
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Al-Sharrad, Muayad A. (2013) Evolving anisotropy in unsaturated soils: 
experimental investigation and constitutive modelling. PhD thesis. 
 
 
 
http://theses.gla.ac.uk/3828/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/3828/


 
 

 

 

EVOLVING ANISOTROPY IN UNSATURATED 

SOILS: EXPERIMENTAL INVESTIGATION AND 

CONSTITUTIVE MODELLING 

 

 
by 

 
 

 
Muayad A. Al-Sharrad 

 
 

A thesis submitted in fulfilment of the 

requirements for the degree of 

 

Doctor of Philosophy 

 

 
 
 

School of Engineering 

 
 
 
 

 
 

 

December 2012 

 

© Muayad A. Al-Sharrad 

  



 
 

 

DECLARATION 

I declare that this thesis is a record of the original work carried out by myself under the 

supervision of Prof. Domenico Gallipoli and Prof. Simon Wheeler in the School of 

Engineering at the University of Glasgow, United Kingdom, during the period of 

September 2008 to December 2012. The copyright of this thesis therefore belongs to the 

author under the terms of the United Kingdom Copyright acts. Due acknowledgement 

must always be made of the use of any material contained in, or derived from, this 

thesis. The thesis has not been presented elsewhere in consideration for a higher degree. 



 
 

i 
 

TABLE OF CONTENTS     

 
Table of Contents i 

List of symbols/abbreviations vii 

Acknowledgments xviii 

Abstract xix 

  

CHAPTER 1:INTRODUCTION 1 

 1.1 Anisotropy of soils 1 

 1.2 Modelling of anisotropy of unsaturated soils 2 

 1.3 Research objectives 3 

 1.4 Thesis layout 4 

    

CHAPTER 2: BEHAVIOUR AND MODELLING OF UNSATURATED SOILS AND THE   

                   INFLUENCE OF ANISOTROPY 

6 

 2.1 Suction in unsaturated soils 6 

 2.2 Stress state variables 8 

 2.3 Aspects of unsaturated soil behaviour 11 

  2.3.1 Volume change 11 

  2.3.2 Shear strength 14 

  2.3.3 Water retention behaviour  15 

 2.4 Yielding of soils 18 

  2.4.1 Yielding of saturated soils 18 

  2.4.2 Yielding of unsaturated soils 20 

  2.4.3 Empirical and graphical methods for yield identification  22 

  2.4.4 Influence of anisotropy on yielding 25 

 2.5 Evolution of soil fabric during hydro-mechanical loading 26 

  2.5.1 Macropores and micropores 26 

  2.5.2 Evolution of fabric anisotropy 30 

 2.6 Shapes and expressions for the yield surface and plastic potential  31 

  2.6.1 Isotropic yield curve expressions for saturated soils 32 



Table of contents 
 
 

ii 
 

  2.6.2 Anisotropic yield curve expressions for saturated soils 34 

  2.6.3 Yield curve expressions for unsaturated soils 36 

 2.7 Anisotropic elasto-plastic constitutive models for saturated soils 37 

  2.7.1 Overview 37 

  2.7.2 The         model 38 

 2.8 Elasto-plastic models for unsaturated soils  41 

  2.8.1 The Barcelona Basic Model (   ) 41 

  2.8.2 Other isotropic models for unsaturated soils 45 

  2.8.3 Anisotropic elasto-plastic models for unsaturated soils  47 

 2.9 The coupled mechanical-water retention model of Wheeler et al. 

(2003a) 

49 

  2.9.1 Elastic behaviour 50 

  2.9.2 Yield surfaces and flow rules 51 

  2.9.3 Coupled movements of the yield surfaces   53 

  2.9.4 Hardening laws 54 

  2.9.5 Variation of   and    55 

  2.9.6 Critical states 58 

     

CHAPTER 3: EXPERIMENTAL SYSTEMS AND CALIBRATIONS 60 

 3.1 System 1 and System 2 (unsaturated triaxial cells) 60 

  3.1.1 Double wall cell  60 

  3.1.2 Pedestal and top cap  63 

  3.1.3 Control or measurement of pressure and volume 67 

  3.1.4 Logging and control system 69 

  3.1.5 General equipment layout 70 

  3.1.6 Flushing of diffused air 72 

 3.2 System 3 (saturated triaxial cell) 74 

 3.3 Calibrations for System 1 and System 2 76 

  3.3.1 Pressure transducers  77 

  3.3.2 Sample volume change gauges  79 

  3.3.3 Pore water volume change gauges  81 

  3.3.4 Load cells 83 

  3.3.5 Axial displacement gauges 83 



Table of contents 
 
 

iii 
 

  3.3.6 Apparent volume change 84 

  3.3.7 Investigation of the accuracy of volume measurements in 

the double-wall cell 

93 

 3.4 Calibrations for System 3 94 

  3.4.1 Pressure transducers  94 

  3.4.2 Pore water volume change gauge  94 

  3.4.3 Load cell 96 

  3.4.4 Axial displacement gauge 96 

  3.4.5 Apparent volume change 96 

     

CHAPTER 4: SAMPLE PREPARATION TECHNIQUE AND TESTING PROCEDURE 98 

 4.1 Sample preparation 98 

  4.1.1 Soil type 98 

  4.1.2 Preparation of Kaolin mix 98 

  4.1.3 Development of isotropic and anisotropic initial fabrics 99 

 4.2 Test setup for System 1 and System 2 104 

  4.2.1 Preparation of de-aired water 104 

  4.2.2 Saturation of the high air entry filters 104 

  4.2.3 Sample setup 105 

 4.3 Test setup for System 3 108 

 4.4 Data processing  109 

  4.4.1 Unsaturated testing 109 

  4.4.2 Saturated testing 112 

 4.5 Typical test stages 112 

  

CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION 114 

 5.1 Test series and stress paths 114 

  5.1.1 Test series to investigate yielding and critical states of as-

compacted samples 

115 

  5.1.2 Test series to investigate yielding and critical states of 

samples with induced anisotropy 

117 

 5.2 Initial sample properties 121 

 5.3 Compaction stress paths 123 

 5.4 Initial wetting stages  126 



Table of contents 
 
 

iv 
 

  5.4.1 Wetting to       kPa (Test Series A300, B300, 

Ba300,Bb300, Bc300 & Bd100) 

126 

  5.4.2 Wetting to       kPa (Test Series A100, B100 & Be100) 134 

  5.4.3 Wetting to saturation (Test Series A0 & B0) 138 

 5.5 Probing/shearing stages on as-compacted samples 140 

  5.5.1 Probing/shearing at       kPa (Test Series A300 and 

B300) 

140 

  5.5.2 Probing/shearing at       kPa (Test Series A100, B100 

and Be100) 

149 

  5.5.3 Probing/shearing under saturated conditions (Test Series 

A0 and B0) 

160 

 5.6 Loading/ unloading and probing/shearing stages on samples with 

induced anisotropy (Test Series Ba300, Bb300, Bc300 and Bd100)  

170 

  5.6.1 Loading/ unloading stages 170 

  5.6.2 Probing/ shearing stages  178 

     

CHAPTER 6: INTERPRETATION OF EXPERIMENTAL RESULTS 203 

 6.1 Elastic constants 203 

  6.1.1 Elastic indices   and      203 

  6.1.2 Elastic index      204 

  6.1.3 Elastic shear modulus   206 

 6.2 Isotropic loading of isotropically compacted samples 207 

  6.2.1 Results in the      ̅ plane 207 

  6.2.2 Results in the        plane 207 

  6.2.3 Unique normal compression isotropic surfaces in 

            and       
       spaces  

209 

 6.3 Critical states 212 

  6.3.1 Investigation of critical states 212 

  6.3.2 Critical state behaviour in the    ̅ and      ̅ planes  212 

  6.3.3 Critical state behaviour in the      and        planes 219 

  6.3.4 Unique critical state planar surfaces in             and 

      
       spaces 

220 

 6.4 Identifying yield points 223 

  6.4.1 Bi-linear construction in the       ̅ or        plane 223 

  6.4.2 Bi-linear construction in the    ̅ or     plane 224 



Table of contents 
 
 

v 
 

  6.4.3 Strain energy  226 

 6.5 Interpretation of the yield points in the    ̅ and      
planes 227 

  6.5.1 Yield curves in the    ̅ plane  228 

  6.5.2 Yield curves in the      plane  231 

 6.6 Experimental flow vectors 233 

     

CHAPTER 7: DEVELOPMENT OF AN ANISOTROPIC MODEL 237 

 7.1 Overall approach 237 

 7.2 Elastic behaviour  238 

 7.3 Yield surfaces  238 

 7.4 Coupled movements of the yield surfaces 240 

 7.5 Hardening laws for changes of   
 ,   

  and   
  241 

 7.6 Variation of   242 

 7.7 Hardening law for changes of    242 

 7.8 Flow rule on    surface and variation of    244 

  7.8.1 Version  : associated flow rule and          246 

  7.8.2 Version  :     constant and non-associated flow rule 247 

 7.9 Critical states 248 

 7.10 Saturated conditions  249 

 7.11 Application of the model 252 

    

CHAPTER 8: MODEL SIMULATIONS 253 

 8.1 Calibration of soil constants other than   and   254 

 8.2 Calculation of initial states 256 

 8.3 Method of performing simulations 262 

 8.4 Calibration of soil constants   and   268 

 8.5 Confirmation that constant suction probing tests were acceptable 

for determining initial size and shape of the    surface   

270 

 8.6 Simulations of tests on isotropically compacted samples 272 

  8.6.1 Test Series A100 (all values of [     ̅]) 273 

  8.6.2 Influence of suction (at one value of [     ̅]) 287 

 8.7 Simulations of tests on anisotropically compacted samples 288 

  8.7.1 Influence of the value of [     ̅] and suction  288 



Table of contents 
 
 

vi 
 

  8.7.2 Comparison of isotropically and anisotropically compacted 

samples 

291 

 8.8 Simulating the influence of a previous loading stage 293 

 8.9 Comparison of Version 1 and Version 2 of the anisotropic model 299 

  8.9.1 Example simulations 299 

  8.9.2 Critical state planar surface in             space 303 

     

CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS 305 

 9.1 Experimental work 305 

  9.1.1 Experimental equipment 305 

  9.1.2 Compaction technique 306 

 9.2 Experimental results 307 

  9.2.1 Wetting stages 307 

  9.2.2 Yielding behaviour 307 

  9.2.3 Critical states 309 

  9.2.4 Yield curves and plastic flow vectors 310 

 9.3 Development of a constitutive model for anisotropic unsaturated 

soils 

311 

  9.3.1 Aspects of the new anisotropic constitutive model 312 

  9.3.2 Model calibration 313 

  9.3.3 Performance of Version 1 of the anisotropic model 314 

  9.3.4 Performance of Version 2 of the anisotropic model 316 

 9.4 Recommendations for future work 316 

  9.4.1 Experimental equipment 316 

  9.4.2 Compaction technique 317 

  9.4.3 Experimental testing 317 

  9.4.4 Constitutive modelling 318 

     

REFERENCES 320 



 
 

vii 
 

LIST OF SYMBOLS/ABBREVIATIONS 

LIST OF SYMBOLS 

 

  Parameter related to air-entry value of soil (in Brooks & Corey 

1964) 

  Major axis of the elliptical yield curve (in Cui and Delage,1996) 

A, B, C and D Regression constants to correct raw reading of pressure, volume, 

etc. transducers of experimental equipment 

  Ratio of pore water pressure increase to cell pressure increase for 

saturated triaxial tests 

  Parameter related to the pore-size distribution of the soil (in 

Brooks & Corey 1964) 

  Minor axis of the elliptical yield curve (in Cui and Delage,1996) 

  Constant controlling the current target value for    

   Cohesion for saturated conditions 

    Increment of inclination of the yield curve in the      plane 

   
 
,    

 
,    

 
 Plastic increments of principal strains 

     Strain increment tensor 

   
  Elastic shear strain increment 

   
 
 Plastic shear strain increment 

   
 
 Plastic volumetric strain increment 

   
  Elastic volumetric strain increment 



 

List of symbols/abbreviations 
 

viii 
 

    Increment of degree of saturation 

   
  Elastic increment of degree of saturation 

   
 
 Plastic increment of degree of saturation 

  Void ratio 

  Parameter controlling the rate of decrease of    with increasing 

   (for Version 1 of the proposed anisotropic model) 

  Yield surface 

  force 

      Function giving the current target value for    

  Acceleration due to gravity 

  Plastic potential function 

   Specific gravity of soil particles 

   Initial  height of the sample 

  Parameter controls the linear shift of the critical state line with 

suction in the    ̅ plane (in the model of Alonso et al., 1990) 

   Coefficient of earth pressure at rest 

   and    Coupling parameters (in the model of Wheeler et al., 2003a) 

  Length of stress vector 

  Slope of the critical state line in the    ̅ plane 

  Aspect ratio of the yield curve in the    ̅ plane 



 

List of symbols/abbreviations 
 

ix 
 

  Parameter related to the asymmetric shape of the retention curve 

(in Van Genuchten, 1980; Fredlund and Xing, 1994 and Gallipoli 

et al., 2003a) 

   Slope of the critical state line in the      plane 

   Aspect ratio of the yield curve in the      plane 

  
  Value of    at      

   
  Value of    at      for         

   
  Value of    at      for         

   Slope of the critical state line for triaxial compression in the    ̅ 

plane (in the model of Wheeler et al., 2003b) 

   Value of the aspect ratio of the yield curve in the    ̅ plane for 

  ( ̅       )     

  
  Value of the aspect ratio of the yield curve in the      plane for 

        

   Slope of the critical state line for triaxial extension in the    ̅ 

plane (in the model of Wheeler et al., 2003b) 

   Value of the aspect ratio of the yield curve in the    ̅ plane 

for   ( ̅       )     

  
  Value of the aspect ratio of the yield curve in the      plane for 

        

   Mass of the solids within the sample 

     Slope of the critical state line, for a given suction  , in the    ̅ 

plane 

   Molecular mass of water vapour 

  Parameter related to the aspect ratio of the yield curve (in 

Whittle & Kavvadas, 1994 and Taiebat & Dafalias, 2010) 

  Specific volume at the intercept of the saturated normal 

compression line in the        plane (in the model of Wheeler et 

al., 2003b) 



 

List of symbols/abbreviations 
 

x 
 

  Porosity 

  Parameter related to the slope of the retention curve (in Van 

Genuchten, 1980; Fredlund and Xing, 1994 and Gallipoli et al., 

2003a) 

   Intercept of the unique isotropic normal compression planar 

surface in             space (in the model of Wheeler et al., 

2003a) 

     Value of      at zero suction (in the model of Alonso et al., 1990) 

   Inter-particle force due to meniscus water bridges 

     Specific volume on the normal compression line at reference 

pressure    for suction   (in the model of Alonso et al., 1990) 

   Normal component of inter-particle force due to external stress 

 ̅ Mean net stress 

  Mean total stress 

   Mean Bishop’s stress 

   Mean effective stress (for saturated soil) 

 ̅     Value of  ̅     at zero suction (in the model of Alonso et al., 

1990) 

  
  Intersection of the yield curve of saturated soil with the    axis 

 ̅     Intersection of a constant suction yield curve with the  ̅ axis (in 

the model of Alonso et al., 1990) 

     Atmospheric pressure 

   Reference pressure (in the model of Alonso et al., 1990) 

  
  Critical state value of the mean effective stress for a given stress 

state on the yield surface of saturated soil 



 

List of symbols/abbreviations 
 

xi 
 

 ̅        ,          Initial stress state of a test in the    ̅ plane 

 ̅     Size of a constant suction yield curve in the    ̅ plane (in the 

models of Stropeit et al., 2008 and D’Onza et al., 2011) 

  
  Size of yield curve in the      plane 

  
  Size of the yield curve of saturated soil in the      plane 

      Intersection of the critical state line (and yield curve) with the 

negative  ̅ axis for suction  , in the    ̅ plane 

  
  Dummy variable defines the size of the plastic potential 

  Deviator stress 

        Target value of the deviator stress 

  Universal gas constant 

  Parameter controlling the limiting value of      as suction tends 

to infinity (in the model of Alonso et al., 1990) 

   Average radius of the sample after suction equalisation 

   and    Principal radii of curvature of an air-water interface 

  Matric suction 

   Current location of the    yield surface (in the model of Alonso et 

al., 1990) 

   Modified suction 

  
  Current position of the    yield surface  (in the model of Wheeler 

et al., 2003a) 

  
  Initial experimental value of    

  
  Current position of the    yield surface  (in the model of Wheeler 

et al., 2003a) 



 

List of symbols/abbreviations 
 

xii 
 

   Degree of saturation 

       
 Experimental degree of saturation at the end of initial wetting 

stage 

  
  Effective degree of saturation 

         
 Initial experimental degree of saturation of a compacted sample 

  Absolute temperature 

   Surface tension 

   Tangential component of inter-particle force due to external 

stress 

   Pore air pressure 

    Initial value of pore air pressure at the beginning of loading after 

suction equalisation 

   partial pressure of pore-water vapour 

    Saturation pressure of water vapour over a flat surface of pure 

water at the same temperature 

   Pore water pressure 

  Specific volume 

   Initial volume of the sample 

       Experimental specific volume at the end of initial wetting stage 

       Critical state value of specific volume for suction   

         Initial experimental specific volume of a compacted sample 

   Volume of water within soil sample 



 

List of symbols/abbreviations 
 

xiii 
 

   Specific water volume 

  Work input per unit volume 

  Water content 

       Experimental water content at the end of initial wetting stage 

         Initial experimental water content of a compacted sample 

  ,   ,    Yielding boundaries in stress space where             (in Smith 

et al., 1992) 

  Elevation relative to a reference horizontal datum 

  Parameter in non-associated flow rule (in the model of Alonso et 

al., 1990) 

  Parameter controlling the inclination of yield curve in the    ̅ 

plane  

  Parameter related to the air entry value of the soil (in Van 

Genuchten, 1980; Fredlund and Xing, 1994 and Gallipoli et al., 

2003a) 

   Inclination of yield curve in the      plane 

  
  Initial inclination of the yield curve in the      plane 

    Critical state inclination of the yield curve in the    ̅ plane (in the 

model of Wheeler et al., 2003b) 

   
  Critical state inclination of the yield curve in the      plane 

  Parameter controlling the relative effectiveness of     
 
 and    

 
 in 

determining the overall current target value for   (in the model 

of Wheeler et al., 2003b) 

  Parameter giving the rate of change of      with suction (in the 

model of Alonso et al., 1990) 

  Specific volume at the intercept of the saturated critical state 

line in the        plane (in the model of Wheeler et al., 2003b) 



 

List of symbols/abbreviations 
 

xiv 
 

  Parameter controlling the roundness of the yield curve near to the 

origin (in Lagioia et al., 1996) 

      Specific volume at the intercept of the critical state line in the 

       plane for suction     

     Specific volume at the intercept of the critical state line in the 

     ̅ plane for suction     

[    ̅⁄ ] Constant slope of the stress path in the    ̅ plane 

   Change in sample height since the beginning of loading after 

suction equalisation 

    Kroneker’s delta 

   Average change in sample radius 

    Increment of degree of saturation 

   Change in sample volume since the beginning of loading after 

suction equalisation 

    Increment of shear strain 

    Increment of volumetric strain 

   Axial strain 

   Radial strain 

   Shear strain 

   Volumetric strain 

  Parameter controlling the roundness of the yield curve near to the 

apex (in Lagioia et al., 1996) 

  Stress ratio in the    ̅ plane 

   Stress ratio in the      plane 



 

List of symbols/abbreviations 
 

xv 
 

  Inclination of the yield curve (in Cui and Delage,1996) 

  Gradient of elastic compression/swelling line in the      ̅ or 

       plane 

   Gradient of elastic compression/swelling line in the        plane 

   Gradient of the elastic scanning curves in the       
  plane (in the 

model of Wheeler et al., 2003a) 

   Gradient of elastic shrink/ swelling line in the               

plane (in the model of Alonso et al., 1990)  

  Slope of the normal compression line in the        plane for an 

isotropic soil  

   and   
  Gradients of the unique isotropic normal compression (and critical 

states) planar surfaces in             space (in the model of 

Wheeler et al., 2003a) 

     Gradient of normal compression line for saturated conditions (in 

the model of Alonso et al., 1990) 

   Gradient of the elasto-plastic main wetting or main drying curves 

in the       
  plane (in the model of Wheeler et al., 2003a) 

   Gradient of elasto-plastic shrink line in the               plane 

(in the model of Alonso et al., 1990)  

     Slope of the virgin compression line for suction   in the      ̅ 

plane (in the model of Alonso et al., 1990) 

  
  and   

  Gradients of the unique isotropic normal compression (and critical 

states) planar surfaces in       
       space (in the model of 

Wheeler et al., 2003a) 

  Parameter controlling the rate of evolution of   towards its 

current target (in the proposed model and in the model of 

Wheeler et al., 2003b) 

   Density of water 

   Normal effective stress 

   Cell pressure 

    Cell pressure at the beginning of loading stage (for saturated tests 

in System 3) 



 

List of symbols/abbreviations 
 

xvi 
 

    Total stress tensor 

   
  Effective stress tensor  

   
  “Bishop’s stress” tensor, also known as “average soil skeleton 

stress” tensor  

  
  Vertical effective stress  

  Shear strength 

  and   Parameters related to the air entry value of the soil (in Gallipoli 

et al., 2003a) 

   Friction angle for saturated conditions  

   Friction angle with respect to suction 

  Parameter related to degree of saturation 

   Soil constant related to the unique isotropic normal compression 

planar surface in       
       space (in the model of Wheeler et 

al., 2003a) 

      Slope of the critical state line in the        plane for suction    

    Adsorption potential 

    Capillary potential 

    Osmotic suction 

     Slope of the critical state line in the      ̅ plane for suction    

   Total suction 

 
 
 
 
 



 

List of symbols/abbreviations 
 

xvii 
 

LIST OF ABBREVIATIONS 

 

     Model of Stropeit et al. (2008) 

      Model of D’Onza et al. (2011) 

    Barcelona Basic model (by Alonso et al., 1990) 

     Environmental scanning electron microscopy 

    High air entry ceramic filter 

   Loading-Collapse yield curve 

     Linear Variable Displacement Transducer 

    Modified Cam Clay model (by Roscoe and Burland,1968) 

    mercury intrusion porosimetry 

    Normal compression line  

    Pore size distribution 

   Relative humidity 

        Model of Wheeler et al. (2003b) 

   Suction Decrease yield curve 

    Scanning electron microscopy   

   Suction Increase yield curve 

 

 



 
 

xviii 
 

 

ACKNOWLEDGMENTS 

I gratefully acknowledge the Iraqi Ministry of Higher Education for sponsoring this project 

which was carried out in the School of Engineering at the University of Glasgow.    

I would like to express my heartfelt gratitude to my supervisors, Professor Domenico 

Gallipoli and Professor Simon Wheeler for their sincere encouragement and thoughtful 

guidance.  Domenico and Simon are ones that you never forget once you meet them and I 

hope that I can be enthusiastic and energetic as them and I hope that I can in turn pass 

on the research values and the dreams that they have given to me.  

My sincere thanks go to the staff members of the Civil Engineering Department, specially 

Mr. Stuart McLean and  Mr. Tim Montgomery for their technical help, Ms. Barbara Grant, 

Miss. Amanda Smith and Mrs. Eileen Davies for their administrative help and Mr. Kenneth 

McColl for his help with computing issues. 

Very special thanks to my family. I am grateful to my father, mother and sisters for all 

the sacrifices that they have made on my behalf. I am indebted to my beloved wife Alaa 

for her sacrifices and cheering up and for her tireless support. To my beloved son and 

daughters Zaid, Zainab and Ola, I would like to express my thanks for being such a bundle 

of joy and happiness. I know it’s hard for them, at this age, to imagine their contribution 

to my doctoral work, but in fact, it is their brilliance that inspired me all the time.  

Special thanks also to my lifelong friend Ihsan and his wife Safa for their help especially 

during the last period of my PhD. Thanks also to all my friends and colleagues from Iraq 

for support. 

 



 
 

xix 
 

ABSTRACT 

This work explores the influence of evolving anisotropy on the stress-strain behaviour of 

unsaturated soils and proposes a new constitutive elasto-plastic model for unsaturated 

soils accounting for evolving anisotropy. An extensive campaign of laboratory tests on 

both isotropically and anisotropically compacted soil samples under a wide range of 

stress paths was performed. These experimental data were then employed in developing 

the new model and investigating its performance.  

A programme of controlled suction triaxial testing was performed on unsaturated and 

saturated samples of Speswhite kaolin prepared by two different methods of compaction: 

isotropic and anisotropic. Tests involved probing stress paths, to investigate the initial 

forms of the yield surface for isotropically compacted and anisotropically compacted 

samples at different suction values, and how the yield surface was altered by plastic 

straining caused by loading stages or by wetting stages with significant collapse-

compression. Tests also included shearing to failure, to investigate critical state 

conditions. 

Experimental results were interpreted in terms of mean net stress  ̅, deviator stress   

and suction   as stress state variables and, alternatively, interpreted in terms of mean 

Bishop’s stress (defined as     ̅      ), deviator stress   and modified suction (defined 

as      , where   is the porosity).  

The experimental results showed that fabric anisotropy can evolve during plastic 

straining even for a soil that starts isotropic but is then loaded to anisotropic stress 

states. Also, the results showed that fabric anisotropy can evolve during wetting stages 

that involve collapse-compression. Furthermore, the results showed no apparent 

influence of initial or evolving anisotropy on the critical state, where both the initially 

isotropic and initially anisotropic samples, loaded at various stress path slopes, showed 

nearly the same critical states. Critical states can be represented in the    ̅ plane by a 

series of parallel lines for different values of suction and the constant suction cross-

sections of the yield surface can be represented by distorted ellipses in the    ̅ plane, 

intersecting the negative axis at the point of intersection of the corresponding critical 

state line. Alternatively, critical states can be represented in the      plane by a single 

straight line (for all values of suction) passing through the origin, and constant suction 

cross-sections of the yield surface can be represented in the      plane by distorted 
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ellipses passing through the origin (suggesting that the yield surface expression is simpler 

when expressed in terms of      and    rather than in terms of    ̅ and  ).  

A new constitutive model was formulated in terms of Bishop’s stresses and modified 

suction based on the above observations and other considerations such as that 

representing the coupling between mechanical and water retention behaviour is easier 

with Bishop’s stress than with net stress. The new anisotropic model combines features 

from the isotropic model for unsaturated soils of Wheeler et al. (2003a) with features for 

modelling of anisotropy taken from the anisotropic model for saturated soils        . 

The new anisotropic constitutive model was developed solely as a mechanical model, 

unlike the constitutive model of Wheeler et al. (2003a), which is a combined mechanical 

and water retention model.  

Model simulations of mechanical behaviour with the new anisotropic model were 

performed by using experimental values of    (with no attempt to predict values of   ), 

because it was then possible to check whether mechanical aspects of the model were 

performing well. Model simulations showed that significant improvement in the accuracy 

of the predicted soil behaviour was achieved by incorporating the role of evolving fabric 

anisotropy. However, model performance appears more satisfactory in simulating soil 

behaviour under unsaturated conditions than under saturated conditions. Also, the model 

is not entirely successful in predicting some aspects of anisotropic soil behaviour such as 

differences in initial specific volume between isotropically and anisotropically compacted 

samples. 
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1 
INTRODUCTION 

1.1 ANISOTROPY OF SOILS  

A soil that is anisotropic shows directional dependency of material behaviour.  It is well-

known that the fabric of soils, that is the arrangement of particles and inter-particle 

contacts, is often anisotropic due to natural or artificial formation. For instance, 

normally to lightly overconsolidated natural clays often exhibit anisotropic properties due 

their depositional history and subsequent consolidation stages. In natural soils, initial 

anisotropy is induced by deposition under one-dimensional straining and resultant    

stress conditions. Initial anisotropy can be subsequently altered by loading stages that 

produce plastic straining and, hence, a change in the arrangement/orientation of 

particles and aggregates inside the soil structure. The anisotropy produced by plastic 

straining after the initial formation process is usually referred to as evolving or induced 

anisotropy. Therefore, even soils with an initial isotropic fabric can develop an 

anisotropic fabric if loaded along anisotropic stress paths.  

Compaction techniques which involve one-dimensional straining are usually employed in 

the field and laboratory to produce artificial soil fills. These techniques have been shown 

to generate a moderately anisotropic fabric because of the particular compaction 

process. Although both elastic and plastic mechanical aspects of behaviour can show the 

influence of anisotropy, different aspects of material fabric control the anisotropy of 

elastic and plastic behaviour. 

The influence of soil anisotropy on mechanical behaviour, particularly under saturated 

conditions, has received significant attention since the 1980s, when experimental and 

constitutive studies of evolving anisotropy in soils were conducted. One of the clearest 

indications of anisotropy of mechanical behaviour is the shape of the yield surface in 

stress space. Any experimental investigation of soil anisotropy usually involves a 

preliminary identification of the yield surface by means of triaxial tests in which samples 

are subjected to loading paths radiating, under different stress ratios, from an initial 

state inside the elastic domain.   
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Microstructural studies of soil fabric using scanning electron microscopy (   ) and 

mercury intrusion porosimetry (   ) have provided valuable insight into the loading 

mechanisms that produce changes of soil fabric and, in particular, of pore size 

distribution and particles orientation. Researchers are now able to demonstrate the 

gradual build up or erasure of fabric anisotropy not only from the phenomenological 

stress-strain behaviour at laboratory sample scale, but also from changes in soil 

microstructure. 

Aspects of unsaturated soil behaviour such as volume change, shear strength and water 

retention behaviour have been widely investigated in the literature. However, only few 

studies have been conducted about the influence of anisotropy on mechanical and water 

retention behaviour of unsaturated soils.  For example, little investigation has been 

carried out about the effects of one-dimensional compaction and the ensuing moderately 

anisotropic soil fabric on the mechanical behaviour of unsaturated soils.  

1.2 MODELLING ANISOTROPY OF UNSATURATED SOILS 

A large number of anisotropic elasto-plastic constitutive models for saturated soils have 

been published in the last three decades accounting for the effect of evolving anisotropy 

on mechanical behaviour. In most anisotropic saturated models, the yield curve is 

described in the triaxial stress plane as an inclined ellipse, either rotated or distorted so 

that it is not symmetrical about the mean stress axis, with evolution of the inclination 

defined by a constitutive law depending on plastic volumetric and/or shear strains.  

Modelling of linear elastic anisotropy requires 5 independent material constants for a 

cross-anisotropic (transversely isotropic) soil and 21 independent material constants for a 

generally anisotropic soil (see Graham and Houlsby, 1983). In practical boundary value 

problems, evolution of anisotropy during plastic straining often means that soils end up 

developing a general form of anisotropy. Consequently, most anisotropic elasto-plastic 

models for saturated soils assume isotropic elasticity in order not to add to the already 

complex description of plastic behaviour.  

Modelling anisotropic behaviour in unsaturated soils has not yet received much attention, 

probably because of its complexity. Nevertheless, proper consideration of the effects of 

evolving anisotropic fabric on the mechanics of unsaturated soils is necessary. Numerical 

modelling of boundary value problems involving saturated soils has clearly demonstrated 

that incorporating anisotropy can be very important in accurately capturing observed 

field behaviour (Karstunen et al., 2005), and it seems very likely that the same will be 

true for unsaturated soils. 
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Significant progress has been made in recent years in the development of isotropic 

elasto-plastic models for unsaturated soils. Since publication of the Barcelona Basic 

Model (   ) of Alonso et al. (1990), a large number of elasto-plastic models have been 

proposed to describe unsaturated soil behaviour. However, most of these models assume 

material isotropy and the influence of fabric anisotropy is not considered. Most of these 

models use two independent stress state variables (rather than a single effective stress 

tensor) to describe unsaturated soil behaviour. In particular, some models use net 

stresses and matric suction while others use Bishop-type stresses (Bishop, 1959) as the 

first stress state variable and matric suction or some function of matric suction as the 

second stress state variable. In the latter approach, both elastic behaviour and shear 

strength can be related solely to changes of the Bishop-type first stress state variable, 

and the second stress state variable is only required to define the yield surface (which is 

expressed in terms of both constitutive variables). 

1.3 RESEARCH OBJECTIVES 

In this work, an attempt is made to explore the influence of evolving anisotropy on the 

stress-strain behaviour of unsaturated soils. In order to achieve this objective, an 

extensive campaign of laboratory tests on both isotropically and anisotropically 

compacted soil samples under a wide range of stress paths was performed. These 

experimental data were then employed to develop an elasto-plastic model for 

unsaturated soils accounting for evolving anisotropy. 

The objectives of the project can be summarised as follows: 

 To set up the necessary laboratory equipment for triaxial testing of unsaturated 

and saturated samples in triaxial compression and triaxial extension;  

 To investigate experimentally the yielding behaviour of isotropically and 

anisotropically compacted soil samples under different levels of suction;  

 To investigate experimentally the effect of plastic straining on changing fabric 

anisotropy in unsaturated soils and the influence of this evolving anisotropy on 

yielding behaviour; 

 To investigate experimentally the influence of initial and evolving anisotropy on 

critical states; 

 To investigate the advantages and disadvantages of using alternative unsaturated 

constitutive variables during analysis of yielding and critical states;  

 To develop, in the light of the gathered experimental results, an elasto-plastic 

constitutive model describing the behaviour of unsaturated (and saturated) soils 

including the effect of evolving anisotropy on stress-strain behaviour; 
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 To investigate capabilities and limitations of the proposed model via simulation of 

the behaviour observed during the experiments; 

 To propose, if necessary, improvements to the proposed constitutive model in 

order to enhance predictions.           

 

1.4 THESIS LAYOUT 

The preceding sections of this chapter have discussed the need for taking into account 

evolving anisotropy in unsaturated soil models and have outlined the objectives of the 

present project.  

Chapter 2 starts by reviewing the fundamental concepts of unsaturated soil mechanics, 

such as suction and constitutive variables, and by describing volume change, shear 

strength and water retention of unsaturated soils, including the influence of fabric 

anisotropy on these aspects of soil behaviour. The next section discusses soil yielding 

(including some of the common methods for identification of yield points from 

experimental data) and the changes of soil fabric due to plastic straining. Possible 

mathematical forms of yield surface and plastic potential are also reviewed. A 

background review of some elasto-plastic models for saturated and unsaturated soils 

relevant to this study is also provided. 

Chapter 3 describes the laboratory equipment used to undertake the experimental 

campaign, including a double wall triaxial cell for testing unsaturated soil samples and a 

conventional triaxial cell for testing saturated soil samples. The calibration of all gauges 

used for controlling or measuring pressure, volume, displacement, etc. is also described 

in this chapter. 

Chapter 4 describes the method used for compaction of both isotropic and anisotropic 

soil samples.  This chapter also describes the methodology for setting up and performing 

the tests in the saturated and unsaturated triaxial cells and describes the procedures 

adopted for processing raw data during tests. 

Chapter 5 presents the main body of experimental results. Initially, the properties of all 

samples after compaction are presented together with a discussion of the stress paths 

followed in the different test series. The results of suction equalisation stages for all 

tests are subsequently presented. The later part of the chapter discusses the stress-strain 

curves of triaxial tests performed to investigate the yielding properties of unsaturated 

soil samples either in the as-compacted state or after preliminary loading to alter initial 

anisotropy.  
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Chapter 6 provides further interpretation of the test results shown in Chapter 5 including 

a detailed investigation of the shape of the yield surface and critical state behaviour. 

The selection of soil constants, such as elastic indices and slopes of normal compression 

and critical state lines is also discussed in detail. Elastic, yielding and critical state 

behaviour are all interpreted in terms of two alternative sets of constitutive variables 

highlighting advantages and disadvantages for each set. 

Chapter 7 describes the development of a new anisotropic elasto-plastic constitutive 

model for unsaturated soils. New constitutive relationships describing elastic behaviour, 

yielding (including hardening laws and flow rules) and critical states are presented.  

Chapter 8 investigates the performance of the proposed model by conducting simulations 

of the tests presented in Chapter 5 and comparing the simulations with the corresponding 

experimental results. Calibration of soil constants and selection of initial state are also 

discussed. The methodology followed for performing model simulations is described in 

detail. A representative set of model simulations, for a wide range of triaxial stress 

paths, is presented, including simulations of tests on both isotropically and 

anisotropically compacted samples at different suctions. The capabilities and limitations 

of the proposed model in predicting the soil response are therefore investigated in this 

chapter. 

Finally, Chapter 9 presents the conclusions drawn from the current project and gives 

recommendations for future work.  
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2 
BEHAVIOUR AND MODELLING OF UNSATURATED SOILS AND THE 

INFLUENCE OF ANISOTROPY 

2.1 SUCTION IN UNSATURATED SOILS  

Total soil suction measures the negative thermodynamic potential of soil pore water 

(expressed in dimensions of pressure) relative to a reference potential of pure water that 

is free of dissolved solutes and is at the same pressure as the pore air (Lu and Likos, 

2004). Under conditions of equilibrium across the air-water interface (no net evaporation 

or condensation) total suction    can be quantitatively described by Kelvin’s equation 

(Sposito 1981) as follows: 

    
      

  
  [

  

   
]                                                                                                                                       

where   is the universal gas constant (8.314 J/mol K),   is the absolute temperature (K), 

   is the molecular mass of water vapour (18.016 kg/kmol),    is the density of water, 

   is the partial pressure of pore-water vapour and     is the saturation pressure of 

water vapour over a flat surface of pure water at the same temperature. The term 

       is the relative humidity   , which is defined as the ratio of partial pressure of 

water vapour in the air to the saturation pressure of water vapour at the same 

temperature . Total suction    has a crucial role in governing the flow of liquid water 

through an unsaturated soil. Flow of liquid water is caused by a gradient in total 

potential, which is made up of the (negative) total suction and a gravitational term      

(where   is the elevation relative to a reference horizontal datum).  

The total suction    can be divided into two of components, namely: matric suction   

and osmotic suction    :   

                                                                                                                                                                  

According to Baker and Frydman (2009), matric suction is an addition of two energy 

components (per unit volume), namely capillary potential     and adsorption potential 



CHAPTER 2  Behaviour and modelling of unsaturated soils and the influence of anisotropy 
 
 

7 
 

    which is associated with the adsorbed water film surrounding clay platelets and 

particles:   

                                                                                                                                                                 

On the other hand,   is commonly defined as simply the excess of pore air pressure    

over the pore water pressure   :  

                                                                                                                                                                     

Equation 2.4 is considered valid for the case where the capillary potential dominates, 

however, questions are raised for the validity of this expression when the adsorbed 

potential is dominant (Baker and Frydman 2009).  

Water in an unsaturated soil can exist in different forms: bulk water which fills the 

water-flooded void spaces; meniscus water which forms “rings” or “bridges” around the 

inter-particle contacts surrounded by air-filled voids; and adsorbed water which is bound 

to soil particles by electro-chemical forces and acts as a part of the soil skeleton 

(Wheeler and Karube, 1996). An idealised picture of the bulk and meniscus water is 

shown in Figure 2.1.  

 

Figure 2.1 Bulk water and meniscus water (Wheeler et al., 2003a) 

Matric suction can be related to the surface tension    at the air-water interface and the 

principal radii of curvature of the interface    and    (see Figure 2.2) by using force 

equilibrium in the direction perpendicular to the interface to give: 
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    (
 

  
 

 

  
)                                                                                                                                                   

 

Figure 2.2 Surface tension at an air-water interface (Fredlund and Rahardjo, 1993) 

Osmotic suction is related to the concentration of dissolved salts in the pore fluid.  

According to Blatz et al. (2008), osmotic suction is important in highly plastic clays (due 

to the clay mineralogy) and when active dissolved salts exist in the pore water. 

2.2 STRESS STATE VARIABLES 

Stress state variables are those variables which are sufficient to characterize completely 

the mechanical behaviour of the soil. For saturated or dry soils, a single (tensorial) stress 

state variable is required; the “effective stress” defined by Terzaghi (1936), which takes 

the form: 

   
                                                                                                                                                                

where    
  is the effective stress tensor,     is the total stress tensor,   is the pore 

pressure and     is Kronecker’s delta. Equation 2.6 states that the normal effective stress 

acting on a given plane is the excess of the corresponding normal total stress over the 

pore pressure, whereas the effective shear stress on a given plane is equal in value to the 

corresponding total shear stress. The stress state variable was found to be sufficient to 

fully describe all the measurable effects of stress changes on the mechanical behaviour 

of a soil in a saturated or dry state.  
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For unsaturated soils, early workers investigated the possibility of using of single 

(tensorial) stress state variable similar to that for saturated soils. One of the earliest and 

most well-known contributions was by Bishop (1959), who suggested the following 

general form of the “effective stress” tensor in an unsaturated soil: 

   
      [            ]                                                                                                                      

where   is a parameter which depends on the degree of saturation. Under saturated or 

dry conditions, the parameter   takes values of   and   respectively and Equation 2.7 

reduces to Equation 2.6. Other researchers including, for example, Croney et al. (1958), 

Jennings (1960), Aitchison (1961) and Richards (1966), suggested different forms for the 

effective stress as a unique stress state variable for unsaturated soils. However, the 

concept of using a single (tensorial) stress state variable (i.e. effective stress) was shown 

to be insufficient for unsaturated soils.  Jennings and Burland (1962) concluded that 

Equation 2.7 was not sufficient to predict the “collapse compression” sometimes 

observed during wetting (suction decrease) under a constant total stress. Equation 2.7 

will always predict swelling on wetting from an unsaturated state to a saturated state as 

a result of decrease of effective stress. This deficiency was also acknowledged by other 

researchers (e.g. Bishop & Blight, 1963; Burland, 1965 and Matyas & Radhakishna, 1968). 

It was therefore widely accepted that the behaviour of unsaturated soils could not be 

represented in terms of a single (tensorial) stress state variable.  

Bishop & Blight (1963) experimentally examined the use of two stress variables, the net 

stress tensor           and the scalar matric suction       by conducting various types 

of oedometer tests and triaxial tests in which total stresses,    and    were varied. They 

concluded that net stress and suction are valid stress variables for unsaturated soils. The 

two independent stress variables of net stress tensor (         ) and the scalar matric 

suction (     ) received high attention with the proposition of early elasto-plastic soil 

models such as, for example, those proposed by Alonso et al. (1990) and Gens & Alonso 

(1992) in which the authors employed these stress variables to describe the stress state. 

Various alternative pairs of stress state variables for unsaturated soils are explained in 

the review articles of Wheeler and Karube (1996) and Gens et al. (2006).  

Subsequently, it was realised that employing only matric suction to describe how 

unsaturated the soil is implies a shortcoming if there is a non-unique relationship 

between degree of saturation and suction, because of the effects of hydraulic hysteresis 

(see, for example Wheeler et al. (2003a). This means that, with a model expressed in 

terms of net stresses and matric suction, an additional piece of information associated to 
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the degree of saturation,   , is required in order to give a complete description of soil 

behaviour. Instead, several authors expressed their constitutive models in terms of two 

stress state variables, the first of which involves the degree of saturation and is similar to 

Bishop’s effective stress of Equation 2.8, and the second of which is matric suction or 

some function of matric suction (e.g. Kohgo et al., 1993a; Kohgo et al., 1993b; Bolzon et 

al., 1996; Loret & Khalili, 2000; Loret & Khalili, 2002; Gallipoli et al., 2003a; Wheeler et 

al., 2003a; Sheng et al., 2004 and Santagiuliana & Schrefler, 2006).  

