

m⋂
i=1

H0i .

100
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This chapter also provides a brief discussion of incorporating a multiple testing correction

to control the type I error rate.

6.1 Summary statistics

Hypothesis testing about the demography of samples of SNP data based on summary

statistics obviously requires statistics that contain as much information as possible to

distinguish the models. We have already seen that the allele frequency spectrum may be

useful in distinguishing the isolation and migration models particularly for larger values of

Fst. The computer packages described in section 5.3.2 employ a wide variety of summary

statistics. However, some of them are only applicable to certain types of data. Examples

of these statistics are listed below:

Statistic 1. The mean number of alleles across loci.

Statistic 2. The variance in allele length (relevant to loci such as microsatellites).

Statistic 3. The number of segregating sites, S (relevant to sequence data).

Statistic 4. The number of different haplotypes (relevant to phased sequence data).

Statistic 5. Heterozygosity. Let k be the number of alleles and pi be the frequencies of

the ith allele at a particular locus (for SNP data k = 2), then

H̄ = 1−
k∑
i=1

p2
i .

Statistic 6. Estimator of Nm based on heterozygosity. This is used in popABC by

Lopes et al. (2009) and uses the heterozygosity of all the populations Ha and the
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heterozygosity within subpopulations Hw:

Nm =
Hw

1 +Ha −Hw
.

Statistic 7. Fst.

Statistic 8. The mean pairwise difference π. Let kij be the number of difference between

the ith and jth chromosome, then

π =

(
n

2

)−1 n∑
i=1

n∑
j>i

kij .

The mean pairwise difference is often calculated within and between subpopulations

denoted by πW and πB, respectively.

Statistic 9. Tajima’s Dt statistic. Let n be the total sample size and
∑n−1

i=1 a1 = 1
i , then

Dt =
π − S/a1√

V̂ ar(π − S/a1)

.

Statistic 10. Number of SNPs with allele count 1, η1. This statistic may be plausible

in distinguishing the two models as shown in figure 4.4. The isolation model had

higher η1 than the migration model for values of Fst > 0.01 (approximately).

Statistic 11. Variance of allele counts. In figure 4.4, the migration model shows greater

variability in allele counts than the isolation model.

Statistic 12. The average allele count. Taken to be the average of the counts in the allele

frequency spectrum. Figure 4.4 shows isolation model has a higher value than the

migration model.

Statistic 13. ηmax = max{ηi : i = 1, . . . , n − 1}, where ηi is the number of SNPs with

allele count i. Again, fig 4.4 shows, for larger value of Fst, there is an increase in

allele counts equal to n, the sample size of each subpopulation, in both models.
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In particular, the isolation model shows a larger allele count equal to n than the

migration model.

Statistic 14. Fu and Li’s F ∗ and D∗ statistics defined as

F ∗ =
π − (n− 1)η1/n√

V̂ ar(π − (n− 1)η1/n)

,

D∗ =
S/a1 − (n− 1)η1/n√

V̂ ar(S/a1 − (n− 1)η1/n)

.

Statistics 1–4 are calculated in popABC and DIY ABC (Cornuet et al. (2008)) but are

not applicable to SNP data. There are a few other statistics not mentioned above that are

also not applicable to SNP data. Since the parameter in the model of interest is estimated

using a function of Fst, and this estimate used to simulate data under the null model, Fst

is not included. Also, F ∗ and D∗ are similar to Dt in that they are all function of S, π

and η1, so the test will exclude the former two statistics and include the latter four. The

remaining statistics are considered, with attention next given to whether they successfully

distinguish the migration and isolation models.

6.1.1 Initial comparison of summary statistics

In order to compare the distributions of the summary statistics listed, a small migration

rate and a large migration rate were considered. The distributions under the migration

model were compared to the distributions of the statistics under an isolation model with

population split time τ̂ estimated to produced similar Fst values to the migration models.

For a small migration rate between the two subpopulation, msmall = 0.0001, 1000 SNPs

were simulated with samples from the two subpopulations each of sample size 10 and

statistics 8–13 and 5 were computed. Fst was estimated using (5.1) and a population split

time was estimated using (3.10). Data were simulated under the isolation model, with

the same sample sizes as for the migration model, and the set of summary statistics were
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computed. This process was repeated 100 times and the distributions of the summary

statistics plotted separately.

Figure 6.1 gives the allele frequency spectra of data simulated under the two models with

the isolation model shown in green and the migration model shown in red.
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Figure 6.1: Allele frequency spectra from 1000 SNPs simulated from the isolation model
(green bars) and the migration model (red bars).

In this sample, the isolation models exhibits a greater η1 and ηmax with η1 = 224 and

ηmax = 363 in the isolation model and η1 = 153 and ηmax = 326 in the migration model.

The isolation model has a lower average frequency of 5.6 compared to 7.1 in the migration

model and the migration model slightly has a higher variance, of 18.4 compared to 15.1 in

the isolation model. By repeating the simulating process 100 times, we explore whether

the distributions of the statistics are different under the two models. For each of the

100 simulations, Fst was computed under both models and their distributions presented

in figure 6.2. The two distributions are very similar. The distributions of the other

summary statistics from both models are given in figure 6.3. Of the nine statistics, the

average heterozygosity appears least able to distinguish the models. This is perhaps not

surprising as Fst is a function of H̄.

This investigation was repeated with a larger migration rate, m = 0.1. As previously
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Figure 6.2: Histograms of Fst values from data simulated under the isolation (green bars)
and migration (red bars) models with m=0.0001.

noted, as the migration rate increases the data resembles that from a single panmictic

population more and more. The distributions of the nine summary statistics are given

in figure 6.4. As expected, all of the statistics produced similar distributions under both

models and so, distinguishing the models is more difficult if there is a higher migration

rate between the two subpopulations or, equivalently, a recent population divergence time.

6.2 Hypothesis test

Given observed SNP data from two subpopulations, it is of interest to test if the data show

signs of a population divergence followed by isolation or shows signs of recurrent migration

events between subpopulations. Assuming the population of interest experienced one of

the two events, the following hypotheses are tested:

H0 : data from the isolation model. (6.1)

H1 : data not from the isolation model.
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Figure 6.3: Histograms of summary statistics from data simulated under the isolation
(green bars) and migration (red bars) models.

Given the prior restriction to the two models of isolation and migration, H1 is equivalent

to “data from the migration model”. The choice of which model plays the role of H0 is

essentially arbitrary.

In order to test H1 against H0, the set of summary statistics S = {S1, . . . , Sm} form the

basis of m separate tests. For a given statistic, Si, let Sobsi denote the observed value

and S̄isoi denote the expected value of the summary statistic consistent with an isolation
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Figure 6.4: Histograms of summary statistics from data simulated under the isolation
(green bars) and migration (red bars) models with the migration rate fixed as m=0.1 (in
2N generations).

model for some τ . The ith hypothesis to be test is:

H0i : Sobsi = S̄isoi

H1i : Sobsi 6= S̄isoi .

To test the global null hypothesis that the data are consistent with an isolation model,
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the following global hypothesis is tested:

H0 =
m⋂
i=1

H0i .

Therefore, in order to accept the isolation model, each H0i needs to be accepted.

6.2.1 Calculating p-values

For each statistic, Si, an empirical p-value is calculated. That is, given Sobsi , the probab-

ility of observing a value more extreme than Sobsi under the null model is estimated by

simulating data under the isolation model. An example of a possible density estimation of

the distribution of Si is given in figure 6.5. In a two-tailed test at a 5% significance level,

the red lines denote the boundaries of a rejection region in this hypothesis test. Suppose

Sobsi = 254.8, shown by the light green dot. Then, if Sobsi > s̄, y is found such that

f(Sobsi) = f(y) (shown as the dark green dot) and the empirical p-value is

p =
#{si > Sobsi}

Nsim
+

#{si < y}
Nsim

,

where Nsim is the number of simulations. If Sobsi < s̄, then

p =
#{si < Sobsi}

Nsim
+

#{si > y}
Nsim

.

In this example, y = 233.6 and p = 0.02.

In this thesis, each hypothesis is a two sided test. There might be a case for using one-sided

tests. In particular, note that the distributions of π, πW , πB, Dt, the mean allele count

and the variance of allele counts from the migration model lie above the distributions

from the isolation model whereas the distributions of the η1 and ηmax under the migration

models lie below the isolation model as shown in both figure 6.3 and figure 6.4.

Since several hypotheses are tested at the same time, a multiple–testing correction is made.
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Figure 6.5: Density of statistic Si. Red lines denote the lower and upper 2.5% of the
distribution.

The next section compares several methods of correction.

6.2.2 Multiple comparisons procedures

Typically, with any hypothesis test, the type I error rate is controlled by a pre-determined

significance level α. When testing a single hypothesis at significance level α, a p-value, p,

is calculated to be the probability of observing a value more extreme that the observed

statistic and, if p < α, the null hypothesis is rejected. To assess the performance of the

test, the probability of falsely rejecting a true null hypothesis, predetermined by α, and

the probability of correctly rejecting a false null hypotheses are evaluated. Simultaneously

testing multiple hypotheses will inflate the type I error rate, unless each test becomes more

stringent.

There are several methods for multiple hypothesis testing, many of which are outlined by

Bretz et al. (2011), Chang (2011) and Hommel et al. (2011), that simultaneously test p-

values from multiple test statistics. There are also different approaches to multiple testing

including single-step and stepwise procedures. Stepwise procedures either begin with the
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smallest ordered p-value (step–down procedure) or the largest (step–up procedure). In

the case of the step–down procedure, each hypothesis is tested from smallest to largest

(adjusted) p-values and once a hypothesis is accepted, using a predetermined threshold,

the remaining hypotheses (with larger corresponding p-values) are accepted. Likewise, the

step–up procedure begins with the largest p-value and once a hypothesis is rejected, the

remaining hypotheses are rejected.

Since interest lies with testing the global hypotheses, as opposed to taking into account

which particular hypotheses are rejected, a detailed review of single-step procedures is

provided.

Let p1, . . . , pm denote the p-values from the m hypotheses and p(1) ≤ · · · ≤ p(m) be the

ordered p-values. It is conventional firstly to test the global hypothesis and then consider

each hypothesis individually to find significant results. However, in this case, interest

primarily lies in the global hypothesis. Hommel et al. (2011) describe a general global test

in which H0 is rejected if

p(k) ≤ bk for at least one k,

where b1, . . . , bm are chosen such that mb1 +
∑m

i=2 (bi − bi−1)mi = α. For example, if

m = 1 then b1 = α. If m > 2 the each bk < alpha. One of the more classical approaches

to multiple comparisons is the Bonferroni correction. In this case, b1 = · · · = bm = α
m and

H0 is rejected if

pi ≤
α

m
for any i = 1, . . . ,m.

Simes (1986) proposed a modified version of the Bonferroni correction by rejecting H0 if

p(i) ≤
iα

m
for any i = 1, . . . ,m,
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or equivalently, if any
mp(i)
i ≤ α. Therefore, the global hypothesis is reject if p̃ < α where

p̃ = min
1≤i≤m

{
m

i
p(i)

}
.

Bretz et al. (2011) demonstrate how the Simes test is more powerful than the Bonferroni

test by considering the case m = 2. In this instance

H0 = H01 ∩H02

H1 = H11 ∪H12 .

The Simes method rejects H0 if either p(1) <
α
2 or p(2) < α. The Bonferroni method rejects

H0 if either p1 or p2 <
α
2 . Therefore, the Simes rejection region contains the Bonferroni

rejection region.

Another variation of this test was proposed by Hommel et al. (2011) which rejects H0 if

p(i) ≤
iα

mCm
for any i = 1, . . . ,m,

where Cm =
∑m

i=1(i−1). Figure 6.6 compares the rejection regions of the three corrections

when m = 2 and p(1) ≤ p(2). The left hand side plot shows the Bonferroni rejection region,

the middle plot show the Simes rejection region and the right hand side plot shows the

Hommel rejection region. In each, the shaded area shows the combination of p1 and p2

for which the null hypothesis is rejection. The Simes’ method shows the largest rejection

region.

In this context, the statistics tested have an unknown correlation structure and there are

no known distributional results. Therefore, the multivariate procedure employed should

be valid for dependent statistics. For the three hypothesis tests presented in this section,

results hold for specific cases of dependent variables under some distributional results.

The Bonferroni method is the most simplistic of the proposed procedures but is the most
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conservative. In his paper, Simes (1986) showed, for independent p-values p1, . . . , pm,

Pr

(
p(j) >

jα

m
| j = 1, . . . ,m

)
= 1− α.

By simulating test statistic values T1, . . . , Tm from a multivariate normal distribution

Nm(0,Ω) with Ω an m×m covariance matrix with diagonal entries equal to one and off–

diagonal entries equal to ρ (for some 0 < ρ < 1), Simes found that his improved method

preserved the type I error for ρ ≈ 0.3 but for ρ > 0.9, the error rate falls below α. This

test was shown to be more powerful than the Bonferroni method for highly correlated

statistics.

It may therefore be useful to employ independent statistics to distinguish between the two

models. The most intuitive way is to find independent linear combinations of the original

set of statistics by means of principal components analysis. The next section describes in

detail the step required to test the hypotheses as in (6.1) followed by methods of testing

principal components rather than the original statistics.
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Figure 6.6: Comparison of the three rejection regions.
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6.2.3 Parametric bootstrap

The basic principles of bootstrap methods is to find the distribution of some statistic T (X)

given independent and identically distributed data {X1, . . . , Xn}. This can be approached

in two ways: either parametrically or non-parametrically. If an explicit probability model

of the data exists, then the observed data can be used to estimate the parameters in the

model and the distribution function, denoted by F̂ by Davison and Hinkley (1997), is used

for inference. In this context, the parametric bootstrap can be implemented to simulate

data under the null model.

