
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Haggarty, Ruth Alison (2012) Evaluation of sampling and monitoring 
designs for water quality.PhD thesis. 
 
 
 
http://theses.gla.ac.uk/3789/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/3789/


Evaluation of Sampling and

Monitoring Designs for Water

Quality

by

Ruth Alison Haggarty

A thesis submitted to the University of Glasgow for the

degree of Doctor of Philosophy

in

Statistics

December 2012



Declaration of Authorship

This thesis has been composed by myself and it has not been submitted in any

previous application for a degree. The work reported within was executed by my-

self, unless otherwise stated.

The work presented in Chapter 4 has been published in Environmetrics with the

title ‘Functional Clustering of Water Quality Data in Scotland’ (October 2012).

Part of this work has also been presented at the 26th International Workshop on

Statistical Modelling (IWSM) in Valencia, 2011, with the same title. A manuscript

based on the work presented in Chapter 5 is currently in preparation.

Signed:

Date:

i



ii

Abstract

Assessing water quality is of crucial importance to both society and the envi-

ronment. Deterioration in water quality through issues such as eutrophication

presents substantial risk to human health, plant and animal life, and can have

detrimental effects on the local economy. Long-term data records across multi-

ple sites can be used to investigate water quality and risk factors statistically,

however, identification of underlying changes can only be successful if there is a

sufficient quantity of data available. As vast amounts of resources are required

for the implementation and maintenance of a monitoring network, logistically and

financially it is not possible to employ continuous monitoring of all water environ-

ments. This raises the question as to the optimal design for long-term monitoring

networks which are capable of capturing underlying changes. Two of the main

design considerations are clearly where to sample, and how frequently to sample.

The principal aim of this thesis is to use statistical analysis to investigate fre-

quently used environmental monitoring networks, developing new methodology

where appropriate, so that the design and implementation of future networks

can be made as effective and cost efficient as possible. Using data which have

been provided by the Scottish Environment Protection Agency, several data from

Scottish lakes and rivers and a range of determinands are considered in order to

explore water quality monitoring in Scotland. Chapter 1 provides an introduction

to environmental monitoring and both existing statistical techniques, and poten-

tial challenges which are commonly encountered in the analysis of environmental

data are discussed. Following this, Chapter 2 presents a simulation study which

has been designed and implemented in order to evaluate the nature and statistical

power for commonly used environmental sampling and monitoring designs for sur-

face waters. The aim is to answer questions regarding how many samples to base

the chemical classification of standing waters, and how appropriate the currently

available data in Scotland are for detecting trends and seasonality. The simulation

study was constructed to investigate the ability to detect the different underlying

features of the data under several different sampling conditions.
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After the assessment of how often sampling is required to detect change, the re-

mainder of the thesis will attempt to address some of the questions associated with

where the optimal sampling locations are. The European Union Water Framework

Directive (WFD) (European Parliament, 2000) was introduced in 2003 to set com-

pliance standards for all water bodies across Europe, with an aim to prevent de

terioration, and ensure all sites reach ‘good’ status by 2015. One of the features of

the WFD is that water bodies can be grouped together and the classification of all

members of the group is then based on the classification of a single representative

site. The potential misclassification of sites means one of the key areas of interest

is how well the existing groups used by SEPA for classification capture differences

between the sites in terms of several chemical determinands. This will be explored

in Chapter 3 where a functional data analysis approach will be taken in order to

investigate some of the features of the existing groupings. An investigation of the

effect of temporal autocorrelation on our ability to distinguish groups of sites from

one another will also be presented here.

It is also of interest to explore whether fewer, or indeed more groups would be

optimal in order to accurately represent the trends and variability in the water

quality parameters. Different statistical approaches for grouping standing waters

will be presented in Chapter 4, where the question of how many groups is statis-

tically optimal is also addressed. As in Chapter 3, these approaches for grouping

sites will be based on functional data in order to include the temporal dynamics

of the variable of interest within any analysis of group structure obtained. Both

hierarchical and model based functional clustering are considered here. The idea

of functional clustering is also extended to the multivariate setting, thus enabling

information from several determinands of interest to be used within formation of

groups. This is something which is of particular importance in view of the fact

that the WFD classification encompasses a range of different determinands.
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In addition to the investigation of standing waters, an entirely different type of wa-

ter quality monitoring network is considered in Chapter 5. While standing waters

are assumed to be spatially independent of one another there are several situations

where this assumption is not appropriate and where spatial correlation between

locations needs to be accounted for. Further developments of the functional clus-

tering methods explored in Chapter 4 are presented here in order to obtain groups

of stations that are not only similar in terms of mean levels and temporal patterns

of the determinand of interest, but which are also spatially homogenous. The river

network data explored in Chapter 5 introduces a set of new challenges when con-

sidering functional clustering that go beyond the inclusion of Euclidean distance

based spatial correlation. Existing methodology for estimating spatial correlation

are combined with functional clustering approaches and developed to be suitable

for application on sites which lie along a river network.

The final chapter of this thesis provides a summary of the work presented and

discussion of limitations and suggestions for future directions.
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Chapter 1

Introduction

Water is an invaluable resource; providing drinking water and important inputs for

many industries as well as facilities for recreation and leisure. Both maintaining

and improving water quality, which is established using many determinands and

characteristics, is therefore of crucial importance.

1.1 Water Quality Monitoring

The European Union Water Framework Directive (WFD) (European Parliament,

2000) was introduced in 2003 to set compliance standards for all water bodies

across Europe, with an aim to prevent deterioration, and ensure all sites reach

‘good’ status by 2015. It is a wide ranging piece of legislation and has several

implications for how monitoring networks are defined and implemented. A clas-

sification that is underpinned by a broad range of variables is required for all

rivers, lochs, transitional, coastal and groundwater bodies. For surface waters,

the classification is determined by the poorer of their chemical or ecological sta-

tus. Chemical status describes whether or not the concentration of any pollutant

exceeds standards that have been set for it at European Community (EC) level,

while ecological status is principally a measure of the cumulative effects of human

activities on river, lake, estuary or coastal water ecosystems. Each of the five eco-

logical status classes (high, good, moderate, poor and bad) defined by the WFD

represents a different level of disturbance from a reference state. In Scotland, the

Scottish Environment Protection Agency (SEPA) is the regulatory agency respon-

sible for monitoring water environments and for reporting classifications to the

1
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European Union. SEPA was established in 1996 and is a non-departmental public

body. Further to being accountable to the Scottish Parliament, SEPA also regu-

lates and provides advice to business, industry and the public on environmental

matters. The equivalent agency in England and Wales is the Environment Agency

(EA).

Monitoring levels of water pollution has been a key focus of research and leg-

islation in recent years and in addition to the WFD, there have been several other

pieces of European Community legislation which have been brought into force to

assess and set targets for water quality criteria. For example, in 1991 the Nitrates

Directive (European Parliament, 1991) was introduced with an aim to both iden-

tify polluted water environments and reduce the levels of nitrate pollution from

agricultural sources and in 2006 a revised European Community Bathing Water

Directive (European Parliament, 2006) was introduced which set compliance stan-

dards for bathing waters in terms of safe limits for microbial indicator quantities.

Both the Nitrates Directive and the Bathing Water Directive set specific limits for

particular pollutants which must not be exceeded and require regular monitoring

to be carried out.

The introduction of the WFD, which is an overarching directive that pulls

together other such legislation, requires that regulatory agencies, such as SEPA,

have extensive monitoring networks in place in order to have a satisfactory quantity

of data on which to base classification. However, at the same time as the demand

for comprehensive monitoring data and water quality reports is increasing, there

are constraints on financial resources and so it is becoming increasingly important

for those responsible for designing and implementing networks to know where, and

how frequently, to collect samples. Moreover, monitoring is not only important

due to the legislative requirement to assess standards for mandatory environmental

policy, it is also vital as it enables detection of the presence and extent of underlying

changes in water quality. Any changes detected can subsequently provide evidence

that improvement measures already in place are working or, conversely, they can

indicate that action plans are required to deal with areas of concern. The most

recent Intergovernmental Panel on Climate Change report on water (Bates et al.,

2008) highlighted the importance of monitoring data and identified improvement

in the collection of data, as well as the use of available data, as an area for future

development. The report acknowledged that ‘water resources management clearly

impacts on many other policy areas, e.g. energy, health, food, security, nature
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conservation’ while also stating that ‘better observational data and data access

are necessary to improve understanding of ongoing changes’.

Maher et al. (1994) provides a comprehensive discussion of the requirements of

environmental monitoring programmes. The authors state that monitoring is often

wasteful, and data rich, but information poor. The spatial selection of sampling

sites and the quantity of data required are identified as key issues which must be

addressed when designing effective sampling programmes whose aim is to assess

environmental status. More recently, Field et al. (2007) states that more resources

than ever before are being channeled to the task of documenting environmental

change, however, current monitoring efforts still fall far short of what is required.

The authors suggest that if policy driven monitoring, such as that required by the

WFD, are improperly designed and implemented the consequences may be worse

than not monitoring at all. The usefulness of existing environmental data in terms

of detecting long-term trends, and the quantity of data required to ensure reliable

conclusions, is discussed in Chapter 2.

In addition to these issues, which are common to many types of monitoring

network, there are unique features of the WFD that also impact on the design

of sampling procedures. One such feature of the WFD is that standing waters

can be grouped together, and the classifications of all members of the group can

then be based on the classification of a single representative lake, enabling water

quality to be predicted without monitoring. In Scotland, SEPA currently practise

a grouping approach for classification of lakes. Consequently, before any monitor-

ing is carried out, lake groupings have to be established and representative sites

identified. Grouping lakes which are similar in terms of the observed determinands

of interest is of great importance, as wrongly specifying either the groups, or the

representative lake within each group, could potentially result in misclassification

of all members and hence could miss potential environmental risks. The question

of how well existing SEPA groups are performing in terms of capturing the vari-

ability in chemical determinands at different lakes, as well as other possible ways

in which lakes could be grouped form one of the main areas of interest for this

thesis.
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1.2 Water Quality Determinands

There are a range of determinands that impact water quality and that can be

measured in order to evaluate the condition of the water environment. For some

determinands, such as nitrate, there are strict targets set in terms of acceptable

levels, whilst other determinands, such as alkalinity, are used more generally as an

indicator of water quality. In addition to hazardous substances that are controlled

by regulation, chemicals which are viewed as nutrients, such as phosphates, can

cause eutrophication of water bodies if they occur in high concentrations (Smith

et al., 1999). Eutrophication is the process by which a body of water becomes

enriched in dissolved nutrients that stimulate the growth of algae and other aquatic

plant life. As this abundance of algae usually results in the depletion of dissolved

oxygen, eutrophication can be detrimental to animal and plant life.

There are two key sources of water pollution; point source and diffuse pollution.

Point source pollution is related to emissions from a single discharge source which

can easily be identified. In contrast, diffuse pollution does not have one identifiable

origin but instead consists of pollution resulting from several different sources and

land-use activities (Environment Agency, 2007). Each of these sources is indirect,

and although they may only contribute a small amount of waste individually, they

can be collectively important. While point source contamination can be controlled

through regulation, it is often more difficult to deal with diffuse pollution and a

recent report on risk assessment for the WFD highlighted diffuse pollution as being

a bigger risk to rivers, lakes and groundwaters than point sources (Environment

Agency, 2007). One source of diffuse pollution is agricultural run-off. For example,

rainfall washes manure used as fertilizer or livestock waste from surrounding fields

either directly into the water itself or into connecting streams. Other sources can

include partially or untreated sewage and application of some lawn fertilizers. A

summary of some of the most commonly monitored determinands used to assess

water quality is now provided.

Phosphorus/Phosphates: The element phosphorus and compounds that are

composed of phosphorus ions in a different chemical arrangement called

phosphates are necessary for plant and animal growth (EPA, 1976). While

phosphorus occurs naturally and phosphate forms are produced by natu-

ral processes, a major source of this compound in water environments is

due to diffuse pollution. For example, after rainfall, varying quantities of
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phosphates found in most fertilisers wash from farmland into nearby water-

ways (Smith et al., 1999). Phosphates stimulate the growth of plankton and

aquatic plant life which provide food for fish, but, as noted earlier, eutroph-

ication can occur if there is an excess of phosphate.

Nitrate: Both nitrate and nitrite are forms of the element nitrogen. The available

nitrate data investigated in this thesis consists of two types of measurement;

nitrate (N) and total oxidised nitrate (TON). TON is technically the sum of

nitrate and nitrite levels but, since the latter tends to be negligible, SEPA

regards TON and nitrate as equivalent. As with phosphorus, nitrates stim-

ulate the growth of plankton and aquatic plants that provide food for fish.

Furthermore nitrate is also a major component of agricultural fertiliser and

hence the largest contributors of nitrate in water environments are sources

of diffuse pollution as opposed to point sources (EEA, 2010).

Chlorophylla: Chlorophylla is bound within the living cells of algae and other

phytoplankton found in surface water and is a key component in photo-

synthesis, the process in which energy from sunlight is used by plants to

produce oxygen. Chlorophylla is essential to the existence of phytoplankton

and hence it can be used as an indirect indicator measure for the health of a

water environment. Throughout this thesis chlorophylla will be referred to

as chlorophyll.

Alkalinity: While alkalinity is not a pollutant, it is a measure of substances within

the water that have acid neutralising ability and is essentially a measure of

the ability of a water source to keep its pH from changing. It is an important

component for fish and aquatic life since alkalinity acts as a buffer to changes

in pH and provides protection from sudden shifts (EPA, 1976). The main

sources of natural alkalinity are rocks, which contain carbonate, bicarbonate,

and hydroxide compounds.

1.3 Existing Techniques for Modelling Environ-

mental Data

Environmental and ecological data are typically sequential over time and space.

Data which arise from samples collected over a period of several years at regular
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intervals are referred to as time series data. Often the key area of interest is to

quantify the nature and extent of any trend in the variables and, as mentioned

previously, this can be used to identify potential areas of concern, or to indicate

that measures already put in place to deal with problems are having the desired

effect. In this context a trend can be defined as a generally upward or downward

drift in the long-term, or in the case of space, long-range, average that is commonly,

but not necessarily, linear. Another feature of time series data is the presence of

seasonality or cyclical patterns which are repetitive short-term patterns of known

length.

Usually monotonic trends are of most interest and there are several approaches

which can be taken to test for this. One common method of checking for non-

parametric trends is the Mann Kendall test for deseasonalised data (Mann, 1945).

Following from this a Seasonal Kendall test was developed by Hirsch et al. (1982)

for trend analysis of water quality data. Smith et al. (1993) extends the ideas of

detecting and estimating the magnitude of temporal trends in measures of water

quality to the multivariate setting while Yue and Wang (2004) adapts the Mann

Kendall test to account for serially correlated samples in hydrological time series.

In the section that follows existing and commonly used methods and models for

the evaluation of environmental data will be described. This will include methods

for time series analysis, regression models and smoothing techniques.

1.3.1 Time Series Models

Modelling or testing for trends and seasonal patterns are frequently the main focus

of any statistical analysis in this field, but the presence of correlated data often

complicates this. Many statistical models assume errors that are independent of

one another, however, due to the nature of the data and the close proximity of

observations to one another in either space or time, lagged relationships are typical.

Correlation between measurements is therefore very likely. Incorrectly assuming

data are independent when they are correlated can potentially result in estimates of

the standard errors which are smaller than they should be. Although it is widely

accepted that environmental data collected more than two weeks apart are not

significantly correlated in time (van Belle and Hughes, 1984), in some situations

data are collected at frequencies where the time period between observations is

shorter than this. A brief description of commonly used time series methods is
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provided in this section. For full details see Brockwell and Davis (1991) which has

been used as the main reference text for the description provided here.

In order to explore patterns for a single response variable of interest, Y at any

time point t we consider a time series of the form,

Yt = mt + st + εt where t = 1, 2, .., n (1.1)

Here mt represents any trend, st is a short term seasonal or cyclical pattern of

known period and εt is a random White Noise term. The simplest model for this

data would be where mt and st can be described in terms of some parametric trend

and cyclical pattern which have a known functional form over time, for example

a linear or polynomial trend and constant seasonality. While the aim is often to

use the observed data to estimate the trend and seasonal component the presence

of autocorrelated errors means that using standard techniques such as ordinary

least squares (OLS) to fit models is inappropriate. One way to account for auto-

correlation is to incorporate previous observed values of the variable of interest, y,

into the regression equation by expressing the current value of yt as a finite linear

combination of these earlier values. This is known as an AutoRegressive (AR)

model and a general form of this model AR(p) can be expressed as;

yt =

p∑
i=1

δiyt−i + et

where δ1, ...δp are coefficients and et is a White Noise sequence. Alternatively, the

current value of the variable of interest can be expressed in terms of both past and

current noise terms. This is known as a Moving Average (MA) model and can be

written in general terms as an MA(q) model as;

yt = et +

q∑
j=1

θjet−j

The combination of these two classes of model produces an AutoRegressive Moving

Average or ARMA(p, q) model as;

yt =

p∑
i=1

δiyt−i + et +

q∑
j=1

θjet−j

These techniques for modelling autocorrelated data require that the time series
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data are stationary. Stationarity of a time series implies that properties such

as the mean and variance are constant over time and hence that there are no

trends or seasonal patterns present but in practice the assumption of stationarity

is unrealistic.

An extension of the ARMA class of models are AutoRegressive Integrated

Moving Average (ARIMA) models and Seasonal ARIMA models, known as SARIMA

models which can be used to include non-stationary mean and seasonal dynam-

ics of the data. The key idea is to build an ARMA(p, q) model on a stationary

time series that is obtained from the original time series via differencing. With

an ARIMA model first order differencing is applied to remove any trend from the

data. If Yt denotes the value of the time series Y at time t, then the first difference

of Yt at time t is equal to ∆Yt = Yt − Yt−1. More generally, period differencing

can be applied by computing the time series ∆dYt = Yt − Yt−d, for a given pe-

riod, d. An ARMA process is then used to model the series ∆dYt. The ARIMA

model can be denoted by ARIMA(p, d, q) where p and q are the lags correspond-

ing to the AR and MA components of the models whilst d corresponds to the

order of differencing applied. SARIMA models are a further generalization of the

ARIMA class which are used when there is a seasonal component in the data. A

SARIMA (p, d, q) × (P,D,Q) model is an ARIMA(P,D,Q) where the residuals

are ARIMA(p, d, q). For example, a SARIMA model can be fitted to a series by

initially using first order differencing to remove trend to obtain ∆Yt then subse-

quently applying period differencing to remove any seasonal pattern. For monthly

data, 12th order differencing could be applied to the series ∆Yt and the resulting

series could then be modelled with an ARMA(p, q) process.

After the application of differencing to ensure the time series is stationary, an

appropriate order ARMA(p, q) process needs to be selected. In order to identify

p and q the sample autocorrelation function (ACF) can be computed. Let yt, t =

1, ..., N be observations of a time series and let the sample mean of the series be

denoted by ȳ. Then the sample autocorrelation function at lag h can be written

as

ρ̂h =

∑N−1
t=1 (yt − ȳ)(yt+h − ȳ)∑N

t=1(yt − ȳ)2

The ACF is the collection of sample correlation coefficients that correspond to the

cross-correlation of the data with itself at a series of different lags in time. Plotting
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the estimated correlation coefficients against the lags provides a correlogram which

can be used to suggest a suitable model. If the sample ACF shows unstructured

non-zero coefficients to lag q this is an indication that an MA(q) component is

required while smooth decay suggests that an AR component is required. Oscilla-

tion of the coefficients within the ACF is evidence that an AR process of order 2

or higher would be needed. To identify the order of the AR component the Partial

ACF (PACF) can be used. The PACF of lag h is the autocorrelation between

all observations yt and yt+h that is not accounted for by lags 1,...,h-1 inclusive.

Smooth decay in the PACF suggests an MA process is required, while unstruc-

tured non-zero coefficients to lag p provide evidence that an AR(p) component

is suitable. After selection of appropriate orders the models can be fitted to the

series using least squares.

ARIMA and SARIMA models provide one approach to modelling data where

there is correlation between the errors but an alternative method is to model the

trend and seasonal components of the time series explicitly and then to adjust the

standard errors accordingly. In this approach the correlation can be viewed as a

nuisance parameter rather than a component of direct interest. After estimating

the trend and seasonal components of the data, the remaining autocorrelation

in the residuals can subsequently be modelled using an ARMA process. This

enables the components of the data which are often the main focus of interest to

be estimated using standard approaches and allows for the estimation of features

of the data such as non-linear trends. Often a simple AR(1) process is sufficient for

modelling the covariance structure of water quality parameters. Houseman (2005)

use a first order autoregressive process to model depth data at a Boston Harbour,

while Clement et al. (2006) use an AR(1) process within a spatio-temporal model

which is fitted to dissolved oxygen concentrations on a river network in Belgium.

Bowman et al. (2009) also found an AR(1) process to adequately capture the

correlation structure of the errors when modelling sulphur dioxide trends across

Europe in time and space.

1.3.2 Nonparametric Models

There are several complicating features of water quality data that make traditional

parametric methods such as linear regression techniques, analysis of covariance,

and standard time series approaches difficult to implement. Moreover, as noted
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earlier, the relationships between parameters of interest and time are often complex

and do not follow a linear pattern where there is a constant monotonic increase or

decrease in time. Consequently, changes in environmental data through time are

often analysed using nonparametric methods. Nonparametric regression enables

the assumption of linearity to be removed and more flexible, smooth functions

to be fitted instead. In addition to the investigation of non-parametric trends,

these flexible regression methods can also be used to explore non-constant seasonal

patterns. The key idea in nonparametric modelling is to average the values of the

response variables locally as opposed to globally.

The application of smoothing methods can be used to estimate the dependence

of the mean of the response variable y on a covariate, or covariates. Denoting the

response variable as y, a general nonparametric model can be written as

y = g(xi) + ε (1.2)

where ε ∼ N(0, σ2)

Here xi is the covariate and ε is the error term. The function g(xi) which describes

the relationship between y and xi is unspecified and can be estimated by a smooth

function, ĝ(x). To estimate a smooth temporal trend a model where the covariate

is time in the form of decimal year can be used. This model can be written as

y = g(time) + ε, (1.3)

ε ∼ N(0, σ2)

Following this, a bivariate model is an extension of the nonparametric regression

model to two dimensions. This model is of the form

y = g(x1, x2) + ε, (1.4)

where ε ∼ N(0, σ2)

Here the bivariate term g(x1, x2) involves two different covariates. One potential

application of this model is to assess changes in the seasonal pattern over time by

including both decimal year and month. A bivariate model allows there to be a

varying seasonal pattern across the time period, which can be expressed as

y = g(year,month) + ε, ε ∼ N(0, σ2) (1.5)
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Alternatively bivariate terms can be used to include geographic co-ordinates as

covariates in models which aim to assess spatial patterns in the response variable

of interest, for example, using the terms g(longitude, latitude).

Additive Models

Additive models extend univariate or bivariate nonparametric models to include

a sum of smooth functions of a set of covariates. They create an estimate of a

response variable by combining a collection of functions of predictors which are

assumed to act additively. Models of this form are a particular case of generalised

additive models with normal errors and are discussed in detail in Hastie and Tib-

shirani (1990). Given a response variable yi and a set of covariates (x1, . . . , xk) a

general expression for an additive model is given by

yi = µ+
k∑
j=1

gj(xji) + εi (1.6)

where j = 1, ..., k and εi ∼ N(0, σ2)

Here g1(x1), ..., gk(xk) are arbitrary smooth functions of the covariates which, to

ensure identifiability, are subject to the constraint
∑n

i=1 gj(xji) = 0. The param-

eter µ is an overall mean term.

In order to assess changes in environmental data the nonparametric models

described above often use terms that are smooth functions of year and month of

year. For example, an additive model of the form

y = µ+ g1(year) + g2(month) + ε, ε ∼ N(0, σ2) (1.7)

can be used to consider the trend and seasonal component of the determinand of

interest. Here µ is an overall mean, g1 corresponds to the trend across the time

period and g2 corresponds to the seasonal pattern. Unlike the bivariate model in

Equation 1.5, this additive model assumes that the seasonal pattern within each

year is constant across the years.

Models 1.2, 1.5 and 1.7 assume that the observations are independent. Pro-

cedures to include correlation in these models (via the errors) are discussed in

Section 1.4.1.



Introduction 12

1.3.3 Smoothing Methods

A method of smoothing is required for all the nonparametric models that have

been discussed. After application of a smoothing method to data, a smooth func-

tion is obtained which is less variable than the response variable. There are a

variety of different smoothing methods available, some are commonly used for

graphical exploration and to provide an indication of the underlying structure of

the relationship between the variables whist others are for explicit modelling of

the function g(x). In addition to the method of smoothing, the extent to which

the observed data are smoothed also has be defined.

Firstly, let the estimated nonparametric relationship between the response y

and a single explanatory variable x be denoted by ĝ(x). Then this estimated

smooth function can be expressed as

ĝ(x) = Sy

where S represents a smoothing matrix. Following this there needs to be a way

of defining the smoothing matrix S. Smoothers use local averaging whereby the

observations within a set distance, commonly referred to as a local neighbour-

hood, of a single observation of interest are averaged. The two key questions

that arise regarding the definition of a smoother are what size should the local

neighbourhood which surrounds the observation of interest be and how should the

observations which fall into each of these local neighbourhoods be averaged? The

first of these questions is dealt with by specifying a smoothing parameter that

controls the size of the neighbourhoods, although this in turn generates a ques-

tion of how to choose the optimal smoothing parameters. Different approaches for

choosing smoothing parameters are described later. For the second of the above

questions there are several ways to define how averaging within neighbourhoods is

carried out. Amongst the most frequently used methods are local running mean

smoothers, kernel regression approaches, smoothing splines and regression splines.

Each of these methods are described in Hastie and Tibshirani (1990), Bowman and

Azzalini (1997) and Wood (2006). Although the methods of estimating smooth

functions differ in philosophy and style, the end results are often very similar in

terms of the estimates produced.
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Kernel Smoothing

Kernel approaches use kernel functions centered around each observation of inter-

est on the covariate axis to define a set of weights that can then be assigned to

the surrounding observations. In general, a kernel function is a smooth positive

function which peaks at the target observation, x, and decreases monotonically

the further away the observations are from x. The smoothing parameter or band-

width, h, defines the width of the kernel function which surrounds each of the

observations of interest and hence the extent of the smoothing applied.

Loess

One popular method of smoothing which is often employed to obtain a graphical

overview of underlying patterns in a dataset is a locally weighted running line

smoother known as loess. This method of defining a local regression model was

proposed by Cleveland and Devlin (1988). Within the loess method, an area

surrounding a target observation x0 is obtained by identifying the target points

k nearest neighbours. This area can be written as N(x0). Next, the Euclidean

distance between x0 and the furthest away point within each neighbourhood is

calculated as

∆(x0) = maxN(x0)|x0 − xi|.

Within neighbourhood weights are subsequently assigned to each of the observa-

tions (x0, y0), using the tri-cube weight function which can be defined as

wi = W

(
|x0 − xi|
∆(x0)

)
where

W (u) =

{
(1− u3)3 : for 0 ≤ u < 1

0 : otherwise

Using these weights in combination with weighted least squares can then be used

to produce a locally weighted straight line smooth. The smoothing parameter for

locally weighted running line smoothers will determine the quantity of data which

contributes to the estimate at each point by specifying the percentage of points

that fall within a neighbourhood, the nearest neighbours to the target observation.
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The loess method is also described in Cleveland et al. (1990) and in Hastie and

Tibshirani (1990).

Local linear regression

Another commonly used smoothing method is local linear regression where a nor-

mal distribution is specified to define the weights (Cleveland and Devlin, 1988, see

Bowman and Azzalini, 1997 for details). The idea is to estimate the regression

function, g(x), in the model yi = g(xi) + εi based on data {(xi, yi); i = 1, ..., n} by

minimising the weighted sum-of-squares criterion;

min

α, β

n∑
i=1

{yi − α− β(xi − x)}2w(xi − x;λ). (1.8)

The estimate at x is then defined as the minimising value of α. If the smoothing

parameter specified is λ, and the kernel function specified is a normal probability

density function with mean 0 and standard deviation λ, then the weights can be

defined as;

wλ(xi − x;λ) = exp

(
−0.5

(
xi − x
λ

)2
)

This means that observations within an area spanning 2λ on either side of each

point of interest will contribute to the estimate of that point, equivalent to a

distance of approximately 4λ in total. Equation 1.8 can alternatively be expressed

in matrix notation. Writing the vector with ith element (xi−x) as X, and defining

a diagonal weight matrix W which has entries corresponding to the kernel weights

w(xi−x;λ) then the local linear regression least squares criterion is the minimising

value of

min

α, β {y − αIn −Xβ}TW{y − αIn −Xβ} (1.9)

Here In represents the identity of size n.

The asymptotic properties of local linear regression are discussed in Fan (1992).

One of the advantages of this estimator over the more simple running mean ap-

proach is the superior behaviour of the local linear regression smoother near the

boundaries of the region where data are collected. Further discussion of local linear



Introduction 15

smoothers are provided in Fan and Gijbels (1992) where the idea of having a non-

constant bandwidth λ is proposed. The extension of the local linear smoothing

approach to the multivariate case is discussed in Ruppert and Wand (1994).

Cyclical Patterns

Another consideration when fitting models is that components referring to sea-

sonal information, such as month of year, are defined on a cyclical scale, and

hence require a different treatment. To deal with these components a local mean

estimator constructed as

min
α {y − αIn}TW{y − αIn} (1.10)

can be used in combination with a Von Mises weight function to define W . De-

noting month as x2 and the period as r, so for example with monthly data r = 12,

the Von Mises weight function is defined as

w(x2i − x2;λ) = exp

{
1

λ
cos

(
2π
x2i − x2

r

)}
The purpose of this weight function is to ensure that the estimate of the component

corresponding to month is adapted to take into account the cyclical scale and

means that observations at one boundary of the period influence the estimate at

the other end. A local mean approach is taken rather than a local linear approach

as the seasonal pattern will not take the form of a straight line. Examples where

this local linear regression models are employed as the smoothing method and

cyclical patterns are included in this way are provided in Ferguson et al. (2008)

and McMullan et al. (2007).

Kernel Model Fitting

Univariate and bivariate non-parametric models for independent data can be fitted

via miminisation of the local regression least squares criterion given in Equation

1.8. Writing the parameters α and β as θ, the covariate data in matrix form as X

and the response variable as Y then the model can be constructed as

Y = Xθ + ε.
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Following from this the weighted least squares estimator of the parameters, θ̂ can

be expressed in matrix form as

θ̂ = (XTWX)−1XTWy

where W is the weight matrix.

For additive models, the back-fitting algorithm, as detailed in Hastie and Tib-

shirani (1990), can be used. Initially, smooth estimates are obtained for each of

the model components gj(xij) by minimising a least squares criterion and then,

in order to obtain final estimates for each component, smoothing is applied it-

eratively with respect to each component by using the residuals based on the

remaining model components as the response. After convergence of the backfit-

ting estimates, the approximate smoothing matrices for each component can be

written as ĝj = Pjy where Pj is referred to as a projection matrix. The final

estimate y can subsequently be written as

ŷ = Py where P =
k∑
j=0

Pj (1.11)

The matrix P0 represents an n× n matrix with entries 1/n. The expression given

in Equation 1.11 is similar to the form of the estimate for univariate and bivariate

models when expressed in terms of a single smoothing matrix, S (Giannitrapani

et al., 2005).

Spline Smoothing

Spline functions are an alternative to kernel methods which can also be used as a

method of representing smooth functions g(t). A relatively naive approach would

be to use polynomial regression with a low-order polynomial to represent the

smooth function g in Equation 1.2 and to estimate the coefficients of the polyno-

mial terms using a least squares criterion. However, polynomial regression would

often have to use a high order polynomial - and therefore an excessive number

of parameters - in order to capture all of the main features of the data. Spline

methods can account for elaborate relationships without having to estimate an un-

necessarily large number of parameters. A detailed overview of smoothing splines

is provided in both Green and Silverman (1993) and Gu (2002). Using Green and
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Silverman (1993) as the key reference, a description of cubic spline smoothing and

regression spline smoothing with a B-spline basis will now be discussed.

Cubic Spline Functions

Spline functions consist of polynomial segments which are joined together smoothly

at pre-defined subintervals. The points at which the joins occur are called break-

points, or knots, of the spline and the order of the polynomial, g, within each

section is defined by the degree of the polynomial segment plus one. It is clear

that every smoothing spline function is defined by both the location and number

of the knots as well as the order of the polynomial segments. Order 4 polynomial

segments are amongst the most commonly used. As this means the fitting function

is piece-wise cubic, the smooth function using order 4 splines is hence commonly

referred to as a cubic spline function.

In order to approximate a function over a closed interval [a, b] using cubic spline

functions, the whole interval is first divided into subintervals. Given a series of real

numbers which lie within the interval s1, ..., sn such that a ≤ s1 < s2 < ... ≤ sn < b

then a smooth function g can subsequently be fitted across the whole interval [a, b]

with a cubic polynomial segment in each interval [(a, s1), (s1, s2), ..., (sn, b)].

g(t) =


g0(t) : a ≤ t ≤ s1

g1(t) : s1 ≤ t ≤ s2
... :

...

gn+1(t) : sb ≤ t ≤ b

Each of the internal points, si, are the knots. For g to be a cubic spline, values

of the polynomial segments are not only required to be equal at the joins but there

is a further constraint that the first and second derivatives at the end of one curve

are equal to the first and second derivatives at the start of the next, to ensure the

joins at each knot are smooth. In addition to these conditions, other constraints

can be imposed. For example, natural cubic splines require that the value of the

second and third derivatives of g at the start and end points a and b are both

equal to zero. A particular definition for a natural cubic spline is provided in

Green and Silverman (1993) in terms of the value of the function, g, and of the

second derivative, g′′ at each of the knots si. Natural smoothing splines can be
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used to produce interpolating splines and in fact, Green and Silverman (1993)

state that if there are more than two points there is a unique natural cubic spline

which is an interpolant of these points with a knot at each data point.

While there are applications where an interpolating function may be of interest,

more often than not the aim when fitting a smooth function is not to interpolate

the observed data, but instead to estimate a smooth function which is close to the

data but avoids local fluctuations which could be due to random noise. Clearly

the aim of spline smoothing is to fit a smooth, flexible function which minimizes

the residual sum of squares. However, if the model in Equation 1.2 is fitted using

unconstrained least squares then the function which would minimize this is the

curve which simply interpolates the data. Consequently, a roughness penalty

approach is needed which will produce a smoother, more flexible function that will

capture the main features of the data, but will avoid random fluctuations which

will occur with interpolation. There is clearly a bias-variance trade-off and while

it is important that the function fitted captures important curvature in the data,

it is conversely important to ensure the curve is not excessively locally variable.

As in standard smoothing approaches, roughness penalty approaches also require

the minimisation of a fitting criterion, however this criterion will incorporate some

pre-specified measure of ‘smoothness’.

Following this, there has to be some definition of how best to quantify the

roughness of a function. Although there are several measurements that could be

used, one popular measure is the integrated square of the second derivative, also

known as the curvature at t, which is defined as

PEN2 =

∫
[g′′(t)]

2
dt

The reason this value is a natural choice to measure roughness of a function is that

this value will be equal to zero if g(t) is a straight line (which obviously has no

curvature). Although this is a good measure of smoothness it is not always appro-

priate and so a more general penalty term can be defined. A broader roughness

penalty can be defined by any m-th order derivative, Dm, as

PENm =

∫
[Dmg(t)]2dt (1.12)

Any linear combination of derivatives, known as a linear differential operator, of

the form Lg(t) =
∑M

m=1 βm(t)Dkg(t) can be used as a penalty. Using the definition
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of a measure of roughness in Equation 1.12, the least squares criterion that is used

to determine the spline coefficients is modified to include this penalty measure and

can be written as,

n∑
i=1

(yi − g(ti))
2 + (λ

∫
[Dmg(t)]2 dt) (1.13)

The parameter λ in the above expression is a smoothing parameter which is a pos-

itive scalar that determines the emphasis of the role of the roughness penalty term

and therefore controls the trade-off between goodness of fit and departures from

smoothness. As λ increases, the greater the influence of the roughness penalty im-

posed relative to goodness of fit, and hence the smoother the function will become.

Conversely as λ approaches zero, then ĝ becomes increasingly locally variable and

will eventually become the interpolating function when λ = 0. Subjective and

automatic methods of selecting optimal smoothing parameters are discussed later

in Section 1.3.4.

One of the drawbacks of using cubic smoothing splines is that there are as

many parameters are there are observations. Since the number of parameters that

are required to define a spline smoother is the number of interior knots, plus the

order of the polynomial minus one, for a cubic spline with knots at each observa-

tion this means the number of parameters is (n−2)+3−1 = n. While this implies

the function fitted will therefore have n degrees of freedom, the influence of the

smoothing parameter, λ, results in a function which is smoother than this large

number of parameters implies. This excessive number of parameters can become

very computationally inefficient, particularly if there are multiple covariates. In

an attempt to overcome this potential problem with smoothing splines, penalised

regression splines - which use B-spline bases - are often used as they enable func-

tions to be built from a linear combination of a set of spline functions which is

substantially smaller than if the function is fitted to all the data.

B-Splines

Another common way to build a smooth function is through sets of known func-

tions, called basis functions, that are mathematically independent. Smooth func-

tions can be approximated using weighted sums of the individual functions. Amongst

the aspects which control the flexibility of the function that is estimated using
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spline bases are both the type of basis function used and number of functions

used. While there are a wide variety of basis systems available, the choice of basis

system is often dependent on the data to which the smooth functions are to be

fitted, for example, polynomial basis systems, known as B-splines, are commonly

used to represent non-periodic basis systems, while fourier basis systems are used

to represent periodic functions. These two systems are frequently complemented

by the addition of constant and monomial bases.

Polynomial B-spline basis functions are amongst the most commonly used

basis systems. The B-spline system was first developed by de Boor (1978) and

has several properties which mean they provide a particularly flexible and com-

putationally efficient approach for non-periodic data. One of the key attributes

of polynomial B-splines is the compact support property which means that a B-

spline basis of order m is non-zero between a maximum of m + 2 adjacent knots

(or equivalently over m adjacent intervals). This property results in a relatively

sparse design matrix which makes B-splines computationally efficient. Both the

number of basis functions and the number and placement of knots also have to be

decided upon. For B-splines, the number of spline functions within the basis and

the number of degrees of freedom in the fit is equal to the order of the polynomials

which define the basis functions plus the number of interior knots. As expected,

this means that if there are no interior knots, then the fit is a simple polynomial

fit with the degrees of freedom equal to the order of the polynomial.

After a decision has been made as to what basis system is most appropri-

ate, there is then some question as to where to place the interior knots. While

the smoothing splines already discussed include a knot at each observation, for

regression spline smoothing using B-splines, it is common for there to be fewer

knots than observations and for the knots to be equally spaced. This is a suitable

approach to adopt if the observed data are regularly spaced across the interval

of interest. Alternatively, Ramsay and Silverman (1997) discuss the placement of

knots and suggest having knots at different quantiles of the distribution by placing

at every jth data point, where j is a suitable pre-specified integer. This may be

appropriate if the data are sparse. Subjective selection of knot placements may

also be employed, for example, if there are particular areas where there is thought

to be a large amount of curvature, additional knots can be included in these re-

gions.
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In order to define a B-spline basis with P basis functions of degree m (order

m + 1) it is first necessary to define P + m + 1 knots. Let t = (t1, t2, ..., tP+m+1)

be the knot vector where t1 ≤ t2 ≤ ... ≤ tP+m+1 and the interval of interest over

which the smooth function has to be estimated is [tm+2, tP ]. Then an (m + 1)th

order smooth spline, g(t), can be written as

g(t) =
∑P

p=1
φmp (t)cP (1.14)

where cp are coefficients which have to be estimated. The individual B-spline basis

functions, φmp can be defined recursively using the Cox-de Boor Recursion Formula

(de Boor, 1978)

φmp (t) =
t− tp

tp+m+1 − tp
φm−1p +

tp+m+2 − t
tp+m+2 − tp+1

φm−1p+1

where p = 1, ..., P and

φ−1p (t) =

{
1 tp ≤ t < tp+1

0 otherwise

Alternatively, 1.14 can be written more generally in matrix notation. Given a set

of P known basis functions, φp, where p = 1, ..., P , that exist over the same range

as data pairs (ti, yi) where i = 1, ..., N then y = g(t) can be expressed as the basis

function expansion

y = g(t) =
∑p=1

P
φp(t)cp =

∑P

p=1
cTp φp(t) = cTΦ(t)

where c is a vector of length P that contains the coefficients cp while Φ(t) is an

N × P matrix containing the values φp(t). In order to compute the coefficients cp

regression spline smoothing is used whereby a least squares criterion is minimised

similarly to standard regression model fitting. Assuming the model in Equation

1.2 with independent, normally distributed errors with mean zero and constant

variance, then it is the aim to minimise the residual sum of squares

RSS(c|y) =
N∑
i=1

[
yi −

P∑
p=1

cpφp(ti)

]2

=
N∑
i=1

[
yi − φ(ti)

T c
]2

= (y − Φc)T (y − Φc). (1.15)
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Taking the derivative of Equation 1.15 with respect to c and solving enables the

least squares estimate ĉ of c

ĉ = (ΦTΦ)−1ΦTy (1.16)

Penalised Regression Splines

As discussed, rather than using unrestricted least squares, a roughness penalty ap-

proach is required in order to ensure that an estimate is obtained which captures

the curvature of the data without simply interpolating the observations. Penalised

regression splines combine polynomial B-splines with the second order roughness

penalty to fit the curve to the data. The aim is to estimate the coefficients which

will minimise the penalised least squares criterion given by Equation 1.13. Wood

(2006) states that advantages of penalised regression splines include that they are

both straightforward to use and are sufficiently flexible since any order of penalty

can be used in conjunction with any order of B-spline basis. However, the author

also expresses concerns that in practice, the level of complexity for implementing

and interpreting penalised regression spline smooths becomes somewhat more dif-

ficult if unequally spaced knots are used. To compute the best estimate of the

penalised regression spline coefficients, ĉ, it is first necessary to express the rough-

ness penalty in Equation 1.12 in matrix form. First taking the general penalty

measurement

PENm =

∫
[Dmg(t)]2 dt

then substituting g(t) = cTΦ(t) gives

PENm =

∫ [
DmcTΦ(t)

]2
dt

=

∫
cTDmΦ(t)DmΦT (t)c dt

= cT
[∫

DmΦ(t)DmΦT (t)dt

]
c

= cTRc (1.17)
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Where R =
∫
DmΦ(t)DmφT (t)dt is a square matrix of order K. Using this ex-

pression for the penalty matrix, 1.13 can subsequently be written as

PENmRSS(y|c) = (y − Φc)T (y − Φc) + λcTRc (1.18)

It can be shown that the smoothing matrix, Sλ, can be written in the form as in

kernel smoothing approaches. If the derivative of Equation 1.18 with respect to

the coefficient vector c is taken the following expression is obtained

−2ΦTy + ΦTΦc+ λRc = 0

re-arranging this expression enables an estimate of the coefficient vector to be

obtained as,

ĉ = (ΦTΦ + λR)−1ΦTy

Multiplying both sides of this equation by Φ it can be seen that

Φĉ = Φ(ΦTΦ + λR)−1ΦTy = Sλy

where Sλ is the n× n symmetric smoothing matrix.