The work by Wheeler et al. (2003a) is a particular example of the use of two stress state 

variables where the first is a Bishop’s type stress state variable. Wheeler et al. (2003a) 

defined the first stress variable as a tensor given by: 

   
      [             ]                                                                                         

where     is the total stress tensor and     is Kroneker’s delta.    
  is called the “Bishop’s 

stress” tensor by Wheeler et al. (2003a) and Bolzon et al. (1996) whereas it is called the 

“average soil skeleton stress” tensor by Jommi (2000) to reflect the effects on the soil 

skeleton of the total stress, air pressure within the portion of the pores that is air-filled 

and pore water pressure within the portion of the pores that is water-filled (i.e. the bulk 

water). Because of the fact that the first stress state variable (i.e. the Bishop’s stress 

tensor) does not account for the additional bonding effects caused by the presence of 

meniscus water on inter-particle forces (see Section 2.3.1 below), the mechanical 

behaviour cannot be described solely in terms of this stress variable. The model proposed 

by Wheeler et al. (2003a) assumes that the yielding behaviour is also influenced by the 

degree of saturation    (or, more strictly, by plastic change in   ), with changes of    

then related to the variation of a second stress state variable referred to as “modified 

suction”,   , given by: 

                                                                                                                                                                             

where   is the porosity. This choice of    as the second stress state variable was based on 

the theoretical analysis by Houlsby (1997), which showed that the stress variables    
  and 

   are work conjugates with the strain increment variables      and      respectively. 

The model proposed by Wheeler et al. (2003a) forms a complete mechanical and water 

retention model, expressed in terms of the two stress state variables of the Bishop’s 

stress tensor and the scalar modified suction.  
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Alonso et al. (2010) showed that the term      in Equation 2.8 becomes unrealistically 

large for many clayey soils when suction increases to high levels because the soil tends to 

maintain a relatively high degree of saturation even at high suction values. Instead, 

Alonso et al. (2010) suggested a ‘microstructurally based effective stress’ based on the 

idea that a portion of pore water is held by clay minerals and cannot move freely during 

the process of filling or emptying of the pores. This effective stress tensor is (again) 

simply the first of two stress state variables and given by: 

   
              

                                                                                                                                     

where   
  is the effective degree of saturation, which measures the available water that 

is free to move within the macropores and ranges between   for the case where soil is 

fully saturated and zero when all water is held by the micropores. Hence, to calculate 

  
 , the volume of water held by the micropores must be known. Alonso et al. (2010) 

showed that the volume of water in micropores could be determined with different 

techniques (e.g. porosimitry or from the water retention curve).    

2.3 ASPECTS OF UNSATURATED SOIL BEHAVIOUR 

Researchers in the field of unsaturated soils have made significant progress towards 

understanding the patterns of unsaturated soils behaviour through investigation of the 

volume change, shear strength and water retention behaviour of these soils.  

2.3.1 Volume change 

Loading/unloading at constant suction 

Typically, an unsaturated soil sample shows gradual decrease in its volume when loaded 

(isotropically or under oedometeric conditions) at a given constant suction. When loading 

passes a yield stress, irreversible (plastic) volume changes commence due to slippage at 

inter-particle or inter-aggregate contacts. For identical samples loaded at different 

suction levels, the yield stress increases with increasing suction. This response can be 

explained by the role of “meniscus water bridges” at the particle contacts surrounded by 

air-filled voids as shown in Figure 2.3. As explained by Wheeler and Karube (1996), 

application of external stress will cause an increase in the tangential forces as well as to 

the normal forces at the inter-particle contacts, while application of suction within the 

meniscus water bridges will cause an increase in normal forces only. In Figure 2.3    is 

the normal component of inter-particle force due to external stress,    is the tangential 

component of inter-particle force due to external stress and    is the inter-particle force 

due to the meniscus water bridge. An increase of suction therefore provides additional 

stabilisation against inter-particle slippage (yielding).  
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It is generally observed that both the position and the slope of the normal compression 

line (   ) in a plot of specific volume   against mean net stress  ̅ (where  ̅      ), 

are suction-dependent (see Figure 2.4). For some soils the slope of the     decreases 

with increasing suction (see Alonso et al. 1990) whereas for other soils the slope 

generally increases with increasing suction (e.g. Wheeler and Sivakumar, 1995, as shown 

in Figure 2.4). 

 

Figure 2.3 Inter-particle forces caused by external stress and meniscus water bridges (Wheeler 
and Karube, 1996)  

Unsaturated soils usually show swelling during unloading stages performed under 

oedometric conditions or isotropic stress states, see Figure 2.5. Usually, the swelling 

behaviour is regarded as elastic and linear when the net stress is plotted on a logarithmic 

scale. The gradients of swelling lines are also generally assumed to be approximately 

suction-independent as suggested by many researchers (e.g. Alonso et al., 1990; 

Sivakumar, 1993; and Raveendiraraj, 2009).    

Volume change due to wetting or drying at constant net stress 

If a wetting stage (reduction of suction) is performed at low value of net stress, the 

unsaturated soil swells whereas if a wetting stage is performed at a high value of net 

stress it shows a reduction of volume, commonly termed as collapse compression. During 

drying (increase in suction), the soil always show a reduction of volume (shrinkage).  

Alonso et al. (1987) proposed a yield curve in the    ̅ plane, known as the Loading-

Collapse (  ) yield curve, with collapse-compression during wetting stages treated as 

plastic deformation that results when the stress state reaches the    curve. This idea of 
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the    yield curve was subsequently employed by Alonso et al. (1990) in developing of 

the Barcelona Basic model (   ), the first elasto-plastic constitutive model for 

unsaturated soils. Further explanation of the      model is provided in Section 2.8.1. 

Alonso et al. (1990) also proposed that when suction increases beyond the maximum past 

suction that the soil ever experienced then yielding will take place on a second yield 

curve referred to as the Suction Increase (  ) yield curve.   

 

Mean net stress  ̅ (kPa) 

Figure 2.4 Volume change under isotropic loading at constant suction performed on compacted 
kaolin (Wheeler and Sivakumar, 1995) 

 

Figure 2.5 Volume change under isotropic unloading at constant suction performed on 
compacted kaolin (Raveendiraraj, 2009) 
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2.3.2 Shear strength 

Using net stress and matric suction as the two stress state variables to describe 

unsaturated soil behaviour, Fredlund et al. (1978) proposed the following expression for 

shear strength: 

                                                                                                                           

where        is the normal net stress on the failure plane,    and    are the cohesion 

intercept and friction angle respectively for saturated conditions and    is a friction 

angle with respect to suction. Equation 2.11 represents a planar failure surface in 

                 space that reduces to the conventional Mohr-Coulomb failure 

envelope (a line in the      plane) under saturated conditions. If    is a constant, 

Equation 2.11 predicts a linear increase of shear strength with suction. Subsequently, 

many researchers (e.g. Escario and Saez, 1986 and Gan et al., 1988) provided 

experimental evidence that shear strength increases in a nonlinear fashion with suction. 

Fredlund et al. (1987) suggested that    is equal to    when soil remains saturated (at 

low suction below the air entry values) and    decreases with increasing suction as soil 

becomes unsaturated.   

Based on the single effective stress approach proposed by Bishop (1959), Bishop and 

Donald (1961) substituted the Bishop’s stress (see Equation 2.7) into the Mohr-Coulomb 

equation to get the following equation for shear strength of an unsaturated soil:    

     [                ]                                                                                                         

Khalili and Khabbaz (1998) and other authors employed a two stress state variable 

approach, with Bishop’s stress as the first stress variable, but agreed that shear strength 

could be related solely to this first stress variable by Equation 2.12. Khalili and Khabbaz 

(1998) proposed that   could be calculated from an empirical expression that relates the 

current soil suction to the air entry value of the soil. Khalili et al. (2004) examined the 

validity of Equation 2.12 experimentally and found good agreement between measured 

and predicted shear strength values.      

Similarly, Alonso et al. (2010) used a two stress state variable approach for overall 

behaviour, but with the effective stress given by Equation 2.10 as the first stress state 

variable, and they suggested that shear strength could be related exclusively to this first 

stress state variable by: 
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     [         
         ]                                                                                                       

Alonso et al. (2010) used the information of the water retention curves of different soils 

to illustrate the capability of Equation 2.13 in predicting reasonably well the shear 

strength. They showed that the effective degree of saturation    
  could be related to the 

overall degree of saturation through two material constants.  

Vanapalli et al. (1996) proposed an empirical/analytical model to predict shear strength 

for unsaturated soils by making use of the water retention curve in addition to shear 

strength parameters for saturated conditions. However, other authors (e.g. Raveendirarj, 

2009) have questioned the physical justification for relating shear strength to the water 

retention behaviour arguing that the physical reasons for an increase of shear strength 

with increasing suction are not entirely the same as those for a decrease of degree of 

saturation with increasing suction. 

2.3.3 Water retention behaviour  

The variation of the degree of saturation or water content (volumetric or gravimetric) 

with suction (matric or total suction) is referred to as a water retention curve or soil-

water characteristic curve. This relationship was used first in Soil Science by Buckingham 

(1907). The main purposes of investigating water retention behaviour from the Soil 

Science point of view are to predict the water storage capacity of the soil, unsaturated 

flow and the stability of soil aggregates at different suction levels. From a geotechnical 

engineering point of view, water retention behaviour is important due to its role in 

coupled hydro-mechanical boundary value problems. It will also influence mechanical 

behaviour at the level of an individual point if degree of saturation (rather than simply 

matric suction) has an influence on mechanical behaviour (e.g. due to the use of a stress 

state variable such as the Bishop’s stress tensor of Equation 2.8).      

The central features of water retention behaviour can be summarised as below with help 

of Figure 2.6. 

 On drying from a saturated condition, at a given constant void ratio, degree of 

saturation stays almost unchanged until a specific value of suction is reached, 

referred to as the air entry value;  

 On drying from a saturated condition, at a given constant void ratio a unique path 

is followed, referred to as the main drying curve; 

 On wetting from a dry condition, at a given constant void ratio, a new unique 

path is followed referred to as the main wetting path;  
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 Reversing the direction of suction change shows hysteretic behaviour. Reversing 

suction from any position on the main drying or main wetting curve results in 

following new transitory non-unique paths referred to as scanning curves. 

Scanning curves are fully enclosed by the main drying and main wetting curves. 

 

 

Figure 2.6 Typical water retention behaviour for a fine-grained soil (after Raveendiraraj, 
2009) 

The water retention behaviour is also influenced by changes of void ratio as a result of 

changing the dimensions of voids and of connecting passageways. For example, a 

decrease of void ratio results in shifting the main wetting curve and main drying curve to 

higher suction levels to reflect the increasing difficulty in flooding or emptying the voids. 

The effect of void ratio on the water retention behaviour has been studied by many 

authors (e.g. Gallipoli et al., 2003b).      

Basic expressions for water retention curves  

Numerous constitutive expressions to characterise the water retention response have 

been proposed to date. Most of these expressions approximate the experimental 

measurements by a power-law variation of degree of saturation or water content with 

suction. Examples of widely used empirical expressions that describe either the main 

drying curve or the main wetting curve are shown in this section. 

Brooks and Corey (1964) proposed that: 
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   (
 

 
)
 

                                                                                                                                                  

where    is the air entry value of the soil and   is a parameter related to the pore-size 

distribution. Equation 2.14 has been validated against experimental data by many 

authors (e.g. Campbell, 1974). The form of Equation 2.14 is very simple in terms of the 

required number of fitting parameters, but it does involve a discontinuity of gradient at 

   , which may not be a good match to experimental behaviour. 

Van Genuchten (1980) proposed that: 

   [        ]                                                                                                                                                

where  ,   and   are parameters related to the air entry value of the soil, slope of 

retention curve and asymmetric shape of the curve respectively. Equation 2.15 appears 

more flexible than Equation 2.14 as it includes one further fitting parameter. 

Furthermore, Equation 2.15 is a continuous function with no discontinuity of gradient as 

in Equation 2.14.  

Various other authors proposed different expressions for the main drying curve or the 

main wetting curve. These expressions could be viewed as modified versions of the Van 

Genuchten (1980) expression. For example, Fredlund and Xing (1994) suggested the 

following expression based on pore size distribution: 

   [            ]                                                                                                                                      

where  ,   and   are parameters related to the air entry value of the soil, slope of 

retention curve and asymmetric shape of the curve respectively (  is the base of natural 

logarithms). Fredlund and Xing (1994) showed that Equation 2.16 provides a good fit for a 

wide range of soils over suction values ranging from   to     MPa. Features of each 

individual expression shown above are discussed in detail by Leong and Rahardjo (1997). 

Expressions accounting for influence of changes of void ratio 

Due to the dependency of degree of saturation on the void ratio (in addition to suction), 

expressions such as Equations 2.14, 2.15 and 2.16 are not able to predict accurately the 

water retention behaviour for cases where void ratio is varying.  Romero and Vaunat 

(2000) suggested that the water retention curve at constant void ratio could be fitted by 



CHAPTER 2  Behaviour and modelling of unsaturated soils and the influence of anisotropy 
 
 

18 
 

a modified form of Van Genuchten (1980) expression, but that the values of parameters 

 ,   and   would be different for different values of void ratio. 

Gallipoli et al. (2003a) showed that, for a main wetting curve (or main drying curve), 

based on analysis of experimental data of triaxial tests on compacted kaolin, the fitting 

parameters   and   in the Van Genuchten (1980) expression of Equation 2.15 could be 

taken as constants, whereas the parameter   could be related to void ratio   by a power 

law relationship to give:  

   [          ]                                                                                                                                        

where   ,   ,   and   are soil constants.  

Water retention models accounting for influence of hydraulic hysteresis 

Some authors such as Vaunat et al. (2000) proposed water retention models accounting 

for the effects of changes of void ratio and hydraulic hysteresis on retention behaviour. 

In order to capture the influence of void ratio on the retention behaviour, these models 

must be integrated with an elasto-plastic mechanical model such    .     

Wheeler et al. (2003a) proposed a coupled mechanical and water retention constitutive 

model. The central feature of the water retention aspects of this model is its capability 

of reproducing the hydraulic hysteresis and the influence of void ratio on degree of 

saturation. Variation of degree of saturation is related to variation of the modified 

suction    (defined in Equation 2.9) and to the occurrence of any plastic volumetric 

strain. In the absence of plastic volumetric strains, the model assumes that any 

movement along the main drying or main wetting curves produces an elasto-plastic 

change in the degree of saturation, with the main drying and main wetting paths 

represented by two parallel lines with a unique slope    in the       
  plane (see Figure 

2.7). Scanning curves are represented by straight lines with a unique gradient    and 

produce only elastic change in the degree of saturation. The model also assumes that 

plastic volumetric strains cause a lateral shift of the main drying and main wetting curves 

in the       
  plane (hence producing dependency of water retention on changes of void 

ratio).  

2.4 YIELDING OF SOILS 

2.4.1 Yielding of saturated soils 

Generally, yield stresses are any possible stress combinations that define the limit of the 

elastic range and beyond which plastic deformation will occur (Yu 2006). Yielding in 
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saturated soils refers to the occurrence of plastic deformation of the soil fabric under the 

application of a change of effective stresses. Yielding in soils involves slippage at inter-

particle contacts, resulting in a re-organisation of the packing of soil particles, with the 

possibility of this resulting in a denser or looser packing. Plastic volumetric strains 

therefore occur in soils (unlike metals), and yielding is often indicated by a significant 

change in the rate of volumetric straining. Yield stress is also termed “preconsolidation 

pressure” or “past maximum pressure” in the geotechnical field (Lamb and Whitman 

1969). Although the latter terms reflect the influences of previous loading history on 

stress-strain behaviour of soil, they are less recognised in classical plasticity than yield 

stress. 

 

Figure 2.7 Water retention behaviour model (Wheeler et al., 2003a) 

Smith et al. (1992) conducted a series of triaxial probing tests on saturated samples of 

natural Bothkennar clay in order to study the yield behaviour of this clay. The yield 

stresses were identified from plots in the mean effective stress-volumetric strain plane 

and in deviator stress-shear strain plane. Smith et al. (1992) considered three boundaries 

in stress space, based on data from their experimental stress-strain curves, (see Figure 

2.8); The first boundary (curve   ) encloses the linear elastic zone, the second boundary 

(curve   ) encloses the nonlinear elastic zone and the third boundary (curve   ) defines 

onset of substantial amounts of plastic deformation. As explained in Smith et al. (1992), 

the size of    is very small so that linear elastic behaviour occurs only for small stress 

changes (and exceptionally small strains). Once the stress state is between    and    the 

tangent stiffness reduces rapidly but with fully recoverable strains and hence no slippage 

at inter-particle contacts is expected to occur. When the stress state is between    and 
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   very small irrecoverable stains occur. Once the stress state reaches   , soil particles 

start to move substantially relative to each other and this produces large irrecoverable 

strains. On the basis of the above boundaries, it is clear that yielding is not the single 

clear-cut phenomenon assumed in classical elasto-plastic constitutive models, where it is 

generally assumed that the yield curve marks a sudden transition from linear (or almost 

linear) elastic behaviour to the occurrence of substantial plastic strains. 

 

 

Figure 2.8 Yielding of Bothkennar Clay (yield points were deduced by Muir Wood, 2004, from 
stress-strain curves in Smith et al., 1992) 

2.4.2 Yielding of unsaturated soils 

Yielding in an unsaturated soil can be produced by a change of stress state variables. If 

the net stress tensor and the matric suction are considered to be the stress state 

variables, then yield behaviour under isotropic stress states can be well explained by 

using the conceptual    curve proposed by Alonso et al. (1987). Consider two identical 

unsaturated samples (i.e. Sample 1 and Sample 2) both having the same initial stress 

state given by point   (inside the elastic domain, see Figure 2.9a). Subsequently, Sample 

  is compressed isotropically at a constant suction to point   and Sample   is wetted to 

new lower suction value, given by Point  , then compressed isotropically to Point  . The 

compression curves of the two samples would be similar to those shown in Figure 2.9b. 

Because wetting of Sample   is conducted inside the elastic domain, swelling would be 

expected during wetting as shown by     in Figure 2.9b. The elastic domain is 

expected to be larger for Sample   than that for Sample   due to the stabilising effect of 

meniscus water bridges at the inter-particle contacts as explained earlier. Samples   and 

  yield at Points   and   respectively on the initial location of the    curve (i.e.    ) 
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which is produced by the previous loading history. Subsequent loading of Samples   and   

to points   and   respectively causes plastic compression in the samples and 

consequently shifts the    curve to a new position given by    . As mentioned previously, 

the slope of virgin compression line,     , is suction dependent and therefore different 

values for      for Samples   and   are expected. To illustrate that yielding can occur 

during wetting, one can imagine that the isotropic stress path of Sample 1 is terminated 

at Point   and a wetting stage is commenced along    , see Figure 2.9a. Wetting along 

    produces substantial plastic “collapse compression” as shown by     in Figure 

2.9b. A crucial advance achieved by Alonso et al. (1987) and in the     model by Alonso 

et al. (1990) was therefore that the occurrence of plastic strains during both loading and 

wetting were recognised as essentially the same phenomenon, with both represented by 

yielding on a single yield surface.  

 

Figure 2.9 Yielding of an unsaturated soil under isotropic stress states: (a) stress paths and    
yield curve, (b) compression curves (after Alonso et al., 1990)   

Alonso et al. (1990), showed experimental evidence that yielding and the occurrence of 

plastic volumetric strain could also occur during drying stages (increase of suction). 

Alonso et al. (1990) represented this within the     by the inclusion of a second yield 

curve known as the Suction Increase (  ) yield curve, see Section 2.8.1). This suggests 

that yielding on drying should occur at the maximum value of suction previously applied. 

However, subsequent experimental evidence (as discussed in Wheeler et al., 2003a) 

showed that yielding on drying can occur at a suction significantly lower than the 

maximum value of suction previously applied. Wheeler et al. (2003a) captured this aspect 

of behaviour within their coupled mechanical-water retention model, where the 

occurrence of plastic strains during loading, wetting and drying are all recognised as a 
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single phenomenon, corresponding to yielding on a single yield surface (as will be 

discussed in Section 2.9). 

2.4.3 Empirical and graphical methods for yield identification  

Due to the fact that yield stresses are an important aspect of the stress-strain response 

of soils, numerous methods have been proposed since the        to determine values of 

yield stress from experimental test results. Because soil mechanics was initially 

established based mainly on saturated conditions, the majority of studies concerning 

yield stress identification assumed that the stress state could be expressed in terms of 

effective stresses. 

Because stress-strain curves typically show non-linear behaviour and a gradual onset of 

plastic strains (see Section 2.4.1), empirical or semi-empirical methods are usually used 

to determine yield stresses (Graham et al., 1988). Graphical techniques are widely used 

for this purpose, although these techniques involve significant amount of judgement and 

some may involve scale-dependency (Becker et al., 1987 and Grozic et al., 2003).  

Yielding for many typical stress paths (isotropic loading, oedometeric loading and triaxial 

shearing) will generally involve the onset of significant plastic volumetric strains (i.e. 

plastic changes of specific volume  ), whereas for some of these stress paths plastic 

shear strains may not occur or may not be measured. In addition, both pre-yield and 

post-yield behaviour will often appear more linear when stress is plotted on a logarithmic 

scale. As a consequence, yield stress identification for saturated soils is often performed 

using a        plot (or a       
  plot for oedometric loading). 

One of the most common methods of determining the yield stress from an experimental  

       plot (or a       
  plot for oedometric loading) is to idealise pre-yield behaviour by 

a straight line and post-yield behaviour by a second straight line (a bi-linear 

approximation) and then to determine the yield stress from the intersection of these two 

straight lines. This can be difficult, and prone to considerable subjectivity, if the onset of 

plastic straining is rather gradual and either the pre-yield behaviour or the post-yield 

behaviour is poorly matched by a linear approximation. 

An alternative to the simple intersection point of a bi-linear approximation is the 

empirical technique that was proposed by Casagrande (1936) to estimate yield stress 

from oedometer tests. The first step of this technique requires visual detection of the 

point of maximum curvature on the compression curve in the       
  plane. 

Unfortunately, this technique involves a substantial amount of subjectivity and it is also 
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dependent on the scale selected for plotting of the two axes. In addition, in many cases, 

the Casagrande technique leads to overestimation of the yield stress compared to other 

methods. Pacheco Silva (1970) proposed an alternative empirical technique to determine 

yield stress from the        plane which does not require detection of the point of 

maximum curvature in the compression curve. However, the approach was found to 

overestimate yield stress as in the previous method by Casagrande (1936).  

Butterfield (1979) suggested plotting the results of oedometer tests in the          plane 

and determining the yield stress from the intersection of a bi-linear approximation. 

Further empirical methods for determining yield stress from oedometer tests can be 

found in works such as those by Burland (1990) and Boone (2010).  

The ability to detect yield stresses for a wide variety of different stress paths is an issue 

that arises when analysing experimental results of probing tests (Graham et al., 1982). 

Graham et al. (1982) presented bi-linear interpretation of experimental data from 

triaxial tests on various clays in      and      planes where    is the axial strain. They 

concluded that using intersection points of bi-linear approximations using linear scales 

(as an alternative to semi-logarithmic plotting) could reduce subjectivity, however, there 

are cases in which yielding is not apparent and the procedure may therefore not be 

universally applicable.   

Graham et al. (1983) showed examples of estimating yield stresses of Winnipeg Clay from 

plots of     
 ,      and     where   is the work input to the sample per unit volume 

and   is the length of the stress vector: 

  ∑   
        

                                                                                                                                        

      
      

   
 

 ⁄                                                                                                                                          

where    and    are the axial and radial strains respectively. Examples of their results are 

shown in Figure 2.10.  

Inspection of Figure 2.10 suggests that yield stresses are well captured with the bi-linear 

method in the     
 and      plots however they are less well captured in the     plot as 

the plot shows significant curvature (see Sample T202 in Figure 2.10c). On the other 

hand, the fact that strain energy is a scalar quantity and that the length of the stress 

vector is independent of stress path direction suggests that the     plot could be more 

universally applicable than other methods. This could be of importance when 
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interpreting results of probing tests following a wide variety of stress paths. Further work 

on using strain energy principles for determining yield stress can be found in Tavenas et 

al. (1979).  

 

                                                                                                      (kPa) 

Figure 2.10 Yield stress determination by using bi-linear method in     
 ,      and     

(Graham et al.,1983) 

Koskinen et al. (2003) demonstrated that determining yield stress from the intersection 

point of a bi-linear approximation in the        plane could be highly inaccurate when 

substantial change to fabric anisotropy is involved during loading. Instead, they suggested 

plotting experimental data on a linear scale in     
 ,     

 ,      and      planes. The 

yield stress could then be determined by the intersection of two straight lines best-fitted 

to the shallowest part of the pre-yield section of the curve and the steepest part of the 

post-yield section of the curve. It was shown, however, that this four-plot construction is 

not suitable for any stress path with    , where        and   is the slope of critical 

state line in the      plane, because the slope of the compression curve in the     
  

plane progressively increases until reaching the critical state. Furthermore, for isotropic 

stress paths (   ), only two plots exist and, therefore, the four-plot construction 

cannot be used systematically for a full set of probing experimental tests.  

Sultan et al. (2010) determined values of yield stress of saturated Boom clay samples, 

sheared in a conventional triaxial compression test (at constant radial effective stress), 

by using the bi-linear method in the       
  plane. They observed that the value of    at 

yielding determined by this method matched reasonably well the corresponding value 

determined by identifying the yield stress in the       plane.  
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Cui and Delage (1996) conducted suction-controlled triaxial tests on an unsaturated silty 

soil, including isotropic loading, conventional shearing after isotropic loading and probing 

at different values of constant stress ratio,   (where      ̅ for unsaturated soils). They 

found that yield stresses could be adequately determined by using the bi-linear method 

in the      ̅ plane for both isotropic stress paths and conventional shearing stress paths. 

However, for probing tests at constant  , the yield point was not clear in the      ̅ plane 

compression curves and another yield criterion was suggested by using a plot of total 

strain increment ratio         against mean net stress. However, their selection of yield 

stress from this plot appeared rather supprising, because they selected the yield stress at 

the level where the large oscillation of the strain increment ratio ceased rather than 

taking the yield stress at the level where the strain increment ratio showed a significant 

change of value, which typically marks the onset of large plastic strains (see Figure 2.11). 

In addition, further subjectivity is required to determine the yield stress with this 

method as the oscillation occurred gradually.        

 
  

  
  

 

 

              Mean net stress  ̅(kPa) 

Figure 2.11 Yield stress determination for probing test at constant   and suction,        kPa 
(Cui and Delage, 1996) 

2.4.4 Influence of anisotropy on yielding 

Anisotropy of stress-strain behaviour is due to anisotropy of the soil fabric, which can 

change during plastic straining as particles move relative to each other. Hence anisotropy 

is not fixed but can evolve during plastic straining. The influence of anisotropy can be 

apparent in both elastic behaviour and plastic behaviour, but it may be different aspects 

of the fabric that control the anisotropy of elastic behaviour and the anisotropy of plastic 

behaviour.  

According to Graham and Houlsby (1983), a total of    independent elastic soil constants 

are required for fully general anisotropic elastic behaviour but only    independent 

elastic constants are required for cross-anisotropic (transversely isotropic) behaviour. 

Hence fully general elastic anisotropy is very complicated. Even if a soil starts out as 
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transversely isotropic, with the same properties in all horizontal directions, 

unfortunately, evolution of anisotropy during plastic straining will often mean that, for a 

boundary value problem, the soil develops fully general anisotropy.  

Evidence of anisotropy of plastic behaviour is clear from the inclined form of the yield 

curve as observed in the      plane for saturated soils (e.g. Graham et al., 1983) and in 

the    ̅ plane or      plane for unsaturated soils as observed by Cui and Delage (1996) 

and Della Vecchia et al. (2012) respectively. Evidence of anisotropy also includes 

anisotropic straining under isotropic loading or wetting paths (e.g. Zakaria et al., 1995). 

Also, anisotropy seems to influence locations of    s (see Sivakumar et al., 2010a and 

2010b).    

2.5 EVOLUTION OF SOIL FABRIC DURING HYDRO-MECHANICAL LOADING 

Anisotropiy of mechanical behaviour is caused by anisotropy of the soil fabric. It is 

therefore appropriate to review experimental evidence on the fabrics of unsaturated 

soils and the evolution of soil fabric during plastic straining, caused either by loading 

(change of net stresses) or by wetting or drying (change of suction). According to Burland 

(1990), the “structure” of a natural soil consists of “fabric” (which refers to the 

arrangement of particles and inter-particle contacts) and any ‘bonding’ between 

particles. In this section, attention is given to the initial soil fabric (caused either by 

compaction or by natural processes) and the influence of subsequent loading or 

wetting/drying on the evolution of soil fabric. A substantial number of studies has been 

conducted dealing with the soil fabric or microstructure in relation to the formation 

process (i.e. naturally-induced fabric or compaction-induced fabric). Scanning electron 

microscopy (   ) and mercury intrusion porosimetry (   ) are the most commonly used 

techniques in geotechnical studies for laboratory examination of soil fabric and 

microstructure (Delage and Graham, 1996).  

2.5.1 Macropores and micropores 

McGown & Collins (1975) and Collins (1984) (as cited by Alonso et al. 1987), classified the 

microfabric of expansive and collapsible soils into three types (see Figure 2.12): 

elementary particle arrangements, particle assemblages (aggregates) and pore spaces 

(macro or inter-aggregate pores for large pores and micro or intra-aggregate pores for 

very small pores).  

Delage and Lefebvre (1984) used     and     in their investigation of the 

microstructure of Champlain clay in its intact and remoulded states. They investigated 

also the influence of one-dimensional consolidation on fabric evolution. The results of 
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    studies and the plots of pore size distribution (   ) from     showed clearly that 

Champlain clay soil had an aggregated structure with both inter-aggregate and intra-

aggregate pores (similar to that shown in Figure 2.12b). Although the macroporosity of 

the intact and remoulded states was different, remoulding did not destroy the 

aggregates. Delage and Lefebvre (1984) investigated the structure of several samples 

taken after loading/unloading stages in the oedometer to effective stresses 

corresponding to the elastic (pre-yield) domain and the plastic (post-yield) domain. The 

researchers concluded that while the soil is loaded elastically, no significant change to 

the structure was observed. They observed that at the beginning of virgin loading, plastic 

compression is characterised by the compression of macropores whereas it characterised 

by the compression of micropores at very high stresses. This behaviour was also reported 

by authors such as Griffiths and Joshi (1989). Delage and Lefebvre (1984) observed also 

that virgin loading caused not only a compression of pores but also distortion of the 

shape of the pores. They attributed this behaviour to building of fabric anisotropy under 

one dimensional compression. Interestingly, the     images showed that with 

progression of one-dimensional virgin loading, the clay particles become progressively 

orientated perpendicular to the loading direction, which suggests a continuous change in 

fabric anisotropy. 

    

  

             (a)             (b) 

 

 

             (c)             (d) 
 

Figure 2.12: Types of microfabric. (a) Elementary particle arrangements of mainly clay 
platelets and a few isolated silt grains with intra pores, (b) assemblages of elementary particle 
arrangements with inter and intra pores, (c) sand or silt particles with large inter pores, (d) 
Elementary particle arrangement in a parallel configuration (Alonso et al. 1987) 
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Delage et al. (1996) conducted     and     studies on three statically compacted 

samples of Jossigny silt at three points on the Proctor compaction curve corresponding to 

dry of optimum, optimum water content and wet of optimum. They observed the 

following (see Figure 2.13):  

 On the dry side: aggregated fabric was observed which was made up of silt grains 

coated by clay particles and the aggregates were separated by large macropores. 

The fabric was therefore very similar to the plot shown in Figure 2.12b. 

  At optimum water content: the fabric had fewer aggregates than on the dry side 

and silt particles were coated with clay particles. The macro and microporosities 

were both very small as a result of breaking of the aggregates and this explained 

the minimum void ratio at the optimum water content.  

 On the wet side: clay particles formed a matrix that surrounded silt particles and 

filled the macropores. The structure was therefore very similar to the plot in 

Figure 2.12a. 

 

 

Figure 2.13     curves of three samples of Jossigny silt statically compacted on dry side, 
optimum and wet side of the proctor curve (Delage et al., 1996) 

The existence of macro and micropores for the compaction on the dry side of optimum 

suggests that the     is bimodal as can be seen in Figure 2.13 where the dry side curve 

shows two steeper sections.  

Hong et al. (2006) investigated changes in the macrostructure and microstructure of 

natural Diatomite with consolidation pressure by conducting many triaxial tests on 

saturated samples. The study included performing     on samples loaded to isotropic 

stress states corresponding to the pre-yield domain and the post-yield domain (where the 
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yield stress corresponds to Y3, see Figure 2.8). The results of the study showed that the 

microstructure stayed essentially unchanged inside the Y3 curve for the elastic domain 

whereas significant change to microstructure was observed during virgin loading beyond 

the Y3 curve. These changes included the compression of micropores as well as 

macropores and the breakage of diatomite particles. This behaviour agrees well with the 

proposal of Smith et al. (1992) in the sense that significant slippage and particles 

movement takes place once the stress state reaches the Y3 yield curve.  

Cuisinier and Laloui (2004) studied the influence of external loads and suction change on 

soil fabric by conducting several suction-controlled oedometer tests on a compacted 

sandy silt soil. All tests were started from a saturated condition. The results of the study 

indicated that during drying significant reduction of the macroporosity component of the 

total porosity occurred mainly at low suction values during drying under small net 

stresses. Cuisinier and Laloui (2004) showed that this behaviour is related to reaching the 

shrinkage limit. They showed that while macropores were reducing in size, micropores, in 

contrast, showed an increase in size during drying at low suction values in such a way 

that total porosity could stay constant. The results of loading tests at constant suction 

confirmed the previously mentioned findings by other authors (e.g. Delage and Lefebvre, 

1984) that virgin loading initially causes a progressive decrease in macroporosity then 

when most of the macropores have disappeared, micropores start to compress.    

Monroy et al. (2010) investigated the effect of wetting and loading on soil microstructure 

by conducting oedometer tests in conventional and osmotic equipment on London clay 

samples, compacted dry of optimum. The study utilised     and      techniques 

(where      is environmental scanning electron microscopy). A number of samples were 

wetted from the as-compacted suction,        kPa, other samples were loaded from 

the as-compacted suction at constant water content to various stress states 

corresponding to the elastic domain inside or on the    curve. The initial pore size 

distribution was shown to be bimodal, as expected for samples compacted dry of 

optimum water content. It was also shown that wetting from the as-compacted suction 

under a nominal net stress (  kPa) only produced a change to the     from bimodal to 

unimodal once the suction was less than    kPa (see Figure 2.14). These     curves 

indicate that the macropores were compressing whereas the micropores were expanding 

during the wetting process. The results in Figure 2.14 show also that the     remains the 

same for very small micropores. Despite the contradicting influence of wetting on macro 

and micropores, measured volumetric strain indicated an increase in sample volume (i.e. 

swelling) even when the suction was less than    kPa. In addition, the researchers 

showed that for a sample loaded at constant water content to a stress state close to the 
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   curve, the     is still bimodal and only moderate decrease to the dominant 

macropores size had occurred when compared to the as-compacted sample.  

Further work on microstructural changes of fabric anisotropy can be found in Bai and 

Smart (1997) and Sivakumar et al. (2010a). 

 

Figure 2.14     and density function for reference sample mta-1 (       kPa) and samples 
wetted under nominal net stress to:     (mta-2),       kPa (mta-7),        kPa (mta-8), 
     kPa (mta-9) (Monroy et al., 2010) 

2.5.2 Evolution of fabric anisotropy 

Hattab and Fleureau (2011) investigated changes in particle orientation during various 

levels of plastic straining of one-dimensionally consolidated reconstituted saturated 

kaolin soil by using the     technique. The results indicated that one-dimensional 

consolidation resulted in a preferential orientation of the particles perpendicular to the 

direction of one-dimensional loading and that the micropores of the initial bimodal fabric 

was highly affected by the orientation pattern of the particles inside the aggregates. 

Hattab and Fleureau (2011) attempted to explore the erasure of initial fabric anisotropy 

by isotropically loading a sample to more than    times the initial consolidation pressure.  

After this isotropic loading to high stress, no preferential orientation of the particles was 

observed, indicating the erasure of initial fabric anisotropy.     images taken for 

samples during various subsequent conventional shear stages on lightly overconsolidated 

samples showed gradual build-up of fabric anisotropy. Very close to the critical state, the 

fabric showed clear preferential orientation of particles parallel to the direction of the 

shear plane, with face-to-face particle arrangement.   
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Hicher et al. (2000) studied the evolution of fabric anisotropy of saturated kaolin soil and 

bentonite soil by using     and     (transmission electron microscope) techniques. 

Test samples were prepared from slurry and then one-dimensional and isotropic 

consolidation tests were performed on these samples. Isotropically consolidated samples 

showed aggregated fabric of mostly edge-to-face particle associations with no 

preferential orientation for the kaolin particles (i.e. isotropic fabric). The one-

dimensionally consolidated samples showed anisotropic fabric, with mainly face-to-face 

particle associations, resulting in smaller pore size than those of isotropically 

consolidated samples (see Figure 2.15).   

 

 

  

                   (a) Horizontal plane                  (b) Vertical plane 

      

 

 

 

                    (c) Horizontal plane                   (d) Vertical plane 

Figure 2.15     Images of kaolin consolidated from slurry: (a)(b) isotropic consolidation to   
MPa, (c)(d) anisotropic consolidation to     MPa (Hicher et al., 2000)  

2.6 SHAPES AND EXPRESSIONS FOR THE YIELD SURFACE AND PLASTIC 

POTENTIAL  

In classical plasticity, the yield surface,  , is a locus of points which separates the elastic 

region from the elasto-plastic region in stress space, and therefore no plastic 

deformation is assumed to occur while the stress state is within that locus (Yu 2006). The 
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plastic potential,  , is an analytical expression, formulated in terms of stresses, and the 

direction of the normal to this plastic potential gives the relative magnitudes of plastic 

strain increments once the stress state is on the yield surface (Lagioia et al., 1996). If the 

yield surface and potential surface coincide (both have the same analytical expression), 

the flow vector will be perpendicular to the yield surface and the flow rule is said be 

‘associated’, otherwise the flow rule is said to be “non-associated”. This section 

discusses some of the various forms of yield surface and plastic potential that have to be 

used by different authors and compared against experimental data by researchers over 

the years. 

A number of considerations need to be taken into account when developing expressions 

for the yield surface and plastic potential surface including, for example; 

 

 Each of the two surfaces should preferably be described by using a single 

function, in order to avoid singularities and numerical difficulties with multi-

function surfaces (Taiebat and Dafalias, 2010). 

  Even if a single expression is used, the plastic potential has to be smooth, so that 

derivatives are definite at any point with respect to stress (Jiang and Ling, 2010). 

 The expression for the yield surface should be flexible so that a wide range of 

soils could be fitted, but at the same time the number of fitting parameters 

should be kept as small as possible. Also, the elastic domain has to be physically 

acceptable (Jiang and Ling, 2010).    

 The formulation should not contravene the principles of thermodynamics; this 

implies applying some restrictions on the constitutive relations (Collins and 

Houlsby, 1997). Despite the importance of thermodynamics, most of the well-

known classical elasto-plastic models were formulated without referring to 

thermodynamic constraints. 

 

2.6.1 ISOTROPIC YIELD CURVE EXPRESSIONS FOR SATURATED SOILS 

One of the simplest shapes for the yield curve employed in saturated elasto-plastic 

models for triaxial (    ) stress space is the ellipse (an ellipsoidal surface in principal 

stress space), as in the Modified Cam Clay model (   ) of Roscoe and Burland (1968). 

The yield curve, for the simplified triaxial stress space, in this model is given by:  
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where   is the aspect ratio of the ellipse (in     it also represents the critical state 

stress ratio in the      plane) and   
  is intersection of the yield curve with the    axis 

(i.e. the isotropic yield stress). As can be noticed from Equation 2.20, the ellipse passes 

through the origin (consistent with the saturation condition) and only one shape 

parameter is involved (i.e.  ). The current size of the yield surface is controlled by the 

value of   
 . In addition, as the     model employs an associated flow rule, the apex of 

the ellipse (where      ) automatically satisfies the critical state condition of 

   
 
    

 
  , because at this point         .   

Equation 2.20 formed the platform for subsequent yield curve expressions that were 

developed to allow for additional flexibility in fitting various soil states and conditions 

such as fabric anisotropy (e.g. Dafalias, 1986; Dafalias, 1987; Korhonen & Lojander, 1987 

and Wheeler et al., 2003b) and unsaturation (e.g. Alonso et al., 1990 and Raveendiraraj, 

2009).  

Lagioia et al. (1996) proposed a flexible expression for the yield surface and plastic 

potential for isotropic saturated soils, that allows experimentally observed yield surfaces 

to be reproduced more accurately than by    :  
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and       . Equation 2.21 was derived by assuming a particular nonlinear variation of 

plastic strain increment rate,    
 
    

 
, with stress ratio,  , and then assuming that 

normality was satisfied at     and    . Three geometrical parameters (i.e     and    

control the shape of yield surface while the size is controlled by   
 . All of these 

parameters can be determined by fitting the yield curve against experimental yield 

points in the      plane. Variation of   (which controls the roundness near to the tip) or   

(which controls the roundness near to the origin) could produce a wide range of shapes 

ranging from ‘bullet’ shape to ‘tear’ shape, as demonstrated in Figure 2.16. 
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2.6.2 Anisotropic yield curve expressions for saturated soils 

Over the last few decays, several anisotropic elasto-plastic constitutive models for 

saturated soils have been developed, in which the influence of anisotropy is incorporated 

in forms such as a rotated ellipse yield curve in the      plane (e.g. Mouratidis and 

Magnan, 1983) or a distorted ellipse yield curve in the      plane (Dafalias, 1986; 

Banerjee and Yousif, 1986; Wheeler et al., 2003b). A disadvantage of a rotated ellipse 

yield curve in the      plane is that the cross-section of the yield surface in the 

deviatoric plane in principal stress space becomes elliptical rather than circular. In 

contrast, with a distorted ellipse shape in the      plane the cross-section of the yield 

surface in the deviatoric plane remains a circle.    

 

Figure 2.16 Yield surface of Lagioia et al. (1996): (a) influence of   (b) influence of    

Banerjee and Yousif (1986) proposed a model for anisotropic saturated soils with a yield 

curve in a form of a distorted ellipse which can be rearranged to: 

                  
                                                                                                                 

where   and   
  define the current inclination and current size of yield curve. Note that 

this is very similar to the     yield curve expression of Equation 2.20, the single change 

being the replacement of   by      . Equation 2.23 suggests that for the case where 
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   , the tangent to the yield curve at the intersection with the critical state line 

      is not horizontal and a non-associated flow rule is therefore required to satisfy 

the critical state condition on this line.     

Dafalias (1986) introduced two modifications to the     yield curve expression of 

Equation 2.20 to incorporate the influence of anisotropy; replacing   in the first term by 

      and replacing    in the second term by          which led to the following 

expression: 

                       
                                                                                                   

Equation 2.24 describes a distorted ellipse in the      plane, where the value of   

controls the degree of distortion of the ellipse (see Figure 2.17) and if   is set to zero, 

Equation 2.20 is retrieved. A particular feature of Equation 2.24 is that, irrespective of 

the value of  , the tangent to the yield curve is always horizontal at the intersection 

with the critical state line (     ), and hence an associated flow rule can be 

employed.  Inspection of Figure 2.17 shows that if    is greater than zero when a critical 

state is achieved at Point  , then the value of the ratio   
   

 ⁄  will be less than   whereas 

in     this ratio has a value of  . This means that the anisotropic models generally 

predict a smaller spacing, between the normal compression line and the critical state 

line in the        plane than is predicted by    .  