It is hypothesised that the observed data X, comprising of n haploid individuals from

each of the two subpopulations genotyped at L SNPs, is from an isolation model with

population split time τ . Observations Xi = {xi1 , . . . , xi2n} for i = 1, . . . , L are assumed to

be independent. For each statistic, the distribution under the null hypothesis is estimated.

Implementing bootstrap methods, data sets X∗1 , . . . , X
∗
Nsim

are simulated under fτ̂ , the

isolation model with τ = τ̂ , with X∗j = {X∗j1 , . . . , X
∗
jL
} for each j = 1, . . . , Nsim. The

simulated data produces estimates S∗1 , . . . , S
∗
Nsim

of statistic S under the null hypothesis.

Given observed data, the hypotheses outlined in (6.1) are tested using the following steps:

Algorithm 2 (Test I).

1. Calculate observed values of the summary statistics Sobs = {Sobs1 , . . . , Sobsm}.

2. Calculate F̂st and estimate τ̂ using equations (5.1) and (3.10).

3. For j = 1, . . . , Nsim :

4. Simulate L SNPs under the isolation model with two subpopulations, each of

sample size n,diverging at time τ̂ and calculate summary statistics

Sj = {Sj,1, . . . , Sj,m}.

5. Let S̄i = N−1
sim

∑Nsim
j=1 Sj,i. For each statistic separately, test the hypothesis

H0i : Sobsi = S̄i

H1i : Sobsi 6= S̄i

by calculating a p-value using the method described in section 6.2.1.
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6. Correct the p-values using one of the methods described in section 6.2.2. If all

hypotheses are accepted then accept the global null hypothesis, H0, otherwise reject

the global hypothesis.

Test I tests whether the data are consistent with an isolation model. However, it is equally

reasonable to test if the data are from a migration model with migration rate m, estimating

m from Fst and simulating data under the migration model.

6.2.4 Incorporating principal components analysis

In addition to the dependence structure presented in the summary statistics, there are ad-

ditional complications in finding the ‘best’ set of statistics to exploit in the hypothesis test.

As with ABC, it may seem intuitive to include as many summary statistics as possible.

However, Joyce and Marjoram (2008) investigated the effects of using a large number of

statistics in ABC. They suggest that including additional, uninformative, statistics merely

adds noise and so devise a system that includes an additional statistic only if it “improves

the quality of inference” although the authors do not account for the order in which the

statistics are considered.

The use of principal components analysis reduces the number of dimensions and produces

independent linear combinations of the original statistics and therefore may better fit the

conditions of some multiple hypothesis tests. Bazin et al. (2010) for example examined a

set of loci for natural selection and used PCA to reduce the dimension of the data to 30

components from an initial set of 60 statistics.

Let Nsim be the number of simulated data sets under H0. For simulation i, the set of
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statistics {Si,1, Si,2, . . . , Si,m} are computed and the following matrix is produced:

S =


S11 S21 . . . SNsim,1

S12 S22 . . . SNsim,2
...

...
. . .

...

S1m S2m . . . SNsim,m

 . (6.2)

The objective is to make linear combinations of the original m statistics. However, there is

some disagreement on whether it is appropriate to perform principal component analysis

on the covariance matrix or the correlation matrix. In particular, Jolliffe (2002) illustrates

that, in some case, the methods produce very different component coefficients. When

using the covariance matrix, Jolliffe demonstrates that if there is a sizeable difference in

the variances of the original variables, then those variables with the largest variances tend

to dominate. Since each statistic is not necessarily on the same scale, as exemplified in

figures 6.3 and 6.4, principal components analysis is performed on the correlation matrix

of dimension m×m 
1 ρ21 . . . ρm1

ρ12 1 . . . ρm2

...
...

. . .
...

ρ1m ρ2m . . . 1

 ,

producing a matrix of coefficients


a11 a21 . . . am1

a12 a22 . . . am2

...
...

. . .
...

a1m a2m . . . amm

 ,

such that

PCi =
m∑
j=1

aijSj .
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The number of components utilized may be defined in several ways. For instance, only one

or two components may be employed, accounting for the most and second most variance

in the data, respectively. Alternatively, a level 0 ≤ ν ≤ 1 may be specified such that the

number of components used explains 100ν% of the variation, or, formally, a test of each

eigenvalue of the correlation matrix can be made and the significantly large eigenvalues

employed, as described by Patterson et al. (2006).

Integrating principal components analysis into our testing procedure involves additional

work after step 3 in Test I, lead to

Algorithm 3 (Test II).

1. Calculated observed values of the summary statistics Sobs = {Sobs1 , . . . , Sobsm}.

2. Calculate F̂st and estimate τ̂ using equations (5.1) and (3.10).

3. For j = 1, . . . , Nsim :

4. Simulate L SNPs under the isolation model with two subpopulations, each of

sample size n, diverging at time τ̂ and calculate summary

statistics Sj = {Sj,1, . . . , Sj,m}.

5. Construct matrix S in (6.2).

6. Compute correlation matrix and identify components PC1, . . . , PCncomp for some

determined ncomp ∈ {1, . . . ,m}.

7. For each component separated, test the hypothesis

H0i : PCobsi = PCi

H1i : PCobsi 6= PCi

by calculating a p-value using the method described in section 6.2.1.

8. Correct the p-values using one of the methods described in section 6.2.2. If all

hypotheses are accepted then accept the global null hypothesis, H0, otherwise reject

the global hypothesis.
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6.3 Type I and Type II errors

Testing a single hypothesis at significance level α, two possible errors can occur: either a

Type I error where the null hypothesis is rejected when it is true or a Type II error where

the null hypothesis is accepted when it is false. A hypothesis test should aim to minimise

both types of errors. The same conditions should hold in a multiple hypothesis setting.

Generally, let m0 denote the number of true null hypotheses from the collection

{H01 , . . . ,H0m}. Table 6.1 provides all eventualities in a multiple hypothesis test.

Hypothesis Not Rejected Rejected Total

True U V m0

False T S m−m0

Total W R m

Table 6.1: Counts of Type I and Type II errors in multiple hypothesis testing reconstructed
from Bretz et al. (2011), table 2.1.

6.3.1 Type I error

In the case of testing multiple hypothesis, there are many definitions of the Type I error

rate. Most common is the familywise error rate (FWER), defined as

FWER = Pr(V > 0).

In order to control FWER, it is required that

Pr(V > 0) ≤ α. (6.3)

For example, the Bonferroni procedure rejects hypothesis H0i if pi <
α
m . Under the null

hypothesis, the p-values are draws from a Uni(0, 1) distribution and Pr(pi ≤ α
m) = α

m for
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all i = 1, . . .m and the Bonferroni inequality ensures

Pr

( m⋃
i=1

(
pi ≤

α

m

))
≤

m∑
i=1

Pr

(
pi ≤

α

m

)

= α,

with equality if the p-values are independent.

Bretz et al. (2011) differentiates between controlling FWER in a weak sense and in a

strong sense. Controlling FWER in the weak sense corresponds to the probability that at

least one hypothesis is declared false given that they are all true, that is

Pr(V > 0| the global hypothesis is true ) ≤ α.

If not all the null hypotheses are true, strongly controlling the FWER requires

max
I⊆M

Pr

(
V > 0|

⋂
i∈I

Hi

)
is true ≤ α, (6.4)

for M = {1, . . . ,m} and non-empty subsets I of M . M is the set of hypotheses and

so (6.4) requires that for every subset I ⊆ M , the probability of falsely rejecting a true

hypothesis, given that the set of I hypotheses are true, is less than (or equal to) α. Bretz

et al. (2011) explains the difference between the two. Weakly controlling the Type I error

rate is synonymous to controlling the probability of rejecting a null hypothesis whereas

controlling in the strong sense is to control the probability of rejecting at least one true

hypothesis.

Secondly, as the number of hypotheses tested increases, it becomes more likely that at

least one null hypothesis will be rejected and so in some scenarios, it may not be required

that all rejections be correct. The false discovery rate FDR is defined to be

FDR = E

(
V

R
| R > 0

)
Pr

(
R > 0

)
,
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and is the expected proportion of falsely rejected hypothesis among the rejected hypo-

thesis. In this case, under the null model all the individual tested hypotheses are true.

Therefore, the probability of rejecting the null hypothesis given that it is true is equal to

the probability that at least one hypothesis is rejected given that they are all true, weakly

controlling the FWER.

To test whether TestI and II weakly control the FWER, a range of population divergence

times was considered and ‘observed’ data comprising of 1000 SNPs and a sample of size

10 in each subpopulation were simulated under the isolation model and the eight statistics

computed (the average heterozygosity was excluded from each test since distributions un-

der the null and alternate model appeared indistinguishable). Test I was implemented 100

times, applying Hommel’s and Simes’ corrections for multiple comparisons. In addition,

Test II was considered employing different numbers of components from the PCA analysis,

namely 1 or 2 components and the number of components that collectively accounted for

more that 97% of the variation in the data (chosen arbitrarily). Figure 6.7 displays the

results. For each value of τ , the probability of rejecting H0 was estimated as the number

of the rejected global hypotheses divided by the total number of tests:

ρ̂ =
# of rejected hypotheses

100
,

with the endpoints of an approximate 95% confidence interval for the probability calculated

from

ρ̂± 1.96

√
ρ̂(1− ρ̂)

100
.

The red lines in figure 6.7 correspond to the probability of rejecting H0 = 0.05. The

vertical lines show the approximate 95% confidence intervals for the probability for each

value of τ .

Generally, Hommel’s method performs slightly better than Simes’ since, for the full data,

the Simes’ confidence intervals lie above the red line for all but one of the τ values. This
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Figure 6.7: Estimated probability of Type I error rate for a range of τ using (a) Hommel’s
and (b) Simes’ corrections for multiple comparisons.

pattern is repeated using Test II for the range of components considered. The most obvious

problem is the dramatic increase in Type I error for τ > 1. However, τ is measured in

2N generations and τ > 1 corresponds approximately to Fst > 0.5, which, in human

populations, is unrealistic, as demonstrated in table 2.1 where the Fst values are in the

range (0.005, 0.35). Likewise, smaller τ ’s show an increase in the probability of a Type I

error. It appears that this methods begins to fail below τ ≈ 0.03, which corresponds to

Fst < 0.03 (applying equation (3.9)). The reason for this result is the poor estimation

of the population divergence time in this range. Data were simulated under an isolation

model for a range of τ values in the interval [0.00001, 0.08] and τ̂ calculated. Figure 6.8

illustrates how this estimator tends to overestimate population divergence times, more so

as τ → 0. The pink confidence bands show the 2.5th and the 97.5th percentiles of the

distribution of each estimate for the range of τ values. Logically, as τ → 0, the isolation

model begins to approach an unstructured model. Therefore, one might propose that if

τ̂ < δ, for some δ > 0, then the data may be more consistent with a neutral model and so

it may be appropriate to set τ̂ = 0. More precisely, let τ∗ = Fst
1−Fst then the estimator is

revised to be
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τ̂ =

 τ∗, if τ∗ > δ;

0, if τ∗ ≤ δ.

In words, an isolation model with an estimated population divergence time less than δ is

taken as an unstructured model.

6.3.1.1 Isolation model vs neutral model

In order to assess when the isolation model with population divergence τ ≤ δ is more

similar to a neutral model that an isolation model with population divergence τ∗, the

distributions of the summary statistics are simulated under the appropriate model. The

three models considered are

1. the isolation model with divergence time τ ,

2. the isolation model with divergence time τ∗, and

3. the unstructured model. For completeness, for statistics that rely on population

labels, for instance πW and πB, population labels are randomly allocated to the

sample.
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Figure 6.8: Confidence bands of τ for a range of values from data simulated under isolation
model
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Using a small divergence rate, τ = 0.00001, data were simulated under the isolation model

with a sample of size 10 from each subpopulation at 1000 SNPs and the statistics were

computed. In each simulation, τ∗ was estimated and data were simulated under the isol-

ation model with τ∗ and the set of statistics computed. 1000 SNPs were simulated under

the unstructured model with a sample size of 20 and the statistics computed. This process

was repeated 100 times and the resulting distributions of the statistics are presented in

figure 6.9.

Subjectively, the distributions of the statistics under the three models are quite similar.

However, arguably the blue and red bars are more in agreement compared to the green

bars suggesting that the true model, corresponding to the red bars, is best estimated by

the neutral model and so τ̂ = 0.