An alternative approach for applying spline smoothing using a B-spline basis

with a penalty is provided in Eilers and Marx (1996). Rather than using the

integral of a squared higher derivative of the fitted curve as the penalty, they

instead impose a penalty which is based on the difference between coefficients of

adjacent B-splines. The authors state that for second order differences, both their

approach, and the method described in this section which uses Equation 1.12 as

the penalty, are very similar.

1.3.4 Model Comparisons

It is often of interest to compare pairs of competing models in order to assess

which model provides a better fit to the data and what components should be

retained or dropped. One way to do this is through the use of an approximate

F-test. Suppose there are two nested models; the full model, mod1, which has

degrees of freedom for error, d1, and the reduced model, mod2, which has degrees

of freedom for error, d2. To compare these models, an F-statistic is computed and
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subsequently compared to an F-distribution with (df2 − df1) degrees of freedom

for error. Hastie and Tibshirani (1990) advocate the use of an approximate F-test

to do this and define the test statistic used in this procedure to be

F =
(RSS2 −RSS1)/(df2 − df1)

RSS1/df1

where RSS1 and RSS2 are the residual sums of squares of the two models, mod1

and mod2 respectively.

Hastie and Tibshirani (1990) define the degrees of freedom for independent

errors of a model in terms of the trace of the smoothing matrix S. For additive

models (such as Model 1.6) the sum of the k component projection matrices P =∑k
j=0Pj is equivalent to the smoothing matrix S for univariate and bivariate non-

parametric regression models. These can be written as;

df = n− tr(2S − SST ) (1.19)

To compute the residual sum of squares S can also be used. For each independent

model the residual sum of squares can be expressed as;

RSS = yT (In − S)T (In − S)y (1.20)

Throughout this thesis the approximate F-test approach will be used to compare

pairs of nested models. An alternative model comparison procedure is outlined in

Bowman and Azzalini (1997) who discuss the use of an F statistic which is defined

in terms of quadratic forms.

Choice of Smoothing Parameters

The choice of the amount of smoothing to apply in nonparametric regression mod-

els is an key issue. When comparing pairs of models it is particularly important

that both models have smoothing parameters that are equivalent in order to en-

sure a fair comparison. Choosing a smoothing parameter that is too small will

‘under-smooth’ the data and will result in an estimate that follows the observed

data closely and has high variation in local areas. Conversely, if the smoothing

parameter chosen is excessively large, a high proportion of the observed data will
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contribute to the estimate at each point and therefore the data could be ‘over-

smoothed’, meaning some of the curvature in the data may be missed. A range of

different methods are available for deciding what the optimal degree of smoothing

should be. These comprise two main approaches; subjective selection or automatic

procedures.

There are a range of automatic procedures for the selection of smoothing pa-

rameters. Three commonly used model selection criteria are Akaike’s Information

Criterion (AIC) (Akaike, 1973), a corrected version of this statistic is known as

AICc (Sugiura, 1978), and the Bayseian Information Criterion (BIC) (Schwarz,

1978). Writing the sample size as n, the number of the parameters in the model

as npar and the maximized value of the likelihood function for the estimated model

as L, then AIC can be defined as

AIC = 2npar − 2 log(L), (1.21)

AICc can be defined as,

AICc = AIC +
2n(npar + 1)

n− npar − 1
(1.22)

and BIC can be defined as

BIC = −2 log(L) + npar log n, (1.23)

In order to determine the optimal degree of smoothing, each of these methods is

computed as the residual deviance of the model penalised by adding a measure

based on the number of parameters in the model. The penalty based on the number

of model parameters for BIC is stronger than that imposed on the AIC equivalent.

For AICc, a second penalty is imposed which is added in order to take small sample

sizes into account, however it should be noted that AICc is often used regardless

of the sample size since, as sample size increases, AICc will converge to AIC.

Alternatively, a frequently used non parametric choice for selecting the quantity

of smoothing that is optimal is Generalised Cross Validation (GCV) (Craven and

Wahba, 1979).

Ordinary leave-one-out cross validation (OCV) works by leaving out each ob-

servation one at a time, and estimating the average smoothed value of the point

which has been omitted using the remaining n − 1 points. A more generalised
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version is K-fold cross validation where the data is split into K subsets and each

subset (rather than a single point) acts as test data in turn. Choices of K can be

made to reduce the computational burden. An OCV sum of squares is obtained

by calculating the average sum of squared differences between the missing data/-

datum and its predicted values. OCV sums of squares can then be calculated for

a suitable range of different smoothing parameter values. It is clear however that

leave-one-out OCV is computationally expensive as the model has to be fitted n

times for each smoothing parameter value considered. In addition, the use of leave-

one-out OCV is not recommended as although it is technically unbiased, it can be

highly variable. Generalised cross validation, which was developed by Craven and

Wahba (1979), overcomes this problem as you only need to fit the model once with

the full data. From a fitted non parametric model with smoothing parameter λ,

the smoothing matrix can be used to compute the effective degrees of freedom for

the parameters, dfλ = trace(Sλ), and the degrees of freedom for the error, n− dfλ,
where, as before, n is the number of observations. Denoting the corresponding

residual sum of squares as RSSλ then the GCV value can be defined as

GCVλ =

(
n

n− dfλ

)(
RSS

n− dfλ

)
. (1.24)

Plots of λ versus GCVλ can be used to determine the optimal value of λ. GCV is

discussed in detail in Hastie and Tibshirani (1990). More recently, Wood (2011)

has discussed the use of restricted maximum likelihood for selecting appropriate

smoothing parameters for generalised additive models as an alternative to GCV.

AIC, AICc, BIC and GCV are all methods which rely solely on the data to

select an optimal value of smoothing. The advantage of these methods is that

they provide a data-driven solution to which smoothing parameter gives the ‘best’

trade-off between roughness and capturing the main features of the observed data,

but these approaches do have their drawbacks. One problem is due to the fact

that often automatic procedures for the selection of smoothing parameters as-

sume that the data, and hence any errors from fitted models, are independent and

so the presence of correlation in the data provides a further complication. Op-

somer and Yang (2001) explores the effects of correlation on smoothing parameter

selection for non-parametric regression and states that the presence of correla-

tion between the errors can cause automatic smoothing selection methods such as

GCV to break down. Likewise, Diggle and Hutchinson (1989) found that GCV
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frequently under-smooths the data, sometimes to the extent that a perfect inter-

polated fit is produced if there is first order autocorrelation in the data. Further

to the problems associated with the presence of correlation in the data, Hall and

Johnstone (1992) note that the cross-validatory choice of smoothing parameter can

be highly variable and unstable. Ramsay et al. (2009) do not recommend relying

only on automatic selection procedures and state that often, near the minimising

value, GCV values will change very little thus indicating that the data are not

particularly informative as to the true optimal value of the smoothing parameter.

They suggest that taking a subjective approach and using judgment as to what

values of the smoothing parameter provide a smooth function which can be sen-

sibly interpreted is a reasonable alternative. Faraway (1997) also suggests a good

method of selecting a smoothing parameter may be taking a subjective approach

as automatic selection methods can be inconsistent, particularly in the presence

of unusual observations.

The amount of flexibility used in nonparametric models can be specified sub-

jectively. One method is to use a visual assessment where graphical representations

of the smooth functions estimated with a range of different potential smoothing

parameters are first obtained and then used to visually assess what amount of

smoothing is appropriate. Alternatively, a sensitivity analysis could involve assess-

ing how F-test results change with changes in smoothing parameters. In addition,

an approximate number of degrees of freedom can be chosen to define how complex

the model is and the smoothing parameters are then set in order to obtain this

pre-specified number.

Therefore, meaningful models can be estimated as smooth functions for trend

and seasonality, however, the presence of other features such as correlation is still

an issue which causes complications when modelling environmental data.

1.4 Statistical Issues in Environmental Data

In addition to accounting for the possibility of autocorrelation, there are several

other common challenges in the statistical analysis of environmental and ecological

datasets. Issues arise due to missing and irregular observations, non-constant

variance and samples which are affected by the limits of detection of scientific

equipment, and these must be addressed in some way to ensure that the conclusions
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reached for any analysis are valid. A brief description of some of these potential

issues, and ways in which they can be dealt with, is provided in this section.

1.4.1 Correlation

Correlation is frequently encountered in environmental data and so, in models

where correlation is present it can either be modelled explicitly using ARIMA and

SARIMA models, or it can be viewed as a nuisance parameter and appropriate

modification can be made to standard techniques. If correlation is present in

the data the effective sample size of the dataset will decrease, and hence the

size of the errors corresponding to model parameters estimated from that dataset

will increase. Giannitrapani et al. (2005) discuss an approach to incorporating

correlation into additive models through adjusting the model fitting procedure,

but note that the main impacts of correlation are in the calculation of standard

errors and in model comparisons. McMullan et al. (2007) explores the use of the

standard non-parametric regression models, which represent valid estimates even

in the presence of correlated data, and subsequently adjust the standard errors for

correlation. Giannitrapani et al. (2005) states that the residual sums of squares

given in Equation 1.20 and 1.19 can be adjusted for correlated errors as follows;

RSS = yT (In − S)TV −1(In − S)y (1.25)

dferr = tr{(In − S)TV −1(In − S)V }

= n− tr(ST + V −1SV − STV −1SV ) (1.26)

Where V denotes a correlation matrix. In practice, V is unknown and so it is

necessary to estimate the correlation structure using the residuals from the model

which assumes the observations are independent and identify a suitable structure

for the error component, for example, an AR(1) process. In this thesis, for non-

parametric regression models that have been fitted using the kernel smoothing

techniques discussed above, temporal correlation, if present, has been incorporated

by adjusting the standard errors and using the modified degrees of freedom and

residual sum of squares shown in Equations 1.25 and 1.26.

For spline smoothing approaches, the residual sum of squares can also be

adjusted to incorporate correlation. Letting Σ denote the variance-covariance

matrix, then the least squares criterion in Equation 1.15 can be extended to deal
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with correlation in the residual sum of squares as below,

RSS(c|y) = (y − Φc)TΣ−1(y − Φc)

Setting Σ to be the identity matrix I produces the standard residual sums of

squares equation. Conversely, letting Σ−1 be any other positive definite symmetric

weight matrix W results in weighted least squares.

1.4.2 Non-constant Variance

It is common that preliminary analysis for many environmental variables will indi-

cate that the distribution of the data is positively skewed, or that the variability of

the determinand across the time period is not stable. Consequently many variables

are often natural log transformed either to stabilize the variability or to satisfy

parametric test assumptions which require that the data are normally distributed.

It is worth noting that there are several reasons why the data could be skewed

other than the possibility that they have arisen from an underlying log normal

distribution. For example, the presence of one or more outliers and bimodality

could influence the calculation of the mean and the symmetry of the distribution.

In addition, what appears to be a change in the variability of the data over time

could, in practice, be due to a change in the limits of detection, or could be a due

to a change in the seasonal pattern over time. The suitability of the log-normal

distribution is discussed both in Singh et al. (2007), with reference to its use in

general environmental contexts, and in Chalwa and Hunter (2005) which is specif-

ically related to its use as a basis for classification of bathing waters. Chalwa and

Hunter (2005) considered using parametric percentile values to assess the classifi-

cation of Irish bathing water sites and concluded that using this method to gauge

compliance was statistically unreliable due to failure of the log-normality assump-

tion at many beaches. This suggests that the need for a log-normal transformation

should be carefully considered in combination with other aspects of the data and

should not be applied as a matter of course.

1.4.3 Missing Data

Several standard statistical techniques that have been designed to analyse ecolog-

ical data require observations to be collected, at regularly spaced time intervals
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with no gaps. For example, when computing the ACF it is assumed the data are

equally spaced and that there are no missing observations. However, in practice it

is unlikely that data will be complete, and missing data are commonplace, mean-

ing that strategies for dealing with missing data often need to be employed before

any analysis can be carried out.

There are several reasons why data may be missing and the ‘Missing Data

Mechanism’ (Rubin, 1976) describes the mechanism by which missing data may

have arisen. The mechanism in operation is dependent on whether or not there is

a link between the missingness and the underlying values in the dataset. There

are three main Missing Data Mechanisms;

• Missing Completely at Random (MCAR), where the probability of a value

being missing is unrelated to either the observed or unobserved elements of

the data.

• Missing at Random (MAR), where the probability of a value being missing

may be related to the observed elements of the data but not to the unob-

served elements of the data.

• Not Missing at Random (NMAR), where the actual mechanism which caused

the missing data is systematic and informative and hence has to be examined

and modelled appropriately.

It is important, is possible, to determine the mechanism which is relevant

to any missing data in a statistical analysis as the approach to analysing the

data may differ depending on the this. However, while there are a number of

potential reasons as to why data are missing, in situations where the underlying

ecological system is complex the nature of every missing observation often cannot

be determined. In the sampling of environmental data it is becoming increasingly

common for monitoring calendars to be established in advance of any monitoring

season but adverse weather events can mean sites are inaccessible which prevents

samples being collected, particularly in the winter months. Another potential

source of missing data is failure of scientific equipment used to analyse samples and

samples becoming lost or damaged in transit. It is often the case that monitoring

networks change in size throughout time and additional stations entering a network

can cause problems due to differences in the quantity of data available at different

locations.



Introduction 31

There are numerous missing data techniques (Little and Rubin, 1987) the ma-

jority of which are designed to impute values in place of the missing observations,

creating the regularly spaced datasets which are necessary for the application of

traditional methods of statistical analysis. In general, approaches for dealing with

missing data can be split into two broad categories; single imputation, where one

value is generated in place of each missing value and multiple imputation, where

several values are generated for each missing value. Multiple imputation aims to

reflect the uncertainty associated with the missing values however Plaia and Bondi

(2006) states that single imputation methods have the advantage of only having to

generate one value for each missing observation and mean that standard complete

data analysis techniques can be applied directly after the missing data values are

in place.

Engels and Diehr (2003) discuss several approaches for dealing with missing

data in longitudinal studies. One method considered is the ‘last observation car-

ried forward, next observation carried backward’. This essentially means for each

individual the missing value is replaced with an interpolated or average value of

the preceding and successive known value. While this method is somewhat ad hoc,

it is easy to implement and was found by Engels and Diehr (2003) to be highly

effective, particularly if there is a strong individual specific component to the data.

An assessment of single imputation methods in the context of environmental data

is provided in Plaia and Bondi (2006). Here, the authors use information from

both the site, and the time point where the observation is missing to simulate an

appropriate replacement value and provide an application of the method to air

pollutant concentrations.

1.4.4 Limits of Detection

In the analysis of environmental data, problems can occur with some samples due

to the equipment used to take measurements. Scientific equipment often has satu-

ration levels either above, or below which the exact quantity cannot be confirmed.

The levels above or below which it is not possible to determine the exact value are

known as limits of detection (LOD) and there is some question as to how to treat

these values, which are effectively right or left censored observations. SEPA in-

clude half the stated LOD value in any analysis, however this is just one approach

for dealing with this issue. Clearly, it would invalidate any conclusions reached to
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simply ignore values which are affected by limits of detection and analysis must

take them into account. Eastoe et al. (2006) investigated different ways of han-

dling censored observations in an environmental context concerning air pollutants

and indicated that it was necessary to incorporate censored observations in any

analysis rather than ignoring them altogether. On the other hand, Helsel (1990)

advises against the method of simply substituting non-detect observations with a

nominal fixed constant.

Changes in the limits of detection due to the introduction of new, more sen-

sitive scientific equipment can also introduce problems. For example, a reduction

in the limit of detection may not only falsely indicate there is a trend in the data,

but could also give the appearance of a change in the seasonal pattern over time.

If relatively low values of a particular determinand occur in the warmer spring and

summer months then this is the time when values are most likely to be recorded

below detection limits. An increase in the minimum recorded values in the summer

months across the time period could be determined as a change in the seasonal

pattern across the years, when in reality, this is just a further by-product of chang-

ing limits of detection. This re-enforces the importance of taking these censored

values into account.

Three possible statistical methods that can be used for the analysis of datasets

which include left censored observations are described briefly below. The general

idea behind each of the methods is to estimate summary statistics for the distri-

bution of the data which takes into account the censored observations which are

present. Using this estimated distribution, values are simulated, subject to the

constraint that they fall below the stated limit of detection values. The values

which are generated are subsequently imputed in place of the censored observa-

tions.

Kaplan-Meier Estimator

This is a non-parametric method which is often used in survival analysis for esti-

mating the summary statistics for data where there are right censored observations.

It can also be applied to data where there are left censored observations by ‘flip-

ping’ the data and subtracting them from a fixed constant. Using this estimator

in this way, in the context of non-detects, was first suggested in Helsel (1990)



Introduction 33

The Kaplan-Meier estimator estimates the survival function, which maps the

probability that observations will survive onto time. In the context of survival

analysis the Kaplan-Meier estimator estimates the probability that observations

will survive beyond certain time points and this can be translated into the context

of left censored observations as being the probability that observations will fall

below the limits of detection. Summary statistics of this distribution, which by its

definition takes into account the loss of information from limit of detection values,

can then be found. Helsel (2005) recommends using this non-parametric estimator

in situations where there are less than 50% censored observations and more than

50 observations to estimate the summary data. As well as not requiring any

distributional assumptions, an additional benefit of the Kaplan-Meier estimator is

that it is suitable where there are multiple detection limits as there often are in

water quality data.

Maximum-Likelihood Estimator

This is a parametric method which requires the specification of a distribution which

is a close fit to the observed data. The parameter estimates obtained describe a

distribution with the maximum likelihood of producing a dataset with the observed

detected values and the proportion of censored data which falls below each of the

stated detection limits.

One of the potential problems of this approach arises if the distribution of the

data is poorly specified. In this case the maximum likelihood estimator approach

can produce estimates which are incorrect. When the data are thought to have

arisen from a log-normal distribution logarithms of the raw data are taken and

a Normal distribution is specified so that maximum likelihood procedures can

be used. As stated in Shumway et al. (2002) this can cause problems since the

parameter estimates produced using this method are on the log-transformed scale

and process of back-transforming can potentially produce estimators that are quite

severely biased due to the non-linear relationship between the different scales.

Regression on Order Statistics (ROS)

This is a semi-parametric method for computing summary statistics of a distri-

bution where there are left censored non-detect data. Shumway et al. (2002)
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assessed this method and stated it was a reliable approach to take when deal-

ing with data where there are values which are marked as being at the limit of

detection. Within this method, left censored observations are modelled using a

linear regression model of the observed un-censored values against their normal

quantiles. A brief description of the ROS method is provided below, notation has

been taken from Shumway et al. (2002).

Suppose there are n0 observations yi, i = 1, . . . , n0(log transformed or oth-

erwise) which are below the limit of detection U and n1 observations yi, i =

n0 + 1, . . . , n0 + n1 which are above U . Assuming these observations are inde-

pendent and normally distributed with mean µ and variance σ2 then the mean

and variance will satisfy the equation

yi = µ+ σΦ−1(Pi) (1.27)

where Pi = Prob{Yi < yi} and Φ−1 denotes the inverse of the cumulative normal

distribution. Applying a linear regression to the normal scores for the complete

case observations would then enable the mean and variance of the observations to

be obtained. Shumway et al. (2002) state that the accepted procedure is to replace

the probabilities by the adjusted ranks in Equation 1.27 so that the regression

equation becomes

yi = µ+ σΦ−1
(
i− 3/8

n+ 1/2

)
+ εi (1.28)

where i = n0 + 1, . . . , n0 + n1 and the errors, εi, are assumed to be independent

and and have equal variance. The estimates of µ and σ can be obtained using

least squares. Using Equation 1.28 predicted values can be obtained for observa-

tions yi where i = 1, . . . , n0. If a transformation has been applied, the set of all

observations (uncensored and predicted) can be back-transformed and the mean

and variance can be worked out on the original scale.

Similarly to the Maximum-Likelihood estimator approach to determining ap-

propriate summary statistics, there is some concern over the correct specification

of the distribution of the response variable. The ROS method requires the same

key assumptions as linear regression; that the response is a linear function of the

explanatory variable or variables, and that the variance is constant. However, it

is extremely common in environmental contexts that the variables of interest are

skewed and, as a result of this, a log transform of the data is often taken prior to
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application of the ROS method. Helsel (2005) recommends this method for use

where there are up to 80% of observations listed as non-detects.

Throughout this thesis the ROS method will be used to impute suitable values

for observations which have been affected by limit of detection issues. The ROS

method has been applied using the NADA (L., 2012) package in R.



Introduction 36

1.4.5 Statistical Power

It is of great importance to ensure that any statistical analysis is based on a

quantity of data that is sufficient to achieve an acceptable level of statistical power.

The power of a statistical test is defined as 1 − β where β is the probability of

making a type II error. A type II error is the probability of not detecting a

difference or change which does in fact exist. In addition, the statistical size of

the test, known as type I error, can be defined as the probability of identifying

a difference or change which does not exist. While focus is often placed on the

statistical size and the type I error is commonly set as 5%, both of these error

rates have to be considered. A high statistical power is meaningless when the

size of the test is also high as this indicates, for example, that a trend could

be detected, both when there is a true underlying pattern, and when there is

no relationship. These quantities have to be taken into account when designing

any monitoring programme to ensure reliable interpretation of the results of any

subsequent analysis. Further discussion of the power of environmental monitoring

programmes is presented in Chapter 2.

1.5 Aims and Objectives

The principal aim of this thesis is to use and develop statistical analysis to in-

vestigate commonly used environmental monitoring networks so that the design

and implementation of future networks can be made as effective and cost efficient

as possible. Using data which have been provided by SEPA, rivers and lake data

and a range of determinands will be considered in order to explore water quality

monitoring in Scotland. The importance of understanding changes in water en-

vironments, combined with the mandatory classification of water bodies required

by policy, motivates the key objectives of this thesis. These objectives include;

1. To investigate, via the development and implementation of a simulation

study, the statistical power of several common sampling schemes;

2. To explore the current group structure used by SEPA for classification of

standing waters and to assess how well existing SEPA groups capture dif-

ferences between the lakes in terms of several chemical variables which are

used for WFD classification;
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3. To explore the effects of autocorrelation on our ability to distinguish between

groups of lakes;

4. To investigate and develop alternative statistical approaches for grouping

observed chemistry data based on the temporal dynamics of the variables of

interest;

5. To explore and develop statistical techniques to group different types of water

bodies.



Chapter 2

Assessing Statistical Power to

Detect Change

It is of importance to ensure that any environmental monitoring programme which

is implemented can lead to meaningful results. As well as societal pressure to doc-

ument changes in environmental indicator variables, there are increased legislative

requirements and, under the WFD, regulatory agencies need to indicate the level of

confidence and precision of the results provided by their monitoring programmes.

The necessity for meaningful and considered sampling programmes, that have a

sufficient level of statistical power to detect underlying changes is widely acknowl-

edged in the literature (Nicholson and Fryer, 1992 Field et al., 2007, Legg and

Nagy, 2006). Legg and Nagy (2006) claim that the results of inadequate monitor-

ing can be both misleading and dangerous, not only because of their inability to

detect ecologically significant change, but also because they can create the illusion

that improvements are working when they are in reality having little effect. This

in turn can result in an inefficient use of financial resources, which are becoming

increasingly limited.

Field et al. (2007) states that obtaining adequate statistical power is the cor-

nerstone of any rigorous monitoring programme and clearly the designers of en-

vironmental monitoring programmes want to achieve as high a level of statistical

power as possible. Although a high statistical power is desired, there is an obvious

trade off with the level of statistical power of a sampling programme and the Type

I error rate. The Type I error rate is usually fixed at 5% and so it is important

to ensure that with this statistical size fixed, a satisfactory level of power is also

38
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achieved. In addition to the relationship between statistical power and statistical

size, there are several factors which affect power to detect trend such as sampling

variability, sampling frequency, the effect size and the presence and strength of

autocorrelation in the data. Although some of these factors are an inherent part

of the system under study there are practical constraints such as budget and time

considerations which dictate how many samples are collected.

There are a number of existing studies in the literature which explore the

power of environmental sampling programmes. For example, Gerrodette (1987)

investigates methods for calculating the power of detecting linear and exponential

growth and decline in animal populations, while Di Stefano (2001) considers ways

in which power analysis can be incorporated into monitoring programmes used

in the context of forest management. Further to this, Keizer-Vlek et al. (2012)

attempts to quantify spatial and temporal variation in macroinvertebrates in lakes

in the Netherlands via the implementation of a simulation study. The authors

calculate the number of sites required to detect a relatively large change in the

frequency of collection of individual species. A slightly different approach is taken

by Howden et al. (2011) who investigate the length of time series required to

detect changes in water quality parameters, including dissolved organic carbon

and nitrate, by subsampling from an existing long-term dataset and calculating

the length of time series required to detect the known underlying trend in the

data.

Another example where a simulation study is used to calculate power to detect

change is provided in Field et al. (2005). Here the authors employ a simulation

study in order to investigate statistical power of a monitoring programme to mea-

sure occupancy of species in a landscape. The magnitude of a linear decline over

time was fixed and subsequently the effect of both different numbers of sampling

sites, and different numbers of visits to each site on the statistical power to detect

this change was explored. Only linear trends were considered in this example and

it was assumed there was no spatial or temporal correlation in the data. It is

noted by Nicholson and Fryer (1992) that in contaminant monitoring the changes

of interest are not necessarily linear and that there is often no straightforward way

to assess power when the change over time is non-linear.

It is the aim of this Chapter to first consider the type of features which are

common in existing water quality time series that are used to compute WFD
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classification, and then to investigate the power to detect different forms of under-

lying change in similar time series under a range of different sampling and data

conditions.

2.1 Case Study

In order to obtain some background of the type of features commonly seen in

available water quality data, a set of observations from three Scottish lakes was

considered. The aim of this exploratory analysis was to look at typical features

of existing time series for water quality variables that are of the most interest in

the context of monitoring standing waters within the Water Framework Direc-

tive. Total Phosphorus (TP) and orthophosphate (OP) measurements, both in

milligrams per litre (mg/l) were available for Loch Voil, Linlithgow Loch and Lake

of Menteith. The locations of these three sites are shown on a map of Scotland in

Figure 2.1. Each of these sites was selected as a case study site for this analysis

due to the length of time series available. At Loch Voil and Lake of Menteith

the data covers a 25 year period from 1984 to 2008, although at Linlithgow Loch

the data covers a shorter period of 16 years from 1993 to 2008. The estimates

obtained will be used as the basis of the simulation study discussed later in the

Chapter, to investigate power to detect long-term change. The analysis for each

lake is primarily an illustrative one, and so only selected results will be shown to

demonstrate key characteristics of environmental data.

Table 2.1 contains the number of samples available for each of the determinands

at the three sites and the percentage of samples which are marked as being at the

limit of detection. As can be seen, OP measurements at Loch Voil were severely

affected by limit of detection problems, with over half of all recorded sample values

falling below the detection limits. For this reason the OP measurements at Loch

Voil were not considered any further. All other sites and variables were either

unaffected, or had only a small percentage of observations marked as being at the

limits of detection and hence any of the observations identified as being below

the detection limits were imputed using the regression on order statistics method

described in Section 1.4.4.



Assessing Environmental Change 41

Figure 2.1: Map of Scotland showing location of Lake of Menteith, Loch Voil
and Linlithgow Loch

OP OP LOD TP TP LOD

Linlithgow 202 7.4%(15) 220 0%
Menteith 239 10.4%(24) 241 0%
Voil 177 56.5%(100) 152 2.6% (4)

Table 2.1: Summary of available orthophosphate (OP) and total phosphorus
(TP) data at Scottish lakes

Distribution of TP and OP

As with many environmental variables, initial plots of the distributions of TP and

OP indicated that a transformation was required and that a natural log transfor-

mation was necessary to stabilize the variance of the values. Figure 2.2 shows a

boxplot, histogram and normal Q-Q plot for the original TP sample values. It can

be seen from this that the distribution of the data are highly skewed and there is a

high level of curvature in the Q-Q plot obtained. This indicates that the data are

not normally distributed. Figure 2.3 displays the same data, but this time using

the natural log transformed TP levels. The variance has clearly been stabilized by

the use of the log transformation as the spread of the data is far more symmetric

around the mean value. It can also be seen that after log transforming the data
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there is a much greater level of agreement between the data and the theoretical

distribution under the assumption of normality. This can be seen in both the his-

togram and the normal Q-Q plot of the logged values. For this reason, all further

simulations and analysis in this Chapter will be based on log transformed values.

Figure 2.2: Distribution of TP(mg/L) at Linlithgow Loch

Figure 2.3: Distribution of log(TP, mg/l) at Linlithgow Loch

Seasonal patterns

To identify seasonality in the lakes data, two exploratory plots were produced. The

first of these was a plot of the log transformed values against the month of year.

Secondly, a set of boxplots for the data against month of year was also considered

to examine the distribution of the samples within each month. The plots for TP

at Linlithgow Loch are shown in Figure 2.4.
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For the seasonal scatterplot shown in Figure 2.4(a), a loess smoothed fit was

included in red to indicate the general pattern across the years and the pattern

within each year. From this scatterplot there does appear to be a strong seasonal

pattern present across each year. There is a clear change in the levels of TP

throughout the year with the lowest values being recorded in the late spring and

early summer months and the highest values in the autumn and winter months.

The monthly seasonal pattern is also evident from boxplots of the TP levels at

Linlithgow Loch for each month of the year shown in Figure 2.4(b). In addition,

it can be seen here that the variance across the months appears to be reasonably

constant. The presence and strength of this seasonal component within the TP

data at Linlithgow indicated that it is necessary to include a seasonal component

within our simulations in order to reflect the real data situation.

(a) (b)

Figure 2.4: Plot of log(TP, mg/l) vs. month (a) and monthly distribution of
TP (b) at Linlithgow Loch

Trends

Figure 2.5 displays plots of natural log transformed OP (mg/l) against time at

Linlithgow Loch (a) and Lake of Menteith (b). A loess line has been added in

red to indicate the general form of the trend over time. At Linlithgow Loch there

appears to be a linear trend over time, while the form of trend at Lake of Menteith

is less clear. Although non-linear trends are often suitable, in view of Figure 2.5

(a) it was thought that a parametric model should be fitted in order to assess if
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(a) (b)

Figure 2.5: Plot of log(OP, mg/l) at Linlithgow Loch (a) and Lake of Menteith
(b) with loess line to indicate trend

there is any linear trend present in the data. This model was of the form

yt = µ+ βxt + γcos

(
2πmontht − φ

12

)
+ εt (2.1)

where εt ∼ N(0, σ2)

The parameter β gives an estimate of the size of linear trend in the data while

the trigonometric term is used to model the seasonal pattern. The phase of the

seasonal pattern is represented by φ while the parameter γ represents the ampli-

tude of the seasonal pattern. Month is the month of the year (1-12) and the time

corresponding to observation t is denoted by xt and included in decimal year form

which has been calculated using the formula ‘year +
(
month−1

12

)
’. While the model

given in Equation 2.1 is nonlinear, it can be expanded to be written as;

yt = µ+ βxt + γasin

(
2πmontht

12

)
+ γbcos

(
2πmontht

12

)
+ εt (2.2)

where εt ∼ N(0, σ2)

Here γa and γb give an estimate of the parameters related to the seasonal pattern

over time. An estimate of the amount of variability in the data was obtained by

calculating the estimated variance of the fitted model residuals. Although this

model assumes that the errors are independent, the error term can be modified to

account for correlation as described in Section 1.4.1.
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Figure 2.6 (a) shows a time series plot of log OP concentrations at Linlithgow

Loch with a loess smooth function shown in red to indicate the general form of

the trend. It can be seen that there appears to be a small decrease in log OP

concentrations over the time period of interest. A linear model of the form shown

in Equation 2.2 was fitted to the data and is shown in Figure 2.6(b). The parameter

β was estimated to be -0.04 and was found to be statistically significant at a 5%

significance level.

In addition to the linear model described in Equation 2.2, non-parametric

models such as those described in Section 1.3.2 can be used. The model described

in Equation 1.3 can be used to see if there is any general form of smooth trend over

time while the additive model shown in Equation 1.7 can be used to investigate a

non-parametric trend and a constant seasonal signal. The bivariate model shown in

Equation 1.5 can be used to investigate if there is a smooth, non-parametric trend

and a seasonal component which can change over the time period considered. A

time series plot for log OP concentrations at Lake of Menteith is shown in Figure

2.7(a). It is the clear that seasonal pattern was not as strong as at Linlithgow

and the form of trend does not appear to be linear. In addition, although any

observations which have been marked as being at the limits of detection have

been imputed using the regression on order statistics methods, there appears to

be several observations at the same value. It is thought this could be due to

observations being rounded. A local linear regression model of the form shown in

Equation 1.3 was fitted to the OP data at Lake of Menteith using the sm.regression

package in R (Bowman and Azzalini, 2010). A hypotheses test was carried out

to test the null hypothesis that there is no relationship between log OP and time

at this site, against the alternative that there is some smooth relationship. A

similar test was then performed to assess if the relationship was linear or non-

parametric. The p-values for these tests indicated that there was a relationship

between LOG OP and time at Lake of Menteith and that the relationship was

non-linear. Figure 2.7(b) again shows the log OP values plotted against time,

with the estimated local linear regression shown in red and a blue reference band

which corresponds to the null hypothesis that the trend in OP over time is linear.

The shape of the local linear regression model suggests that there is an initial

decrease in OP concentrations at Lake of Menteith, which levels off and remains

reasonably constant over the following years.
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(a) (b)

Figure 2.6: Plots of log(OP) at Linlithgow Loch with loess smooth (a) and
with fitted linear model (Equation 2.2) (b)

(a) (b)

Figure 2.7: Plots of log(OP) at Lake of Menteith with loess smooth (a) and
with fitted non-linear model (Equation 1.3) (b)
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Correlation

In addition to investigating trends and seasonal patterns another feature that is

of interest is the presence and strength of correlation in the data. The samples

from the lakes considered here were, in general, collected at monthly or two month

intervals, meaning that almost all samples were more than two weeks apart. Ex-

ploratory analysis of the TP data at Linlithgow Loch was carried out to investigate

if there was any evidence of autocorrelation. To assess the dependence in the data,

the autocorrelation function (ACF) was computed for log(TP ). Prior to calculat-

ing the ACF, the data were first deseasonalised by fitting a linear model to the

data with the terms cos 2πmontht
12

and sin 2πmontht
12

where month is the month of the

year (1-12). It was thought that fitting these two terms would account for the

seasonal component in the data and so subtracting the fitted model values from

the original observations would remove the seasonal pattern.

(a) (b)

Figure 2.8: ACF plots for log TP at Linlithgow Loch with lag in months

Figure 2.8 shows the ACF for both the original log(TP) series and the desea-

sonalised log(TP) series at Linlithgow. From Figure 2.8(a) the seasonal pattern

present in the original series can be clearly identified. While the signal is much

weaker in the ACF of the deseasonalised data series, shown in Figure 2.8(b), there

remains some form of underlying structure in the data which has not be captured

by the fitted model. Although there is little evidence of any strong temporal corre-

lation in the deseasonalised data, there continues to be a systematic pattern which

means the correlation at certain lags lie outwith the confidence bands. This could

be an indication that there is a change in the seasonal pattern over time; a feature
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which has not been accounted for by fitting the linear model which assumes a

constant within-year pattern across the period (Equation 1.7).

Similar ACF plots were produced for the parameters at the other sites and,

although not shown, several of the ACFs produced indicated that there was a

low level of autocorrelation present in the errors after the seasonal component

had been removed by fitting a linear model. To investigate the strength of the

autocorrelation in the errors a linear regression model was fitted to the residuals of

the model containing the seasonal terms cos
(
2πmontht

12

)
and sin

(
2πmontht

12

)
, denoted

ri. An AR(1) error structure was assumed and a simple linear model of the form

ri = α + βri−1, where i = 1, ..., n was fitted. A significant slope in this model

provides evidence of a linear relationship between consecutive residuals and hence

that there is autocorrelation present. Typical values of first order correlation

coefficients between monthly observations ranged from approximately 0.2 to 0.4.

Summary of Exploratory Analysis

The initial analysis of the available OP and TP data at the Scottish sites revealed

that there are a wide range of features which need to be taken into account in

the design of a simulation study to explore the power to detect change over time.

Both linear and non-linear patterns over time were detected at the case study

sites and so it is likely that a wide range of such trends would be encountered in

an environmental context. While it was clear that at some sites there were clear

seasonal signals present, it was also noted that there may be some evidence that

seasonal patterns may change over time. It is possible that changes in seasonal

patterns are often mistaken as changes in the variability of an underlying system

and so statistical power to detect changes in the seasonal signal over time under

different sampling conditions will also be considered. The parameters estimated

from the models fitted to the Scottish lakes will be used within the simulation in

order to provide some indication as to sensible values for the magnitude of trend,

variation and correlation in real datasets.
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2.2 Simulation Study

A large simulation study was designed and implemented in order to investigate

the effectiveness of different sampling strategies and how different sampling de-

signs affect the statistical power of detecting long-term changes in water quality.

The overall aim of the simulation study was to answer questions regarding how

many samples chemical classification of standing waters should be based upon.

The simulations attempt to mimic real data by incorporating common features of

environmental data, such as changing variability, seasonality and autocorrelation.

It is of interest to assess the effect of different data scenarios, changing both the

structure of the underlying data and the sampling scheme, on our ability to de-

tect long-term change. Our primary interest is to explore how the application of

different sampling frames (sampling plans which vary both in length of time series

and sampling frequency) will affect our ability to detect an underlying change in

the data. Three broad simulation scenarios which will be considered within this

study are;

1. Power to detect fixed linear trend

2. Power to detect non-linear trend

3. Power to detect a non-constant seasonal pattern

Figure 2.9: Shapes of underlying models used to simulate data for each of the
three simulation scenarios considered

Figure 2.9 shows the general shapes of each of the three underlying models

from which we will simulate our data. The models used to simulate the data in

each of these scenarios will be discussed later in more detail. Within each of these

scenarios the effects of varying the following features was explored;
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• magnitude of trend/pattern

• variability

• strength of correlation

For the non-constant seasonal component simulation, the effects of changing

the amplitude of the underlying seasonal pattern were investigated.

As mentioned previously, the empirical power is used to assess the effectiveness

of the different sampling strategies explored. The power of the simulation is the

probability of detecting a trend or pattern in the subsets of sampled data, given

that one exists in the underlying dataset from which the samples were taken.

The simulation study will provide a prospective analysis of the power of different

sampling schemes, and how the changing features of underlying models affects our

ability to detect different forms of change in the data.

2.2.1 Simulation Procedure

For each of the three different simulation scenarios considered, the underlying

models used to simulate the data, and the subsequent models fitted to the sampled

data, will be changed, while the general procedure for simulation is the same

throughout. The simulation procedure used was as follows;

• For each scenario, a large daily dataset was simulated from the corresponding

model. Initial model parameters were estimated using existing data provided

by SEPA for Scottish lakes as discussed in the previous section. No error

term was added to the simulated data at this stage.

• Different sampling frames were then applied. Both the sampling frequency

within each year, as well as the length of period over which sampling was

carried out were varied. The sampling dates within each time unit (week,

month, year etc.) were selected at random using a suitable uniform distri-

bution.

• After the sampling frames are created and the relevant samples selected from

the daily dataset, suitable error terms were generated using an AR(1) process

in combination with the value for the error variance, and the value for the

correlation coefficient. These errors were then added to the simulated values.
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• For each combination of model conditions considered (e.g. slope, variability,

correlation) and sampling conditions (e.g. sampling frequency, length of time

series) 500 simulations were generated.

• To each sampled subset, appropriate models were fitted to assess whether or

not the change over time could be detected. The types of model fitted were

determined by what the feature of interest was (e.g. linear trend, non-linear

trend or change in the seasonal component over time)

• The empirical power of detecting a change over time for each combination

of conditions considered was subsequently calculated using the 500 fitted

models where the significance level was set to 5%.

• The statistical size (the probability of detecting a change over time when

there is no underlying change present) was also calculated for each set of 500

fitted models.

Where possible, existing data were used to set the model parameters used in

the simulations. The error term is added on to the simulated data after the sample

dates have been generated so that an appropriate correlation structure is present

in the simulated data.

Figure 2.10 shows an example of a simulated daily error with an AR(1) struc-

ture where the correlation coefficient ρ = 0.4. Although there is a correlation in

the error at a daily level, due to the exponential decay of an AR(1) term it is

unlikely that correlation in the data will be detected when the sampling frequency

is weekly or less frequently. To illustrate this, Figure 2.11 shows a set of ACF

plots corresponding to weekly, fortnightly and monthly sampled data from the

set of data where there is a daily AR(1) error term. None of the plots shown in

Figure 2.11 suggest there is any evidence of statistically significant correlation in

the underlying data at these sampling frequencies. The finding that if there is

daily correlation present, it cannot be detected under sampling frequencies which

are weekly or less frequently, agrees with the statement of van Belle and Hughes

(1984).