 

Figure 2.17 Anisotropic yield curve of Dafalias (1986)  
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In order to introduce flexibility of the aspect ratio of the distorted ellipse, the quantity 

        in Equation 2.24 could be substituted by         as in Whittle and Kavvadas 

(1994) or by    | |   as suggested by Taiebat and Dafalias (2010).  The new arbitrary 

variable,   can be defined as a function of   and  . The advantage of this suggestion is 

that the slenderness of the ellipse can be controlled in such a way that the elastic 

domain becomes more realistic. 

2.6.3 Yield curve expressions for unsaturated soils 

In the field of unsaturated soils, researchers attempted to extend the     yield curve 

expression to include the effects of unsaturation on the yield behaviour. Alonso et al. 

(1990) in their     model, formulated the yield surface expression in terms of mean net 

stress  ̅, deviator stress   and suction  : 

         ̅       ̅      ̅                                                                                                              

where   is an additional soil constant. For a given value of  , Equation 2.25 gives an 

elliptical yield curve of aspect ratio   which intersects the positive and negative  ̅ axes 

at  ̅   ̅ (s) and  ̅      respectively. Equation 2.25 recovers the original form of the 

    yield curve expression for the case where    . 

Stropeit et al. (2008) and D’Onza et al. (2010) incorporated anisotropy into the     

yield surface expression of Equation 2.25 by employing a distorted ellipse, similar to that 

suggested for saturated soils in Equation 2.24. Further details regarding their work will 

be given in Section 2.8.3.  

Cui and Delage (1996) proposed an anisotropic yield surface for unsaturated soil in the 

   ̅   space, where each constant suction cross section of the yield surface takes the 

form of a rotated ellipse: 

      ̅                     ̅                                                                     

where   and   are the major and minor axes of the ellipse respectively and   and   give 

the position and inclination of the yield curve respectively. Figure 2.18 shows 

experimental yield points plotted by Cui and Delage (1996) against their proposed yield 

curve expression.  

Romero and Jommi (2008) and Della Vecchia et al. (2012) presented an anisotropic yield 

curve for unsaturated soil presented in terms of mean Bishop’s stress    (see Equation 
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2.8) and deviator stress   (rather than mean net stress  ̅ and deviator stress  ). The yield 

curve is in the form of a distorted ellipse (equivalent to Equation 2.24): 

                          
                                                                                             

where    is a soil constant and the parameters   
  and    describe the current size and 

inclination of the yield curve in the      plane.  

 

 ̅   kPa 
 

Figure 2.18 Experimental yield points and cross-sections of the yield surface (Cui and Delage, 
1996) 

2.7 ANISOTROPIC ELASTO-PLASTIC CONSTITUTIVE MODELS FOR 

SATURATED SOILS 

2.7.1 Overview  

The earliest elasto-plastic constitutive models for saturated soils were the isotropic 

models Original Cam Clay (Roscoe et al., 1958) and Modified Cam Clay (Roscoe and 

Burland, 1968). These formed the basis for many subsequent proposals for elasto-plastic 

models for saturated soils, some of which incorporate the influence of soil anisotropy. 

This section gives a brief overview of these anisotropic elasto-plastic models for 

saturated soils, and the subsequent section gives a more detailed description of one 

particular anisotropic model (the         model of Wheeler et al., 2003b), because 

features from this model are incorporated within the anisotropic model for unsaturated 

soils developed in Chapter 7.  

Various anisotropic elasto-plastic models for saturated soil can be found in the literature, 

including, for example, Mouratidis and Magnan (1983), Dafalias (1986), Banerjee and 
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Yousif (1986), Davies and Newson (1993) and Wheeler et al. (2003b). These models tend 

to assume that elastic behaviour is isotropic (for simplicity) whereas plastic behaviour is 

anisotropic (because plastic strains will often dominate, and hence it is important to 

predict these strains accurately). As mentioned in Section 2.6.2, anisotropy of plastic 

behaviour is represented by a curve in the      plane that generally takes the form of 

either a rotated ellipse or a distorted ellipse. 

Early anisotropic elasto-plastic models (e.g. Mouratidis and Magnan, 1983) assumed that 

anisotropy remaines unchanged during plastic straining. However, subsequent models 

incorporated the crucial feature that anisotropy can evolve during plastic straining (e.g. 

Dafalias, 1986; Banerjee and Yousif, 1986; Davies and Newson, 1993; Whittle and 

Kavvadas, 1994 and Wheeler et al., 2003b). Some authors (e.g. Dafalias, 1986; Banerjee 

and Yousif, 1986 and Whittle and Kavvadas, 1994) assume that change of anisotropy is 

caused only by plastic volumetric strains. Wheeler (1997), Karstunen and Wheeler (2002) 

and Wheeler et al. (2003b) argued that this was unrealistic and that plastic shear strains 

should also be capable of producing a change of anisotropy. In particular, if a model 

assumes that changes of anisotropy are produced only by plastic volumetric strains, then 

it will predict that the influence of initial anisotropy will not be totally erased on 

shearing to a critical state, and the model will not predict a unique critical state line in 

the        plane. Banerjee et al. (1988) made the alternative suggestion that changes of 

anisotropy are caused only by plastic shear strains, but this too is physically 

unreasonable. Wheeler et al. (2003b) therefore proposed a more physically realistic 

relationship, where changes of anisotropy can be caused by both plastic volumetric 

strains and plastic shear strains.  

Some anisotropic elasto-plastic constitutive models for saturated soils are extremely 

complicated (e.g. Whittle and Kavvadas, 1994) as they incorporate other features of 

behaviour such as a gradual transition from elastic to elasto-plastic behaviour.        

2.7.2 The         model 

The anisotropic elasto-plastic         was proposed by Wheeler et al. (2003b) to 

account for the evolving anisotropy of soft saturated clays. The model is described here 

in some detail, because features from it are used in Chapter 7 for the development of an 

anisotropic model for unsaturated soils. The model is described here for the simplified 

case of a cross-anisotropic (transversely isotropic) soil subjected to a triaxial test stress 

state, with the plane of transverse isotropy of the soil perpendicular to the axis of the 

triaxial apparatus. In this case the soil remains transversely isotropic, the stress state can 

be fully expressed in terms of   and    and the soil anisotropy can be fully expressed in 
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terms of the value of a single scalar quantity  . A fully generalised tensorial version of 

the model (accounting for    stress states, including rotation of principal stress 

directions, and evolution of fully  generalised soil anisotropy) is presented in Wheeler et 

al. (2003b).  

Isotropic linear elasticity is assumed in         (in the interest of simplicity) with the 

same form as in the      model:   

   
  

     

    
          

  
   

  
                                                                                                                           

where    
  and    

  are the elastic volumetric strain increment and elastic shear strain 

increment respectively. 

The yield curve is assumed to be a distorted ellipse in the      plane that is identical to 

that proposed by Dafalias (1986,1987, see Equation 2.24 and Figure 2.17), which can be 

expressed as: 

                       
                                                                                                   

  is soil constant, whereas   
  and   are variables (hardening parameters, describing the 

current size and current inclination of the yield curve). Wheeler et al. (2003b) showed 

that Lode angle dependency can be incorporated into the model by replacing the critical 

state ratio, , by    (a triaxial compression value) for     and by    (a triaxial 

extension value) for    . 

Two hardening laws are incorporated in the         model. The change in size of the 

yield curve is related to increments of plastic volumetric strain    
 
 by a relationship that 

is identical to the hardening law in the     model: 

   
  

    
     

 

   
                                                                                                                                                 

where   is the slope of the normal compression line in the        plane for an isotropic 

soil. The change of   is related to increments of plastic volumetric strain    
 
 and plastic 

shear strain    
 
 by: 
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    [(        )〈   
 〉   (       )|   

 
|]                                                                                                

Equation 2.31 was proposed on the basis of the results of a series of experimental tests 

reported by Wheeler et al. (2003b). Inspection of Equation 2.31 shows that (positive) 

plastic volumetric strains attempt to change the value of   towards a current target 

value of     , whereas (positive or negative) plastic shear strains are simultaneously 

attempting to change the value of   towards a current target value of    .   is a soil 

constant which controls the rate of evolution of   towards its current target and   is a 

second soil constant which controls the relative effectiveness of plastic shear strains  and 

plastic volumetric strains in determining the overall current target value for  .  

Experimental evidence presented by a number of researchers, such as Graham et al. 

(1983), suggests that an associated flow rule is realistic when combined with an inclined 

yield surface. The         model therefore adopts an associated flow rule which 

corresponds to: 

   
 

   
  

      

     
                                                                                                                                                   

The         model predicts that  continued isotropic loading (   ) will lead to an 

isotropic soil (   ) and that this will correspond to convergence with a unique isotropic 

normal compression line in the        plane, defined by: 

                                                                                                                                                                

where   is a soil constant. The model also predicts (through Equations 2.32 and 2.31) 

that critical states will be achieved at a unique critical state degree of anisotropy     

given by:             

                                                                                                                                                                    

As a consequence, a unique critical state line is predicted in both the      plane and the 

       plane, defined by 
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The predicted spacing between the isotropic normal compression line and the critical 

state line in the        plane is smaller than for     and is given by: 

                                                                                                                                                    

The         model requires the values of seven soil constants, five of which are 

common with     (        and   (or  )) and two more that relate to the evolution of 

anisotropy (  and  ). Karstunen and Koskinen (2008) showed that the         model 

provides an excellent representation of the stress-strain behaviour of saturated 

reconstituted clays. Other authors (e.g. Wheeler et al., 2003b) showed that for saturated 

natural clays         performs significantly better than    ,  although the fit is not 

as good as for reconstituted clays, because of the additional influence of destructuration 

(destruction of inter-particle bonding) in natural clays.    

2.8 ELASTO-PLASTIC MODELS FOR UNSATURATED SOILS  

This section provides a review of elasto-plastic constitutive models for the mechanical 

behaviour of unsaturated soils. The Barcelona Basic Model (   ) of Alonso et al. (1990) 

is presented first. The     is presented in some detail, because it was the first elasto-

plastic model for unsaturated soils, it is still the most widely used and it can be 

considered as the starting point for development of subsequent constitutive models. 

Also, the     can be used to illustrate some key issues which apply to all constitutive 

models for unsaturated soils. Presentation of the     is followed by a less detailed 

review of other isotropic constitutive models for unsaturated soils and then a review of 

the small number of published unsaturated constitutive models that incorporate the 

influence of evolution of anisotropy.  

2.8.1 The Barcelona Basic Model (   ) 

The     was proposed by Alonso et al. (1990) after initial development of qualitative 

ideas of how key features of unsaturated soil behaviour could be represented within an 

elasto-plastic framework by Alonso et al. (1987). The     assumes that the net stress 

tensor and the scalar value of matric suction are the appropriate stress state variables 

for unsaturated soil (see Section 2.2) and hence for the simplified stress state of the 

triaxial test, the model is expressed in terms of mean net stress  ̅, deviator stress   and 

matric suction  .  

The     can be regarded as an extension of the     model to include unsaturated 

conditions that the former recovers the form of the latter whenever    , but only when 

   . This means that the     implicitly assumes that the soil is saturated when     
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and only when    , whereas in reality the soil may remain saturated even when a non-

zero value of suction is applied (below the air entry value of the soil) and conversely it is 

possible for a soil to remain unsaturated even at a suction of zero (if there are voids 

filled with trapped air). 

The increments of elastic volumetric strain are given by: 

   
  

 

 
(  

  ̅

 ̅
   

  

        
 )                                                                                                                   

where      is atmospheric pressure and   and    are two elastic soil constants. The term 

involving   represents elastic volume changes caused by variation of  ̅, giving elastic 

unloading/reloading lines of gradient   in the      ̅ plot, whereas the term involving    

represents elastic volume changes caused by variation of   (swelling on wetting and 

shrinkage on drying), giving shrink/swell lines of gradient    in the               plot. 

Atmospheric pressure      was (rather arbitrarily) included in Equation 2.38 in order to 

avoid infinite elastic volumetric strains as suction tends to zero.  

Elastic shear strain increments are given by:  

   
  

   

  
                                                                                                                                                              

where   is the elastic shear modulus (a soil constant).  

The variation of specific volume with change in mean net stress  ̅ during isotropic loading 

to virgin states follows normal compression lines (   s) for each value of suction, 

defined by:  

             
 ̅

  
                                                                                                                                         

where    is a reference pressure (a soil constant) and the intercept      (defined at the 

reference pressure   ) and gradient      are both functions of suction. The variation of 

     with suction is given by: 

         [                ]                                                                                                               
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where      (a soil constant) is the slope of the     for saturated conditions, and   and   

are two further soil constants. The value of   controls the limiting value of      as 

suction tends to infinity (note that when     ,            ) and the value of    

controls the rate of exponential approach to this limiting value. The variation of      

with suction is assumed as: 

               
      

    
                                                                                                                        

where      (a soil constant) is the value of      at zero suction. The form of Equation 

2.42 was assumed by Alonso et al. (1990) in order to produce a relatively simple form for 

the    yield curve expression (see below).  

The increase of isotropic yield stress with increasing suction is described by the concept 

of the    yield curve, as introduced in Section 2.4.2. Combination of Equations 2.38, 

2.40 and 2.42 led to the following expression for the shape of the    yield curve in the 

   : 

(
 ̅    

  
)  (

 ̅    

  
)

(
      
      

)

                                                                                                                               

where  ̅     and  ̅     are the isotropic yield stress at a given suction and  for the 

saturated condition respectively. The graphical representation of Equation 2.43 is shown 

in Figure 2.19b.  

To incorporate the role of deviator stress  , the    yield curve is developed to form a    

yield surface in    ̅   space. Constant suction cross-sections of the    yield surface are 

assumed to be elliptical in the    ̅ plane, as discussed in Section 2.6.3 and shown in 

Figure 2.19a: 

       ̅       ̅      ̅                                                                                                                       

where   and   are two soil constants. 

The hardening law for yielding on the    yield surface is given by: 

  ̅    

 ̅    
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Figure 2.19     yield surface: (a) constant suction cross-sections in the    ̅ plane, (b) in the 
   ̅ plane (Alonso et al., 1990) 

The     assumes a non-associated flow rule for yielding on the    yield surface given 

by: 

   
 

   
  

   

     ̅      ̅  
 

  ̅ 

    ̅ 
                                                                                                           

where: 

 ̅  
 

 ̅    
                                                                                                                                                            

and   is a constant.     would correspond to an associated flow rule, but Alonso et al. 

(1990) suggest a value for   (which can be expressed in terms of  ,     and  ) selected 

in order to give zero lateral strain during elasto-plastic loading of a saturated sample at a 

stress ratio approximating to the normally consolidated    value suggested by Jaky 

(1948). 

As a consequence of the flow rule and the hardening law (Equations 2.46 and 2.45), the 

    predicts critical state lines for different values of suction defined in the    ̅ plane 

by: 
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    ̅                                                                                                                                                          

Note that     therefore predicts a linear increase of shear strength with suction 

(equivalent to the shear strength expression of Fredlund et al. (1978) in Equation 2.11 

(but with     )), whereas experimental evidence suggests a non-linear increase of shear 

strength with suction (see Section 2.3.2). 

The     also includes a second yield surface, known as the    yield surface, to 

represent the possibility of plastic volumetric strains during drying. The    yield surface 

expression, the hardening law for the    yield surface and the flow rule for yielding on 

this surface are given by: 

                                                                                                                                                                           

   
       

 
 

     
   

 
                                                                                                                                    

   
 

   
                                                                                                                                                                     

where    is a hardening parameter, describing the current location of the    yield 

surface, and    is a soil constant. 

The     requires values of eleven soil constants, eight of which describe the isotropic 

behaviour (i.e.  ,    ,   ,      ,  ,   ,      and   ) and three more to describe shear 

behaviour (i.e.     and  ). Detailed discussion about problems and limitations on the use 

of this model is given by Wheeler et al. (2002). A systematic method for calibrating each 

parameter is given by Gallipoli et al. (2010). 

2.8.2 Other isotropic models for unsaturated soils 

A large number of isotropic elasto-plastic constitutive models have been proposed for 

unsaturated soils since the publication of the    . Some of these models are expressed 

in terms of net stresses and suction, whereas other models use alternative stress state 

variables. Reviews of constitutive modelling of unsaturated soils can be found in Wheeler 

and Karube (1996), Gens et al. (2006) and Sheng et al. (2008).   

Wheeler and Sivakumar (1995) proposed a constitutive model which takes similar form to 

the     but with some modifications like, for example, the      and      are defined 
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empirically by conducting several suction controlled tests. Chiu and Ng (2003) proposed a 

constitutive model that enhances prediction of the dilatant behaviour of unsaturated 

soils by considering the effects of void ratio, stress state and suction. Sheng et al. (2008) 

proposed a constitutive model for unsaturated soils that focuses on modelling of some 

unsaturated soil behaviour aspects such as the smooth transition in the compression 

curves that is normally observed when soil is loaded at constant suction and the change 

in yield stress with suction. These models are among other models which employ net 

stresses and suction as stress state variables for unsaturated soils. 

Also, some “double structure” elasto-plastic constitutive models employ net stress and 

suction as stress state variables for unsaturated soils. These models incorporate the 

influence of microstructure and macrostructure and the coupling between them on 

yielding behaviour of unsaturated soils. The first elasto-plastic model of this type was 

presented by Gens and Alonso (1992). Subsequently, this model was further developed by 

Alonso et al. (1994) and Alonso et al. (1999). Sánchez et al. (2005) presented a “double 

structure” unsaturated model based on the concept of “generalised plasticity” rather 

than classical elasto-plasticity. Generalised plasticity can provide a gradual transition 

from elastic to full elasto-plastic behaviour and can describe the occurrence of some 

plastic straining during unloading.  

Many classical elasto-plastic models for unsaturated soils use alternative stress state 

variables to net stress and suction (e.g. Kohgo et al., (1993a, 193b); Modaressi, and 

Abou-Bekr, 1994; Jommi and Di Prisco, 1994; Jommi, 2000; Lloret and Khalili, 2002 and 

Sheng et al., 2004). Some of these models use Bishop’s stress tensor as the first stress 

state variable. One of the advantages of some these models is that the first stress state 

variable is defined in such as a way that both elastic behaviour and shear strength can be 

related solely to changes of this stress variable, and the second stress state variable 

(typically matric suction or some function of matric suction) is required solely to define 

the yield surface (which is expressed in terms of both stress variables). In contrast, if the 

net stress tensor and matric suction are chosen as the stress state variables (as in    ), 

then elastic strains, shear strength and yielding behaviour all have to be expressed in 

term of both stress variables. 

The fact that, in some of these models expressed in terms of alternative stress state 

variables, elastic strains and shear strength can be uniquely related to the first stress 

state variable has sometimes led authors of such models to call their first stress state 

variable the “effective stress” tensor. However, it is probably best to reserve the term 



CHAPTER 2  Behaviour and modelling of unsaturated soils and the influence of anisotropy 
 
 

47 
 

“effective stress” for the case where all aspects of mechanical behaviour can be related 

to a single stress tensor.    

2.8.3 Anisotropic elasto-plastic models for unsaturated soils  

Cui and Delage (1996) were the first to propose an anisotropic elasto-plastic model for 

unsaturated soils. The model was expressed in terms of net stresses and matric suction, 

and each constant suction cross-section of the yield surface was in the form of a rotated 

ellipse in the    ̅ plane (see Equation 2.26 in Section 2.6.3). Based on experimental 

results from tests on compacted Jossigny silt, they proposed that the inclination   of the 

rotated elliptical yield curves was independent of the value of suction (see Figure 2.18 in 

Section 2.6.3). The anisotropic model employed a non-associated flow rule and 

importantly, did not allow for any evolution of anisotropy during plastic straining (  

remained constant). Cui and Delage (1996) demonstrated the performance of their model 

by comparison of model simulations against the experimental stress-strain curves from 

tests on compacted Jossigny silt. 

Stropeit et al. (2008), proposed an anisotropic elasto-plastic model for unsaturated soils, 

expressed in terms of net stresses and suction, which models evolving anisotropy through 

ideas taken from the saturated anisotropic model         (see Section 2.7.2) and 

incorporates this within the unsaturated isotropic model     (see Section 2.8.1). The 

model of Stropeit et al. (2008) was named     , and a second slightly modified version, 

known as      , was subsequently published by D’Onza et al. (2011). 

Both      and       allow for the possibility of a non-linear increase of shear 

strength with suction, with the critical state lines for different values of suction defined 

in the    ̅ plane by:  

    ̅                                                                                                                                                        

where alternative linear and non-linear functions were proposed for     . 

Both      and       employ a yield surface in the    ̅   space, each constant suction 

cross-section of the yield surface taking the form of a distorted ellipse (as in the 

saturated model        ). For      , the distorted elliptical yield curve is given by: 

       ̅   (       ( ̅  
 

   
    ))   ̅      ̅                                                      
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Equation 2.53 is illustrated in Figure 2.20. For a yield curve at a non-zero value of  , 

vertical tangent points occur at Points   and  , corresponding to  ̅               

and  ̅   ̅  respectively. Inspection of Equation 2.52 and Figure 2.20 shows that, 

whatever the value of  , Point   corresponds to the intersecton of the critical state line 

(defined by Equation 2.52) and the “ -line” passing through the origin and Points   and 

 . This has the effect that in       the critical state line always intersects the apex of 

the yield curve (where the tangent is horizontal), irrespective of the value of  . In 

contrast, the earlier version (    ) of Stropeit et al. (2008) employed a slightly 

different yield curve expression to Equation 2.53, with the effect that the critical state 

line only intersects the apex of the yield curve when   reaches the unique critical state 

value     (see Equation 2.34). In both      and      , the yield surface is developed 

into    ̅   space by assuming that  ̅     varies with suction according to the same 

function as the    yield curve expression in     (see Equation 2.43). 

 

Figure 2.20 Yield curve in the    ̅ plane of       (D’Onza et al., 2011) 

In both      and      , the current value of   is assumed to be independent of 

suction and the evolution of   during plastic straining is related to the increments of 

plastic volumetric strain and plastic shear strain through an expression similar to that in 

the saturated model         (see Equation 2.31). Both models employ an associated 

flow rule (as in        ).  

Stropeit et al. (2008) and D’Onza et al. (2011) demonstrated that      and       both 

resulted in improved simulations of experimental stress-strain curves when compared 

with the conventional isotropic model    . 

Della Vecchia et al. (2012) proposed a coupled mechanical and water retention 

constitutive model for unsaturated soil which incorporate the evolution of anisotropy 

 ̅ 
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during plastic straining. The mechanical aspects of the model are expressed in terms of 

the Bishop’s stress tensor (defined in Equation 2.8), which they refer to as the “average 

skeleton stress”. Elastic strains and shear strength are related solely to changes of 

Bishop’s stresses, but the yield surface is expressed in terms of Bishop’s stresses and 

degree of saturation    (rather than suction directly). The variation of    is then related 

to the variation of suction through the water retention aspects of the model, which 

incorporate both hydraulic hysteresis and the influence of changes of void ratio on water 

retention behaviour (including multi-scale coupling between microstructure and 

macrostructure).  

For the stress conditions of the triaxial test, each constant    cross-section of the yield 

surface proposed by Della Vecchia et al. (2012) takes the form of a distorted ellipse in 

the      plane, of the same form as proposed by Dafalias (1986) for saturated soils (see 

section 2.6.2) (i.e. the same form as in the saturated model         (see Equation 

2.29).  An associated flow rule was applied as in         (see Equation 2.32), but, 

unlike        , the evolution of anisotropy during plastic straining was described by 

relating changes of   solely to plastic volumetric strains, with no dependency on plastic 

shear strains (compare with the         expression of Equation 2.31). As described in 

Section 2.7.1, this is physically unrealistic and means that the model does not predict a 

unique degree of anisotropy at critical states. Hence the model predicts that critical 

states are influenced by differences in initial anisotropy or by differences of stress path 

to the critical state, which seems undesirable.    

2.9 THE COUPLED MECHANICAL-WATER RETENTION MODEL OF WHEELER 

ET AL. (2003A) 

Wheeler et al. (2003a) proposed a combined mechanical and water retention elasto-

plastic constitutive model which incorporates coupling in both directions (the influence 

of plastic changes of degree of saturation on mechanical behaviour and the influence of 

plastic volumetric strains on water retention behaviour). The model was presented by 

Wheeler et al. (2003a) solely for the case of isotropic stress states and was subsequently 

extended by Raveendiraraj (2009) to the stress states of the triaxial test, by including 

the role of deviator stress. The model was generalised to    stress states by Lloret et al. 

(2008) and Lloret (2011). The model is presented here in considerable detail, because it 

is used in Chapter 7 as the basis for the development of an anisotropic constitutive model 

for unsaturated soils. 

The coupled mechanical-water retention model employs, as stress state variables, the 

Bishop’s stress tensor    
  (defined in Equation 2.8) and the scalar variable modified 
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suction    (defined in Equation 2.9) (see Section 2.2). For the stress conditions of the 

triaxial test, this means that the stress state variables are mean Bishop’s stress   , 

deviator stress   and modified suction   . As shown by Houlsby (1997), the three 

corresponding work-conjugate strain increment variables are the volumetric strain 

increment    , shear strain increment      and the decrement of degree of saturation 

     (see Section 2.2). 

Development of the model was based on consideration of the physical processes likely to 

be responsible for the various elastic and plastic components of strains. For the 

mechanical aspects of the model, elastic volumetric strains and elastic shear strains were 

considered to be caused by elastic deformation of individual soil particles or aggregates 

and were therefore considered to be controlled solely by changes of Bishop’s stresses. 

Plastic volumetric strains and plastic shear strains were attributed to slippage at inter-

particle or inter-aggregate contacts, and were thus influenced not only by Bishop’s 

stresses but also by the stabilising effect of meniscus water bridges at particle contacts. 

This stabilising effect was considered to be controlled essentially by the number of 

contacts affected by meniscus water bridges rather than by the suction within the 

bridges. The model therefore assumes that the stabilising effect is governed by plastic 

changes of degree of saturation. For the water retention aspects of the model, elastic 

changes of degree of saturation were considered to be caused by changes in shape of the 

air-water interfaces, but without any individual voids flooding or emptying with water. In 

the model these elastic changes of    are therefore related solely to changes of modified 

suction   . Plastic changes of    were considered to be caused by individual voids 

flooding or emptying with water. In the model these plastic changes of    are therefore 

assumed to be controlled not only by changes of modified suction    but also by changes 

in the size of voids, as represented by the occurrence of plastic volumetric strains.  

2.9.1 Elastic behaviour 

The increments of elastic volumetric strain, elastic shear strain and elastic change in 

degree of saturation are given by:  
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The above equations suggest no coupling between the effects of change in    and    on 

elastic strains, where    
  is solely governed by a change in    whereas    

  is solely 

governed by a change in   .  

2.9.2 Yield surfaces and flow rules 

The model includes three yield surfaces in         space, namely the Loading-Collapse 

(  ) surface, the Suction Increase (  ) surface and the Suction Decrease (  ) surface, 

see Figure 2.21.  

 

Figure 2.21: Yield surfaces in         space (after Raveendiraraj 2009) 

Yielding on the    surface describes the mechanical behaviour and is associated with 

slippage at inter-particle or inter-aggregate contacts. Plastic volumetric and plastic shear 

strains occur during yielding on this surface but no plastic changes of degree of 

saturation occur. Yielding on the    or    surfaces describes the water retention 

behaviour and is associated with flooding or emptying of voids with water. Plastic 

changes of degree of saturation occur during yielding on    or    surfaces, but no plastic 

volumetric strains or plastic shear strains occur. 

Raveendiraraj (2009) proposed that cross-sections of the    yield surface in the      

plane should be elliptical and pass through the origin (equivalent to     for saturated 

soils) (see Figure 2.21). The equation of the    yield surface is therefore:  

               
                                                                                                                              

where    is the aspect ratio of the ellipse (a soil constant) and   
  represents the current 

size of the ellipse (a hardening parameter). Note that the    yield surface expression of 

Equation 2.57 includes no dependence on the third stress variable    (i.e. the value of   
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is independent of   ), because the stabilising role of meniscus water bridges is not 

related directly to    but is instead related to plastic changes of degree of saturation. 

Modelling of this effect is achieved though the coupled movement of the    surface 

which occurs during yielding on the    or    surface (described in Section 2.9.3 below).  

An associated flow rule is assumed for yielding on the    surface, so that when yielding 

on this surface alone: 

   
 

   
  

   

       
                                                                                                                                                 

   
 
                                                                                                                                                                    

where        . 

The    and    yield surfaces are represented by vertical walls in         space (see 

Figure 2.21), defined by: 

         
                                                                                                                                                    

      
                                                                                                                                                      

where   
  and   

  are the hardening parameters defining the current positions of the    

and    surfaces respectively. Note that the    and    yield surface expressions of 

Equations 2.60 and 2.61 include no dependence on the Bishop’s stresses    and  . 

However, the positions of the    and    surfaces (and hence the water retention 

behaviour) is influenced by plastic volumetric strains, through coupled movements of the 

   and    surfaces during yielding on the    surface (described in Section 2.9.3 below). 

Associated flow rules are assumed on both    and    surfaces, so that when yielding on 

one of these surfaces alone:   

   
 
    

 
                                                                                                                                                       

Also, when yielding on the    surface: 
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and when yielding on the    surface: 

   
 
                                                                                                                                                                    

2.9.3 Coupled movements of the yield surfaces   

Yielding on the    surface produces plastic volumetric strains. Consequently, this 

yielding on the    surface causes coupled movements of the    and    surfaces (see 

Figure 2.22a for the case of isotropic stress states). The coupled movements of    and    

surfaces represents the effect of mechanical loading on decreasing dimensions of voids 

and passageways which in turn increases the value of modified suction required for 

flooding or emptying of the voids with water. As a result of the yielding process, the 

main wetting and main drying curves are shifted to higher values of modified suction 

(according to the model).  

The magnitudes of the coupled movements of the    and    surfaces are controlled by a 

coupling parameter    , so that when yielding on the    yield surface alone the following 

coupling relationship holds: 

   
 

  
  

   
 

  
    

   
 

  
                                                                                                                                            

The effect of this coupling is illustrated (for isotropic stress states) in Figure 2.22a 

(where    and    are both plotted on logarithmic scales).  

Yielding on the    or    surfaces produces plastic changes of degree of saturation. 

Consequently, this yielding on the    or    surface causes coupled movements of the    

surface (see Figure 2.22b), as a consequence of changes in the number of inter-particle 

contacts surrounded by meniscus water bridges and hence the stabilising effect of these 

bridges. These coupled movements of the    surface are controlled by a coupling 

parameter   , so that when yielding on the    and    surface alone: 

   
 

  
     

   
 

  
    

   
 

  
                                                                                                                                      

The effect of this coupling is illustrated (for isotropic stress states) in Figure 2.22b 

(where    and    are both plotted on logarithmic scales). 
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Inspection of Equations 2.65 and 2.66 shows that during yielding on any surface the 

following relationships holds: 

   
 

  
  

   
 

  
                                                                                                                                                              

Hence, the spacing between    and    surfaces is assumed to always remain constant, 

when    is plotted on a logarithmic scale. 

  

(a) (b) 

Figure 2.22: Coupled movements of   ,    and    yield surfaces for isotropic stress states: (a) 
yielding on the    yield surface alone, (b) yielding on the     or    yield surface alone (after 
Wheeler et al., 2003a) 

2.9.4 Hardening Laws 

The full hardening laws allow for the possibilities of yielding on a single yield surface or 

of yielding simultaneously on two surfaces (when the stress state lies on the edge 

between    and    surfaces or on the edge between    and    surfaces, see Figure 

2.21). These hardening laws are given by:  

   
 

  
  

     
 

     
 

     
 

       
                                                                                                                               

   
 

  
  

   
 

  
   

   
 

       
   

     
 

     
                                                                                                         



CHAPTER 2  Behaviour and modelling of unsaturated soils and the influence of anisotropy 
 
 

55 
 

where   and    are soil constants. 

The special case of the hardening law and coupling relationship when yielding on the    

surface alone is recovered by setting    
 
   in Equations 2.68 and 2.69. Equation 2.68 

then shows (when combined with the elastic volumetric strain from equation 2.54) that 

yielding on the    surface alone during isotropic loading produces a normal compression 

line of gradient   in the        plane.   is also the conventional gradient of the saturated 

normal compression line in the        plane. 

The special case of the hardening law and coupling relationship when yielding on the    

or    surface alone is recovered by setting    
 
   in Equations 2.69 and 2.68. Equation 

2.68 then shows (when combined with the elastic expression of Equation 2.56) that 

yielding on the    or    surface alone produces a main drying curve or main wetting  

curve of gradient    in the       
  plane (see Figure 2.7). These main drying and main 

wetting curves are translated in the       
  plane by any occurrence of plastic volumetric 

strains (during yielding on the    surface).        

Inspection of Figure 2.7 shows that the model assumes no elastic change in     whenever 

   is   or  . Raveendiraraj (2009) identified a small inconsistency with the Wheeler et al. 

(2003a) model regarding this assumption. The inconsistency arises when plastic 

volumetric strains occur at      or  . The model then predicts irreversible subsequent 

elastic change in   . The new anisotropic model developed in Chapter 7 does not include 

the retention aspects of the Wheeler et al. (2003a) model, and this inconsistency 

therefore does not appear in the current work. 

The hardening laws of Equations 2.69 and 2.69 can be combined to give general 

expressions for the plastic volumetric strain and plastic change in degree of saturation:  

   
 
 

     

         
(
   

 

  
    

   
 

  
 )                                                                                                              

   
 
 

        

        
(
   

 

  
    

   
 

  
 )                                                                                                               

2.9.5 Variation of   and    

Lloret (2011) showed that a wide variety of isotropic stress paths would ultimately arrive 

at the corner between    and    yield curves, irrespective of the starting position 

relative to the yield curves. This includes, for example, isotropic loading paths at 
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constant suction. Lloret (2011) then demonstrated that the model predicts that isotropic 

stress states at the corner between    and    yield curves correspond to a unique planar 

surface in             space and a second unique planar surface in       
       space. 

When the stress state remains at the corner between    and    yield curves (with 

  
    ,   

     and    ), then the total increments of   and    can be expressed (by 

using Equations 2.54, 2.56, 2.70 and 2.71) as: 
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)                                                                     
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)                                                                  

Lloret (2011) showed that a unique expression for   as a function of    and    is obtained 

when integrating Equation 2.72: 

               
                                                                                                                                     

where    is a soil constant and: 

   
         

        
                                                                                                                                                

  
    

     

        
                                                                                                                                            

   and   
  are the gradients of the unique planar surface in             space. Similarly, a 

unique expression for    as a function of    and    is obtained when integrating Equation 

2.73: 

        
         

                                                                                                                                    

where    is a soil constant and  
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  and   

   are the gradients of the unique planar surface in       
       space.  

Equations 2.74 and 2.77 describe the evolution of   and   , respectively, under isotropic 

states, provided that the stress state is at the corner between the    and    yield curves 

and provided that the soil remains unsaturated. It is worth mentioning that the 

parameters      
    

  and   
 
 are given in Equations 2.75, 2.76, 2.78 and 2.79 in terms of 

the original soil parameters (i.e.                     ), so that no new soil parameters are 

introduced. The uniqueness of the planar surfaces described by Equations 2.74 and 2.77 

was validated by Lloret (2011) against experimental data from isotropic compression 

tests at different non-zero suction values, performed by Sivakumar (1993). Lloret (2011) 

also showed that measuring the gradients      
     

  and   
  of these two planar surfaces 

forms an ideal method for experimental determination of the values of the soil constants 

  ,   ,    and    if the values of   and   are already known from tests on saturated 

samples. 

It is worth mentioning also that these unique relationships do not apply when yielding 

takes place on the   ,    or    yield curves alone. However in many cases, due to the 

coupled movements of the curves, the stress state would eventually arrive at the corner 

between    and    curves if the stress path was continued indefinitely. It should be 

noted also that, the unique planar surfaces are valid for the case where        (i.e. 

while the soil remains unsaturated).   

For general stress states, which do not necessarily lie on the    and    yield surfaces 

and where the deviator stress   is not necessarily zero, the values of   and    can be 

calculated by considering an elastic stress path starting from a point corresponding to the 

unique planar surfaces of Equations 2.74 and 2.77 (see Figure 2.23) to give: 

            
    

      
      (

  
 

  
)                                                                                                        

        
     

    
     

      (
  

  
 )                                                                                                       

Equations 2.79 and 2.80 provides general expressions for   and   , valid for any stress 

state. 
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Figure 2.23 Stress path used to calculate   and    for general stress states  

2.9.6 Critical states 

The definition of critical states implies that a critical state is reached when no further 

change in            or   is taking place with infinite increase in shear strain. The 

associated flow rule of Equation 2.58 means that the model predicts that critical states 

will be achieved for stress states that correspond to the apex of the    yield surface. 

This results in a unique critical state line in the      plane: 

                                                                                                                                                                       

Authors such as Gallipoli et al. (2008) and Raveendiraraj (2009) demonstrated, by 

comparison with experimental data, that Equation 2.82 is a reasonable approximation for 

many soils. 

The model predicts that critical states must lie at the top of the elliptical cross-section 

of the    yield surface, but they do not necessarily have to also lie on the    or    

surface. However Lloret (2011) demonstrated that a wide variety of shearing stress paths 

will arrive at the edge between    and    yield surfaces prior to reaching a critical 

state, and the critical state will subsequently correspond to a stress state falling on 

both    and    surfaces. Lloret (2011) then showed that, for critical states which fall on 

both    and    surfaces, the model predicts a unique planar critical state surfaces in 

both             space and in       
       space.  
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For stress states at the intersection of the    and    yield surfaces and at the top of the 

elliptical cross-section of the yield surface,   
     and   

     . Insertion of these 

conditions in the general equations for   and    of Equations 2.74 and 2.77 led Lloret 

(2011) to the following expressions for the planar critical state surface for   and   :  

                         
                                                                                                         

        
        

         
                                                                                                                      

Equation 2.83 represents a critical state planar surface in             space that is 

parallel to the corresponding isotropic compression surface (see Equation 2.74) with the 

vertical spacing between the two surfaces given by          . Equation 2.84 defines a 

critical state planar surface in       
       space that is parallel to the corresponding 

isotropic compression surface (see Equation 2.77), with the vertical spacing between the 

two surfaces given by   
     .  

Lloret (2011) investigated the validity of Equations 2.83 and 2.84 against the 

experimental data of Sivakumar (1993). He confirmed the existence of such unique 

critical state planar surfaces in             space and in       
       space and that each 

surface was parallel to the corresponding normal compression surface. He also showed 

that the experimental spacing between the critical state and normal compression 

surfaces for    was well captured by the model, but that the spacing between the critical 

state and normal compression surfaces for   was overestimated by the model. The 

overestimation in the spacing between normal compression surface and the critical state 

surface observed in             space is inherited from the     model which serves as 

the saturated base-model.  

The full mechanical and water retention model of Wheeler et al. (2003a), extended to 

the stress states of the triaxial test by Raveendiraraj (2009) and Lloret (2011), includes a 

total of    soil constants:                                  . 
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3 
EXPERIMENTAL SYSTEMS AND CALIBRATIONS 

The experimental investigation was carried out in three independent triaxial systems. 

System 1 and System 2 were designed to undertake suction controlled unsaturated 

triaxial compression and extension tests, while System 3 was designed to carry out 

saturated triaxial compression and extension tests. This chapter describes, in detail, the 

elements of each system including both the triaxial cell and associated equipment for 

measuring or controlling pressures, volumes, etc. The calibration of the 

load/pressure/displacement transducers and of the apparent volume change of both cell 

and pore water lines is also described in this chapter.  

3.1 SYSTEM 1 AND SYSTEM 2 (UNSATURATED TRIAXIAL CELLS) 

Sivakumar et al. (2006) presented a new version of double wall cell triaxial apparatus 

with a major improvement of changing the material of the inner cell to high quality glass 

to eliminate water absorption by the acrylic wall as reported in Wheeler (1986) and 

Sivakumar (1993). System 1 and System 2 were designed and built by the company V J 

Tech Ltd and consisted of a double wall triaxial cell (based on the work by Sivakumar et 

al. (2006)), drainage system, controlling and measuring devices and data acquisition 

system.  

3.1.1 Double wall cell  

Figure 3.1 shows a schematic diagram of the double wall cell.  The outer cell is a 

standard acrylic cylinder capable of maintaining a maximum pressure of      kPa. The 

top cover is made of stiff metal with a hole located at its centre. A hanging screw passes 

through this hole to provide support to the load cell. Nine outlets in total are located in 

the base of the outer cell and are equipped with push-in fittings. One of these outlets is 

for filling and emptying the outer cell, one is for pressurizing the outer cell, four outlets 

are for pore water drainage to the soil sample, one outlet is for filling, emptying and 

pressurizing the inner cell, one outlet is for pore air drainage to the soil sample and one 

outlet is for the temperature probe.  
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The inner cell is manufactured with a detachable base that is connected to the loading 

ram by a screw joint. The inner cell base has six outlets with compression fittings, 

including one outlet to pressurize and measure the water volume changes of the inner 

cell, one outlet to accommodate the pore air drainage line and four outlets to 

accommodate the pore water drainage lines. 

 

Figure 3.1 Schematic diagram of the double wall cell  

The top cap and the base pedestal are each fitted with dual pore water drainage lines 

through flexible      tubes to allow flushing of any trapped air. The base pedestal is also 

fitted with a single pore air drainage line. A submersible load cell type             is 
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located inside the inner cell and a tight “ ” ring is positioned inside the central hole of 

the top cover around the load cell ram to prevent any water leak between the inner and 

outer cells during movement of the ram. The load cell electrical wire passes inside the 

hollow ram then passes through a      tube which has one end connected to the ram 

and the other end connected to the outer cell cover. In a typical triaxial test, a deviator 

load or displacement is applied by controlling the pressure in the lower chamber as in 

standard Bishop-Wesley apparatus. The axial displacement is conventionally measured by 

a displacement gauge from the change of position of a beam attached to the lower 

chamber with respect to a reference point attached to the cell.  

Arrangement for the application of deviator load 

The apparatus was initially designed by VJ Tech for testing soil specimen of    mm 

diameter and     mm height in triaxial compression with a maximum travel 

displacement of only    mm. This travel distance was not always sufficient to explore soil 

behaviour through to critical states. A new part was, therefore, designed during the 

present project and manufactured by the workshop at the School of Engineering of the 

University of Glasgow to allow re-setting of the positions of the load cell and the lower 

chamber during tests.  

In this work the original VJ Tech setup shown in Figure 3.1 was only used for tests which 

involved one or more extension loading stages. In these tests the load cell was initially 

suspended from the top cover by using the screw shown in Figure 3.1 and there was 

therefore no initial deviator stress applied to the sample during suction equalization or, 

if applicable, isotropic compression stages. In this setup it was also not possible to gain 

additional travel distance by re-setting the position of the load cell and lower chamber 

during tests.  

Figure 3.2 shows the alternative “ball-bearing” arrangement designed in this work as a 

modification to the original VJ Tech Ltd setup and adopted for those tests which included 

only triaxial compression loading stages. In this setup, the submerged weight of the load 

cell is carried by the soil sample (about    N or   kPa deviator stress for a sample with 

diameter of    mm). In this setup, additional stroke distance can be gained during the 

test by lowering the load cell and the piston of the lower chamber once travel has run 

out. This is achieved by manually adjusting the position of the ram via a double-threaded 

screw while keeping deviator stress constant.  