In order to estimate δ, we considered the distribution of allele frequencies under the

unstructured model. Griffiths and Tavaré (1998) derived an expression for the expected

allele frequency spectrum under an unstructured model by considering the probability

of observing x copies of a mutant allele in the sample. Suppose in a single population

of sample size n that, at a particular locus, a single mutation occurred before the most

common recent ancestor of the sample. Then for a small mutation rate,

Pr(X = x) =

∑n
k=2 kpn,k(x)E(Tk)∑n

k=2 kE(Tk)
, 0 < x < n,

where pn,k(x) is the probability that a mutation occurs during the time there are k lineages

that results in x copies of the mutant allele in a sample of size n. Suppose there are k

lineages present in the sample, this probability was derived by Feller (1950) by considering

the number of ways of placing n balls into k cells such that no cell is empty, which was

found to be
(
n−1
k−1

)
. If there are x copies of the mutant allele, this is the same as placing x

balls into 1 cell and placing n − x balls in the remaining k − 1 cells. Hence the required



CHAPTER 6. A HYPOTHESIS TEST FOR DEMOGRAPHY 123

260 270 280 290

ππ

0
2

0

260 270 280 290

ππB

0
2

0

250 270 280

ππW

0
2

0
4

0

−0.38 −0.17 0.025

Dt

0
1

0
2

0

260 300 320 360

ηη1

0
1

0
2

5

0.18 0.38 0.58

H

0
1

0
2

0

4.7 5 5.2 5.5

mean

0
1

0
2

5

20 22 23 25 26

variance

0
5

1
5

260 300 320 360

ηηmax
0

1
0

2
5

260 270 280 290

ππ

0
2

0

260 270 280 290

ππB

0
2

0

250 270 280

ππW

0
2

0
4

0

−0.38 −0.17 0.025

Dt

0
1

0
2

0

260 300 320 360

ηη1
0

1
0

2
5

0.18 0.38 0.58

H

0
1

0
2

0

4.7 5 5.2 5.5

mean

0
1

0
2

5

20 22 23 25 26

variance

0
5

1
5

260 300 320 360

ηηmax

0
1

0
2

5

260 270 280 290

ππ
0

2
0

260 270 280 290

ππB

0
2

0

250 270 280

ππW

0
2

0
4

0
−0.38 −0.17 0.025

Dt

0
1

0
2

0

260 300 320 360

ηη1

0
1

0
2

5

0.18 0.38 0.58

H

0
1

0
2

0

4.7 5 5.2 5.5

mean

0
1

0
2

5

20 22 23 25 26

variance

0
5

1
5

260 300 320 360

ηηmax

0
1

0
2

5

260 270 280 290

ππ

0
2

0

260 270 280 290

ππB

0
2

0

250 270 280

ππW

0
2

0
4

0

−0.38 −0.17 0.025

Dt

0
1

0
2

0

260 300 320 360

ηη1

0
1

0
2

5

0.18 0.38 0.58

H

0
1

0
2

0

4.7 5 5.2 5.5

mean

0
1

0
2

5

20 22 23 25 26

variance

0
5

1
5

260 300 320 360

ηηmax

0
1

0
2

5

260 270 280 290

ππ

0
2

0

260 270 280 290

ππB

0
2

0

250 270 280

ππW

0
2

0
4

0

−0.38 −0.17 0.025

Dt

0
1

0
2

0

260 300 320 360

ηη1

0
1

0
2

5

0.18 0.38 0.58

H

0
1

0
2

0

4.7 5 5.2 5.5

mean

0
1

0
2

5

20 22 23 25 26

variance

0
5

1
5

260 300 320 360

ηηmax
0

1
0

2
5

260 270 280 290

ππ

0
2

0

260 270 280 290

ππB

0
2

0

250 270 280

ππW

0
2

0
4

0

−0.38 −0.17 0.025

Dt

0
1

0
2

0

260 300 320 360

ηη1

0
1

0
2

5

0.18 0.38 0.58

H

0
1

0
2

0

4.7 5 5.2 5.5

mean

0
1

0
2

5

20 22 23 25 26

variance

0
5

1
5

260 300 320 360

ηηmax

0
1

0
2

5

260 270 280 290

ππ

0
2

0

260 270 280 290

ππB

0
2

0

250 270 280

ππW

0
2

0
4

0

−0.38 −0.17 0.025

Dt
0

1
0

2
0

260 300 320 360

ηη1

0
1

0
2

5

0.18 0.38 0.58

H

0
1

0
2

0

4.7 5 5.2 5.5

mean

0
1

0
2

5

20 22 23 25 26

variance

0
5

1
5

260 300 320 360

ηηmax

0
1

0
2

5

260 270 280 290

ππ

0
2

0

260 270 280 290

ππB

0
2

0

250 270 280

ππW

0
2

0
4

0

−0.38 −0.17 0.025

Dt

0
1

0
2

0

260 300 320 360

ηη1

0
1

0
2

5
0.18 0.38 0.58

H

0
1

0
2

0

4.7 5 5.2 5.5

mean

0
1

0
2

5

20 22 23 25 26

variance

0
5

1
5

260 300 320 360

ηηmax

0
1

0
2

5

260 270 280 290

ππ

0
2

0
260 270 280 290

ππB

0
2

0

250 270 280

ππW

0
2

0
4

0

−0.38 −0.17 0.025

Dt

0
1

0
2

0

260 300 320 360

ηη1

0
1

0
2

5

0.18 0.38 0.58

H

0
1

0
2

0

4.7 5 5.2 5.5

mean

0
1

0
2

5

20 22 23 25 26

variance

0
5

1
5

260 300 320 360

ηηmax

0
1

0
2

5

Figure 6.9: Histograms of summary statistics from data simulated under the isolation
model with τ = 0.00001 (red bars) and τ∗ (green bars) and under an unstructured model
(blue bars).

probability was given by Griffiths and Tavaré (1998) as

pn,k(x) =

(
n−x−1
k−2

)(
n−1
k−1

) .
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Under the standard coalescent model E(Tk) = 2
k(k−1) for k = 2, . . . , n and so Griffiths and

Tavaré (1998) showed

Pr(X = x) =
1
x∑n−1
j=1

1
j

, 1 < x < n− 1. (6.5)

This distribution assumes that it is known which allele is ancestral. Figures 6.10 illus-

trates the allele frequency spectrum under this model with a sample size of 40 using

equation (6.5).

Given the expected frequencies under an unstructured model, it is possible to test whether

observed allele frequencies are consistent with allele counts under a neutral model by

testing

H0 : allele frequencies derived from an unstructured model

H1 : allele frequencies not derived from an unstructured model.

Allele Counts
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Figure 6.10: Example of allele frequency spectrum under a unstructured model.

Let {p1, . . . , pnT−1} denote the expected frequencies under the neutral model calculated

using equation (6.5) and {pobs1 , . . . , pobsnT−1
} denote the observed allele frequencies, then
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Figure 6.11: (a) Distribution of χ2 under the null model. (b) Probability of rejecting the
unstructured model for a range of values of τ .

the test statistic

χ2 =
nT−1∑
i=1

(pobsi − pi)2

pi
,

is computed. Data were simulated under a neutral model with total sample size nT and χ2

computed, repeating this process produced the distribution of χ2 under the null hypothesis

given in figure 6.11(a). The upper 5% of the distribution is highlighted in red and if the

observed test statistic lies within this tail of the distribution, the null hypothesis is rejected.

In order to gauge the value of δ, data were simulated for a range of values of τ and the

χ2 statistic was computed. This was repeated 500 times and for each simulation, τ̂ was

recorded. The probability of rejecting the null hypothesis was computed as

# χ2 in the upper 5% of null distribution

# simulations
.

The results are shown in figure 6.11(b). The null hypothesis is not rejected for values

of τ that produced a probability of less than 0.05. Therefore, from figure 6.11(b), the

distribution of allele frequencies under the isolation model with τ < 0.002 is not signific-
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antly different from the allele frequencies under a neutral model. Given τ = 0.002, the

corresponding value τ∗ needs to be estimated. From the data simulated using τ = 0.002,

the average value of τ∗ was 0.009 and taking the 2.5th and 97.5th percentiles, a con-

fidence interval of (0.003, 0.013). Setting δ = 0.009, the resulting estimator is shown in

figure 6.12, which compares the estimator τ̂ when δ = 0, 0.009, 0.013 and 0.015. Using

δ = 0.009 does improve the estimation of τ , however, it appears using δ = 0.013 produces

the most satisfactory estimate and so the estimator

τ̂ =

 τ∗, if τ∗ > 0.013;

0, if τ∗ ≤ 0.013
(6.6)

is used in step 1 of Test I and Test II. The type I error, given this estimator, is shown in

figure 6.13. As τ → 0, there is a reduction in the number of false rejections. However, for

values of τ around 0.1, there is an increase in the type I error. Therefore, although this

estimator is helpful for τ ≈ 0, the error rate is still greater than 0.05 for τ̂ ∈ [0.001, 0.01]

(approximately).

Figure 6.12 shows equation (6.6) improves the estimation of τ , however, there is still a

high amount of variation shown by the pink confidence bands. Generally, the brown line

showing τ = τ̂ lies close to the lower band, more so when τ = 0.01. In order to account

for the variation, instead of using only a single estimate of τ , some noise is included as

described in Test III.

Algorithm 4 (Test III).

1.Calculate observed values of summary statistics Sobs and estimate F̂st = Fst1 and then

τ̂ using equation (6.6).

2. Set Nacc = 0 and while Nacc < Nsim:

3. Simulate T ∼ N(τ̂ , σ2). If T ≥ 0:

4. Simulated data under isolation model with two subpopulations diverging at

time T and calculate F̂st = F .

5. If |F − Fst1 | < ε, calculate summary statistics and set Nacc = Nacc + 1.
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Figure 6.12: Confidence bands of τ̂ using δ = 0 (top left hand side), δ = 0.009 (top right
hand side), δ = 0.013 (bottom left hand side) and δ = 0.015 (bottom right hand side).
The solid brown line shows the line τ = τ̂ .

6. For each statistic separately, test the hypothesis

H0i : Sobsi = S̄i

H1i : Sobsi 6= S̄i.

7. Correct the p-values using one of the methods described in section 6.2.2. If all hypotheses

are accepted then accept the global null hypothesis, H0, otherwise reject the global hypothesis.

This test requires specification of two parameters namely σ2 and ε. The value of ε should

be small enough to accept only values of T that are close to τ̂ and the value of σ2 could
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Figure 6.13: Type I error for a range of τ values using equation 6.6 to estimate τ .

be an indication of how well it is thought τ̂ estimates τ . The values of σ2 and ε should

not be too large or small. If too large, the test accepts values of T inconsistent with the

observed data and if too small, the test is computationally expensive.

A range of values of ε and σ2 were considered and it was found that setting ε = σ2 = 0.01

controls the type I error as illustrated in figure 6.14 as does setting ε = 0.001 and σ2 = 0.01.

Figure 6.14 also shows the error rate using ε = 0.02, σ2 = 0.015 and ε = 0.001, σ2 = 0.005.

When σ2 = 0.005 there is an increase in the error, suggesting 0.005 is not an adequate

value of σ2. Setting ε = 0.02 and σ2 = 0.015 shows a similar pattern to figure 6.13.

6.3.2 Power of hypothesis test

As with the Type I error rate, the Type II error rate and so the power is an essential con-

sideration in the construction of a hypothesis test. In multiple comparisons, the individual

power of each test, denoted as βindi = Pr{reject H0i |H0i is false} by Bretz et al. (2011),

is used to define the power of the global hypothesis. In particular, the disjunctive power

βdis = Pr{S ≥ 1},
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Figure 6.14: Type I error for a range of τ values using Test III with (a) ε = 0.02, σ2 = 0.015,
(b) ε = σ2 = 0.01, (c) ε = 0.001, σ2 = 0.01 and (d) ε = 0.001, σ2 = 0.005.

is the probability of rejecting at least one false hypothesis, with S defined in table 6.1 as

the number of rejected false hypotheses. If the observed data are truly from a migration

model then in order to reject the isolation model, at least one hypothesis needs to be

rejected and so the disjunctive power is an appropriate measure of power.

To gauge the power of Test III, 1000 SNPs were simulated from the migration model with

two subpopulations each of sample size 10 for a range of migration rates and the null

hypothesis was tested. Repeating this process 100 times, the proportion of rejected hy-

potheses was estimated and confidence intervals for the proportion of rejected hypotheses

was computed. The results are given in figure 6.15. As the migration rate approach zero,

the power tends to one, whereas as the migration rate becomes large, the model begins
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Figure 6.15: Power of hypothesis test for a range of migration rates.

to approach an unstructured model and so the two models are not only indistinguishable

from an unstructured model but also from each other and so figure 6.15 shows a decline

in power.

6.4 Discussion

This chapter aims to set out a powerful hypothesis test to distinguish between the isolation

and migrations models with two subpopulations. Test III provides steps to test whether

observed data are consistent with an isolation model. The method utilises a set of summary

statistics and tests each one individually before testing the global null hypothesis correcting

for simultaneously testing multiple hypotheses. Principal components analysis was used

to make independent linear combinations of the statistics but this was shown to have little

effect in the type I error rate and power of the test. However, this test had a total of

only eight statistics, and reducing the dimension of the summaries may be more beneficial

in studies involving a larger number of statistics. The test requires estimation of the

population divergence time and consequently the specification of two parameters. Using

Fst to estimate τ , a value σ2 was introduced to address poor estimation and the parameter

ε ensured that simulated data had approximately the same Fst as the observed data.



CHAPTER 6. A HYPOTHESIS TEST FOR DEMOGRAPHY 131

These additional steps are required in order to control the Type I error rate. Although

computationally more expensive than using the simple point estimator, the ABC MCMC

algorithm produced more accurate results and so may improve the quality of Test III in

that it may control the Type I error rate without the need to include these extra steps.



Chapter 7

Extensions to the hypothesis test

This chapter aims to incorporate further aspects of the treatment of real data into the

hypothesis test developed in the previous chapter. Firstly, SNP loci that have been ascer-

tained in some manner, prior to being genotyped in the samples of interest are considered.

Secondly, due to the increasing dimensionality of SNP data sets, attempts are made to

test projected data instead of the full data, to make feasible a hypothesis test that would

otherwise be too computationally demanding.

7.1 Ascertained data

In order to make inference using ascertained data, it may be possible either:

1. to find methods that are robust against ascertainment;

2. to build in directly a model of ascertainment in the simulation steps of the bootstrap;

3. to apply a correction to the parameter estimates as described by Nielsen and Si-

gnorovitch (2003) and Albrechtsen et al. (2010). These methods correct for ascer-

tainment by finding the maximum likelihood estimates of the true allele frequencies

132
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given the ascertainment scheme.

Since the global hypothesis test is based on statistics that are functions of the allele

frequencies, this test, as developed in chapter 6, is not robust against ascertainment.