Water quality data of the type of interest here are rarely available at a daily

level, and moderate levels of correlation are often observed from data which are

collected at a weekly, fortnightly or even monthly frequency. Morton and Hen-

derson (2008) found that monthly samples of stream electrical conductivity had a
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Figure 2.10: ACF of daily data with an AR(1) error component

Figure 2.11: ACF of sampled data with AR(1) error component

first order autocorrelation structure where the correlation coefficient was greater

than 0.5. In addition, Ferguson et al. (2007) also found there to be statistically

significant autocorrelation between monthly data in a study of lake water quality

determinands at Loch Leven in Scotland. In order to reflect the real life situa-

tion, it is assumed our ‘collected’ samples have correlation which follows an AR(1)

structure, rather than the underlying daily dataset.

2.2.2 Sampling Conditions

Currently, SEPA aim to sample standing waters either monthly, or 6 times a

year, and so both of these sampling frequencies are considered within this study.

However, in addition to these frequencies, it is also of interest to consider weekly,
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fortnightly and annual sampling designs, to see the effect this would have on our

power to detect the underlying changes. While it is highly unlikely that SEPA

will increase sampling frequency at standing waters in the near future, it is useful

to include these more ‘extreme’ sampling frequencies as it enables comparisons

to be made between the power achieved for these sampling designs - almost as

a ‘best case scenario’ - and those which are currently used. This could not only

allow us to potentially quantify any additional benefits of taking more samples in

terms of power to detect change, rather than financial cost, but furthermore could

potentially justify the use of less frequent sampling strategies that are presently

employed. Different lengths of time series of samples were considered, starting

at a minimum length of 5 years and ranging to a maximum length of 30 years.

It was thought 5 years of data would be the minimum length of time that was

required to ensure there were a sufficient number of samples on which to fit suitable

models, particularly given some of the lower sampling frequencies which were being

investigated. The upper limit was set as 30 years as this was thought to be, in

general, around the maximum length of time for which there are water monitoring

data records available.

Within our simulation, sampling frames are designed so that the sample date

within each time unit, for example, each week, month or year, is randomly selected.

This ensures that our data is as close to real life as possible since SEPA do not

monitor at regular, equally spaced time intervals but instead, the dates the samples

are collected on can be dependent on a variety of conditions including availability

of staff, adverse weather and physical access to the sampling location. In the

simulations to assess the effects of temporal correlation between samples on power

to detect change only monthly, weekly and fortnightly sampling frequencies will

be investigated. It is of interest to assess how temporal correlation in the data will

affect our ability to detect long-term change since independent observations over

time, particularly those recorded on a daily basis rarely occur in environmental

settings due to the lagged effects of confounding variables such as temperature

and rainfall.
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2.3 Scenario 1 - Fixed Linear Trend

The first simulation scenario considers the simplest situation, where the underling

trend in the data is linear and constant throughout the time period being consid-

ered. For the fixed linear case, a large daily dataset was simulated using models

of the form described in Equation 2.3;

yt = µ+ βxt + γcos

(
2πdoyt − φ

365

)
+ εt

yt = µ+ βxt + γasin

(
2πdoyt

365

)
+ γbcos

(
2πdoyt

365

)
+ εt (2.3)

where εt = (ε1, ε2, ..., εn) ∼ N(0, σ2V )

for t = 2, ..., n , εt = ρεt−1 + Zt and Zt ∼ N(0, 1)

Here t = 1, 2, ..., n are the daily observations, doyt is the of day of year for

observation t and xt is the time corresponding to observation t in decimal year

which has been calculated using the formula year +
(
doy−1
365

)
. The values for µ, γa

and γb were based on estimates from the models fitted to existing TP and OP data

and remained fixed throughout each of the different simulations. While initial

estimates for the trend, β, and the variability, σ, were also obtained from existing

data their values were varied throughout simulations. First order auto-regressive

models were used in order to allow for correlated observations. This enabled

the number of occasions where a statistically significant trend was detected in

the presence of correlation to be investigated. In order to generate independent

observations, the same model and error structure was used with the covariance

matrix, denoted by V , set to be In (the n× n identity matrix) and ρ set at 0.

Although initial estimates for the model parameters had been obtained from

existing data, a range of other suitable parameters were chosen around these values.

Table 2.2 contains a summary of each of the different conditions that were used in

this section of the simulation study. Model conditions were changed both in terms

of the underlying model from which the data were generated, and the sampling

frames that were then applied to this dataset.
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Data Conditions: Fixed Linear Trend

Number of simulations 500
Model Conditions

Form of trend linear
Magnitude of trend (β) -0.2, -0.1, -0.5, -0.025, 0
Variance (σ2) 0.1, 0.5, 1, 1.5
Correlation (ρ) 0, 0.2, 0.4, 0.6

Sampling Conditions

Sampling frequency annual, 6 times per year, monthly, fortnightly, weekly
Length of time series 5, 10, 15, 20, 25, 30 years
Sample Dates unequally spaced, generated from a relevant Un(0,a)

(a will be determined by specified sampling frequency)

Table 2.2: Conditions for Fixed Linear Trend Simulation

Figure 2.12 shows a set of plots which correspond to the four magnitudes

of trend considered in the fixed linear simulation. The red line in each figure

represents the underlying model from which data are sampled.

Figure 2.12: Examples of trends used in fixed linear simulation study

Assessing power to detect constant trend

After generating each set of sampling frames, they were subsequently applied to

the daily dataset and an appropriate error term was added to each simulated

data value. A linear model of the same structure as model described in Equation

2.3 was fitted to each subset of data that was sampled from the larger dataset.

Following this, each of the models fitted to the sampled data were tested to see

whether there were any statistically significant linear trends. This was carried out
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by testing the null hypothesis,

H0 : β = 0 against the alternative,

H1 : β 6= 0

This test was carried out using a 5% significance level.

2.3.1 Scenario 1 - Results

How does the magnitude of linear trend affect power?

Figure 2.13 shows a set of results which describe how the power to detect statis-

tically significant linear trends changes as the magnitude of the underlying effect

changes. Each of the panels from (b)-(e) represents a different trend value and

each line represents a different sampling frequency. Panel (a) shows the statistical

size of the simulation: the probability of detecting a trend when there is in fact

no trend present. A red dashed line has been included on panel (a) to indicate the

5% level. Panel (f) shows a key with the colours of lines used to represent each

sampling frequency. The same colour key will be used throughout the remain-

der of this Chapter to indicate the different sampling methods. The underlying

simulated dataset for all the results presented in Figure 2.13 (a)-(e) have a fixed

variance and the samples are uncorrelated.

From panel (a) it can be seen that the statistical is often larger than the

expected 5% level. This is in particular the case for annual sampling and highlights

that often when there are very few observations it is possible to detect a trend

when in fact there is no underlying pattern present. For all non-zero values of

trend it is clear that power increases as the length of time series increases, and

as the sampling frequency is increased. While this result is as expected, there are

some particular results corresponding to the lower sampling frequencies which are

important to note. Annual sampling performs poorly in terms of the level of power

achieved with all magnitudes of trend considered here. Even with the highest

effect size, which corresponds to a 20% decline in the simulated determinand each

year, between 15-20 years worth of samples are required before a power of 0.8 is

reached. In addition to concerns highlighted for annual sampling, another feature

worth noting is that for monthly sampling, which is the frequency currently used



Assessing Environmental Change 57

by SEPA for monitoring standing waters under the WFD, around 20 years of

samples are needed in order to detect a decline of 5% with a level of power which

is greater than 0.8. A reasonably small trend such as this may be of importance

in the context of contaminant monitoring.

It is clear from the results shown here that more than 5 years of data are

required to reach a level of power greater than 0.8 in most of the situations con-

sidered. Even with weekly sampling, when the underlying trend is very small, 15

years worth of data are required to detect a trend with a reasonable level of power.

How does variability affect power to detect a fixed linear trend?

In order to examine the effect of variability on power to detect change, the coeffi-

cient of variation, denoted throughout this Chapter as CV, will be used. This can

be defined as the ratio of the standard deviation to the mean and represents the

extent of variability in the data in relation to mean of the population.

Figure 2.14 shows the effect of different levels of variability on power to detect

a constant rate of change in the mean level of the simulated determinand. In the

results presented the underlying data are uncorrelated, and the trend is the same

for each value of the variability considered, corresponding to a 10% reduction in

the simulated determinand each year. Each panel represents a different variability

value, while each line represents a different sampling frequency as before. The

relative levels of variability in the data can be expressed as a percentage of the

sample mean using the coefficient of variation (CV). The values of the variability

and the corresponding CV values are presented in Table 2.3.

Variability Value CV

0.1 30%
0.5 70%
1 100%

1.5 120%

Table 2.3: Variation values and corresponding coefficients of variation (CV)
used within fixed linear trend simulation

As before, the results are as would have been expected, and clearly show

that the greater the level of variability, the lower the power to detect a fixed

linear trend. For weekly sampling, neither the length of time series, nor the level
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(a) (b)

(c) (d)

(e) (f)

Figure 2.13: Simulation results showing how power and statistical size is
affected by different magnitudes of linear trend
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of variability has much effect on the power to detect a constant decline in the

simulated determinand, and for all variation values the level of power achieved is

greater than 0.8. The effects of variability on power in this situation are greater at

the lower sampling frequencies. It can be seen from Figure 2.14 that when the CV

is 100% (σ2 = 1), around 25 years of annual samples are required before a power

of 0.8 is exceeded. Further to this, a time series in excess of 10 years of monthly

samples are required to reach an acceptable level of power, and for sampling 6

times per year more than 15 years worth of samples are required when the CV is

100%.

(a) (b)

(c) (d)

Figure 2.14: Simulation results showing how power to detect a fixed linear
trend is affected by different levels of variability

trend (β), var (σ2), rho (ρ)
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How does correlation affect power to detect a fixed linear trend?

Figure 2.15 shows the effects of four correlation values on the power to detect a

fixed linear trend which corresponds to a constant decline in the simulated deter-

minand of 10 percent per year. Each panel represents a different level of correlation

and each line represents a different sampling frequency. Variance values are fixed

at 1 throughout all results presented in Figure 2.15. This value corresponds to a

CV of 100%.

In general, it can be seen that as the strength of correlation increases, the

power to detect a linear trend decreases. However autocorrelation appears to

have a limited effect on power to detect a fixed linear trend when the sampling

frequency is weekly. For monthly and fortnightly sampling, 10 or 15 years worth

of data provide a level of power to detect a linear trend which is greater than

0.8 when there is a moderate level of correlation (ρ=0.4). If the correlation is

particularly strong (ρ=0.6), more than 20 years of samples are required. This

makes sense since the correlation present reduces the effective sample size, more

data points are required to reach the equivalent level of power for correlated data

than when the data are independent.

2.4 Scenario 2 - Non-Linear Trend

A similar simulation procedure to that carried out for the fixed linear trend was

used in order to assess the effects a non-linear trend would have on our ability

to detect a statistically significant change under different sampling conditions.

Again, the effects of strength of correlation in the data and magnitude of trend

will be explored. To simulate a dataset with a non-linear relationship between the

simulated determinand and time, a piecewise linear model which consists of three

distinct linear sections was used. Between sections, the size of the slope can be

different, however within each section there is a fixed linear slope. While, as before,

the slope coefficients, variance and lengths of the time series will be changed in

different simulations scenarios, the ratio of the lengths of the three sections will

be kept constant throughout in an attempt to preserve the general overall shape

of the model. The underlying model from which the data are simulated will

continue to include a constant seasonal component (fixed phase and amplitude
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(a) (b)

(c) (d)

Figure 2.15: Simulation results showing how power to detect a fixed linear
trend is affected by different strengths of autocorrelation

throughout) however, this feature of the data will not be taken into account when

fitting nonparametric models to sampled subsets.
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The model used to simulate the non-linear data is described below;

y1t = µ1 + β1xt + γasin

(
2π(doyt − θ)

365

)
+ γbcos

(
2π(doyt − θ)

365

)
+ ε1 (2.4)

where 0 ≤ t ≤ ti and ε1 = (εt1 , . . . , εti)

y2t = µ2 + β2xt + γasin

(
2π(doyt − θ)

365

)
+ γbcos

(
2π(doyt − θ)

365

)
+ ε2 (2.5)

where ti+1 ≤ t ≤ tj and ε2 = (εti+1, . . . , εtj)

y3t = µ3 + β3xt + γasin

(
2π(doyt − θ)

365
+ ε3t

)
γbcos

(
2π(doyt − θ)

365

)
+ ε3 (2.6)

where tj+1 ≤ t ≤ tn and ε3 = (εtj+1, . . . , εtn)

where 0 < i < j < n, i =
3n

10
and j =

8n

10
.

εm ∼ N(0, σ2
mV ) for m = 1, 2, 3 ,

εm = ρεm−1 + Zm and Zm ∼ N(0, 1)

Equations 2.4, 2.5 and 2.6 represent the equations of the linear segments. The

different intercept values for each line enables the line segments to be connected.

Here n is the number of years and t is the index of the daily observations, doyt is

the of day of year for observation t and xt is the time corresponding to observation

t in decimal year which has been calculated using the formula year + (doy−1)
365

. For

each of the simulations considered for the non-linear scenario i = 3n
10

and j = 8n
10

.

Figure 2.16 is an example of a 20-year simulated monthly dataset consisting

of three linear sections with a red line representing the underlying trend in each

of the sections. The underlying nonlinear pattern is strong, the variance is fixed

and the observations are uncorrelated. As well as the ratio of the section lengths

remaining constant across the time periods considered, the direction of trend,

variance and correlation remain the same in each of the models considered. The

green vertical lines on this plot indicate the end points of the linear sections which

there is a change in the trend. The first section has a negative linear trend, the

second section covers a longer period of time and has a smaller negative trend and

the third, shortest section has a positive trend. The reason for these choices is

that this represents a fairly typical pattern in environmental determinands such as

those of interest; where there has been a notable decline in the determinand in early
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years of monitoring, a smaller decline as time goes on, perhaps due to the effects of

measures of improvement which have been put in place, and finally a small increase

in recent years. This pattern is similar to the non-parametric trend in OP data at

Lake of Menteith which is shown in Figure 2.7(b). Table 2.4 below contains the

Figure 2.16: Example plot of simulated non-linear data (trend shown in red)
20 years of monthly observations.

different model and sampling conditions which were investigated within the non-

linear trend simulations. The trend model conditions are described in sets of three,

corresponding to the three linear sections which comprise the piecewise linear

model used to simulate the data. As with the fixed linear simulation, a maximum

of thirty years worth of daily values are generated. For each combination of model

conditions, 6 datasets are simulated corresponding to each of the 6 lengths of time

series considered. Following from this, from each of these datasets, 500 subsets are

sampled at different sampling frequencies and a model was fitted to each subset.

The three sets of trend values correspond to three approximate ‘strengths’

of non-linearity in the data. The set of trend values labelled D. in Table 2.4

is designed to represent a ‘strong’ level of non-linearity in the data, while C.

corresponds to a ‘moderate’ level, and B. corresponds to a ‘weak’ level. Set A.

corresponds to no pattern in the data, and is designed to estimate the statistical

size of the data, in terms of the ability of different sampling schemes to detect

a non-linear pattern over time. An example of the underlying models for each

of these non-linear trends is shown in 2.17. The red lines here represent the

underlying model from which data are sampled.
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Data Conditions: Non-linear Trend

Number of simulations 500
Model Conditions

Form of trend non-linear
piece-wise linear model (3 linear sections)

Ratio of Section Length 3:5:2
Magnitude of trend A.(0,0,0), B.(-0.2, -0.05, 0.1),

C.(-0.3, -0.1, 0.1), D.(-0.5, -0.1, 0.3)
Variance (σ2) 1.5, 1, 0.5, 0.1
Correlation (ρ) 0, 0.2, 0.4, 0.6

Sampling Conditions

Sampling frequency annual, 6 times per year, monthly, fortnightly, weekly
Length of time series 5, 10, 15, 20, 25, 30 years
Sample Dates unequally spaced, generated from a relevant Un(0,a)

(a will be determined by specified sampling frequency)

Table 2.4: Conditions for Non-linear Trend Simulation

Figure 2.17: Examples of trends used in non linear simulation study

Assessing Power to Detect a Non-Linear Trend

After the data have been simulated and sampled, a nonparametric model is fitted

to each subset using nonparmetric regression using the sm.regression function in R.

To ensure the local linear regression model fit for each dataset is both appropriate

and comparable AICc was used to automatically select the most suitable smooth-

ing parameter value given the data. In the non-linear simulation the following

hypotheses are tested;

H0 : E{yt} = µ, constant mean (2.7)

H1 : E{yt} = g(xt), some non-parametric relationship (2.8)
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In order to obtain the power of detecting an underlying pattern in the data

which was generated from the piecewise linear model, the proportion of subsets

where the non-parametric model returned a significant p-value (corresponding to

a rejection of the null hypothesis) is calculated. In addition to this first hypothesis

test, the suitability of a linear relationship between the simulated determinand and

time will also be tested. To assess the suitability of a linear model the following

hypotheses are used

H0 : E{yt} = µ+ βxt, linear model (2.9)

H1 : E{yt} = g(xt), some non-parametric relationship (2.10)

The proportion of sampled subsets where both the null hypotheses (Equation

2.7 and Equation 2.9 ) are rejected was calculated. Approximate F-tests were

used to compare models. From this, the probability that a non-linear model is a

suitable fit to the data, given the data have been generated from an underlying

model which was non-linear could be assessed.

2.4.1 Scenario 2 - Results

How does strength of ‘non-linearity’ affect power to detect a non-linear

trend?

Figure 2.18 shows a set of results which demonstrate how power to detect statis-

tically significant non-linear patterns alters as the underlying effect size changes.

Each of the panels from (b)-(d) represents a different non-linear pattern and each

line represents a different sampling frequency. Panel (a) shows the statistical size

of the simulation; the probability of detecting a non-linear when there is in fact

no pattern present. The underlying simulated dataset for all the results presented

in Figure 2.18 had a fixed variance and independent samples.

It can be seen from 2.18 (a) that the probability of detecting a significant non-

linear pattern in the data is less than 5% for all sampling frequencies other than

annual sampling, when the probability is slightly higher for all lengths of time

series considered. Annual sampling also performs poorly in terms of detecting a
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non-linear pattern in the underlying data when the curvature in the pattern is

weak or moderate, and, even when the non-linear pattern is strong, around 15

years of data are required before a power of around 0.8 is reached. With time

series in excess of 10 years weekly, fortnightly and monthly sampling schemes

are comparable and perform well in terms of their ability to detect a non-linear

pattern.

(a) (b)

(c) (d)

Figure 2.18: Simulation results showing how power and statistical size is
affected by different magnitudes of non-linear pattern

How does variability affect power to detect a non-linear trend?

Figure 2.19 shows the effect of different levels of variability on power to detect

a non-linear change in the simulated determinand. In the results presented the

underlying data is uncorrelated, and the non-linear trend is the same for each
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value of the variability considered. Each panel represents a different variability

value, while each line represents a different sampling frequency. The four vari-

ability values investigated are 0.1, 0.5, 1 and 1.5, which in this case correspond

approximately to coefficients of variation of 30%, 70%, 95% and 115%.

As with the fixed linear results it is clear that as the coefficient of variation

increases the ability to detect a change decreases. When the coefficient of variation

is less than 100%, monthly, fortnightly and weekly sampling all perform well in

terms of power to detect a moderate non-linear pattern in the data and reach an

acceptable level of power with time series of around 10 years or longer. With the

same level of variance, annual sampling and samples collected at a frequency of

6 times per year require around 20 years or longer before a power around 0.8 or

greater is achieved.

How does correlation affect power to detect a non-linear trend?

Figure 2.20 shows the effects of different levels of correlation in the sampled data

on the power to detect a non-linear trend. Each panel represents a different level

of correlation and each line represents a different sampling frequency. Variance

values are fixed at 0.5 throughout, corresponding to a coefficient of variation of

around 70%, and a moderate strength of non-linear pattern is considered.

In general, these results are similar to the fixed linear case; correlation in the

data has little effect on weekly sampling in terms of the power to detect a non-

linear pattern, but a more notable effect on monthly and fortnightly sampling.

When the correlation coefficient is 0.4, about 15 years of monthly samples would

be required to detect a moderate non-linear pattern with a power close 0.8, whilst

with a higher correlation coefficient around 25 years of data would be required.

2.5 Scenario 3 - Varying Seasonal Component

For the third simulation scenario the ability to detect a change in the seasonal

pattern under different sampling conditions was considered. Again, the effects

of variability, different sizes of change and the strength of autocorrelation on the

ability to detect the underlying change was investigated. Model 2.11 below was

used to generate data with a varying amplitude seasonal component. The trend,
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(a) (b)

(c) (d)

Figure 2.19: Simulation results showing how power to detect a non-linear
trend is affected by different levels of variability

variance and the phase of the seasonal component remained constant over the time

period for which data were generated.

yt = α + βxt + γa(r − xt) sin

(
2πdoyt

365

)
+ γb(r − xt) cos

(
2πdoyt

365

)
+ εt (2.11)

where εt = (ε1, ε2, ..., εn) ∼ N(0, σ2V )

for t = 2, ..., n , εt = ρεt−1 + Zt and Zt ∼ N(0, 1)

In this model the amplitude of the seasonal pattern reduces by a specified

percentage over the time period considered; r is a constant which reverses decimal
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(a) (b)

(c) (d)

Figure 2.20: Simulation results showing how power to detect a non-linear
trend is affected by different strengths of autocorrelation

year. The implication of this reduction in amplitude is that samples recorded

in the summer and winter months become increasingly similar in terms of their

observed value as time progresses. Table 2.5 contains a summary of the different

model and sampling conditions that were considered in the varying amplitude

simulation scenario. The same values of the slope, variability and correlation as

in the fixed linear scenario were investigated.

An example of the underlying models for each of these reductions in amplitude

over a 20 year period is shown in 2.21. The red lines here represent the underlying

model from which data are sampled. While it could be argued that a 20% reduc-

tion is not particularly noticeable and will inevitably be difficult to detect, it is

important to consider changes of this magnitude since even small changes in the
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Data Conditions: Changing Seasonal Pattern

Number of simulations 500
Model Conditions

Form of trend fixed linear
Seasonal Pattern varying amplitude of seasonal term

0%, 20%, 40% and 60% reductions
Magnitude of trend -0.1,
Variance 0.1, 0.5, 1, 1.5
Correlation 0, 0.2, 0.4, 0.6

Sampling Conditions

Sampling frequency monthly, fortnightly, weekly
Length of time series 5, 10, 15, 20, 25, 30 years
Sample Dates unequally spaced, generated from a relevant Un(0,a)

(a will be determined by specified sampling frequency)

Table 2.5: Conditions for Varying Amplitude Simulation

% indicates the reduction in the amplitude over time

seasonal patterns can have large resulting effects on water ecosystems (Carvalho

and Kirika, 2003).

Figure 2.21: Examples of trends used in varying amplitude simulation study

Assessing power to detect a changing seasonal pattern

Two different models were fitted to each of the 500 simulated datasets for each set

of conditions; an additive model of the form;

y = µ+ g1(year) + g2(dayofyear) + ε, ε ∼ N(0, σ2) (2.12)
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and a bivariate model of the form;

y = g(year, dayofyear) + ε, ε ∼ N(0, σ2). (2.13)

For both models the two explanatory variables of interest used within the models

are year (in the form of decimal year as described previously) and the day of year.

Including these as covariates enables the trend over time as well as the seasonal

pattern within each year to be examined. The additive model assumes that there

is a constant seasonal pattern over time, or in other words that the pattern within

a single year is the same across all years considered. Using the additive model, an

estimate of the trend over time and an estimate of the seasonal pattern within each

year are obtained separately. Both these estimates are non-parametric smooth

functions which are found using local linear regression.

In contrast to the additive model, the bivariate model is more flexible and

allows the estimate of the seasonal pattern within a single year to be different across

the years. Given it is known that the underlying model from which the data have

been sampled does in fact have a different seasonal pattern in each year, this could

be said to be the ‘correct’ model. However, the question of interest here is how

often the change in the seasonal pattern can be detected under different sampling

and model conditions and so it is of interest to assess how often the bivariate

model would be chosen over the additive model. In order to compare these two

models an approximate F-test is carried out. To ensure that fair comparisons can

be made between the pairs of models the smoothing parameters for each model

have to be equivalent. After a sensitivity analysis was conducted using several

simulated datasets it was decided that smoothing parameters should be selected

so that in each model, 10% of the total number of observations contributed to the

kernel estimate at each target observation of interest.

Ideas as to what magnitudes of change in amplitude should be considered

in this simulation study were obtained by assessing changes in the amplitude of

the seasonal pattern in observed datasets. There was no statistically significant

evidence in a change in seasonal pattern in the Linlithgow Loch or Lake of Menteith

data considered earlier and so an additional dataset from stations on the River

Tweed in the South of Scotland were used to estimate realistic changes in the

amplitude of a seasonal pattern for water quality data. A subset of a longer time

series was taken and the ratio of the amplitudes of the seasonal pattern at the

start and end of the time period was computed. A series of different subsets were
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taken and the amplitude ratio was calculated for each subset. These ratios were

then used to inform the magnitudes of change in amplitude used in the simulation

study. While this may be viewed as a rather simplistic approach as it assumed a

constant decrease across the time period, in many subsets the rate of change in

amplitude appeared reasonably steady.

2.5.1 Scenario 3 - Results

The results of our simulation study highlight a difficulty in the detection of rela-

tively small changes in the amplitude of a seasonal pattern over time. Figure 2.22

shows the power of detecting three different magnitudes of change in the seasonal

pattern over time under different sampling frequencies. The power of detecting a

changing seasonal component when it is not there, equivalent to the statistical size

for the varying seasonal scenario, is shown in Figure 2.22 (a). A red dashed line

on panel (a) indicates the 5% level. The magnitudes of change shown in panels

(b), (c), and (d) correspond to 20%, 40% and 60% reductions in the amplitude of

the seasonal pattern over the time period considered. In all of the results shown in

2.22 the underlying data are independent, have a constant variance corresponding

to a coefficient of variation of 70%, and have a fixed linear trend corresponding to

a 10% reduction in the mean level of the simulated determinand each year.

As could be expected, from panel Figure 2.22 (a) it is clear that for all sam-

pling frequencies considered the statistical size is close to the 5% level. It can be

seen from panel (b) that under all sampling frequencies, the power of detecting

a 20% reduction in the amplitude of the seasonal component is extremely small

for all lengths of time series considered. Even with 30 years of weekly sampling,

it is unlikely that this magnitude of reduction in the seasonal component will be

detected. With a change in amplitude of 40%, 20 years of weekly samples are

required before a power of 0.8 is exceeded, while with fortnightly sampling it is

only with a 30 year time series that the level of power to detect the change is ade-

quate. There is some improvement in the power of detecting an underlying change

in the seasonal component when the reduction in amplitude is large. For a 60%

reduction, weekly and fortnightly sampling reach a level of power of around 0.8 or

greater with time series lengths in excess of 5 years. Figure 2.22 (d) demonstrates

that even with a 60% reduction in amplitude, monthly sampling fails to reach an

acceptable level of power with time series shorter than around 25 years.
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The inability of monthly sampling to detect large reductions in the seasonal

pattern, even when the time series in question is lengthly, could be of concern in

the context of environmental monitoring. Changes in the seasonal pattern over

time in water quality determinands are a likely consequence of long-term changes

in climate (Winder and Schindler, 2004) and this simulation study demonstrates

that there is a real risk that underlying declines in the amplitude of a seasonal

signal could potentially be missed by the type of monitoring programmes that are

currently in place. A change in the seasonal pattern could be misinterpreted as

non-constant variance. If this was the case, it is likely that the transformations

typically employed to deal with instability in the variance over time, such as the

log transform, would be inadequate.

(a) (b)

(c) (d)

Figure 2.22: Simulation results showing power to detect different magnitudes
of changing seasonal signals
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The effects of variability on the power to detect changing seasonal pat-

terns

The next step was to assess the effects of different levels of variability in the sea-

sonal pattern. The variance values used in the varying amplitude scenario were

again 0.1, 0.5, 1 and 1.5 which correspond to coefficients of variation of approxi-

mately 30%, 70%, 100% and 120% respectively. It is worth noting that the coeffi-

cient of variation in the underlying data for the results presented in Figure 2.22 is

one of the smaller values considered within this study. The effects of variation on

our ability to correctly identify a change in the seasonal component over time are

presented in Figure 2.23. Each of the panels in this figure represents a different

level of variability in the underlying data, while each line again represents a dif-

ferent sampling frequency. The magnitude of the linear trend and the magnitude

of the reduction in the seasonal component amplitude is 60% in the four sets of

results presented.

It is clear that the more variable the data, the weaker the power of detecting a

changing seasonal pattern when it is, in fact, present. The magnitude of reduction

considered here is 60% over the time period. While this is a substantial reduction,

it is only for the smallest variability value in our simulation that monthly sampling

reaches an acceptable level of power. In this case when the coefficient of variation

is around 30%, after approximately 5 years all sampling frequencies investigated

are comparable and perform well in terms of their power to detect this form and

magnitude of change. When the CV is 70% or greater, monthly sampling does not

reach a level of power in excess of 0.8 at any length of time series considered.

Fortnightly sampling also performs poorly in terms of power to detect this

change in the amplitude of the seasonal pattern when the variability is relatively

large, and it can be seen from 2.23 (d) that at the largest value of variation in

the data investigated, corresponding to a CV of around 120%, even at the weekly

sampling frequency, a time series in excess of 20 years is needed to detect this

change in the seasonal signal.
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(a) (b)

(c) (d)

Figure 2.23: Simulation results showing how power to detect a changing sea-
sonal signal is affected by different levels of variability

The effects of correlation on power to detect changing seasonal patterns

The effects of correlation on the ability to detect a changing seasonal component

are summarised in the results shown in Figure 2.24. Each of the panels corre-

sponds to a underlying dataset with a different strength of correlation. All results

presented are based on data with the same strength of underlying linear trend, and

the same constant variability (CV=70%), and a 60% reduction in the amplitude

of the seasonal signal. Figure 2.24 indicates that correlation has a notable effect

on the ability to detect a change in the amplitude of the seasonal pattern over

time. The power of weekly sampling to detect a 60% reduction in the amplitude

of the seasonal component exceeds 0.8 even after 5 years of samples which are

independent. However, when there is a level of correlation in the samples which
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corresponds to an AR(1) process with a correlation coefficient of 0.4, around 15

years of samples are needed. Further to this, when the correlation coefficient is

0.6, around 25 years of samples are required.

Monthly sampling and fortnightly sampling also see a decrease in the power to

detect this form of change in the presence of correlated data. It can be seen from

Figure 2.24 (b) that even when the level of autocorrelation in fortnightly samples

is relatively low (ρ=0.2) around 20 years of samples are required before the power

to detect a large change in the seasonal component is adequate. When the level of

correlation is greater than this fortnightly sampling fails to reach a level of power

in excess of 0.8.

(a) (b)

(c) (d)

Figure 2.24: Simulation results showing how power to detect changing sea-
sonal signal is affected by different levels of correlation
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2.6 Summary

The simulation patterns chosen within these scenarios are designed to be indicative

of the types of underlying patterns which may be of interest when investigating

changes in water quality. The rationale behind this simulation study was to provide

an insight into the likely effectiveness of the monitoring programmes which are

commonly used at present, and to act as an uncomplicated, yet useful, guide

to the relative power associated with different patterns and forms of underlying

change. It is possible that any and all of these changes are happening in water

quality determinands and so it is necessary to quantify how reliable the results of

currently used sampling programmes are.

For all of the simulation scenarios, it can be seen that the power to detect

change increases as the length of time period covered by the data increases, and

as the sampling frequency increases. It is also apparent that high variability and

high correlation have a negative effect on power to detect change, while the larger

the magnitude of change, such as strength of linear trend or the reduction in sea-

sonal amplitude, the higher the power. All of these features are well established,

however, some of the particular results from the simulation study may be useful

when placed in the specific context of the environmental monitoring programmes

used to classify water bodies under the WFD. Many of the examples considered in

the literature are concerned with power to detect changes in species populations

rather than contaminants. Often these examples investigate the ability to detect

changes which are greater in magnitude than some of the changes considered in

contaminant monitoring. The smallest trend in the simulation study in this Chap-

ter corresponds to a decrease in the concentration of the determinand of 2.5% per

year, while the largest is a corresponds to a decline of 20%. Keizer-Vlek et al.

(2012) considers the power to detect declines of 20% and 40% in populations of

macroinvertibrates, while Nagelkerke and van Densen (2007) considers power to

detect 15% per year reductions in fish populations. The sampling programmes

considered in these examples are at an annual level.

The fixed linear scenario in the simulation represented the most basic case

and so it is unsurprising that the linear trends were amongst the easiest to detect

for all of the changes investigated. In general, after around 15 or more years of

data, weekly and fortnightly sampling work well in terms of detecting fixed linear

changes, even when those changes are relatively small. This is supported by the
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findings of Howden et al. (2011). If the underlying trend in the data is strong,

monthly sampling also reaches an adequate level of power with around 15 years

of data. Annual sampling performs poorly, and if this sampling frequency is used,

time series in excess of around 20 years are needed for even the strongest trends

considered. Although there are examples of power analysis study for environmen-

tal data in the literature, very few look at anything other than constant linear

trends over time. In the simulation study presented here, non-linear and changing

seasonal patterns have also been explored. In terms of the non-linear simulations,

weekly and fortnightly sampling again perform well with all three strengths of

non-linear pattern considered. Annual sampling was again noticeable in its inabil-

ity to detect underlying change, even when the time series of data are long. It

has also been shown that for all of the scenarios considered, when there is strong

correlation present, or when there is a high level of variability, the power of these

different sampling schemes diminishes further.

Although the methods to estimate power to detect change are often different

from our approach, the results of our simulation are comparable in cases where

the magnitude of changes considered are comparable. For example, Field et al.

(2007) considers the objective of detecting a decline of 30% over 10 years, and

subsequently states that with up to 5 years of annual monitoring, there would

be little chance of detecting changes of interest and consequently little increased

confidence in resultant management decisions. It is also noted by the authors

here that stopping monitoring programmes after 5 years, before adequate levels

of power have been reached, would unnecessarily waste all the monitoring effort

and resources invested up until that point. Howden et al. (2011) found that

hydrological variability can mask trends in water quality datasets and identifies

12 years as the approximate minimum period required to consistently detect the

true underlying trend.

While some analysis of water quality data has indicated that seasonal patterns

are changing over time (Morton and Henderson, 2008), the results of the varying

amplitude simulation indicate that even when there is a large change in the am-

plitude of the seasonal signal, corresponding to a 60% reduction, that monthly

sampling often does not have a sufficient level of power to detect this change.

Another finding of this simulation scenario is the extent to which power to detect

changing seasonal patterns is hampered by the presence of autocorrelation in the

data. Autocorrelation appears to have more of a detrimental effect on the power
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to detect a varying seasonal pattern than any of the other forms of change consid-

ered. As noted, the findings of this simulation scenario are of particular interest

as often there is evidence of non-constant variance in contaminant concentration

data, which could in reality be a change in the seasonal signal. The ability to

detect a varying amplitude is also important as changes in the seasonal pattern

of a single determinand can have consequences on an entire ecosystem. For ex-

ample, Winder and Schindler (2004) considers how a shift in seasonal patterns of

nutrients can result in changes in the synchrony between trophic levels, and hence

can cause perturbations to food webs if interacting species respond differently to

shifting environmental conditions.

The results of the simulations in this Chapter may suggest that resources would

be best used to sample at a reduced number of locations on a more frequent basis in

order to detect change with a suitable level of power. This consequently raises the

question of where the most suitable locations to implement increased monitoring

should be. This will be investigated in the following Chapter where the question

of how sites should be grouped for monitoring purposes will be considered.



Chapter 3

Functional Data Analysis

Until now, the main area of interest for this thesis has been investigating how

frequently individual standing waters need to be monitored in order to detect

different types of long-term change. However, as noted in Chapter 1, one of the

features of the WFD is that lakes can be grouped together and the classifications

of all members of the group can then be based on the classification of a single

representative lake, enabling water quality to be predicted without monitoring.

While water bodies are classified on the basis of levels of a range of chemical and

biological determinands, currently, the groups of standing waters used for WFD

monitoring by SEPA are based on typology which is derived from broad categories

of alkalinity, altitude and depth. Often, the representative lake within each group

is determined by logistics and ease of access for sampling purposes. There is

some concern with regards to how reliable the current groups are, particularly as

wrongly specifying either the groups, or the representative lake within each group,

could potentially result in misclassification of all members.

The potential for inaccurate classification of lakes means there are two main

aims when considering lake groupings. The first aim is to investigate the current

group structure used by SEPA and to assess how well the existing groups capture

differences between the lakes in terms of several chemical determinands which

are used for WFD classification. The second aim is to look at alternative group

structures which are based on different-statistical approaches applied to observed

chemistry data. Furthermore, it is also of interest to explore if fewer, or indeed,

more groups would be optimal in order to accurately represent the trends and

variability in the water quality determinands of interest.

80
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3.1 Available Data

In total there are approximately 104 standing waters across Scotland that SEPA

classify within groups for the WFD. These lakes make up 30 distinct groups, with

the number of lakes in a single group ranging from two to eight. In addition to the

grouped lakes, there are several lakes which are classified on an individual basis.

As mentioned previously, it is of interest to investigate similarities and differences

between the water bodies in terms of chemical determinands in order to ascertain

how suitable the current groups are. There is, however, limited chemistry data

available on many of the lakes and in addition, monitoring data are often available

on different lakes at different times. From 2007 onwards, when classification based

on groups of lakes was first introduced, there is commonly only data available

on the representative lake. Ideally, in order to ensure reasonable comparisons, a

dataset is required where there are observations taken over a common period on all

lakes within each group. For this reason, data from a subset of lakes were provided

by SEPA. The dataset used throughout Chapters 3 and 4 consists of seven groups

made up of 24 lakes. The time period covered by the data is from January 1996,

when sampling procedures in SEPA laboratories were granted United Kingdom

Accreditation Service (UKAS) accreditation, to December 2009. Even within this

subset the number of samples, and the dates on which samples were collected,

varies enormously from lake to lake. Data were available on the 3 different deter-

minands of interest: Alkalinity (as CaCO3), Phosphorus (as P) and Chlorophylla.

All measurements for these determinands are in micrograms per litre (µg/L).

The geographical locations and current groups used by SEPA are indicated

on Figure 3.1. The different colours correspond to the different groups which

are currently used by SEPA. For each of the 24 lakes considered, the lake name,

SEPA location code and current SEPA group number is shown in Table 3.1. The

representative lake for each of the groups are also indicated (marked by X).

Figure 3.2 provides a graphical representation of the quantity of data available

at each lake for each of the three determinands and the time period that is covered

by the observations.

While initially the intention was to compare lakes, both between and within

groups, using the samples collected at each lake matched by date, it can be seen
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Figure 3.1: Map of Scotland with subset of lakes. Colours represent different
SEPA groups for WFD classification.

from Figure 3.2 that the data were inconsistent in terms of both the quantity

of data collected and the time period spanned. The lack of synchrony between

sample dates across different lakes meant that it was difficult to compare lakes by

comparing observations collected within a short period of one another, for example

matching samples which were within seven days of one another. Comparing the

samples by season (matching 3 month seasonal averages) was an option that was

investigated, however, with only 4 years of data this would result in only 16 samples

per lake. The black dashed lines on each plot in Figure 3.2 represent a subsection

of the time period between early 2003 and late 2006 where it was thought there

was a suitable quantity of data on most of the lakes. There were 21 of the lakes

out of 24 which appeared to have a sufficient quantity of data over this common

time period. This subset of data will be used throughout Chapters 3 and 4.

In view of this initial investigation of the available data, it quickly became

clear that matching the samples at the lakes by date, or season, was not going
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Lake Name Group Rep Location Code

1 Gladhouse Reservoir 1 7451
2 Talla Reservoir 1 9597
3 Fruid Reservoir 1 9598
4 St Marys Loch 1 X 9831
5 Megget Water 1 300344
6 Loch Katrine 2 X 7111
7 Glen Finglas Reservoir 2 10841
8 Loch Avich 3 103641
9 Loch Ba 3 X 126137
10 Loch Arkaig 3 233810
11 Loch Beinn a Mheadhoin 4 200307
12 Loch Mhor 4 200309
13 Loch Mullardoch 4 200311
14 Loch Monar 4 202909
15 Loch Glascarnoch 4 X 233763
16 Loch Quoich 4 233792
17 Loch Luichart 4 235710
18 Loch Garry 4 320796
19 Loch Eye 5 233768
20 Harray Loch 5 X 233892
21 Loch Tralaig 6 103642
22 Loch of Cliff 6 X 204025
23 Lussa Loch 7 103492
24 Loch Glashan 7 X 103388

Table 3.1: Table of Loch Grouping Details, current SEPA groups are shown
and representative lakes (Rep) are identified using an X

to be an approach which would result in a quantity of data that was sufficient

to reliably analyse any underlying relationships of interest. In addition to the

problems associated with comparing lakes which are caused by the lack of data, it

was also thought that comparing raw values alone may not be the approach best

suited to capturing the maximum amount of information from the lakes. It may

be more useful to compare patterns in the data over time - for example trends

and seasonal patterns - and then investigate groupings by comparing the lakes on

the basis of these more complex temporal features. This would allow the existing

groups to be compared and, if necessary, re-structured, not only on the basis of

the mean level of each determinand at each lake, but also on the basis of any

common patterns over time. Potentially valuable information about the temporal

dynamics of the three chemical determinands of interest could be lost if lakes are

grouped only on mean values. Following from this, functional data analysis (fda)
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(a) (b)

(c)

Figure 3.2: Plot showing sample dates for alkalinity, phosphorus and chloro-
phyll at Scottish Lakes

has been employed as this is an approach where the observed data are treated as

a set of curves over time.