A stiff stainless steel plate, with an opening in the middle to accommodate insertion of 

the loading cell hook, is screwed to the top cap (see Figure 3.3) to allow application of a 
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tensile force when required. During assembly of the cell, the small stainless steel hook of 

the load cell with a truncated end in the shape of arrow-head was slotted through the 

opening of this plate, then the load cell was rotated by    degrees to engage with the 

top cap. During extension loading, the upper surface of the hook was pulling against the 

stainless plate (see Figure 3.3a) while during compression loading, the bottom arrow-

head surface of the hook was pushing against a central bevel on the top cap (see Figure 

3.3b). 

 

Figure 3.2 Arrangement for triaxial compression tests 

3.1.2 Pedestal and top cap  

The original design by VJ Tech Ltd of the base pedestal and top cap was not suitable for 

testing unsaturated soil samples. Therefore, these two parts had to be re-designed during 

this work and sent to VJ Tech for manufacturing. 

Figure 3.4 and Figure 3.5 show the layout of the pedestal and top cap respectively, 

together with their high air entry (   ) ceramic filter holders. Pore air drainage is 

arranged through the pedestal so that only a short      tube connection was needed 

(see Figure 3.1) and the amount of diffused air into cell and the effect of tubing 

compressibility on volume measurement during loading/unloading conditions could 

therefore be minimized. A spiral flushing groove (2 mm width and 2 mm depth) is used 

for the pore water drainage connections on both pedestal and top cap. This arrangement 
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has two advantages; firstly, it increases water conductivity by providing sufficient 

contact between the high air entry ceramic filter and the water in the drainage lines; 

secondly, it provides higher efficiency in removing any trapped air beneath the ceramic 

filter as a single flushing path and no sharp corners are present in the water flow path 

during flushing.  

 

Figure 3.3 Load cell hook position: (a) triaxial extension (b) triaxial compression 

Both pedestal and top cap were made of stainless steel and stainless steel filter holders 

were attached to them by means of four   mm counter-sunk screws. Figure 3.4 and 

Figure 3.5 show the filter holders of the pedestal and top cap, respectively. Glued within 

each filter holder is a    mm diameter high air entry ceramic filter with an air entry 

value of     kPa. In order to maintain good distribution of air pressure at the sample 

base, a porous annulus made of sintered brass (   mm outer diameter and    mm inner  
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Figure 3.4 Base pedestal design 
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Figure 3.5 Top cap design 
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diameter) is positioned on a shoulder set within the pedestal filter holder. An “ ” ring is 

placed in a groove between the spiral flushing groove on the pore water drainage lines 

and the air line outlet in order to prevent any air leak to the water drainage line. The 

design of top cap filter is the same as the design of pedestal filter with the only 

exception being the absence of the sintered brass annulus for air drainage. 

3.1.3 Control or measurement of pressure and volume 

Sample volume change gauges  

A double wall cell is used because it allows measurement of the changes in volume of the 

soil specimen from the flow of water to or from the inner glass cell. This inner cell does 

not deform, because the same pressure is applied on both sides of the glass, and it does 

not adsorb water, being made of glass. In order to measure the inflow or outflow of 

water to the inner cell, this project made use of Imperial College-type volume gauges 

manufactured by V J Tech Ltd, shown schematically in Figure 3.6.  

 

Figure 3.6 Schematic diagram of cell volume gauge  

The pressure in the upper chamber of the volume gauge, which is connected to the cell, 

is maintained by controlling the pressure in the lower chamber of the gauge. The 

pressure in the upper chamber is transferred to the inner cell through an outlet installed 

on the top cover of the volume gauge. Any outflow/inflow of water from/into the upper 

chamber causes upward/downward movement of the piston connecting the two 

chambers. The movement of the piston is detected by a displacement transducer and 
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hence the volume change is deduced by converting the travel of the transducer to 

volume change by applying a suitable calibration. The capacity of this gauge was     cm
3
 

which was sufficient to perform a full triaxial test without need of re-setting the gauge 

during the course of the experiment.  

Water pressure controllers  

Piston-pumps were used to control cell pressure, pore water pressure and lower chamber 

pressure. A schematic diagram of this type of device is shown in Figure 3.7. The 

controller provides a stable pressure source without needing a compressed air line. It 

works on the principle of pressurising a liquid (de-aired water) inside a cylinder by 

applying a gradual movement of a piston to get to a target pressure. The pressure inside 

piston is measured by an integral pressure transducer with a range of        kPa. The 

piston movement is triggered by an electrical stepper motor and gearbox. The water 

pressure controllers can also be used to measure volume change, and pore water 

pressure controller was used to measure pore water volume change. The change of water 

volume inside the piston is deduced from the number of steps of the stepper motor and, 

therefore, the accuracy of the measurement is proportional to the size of step. The 

capacity of cylinder is     cm
3
 and that was more than enough to perform full triaxial 

test without need of re-setting the gauge during the course of the experiment. The cell 

pressure controller could not be used to measure the volume flow to the inner cell (and 

hence the sample volume change), because this controller provided the pressure source 

(and hence water flows) to both inner and outer cells. A separate Imperial College-type 

volume change gauge (as described previously) therefore had to be used to measure the 

flow to the inner cell. 

  

Figure 3.7 Schematic diagram of water pressure controller  
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Air pressure controller  

The pore air pressure line was provided by a pressure regulator that uses a stepper motor 

to modify the air pressure supplied by an external compressor. The air pressure is 

measured by an integral pressure transducer with a range of        kPa. An increased 

fluctuation of air pressure was initially noticed during periods of humid weather which 

was avoided by installing an air drying unit on the main air line.   

Other sensors 

The following additional transducers (shown in Figure 3.1) were also used during the 

course of the experimental campaign: 

 A submersible load cell (  kN capacity) which was used to measure the deviator 

force applied to the sample. As confirmed by the manufacturer, this load cell was 

also capable of measuring a maximum of   kN tensile force which was necessary 

to perform triaxial extension tests.  

 A temperature sensor with a precision of    o
C which was located on the base of 

the outer cell and measured the temperature of the water in the outer cell. 

 A digital displacement gauge (                ) which was used to measure the 

variation of sample height with a maximum travel distance of    mm and a 

precision of       mm. 

 

3.1.4 Logging and control system 

All pressure, volume, displacement and load transducers were connected to 

corresponding input channels of a data logger (Model        ) through a system of data 

cables and interfaces. The data logger communicated with the software “Clisp Studio” 

(developed by VJ Tech Ltd). 

In the software, a test can be divided into several stages i.e. suction equalisation, 

loading, wetting, shearing, etc. with different parameters defined for each stage. 

Parameters could also be defined as “common data” to make them accessible from any 

stage within a test. “Common data” could be divided into three categories; “Input”, 

“Measured” and “Calculated”. “Input” category includes, for example, initial sample 

height, inclination of stress path and initial position of the lower chamber. “Measured” 

category includes, for example, cell pressure, pore water pressure, air pressure and pore 

water volume. “Calculated” category includes any derived variables from processing the 

input and measured data. Due to the existence of specific problems with the logging 

system when using multistage configuration, it was decided to use single stage 
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configuration, which implied stopping the current stage while maintaining the loading 

condition and changing, if necessary, the controlling and the input parameters manually.  

The software was set up to control a number of different variables in order to run stress 

path triaxial tests on unsaturated soil samples. These possible control variables included, 

for example, mean net stress, deviator stress, suction, axial strain and volumetric strain. 

Each controller was set to impose the value of a given soil variable by ramping or 

maintaining the target value of that variable. For each controller, either the pressure or 

volume channel could be used to control a certain variable. The data could be viewed in 

either table form or graphical form and it could also be transferred to Excel or Matlab 

spreadsheets. A typical interface of the Clisp Studio software is show in Figure 3.8.  

 

Figure 3.8 Typical interface of Clisp Studio software 

3.1.5 General equipment layout  

A photograph of System 1 and System 2 is shown in Figure 3.9. The schematic layout for 

System 1 and System 2 is shown in Figure 3.10, including the cell, the control and 

measurement devices and the data logging unit. Each system has three water 

pressure/volume controllers to supply pressure to the cell, lower chamber and pore 

water lines, respectively, as well as one air pressure controller.  
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Figure 3.9 Photograph of System 1 and System 2 

 

Figure 3.10 Schematic layout of System 1 and System 2 
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To avoid the risk of breaking the inner glass cell due to a pressure difference across the 

inner wall, both cells are pressurized by using the same controller. Therefore, the 

pressure source from the single controller is split in two lines, one going straight to the 

outer cell and another connected to the lower chamber of the volume gauge whose upper 

chamber is in turn connected to the inner cell.  

The compressed air supplied from a compressor at a pressure of      kPa is first reduced 

to      kPa by using a manual regulator and then fed to the air pressure controller. The 

drainage and flushing system was carefully designed to ensure accurate measurements, 

with connecting      tubes (  mm outer diameter and     mm inner diameter) kept as 

short as possible to reduce errors caused by expansion of the tubes and diffusion of 

moisture through the tubes walls. One-way and two-way ball valves (manufactured by 

Legris) were installed on a board and special ferrule were inserted at tube ends to 

reduce leakage at junctions. 

3.1.6 Flushing of diffused air  

If the pore water drainage system is sealed against air leaks and if the high air entry 

filters are saturated with de-aired water, then air can only enter the drainage line from 

the soil sample by diffusion through the saturated high air entry filter. Diffused air can 

accumulate inside the drainage system causing errors in pore water volume 

measurements and in the applied suction. The amount of air diffusing through the 

saturated high air entry filter mainly depends on the applied suction level and it 

increases with increasing suction. In addition, a reduction of pore water pressure 

(regardless of whether suction changes or stays constant) can cause air to come out of 

solution leading to the formation of air bubbles in the drainage system. To remove 

diffused air from the drainage line, a diffused air flushing system was used as shown in 

Figure 3.11. At the start of each test, the screw pump was carefully emptied and filled 

several times with de-aired water to eliminate any trapped air. During the test, valves 

      and    were open, with pressure applied from the pore water pressure controller. 

Valves       and    were also open with water pressure equal to the pore water 

pressure applied from an independent flushing controller, however valves    and    were 

closed. Consequently, the de-aired water in the screw pump and in the drainage lines up 

to valves          and    was under pressure at a level imposed by the flushing 

controller.  

The flushing procedure started by closing valve    to isolate the screw pump from the 

flushing controller. Purging of diffused air from the top cap and the pedestal was then 

performed one at the time. To flush the diffused air in the top cap drainage path, valve 
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   was first closed and valves    and    were subsequently opened. One way flushing 

was achieved by slowly unscrewing the pump (to avoid a large drop of pore water 

pressure at the boundaries of the soil sample) to generate water flow from the 

independent pressure controller to the screw pump. After the end of flushing, valves    

and    were closed and valve    was opened again. To flush the diffused air in the 

pedestal drainage path, valve    was first closed and valves    and    were subsequently 

opened. A procedure similar to that described for the top cap drainage path was then 

followed.  

 

Figure 3.11 Diffused air flushing system 

Flushing was carried out after each loading, unloading or probing stage in all tests. For 

tests in which pore water pressure was kept above     kPa, no air bubbles were noticed 

in the transparent drainage tubes during the flushing process. However, isolated air 

bubbles were observed for tests that involved a decrease of pore water pressure below 

    kPa. In these tests, additional flushing was therefore performed after each    kPa 

drop in pore water pressure. It is worth mentioning that the absence of corners in the 

spiral drainage groove of both the top cap and the pedestal eliminated the need for 
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reversing the direction of flow during flushing. No measurement of flushed air volume 

was conducted, but volume was always small. 

3.2 SYSTEM 3 (SATURATED TRIAXIAL CELL) 

A photograph of System 3 is shown in Figure 3.12 while the layout, including the cell and 

loading frame, the control and measurement devices and the data logging/control 

system, is shown schematically in Figure 3.13. A conventional triaxial set-up was 

employed to carry out saturated tests. The cell, produced by Wykeham Farrance and 

rated for a maximum pressure of      kPa, was originally designed to perform triaxial 

tests on     mm diameter samples. However, modifications were made to the base of 

the cell during this work to accommodate    mm diameter samples for consistency with 

the testing of unsaturated samples in System 1 and 2. A submersible load cell type 

            was attached to the loading ram to measure the deviator force. A 

conventional loading frame, produced by Wykeham Farrance, was used to load the 

sample during shearing at a constant rate of displacement.  

During the test, the upper end of the loading ram was attached to the frame through a 

ball and socket joint, while the cell was attached to the loading frame piston through 

stiff “ ” shape tie rods to reduce system slackness and to allow application of extension 

loading. Axial displacement of the sample was measured by a    mm range displacement 

transducer attached to the loading frame and positioned on the top cover of the cell. 

Two-way drainage was arranged from top and bottom of the sample and the pore water 

volume change was measured by using an Imperial College-type volume gauge, identical 

to those used in System 1 and System 2.  

During the saturation stage, to allow flushing of water through the sample (from the 

bottom upwards), the top cap drainage line was connected to the atmosphere by means 

of a two-way valve. A pressure transducer was installed on the drainage line between the 

volume gauge and the cell, to allow measurement of the   parameter (the ratio of pore 

water pressure increase to cell pressure increase under untrained loading). Two    -type 

pressure controllers were used to supply cell pressure and back pressure. The working 

principle for these controllers is similar to that explained earlier for the pressure 

controllers of System 1 and System 2.    
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Figure 3.12 Photograph of System 3  

 

Figure 3.13 Schematic layout of System 3 
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Logging and control system 

The cell pressure and pore water pressure signals from the transducers embedded in the 

two pressure controllers were directly converted to a digital form inside the controllers 

and transferred to the computer through a serial port. Outputs from the other 

transducers (i.e. displacement, load, pressure and volume gauge transducers) were 

brought to an analogue/digital converter (Datascan type         ) before being 

transferred to the computer. Input and output was managed by the software “Triax 

     ” developed by Toll (2010).  A typical interface of the Triax software is shown in 

Figure 3.14. The calibrated readings from different transducers could be displayed (see 

“Monitor” window) and logged (see “Scan” window). Controlling parameters could be 

shown in the “control” box (     is the pore water pressure and      is the cell 

pressure). Output data can be presented in table (see “Scan” window) or graphical forms 

within the Triax software and/or transferred to Excel or Matlab spreadsheets. For a given 

test stage, target parameter values are controlled in terms of steps of predefined size. 

The size of each step is selected so that the oscillation in the reading is kept within the 

tolerance (usually set to      kPa for pressure).  

 

Figure 3.14 Typical interface of Triax software 

3.3 CALIBRATIONS FOR SYSTEM 1 AND SYSTEM 2 

All measurement devices for System 1 and System 2 were already calibrated by the 

manufacturer in terms of pressure, volume or displacement against measured voltage. 
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These calibrations were stored in the data logger and pressure/volume controllers and 

were not visible to the user. Therefore, a decision was made in this work to treat all the 

readings as raw readings and perform a new calibration of these raw readings of 

pressure, volume or displacement in order to confirm the accuracy and to identify 

suitable correction factors if necessary. Generally, all calibrations showed linear 

relationships between the raw readings and applied values that can be expressed as: 

                                                                                                                                          

where,   and   are regression constants and their values were found to be different from 

  and   respectively, indicating that correction must be applied to the raw readings to 

obtain the actual values. Values of   and   from the calibrations of transducers 

(including those for System 3) are listed in Table 3.1.  

For pressure transducers, ignoring corrections would result in a maximum error of 

approximately     kPa in the mean net stress and a maximum error of approximately   

kPa in suction. For volume transducers ignoring the corrections would result in an error 

of approximately      cm3. After consultation with the manufacturer VJ Tech Ltd (who 

advised that pressure control would be more stable when controlled directly from the 

controller), decided to conduct the tests by using the raw readings of pressure and 

volume and then apply post-test correction to the results. This decision was also taken 

after spending significant time, with the help of VJ Tech Ltd, solving a series of other 

problems with the software, including sudden loss of pressure control and incorrect 

output readings. For the deviator load, it was straightforward to define the actual 

deviator load as a new “Calculated” variable (see Section 3.1.4).    

3.3.1 Pressure transducers  

The cell pressure and pore water pressure transducers were calibrated against a standard 

dead-weight calibration device (see Figure 3.15) which was also used to calibrate load 

cells. The balance consisted of a screw piston, oil reservoir, dead weights, motorized 

vertical piston and a loading frame to calibrate load cells. The role of the motor is to 

reduce side friction by rotating the piston about its vertical axis. The pressure transducer 

was placed at the same vertical level as the calibration balance and any pressure in the 

system was released by opening the vent valve. Calibration was conducted by placing 

standard dead weights on the vertical piston and by screwing the horizontal piston until 

equilibrium was reached between the oil pressure and the applied weights. The pressure 

applied to the transducer was then calculated from the dead weight and the vertical 

piston cross-sectional area.  
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Table 3.1 Values of   and   from the calibrations of the transducers 

 Transducer     

System 1 

Cell pressure 1.0017 2.6 kPa 

Pore water pressure 0.9948 7.2 kPa 

Air pressure 1.0019 1.9 kPa 

Inner cell volume 1.0054 0.1619 cm
3
 

Pore water volume 
(-0.000006847  -1.0160) 

(with    in kPa)   
0  

Axial displacement 1.0001 0.0068 mm 

Load cell 0.9425 41.5 N 

System 2 

Cell pressure 0.9963 7.8 kPa 

Pore water pressure 1.0050 0.9 kPa 

Air pressure 1.0013 2.9 kPa 

Inner cell volume 1.0039 0.0366 cm
3
 

Pore water volume 
(-0.000013284   -1.0076) 

(with    in kPa)   
0  

Axial displacement 1.0001 0.0065 mm 

Load cell 1.0018 8.7 N 

System 3 

Cell pressure 1.0029 7.7 kPa 

Pore water pressure 1 0  

Pore water volume 0.0000481115 cm
3
/μV 15.5841 cm

3
 

Axial displacement -0.000011129 mm/ μV 29.0444 mm 

Load cell 0.1845 N/ μV 37.8662 N 

 

 

Figure 3.15 Schematic diagram of calibration set-up for pressure transducers and load cells   
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All pressure transducers were calibrated over the pressure range of         kPa with 

the plot of applied pressure against raw pressure reading following an approximately 

linear relationship. Values of   and   from the calibration regression of the pressure 

transducers of System 1 and System 2 are given in Table 3.1. The accuracy of the linear 

calibration was      kPa for the pressure range between         kPa. Figure 3.16 

shows a typical example of this calibration for the pore water pressure transducer of 

System 1 together with the best fit line.  

 

Figure 3.16 Calibration of the pore water pressure transducer of System 1  

The air pressure transducer could not come into contact with water and was therefore 

calibrated against another pre-calibrated transducer. The accuracy of the linear 

calibration was      kPa for the pressure range between         kPa. 

3.3.2 Sample volume change gauges  

Figure 3.17 shows the arrangement used to calibrate the sample volume change gauges 

for System 1 and System 2. The lower chamber of the volume gauge was connected to a 

water pressure controller while the upper chamber was connected to the internal glass 

cylinder (     cm
3
 precision and   cm

3
 capacity) of a double-burette. The inner glass 

cylinder was open at the top and in communication with the outer acrylic cylinder. The 

double-burette system ensures accurate measurement of water volume change by 

eliminating the expansion of the inner cylinder. Two immiscible liquids were placed in 

the double-burette to mark a clear interface which was used to take readings, i.e. 

paraffin oil at the top and water at the bottom. The outer acrylic cylinder was then 

connected to a second water pressure controller.  
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Initially, valves           and   were kept open while valve   was kept closed and a line 

pressure of     kPa was applied from both controllers for one day to eliminate effects 

associated to immediate (or nearly immediate) volume changes. This pressure value is 

equal to the constant cell pressure value that was applied throughout the experimental 

programme.     

 

Figure 3.17 Schematic diagram of calibration system for volume gauges 

During calibration, a known volume of water was displaced from the glass burette to the 

upper chamber of the volume gauge by closing valves  ,   and   and opening valve  . 

Water movement to the volume gauge was triggered by a constant pressure difference of 

  kPa, as water pressure was set to     kPa inside      while it was set to     kPa 

inside     . The equivalent increase in water volume in the volume gauge was also 

recorded. When the oil reached the end of travel inside the burette, valve   was closed 

and valve   was opened so that oil moved upwards by gravity until it reached the 

equilibrium level. To remove any remaining oil on the inner tube’s wall, a pressure pulse 

was applied from the screw pump and this was done by closing valve   and subsequently 

opening value  . The position of the oil-water interface in the burette was finely reset 
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before re-starting calibration by using the screw pump with valves   and   closed and 

valves  ,   and   opened. 

Each volume gauge was calibrated for the range       cm
3
 and it was found that 

measured volume varied linearly with applied volume with a maximum error of       

cm
3
.  Figure 3.18 shows a typical example of this calibration for the cell volume gauge of 

System 1 together with the best fit line.  

 

Figure 3.18 Calibration of the inner cell volume gauge of System 1  

3.3.3 Pore water volume change gauges  

It was planned to measure pore water volume change by using the volume gauge of the 

pore water pressure controller as mentioned earlier. Therefore, it was important to 

examine the measurement accuracy of this gauge by using the technique mentioned in 

Section 3.3.2. In this laboratory campaign, the mean net stress and suction were 

controlled by varying the pore water pressure and pore air pressure while keeping the 

cell pressure constant. It was therefore important to explore the influence of pressure 

level on the accuracy of pore water volume measurement (the size of the stainless steel 

cylinder, see Figure 3.7, was expected to change with pressure). Pore water volume 

changes during a test are not larger than    cm
3
, so it was decided to limit volume 

measurement, and hence calibration, to the range         cm
3
 (instead of the full 

range of       cm
3
). For this smaller range, the pore water volume gauges of System 1 

and System 2 were calibrated under five different pressures (i.e.    ,    ,    ,     and 

    kPa respectively). The calibration arrangement was identical to that shown in Figure 

3.17 with the exception that the sample volume change gauge was removed from the 

system (calibration was conducted for     ).  
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Figure 3.19 shows a typical example of this calibration for the pore water volume gauge 

of System 2 under     kPa pressure, together with the best fit line. The raw reading of 

    cm
3
 indicates that    cm

3
 of water was inside the volume gauge while     cm

3
 

indicates that    cm
3
 of water was inside the volume gauge and the gradient of applied 

volume change to the raw reading of volume change is therefore negative.  

For a given pressure, this calibration showed a linear variation of raw reading of volume 

against applied volume with a maximum error of       cm
3
.  

 

Figure 3.19 Calibration of System 2 pore water volume gauge under     kPa 

The results also showed a monotonic change of the gradient of the relationship between 

applied volume changes and raw reading of volume changes with pressure. Ignoring this 

change would result in an error of      cm
3
 over a range of    cm

3
 which corresponded to 

an error about       in specific water volume (        ), however applying a 

correction using linear regression reduced the error to less than       cm
3
 over the same 

range. The variation of the gradient of the applied volume change to the raw reading of 

volume change with pressure could be expressed as: 

                                                                                                                                       

where   and   are regression constants. A typical example of this variation is shown in 

Figure 3.20 for System 1. Values of   and   from the calibration regression of the pore 

water volume gauges of System1 and System 2 are given in Table 3.1. 
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Figure 3.20 Gradient of the relationship between applied volume and raw reading volume for 
different values of pressure (System 1) 

3.3.4 Load cells 

The load cells for System 1 and System 2 were calibrated in two stages. In the first stage, 

each load cell was calibrated over the compression range          N by using the 

dead-weight balance system shown in Figure 3.15. In the second stage, each load cell 

was calibrated over the extension range       N. This was done by hanging the load 

cell by the ram and hooking to it a known dead weight. The full calibration was obtained 

by combining the results from the two stages. 

The results showed a linear variation of the applied load with raw reading of load with an 

accuracy of      N which corresponds to an accuracy of    kPa in terms of deviator 

stress for a    mm diameter triaxial sample. Values of   and   from the calibration 

regression for System1 and System 2 are given in Table 3.1. Figure 3.21 shows a typical 

example of this calibration for the load cell of System 2 together with the best fit line. 

3.3.5 Axial displacement gauges 

The axial displacement gauges were calibrated over the full range of    mm using slip 

gauges of different heights after fixing the displacement gauge to a reference beam. A 

linear variation of the applied displacement with the measured displacement was found 

with an accuracy of       mm. Values of   and   from the calibration regression for 

System1 and System 2 are given in Table 3.1. Typical example of this calibration for the 

axial displacement gauge of System 1 is shown together with the best fit line in Figure 

3.22. 
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Figure 3.21 Calibration of the load cell of System 2  

 

Figure 3.22 Calibration of the axial displacement gauge of System 1  

3.3.6 Apparent volume change 

A double wall triaxial cell was used to ensure accurate measurement of overall sample 

volume change by measuring water flow into or out of the inner cell. To conduct a 

suction controlled test by using the axis translation technique, it is possible to set the 

cell pressure, the pore water pressure or air pressure to a certain value and change the 

other pressures as required. In this work, the cell pressure was set to a constant value. 

One reason for this choice was that sample volume changes were measured based on the 

inflow or outflow of water into/from the inner cell and the accuracy of this measurement 

was greatly enhanced by eliminating sources of error that were caused by variation of 

cell pressure. 
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Volume measurement can be affected by any of the following sources of error: 

1- Compression of occluded air in the measuring system which increases with the 

increase in the pressure level. The rate of compressibility is decreasing with 

increase in the time under a constant pressure.  

2- Compressibility/expansion of the water and parts of the system such as fittings, 

“ ” rings, etc. which is proportional to the pressure level.  

3- Diffusion of water through the flexible tubes which increases with increase in 

pressure difference across the tube’s wall. 

4- Temperature variation in the testing room which causes oscillations in the volume 

measurement due to the expansion or contraction of water in the measuring 

system.  

5- Movement of the loading ram inside the inner cell.   

 

Moreover, despite the use of a submersible load cell, the measurement of deviator load 

is more reliable at a constant cell pressure.  

Before the tests, the sample volume change measuring system was therefore calibrated 

for time dependency and temperature variation effects (cell pressure was kept constant 

during the tests and no calibration for pressure dependency was therefore required). 

Similarly, it was necessary to calibrate the pore water volume change measuring system 

for time and pressure dependent effects. No attempt was made to calibrate the pore 

water volume change measuring system for temperature variation due to unavailability of 

a temperature probe inside the drainage system.   

The above calibration included all parts of System 1 and System 2 that could affect 

measurement of sample volume change and pore water volume change during an 

unsaturated triaxial test. During calibration, almost the same arrangement as in a real 

test was reproduced by removing the high air entry filter holders and attaching acrylic 

stoppers of the same dimensions to the top cap and pedestal to separate the drainage 

lines of the inner cell and the pore water drainage lines and by using a dummy brass 

sample of    mm diameter and     mm height to substitute the real soil sample. The 

load cell was kept free to move vertically with the inner cell (with no relative 

movement) by entirely loosening the screw that connects the load cell to the top cover 

of the outer cell (see Figure 3.3b). Prior to calibration, all lines were flushed with de-

aired water to take out any trapped air in the system. The pore air drainage line between 

the pedestal and valve    (see Figure 3.10) was flushed with de-aired water and the 

valve was kept close for the entire calibration so that cell pressure was applied to that 
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line. The sample volume change gauge was flushed several times and filled with de-aired 

water. The setting up procedure for calibration was similar to that followed for sample 

setup (as is given in Section 4.2.3). Referring to Figure 3.10, valves         and   were 

opened at a line pressure of    kPa, then valves   and   were opened simultaneously to 

pressurise the outer cell and inner cell respectively. For the pore water drainage system, 

valve    was opened first with a line pressure of    kPa then valves    and    were 

opened subsequently. Cell pressure and pore water pressure were increased to target 

values of     kPa and     kPa respectively at a rate of    kPa/minute. Cell pressure was 

then kept constant over the calibration period. Once the volume change rate was 

stabilised (usually after     days), the pore water pressure was decreased by step 

changes to             and     kPa for System 1 and to     and     kPa for System 2.  

The variation of pore water volume was monitored and recorded for a period of     

days under each pressure. The pore water pressure was then increased to             

and     kPa for System 1 and to     and     kPa for System 2 following the same 

manner described above.    

 Figure 3.23 and Figure 3.24 shows the variation of the inner cell volume against elapsed 

time for System 1 and System 2 respectively. Calibration time for System 2 was shorter 

than that for System1 due to unplanned power shutdown in the laboratory. The variation 

of the inner cell volume against time could be separated into two parts; the first part 

represents the immediate changes in volume due to the application of the cell pressure 

whereas the second part represents the time dependent change in volume. It could be 

noticed from Figure 3.23 that the immediate volume change stabilised after 

approximately one day. In a real test, it was therefore decided to wait one day between 

pressurization of the cell and the first stage (usually suction equalisation). The apparent 

fluctuation in the measured volume change reflected the effect of temperature variation 

on volume measurement. Fluctuation in temperature was more noticeable during the 

calibration of System 2 due to a fault in the room temperature controller. Generally, the 

magnitude of the immediate change in the inner cell water volume due to pressure 

increase was bigger for System 2 than for System 1, though this is not very important as, 

during a real test, cell pressure is maintained constant. During the course of inner cell 

volume change calibration, pore water pressure was decreased in step change from     

to     or     kPa (as explained previously), though, no evidence of any cell volume 

change was noticed during this process.  

The variation of the pore water volume change against elapsed time is shown in Figure 

3.25. The discontinuities in the plot refer to the instantaneous volume changes due to 

pressure change. On the pore water drainage line the rates of volume change at constant 
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pressure was changing monotonically from        cm
3
/day to       cm

3
/day for pore 

water pressures decrease from     kPa to     kPa. 

 

Figure 3.23 Variation of the inner cell volume against elapsed time for System 1 

 

Figure 3.24 Variation of the inner cell volume against elapsed time for System 2 

The decrease in the rate of volume change with the decrease in pore water pressure 

(under a constant cell pressure) can be explained with reference to the water/air 

diffusion and any creep expansion of the flexible tubes as set out in the next paragraph. 

In terms of water diffusion through the      tubes of the pore water drainage, the rate 

of inward diffusion to the pore water drainage line (from the water in the triaxial cell), 

for the sections of drainage line inside the cell, is expected to increase with decreasing 
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pressure in the pore water drainage line. In addition, for the sections of drainage line 

outside the cell, the rate of outward diffusion from the pore water drainage line ( to the 

atmosphere) is expected to decrease with decreasing pressure in the pore water drainage 

line. In terms of air diffusion, water inside the drainage tubes and the cell were of the 

same quality (de-aired), therefore no air diffusion was expected through the tubes inside 

the cell. On the other hand, air diffusion was expected to occur from the atmosphere to 

the section of pore water drainage line outside the cell, because the water inside the 

tube was not air-saturated. In terms of any creep expansion of the      tubes, the 

drainage tubes inside the cell were expected to contract (external loading condition) 

whereas the drainage tubes outside the cell are expected to expand (internal loading 

condition). The positive rate of pore water volume change under     kPa, which 

indicates an increase in the volume of water inside the volume gauge, refers, therefore, 

to the net effect of these sources. The rate of pore water volume change under a 

constant pressure during the pressure increase steps was slightly less than the 

corresponding rate during the pressure decrease steps suggesting that the amount of air 

that came out of solution in the pressure decrease cycle is less than the original amount 

of air that went into solution during the first pressure increase.  

 

 

Figure 3.25 Variation of the pore water volume change against elapsed time for System 1 

Figure 3.26 shows the immediate changes in pore water volume after a change of 

pressure for System 1. If the volume change after initial pressurization of the cell is 

ignored (initial volume change is indeed ignored during a real test as the drainage lines 

up to valves    and    (see Figure 3.10) are initially pressurised to     kPa), it is then 
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possible to approximate the volume changes caused by both pressure decrease and 

increase by a single line. 

 

Figure 3.26 Immediate pore water volume change against pore water pressure for System 1 

Figure 3.27 shows the changes in pore water volume after changes of pressure for System 

2. The rates of volume change at constant pressure were changing monotonically from 

      cm
3
/day to       cm

3
/day for pore water pressures decrease from     kPa to     

kPa. Similar to the observation shown above for System 1, the rate of pore water volume 

decreases with decreasing pore water pressure under a constant cell pressure. Figure 

3.28 shows the variation of the immediate changes of pore water volume against pore 

water pressure for System 2. Approximating both the pressure decrease and increase by a 

single line was found adequate.  

Correction for temperature fluctuation  

The temperature control unit was set to maintain the temperature of the testing room at 

  o
C with a tolerance of     o

C. As well as normal oscillations, additional fluctuations in 

room temperature were also observed when a rapid change in temperature occurred 

outside the room. Figures 3.29 and Figure 3.30 show the variation of the inner cell 

volume together with temperature variation for System 1 and system 2 respectively. As it 

can be seen, volume change fluctuations were strongly correlated to temperature 

fluctuations and a correction for these fluctuations was therefore applied. It was 

observed that the application of a temperature correction could result in eliminating 

most of the errors in volume measurement caused by long-term changes in temperature 

but it could equally produce new small unwanted short-term oscillations in volume 

measurement (caused by small rapid fluctuation of temperature recorded by the 
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temperature gauge, which did not reflect the average temperature of the water in the 

cell) . A correction factor of      cm
3
/

o
C was found adequate to eliminate most of the 

effect of changes in temperature for both System 1 and System 2. This correction factor 

produced about      cm
3
 oscillation in the inner cell volume change measurement which 

corresponded to approximately        error in the measured specific volume.  

 

Figure 3.27 Variation of the pore water volume change against elapsed time for System 2 

 

Figure 3.28 Immediate pore water volume change against pore water pressure for System 2 
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Figure 3.29 Variation of measured and corrected volume change with time for System1  

 

Figure 3.30 Variation of measured and corrected volume change with time for System2 

Calibration for loading ram intrusion in the inner cell 

Vertical movement of the loading ram during the application of the deviator stress 

implied a corresponding increase or decrease in the inner cell water volume due to the 

intrusion of the loading ram (see Figure 3.1). Calibration for this effect was carried out 

by increasing the ram displacement at a given rate and measuring the corresponding 

change in the inner cell water volume.  Figure 3.31 and Figure 3.32 show the change in 
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the inner cell water volume against the axial displacement along with the best fit line for 

System 1 and System 2 respectively. The calibration factor was        cm
3
/mm and 

       cm
3
/mm for System 1 and System 2 respectively. The accuracy of the linear 

calibration were found to be       cm
3
.  

 

Figure 3.31 Calibration for stroke intrusion for System 1 

 

Figure 3.32 Calibration for stroke intrusion for System 2 
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3.3.7 Investigation of the accuracy of volume measurements in the double-

wall cell 

The accuracy of the sample volume change measurements of System 1 and System 2 was 

investigated by testing two saturated compacted samples in the double-wall cells and 

comparing the measured sample volume change using the flow into the inner cell (with 

the various calibrations and corrections) against measured pore water volume changes. 

This was done during isotropic loading. The compaction technique was as given in Section 

4.1, the sample setup procedure was as given in Section 4.2.3 and the saturation 

procedure was as given in Section 5.4.3.  

Figures 3.33 and 3.34 show the variation of specific volume with mean effective stress 

during isotropic loading stage of two identical samples tested in System 1 and System 2 

(after applying the relevant calibrations). Inspection of these figures indicates excellent 

matching between the two measurement techniques. In addition, the volume change 

measurements of both samples were very similar in System 1 and System 2.  

This investigation confirms that the testing equipment for the unsaturated tests gave 

high quality volume change measurements.  

 

Figure 3.33 Sample volume change and pore water volume change of a saturated sample 
measured in System 1 
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Figure 3.34 Sample volume change and pore water volume change of a saturated sample 
measured in System 2 

3.4 CALIBRATIONS FOR SYSTEM 3 

In the unsaturated tests, cell pressure was kept constant during the course of the tests 

and radial net stress was applied by varying pore air and pore water pressures 

simultaneously at a given rate. This procedure gives the maximum accuracy in terms of 

sample total volume change measurements. To achieve the same quality of volume 

change measurement for saturated tests based on measuring the changes in the pore 

water volume, effective stress should be increased by holding the pore water pressure at 

a constant value while increasing cell pressure.  

3.4.1 Pressure transducers  

The pore water pressure controller and cell pressure controller were calibrated using the 

calibration system shown in Figure 3.15. The calibration procedure was exactly the same 

as that followed in System 1 and System 2. Accuracy of the linear calibration was found 

to be      kPa for the pressure range between         kPa. Values of   and   from 

the calibration regression for the pore water pressure transducer for System 3 are given 

in Table 3.1. Figure 3.35 shows the calibration result of the cell pressure controller of 

System 3 together with the best fit line. 

3.4.2 Pore water volume change gauge  

This volume gauge was calibrated over the range       cm
3
 by using the setup shown in 

3.17. The calibration procedure was similar to that followed in System 1 and System 2 

except that a line pressure of     kPa was applied instead of     kPa. This volume gauge 

was fitted with an analogue     , rather than a digital one, and a different 
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logging/software setup was employed compared to the previous two unsaturated 

systems. Calibration data were therefore plotted in terms of applied volume change 

against measured voltage and linear calibration with an accuracy of       cm
3
 was 

considered to be adequate. Values of   and   from the calibration regression for the 

pore water volume change gauge for System 3 are given in Table 3.1. Figure 3.36 shows 

the calibration result together with the best fit line. 

 

Figure 3.35 Calibration of the cell pressure transducer of System 3 

 

 

Figure 3.36 Calibration of pore water volume gauge of System 3 
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3.4.3 Load cell 

The load cell for System 3 was calibrated using by using the procedure described in 

Section 3.3.4. The calibration data were plotted in terms of applied load against 

measured voltage. This gave a linear calibration with accuracy of    N. Values of   and 

  from the calibration regression for the load cell of System 3 are given in Table 3.1. The 

calibration of the load cell of System 3 together with the best fit line is shown in Figure 

3.37. 

3.4.4 Axial displacement gauge 

The axial displacement gauge were calibrated over the range      mm using slip gauges 

as described for System 1 and System 2. Calibration data was plotted in terms of applied 

displacements against voltage and a linear variation with accuracy of       mm was 

found adequate. Values of   and   from the calibration regression for the axial 

displacement gauge for System 3 are given in Table 3.1. Figure 3.38 shows the calibration 

of the displacement transducer together with the best fit line. 

 

Figure 3.37 Calibration of the load cell of System 3 

3.4.5 Apparent volume change 

The pore water volume measuring system was calibrated for any errors caused by any 

occluded air, water diffusion from the tubes and expansion of the tubes. The calibration 

included the volume gauge and the connecting tubes which were outside the triaxial cell 

(see Figure 3.13). The drainage system was initially flushed with de-aired water to 

remove air bubbles and the gauge was filled with de-aired water. Then a back pressure 

of     kPa was applied to the lower chamber of the volume gauge and this was 
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maintained for    days. The results showed that the volume change rate was 

approximately -     cm
3
/day.  

 

 Figure 3.38 Calibration of the displacement transducer for System 3 

 

Figure 3.39 Variation of the pore water volume against elapsed time for System 3 
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4 
SAMPLE PREPARATION TECHNIQUE AND TESTING PROCEDURE 

This chapter covers three topics, namely the preparation of samples, the test setup and 

the data processing. 

4.1 SAMPLE PREPARATION  

4.1.1 Soil type  

Speswhite Kaolin was selected for the present experimental programme based on the 

following considerations:  

 Kaolin clays do not contain highly expansive clay minerals, thus avoiding the 

additional complexity that this would introduce. 

 The mechanical and water retention behaviour of compacted samples of this 

material is relatively well known as it has been investigated in depth by many 

researchers such as, for example Sivakumar (1993), Sharma (1998) and 

Raveendiraraj (2009). 

 The air entry value of compacted kaolin samples is relatively low and hence it is 

possible to investigate unsaturated soil behaviour over the low suction range 

      kPa which is convenient for testing.  

 Test duration is reasonable as the rate of consolidation is higher for compacted 

Kaolin than that of most other clays.  

 

4.1.2 Preparation of Kaolin mix 

Given that sample diameter for a triaxial test was    mm, it was decided to limit the 

maximum aggregate diameter to   mm, to keep the maximum aggregate diameter much 

smaller than the sample diameter (assuming that the size of aggregates will not change 

significantly during the compaction process). After several trials of mixing at different 

water contents, it was concluded that mixing at water contents more than      was not 

practical because it was extremely difficult to pass the mix through a sieve with an 

aperture size of   mm. To maintain as much consistency as possible with the work of 

other researchers (e.g. Sivakumar, 1993 and Raveendiraraj, 2009) who worked on 

compacted Kaolin, a target water content      was selected. The mix after sieving was 
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stored in sealed plastic bags under controlled temperature for one day prior to 

compaction in order to allow for moisture equalisation. 

4.1.3 Development of isotropic and anisotropic initial fabrics 

The experimental investigation of the anisotropic behavior of unsaturated soils requires a 

compaction technique that is capable of: 

 Producing homogeneous samples in terms of soil fabric. 

 Producing samples that are stiff enough for handling and trimming. 

 Producing repeatable samples in terms of physical properties (e.g. void ratio, 

moisture content, etc.).  

 Producing samples with both isotropic initial fabric (or with minimal anisotropy) 

and anisotropic initial fabric. 

 

Many researchers including Sivakumar (1993), Cui and Delage (1996), Sharma (1998), 

Wheeler and Sivakumar (2000) prepared samples by one-dimensional static compaction 

inside a stiff-walled compaction mould. The resulting fabric was found to be anisotropic 

due to the restriction on lateral movement. Because of this, one dimensional compaction 

was considered unsuitable to produce isotropic samples in the current project. 

Alternatively, Sivakumar (2005) proposed an isotropic compaction technique in which wet 

kaolin was placed inside a latex membrane and was compacted inside a large triaxial cell 

by increasing cell pressure and allowing air to drain out of the soil through the top cap 

and pedestal of the cell.  Sivakumar (2005) concluded that the technique was adequate 

to produce repeatable and homogenous isotropic samples. 

For the current project, a more general compaction technique was proposed by using the 

basic principle proposed by Sivakumar (2005). The proposed technique allows compaction 

to be performed along a predefined stress path, by controlling both the radial and 

deviator stresses.   

Compaction setup 

The compacting equipment (see Figure 4.1 and Figure 4.2) consisted of a loading frame, 

a triaxial cell for     mm diameter samples, a cylindrical rubber membrane, a 

membrane stretcher, two acrylic coarse filters, circular rubber sheets and four “ ” rings. 

The rubber membrane was attached to the pedestal and sealed with two “ ” rings then 

the membrane stretcher was placed and the membrane was folded at the top and bottom 

of the stretcher. Trapped air between the membrane and the membrane stretcher was 

removed. A coarse filter was placed on the pedestal and two circular rubber sheets, with 
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silicon lubricant in between them, were placed on top of the coarse filter to reduce end 

friction. Small holes were made in the rubber sheets to allow air drainage which was 

arranged through the base of the cell. The mix was transferred into the membrane by 

means of a small scoop. Another two circular rubber sheets, with silicon lubricant in 

between, were then placed on the top surface of the soil. The top cap was then placed 

and the membrane stretcher was removed. The membrane was then attached to the top 

cap by using two “ ” rings.  