Figures 4.7 and 4.8 exemplified this by comparing the allele frequency spectra of simulated

data from both models with and without ascertainment. Therefore, ascertainment needs

to be accounted for at some point during the test.

Three different ways to account for ascertainment in the hypothesis test are proposed.

The first involves testing the consistency of the ‘corrected’ observed data with an isolation

model simulated with no ascertainment. The second is to test the observed data using

Test III (from section 6.3.1.1) but simulate data in step 4 under the isolation model with

the same ascertainment scheme as the observed data. Note, however, that the ascertained

data may not allow adequate estimation of Fst, and hence of the population divergence

time τ . The last method involves using the corrected allele frequencies to estimate Fst, and

subsequently τ , but then testing the observed data using Test III by simulating ascertained

data in step 4.

This chapter analyses how well the test statistics distinguish the two models, analogously

to section 6.1.1, by simulating data with ascertainment from both models and comparing

the distributions of the statistics and also estimating τ using ascertained data, with and

without any corrections of allele frequencies.

In the first instance, the ascertainment scheme considered is one in which a sample of size

na is taken from each subpopulation and if variability is found within this sample, then a

larger sample is taken and the final data set includes the original ascertainment sample.

7.1.1 Initial comparison of statistics

Section 4.4 illustrated the dramatic effects ascertainment has on the allele frequencies. In

particular, figure 4.9 not only highlighted the differences between allele frequencies from
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data with and without ascertainment but also showed the distributions of allele frequencies

of ascertained data from both models are more similar compared to unascertained data.

As a result, it initially appears to be more difficult to distinguish these models by the

methods introduced in chapter 6.

In order to investigate how much of an effect ascertainment has on distinguishing the

models, the set of summary statistics, from the previous chapter, is considered under both

models. For τ values close to zero, it becomes increasingly difficult to distinguish the two

models, hence, a large enough value of τ (and small enough corresponding migration rate

m) are chosen to produce an initial impression of the power of the test. 1000 SNPs were

simulated from two subpopulations each of sample size 10 and an ascertainment sample

size in each subpopulation of size 2 and the set of statistics computed. This was repeated

100 times and the results, for each statistic separately, are given in figure 7.1. Most of

the statistics still appear useful for distinguishing the models although the distributions

of πW and ηmax overlap considerably and so may need to be excluded from the test.

7.1.2 Correcting for ascertainment

Nielsen et al. (2004) derived, using Bayes’ theorem, an expression for the probability that,

in a sample of size nT , there are x copies of a mutant allele, given variability in the

ascertainment sample of size m, assuming the ascertained sample is included in the final

sample:

Pr(X = x|Asc) =
Pr(Asc|x)Pr(x)

Pr(Asc)

=

{
1−

(
x
m

)
+
(
nT−x
m

)(
nT

m

) }
1
x∑m−1
j=1

1
j

, 0 < x < nT , (7.1)

where ‘Asc’ is the event that the ascertainment sample is variable. Equation (7.1) is
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Figure 7.1: Histograms of summary statistics from data simulated under the isolation
(green bars) and migration (red bars) models with ascertainment

the probability that there are x copies of the mutant allele multiplied by one minus the

probability that the alleles in the ascertainment panel are all of the same type (that is,

the probability that the ascertainment panel is variable). The authors derived similar

expressions for other ascertainment schemes. This equation shows that the size of the

ascertainment panel impacts the allele frequencies. For n = 10 and m = 2, 5 and 10,

figure 7.2 illustrates the distribution of allele counts. The distribution of allele counts

with no ascertainment is given by (6.5). As the ascertainment sample increases to 10,

the allele counts begin to imitate those of the sample with no ascertainment. For lower
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ascertainment sample sizes, rare alleles are under–represented, with a corresponding over–

representation of intermediate frequency alleles.
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Figure 7.2: Allele frequency spectra under the standard coalescent model, shown in the
green bars, compared with allele frequency spectra with an ascertainment process (red
bars) of sample size 2 (a), 5 (b) and 10 (c).

7.1.2.1 Correcting allele frequencies in the whole population

Nielsen et al. (2004) computed the likelihood of P = {p1, . . . , pnT−1}, where pi is the

frequency of SNPs with allele count i in a sample with no ascertainment. Their method

makes no parametric assumptions and therefore is valid under any genetic model. Let

X = {X1, . . . , XL}, where Xi is the observed allele count of SNP i. The authors show



CHAPTER 7. EXTENSIONS TO THE HYPOTHESIS TEST 137

L(P ) = Pr{X|P}

=
L∏
i=1

Pr{Xi = xi|P,Asci} (assuming independent loci)

=

L∏
i=1

Pr{Xi = xi,Asci|P}
Pr{Asci|P}

(by applying Bayes’ theorem)

=
L∏
i=1

Pr{Xi = xi|P}Pr{Asci|Xi = xi, P}
Pr{Asci|P}

(again, applying Bayes’ theorem)

=
L∏
i=1

piPr{Asci|Xi = xi}
Pr{Asci|P}

(replacing Pr{Xi = xi|P} = pi)

=

∏nT−1
k=1 pηkk Pr{Asci|Xk = xk}ηk∏L

i=1 Pr{Asci|P}
(where ηk is the number of SNPs with

frequency pk.)

=

∏nT−1
k=1 pηkk Pr{Asci|X = xk}ηk∏L

i=1

∑nT−1
k=1 Pr{Asci, Xi = k|P}

=

∏nT−1
k=1 pηkk Pr{Asci|X = xk}ηk∏L

i=1

∑nT−1
k=1 pkPr{Asci|X = xk}

An expression for Pr{Asci|Xi = xi} is required under the particular ascertainment scheme.

In the previously described situation,

Pr{Asci|Xi = xi} = 1−
(
xi
m

)
+
(
nT−xi
m

)(
nT

m

) .

The authors maximise the log-likelihood function

l(P ) =

nT−1∑
k=1

ηk log(pkPr{Asc|X = xk})− L log

( nT−1∑
k=1

pkPr{Asc|X = xk}
)
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under the constraints 0 ≤ pk ≤ 1 and
∑nT−1

k=1 pk = 1 to find

p̂i =
ηi

Pr{Asci|X = i}

[ nT−1∑
j=1

ηj
Pr{Asci|X = j}

]−1

. (7.2)

Simulating data under an isolation model with two subpopulations each of size n = 10

without ascertainment and with an ascertainment sample of size 2 from each subpopu-

lation, figure 7.3 illustrates how well (7.2) estimates the allele frequencies. This method

recovers the true allele frequencies well.
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Figure 7.3: Allele frequency spectra of data simulated under an isolation model without
ascertainment (blue bars), with ascertainment (pink bars) and maximum likelihood fre-
quencies given ascertainment (green bars).

7.1.2.2 Correcting allele frequencies within subpopulations

In order to calculate the set of summary statistics required to perform the hypothesis test,

the frequencies within each subpopulation, denoted by P1 and P2, need to be estimated.

Let pdj be the frequency of SNPs with allele count j in the dth subpopulation and ηdj be

the observed number of SNPs in subpopulation d with count j. When d = 2, let ηj1,j2 be

the number of SNPs with count j1 in subpopulation 1 and j2 in subpopulation 2.
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Nielsen (2004) illustrated that, if the ascertainment sample size is equal in both subpopu-

lations, the allele frequency spectrum is, in expectation, equal in the two subpopulations.

Hence, one can either maximise the likelihood of {P1, P2} = {p10, . . . , p1n1 , p20, . . . , p2n2}

or assume the allele frequencies are the same in the two subpopulations, hence, redu-

cing the number of parameters to be estimated by maximising the likelihood of Pw =

{pw0, . . . , pwn}, where n = n1 = n2.

The likelihood of the within-subpopulation frequencies Pw is

L(Pw) =
L∏
i=1

Pr{X1i = x1i, X2i = x2i|Pw, Asc}

=

L∏
i=1

Pr{X1i = x1i, X2i = x2i,Asc|Pw}
Pr{Asc|Pw}

=

∏n
a=0

∏n
b=0 p

η1a
wa p

η2b
wb Pr(Asc|X1 = a,X2 = b)ηa,b

[
∑n

j=0

∑n
k=0 pwjpwkPr{Asc|X1 = j,Xk = k}]L

,

and so the log likelihood is

l(Pw) =
n∑
a=0

n∑
b=0

[
η1a log(pwa) + η2b log(pwb) + ηa,b log(Pr{Asc|X1 = a,X2 = b})

]

−L log

( n∑
j=0

n∑
k=0

pwjpwkPr{Asc|X1 = j,Xk = k}
)
. (7.3)

The maximum-likelihood estimate of Pw cannot be obtained analytically. Therefore, the

log-likelihood function is numerically optimized. In this case, the parameters pw0, . . . , pwn

are constrained such that

n∑
i=0

pwi = 1 and 0 ≤ pwi ≤ 1 for i = 0, . . . , n.

The maximum-likelihood estimators were found using the ‘alabama’ package written by

Varadhan (2011) in R (R Development Core Team (2008)). This method uses a Lagrangian

adaptive barrier method for optimizing a nonlinear function, as described by Lange (1999).
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More specifically, it allows the twice differentiable function f(θ) to be minimised with

respect to θ = (θ1, . . . , θr)
T subject to constraints Aθ = b and Bθ − c ≥ 0 for matrices A

and B of dimension r′ × r.

Maximising the likelihood of Pw for the simulated data leads to the results presented in

figure 7.4. The corrected counts are more similar to the non-ascertained allele counts

compared to the ascertained counts, but, there are more differences than were appar-

ent in figure 7.3, suggesting this method may not as accurately estimate the true allele

frequencies.
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Figure 7.4: Allele frequency spectrum of one subpopulation from data simulated under
an isolation model without ascertainment (blue bars), with ascertainment (pink bars) and
maximum-likelihood frequencies given ascertainment (green bars).

7.1.2.3 Computing the summary statistics

The set of summary statistics can be estimated given the maximum-likelihood estimates

of the allele frequencies. Ramı́rez-Soriano and Nielsen (2009) found estimators for θ (the

scaled mutation rate) and Dt. The authors derive expressions for the expected number of

segregating sites and pairwise difference given a particular ascertainment scheme. They

also looked at the variance (and covariance) of the estimators and found that when the

ascertainment sample size was much smaller than the sample size, estimates of θ and Dt

given the ascertainment correction had a much higher variance than estimates from data

with no ascertainment. As the ascertainment sample size increases towards the sample size,
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the variance in the estimators decreases. This behaviour is natural, since the smaller the

ascertainment sample size then the greater affect ascertainment has on allele frequencies

and the more information is lost about the true allele frequencies. The approach taken

here is slightly different. The statistics that are functions of the allele frequency spectrum,

namely the variance of allele counts, the mean allele counts, η1 and ηmax, are computed

directly from the reconstructed allele frequency spectrum. On the other hand, the pairwise

differences, DT and Fst require more attention.

Firstly, Fst needs to be estimated in order to estimate τ . The only information that can

be retrieved is the number of SNPs with a particular frequency. Therefore, at each SNP,

the allele frequencies in both subpopulations are unknown, and they are required in (5.1)

to estimate Fst. However, equation (5.2) depends on the average heterozygosity of the

whole population and the within-population heterozygosity. Given the allele counts,

H̄ =
1

L

nT−1∑
i=1

2qi(1− qi)ηi,

H̄w =
1

P

P∑
j=1

1

L

n∑
i=0

2qwi(1− qwi)ηji

≈ 1

L

n∑
i=0

2qwi(1− qwi)ηwi,

where ηi = Lpi is the number of SNPs with allele count i in the total population, ηji is the

number of SNPs in subpopulation j with allele count i and ηwi = Lpwi. Also, qi = i/nT

and qwi = i/n. Therefore,

Fst ≈ 1−
∑n

i=0 2qwi(1− qwi)ηwi∑nT−1
i=1 2qi(1− qi)ηi

. (7.4)

Given the maximum-likelihood estimators of the total- and within-population allele counts,

Wakeley (2009) provides an alternative formula for the mean pairwise difference π. In a
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sample of size nT ,

π =
1(
nT

2

) [nT /2]∑
i=1

i(nT − i)ηi,

where

[
nT

2

]
=

 nT

2 , if nT is even;

nT−1
2 , if nT is odd.

Wakeley explains that, if a locus divides the sample into i copies of one allele and nT − i

copies of the other, by comparing two samples at this site, there is a difference in i(nT−i) of

the
(
nT

2

)
possible comparisons. Similarly, when computing the within-population pairwise

difference πW , in the case of two subpopulations with ni the size of subpopulation i, then

πW =
1(

n1

2

)
+
(
n2

2

){ [n1/2]∑
i=1

i(n1 − i)η1i +

[n2/2]∑
i′=1

i′(n2 − i′)η2i′

}
,

and so

πB =

∑[nT /2]
i=1 i(nT − i)ηi −

[∑[n1/2]
i=1 i(n1 − i)η1i +

∑[n2/2]
i′=1 i′(n2 − i′)η2i′

]
(
nT

2

)
−
[(
n1

2

)
+
(
n2

2

)] .

To demonstrate how successful these methods of reconstruction are in estimating the set of

summary statistics {π, πB, πW , Dt, η1, mean, variance, ηmax}, data were simulated under

an isolation model without ascertainment and also with ascertainment using the same

population divergence time τ . The set of summary statistics were computed under both

models and also from the corrected data. This was repeated 100 times and the results are

presented in figure 7.6.

Most of the distributions of statistics computed from the corrected allele frequencies are

similar to those computed under no ascertainment, excluding πB and πW , which do show

some improvement compared to the ascertained data without correction, but there is
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more of a separation between the values derived from the data without ascertainment

and the corrected data. This may be due to the maximum-likelihood estimates from

equation (7.3) not estimating the true within-subpopulation allele frequencies well enough.