3.2 Functional Data Analysis (FDA)

It is natural to think of a time series of data as observations of a continuous func-

tion collected at a finite series of time points. In this context, this means the basic

unit of interest can be thought of as a curve constructed from all observations

collected from an individual, which here would be a lake. Functional data analy-

sis describes analysis of data where the observations of interest are curves and in

recent years functional equivalents to many standard statistical techniques have
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been developed. Some of these techniques which are analogous to the standard

approaches will be discussed in more detail later in this Chapter. Ramsay and

Dalzell (1991) state that fda is a “natural sequel” to multivariate data analysis

and although for both there is a finite set of observations available for each indi-

vidual, the main difference is that for fda, these observations are viewed as discrete

numerical representations of infinite-dimensional objects. Regarding the data in

this way makes it easier to see if there are common long-term patterns in the data

across individuals (lakes), and has a further advantage of overcoming some of the

problems associated with irregularly spaced or sparse data, since the curves and

not individual samples, become the objects of interest.

As it is unlikely that data will be in regular, functional form the first step is to

estimate a smooth function of the observed data. While fitting non-linear functions

will often capture more of the features of the data than a straightforward linear

model, it is more difficult to compare and contrast the non-parametric smooth

curves. Using splines, smooth curves can be fitted to samples from each individual,

and subsequently these curves can be analysed. Ramsay and Silverman (1997)

is a good reference for discussing basic functional data analysis techniques while

Ramsay et al. (2009) provides details of applying these techniques in the R software

package.

Estimation of functional data from potentially noisy, discrete observations is

one of the main challenges in fda and has to be the starting point in any analysis.

One popular technique which is widely used as a method for producing a smooth

curve fitted to observed data is spline smoothing as discussed in Section 1.3.3.

Ramsay and Silverman (1997) suggests that basis spline functions are more com-

monly used in fda than kernel approaches as they not only provide a large amount

of flexibility, but are also a computationally efficient way to store information on

functions which can potentially be constructed from a large number of data points.

Using basis splines also allows functions to be expressed in such a way that matrix

algebra can be used for most of any subsequent calculations.

3.2.1 Exploratory Functional Data Analysis

Assuming the estimated curves provide a good fit to the data then the original

data can be discarded and the curves can be treated as the observations of inter-

est. There are several standard statistical analysis techniques for which functional
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equivalents have been developed and these can subsequently be applied to the es-

timated curves representing each individual. The techniques most commonly used

in functional data include functional principal components analysis, functional

regression (Henderson, 2006), functional linear discriminant analysis (James and

Hastie, 2001) and functional cluster analysis. Functional cluster analysis is de-

scribed in greater detail in Chapter 4 and a brief summary of functional regression

(with a functional response) is provided in the following Section.

At a more basic level, there are also functional equivalents of summary statis-

tics such as the mean and variance. Given a set ofN curves gn(t) where n = 1, ..., N

measured at a set of time points, t, then the functional mean curve can be defined

as the curve which is obtained by taking the mean at each time point,

ḡ(t) =
1

N

N∑
n=1

gn(t) (3.1)

Similarly, the univariate sample variance curve is defined as the sample variance

of the curves at each individual time point,

V arg(t) =
1

N − 1

N∑
n=1

(gn(t)− ḡ(t))2

To summarize the dependence across different time values for a set of N curves,

g1(t), ..., gN(t), a covariance function can be defined. For all pairs of time points,

t1 and t2,

Covg(t1, t2) =
1

N − 1

N∑
i=1

{gi(t1)− ḡ(t1)}{gi(t2)− ḡ(t2)}

The corresponding correlation function is then written as

Corrg(t1, t2) =
Covg(t1, t2)√

V arg(t1)V arg(t2)

In addition to summarising the dependence between time for the curves, cross-

covariance and cross-correlation functions can also be defined to explore the re-

lationships between multiple functional determinands which have been measured

for each individual. Exploratory plots are also being developed as a tool in the

initial analysis of functional data. Sun and Genton (2011b) have proposed a func-

tional boxplot in order to visualize summary statistics of functional data as well
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as identifying outliers.

3.2.2 Functional Regression Models

Further to functional summary statistics, it is possible to build functional re-

gression models which are analogous to the techniques used in standard linear

regression analysis. A linear model is said to be functional if any of the following

hold,

1. the response variable is functional and the covariates are scalar;

2. both the response and one or more of the covariates are functional;

3. there is a standard scalar response with one or more functional covariates.

In the first of these cases, predicting a functional response using a set of scalar

variables is known as functional multiple regression, while decomposing the varia-

tion in a functional response into functional effects using a scalar design matrix is

known as functional analysis of variance (fANOVA). Functional multiple regression

and fANOVA are equivalent to standard multiple regression and one way ANOVA

respectively with the fundamental difference being that rather than estimating a

set of regression coefficients, say βj, a set of regression coefficient functions, βj(t),

are estimated. Regression models with a functional response and scalar predictors

are described with an example in Faraway (1997).

In the second case the model is more general and both the response and covari-

ates are functional although scalar covariates can be included as constant functions

over time. In the most straightforward situation, known as the concurrent model,

both response and covariates are functions of the same argument, say time, and

the model relates the value of the functional response to the value of the functional

covariates only at the corresponding time points. The concurrent model is similar

to varying coefficient models for standard data. Alternatively, it is possible for

a model to be built where the argument for the response and covariate functions

covers a different time period for each. In this case, a constraint has to be placed

on this type of model so as to avoid backward causation and restrictions have to

be imposed to ensure that at any time point, t, the time points s < t cannot be

used to predict the response value. This model is described as the historical linear
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model in Malfait and Ramsay (2003). The third case is where there is a scalar

response variable whose value is predicted by a set of independent variables, at

least one of which is functional.

The different forms of functional regression models are explained in more detail

in Ramsay and Silverman (1997). In this thesis it is of greatest interest to predict

values of a functional response variable using a standard scalar design matrix

(case 1 above) and so further details have been provided on the construction of an

fANOVA model. Ramsay and Silverman (1997) has been used as the key reference

in this section. Assuming there are N response functions (representing N different

lakes), K groups and nk individuals within each group (where k = 1, ..., K). Then

the model, gik(t) for the response at the ith lake in the kth group can be written

as

gik(t) = β0(t) + βk(t) + εik(t), where i = 1, . . . , N. (3.2)

In this model, β0(t) is the overall mean function across all N individuals (lakes)

and βk(t) is the group effect which quantifies the departure from the overall mean

corresponding to the kth group. For any individual i in group k, the additional

variation which is not explained by either the overall mean or the group effect

is contained within the residual function εik. If an individual can belong to only

one group which is often the case then the additional constraint is required that∑
k βk(t) = 0 for all t so as to ensure that group effects can be uniquely identified.

In order to fit this model, an appropriate N × K + 1 design matrix Z is first

defined. Each row of the matrix corresponds to a single lake, the first column

consists entirely of ones to represent the overall mean, and the subsequent K

columns correspond to each of the groups. The ijth entry of Z, can be written as

zij =

{
1 if individual i is in group j;

0 otherwise.
(3.3)

If the vector of parameter functions to be estimated is written as β = (β0, β1, ..., βK)

then the model described in Equation 3.2 can be written in matrix notation as

g(t) = Z(t)β(t) + ε(t)

where g is the N dimensional vector containing response functions and ε is a vector

containing N residual functions. The constraint on the group effect functions can
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also be expressed in matrix notation as
∑K+1

j=2 βj(t) = 0. Assuming the same set

of basis functions is used to represent each of the coefficient functions and that

there are pβ basis functions, then the parameter vector β can be written as

β̂(t) = Bθ(t)

where θ is a basis vector of length pβ, and B is a K + 1 × pβ matrix. As seen

previously, the response functions can also be expressed using a basis function

expansion. This time setting the number of basis functions to be pg then the

response function vector g(t) can be alternatively written as

g(t) = Cφ(t)

where C is a pg×K matrix in which the ith row contains the expansion coefficients

of function gi where i = 1, ..., N . As in previous notation, φ(t) is a K dimensional

vector containing the basis functions. It is possible for the same set of basis

functions to be used in the expansion of both the response and the regression

coefficient functions, in which case pg = pβ and φ = θ. In order to obtain an

estimate for the vector of regression function coefficients, least squares can be

used and so the fitting criterion we would aim to minimise is

SSE(β) =

∫
[g(t)− Zβ(t)]T [g(t)− Zβ(t)] dt

=

∫
[Cφ(t)− ZBθ(t)]T [Cφ(t)− ZBθ(t)] dt. (3.4)

While this expression assumes independent errors and constant variance it is possi-

ble to include a weight matrix to account for this. In order to include a roughness

penalty when fitting the model a further adjustment has to be made to Equa-

tion 3.4. Although the functions fitted to the response variable have already been

smoothed, Ramsay and Silverman (2003) suggests that in functional linear mod-

els the response functions should be smoothed very little, or even not at all, and

instead smoothing should be carried out within the regression coefficient functions

which are being estimated. The reason for this is that there may be important

variability within the individual response functions which will play a role in the

estimates of the regressions coefficient functions but could be overlooked if it has

been lost by smoothing. Taking L to be any linear differential operator, for exam-

ple, β′′(t), then a roughness penalty for β can be written as
∫

[Lβ(t)]2dt and the
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penalised integrated squared error becomes

SSEPEN(β) =

∫
[Cφ(t)− ZBθ(t)]T [Cφ(t)− ZBθ(t)] dt+ λ

∫
[Lβ(t)]2 dt (3.5)

where λ is a smoothing parameter. Further details of the model fitting procedure

using least squares are provided in Ramsay and Silverman (1997). To ensure the

estimates for each individual can be fairly compared, it is usual for the linear dif-

ferential operator and the smoothing parameter used to both be kept the same for

all of the curves. After fitting the model, confidence intervals can be constructed

for the estimated functions by estimating an error covariance. Firstly, the residual

for the i-th observation of the j-th curve can be written as

rij = yij − Zj(ti)β(ti).

Next, by evaluating a fitted interpolating spline and the predicted model at a

regular series of time points, a matrix of residuals can be constructed and written

as r. Following this, an error covariance estimate can be found using the equation

Σ∗e =
1

N
rrT

Using this matrix, standard errors can be obtained and plotted for each of the

estimated regression function coefficients.

3.2.3 Permutation Tests

In order to determine if there are any statistically significant differences between

groups permutation tests can be used for functional hypothesis testing. Functional

F-tests can be be used to test if there is any statistically significant relationship

between functional variables while permutation t-tests can be used to test if there

is any statistically significant differences between groups of functions.

Functional F-tests

A permutation F-statistic could be used in order to assess if there are any signifi-

cant differences between the groups, or if a mean only model would be sufficient.

For a set of N curves represented by the smooth functions gi(t), Ramsay and Sil-

verman (1997) define the functional equivalent of the univariate F-test statistic
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as:

F (t) =
V ar [ĝ(t)]∑N

i=1

∑
(gi(t)− g(t))2

(3.6)

where i = 1, ..., N and ĝ are the predicted values from a fitted fANOVA model

such as that in Equation 3.2. This equation gives a function built from the series

of point estimates at each of the time points, t. However, as with all hypothesis

tests, in order to formally test the null hypothesis that there is no relationship

between the functional variables a single test statistic is required, as well as a

p-value which indicates the probability of observing a result as extreme, or more

extreme, if the null hypothesis is true. Using the maximum of the test-statistic

function, F (t), as the test statistic, then a distribution of the test statistic under

the null hypothesis can be obtained by calculating the test-statistic several times,

each time using random permutations of curves. Shen and Faraway (2004) discuss

an alternative approach for comparing nested functional regression models and

propose the use of a functional F-statistic that is defined in terms of differences in

the integrated residual sums of squares.

Assuming theN individuals formK distinct groupings then the null hypothesis

for this test can be written as

H0 : There is no difference between the K groups

and the corresponding alternative hypothesis as

H0 : There is a difference between at least two of the K groups

The main idea behind the permutation test is that under the null hypothesis, for

any given time, t, the pairing of the value of the ith curve gik(t) and the curve

number i are entirely random. The procedure used to calculate the critical values

is as follows

• Calculate the observed F-statistic function using Equation 3.6 and find the

maximum of this, max{F (t)} = Fobs

• Randomly re-label the curves with different curve numbers, but leave the

grouping structure unchanged
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• For the set of re-labelled curves calculate an F-statistic function (Fperm(t)),

using Equation 3.6 at a fine grid of t time points, and find the maximum of

this function

• Repeat this re-labeling procedure a set number of times, say nperm, and for

each calculate the pointwise F-statistic function

• To find the pointwise 0.05 critical value of the null distribution, at each

time point, t, calculate the 95th percentile of the nperm F-statistic values

corresponding to that time point

• To find the maximum 0.05 critical value of the null distribution, calculate

the 95th percentile of the maxima of the nperm permutations

The p-value corresponding to this test is the proportion of occasions where the

maximum value of the permutation F-statistic function is greater than maximum

of the observed F-statistic function, Fobs. The pointwise curve can be plotted

alongside the observed test statistic curve in order to provide some indication of

the time points at which the groups are least distinguishable.

Functional t-tests

Similarly to the functional F-test, a permutation t-test can be used to assess if there

is any statistically significant difference between groups of functions. Assuming

there are two distinct groups of curves, g1(t) and g2(t), with N1 curves in group 1

and N2 curves in group 2, then a t-test statistic function can be defined as

T (t) =
|ḡ1(t)− ḡ2(t)|√∑N1

1 V ar [g1(t)] +
∑N2

1 V ar [g2(t)]
(3.7)

The maximum of the observed t-statistic function can be used as the test statistic

and can then be compared to a relevant null distribution which is calculated from

a set of permutations. Similarly to the functional F-test, this test is based on

the idea that under the null hypothesis, for any given time, t, the pairing of the

value of the ith curve in the kth group, gik(t), and the group number k are entirely

random. It should be noted that an assumption of the permutation t-test is that

all groups of curves have the same variability. This assumption can be assessed

informally by visual inspection of the curves. It may also be the case that prior
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knowledge of the context of the data indicates whether or not this assumption is

likely to hold. A null hypothesis that could be tested using a functional t-test is

H0 : There is no difference between the mean of groups 1 and 2

and this would be set against the alternative hypothesis

H1 : There is some unspecified difference between the mean of groups

1 and 2

A similar procedure to that outlined for the functional F-test can be used to esti-

mate a distribution of the test statistic under the null hypothesis. Again a p-value

is computed by calculating the proportion of occasions where the maximum value

of the permutation t-statistic function is greater than maximum of the observed

t-statistic function.

3.3 Application of FDA to the Lakes Data

The first step in applying FDA to the lakes data was to fit a smooth function to the

observed sample values for each determinand at each lake. Ideally the observations

for each of the lakes should cover the same time period, and have the same start

and end date, to ensure that fair comparisons of temporal patterns across lakes

can be made. For the Scottish lakes data, problems were encountered due to the

sparsity and irregularity of the observed data. Although the irregular nature of the

data at a single lake was not overly extreme, and there was roughly one observation

per month over the time period considered, when looking at the sampling dates

at all of the lakes together, the lack of consistently spaced observations caused

concern.

To ensure fair comparisons of different curves, it is important that the same

quantity of smoothing is applied to all lakes. Keeping the levels of smoothing

consistent not only requires using the same smoothing parameter at each lake,

but also requires that the knots are spaced so that there is the same quantity

of data within each of the intervals defined by the knot placement. If there are

different quantities of data between each of the knots, some basis coefficients will

be estimated more accurately than others. In order to deal with the problem of
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irregularly spaced observations, it was decided that missing data could be im-

puted at each lake by fitting a natural cubic interpolating spline to the data and

subsequently extracting estimated values for the missing data. This ensures that

there is a set of regularly spaced time points for each lake and hence enables fair

comparison of the curves representing the different lakes. Following the imputa-

tion of any missing observations, smooth functions were fitted to the data using a

cubic B-spline basis combined with the roughness penalty described in Equation

1.12. The B-spline functions used were order 4 and knots were initially placed at

3 month intervals - meaning there are 17 knots over the 4 year period considered,

including the knots at the boundaries. Three months was chosen as a suitable

interval as this time period represents one season in a year. Consequently, the

relationship that states the number of basis functions is equal to the number of

interior knots plus the order of the basis functions implies that 19 basis functions

are being used to fit the functions.

A discussed in Chapter 1, there are clearly important choices to be made

both as to the number of basis functions that should be used and what value

should be selected for the smoothing parameter. GCV was initially considered to

choose appropriate smoothing parameters for the lakes data, however this proved

to be uninformative and plotting the smoothing parameter value against the GCV

values computed produced a curve which was reasonably flat. After considering

GCV, a sensitivity analysis was carried out in order to investigate the effect of

different values of smoothing parameters on the fitted curves, and to determine a

value that is suitable for the lakes data. In order to illustrate clearly the effect

of the smoothing parameters, a subset of 3 lakes will be investigated in more

detail. Figure 3.3 shows both a line plot of the log transformed phosphorus data

(left) at 3 lakes and interpolating splines that were fitted to these data (right). The

numbers on the plots represent the lake numbers (see Table 3.1). After any missing

values were imputed from the interpolating splines, smooth functions were fitted

to this data using a cubic B-spline basis with 3 month knots (19 basis functions).

Figure 3.4 shows these smooth functions when 6 different smoothing parameters

are used ranging from 1 × 10−6 to 0.1. As can be seen, using the smallest

of the smoothing parameters (1 × 10−6), there is evidence of under-smoothing.

There are relatively harsh peaks and troughs, and a lot of local variation in the

fitted function, although, as could be expected, this is not as severe as when the

interpolating spline functions are used (Figure 3.3). While there is a vast difference

in the relative sizes of the smoothing parameters 1× 10−6, 1× 10−5 and 1× 10−4,
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Figure 3.3: Plots of log (phorphorus µg/l) samples (left) and fitted cubic
interpolating splines (right) at lakes 2, 14 and 19

Figure 3.4: Plots of log (phorphorus µg/l) fitted spline functions at lakes 2,
14 and 19 with different smoothing parameter values

their effect on the level of smoothing in the fitting procedure is very similar and

for all three values, the curves do not seem particularly smooth. In contrast, using

the two larger smoothing parameter values considered here, there is evidence that

the data may have been over-smoothed. The fitted curves are very flat and do
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not accurately reflect some of the underlying patterns in the observed data. When

the smoothing parameter equals 0.001, there appears to be a compromise between

these two extremes with the key trends and potential cyclical features of the data

being detected, while the localised random fluctuations are removed.

Using the value of 0.001 for the smoothing parameter, cubic spline functions

were fitted to the log transformed alkalinity, phosphorus and chlorophyll data

from the lakes. Although the sensitivity analysis has only been discussed for

phosphorus, for all three of the determinands of interest this value of smoothing

parameter (λ = 0.001) was found to be an appropriate choice. The estimated

curves for each of the determinands are shown in Figure 3.5 with the different

colours indicating the original SEPA groupings.

(a) (b)

(c)

Figure 3.5: Fitted Spline functions for log(alkalinity µg/l), log(phosphorus
µg/l) and log(chlorophyll µg/l)
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The most apparent feature from Figure 3.5 is the huge degree of overlap in the

curves and therefore in the existing groups for each of the determinands. It can be

seen that there are similar patterns at some lakes, particularly in terms of mean

level, within some of the currently used groups. For all three determinands there

are groups of curves of the same colour that can be seen within Figure 3.5, for

example, there are several blue (SEPA group 4) curves grouped closely together.

The blue curves represent lakes which tend to be at the lower end of the scale

for alkalinity and phosphorus and which have intermediate values for chlorophyll.

For all three determinands it can be seen that the group consisting of the lakes

represented by the purple curves (SEPA group 5) tend to have the highest values.

Beyond looking at the mean levels of the curves, there is almost no apparent trend

in any of the variables at any of the lakes although there is evidence of seasonality

at some lakes. For chlorophyll, in particular, there seems to be a strong seasonal

pattern in almost all of the lakes. Within the other two determinands the presence

and strength of the seasonal signal is more variable.

Given the huge degree of overlap in the curves, the question is whether or not

the current number of groups is optimal in terms of keeping within-group variation

to a minimum. Following this Figure 3.6 shows the functional group means and

the overall functional mean of all lakes (shown by the dashed black line) for each

determinand separately. Again these plots highlight the large amount of overlap

in the groups, particularly for phorphorus and chlorophyll. The alkalinity means,

shown in Figure 3.6(a), appear to form three groups. It could be expected that

alkalinity shows this greater degree of separation since the current SEPA groups

are based on broad categories of alkalinity. The functional means imply strongly

that there is little separability between the groups already in place in terms of

mean levels of each determinand, however more formal techniques need to be used

in order to determine if there is any scope to split the lakes based not only on the

mean level, but perhaps on seasonality.

Representative Sites

Figure 3.7 shows the estimated curves for each lake (dashed lines) coloured by

original SEPA grouping, with the representative lakes used by SEPA highlighted

using the heavier, solid lines. As already discussed there is considerable overlap

in the curves for different groups and so it is unsurprising there is overlap in some
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(a) (b)

(c)

Figure 3.6: Functional Group and Overall Means for log(alkalinity µg/l),
log(phosphorus µg/l) and log(chlorophyll µg/l)

of the representative curves. It is difficult to assess visually if these curves are

representative of all members of the group. At present the representative sites

are selected for a number of reasons such as ease of access to the site. It was

thought an alternative method of selecting the representative site may be to select

the site which is closest to the group mean curve shown in 3.6. The metric used

to measure the proximity of each curve to it’s relevant group mean curve was

functional distance which is described in the Chapter 4, Equation 4.1. Figure 3.7

again shows the estimated curves for each lake (dashed lines) coloured by original

SEPA grouping, with the representative sites as selected by using the minimum

functional distance highlighted by the heavier solid lines. The representative lakes

have been selected separately for each determinand using the minimum functional

distance approach and so the representative lake within each group may not be
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the same for all determinands. As can be seen, for several of the groups the

representative site determined by the functional distance approach is the same as

that currently used by SEPA.

Figure 3.7: Plot of estimated functions for each lake (dashed lines) with SEPA
representative lakes highlighted (solid lines)

Figure 3.8: Plot of estimated functions for each lake (dashed lines) with rep-
resentative lakes obtained using minimum functional distance approach high-

lighted (solid lines)

While looking at the functional means for each of the groups enables us to

obtain an informal impression of how similar or different the current groups are,

it is of interest to explore if any perceived differences are statistically significant.

Functional linear regression can be used to estimate a group effect for each of

the current groupings. The variance in the functional response (i.e. the functions

fitted to the determinand values over time at each lake) will be decomposed into

functional group effects by fitting a linear model where a categorical variable (the

grouping structure) will form the design matrix.
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Functional Regression

In order to determine if the groups of lakes that are currently used are statistically

distinct we can estimate a functional regression coefficient for each of the groups

and then determine the significance of these coefficients by constructing confidence

intervals. Furthermore, permutation tests can be used to test the null hypothesis

that there is no difference between the groupings. At this stage, each chemical

determinand is considered separately. An example of functional regression will be

discussed for alkalinity, although permutation test results will be presented for all

three chemical variables.

A functional ANOVA model was fitted using unsmoothed functions of alkalin-

ity, which were obtained by fitting natural cubic interpolating splines to the alka-

linity data at each lake, as the response curves. Using the existing SEPA grouping

structure, a standard design matrix was constructed where each row corresponded

to an individual lake and each column corresponded to one of the parameters (coef-

ficient functions) being estimated. Following this design, the number of regression

coefficient functions that are estimated is equal to the number of groups plus one,

which in the case of the alkalinity data is eight. The first regression function

corresponds to the overall average while the subsequent seven functions relate to

each of the group effects. It should be noted that a smoothing parameter value of

0.001 (the same as that used when fitting penalised cubic spline functions to the

data shown in Figure 3.5) was used in the estimation of the regression coefficient

functions. As proposed by Ramsay and Silverman (2003), smoothing was only im-

posed on the estimates of the regression coefficients and unsmoothed curves were

used as the response functions to ensure that any potentially important patterns

in the alkalinity data were not lost by smoothing the data twice. The model was

fitted using the fda package in R (Ramsay et al., 2010).

Figure 3.9 shows the estimated regression coefficient functions for both the

overall mean function and each of the groups with confidence bands plotted. The

functional regression coefficient from a particular group gives an indication of how

far away the curves in that group are from the mean level, meaning that if the

dashed line at zero is outwith the confidence bands shown then that group is

significantly different from the mean. From Figure 3.9, it can be clearly seen that

groups 1, 4 and 5 appear to be different from the mean level at all time points.

Group 6 is just above the mean level except at a couple of points, Group 7 overlaps
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Figure 3.9: Estimated regression coefficient functions for log(alkalinity) mean
and group effects (with 95% confidence bands)

the zero line, while groups 2 and 3 are just below the mean level with the exception

of a few time points. The confidence bands on the estimated coefficient functions

are wide due to the fact that there are very few observations in many of the groups.

As well as this model, a second model was fitted using the penalised smooth curves

as the response in order to ensure that using the unsmoothed functions as the

response curves did not allow random fluctuations in the data to dominate the

estimates of the regression coefficients function. The results of this model are not

presented as the only difference was that the regression coefficient functions which

were estimated using the penalised curves were slightly flatter than when the un-

penalised curves were used and there was a less prominent seasonal pattern. The

same differences were observed between the groups and the overall mean.

In order to test if the differences in the group effects were significant, two types

of permutation test were used. The first was a functional F-test which tested the

null hypothesis that there are no differences between the mean functions for all

of the groups against the alternative that there are some unspecified differences

between at least two of the groups. The procedure used for this permutation test
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is outlined in Section 3.2.3. A plot of the observed F-test statistic function over

time for alkalinity is shown in Figure 3.10, where the red curve represents the

value of the observed test statistic over time as found from Figure 3.6. Also on

this plot, the red dashed line represents the pointwise critical value and the red

dotted line represents the maximum critical value, both at the 5% significance

level. It is difficult to distinguish between the pointwise and the maximum critical

value lines on this particular plot as they are so close. This test is based on a

null distribution which has been constructed using 500 random permutations of

the curve labels. As the red line lies above the pointwise critical level at all time

points it is clear that there is sufficient evidence to reject the null hypothesis, and

conclude that there are statistically significant differences between the groups in

terms of the alkalinity levels. The p-value corresponding to this test (also included

on the plot) is less than 0.001 which further indicates a highly significant result.

Figure 3.10: Plot of functional F-test for log(alkalinity µg/l) model

For all three determinands, the p-values of the functional F-tests are highly

significant (< 0.001) and therefore imply there are clear differences between at least

some of the SEPA groups in terms of their mean function. This is unsurprising,

as although there was a huge amount of overlap between the current groups there

were several pairs of groups where the mean level was quite different. To find
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out more specifically where the differences lie, a functional t-test was next carried

out for each pair of groups. The permutation t-test procedure which was used is

outlined in Section 3.2.3. Associated with each pair of groups there is a p-value

which corresponds to the test of the null hypothesis that there is no difference

between the mean functions of two groups, against the alternative hypothesis

there is some unspecified difference. These p-values are displayed in Table 3.2. To

account for the 21 multiple comparisons a Bonferroni correction has been applied

to the quantile of the null distribution that the observed t-statistic is compared

to.

• Alkalinity

The functional t-tests show that there are 13 out of the 21 pairs where there

is a significant difference between the mean functions, so there does appear

to be some level of separation between the current SEPA groups. Notably,

there are significant differences between the mean of lake in group 5 and the

mean of all other groups. There is evidence of this from Figure 3.5(a) where

it can be seen that the group 5 lakes (shown in purple) appear to have a

much higher mean level than all other lakes.

• Phosphorus

For phosphorus there seems to be less separability between the mean func-

tions of the groups compared to alkalinity and chlorophyll. Again, this is

consistent with the earlier impressions obtained from Figure 3.6(b) which

showed a huge deal of overlap in the group means. Group 5 again seems to

be the most distinct of the groups as its mean function is different to the

mean function of 3 of the 6 other groups.

• Chlorophyll

There are 9 pairs of groups which differ significantly in terms of their mean

Chlorophyll level. The mean function for group 6 is not significantly different

from any other group. Looking back to the plot of group means shown in

Figure 3.6(c) it can be seen that the mean of the group 6 lakes (shown in

yellow) is almost directly in the center of all other group means.
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3.4 The Effects of Correlation

Until now all analysis has been based on the assumption that the monthly ob-

servations from each of the lakes were independent and so the effects of temporal

correlation do not have to be accounted for. To assess if there is any correla-

tion through time for each variable, a first step was to produce autocorrelation

function (ACF) plots for each lake and see if there was any correlation structure

present in the observed data. The sample autocorrelation function was calculated

for each variable at each lake over the 4 year time period of interest between 2003

and late 2006. These plots show, for approximately monthly data, the lag corre-

lations after extracting the deterministic components (trend and seasonality) of

the model, where necessary, using first and twelfth order differencing transforma-

tions. All three of the chemical variables were investigated and for all of them

there appeared to be very little evidence of significant correlation at the majority

of the lakes, The ACF plots again highlighted the differences between the lakes in

terms of the seasonal patterns present, while at some lakes there is clear evidence

of seasonality at others there is very little structure present.

Figure 3.11 shows an example of ACF plots for log alkalinity at a single lake

(Lake 23, Lussa Loch). From the plot on the left hand side which is the sample

autocorrelation function of the original data there appears to be a clear decreasing

pattern which is indicative of a trend in the data. After first order differencing

has been applied and the ACF is re-calculated for the transformed data, it is clear

most of the structure has been removed. The ACF plot of the de-trended data

indicates that there is no significant correlation over time. This was typical of the

situation at the majority of the lakes. Although the available Scottish lake groups

Figure 3.11: Plot of Autocorrelation Function for log(alkalinity µg/l) at Lake
23
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Determinand Functional t-test p-value
500 permuations

5% significance level
Bonferroni corrected significance level = 0.24%

21 multiple comparisons

Alkalinity
G1 G2 G3 G4 G5 G6

G2 < 0.001
G3 < 0.001 0.56
G4 < 0.001 0.27 0.04
G5 < 0.001 < 0.001 < 0.001 < 0.001
G6 0.34 < 0.001 0.19 < 0.001 < 0.001
G7 < 0.001 0.70 0.58 0.04 < 0.001 < 0.001

Phosphorus
G1 G2 G3 G4 G5 G6

G2 0.22
G3 0.15 0.80
G4 0.01 0.22 0.67
G5 0.10 < 0.001 < 0.001 < 0.001
G6 0.55 < 0.001 < 0.001 < 0.001 0.37
G7 0.06 0.34 0.18 < 0.001 0.70 0.66

Chlorophyll
G1 G2 G3 G4 G5 G6

G2 < 0.001
G3 0.03 0.22
G4 0.07 < 0.001 0.21
G5 0.32 < 0.001 < 0.001 < 0.001
G6 0.89 0.67 0.81 0.97 0.29
G7 < 0.001 < 0.001 0.20 < 0.001 < 0.001 0.68

Table 3.2: Table of Functional t test p-values
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data contains very little evidence of temporal correlation, because correlation is

an extremely prominent feature of many environmental datasets (Morton and

Henderson, 2008) it continues to be of interest to investigate what the effects of

correlated errors would be on our ability to identify differences between groups

of lakes. In order to explore these effects a simulation study was carried out.

If correlation is present in the data the effective sample size of the dataset will

decrease, and hence the size of the errors corresponding to parameters estimated

from that dataset will increase. The main question of interest is whether or not the

presence of correlation in functional data affects our ability to distinguish between

groups of lakes. With a single dataset, functional permutation F-tests and t-tests

can be used to determine if there any differences between the lakes or if there are

differences between groups of lakes, however these tests do not take into account

any correlation in the errors. For this reason, a bootstrapping procedure was

used where initially a large correlated dataset was simulated and then re-sampled

several times. To each of the re-sampled sets of simulated data, permutations

tests were applied. For several different strengths of correlation, the distribution

of the results of the permutation tests were summarized and compared. A detailed

outline of how the study was carried out is provided below.

Step 1: Generating the correlated dataset

The first stage in the simulation study was to use the existing Scottish lakes

data as a basis to generate a realistic correlated dataset. The log transformed

alkalinity data were used to do this. Both the interpolating splines which were

fitted to the observed data, and the penalised regression splines fitted to the grid

of complete monthly values (shown in Figure 3.5) were evaluated at a fine grid

of daily time points. The measurement errors for each lake was subsequently

calculated by finding the difference between the observed (interpolating spline)

and fitted (penalised regression spline) values. The result of this was that for each

lake there were a set of estimated daily values from the regression spline and an

estimated error variance which was obtained using the variance of the residuals

corresponding to that lake. Figure 3.12 shows two plots which demonstrate the

steps taken in calculating the error variance for lakes 1, 9, 12, 20 (see Table 3.1

for details of these lakes). This is an illustrative set of lakes and only these four

are shown so that the plots are clearer. The plot on the left hand side show the

interpolating splines (using dashed lines) and smoothed splines (using solid lines)
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while on the right hand side the plot shows the magnitude of the residuals at

each time point for each lake. Although the estimated daily data were used in

Figure 3.12: Plot of fitted and interpolating splines and plot of estimated
daily residuals for log alkalinity at lake numbers 1, 9, 12 and 20

order to calculate the residuals and then the error variance for each lake, the next

step was to simulate a sampling frame which could then be applied to this larger,

daily dataset. For the 4 year period for which daily data were estimated using the

smoothing splines, a single set of sample dates were chosen by randomly selecting

a single date within each calendar month using a relevant uniform distribution.

Following this, the estimated data values corresponding to these dates were then

extracted from the large daily dataset. As a result of this procedure, there was

a grid of randomly selected monthly samples available for each of the lakes of

interest which were assumed to represent only the deterministic components of

the process. The smoothing splines which were fitted to the original data were

assumed to have removed random fluctuations and therefore were thought to only

capture the more long-term features such as the trend over time and the seasonal

pattern. Monthly samples were selected as this is the sampling frequency which

is currently the most commonly used for standing waters by SEPA. In addition,

random samples within each month were chosen since in practise, at each lake,

samples are very unlikely to be collected on the same date in every month.

The next stage in generating the correlated data was to use a pre-specified cor-

relation coefficient value and each of the lake specific error variances to generate a

set of monthly random errors. These errors were simulated with an AR(1) struc-

ture implying that the correlation decreases exponentially as time lags increase.

After generating the error terms these were then added onto the daily estimated
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values obtained from evaluating the fitted smoothing splines at the selected sample

dates, thus producing a monthly dataset based on the original observed data but

with random errors that were correlated through time.

Step 2: Applying FDA to the simulated data

Using the simulated monthly dataset for each of the lakes with correlated errors,

smoothing splines were fitted to the monthly values and then a fANOVA model

was fitted. As with the observed data, the original SEPA grouping structure was

used to construct the design matrix. A functional permutation F-test and t-test

were then also used in order to assess if there were any statistically significant

differences between the lakes and between groups of lakes. Since the standard

errors are not incorporated in either the t or F-test statistic (see Section 3.2.3),

comparing the results of permutation tests for simulated datasets with different

strengths of correlation coefficient cannot indicate what, if any, effect temporal

correlation has on our ability to distinguish between groups of lakes. However,

the process of generating datasets outlined above was repeated and for each set of

simulated monthly values the tests were applied. It was then possible to summarize

the results of multiple permutation tests, for both tests, and to compare how often

a significant result was obtained for each of the different values of correlation

coefficient.

Firstly, 500 sets of different sampling dates were generated and the correspond-

ing data values were extracted from the smoothing splines. Along with simulating

500 sets of independent data with no correlated errors to use as a control set, 500

datasets were simulated for correlation coefficients 0.2, 0.4 and 0.6. In order to

ensure the comparisons of the results for each strength of correlation were as fair as

possible, the same 500 sampling frames was used for each correlation value. While

looking at the percentage of occasions where significant results were obtained gives

an indication of the effect of correlation, it was thought it may be of greater in-

terest to examine the distribution of p-values obtained. As stated previously, the

p-values in each of the tests correspond to the proportion of occasions where the

maximum value of the permutation test statistic function is greater than maximum

of the observed test statistic function. For each of the 500 datasets simulated for

a single correlation coefficient, the permutation test statistic function was based

on 500 permutations.
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For all of the 500 simulated datasets corresponding to the independent data

and each of the correlation coefficient values of 0.2, 0.4 and 0.6, the functional

F-test p-values were less than 0.001. This is unsurprising as the F-test tests the

null hypothesis that there is no difference between any of the 7 groupings defined

by SEPA. It is clear from looking at the observed data for alkalinity that there are

differences between at least some group means and although there is correlation

present in the simulated data, its effect will be relatively small in comparison to

the size of the differences between the groups. It could therefore be expected that

all tests would identify this difference as being statistically significant.

Following from this, the functional t-test assesses the null hypothesis that there

is no difference between two groups of lakes. In order to investigate the effect of

correlation on the ability to detect a difference between the mean of two groups,

it is important to consider two groups where there is evidence of some difference.

For this reason, the results of the tests which compare the mean alkalinity of the

group 5 lakes to the mean alkalinity of all other lakes (those lakes not in group

5) will be explored. Histograms of the 500 p-values corresponding to this test

are shown in Figure 3.13. The red line on each plot indicates the 5% significance

level. In addition, Table 3.3 shows the percentage of significant p-values for this

test when different strengths of correlations were used to generate the data.

Group 5 vs All Other Lakes
Permutation t test results

Strength of correlation (ρ) % of significant p-values

0 76.2
0.2 66.6
0.4 70.6
0.6 64.8

Table 3.3: Percentage of significant t-test values for the difference between
Group 5 and all other lakes

It could be expected that because temporal correlation effectively reduces the

amount of information available at each lake it will become harder to differentiate

between the groups and so the percentage of significant p-values will decrease.

While from Table 3.3 there is no clear decrease in the percentage of significant

results as correlation in the underlying data increases, it can be seen that the in-

dependent data has the highest proportion of occasions when a difference between

the two groups was detected. Figure 3.13 shows that for the independent data,
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Figure 3.13: Histogram of p-values for results of permutation t-tests applied
to 500 simulated dataset with temporal correlation (Group 5)

more of the p-values calculated were close to zero in comparison to the correspond-

ing proportion when correlation was present.

In summary, while it does not appear that the presence of temporal correlation

in the data has a marked effect on the ability to distinguish between different

groups of lakes, there is some evidence from the above simulation study to suggest

that there may be a limited effect. If there is strong autocorrelation in the data the

potential effect of this should be taken into account when interpreting the output

of functional permutation tests. This study has looked at monthly observations

since this is the sampling frequency of interest for the Scottish lakes data however,

in other contexts if the observations were more frequently collected it is likely the

correlation may have a bigger impact.

3.5 Summary

Fitting smooth curves using splines, and more specifically using penalised regres-

sion splines, is both a computationally efficient and flexible way of estimating the

true functions underlying the observed data. In addition, although not ideal, using

natural cubic interpolating splines to first obtain a regular grid of data enables

several of the problems associated with comparing lakes where there are irregu-

larly spaced sample dates and different quantities of data available. The functions

fitted using this approach appear to provide a good fit to the data.
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Exploratory functional data analysis of the curves fitted to the lakes data

has highlighted the huge degree of overlap of the group mean functions of all

variables considered. This is unsurprising given there a relatively small number

of observations and a relatively large number of groups. Alkalinity appears to

show most distinction between the SEPA groups, however this could again be

expected as the groups already used are primarily based on broad categories of

alkalinity and so it could be expected this would drive any differences between

the existing groups. For both phosphorus and chlorophyll there is less evidence of

differences between the group means looking only at the estimated curves for each

lake. Functional regression proved to be a useful tool as it can be used to estimate

group specific effects which summarise the group data and can be compared to

one another. There is however a great deal of uncertainty associated with each

of these group effects when calculated for the Scottish lake data due to the fact

the estimates are based on relatively few observations. While the permutation

F-tests prove for all determinands that there are at least some differences between

the current groups, the results of t-tests reinforced that not all of the current

groups were distinct from one another and that fewer groups may be sufficient.

SEPA Group 5 appears to be the most distinct from the other current groups,

particularly in terms of alkalinity.

All of the initial exploratory investigations of the lakes suggests that the num-

ber of groups required to accurately capture the variability of the lakes could be

reduced, potentially with some of the current groups being combined to form new,

larger groups of lakes. The exact way in which the groups should be re-structured

and to what extent the number of groups should be altered still has to be inves-

tigated more thoroughly. In order to do this functional cluster analysis has been

considered.



Chapter 4

Functional Clustering of Water

Quality Data

While Chapter 3 considered how a functional data approach could be used both

to fit curves to observed data for an individual lake, and how pre-defined groups

of these curves could be compared, one of the key ideas of this thesis is to explore

alternative statistical approaches to how groups of functional data objects can

be determined. For standard multivariate data, cluster analysis is a technique

which is used to determine group structures in data where there are multiple

determinands measured on each individual. For functional data, there are also

multiple observations collected on each individual, it is just that these are values

of the same determinand collected over a period of time. This Chapter will first

discuss briefly the main idea behind cluster analysis and will then consider how

clustering techniques for standard multivariate data have been further developed

for functional data.

Cluster analysis is an automatic technique which is used to classify individuals

or objects into mutually exclusive groups (called clusters) based on similarities of

measurements which have been collected on these objects. Objects within each

cluster are more similar to one another than objects which are assigned to different

clusters and, since the primary aim of cluster analysis is to find group structures

in the data, no group structure is defined before cluster analysis techniques are

applied. It is a widely used technique and is applied to data from a broad range of

different fields such as bio-informatics, social sciences and data mining. There are

several different standard methods that can be used to cluster individuals. The

112
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most commonly used of these are agglomerative hierarchical techniques (Ward,

1963), where each individual object initially forms a cluster, then on the basis

of a measure of similarity these clusters are merged to form larger groups, and

k-means (MacQueen, 1967). K-means is an iterative partitioning procedure where

the number of groups is first specified, and then objects are moved from group

to group, until the within-group sums of squares is minimised. Hartigan (1975),

Mardia et al. (1980) and Kaufman and Rousseeuw (1990) provide a comprehensive

introduction to different forms of standard clustering.