 

Figure 4.1 Components of compaction setup  

 

Figure 4.2 Compaction frame 
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The cell was assembled and transferred to the compaction frame (see Figure 4.2). The 

cell pressure was applied by means of compressed air while the deviator load was 

measured externally by a proving ring (corrections were made for the effects of cell 

pressure increase and loading ram friction). The isotropic compaction was performed by 

increasing the cell pressure at a constant rate of   kPa/minute, while the anisotropic 

compaction was performed by increasing the axial displacement at a constant rate of 

     mm/minute, measuring the deviator load and adjusting the cell pressure 

accordingly. No water drainage was observed during the compaction process. 

After compaction, the cell pressure was removed and the sample was taken out of the 

cell. A triaxial specimen of    mm diameter was cored from the oversized compacted 

sample. The initial (before compaction) height of the oversized sample,  i.e. the height 

of soil mix placed inside the membrane, was about     mm while the final (after 

compaction) height was about     mm. This was sufficient to core a triaxial soil sample 

of     mm in height. The sampler used during coring was a standard oedometer ring (   

mm diameter) which was attached to a cylinder of sufficient height with a diameter 

slightly bigger than    mm to eliminate any friction between the sample and the cylinder 

wall. The sample was cored vertically by using a compression frame at a rate of   

mm/minute. This rate was a compromise to keep both sample disturbance and loss of 

moisture as small as possible. A soil sample of    mm in diameter with a larger height 

than required for triaxial tests was obtained. Subsequently, cored sample was placed in a 

standard split mould and cut to the required height. Samples that were to be tested in 

stress path tests involving only triaxial compression stages were trimmed to     mm 

height, whereas samples that were to be tested in stress path tests including triaxial 

extension stages were trimmed to    mm height. This difference was necessary because 

during testing in triaxial extension there would have been insufficient axial travel for 

testing of samples with an initial height of     mm. Sample height was measured with a 

standard height gauge of      mm accuracy. Direct measurement of the sample diameter 

was difficult, due to the risk of sample damage and the inner diameter of the coring ring 

was instead measured.  

Isotropic and anisotropic compaction stress paths 

Figure 4.3 shows the loading paths followed during compaction of both isotropic and 

anisotropic samples. In both cases the initially loose soil was first loaded isotropically to 

a mean net stress of     kPa and subsequently unloaded to zero stress in order to define 

an initial reference state common to all samples. The sample was subsequently loaded 

from this initial reference state either isotropically (method A) or anisotropically at a 

stress ratio      , where      ̅ (method B) to the same reference mean net stress 
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 ̅      kPa. The value of this reference stress was selected as a compromise between 

two conflicting requirements; to facilitate handling of the sample after compaction 

(samples compacted to a very low value of mean net stress were fragile and difficult to 

trim) and to produce samples that would yield at relatively low stress levels. Samples 

compacted to very high values of mean net stress would have required application of high 

stresses to yield, which would have caused problems in the subsequent triaxial test 

programme, where the intension was not only to explore the initial yield behaviour but 

also to then explore evolution of anisotropy by subjecting the samples to stress paths 

involving considerable plastic straining. This was only possible if the initial yield stress 

was relatively low, because of the capacity of the double wall triaxial cell (e.g. a 

maximum radial net stress of 590 kPa at a suction s=300 kPa).   

 

Figure 4.3 Loading paths during compaction and estimated critical state line (at suction 
corresponding to the end of anisotropic compaction) 

At the beginning of this work, the precise position of the critical state line in the    ̅ 

plane corresponding to the suction at the end of anisotropic compaction was not known. 

It was therefore estimated by assuming a gradient and intercept from Wheeler and 

Sivakumar (2000) corresponding to       kPa (this is the average suction after 

anisotropic compaction as measured in this work by using the axis translation technique). 

The value of the intercept was calculated by quadratic extrapolation of the relationship 

between cohesion intercept and suction proposed by Wheeler and Sivakumar (2000).  
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Due to uncertainty about critical state, a relatively small stress ratio   equal to     was 

chosen for the anisotropic compaction stress path. In terms of Bishop’s stress, the 

average final stress ratio in the      plane at the end of anisotropic compaction was even 

smaller, i.e.       , as in this case the stress path starts far from the origin at a point 

with horizontal coordinate     ̅        (where  ̅    but       ) . As a consequence, a 

moderately anisotropic fabric was expected at the end of anisotropic compaction. Note 

that there was never any indication of shear planes on the anisotropically compacted 

samples. 

The specific volume of anisotropic samples (i.e. compacted by using method B) was 

smaller than that of isotropic samples (i.e. compacted by using method A). To investigate 

the influence of void ratio, a second set of anisotropic samples was prepared by following 

a path with the same stress ratio of method B  but limited to a void ratio equal to that of 

samples compacted by using method A. This required imposition of a smaller maximum 

anisotropic stress, which was found by trial and error to be equal to  ̅      kPa and 

      kPa. 

During compaction it was not possible to measure sample volume changes. Therefore it 

was not possible to measure the average cross-sectional area of the sample and hence to 

calculate the deviator stress correctly. The cross-sectional area was assumed to be 

constant and several compaction trials were conducted to find the axial force needed to 

obtain a stress ratio of       along the anisotropic compaction path. In the first 

compaction trial, the cross-sectional area was taken equal to that obtained during 

isotropic compaction. A suitable combination of deviator force and radial stress was 

therefore imposed based on the assumed cross-sectional area. However, the measured 

average cross-sectional area after compaction showed some deviation from the assumed 

value and, therefore, a new compaction trial was conducted based on the cross-sectional 

area measured during the first trial (a new combination of deviator load and radial stress 

was calculated). This procedure was repeated until the difference between measured 

and assumed cross-sectional area was reasonably small.  

Finally, despite the two lubricated sheets, the compacted sample showed the influence 

of some friction at the ends (i.e. a non-cylindrical sample). Therefore, to minimize fabric 

heterogeneity, all triaxial samples were cut from the middle section of the oversized 

sample.     
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4.2 TEST SETUP FOR SYSTEM 1 AND SYSTEM 2 

4.2.1 Preparation of de-aired water 

De-aired water was used in the entire testing system (including the outer cell) to avoid 

formation of air bubbles and therefore to reduce volume measurement errors and 

increase stability of pressure control. De-aired water was prepared by using a Nold 

Deaerator of   litres capacity. Given that approximately    litres of de-aired water was 

required to perform a triaxial test, de-airing was done in two stages and water stored in 

an elevated tank. In each stage the deaerator was filled with tap water and a vacuum of 

   kPa was applied. De-airing was accelerated by a rotating disc that sheared the water 

during application of vacuum. A de-airing period of     hours was found sufficient to 

prepare high quality water. After this, the de-aired water was transferred to the storage 

tank and kept under vacuum while the second de-airing stage was in progress.     

4.2.2 Saturation of the high air entry filters 

The high air entry ceramic filters of the pedestal and the top cap were saturated inside 

the cell to avoid potential problems associated to removal and reattachment of filters 

such as air leaking to the water drainage system. Filters saturation consisted of the 

following steps (referring to Figure 3.10): 

 The drainage system was flushed carefully with de-aired water to remove any 

trapped air. 

 The outer cell was assembled (without the inner glass cell) and filled with de-

aired water.  

 Valves     and   were closed while valves       and   were opened on the cell 

drainage line. On the pore water drainage system, valves    and    were closed. 

A cell pressure of     kPa was applied and kept for one day to force any air 

bubbles in the system to go into solution.  

 With pressure of     kPa on pore water drainage line, valves    and    were 

opened. The pressure on the pore water drainage line was then reduced gradually 

to    kPa. Drainage was therefore allowed from the cell into the pore water 

drainage line (note that both filters were directly exposed to the cell pressure 

with the top cap left hanging in the cell during saturation) until the measured 

coefficient of permeability of the two filters reached a constant value. A typical 

variation of the measured filter permeability with time is shown in Figure 4.4. 

 At the end of the saturation process, the cell pressure was reduced gradually to 

   kPa. Then both the cell pressure and pore water pressure were reduced 

gradually to    kPa. 
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 The drainage system was flushed again with de-aired water to remove any 

trapped air that might have formed during flushing of the ceramic filters.    

 

 

Figure 4.4 Typical variation of filter permeability with time 

4.2.3 Sample setup 

After saturation of the filters, the pore water volume gauge was filled with de-aired 

water (as discussed in Section 3.3.3). The lower chamber of the gauge was brought to the 

required position (usually the lowermost position for a triaxial compression test and the 

uppermost position for a triaxial extension test). 

Prior to sample setup, valve 11 (on the top cap drainage line) was closed while valve 12 

(on the pedestal drainage line) was kept open (see Figure 3.10). A smear of water was 

maintained on the pedestal’s high air entry filter while the top cap was placed in a small 

container with shallow water to avoid cavitation and hence filter de-saturation. The 

sintered brass annulus was placed on the shoulder of the pedestal filter holder. A rubber 

membrane of suitable length was prepared and examined for any holes. The procedure 

followed during sample set up can be summarized in the following steps (a schematic 

representation of each step is shown in Figure 4.5): 

 Step  : the soil sample was placed directly on the high air entry filter of the 

pedestal. Once the sample was in touch with the high air entry filter, negative 

pore water pressure began to develop rapidly in the pedestal drainage path. This 

pressure was recorded by the pressure transducer inside the pore water 
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controller. The rubber membrane was placed around the sample, by using a 

membrane stretcher, and sealed with two “ ” rings on the pedestal. The top cap 

was then placed and the membrane was sealed on it with two “ ” rings. Valve    

was then opened (valve    was kept open throughout) to monitor the negative 

pore water pressure developing also in the top cap. Once pore water pressure 

reached     kPa, valve    was closed and valve    (vent) was subsequently 

opened for   second to release the negative pressure. Valve    was then 

reopened. 

  Step  : The outer cell wall was placed and sealed against the base by using tie 

rods and two pieces of acrylic. The cell was filled with de-aired water up to a 

certain level.  

 Step  :  The inner glass cell was lowered into position under water to avoid 

trapping air. The top cover of the inner cell with the attached load cell was then 

submerged in an inclined position to avoid trapping air in the load cell hole. The 

top cover was then slowly rotated back into vertical position under water and 

placed carefully in place. The submerged weight of the load cell during this step 

was entirely taken by the sample. To allow hooking of the top cap (as described 

in Section 3.1.1), the load cell was rotated by    degrees around its vertical axis. 

The nuts of the inner cell’s tie rods were turned upside down under water to 

remove trapped air before screwing them in place. The vent valves of the top 

cover were kept open during tightening of the nuts to avoid development of any 

excess cell pressure acting on the sample inside the inner cell.  

 Step  :  Water in the outer cell was drained out and the outer cell was 

subsequently removed (due to space limitation) to adjust the inner cell’s wall (as 

the wall, sometimes, does not align with the base “ ” ring). The vent valves on 

the top cover were then closed.  

 Step  : The outer cell wall was lowered into position and the top cover was 

placed and fixed with the nuts. For triaxial extension, the load cell was hooked to 

the top cover of the outer cell by adjusting the reaction screw as described in 

Section 3.1.1. A cell pressure of   kPa was applied to the inner cell (valves 

        and   were opened) before adjusting the reaction screw to avoid 

development of negative pressures inside the inner cell (during lifting of the load 

cell). The reaction plate was subsequently attached to the top cover and the 

outer cell was filled with de-aired water. Valves   and   were opened to apply a 

pressure of   kPa to the outer cell. Valve    was then opened with an air pressure 

of   kPa and the cell pressure was subsequently increased to    kPa so that the 

radial net stress was    kPa.  
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 Step  : Valves    and    on the pore water drainage line were closed to avoid the 

risk of air breaking through the high air entry filters that could be caused by the 

compressibility of water in the drainage lines or by the expansion of drainage 

tubes (pore water pressure was not controlled at this stage). The cell pressure 

and the air pressure were increased to     kPa and     kPa respectively at a rate 

of    kPa/minute (with the difference maintained at 10 kPa throughout the 

process).  

 

 

Figure 4.5 Steps of sample setup in System 1 and System 2  

Setting up of saturated samples in System 1 and System 2 

Two tests on fully saturated soil samples were conducted in System 1 and System 2 to 

monitor the volume change during sample saturation and to compare the two techniques 

for measuring sample volume change during loading (i.e. to compare the changes in the 

inner cell apparent volume and pore water volume).   

The following modifications were made to the drainage system: 

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Cell pressure=900 kPa

Air pressure=890 kPa

Tie rods

Acrylic

 piece

Cell pressure=11 kPa

Air pressure=1 kPa

Inner cell's

vent

Reaction

 plate
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 The air drainage line was flushed with de-aired water between the pedestal and 

valve   . Valve    was kept closed for the whole test period.  

 The high air entry filter of the top cap was replaced with a coarse filter. A filter 

paper disc was also inserted to avoid sample smear into the filter. Air was 

therefore drained from the top cap (instead of the pedestal as in the original 

setup) and this was achieved by connecting the air pressure controller to valve    

(see Figure 3.10) by using a      tube.  

 The section of tubing between the pedestal and valve    was flushed with de-

aired water and the valve was kept close during saturation. The pore water 

pressure was supplied via valve    on the pedestal drainage line.  

 

A sample set up procedure similar to that described for unsaturated samples was 

followed. Sample saturation was achieved as follows: 

 Water was flushed through the sample from the bottom (by opening valve   ) 

under cell pressure of    , with an air pressure of      kPa on the air drainage 

line to the top cap and a water pressure of     kPa on the drainage line to the 

pedestal. This step was terminated when water (with no air bubbles) was noticed 

in the drainage line from the top cap (usually after     days from the start of 

flushing).  

 The remaining air in the top cap was flushed by closing valve    (to avoid 

dropping of pore water pressure at the base of the sample during the flushing) 

and opening valves    with a pore water pressure of     kPa. Valve    was then 

closed and kept close over the rest of the test. Valve    was then reopened to 

have the same pore water pressure of     kPa at the top and bottom of the 

sample. 

 The pore water pressure was reduced to     kPa and maintained at this level for 

  to    days to force the remaining air inside the sample to go into solution. It 

should be noted that no  -check was performed in these tests.  

 

4.3 TEST SETUP FOR SYSTEM 3 

The pedestal pore water drainage lines were flushed with de-aired water. The top cap 

drainage line was flushed with dry air to facilitate air drainage during sample saturation. 

Two coarse sintered brass filters of    mm diameter were prepared; one was saturated in 

an ultrasonic water bath whereas the other one was oven-dried. Circular filter papers, 

“ ” rings and a rubber membrane were also prepared before setting up the sample. The 

procedure followed during sample setting up and saturation is explained in the following 

steps with reference to Figure 3.13: 
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 Step  : Valve   (on the pedestal drainage line) was closed. The water saturated 

coarse filter was placed on the pedestal and the filter paper was placed on the 

top of it to avoid sample smear into the filter. The sample was placed directly on 

the filter paper and subsequently another filter paper was placed on the top of 

the sample before positioning the dry coarse filter. The rubber membrane was 

placed and sealed with two “ ” rings to the pedestal. The top cap was placed 

and the membrane was sealed also to the top cap with two “ ” rings. 

 Step  : The cell wall was placed with care and the hook of the load cell was 

properly positioned in the bevel of the top cap without displacing the sample. 

The cell was subsequently transferred to the loading frame and filled with tap 

water.  

 Step  : Water was flushed through the sample by opening valve   (so that the air 

pressure at the top of the sample was atmospheric), opening valve   with a cell 

pressure of    kPa and valves   and   with a back pressure   kPa. Drainage was 

allowed until clear water (with no air bubbles) flowed from the top cap (usually 

after     days). 

 Step  : Valves   and   were closed and valve   was opened to apply a back 

pressure of   kPa to the top cap. Once the back pressure in the top cap drainage 

line reached   kPa, valve   was opened again (this valve was closed to avoid 

application of an excess pressure to the base of the sample when the back 

pressure was less than   kPa). The cell pressure was increased to    kPa so that 

the radial effective stress was   kPa. The cell pressure and back pressure were 

increased to     kPa and     kPa respectively to dissolve the remaining air inside 

the sample. The pressure was raised at a slow rate (  kPa/hour) to avoid applying 

an excess pressure to the soil while the sample was still unsaturated.   

 Step  : Saturation was confirmed by performing a  -check (where   is the ratio 

between the increase in pore pressure and the increase in the cell pressure) by 

closing valve  , increasing the cell pressure by    kPa and measuring the 

corresponding increase in pore pressure by using the pressure transducer. The 

sample was considered saturated if the   value was above      (the   value for 

this work was found to be between      and     ). 

 

4.4 DATA PROCESSING  

4.4.1 Unsaturated testing 

As explained in Chapter 3, variables can be calculated in Clisp studio software from input 

and measured data as shown below. 



CHAPTER 4  Sample preparation technique and testing procedure 

110 
 

                                                                                                                                                                  

  
 

       
                                                                                                                                          

where   ,   ,    and     are the initial sample volume (input variable), the change in 

sample volume (measured data), the initial height of the sample (input variable) and the 

change in sample height (measured data) respectively,   is the deviator force (measured 

data),   is the current value of the deviator stress. Values of    and    are measured 

from the beginning of loading after suction equalisation.  

The current value of   from Equation 4.2 can be compared with the required current 

target value of   in order to follow the described stress path of specified gradient 

[    ̅⁄ ]. This target value of   can be calculated by starting from the relationship 

between increments of mean net stress  ̅, deviator stress   and radial net stress  ̅ : 

  ̅    ̅                                                                                                                                                           

This can be re-arranged to express    as a function of [    ̅⁄ ] and   ̅ : 

   
 [    ̅⁄ ]

  [    ̅⁄ ]
   ̅                                                                                                                                        

If radial net stress is adjusted by varying the pore air pressure while holding the cell 

pressure constant, then   ̅       and Equation 4.4 then results in the following 

expression for the target value of  : 

           
 [    ̅⁄ ]

  [    ̅⁄ ]
                                                                                                                 

where    is the initial value of   at the start of the test (input variable), [    ̅⁄ ]  is the 

required stress path gradient (input variable),     is the initial value of pore air pressure 

(input variable) and    is the current value of pore air pressure (measured data). In a 

stress-controlled stage, where radial net stress being increased (or decreased) at a 

specified rate, the software calculates the current and target values of deviator stress 

increment from Equations 4.2 and 4.5 respectively, and compares the error to the 

tolerance (     kPa). When the error exceeds the tolerance, the deviator force   is 

increased/decreased to track the target value of deviator stress by sending a signal to 

the lower chamber pressure controller. Instead, in a strain-controlled stage when axial 
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displacement is being increased (or decreased) at a specified rate, the current deviator 

stress is calculated from Equation 4.2 and is fed into Equation 4.5 to calculate the target 

air pressure value. The software then compares the error in the current value of the air 

pressure to the tolerance (     kPa). When the error exceeds the tolerance, the air 

pressure is increased/decreased accordingly by sending a signal to the air pressure 

controller.  

After applying the necessary corrections to the raw data obtained from the software, a 

number of derived variables were calculated by using MS Excel. Values of the specific 

volume  , water content  , degree of saturation   , true axial strain   , true radial 

strain   , true volumetric strain   , true shear strain    and mean Bishop’s stress    were 

calculated after the test as shown below. 

  
           

  
                                                                                                                                             

  
    
  

                                                                                                                                                               

   
   

     
                                                                                                                                                          

      (
     

  
)                                                                                                                                            

      (
     

  
 )                                                                                                                                          

      (
     

  
)                                                                                                                                            

   
 

 
                                                                                                                                                           

    ̅                                                                                                                                                              

where    and    are the density of water and the specific gravity of the solid particles, 

taken as   Mg/m
3
 and     respectively.    is the mass of the solids within the sample, 

which was initially calculated approximately from the wet mass and water content after 

compaction (necessary to perform a stress path test) and subsequently measured more 
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accurately after oven-drying of the sample at the end of the test.    is the volume of the 

water in the sample.    is the average radius of the sample after suction equalisation 

and    is the current average change in sample radius (calculated from the average 

sample cross-section area). The negative signs in Equations 4.9, 4.10 and 4.11 were 

required because of the use of a standard soil mechanics sign convention of compressive 

strains as positive. 

4.4.2 Saturated testing 

In the saturated triaxial system (System 3), the stress path was controlled by increasing 

axial displacement (see Section 3.2), measuring the deviator stress (Equation 4.2) and 

adjusting the cell pressure accordingly:  

       
  [    ̅⁄ ]

 [    ̅⁄ ]
                                                                                                                                  

where     is the cell pressure at the beginning of loading stage and    is the current cell 

pressure value. The tolerance in the current cell pressure value was set to      kPa. Raw 

data were subsequently corrected and processed in MS Excel to calculate derived 

variables by using Equations 4.6, 4.9, 4.10, 4.11 and 4.12.  

4.5 TYPICAL TEST STAGES 

Normally, each stress path test consisted of one or more of the stages described below. 

For unsaturated tests, the cell pressure was kept constant for the whole test at     kPa 

and the radial net stress was controlled by varying the air pressure (and the pore water 

pressure simultaneously to control suction as required). For saturated tests, the pore 

water pressure was held constant and the radial effective stress was controlled by 

varying cell pressure. 

Wetting stages for unsaturated tests  

The initial suction of the samples, measured by using the axis translation technique, was 

higher than     kPa as will be shown in Section 5.3. Samples were equalised to target 

suctions of     kPa or     kPa under a stress state of  ̅     kPa and     kPa for tests 

that involved only triaxial compression stages and under of stress state of  ̅     and 

    for tests involving triaxial extension loading (as described in Section 3.1.1). Suction 

equalisation was achieved by imposing a step change of suction from the initial value to 

the target one. This target value of suction was maintained for the whole duration of the 

equalization stage (usually about   to    days). In all cases, the pore water volume gauge 

recorded inflow of water to the sample confirming that suction equalisation involved 
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wetting of the sample. For one series of the tests, additional wetting stages from       

kPa to       kPa (as will be explained in Section 5.1.2) were conducted under constant 

net stress.    

Loading stages  

The test programme involved probing along a series of loading paths at constant 

inclinations in the    ̅ plane under constant suction. Loading started after the wetting 

stage from the equalization stress state.  

For loading stages that did not involve shearing to failure, loading was conducted by 

varying the radial net stress at a constant rate of   kPa/hr and adjusting the deviator 

stress accordingly. The suitability of this loading rate was confirmed, at the beginning of 

testing programme, by monitoring volume changes of unsaturated samples over    hours 

rest period after isotropic loading to  ̅      kPa at different suction levels. As volume 

change is smaller during unloading than loading, unloading was conducted by decreasing 

the radial net stress at a constant rate   kPa/hr. For loading stages that involved 

shearing to failure, axial displacement was varied at a constant rate of     mm/hr, 

measuring the deviator stress and adjusting the radial net stress accordingly. This rate of 

axial displacement gives nearly the same time period for the shearing stages as that for 

the loading stages conducted by varying the radial net stress. It is worth mentioning that 

no attempt was made to investigate the influence of increasing or decreasing the 

constant rates of loading/shear on the measured response of the soil. 

For saturated tests, loading started from the stress state after saturation (i.e.      kPa 

and     kPa). For isotropic stress paths, loading was conducted by increasing the radial 

effective stress at a constant rate   kPa/hr. For other stress paths, loading was 

conducted by increasing the axial displacement at a constant rate of     mm/hr, 

measuring the deviator stress and adjusting the radial effective stress accordingly (by 

holding pore water pressure constant and varying cell pressure).  

Shear stages  

Loading stages with a stress path inclination less than the critical state ratio were 

followed by a conventional shearing stage which was conducted by increasing the axial 

displacement at a constant rate of     mm/hr at constant radial (net or effective) stress. 

The duration of this shear stage was similar to that of other stages (e.g. wetting and 

isotropic/anisotropic loading). In most cases, shearing was conducted up to failure in 

triaxial compression or extension.   
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5 
EXPERIMENTAL RESULTS AND DISCUSSION 

This chapter presents results the from the laboratory tests conducted during this PhD. 

Material behaviour under unsaturated and saturated conditions is initially discussed in 

this chapter and is further analysed in Chapter 6. 

5.1 TEST SERIES AND STRESS PATHS 

The experimental campaign consisted of    Test Series with each series involving up to   

triaxial compression and extension tests. The first objective was to determine yield 

points and, hence, to define both the initial yield surface induced during compaction and 

the changes of yield surface produced by plastic loading. The second objective was to 

examine whether critical states were independent of the evolving anisotropy. Each 

unsaturated test began with an initial wetting stage to a required suction under a stress 

state of  ̅     kPa and     kPa (for tests involving shearing in triaxial compression) or 

a stress state of  ̅     kPa and     (for tests involving shearing in triaxial extension). 

Each saturated test began instead with a saturation stage under a stress state of      

kPa and    . 

The wetting/saturation stage was followed by a “probing” stage consisting of loading at 

constant suction at different constant values of [     ̅] (in the case of unsaturated tests) 

or [      ] (in the case of saturated tests). 

All probing stages are delimited in the    ̅ plane or      plane by the two lines defined 

by     and        (where      ̅ or     ). This is because loading at     or 

       would involve applying a negative (tensile) radial stress or a negative (tensile) 

axial stress, respectively.  

The name of each test series begins with a letter which is either A if the samples were 

compacted isotropically or B if the samples were compacted anisotropically. For those 

test series conducted to investigate the changes of the yield surface induced by plastic 

loading, the first letter is followed by a second one (either a, b, c, d or e) depending on 

the particular plastic loading path followed. The first letter/letters is/are followed by a 
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number indicating the value of constant suction at which all tests in this series were 

conducted.  

The name of each individual test within a given series begins with the series name 

followed by a number in brackets referring to the constant gradient of the stress path 

[     ̅] or [      ] under which probing was conducted. For instance, A300(1) refers to 

a test on an isotropically compacted sample, wetted to       kPa and then probed 

under constant suction at [     ̅]   . 

As mentioned in Section 4.1.3, two different sample heights had to be used for testing 

samples in triaxial compression and triaxial extension due to the limitation on axial 

displacement. The initial sample height for tests involving loading stages in triaxial 

compression only was     mm (with initial sample aspect ratio of  ) whereas the initial 

sample height for tests involving loading stages in triaxial extension was    mm (with 

initial sample aspect ratio of    ). However, it was found interesting that as test 

progresses, the aspect ratio becomes more similar in triaxial compression and triaxial 

extension, suggesting that having lower initial aspect ratio in triaxial extension than in 

triaxial compression is rather advantageous.  

It is worth mentioning that few tests were repeated in System 1 and System 2 to 

investigate how repeatable the results are. It was concluded that that testing procedure 

gives very repeatable results. 

5.1.1 Test series to investigate yielding and critical states of as-compacted 

samples 

Test Series A300, A100 and A0 were performed on isotropically compacted samples at 

constant suctions of       kPa,       kPa and under saturated conditions 

respectively, whereas Test Series B300, B100, Be100 and B0 were performed at the same 

three values of suction but on anisotropically compacted samples.  

For the unsaturated Test Series A300, A100, B300 and B100 the slopes of the probing 

stress paths were identical and equal to [     ̅]                   and      (see 

Figure 5.1). 

Probing stages were initiated either from point   (corresponding to  ̅     kPa and   

  kPa) or from point   (corresponding to  ̅     kPa and    ) depending on whether 

tests involved shearing in triaxial compression or extension, as previously explained. 

Tests performed at [     ̅]           or      followed the same probing stress path 
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until failure occurred. For tests performed at [     ̅]    or     , the probing stress 

path was terminated at a radial net stress of     kPa (Points   and   respectively in 

Figure 5.1) and this was followed by constant suction shearing at [     ̅]   , i.e. under 

constant radial net stress, to failure in triaxial compression or extension, respectively. 

 

Figure 5.1 Stress paths of Test Series A300, A100, B300 and B100 

Test Series Be100 was conducted on anisotropically compacted samples with same initial 

specific volume as the isotropically compacted samples. The probing stages in this series 

were performed at [     ̅]                 and     . 

For the saturated Test Series A0 and B0, the probing stages initiated from point   

(corresponding to      kPa and    ) and followed similar stress paths as those of the 

unsaturated tests but this time defined in terms of effective stress, i.e.  [      ]       

              and      (see Figure 5.2).  

Unlike the unsaturated Test Series A300, A100, B300, B100, the saturated Test Series A0 

and B0 did not include a probing stress path at [      ]     because this resulted in an 

almost immediate attainment of critical state. An additional probing stress path at 

[      ]       was instead performed. Saturated tests performed at [      ]    were 

conducted under a nominal deviator stress of   kPa in order to track changes of sample 
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height throughout loading. Tests at [      ]         or       followed the same stress 

path until failure. Instead, for tests at [      ]    , the probing stage terminated at a 

radial net stress of     kPa (point   in Figure 5.2) and was followed by constant radial 

stress shearing ([      ]     ) to failure in compression. For [      ]      or     , the 

probing stage terminated at a mean effective stress   ́     kPa (Points   and   

respectively in Figure 5.2), and was followed by constant radial net stress shearing 

[      ]    ) to failure in compression or extension respectively. 

 

Figure 5.2 Stress paths of Test Series A0 and B0 

5.1.2 Test series to investigate yielding and critical states of samples with 

induced anisotropy 

Four further Test Series were performed on anisotropically compacted samples. Each of 

them involved an initial loading and unloading stages at a given stress ratio followed by 

probing/shearing stress paths of the same types as described in the previous section. 

In Test Series Ba300,   anisotropically compacted samples were all loaded initially at a 

stress ratio [     ̅]       to a final mean net stress  ̅      kPa (see loading paths     

in Figures 5.3) corresponding to about     times the yield stress measured from the 

closest probing stress path in Test Series B300. Loading to a mean net stress higher than 

this would have brought the samples very close to critical state which was not desirable. 
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Test Series Ba300 was conducted to investigate the expansion of the yield surface caused 

by loading along nearly the same stress path as followed during compaction.  

 

Figure 5.3 Stress paths of Test Series Ba300 

In Test Series Bb300 (  tests) and Bc300 (  tests) the initial loading stages involved 

loading at [     ̅]     and    respectively, to a final mean net stress  ̅      kPa (see 

loading paths     in Figures 5.4 and 5.5 respectively). These tests were conducted to 

investigate expansion of the yield surface during loading along very different stress paths 

to those followed during previous compaction. In all tests within Series Ba300, Bb300 and 

Bc300, the initial loading stage was followed by unloading to the initial stress state by 

going back alone the same stress path in the    ̅ plane.   

Test Series Ba300 included   tests with probing paths at [     ̅]                   

and      (see Figure 5.3). Test Series Bb300 included   tests with probing paths at 

[     ̅]                   and      (see Figure 5.4). Test Series Bc300 included   tests 

with probing paths at [     ̅]                  and       (see Figure 5.5). Tests at 

[     ̅]           or      continued along the same stress path until shear failure. For 

tests at [     ̅]        or     , probing terminated at a radial net stress of     kPa 

(Points  ,   or   in Figures 5.3, 5.4 and 5.5) and was followed by constant suction 

shearing at constant radial net stress (i.e. [     ̅]    ) until failure was attained in 

either compression or extension.  
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Figure 5.4 Stress paths of Test Series Bb300 

 

Figure 5.5 Stress paths of Test Series Bc300 

In order to examine the effect of wetting-induced plastic collapse-compression on the 

evolution of the yield locus for anisotropically compacted samples, Test Series Bd100 was 

conducted. Figures 5.6 and 5.7 show the loading, wetting and unloading stages of Test 

Series Bd100. Samples were initially wetted to a suction       kPa, as explained 
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earlier. Subsequently they were loaded at [     ̅]    to  ̅     kPa under constant 

suction [     ̅]    (see path    ) at which point the soil was about to yield. Then, they 

were wetted to       kPa (see path    ), by imposing a step change of suction from 

    kPa to     kPa at the top and bottom boundaries of the sample. This was followed 

by unloading to  , at the net stress state imposed during the initial wetting. The 

subsequent probing/shearing stages for this series (see Figure 5.7) were identical to 

those in Test Series Bb300.  

 

Figure 5.6 Loading, wetting and unloading stages in Test Series Bd100 

 
 

Figure 5.7 Stress paths of Test Series Bd100 
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In addition to the tests campaign described in Sections 5.1.1 and 5.1.2, three 

supplementary tests were performed (i.e. Tests A200(0), A0(sat1) and A0(sat2)).  

Test A200(0) was performed on an isotropically compacted sample wetted to       kPa 

and loaded subsequently at [     ̅]   , from an initial stress state of  ̅     kPa and 

    to  ̅      kPa. The result of this test was used together with the results of Tests 

A300(0) and A100(0) in plotting the isotropic normal compression planar surface (see 

Section 6.2.3) that was used subsequently in performing model simulations with the 

proposed anisotropic model in Chapter 8.   

 
Tests A0(sat1) and A0(sat2) were performed on isotropically compacted samples in 

System 1 and System 2 respectively after applying some modifications to the equipment 

(see Section 4.2.3). These tests involved isotropic loading from an initial stress state of 

     kPa and     kPa to        kPa and     kPa respectively then unloading to the 

initial state. The sample of Test A0(sat1) was subsequently re-loaded isotropically to 

       kPa then sheared at constant    to a final   value of    kPa. The sample of Test 

A0(sat2) was subsequently re-loaded isotropically to        kPa then sheared at 

constant    to a   value of    kPa then unloaded at constant    to     kPa. The 

purposes of Tests A0(sat1) and A0(sat2) were: 

 to compare sample volume change measured by using the overall change of 

sample size to that measured from the pore water volume change (see Section 

3.3.7); 

 to obtain values for the elastic soil constants   and   under saturated condition. 

 

5.2 INITIAL SAMPLE PROPERTIES 

The details of all tests are given in Table 5.1. In this table:  ̅       ,          and   refer to 

the mean net stress, deviator stress and suction, respectively, at which equalization 

during the initial wetting stage took place;          ,          and          
 refer to the initial 

(after compaction) water content, specific volume and degree of saturation, 

respectively;        ,        and        
 refer to the water content, specific volume and 

degree of saturation, respectively, at the end of the initial wetting stage. 

The after-compaction values of water content, specific volume and degree of saturation 

for the isotropically compacted samples were              ,             and 

              respectively while, for the anisotropically compacted samples, they 

were              ,             and              , respectively. These data show 
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a relatively small scatter and, therefore, a good repeatability of the compaction 

techniques.  

Table 5.1 Properties of samples before and after the initial wetting stage 

Series Test code 

 
 ̅
  

  
  

  

 
  

  
  

  

 

                                                   
 

kPa 

A300 

A300(3) 12 6 300 0.2485 0.2905 2.335 2.364 0.4838 0.5535 

A300(2) 12 6 300 0.2458 0.2817 2.327 2.353 0.4814 0.5413 

A300(1) 12 6 300 0.2464 0.2779 2.333 2.351 0.4803 0.5348 

A300(0) 12 6 300 0.2444 0.2738 2.317 2.338 0.4825 0.5320 

A300(-0.5) 10 0 300 0.2483 0.2810 2.312 2.336 0.4921 0.5467 

A300(-1) 10 0 300 0.2470 0.2765 2.309 2.324 0.4904 0.5427 

A300(-1.5)   10 0 300 0.2493 0.2874 2.318 2.349 0.4918 0.5537 

A100 

A100(3) 12 6 100 0.2494 0.3594 2.361 2.390 0.4764 0.6719 

A100(2) 12 6 100 0.2474 0.3677 2.323 2.357 0.4860 0.7044 

A100(1) 12 6 100 0.2473 0.3589 2.328 2.373 0.4841 0.679 

A100(0) 12 6 100 0.2465 0.3698 2.314 2.352 0.4879 0.7108 

A100(-0.5) 10 0 100 0.2469 0.3597 2.307 2.348 0.4908 0.6936 

A100(-1) 10 0 100 0.2473 0.3641 2.300 2.344 0.4949 0.7041 

A100(-1.5) 10 0 100 0.2474 0.3679 2.301 2.362 0.4911 0.7023 

A0 

A0(2)   0 0.2462  2.303 2.403 0.4912  

A0(1)   0 0.2482  2.321 2.421 0.4883  

A0(0.5)   0 0.2462  2.302 2.402 0.4916  

A0(0)   0 0.2452  2.310 2.410 0.4865  

A0(-0.5)   0 0.2479  2.320 2.420 0.4882  

A0(-1)   0 0.2475  2.316 2.416 0.4888  

A0(-1.5)   0 0.2471  2.330 2.430 0.4829  

A0(sat1)   0 0.2451  2.301 2.402 0.4898  

A0(sat2)   0 0.2467  2.302 2.422 0.4924  

B300 

B100(3) 12 6 300 0.2446 0.2778 2.166 2.180 0.5454 0.6118 

B300(2) 12 6 300 0.2446 0.2771 2.177 2.189 0.5402 0.6058 

B300(1) 12 6 300 0.2456 0.2780 2.175 2.190 0.5433 0.6074 

B300(0) 12 6 300 0.2452 0.2763 2.173 2.180 0.5435 0.6083 

B300(-0.5) 10 0 300 0.2477 0.2767 2.162 2.182 0.5539 0.6086 

B300(-1) 10 0 300 0.2490 0.2775 2.172 2.190 0.5523 0.6064 

B300(-1.5) 10 0 300 0.2460 0.2841 2.174 2.200 0.5448 0.6161 

B100 

B100(3) 12 6 100 0.2461 0.3646 2.163 2.211 0.5499 0.7823 

B100(2) 12 6 100 0.2476 0.3663 2.168 2.213 0.5510 0.7847 

B100(1) 12 6 100 0.2504 0.3628 2.178 2.218 0.5525 0.7740 

B100(0) 12 6 100 0.2479 0.3657 2.167 2.201 0.5524 0.7913 

B100(-0.5) 10 0 100 0.2485 0.3559 2.166 2.211 0.5537 0.7639 

B100(-1) 10 0 100 0.2489 0.3585 2.177 2.217 0.5498 0.7657 

B100(-1.5) 10 0 100 0.2477 0.3546 2.189 2.231 0.5415 0.7489 

Be100 

Be100(2) 12 6 100 0.2464 0.3665 2.307 2.343 0.4901 0.7090 

Be100(1) 12 6 100 0.2460 0.3671 2.320 2.353 0.4846 0.7051 
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Table 5.1 Continued 

Series Test code 

 
 ̅
  

  
  

  

 
  

  
  

  

 

                                                   
 

kPa 

 

Be100(0) 12 6 100 0.2451 0.3584 2.352 2.387 0.4712 0.6715 

Be100(-0.5) 10 0 100 0.2475 0.3704 2.306 2.378 0.4926 0.6985 

Be100(-1) 10 0 100 0.2469 0.3654 2.298 2.348 0.4944 0.7046 

Be100(-1.5) 10 0 100 0.2471 0.3670 2.335 2.368 0.4813 0.6971 

B0 

B0(2)   0 0.2487  2.171 2.271 0.5521  

B0(1)   0 0.2468  2.175 2.275 0.5457  

B0(0.5)   0 0.2476  2.158 2.258 0.5558  

B0(0)   0 0.2443  2.167 2.267 0.5443  

B0(-0.5)   0 0.2470  2.184 2.284 0.5420  

B0(-1)   0 0.2495  2.186 2.286 0.5468  

B0(-1.5)   0 0.2476  2.173 2.273 0.5485  

Ba300 

Ba300(2) 12 6 300 0.2490 0.2833 2.157 2.184 0.5593 0.6218 

Ba300(0.5) 12 6 300 0.2481 0.2835 2.162 2.191 0.5550 0.6188 

Ba300(0) 12 6 300 0.2465 0.2826 2.171 2.194 0.5474 0.6155 

Ba300(-0.5) 10 0 300 0.2490 0.2782 2.167 2.184 0.5547 0.6108 

Ba300(-1) 10 0 300 0.2490 0.2849 2.173 2.203 0.5520 0.6156 

Ba300(-1.5) 10 0 300 0.2455 0.2819 2.157 2.167 0.5515 0.6277 

Bb300 

Bb300(1.2) 12 6 300 0.2494 0.2882 2.157 2.189 0.5601 0.6301 

Bb300(0.5) 12 6 300 0.2476 0.2911 2.169 2.185 0.5504 0.6385 

Bb300(-0.5) 10 0 300 0.2498 0.2796 2.170 2.184 0.5557 0.6140 

Bb300(-1) 10 0 300 0.2481 0.2747 2.167 2.180 0.5527 0.6051 

Bb300(-1.5) 10 0 300 0.2480 0.2874 2.152 2.183 0.5594 0.6315 

Bc300 

Bc300(1.2) 10 0 300 0.2469 0.2715 2.182 2.198 0.5429 0.5890 

Bc300(0.5) 10 0 300 0.2457 0.2770 2.171 2.185 0.5452 0.6076 

Bc300(0) 10 0 300 0.2492 0.2866 2.183 2.196 0.5475 0.6227 

Bc300(-0.5) 10 0 300 0.2454 0.2692 2.178 2.186 0.5415 0.5902 

Bc300(-1.5) 10 0 300 0.2482 0.2823 2.162 2.179 0.5554 0.6223 

Bd100 

Bd300(1.2) 12 6 300 0.2473 0.2771 2.154 2.167 0.5568 0.6171 

Bd300(0.5) 12 6 300 0.2451 0.2797 2.162 2.178 0.5480 0.6171 

Bd300(-0.5) 10 0 300 0.2480 0.2832 2.160 2.185 0.5556 0.6213 

Bd300(-1) 10 0 300 0.2477 0.2815 2.160 2.182 0.5552 0.6192 

Bd300(-1.5) 10 0 300 0.2469 0.2764 2.168 2.176 0.5492 0.6108 

 

5.3 COMPACTION STRESS PATHS 

The stress paths imposed during both isotropic and anisotropic compaction (see Section 

4.1.3) were replicated on two different samples inside System 1 (i.e. the double walled 

triaxial cell) to obtain some insight into the behaviour of the soil during compaction. 

Both samples were initially isotropically loaded to  ̅      kPa by using the setup shown 

in Figure 4.2. A second loading, either isotropic or anisotropic, was conducted in System 

1 under constant water content by holding cell pressure at     kPa and decreasing air 
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pressure at a rate of   kPa/hr. The pore water pressure and the sample volume change 

were recorded during this process.   

Figures 5.8 shows the stress paths followed during the second loading in the    ̅ plane 

(     ) and      plane (        ) for both the isotropically and anisotropically 

compacted samples. At the start of the second loading (i.e. after the first isotropic 

loading) suction was higher for the isotropically compacted sample A than for the 

anisotropically compacted sample B by     kPa although the same procedure was 

followed during preparation and first loading of both samples (see point   in Figure 5.9). 

The slope of the anisotropic loading path is smaller in the      plane (     ) than in the 

   ̅ plane (   ) which is attributed to the increase in the value of the product      

during loading. The increase in the term     is attributed to the compression of large 

voids during compaction which resulted in a considerable increase of degree of saturation 

(see points    and    in Figure 5.9). Conversely, suction decreased slightly during loading, 

which is expected as the sample was getting denser. 

Inspection of Figure 5.8 shows that the unloading stress path       in the      plane 

deviates from the loading stress path      , which is due to the irreversible change of 

degree of saturation during loading (see point    in Figure 5.9). If the stress path during 

anisotropic compaction is interpreted in terms of Bishop stresses, the value of    at the 

end of loading (where        ) is only     , which suggests that the initial isotropic 

fabric, created during the isotropic first loading stage, would only be altered to a 

moderately anisotropic state during the subsequent anisotropic loading.  