These estimates may be improved by finding a better correction.

7.1.3 Estimating τ

Test III relies on adequately estimating τ and currently applies

τ̂ =

 Fst
1−Fst , if Fst

1−Fst > 0.013;

0, otherwise,

with Fst estimated by (5.1). The value 0.013 was shown to improve the estimates produced

in figure 6.12. Applying the same estimator to ascertained data leads to figure 7.5, which

shows confidence bands for τ . 1000 SNPs were simulated from two subpopulations of

sample size 10 and na = 2 and τ̂ computed. Repeating this 100 times, the endpoints

of the confidence bands are taken as the lower and upper 2.5th percentiles. Evidently,

ascertained data fail to lead to good estimates of τ , perhaps not surprisingly.
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Figure 7.5: Confidence bands for τ from ascertained data.

Given the ascertainment scheme, the Markov-chain Monte-Carlo ABC algorithm used in
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Figure 7.6: Histograms of summary statistics from data simulated under the isolation
model without ascertainment (green bars), with ascertainment (red bars) and using the
maximum-likelihood allele frequencies (orange bars).

section 5.3.1 can be used to estimate τ . Given an initial draw τ0, this method iteratively

simulates from a transition distribution, chosen to be Normal with mean τi−1 and variance

σ2, and accepts a draw if the observed Fst is close to the simulated Fst. This algorithm

can directly accommodate ascertainment by simulating from the isolation model with as-

certainment. The statistic chosen in this algorithm, Fst, is calculated from the ascertained

data and so it may be beneficial either to correct for ascertainment and calculate Fst using

(5.2) or to use (7.4), not accounting for ascertainment. Figure 7.7 shows confidence bands

for τ̂ calculated by taking the lower and upper 2.5 percentiles of the estimated densities



CHAPTER 7. EXTENSIONS TO THE HYPOTHESIS TEST 145

p(τ |Fst) from the ABC MCMC algorithm correcting and not correcting for ascertainment.

Simply using the ascertainment data, confidence bands, which contain the true values

of τ , are produced which are narrower compared to the corrected data. Therefore, this

algorithm works well, directly accounting for ascertainment without any allele frequency

corrections.
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Figure 7.7: Confidence bands for τ̂ from ascertained data (a) correcting for ascertainment
and (b) not correcting for ascertainment.

7.1.4 Hypothesis test

This section aims to incorporate ascertainment directly into Test III. In its current state,

ascertained data may be tested using Test III directly by correcting for ascertainment.

Figure 7.6 demonstrated that, in most cases, the distributions of the statistics from non-

ascertained data and corrected data are roughly similar. Excluding πW and πB from the

set of statistics, the type I error rate is shown in figure 7.8. Most of the confidence intervals

lie around 0.5, therefore, by correcting for ascertainment, Test III does not control the

type I error rate.

Figure 7.1 compared the distributions of the summary statistics under the migration and
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Figure 7.8: Type I error rate of Test III correcting for ascertainment.

isolation models with ascertainment and shows that most of the statistics are still able to

distinguish the models excluding πW and ηmax. Figure 7.7 shows that the ABC MCMC

algorithm can be used to estimate the posterior distribution of τ given a summary of

observed data without correcting for ascertainment. As a result, it appears practical to

construct a hypothesis test in the presence of ascertainment in the following way:

Algorithm 5 (Test IV).

1. Calculate the set of observed summary statistics Sobs and Fst = Fst1 as described in

the text.

2. Estimate the posterior distribution of τ given Fst1, p(τ |Fst1) by ABC MCMC.

3. For k = 1, . . . , Nsim :

4. Take the kth simulated draws of τ from p(τ |Fst1) and simulate data under

the isolation model under the same ascertainment scheme as the observed data.

5. Estimate the set of summary statistics Sk = {Sk1 , . . . , Skm}.

6. For each statistic separately, test the hypothesis

H0i : Sobsi = S̄i

H1i : Sobsi 6= S̄i,

where S̄i =
∑Nsim

k=1 Ski for i = 1, . . . ,m.
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7. Test the global null hypothesis, H0 =
⋂m
i=1H0i.

1000 SNPs were simulated from the isolation model with two subpopulations, each of

sample size 10 which diverged at time τ . The models were tested using Test IV for a range

of τ values. This was repeated 100 times and the results are presented in figure 7.9(a). As

in the case of non-ascertained data, the type I error is controlled. Figure 7.9(b) shows the

power of Test IV, shown by the blue bars, for a range of migration rates compared to the

power of Test III with non-ascertained data, shown by the green bars. As the migration

rate decreases, this test shows high power in distinguishing these models, whereas as

the migration rate increases, testing ascertained data through Test IV is more powerful

that testing non-ascertained data through Test III. This apparent increase in power may

be consequence of the choices of h and σ2 in the ABC MCMC algorithm. Recall that,

at iteration i, a value τ∗ ∼ N(τi−1, σ
2) and corresponding Fst = Fsim are accepted if

|Fsim − Fobs| /h < 1/2. As in any MCMC algorithm, the value of σ2 ensures that one

is neither in the situation where each proposed value of τ is accepted or each proposed

value is rejected. Likewise, the value of h controls the acceptance rate of Fst values.

Given a proposed value, h provides a balance between accepting Fsim too often or too

infrequently. Fixing h (or similarly σ2) too high causes difficulty in rejecting t∗ when Fobs

is much smaller than h. For instance, suppose h = 0.1 and Fst = 0.01. As the migration

rate increases, Fst decreases and so the choice of in parameters becomes more crucial. The

green bars in figure 7.9(b) show the power of Test III using data with no ascertainment.

Data was tested from the migration model with m = 0.05 and no ascertainment using

the ABC MCMC algorithm to estimate τ . Repeating this 50 times, then 25 out of the 50

were rejected giving an interval for the probability of rejecting the null hypothesis of (0.36,

0.64) which seems more consistent was the ascertainment result in figure 7.9(b) (albeit this

interval still lies slightly below the blue line when m = 0.05).

Another explanation of the increase in power may be due to the ascertainment process

selecting SNPs with an intermediate allele frequency, which may be more informative in

distinguishing between these two models than, for example, loci with a small minor allele
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Figure 7.9: Type I error rate (a) and power (b) of Test IV.

frequency. This can be explained by observing that SNPs with a low allele frequency are

more likely to have a mutation on a terminal branch whereas mutations that occur on

internal branches may be more revealing about the evolutionary history of the sample.

7.1.5 Other ascertainment schemes

This chapter has considered only one ascertainment scheme: with the ascertainment

sample included in the final data set. However, there are many different possible schemes,

some of which were discussed in section 1.3.1. In order to find the maximum-likelihood

estimators of the true allele frequencies, the method of Nielsen et al. (2004) requires the

probability of ascertainment given the allele count at a SNP. Therefore, this method is

transferable to other ascertainment schemes given that an expression for these probabilities

is available. Test IV can be applied to any ascertainment scheme that can be simulated.

7.2 Projected data

Most SNP data sets consist of a relatively small number of individuals who have been

genotyped at a large number of SNPs. For example, the Human Diversity Panel described

by Cann et al. (2002) now contains 1043 individuals genotyped at 600,000 SNPs, whilst the
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HapMap project (International HapMap 3 Consortium (2010)) genotyped 1486 individuals

and 1.4 millions SNPs. Such numbers present a challenge to the proposed test. Therefore,

a method is proposed to test projected data rather than the full data.

Given a sample of n haploid genes genotyped at L SNPs with L � n, the data can be

stored in a matrix C of dimension L × n with Cij = 0 or 1 for all i, j corresponding

to whether individual j carries the mutant allele at SNP i. Then, via singular value

decomposition,

C = USV T .

where

• U is a matrix of dimension L× L with the columns the eigenvectors of CCT ;

• V is a matrix of dimension n× n with the columns the eigenvectors of CTC;

• S is a matrix of dimension of L × n with entries Cii for i = 1, . . . , n equal to the n

nonzero singular values of both CCT and CTC ordered from largest to smallest and

the remaining entries equal to zero.

That is,

C =



u11 u12 . . . u1L

u21 u22 . . . u2L

...
...

. . .
...

uL1 uL2 . . . uLL





s1 . . . 0
...

. . .
...

0 . . . sn

0 . . . 0
...

. . .
...

0 . . . 0




v11 . . . v1n

...
. . .

...

vn1 . . . vnn


T

=


∑n

k=1 sku1kv1k . . .
∑n

k=1 sku1kvnk
...

. . .
...∑n

k=1 skunkv1k . . .
∑n

k=1 skunkvnk

 ,
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so that

Cij =

n∑
k=1

skuikvjk,

and so, if only the first K components are included, where K ≤ n, then

Cij ≈
K∑
k=1

skuikvjk (7.5)

= C̃ij, say.

The value of K is chosen by formally testing which eigenvalues are significant in capturing

the structure present in the data as described in section 2.1.3.

7.2.1 Estimating parameters using C̃

This section analyses how well C̃ allows estimates of the statistics needed to test the con-

sistency of the data with an isolation model. 2000 SNPs were simulated under the isolation

model with two subpopulations each of size 10 and τ = 0.3. Principal components ana-

lysis was performed and the first two eigenvalues were significant in detecting population

structure. In 100 simulations, the majority found two significant eigenvalues. Therefore,

for each statistic, results are compared using both the full data and C̃ with K = 2 and

also, for comparison, K = 1.

Figure 7.10 shows the allele frequency spectra from the three matrices, both for the total

population and within subpopulations. The frequencies in the total population are well

estimated when K = 1 and 2, whereas, using K = 1, the frequencies within subpopulation

one are slightly different from using the full data and K = 2, which appear almost identical.

The population divergence time was estimated using the full data and also using C̃ with

K = 2 and the results are given in figure 7.11. Using K = 1 proved to be inadequate for

estimating τ . The distributions of τ̂ using the full data and C̃ with K = 2 are almost

indistinguishable.
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Given the estimated allele frequencies, the set of summary statistics π, πW , πB, Dt, η1,

mean, variance and ηmax are estimated using the full data and using C̃ with K = 1 and

2. The results are presented in figure 7.12. For all the statistics, comparing the light and

dark green bars, using K = 2 in C̃ leads to good estimates of the distributions of these

statistics, whereas some of the statistics, in particular πW and πB, are badly estimated

using K = 1.

7.2.2 Minimal data size

Patterson et al. (2006) define the data size to be the number of SNPs multiplied by the

total number of (diploid) individuals. In a sample from two subpopulations each of haploid

size n and L SNPs, the data size is 2(n/2)L = nL. The test for population structure

assumes the statistic x (using the notation of Patterson et al. (2006)), a function of the

largest eigenvalue of CCT , follows a Tracy-Widom distribution under the null hypothesis

of no population structure. However, they discuss a minimal data size needed in order for

population structure to be found. More precisely, if the two populations diverged at time

τ with time measured in NT generations, they find a minimal Fst for which it is possible

to detect population structure and for Fst values which fall below the threshold, it is not
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Figure 7.10: Allele frequency spectra from 2000 SNPs simulated under the isolation model
with two subpopulations using the full data (dark green bars), K = 1 (red bars) and K = 2
(light green bars) from the total population (a) and within subpopulations (b).
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Figure 7.11: Histograms of τ̂ from data simulated under the isolation model using the full
data (dark green bars) and using K = 2 (light green bars).

possible to detect population structure.

1. Fst ≈ τ , and

2. the threshold is reached when

τ =
1√
nL

.

The authors explain that when τ < 1√
nL

, then the largest eigenvalues of the theoretical

and observed covariance matrices are different and so the distributional results may not

hold.

This property affects the estimation of summary statistics in section 7.2.1. Fixing τ =

0.001 and L = 21, 000 then this would require n > 47. Consider πW , simulating data

under the isolation model with a range of haploid sample sizes in each subpopulation and

estimating πW using the estimated data from equation (7.5). The results are presented in

figure 7.13.

For large sample sizes, the red line, showing πW estimated from C̃, and the green line,

showing πW estimate using the full data, appear to be quite similar. However, when

n = 10, the difference between the two estimates is 311 whereas when n = 70, the
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Figure 7.12: Histograms of summary statistics from data simulated under the isolation
model using the full data (dark green bars), K = 1 (red bars) and K = 2 (green bars).

difference is only 12. Therefore, when performing the hypothesis test using C̃, one must

ensure that the observed Fst lies above the threshold value, determined by the data size.

7.2.3 Hypothesis test

Assessing whether using the projected data decreases the power of Test III, the power and

type I error rate from this test are compared to those produced by using Test V.
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Figure 7.13: Estimating πW from simulating data for a range of sample sizes. Red and
green lines shows πW using equation (7.5) and full data, respectively.

Algorithm 6 (Test V).

1. Given the observed data, find the number of significant eigenvalues K.

2. Estimate matrix C̃ given K.

3. Estimate Fst = Fst1 and then τ̂ .

4. Find summary statistics Sobs.

5. Set Nacc = 0 and while Nacc < Nsim :

6. Simulate T ∼ N(τ̂ , σ2). If T ≥ 0

7. Simulate data from the isolation model with two subpopulations diverging at time T

and calculate F̂st = F .

8. If |F − Fst1 | < ε, calculate the set of summary statistics and set Nacc = Nacc + 1.

9. For i = 1, . . . ,m, test the hypotheses

H0i : Sobsi = S̄i

H1i : Sobsi 6= S̄i

where S̄i =
∑Nsim

k=1 Ski for i = 1, . . . ,m.