In addition to these methods for grouping, model based clustering procedures

such as that described in Banfield and Raftery (1993) and Fraley and Raftery

(1998) are a popular choice. A review of model based clustering provided by Fra-

ley and Raftery (2002) states that while there has been extensive research into

non-probabilistic clustering techniques, such as hierarchical and k-means, these

methods fail to address several key questions such as how many clusters are op-

timal and how outliers are treated - these are problems which model based ap-

proaches often overcome. Model based clustering views the data as arising from

a finite mixture of probability distributions with a single component distribution

representing each different cluster. Since the models are constructed within a sta-

tistical framework, standard model comparison criteria can be used to compare

different models. Comparing mixture models with different numbers of component

distributions can consequently determine the optimal number of clusters. More-

over, the probability that any particular individual falls into a given group can be

calculated. These are some of the features of model based clustering which make

it an attractive choice.

Clustering Functional Data

Following from standard clustering methods, a range of techniques are also being

developed for clustering functional data. The majority of approaches to functional

clustering can be classed as dimension reduction methods, where a functional data

object is first estimated for each individual using a finite dimensional basis, and

then individuals are grouped by applying some clustering method to the basis

coefficients that define these smooth functions. As well as filtering, another ap-

proach to functional clustering is to split the time interval over which the function

is estimated into discrete sections, resulting in a dataset for each curve which can
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subsequently be clustered. Both filtering and regularization have several potential

drawbacks which need to be considered. One problem with the regularization ap-

proach is that this method results in data for each individual which are both high

dimensional and autocorrelated, although James and Sugar (2003) state that a

regularization constraint can be imposed in order to account for this and prevent

unstable within-cluster covariance estimates. A further issue with regularization

is that it cannot be applied if the data are irregularly sampled, since different in-

dividuals may not have observations at a common set of time points. The filtering

approach also has problems when the data are sparse or irregularly sampled. If

there are not a regular set of observations for each individual, then some curves,

and hence some basis coefficients, will be estimated more accurately than oth-

ers, meaning that not all individuals are directly comparable in terms of their

variability.

Both non-probabilistic and model based functional clustering approaches have

been developed, the majority of which use the filtering method as the first step. Hi-

erarchical clustering methods for functional data are outlined in Henderson (2006)

while Abraham et al. (2003) applies k-means methods to estimated spline coef-

ficients in order to cluster sets of curves. Ignaccolo et al. (2008) applies a simi-

lar non-hierarchical technique of k-mediods (Kaufman and Rousseeuw, 1987), to

cluster air quality data from different stations. Garcia-Escudero and Gordaliza

(2005) also explores functional clustering of air quality networks using a varia-

tion on the k-means approach. Model based functional clustering approaches are

being developed and are often applied in order to establish patterns in gene ex-

pression data such as in Luan and Li (2003) and Chudova et al. (2004). Other

examples of functional clustering of gene expression data are provided in both

McNicholas and Murphy (2010) and Shaikh et al. (2010). McNicholas and Mur-

phy (2010) propose using mixtures of multivariate Gaussian distributions with a

modified Cholesky-decomposed covariance structure in order to explicitly account

for the serial correlation that is potentially present in longitudinal data. Shaikh

et al. (2010) proposes a similar approach for clustering of longitudinal data using

mixtures of Gaussian distributions with a modified covariance structure which can

accommodate incomplete data series. A model based functional clustering method

which is of particular interest in the context of the Scottish lake data is discussed

in James and Sugar (2003), where a clustering model is proposed for functional

data which have been sparsely or irregularly sampled. More recently, Chiou and Li
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(2007) developed a model based approach which uses eigenfunctions rather than

B-spline basis functions in order to initially define the functional data.

In this thesis, two of the approaches mentioned above will be discussed in

more detail and implemented using the Scottish lake group data. Initially, the

hierarchical method of clustering lakes from Henderson (2006) will be explored

and then used to provide a visual representation of similarity amongst the lakes.

After this, the more formal, model based approach outlined in James and Sugar

(2003) will be investigated and applied.

4.1 Hierarchical Clustering

With standard agglomerative hierarchical clustering techniques the primary aim is

to partition a set of N objects into clusters, where each individual object initially

forms a cluster, then on the basis of a measure of similarity, these N clusters are

merged iteratively to form progressively larger groups. The hierarchy of clusters

can then be summarised in a dendrogram.

In order to measure similarity, the distance between pairs of observations are

quantified by a metric. Common metrics used to measure the distances between

two individual points include Euclidean or squared Euclidean distance and maxi-

mum dist ance. In addition, a linkage criterion is also required to determine how

the clusters are formed. Possible linkage criteria include complete linkage, where

the distance between two clusters is computed as the distance between the two

farthest elements in the two clusters, single linkage, where the distance between

two clusters is computed as the distance between the two closest elements and

average linkage where the distance between two clusters is equal to the distance

between the cluster means. To apply hierarchical clustering to a set of points, a

distance matrix D is first calculated which contains the distance between all pos-

sible pairs of points. The i, jth entry of D is the distance between points i and j

as determined by whichever metric has been chosen. Although calculating the dis-

tance between pairs of functional objects seems slightly more difficult to compute,

Henderson (2006) states that the idea of measuring distances is easily transfer-

able from pairs of points to pairs of curves and defines a method of computing a

functional distance matrix as follows.
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Let the ith and jth curves, gi(t) and gj(t), be expressed as a linear combination

of basis functions with coefficient vectors ci and cj respectively. The distance

between the curves can then be written as

dij = (ci − cj)
TW (ci − cj) (4.1)

In the above expression W =
∫
φ(t)φT (t)dt is a matrix which is of equivalent

form to the roughness penalty matrix (denoted by R in Equation 1.17). It is

a symmetric square matrix of order P , where P is the number of spline basis

functions. For each set of basis functions, W can be evaluated using numerical

integration, if necessary, and the functional distance matrix D with entries dij as

defined above can be computed. Standard algorithms for hierarchical clustering

can then be applied to the functional distance matrix.

Hierarchical clustering is straightforward to implement and it provides an ex-

ploratory picture of the data, however, the results in the form of a dendrogram

are often difficult to interpret. Another potential limitation of a hierarchical ap-

proach is that there is no way of quantifying uncertainty in the cluster partitions

and the results obtained can often be sensitive to the choice of linkage criterion

and distance metric selected. Furthermore, selecting the number of clusters from

inspection of a dendrogram is somewhat subjective as different people will identify

different groupings in the data. While there is often no clear visual indication as

to what number of groups is optimal in terms of minimising the between-group

homogeneity visually, there are techniques available that can be applied to inves-

tigate the most appropriate number of clusters. One such approach is the gap

statistic which is discussed later in Section 4.3. Model based approaches have the

additional advantage that model selection techniques can often be used to answer

the question of how many clusters to choose. It was felt worthwhile to investigate

both the hierarchical techniques for functional clustering and the more formal,

model based approach in order to obtain as full an understanding of any group

structure in the Scottish lakes data as possible.

4.2 Model Based Clustering

With model based clustering the assumption is that the observations are generated

according to a mixture distribution with a fixed number of components. James
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and Sugar (2003) and Fraley and Raftery (1998), who provide a clear description

of how mixture models for cluster analysis are constructed and fitted, have been

used as key references in this section.

Assume there are N observations, x1, ..., xN and these can be classified into

at most G clusters. Then let fk(xi|θk) be a multivariate normal density function

of observation xi from the kth component which is parameterized by θk and let

zi = (zi1, ..., ziG) be the, initially unknown, cluster membership vector for the ith

observation. If observation xi belongs to cluster k then zik = 1, otherwise zik = 0.

There are two ways in which the model representing the clusters can then be

constructed. The first is using the classification likelihood approach where the

likelihood to be maximised is written as

Lclass(θ1, ..., θG, z1, ..., z1|x1, ..., xN) =
N∏
i=1

fzi(xi|θzi) (4.2)

When the identity covariance matrix (multiplied by a constant scalar variance)

is used within each of the component multivariate normal densities in Equation

4.2 then the solution (when estimated using the Classification EM algorithm) is

equivalent to that of the k-means approach. The second approach, known as

the mixture likelihood approach, views the cluster membership vectors as being

multinomial random variables, rather than being parameters which have discrete

values. Assuming zi is multinomial with parameters π1, ...πG then the probability

that xi belongs to cluster k can be written as πk and parameter estimates can be

obtained by maximising the likelihood

Lmix(θ1, ..., θG, z1, ..., z1|x1, ..., xN) =
N∏
i=1

G∑
k=1

πkfzi(xi|θzi) (4.3)

Maximisation of both the classification likelihood and the mixture likelihood re-

quire an iterative procedure such as the Expectation-Maximisation algorithm (Demp-

ster et al., 1977). Within the EM algorithm, in the context of cluster analysis,

the zi’s are considered to be missing. Starting with initial values of zi, the

EM algorithm alternates between updating the maximum likelihood estimate of

the parameters conditional on the current zi’s and updating the zi’s with their

expected value conditional on the current parameter estimates. These two steps

iterate until some convergence criteria are satisfied.
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K-means clustering

To obtain the initial estimates of cluster membership within the EM algorithm in

model based clustering, K-means clustering is often used. As before, assume there

are N observations, x1, ..., xN and these can be classified into at most G clusters.

The k-means algorithm finds a partition such that the squared error between the

empirical mean of a cluster and the points in the cluster is minimized. Let x̄k be

the mean of cluster k where k = 1, ..., G. The squared error between x̄k and the

the points xi in cluster k is defined as

∑
xi∈k

||xi − x̄k||2

The aim of K-means is to minimize the sum of the squared error over all G clus-

ters. Since the squared error decreases as the number of clusters increases, the

number of clusters has to be fixed in advance. After selection of an arbitrary ini-

tial partition, new partitions are formed by assigning each individual to its closest

cluster centre, and then updated cluster centres are computed based on this new

partition. These steps are repeated until cluster membership stabilizes. For func-

tional data each individual, and the cluster centres, can be defined in terms of

the sets of basis coefficients which define the curves. Krzanowski and Lai (1988)

states that although convergence of the squared error to a global optimum is not

guaranteed, checks on the worth of the final solution can be made by repeating

the computations several times with different random starting paritions.

4.2.1 Model Based Functional Clustering

Like standard model based clustering approaches, the functional clustering model

(FCM) proposed by James and Sugar (2003) not only enables individuals to be

partitioned into distinct groups, but also provides a confidence in classification by

quantifying the uncertainty in the partition. In addition, one of the most attractive

features of this particular model is that it accounts for sparse and irregularly spaced

data, which is a clear problem not only in the Scottish lakes data, but also with

other environmental data-sets.

In order to fit the FCM a filtering procedure is first used in which a finite set of

basis functions is employed to estimate functional data objects (curves) for each
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individual. In contrast to other non-hierarchical functional clustering methods,

such as Abraham et al. (2003), the estimated basis coefficients are not treated as

fixed effects, but are instead modelled as random effects. This is the key difference

between the FCM and other model based functional clustering methods. The

advantage of treating the individual effects as random is that a regular fine grid of

data is not required for each individual since strength can effectively be borrowed

across individuals, assuming the total number of observations over all individuals

is large. Treating the individual effects as random effects also ensures the model is

more efficient, since the number of parameters will be less than if each individual

effect is estimated using different fixed parameters. An application of the model is

provided in Pastres et al. (2011) where the univariate FCM is implemented using

data from water quality monitoring stations at sites in Venice.

A detailed description of the FCM is now given. Let there be N individuals

and let mi denote the number of observations for individual i. Then the function

which represents the ith individual curve at time points t = (ti,1, ..ti,mi
) can be

written as

Y (tij) = gi(tij) + εij, where i = 1, ..., N and j = 1, ...mi. (4.4)

Here gi(tij) is the true value of the i-th curve at time tij and εij is the corresponding

measurement error. Dropping the time index notation then Equation 4.4 can

be written more simply as Yi = gi + εi. It is assumed εi ∼ N(0, σ2) and are

independent. Following this, gi can be expressed as a linear combination of P

natural cubic spline basis functions as discussed in Section 1.3.3, so that

gi = sTηi (4.5)

where s is a P dimensional spline basis vector. The vector of spline coefficients,

ηi can be modelled using a Gaussian distribution. Assuming there are G distinct

groupings of lakes and that site i belongs to group k where k = 1, ..., G then ηi

can be further defined as

ηi = µk + γi, (4.6)

In this equation it is assumed γi ∼ N(0,Γ) and γi is independent of γj for i 6= j.

This parametrization splits the spline coefficients into a random group effect, µ,

and an individual effect, γ. Consequently, gi can itself be expressed as the sum of
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a group effect and an individual effect as

gi = gk + sTγi

where gk is the mean of the k-th group and can be written as gk = sTµk using

Equations 4.5 and 4.6. A further re-parameterisation of the cluster mean spline

coefficients is also written as follows

µk = µ0 + Λαk (4.7)

In this expression µ0 is a P dimensional vector which represents the overall mean

for all lakes, αk is a h dimensional vector and Λ is a P × h matrix where h ≤
min(P,G − 1). The additional parameterisation of the cluster means using h is

another of the key differences between the FCM and other functional clustering

approaches. James and Sugar (2003) state that there are two main advantages

of formulating the cluster means in this way. The first being that setting h <

G − 1 reduces the number parameters to be estimated and therefore makes the

model more straightforward computationally. This is of limited benefit when the

number of clusters is already fairly small. Moreover, a further benefit of the

cluster means being structured in this way is that low-dimensional projections

of both estimated curves and cluster centres can be produced. Plotting these

low dimensional representations enables clusters of individuals to be more easily

identified than simply looking at curves alone. A detailed outline of how low-

dimensional projections for each curve are constructed is provided in James and

Sugar (2003), Section 3.1.

The functional clustering model can then be expressed as

Yi = Si(µ0 + Λαk + γi) + εi

εi ∼ N(0, σ2I) and γi ∼ N(0,Γ) (4.8)

where i = 1, .., N and Si is the spline basis matrix for the i-th curve evaluated

at time points ti,1, ..., ti,mi
. It is assumed that all lake effects have a common

covariance structure represented by Γ. In Equation 4.8 it is clear that the spline

coefficients representing each of the curves are the sum of an overall mean effect,

represented by the parameter µ0, a cluster mean effect, represented by Λαk, and

an individual effect, which is modelled as being a random effect, and is represented

by γ.
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If curve i comes from cluster k is written as Ψi,k, then conditioned on the

event, Ψi,k, Yi has a normal distribution which can be written as

Yi|Ψi,k ∼ N(Si(µ0 + Λαk),Σi), (4.9)

where Σi = σ2I + SiΓSTi . Writing the probability of the Ψi,k as πk then the set of

model parameters that are required to be estimated in order to fit the functional

clustering model are αk,Γ,µ0,Λ, σ
2 and πk where k = 1, ..., G. In terms of the

cluster membership probabilities, it is required that 0 ≤ πk ≤ 1 and
∑G

k=1 πk = 1.

Furthermore there are two identifiability constraints which must be imposed on

the parameters which define the cluster means, Λ and αk, in order to ensure these

parameters are not confounded. The constraints are that

∑
k

αk = 0 (4.10)

and

ΛTSTΣ−1SΛ = I. (4.11)

where S is the matrix of basis function values evaluated on a grid of time points

encompassing the full range of the data and Σ = σ2I + SΓST . James and Sugar

(2003) state that the consequence of placing this constraint on the αk’s is that

STµ0 can be interpreted as the overall mean curve. The authors also comment that

there are several possibilities of constraint that could be placed on Λ, however, the

reasons for using the one described in (Equation 4.11) is so that low dimensional

graphical representations of the curves can be produced.

4.2.2 FCM Fitting

While James and Sugar (2003) describe the two possible ways of fitting the model

outlined in Equation 4.8 (the classification likelihood approach and the mixture

likelihood approach) only the mixture likelihood approach will be considered in

this thesis. The reason for this is that in the mixture approach each individual is

assigned a probability of originating from each cluster and so these probabilities

can be used to provide a confidence in classification for each of the lakes. The

complete distribution for the FCM can be written as f(Y, z,γ), however, since
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the cluster memberships, zi, and the site effects, γi are assumed to be independent,

this can be re-written as

f(Y, z,γ) = f(Y|z,γ)f(z)f(γ).

It follows that the log-likelihood to be maximised will be the sum of the log-

likelihood of each of the individual component distributions, f(Y|z,γ), f(z), and

f(γ). The log-likelihoods for each of these three distributions (including additive

constants which can later be removed) are now shown,

1. The cluster memberships, zi’s are each distributed as multinomial(πi), so

the likelihood can be written as,

L1 =
N∏
i=1

G∏
k=1

πzikk ,

and the log-likelihood is then,

`1 =
N∑
i=1

G∑
k=1

{(
G

zik

)
+ zik log(πk)

}
. (4.12)

2. The site effects, γi’s, are each distributed N(0,Γ), so the likelihood can be

written as,

L2 =
N∏
i=1

1√
2πΓ

exp

(
−(γi)

2

2Γ

)

and the log likelihood is then,

`2 =
N∑
i=1

(
−1

2
[log 2π + log |Γ|]− γi

2

2Γ

)

= −1

2

N∑
i=1

(
log 2π + log |Γ| − γiTΓ−1γi

)
(4.13)

3. The mixture likelihood for all clusters, Yi|γi, zi ∼ N(Si(µ0 +Λαk +γi), σ
2)

which is conditional on the cluster memberships and the site effects, can be
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written as

L3 =
N∏
i=1

G∑
k=1

zik

(
1√

2πσ2

)
exp

{
−(Yi − Si(µ0 + Λαk + γi))

2

2σ2

}

and the log likelihood is then,

`3 =
1

2

N∑
i=1

G∑
k=1

zik

(
[log 2π + log σ2]− 1

σ2
× ||Yi − Si(µ0 + Λαk + γi)||2

)
(4.14)

Treating the zi’s as missing data, the full FCM log-likelihood to be maximised via

the EM algorithm, can then be written as the sum of the expressions (Equations

4.12), (4.13) and (4.14). Spline coefficients for each of the individuals are first

estimated using least squares fits to the observed data from each lake. Clearly,

if there are very few observations for each of the individual curves, the standard

least squares approach can break down and no solution can be obtained. To

account for this a ridge term can be used where a small value is added to each

of the observed values (Hoerl and Kennard, 1970). Following the estimation of

the curves by adding a ridge term, a K-means procedure is applied to the B-spline

coefficients that define the curves. The initial cluster membership probabilities are

then calculated by finding the proportion of curves that are within each cluster.

Finally, after the FCM log-likelihood outlined above has been maximised, each

site is allocated to the cluster which has the highest corresponding probability of

cluster membership.

4.2.3 Multivariate Functional Clustering Model

A multivariate extension of the FCM is also suggested by James and Sugar (2003)

where functional data for several determinands of interest can be used to form

clusters. This is similar to standard clustering approaches where there are several

determinands measured on each individual, and is particularly useful as there

are often situations where there are several functional data determinands which

clusters would ideally be based on. In multivariate functional clustering there are

multiple curves for each individual; one curve corresponding to a function over

time for each determinand.
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Using the same notation as before, let there be N individuals with J deter-

minands measured on each and let mij denote the number of observations for

individual i and determinand j, where i = 1, ..., N and j = 1, ..., J . This set up al-

lows for there to be different numbers of observations for both different individuals

and for the different determinands. It is a realistic possibility that not all individ-

uals will be measured at common time points for all determinands. Following this,

let Yij represent the vector of observations for individual i, and determinand j at

time points tij,1, ..., tij,mij
. James and Sugar (2003) then state that the functional

clustering model can be generalised and can be written for multiple determinands.

For a particular site i and determinand j the response function can be written as

Yij = Sijηij + εij where εij ∼ N(0, Iσ2
ij), i = 1 . . . N, j = 1 . . . J

In this model formulation, the way in which the error variance ε is defined allows a

different error vector for each determinand. Similarly to the standard setting, the

spline coefficients, ηij, can be written as the sum of cluster mean and a random

individual effect as

ηij = µzij
+ γij

It is assumed γi = (γi1, . . . ,γiJ) ∼ N(0,Ω) and each γij ∼ N(0,Γj). For each

cluster the cluster mean effect is formed from a concatenated vector of the cluster

means for each determinand as can be parameterised using the same structure

as in Equation 4.7. Hence, for any cluster k, the cluster mean effect µk can be

written as

µk = (µk1, ...,µkJ) = µ0 + Λαk

As with the single determinand model, one of the key reasons for this further

parameterisation is so that data from each individual can be projected onto low

dimensional space to enable any clustering to be visually identified from plots

of these projected values. Using the multivariate extension of this model simply

means that the projected data points for each individual will be based on the

estimated curves from a set of determinands, rather than just one. Combining

the above equations for all determinands, the functional clustering model for an
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individual i can now be expressed as

Yi = Si(µ0 + Λαk + γi) + εi

where εi ∼ N(0,R) and γi ∼ N(0,Ω)

Above, the data vector for each lake is formed from the corresponding data for each

of the variables, Yi = (Yi1, ...,YiJ). Assuming P spline basis functions are used

to represent the functions corresponding to a single determinand, Λ is a matrix of

size JP × h, µ0 is a vector of length JP while αk is a vector of length h.

The error vectors can be written as εi = (εi1, ..., εiJ) and the error covariance

for site i, can be denoted by R, and is a block diagonal matrix constructed from

Iσ1, ..., IσJ . The individual effect variance covariance matrix, Ω and the spline

basis matrix for the ith individual, Si, are also both assumed to have block diagonal

structures. The spline basis matrix Si constructed from Si1, ...,SiJ . Each block

Sij is the spline basis matrix for the ith and jth variable curve evaluated at time

points tij,1, ..., tij,mij
.

4.3 Model Selection

One of the main difficulties associated with cluster analysis is identifying how

many clusters are most appropriate given the data. Several approaches have been

proposed to address this question, and common examples of earlier approaches,

which can be applied to both non-probabilistic and model based clustering are

provided in Calinski and Harabasz (1974),Hartigan (1975) and Krzanowski and

Lai (1988). Calinski and Harabasz (1974) suggest a criterion based on the ratio

of within and between cluster variation while the authors of the latter examples

propose methods which are based on criteria which involve within-cluster sums of

squares. Techniques such as these are summarised and reviewed in Milligan and

Cooper (1985). One benefit of using model based clustering techniques is that

model selection criteria such as AIC and BIC can often be used to determine the

best model, and hence, the number of clusters which is most appropriate given the

data. For example, after calculating BIC (Equation 1.23) for models with different

numbers of mixture components corresponding to different numbers of clusters, the

model which minimises BIC is selected. One of the drawbacks of using BIC is that

for each potential number of clusters, and therefore each potential model, that is
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to be compared, the maxmimum likelihood has to be calculated. With mixture

models such as the FCM, maximum likelihood is obtained using the EM algorithm

and so while a single model can be fitted relatively quickly, it is computationally

expensive to fit the model repeatedly.

In view of the computational intensity of using some of the model selection cri-

terion approaches to choosing the statistically optimal number of clusters, James

and Sugar (2003) discuss their own approach for assessing the number of clus-

ters when partitioning functional data. The authors suggest using the ‘distortion

function’ which can be defined as

dK =
1

P
minc1,...,ckE[(ηi − czi)

TΓ−1(ηi − czi)] (4.15)

where ηi is the estimated spline basis coefficients for site i, czi is the closest cluster

centre to site i, P is the number of spline basis functions and Γ is the between-site

covariance matrix. This expression is equivalent to the average mahalanobis dis-

tance between each curve and its nearest cluster centre. Sugar and James (2003)

propose that substituting the identity matrix in place of Γ produces reasonable re-

sults, in which case Equation 4.15 becomes the average squared euclidean distance

between each curve and its closest cluster centre. For each K, dK is calculated us-

ing the estimated spline coefficients obtained using least squares and the observed

data. Cluster membership and the resulting cluster centres are obtained by apply-

ing k-means to these spline coefficients. Following this, Sugar and James (2003)

state that, assuming the distribution of the ηi’s is a mixture of G P -dimensional

clusters, and that the clusters are identically distributed with covariance Γ and

finite fourth moments in each dimension, then under suitable conditions, there

exists a set of real valued numbers Y > 0 such that the jump defined as

jumpk = d−Yk − d
−Y
k−1 (4.16)

will be maximised when k=G. There is no exact way of specifying what choice

of Y is optimal, however, it is proposed that a suitable choice is to select Y so

it is equal to one half of the effective number of dimensions in the data. For the

functional clustering model there are three parameters which have to be optimised;

the number of clusters, G, the value for parameterisation of the cluster means, h,

and the number of spline coefficients P . The most crucial of these is clearly the

choice of the number of clusters. James and Sugar (2003) suggest using the jump
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method for first selecting the number of clusters and subsequently using BIC to

determine the values of h and P .

Another popular approach for selecting the number of clusters is the gap statis-

tic proposed by Tibshirani et al. (2001) which compares the change in within-

cluster dispersion between the observed data and a null reference distribution that

is generated using the observed data. A brief description of how the gap statistic

method is applied will now be given. The first step in this approach is to apply

the clustering method chosen to the observed data. Suppose the data are writ-

ten as xij where i = 1, ..., n are independent observations and j = 1, ..., p is the

number of features measured on each. If the data are then split into K clusters,

then let Ck denote the indices of individuals in cluster k, and nk be the number of

individuals in cluster k. Following this, the within-cluster dispersion for cluster k

can be defined as the sum of squared distances between all pairs of points which

fall in this particular cluster. This can be written as,

Dk =
∑
i,i′∈Ck

d2i,i′ (4.17)

While there are several potential choices for how distance between two points can

be defined, Euclidean distance is probably the most simple and popular choice.

Using Euclidean distance, for a fixed value of k, the within-cluster homogeneity

can be measured by calculating the within-cluster sum of squares defined as

WK =
K∑
k=1

1

2nk
Dk (4.18)

Although this is the initial step in calculating the gap statistic, plotting WK versus

K has itself been used to determine the number of clusters. It is clear that as the

number of clusters increases, WK will decrease monotonically, however, the value

of K at which WK begins to “flatten markedly” indicates the number of clusters

where there has been the largest increase in goodness of fit. Using this curve to

choose the value of K is called the ‘elbow’ or the ‘L-curve’ method and while it

provides a straightforward approach to determining the number of clusters, Tibshi-

rani et al. (2001) highlight some of its deficiencies which the gap statistic attempts

to overcome. The key drawbacks of the ‘L-curve’ approach include that there is

no reference distribution with which to compare the WK versus K curve, and that

the differences between WK for different values of K are not normalised and so it
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is unreasonable to compare them. For this reason, to calculate the gap statistic,

a reference distribution is needed which assumes there is no clustering structure

in the data. A reference distribution is created either by generating data from a

uniform distribution with limits chosen using the observed data. Alternatively, a

principal components method which also uses a uniform distribution to generate

reference data is suggested as this also takes into account the shape of the data

and makes the procedure rotationally invariant. Clear details of the principal com-

ponents approach for generating the reference distribution are given in Tibshirani

et al. (2001).

Using one of these approaches a number of reference data sets, say B, are

calculated and for each, the same clustering techniques that were applied to the

observed data are used. For each reference set and each potential number of

clusters, the within-cluster dispersion W ∗
Kb is calculated where K is the number

of clusters and b = 1, . . . , B represents the index of the reference set. The gap

statistic can then be defined as

Gap(K) =
1

B

B∑
b

log(W ∗
Kb)− log(WK)

Logs are taken in order to normalize the within-cluster dispersions being com-

pared. The gap statistic for any given number of clusters is the difference between

the average within-cluster dispersion from the B reference sets and the observed

within-cluster dispersion. The largest gap corresponds to the number of clusters

where there is the biggest gap between the within-cluster homogeneity of the ob-

served data, which is assumed to have a clustered structure, and the reference

data, which is assumed to have no clustering. However, in order to account for

simulation error in the B reference data-sets, a tolerance of one standard error is

used. Therefore, the estimated value of K, K̂, is chosen using the rule

K̂ = smallest K such that Gap(K) ≥ Gap(K + 1)− (sdK+1

√
(1 + 1/B))

where for each K, sdK is the standard error of the B reference data sets. The

standard deviation, sdK , of the B reference data sets is

sdK =

[
1

B

B∑
b

{log(W ∗
KB)− l̂K}2

]1/2
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where l̂K = (1/B)
∑B

b log(W ∗
KB) is the average within-cluster dispersion of the

reference data for each number of clusters k.

A more recent development in choosing the number of clusters based on the

gap statistic approach is provided in Yan and Ye (2007) where a weighted gap

statistic is suggested. Using the same notation as before, the sum of pairwise

distances in (Equation 4.17) can be modified to be Dk = Dk/(2nk(nk − 1)) and

the weighted within parameter dispersion can be defined as

WK =
K∑
k=1

Dk

2nk(nk − 1)

Again if Euclidean distance is used, while Dk is the average squared distance

between all pairs of points in cluster k, Dk is the average squared distance between

observations in cluster k and the cluster mean. Yan and Ye (2007) state that it is

easy to show that modified within-cluster dispersion Dk is an unbiased estimate

of the population variance associated with cluster k. Consequently, the reason

for weighting in this way is that WK is thought to be more robust than WK in

terms of measuring the within-cluster homogeneity while taking into account the

variations in the observed data and the reference data. However, there needs to be

a sufficient number of observations within each of the clusters so that the within-

cluster variation can be reasonably estimated. The weighted gap statistic can be

written as Gap(K) and is applied in exactly the same way as the standard gap

statistic approach with WK replaced by WK .

In addition to the weighted gap statistic, Yan and Ye (2007) also suggest an

alternative method to selecting the K that is most appropriate. While Tibshirani

et al. (2001) use the “one standard error approach”, Yan and Ye (2007) suggest that

the standard gap statistic has a tendency to overestimate the number of clusters

required in some situations and so propose a stopping rule based on the differences

between successive gaps. The rule is called the DD-weighted gap method and aims

to choose the estimated K, K̂, in such a way that K̂ provides a better fit than

K̂−1 clusters, but an additional cluster provides little extra benefit. It is suggested

that a two step approach is taken to estimating the true number of clusters with

the first stage being that the one standard error approach is used to test the null

hypothesis that there is any clustering structure in the data at all (by comparing

Gap(1) to Gap(2)− s2) and subsequently applying the stopping rule by choosing
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K which maximises

DDGapn(K) = DGapn(K)−DGapn(K + 1)

where DGapn(K) = Gapn(K) − Gapn(K − 1). Further details of this stopping

rule approach are provided in Yan and Ye (2007).

In order to apply the gap statistic and the weighted gap statistic method to

functional data, estimated spline coefficients for each curve can be regarded as

being representative of observed data. For each of the n individuals, rather than

having data on a set of different determinands for each individual, as would be

the case with standard multivariate data, for functional data there will be a set of

basis coefficients for each individual. Another consideration is that because there

are potentially K clusters for the observed data, and B reference distributions

simulated, the clustering procedure will need to be carried out (B+ 1)×K times.

This will be time consuming if the FCM is fitted each time via the EM algorithm

and so, as with the jump statistic approach, a reasonable alternative for using

this method with the FCM would be to use the initial k-means algorithm to

define the clusters each time. Further to this, problems may arise in generating

the reference distribution using the principal components approach as singular

value decomposition of the observed data matrix is required for this. Assuming as

before that the data are sparse or irregularly sampled, then the data matrix will

be incomplete and hence any missing data will need to be filled in. This can be

done, as described in Section 3.3, by fitting natural cubic interpolating splines to

the data for each individual, evaluating these functions at any points where data

are missing data and then imputing these values.

4.4 Application of Hierarchical Functional Clus-

tering to Lake Data

Hierarchical clustering, as outlined in Section 4.1, was applied to the Scottish lake

data. As an initial step, this method has been applied to the log transformed

data separately for each of the three chemical determinands of interest. This will

result in a different group structure being obtained for alkalinity, phosphorus and

chlorophyll separately. While a different group structure for each determinand is
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not ideally what is desirable, since final classification of the lakes according to the

WFD is based on a range of different determinands, it provides a starting point

in enabling us to construct a statistically based group structure as an alternative

to the current SEPA group structure which has not been based on observed data.

A multivariate functional clustering approach will be investigated later in Section

4.5.

(a) (b)

(c)

Figure 4.1: Dendrograms showing results of Hierarchical Functional Cluster-
ing for Scottish lakes data each cut to indicate seven groups.

To implement the hierarchical clustering procedure to the data the first step

was to obtain estimated spline coefficients for the functions at each lake. For each

of the three determinands, smooth functions were fitted to the log transformed

data at each lake using the same procedure as that described in Section 3.3. Next

a distance matrix was calculated using the estimated spline coefficients and the

distance metric in Equation 4.1. Complete linkage was then used in conjunction

with the distance matrix in order to produce a hierarchical clustering structure

for each determinand. Alternative distance metrics were also explored, including

single linkage and average linkage, however it was found that for all of the metrics
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investigated there was a considerable degree of overlap between the hierarchical

clusters produced and the original groups currently used by SEPA. Due to the

chaining nature of its steps, single linkage is often used to identify observations

which are outliers rather than a set of clusters. For the Scottish lakes data sin-

gle linkage identified Lake 20 as being distinct from the other lakes in terms of

alkalinity, while Lake 19 was identified as being distinct in terms of Chlorophyll.

For each of the log transformed determinands a dendrogram which summarises

the clustering structure was produced. These dendrograms are shown in Figure

4.1. On each dendrogram, each node represents a single lake with the colours of the

nodes corresponding to the original SEPA groups as shown in Figure 3.1 and the

numbering being consistent with the lake numbers assigned to each lake in Table

3.1. Panel (a) corresponds to alkalinity, (b) correspond to phosphorus and (c)

corresponds to chlorophyll. The dendrograms in Figure 4.1 are cut to show seven

different groupings to enable comparison of the existing SEPA groups with the

partitions determined using the hierarchical clustering. For alkalinity, from Figure

4.1 (a), it can be seen that there is some agreement between the groups specified

using hierarchical functional clustering, and the groups which are currently used

by SEPA. For example, five of the six lakes which are currently in SEPA group 4

(shown in blue) would continue to be in the same group using this new structure.

Similarly, three of the four lakes which are currently in SEPA group 1 (red) and

both of the SEPA group 6 (yellow) lakes are grouped together using hierarchical

clustering. One notable lake is Lake 20, Harray Loch, which is currently in SEPA

group 5. It was found that if either 3,4,5,6 or 7 groups are specified for alkalinity,

Harray Loch is always identified as being separate from the rest. In the initial

functional data analysis of the alkalinity data, the functions corresponding to the

group 5 lakes (lakes 19 and 20) displayed a markedly higher mean level than the

rest of the groups (see Figures 3.5(a) and 3.6(a)). The higher concentration at

Lake 20 may be explained by the geographical location of this site on Orkney and

so the surrounding environment may be quite different to that on the mainland.

This lake is one of only two which are not situated on the Scottish mainland.

As before, the reasonable agreement between the SEPA groups and those iden-

tified using the functional hierarchical approach for alkalinity could be expected

as although no observed chemical data are used for the current groups, they are

partly based on broad categories of Alkalinity. If we look at the scale on the den-

drograms for each determinand, which show functional distance, it can be seen
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that the range of distances for alkalinity is far greater than that of phosphorus

and chlorophyll. This is further evidence that there is more of a group structure

in alkalinity than the other two determinands. Phosphorus and chlorophyll have

no influence on the formation of the current SEPA groups and when comparing

the 7 groups determined using hierarchical clustering for these determinands to

the SEPA groups it can be seen there are more differences between the new and

old group definitions. For Chlorophyll there is also one lake (Lake 19) which is

identified as being different from the others if 4,5,6 or 7 groups are specified. As

with Loch Harray, Lake 19, Loch Eye, is currently in SEPA group 5 and again

appears to be distinct from the rest of the lakes due to a higher mean level. The

geographical location of the lakes could again provide a potential reason for this

difference. Unlike any of the other locations considered Loch Eye is situated on

the North East coast of Scotland.

In terms of investigating the statistically optimal number of clusters for hier-

archical clustering, the gap statistic was used and a range of different numbers of

clusters were considered. The maximum number of groups which was considered

in the comparisons was 10 so that a large range of possible values for number

of groups could be explored. It is acknowledged that 10 is a fairly large number

given that there are only 21 lakes, and given that the exploratory analysis of the

functional data indicated that even the 7 groups currently used by SEPA seemed

to be too many. However, investigating up to 10 groups covers a large range of po-

tential group structures and allows there to be scope for lakes to be in a ‘group’ on

their own. This is especially important as there appeared to be a few lakes which

seemed to be different from the rest in the exploratory analysis of the curves.

Since the principal components method of simulating reference distributions

requires the singular value decomposition of the observed data matrix, a complete

set of data with no missing values was needed. In order to obtain a complete

set of observed data interpolating splines were fitted to the data before estimates

of the missing values were obtained by evaluating these functions. Using the

principal components approach and the complete data matrix, 500 sets of reference

data were generated. The hierarchical clustering procedure was applied to each

reference distribution and the dendrogram was cut at a range of different numbers

of clusters. The within-cluster sum of squares was next computed. Then, to form

the expected reference distribution curve, for each number of clusters, the mean

and standard deviation of the 500 reference distribution based sums of squares was
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calculated. Although neither Tibshirani et al. (2001) nor Yan and Ye (2007) give

a clear indication of how many reference data-sets should be used, 500 seemed to

be sufficient as it produced results which were consistent when the calculations

were repeated.

Figure 4.2 displays plots of the within-cluster dispersion against the number

of clusters for each of the three determinands (panels (a), (c), and (e)), and the

corresponding plots of the gap statistic against the number of clusters (panels (b),

(d) and (f)). Before even calculating the gap statistic, using just the L-curves,

which suggests that the correct number of clusters corresponds to the point where

the curve markedly flattens out, indicates that for alkalinity 3 groups is most

appropriate. For the other two variables the L-curves are less clear about the

number of clusters that is is optimal. Figure 4.2(b), (d) and (f) display the gap

statistic with bars representing one standard error. The red line segments on

these plots can be used to help visually identify the optimal number of clusters

suggested by the gap statistic; the number of clusters selected corresponds to the

first instance where the gap is greater than the immediately succeeding gap minus

one standard error (where the red line has a negative gradient). It is evident that

the gap statistic method suggests 3 groups is best for alkalinity and chlorophyll,

while 2 groups is best for representing the phosphorus curves.

Figure 4.3 shows a set of 3 dendrograms corresponding to each of the three

determinands. These are the same dendrograms as shown in Figure 4.1 cut to de-

pict the statistically optimal number of groups as determined by the gap statistic.

Table 4.1 shows the original SEPA groups, the groups formed using hierarchical

functional clustering with the gap statistic, and a set of clusters made up of the

cross product of the three individual determinand clusterings.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: L-curves and gap statistic plots corresponding to hierarchi-
cal functional clustering for Scottish lakes data. Panels (a) and (b) corre-
spond to log(alkalinity), (c) and (d) to log(phosphorus), and (e) and (f) to

log(chlorophyll)
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(a) (b)

(c)

Figure 4.3: Dendrograms showing results of Hierarchical Functional Cluster-
ing for Scottish Lakes data cut to show the statistically optimal number of

groups as determined by the gap statistic.
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Lake Name Alk Phos Chl SEPA cross

G=3 G=2 G=3 group prod

1 Gladhouse Reservoir 3 1 1 1 A
2 Talla Reservoir 3 2 3 1 B
3 Fruid Reservoir 3 2 3 1 B
4 St Marys Loch 3 2 3 1 B
6 Loch Katrine 1 2 3 2 C
7 Glen Finglas Reservoir 3 2 3 2 B
8 Loch Avich 3 2 3 3 B
9 Loch Ba 1 2 2 3 D
10 Loch Arkaig 1 2 3 3 C
11 Loch Beinn a Mheadhoin 1 2 3 4 C
12 Loch Mhor 1 2 3 4 C
13 Loch Mullardoch 1 2 3 4 C
14 Loch Monar 1 2 3 4 C
15 Loch Glascarnoch 1 2 3 4 C
16 Loch Quoich 1 2 3 4 C
19 Loch Eye 3 1 1 5 A
20 Harray Loch 2 1 1 5 E
21 Loch Tralaig 3 2 2 6 F
22 Loch of Cliff 3 2 1 6 G
23 Lussa Loch 3 1 2 7 H
24 Loch Glashan 1 1 3 7 I

Table 4.1: Table of groups based on hierarchical functional clustering

For alkalinity there are two larger groups, each consisting of 10 lakes, and a

single lake which forms a group. The lake identified as forming a group by itself

is again Harray Loch (Lake 20) which has been discussed before as being distinct

from the other lakes in terms of the mean alkalinity concentration observed. One

of the larger alkalinity groups is primarily comprised of lakes which form SEPA

groups 3 and 4, while the other contains lakes from SEPA groups 1 and 6. The

phosphorus groups comprise of one smaller group containing 5 lakes, and one group

of the remaining 16 lakes. All of the SEPA group 2, 3 and 4 and 6 lakes, and 3

of the 4 group 1 lakes are all contained within the larger group. For chlorophyll,

the structure of the largest group, which contains 14 lakes, is similar to that of

the larger phosphorus groups. It is clear that even with the smaller number of

groups, for all determinands, much of the existing SEPA group structure has been

preserved within the new groups.

The cross-product clusterings indicate that there are nine distinct combina-

tions of classifications according to the individual determinands. Five lakes have
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classifications which are unique whist there are 3 groups of more than one lake;

one consisting of 2 lakes, one made up of 5 lakes and a larger group consisting of

8 lakes. All six SEPA group 4 lakes fall within the largest group of cross-product

classifications. The five lakes which have a unique cross-product classification are

situated close to the coast and so potentially weather or land use information may

explain why these lakes are distinct from the others. While hierarchical clustering

provides a good first step into investigation of the lakes group structure, a more

formal approach was next taken to look at alternative groupings via the application

of the functional clustering model.