Figure 5.10 shows the compression curves of the isotropically and anisotropically 

compacted samples in the      ̅ and in        planes. The yield stress is higher for 

sample A than for sample B which agrees with the fact that sample A had a higher suction 

than sample B and was isotropically compressed, unlike sample B which was 

anisotropically compressed. Although both samples were compacted to the same mean 

net stress (i.e.  ̅      kPa), the specific volume after unloading (point  ) was 

significantly less for sample B than for sample A. This behaviour could be attributed to 

the reorientation of aggregates or particles during anisotropic loading which resulted in a 

denser packing. This reorientation is not expected to occur during isotropic loading of a 

sample with an initial isotropic fabric. 
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Figure 5.8 Stress paths followed during isotropic (sample A) and anisotropic (sample B) 
compaction  

 

Figure 5.9 Variation of suction and degree of saturation with mean net stress during isotropic 
(sample A) and anisotropic (sample B) compaction  

 

Figure 5.10 Compression behaviour in terms of both net stress and Bishop stress during 
isotropic (sample A) and anisotropic (sample B) compaction  



CHAPTER 5  Experimental results and discussion 

126 
 

5.4 INITIAL WETTING STAGES 

As shown in Table 5.1, unsaturated samples which were to be subsequently loaded only in 

triaxial compression were wetted under  ̅     kPa and     kPa whereas unsaturated 

samples which were to be subsequently loaded in triaxial extension were wetted under 

 ̅     kPa and     (see Section 5.1). Figure 5.9 indicates that, after compaction, 

suction was generally greater than     kPa which suggests that all samples were wetted 

during equalisation to       ,        kPa or to saturation.  

5.4.1 Wetting to       kPa (Test Series A300, B300, Ba300,Bb300, Bc300 & 

Bd100) 

Figures 5.11 to 5.15 show the increase in water content, specific volume and degree of 

saturation against time during the initial wetting stages for all Test Series conducted at 

      kPa (i.e. A300, B300, Ba300, Bb300 and Bc300). The results of the initial wetting 

stage in Test Series Bd100 (at       kPa) are shown in Figure 5.16. During the initial 

wetting stage all samples showed an increase in water content confirming that the 

suction value after compaction was higher than     kPa. All figures indicate that   

increased during wetting, with no sign of collapse compression. The large oscillations in 

specific volume (for example, see Figures 5.11b) are mainly attributable to the effect of 

temperature variation on instrumentation, which cannot be completely eliminated by 

calibration. Oscillations are less obvious in the plots of degree of saturation, confirming 

that changes of degree of saturation are dominated by the increase in water content 

rather than by the variation of specific volume. Further inspection of Figures 5.11 to 5.16 

indicates that both specific volume and specific water volume (         ) stabilised, 

in the majority of tests, after   days (when the rate of change of both these quantities 

fell below       per day). These observations were helpful in deciding the duration of 

the initial wetting stage.  

Inspection of Figure 5.11a shows that the average increase in water content for the 

isotropically compacted samples was      . Despite the anisotropically compacted 

samples have an initial specific volume significantly lower than the isotropically 

compacted samples (see Table 5.1), the average increase in water content of these 

samples (see Figures 5.12a, 5.13a, 5.14a, 5.15a and 5.16a) was       which is very 

similar to the isotropically compacted samples. This might indicate that material fabric 

and particle orientation do not have a significant influence on water retention behaviour 

when analysed in terms of water content rather than degree of saturation (further 

support to this hypothesis will be given later in this chapter). 
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The isotropically compacted samples showed an average increase in specific volume of 

about       (see Figure 5.11b) which is higher than that of anisotropically compacted 

samples, which had an average increase in specific volume of       (see Figures 5.12b, 

5.13b, 5.14b, 5.15b and 5.16b). The difference could be explained by considering that 

anisotropic samples show a more interlocked fabric than isotropic samples due to the 

occurrence of aggregate/particle reorientation during anisotropic compaction.  

The average increase in degree of saturation for isotropically compacted samples was 

      (see Figure 5.11c), slightly less than the average increase for anisotropically 

compacted samples which was       (see Figures 5.12c, 5.13c, 5.14c and 5.16c). This is 

consistent with the smaller increase in pore volume of the anisotropically compacted 

samples compared to the isotropically compacted samples (recall that both the 

isotropically and anisotropically compacted samples experienced approximately the same 

increase in water content). 

No effect of the initial stress condition (i.e.   ̅     kPa and     kPa for the tests only 

loaded subsequently in triaxial compression or  ̅     kPa and     kPa for tests 

subsequently loaded in triaxial extension) on soil behaviour during equalization could be 

clearly observed, indicating that these effects were sufficiently small to be hidden by the 

data scatter. The rate of increase of water content was unusually slow for some samples 

(see, for example, Bb300(0.5) in Figure 5.14). This might have been due to initial poor 

contact between the sample and the high air entry filter. Although the initial sample 

height was different for tests loaded only in triaxial compression (     mm) or loaded in 

triaxial extension (   mm), no apparent effects of sample height on changes of water 

content, specific volume and degree of saturation during equalization were observed.  

The average values of water content, specific volume and degree of saturation at the end 

of wetting were                           and              , respectively, for 

the isotropically compacted samples while they were              ,             and 

             , respectively, for the anisotropically compacted samples (see Table 5.1). 

The difference between the initial specific volume of isotropic and anisotropic samples 

reduced slightly after wetting. However, the difference between the degree of 

saturation, or water content, of isotropic and anisotropic samples was slightly bigger 

after wetting than immediately after compaction.  

Data scatter is relatively small and its influence on subsequent loading stages is limited, 

as it will be shown in the next sections. 
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Figure 5.11 Wetting stage of Test Series A300: (a) increase in water content, (b) increase in 
specific volume, (c) increase in degree of saturation  
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Figure 5.12 Wetting stage of Test Series B300: (a) increase in water content, (b) increase in 
specific volume, (c) increase in degree of saturation  
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Figure 5.13 Wetting stage of Test Series Ba300: (a) increase in water content, (b) increase in 
specific volume, (c) increase in degree of saturation  
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Figure 5.14 Wetting stage of Test Series Bb300: (a) increase in water content, (b) increase in 
specific volume, (c) increase in degree of saturation  
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Figure 5.15 Wetting stage of Test Series Bc300: (a) increase in water content, (b) increase in 
specific volume, (c) increase in degree of saturation  
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Figure 5.16 Wetting stage of Test Series Bd300: (a) increase in water content, (b) increase in 
specific volume, (c) increase in degree of saturation  
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5.4.2 Wetting to       kPa (Test Series A100, B100 & Be100) 

Figures 5.17, 5.18 and 5.19 show the increase in water content, specific volume and 

degree of saturation against time during the initial wetting stage for all test series 

conducted at       kPa. All samples showed a significant increase in water content 

(about three times the increase in water content observed during the initial wetting 

stage of tests conducted at       kPa). Specific volume increased during wetting, with 

no sign of collapse compression. 

Similar to the samples wetted to       kPa, the specific volume and specific water 

volume stabilised, in the majority of tests, after   days (after this time, the daily change 

of both these quantities became less than      ).  

Inspection of Figures 5.17a, 5.18a and 5.19a suggests that the average increase in water 

content was about               and        for Test Series A100, B100 and Be100 

respectively. The similar increase in water content for samples with different degrees of 

anisotropy (also noticed during wetting to       kPa) supports the hypothesis that 

water retention behaviour, if described in terms of water content rather than degree of 

saturation, is independent of material fabric (at least for suctions of     kPa and 

greater). 

The average increase in specific volume was                and         for Test Series 

A100, B100 and Be100 respectively (see Figures 5.17b, 5.18b and Figure 5.19b) suggesting 

that the anisotropic samples swelled slightly more than the isotropic samples. This is, to 

some extent, contradicting what was observed during wetting to       kPa. However, 

given that data scatter is relatively high compared to the average increase in  , it is not 

possible to conclude with any confidence that anisotropy affects swelling behaviour.      

The average increase in degree of saturation was                and         for Test 

Series A100, B100 and Be100 respectively (see Figures 5.17c, 5.18c and 5.19c). The 

average increase in degree of saturation of isotropically compacted samples was less than 

that of anisotropically compacted samples which is in agreement with the observation for 

the Test Series at       kPa. Finally, consistent with expected soil behaviour, the 

increase of degree of saturation during wetting to       kPa is significantly bigger than 

the increase in degree of saturation during wetting to       kPa. The average values of 

water content, specific volume and degree of saturation after wetting to       kPa 

were              ,             and               respectively for Test Series 

A100 whereas they were              ,             and               respectively  
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Figure 5.17 Wetting stage of Test Series A100: (a) increase in water content, (b) increase in 
specific volume, (c) increase in degree of saturation  
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Figure 5.18 Wetting stage of Test Series B100: (a) increase in water content, (b) increase in 
specific volume, (c) increase in degree of saturation  
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Figure 5.19 Wetting stage of Test Series Be100: (a) increase in water content, (b) increase in 
specific volume, (c) increase in degree of saturation  
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for Test Series B100 and              ,             and               respectively 

for Test Series Be100. 

As intended, the values of water content, specific volume and degree of saturation of 

Test Series Be100 were noticeably closer to those of Test Series A100 than to those of 

Test Series B100.   

As mentioned earlier, the specific volume varied by         and         after wetting 

to       kPa and       kPa respectively. Similarly, the degree of saturation varied by 

         and          after wetting to       kPa and       kPa respectively. 

This variation has of course no effect on compression curves when these are presented in 

terms of mean net stress,  ̅, however it is has an effect when compression curves are 

presented in terms of mean Bishop’s stress,    (    ̅      ). The resulting variation of 

Bishop’s stress is about    kPa and    kPa for       kPa and       kPa respectively, 

which might produce a small horizontal shift of the compression curves in the        

plane. Because of this, yield stresses measured in terms of mean net stress are slightly 

more accurate than those measured in terms of Bishop’s stress. Note however that, after 

wetting to       kPa, the values of mean Bishop’s stress are        kPa and        

kPa for the isotropically and anisotropically compacted samples respectively while, after 

wetting to       kPa, the values of mean Bishop’s stress are       kPa and       

kPa, for isotropically and anisotropically compacted samples respectively. The above 

variation would therefore account for about       of the relevant stress levels, which is 

relatively small.   

5.4.3 Wetting to saturation (Test Series A0 & B0) 

System 3 (used for testing saturated soil samples) did not allow measurement of sample 

volume changes during the saturation process. Because of this, two isotropically 

compacted samples, namely A0(sat1) and A0(sat2), were saturated and tested under 

saturated conditions in System 1 and System 2 respectively. Samples A0(sat1) and 

A0(sat2) were saturated in two stages (see Section 4.2.3), using the same procedure as 

for the tests performed in System 3 (see Section 4.3). In the first stage water was flushed 

through the sample to force air out from large voids, while in the second stage the 

remaining air bubbles were forced into solution through back-pressurization.  

During saturation of samples A0(sat1) and A0(sat2), the sample volume changes were 

recorded by measuring the volume of water flowing in or out of the inner cell. The pore 

water volume change was not measured because, during the initial flushing, water had 

drained from the sample into the air drainage line.  
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Generally, sample volume continuously increased, with no sign of wetting-induced 

collapse-compression during saturation. Figure 5.20 shows the increase in specific volume 

against the square root of time for samples A0(sat1) and A0(sat2). In Figure 5.20, point    

corresponds to the start of the second stage of the saturation process, after which a 

substantial increase in specific volume, accompanied by a large water inflow, was 

recorded for sample A0(sat2) whereas only a modest increase of specific volume, with a 

small water inflow, took place in sample A0(sat1). The increase in specific volume during 

the second stage is due to two reasons; firstly, an elastic unloading of   kPa (see Section 

4.2.3) and, secondly, the disappearance of water menisci at inter-particle contacts in 

those voids that were not fully saturated at the end of the initial flushing.  

Based on the above tests, the values of specific volume after-saturation (see the column 

       in Table 5.1) of Test Series A0 and B0 were assumed to be the initial specific 

volume (see the column          in Table 5.1) plus a constant increase of     which is the 

appropriate increase in specific volume taken from Figure 5.20.  

Finally, the amount of sample swelling during wetting increased with decreasing applied 

suction (i.e.       kPa,     kPa or   kPa) with no evidence of any wetting-induced 

collapse-compression. This fits the expected behaviour of compacted Kaolin during 

wetting at low mean net stress. The fact that samples swelled more during wetting to 

lower suction values could be explained by the greater reduction of suction during 

wetting paths that remained inside the    yield curve, as first proposed by Alonso et al. 

(1990).   

 

Figure 5.20 Increase in specific volume of samples A0(sat1) and A0(sat2) during saturation  
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5.5 PROBING/SHEARING STAGES ON AS-COMPACTED SAMPLES 

To investigate the influence of fabric anisotropy on unsaturated soil behaviour, several 

isotropically and anisotropically compacted samples were loaded along stress paths with 

different slopes in the    ̅ under constant suction.  

5.5.1 Probing/shearing at       kPa (Test Series A300 and B300)  

Figures 5.21 to 5.27 show the results from tests performed at       kPa on isotropically 

compacted samples (i.e. Test Series A300) and anisotropically compacted samples (i.e. 

Test Series B300). 

Comparison of results in the      plane suggests that, initially, both isotropically and 

anisotropically compacted samples show similar stiffness. However, as loading progresses 

at [     ̅]            and      (see Figures 5.21a, 5.22a, 5.23a, 5.26a and Figure 5.27a 

respectively), the response is less stiff for the isotropically compacted samples than for 

the anisotropically compacted samples. This might be partly attributed to the lower 

initial void ratio of the anisotropic samples compared to isotropic samples and partly to 

the effect of particle orientation on the mobilized shear strength at a given strain level.  

Inspection of Figure 5.24a indicates that isotropic probing at [     ̅]    produced a 

small positive shear strain in the isotropically compacted sample due to the existence of 

a small initial positive deviator stress and the non-inclined yield locus. Conversely, 

isotropic probing at [     ̅]    caused a small negative shear strain in the 

anisotropically compacted sample due to the inclined yield locus. The response of the 

anisotropically compacted sample B300(0) during subsequent shearing to failure was very 

similar to the response of the isotropically compacted sample A300(0) (see Figure 5.24a), 

suggesting that the previous isotropic probing erased any initial anisotropy in the sample. 

The behaviour of samples A300(-0.5) and B300(-0.5) was also very similar during both 

probing and shearing to failure (see Figure 5.25a).  

Figures 5.21a to 5.27a show that all samples attained a peak value of strength followed 

by a sharp reduction of deviator stress  . This is attributed to the occurrence of strain 

localization, as confirmed by the visual observation of shear bands at the end of the 

tests. For tests at [     ̅]         and   , both anisotropically and isotropically 

compacted samples attained very similar values of peak deviator stresses (see Figures 

5.24a, 5.25a and Figure 5.26a respectively) whereas, for tests at [     ̅]       and 

    ,  the value of peak deviator stress was noticeably larger (       )  for the 

anisotropically compacted samples than for the isotropically compacted samples (see 

Figures 5.21a, 5.22a and Figure 5.27a respectively).    
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Figure 5.21 Results of Tests A300(3) and B300(3) in: (a)      plane, (b)      plane, (c)      ̅ or 
       plane (d)       ̅ plane 
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Figure 5.22 Results of Tests A300(2) and B300(2) in: (a)      plane, (b)      plane, (c)      ̅ or 
       plane (d)       ̅ plane 
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Figure 5.23 Results of Tests A300(1) and B300(1) in: (a)      plane, (b)      plane, (c)      ̅ or 
       plane (d)       ̅ plane 
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Figure 5.24 Results of Tests A300(0) and B300(0) in: (a)      plane, (b)      plane, (c)      ̅ or 
       plane (d)       ̅ plane 

 



CHAPTER 5  Experimental results and discussion 

145 
 

 

Figure 5.25 Results of Tests A300(-0.5) and B300(-0.5) in: (a)      plane, (b)      plane, (c) 
     ̅ or        plane (d)       ̅ plane 
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Figure 5.26 Results of Tests A300(-1) and B300(-1) in: (a)      plane, (b)      plane, (c)      ̅ 
or        plane (d)       ̅ plane 
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Figure 5.27 Results of Tests A300(-1.5) and B300(-1.5) in: (a)      plane, (b)      plane, (c) 
     ̅ or        plane (d)       ̅ plane 
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Conversely, for the test at      ̅   , the peak deviator stress of the anisotropically 

compacted sample was      smaller than that of the isotropically compacted sample 

(see Figure 5.23a). No clear pattern of variation of peak deviator stress with initial 

anisotropy therefore emerges. Further inspection of shear plots shows that the amount of 

shear strain at peak deviator stress for tests at [     ̅]           and    was less in 

the anisotropically compacted samples than in the isotropically compacted samples. 

However, at [     ̅]      , the shear strain at peak deviator stress is higher for the 

anisotropically compacted sample than for the isotropically compacted sample indicating 

that the brittleness of the initially anisotropic material decreases as particles and 

aggregates progressively lose their initial orientation. 

The results in the      plane (see Figures 5.21b to 5.27b) indicate that the soil behaviour 

was contractant in all tests and that the specific volume had nearly stopped changing by 

the time the peak deviator stress was reached. With the only exception of sample 

B300(1), the values of specific volume of the anisotropically compacted samples at peak 

strength were smaller than the corresponding values of the isotropically compacted 

samples. Apart from sample B300(-1.5), the difference in specific volume between 

isotropic and anisotropic samples declined with increasing shear strains. Such behaviour 

indicates that accumulation of plastic strains erases the memory of the initial soil fabric 

(i.e. initial void ratio and anisotropy) and soil behaviour becomes controlled only by the 

recent stress history during the test. After the formation of a shear plane, measurements 

of deviator stress and volume changes become, however, inaccurate as the sample is 

physically split into two parts. 

Figures 5.21c to 5.27c show the conventional semi-logarithmic plots of specific volume 

against mean net stress  ̅ or mean Bishop’s stress   . The initial value of specific volume 

was noticeably lower for the anisotropically compacted samples than for the isotropically 

compacted ones. This suggests that a substantial rearrangement and reorientation of soil 

particles and aggregates occurred during anisotropic compaction, which resulted not only 

in distortion/rotation but also expansion of the initial yield surface compared to 

isotropically compacted samples (this will be further discussed in Chapter 6). As loading 

progresses, the compression curves of both isotropically and anisotropically compacted 

samples show a tendency to converge towards a single line. This observation is very clear 

for probing at [     ̅]            and    (see Figures 5.23c, 5.24d, 5.25c and 5.26c) 

suggesting that the soil fabric tends towards a form of anisotropy controlled by the 

recent stress history alone and independent of the initial (i.e. compaction-induced) soil 

fabric.  
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For all tests, the specific water volume    slightly decreased by about      , during 

initial elastic loading (no figures shown). After yielding, the variation of    depends on 

the stress path slope,  [     ̅] , with a modest increase of       for tests at [     ̅]  

       and      and two modest decreases of       and again       during probing and 

shearing respectively, for tests at [     ̅]     and     . It is worth mentioning that the 

variation of    does not appear to be affected by the initial sample anisotropy.  

Inspection of Figures 5.21d to 5.27d shows that    increased in a very consistent way in 

spite of the almost negligible variation of   , which demonstrates that the variation of    

is dominated by changes in specific volume. The initial difference in    between 

isotropically and anisotropically compacted samples declined as loading progressed, 

which is consistent with the behaviour in the compression plane.  

5.5.2 Probing/shearing at       kPa (Test Series A100, B100 and Be100) 

Figures 5.28 to 5.34 show results from tests at       kPa, namely from tests on initially 

isotropic samples (i.e. Test Series A100), initially anisotropic samples compacted to 

 ̅      kPa (i.e. Test Series B100) and initially anisotropic samples compacted to 

 ̅      kPa (i.e. Test Series Be100).   

Test Series A100 and B100 

The volumetric and shear behaviour was considerably less stiff for Test Series A100 and 

B100 than for Test Series A300 and B300, confirming the stabilising/stiffening effects of 

suction.  

The plots in the      plane (Figures 5.28a to 5.34a) show that the anisotropic samples 

B100(3), B100(2), B100(1), B100(-1) and B100(-1.5) produced a stiffer response than the 

corresponding isotropic samples A100(3), A100(2), A100(1), A100(-1) and A100(-1.5). 

Generally, for a given probing stress ratio [     ̅], the patterns of variation of deviator 

stress with shear strain at       kPa are similar to these observed at       kPa (see 

Figures 5.21a to 5.27a). During probing, sample A100(0) developed a small positive shear 

strain whereas sample B100(0) developed a small negative shear strain, similar to 

samples A300(0) and B300(0) respectively. In addition, samples A100(-0.5) and B100(-0.5) 

showed very similar responses during probing and subsequent shearing which was, once 

again, consistent with the previous comparison between tests A300(-0.5) and B300(-0.5) 

(see Figure 5.25).       

As in Test Series A300 and B300, no pattern emerges when comparing the peak deviator 

stress of isotropically and anisotropically compacted samples. Tests at [     ̅]    and 
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     show values of peak deviator stress that are      greater for the anisotropically 

compacted samples  compared to the isotropically compacted samples (see Figures 5.29a 

and 5.34a respectively) whereas the peak deviator stress of the anisotropically 

compacted sample at [     ̅]    was      smaller than that of the isotropically 

compacted sample (see Figures 5.23). Finally, tests at [     ̅]           and    show 

very similar peak deviator stress (see Figures 5.28a, 5.31a, 5.32a and Figure 5.23a 

respectively) for both anisotropically and isotropically compacted samples. 

The amount of shear strain at peak deviator stress for tests at [     ̅]         and   , 

but not for tests at [     ̅]      , was less in the anisotropically compacted samples 

than in the isotropically compacted ones. This behaviour is in agreement with the 

observation for tests at       kPa. 

Inspection of results in the      plane highlights similar features as already observed in 

Test Series A300 and B300 (see Figures 5.28b to 5.34b and Figures 5.21b to 5.27b 

respectively). The behaviour was contractant in all tests and specific volume had nearly 

stopped changing by the time the peak deviator stress was reached. With the only 

exception of sample B100(1), the specific volume at peak deviator stress was less for the 

anisotropically compacted samples than for the isotropically compacted samples. 

Moreover, apart from sample B100(-1.5), the difference in  specific volume between 

isotropic and the anisotropic samples declined as loading progressed. For any given 

[     ̅], the difference in   between isotropically and anisotropically compacted 

samples at peak strength is smaller for       kPa than for       kPa.  

Further inspection of      plots of Test Series A300, B300, A100 and B100 indicates that 

peak strength decreases significantly as suction decreases from       kPa to       

kPa for both isotropically and anisotropically compacted samples. No consistent trend of 

variation of shear strain at peak deviator stress with suction could be observed as this 

stays almost unchanged for tests at [     ̅]       and      but it decreases or 

increases for other tests. 

Figures 5.28c to 5.34c show the variation of specific volume in the      ̅ or         

planes. Although the initial (i.e. after compaction) values of specific volume varied quite 

randomly from one sample to another (see Table 5.1), the values of specific volume at 

the beginning of probing (i.e. after the initial wetting stage) were always greater in Test 

Series A100 and B100 than in Test Series A300 and B300. This observation is consistent 

with the expectation that, at low mean net stresses, wetting to lower suction levels 

induces greater swelling.  
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Figure 5.28 Results of Tests A100(3) and B100(3) in: (a)      plane, (b)      plane, (c)      ̅ or 
       plane (d)       ̅ plane 
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Figure 5.29 Results of Tests A100(2), B100(2) and Be100(2) in: (a)      plane, (b)      plane, 
(c)      ̅ or        plane (d)       ̅ plane 
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Figure 5.30 Results of Tests A100(1), B100(1) and Be100(1) in: (a)      plane, (b)      plane, 
(c)      ̅ or        plane (d)       ̅ plane 
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Figure 5.31 Results of Tests A100(0), B100(0) and Be100(0) in: (a)      plane, (b)      plane, 
(c)      ̅ or        plane (d)       ̅ plane 
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Figure 5.32 Results of Tests A100(-0.5), B100(-0.5) and Be100(-0.5) in: (a)      plane, (b)      
plane, (c)      ̅ or        plane (d)       ̅ plane 
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Figure 5.33 Results of Tests A100(-1), B100(-1) and Be100(-1) in: (a)      plane, (b)      plane, 
(c)      ̅ or        plane (d)       ̅ plane 
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Figure 5.34 Results of Tests A100(-1.5), B100(-1.5) and Be100(-1.5) in: (a)      plane, (b)      
plane, (c)      ̅ or        plane (d)       ̅ plane 
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As in Test Series A300 and B300, the compression curves of isotropically and 

anisotropically compacted samples tend to merge as loading progresses during the 

probing stage. This observation, which is particularly clear for tests at [     ̅]  

          and    (see Figures 5.30c, 5.31c, 5.32c and 5.33c), suggests that, regardless of 

the initial sample properties, the soil fabric tends to converge towards a unique 

configuration during loading at constant [     ̅], as already observed for tests at       

kPa.  

Further evidence of fabric evolution during loading is provided by inspection of the 

shearing plots of samples A100(1), A100(-0.5) and B100(-0.5) (see Figures 5.30a and 

Figure 5.32a). These plots show an increase in soil stiffness as shearing progresses, which 

is attributed to the on-going reorientation of soil particles/aggregates that increases the 

level of granular interlocking and hence the mobilized shear strength. 

Investigation of Figures 5.21c to 5.27c and Figures 5.28c to 5.34c, shows that the pre-

yield portions of the compression curves all have very similar gradients regardless of 

suction value and amount of anisotropy. The value of the yield stress is smaller at 

      kPa than at       kPa, which is expected as increasing values of suction 

produce greater stabilization of inter-aggregates contacts. The same figures also show 

that the compression curves of the anisotropically compacted samples present a more 

gradual change in slope, i.e. a gentler curvature, at yielding than the isotropically 

compacted samples. This is partly attributed to the larger rotation of the yield curve and 

partly to the denser packing (requiring larger energy to yield) of anisotropically 

compacted samples compared to isotropically compacted ones. For any given test series 

and regardless of the suction value, the slope of the post-yield portions of compression 

lines shows, to some extent, a dependency on the stress path ratio [     ̅]. This slope is 

smallest for [     ̅]    and increases when the ratio [     ̅]  is greater or smaller than 

zero. 

Figures 5.28d to 5.34d depict the variation of degree of saturation caused by changes of 

both specific water volume and specific volume during probing/shearing. No increase in 

specific water volume    was observed during loading at low values of mean net stress, 

i.e.       kPa (no figures shown). During loading to larger stresses, the specific water 

volume increased monotonically by up to       for samples A100(3), B100(3) and 

B100(2) whereas it decreased monotonically by approximately the same amount for 

samples A100(2), A100(-1.5) and B100(-1.5). For tests at [     ̅]            and   , a 

more substantial decrease in specific water volume was observed (           during 
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probing and       during shearing). In addition, the variation of specific water volume 

does not appear to be affected by fabric anisotropy.  

Figures 5.28d to 5.34d show a substantial increase of degree of saturation (        ). 

Given the relatively small increase (or even decrease) of specific water volume (as 

previously discussed), this increase of degree of saturation is mainly caused by the 

reduction of specific volume during probing/shearing. For tests at [     ̅]            

and    , the degree of saturation became close to 1 (             ) as loading 

progressed, indicating that samples had become nearly saturated when peak strength 

was attained. Furthermore, the corresponding compression curves (see Figures 5.30d, 

5.31d, 5.32d and 5.33d) show a consistent tendency to become flatter as the degree of 

saturation attains values close to 1.    

Test Series Be100 

The results of Test Series Be100 are plotted in Figures 5.28 to 5.34 together with the 

results of Test Series A100 and B100.  Samples of Test Series Be100 were compacted at 

[     ̅]      to a smaller value of mean net stress compared to other anisotropically 

compacted samples, i.e.  ̅       kPa instead of     kPa, which gave an initial specific 

volume similar to that of Test Series A100.  

Figures 5.29a to 5.34a indicate no consistent pattern for the relative position of the 

shearing curves of Test Series Be100, A100 and B100. The modestly anisotropic fabric of 

Test Series Be100 would be expected to show an intermediate response between Test 

Series A100 and B100.  

During isotropic loading of sample Be100(0), the shear strain was almost zero indicating 

that the positive shear strain caused by the imposed small positive deviator stress is 

compensated by the negative shear strain caused by the moderate rotation of the yield 

locus (associated to a small fabric anisotropy). This fits very well with the response of 

the anisotropic and isotropic samples, B100(0) and A100(0), which showed a small 

negative shear strain and a small positive shear strain, respectively, during isotropic 

loading.  

Inspection of the shear stages of tests subjected to probing stress paths of [     ̅]    

and      shows similar values of peak strength regardless of anisotropy. However, 

inspection of the other probing stages shows great discrepancy with respect to the 

position of peak deviator stress relative to those of Test Series A100 and B100. This 
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observation will be further discussed in Section 6.3 when discussing critical state 

behaviour. 

In the      plane (see Figures 5.28b to 5.34b), the behaviour of Test Series Be100 and 

A100 was very similar confirming the modest anisotropy of the former samples. Because 

of the same reason, the compression and degree of saturation curves (see Figures 5.28c 

to 5.34c and Figures 5.28d to 5.34d respectively) of Test Series Be100 and A100 were also 

very similar.  

The results of Test Series Be100 adds further weight to the conclusion that the 

differences in peak deviator stress between isotropically and anisotropically compacted 

samples do not follow a particular trend of behaviour but are caused by lack of sample 

repeatability. Lack of sample repeatability will have the largest effect on measured peak 

strength for shallow shearing paths that approach the critical state line at a very acute 

angle (i.e. stress paths that are sub-parallel to the critical state line). 

5.5.3 Probing/shearing under saturated conditions (Test Series A0 and B0) 

Figures 5.35 to 5.41 show the results from saturated tests on isotropically and 

anisotropically compacted samples. In this case, because the soil is saturated, 

compression curves are plotted in terms of mean effective stress    instead of mean net 

stress  ̅. Unlike the unsaturated Test Series, the saturated Test Series A0 and B0 were 

conducted inside a conventional triaxial cell (i.e. System 3 described in Section 3.2). Any 

potential inconsistency of behaviour between these two saturated test series and other 

unsaturated ones could therefore be partly attributed to the use of a different 

experimental setup.  

Figures 5.35a to 5.41a show the variation of deviator stress with shear strain during 

saturated probing at different values of [     ̅]. Generally, material response was 

substantially less stiff under saturated conditions than unsaturated conditions, which was 

expected due to the loss of the stabilizing capillary menisci. Most of the features of soil 

behaviour already observed for Test Series at       kPa and       kPa were also 

observed during saturated tests. In particular, tests at [     ̅]             and      

showed a stiffer response for anisotropically compacted samples than for isotropically 

compacted ones. Moreover, during isotropic probing, sample B0(0) showed a small 

negative shear strain whereas sample A0(0) showed a small positive shear strain, which is 

consistent with the behaviour of sample pairs B300(0)/A300(0) and B100(0)/A100(0) as 

previously discussed. In addition, the evolution of shear strains in samples A0(1), A0(0.5) 

and A0(-0.5) takes the same pattern of variation as that of samples A100(1), A100(-0.5),  
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Figure 5.35 Results of Tests A0(2) and B0(2) in: (a)      plane, (b)      plane, (c)        plane  

 

 



CHAPTER 5  Experimental results and discussion 

162 
 

 

Figure 5.36 Results of Tests A0(1) and B0(1) in: (a)      plane, (b)      plane, (c)        plane  
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Figure 5.37 Results of Tests A0(0.5) and B0(0.5) in: (a)      plane, (b)      plane, (c)        
plane  
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Figure 5.38 Results of Tests A0(0) and B0(0) in: (a)      plane, (b)      plane, (c)        plane  
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Figure 5.39 Results of Tests A0(-0.5) and B0(-0.5) in: (a)      plane, (b)      plane, (c)        
plane  
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Figure 5.40 Results of Tests A0(-1) and B0(-1) in: (a)      plane, (b)      plane, (c)        plane  
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Figure 5.41 Results of Tests A0(-1.5) and B0(-1.5) in: (a)      plane, (b)      plane, (c)        
plane  
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B100(-0.5) and Be100(-0.5) (see Figures 5.30 and 5.32) which was associated to evolution 

of fabric anisotropy with progression of loading.    

Furthermore, the very similar peak deviator stress attained during shearing of the two 

sample pairs A0(0)/B0(0) and A0(-0.5)/B0(-0.5) provides further evidence that 

differences in strength between isotropically and anisotropically compacted soil are 

mainly due to lack of sample repeatability (which is amplified when samples are sheared 

along paths which are sub-parallel to the critical state line in the    ̅ plane) rather than 

to intrinsic material properties.  

Results in the  :   plane (see Figures 5.35b to 5.41b) show that soil behaviour was always 

contractant but, unlike tests at       kPa and       kPa, the difference in specific 

volume between isotropically and anisotropically compacted samples remained 

unchanged throughout shearing. The same plots also show that specific volume has 

almost stopped changing by the time peak strength was reached. All samples also showed 

a sudden post peak reduction of shear strength due to strain localisation.      

Figures 5.35c to 5.41c show the plots of specific volume against mean effective stress   .  

The initially flat portion of the compression curve corresponds to elastic loading inside 

the yield surface and is substantially shorter compared to the Test Series at       kPa 

and       kPa. This is because yielding occurs at lower stress levels for saturated 

samples than for unsaturated samples because of the absence of stabilising inter-particle 

capillary menisci under saturated conditions. Unlike Test Series at       kPa and 

      kPa, the difference between compression curves of isotropically and 

anisotropically compacted samples tested at the same [     ̅]  declines only slightly as 

loading progresses. Furthermore, the slopes of the post-yield portions of the compression 

curves were clearly smaller for saturated samples compared to samples tested at       

kPa and        kPa, indicating a decreasing pattern of the post-yield compression 

slopes with decreasing suction. 

To further investigate  the effect of suction on stress-strain behaviour, Figures 5.42 and 

5.43 show results from the tests performed on isotropically and anisotropically 

compacted samples, respectively, under different suctions at [     ̅]   . Figures 5.42a 

and 5.43a show that the shear strain measured at peak deviator stress was highest at 

      kPa whereas it was lowest for saturated samples. Figures 5.42b and 5.43b 

indicate that the gradient of the post-yield compression lines decreased as suction 

decreased. Figure 5.42b also indicates that the two saturated compression curves A0(0) 
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and A0(sat1) (from tests conducted in System 3 and System1, respectively) did not match 

very well, which could be attributed to the different equipment used. 

 

Figure 5.42 Results of tests at [     ̅]    on isotropically compacted samples under different 

suctions in: (a)      plane, (b)      ̅ plane  

 
 

Figure 5.43 Results of tests at [     ̅]    on anisotropically compacted samples under 
different suctions in: (a)      plane, (b)      ̅ plane  
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5.6 LOADING/ UNLOADING AND PROBING/SHEARING STAGES ON SAMPLES 

WITH INDUCED ANISOTROPY (TEST SERIES Ba300, Bb300, Bc300 AND 

Bd100) 

Further to the work described in Section 5.5 , four additional Test Series, namely Ba300, 

Bb300, Bc300 and Bd100, were conducted on anisotropically compacted samples. The 

objective was to explore the change in the form of the yield surface, and hence the 

change in the degree of anisotropy with respect to the as-compacted state, produced by 

previous plastic straining along a given loading path stage and to investigate whether this 

change of anisotropy had any influence on critical states.  

5.6.1 Loading/ unloading stages  

In Test Series Ba300, Bb300 and Bc300 samples were loaded at [     ̅]     ,   and   , 

respectively to mean net stress  ̅       kPa and then unloaded back on the same stress 

path in the    ̅ plane to the initial stress state (stress path       in Figures 5.3, 5.4 

and Figure 5.5 respectively). 

Series Ba300 

Figure 5.44 shows results from the loading/unloading stages of Test Series Ba300, where 

all tests were following precisely the same stress path. Inspection of the      plots 

indicates a consistent variation of deviator stress with shear strain with a scatter band 

that was getting larger for        kPa (see Figure 5.44a). 

The loading curves in the      plane, see Figure 5.44a, showed an initial part with a 

similar gradient to that of the unloading curves and a subsequent part with a gradient 

significantly less than that of the unloading curves. This is consistent with the fact that 

samples were originally compacted at [     ̅]      then subsequently loaded/unloaded 

at the same value of the [     ̅]. Yield stresses during loading could therefore be easily 

identified, in this case, on the basis of the above change of gradient as negligible 

changes of soil fabric (and, hence, rotation of the yield locus) would be expected during 

plastic behaviour. Furthermore, unloading paths are remarkably parallel indicating high 

repeatability of soil behaviour.   

Plots of specific volume against shear strain (see Figure 5.44b) show that only a small 

portion of shear strains was reversible upon unloading, which is consistent with the 

yielding behaviour described above.  Also, the figure shows that, despite the scatter in 

shear strain, all samples showed very similar values of specific volume by the end of the 

unloading stage.  
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Figure 5.44 Results of loading/unloading stages of Test Series Ba300 in: (a)      plane, (b)      
plane, (c)      ̅ or        plane (d)       ̅ plane 
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Plots of the compression curves in the      ̅ plane (see Figure 5.44c) show that, despite 

same scatter in the initial specific volume, all compression curves converge to nearly a 

single line with progression of loading. The marked change in the gradient of these 

curves, interpreted as yielding, coincides with the marked change in the gradient of the 

shear plots described above. The unloading curves fell in a very narrow band with a small 

linear increase (in a semi-logarithmic plot) of specific volume with decreasing mean net 

stress. The scatter in specific volume inherited from the end of the wetting stage 

decreased after the loading/unloading stage which gave a very repeatable starting point 

for the subsequent probing.   

The variation of degree of saturation with mean net stress is shown in Figure 5.44d. The 

plots show an increase in degree of saturation of        as a consequence of a marked 

decrease in specific volume. Monitoring of the pore water volume indicated that a small 

amount of water flowed into the sample (corresponding to an increase of       in 

specific water volume).  Interestingly, during unloading, only a small decrease (     ) of 

degree of saturation was observed indicating that the change in degree of saturation is 

mainly dictated by the change in void ratio. Compression curves in the         plane (see 

Figure 5.44c) were also very consistent.  

Series Bb300 

Figure 5.45 shows results from the loading/unloading stages of Test Series Bb300 

(performed at [     ̅]   ). Figure 5.45a shows that only a very small amount of 

negative shear strains (less than     ) was recorded during the “nearly” isotropic 

loading/unloading. This behaviour, which reflects erasure of fabric anisotropy with 

plastic straining, matches very well the behaviour of samples B100(0), Be100(0) and 

B300(0) discussed in Section 5.5. The slight increase of shear strain in the positive range 

(        at the beginning of loading, can be attributed to the application of a small 

positive deviator stress (      kPa for Samples Bb300(1.2) and Bb300(0.5),     kPa for 

Samples Bb300(-0.5) Bb300(-1) and     kPa for Sample Bb300(-1.5)). The differences in 

shear strain could be attributed to the difference in magnitude of deviator stress as well 

as to a small lack of sample repeatability. 

The plots of specific volume against shear strain (see Figure 5.45b) show that, during 

unloading, all samples showed a small gradual increase in specific volume. Samples 

Bb300(1.2), Bb300(0.5) and Bb300(-1) showed a further reduction in shear strain during 

unloading (       . This behaviour could be interpreted as a delayed response to the 

particle rearrangement process that was taking place during previous isotropic loading. It 

is worth mentioning that no direct measurements of radial strains were conducted during  
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Figure 5.45 Results of loading/unloading stages of Test Series Bb300 in the: (a)      plane, (b) 
     plane, (c)      ̅ or        plane (d)       ̅ plane 
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tests (only axial and volumetric strains were recorded). Therefore measurements of shear 

strains less than       should not be considered as very reliable.   

Plots of specific volume against    ̅ or      (see Figure 5.45c) show that the observed 

decrease in soil stiffness during loading took place very gradually. This response is 

attributed to the progressive rearrangement of soil fabric which involves a decrease in 

voids size by slippage at the inter-particle contacts and reorientation of particles and 

aggregates. Even though both Test Series Ba300 and Bb300 were loaded to the same final 

value of  ̅, the plastic decrease in specific volume in Test Series Bb300 was       which 

was markedly less than that of Test Series Ba300 (     ). The slopes of pre-yield 

portions of the compression curves agreed very well with the slopes of unloading 

portions. Both of these slopes were very similar to those in Test Series Ba300 as will be 

further discussed in Chapter 6.    

Figure 5.45d shows that degree of saturation increased by approximately the same 

amount (     ) for all samples which was significantly less than the increase recorded in 

Test Series Ba300. This is, however, expected in the light of the observation that samples 

in Test Series Bb300 recorded a smaller reduction of void ratio during compression than 

samples in Test Series Ba300. As in Test Series Ba300, compression curves in the        

plane (see Figure 5.45c) were very consistent. 

Series Bc300 

Figure 5.46 shows results from the loading/unloading stages of Test Series Bc300 

(performed at [     ̅]    ). Inspection of the shear plots indicates a consistent 

variation of the deviator stress with shear strain with a scatter band that gets larger with 

progression of loading (see Figure 5.46a). The very first portion of the loading curves 

showed a stiff response (corresponding to elastic behaviour) followed by a shallow 

curvature and a final straight part. In terms of the yielding pattern of these loading 

curves, the transition into the plastic region occurred very gradually and this is 

attributable to the high level of fabric rearrangement that was taking place during 

loading. With respect to the unloading behaviour, Figure 5.46a shows a band of parallel 

curves with slightly higher stiffness at the beginning of the unloading. 

In the      plane (see Figure 5.46a) all curves fell in a narrow band with a scatter of 

      in the final shear strain value. As in Test Series Ba300, significant shear strain 

developed during loading and only a small portion of that strain was recovered during 

unloading, which is consistent with plastic behaviour. 
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Figure 5.46 Results of loading/unloading stages of Test Series Bc300 in: (a)      plane, (b)      
plane, (c)      ̅ or        plane (d)       ̅ plane 
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The plots of      in Figure 5.46b indicate that all samples achieved nearly the same 

amount of change of specific volume during the process of loading and unloading, 

indicating the repeatability of the behaviour in spite of small differences in the initial 

specific volume. 

The compression behaviour (see Figure 5.46c) was consistent for all the curves. However, 

the scatter band became slightly bigger during the unloading stages. The compression 

plot shows a marked change in the slope of the compression curves that is interpreted as 

yielding. In terms of the plastic decrease in specific volume, Test Series Bc300 showed a 

change of specific volume of       by the end of unloading. This amount was only 

slightly greater than that for Test Series Ba300 but was substantially greater than that in 

Test Series Bb300. During unloading, all curves run parallel with a slope that was similar 

to the slope of the pre-yield portion of the loading curves, confirming that elastic 

behaviour is less sensitive to a change of fabric anisotropy.   

The increase in degree of saturation was        (see Figure 5.46d) and was consistent 

among all samples in the series. Monitoring of the pore water volume suggested that 

water flowed out of the sample, which corresponded to a decrease of       in specific 

water volume.  

Series Bd100 

As previously mentioned, this test series analysed the effect of wetting-induced collapse-

compression on the yield surface produced by anisotropic compaction and on critical 

states. Results from all test stages, for all samples in the series, are shown in Figure 

5.47. The behaviour during initial isotropic loading to  ̅     kPa is very similar to that of 

Test Series Bb300 indicating a high level of sample repeatability. The small reduction in 

specific volume during this initial compression stage (see Figure 5.47c) shows only a 

slight change in stiffness consistent with elastic behaviour. Correspondingly, the increase 

in degree of saturation was very modest (see Figure 5.47d). The plots in the      plane 

(see Figure 5.47b) show minor initial positive values of shear strains, which became 

almost zero by the end of the isotropic loading.     