7. Test the global null hypothesis, H0 =
⋂m
i=1H0i.

Data were simulated from two subpopulations each of haploid sample size 10 at 2000

SNPs. The power of both tests was assessed for a range of migration rates and the type I
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Figure 7.14: Comparison of the power of Test III and Test V.

error rate for a range of divergence times.

The power of this hypothesis test, compared to testing the full data, is given in figure 7.14.

The green bars show the results using the full data and the blue bars show the results using

the projected data. Test V preserves the power of Test III. However, as the migration rate

increases, testing the projected data seems more powerful than using the full data. In this

simulation of 2000 SNPs and haploid sample size of 20, and so a diploid sample size of

10, equation (3.11) may be used to give a rough estimated of the minimal value of M , the

scaled migration rate, for which the distributional results hold. If M = 2Nm, since time

is measured in 2N generations, then given

Fst >
1√

10× 2000
= 0.007,

thenM > 35 (approximately). In this simulation, M > 35 corresponds tom > 0.035 which

accounts for the increased power of Test V. Therefore, if the observed data produces a

value of Fst below the threshold, the test is not reliable.
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7.2.4 Higher dimensional data

The idea of performing the hypothesis test using the projected data is to better handle high

dimensional data. As previously noted, many SNP data sets genotype in excess on 1 million

SNPs, although many of the SNPs may not be independent if they are positioned close

enough in the genome. The hypothesis test and ABC estimator of τ requires iteratively

simulating data to the same size as the observed data, which is computational infeasible

if the observed data contains around 1 million SNPs.

Suppose L > 1, 000, 000, then a value L1 � L may be defined such that, at each step in

the hypothesis test, L1 SNPs are simulated instead of L SNPs. Many of the test statistics

are dependent on the number of SNPs, namely π, πW , πB, η1 and ηmax. In order to

compare the observed statistics Sobs with the simulated statistics Ssim, it is possible to

re-scale those statistics which are dependent on L. Given a statistic X, then

X ′ =
X

L
L1.

In simulating L1 SNPs, steps 7 and 9 in Test V are slightly altered. Step 7 requires

simulating L1 SNPs under the isolation model and if |F − Fst1 | < ε, step 8 calculates

S′sim = {π′, π′W , π′B, Dt, η
′
1, mean, variance, η′max}.

Lastly, high dimensional data can be handled when data has been ascertained by altering

steps 4 and 5 in Test IV in a similar manner.

7.3 Discussion

This section has incorporated two aspects of real data into Test III given in chapter 6.

In particular, Test IV was shown to be powerful in distinguishing the two models and

control the Type I error rate as shown in figure 7.9. This test directly built in ascer-
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tainment by altering steps 1 and 4 of Test III by estimating the population divergence

time using the ABC MCMC algorithm, given in section 5.3.1, and simulating data under

an ascertainment model, similar to the observed data, and comparing the distributions

of the simulated summary statistics to the observed values. Test V tests projected data,

rather than the full data, in attempt to better handle high dimensional data. This test

begins by estimating the data matrix C, using the notation of Patterson et al. (2006),

using the components found to be significant in capturing the population structure in

the data and then follows the steps of Test III. It is possible to extend these analyses by

combing the steps of Test IV, which handle ascertainment, and the steps of Test V, which

handle high dimensional data. This test would firstly estimate the matrix C using the

significant components but then compare the reduced observed data to data simulated

with ascertainment.



Chapter 8

An example from the HapMap

project

To illustrate the use of the hypothesis test developed in the previous two chapters on real

data, samples from populations involved in the HapMap project are subjected to the test

in this chapter.

8.1 Description of data

A brief overview of the international HapMap project was given in section 1.4. The project

was delivered in three phases between 2007 and 2010. A detailed description of each phase

is given in this section.

The first phase consisted of samples with ancestry from parts of Africa, Asia and Europe

and contained a total of 269 DNA sequences with 90 of the individuals from Utah thought

to have European ancestry (CEU), 90 Yoruba individuals from Nigeria (YRI), 44 from

Tokyo (JPT) and 45 from Beijing (CHB). Ancestry was determined differently for each

sample. The Yoruba samples were required to have four Yoruba grandparents, the Chinese

158
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donors required at least three Chinese grandparents, whereas the Japanese sample self–

identified themselves as Japanese. The criteria used to define the Utah sample are un-

known and so it is unclear how well this sample represents northern and western European

ancestry.

The CEU samples were collected in 1980 when controlling for recent ancestry in population

genetics studies was not as prevalent as it is now, as discussed by He et al. (2009), who

compared the CEU sample to data from 81 populations with northern, eastern, southern

and western European ancestry. Computing pairwise distances between populations, a

measure related to pairwise Fst, they found the CEU sample to be more genetically similar

to those samples from western Europe.

Each individual was genotyped at just over one million SNPs with the initial goal to gen-

otype at least one SNP every 5kb across the genome with a minor allele frequency greater

than 0.05 in the sample. In the second phase, the International HapMap Consortium

(2007) improved the coverage of the genome by genotyping the 269 samples at 3.1 million

SNPs. In the third phase, the International HapMap 3 Consortium (2010) genotyped

samples from an additional seven populations, bringing the total sample size to 1184 from

eleven populations. A summary of the eleven populations is given in table 8.1. The first

column shown the location where the samples where taken, the second column the ances-

tral population of the samples, the third column the sample size and the last column the

abbreviations chosen by the HapMap project. In total, in the sample of 1184 individuals,

just over 1.4 million SNPs were found.

Not all individuals in the HapMap samples are unrelated. Samples from YRI, CEU, MKK,

ASW and MEX are made up of trios. That is, the project included mother, father and

child samples and so not all the samples are independent.

Principal components analysis, as described in section 2.1.3, was performed on a sample

consisting of 50 individuals from each of the eleven phase 3 populations at just under 40,000

SNPs from chromosomes one to five. The first two components are plotted in figure 8.1.
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Table 8.1: Summary of HapMap 3 samples.

Population Ancestry Sample Size HapMap Abbreviation

Utah, USA northern/western Europe 165 CEU
Beijing, China China 85 CHB
Tokyo, Japan Japan 86 JPT

Ibadan, Nigeria Yoruba 167 YRI
USA African 83 ASW

Colorado, USA China 84 CHD
Texas, USA Indian 88 GIH

Webuye, Kenya Luhya 90 LWK
Kinyawa, Kenya Maasai 171 MKK
California, USA Mexico 77 MXL

Italy Italy 88 TSI

The pattern mimics that shown in figure 2.4(a), which plots the first two components from

the HGDP-CEPH panel. Generally, African populations are clustered together to the left,

Asian populations to the right and European populations in the bottom centre of the plot.

These continental labels are meant only illustratively to show the similarities in results

between the two data sets: the International HapMap 3 Consortium (2010) are clear, in

their supplementary information, that the samples from these populations are not meant

to be representative of the larger populations or continent.

8.1.1 SNP discovery

SNPs were discovered in several different ways as documented by the International HapMap

Consortium (2003). In the first instance, the dbSNP database, a catalogue of genomic

variation in five species, namely human, mouse, rat, chimpanzee and the malaria para-

site, Sherry et al. (2001), provided information on known variable positions in the human

genome. At the beginning of the HapMap project, the database, release 118, contained

around 2.8 million SNPs but the positions of the SNPs were not spread uniformly across

chromosomes, leaving some sparse areas in the genome. Additional SNPs were discovered

using whole genome and whole chromosome shotgun sequencing. The genome, or chro-



CHAPTER 8. AN EXAMPLE FROM THE HAPMAP PROJECT 161

●
●

●
●

●
●●

●

●●
●●●●●●

●

●●●●

●

●●●●
●
●●
●

●
●
●●

●
●●
●

●
●●●●

●

●●●●
●
●

●
● ●

●
●●●●●●

●
●
●
●

●

●

●
●
●

●
●●

●

●
●

●●
●●●
●

●●
●

●●●●

●

●●
●

●

●

●
●

●●●●

●

●
●

●

●
●●●
●
●●
●
●
●

●
●
●●●●
●
●
●●

●●
●

●

●

●●
●●●●●

●
●
●●
●●●
●●

●

●●
●

●

●

●●
●
●

●
●
●●●
●
●
●

●●
●● ●●
●●
●

●
●

●●●
●

●
●●
●

●●
●●
●●●
●

●
●●

●●
●●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●
●●

●

●●
●●

●

●

●●
●

●
●

●

●
●●●
●

●

●

●

●
●
●

●

● ●●
●●●
●●●
●●●
●
●

●●●
●

●
●●
●

●

●
●●

●

●

●●

●

●
●

●
●

●●
●
●

●●

●●

●
●●

●
●

●●
●

●
●●

●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●
●
●●

●
●

●

●
●●●●

●
●● ●●●●●
●
●
●●● ●
●

● ●
●●●●
●●
●

●●●●

●

●●
●●●

●
●
●

●●●●●
●

●●

●
● ●

●

●

●
●●●

●
●

●

●
●●● ●

●●●●
● ●

●
●

●
●

●
●

●
●

● ●

●●

●
●●●●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●●
●

●
●●

●●●●
●

●●
●●●●●

●

●

●

●●
●

●
●
●

●

●

●

●
●

●
●●

●
●●●

●●
●●●

●
●

−0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
0.

06

eigenvector 1

ei
ge

nv
ec

to
r 

2

●

●

●

●

●

●

●

●

●

●

●

CEU
CHB
JPT
YRI
ASW
CHD
GIH
LWK
MKK
MEX
TSI

Figure 8.1: Plot of first two principal components from a subset of phase 3 HapMap
samples and SNPs.

mosome, is broken up in random fragments, which are sequenced and reassembled by

matching the overlaps in the fragments as described by Adams (2008), who provided a

brief description of shotgun sequencing via a figure similar to that given in figure 8.2. In

this figure, the purple line represents the part of the chromosome, or genome, to be se-

quenced. The fragment is divided into smaller fragments shown by the red lines and each

red line is broken into smaller fragments to be sequenced and then reassembled through

matching overlapping sequences. In the HapMap project, the samples used in the shotgun

sequencing were from populations different from those included in the genotyping part of

the project. The whole–genome shotgun sequencing used a pool of eight samples, whereas

each chromosome was sequenced using only one or two individuals from a pool containing

five individuals.

In addition, the HapMap project selected SNPs from 10 ENCODE regions. The ENCODE

Project Consortium (2007) (ENCyclopedia Of DNA Elements) aimed to investigate in de-

tail around 1% of the human genome. The idea of this project was to study randomly

select regions of the human genome to assess the regions’ functionality. In phase one of

HapMap, 48 unrelated individuals from the original four populations lead to the ascer-
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Figure 8.2: Schematic of shotgun sequencing.

tainment of around 20,000 SNPs. Data from the ENCODE regions and data gained from

resequencing was compared by the International HapMap Consortium (2005) and it was

found that the effects of ascertainment in the ENCODE regions were minimal due to the

much larger size of the ascertainment panel. The second phase of HapMap increased the

number of SNPs by (i) genotyping at SNPs identified by Hinds et al. (2005) who examined

71 unrelated individuals with African, European and Asian ancestry at around 1.5 millions

SNPs and also by (ii) genotyping the additional SNPs in dbSNP release 122.

The complicated mechanisms of SNP discovery have a profound effect on the allele frequen-

cies. Figure 8.3 shows the allele frequencies from data consisting of 50 individuals from the

eleven populations at just under 40,000 randomly selected SNPs from chromosomes one

to five compared to the expected frequencies under a neutral model. This demonstrates

the inflated number of SNPs in the HapMap project with a high or intermediate allele

frequency compared to what is expected under a neutral model, although these difference

may also be due to departures from the neutral model, for example population structure.
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Figure 8.3: Allele frequency spectrum of a proportion of HapMap data the eleven popu-
lations compared to expected frequencies under a standard neutral model

8.1.2 Initial analysis of HapMap data

Data from HapMap 3 from the Yoruba, Japan and both Kenyan populations will be used.

The two Kenyan populations will be analysed since they are geographically closer and

then, as a contrast, the Yoruba and Japanese populations are analysed.

Since samples from the Yoruba and one of the Kenyan populations consist of trios, the

child from each trio was removed. Once the dependent individuals were removed, the

sample sizes of YRI and MKK were reduced to 114 and 143, respectively.

Principal components analysis was performed on data from the two Kenyan populations

MKK and LWK using only chromosome 1, consisting of approximately 25,000 SNPs, and

the results are given in figure 8.4(a). In addition, the allele frequency spectra for the com-

bined populations and for each population separately are presented in figures 8.4(b),8.4(c)

and 8.4(d). Similarly, principal components analysis was performed using chromosome 1

data from populations YRI and JPT and the allele frequency spectrum of each of the two

populations is given in figure 8.5. The main conclusions from these summary plots are that

the MKK samples show more variability in component values, but, more importantly, all

four populations show signs of non-neutral model spectra, most likely as a result of SNP



CHAPTER 8. AN EXAMPLE FROM THE HAPMAP PROJECT 164

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●
●●

●
●

●●
● ●●

●

●●

● ●●
●● ●

●

●
●●

●
● ●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●●

●

●
●

●
●

●●●
●●

●
●● ●

●
●●

●
●

● ●

●
●●●

●

● ● ●
●

●

●

●● ●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●
●

●

●●

●

●●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

● ●

●
●

●

●

●

−0.10 −0.05 0.00 0.05 0.10

−
0.

1
0.

0
0.

1
0.

2
0.

3

eigenvector 1

ei
ge

nv
ec

to
r 

2

●

●

LWK
MKK

(a)

Allele Counts

F
re

qu
en

cy

5 20 40 60 80 100 125 150 175 200 225

0
0.

1
0.

2
0.