4.5 Application of Model Based Functional Clus-

tering

The functional clustering model (FCM) was applied to the Scottish Lake Data.

Unlike the hierarchical clustering approach, there is no requirement to have a com-

plete set of data which is common across all lakes for the FCM and hence only the

observed log transformed data were used. As with the hierarchical approach, the

first step was to fit models separately to each of the three chemical determinands

of interest alkalinity, phosphorus and chlorophyll, using R code which accompanies

James and Sugar (2003).

Within the model fitting procedure there are several parameters which need

to be specified. These include the ridge regression parameter. James and Sugar

(2003) suggest using a small value for the ridge parameter of around 0.001 rather

than zero as the least squares estimation of the spline coefficients can break down

if the dataset is incomplete. This value seemed to work well for the Scottish lake

data and so in all FCMs presented in this thesis, the ridge parameter was set

as 0.001. In addition there are a further three parameters for each of the FCMs

which can be optimised. Obviously the parameter of most interest from these is

the number of clusters, G, although decisions also need to be made concerning P ,

the number of spline functions used to represent the data as well as h, the number

which should be used within the parameterization of the cluster means. James

and Sugar (2003) suggest using different approaches to estimate these values; the

jump method to select what number of clusters is appropriate, and then BIC to

choose P and h. Pastres et al. (2011) who apply the FCM to water quality data
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in Venice Lagoon use only BIC to select the parameters used. The selection of

parameters for the Scottish lakes data will now be discussed.

Choosing P, G and h for the Scottish Lakes Data

As BIC is based on the likelihood of the fitted model, while the jump statistic

is based on the k-means clustering of the data, BIC was at first thought to be

the most accurate option and was initially used to optimise parameter values.

Ideally BIC values for all possible combinations of P , G and h can be calculated

simultaneously however this proved to be highly computationally expensive. The

BIC was calculated for several models for values of G ranging from 1 (no grouping)

to 10 while h values were considered from 1 to 9 (since h ≤ min(P,G − 1) and

for these data P > G). Considering this range of group numbers meant that

for each each determinand, BIC values were calculated for 55 different models

in order to optimise only h and G. Choosing the number of splines using BIC

also would substantially increase this number of potential models yet again. It

was felt very little would be gained by choosing the number of splines using BIC

and so an alternative approach was used in order to avoid an excessive amount of

computation. The number of spline functions was chosen from visual inspection of

the functions estimated for each lake using the fitted FCM model. This is similar

to the approach taken when selecting the choice of smoothing parameter when

fitting spline functions to the data in Section 3.3 and requires the model to be

fitted only once for each potential value of P .

There are several potential choices of P which all seem sensible, and as with

the initial fitting of the functions to the observed data in Section 3.3, the aim was

to choose the number of basis functions so that the main features of the data were

captured without being too smooth. For each of the single determinand models,

using 15 basis functions seemed to be an appropriate choice that balanced the

responsiveness of the data and local variability. Although the number of basis

functions used to estimate the functional data here is less than the number used

to estimate the earlier functional data, the functions continue to be comparable in

terms of the smoothness of the fit. There is also less data here since the dataset

is irregular and missing values have not been imputed.

To illustrate the choice of 15 basis functions, Figure 4.4 shows the functions

fitted to alkalinity data for selected lakes (1, 20 and 24) using both penalised
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Figure 4.4: Comparison between fitted log(alkalinity) functions for penalised
regression splines (left) and FCM (right) (lakes 1, 20, 24)

regression splines with 19 basis functions, and the functions fitted using the FCM

model with 15 basis functions. The observed data are also shown on these plots.

It can be clearly seen here, that while the two sets of curves are slightly different

because of the two different methods of fitting (regression splines with a penalty

and regression splines with the addition of a ridge term) they are very similar in

terms of the smoothness of the curve. Both sets of curves appear to provide a

good fit to the observed data without being excessively locally variable. It should

be noted that the specific lakes shown here are purely illustrative and only these

curves are shown to allow easier comparison across the two fitting methods.

Following the selection of the number of basis functions, Figure 4.5 displays

plots of the BIC values for each of the determinands when the model was fitted

using each combination of G and h, and with 15 set as the number of spline basis

functions. The y-axis shows the BIC values, the x-axis the number of groups,

G, and each line represents a different value of h. The BIC for each model was

obtained using Equation 1.23 where the likelihood was calculated using (Equation

4.9) and np, the total number of parameters used in the calculation of BIC, was



Functional Clustering 141

given by

1 + P + (P × h) +
P × (P + 1)

2
+ hG− 1 + (G− 1) (4.19)

Table 4.2 contains a summary of the contribution of each of the parameters to

be estimated to the total number of parameters, np. This takes into account the

constraints imposed by the model on the group mean parameters, αk, (detailed

in Equation 4.10) and the probabilities πk. Both Λ and Γ were matrices with

unknown elements to be estimated and so the size of these matrices was included

in our evaluation of np.

Parameter Contribution to np

σ2 1
µ0 P
Λ P × h
Γ P (P+1)

2

αk h(G− 1)
πk G− 1

Table 4.2: Summary of number of parameters (np) used in BIC calculations
for the univariate models

For alkalinity, BIC is minimised when h = 1 and G = 3, for phosphorus when

h = 1 and G = 2 and for chlorophyll when h = 1 and G = 5. While a minimum

BIC value has been obtained for each determinand it can be seen from the plots

that the minimum value appears to be only just smaller than surrounding values.

A rule of thumb for comparing BIC values has been provided by Raftery (1995)

who developed a set of rules for interpreting the difference between pairs of models.

This rule of thumb states that a difference of between 0 and 2 BIC units is “weak”

evidence of a difference, between 2 and 6 is “positive” evidence, between 6 and 10

is “strong” evidence and more than 10 units is “very strong”. For alkalinity, the

optimal model which has h = 1 and G = 3, has a BIC value of 817.07 while the

closest model, in terms of BIC, has h = 1, G = 2 and has a value of 815.5. Going by

this rule of thumb there is weak evidence that 3 groups is better than 2 groups for

alkalinity. Similarly, for phosphorus, there is a relatively small difference between

the BIC value for the ‘optimal’ model, where G = 2 and h = 1, and the model

where G = 3 and h = 1 of around 5.5 units. Although there is some evidence

for the model with 2 groups, it is again unclear this is a much better option than
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(a) (b)

(c)

Figure 4.5: BIC for alkalinity, phosphorus and chlorophyll CM

the model with 3 groups. For chlorophyll, going with this rule of thumb the best

choice is slightly more apparent and the model with the minimum BIC has a score

more than 10 units smaller than any other model considered.

While selecting the number of groups using BIC utilises the full fitted model

and is thought to be a reliable approach to choosing the number of clusters, for

this particular dataset the results produced do not always indicate a single model

as being markedly better than the rest. In light of this it seemed sensible to inves-

tigate alternative methods of choosing the statistically optimal number of clusters,

namely the jump statistic and the gap statistic. For the jump statistic method the

distortion function in (Equation 4.15) was calculated for each number of clusters

(G = 1 to 10). The estimated spline coefficients for the curves used in this method

were obtained from fitting the curves using regression splines plus a ridge term, as

in the initial stage of fitting the FCM, and then the k-means algorithm was applied
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to these to obtain estimates of cluster membership and hence cluster centres. As

suggested by Sugar and James (2003) the k-means procedure was used rather than

the full FCM in order to avoid unnecessary and excessive computation and the

identity matrix was used rather than the lake covariance matrix, Γ as this matrix

is only computed while fitting the full FCM. After calculating the distortion for

each number of groups the jump statistic was next calculated and the optimal

number of groups was indicated by where the jump statistic was maximised. It

quickly became clear that the jump statistic method of estimating the most ap-

propriate number of clusters was unreliable for the Scottish lakes data with the

most concerning problem with this method being the high variability in the results

obtained. After repeating the calculations multiple times using the same original

data, it could be seen that the results produced, in terms of the number of clusters

identified as being best, varied greatly each time. Furthermore, the jump statistic

was also highly sensitive to the transformation power used. Although Sugar and

James (2003) suggest that the transformation power should be equal to half the

effective number of dimensions of the data, there continued to be uncertainty sur-

rounding the choice of transformation power which was most appropriate for this

datset.

Following this, the gap statistic was calculated for the same range of numbers

of clusters for each determinand separately. As with the jump statistic, in order

to avoid an unnecessary level of computation, k-means was used on estimated

spline coefficients to provide the group structure. The functional distance between

the curves, as used within the hierarchical approach, was computed to determine

the differences between the observations, and the principal components method

of generating a reference distribution was used to ensure the data generated to

form the null distribution took into account the shape of the observed data. The

principal components approach with the complete data matrix was used as before

and 500 sets of reference data were generated. To each reference distribution

the k-means clustering procedure was applied over a range of different number of

clusters and the within-cluster sum of squares was computed.

Figure 4.6(a) displays a plot of the within-cluster dispersion against the num-

ber of clusters for alkalinity and Figure 4.6(b) displays the gap curve with bars

representing one standard error. It is evident from Figure 4.6(b) that the gap

statistic method suggests three groups is the number that is statistically opti-

mal for alkalinity. Repeating the same procedure for phosphorus indicated that 2
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groups would be optimal (Figure 4.7 a) and for chlorophyll 3 groups was chosen

as being the most suitable number (Figure 4.7 b). The results of the gap statistic

approach for selecting the appropriate number of clusters for the FCM model agree

both with those determined using BIC and with the number of clusters identified

as suitable within the hierarchical clustering of the same data. While the number

of groups selected for chlorophyll using BIC was 5, 3 groups was the next nearest

in terms of BIC value. This may indicate that for chlorophyll there are 3 more

separated groups or 5 groups which are not as distinct.

(a) (b)

Figure 4.6: L-curves plot (a) and Gap Statistic plot (b) for alkalinity

(a) (b)

Figure 4.7: Gap Statistic plots for phosphorus (a) and chlorophyll (b)

In terms of fitting the FCM, for the lakes data, the gap statistic provides a

reliable way of selecting the number of clusters, however unlike BIC, it cannot be

used to simultaneously answer the question of how to choose h, the value which
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determines how the cluster means are parameterized. In the univariate case it

is fairly clear from the BIC values calculated, that h = 1 seems to a sensible

choice for all three single determinand models. For the later multivariate models

however, h was not selected using BIC as it proved to be overly computationally

intensive. An alternative method to choose h is by fitting models with the num-

ber of clusters identified using the gap statistic, and then look at a plot of the

estimated curves projected onto h dimensional space. The primary purpose of

the h parameterisation within the FCM is to allow low dimensional projections

of the curves and it can be seen from the plots of the projected curves whether

h is inappropriate. James and Sugar (2003) suggest that if the projected curves

appear to lie in a lower dimensional space then the model should be re-fitted with

h adjusted accordingly. For example, if h = 2 is used and the projected curves

(plotted onto 2 dimensional space) lie approximately in a straight line then this

implies that h = 1 would be more appropriate choice. The choice of which h is

also determined by the restriction that h ≤ min(P,G− 1), meaning that if G = 2

is selected as best, as it is for the phosphorus data, then the only option is h=1.

Choosing G as determined by the gap statistic, h = 1 as identified using BIC

and P = 15, an FCM was fitted to the log transformed alkalinity, phosphorus and

chlorophyll data. All models were fitted using the EM algorithm and were said

to converge when there was less than 0.1% change in the estimated error variance

σ2. Using this tolerance all of the univariate models converged quickly with 6

iterations. The stopping criterion used here is a lack of progress criterion rather

than a convergence criterion such as Aitken’s acceleration procedure. The results

of these models are summarised in Table 4.3 which presents for each determinand

a group allocation for each site and the estimated membership probability. For

all three determinands the estimated cluster means highlight that the division

between the groups is based solely on mean level. For this reason, for alkalinity

and chlorophyll the three groups have been labelled high (H), intermediate (I) or

low (L), and for phosphorus the labels high(H) and low(L) have been used. These

labels are only intended to give a broad idea of the relative position of the cluster

mean trajectories. Figures 4.8, 4.10 and 4.12 show four plots which present the

estimated cluster structure for each determinand. The four figures within each set

are:

(a) the observed data for each lake;

(b) the predicted trajectories for each lake;
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(c) the value of each curve when projected onto 1 dimensional space against the

area of the lake in km2. The projected cluster centres are also shown as

vertical lines;

(d) the predicted curves are shown again (dashed lines) with the estimated clus-

ter means superimposed (solid lines).

In all of these plots different colours represent the different groups. It should

be noted that there is no particular reason why the projected curves have been

plotted against area of lake in (c), and while plotting the points in this way is

primarily to scatter them enough that their distance from the group mean can

be more clearly seen, it could also indicate if there was any relationship between

the clusters and this determinand. Other determinands could be used here if they

were specifically of interest.

Discussion of Univariate FCMs

For alkalinity the estimated cluster means appear to be fairly well separated. The

low group mean displays the clearest evidence of a seasonal pattern of the three

groups although this is not particularly strong and is heavily influenced by a few

lakes where the seasonal signal is large. The groups vary in size, with the highest

group (shown in red) consisting of only three lakes, one of which has a markedly

higher mean alkalinity level than the other two. This is lake 20, Loch Harray, which

has already been identified in the hierarchical cluster analysis as being particularly

distinct. Both of the lakes in SEPA group 5 (lakes 19 and 20), are in the high

group. This is consistent with the earlier functional analysis since group 5 was the

one which was shown to be significantly different to all other SEPA groups when

pairwise functional t-tests were implemented. The results of the univariate models

are summarised in Table 4.3. The predicted cluster memberships are shown along

with the corresponding confidence in classification. A cross-product classification

has also been included.

The within-group variability seems fairly small in the group of 10 Low con-

centration lakes (shown in green) and in the group of eight Intermediate lakes

(shown in black), with the exception of one Intermediate site which displays a

much stronger seasonal component than all other group members. The projected
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(a) (b)

(c) (d)

Figure 4.8: Summary of fitted FCM for alkalinity; (a) observed data, (b)
predicted curves, (c) linear discriminant plot, (d) cluster means

curves and cluster means shown in Figure 4.8(c) provide further evidence of sepa-

ration between the groups as the values are clustered in three sets along the x-axis.

There is little evidence of a connection between the size of the lakes (in km2) and

the groups based on alkalinity although all Intermediate lakes tend to be relatively

small, while the Low alkalinity lakes are much more varied in terms of size. The

probability of cluster membership is 1 (Table 4.3) for all lakes for alkalinity. In

view of the overlapping estimates for each of the curves representing different lakes

this level of certainty in the partition may initially seem questionable, however,

looking at Figure 4.8(c) it can be seen that each of the projected curve values are

definitely closer to one group centre line than any other. There are no points on

this plot which are equidistant from two of the projected group centres.

Figure 4.9 shows a map of Scotland with the new group structure for alkalinity.
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The different groups are coloured as before, and the site numbers again correspond

to those in Table 3.1. From this map there does appear to be a spatial pattern in

the group structure as determined by the FCM in terms of alkalinity. The lakes

in the high group are all along the East coast and those in the Low group tend to

be located in the North West. The Intermediate groups are the most spread out

geographically although they tend to be South of the other lakes with the exception

of site 22, Loch of Cliff which is the furthest north of all the lakes. Although there

are only three FCM groups for alkalinity, when comparing these new groups to

the current SEPA ones it can be seen there is a reasonable agreement between the

two. Both lakes in SEPA group 6, and 3 out of 4 of the SEPA group 1 lakes form

the Intermediate group while all of the SEPA group 4 lakes are in the Low group.

In addition, as already noted, SEPA group 5 are two of the three lakes which make

up the High group in the new FCM structure. SEPA groups 2, 3 and 7 are split

between the new groups. There was some indication in the initial analysis of the

functional data that fewer groups, comprised from concatenation of the existing

groups may be sufficient in capturing the variability between the lakes. Analysis

of the results of the FCM for alkalinity confirm this to be the case.

Figure 4.9: Map of Scotland showing FCM group structure for alkalinity
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For phosphorus, the split between the two groups is again based primarily on

mean level, with one smaller group consisting of 5 High concentration lakes and a

larger Low group formed from the remaining 16 lakes. From Figure 4.10(c) there

appears to be a reasonable amount of variability in the Low concentration lakes as

the projected site values are quite spread out around the projected cluster mean.

The map of the group structure for phosphorus shown in Figure 4.11 highlights that

there is again some evidence of a spatial pattern in the distribution of the groups

since all of the High lakes seem to be close to the coast. The three lakes which

were in the High group for alkalinity are also in the High group for phosphorus.

In terms of comparison between the FCM groups for phosphorus and the existing

SEPA groups it can be seen that, as with alkalinity, there are several groups which

have been amalgamated to form a larger group in the new group structure. All

lakes from SEPA groups 2, 3 and 4 are contained within the Low concentration

group. This is consistent with the earlier impressions gained from the functional

data that there is a huge degree of overlap in the existing SEPA groups for this

determinand and hence fewer groups can accurately represent the similarities in

these lakes.

For chlorophyll, the cluster means for the Low and Intermediate concentration

groups display a strong seasonal signal. Although the cluster means for the Low

and Intermediate groups appear to be fairly close to one another in Figure 4.12(d),

it can be seen from the plot of projected curve values in Figure 4.12(c) that there

is clear separation between the FCM groups for chlorophyll, with all projected

site values being close to their corresponding projected group centre. Figure 4.13

displays a similar geographical pattern to alkalinity in terms of the High concen-

tration group, with all lakes in the High chlorophyll group also being found along

the east coast. Of the 17 lakes in the Low and Intermediate groups the geograph-

ical pattern is not quite as clear although the Low concentration groups tend to

be located fairly close to one another in the West coast and in central Scotland.

The Intermediate lakes are more spread out in terms of location although all but

one of these lakes falls into one of two groups; one in the North West and one in

the South East.
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(a) (b)

(c) (d)

Figure 4.10: Summary of fitted FCM for phosphorus; (a) observed data, (b)
predicted curves, (c) linear discriminant plot, (d) cluster means
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Figure 4.11: Map of Scotland showing FCM group structure for phosphorus
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(a) (b)

(c) (d)

Figure 4.12: Summary of fitted FCM for chlorophyll; (a) observed data, (b)
predicted curves, (c) linear discriminant plot, (d) cluster means
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Figure 4.13: Map of Scotland showing FCM group structure for chlorophyll
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Lake Name Alk (Pr) Phos (Pr) Chl (Pr) SEPA cross

G=3 G=2 G=3 group prod

1 Gladhouse Reservoir H (1) H(1) H(1) 1 A
2 Talla Reservoir I (1) L(1) I(1) 1 B
3 Fruid Reservoir I (1) L(1) I(1) 1 B
4 St Marys Loch I (1) L(1) I(1) 1 B
6 Loch Katrine L (1) L(1) L(1) 2 C
7 Glen Finglas Reservoir I (1) L(1) L(1) 2 D
8 Loch Avich I (1) L(1) I(1) 3 B
9 Loch Ba L (1) L(1) L(1) 3 C
10 Loch Arkaig L (1) L(1) I(1) 3 E
11 Loch Beinn a Mheadhoin L (1) L(1) I(1) 4 E
12 Loch Mhor L (1) L(1) I(1) 4 E
13 Loch Mullardoch L (1) L(1) I(1) 4 E
14 Loch Monar L (1) L(1) I(1) 4 E
15 Loch Glascarnoch L (1) L(1) I(1) 4 E
16 Loch Quoich L (1) L(1) I(1) 4 E
19 Loch Eye H (1) H(1) L(1) 5 F
20 Harray Loch H (1) H(1) H(1) 5 A
21 Loch Tralaig I (1) H(1) H(1) 6 G
22 Loch of Cliff I (1) L(0.96) L(1) 6 D
23 Lussa Loch I (1) L(0.84) H(1) 7 H
24 Loch Glashan L (1) H(1) L(1) 7 I

Table 4.3: Table of FCM groups for univariate models.

G represents the statistically optimal number of groups.

4.5.1 Multivariate Model

Ideally, as the WFD classification of lakes is based on multiple determinands of

interest, any grouping structure will be formed using information from a combina-

tion of these determinands. Following on from the univariate models the next step

was to combine the information from the alkalinity, phosphorus and chlorophyll

data available and fit the FCM to these data to obtain a group structure. In all

of the multivariate models presented, the data have been scaled to normalise the

data before any clustering model is applied. It is necessary to suitably standardize

the variates in order to avoid any one of the variates dominating the differences

between the sites. For each determinand, the functional mean of all lakes has been

removed from each individual lake and the observations have been divided by the

standard deviation. To fit the FCM to multivariate data the first step was to fit
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a different curve to the observed data for each determinand at each site. For a

single site the basis coefficients for the curves corresponding to the multiple deter-

minands are then concatenated, and k-means is applied to these combined sets of

basis coefficients. The spline functions were fitted to each determinand separately

and so the same number of splines (15) and ridge parameter (0.01) were used for

consistency with the univariate model.

In this application BIC was found to be unstable when calculated for the

multivariate models in situations where there were a relatively large number of

potential groups (6 or more). As the gap statistic proved to be a reliable choice

when determining the statistically optimal number of clusters for the univariate

data, this was again used to select the optimal number of clusters in the multi-

variate case. For all univariate cases BIC and the gap statistic selected the same

number of clusters as most appropriate. The same range of possible numbers of

clusters, G = 1, .., 10, was considered and again 500 sets of reference data were

generated for each number of clusters. To compute the within-cluster sums of

squares for the reference data, a separate set of reference data was generated for

each of the determinands and this was treated in the same way as the observed

data, whereby estimated basis coefficients were combined, and a k-means approach

was subsequently applied. The L-curve for the multivariate data is shown in Fig-

ure 4.14(a) and the gap statistic is shown in Figure 4.14(b). The L-curve itself

gives no clear indication of what number of groups is appropriate as there is no

single value after which the curve starts to flatten. The gap statistic plot indicates

that four groups is most appropriate for the multivariate data, although the gap

corresponding to three groups is only marginally smaller than the value required

for it to be the optimal value. For this reason, the gap statistic was calculated

several times for the multivariate data and 4 groups was consistently selected as

most suitable, although each time, 3 groups was a close second.

To ensure that the number of clusters identified as optimal using the gap

statistic was not sensitive to the number of basis functions used in the estimation

of the curves the gap statistic was run a number of times; each time for a set

of curves fitted using a different number of basis functions. For the multivariate

FCM when the number of basis functions was between 10 and 18 the number of

clusters which was identified as statistically optimal was consistently chosen to

be 4. Figure 4.15 shows a set of different L-curves corresponding to clustering of

curves which have been estimated with different numbers of basis functions. As
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(a) (b)

Figure 4.14: L-curve and gap statistic plots for multivariate data

can be seen, there is only a minimal shift in the curves in terms of the within

cluster sum of squares and the shape of each L-curve is almost identical. This

implies that the underlying group structure of the curves is prominent, despite

small changes to the variability of the curves expressed through differing numbers

of basis functions. This is unsurprising as the formation of the groups is based

primarily on mean level, and so it is likely this will dominate the number of clusters

selected as optimal, rather than relatively minor fluctuations within the curves

that may, or may not, be picked out with different numbers of basis functions. A

similar procedure was also carried out to ensure the number of clusters selected as

optimal for each of the univariate clusterings was not sensitive to the number of

basis functions used to estimate the curves.

Following the selection of the number of groups, the model was fitted using

the EM algorithm and the convergence criterion was set as there being a less

than a 0.5% change in all three error variance estimates (corresponding to the

three different determinands). Although this tolerance was higher than that used

for the univariate models it seemed appropriate given that the three parameter

estimates were required to converge simultaneously and worked well given the data.

With the number of groups being four, the possible values of h were 1, 2 and 3. A

model was first fitted which had h = 3 however the projected values of the curves

appeared to lie on a plane in 3-dimensional space and so the model was re-fitted

with h = 2. With this second model, there was no evidence the projected curves

lay in one-dimensional space rather than two dimensional space, and there was also

much clearer separation between the groups. The final multivariate model with
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Figure 4.15: L curves for multivariate FCM where curves have been estimated
using different numbers of basis functions

P = 15 for each determinand, G = 4 and h = 2 converged within 10 iterations

when a tolerance of 0.05% difference was used.

The results of the multivariate FCM are summarised in Table 4.4 which shows

the group structure of the multivariate model with probabilities of cluster mem-

bership, alongside the group structure corresponding to the existing SEPA groups.

The cross-product classification according to the univariate FCM models has also

been included in Table 4.4 in the final column. In addition, Figure 4.16 shows the

four predicted group mean curves for each determinand. As the data was scaled

and centered before the model was fitted these predicted curves are not directly

comparable to the univariate FCM predicted mean curves for each determinand.

It is clear while the split in the groups is again primarily based on the mean level

of the determinands, there is some overlap in the group means, which indicates

that other temporal features of the data have played a role in the formation of

the groups. For example, the blue and black curves for alkalinity are very close in

terms of mean level, however, while the blue curve is flat, the black curve exhibits

a strong seasonal signal. The four groups have been labelled A, B, C and D and

can be broadly summarised as follows;
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Group A (Red) 3 lakes which appear to have high concentrations for all three

determinands. The lakes in this group have a strong seasonal signal in terms

of chlorophyll.

Group B (Green) 8 lakes with low alkalinity and phosphorus concentrations

and intermediate levels of chlorophyll.

Group C (Black) 5 lakes which have intermediate concentrations for alkalinity

and phosphorus and low levels of chlorophyll. This group, in general, is

formed from lakes which have strong seasonal components.

Group D (Blue) 5 lakes which have intermediate levels for all determinands.

The group mean for this group is very close to the mean value for all 3

determinands and seems to be very flat. While the flat curve is not repre-

sentative of all lakes in this group, often the lakes within this group have

only a weak seasonal pattern.

More groups are required for the multivariate model than any of the univariate

models. This implies that the group means are being pulled in different directions

by the different determinands. Groups are not always consistent in terms of the

characteristics for each determinand, for example, there is no group which consists

of lakes that have low concentrations of all three determinands.

While there are nine distinct cross-products from the univariate classifications,

rather than the four groups identified by the multivariate FCM it can be seen that

there is overlap between the two sets. Group E from the multivariate FCM cor-

responds exactly with the univariate FCM cross product classifications labelled

by group B. As well as the relationship between the univariate and the multi-

variate FCM groups, it is also of interest to consider the relationship between

the multivariate FCM groups and the original SEPA groups. This relationship is

shown in the cross classification table provided in Table 4.5. As can be seen there

is again a considerable degree of overlap between the original SEPA groups and

those determined by the model based functional clustering model approach. For

example, 75% of the SEPA group 1 lakes are contained in the multivariate FCM

group labelled D, while all of the SEPA group 5, 4 and 7 lakes are contained within

the multivariate FCM groups A, B and C respectively. Although the multivariate

FCM approach suggested a smaller number of groups as statistically optimal, it

is clear that a great deal of the original SEPA group structure is preserved within
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Lake Name Multi Grp (Pr) SEPA cross

G = 4, P = 15(×3) group product

1 Gladhouse Reservoir A (1) 1 A
2 Talla Reservoir D (1) 1 B
3 Fruid Reservoir D (1) 1 B
4 St Marys Loch D (1) 1 B
6 Loch Katrine B (0.99) 2 C
7 Glen Finglas Reservoir C (1) 2 D
8 Loch Avich D (1) 3 B
9 Loch Ba C (1) 3 C
10 Loch Arkaig B (1) 3 E
11 Loch Beinn a Mheadhoin B (1) 4 E
12 Loch Mhor B (0.97) 4 E
13 Loch Mullardoch B (1) 4 E
14 Loch Monar B (1) 4 E
15 Loch Glascarnoch B (1) 4 E
16 Loch Quoich B (1) 4 E
19 Loch Eye A (1) 5 F
20 Harray Loch A (1) 5 A
21 Loch Tralaig C (1) 6 G
22 Loch of Cliff D (1) 6 D
23 Lussa Loch C (1) 7 H
24 Loch Glashan C (1) 7 I

Table 4.4: Table of FCM groups for multivariate models.

G represents the statistically optimal number of groups and P represents the number

of spline coefficients

the definition of the multivariate groups. The estimated multivariate FCM clus-

terings, both univariate and multivariate are also consistent with the results of

the functional F-tests carried out on the original SEPA groups shown in Table 3.2.

The functional F-tests highlighted in particular that SEPA group 5 was distinct

from the rest of the SEPA groups in terms of alkalinity and phosphorous and this

is also reflected in the estimated FCM clusterings. An example of the predicted

curves for each determinand at a single site (Site 1, Gladhouse Reservoir) are

shown in Figure 4.17. The observed data are shown on these plots and the dashed

lines represent 95% confidence bands. As could be expected, given these curves

are marginal predictions from a multivariate model, the predicted curves for each

determinand are not as good a fit to the observed data as the curves estimated

using each of the univariate models. Despite this, Figure 4.17 shows the curves

do capture the main features of the observed data and the amount of agreement
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FCM A B C D Total
SEPA

1 1 0 0 3 4
2 0 1 1 0 2
3 0 1 1 1 3
4 0 6 0 0 6
5 2 0 0 0 2
6 0 0 1 1 2

7 0 0 2 0 2
Total 3 8 5 5 21

Table 4.5: Cross Classification Table of multivariate FCM and SEPA groups

between the predictions and the observed data shown in this particular example

is typical of all other lakes. It is also worth noting that these curves are fitted to

data which have been scaled and centered and so any minor fluctuations in the

pattern over time are not of any real interest.

Although the multivariate predicted curves may not fit the observed data

quite as well as the univariate curves, there is, in general, agreement between the

groupings of lakes according to the univariate models and the multivariate model.

For example, lakes 1 and 20, which are classed as being in the high group for all

three of the univariate models, are in group A in the multivariate group structure.

From Table 4.4 it can also be seen that some of the current SEPA group structure

has been preserved within the multivariate FCM group structure. As with the

univariate models, all of the SEPA group 4 lakes remain grouped together when

the multivariate functional clustering model is used to determine the clusters. For

the multivariate FCM both SEPA group 5 lakes continue to be grouped together

under the new structure, as do the SEPA group 7 lakes.

With the multivariate model it is especially difficult to see how the groups

can be separated considering only the predicted curves. The projected curves are

again a useful tool in visual identification of the clusters and Figure 4.18 displays

the combined information from 3 determinands projected onto two dimensional

space. The orange points represent the projected cluster centres for the four

groups. There is evidence from this plot that the four groups are well separated

and no site is on the border of being in two groups which not only indicates

that four groups is suitable for the given data, but also explains why the cluster

membership probabilities for each of the lakes are so high. Without the plot of the
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Figure 4.16: Multivariate model predicted group mean functions for alkalinity,
phosphorus and chlorophyll

Figure 4.17: Predicted marginal functions of alkalinity, phosphorus and
chlorophyll for Site 1

projected curves it can be difficult to see how we can predict with such certainty

which site is in which group.

Figure 4.19 shows a map of the multivariate FCM group structure. As with

the univariate models there is a group of high concentration lakes (group A lakes)

which lie along the east coast. The group B lakes are all located in the north

west of the country while the other two groups are less separable in terms of

geographical location. While new group structures have been determined using

the FCM, the question of how to choose the representative site within each group

has yet to be addressed. At present, the representative site is often determined by

logistics. Initially it was thought that the representative site within each group

could be chosen by selecting the site which had the highest membership probability

according to the FCM. However, as nearly all lakes have a cluster membership

probability of one, it was decided that another sensible approach to choosing the

representative site would be to chose the site whose projected value was closest

to the appropriate projected cluster centre. The representative lakes which were
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selected using this method are the lakes which are highlighted in orange on Figure

4.19.

Figure 4.18: Projected curves and cluster means for multivariate FCM

4.6 Summary

In summary, functional clustering provides a statistical approach to defining groups

of lakes based on the observed data. Hierarchical functional clustering of each in-

dividual determinand provided a good first step in terms of allowing us to visually

assess if there was any clear underlying group structure. The large amount of

overlap in the existing groups observed in the initial analysis of the data indicated

that a clear grouping of the lakes would be unlikely and the hierarchical clustering

reinforced this. Investigation of a statistically optimal number of groups for hi-

erarchical functional clustering of the lakes data using the gap statistic indicated

that fewer groups than the number currently used by SEPA would be sufficient in

capturing the variability amongst the lakes.

Following from the hierarchical methods, model based clustering had several

advantages over the non-probabilistic approach, including enabling standard model
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Figure 4.19: Map of Scotland showing multivariate FCM group structure

comparison techniques to be used to select the optimal number of groups and en-

abling us to calculate a confidence in classification of each site. Furthermore, the

functional clustering model proposed by James and Sugar (2003) had the addi-

tional key advantage of being able to deal with irregular and sparsely sampled

data, which was a problem in the Scottish lakes data. Treating the curves as

a random effect lessens the importance of having a regularly spaced, complete

dataset, which is a rarity in environmental settings due to situations such as ad-

verse weather conditions stopping samples being collected or failure of equipment

used for analysis of samples.

In order to compute initial estimates of the spline coefficients while taking into

account the fact there may be an incomplete dataset at each site, ridge regression

was used rather than unconstrained least squares which would overfit the data.

This ridge regression avoided interpolation of the data and meant that missing

data no longer had to be imputed by initially fitting interpolating splines. The

curves fitted to the observed data using ridge regression were only slightly different

than the curves fitted in the exploratory functional data analysis, which were fitted
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to a regular dataset using penalised regression splines. It was clear that the ridge

regression fits provided a good first step in fitting the FCM, particularly in the

univariate case, as the final predicted curves for each site obtained using the fitted

model were a good fit for the observed data. Even for the multivariate model,

after using these estimates for the basis coefficients as a starting point for the

EM algorithm, the marginal projections captured most of the main features of the

underlying data.

Although being able to employ standard model comparison techniques to iden-

tify the best number of clusters was one of the attractive features of the model

based clustering approach, problems were encountered when trying to use BIC

with the multivariate models. Despite this, the gap statistic provided a suitable

alternative approach which produced consistent results that were sensible given

the earlier exploratory analysis of the current groups. It was reassuring that for the

univariate models, where BIC could be calculated, there was agreement between

the number of clusters identified as being best using both methods. The number

of clusters determined using the functional hierarchical approach also agreed with

the number of clusters identified for each of the univariate determinand FCMs.

All of the clustering methods, hierarchical and both univariate and multivari-

ate models, indicated that the statistically optimal number of groups is less than

the number of groups currently used by SEPA. The existing SEPA groups are in

many cases combined to form larger groups within the new FCM based group

structures. As already discussed, this is not surprising given the overlap in the

current groups and the small number of lakes. There are, however, clearly some

differences between groups of lakes, especially for alkalinity. Even though these

differences are primarily based on mean level, which could be expected as there is

no evidence of any trend in the data, the multivariate model did indicate a split

in the groups in terms of the strength of seasonal signals at the lakes.

From a statistical viewpoint, the results of the functional clustering models

for these data may be considered as slightly disappointing because of the fact

that the mean level is essentially the sole driving force behind separation of the

groups. This is due to the underlying data, and the method itself has the potential

to determine a more interesting group structure which captures more than mean

levels, if there was more happening in terms of temporal dynamics at the lakes.

It is worth noting there are only 21 lake which have to be clustered, and these

are based on a time series of just under 4 years of monthly observations. On the
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basis of the results of the simulation study presented in Chapter 2, the available

data considered for the Scottish lakes does not cover a long enough time period

for even a moderate long term trend to be observed. Regardless of the formation

of the groups on mean level, the functional approach to clustering continues to be

worthwhile. For example, consider the situation where there is a group of lakes

which display a negative trend over time and a group where the level remains

constant over time. If clustering was based only on a single measurement, for

example, an annual mean, the lakes which are potentially rapidly deteriorating

may be grouped with the lakes which display no change.

The practical implication of defining fewer groups is that fewer representative

lakes can subsequently be monitored, while still ensuring that differences between

the lakes are being taken into account. As discussed previously, any possible re-

duction in monitoring has become especially important in view of financial and

time constraints which are currently being imposed on environmental regulator

agencies such as SEPA. While the WFD is an extremely complex piece of legis-

lation, in which the classification of lakes encompasses a huge range of different

determinands, both chemical and biological, grouping the lakes using a functional

clustering approach provides a solid basis for the group structure which is based on

observed data from some of the determinands of interest. Although the application

of the functional clustering approach has been demonstrated in a particular setting

there is potential for these methods to be used in conjunction with a wide vari-

ety of datasets. Slight modifications of the methods may be required for specific

contexts and this is considered in the next chapter for data from a river network.



Chapter 5

Incorporating Spatial Correlation

The investigation into functional clustering of water quality data has thus far only

considered groups of locations which have different geographical locations, are

unconnected and are therefore assumed to be spatially independent. Situations

where this assumption is not appropriate, and where it may be of interest to

account for spatial correlation between locations have not yet been considered.

Examples where spatial correlation is present in environmental data are abundant

in the literature such as in air quality studies (Guttorp et al., 1994) and in the

analysis of water temperature (Akita et al., 2007). While this spatial correlation is

often incorporated into models used for prediction (Bowman et al., 2009, Shaddick

and Wakefield, 2002), there are far fewer examples which discuss the inclusion of

spatial correlation within clustering methods, and only a couple which examine

the presence of spatial correlation for geographically referenced functional data.

This chapter will examine clustering of spatially correlated data in order to

obtain groups of monitoring stations that are not only similar in terms of mean

levels and temporal patterns of the determinand of interest, but which are also

spatially homogenous. Hierarchical clustering will be applied to a set of nitrate

data from monitoring stations along the River Tweed in the South of Scotland.

River network data introduces a set of new challenges when considering func-

tional clustering which go beyond the inclusion of spatial correlation. As well as

including correlation based on standard Euclidean distance between the stations

when forming clusters, the effects of stream distance based correlation will also be

considered, along with flow-connectedness amongst the stations.

166
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5.1 Spatial Functional Data Analysis

As mentioned, there is a wide literature available on modelling spatially correlated

variables measured at different locations within a geographical region. Often the

aim is to use these models to predict the determinands of interest at unobserved

locations using kriging, which is a method of spatial prediction that interpolates

between previously observed locations. There are also several examples of sta-

tistical analysis of spatially correlated data in multivariate settings where there

are several response variables, such as Ver Hoef and Cressie (1993) and Pebesma

(2004). In the multivariate context the determinands of interest are considered

simultaneously and the spatial covariance has to be estimated for each.

Further to this, multivariate spatial statistical tools are also starting to be gen-

eralized for use with functional data. Delicado et al. (2010) provides a summary

of recent contributions to methods of interpolation for the three classic types of

spatial data structures; geostatistical data, point patterns and areal data. The

different methods discussed include proposed approaches by Goulard and Voltz

(1993), Nerini et al. (2010) and Giraldo et al. (2011) which all aim to offer a so-

lution to the problem of predicting curves at unsampled locations. In addition

to functional kriging, there are a number of other recent examples which consider

other methods of spatial functional data analysis. Sun and Genton (2011a) pro-

pose a spatial correlation adjustment of the functional boxplots proposed in Sun

and Genton (2011b). These boxplots can be used as an exploratory tool for visu-

alizing spatio-temporal functional data and for outlier detection. Yamanishi and

Tanaka (2003) develop a regression model for spatial functional data in which both

response and explanatory variables are curves, and where the relation amongst the

variables can change over space. This model combines two existing methods, ge-

ographically weighted regression (Brunsdon et al., 1998) and functional multiple

regression (Ramsay and Silverman, 1997).

There are a number of examples in which spatial correlation is included within

clustering techniques, particularly in the image analysis and remote sensing con-

text. For example, Soares et al. (1996) considers a clustering approach by adapting

the EM algorithm to include a spatial constraint based on neighbourhood informa-

tion. The number of examples in the literature where spatial covariance has been

incorporated into clustering of curves is, however, fairly limited. Two examples

of spatial functional clustering are provided in Romano et al. (2010) and Secchi
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et al. (2011), both of whom use iterative algorithms to partition geographically

referenced data. In addition, Giraldo et al. (2010) extends existing ideas used for

clustering to include spatial correlation between curves. Hierarchical clustering

methods are adapted via weighting the dissimilarity matrix by a measure of spa-

tial functional covariance. The methods in this paper are an extension of methods

previously considered in the investigation of the lakes data in Chapter 4 and hence

will be explored in more detail later in this chapter.

As with the majority of spatial statistical analysis, the initial aim here is to

estimate the spatial correlation between stations however, rather than use this to

predict concentrations of the determinand of interest at unobserved locations, it

is of interest to build this information into clustering methods in order to identify

groups of stations which display similar spatio-temporal characteristics.

5.2 Estimating Geostatistical Covariance

5.2.1 Covariance and Semi-variance

Calculating the covariance between observations collected at pairs of locations

is carried out in order to estimate the association between them, however the

covariance is unobtainable if there is only one observation collected at each location

and the mean cannot be calculated. Although it is often the case that there

is only one sample collected at each location, the assumption of second order

stationarity overcomes this problem. If the underlying process is stationary then

the distribution of the variable of interest has attributes, such as the mean, which

are constant across space. The variance of the underlying process is also assumed

to be finite and constant. If there are two different locations xi and xj which are

separated by a lag of h = xi − xj then let Z(xi) and Z(xj) represent observed

values of a variable of interest Z at these locations. The covariance can then be

defined as

Cov(xi, xj) = E[{Z(xi)− µ}{Z(xj)− µ}] (5.1)
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where µ is the mean of Z (assumed be constant). Since xj = xi + h, the above

equation can be rewritten as

Cov(xi, xi + h) = E[{Z(xi)− µ}{Z(xi + h)− µ}]

= E[{Z(xi)}{Z(xi + h)− µ2}]

= Cov(h)

Hence the covariance between points depends only on the distance or the ‘lag’

between them. The dependence between values of Z separated by different lags

is therefore known as the autocovariance function and is related to the autocorre-

lation function which has previously been discussed when assessing the temporal

correlation. The relationship between the autocorrelation function and the au-

tocovariance function is discussed in Webster and Oliver (2007) who provide a

comprehensive introduction to spatial statistics and from whom the above nota-

tion has been taken. To ensure stationarity it is often necessary to estimate a

spatial trend surface. This spatial trend is subsequently removed from the data

and the residuals are modelled to determine an estimate of the underlying spatial

correlation.