The initial isotropic loading stage was followed by a wetting stage to       kPa , under 

constant  ̅     kPa. This was achieved by a step change of suction at the samples 

boundary as described in Section 4.5. The variation of water content, specific volume 

and degree of saturation with time is shown in Figure 5.48. The inflow of water has, in 

the most cases, ceased after two days (see Figure 5.48a). Figures 5.47c and 5.48b  

indicate that only collapse compression occurred during wetting. The occurrence of  
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Figure 5.47 Results of loading/wetting/unloading stages of Test Series Bd100 in: (a)      plane, 
(b)      plane, (c)      ̅ or        plane (d)       ̅ plane 
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collapse compression immediately after the start of wetting indicates that the stress 

state is just on the yield surface at the end of the previous elastic loading. The specific 

volume at the end of wetting was very similar to that attained during isotropic loading of 

the unsaturated sample B100(0) to  ̅     kPa (see Figure 5.31c). 

The      and      plots (see Figures 4.47a and 4.47b) show that, although the mean net 

stress was kept constant, the samples showed a small negative shear strain during 

wetting. Once again, the amount of shear strains developed during wetting was 

approximately of the same magnitude to that in Sample B100(0) (during isotropic loading 

to  ̅     kPa). All of this confirms that reducing suction to     kPa under constant 

stresses has similar effects to those observed during application of the same load under 

unsaturated conditions.     

Furthermore, by the end of unloading, the total reduction in specific volume and the 

amount of shear strains were very similar to those in Test Series Bb300. This similarity is 

helpful in comparing yield patterns during subsequent probing/shearing stages at these 

two constant suctions. As expected, the samples behaved linearly during unloading in the 

     ̅ plane, with similar slopes as observed in the unloading stages of previous tests. 

This confirms that the effect of anisotropy and suction on elastic behaviour is only minor 

(see Section 6.1 for further discussion of this aspect). Inspection of Figure 5.48 shows 

that, by the time the inflow of water ceased, the specific volume was still showing a 

small gradual decrease with time, which could be attributed to delayed fabric 

rearrangement.  

Finally, the large increase in the degree of saturation of       (see Figure 5.47d and 

Figure 4.48c) is consistent with both the observed flow of water into the sample and the 

decrease in pore volume during wetting. 

5.6.2 Probing/ shearing stages  

Results from the probing/shearing stages of Test Series Ba300, Bb300, Bc300 and Bd100 

are presented in this section, grouped according to the slope of the probing stress path 

(i.e. [     ̅]                        or      ). To aid clarity, compression curves are 

presented only in the      ̅ plane in this sub-section.    

Probing at [     ̅]    

During performance of Test Series Ba300, it was thought that probing at [     ̅]    

could add more information in terms of yielding. However, it was subsequently found  
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Figure 5.48 Results of wetting stages of Test Series Bd100 in: (a) water content-square root of 
time plane; (b) specific volume-square root of time plane; (c) degree of saturation-square root 
of time plane 
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that the sample reached peak deviator stress almost elastically along this probing path, 

and then failed due to strain localisation (as confirmed by visual inspection of the shear 

band at the end of the test). Consequently, all other tests at [     ̅]    planned for 

subsequent test series were cancelled. Figure 5.49 compares the results of Test Ba300(2) 

(including the initial loading/unloading stage) with those of Test B300(2). Figure 5.49a 

indicates that Sample Ba300(2) showed a slightly stiffer response and higher peak 

deviator stress than B300(2), which is expected as the former had denser packing. 

During probing in Test Ba300(2), there was a very slight decrease in specific volume (see 

Figures 5.49b and 5.49c) and the soil response was mainly elastic. It could be noticed 

that both samples reached the peak strength at nearly the same total shear strain. 

Although both samples started from very similar values of specific volume, they reached 

the steady state at very different values of specific volume. As already mentioned, 

unfortunately no useful information could be inferred in terms of the yield stresses from 

Test Ba300(2). The plot of the degree of saturation (see Figure 5.49d) shows that 

significant water flow into the sample took place beyond peak. This was probably an 

effect of strain localisation and the degree of saturation measured after this point was, 

consequently, considered unreliable. 

Probing at [     ̅]      

Three probing tests were conducted at [     ̅]      (i.e. Bb300(1.2), Bc300(1.2) and 

Bd100(1.2). Figure 5.50 illustrates the results of Tests Bb300(1.2) and Bc300(1.2) along 

with the loading stage of a single test from Test Series Ba300 (which was also performed 

at [     ̅]     ). Figure 5.50b shows that the probing stages in Tests Bb300(1.2) and 

Bc300(1.2) start from very different values of specific volume and shear strains which 

must be taken into consideration while interpreting the results. Generally, Sample 

Bb300(1.2) showed a very similar response to that observed during the loading stage of 

Series Ba300 (Figure 5.50a) indicating that only a moderate change in fabric anisotropy 

took place during the previous isotropic loading stage of Bb300(1.2). The change in 

gradient of the shear curves in Figures 5.50a (associated with yielding) is more evident in 

Sample Bb300(1.2) than in Sample Bc300(1.2). At [     ̅]     , Sample  Bc300(1.2) is 

expected to exhibit greater rearrangement of soil fabric (associated to hardening due to 

changes of anisotropy) than sample Bb300(1.2) and therefore less clear yield patterns. 

Sample Bc300(1.2) could have a peak deviator stress twice as much as that of Sample 

Bb300(1.2) (bearing in mind that this sample was not yet at peak by the end of the 

probing stage, due to equipment limitation). This could be attributed to the difference in 

void ratio between these two samples at the beginning of probing. 
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Figure 5.49 Results of the probing stages of Tests Ba300(2) and B300(2) in: (a)      plane, (b) 
     plane, (c)      ̅ plane (d)       ̅ plane 
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Plots in the      plane in Figure 5.50b show that the variations of specific volume of 

Samples Bb300(1.2) and Bc300(1.2) did not tend to converge during probing. This 

suggests that probing at [     ̅]      up to failure was not enough to erase the effects 

of previous history, which seems to contradict the uniqueness of behaviour at critical 

states. 

In the compression plane (see Figure 5.50c), the compression curves of Samples 

Bb300(1.2) and Bc300(1.2) showed a small hysteric response over the pre-yield portion of 

probing which is consistent with the expected elastic response during reloading. 

Furthermore, the slopes of the pre-yield portion of probing were very similar confirming 

the assumption that fabric anisotropy does not affect elastic behaviour. Sample 

Bb300(1.2) showed a slightly sharper change in stiffness than sample Bc300(1.2) during 

probing. This fits with the idea that, in the former case, fabric anisotropy at the start of 

probing is closer to the target fabric anisotropy that stress state is attempting to achieve 

(hence less hardening due to change of anisotropy is expected to occur during probing). 

Furthermore, the stress at which the change in soil stiffness occurs is much less than the 

maximum stress that the sample has experienced during the loading stage (i.e.  ̅     

kPa). This observation fits with the classical assumption of an elliptical shape of the yield 

surface. Inspection of Figure 5.50c suggests that samples Bb300(1.2), Bc300 (1.2) and 

Ba300 tend to converge towards a single compression curve. This could illustrate the role 

of plastic strains in altering fabric anisotropy in such a way that produces unique fabric 

arrangement with the progression of loading. But then, it would be difficult to illustrate 

the substantial difference in soil stiffness among these samples observed in the      

plane (see Figure 5.50a) if unique fabric arrangement is achieved. 

Plots of the degree of saturation (see Figure 5.50d) show that Samples Bb300(1.2) and 

Bc300(1.2) exhibited the same increase in degree of saturation (     ) during probing 

(note that both the samples showed small decreases in specific water volume      ) 

which is consistent with the decrease of voids size. Figure 5.50d also shows that the 

hysteric response observed in the compression plots (see Figure 5.50c) also exists in the 

degree of saturation plots, which confirms once again the strong link between the 

variation of voids size and degree of saturation. 

 Figure 5.51 shows the results of Tests Bd100(1.2) and Bb300(1.2). Apart from the 

stabilising effect of meniscus water at the higher suction, the pattern of evolution of the 

shear strains (see Figure 5.51a) was very similar for both these tests. This indicates that,  
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Figure 5.50 Results of the probing stages of Test Bb300(1.2) and Bc300(1.2) in: (a)      plane, 
(b)      plane, (c)      ̅ plane (d)       ̅ plane 
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by the end of the unloading stage, both samples have the same fabric which, in turn, 

confirms that the new mechanical properties produced by plastic collapse-compression 

during wetting under constant isotropic stress condition were very similar to those 

produced by isotropic loading at       kPa. Further confirmation of this can be 

obtained by inspection of Figure 5.51b where the pattern of the variation of specific 

volume was very similar for both samples. However, no test was conducted to investigate 

what would happen to the soil fabric if wetting was conducted under an anisotropic 

stress state.  

Figures 5.51c shows that, for Sample Bd100(1.2), the mean net stress at which a sharp 

decrease in soil stiffness occurs, approximately coincides with that observed in the      

plane (see Figure 5.51a). The gradient of the post-yield compression curve is smaller for 

Sample Bd100(1.2) than for Sample Bb300(1.2). This is similar to what observed when 

comparing the post-yield gradients of corresponding tests in Test Series B100 and B300 or 

A100 and A300.  

Finally, investigation of Figure 5.51d shows that a significant increase in the degree of 

saturation (     ) occurred during probing for both samples. 

Probing at [     ̅]      

Four probing tests were conducted at [     ̅]      (i.e. Ba300(0.5), Bb300(0.5), 

Bc300(0.5) and Bd100(0.5)). Figure 5.52 illustrates the results of Tests Ba300(0.5), 

Bb300(0.5) and Bc300(0.5). The shear stage of Sample Bc300(0.5) was not completed due 

to equipment limitations on axial displacement. Visual inspection (through the 

transparent cells wall) showed buckling of Sample Ba300(0.5) during the shear stage 

which might be attributed to the  fact that the sample was not perfectly centred during 

mounting or to an irregular strain distribution across the sample (possibly due to poor 

sample homogeneity). The results of the shear stage of this test were, therefore, 

considered highly unreliable.   

Figure 5.52a shows that the change in shear strain during probing was highest in Sample 

Bc300(0.5) whereas it was lowest in Sample Ba300(0.5). Samples Ba300(0.5) and 

Bb300(0.5) showed a noticeable change in shear stiffness, during probing at       kPa 

and      kPa, respectively, whereas there was no such obvious change in shear 

stiffness for Sample Bc300(0.5). Moreover, Samples Bb300(0.5) and Bc300(0.5) 

subsequently showed slight increase in the slope of the continuous shear curve which 

cannot be seen in Sample Ba300(0.5). The decrease of pores size during probing loading 

is accompanied by a distortion of the pore shape caused by reorientation of particles and  
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Figure 5.51 Results of the probing stages of Tests Bd100(1.2) and Bb300(1.2) in: (a)      
plane, (b)      plane, (c)      ̅ plane (d)       ̅ plane 
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Figure 5.52 Results of the probing/shearing stages of Tests Ba300(0.5), Bb300(0.5) and 
Bc300(0.5) in: (a)      plane, (b)      plane, (c)      ̅ plane (d)       ̅ plane 
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aggregates. The amount of reorientation depends on the difference between the initial 

soil fabric, at the start of probing, and the target soil fabric, controlled by the imposed 

stress path. Results for Samples Bb300(0.5) and Bc300(0.5) suggests an increase in soil 

stiffness after yielding which results from an increase in interlocking among aggregates 

that mobilises higher shear strength. 

Inspection of the      plots (see Figure 5.52b) shows that values of the specific volume at 

peak deviator stress (recall that Test Bc300(0.5) was stopped before reaching peak 

strength) were very different. This means that, for this particular stress path slope of 

[     ̅]     , probing to  ̅      kPa was not enough to fully erase the fabric anisotropy 

developed during the previous loading stage. Further inspection also indicates that the 

specific volume of Samples Ba300(0.5) and Bb300(0.5) had almost stabilized as these 

samples approached peak deviator stress.  

The yield stresses of Samples Ba300(0.5) and Bb300(0.5) can be easily identified by the 

sharp change of soil stiffness in the compression plane (see Figure5.52c). However, no 

sharp change in stiffness could be noticed for Sample Bc300(0.5). The above observation  

is also in good agreement with the behaviour observed in the      plane (see Figure 

5.52a).  

Inspection of Figure 5.52d indicates that, during probing, Tests Ba300(0.5), Bb300(0.5) 

and Bc300(0.5) showed an increase in degree of saturation of             and     , 

respectively. The largest increase was in Sample Bb300(0.5), which corresponded to the 

largest decrease in specific volume during probing. Significant outflow of water was 

recorded from the samples during probing (corresponding to a decrease in specific water 

volume of     ,      and      for Samples Ba300(0.5), Bb300(0.5) and Bc300(0.5) 

respectively). Indeed, the degree of saturation of Samples Ba300(0.5) and Bc300(0.5) was 

decreasing during the late stages of probing and this decrease continued during the 

subsequent shear stage. This response suggests that, during the late stages of probing 

and subsequent shearing, water outflow had a dominating effect on the variation of 

degree of saturation compared to the corresponding decrease of pore volume. 

Figure 5.53 compares the results from Tests Bd100(0.5) and Bb300(0.5). The      curve of 

Test Bd100(0.5) shows a marked stiffening of the soil response during probing, which 

confirms the observation already made for Samples Bb300(0.5) and Bc300(0.5). Similarly, 

the compression curve (see Figure 5.53c) showed a corresponding increase in stiffness at 

 ̅      kPa.        
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Figure 5.53 Results of the probing/shearing stages of Tests Bd100(0.5) and Bb300(0.5) in: (a) 
     plane, (b)      plane, (c)      ̅ plane (d)       ̅ plane 
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Further inspection of Figure 5.53 suggests that, by the end of probing, the soil fabric was 

very similar (in both samples) corresponding to very similar values of shear and 

volumetric strains. Also, at peak deviator stress, the value of specific volume seemed to 

have stabilized with loading. 

Inspection of the plot in Figure 5.53d shows that, for Test Bd100(0.5), the degree of 

saturation gradually increased during probing by       to  ̅      kPa but then gradually 

decreased by       to  ̅      kPa. This later decrease in degree of saturation coincides 

with the stiffening of the corresponding curve in the compression plane and with a 

decrease in specific water volume of      .  

Probing at [     ̅]    

Two tests were conducted at [     ̅]    (i.e. Ba300(0) and Bc300(0)). Figure 5.54 

illustrates the results from these two tests, together with the results of Test  B300(0). It 

is worth mentioning that no shear stage was conducted for Test Bc300(0), due to 

equipment limitation on axial displacement. 

Figure 5.54a shows that, during probing at [     ̅]   , the shear strains changed from 

      to       in Test Ba300(0). This small negative increase in shear strain was similar 

to that observed in Test B300(0), suggesting that the previous loading/unloading at 

[     ̅]      in Test Ba300(0) had not significantly altered the anisotropy of the fabric. 

In contrast, during the probing stage of Test Bc300(0) there was a positive increment of 

shear strain (from         to        ). This indicates that, as expected, the previous 

loading/unloading at [     ̅]     in Test Bc300(0) had significantly altered the 

anisotropy of the fabric. During shearing, Sample Ba300(0) showed a substantially stiffer 

response than sample B300(0) (see Figure 5.54a). This is because the void ratio of sample 

Ba300(0) was substantially lower than that of Sample B300(0), consistent with the fact 

that shearing started at  ̅      kPa for Samples Ba300(0) and at  ̅      kPa for Sample 

B300(0). The peak deviator stress of Sample Ba300(0) was therefore significantly higher 

than that of Sample B300(0) (see Figure 5.54b). Similarly, at peak strength, the specific 

volume was lower for Sample Ba300(0) than for Sample B300(0). Note that, in both cases, 

by the time samples were at peak strength, the specific volume was only slightly 

decreasing with increasing shear strains (see Figure 5.54b). 

Compression behaviour during probing was very similar for Tests Ba300(0) and Bc300(0), 

as shown in Figure 5.54c. The gradient of the post-yield portion of these compression 

curves was very similar, and only slightly different from that of Test B300(0), confirming 

erasure of any anisotropic fabric developed during the previous loading/unloading stages. 
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Figure 5.54 Results of the probing/shearing stages of Tests Ba300(0), Bc300(0) and B300(0) in: 
(a)      plane, (b)      plane, (c)      ̅ plane (d)       ̅ plane 
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Inspection of Figure 5.54d indicates an increase in degree of saturation during probing of 

       and         for Samples Ba300(0) and Bc300(0), respectively. During shearing of 

Sample Ba300(0), the degree of saturation increased by       . The specific water 

volume decreased by       during probing of Samples Ba300(0) and Bc300(0), and 

       during shearing of Sample Ba300(0). 

Probing at [     ̅]       

The results from three tests conducted at [     ̅]       (i.e. Ba300(-0.5), Bb300(-0.5) 

and Bc300(-0.5) are plotted in Figure 5.55 together with the results of Test B300(-0.5). 

Results in the      plane (see Figure 5.55a) indicate that, at the beginning of probing, 

Sample Ba300(-0.5) showed a less stiff response than other samples. Identification of the 

yield stress is easier in Samples Bb300(-0.5) and Bc300(-0.5) than in Sample Ba300(-0.5) 

due the existence of a clear change of gradient of the stress-strain curves at       kPa 

and      kPa, respectively. This behaviour indicates that, after yielding, the 

reorientation of particles and aggregates was larger in Sample Ba300(-0.5) than in 

Samples Bb300(-0.5) and Bc300(-0.5), due to the greater difference between initial and 

target soil fabrics. Samples Bb300(-0.5) and Bc300(-0.5) showed a slight stiffening of the 

response with progression of probing. This behaviour was repeatedly reported for 

samples loaded at low slopes of [     ̅]      and [     ̅]       , especially when a 

significant difference exists between the slopes of the loading and probing paths. In this 

case, significant hardening due to changes of anisotropy (i.e. rearrangement of particles 

and aggregates) must occur during probing in order to move towards a different target 

fabric anisotropy, which can cause fabric interlocking and, hence, an increase in 

mobilised shear strength.    

At the beginning of the shear stage, a very stiff response was observed. This was followed 

by a gradual decrease in stiffness as shearing progressed. The initial stiff response is 

associated to a marked change of stress path (e.g. from [     ̅]       to [     ̅]   ) 

which might initially result in elastic behaviour (as the stress path moves inside the yield 

surface before yielding again on a different position). During shearing, the shape of the 

stress-strain curves was similar in all the tests, with equal values of peak deviator stress 

and rather large changes of shear strains at failure. Figure 5.55b shows that specific 

volume stopped changing at peak strength for Samples Ba300(-0.5) and Bb300(-0.5). In 

contrast, the specific volume of Sample Bc300(-0.5) was still steadily decreasing.  

In the      ̅ plane (see Figure 5.55c), the transition from the elastic to the elasto-plastic 

behaviour took place more gradually in Sample Ba300(-0.5) than in Samples Bb300(-0.5) 

and Bc300(-0.5). This behaviour is consistent with that observed in the      plane (see  
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Figure 5.55 Results of the probing/shearing stages of Tests Ba300(-0.5), Bb300(-0.5), Bc300(-
0.5) and B300(-0.5) in: (a)      plane, (b)      plane, (c)      ̅ plane (d)       ̅ plane 
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Figure 5.55a) and might be explained by the same physical argument used during 

interpretation of those stress-strain curves. The slopes of the post-yield portions of the 

compression curves were very similar and their positions were fairly close. The overlap of 

the compression curves of Samples B300(-0.5) and Bb300(-0.5) suggests that, despite the 

initial difference in anisotropy, both samples developed the same fabric arrangement 

under subsequent probing.  

Figure 5.55d shows that, during the probing, Samples Ba300(-0.5), Bb300(-0.5) and 

Bc300(-0.5) exhibited an initial increase in degree of saturation of             and       

respectively, followed by a decrease of       at relatively high mean net stress. On the 

other hand, the specific water volume continuously decreased during probing and 

shearing in all samples by      . The initial increase in degree of saturation was 

therefore directly related to the decrease in pore volume and the later drop in degree of 

saturation could be attributed to the stiffening of the compression curves. The 

discrepancy in the variation of degree of saturation among samples during shearing could 

be related to the lower value of pore water pressure which triggered air bubbles out of 

solution as explained previously. 

The results from Test Bd100(-0.5) are plotted in Figure 5.56 along with the results from 

Tests B100(-0.5) and Bb300(-0.5). The stiffer part of the stress-strain curve at the 

beginning of probing was smaller in Sample Bd100(-0.5)  than in Test Bb300(-0.5) (see 

Figure 5.56a), which is consistent with the increase in stiffness/strength observed at 

larger suction levels. The shape of shear curve of Sample Bd100(-0.5) was very similar to 

that of Sample B100(-0.5) suggesting that the change of fabric anisotropy during wetting 

was only moderate. The initial stiff response was followed by a clear reduction of 

stiffness at        . The shape of the shear curves of Samples Bd100(-0.5) and Bb300(-

0.5) indicates a significant increase in soil stiffness during probing. As mentioned earlier, 

this increase is attributed to a combination of a decrease in voids size caused by slippage 

at inter-particles contacts and a rotation of particles/aggregates produced by the 

difference between the current and target levels of anisotropy. 

The increase in soil stiffness was more apparent in Sample Bd100(-0.5) than in Sample 

Bb300(-0.5), which suggests that the existence of fewer voids affected by meniscus water 

(at lower suction) facilitates the evolution of soil fabric. Inspection of behaviour during 

shearing suggests that the soil initially behaved elastically (corresponding to a stress path 

taking place inside the yield surface). Shearing of Samples B300(-0.5) and Bd100(-0.5) 

started from a radial net stress of     kPa and     kPa respectively so that the same 

response would not be expected during the shearing stage.   
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Figure 5.56 Results of the probing/shearing stages of Tests Bd100(-0.5), B100(-0.5) and 
Bb300(-0.5) in: (a)      plane, (b)      plane, (c)      ̅ plane (d)       ̅ plane 
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Figure 5.56b shows that Samples Bd100(-0.5) and Bb300(-0.5) achieved almost the same 

specific volume by the end of the probing stage. Also, in both cases, the variation of 

specific volume had almost become negligible by the time the peak deviator stress was 

reached.  

Figure 5.56c indicates that the initial elastic loading of Samples Bd100(-0.5) and Bb300(-

0.5) produced almost identical response, confirming good repeatability of tests. With 

progression of plastic straining, the compression curves of Samples Bd100(-0.5) and 

B100(-0.5) tended to merge which indicates that, by the end of probing, the fabric of 

both samples had become similar. The later increase in stiffness (indicated by the 

flattening of the compression curve) approximately coincides with the attainment of very 

large values of degree of saturation (see Figure 5.56d) and with the stiffening of the 

shear curve (see Figure 5.56a). 

Inspection of Figure 5.56d shows that, during probing, the degree of saturation of Sample 

Bd100(-0.5) initially increased to       but then gradually decreased back to     . At 

the same time, a significant outflow of water was taking place from the sample 

(corresponding to a change of specific water volume of       ). This outflow was 

expected as the probing stage began at a relatively high degree of saturation (     ). As 

previously mentioned, the inversion of the trend of variation in degree of saturation in 

Test Bd100(-0.5) coincided with a stiffening of the corresponding compression curve.  

Probing at [     ̅]     

The results from two tests conducted at [     ̅]     (i.e. Ba300(-1) and Bb300(-1)  are 

plotted in Figure 5.57, together with the results of Test B300(-1). Figure 5.57a shows that 

identification of yielding is less clear in Test Ba300(-1) than in Test Bb300(-1) which 

suggests that  a greater amount of fabric rearrangement took place after yielding in Test 

Ba300(-1) than in Test Bb300(-1) (in the latter test part of the compaction-induced fabric 

anisotropy was already erased by the initial isotropic loading).    

Despite the different void ratios of Samples Ba300(-1) and B300(-1), their post-yield 

curves have similar slopes (see Figure 5.57c), suggesting similar changes of fabric 

anisotropy for both samples. All samples exhibited very similar values of deviator stress 

and specific volume at peak strength. In addition, although specific volume was still 

decreasing by the time peak deviator stress was attained, the rate of decrease had 

already become very small (see Figure 5.57b). 
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Figure 5.57c shows, once again, that during probing the identification of the yield stress 

is clearer in Sample Bb300(-1) than in Sample Ba300(-1) and that the sharp changes in 

stiffness of Sample Bb300(-1) occur almost at the same point as in the shear plot (see 

Figure 5.57a). Furthermore, the tendency of all compression curves to converge in a 

single line shows that the memory of the initial fabric had been almost entirely erased 

and anisotropy was only controlled by the current stress state. 

Figure 5.57d indicates that degree of saturation continuously increased with progression 

of probing. A small water outflow from the sample was recorded (corresponding to a 

change of specific water volume of       ) which can be explained by the relatively 

high degree of saturation at the beginning of probing (      and      for Samples Ba300(-

1) and Bb300(-1) respectively). 

The results from Test Bd100(-1) are plotted in Figure 5.58 along with the results from 

Tests B100(-1) and Bb300(-1). Similar to Test Bb300(-1), Test Bd100(-1) showed an initial 

stiff response followed by a noticeable reduction in stiffness after yielding (see Figure 

5.58a). Despite the different loading history of Tests Bd100(-1) and B100(-1), both 

samples showed very similar behaviour with progression of plastic straining, achieving the 

same value of peak deviator stress, although at slightly different shear strains. Similarly, 

inspection of results in the compression plane (see Figure 5.58c) shows that, during 

probing, the response of Samples Bd100(-1) and B100(-1) overlap over a large pressure 

range confirming that any memory of the fabric at the start of probing was erased by 

subsequent plastic deformation.  The two curves start overlapping shortly after yielding, 

which may suggest that wetting has caused only a moderate change to the compaction-

induced fabric anisotropy. 

Figure 5.58d shows that degree of saturation increased during probing and the curves for 

Tests Bd100(-1) and B100(-1) merged at the same stress level at which compression 

curves also merged. Specific water volume exhibited a very similar decrease of        

in both samples. 

Probing at [     ̅]       

The results from three tests conducted at [     ̅]       (i.e. Ba300(-1.5), Bb300(-1.5) 

and Bc300(-1.5)) are plotted in Figure 5.59, together with the results of Test B300(-1.5). 

Figure 5.59a shows that Sample Bc300(-1.5) had a stiff initial response followed by a 

sharp decrease in stiffness after yielding. The sharpness of the transition from elastic to 

elasto-plastic behaviour is explained by the fact that the probing slope of [     ̅]       

was relatively similar to the previous loading/unloading slope of [     ̅]    .  
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Figure 5.57 Results of the probing stages of Tests Ba300(-1), Bb300(-1) and B300(-1) in: (a) 
     plane, (b)      plane, (c)      ̅ plane (d)       ̅ plane 
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Figure 5.58 Results of the probing stages of Tests Bd100(-1), B100(-1) and Bb300(-1) in: (a) 
     plane, (b)      plane, (c)      ̅ plane (d)       ̅ plane 
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Consequently, only a small degree of particle/aggregate reorientation took place during 

probing. 

Identification of the yield point became considerably more difficult when plastic 

straining was accompanied by rearrangement/reorientation of particles and aggregates 

as was the case for Tests Ba300(-1.5) and Bb300(-1.5). Nevertheless, regardless of 

loading history, all shear curves tended to follow a similar shape with progression of 

plastic straining. Samples B300(-1.5) and Bb300(-1.5) showed very similar peak strength 

but smaller than that of Sample Bc300(-1.5). Although Test Ba300(-1.5) was stopped 

before failure, the shear plot suggests that the expected peak strength would have been 

noticeably higher than for the other tests.  

The variation of specific volume against shear strain (see Figure 5.59b) indicates that 

different samples arrived at peak strength with different values of specific volume. At 

peak deviator stress, the specific volume of Samples Bb300(-1.5) and Bc300(-1.5) 

decreased very slightly with increasing shear strain, whereas for Sample Ba300(-1.5) it 

remained practically constant.  

Figure 5.59c shows that the elastic parts of the compression curves (during unloading and 

re-loading) were very similar for all samples regardless of the initial differences in 

specific volume and anisotropy. During probing, the post-yield parts of the compression 

curves tended to merge into a single line indicating erasure of any anisotropic memory 

and the attainment of a unique fabric for all tests. 

Sample Bc300(-1.5) expressed the clearest yielding, denoted by a sharp change in 

stiffness. This discontinuity became less obvious in Samples Bb300(-1.5) and Ba300(-1.5) 

which demonstrates, once more, the influence of substantial rearrangement/rotation of 

particles and aggregates in these tests where the probing stress path was very different 

to the previous loading/unloading stress path.  

Figure 5.59d shows a very similar increase of degree of saturation of       for Samples 

Ba300(-1.5) and Bb300(-1.5) during probing but only       for Sample Bc300(-1.5). This 

increase in degree of saturation is consistent with the corresponding decrease in specific 

volume, given that only a small change in pore water volume was recorded in all tests 

(corresponding to a change of specific water volume of       ). 

The results of Test Bd100(-1.5) are plotted together with the results of Tests B100(-1.5) 

and Bb300(-1.5) in Figure 5.60. As expected, the pattern of behaviour of Sample Bd100(-
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1.5) is very similar to that of Sample Bb300(-1.5), confirming that both loading and 

wetting (under isotropic stress states) produce similar erasure of compaction-induced 

fabric anisotropy. The plastic response of Sample Bd100(-1.5) was clearly stiffer than 

that of Sample B100(-1.5) with      bigger peak deviator stress. This is in contrast to 

the good agreement of the peak strength recorded for Samples Bb300(-1.5) and B300(-

1.5) in Figure 5.60a.  

Figure 5.60b indicates that, for Sample Bd100(-1.5), the change of specific volume had 

almost stopped by the time the sample was at the peak strength. The value of the 

specific volume of Samples Bd100(-1.5) and B100(-1.5) in Figure 5.60b were clearly 

different at peak strength.  

The compression plot of Sample Bd100(-1.5) (see Figure 5.60c) showed a clear change in 

the compression curve at the onset of yielding. The post-yield response is linear in the 

     ̅ plot and it appears that Samples B100(-1.5) and Bd100(-1.5) tend to merge in in a 

single curve at high mean net stresses. The post-yield curve of Sample Bd100(-1.5) was 

very similar to that of Sample Bb300(-1.5), in contrast with the general observation that 

the post-yield slope of compression curves tends to be smaller at lower suction values.  

Figure 5.60d indicates an increase in degree of saturation of       during probing of 

Sample Bd100(-1.5). Despite the high value of degree of saturation, a small amount of 

water flowed out from the sample during probing (corresponding to a change in specific 

water volume of       ).   
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Figure 5.59 Results of the probing stages of Tests Ba300(-1.5), Bb300(-1.5), Bc300(-1.5) and 
B300(1.5) in: (a)      plane, (b)      plane, (c)      ̅ plane (d)       ̅ plane 
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Figure 5.60 Results of the probing stages of Tests Bd100(-1.5), B100(-1.5) and Bc300(-1.5) in: 
(a)      plane, (b)      plane, (c)      ̅ plane (d)       ̅ plane 
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6 
INTERPRETATION OF EXPERIMENTAL RESULTS 

This chapter includes a detailed interpretation of elastic behaviour, yielding behaviour 

(including a study of the shape of the yield surface), isotropic compression behaviour and 

critical state for the tests presented in Chapter 5.    

6.1 ELASTIC CONSTANTS 

This section involves determination of elastic constants from unloading and wetting 

stages of the tests presented in Chapter 5.  

6.1.1 Elastic indices   and      

The soil constants   and    describe elastic compression/swelling of an unsaturated soil 

subjected to loading/unloading and wetting/drying, respectively, for a model formulated 

in terms of net stress  ̅ and suction   (see Section 2.2 and Section 2.8.1 on the    ).  

Figure 6.1a includes the unloading portions of the loading/unloading stages of Test Series 

Ba300, Bb300, Bc300 and Bd100 and of Tests A200(0), A0(sat1) and A0(sat2) in the      ̅ 

plane (mean net stress  ̅ reduces to mean effective stress    under saturated conditions). 

The behaviour is almost linear and each of the unloading curves can be fitted adequately 

by a line of a gradient   . Figure 6.1a indicates that the unloading curves of the saturated 

tests are steeper than those of the unsaturated tests when plotted in the      ̅ plane, 

suggesting a dependency of elastic volume changes on whether the sample is saturated or 

unsaturated. Table 6.1 shows the average values of   for each test series. The results 

suggest that   is independent of fabric anisotropy and that, apart from the saturated 

condition,   is also independent of suction. The overall average value of    (allowing for 

the number of tests in each test series) was       (see Table 6.1).  

Given that no experimental wetting/drying cycles were conducted in this work to 

investigate the elastic behaviour,    was determined by using the initial wetting stages 

under constant  ̅ (no apparent collapse compression was observed during these wetting 

stages). The average   values were calculated from tests on isotropically and 

anisotropically compacted samples wetted to       kPa and       kPa. The value of 
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   was then obtained from an integrated form of Equation 2.38 by considering a wetting 

path from       kPa to       kPa. The values of    are shown in Table 6.1. The 

overall average value of    (allowing for the number of tests in each group) was       

(see Table 6.1). With the limited experimental data used to obtain    it is difficult to 

conclude with any confidence if anisotropy has a role on the elastic swelling/shrinkage 

caused by suction changes.  

6.1.2 Elastic index      

For a model formulated in terms of Bishop’s stress and suction (or some function of 

suction), it is usually assumed that elastic volume changes are related solely to Bishop’s 

stress. 

Figure 6.1b shows the unloading portions of the loading/unloading stages of Test Series 

Ba300, Bb300, Bc300 and Bd100 and of Tests A200(0), A0(sat1) and A0(sat2) plotted in 

the        plane (mean Bishop’s stress    reduces to mean effective stress    under 

saturated conditions). The behaviour is non-linear and each of the unloading curves can 

be fitted by a line of gradient    as a reasonable approximation. In contrast to the plots 

in the      ̅ plane, the plots in the        plane show that unloading curves of saturated 

tests have a similar gradient to the unsaturated ones, suggesting that suction has no 

influence on the elastic volume changes of an unsaturated soil when interpreted in terms 

of Bishop’s stress. Table 6.1 shows the average values of    from the unloading stages of 

the different test series. The results suggest that    is independent of fabric anisotropy 

and suction although the value of    is slightly smaller for saturated tests than for 

unsaturated ones. 

The elastic soil constant    can be alternatively obtained from the wetting stages. The 

average   and    values are calculated from tests on isotropically and anisotropically 

compacted samples wetted to       kPa and       kPa and    is calculated from an 

integrated form of Equation 2.54 by considering a wetting path (involving a decrease of 

  ) from       kPa to       kPa. The values of    calculated from the wetting stages 

are shown in Table 6.1. The overall averages of    (allowing for the number of tests in 

each group) were       and       calculated from the unloading and wetting stages 

respectively (see Table 6.1). Comparing average    values obtained by both methods 

shows that    is smaller when obtained from wetting stages rather than unloading stages, 

although the differences are probably within the range of scatter of either methods. 

Generally, the selection of    from wetting stages is less reliable than the selection from 

unloading stages, due to the fact that amount of volume change is based on the 
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difference between two points (at two different suction values) and each of those points 

represents the average of many samples. 

 

Figure 6.1 Swelling lines during unloading stages: (a) in      ̅ plane, (b) in        plane  
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Table 6.1 Average values of elastic soil constants 

 

6.1.3 Elastic Shear modulus   

Due to the uncertainty of the stress state at which yielding occurs, the initial portions of 

the loading curves are not used for obtaining elastic shear modulus   and, instead, the 

unloading stages of Test Series Ba300, Bc300, Test A0(sat1) and Test A0(sat2) are used 

(note that the unloading stages of Test Series Bb300 and Bd100 were conducted under 

isotropic conditions and, for this reason, are not included). The unloading stages of these 

tests are plotted in the      plane in Figure 6.2. Some tests showed a small continuous 

increase of shear strain at the beginning of unloading, attributed to delayed straining 

from the previous loading stage, and therefore the portion of the curve with delayed 

positive shear strain is disregarded. Figure 6.2 shows clearly that the behaviour during 

unloading is non-linear and the selection of   modulus value is crucially dependent on 

method of interpretation. For the elasto-plastic constitutive modelling for unsaturated 

soils (as will be presented in Chapter 7) a constant shear modulus value is required. The 

shear modulus was therefore obtained, as a crude approximation, by best fitting the      

curves by minimising the sum of squared errors in deviator stress. The average   values 

are shown in Table 6.1. The average value of      kPa (weight was given to the number 

of tests in each series) was used for the model simulations with the new anisotropic 

model presented in Chapter 8. 

Test or 
Test Series 

     ̅ 
plane 

              
plane 

       
plane 

     
plane 

  
 

   
 

   
(unloading) 

    
(wetting) 

  
(kPa) 

A100   
0.003 

  
0.020 

  

A300       

B100   

0.005 

  

0.037 

  

B300       

Ba300 0.012 0.046 9199 

Bb300 0.010 0.042   

Bc300 0.009 0.043 9915 

Bd100 0.013 0.041   

A200(0) 0.017   0.045     

A0(sat1) 
and 
A0(sat2) 

0.033   0.033   11990 

Average 0.012 0.004 0.043 0.032 9960 
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It is worth mentioning that another method was also considered for selecting the value of 

the elastic shear modulus  , which involved fixing the first unloading point in the      

plane and doing a best fit over the subsequent unloading range. However, this method 

cannot be used systematically due the observed delayed response in some cases, which 

results in unrealistic values of shear modulus. 

 

Figure 6.2 Unloading stages in      plane  

6.2 ISOTROPIC LOADING OF ISOTROPICALLY COMPACTED SAMPLES 

6.2.1 Results in the      ̅ plane 

Figure 6.3a shows the isotropic compression curves for isotropically compacted samples 

in the      ̅ plane for different suction values. Yielding starts earlier in tests performed 

at lower suction values, due to the smaller stabilising effect exerted by the fewer 

meniscus water bridges at inter-particle contacts. The post-yield compression curves 

were fitted by straight lines in the      ̅ plane and the variation with suction of the 

gradient and intercept (measured at  ̅    kPa) of these normal compression lines (   s) 

are shown in Figure 6.4. Both the gradient and intercept increase with increasing suction 

and tend to level off at high suction. This is because, the effect of meniscus water 

bridges on mechanical behaviour tends to be less sensitive to suction variations at lower 

degrees of saturation.    

6.2.2 Results in the        plane 

Figure 6.3b shows the isotropic compression curves for the same tests in the        

plane. For a given value of  ̅, the compression curves at suctions greater than zero are 

shifted horizontally by different amounts, depending on the product of suction and 

degree of saturation (    ̅      ). Therefore, the post-yield compression curves have 
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gradients in the        plane that differ from those in the      ̅ plane. The variation with 

suction of the gradient and intercept of the normal compression lines in the        plane 

is shown in Figure 6.5. Inspection of Figure 6.5 indicates that the gradient and intercept 

of these normal compression lines increase monotonically with increasing suction with, 

again, a tendency to become constant at high suction values.  

 

Figure 6.3 Isotropic loading at constant suction of isotropically compacted samples:  (a)      ̅ 
plane, (b)        plane 

 

Figure 6.4 Gradient and intercept of constant suction    s in the      ̅ plane 
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Figure 6.5 Gradient and intercept of constant suction    s in the        plane 

6.2.3 Unique normal compression isotropic surfaces in             and 

      
       spaces  

The existence of unique isotropic normal compression planar surfaces in the             

and       
       spaces for soils under unsaturated conditions and at the corner between 

   and    yield surfaces, as predicted by the model of Wheeler et al. (2003a) (see 

Section 2.9.5), is investigated experimentally. The post-yield portions of the isotropic 

loading tests on the unsaturated isotropically compacted Samples A300(0), A200(0) and 

A100(0) are fitted to a pair of planar surfaces in the             and       
       spaces, 

see Figures 6.6  and 6.7.  

During plastic behaviour significant changes in both   and    were observed (see, for 

example, Figures 5.24 and 5.31) and it is therefore reasonable to assume that, in the 

model of Wheeler et al. (2003a) (see Section 2.9), the stress state lies at the corner 

between the    and    yield surfaces and that simultaneous yielding takes place on the 

two surfaces. 

Because tests were conducted by controlling   ̅ and   (rather than    and   ), a subset of 

data points had to be selected to ensure a proper fitting of soil behaviour in             

space and       
       space. A constant number of equally spaced experimental points 

on the      axis is therefore selected from the full range of data for a given constant-

suction compression curve. Then the selected experimental data are fitted by planar 

surfaces in the semi-logarithmic space by using least-squares nonlinear regression.  
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Figure 6.6 Experimental isotropic normal compression behaviour in the             space: (a) 
three-dimensional view, (b) (c) orthogonal two-dimensional views 

The equations of these two planar surfaces are: 

                                                                                                                                           

                                                                                                                                          

The intercept and gradients of Equation 6.1 correspond to the parameters   ,    and   
  

(see Equation 2.74) and the intercept and gradients of Equation 6.2 correspond to the 

parameters   ,   
  and   

  (see Equation 2.77). The values of these parameters are 

summarised in Table 6.2.  
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Figure 6.7 Experimental isotropic normal compression behaviour in the             space: (a) 
three-dimensional view, (b) (c) orthogonal two-dimensional views 

The above normal compression planar surfaces in the             space and       
       

space are shown in Figures 6.6 and 6.7, respectively, together with their orthogonal two-

dimensional views (in each view the planar surface is collapsed to a straight line). 

Despite the small mismatches observed in Figures 6.6 and 6.7, each curve is nearly 

parallel to the isotropic normal compression surface, which provides further confirmation 

of the existence of these unique surfaces in both the             and       
       spaces 

as predicted by the model of Wheeler et al. (2003a) and as initially postulated by Lloret 

(2011) (see Section 2.9.5). 
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Table 6.2 Gradients and intercepts of normal compression surfaces in the             and 
      

       spaces 

Planar surface in             space  Planar surface in       
       space 

        
       

    
  

2.953 0.313 0.211 1.165 0.293 0.156 

 

6.3 CRITICAL STATES 

6.3.1 Investigation of the critical state 

Critical state conditions occur when specific volume, deviator stress and mean net stress 

reach steady state, i.e. they do not change, under continuous shearing. As pointed out in 

Sections 5.5 and 5.6, in the majority of tests, specific volume remained virtually constant 

during shearing by the time the peak deviator stress was reached. While the assumption 

of critical state in correspondence of peak strength is reasonable for the majority of 

tests, it however implies an overestimation of the critical state values of    and  ̅ in those 

tests in which softening is expected. In these latter tests, the occurrence of strain 

localisation associated to the sharp drop in deviator stress, implies that the post peak 

part of the shearing curve cannot be accurately measured. In the current work, the peak 

deviator stress is assumed to coincide with critical state in all tests and the validity of 

this assumption is investigated in subsequent sections by comparing the measured critical 

states to the conventionally assumed linear relationship in the    ̅,      ̅,     , and 

       planes. 