3

(b)

Allele Counts

F
re

qu
en

cy

5 15 25 35 45 55 65 75 85 95

0
0.

1
0.

2
0.

3

(c)

Allele Counts

F
re

qu
en

cy

5 15 30 45 60 75 90 105 120 135 150

0
0.

1
0.

2
0.

3

(d)

Figure 8.4: Plot of (a) first two principal components, (b) the allele frequency spectrum
of SNPs from the combined samples and the allele frequency spectra of each of the two
Kenyan populations ((c) MKK and (d) LWK).

ascertainment, which should be accounted for when testing hypotheses about migration

versus isolation.

YRI and JPT Fst between populations YRI and JPT was estimated to be F̂st1 = 0.171 and

F̂st2 = 0.031 between LWK and MKK. The International HapMap 3 Consortium (2010),

supplementary information, provide intervals for each pairwise Fst. They reported these

to be (0.000, 0.031) between LWK and MKK and (0.179, 0.206) between YRI and JPT.

F̂st2 lies just within the former interval, whereas F̂st1 lies just outwith the interval, but

the estimates are roughly consistent with the HapMap results.
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Figure 8.5: Plot of (a) first two principal components, (b) the allele frequency spectrum of
SNPs from the combined YRI and JPT samples and the allele frequency spectra of each
of the two populations separately ((c) JPT and (d) YRI).

8.1.3 Strategy for simulating data with ascertainment

In order to perform the hypothesis test about the demography of two HapMap populations,

allele counts need to be simulated under the null model incorporating, at least to a first

approximation, the ascertainment scheme present in the observed data. However, HapMap

ascertained SNPs through several methods that prove difficult to imitate in detail.

Nielsen et al. (2004) devised ways of correcting for ascertainment for a range of schemes

including of the “double-hit” ascertainment scheme similar to that in the HapMap project.
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This ascertainment scheme has two steps. In the first step, in a population, a small

ascertainment sample is used to find SNPs and in the second step, in those positions

found to be variable, the process is repeated using another small ascertainment sample.

This scheme is devised to find observed SNPs in two separate studies. They assumed

that the ascertainment panel sizes for each of the two studies are known and the two

ascertainment samples are disjoint but drawn from the same population. Lastly, they

assumed that both samples are contained in the final sample. This scheme shows some

similarities to the procedures described in the previous section.

Here, ascertained SNPs are simulated using a simplified scheme. Simulating data from

two populations assuming that the populations diverged at some time from a common

ancestor population, a small ascertainment panel, of size nasc from each population is

firstly genotyped and if the sample is variable, then the remainder of the sample is included

in the final data. Figure 8.6 illustrates the process with two samples of haploid size 9

and nasc = 2. Firstly, a genealogy is simulated with a total sample size of 2(n + nasc),

with the green and orange dots corresponding to samples from populations one and two,

respectively, and the blue dots showing the ascertainment sample. A Poisson number

of mutations is randomly placed on the tree; in this case the red square shows a single

mutation. The ascertainment sample is variable since one of the blue dots is affected by

the mutation and so the remainder of the sample (the green and orange samples) form the

final data set.

This simplified scheme does capture aspects of the actual methods used in that the ascer-

tainment panel are not included in the final data although, as with Nielsen et al. (2004),

it is assumed that the genotyped sample and the ascertainment sample are from the same

populations. Otherwise, assumptions would needed to be made about the demography of

more than two populations namely the populations whose demography is of interest, but

also the populations from which that ascertainment sample are taken. There was further

inconsistency with the sizes of the HapMap ascertainment panel ranging between 1 and

8 individuals. The scheme used here fixed an ascertainment sample of size two diploid
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Figure 8.6: Example of coalescent tree with a total sample size of 2 × 9 = 18 and ascer-
tainment size of 2× 2 = 4.

individuals from each population.

Lastly, the simulation requires a specification of the population size of each of the four

populations. The simulation procedure presented in section 3.4 assumed that the sample

is from two subpopulations that diverged from a common ancestor, at some time in the

past, and since have evolved independently and that each population, that is the ancestral

population and the two subpopulations, are of the same population size N . This assump-

tion is likely to be quite unrealistic in the human population. Park (2011) estimated the

effective population size of each of the eleven HapMap populations in a range of ways and

compared the results to previous estimates (where the effective population size is defined

by Wakeley (2009) as the size of the Wright-Fisher population needed to produce the same

level of genetic drift). In particular, Park estimated the effective population size of LWK

and MKK to be 1502 and 1067, respectively, and produced estimates of 5101 and 3541 for

populations YRI and JPT, respectively. Therefore, when modelling LWK and MKK, the

diploid population size of each was set to 1500 and the diploid effective population size of

JPT and YRI set to be 4000, when modelling the history of these populations.
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Figure 8.7: Allele frequency spectra of the 1500 SNPs used to test LWK and MKK (a)
and the 1500 SNPs used to test YRI and JPT (b).

8.2 Hypothesis test

A sample of size 20 diploid individuals was sub-sampled from each of the four population

samples of interest and 1500 SNPs sampled from chromosome 1. Considering only the

1500 SNPs for each pair of populations, figure 8.7 shows that, in both cases, these SNPs

are influenced by ascertainment, showing similar patterns to those presented in figures 8.4

and 8.5. Test IV was used to compare the migration and isolation models of the two

pairs of subpopulations (one pair LWK and MKK, and the other YRI and JPT), with

ascertained data simulated according to section 8.1.3.

8.2.1 Results for LWK and MKK

The 1500 common SNPs between the two populations were randomly chosen from chro-

mosome 1. Pritchard and Przeworski (2001) define a measure of pairwise linkage disequi-

librium, R2. This value was calculated between each pair of SNPs and the results given

in figure 8.8. This heat map was produced using ‘LDheatmap’ package in R, written by

Shin et al. (2006). The upper triangular heat map composes of R2 values between SNPs.

Values are coloured from light grey showing little correlation, blue showing an intermedi-

ate correlation and red showing high correlation. The right hand side column shows the
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Figure 8.8: Linkage disequilibrium plot of the 1500 SNPs and proportion of pairs falling
into each R2 band (top). Trace plot for τ from ABC MCMC algorithm for LWK and
MKK (bottom).

number of pairs falling into each category. This figure contains low values of correlation,

with colours ranging from light grey and blue. 88% of values fall into the lowest category

corresponding to R2 values less than 0.06. Therefore, it is assumed that SNPs used in this

analysis are independent.

Testing whether these two populations diverged from a common ancestor firstly requires

estimating a population divergence time τ using the ABC MCMC algorithm with the

results given in figure 8.8. Beginning the algorithm at an arbitrary τ value, the chain
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appears to have converged within 1000 iterations. However, this is not to suggest that

only 3000 iterations is an adequate run length and it may be advantageous to allow the

chain to run for longer. The algorithm was repeated a second time, using a different initial

τ , producing similar results. Taking the average value of the last one thousand draws gives

τ̂ = 0.013.

The distributions of the eight summary statistics under the isolation model are estimated

and the results are given in figure 8.9. The red dot on each plot shows the observed

value of the relevant summary statistic. The corresponding p-values are 0.475 (π), 0.356

(πB), 0.515 (πW ), 0.475 (Dt), 0.139 (η1), 0.545 (mean), 0.086 (variance) and 0.126 (ηmax).

Therefore, since each individual hypothesis is not rejected, the global hypothesis is not

rejected suggesting that these data are consistent with an isolation model with τ̂ = 0.013,

therefore concluding these two populations diverged from a common ancestor around 2000

years ago (since 0.013× 2×N × 25 year = 0.013× 2× 3000× 25 = 1950.)

8.2.2 Results for YRI and JPT

A similar linkage disequilibrium analyses was used between populations YRI and JPT.

The results are given in figure 8.10. 80% of the pairs od SNPs had an R2 value less than

0.06, with the remaining pairs falling into the first few categories. It is assumed that the

SNPs used are independent.

Estimating a population divergence time between these two populations, the ABC MCMC

algorithm was used and the results, showing only 1400 iterations, are presented in fig-

ure 8.10. After only a few iterations, the algorithm appeared to have converged to the

required posterior distribution and beginning the algorithm from a different inital τ pro-

duced similar results. Taking the average value of the last 1000 draws gives τ̂ = 0.1.

The distributions of the eight summary statistics under the isolation model are estimated

and the results are given in figure 8.11, again with the red dot on each plot showing

the observed value of the summary statistic. The corresponding p-values are < 0.001
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Figure 8.9: Simulated summary statistic distributions from populations LWK and MKK
under the null hypothesis, with the observed value of the statistic shown as a red dot.

(π), < 0.001 (πB), < 0.001 (πW ), < 0.001 (Dt), > 0.001 (η1), < 0.001 (mean), 0.24

(variance) and < 0.001 (ηmax). Therefore, since most of the hypotheses are rejected, with

the exception of that based on the variance, the global hypothesis is rejected suggesting

that these data are not consistent with an isolation model with τ̂ = 0.1 . In a hypothesis

space consisting of just the isolation and migration models, we would then focus attention

on the migration models.
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Figure 8.10: Linkage disequilibrium plot of the 1500 SNPs and proportion of pairs falling
into each R2 band (top). Trace plot for τ from ABC MCMC algorithm for YRI and JPT
(bottom).

8.2.3 Improvements

This chapter aimed to illustrate the use of the Test IV using data from the HapMap project.

Comparing two Kenyan populations, the null hypothesis, stating that two populations are

consistent with an isolation model, was accepted whereas comparing populations YRI

and JPT, the isolation model was rejected. The observed data tested consisted of only

1500 SNPs from chromosome one and 20 diploid individuals from each population. A

more thorough examination of the data would include more samples from each population
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Figure 8.11: Simulated summary statistic distributions from populations YRI and JPT
under the null hypothesis, with the observed value of the statistic shown as a red dot.

and SNPs from more than one chromosome. These results are counterintuitive since

the Kenyan populations are geographically closer, compared to the other tested pair of

populations, and so migration events are more likely than migration events between the

Yoruba and Japanese populations. The purpose here was one of illustration rather than a

deep exploration of the ancestry of these particular populations, however, by using a more

substantial amount of the available data by expanding section 7.2.4 may produce more

accurate results. This test also assumed the SNPs used were independent, an additional

step may be to perform a similar test, accounting for the dependencies between SNPs.



Chapter 9

Discussion and conclusions

9.1 Summary

Barbujani and Bertorelle (2001) describe the demographic history of Europe based on

genetic data and archeological records, dating primitive tools back to around 40,000 years

ago. This type of analysis is incomplete in that it relies on the discovery and dating of

such artifacts. Analysis of genes potentially can provide a more exhaustive explanation

of modern human settlement and movements over time. The authors suggested that it

may be possible to reconstruction the structure found in the the human population and

they relate patterns of genetic diversity with documented historical events and archeolo-

gical records. Although historical demographic characteristics impact genetic variation,

the complex nature of diverse populations can often be modelled by many different evol-

utionary histories.

This thesis develops a hypothesis test which aims to distinguish between two demographic

models in order to make inferences about historical events using SNP data. The migration

model assuming the population is divided into two subpopulations that exchange migrants

arbitrarily far back in the past and the isolation model assuming that two subpopulations

diverged from a common ancestral population after which time they evolved independently.

174
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The method employed tests the global null hypothesis

H0 : observed data are from an isolation model

via a set of summary statistics.

Under H0, the population divergence time τ of two subpopulations is estimated using

Fst. Chapter 5 begins by assessing three possible estimators of Fst and then two different

estimators of τ given Fst. Figure 5.4 provides interval estimates of τ and shows the most

successful approach, out of those examined, is to use the Fst estimator of Reynolds et al.

(1983) and to set

τ̂ =
F̂st

1− F̂st
.

Although this method was the most successful amongst those considered, it performed

poorly for values of τ > 1 and τ < 0.0005. The explicit aim of this thesis was not to

find the best estimator of such population parameters. However, inadequately estimating

τ proved to inflate the type I error rate, shown in figure 6.7. In order to overcome this

problem, section 6.3.1.1 aimed to find a threshold value δ defined such that if τ̂ < δ then

it is assumed the data are more consistent with an unstructured model and so τ̂ is set to

0. On the other hand, values of τ > 1 correspond approximately to values of Fst > 0.5.

Table 2.1 provides pairwise estimates of Fst for 19 HGDP populations in the range (0, 0.35]

and so only values of τ less that one are likely to be of relevance in human populations.

That is not to say that larger τ values might not occur in modelling other species.

The hypothesis test adopts a parametric bootstrap approach and requires specification of

a further two parameters, σ2 and ε. Given τ̂ , a draw T ∼ N(τ̂ , σ2) is made and data simu-

lated under an isolation model with population divergence time T . Fst is estimated and if

the absolute difference between the observed Fst and simulated Fst is less than δ, then the

set of summary statistics is computed from the simulated data. The global hypothesis H0

is accepted only if the set of null hypotheses H01 , . . . ,H0m are each accepted. Each of the
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m hypotheses are tested by comparing the observed value of each statistic to the simulated

data correcting for multiple comparisons as describe by Hommel (1983). This procedure

proved to be successful in controlling the type I error as shown in figure 6.14. Chapter 7

draws attention to some problematic areas in testing real SNP data sets, in particular,

expanding the test to allow analysis of large data sets, where the SNPs’ ascertainment

needs to be modelled and these methods are illustrated using data from the International

HapMap 3 Consortium (2010). The hypothesis test assumes that if data were ascertained

then the ascertainment scheme is known and data can be simulated under this scheme.