In addition to the covariance function, semi-variances, which are half the vari-

ance at a particular lag, are also used widely within geostatistics. The reason for

this is that points are considered in pairs and so the semi-variance is equivalent

to the variance per point at a given lag. Using the same notation as above, the

variance of points separated by lag h can be defined as

V ar[Z(xi)− Z(xi + h)] = E[{Z(xi)− Z(xi + h)}2]

= 2γ(h).

and hence the semi-variance is defined as γ(h). Plots of empirical covariances and

semi-variances against different lags, respectively referred to as covariograms and

variograms, are used to summarise spatial relationships. Since semi-variances do

not require the mean to be calculated, the variogram is far more popular than the

covariogram in geostatistics. However, for reasons discussed later in this chapter, it

is necessary for stream-distance correlation to be modelled using the covariogram.

As a result of this, both Euclidean and stream based spatial correlation will be

modelled using the covariogram, in order to ensure that any results obtained are

comparable. Writing Cov(h) to represent the covariogram at lag h, and γ(h)
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to represent the variogram at lag h, then the relationship between the two is

straightforward and can be written as

γ(h) = Cov(0)− Cov(h) (5.2)

As Cov(0) is a constant, it can be seen from the relationship in Equation 5.2

that the variogram and covariogram are mirror images of one another. There are

a range of functions which are frequently employed to model spatial covariance

including the Gaussian, exponential, linear with sill, and spherical models. The

exponential model and the wider class of models that this is a part of, the Matérn

class, will be discussed later in this section. All of these models have the ability

to represent several key features found in the covariogram. For example, since

distances are always positive, any covariance function should be positive definite.

In addition, the function should monotonically decrease from Cov(0) as the lag

increases (locations which are far apart are less similar than those close together)

and have a constant minimum which may either be finite or can be approached

asymptotically. Conversely, as the variogram is a mirror image of a covariogram,

variograms must be negative semi-definite and monotonically increase, again pos-

sibly asymptotically, to a constant maximum. In the literature, the signal variance

of the process is commonly referred to as the sill variance. The sill is therefore

the maximum variance reached in a variogram or covariogram. For monotonic

variograms, if the sill is reached at a finite distance, then this distance is known

as the range. The range is the distance beyond which locations will be spatially

independent. Hence, responses at locations separated by distances greater than

the range are spatially uncorrelated. For variograms which reach their sill asymp-

totically, the effective, or practical range can be identified. One definition of the

effective ‘range’ is provided in Cressie (1993) who proposes that the effective range

is the distance at which the variogram reaches 95% of its sill. In this chapter, the

term range shall refer to either the effective range or the exact range. As well as

the range and sill, often variograms will have a discontinuity at the origin which

is referred to as the ‘nugget’. This parameter represents measurement error, or

the spatial variability on a smaller scale than the distance between the two clos-

est points in the sampling region (Diggle and Ribeiro, 2007). An example of a

variogram function to illustrate the different components is shown in Figure 5.1.

In order to construct an empirical covariogram, a covariogram cloud is first

constructed by calculating the covariance between all possible pairs of observations
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Figure 5.1: Example variogram function

from different locations separated by lag h. These estimated covariances are then

plotted against the corresponding lags and the plot is binned by averaging at

regular intervals. A variogram is obtained in the same way, but by using semi-

variances in place of covariances. After an empirical covariogram plot has been

obtained from the observed data, one of a set of valid covariogram models can

subsequently be fitted to estimate the underlying covariance structure.

A broad class of covariance models is the Matérn family functions. For two

observations separated by a distance of h units the Matérn covariance function is

given as

Cov(h) = σ2 1

Γ(ν)2ν−1

(
2
√
ν
h

θ

)ν
Kν

(
2
√
ν
h

θ

)
(5.3)

where Γ is the gamma function, Kν is a modified Bessel function of the second kind

and θ and ν are non-negative covariance parameters corresponding to the range

and smoothness of the function respectively. The chosen value of ν influences the

relationship between the range and the sill and in general, the smoothness of the

function increases as ν increases. In Equation 5.3, as the smoothness parameter

ν tends to infinity, the Gaussian covariance function is approached and when

ν = 0.5, the Matérn function is equivalent to the exponential covariance function.

The exponential model can be written as

Covexp(h|θ) =

{
θ0 + θ1 if h = 0

θ1 exp( h
θ2

) otherwise
(5.4)

where θ0, θ1 and θ2 respectively correspond to the nugget, partial sill and range

parameters.
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Webster and Oliver (2007) state that choosing variogram and covariance mod-

els and fitting them to data remains one of the most controversial topics in geo-

statistics. Some people prefer fitting models using subjective judgement while

others use mathematical criteria such as ordinary least squares, weighted least

squares or AIC to select the best fit. Cressie (1985) suggests a method of weighted

least squares to fit variogram models, where the weights used are proportional

to the number of observations within each ‘bin’. The result of this is that more

weight is given to the shorter lags and less weight is given to the larger lags as

these are the points on the variogram which have been estimated using a small

number of paired differences. While the modelling of the spatial data within this

chapter has been carried out using covariances, the equivalence between variogram

and covariogram in Equation 5.2, means that these weights can also be used with

the covariances.

As the Matérn class of covariance functions is thought to be a very flexible and

general set of functions which encompasses several of the covariance functions com-

monly used to estimate the spatial covariance of environmental data, the Matérn

function has been used as the model of choice within this thesis. Weighted least

squares, with the weights as defined in Cressie (1985), has been used as the method

of selecting the optimal covariance parameter values.

5.2.2 Spatial Functional Covariance

One of our main areas of interest for the investigation of environmental data are

functional data. Two methods of estimating spatial correlation for functional

data are discussed in Giraldo et al. (2010), namely, the trace variogram and the

multivariate variogram. Using Giraldo et al. (2010) as the main reference for this

section, each of these methods will now be discussed.

The Trace Variogram

The idea of generalizing the variogram to be used with spatially correlated func-

tional data are discussed in Giraldo et al. (2011) who suggest the use of the trace

variogram. Let g1(t), ..., gN(t) defined for t ∈ [a, b] ⊂ R be a set of curves which

are realizations of a stationary, isotropic functional random process collected from

N stations with corresponding location co-ordinates denoted by x1, . . . , xN . Then
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writing the distance between two locations (i, j) as h, the trace variogram can be

defined as,

γ∗(h) =
1

2
E

[∫
[a,b]

(gi(t)− gj(t))2dt
]
. (5.5)

If the curves are estimated using splines then each curve can be expressed (as

shown in Equation 1.14) as the product of a set of spline coefficients (ci) and a

matrix of basis functions, Φ(t).

gi(t) = cTi Φ(t),

where i = 1, ..., N . The integral in Equation 5.5 is then equivalent to the square

of the functional distance, dij, as defined in Equation 4.1 since∫
[a,b]

(gi(t)− gj(t))2dt =

∫
[a,b]

(ci − cj)
TΦ(t)Φ(t)T (ci − cj)dt

=
(
ci − cj)

TW (ci − cj
)

where W =
∫
[a,b]

Φ(t)Φ(t)Tdt. As with standard variograms, to obtain the empir-

ical trace variogram, the trace variogram cloud can be computed by calculating

the differences between all pairs of curves and plotting these differences against

the corresponding distance between the locations. The points on this plot can

then be ‘binned’ and averaged at a series of regular intervals. The estimated trace

variogram can therefore be written as

γ̂∗(h) =
1

2|N(h)|
∑

i,jεN(h)

(ci − cj)
TW (ci − cj) (5.6)

where |N(h)| is the number of curves separated by a distance of h units. After ob-

taining the empirical trace variogram from observed data, any standard variogram

model can be fitted as if it were a standard univariate variogram. Giraldo et al.

(2010) note that the fitted parametric trace variogram is always a valid variogram

because its properties are those of a parametric variogram fitted from a univariate

geostatistical dataset.
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The Multivariate Variogram

In addition to the trace variogram, the multivariate variogram can also be used

to describe spatial covariance for functional data. The multivariate covariogram,

Γ(h), was formalized in Bourgault and Marcotte (1991) to be used for spatially

correlated multivariate data where there are m variables collected at a series of N

locations with coordinates x1, . . . , xN . Using notation from Giraldo et al. (2010),

the multivariate variogram, Γ(h) is defined as follows. For an m multivariate

spatial process {Z(x) = Z1(x), Z2(x), ..., Zm(x) x ∈ D ⊂ Rd} then Γ(h) can be

written as

Γ(h) =
1

2
E[(Z(x)− Z(x+ h))TM(Z(x)− Z(x+ h))] (5.7)

whereM is a symmetric positive definite matrix used as a matrix in the calculation

of dissimilarities, such as Euclidean distance where M = I. In this case, the

multivariate variogram is the sum of all m single variograms corresponding to

each variable.

Γ(h) =
1

2
E[(Zl(x)− Zl(x+ h))2] (5.8)

=
m∑
l=1

γll(h) (5.9)

where γll(h) is the variogram for the lth variable. Alternatively, if the Mahalanobis

distance is used and M is the inverse of the variance-covariance matrix between

the m variables, then Γ(h) becomes a weighted sum of single and cross variable

variograms.

It has already been shown (in Chapter 4) that the distance between any two

curves can be calculated from the distance between the coefficients of the basis

functions which define those curves. With this is mind, the multivariate variogram

can also be used to estimate the spatial covariance of functional data by treating

the set of basis coefficients as a multivariate random variable. As before, if there

are a set of N curves, each expressed using P basis functions, then each set of

coefficients, ci = (ci1, . . . , ciP ), is a vector of length P . Then for p = 1, . . . , P , the

set of pth basis coefficients, can be written as Mp = (c1p, . . . , cNp). Giraldo et al.

(2010) state that these coefficients form a realization of a multivariate random

variable, M(x) = (M1(x), . . . ,MP (x)) : x ∈ D ⊂ Rd. Here x is used to denote
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the geographical co-ordinates of each of the curves. Subsequently, replacing the

multivariate random field Z(x) with the coefficients M(x) in Equation 5.9 provides

a variogram that can be used with functional data. In practise, it is necessary

to simultaneously compute a P × P matrix of variograms and cross-variograms

between the basis coefficients,

Υ(h) =


γ11(h) γ12(h) . . . γ1P (h)

γ21(h) γ22(h) . . . γ2P (h)
...

...
. . .

...

γP1(h) γP2(h) . . . γPP (h)


where

γll(h) =
1

2
E(Ml(xi)−Ml(xj))

2

γlq(h) =
1

2
E(Ml(xi)−Mq(xj))

2

Above, l, q = 1, ..., P and h = |xi − xj| is the distance between curves i and j,

with coordinates xi and xj respectively. This matrix can be estimated using the

Linear Model of Coregionalization (LMC) which is discussed in Goulard and Voltz

(1992).

5.3 Covariance between locations on River Net-

works

The covariogram models discussed thus far are all intended to be used with stan-

dard Euclidean distances and while Euclidean distance is probably the most fre-

quently used distance measure in spatial statistics, there are some contexts where

it may not be the most appropriate metric for describing the spatial dependence.

Measuring the distance between two stations on a river network is one such sit-

uation. The stream distance, which can be described as the “shortest distance

between two locations, where distance is only computed along the stream net-

work” (Ver Hoef et al., 2006) can be used in problems involving stations spaced

along a river network. However, when fitting a covariogram model to an exper-

imental covariogram based on stream distances there are some additional issues

that need to be addressed. Ver Hoef et al. (2006) highlight that spherical and
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linear models used in combination with stream distances, as opposed to Euclidean

distances, can result in a covariance matrix which is not positive-definite and there-

fore invalid. Ver Hoef and Peterson (2010) discuss two classes of stream distance

based covariance model; the ‘tail-up’ model (in reference to the tail of the moving

average process moving upstream) and the ‘tail-down’ model (in reference to the

tail of the moving average process moving downstream). A mixture of the models

can also be used, this is called a variance component model and is discussed in

Ver Hoef and Peterson (2010) and Cressie and O’Donnell (2010).

The stream-distance based covariance models are often used in conjunction

with flow data, which is a measure of the volume of water passing a point per unit

time. If stream segments flow into one another, they are called flow-connected. A

matrix of flow-connectedness, F , can be defined to summarise the flow-connectedness

between stations. If there are n stream segments, then the flow-connectedness ma-

trix is an n× n matrix with the (ij)th entry

Fij =

{
1 if i and j are flow-connected

0 otherwise
(5.10)

One of the features of tail-down models (Ver Hoef and Peterson, 2010) is that al-

though stream distance is used, correlation is permitted between locations which

are not flow-connected. While this initially may seem unrealistic, enabling obser-

vations at locations which are not flow-connected to be spatially related to one

another is a property of practical use in situations where the variable of interest is

an organism which can swim against the flow, or is a chemical determinand which

is associated with such organisms. An example of such a scenario would be studies

which look at fish populations. Within this thesis interest lies in modelling the

spatial relationships of nitrates data and hence the tail-up model appears to be

the most suitable and will be discussed further.

5.3.1 Tail-up Model

The tail-up model was introduced in Ver Hoef et al. (2006) and Cressie et al.

(2006) and unlike the tail-down model, it assigns a covariance of zero to stream

segments which are not flow-connected. The consequence of this is that observa-

tions collected at locations which do not flow into one another are assumed to be
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uncorrelated. To define this model, let Z(xs) and Z(xt) be the values of a ran-

dom variable at locations xs and xt which are located on stream segments s and

t respectively, and let hstr be the stream distance between them. Let k ∈ Bxs,xt

be the set of all stream segments on the river network that are between segment

s and segment t. Following this it is shown in Ver Hoef and Peterson (2010) that

a class of tail-up models suitable for use with stream distance can be written as

Cov(hstr|θ) =

{
0 if s and t are not flow-connected

Πk∈Bxs,xt

√
ωkCovu(hstr) otherwise

(5.11)

where Cov(hstr) is the standard Euclidean distance based model formulation of a

chosen covariance function, such as the Matérn function previously discussed in

Equation 5.3 and ωk refers to a set of weights. From Equation 5.11 it can be seen

that the weighting between any two flow-connected points on the river, say s and

t, is obtained by taking the product of the square root of the k weights over the

set B(xs, xt), which corresponds to all stream segments that lie between s and t.

It is suggested by Ver Hoef et al. (2006) that the best way in which to define

the weights, ωk, is using flow volume. Wherever there is a point of confluence in

the river network, and two feeder streams join to form one larger stream, then

the weights ω can be computed provided there are flow data available. O’Donnell

(2012) states that the weight at each of the feeder streams is the ‘proportion of

the overall contribution that the streams make to the overall volume after the

join’. Hence, if there are two stream segments, labelled s and t say, and these have

volumes vols and volt respectively, then the weight for stream segment s can be

defined as

ωs,t =
vols

vols + volt
.

Including these weights in this way effectively means that covariances between two

stations which are flow-connected will be relatively small if one of the stations is

on a minor (low flow volume) stream segment, even if the two stream segments

are close together in terms of the stream distance.

If the flow data cannot be obtained or simulated for the entire river network,

Ver Hoef et al. (2006) suggest that a proxy variable such as stream order can be

used as a suitable alternative. While Ver Hoef and Peterson (2010) indicate that
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the use of stream order data are less computationally intensive than using flow

volume data, O’Donnell (2012) suggests that the use of flow data are far more

descriptive of the river network than stream order, and highlights the potential of

using flow data calculated at a series of different time points so that weightings in

the covariance model could change over time depending on flow-volumes.

5.3.2 Estimating Covariance with the tail-up model

As mentioned earlier, it is necessary for the stream distance spatial covariance to

be modelled via a covariogram. The reason for this is the more complex structure

of the tail-up model shown in Equation 5.11. The exponential covariance function

is used to illustrate why a variogram is inappropriate for stream distance based

modelling in O’Donnell (2012). Using the relationship between the variogram and

covariogram shown in Equation 5.2 and the tail-up model shown in Equation 5.11,

where Cov(hstr) is defined as in Equation 5.4, then the stream distance based

exponential variogram can be written as,

γ(hstr) = Cov(0)− Cov(hstr)

= θ0 + θ1 − (ωs,tθ1exp(−hstr
θ2

))

= θ0 + θ1(1− ωs,texp(−hstr
θ2

)) (5.12)

Here, as before θ0, θ1 and θ2 respectively are the nugget, partial sill and range

parameters. From this it can be seen that a key issue is that is not possible to

separate the weighting structure, ωs,t, from the observed semi-variances in the data

in order to estimate the variogram model parameters. O’Donnell (2012) states that

the consequence of this is that “the estimation of θ0, θ1 and θ2 will need to factor

in the impact of the weights, as they are likely to affect θ1 and θ2 if the variogram

formulation is to be used”. It is also noted that failure to account for this is likely

to result in poor descriptions of the underlying correlation structure. Alternatively,

using the covariance function overcomes this problem as the parameters and the

weight structure can be separated,

Cov(hstr) = ωs,tθ1exp(−hstr
θ2

) (5.13)

In order to fit the tail-up model, the first step is to compute the observed pairwise

covariances (see Equation 5.1) for all pairs of stations which are flow-connected.
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Subsequently, these covariances can be plotted against lags (measured in terms of

stream distance) and binned at regular intervals to obtain an empirical stream-

distance based covariogram. A standard covariogram model can then be fitted and

evaluated to obtain a covariance matrix, denoted V . Subsequently, as discussed

in Ver Hoef et al. (2006), to obtain a valid stream based covariance matrix the

Hadamard product of V and a weight matrix Θ is computed. The matrix Θ

contains zeros whenever stations are not flow-connected, and when stations are

flow-connected, Θ contains the square root of the percentage of flow volume weight,

ωs,t. The construction of the matrix Θ ensures both that the flow weights are

incorporated in the estimate of the covariance structure, and that stations which

are not flow-connected are not spatially correlated.

It is the aim of this work to extend the application of the tail-up model to

functional data and then to incorporate the estimate of stream based covariance

within functional clustering approaches. Methods of including spatial correlation

into different clustering methods for both standard and functional data will now

be discussed.

5.4 Including Spatial Covariance within Cluster-

ing Methods

If the spatial covariance in a process has been estimated using a variogram or co-

variogram, this can subsequently be incorporated within hierarchical clustering in

order to group the data into contiguous zones where the attributes of one, or more,

variables are similar. Both Oliver and Webster (1989) and Bourgault et al. (1992)

propose the idea of weighting the distance matrix which represents the dissimi-

larities between samples by using the variogram and the multivariate variogram,

respectively. Giraldo et al. (2010) not only extend the ideas of estimating spatial

covariance to the functional data setting but furthermore develop the idea of us-

ing these functional spatial covariance matrices as weight matrices when clustering

hierarchical data.

For standard univariate data, where there is a set of locations with a value of

a single observed variable collected at each location, Oliver and Webster (1989)

suggest weighting the original distance matrix, dij, using the variogram calculated
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for the distance between the stations as follows,

dwij = dijγ(h). (5.14)

Above, γ(h) is the corresponding value of the variogram calculated at the distance

between stations i and j. In the multivariate case, where there is more than one

variable collected at each location, Oliver and Webster (1989) suggest using prin-

cipal component analysis (PCA) on the set of variables, and then calculating a

variogram which corresponds to the value of the first principal component at each

location. The distance matrix can then be weighted by this principal component

based variogram in the same way as in the univariate case. Alternatively, for mul-

tivariate data collected at a series of different locations, Bourgault et al. (1992)

propose weighting the distance matrix by the Multivariate variogram initially dis-

cussed in Bourgault and Marcotte (1991).

As already stated, both of the approaches outlined above were initially in-

tended for use with standard non-functional data, however they can be generalised

to be used in conjunction with functional data. Incorporating spatial covariance

into hierarchical functional clustering can be achieved by weighting the functional

distance matrix defined in Equation 4.1 using either the trace variogram (Equa-

tion 5.6) or the functional multivariate variogram (Equation 5.7). Both methods

of hierarchical clustering for spatially correlated functional data are applied to

a climatology dataset in Giraldo et al. (2010), and while it is noted there are

slight differences between the clusters obtained under each approach, neither is se-

lected as being better than the other in terms of identifying spatially homogenous

groups. As both the methods discussed here for estimating spatial association

between functional data are based on the variogram, neither are suitable for use

with stream distance. The hierarchical clustering approach was thought to be a

suitable method to be used in this context rather than the functional model based

clustering approach explored in Chapter 4. The key reason for this is that the

FCM clusters sets of basis coefficients, rather than stations, and hence the spatial

covariance matrix incorporated within the FCM would need to be defined in terms

of covariance between individual spline coefficients. The use of river network data

and stream distance would add further complications with the unique difficulties

of also requiring flow-connectedness and flow weights to be defined in terms of the

spline coefficients.
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5.4.1 Clustering stations on a River Network

Following on from the approaches discussed in Giraldo et al. (2010) for hierarchi-

cal clustering of spatially correlated functional data it is the aim here to extend

these ideas further so that they can be applied to data which have been collected

at monitoring stations which lie on a river network. An obvious extension of the

work already proposed by Oliver and Webster (1989) is to weight the functional

dissimilarity matrix using stream distance covariance rather than Euclidean dis-

tance based covariance. However, the complex structure of river network data

introduces several additional features which need to be taken into consideration.

A stream distance based covariance model such as the tail-up model is required in

order to ensure that the covariance structure estimated is valid. As already dis-

cussed, it is necessary to estimate the stream distance based spatial relationships

using covariances as opposed to the semi-variance to ensure that the tail-up model

parameters are identifiable.

To estimate the stream distance covariance for functional data, we need to

define a metric for measuring the covariance between two curves. For standard,

non-functional data, Cressie (1993) states that the covariance between stations si

and ri at one particular point in time is given by

Cov(si, ri) =
N∑
i=1

(Z(si)− Z̄(si))(Z(ri)− Z̄(ri))

N
, (5.15)

where Z(si) and Z(ri) are the values of the variable at stations s and r at time

point i. Keeping in mind both the above equation and the definition of the trace

variogram in Equation 5.6, which uses the area between two curves to represent the

difference between them, one potential measure for estimating functional covari-

ance has been developed. Using the same notation as before, let g1(t), . . . , gN(t)

defined for t ∈ [a, b] ⊂ R be a set of curves which are realizations of a stationary,

isotropic functional random process collected from N stations with correspond-

ing location co-ordinates denoted by x1, . . . , xN . Also as before, if each curve is

expressed using P basis functions gi(t) = cTi Φ(t), i = 1, . . . , N , then each set of

coefficients, ci = (ci1, ci2, . . . , ciP ), is a vector of length P . To calculate the covari-

ance let us first define the mean curve, denoted ḡ(t). Following Equation 3.1, ḡ(t)

can be defined by the mean of the basis coefficients representing the set on all N
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curves at time point t,

ḡ(t) =
1

N

N∑
i=1

ciΦ(t)

= c̄TΦ(t) where

c̄ =

(
1

N

N∑
i=1

ci1,
1

N

N∑
i=1

ci2, . . . ,
1

N

N∑
i=1

ciP

)

For any two stations, a naive approach to computing the functional covariance

could be to multiply the differences between the curve representing each station

and the curve representing the overall mean, in other words

Cov(gi(t), gj(t)) =

∫
(gi(t)− ḡ(t))2dt

∫
(gj(t)− ḡ(t))2dt (5.16)

There are however two problems with this approach. The first is that the direction

of the difference is not reflected by the above equation as it is essentially the

product of two areas, the area between the curve representing each station and

the overall mean curve. While covariances can be positive or negative, the area

(a) (b)

Figure 5.2: Difference between station 1 Nitrate and Mean Nitrate (original
and de-trended)

between the station curve and the mean curve will always be a positive value and

so using this approach there is no way to determine if the station in question has

values which are below or above the overall average. For example, on Figure 5.2

(a) the nitrate concentration at station 1 is shown by the solid black line, the

overall mean curve is shown by the solid red line and the difference between the

two curves is represented by the black area between the two curves. Calculating



Incorporating Spatial Correlation 183

the difference by computing the area between the curves gives no indication that

the station 1 concentration is less than the overall mean concentration. The second

problem is that multiplication of two areas is likely to result in large values which

are not suitable in the computation of covariance and it is thought that covariance

will, at some point, tend to zero as the distance between stations increases. To

overcome both of the above problems a ‘reference line’ can be defined. The area

between the mean curve and this reference line can be used to both reflect the

direction of the difference between a given station and the overall mean, and can

be used to standardize the areas so that the measures of covariance are on a

suitable scale. Since curves should not fall below this reference line it should be

set as a horizontal line which is below the minimum value of the set of curves gi(t)

where i = 1, . . . , N .

Writing the reference line as gref (t) and the corresponding set of basis coeffi-

cients which define this line as cref , then the area between the reference line and

mean curve can be written as∫
(ḡ(t)− gref (t))2dt = (c̄− cref )TW (c̄− cref )

= M̄

Similarly, the area between the curve representing station i and the reference line

can be written as∫
(gi(t)−Xref (t))

2dt = (ci − cref )TW (ci − cref )

= Mi (5.17)

Then the difference between these two measures, Mi − M̄ , will not only reflect

the magnitude of the difference between curve gi(t) and the mean curve ḡ(t) but

will also give an indication if the station has higher or lower than average values.

Additionally this difference can also be standardized by dividing by the difference

between the mean curve and the reference line, M̄ , in order to ensure that the

scale is appropriate. For example, on Figure 5.2 (b), the blue horizontal line

represents the reference line gref (t), the black area represents M1 the difference

between the station 1 curve (shown by the black line) and the mean curve (shown

by the red line). The reference area Mref is the area between the mean curve and

the reference line.
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Following from this, the functional covariance between stations i and j can be

defined as

Cov(gi(t), gj(t)) =
(Mi − M̄)(Mj − M̄)

M̄2
(5.18)

where i 6= j. This results in a single value which summarizes the covariance be-

tween the functions at the two stations over the time period of interest. These

point summaries of the covariance between pairs of curves can then be used to

create an adjusted covariogram cloud as described in Section 5.3.2. In accordance

with the definition of the tail-up model described in Equation 5.11 a standard

covariogram model, such as the Matérn function, can next be fitted to this em-

pirical covariogram (Equation 5.10). Evaluating this model at the relevant stream

distances will result in a stream distance based functional covariance matrix, V .

In order to obtain a valid stream distance based covariance matrix, Cov∗(hstr), the

element-wise product of V and the weight matrix Θ, discussed in Section 5.3.1,

can be computed.

To find spatially homogenous clusters of stations on a river network, Cov∗(hstr)

can be used as a weight matrix in a similar way to the trace variogram shown in

Equation 5.14.

dci,j = di,jCov
∗(hstr) (5.19)

Here, as before, di,j is the functional distance matrix.

The key difficulty in clustering stations on a river network is due to the neces-

sity to model the covariance between the stations rather than the semi-variance.

Defining the covariance between curves in the manner outlined in Equation 5.17

enables a summary value of the spatial dependence between stations to be ob-

tained. Consequently, these values can be used to fit the tail-up covariance model

which can be used to estimate a valid stream distance based covariance structure

that takes into account stream distance, flow-weights and flow-connectedness be-

tween stations. These are features of the data which are not considered when

using the Euclidean distance based trace-variogram to cluster river network data.
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5.5 The River Tweed

In this section the methods for estimating spatial covariance already discussed

will be applied to a set of functional data from monitoring stations located along

a river network. Spatial covariance based on both Euclidean and stream distance,

the latter also including flow-connectedness, will then be incorporated within hi-

erarchical clustering methods in order to identify groups of stations which are

spatially similar.

The data used in this section come from a network of locations along the River

Tweed which is located in the Scottish borders. Agriculture is a significant industry

within the area and the water environment in the wider River Tweed catchment is

an important economic, social and environmental asset (SEPA, 2009). The river

is primarily surrounded by arable land, passing through only a small number of

built-up areas. The location of the Tweed within Scotland is shown on Figure

5.3 while the river network itself is shown on Figure 5.4 where each of the points

shown on the network is a monitoring station location. Data have been provided by

SEPA on different chemical and biological determinands at 83 unique monitoring

stations, covering dates between January 1986 and October 2006. As with the lake

data, there are not data available at all stations over the entire time period and

so a subset of data have been selected such that there are a set of stations which

each have a reasonable number of observations that cover a common time period.

Although the exact sample dates and frequency of sampling do not need to match

across stations, it is important to ensure there is both a reasonable quantity of

data at each station, and that the start and end dates of the time series are similar.

The exact criteria for selecting the stations used in our analysis will be discussed

later.

While the width of the river streams in Figure 5.4 are not shown to scale

(since no data are available for this) the thickness of the lines representing each

of the streams is proportional to the estimated average flow volume. This means

that thicker lines on Figure 5.4 are likely to correspond to wider stretches on the

river. It is clear that the Tweed network has a complex structure with many

tributaries flowing into the main stream. The main river is the heavy line which

runs from the far South-West to the North-East and in total there are 298 stream

segments. Flow data provided by SEPA were estimated for the Tweed using a

computer package called Low Flows 2000 (Goodwin et al., 2004). As the flow data
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Figure 5.3: Map of Scotland showing location of River Tweed

Figure 5.4: River Tweed Network showing location of monitoring stations

are estimated rather than observed they remain static throughout the time period

considered and hence do not incorporate irregular weather events which may result

in changes in flow.

Although there are a range of different determinands available, only nitrate
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will be considered in this investigation. O’Donnell (2012) states that nitrate and

phosphorus are regarded as being amongst the most interesting of the variables

collected on the Tweed as they reflect the changing status of the network. However,

as the phosphorus data collected are heavily affected by limit of detection issues

(also discussed in O’Donnell, 2012) they will not be considered here.

5.5.1 Nitrate Data Exploration

Figure 5.5 displays a plot of the sample dates for nitrate at each of the 83 stations.

As already discussed there are inconsistencies both in the time period the data

covers and in the sampling dates. The large majority of the stations have samples

which were collected at an approximately monthly frequency, however, if there

was more than one observation collected in a single month at any station, the

average of the observations within that month was computed. Very few of the

stations had multiple observations each month. The black dashed line on this

plot indicates the start date of the subset of data used here, while the stations

shown in red indicate those which were removed as they were deemed to have an

insufficient quantity of data to be compared to other stations. The criteria for

removing stations were that stations were removed if the first date of sampling

was after June 1997, or if there were less than 36 observations (approximately 3

years worth of data) between 1997 and 2006. This means there are approximately

monthly data for a set of 77 stations covering a 9 and a half year time period from

Spring 1997 to Winter 2006. In all subsequent analysis of the River Tweed data,

this subset of data is used.

5.5.2 Log transformed or Raw data?

Exploratory analysis of the Tweed nitrate data highlighted that there were sub-

stantial differences between the stations in terms of the amplitude of the seasonal

patterns observed, and in terms of the mean levels. There also appeared to be a

change in the seasonal component over time at a few of the stations. Examples

of the pattern in nitrate levels over time at two of the stations (Station 1 and

15) are shown in Figure 5.6(a). It can be seen that there are large differences

between these two stations; while station 1 shows a low mean nitrate level and
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Figure 5.5: Nitrate sample dates for River Tweed data with vertical line
showing start of time period considered

The red points correspond to stations which have not been included in further analysis

a fairly constant seasonal signal, station 15 exhibits a higher mean level and far

more variability with evidence of a change in the variability over time.

A natural next step was to investigate applying a transformation to the data.

A natural log transform is commonly used to stabilize the variability in data such

as that observed at station 15. The log transformed nitrate data for stations 1 and

15 are shown in Figure 5.6(b). Here it can be seen that while there continues to

be a difference between the mean levels at the stations, albeit less distinct, there

is less disparity between the strength of the seasonal patterns at the stations. In

addition, there remains evidence of non-constant variance at station 15 and the

log transform has done little to overcome this potential issue in the data.

The variability in the nitrate data at station 15 was explored further to assess

whether the apparent change in variability was actually a change in the seasonal

pattern throughout time. In order to check this, an additive model, with additive

smooth trend and seasonal terms (Equation 1.7), and a bivariate model with a

smooth interaction of trend and seasonal terms (Equation 1.5) were both fitted to

the data from station 15 over the time period from 1986 to 2006. An approximate

F-test was then carried out to determine which of these models was more suitable

given the data. The additive model assumes a constant seasonal pattern over time,

while the bivariate model allows the seasonal pattern to change over time. These
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Figure 5.6: Observed (a) and log transformed (b) nitrate at Tweed stations
1 and 15

models were similar to those fitted in the varying seasonal simulations in Chapter

2 where the models along with the approximate F-test procedure are discussed in

more detail. The presence of temporal correlation in the Tweed data at individual

stations was investigated, but there was little evidence of this. This is unsurprising

as the data is at a monthly frequency.

For station 15, results from the approximate F-test indicated that the bivariate

model was most appropriate and so there did appear to be a change in the seasonal

pattern over time. Figures 5.7(a) and 5.7(b) show the observed data from station

15 with the fitted models. It is clear that the bivariate model is more suitable as

the flexible amplitude of the seasonal component captures more of the features of

the data. The smoothing parameters used for each model were selected by fixing

the degrees of freedom at 12 for each of the models. The results of the approximate



Incorporating Spatial Correlation 190

F-test for station 15 were typical of other stations which also displayed evidence

of a change in the seasonal pattern over time.

(a) (b)

Figure 5.7: Plot of nitrate concentrations as Tweed station 15 showing fitted
bivariate (a) and additive (b) models

The aim of our analysis is to obtain groups of stations which are similar in

terms of mean levels of the determinand of interest, while taking into account any

long-term trends and seasonal patterns present. After exploratory investigation of

the Tweed stations, it was decided that taking the log transform of the nitrate data

often ‘dampened’ features of the data which were thought to be of most interest in

distinguishing different groups of stations, such as changes in the seasonal pattern

over time. In addition, while there are differences in mean levels of the observed

data at different stations, unlike the lakes data explored in Chapters 3 and 4, these

differences are not particularly extreme and so it seems reasonable to compare the

stations without transforming the scale of the data. Consequently, all further

analysis on the Tweed data have been carried out using the raw data as it was felt

this would produce more accurate groupings for this dataset.

Nitrate Vulnerable Zones

Within the River Tweed network there are areas which are designated as ‘Nitrate

Vulnerable Zones’ under the European Union Nitrates Directive (European Par-

liament, 1991). The primary aim of the Nitrates Directive is to prevent, or reduce

water pollution which is either induced or caused by nitrates from agricultural
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sources, by controlling land-use management (SEPA, 2009). SEPA identifies re-

gions of land as being nitrate vulnerable if they drain into waters identified as

being affected by pollution, or drain into waters which may potentially be affected

by pollution if no action is taken to prevent this. Under the Nitrates Directive it

is essential that management programmes are both established and implemented

to deal with these areas of concern. Currently all Nitrate Vulnerable Zones in

the River Tweed district are subject to action programmes. These measures are

reviewed by SEPA and, where necessary, are revised every four years based on

assessments of their effectiveness. Clearly with the data considered in this study

there are stations in the network that can be distinguished from all others due

to their potentially high nitrate concentrations. It is of interest to assess if the

clustering techniques proposed will be able to identify these stations within the

regions which have been designated as being nitrate vulnerable, and to investigate

to what extent these stations differ from those located outwith these known areas

of concern.

5.5.3 Clustering The River Tweed Data

This section investigates several different approaches to clustering the nitrate con-

centrations in the Tweed network using functional data analysis. An initial step

in the investigation of whether or not there is any clear partitioning in the nitrate

concentrations was to apply the functional clustering methods previously applied

to the Scottish lakes data. Both the Functional Clustering Model (FCM) described

in Equation 4.8 and hierarchical clustering based on distance defined by Equation

4.1 were considered. Although these methods assume that the stations are spa-

tially independent it was thought that exploring the data using these approaches

would provide a good first step to see what, if any, groups are present amongst

Tweed monitoring stations. Following this, spatial covariance will be estimated

and subsequently used to provide a set of weights within functional hierarchical

clustering. The different clusters obtained using each of these approaches will then

be compared.
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Functional Model Based Clustering of the Tweed Data

The FCM was fitted using a natural cubic spline basis and a ridge parameter of

0.01, in a similar way to when this approach was used with the Scottish lakes

data. The number of spline functions used was 30 and as before, this was selected

using a sensitivity analysis. In order to select the statistically optimal number of

clusters, the gap statistic was used. Model selection criteria such as BIC can be

used to select the number of clusters for the FCM. However, it was felt that in

order to compare the groups of stations obtained using the FCM and those using

hierarchical clustering the same approach of determining the most suitable number

of clusters should be used for all clustering methods considered. To calculate the

gap statistic for the Tweed stations 500 simulated datasets were generated for

the null reference distribution, which assumes there is no clustering present. This

identified 5 groups to be the statistically optimal number. With this in mind,

the FCM was subsequently fitted to the curves representing nitrate levels at the

subset of 77 stations. The model was initially fitted with h = 1 however, the plot

of projected curves appeared to lie in a curve, indicating that h = 2 was more

suitable and so the model was re-fitted accordingly.

Figure 5.8 (a) shows the plot of projected cluster centres with the projected

cluster means indicated by the black points, while Figure 5.8 (b) shows the esti-

mated cluster mean curves. From Figure 5.8 (a) there appears to be a reasonable

degree of separation between the clusters; the cluster represented by the red points

appears to be the most distinct of the groups while the clusters represented by

the blue and purple points seem to be closest together. The cluster membership

probabilities for the majority of stations are high, with only three stations having

membership probabilities corresponding to their predicted group of less than 0.9.

It can be seen from Figure 5.8 (b) that the red points form the group with the

mean curve which is far higher than any other group, while the blue and purple

mean curves represent the stations with the lowest nitrate concentrations. The

yellow and green curves overlap in terms of mean level, however stations which are

included in the yellow group tend to have, on average, a weaker seasonal signal

than those in the cluster represented by the green points. Although not shown,

the predicted curves for each of the stations were also examined and for all the

curves appeared to fit the data well.

In addition to the summary of the groups provided by the projected curves and

estimated cluster means, Figure 5.9 shows the geographical distribution of the
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(a) (b)

Figure 5.8: FCM projected curves (a) and estimated cluster means (b) for the
River Tweed data

groups predicted using the FCM. It is clear that there is a strong spatial pattern

displayed by the predicted clusters with stations which are in the same group often

located close to each other. The area in the North-East of the Tweed Network has

been identified as being a Nitrate Vulnerable Zone by SEPA and this has clearly

been reflected within the clusters as concentrations of nitrate are far higher here

than anywhere else. The stations which comprise the cluster represented by the

red points on Figure 5.8 (a) are located close together within the Nitrate Vul-

nerable Zone. Not only is the mean level of the stations in this area much high

than anywhere else, but the seasonal pattern is also much stronger and appears

non-constant over time. In addition, these stations display evidence of a decreas-

ing linear trend over the time period considered. This is possibly an indication

that management plans which have been put in place by SEPA to reduce nitrate

induced pollution are becoming effective. The stations which are in the South and

West of the Tweed Network all appear to display relatively low nitrate concentra-

tions with mean levels and seasonal patterns which are constant throughout time.

5.5.4 Fitting curves to the Tweed Data

Before applying hierarchical clustering techniques, the first step is to create a

functional data object by fitting curves to the nitrate data at each station. There

are however some problems due to the data being irregular and incomplete. The
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Figure 5.9: Map of River Tweed network showing FCM based clusters

extent of the irregularity in the data was not as pronounced as with the lakes data

however, and it was thus decided that rather than fitting interpolating splines

at each station, and then evaluating these at a regular grid of points to form a

complete dataset, the relatively small number of missing values could be dealt with

by using a ridge parameter. Using a ridge parameter proved to work well when

fitting spline functions by least squares within the functional clustering model. As

well as a ridge parameter a second order roughness penalty term was also used

within the least squares estimation of the spline coefficients in order to ensure that

the curves were not too locally variable and reflected the underlying pattern in

the data accurately. If the equation for the ith curve is written using the same

notation as before, where ci is the set of basis coefficients and Φ(t) is the spline

basis function matrix then following from Equations 1.16, the estimated set of

spline coefficients, ĉi can be estimated using least squares by,

ĉi = (Φ(t)TΦ(t) + Φ(t)ζ + λR)−1Φ(t)TY (5.20)

where ζ is the ridge parameter, R is the roughness penalty matrix (defined in

Equation 1.17) and Y is the matrix of observed values. A B-spline basis was used

and both the number of spline basis functions, and the smoothing parameter which

controls the effect of the penalty term, were selected using a sensitivity analysis.

The number of spline basis functions chosen was 36 and the smoothing parameter

was selected to be 0.01. As with the spline functions fitted using a B-spline basis

with a roughness penalty in Chapter 4, the number of B-spline basis functions
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corresponds to a knot placed approximately at 3 month time intervals. When

using a ridge parameter in the estimation of the spline functions for the Scottish

lake data a value of 0.01 was used, and this value also appeared to work well for

the Tweed data. An example of the curves fitted is provided in Figure 5.10 which

shows the observed data and curves that were fitted using the methods outlined

above. It can be seen that the curves fitted are flexible enough to capture the main

features of the data without being overly locally variable. After estimating sets

(a) (b)

Figure 5.10: Fitted spline functions for nitrate data at Tweed stations 1 and
15

of basis coefficients which define each of the curves corresponding to the observed

nitrate concentrations at each of the stations the next step was to use these to

explore the potential presence of any groups of stations within the river Tweed

network using hierarchical approaches.

Hierarchical Clustering of the Tweed Data

Using the basis coefficients which define the fitted curves in Section 5.5.4, the

functional dissimilarity matrix given in Equation 4.1 was computed. As with the

Lochs data, complete linkage has been used to determine the clusters. It should

be noted that although different linkage measures were considered, the differences

between the clusters defined by the different linkage methods were not very large.