Chapter 8 illustrated the test on the two Kenyan populations and the Yoruba and Japan-

ese populations from the HapMap project. HapMap data was ascertained through several

complex schemes which are difficult to model in detail. Therefore, simulated SNPs were

ascertained through a more simplified method, using an ascertainment sample of size 2

from each subpopulation in the sample. The null hypothesis was accepted in the case of

the two Kenyan populations providing evidence that these two populations diverged from

a common ancestor. On the other hand, the null hypothesis was rejected when comparing

populations YRI and JPT.

9.2 Discussion

Chapter 6 tests the consistency of SNP data from two subpopulations with a model of

isolation taking a frequentist approach to hypothesis testing. When interest lies in assess-

ing the fit of data to two opposing models, or indeed more than two models, there are

some pertinent issues in this analyses. The remaining sections evaluate the limitations of

the analysis and present some potential areas for improvement and further work.

9.2.1 Limitations

Cox and Hinkley (1974) detail the limitations of significance tests. The foundation of the

test is to compare observed data to data that might have arisen under a null model and
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so examining how consistent the observed data are to the null model. Given a statistic T ,

the p-value is a measure of the consistency and Cox and Hinkley define it to be Pr{T >

tobs|H0}, with tobs the observed value of the statistic. A large p-value only indicates

that the test statistic is unable to distinguish the ‘true’ model, in so far as this concept

is meaningful, and the null model. It provides no evidence to reject the null model.

However, there is no indication that the ‘true’ model and the null model are equivalent or

that the null model is the best–fitting model. For example, the authors suggest that it is

possible to obtain a large p-value when the observed data are inconsistent with the null

hypothesis. Moreover, the p-value is not the probability that the data are from a specific

model. Other model selection procedures, such as the one provided by the consideration

of Bayes factors, can provide evidence in favour of a particular model over another. For

example, the value of the Bayes factor, B01, provides evidence against H1 in favour of H0

if B01 > 1. Therefore, the tests described in chapters 6 and 7 quantify the consistency of

SNP data with an isolation model.

The set of summary statistics selected to perform the test can present a difficulty. In

estimating model parameters, employing sufficient statistics provides a natural way of

reducing the dimension of the data since they contain as much information about the

parameter as the full data set. Chapter 5 discussed developing methods of finding an

optimal set of statistics and ways of assessing the performance of the set in the context of

estimating model parameters, using ABC where it may not be possible to find sufficient

statistics. In this particular test, the set of statistics employed were π, πW , πB, η1, ηmax,

Dt, the mean allele frequency and the variance in allele frequencies. These statistics were

chosen since individually they appeared to be able to distinguish the models from data

simulated under similar conditions, matching Fst, from both models. Figure 6.3 illustrates

the distributions of the statistics from simulated data with a small migration rate between

subpopulations and figure 6.4 shows the corresponding results with a larger migration rate.

The test should be most successful when there is little migration between subpopulations,

or equivalently a more ancient population divergence time.
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Fig. 4. The approximate expectations of the test statistic, 9, compared under migration
and isolation. These curves are approximate since they were obtained by simply replacing dX ,
dY , dXY , s2

X , s2
Y , and s2

XY in (11) with their expected values.

migration and isolation over the same range of parameter values used in
Fig. 3. Figure 4 shows that the values under migration and isolation
become increasingly similar as M or 1�(2T ) increases but diverge at the
other extreme, giving some indication of when the test might perform well.

2.3. Simulations: Power and Realized Significance

Simulations were done to assess the utility of the proposed test statistic,
9, over a broad range of values of all relevant parameters. Three programs
produced all of the results presented below: one to simulate migration, one
to simulate isolation, and one to perform the test.

The isolation program was essentially the same as the routine ``make�tree''
given in Hudson (1990), but with three populations (ancestral plus two
descendant) rather than one. The usual coalescent process proceeded inde-
pendently in each of the two descendant populations until time T in the
past, measured in units of 2N generations, when the remaining ancestral
sequences were joined into a single population. The migration program
followed the general approach outlined by Hudson (1983) for simulating
the genealogy of a sample when one of several possible kinds of events
might happen in any given generation. Here, those events were common-
ancestor events within each population and migration events. Both pro-
grams employed the infinite-sites mutation model with no recombination.

The program that performed the test took observed values nX , nY , dX ,
dY , dXY , s2

X , s2
Y , and s2

XY as input. It then estimated % as (dX+dY)�2 and
T as 2d�(dX+dY) and simulated 1000 replicate data sets under isolation

378 JOHN WAKELEY

Figure 9.1: Figure 4 from Wakeley (1996).

Generally, the allele frequency spectrum is positively skewed since it is more common to

find SNPs with a small (minor) allele frequency. Therefore instead of utilizing the mean

and variance, one might consider the median and the interquartile range. In addition,

the statistic Ψ introduced by Wakeley (1996), a function of the variance of the pairwise

difference, is promising for distinguishing the two models. Figure 9.1 shows a reproduction

of figure 4 from Wakeley (1996). Wakeley analyses a model with two subpopulations which

either exchange migrants at rate M or diverged at time T in the past measuring time in

N generations (that is, the population size of each subpopulation). This statistic shows

differences from lower migration rates whereas as the migration rate increases, the two

models show similar values of Ψ. He shows that that low values of Ψ provides evidence in

favour of an isolation model.

9.2.2 Improvements

This section touches upon some improvements that may enhance the performance of the

hypothesis test introduced in chapter 6. Although the test was shown to be powerful in

distinguishing the two models of interest whilst controlling the type I error, there are a

few areas were the test might be improved.

Section 3.2 provided the strategy for simulating SNP data in this thesis. Throughout,

only biallelic SNP data have been considered and so the genealogical history of a sample
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is simulated according to the method given by Hudson (1991). A single mutation is

randomly added to a branch instead of adding a Poisson number of mutations with the

mean depending on the scaled mutation rate and the length of the genealogy. This method

of simulating data with a fixed number of mutations has cause for concern, as outlined by

Wall and Hudson (2001) and Markovtsova et al. (2001). In particular, Wall and Hudson

(2001) tested the consistency of the two methods of data simulation by comparing the value

of a test statistic from data simulated from Hudson’s method and data simulated using

the fixed number of mutations method. Incorporating Hudson’s method of simulation in

the hypothesis test introduced in chapter 6 would involve firstly simulating a genealogy

and then adding a Poisson number of mutations. Each simulated data set would include

only the genealogies that contained exactly one mutation.

Fst–based estimators of population parameters m and τ are both quick and straightforward

but can often be inaccurate. Section 5.1.2 discussed problems with Fst–based estimators

and section 5.3.1 used an MCMC algorithm to estimate τ using Fst. The MCMC algorithm

was shown to be more accurate in estimating τ (figure 5.9), but at a large computational

cost, since each iteration involves simulating data under the proposed model and estimat-

ing Fst. For instance, given observed data from two subpopulations each of haploid sample

size 10 and 1000 SNPs, (5.1) estimates τ practically instantaneously. On a 3.33GHz Intel

Xeon processor, simulating data of this size from the isolation model with τ = 0.1 takes on

average 5.6 seconds. Therefore, 1000 simulations may take, on average, about 90 minutes.

This thesis did not focus on efficient simulation of large SNP data sets. However, more

efficient simulation will reduce the cost of the ABC MCMC algorithm, for example, by

replacing the simulation step by a compiled function in a language such as C or Fortran.

In cases where the original estimator fails, for example with ascertained data, the flexibil-

ity in ABC methods allows ascertainment to be included in the estimation of τ given the

ascertainment scheme. Incorporating other summary statistics in the parameter estima-

tion stage, instead of using only Fst, has the potential to improve the quality of this test.

Then, the hypothesis test would require the specification of two sets of statistics, namely
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a set to be used in parameter estimation and one to be used as test statistics.

As previously mentioned, this test relies on an adequate selection of summary statist-

ics. Section 5.3.2 details some methods of selecting summary statistics for parameter

estimation. The most intuitive procedure is to select statistics that show differences

in the two models. Joyce and Marjoram (2008) show that using too many statistics

adds noise to parameter estimation and so discuss identifying a minimal set of stat-

istics without comprising the loss of information. In a hypothesis test, the aim is to

find powerful test statistics in distinguishing the null and alternative models. Let S =

{π, πW , πB, η1, ηmean, Dt,mean, variance}, then it may be of interest to find the minimal

set U ⊆ S, which preserves the power of the test whilst controlling the type I error. As-

suming the parameters in the null model are adequately estimated, the hypothesis test

acquires power from statistics that can reject the null model and, assuming there are stat-

istics included in the test that can do this, the effects of including statistics that are not

able to differentiate the two models will neither detract from nor contribute to the test.

Chapter 7 aimed to find a test that was able to cope with ascertained data. Two dif-

ferent directions for addressing this problem were either to correct for ascertainment or

to incorporate ascertainment into the data simulation. Nielsen and Signorovitch (2003)

describe a method of correcting the allele frequency spectrum given ascertained data and

section 7.1.2.2 followed analogous steps to correct the within–subpopulation allele fre-

quency spectrum. Although this method roughly reconstructs the true allele frequency

spectrum, using the maximum likelihood estimates to calculate the set of summary stat-

istics was unsuccessful. Adapting this procedure by finding a better estimate of the true

allele frequencies given the ascertainment scheme within a subpopulation would help to

more adequately estimate the summary statistics and so improve the performance of the

hypothesis test in the presence of SNP ascertainment.

Section 7.2.4 briefly discussed incorporating larger data sets containing L SNPs with, for

example, L > 1, 000, 000. The suggestion was to simulate data with a smaller number of

SNPs, L1, and scale each statistic that should be proportional, on average, to the number
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of SNPs by L1
L . This method may have been more appropriate in testing the HapMap data

rather than sub–sampling the SNPs. The question of the successfulness of this proposition

remains open.

Chapter 8 tests data from the HapMap project. SNPs were simulated with ascertainment,

but, the ascertainment scheme used did not exactly replicate that used to ascertain SNPs

in the HapMap project. Inaccurately simulating data to compare to the observed data

may produced invalid results. However, the extend of the effects of these inaccuracies

has not been considered in this thesis. In addition, it is clear that the size of the ascer-

tainment panel effects the shape of the allele frequency spectrum, therefore changing the

ascertainment sample size may also effect the results from this test.

9.2.3 Extensions

Chapter 5 looked at model selection via Bayes factors, and discussed the results of Robert

et al. (2011) who identified problems with using non–sufficient statistics in computing the

likelihood function. Bayes factors provide evidence in favour of one model compared to the

other, whereas a conventional hypothesis test compares observed data to a null model and

provides evidence in favour, or against, the null model but the p-value does not provide

any degree of evidence to support the null model compared to the alternate model. In the

context of this research, it is equally compelling to test whether the data are consistent

with the migration model (as null), rather than the isolation model. Following a similar

procedure as the one in chapter 5 to estimate τ , the scaled migration rate M = NTm can

be estimated using

M̂ =
1− F̂st

4F̂st
,

with F̂st estimated using equation (5.1). Also, M may be estimated using the ABC MCMC

algorithm. Test IV can be used by altering the bootstrapping steps to simulate from a

migration model given M̂ , although the values of ε and σ2 may need to be reassessed.
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In addition, this test could easily be extended to incorporate models with more than two

subpopulations, for example section 4.5 presents a model with four subpopulations. The

migration model in this example includes three migrations rates m1,m2 and m3, assuming

that mij = mji for i, j = 1, 2, 3 or 4. In the general case of P subpopulations one needs(
P
2

)
migration parameters. More complex demographic models can be contemplated at

the expense of introducing more parameters, which would need to be estimated. For

example, genetic variation can be affected by other demographic characteristics, such

as population growth or a bottleneck. Figure 9.2, a depiction of the complex model

described by Stoneking and Krause (2011), shows an ancestral population diverging into

two subpopulations. After this time, both subpopulations expand with subpopulation 2

undergoing a bottleneck event. Migrants are also exchanged.

population split

bottleneck

expansion

migration

SUBPOPULATION 1 SUBPOPULATION 2

Figure 9.2: Complex demographic history scenario.

To test this model, compared to some alternative model, it is necessary to be able firstly

to estimate the parameters and then to find and simulate a set of test statistics. The more

complex the model becomes then the more parameters there are to estimate.

In conclusion, problematic areas in distinguishing demographic models using SNP data

were highlighted. This thesis developed a method to differentiate between a model of

isolation and one with migration via a frequentist hypothesis test. More generally, it
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provides a framework for approaching model testing of demographic models for large

genomic data sets, incorporating the effects of locus ascertainment.
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Donnelly, P. and S. Tavaré (1995). Coalescents and genealogical structure under neutrality.

Annual Review of Genetics 29, 401–421.



BIBLIOGRAPHY 187

Dunteman, G. H. (1989). Principal Components Analysis. Sage Publications, Newbury

Park.

ENCODE Project Consortium (2007). Identification and analusis of functional elements

in 1 percent of the human genome by the ENCODE pilot project. Nature 447, 799–815.

Excoffier, L. and G. Heckel (2006). Computer programs for population genetics data

analysis: a survival guide. Nature Reviews Genetics 7, 745–758.

Excoffier, L., J. Novembre, and S. Schneider (2000). SIMCOAL: a general coalescent pro-

gram for the simulation of molecular data in interconnected populations with arbitrary

demography. Journal of Heredity 91, 506–509.

Fearnhead, P. and D. Prangle (2012). Constructing summary statistics for approximate

Bayesian computation: semi-automatic approximate Bayesain computation. Journal of

the Royal Statistical Society B, in press.

Feller, W. (1950). An Introduction to Probability Theory and its Applications, Volume 1.

Wiley, New York.

Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Clarandon, Oxford.

Gelman, A., J. B. Carlin, H. S. Stern, and R. B. Donald (2004). Bayesian Data Analysis.

Chapman and Hall/CRC, Boca Raton, FL.
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