The gap statistic was used to determine the statistically optimal number of groups,

again with 500 sets of data generated to create the null reference distribution, and

from this the number selected was 7. Figure 5.11 (a) shows the ‘L-curve’ for the
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Tweed hierarchical clustering with no spatial covariance incorporated and Figure

5.11 (b) shows the corresponding gap statistic plot. From the L-curve it appears

that 3 groups would be most suitable, however, on inspection of the gap statistic,

7 is identified as being the most appropriate number of groups. There is evidence

from the gap statistic curve that 3 groups is likely. This may suggest that there

are 3 distinct clusters or 7 which are less well separated in terms of the pattern of

nitrate concentrations over time.

(a) (b)

Figure 5.11: L curve (a) and gap statistic plot (b) for hierarchical clustering
of River Tweed stations

Figure 5.12: Cluster mean curves for Tweed nitrate data determined using
hierarchical clustering (assuming no spatial covariance between stations)

Figure 5.12 shows the estimated cluster means (calculated using Equation 3.1)

and Figure 5.13 shows a map of the Tweed network with the 7 different clusters
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Figure 5.13: Map of River Tweed network showing clusters determined using
hierarchical clustering (assuming no spatial covariance between stations)

of stations represented by different colours. The number identified from the gap

statistic approach has been investigated here as the gap statistic approach for

choosing the most appropriate number of clusters is thought to be more robust

than that of the L-curve method. With the L-curve there is no reference distri-

bution with which to compare the within cluster dispersion against the number of

groups.

Although a larger number of groups was identified as being statistically optimal

when hierarchical clustering was applied in comparison to when the FCM was

applied, Figure 5.12 indicates that there is a considerable degree of overlap in the

means of the groups identified using hierarchical clustering, particularly amongst

the stations in the groups represented by the pink and green points/curves. Even

though different numbers of clusters are identified, it is clear the same patterns

are key in defining the different groups under both the FCM and hierarchical

approaches. For the hierarchical clustering there is one single station which forms

a group/cluster. This station, which is identified by the red point/curve, has a

notably higher concentration over time than any of the other stations and is located

in the region which is known to be a Nitrate Vulnerable Zone. The hierarchical

clustering also identifies groups which highlight the geographical pattern in the

nitrate concentrations over the network, with a large group of stations identified

as having a low concentration and a small, constant seasonal signal in the South

and West of the network. The North-East of the network displays the largest
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amount of variability in terms of the mean functions of each of the groups, where

as could be expected, stations closest to the Nitrate Vulnerable Zone have the

highest average nitrate concentrations, although these levels decrease the further

downstream you go from the high concentration area.

A cross-classification table for the hierarchical clustering of the River Tweed

stations and the FCM based clusters is provided in Table 5.1. It is clear there is a

large amount of agreement between the two sets of clusters in terms of the largest

group of stations. In addition it can be seen that all members of hierarchical

groups 4 and 5 are contained within FCM group 5.

No Spatial 1 2 3 4 5 6 7 Total
FCM

1 45 0 1 0 0 0 0 46
2 0 6 2 0 0 0 0 8
3 0 0 0 0 0 2 1 3
4 0 0 6 0 0 0 0 6
5 0 1 0 7 6 0 0 14
Total 45 7 9 7 6 2 1 77

Table 5.1: Cross-Classification table for Hierarchical functional clustering of
Tweed Stations with no spatial weights and with FCM clusters

Based on the results of the FCM and the hierarchical clustering approaches

it is clear that there does appear to be distinct groups of stations on the Tweed

network which are split not only in terms of their mean level but which are also

different in terms of the strength of the seasonal pattern over time. However, as

with the lakes data the mean level is the driving factor underlying the distinctions

between the different groups. It is also apparent that the number of groups may be

overestimated using methods that ignore the spatial aspects. In view of the spatial

distribution of the clusters for the two approaches using Figures 5.9 and 5.13 there

is evidence of some spatial trend, with the Nitrate Vulnerable Zone located in the

North-East being particularly different from the rest of the area in terms of the

mean concentration. This potential inconsistency in the mean level brings into

question the assumption of second order stationarity and the underlying mean of

the spatial process may not be constant over the entire geographical region covered

by the Tweed. In order to estimate the covariance structure it is important to first

ensure the required assumption of stationarity is met and so the next section will

investigate de-trending the Tweed data.
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5.5.5 Estimating spatial covariance in the Tweed

The presence of longitudinal and latitudinal spatial trends on the Tweed can be

explored separately in Figure 5.14 which shows the average nitrate level at each

station plotted against their corresponding latitude and longitude. The red line

on these plots is a loess curve (Section 1.3.2) which has been added to indicate the

general trends and patterns in the station averages. Looking at the longitudinal

trend in Figure 5.14 (a), it can be seen that in the middle of the area covered by

the Tweed the nitrate levels are fairly low with a collection of stations in the West

and East which display higher values. From Figure 5.14 (b) it can be seen there is

a collection of stations towards the North of the region where the nitrate levels are

high, however stations in the South and furthest North have relatively low levels.

These patterns correspond to those identified in the initial clustering of the Tweed

stations considered in the previous section. This initial investigation of nitrate

(a) (b)

Figure 5.14: Plots of mean nitrate against geographical location; (a) Longi-
tude, (b) Latitude

levels indicated that it is unlikely that the assumption of stationarity holds and

so it is necessary to remove the long-term spatial trend in nitrate levels across the

network before estimating the covariance structure. It is also clear from Figure

5.14 that fitting a parametric trend would not be adequate to describe the spatial

patterns in the data, hence, a simple non-parametric trend was estimated using

the ‘mgcv’ library in R. Using this package, a bivariate smooth trend was fitted

to the station means using thin plate splines with a smoothing penalty applied

to ensure the estimate of the trend retained the key features of the data without

being overly sensitive to small changes. The model fitted was of the form shown in
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Equation 1.4 where x1 and x2 represent the geographical co-ordinates (Latitudinal

and Longitudinal distance) of the stations. A basis of thin plate splines are used

to fit the model. Thin plate splines are described by Wood and Augustin (2002)

as “the natural generalisation of cubic splines to any number of dimensions and

almost any order of wiggliness penalty”. Thin plate splines are isotropic smoothers,

meaning that any rotation of the covariate co-ordinate system will not change the

result of smoothing. In addition, like B-splines, thin plate splines are low-rank,

which means that the number of coefficients to be estimated is far fewer than

the number of observed data points. Comprehensive details of thin plate spline

smoothing techniques are provided in Wood (2003).

Station means were used as the response in order to provide an estimate of

the spatial trend over the time period of interest and smoothing parameters were

selected using a sensitivity analysis. Functional de-trending of the data is possible

and could be achieved by fitting a functional regression model with a functional

response (functions of nitrate over time at each station) and a bivariate scalar

covariate (the co-ordinates of the station) however it was felt that estimating the

trend in this way introduced unnecessary complexity to the spatial trend estimate

as the aim is to obtain a simple estimate of the trend in the nitrate levels so

that the assumption of second order stationarity is met and the spatial covariance

structure can subsequently be estimated.

Figure 5.14 shows the estimated spatial trend for the Tweed network as well

as the observed station mean nitrate levels, which are indicated on this plot by the

red points. It is clear that the estimated surface provides a good fit to the points

and captures the main features of the trend. The initial impressions of the fea-

tures of the spatial trend when considered in separate directions in Figure 5.14 are

reinforced here and the key feature is the presence of an area of high nitrate levels

in the North East. The rest of the region displays average nitrate levels which are

fairly constant and relatively low. Although it may initially be concerning that

the the estimated surface unrealistically falls below zero towards the South-East of

the Tweed region, this is an area where there are almost no stations and hence no

data have been collected here. It is possible to constrain the smooth surface to be

positive, however this did not seem necessary in this situation. Figure 5.16 shows

the de-trended station mean values, with a zero line shown in blue for reference.

While comparing Figure 5.16 to Figure 5.14 it can be seen that although there has

been a reasonable degree of improvement in terms of removing the spatial trend,
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Figure 5.15: Estimated spatial trend for nitrate levels on River Tweed network

there continues to be some evidence that a small subset of stations located in the

North and East of the network have higher average nitrate concentrations than

those elsewhere. In view of this, it could be argued that there is not actually any

strong spatial trend in the Tweed nitrate data, but there is in fact a discontinuity

in the nitrate levels in this region. Other than the region which displays high mean

levels there is almost no evidence of a spatial trend and the mean level across space

seems flat, indicating that the assumption of stationarity holds outwith this small

area. In fact, while there is no land-use data available surrounding the Tweed

river network, it is known that the area of high nitrate levels in the North-East

is in a Nitrate Vulnerable Zone. This is a region which is predominantly com-

prised of farming areas, while the low concentration nitrate areas are often found

in more upland areas. It is possible that if suitable land use data was available,

then this would be better at explaining the trend in the data rather than simply

using geographical co-ordinates. Furthermore, additional exploration of the trend

surface for the Tweed network could investigate the presence of discontinuities. It

was thought worthwhile to estimate spatial covariance for both the original and

de-trended nitrate data and the estimated trend shown in Figure 5.15 will be used

for the latter estimation. While it is possible to estimate the trace-variogram using

Euclidean distances, for the reasons previously discussed, when estimating stream

distance based spatial covariance using the tail-up model (Equation 5.11) a co-

variogram should be computed to ensure a valid covariance matrix is obtained.

Furthermore, in order to ensure comparisons between the clusters of stations ob-

tained using spatially weighted hierarchical clustering are fair, it was thought that

the functional dissimilarity matrix should be weighted by the same measure of
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(a) (b)

Figure 5.16: De-trended nitrate data on River Tweed; (a) Longitude, (b)
Latitude

the spatial association between stations regardless of the metric that was used

to measure the distance between stations (Euclidean or stream). Using the same

measure of spatial dependence for the two different distance metrics ensures that

there is no disparity between the different scales of the covariograms. For this

reason, for both Euclidean and stream-based distances, a functional covariogram

was estimated using the procedure outline in Section 5.4.1.

Curves were fitted to both the original, and the de-trended data at each station

using the method described in Section 5.5.4. The empirical functional covariogram

was next estimated using the functional covariances calculated using Equation 5.18

and the distance between stations, either Euclidean or stream-distance. The points

were ‘binned’ at 10km intervals, with an additional point estimated at 5km since so

many of the stations were separated by short lags. The covariogram was estimated

up to a maximum distance of 70km since over 90% of the paired station Euclidean

and stream distances were less than this. A Matérn covariance function was fitted

to these empirical covariograms. As discussed earlier, weighted least squares was

employed to choose the parameters θ and ν (Equation 5.3). A fine grid of different

combinations of possible parameters were investigated.

Four different functional covariograms were estimated. For both the original

and de-trended nitrate data a covariogram was estimated using the Euclidean and

stream based distances between stations. Figures 5.17 and 5.18 shows each of these

functional covariograms with the fitted Matérn covariance functions shown in blue.

The parameter values of these fitted Matérn functions are shown in Table 5.2. As
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ν θ effective range, km (h0.95)

Euclidean, Original 13.0 0.30 31.4
Euclidean, De-trended 2.6 3.10 17.1

Stream, Original 8.8 0.45 25.3
Stream, De-trended 4.2 0.80 15.4

Table 5.2: Fitted Matérn covariogram parameter estimates

the Matérn family covariance functions have an infinite range and approach the

sill asymptotically, the effective range, h0.95, as defined in Cressie (1993) has been

calculated (in addition to the value of the parameter θ). This is the distance which

corresponds to 5% of the maximum covariance, Cov(0).

(a) (b)

Figure 5.17: Estimated and fitted covariograms for original Tweed nitrate
data. The fitted Matérn covariance functions are shown in blue. ((a) Euclidean

(b) Stream)

(a) (b)

Figure 5.18: Estimated and fitted covariograms for (de-trended) Tweed ni-
trate data. The fitted Matérn covariance functions are shown in blue.((a) Eu-

clidean (b) Stream)

From Table 5.2 it can be seen that for both the Euclidean and stream distance

metrics the covariograms for the original data have a far greater effective range

than those for the de-trended data. This could be expected as de-trending was

carried out in an attempt to remove the long-range spatial trend across the river



Incorporating Spatial Correlation 204

network. However, even after the removal of the spatial trend there continues

to be evidence of spatial correlation between the stations. For stream distance,

the covariogram fitted indicates that after de-trending, flow-connected stations are

spatially correlated until they are separated by a distance of more than 15.4km.

For Euclidean distance it is thought stations separated by a distance of more than

17.1km will be spatially uncorrelated. The covariances estimated for stream and

Euclidean distances are very similar in terms of both the shape of the covariogram

estimated, and in terms of the effective ranges. This is particularly true for the de-

trended data where the effective ranges are different by a relatively small distance

of 2.3km.

Using the estimated covariograms a set of covariance matrices were obtained.

In line with Equation 5.11, to ensure the covariance matrices were valid, the stream

distance matrices obtained were multiplied through by the square root of the flow

weights. In the next section the covariance matrices obtained using the functional

covariograms were used to weight the functional dissimilarity matrix as shown in

Equation 5.19.

5.5.6 Spatial Functional Clustering Approaches

For each of the clustering methods, the statistically optimal number of clusters

as determined using the gap statistic with 500 reference distributions is shown in

Table 5.3. It can be seen that for both Euclidean and Stream distance weighted

hierarchical clustering fewer groups are optimal than when no spatial weighting is

applied. Also, for each distance metric, the number of groups chosen using the de-

trended and original data was the same. The results of the hierarchical clustering

approaches with these optimal numbers of clusters will now be discussed in more

detail.

Figures 5.19 and 5.20 display maps of the clusters for the de-trended Euclidean

and Stream based covariance and the corresponding plots of the cluster mean

curves. On each of the cluster mean plots the black solid line represents the

overall mean for all stations. The clusters from the Euclidean distance weighted

clustering were identical regardless of whether or not the original or de-trended

data was used. This is not the case for stream distance weighted clustering, where

although the number of groups selected as being most suitable was the same for

the de-trended and original data, the stations contained in each of the groups are
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slightly different. The results of the original stream distance covariance weighted

clusters are shown in Figure 5.21. It is clear there are similarities between all

clustering approaches considered; the Nitrate Vulnerable Zone in the North-East

of the region is clearly distinct from the other areas.

The results of the clusters which are weighted by Euclidean distance based

covariances indicate that the 6 groups identified are effectively 2 large groups, and

4 individual stations which are distinct from these 2 groups, and one another.

From Figure 5.19 it can be seen that the cluster represented by the purple points

is made up of a large number of stations which all have relatively low nitrate

concentrations and display very little evidence of a seasonal signal. The cluster

represented by the blue points is comprised of stations which have, on average,

both a mean nitrate concentration across time which is higher than the overall

average and a seasonal signal which is moderate. The 4 stations which do not

fall in these groups all have mean levels which far exceed the overall average,

and display seasonal signals which are exceptionally strong. There is very little

evidence however of a difference between the stations represented by the orange

and yellow points and both seem very similar to one another.

In comparison to all other clustering methods investigated, fewer clusters were

identified as being optimal when using stream distance based spatial covariance to

weight the dissimilarity matrix. The gap statistic indicated that only 3 groups were

required in order to adequately capture the differences in the nitrate concentrations

amongst the stations. For both the covariance based on the de-trended data and

the original data it can be seen from Figure 5.20 and Figure 5.21 that there is

one group of low concentration, low seasonal signal stations (shown in purple),

one group of moderate concentration, moderate seasonal signal stations (shown

in blue) and one group of higher concentration, higher seasonal signal stations

(shown in green). As mentioned earlier there are differences between the clusters

found using the de-trended and the original stream distance covariances. When the

de-trended covariance is used there are only 3 stations in the high concentration

group, and as shown in the cluster means there is far more disparity between the

moderate and the high group when compared with the results based on the original

stream distance data.

Cross-classification tables for the three pairwise combinations of hierarchical

functional clustering with no spatial weight, de-trended Euclidean spatial weights

and de-trended Stream distance based spatial weights are displayed in Tables 5.5,
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Method Number of Clusters

FCM, no spatial 5
Hier, No spatial 7
Hier, Euclidean, original 6
Hier, Euclidean, de-trended 6
Hier, Stream, original 3
Hier, Stream, de-trended 3

Table 5.3: Number of clusters for functional nitrate data chosen using the gap
statistic

(a) (b)

Figure 5.19: Plots showing de-trended data Euclidean covariance weighted
hierarchical clustering results. (a) Tweed network showing different groups, (b)

Group mean curves

5.5 and 5.6. In each of the pairs it can be seen that there is general agreement

between the largest groups which consist of stations that have relatively low mean

levels of nitrate. It is also of interest to note that three of the four stations

identified as being in clusters with only one station under de-trended Euclidean

distance weighted hierarchical clustering are grouped together under stream dis-

tance weighted clustering. Further comparisons of the agreement in the partitions

based on different clustering approaches are provided in the next section.
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(a) (b)

Figure 5.20: Plots showing de-trended data stream distance covariance
weighted hierarchical clustering results, (a) Tweed network showing different

groups, (b) Group mean curves

(a) (b)

Figure 5.21: Plots showing stream distance covariance weighted hierarchical
clustering results. (a) Tweed network showing different groups, (b) Group mean

curves
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Detrend Euc 1 2 3 4 5 6 Total
No Spatial

1 2 43 0 0 0 0 45
2 6 0 0 0 0 1 7
3 4 5 0 0 0 0 9
4 7 0 0 0 0 0 7
5 6 0 0 0 0 0 6
6 0 0 1 1 0 0 2
7 0 0 0 0 1 0 1
Total 25 48 1 1 1 1 77

Table 5.4: Cross-Classification table for Hierarchical functional clustering of
River Tweed Stations with no-spatial weights and with de-trended Euclidean

distance based spatial weights

Detrend Stream 1 2 3 Total
No Spatial

1 45 0 0 45
2 0 7 0 7
3 9 0 0 9
4 0 7 0 7
5 0 6 0 6
6 0 0 2 2
7 0 0 1 1
Total 54 20 3 77

Table 5.5: Cross-Classification table for Hierarchical functional clustering of
River Tweed Stations with no-spatial weights and with de-trended Stream dis-

tance based spatial weights

Detrend Stream 1 2 3 Total
Detrend Euc

1 6 19 0 25
2 48 0 0 48
3 0 0 1 1
4 0 0 1 1
5 0 0 1 1
6 0 1 0 1
Total 54 20 3 77

Table 5.6: Cross-Classification table for Hierarchical functional clustering of
Tweed Stations with de-trended Euclidean distance spatial weights and de-

trended Stream distance based spatial weights
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5.5.7 Comparing the Partitions

Although there is no single number of clusters identified as being statistically

optimal, there are undoubtedly broad similarities between the results of all of

the different clustering methods investigated here. The key feature common to

all clustering methods, whether spatial correlation is incorporated or not, is the

identification of stations within the Nitrate Vulnerable Zone as being distinct to the

stations outwith this area. However, the difference between each of the clustering

approaches is the extent to which the partitioning of the stations within the Nitrate

Vulnerable Zone differ from one another. For Euclidean distance and spatially

independent functional hierarchical clustering approaches the number of groups

identified as most appropriate using the gap statistic results in a partition of

the stations such that stations within the North East of the region are assigned

to different groups. These groups are often small, or consist of only a single

station. The gap statistic for stream distance weighted clustering suggests there

are only three groups, and for the de-trended stream covariance weighted clusters,

there are only 3 stations which are identified as having markedly higher nitrate

concentrations in comparison to all the other stations.

In order to attempt to quantify how similar the results of each method were

the Adjusted Rand coefficient (Hubert and Arabie, 1985) has been computed for

all pairs of clustering approaches. The Rand coefficient (Rand, 1971) is a measure

of agreement between two partitions. It is an index which is based upon counting

the pairs of points on which two clusterings agree or disagree. An extension

of this is the Adjusted Rand Index (ARI) which was developed in Hubert and

Arabie (1985) and is corrected for the possibility that agreement between two sets

of clusters may simply be due to chance. Milligan and Cooper (1986) evaluated

several different methods for measuring the agreement between different sets of

clusters and recommended the use of ARI as an index for comparing clusters

which performed well. Table 5.7 shows the ARI for all pairs of clusters obtained

for the Tweed data. The maximum value of the ARI is one, which corresponds to

perfect agreement between two partitions. Conversely, if the ARI is zero, the two

partitions are mutually independent.

There is clearly strong agreement between the sets of clusters obtained from

the two methods where the stations are assumed to be spatially independent.
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In addition, there is reasonably strong agreement between the hierarchical par-

titions of the stations which incorporate de-trended Euclidean and de-trended

stream covariance (ARI=0.71). The results indicate that although different num-

bers of groups are identified as being statistically optimal, there is actually not

a huge difference between the results obtained using the original and de-trended

data and the two different distance metrics to estimate spatial covariance. This

is perhaps unsurprising since there were strong similarities between the stream

and Euclidean distance based covariograms. It should be noted however that

although the covariograms look similar, the stream and Euclidean covariance ma-

trices will differ due to the effects of the flow-weight and flow-connectedness, which

are incorporated into the stream covariance matrix, but do not have any influence

on the Euclidean covariance matrix. Using the ARI to compare the methods

which assume spatial independence to those with spatial covariance incorporated

it can be seen that there is moderate agreement between the partitions determined

by the FCM and hierarchical clustering with de-trended spatial covariance based

weights (ARI=0.68). There is however slightly less agreement between the spa-

tially weighted clusters and the hierarchical clusters which assumed independence

where the ARIs are 0.61 (Euclidean) and 0.64 (stream).

It should be noted, however, that the ARI should be viewed with caution and

should not be considered without also comparing the distribution of the partitions

via either cluster means or geographical maps. An example of why the ARI should

not be viewed in isolation in order to compare partitions is the value computed

for the ARI between hierarchical clustering with original scale stream distance

based covariance and de-trended stream based covariance (ARI=0.54). In view

of the similarities between the results of the two clustering methods in terms of

the number of clusters and the cluster means (shown in Figure 5.20 and 5.21) this

relatively low ARI is possibly unexpected. One possible explanation of this is the

small number of clusters and the fact that the number of clusters is the same for

both approaches being compared. This means that any disagreements are likely to

have a large effect in the computation of the ARI. The small number of clusters,

combined with the relatively small number of lakes meant that the ARI was not

optimal for quantifying agreement between the different partitions identified in

the investigation of the lakes data in Chapter 4.
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FCM Hier, NS Hier, Euc Hier, Str Hier, Euc (d)

Hier, NS 0.90
Hier, Euc 0.68 0.61
Hier, Str 0.57 0.56 0.73
Hier, Euc (d) 0.68 0.61 1.00 0.73
Hier, Str (d) 0.68 0.64 0.71 0.54 0.71

Table 5.7: Adjusted Rand Index for partitions obtained using different clus-
tering approaches

5.6 Summary

This chapter has discussed how spatial covariance can be estimated for functional

data and how this estimate of the spatial relationships between locations can

subsequently be incorporated into hierarchical clustering techniques.

The functional data considered were from stations situated along a river net-

work and so two different distance metrics were investigated; standard Euclidean

distance and stream distance which takes into account the unique features of river

network data. The use of stream distance to estimate covariance introduced several

additional complications which were required to be addressed in order to ensure

the stream distance covariance matrix was valid. It was decided when using stream

distance that the tail-up model was suitable for the Nitrate data on the Tweed.

This model incorporates both flow weight and flow-connectedness and assigns a

covariance of zero to stations which do not flow into one another. The structure

of the tail-up model however precipitates the need for a single value measure of

covariance between curves so that a covariogram can be estimated. Using the

standard measure of covariance and ideas from the trace variogram, covariance

was defined using areas between pairs of curves. This is the first time that the

tail-up model has been applied to functional data on a river network using stream

distance.

After estimation of both Euclidean and stream distance based covariance ma-

trices these were used as weights within hierarchical functional clustering tech-

niques to develop methods which have already been employed in previous litera-

ture. In addition to the hierarchical techniques, the functional clustering model

already discussed in detail for the lakes data was also applied to the river net-

work data. Using the gap statistic, the smallest number of clusters identified as
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statistically optimal was using the hierarchical clustering weighted by stream dis-

tance, whilst the largest was for hierarchical clustering which assumed the stations

were spatially independent. Although there is no single correct number for how

many groups is best, the stream distance covariance weighted clusters were all

distinct in terms of their cluster means. There was no overlap in the means and

the clusters appeared to be internally homogeneous. For the other hierarchical

approaches there appears to be a great deal of overlap in the cluster means, which

suggests that hierarchical methods which do incorporate spatial correlation are

best. All clustering approaches identified the presence of a Nitrate Vulnerable

Zone in which stations have a markedly higher mean concentration as well as a

much higher seasonal pattern than the other stations. The number of clusters of

stations within the Nitrate Vulnerable Zone, however, is where the methods differ.

The de-trended stream distance covariance weighted clustering identified only one

group of stations whilst the Euclidean distance approaches identified four groups

consisting of either one or two stations each.

The functional clustering model appeared to provide a good estimate of the un-

derlying patterns of nitrate over time and identified a moderate number of groups

which was greater than the number used with stream distance based covariance but

less than that used with hierarchical clustering with no spatial weights. Even with-

out incorporating any measure of spatial correlation between stations, the model

based clustering approach performed well in terms of separation of groups and

the cluster membership probabilities were all relatively high. It would be interest-

ing to investigate the potential for the functional clustering model to incorporate

measures of spatial covariance. Due to the structure of this model based approach

where sets of basis coefficients are clustered rather than stations it is likely that

the spatial covariance matrix incorporated within the functional clustering model

would need to be defined in terms of covariance between individual spline coef-

ficients. The use of river network data and stream distance would add further

complications with the unique difficulties of also requiring flow-connectedness and

flow weights to be defined in terms of the spline coefficients.

The different approaches taken were compared by looking at the partitions

of the stations and the different cluster means under each of the methods. The

Adjusted Rand Index was also used to quantify the agreement between each pair

of partitions, however it was noted that this should only be used in combination

with other descriptions of the results such as maps which show the geographical
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distribution of the clusters. The ARI indicated that there was reasonably strong

agreement between the Euclidean and stream distance spatially weighted hierar-

chical clusters.



Chapter 6

Conclusions, Discussions and

Future Work

The overall aim of this thesis has been to employ statistical analysis to evaluate

the design and efficacy of commonly used environmental monitoring programs

that are used to inform evidence based policy such as the WFD. Methods have

been applied and developed to investigate how sites are grouped for classification.

The techniques considered have been extended to the multivariate setting so that

multiple determinands can be incorporated simultaneously within the formation of

the groups. Existing techniques for grouping locations on river networks have also

been adapted to include spatial correlation, if required. In the examples presented,

particular focus has been placed on monitoring networks for water quality in both

lakes and rivers, but the techniques explored could potentially be applied in many

environmental contexts.

6.1 Assessing Statistical Power to Detect Change

The simulation study presented in Chapter 2 was motivated by the importance of

being able to detect underlying changes in environmental data. It was designed

in order to provide an insight into the likely effectiveness of current monitoring

programmes, and to act as a useful guide to the relative power associated with

different patterns and forms of underlying change. The results of the simulation

study in Chapter 2 indicated that resources may be best used to sample at a re-

duced number of locations on a more frequent basis in order to detect change with

214
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a suitable level of power. For many of the forms and magnitudes of change investi-

gated within this thesis it was found that monthly sampling, which is the frequency

most commonly used for monitoring water bodies for WFD classification, was of-

ten inadequate in terms of the power to detect such changes. Many practitioners

will not appreciate the length of time series required for an appropriate power with

monthly data.

For the most simple scenario, where the change was a a constant decrease over

time it was found that after around 15 or more years of data, weekly and fortnightly

sampling generally worked well in terms of detecting fixed linear changes, even

when those changes were relatively small. If the underlying trend in the data was

strong, monthly sampling also reached an adequate level of power with around

15 years of data. However, with less frequent sampling such as bi-monthly and

annual sampling, time series in excess of around 20 years are required to detect

even relatively large changes of 10 and 20% each year. For non-linear patterns

weekly and fortnightly sampling frequencies again performed well, while annual

sampling was noticeable in its inability to detect underlying change, even when

the time series of data considered were relatively long.

The results of the varying amplitude simulation indicated that even when

there is a large change in the amplitude of the seasonal signal, corresponding to

a 60% reduction, that monthly sampling often does not have a sufficient level

of power to detect this change. The ecological consequences of changing seasonal

signals are potentially far reaching since changes in the seasonal pattern of a single

determinand can affect an entire ecosystem. It is therefore important to employ

a sampling programme which can detect such changes in seasonal signals. This

simulation study presented in this thesis has provided evidence that while current

sampling programmes may be capable of detecting pronounced linear increases or

decreases in the concentration of a determinand of interest over time, they may fail

when trying to detect more subtle or complex features of the underlying systems.

6.2 Grouping Sites for Monitoring

In view of conclusions drawn from the simulation study on ability to detect long

term change it is clear there is a need for increased levels of sampling in some
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situations. However, there are often limitations on resources that prevent con-

tinuous monitoring of all stations of interest within a monitoring network. There

was consequently some question of where the most suitable locations to implement

increased monitoring should be. The grouping feature of the WFD means that

fewer sites than before can be sampled in order to produce chemical classification

of water bodies, although it is vital that the groups defined are appropriate and

internally homogenous.

Existing SEPA Groups

The investigation of the groups of lakes currently used by SEPA for WFD classifi-

cation presented in Chapter 3 indicated that the current group structure, which is

based on broad categories of altitude and alkalinity, rather than observed determi-

nands of interest, does perform reasonably well in capturing the variability of the

lakes. Using penalised regression splines provided a computationally efficient and

flexible way to estimate the true functions underlying the observed data and, after

imputing the small quantity of missing data by first fitting interpolating splines,

the functions fitted using this approach were a good fit to the data.

From the exploratory functional analysis it was evident that there is a large

degree of overlap in the existing SEPA groups. The SEPA groups were most

distinct in terms of observed patterns of alkalinity although this is unsurprising

as the current groups used are primarily based on broad categories of alkalinity,

and hence this determinand would likely drive any differences between them. For

both phosphorus and chlorophyll there was less evidence of differences between

the group means, considering only at the estimated curves for each lake. Some

groups of sites appeared to be more distinct from other current groups for all

determinands but in particular, in terms of alkalinity. The geographical location

of some of sites was thought to be one potential explanation for the differences

since the surrounding environment and land use around the lakes may be quite

distinct in different places.

Functional regression was used for the estimation of group specific effects that

summarised the group data. One drawback of the functional regression approach,

however, was the degree of uncertainty associated with each of the group effects

due to the relatively small number of functional observations. Despite the large

standard errors for each of the group effects, permutation F-tests proved for all
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determinands that there are at least some differences between the current groups.

Further to this the results of t-tests reinforced that not all of the current groups

were distinct from one another and that fewer groups may be sufficient.

The effects of correlation

The effects of correlation on our ability to detect different forms of underlying

change are investigated in Chapter 2, while our ability to distinguish between

different groups of lakes in the presence of correlated observations is explored in

Chapter 3. When there is strong correlation present, the power of the different

sampling schemes to detect underlying change considered in Chapter 2 diminishes.

The effects of correlation were found to be particularly evident within the simu-

lation scenario which considered the power to detect a change in the amplitude

of a seasonal component over time. Autocorrelation appears to have more of a

detrimental effect on the power to detect a varying seasonal pattern than any of

the other forms of change considered here. It is therefore important to assess the

presence and strength of autocorrelation in the data is the change of interest is a

change in the seasonal signal over time.

A novel simulation study was presented in Chapter 3 which was designed to

assess the effect of correlated errors on our ability to identify differences between

groups of lakes. Although the presence of temporal correlation did not have a

large effect on our ability to distinguish between different groups of lakes, there

was some evidence to suggest that there may be a limited effect if the temporal

autocorrelation is strong. The study presented considered only monthly observa-

tions since this was the sampling frequency of interest for the Scottish lakes data.

In other contexts, if the observations were more frequently collected it is likely

the correlation may have a bigger impact and should be taken into account when

interpreting the results of permutation tests.

Forming new group structures

In order to ensure accurate classification of all lakes when using the groups ap-

proach for monitoring, it is of key importance that the groups are formed from

sites which are similar to one another in terms of the levels and temporal dynamics

of the determinands of interest.
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Hierarchical functional clustering was first applied to each individual determi-

nand and provided a good initial step that enabled us to visually assess if there

was any clear underlying group structure in the Scottish lakes data. Following

this, model based clustering was used. This method had the benefit of being com-

patible with standard model comparison techniques that can be used to select the

optimal number of groups, and is an approach that can also be used to provide a

level of confidence for the classification of each lake. Furthermore, the functional

clustering model proposed by James and Sugar (2003) had the additional advan-

tage of being able to deal with irregular and sparsely sampled data, which was a

problem in the Scottish lakes data.

While it is often difficult to identify a group structure looking solely at the

observed data for each of the sites alongside the predicted group means, partic-

ularly in the multivariate case, the FCM overcomes this difficulty through the

parameterization of the group effect used. This set-up of the group effect allowed

low-dimensional projections of the curves to be computed and plots of these could

then be used to clearly identify clusters of sites, if they exist. The projected clus-

ter values can also be used to select the representative sites which perform well in

terms of representing the key features of all members of the group.

The extension of the FCM to the multivariate setting enables information

from several determinands of interest to be used within formation of groups. This

new approach is something which is of particular importance in view of the fact

that the WFD classification encompasses a range of different variables. While

the WFD is an extremely complex piece of legislation, in which the classification

of sites encompasses a huge range of different determinands, both chemical and

biological, grouping the sites using a functional clustering approach provides a

statistical basis for determining a group structure which is based on a selection of

the variables of most interest. Differences in univariate groups for the the Scottish

lakes data were primarily based on mean concentrations while the multivariate

model did indicate a split in the groups underpinned by the strength of seasonal

signals at the lakes.

As the multivariate model can be used to determine a group structure that

is based on several determinands it is an extremely useful tool in the design of a

monitoring network. If the aim is to explore potential groupings for classification

then the multivariate model is more suitable than a univariate approach. However,

while the multivariate model can be used to obtain a group structure for a set of
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variables, it is often difficult to interpret the estimated lake curves and cluster

mean curves for each of the determinands separately in the multivariate model.

Consequently, if there is an additional interest in temporal patterns for individual

variables at each site this can be investigated by fitting relevant curves using

penalised regression splines. Alternatively, the univariate models can be used.

Another approach may be to combine the variables in some way via a trophic

index and proceed with this in a univariate setting. The idea of applying the

univariate data to trophic index data is explored in Pastres et al. (2011). The key

benefit of the multivariate model is that there is no question as to how to combine

the variables of interest. The functional clustering approach provides a statistical

framework for investigation of water quality across multiple sites in an efficient

and cost effective way.

Identifying the optimal number of groups

Analysis of new group structures explored in Chapter 4 suggested that a smaller

number of groups would be sufficient in capturing the differences between the

lakes. For the hierarchical and model based clustering methods explored, the

statistically optimal number of clusters identified were fewer than the number

currently used. The existing SEPA groups are in many cases combined to form

larger groups within the new group structures. This was the case both when each

determinand was considered independently, and when all three were considered

simultaneously in the multivariate functional clustering model. The gap statistic

provided an approach for selecting the optimal number of clusters which produced

consistent results that were sensible given the earlier exploratory analysis of the

current SEPA groups for the Scottish lakes. For the univariate models there was

agreement between the number of clusters identified as being best using both

methods. Furthermore, the number of clusters determined using the functional

hierarchical approach also agreed with the number of clusters identified for each of

the univariate determinand FCMs. In practical terms, one of the key implications

of reducing the number of groups is that the number of sites which are required to

be monitored can be reduced, while ensuring that variability amongst the lakes is

account for, not only with regards to mean levels, but also for trends and seasonal

signals. Reduction of monitoring networks to include a smaller number of sites

could be balanced with an increase in the sampling frequency at each of these sites
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so that potentially small or complex changes that could affect all group members

can be observed if they are occurring.

6.3 Identifying Spatially Homogenous Groups

There was evidence in from the results of the functional clustering models that

groups of lakes determined using the functional clustering model had a spatial

pattern. However, limitations in the quantity of data available hindered any fur-

ther investigation of incorporating spatial covariance in groups of lakes used for

classification. Following from this the River Tweed nitrate dataset was used to

investigate how spatial variability amongst locations could be included when form-

ing groups of stations. Investigating river network data introduced a set of new

challenges for functional clustering which went beyond the inclusion of Euclidean

distance based spatial correlation. Using the standard measure of covariance and

ideas from the trace variogram, a novel method of defining covariance using areas

between pairs of curves was developed. The development of this method enabled

the tail-up covariance model to be applied to functional data on a river network

using stream distance.

All of the functional clustering approaches applied to the Tweed, hierarchical

and the model based approach, were able to clearly identify the area in the north-

east of the Tweed Network which is known to be a Nitrate Vulnerable Zone. The

mean concentration of nitrate at stations in this region far higher than elsewhere

and the seasonal signal was far stronger. However the methods differed in terms

of the number of clusters of stations within the Nitrate Vulnerable Zone. The de-

trended stream distance covariance weighted clustering identified only one group

of stations covering the Nitrate Vulnerable Zone, whilst the Euclidean distance

approaches identified four groups consisting of either one or two stations each.

As before the gap statistic was used to select the statistically optimal number

of clusters. The smallest number of clusters identified as statistically optimal was

using the hierarchical clustering weighted by stream distance, whilst the largest

was for hierarchical clustering which assumed the stations were spatially indepen-

dent. Although there is no single correct number for how many groups is best to

describe the Tweed stations, including information about the spatial variability in

nitrate levels based on stream distance resulted in clusters which were all distinct
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in terms of their cluster means. This suggests that the stream distance weighted

hierarchical clustering may be the best approach to take if the aim is to identify

groups of stations on a river network, which are similar in terms of the temporal

dynamics of the determinand of interest.

6.4 Future Work

There are several possible extensions to the statistical analysis of environmental

monitoring networks that has been carried out within this thesis. The nature

of possible future work involves not only direct extensions of the analysis of the

problems presented, but also could involve additional statistical challenges.

There are a variety of extensions which could be applied to the simulation

study presented in Chapter 2. The simulation patterns chosen within the study

were designed to be indicative of the types of underlying patterns which may be of

interest when investigating changes in water quality. Clearly there are a number of

different of forms of change which could be investigated using a similar approach

to that taken within this simulation study. Alternative non-linear patterns of

change could be considered in order to explore the ability of monitoring networks

to detect particular changes of interest. Furthermore, it may be of interest it to

investigate the ability to detect a change in the phase of a seasonal pattern over

time, rather than a change in the amplitude.

For the lake groups data missing data were first imputed using interpolating

splines and after this penalised regression splines were fitted. An alternative way

of dealing with the problem of missing observations in estimation of functional

data would be to apply the ridge parameter approach which was successfully ap-

plied to the lakes and river data in Chapters 4 and 5. Other possible extensions to

the initial functional data analysis of the lakes would be to consider a multivariate

functional regression as discussed in Ramsay and Silverman (1997) in order to con-

sider all of the determinands when examining the existing SEPA groups. However,

in this context, as the work presented within Chapter 3 was to explore if there were

any differences between the existing groups in terms of at least one determinand,

rather than all of the determinands available, this seemed to be unnecessary here.

The hierarchical clustering approach could be extended to the multivariate

setting using the method described in Henderson (2006) where, after a suitable
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standardization of each of the determinands, the overall squared functional dis-

tance matrix can be defined as the sum of the squared distance matrices for the

individual determinands. In the context of the lakes data, the multivariate func-

tional clustering model had several advantages over the hierarchical approach, and

so the application of the hierarchical method did not go beyond the univariate cases

presented. With the river Tweed data, data on only a single determinand was avail-

able and so there was no scope to develop a multivariate technique. Where there

are more data available, and it is of interest to combine information across sev-

eral determinands, multivariate hierarchical functional clustering methods could

be used in conjunction with the spatial weights as demonstrated in Chapter 5 to

explore grouping sites.

Although no covariate data were available for the lakes or the Tweed dataset

explored here, in situations where such data were available it may be advantageous

to incorporate this into the functional data analysis techniques considered. One

method to include covariate data would be to create functions of the response vari-

able where the argument is the covariate rather than time, and subsequently use

these functions for any analysis. Alternatively, assuming functions of the response

variable and any covariates of interest are both functions of time, and cover the

same time period, a concurrent functional regression model can be used to relate

the value of the functional response to the value of the functional covariates at the

corresponding time points. In the context of water quality, response functions of

a particular chemical determinand over time could be modelled using patterns of

land use or climate variables over time. Groups of these modelled functions could

be then be compared using permutation F-tests or t-tests, or the functions could

be used within a functional cluster analysis. Covariate data can more simply be

included within functional clustering approaches using a multivariate model. In

addition to functional covariates, scalar covariates can be included by including

them as a constant function over time.

While spatial covariance has been successfully incorporated within hierarchical

clustering approaches, due to the advantages of model based functional clustering

over non-probabilistic methods it would be of interest to investigate the potential

for the functional clustering model to incorporate measures of spatial covariance.

As noted in Chapter 5, due to the structure of the functional clustering model it is

likely that the spatial covariance matrix incorporated within the functional clus-

tering model would need to be defined in terms of covariance between individual
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spline coefficients. Additional complexities are also presented if the model were

to be applied ro river network data since the stream distance and flow weights

would also need to be defined in terms of spline coefficients. If a suitable measure

of covariance could be defined in terms of the basis coefficients, this term could

subsequently be used as a constraint within the EM algorithm in a similar way to

that proposed by Soares et al. (1996).

The methodology applied and developed within this thesis provides ideas for

the design of effective and cost efficient monitoring networks for environmental

data that are underpinned by a solid statistical basis. The consequence of this

is that classifications made using data collected by these monitoring programmes

will be reliable and accurate. This thesis develops and explores a new class of

models for grouping spatiotemporal data and provides a platform for a variety of

future research.
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