6.3.2 Critical state behaviour on the    ̅ and      ̅ planes  

Figure 6.8a shows experimental points from all test series in the    ̅ plane. In order to 

facilitate interpretation, experimental data for samples sheared at the same suction and 

with the same initial anisotropy are analysed in the following. Critical state points in 

triaxial compression and extension can be adequately fitted by a straight line defined by: 

       ( ̅       )                                                                                                                                        

where      and       are the slope and the intersection (with the negative  ̅ axis) of the 

critical state line in the    ̅ plane. Both these parameters are initially assumed free to 

vary with suction, initial anisotropy and type of test (i.e. triaxial compression or triaxial 

extension). The resulting values of      and       are listed in Table 6.3. Because each 

test series consisted of only     tests in triaxial compression and   tests in triaxial 

extension, the value of these parameters is rather sensitive to data scatter.  
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Figure 6.8 Critical state lines in the: (a)    ̅ plane, (b)      plane 
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Table 6.3 Values of      and         

Test Series 
Triaxial compression Triaxial extension 

           , kPa           , kPa 

A0 0.783 19.73 0.769 12.32 

B0 0.808 11.95 0.728 18.21 

A100 0.744 86.09 0.708 79.08 

B100 & Bd100 0.676 69.83 0.572 84.52 

Be100 0.741 72.79 0.550 156.56 

A300 0.780 122.67 0.776 122.64 

B300, Ba300, 
Bb300 & Bc300 

0.767 147.08 0.710 195.19 

 

Inspection of Table 6.3 shows that the value of      changes with suction in a rather 

irregular fashion for both isotropically and anisotropically compacted samples, while the 

value of       increases in a non-linear fashion with suction for both isotropically and 

anisotropically compacted samples. Unexpectedly, the best fit values of       for A0 and 

B0 are noticeably different from zero. However, forcing the value of       equal to zero 

would result in higher values of      (      and       for Test Series A0 and       and 

      for Test Series B0 in triaxial compression and extension respectively).  

The values of     , in most cases, are slightly less in triaxial extension than in triaxial 

compression, which might suggest material behaviour is Lode angle dependent. The 

values of       in triaxial compression and extension are very similar is some test series 

(for example, Test Series A300 and A100) but very different in other test series (for 

example, Test Series Be100), which might be attributed to the influence of data scatter 

on parameter values.  

With respect to the effect of initial anisotropy on critical state, isotropically compacted 

samples show slightly higher values of      than anisotropically compacted samples (in 

both triaxial compression and triaxial extension), with the exception of triaxial 

compression in Test Series A0. No consistent pattern of variation of       with initial 

anisotropy is observed at different suctions. In triaxial compression, the value of       is 

bigger for Test Series A0 than test series B0, though the opposite is true for Test Series 

A300 and B300/Ba300/Bb300/Bc300. In triaxial extension, the value of       is always 

bigger for anisotropically compacted samples than for isotropically compacted samples. 

In triaxial compression, the values of      and       for Test Series Be100 agree 

relatively well with those for Test Series A100 and B100/Bd100. However, in triaxial 
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extension, the values of      and       are respectively smaller and bigger for Test Series 

Be100 compared to Test Series A100 and B100/Bd100.  

Despite the apparent discrepancies in the values of critical state parameters, Figure 6.8a 

shows no clear influence of anisotropy on critical state, with results from tests on 

anisotropically compacted samples falling within the same scatter band as those on 

isotropically compacted samples performed at the same suction.  

The number of critical state parameters can be reduced by assuming that the critical 

state ratio   does not change with anisotropy and suction and that the intercept        

changes only with suction but not anisotropy. The best fit values of   and        in 

triaxial compression and extension are therefore obtained by least-squares fitting of all 

experimental data with the following expression: 

       [   ̅   ( ̅          )    ( ̅          )]

      [   ̅    ( ̅          )    ( ̅          )]                                                

where   and   are equal to   for triaxial compression and extension respectively, or equal 

to zero otherwise,  ,   and    are constants equal to   for tests at    ,    and     kPa 

respectively or equal to zero otherwise,          and          are the best-fit values of 

      at       kPa and       kPa respectively in triaxial compression (note that the 

intercept is set to zero for critical states at    ),          and          are the best-fit 

values of       at       kPa and       kPa respectively in triaxial extension. 

Equation 6.4 gives a set of parallel lines (one line for each value of suction) of unique 

gradient in triaxial compression and gives another set of parallel lines of different unique 

gradient in triaxial extension. The values of  ,         and         are listed in Table 

6.4 (Columns 1 and 2). Comparing critical state values in Tables 3 and 4 shows that the 

new values of   agree well with the average values of      while the values of       do 

not agree with the average ones at a given suction. 

A further reduction in the number of parameters can be achieved by imposing an equal 

value of       in triaxial compression and extension. This is done by fitting all 

experimental points with the following expression via the least-squares method:  

       [   ̅     ̅               ̅          ]

      [   ̅      ̅               ̅          ]                                                    
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where   and   are equal to   for triaxial compression and extension respectively, or equal 

to zero otherwise. Similarly, the constants     and    are equal to   for    ,      

and      kPa respectively, or equal to zero otherwise. The parameters    and    are the 

critical state ratios in compression and extension, while the parameters         and 

        are the best-fit values of       at       kPa and       kPa for both triaxial 

compression and extension. The results of this fitting are shown in Table 6.4 (Columns 3 

and 4 for triaxial compression and extension, respectively).  

Table 6.4 Values of   ,    ,         ,         ,          and          

Parameter 

1 2 3 4 5 

Compression Extension Compression Extension 
Compression 

and extension  

   or     0.761 0.713 0.753 0.750 0.752 

          

or 

           

67.89 76.15 66.84 66.86 

          

or 

           

143.90 185.31 154.89 154.14 

 

 Because the values of    and    are very similar in Table 6.4, it might be convenient to 

use a unique value of   for both triaxial compression and triaxial extension. The 

convenience of this suggestion depends on the modelling approach. Based on Mohr-

Coulomb failure criterion, the assumption of unique failure friction angle value (  , see 

Equation 2.11) implies that the critical state ratio is lower in triaxial extension than in 

triaxial compression (the failure envelope is represented by an irregular hexagon in the 

deviatoric plane). Alternatively, in Drucker–Prager modelling approach the failure 

envelope is represented by a circle in the deviatoric plane which is equivalent to 

assuming a constant critical state ratio in triaxial compression and triaxial extension, but 

now friction angle is not constant (bigger in triaxial extension than in triaxial 

compression).        

Following the latter approach, the parameters    and    in Equation 6.5 are replaced by 

a single parameter   and the critical state relationship in the    ̅ plane is written as: 

     [   ̅   ( ̅         )    ( ̅         )]                                                                                  
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The critical state lines obtained from Equation 6.6 are plotted, together with the 

experimental points of all test series, in Figure 6.8a. Experimental data are well-

matched at       kPa and       kPa but, at    , they lie above the corresponding 

critical state lines (a consequence of the assumption of a zero intercept at    ). In 

general, a unique critical state seems to be attained in the    ̅ plane for a given value of 

suction, which gives further justification to the proposal that the critical state is 

independent of initial fabric anisotropy.  

Figure 6.9 (a, b and c) shows critical state data in the      ̅ plane for       kPa,     

kPa and zero, respectively, together with their best fit lines. The figure also shows the 

positions of the normal compression lines (   s) of Tests A300(0), A100(0) and A0(0).  

Again, no clear influence of initial anisotropy is observed at critical state for unsaturated 

tests, i.e. both anisotropically and isotropically compacted samples, tested at the same 

suction, fall within the same scatter band. Conversely, under saturated conditions, 

anisotropically compacted samples show smaller values of specific volume at critical 

state than isotropically compacted samples.  

The fitting equation for critical state lines (   s) in the      ̅ plane is expressed as: 

                ̅                                                                                                                                               

where      and      are the intercept and slope of the critical state line at a given  . 

The best-fit values of       and      are listed in Table 6.5, which shows that the slope 

of the    s deceases with decreasing suction in agreement with the decease of slope of 

normal compression lines (   s) with decreasing suction (see Figure 6.4). However, the 

slopes of constant-suction    s are clearly less than the slopes of the corresponding    s 

(see Figure 6.9).  

Table 6.5 Values of      and      

 , kPa           

300 0.187 2.961 

100 0.128 2.614 

0 0.123 2.575 
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Figure 6.9 Critical state lines in the: (a)      ̅ plane (      kPa), (b)      ̅ plane (      
kPa), (c)      ̅ plane (   ), (d)        plane (      kPa), (e)        plane (      kPa) 
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6.3.3 Critical state behaviour in the       and         planes 

Figure 6.8b shows experimental data from all test series in the      plane. Inspection of 

Figure 6.8b indicates that each set of compression or extension data can be adequately 

fitted by a linear expression passing through the origin: 

                                                                                                                                                                        

where    is the critical state ratio in triaxial compression and extension. The results of 

this fitting are given in Table 6.6, which provides the values of    obtained for samples 

with different levels of initial anisotropy (Columns 1 and 2 refer to triaxial compression 

and extension, respectively). The values of    are slightly smaller in triaxial extension 

than compression, which agrees well with the observation in the    ̅ plane, but they 

appear unaffected by initial anisotropy.  

A further fitting exercise is performed by imposing a single slope for the critical state 

line in triaxial compression and extension. The corresponding value of    is again given 

in Table 6.6 and the interpolation is graphically demonstrated in Figure 6.8b. Inspection 

of triaxial compression data in Figure 6.8b does show a slight dependency on suction, 

with data points for     generally falling towards the top of the scatter band and data 

points at       kPa generally falling towards the bottom of the scatter band.  

Table 6.6 Values of    

Test Series 

1 2 3 

Triaxial 
compression 

Triaxial 
extension 

Compression 
and extension 

A0, A100 &A300 0.676 0.642 

0.672 
B0, B100, B300, Ba300, 
Bb300, Bc300 & Bd10 

0.679 0.667 

Be100 0.701 0.674 

 

Inspection of Figures 6.8a and 6.8b indicates that data scatter about the best-fit line is 

virtually the same in the    ̅ and      planes but the      plane allows interpolation of 

all data by a single critical state line passing through the origin.  

Critical state data points in the        plane are plotted in Figures 6.9d and 6.9e for 

tests at       kPa and       kPa respectively, together with the corresponding 

normal compression lines from Tests A300 and A100. Experimental data at each suction 

can be adequately fitted by the following equation: 
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where       and       are the intercept and slope of critical state line in the        

plane. The values of the       and       are listed in Table 6.7. Critical state lines 

appear independent of initial anisotropy. The slopes vary with suction and are smaller 

than the slopes of the corresponding normal compression lines, similar to what had been 

observed in the      ̅ plane.  

Table 6.7 Values of       and       

 , kPa             

300 0.341 4.046 

100 0.196 3.058 

0 0.123 2.575 

 

In summary, the results of this section and Section 6.3.2 confirm that critical state 

behaviour is unique and independent of initial anisotropy. By using Bishop’s stress, all 

data points can be interpolated by a single critical state line passing through the origin in 

the      plane. This result, which is in agreement with previous research published, for 

example, by Gallipoli et al. (2008), is particularly helpful when developing constitutive 

models, as will be further discussed Chapter 7.  

6.3.4 Unique critical state planar surfaces in             and              

spaces 

Figures 6.10 and 6.11 show unsaturated critical state data points fitted to a pair of 

planar surfaces in the             and       
       spaces, respectively. The purpose of 

these plots is to investigate the existence of unique critical state planar surfaces in the 

            and       
       spaces, similar to the unique normal compression planar 

surfaces presented in Section 6.2.3, and to see whether these critical state surfaces are 

parallel to the normal compression surfaces (as predicted by the model of Wheeler et al. 

(2003a), see Section 2.9.6). It is important to emphasise that degree of saturation was 

always less than 1 in all unsaturated tests (see Sections 5.5 and 5.6) and that, if 

experimental results are interpreted in the model framework of Wheeler et al. (2003a), 

the stress state should arrive during probing/shearing at the intersection between the 

   and    yield surfaces (see Section 2.9.3), which implies simultaneous yielding on both 

these surfaces. According to the model of Wheeler et al. (2003a), these conditions must 
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be satisfied in order for the soil state to lie on the unique critical state planar surfaces 

(see Section 2.9.6).       

 

 

 

Figure 6.10 Experimental critical state behaviour in the             space: (a) three-
dimensional view, (b) (c) orthogonal two-dimensional views 

Inspection of Figure 6.10 shows that critical state data are generally well captured by a 

planar surface in the             space. Figure 6.11 shows significant scatter of critical 

state data in the       
       space, but no trend with suction. Moreover, Figures 6.10 

and 6.11 show no effect of initial anisotropy at critical state. The equations of the two 

critical state planar surfaces are: 
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Figure 6.11 Experimental critical state behaviour in the       
       space: (a) three-

dimensional view, (b) (c) orthogonal two-dimensional views 

The gradients of Equation 6.10 correspond, in the model proposed by Wheeler et al. 

(2003a), to the parameters     and    
  (see Equation 2.83) while the gradients of Equation 

6.11 correspond to the parameters   
  and   

  (see Equation 2.84). The values of the fitting 

parameters are summarised in Table 6.8 where    and    are the intercepts of the 

critical state planar surfaces in             and       
       spaces, respectively.   

Inspection of Tables 6.8 and 6.2 shows that values of    and   
  obtained from the critical 

state surface in             space are significantly smaller than those obtained from the 

corresponding normal compression surface. Similarly, the values of   
  and   

  obtained 
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from the critical state surface in       
       space are significantly smaller than those 

obtained from the corresponding normal compression surface.  

Table 6.8 Gradients and intercepts of critical state planar surfaces in the             and 
      

       spaces 

Planar surface in             space  Planar surface in       
       space 

        
       

    
  

2.898 0.236 0.100 1.200 0.175 0.070 

 

6.4 IDENTIFYING YIELD POINTS 

Because soil yielding takes place gradually during loading, various authors have suggested 

different methods to infer the values of yield stresses from experimental data (see 

Section 2.4.3). In this work, several techniques are investigated to identify yielding, as 

outlined in the following sections. 

6.4.1 Bi-linear construction in the      ̅ or        plane 

As discussed in Section 2.4.3, the identification of yield stresses in the      ̅ or        

planes is generally prone to subjectivity. To reduce this subjectivity, a bi-linear 

construction in the      ̅ or        plane is utilised in this work as follows: 

- The stress or specific volume axes are generally plotted over the same range of 

values to maintain consistency among plots. 

- A straight line with gradient equal to the elastic index         or          (see 

Table 6.1) is plotted from the first elastic point of the experimental curve in the 

     ̅ or        plane, respectively (for saturated tests the elastic index          

is used). 

- The post-yield portion of the compression curve in the      ̅ or        plane (taken 

as the latest and steepest linear part) is then best fitted with a straight line. Any 

lower gradient part of the compression curve at high mean net stresses or high 

saturation is excluded from the fitting. Equally, any steep part of the compression 

curve near critical states for tests conducted at [    ̅⁄ ]    (see, for example, 

A100(2) and B100(2) in Figure 5.29) is excluded from this fitting.  

- The yield stress is found from the intersection of the above two straight lines.  
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Typical examples of this construction are shown in Figure 6.12. Inspection of this figure 

shows that, in general, the elastic line falls below the experimental curve and that yield 

stresses are moderately overestimated compared with a typical subjective judgement.  

Further inspection of Figure 6.12 shows that the bi-linear construction gives a reasonable 

idealisation of compression behaviour for both isotropic and anisotropic samples in both 

saturated and unsaturated conditions. This method appears therefore suitable for 

identifying yield stresses, regardless of suction level and evolving anisotropy, in both the 

       plane and in the      ̅ plane. 

Figure 6.12f shows the application of this method on samples with loading and probing 

stages (i.e. Ba300(0.5) and Bb300(0.5)) and it is evident that the method gives 

reasonable estimation of yield stresses.  

Figures 6.12b and 6.12e exemplify cases where some subjectivity had to be exercised in 

defining the post-yield portion of the compression curve. In Test A100(2), the gradient of 

the post-yield curve tends to increase as loading progresses and becomes very steep 

when critical state is approached. Similarly, in Tests A100(0) and B100(0), the slope of 

the compression curves tend to reduce at high net stresses as the degree of saturation 

approaches unity. In all these cases, the fit of the post-yield curve must ignore the latest 

part of the compression curve which is truncated just before the above increase or 

decrease of gradient occurs. 

Finally, it is worth mentioning that the Casagrande (1936) method was not considered in 

the present work to identify yielding as this method involves a larger degree of 

subjectivity and usually predicts higher yield stresses than the current method (see 

Section 2.4.3 for additional details).  

6.4.2 Bi-linear construction in the    ̅ or     plane 

Yielding can be alternatively identified by means of a bi-linear construction on 

compression curves plotted in the    ̅ plane or      plane. The principle of this 

construction is similar to that outlined in the previous section, with the only difference 

that the change in stiffness is now identified on a linear plot rather than a semi-

logarithmic one. The yield stress is obtained from the intersection of two straight lines 

tangent to the shallowest section of the pre-yield part of the compression curve and to 

the steepest section of the post-yield part of the compression curve (corresponds to an 

inflection point).  
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Figure 6.12 Examples of bi-linear construction in the      ̅ and        planes  
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Figure 6.13 shows examples of the construction in the    ̅ plane (no example is shown in 

the      plane as the procedure would look exactly the same).  Tests A100(0), B100(0) 

and Bb300(0.5) show a marked change in compressibility and the proposed bi-linear 

construction captures well the corresponding yield stresses (see Figure 6.13). In contrast, 

Tests Ba300(0) and Bc300(0) show a more gradual change of compressibility and the 

proposed bi-linear construction does not provide an accurate identification of yield 

stresses. Because of this greater level of subjectivity compared to the bi-linear 

construction in the semi-logarithmic plane, identifying yield points from a bi-linear 

construction in the linear    ̅ or      planes has been discarded in the current work.  

 

Figure 6.13 Examples of bi-linear construction in the    ̅ plane  

6.4.3 Strain energy  

A further method for identifying yield stresses is based on the calculation during the test 

of the input energy per unit volume,    as:  

  ∑                                                                                                                                      

The summation in Equation 6.12 is extended over the number of increments of 

volumetric strain, shear strain and degree of saturation                 in which the test 

is subdivided. The corresponding values of mean Bishop’s stress, deviator stress and 

modified suction              are measured at the middle of each increment. The input 

energy is then plotted against the length of the stress vector increment    defined as: 

  [      
          

        
  

 ] 
 

 ⁄                                                                                                
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where   
      and   

  are the mean Bishop’s stress, deviator stress and modified suction at 

the beginning of loading. Figure 6.14 shows typical plots of input energy against stress 

vector increment length, for Tests A100(0) and A300(1), using linear and semi-logarithmic 

scales. For Test A100(0), the linear scale plot shows a change in gradient at   

     kJ/m3, which corresponds to  ̅     kPa. However, in the semi-logarithmic scale, the 

input energy during the test increases rather gradually, which makes the identification of 

the yield point more difficult. The input energy curve of Test A300(1) does not indicate 

any sharp change of gradient, either in the linear or in the semi-logarithmic scales, so in 

this case the yield stress can only be obtained indirectly by applying, for example, a bi-

linear construction to the input energy curve. However it is less laborious to apply 

directly a bi-linear construction directly to the original compression curve in the      ̅ or 

       plane than to the derived input energy curve.  

In conclusion, the bi-linear construction in the      ̅ or        plane provides a more 

systematic and an easier method of identifying yield stresses than other common 

alternatives and has therefore been used in all tests of the present work. 

 

Figure 6.14 Examples of absorbed energy plots in the: (a)     plane, (b)       plane 

6.5 INTERPRETATION OF YIELD POINTS IN THE    ̅ AND      PLANES 

As previously mentioned, yield points are obtained in this work by applying a bi-linear 

construction to the compression curves in the      ̅ or        plane (see Section 6.4). 

Some of these yield points are used to explore the initial yield curves (after compaction), 

which are shown in the    ̅ plane in Figures 6.15a, 6.15c and 6.15e and in the        

plane in Figures 6.15b, 6.15d and 6.15f. Other yield points are used to explore the 
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evolved yield curves (changed by a loading stage), which are shown in the    ̅ plane in 

Figures 6.16a, 6.16c and 6.16e and in the      plane in Figures 6.16b, 6.16d and 6.16f.  

6.5.1 Yield curves in the    ̅ plane  

Figures 6.15a and 6.15b show the constant suction cross-sections of the initial yield 

surface of the isotropically compacted samples (measured from Test Series A0, A100 and 

A300) while Figures 6.15c and 6.15d show the constant suction cross-sections of the 

initial yield surface of the anisotropically compacted samples (measured from Test Series 

B0, B100 and B300). Figures 6.15e and 6.15f show a constant suction cross-section of the 

initial yield surface for Test Series Be100. Figure 6.16 shows that, for the anisotropically 

compacted samples, the cross-section of the initial yield surface at       kPa evolves 

(in both size and orientation) during loading stages at [     ̅]      (Test Series 

Ba300), [     ̅]    (Test Series Bb300 and Bd100) and  [     ̅]     (Test Series 

Bc300). 

Each set of yield points defining a constant suction cross-section of the yield surface is 

fitted in the    ̅  plane by the following distorted ellipse (see Figures 6.15a, 6.15c, 

6.15e, 6.16a and 6.16c and 6.16e): 

  (   ( ̅       ))
 
    ( ̅       )   ̅   ̅                                                                         

where       (i.e. the intersect of the distorted ellipse with the negative  ̅ axis) is taken 

from the critical state line at suction   (see column 5 in Table 6.4),    is the aspect ratio 

while  ̅  and   define the current size and inclination of the yield curve. Alternative 

forms of distorted or rotated elliptical curves were considered, including those proposed 

by Stropeit et al. (2008) and D’Onza et al. (2010) (see Section 2.8.3), but Equation 6.14 

was found to give the most satisfactory match. It was found that good matching could be 

achieved with the aspect ratio   and inclination   assumed constant for all constant 

suction cross-sections of a given yield surface. The three yield curves obtained from Test 

Series A0, A100 and A300 (or the three yield curves obtained from Test Series B0, B100 

and B300) therefore have different sizes but the same inclination. This assumption is 

supported by the experimental observation that samples with the same fabric anisotropy 

show similar behaviour at different suction levels (see Sections 5.5 and 5.6).  

As a subsequent refinement of fitting, different values of aspect ratio     were set for 

the upper and lower sections of the curve, i.e. the sections above and below the vertical 

tangent points, so that       for   ( ̅       )     and       for   ( ̅       )    .  
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Figure 6.15 Constant suction cross-sections of initial yield surfaces in the    ̅ and      planes 
for: (a)(b) isotropically compacted samples; (c)(d) anisotropically compacted samples; (e)(f) 
anisotropically compacted samples at higher void ratio (Test Series Be100) 
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Figure 6.16 Constant suction cross-sections of yield surfaces in the    ̅ and      planes for 
anisotropically compacted samples loaded at: (a)(b) [     ̅]     ; (c)(d) [     ̅]   ; (e)(f) 
[     ̅]     
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It was found that the same values of    and     (        and        ) can be used 

for all constant suction cross-sections of the yield surfaces, although these values differ 

from the critical state stress ratio         (see Table 6.4). The value of   was set to 

zero for all constant suction cross-sections of the initial yield surface for the isotropically 

compacted samples (see Figure 6.15a), to reflect the isotropy of the soil fabric. Similarly, 

a single value of        was found to fit all three constant suction cross-sections of the 

initial yield surface for the anisotropically compacted samples (Figure 6.15c). For Test 

Series Be100 (see Figure 6.15e), a smaller value of        was found to provide the 

best fit to the data as these samples have a smaller degree of initial anisotropy than the 

anisotropic samples in Figure 6.15c   

Figures 6.16a, 6.16c and 6.16e show that the loading stages in Test Series Ba300, Bb300 

and Bc300 increase or decrease the inclination of the yield curve from an initial value of 

       to final values of       ,           and           respectively. The 

experimental yield points of Test Series Bd100 (see Figure 6.16c) can also be adequately 

fitted with a value of        (as in Test Series Bb300) which reflects the similarity of 

loading history between these two test series, as already pointed out in Section 5.6. One 

yield point (corresponding to Test Bc300(1.2) and marked as black in Figure 6.16e) was 

considered unreliable due to bulging of the sample during probing.  

6.5.2 Yield curves in the      plane  

Figures 6.15b, 6.15d, 6.15f, 6.16b, 6.16d and 6.16f show that each constant suction yield 

curve can be fitted in the      plane by the following distorted ellipse passing through 

the origin: 

                     
                                                                                                            

where    is the aspect ratio while   
  and    are the current size and inclination of the 

distorted ellipse. As in the    ̅ plane, different values of    are selected for the upper 

and lower sections of each constant suction yield curve (i.e. the sections above and 

below the vertical tangent points), so that       
  for         and       

  for 

       . Similar to the fitting in the    ̅ plane, the same values of   
  and   

  (i.e. 

  
      ,   

       ) can be used for all constant suction cross-sections. Again, these 

values of   
  and   

  are significantly greater than the critical state stress ratio    

      (see Table 6.6). The value of    was set to zero for all three constant suction cross-

sections of the initial yield surface for the isotropically compacted samples (see Figure 

6.15b). Similarly, it was found that a single value of         could be used for all three 

constant suction cross-sections of the initial yield surface for the anisotropically 
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compacted samples (Figure 6.15d). For Test Series Be100 (see Figure 6.15f), a smaller 

value of         was found adequate which is, again, consistent with the fact that 

these samples have a smaller initial anisotropy than the anisotropic samples in Figure 

6.15d  

The loading stages in Test Series Ba300, Bb300 and Bc300 increase or decrease the initial 

inclination of the yield curve in the      plane from an initial value of          to final 

values of        ,         and            respectively (see Figures 6.16b, 6.16d and 

6.16f). The experimental yield points of Test Series Bd100 (see Figure 6.16d) can also be 

adequately fitted with a value of         (as in Test Series Bb300) confirming once 

again the similarity between these two test series.  

Table 6.9 Yield curve parameters in the    ̅ and      planes 

Test 

series 

   ̅ plane      plane 

        
 ̅  

(kPa) 
  

    
     

  
  

(kPa) 

A300 

0
.8

5
 

1
.1

7
 

0 104 

0
.8

5
 

0
.9

5
 

0 244 

A100 0 42 0 101 

A0 0 15 0 16 

B300 0.21 141 0.20 300 

B100 0.21 54 0.20 122 

B0 0.21 22 0.20 23 

Be100 0.08 39 0.08 99 

Ba300 0.29 268 0.25 468 

Bb300 0.19 215 0.12 398 

Bc300 -0.04 266 -0.10 470 

Bd100 0.19 98 0.12 179 

 

The values of   ,   ,  ,  ̅ ,   
 ,   

 ,    and   
  are summarised for all test series in 

Table 6.9. The values of  ̅  and   
  are substantially bigger for the anisotropic yield 

curves than for the corresponding isotropic yield curves, due to the lower initial values of 

specific volume of the anisotropic samples compared to the isotropic samples (see Table 

5.1). Similarly, the values of  ̅  and   
  are much higher for Test Series Ba300 and Bc300 
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than for Test Series Bb300, although all samples in these test series were initially loaded 

to the same value of  ̅.  

In conclusion, the process of anisotropic compaction employed in the present work 

generates a moderately anisotropic fabric (as indicated by the small values of         

and          in the    ̅ and      planes respectively). This is due to the relatively small 

value of the Bishop’s stress ratio at the end of compaction (      ⁄     ), as shown in 

Figures 5.8 and 5.9, and to the large suction which stabilizes inter-particle contacts 

during compaction. Finally, although the samples in Test Series Ba300 are loaded at the 

same net stress ratio as during anisotropic compaction (i.e. [     ̅]     ), the resulting 

values of    and     are bigger compared to those of Test Series B300 (       against 

       and          against         ). This is again explained by the larger value of 

the Bishop’s stress ratio at the end of the loading stage in series Ba300 (      ⁄      ) 

than at the end of compaction in Test Series B300 (      ⁄     ). 

6.6 EXPERIMENTAL FLOW VECTORS 

Due to the difficulty in separating the elastic and plastic components of strains (and 

because the elastic strain components tend to be significantly smaller than the plastic 

strain components) experimental flow vectors are here calculated in terms of total 

strains instead of plastic strains. In particular, the total shear strain    is plotted against 

the total volumetric strain    over a mean net stress increment of    kPa (which is small 

enough to give a linear relationship between the two) starting from the yield points 

obtained in Section 6.4. The best-fit line to this curve is then calculated and its gradient 

is taken as the gradient of the plastic flow vector. If the curve shows a marked non-

linearity in the       plane, the stress increment is gradually reduced until a linear 

relationship is obtained. A typical determination of the experimental flow vector is 

shown in Figure 6.17 for Test A100(1). 

The experimental flow vectors determined in this way were superimposed on the 

corresponding yield curves in the    ̅ or      planes (see Figures 6.18 and 6.19).  

During isotropic stress paths, the gradient of the experimental flow vector at yield is 

positive for Test Series A300, A100 and A0 (see Figures 6.18a and 6.18b) but it is negative 

for Test Series B300, B100 and B0 (see Figures 6.18c and 6.18d) and is almost zero for 

Test Series Be100 (see Figures 6.18e and 6.18f). These observations agree very well with 

the distorted elliptical shape of the constant suction yield curves of the isotropically and 

anisotropically compacted samples. Normality of the plastic flow vector to yield curves 

(suggesting an associated flow rule) is evident in some cases (e.g. Test Series Ba300, 
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Bb300 and Bd100 in Figures 6.19a, 6.19b, 6.19c and 6.19d) but is less evident in other 

cases (e.g. Test Series A0, A100 and Be100 in Figures 6.18a, 6.18b, 6.18e and 6.18f).     

 

Figure 6.17 Typical       plot to identify plastic flow vector gradient at yielding 

As discussed in Sections 5.5 and 5.6, the experiments generally showed a contractant 

response during plastic loading. This is expected when yielding takes place on the “wet” 

side of the yield curve and it is indeed consistent with the gradient of the experimental 

plastic flow vectors in Figures 6.18 and 6.19. However, in the saturated Test (B0(2)), 

contractant behaviour was also observed while yielding on the “dry” side of the yield 

curve in both the    ̅ and      planes (see Figures 6.15c and 6.15d respectively). This 

apparently unexpected behaviour could be a consequence of forcing the saturated 

critical state line to pass through the origin. 
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Figure 6.18 Plastic flow vectors superimposed on constant suction cross-sections of initial yield 
surfaces in the    ̅ and      planes for: (a)(b) isotropically compacted samples; (c)(d) 
anisotropically compacted samples; (e)(f) anisotropically compacted samples at higher void 
ratio (Test Series Be100)  
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Figure 6.19 Plastic flow vectors superimposed on constant suction cross-sections of yield 
surfaces in the    ̅ and      planes for anisotropically compacted samples loaded at: (a)(b) 
[     ̅]     ; (c)(d) [     ̅]   ; (e)(f) [     ̅]     
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7 
DEVELOPMENT OF AN ANISOTROPIC MODEL 

7.1 OVERALL APPROACH 

This chapter describes the development of a new anisotropic elasto-plastic constitutive 

model for unsaturated soils. The model combines features from the isotropic model for 

unsaturated soils of Wheeler et al. (2003a) (described in Section 2.9) with features for 

modelling of anisotropy taken from the anisotropic model for saturated soils         

(described in Section 2.7.2). 

The approach followed in developing the constitutive model employs Bishop’s stresses 

and modified suction (rather than net stresses and suction) as stress state variables, for 

the following reasons: 

  It is proposed that elastic strains can be related solely to changes of Bishop’s 

stresses (no need to include separately elastic volume changes caused by changes 

of suction. The experimental evidence from this study is however rather 

inconclusive on this point (some differences were noticed in the values of    

calculated from wetting and unloading stages, see Section 6.1.2); 

 Shear strength can, as a reasonable approximation, be uniquely related to 

Bishop’s stress (see Section 6.3.3); 

 Yield curves (at constant values of  ) are simpler in the      plane (as they 

always pass through the origin) than in the    ̅ plane (see Section 6.5); 

 Representing the coupling between mechanical and water retention behaviour is 

easier with Bishop’s stress than with net stress (e.g. see the model of Wheeler et 

al., 2003a, in Section 2.9). 

 

The constitutive modelling work focused on developing an anisotropic version of the 

mechanical aspects of the Wheeler et al. (2003a) model i.e. modelling of water retention 

behaviour was not included. To conduct model simulations of mechanical behaviour with 

the anisotropic model developed here, so that these could be compared with the 

experimental results (see Sections 8.6 to 8.9 of the next chapter), experimental values of 

   were used in the simulations instead of predicted values of    (a detailed description 
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of the procedure employed is given in Section 8.3). This is because it was then possible 

to check whether mechanical aspects of the model were performing well. In contrast, if 

mechanical behaviour was badly predicted with a full combined mechanical and water 

retention model, it would be unclear whether the fault was with the mechanical aspects 

of the model or because    was badly predicted by the water retention aspects of the 

model. It was also clear that the water retention modelling in the Wheeler et al. (2003a) 

model was relatively crude (e.g. see Figure 2.7) and therefore unlikely to give very 

precise values of    for the full range of stress paths.  

The mechanical model developed in this chapter requires values of   . Therefore for it to 

be a fully predictive model it would either have to be combined with a separate water 

retention model or it would subsequently have to be developed to a combined 

mechanical-water retention model (like Wheeler et al. 2003a) by adding the retention 

aspects.   

7.2 ELASTIC BEHAVIOUR  

Elastic volumetric and shear strains are given by the same equations as in the extended 

version of Wheeler et al (2003a) model (see Equations 2.54 and 2.55):  

   
   

     

   
                                                                                                                                                         

   
   

  

  
                                                                                                                                                               

Unlike the Wheeler et al. (2003a) model, there is no expression for elastic increments of 

degree of saturation in the anisotropic model developed here, because water retention 

aspects are not fully developed. 

7.3 YIELD SURFACES  

The model includes three yield surfaces in         space, like the Wheeler et al. (2003a) 

model: the Loading Collapse (  ) yield surface to represent mechanical behaviour (onset 

of plastic volumetric strains and plastic shear strains) and the    and    yield surfaces to 

represent water retention behaviour (onset of plastic changes of degree of saturation) 

(see Figure 7.1). Although the model is limited to prediction of mechanical behaviour, 

the    and    yield surfaces are still required, because yielding on these surfaces causes 

coupled movements of the    surface.  
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Based on the experimental evidence presented in Section 6.5.2, each cross-section of the 

   yield surface in the      plane is in the form of a distorted ellipse (see Figure 7.2), 

defined by: 

                       
                                                                                                          

where     and   
  are the hardening parameters defining current anisotropy and current 

size of yield surface.    is the aspect ratio, which can take a triaxial compression value 

  
  for       and a triaxial extension value   

  for       (where        ) (see 

experimental evidence in Section 6.5.2). Experimental evidence in Section 6.5.2 suggests 

that   
  and   

  are both greater than the critical state stress ratio   , hence it is clear 

that    cannot take the form              that would correspond to the Dafalias (1986) 

yield curve expression employed in the         model (see Equation 2.29). In Section 

7.8 below two possibilities are considered: either that    is a constant (this requires a 

non-associated flow rule in order for the model to predict critical states for       ) or 

that    varies with    (such that an associated flow rule can be employed).  

 

Figure 7.1 Yield surfaces in         space 

Yielding on the    yield surface corresponds to the onset of plastic volumetric strains and 

plastic shear strains, but consideration of the flow rule on this yield surface is delayed 

until Section 7.8 below. 

The    and    yield surfaces are represented by vertical walls in the         space, as in 

the model of Wheeler et al. (2003a), defined by: 
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where    
  and   

  are the hardening parameters defining the current positions of the    

and    surfaces respectively (see Figure 7.1). 

The flow rule for yielding on both    and    surfaces is simply:  

   
 
    

 
                                                                                                                                                           

 

Figure 7.2 Cross-section of the    yield surface (at the critical state) in the      plane 

7.4 COUPLED MOVEMENTS OF THE YIELD SURFACES 

When yielding on the    surface alone, coupled movements of the    and    yield 

surfaces occur, governed by the same coupling relationship as in the Wheeler et al. 

(2003a) model: 

   
 

  
  

   
 

  
    

   
 

  
 

                                                                                                                                           

where    is a coupling parameter. 
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Similarly, when yielding on the    or    surface alone, coupled movements of the    

surface occur, governed by the same coupling relationship as in the Wheeler et al. 

(2003a) model: 

   
 

  
 

    
   

 

  
    

   
 

  
                                                                                                                                      

Note that Equations 7.7 and 7.8 imply that during yielding on any yield surface: 

   
 

  
  

   
 

  
                                                                                                                                                                

7.5 HARDENING LAWS FOR CHANGES OF   
 ,   

  AND   
  

The hardening law during yielding on the    yield surface alone is the same as in the 

model of Wheeler et al. (2003a) (with   
  replaced by   

 ): 

   
 

  
 

 
     

 

      
                                                                                                                                                   

where   (a soil constant) is the gradient of the saturated normal compression line in the 

       plane followed by an isotropic sample (    ) during isotropic loading.  

Following the same logic as in the development of the model of Wheeler et al. (2003a) 

(see Equation 2.70), allowing for the coupled movements of the yield surfaces, the 

general hardening law linking plastic volumetric strains to the movements of the surfaces 

is: 

   
 
 

      

         
(
   

 

  
 

   

   
 

  
 )                                                                                                            

Equation 7.11 is a general hardening law, applicable to yielding on the    surface alone, 

the    or    surface alone or on two surfaces simultaneously. During yielding on the    or 

   yield surface alone, the flow rule of Equation 7.6 applies (   
 
  ) and Equation 7.11 

converts to the coupling relationship of Equation 7.8. During yielding on the    yield 

surface alone, the coupling relationship of Equation 7.7 applies, and Equation 7.11 

converts to the special case of the hardening law given in Equation 7.10. Unlike the 

complete mechanical-water retention model of Wheeler et al. (2003a), in the new 

anisotropic mechanical model no statement is made linking plastic changes of    to the 

movements of the yield surfaces. 
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7.6 VARIATION OF   

For the special case when the soil state remains on the edge between    and    yield 

surfaces at the point where the tangent to the    surface is vertical i.e. point   in Figure 

7.1 (     
 ,      and      

 ), the total increments of specific volume   can be 

expressed (by using Equations 7.1 and 7.11) as: 

            
     

  
 

      

        
(
   

  
   

   

  
)                                                                   

As presented by Lloret (2011), Equation 7.12 can be integrated to show that points such 

as   lie on a unique planar surface in the             space (of the same form as Equation 

2.74 for the Wheeler et al.,2003a, model): 

               
                                                                                                                                     

where    is a soil constant and:  

   
          

        
                                                                                                                                              

  
    

      

        
                                                                                                                                            

In particular, the planar surface described by Equation 7.13 applies to isotropic samples 

(    ) subjected to isotropic compression (    ) if the soil state lies on both    and 

   yield surfaces. For general stress states, which do not necessarily lie on the    and 

   surfaces, the value of   can be calculated by considering an elastic path starting from 

Point   (see Figure 7.1). This results in the following general expression for  :  

            
    

      
      (

  
 

  
)                                                                                                    

7.7 HARDENING LAW FOR CHANGES OF    

Wheeler (1997) and Wheeler et al. (2003b) argued convincingly in the development of the 

        anisotropic model for saturated soils that evolution of anisotropy   must 

depend upon both plastic volumetric strains and plastic shear strains. However, they did 

not provide convincing arguments for the specific form of hardening law describing the 

variation of   within         (see Equation 2.31), where plastic volumetric strains and 

plastic shear strains are each attempting to change   towards a different instantaneous 
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target value (     and     respectively). Therefore, an alternative hardening law for the 

variation of    is proposed here, which is considered to be more logical. This takes the 

form: 

     [        ] [(   
 
)
 
 

 

 
(   

 
)
 
]

 
 ⁄

                                                                                            

where   is a soil constant.       is a function of   , which represents the current target 

value for   , with both plastic volumetric strains and plastic shear strains attempting to 

change    towards this current target value. The particular manner in which plastic 

volumetric strain increments and plastic shear strain increments are combined in 

Equation 7.17 has been selected because this relates to the length of the plastic strain 

increment vector in principal strain space:    

[(   
 
)
 
 

 

 
(   

 
)
 
]
   

 √ [(   
 
)
 
 (   

 
)
 
 (   

 
)
 
]
   

                                                             

The function       which represent the target value for    in Equation 7.17, could be 

selected as a continuous non-linear function of    . This would resemble the overall 

target value for   predicted by the         model for constant   stress paths (see 

Figure 7.3). However, in the interests of simplicity, a simple tri-linear relationship for 

      has been employed at this stage:  

      

{
 
 

 
 

                                                

                                                                                                                                 

                                                

 

where    is the critical state stress ratio (a soil constant) and   is a further soil constant. 

The variation of       with    described by Equation 7.19 is illustrated in Figure 7.4.  

Equation 7.17 predicts a unique value of   at critical states (i.e. a unique degree of 

anisotropy at critical states). Given that critical states correspond to        and at 

critical states plastic shear strains can increase indefinitely, Equations 7.17 and 7.19 

predict a critical state value of    given by: 
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where the positive and negative signs in Equation 7.20 correspond to triaxial compression 

and triaxial extension respectively. 

 

Figure 7.3 Non-linear variation of target value of   for constant   stress paths in the   
      model (Wheeler et al. 2003b)   

 

Figure 7.4: Tri-linear variation of       with    

7.8 FLOW RULE ON    SURFACE AND VARIATION OF    

Figure 7.5 shows experimental data points (taken from Section 6.5.2) showing the 

observed variation of the aspect ratio    of the    yield surface (see Equation 7.3), for 

both the triaxial compression and triaxial extension sections of the yield surface 

(  
  and   

  respectively), where   
  applies for       and   

  applies for      . The 

experimental data points indicate that   
  is essentially constant at a value of      for  

   ranging from       to      . Similarly, the experimental data points indicate that   
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is essentially constant at a value of      for     ranging from       to       (see Table 

6.9 in Section 6.5.2). 

 

Figure 7.5 Variation of    with    

The solid lines and dashed lines in Figure 7.5 illustrate two alternative possibilities for 

the variation of   
  and   

  over the full range of    predicted by the model (from 

        to        , see Figure 7.4). The solid lines show   
  and   

  both 

decreasing at extreme values of   , both reaching a value of             at the critical 

state condition (       ). This would mean that when a critical state is reached (but 

only for this condition) the yield curve shape would correspond to the Dafalias (1986) 

expression assumed in the         model (Equation 2.29) and for this condition the 

yield curve would have a horizontal tangent at      . The model could thus employ an 

associated flow rule and correctly predict the occurrence of critical states at the desired 

stress state of       . The dashed lines in Figure 7.5 show an alternative scenario, 

where   
  and   

  each remains constant over the full range of   . In this case, a non-

associated flow rule would be required in order for the model to predict the occurrence 

of critical states at the desired stress state of       . Two alternative versions of the 

model are therefore developed. Version   employs an associated flow rule and hence has 

to allow for variation of   
  and   

  with    (the solid lines in Figure 7.5). Version   

assumes that   
  and   

  both remain constant over the full range of    (the dashed lines 

in Figure 7.5) and hence has to employ a non-associated flow rule.  
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7.8.1 Version  : associated flow rule and          

Application of an associated flow rule to the    yield surface expression of Equation 7.3 

results in the following relationship: 

   
 

   
  

        

             
                                                                                                                                 

If the critical state is to be predicted at       , and at these states the values of    is 

given by         (see Equation 7.20), inspection of Equation 7.21 shows that at this 

value of    the aspect ratio    must have a value of            . 

If   
  and   

  are each assumed to be continuous functions of    (over the range      

      ), what is required for each is a function that remains approximately constant 

for    values between       and       but then decreases sharply towards a limiting 

value of             as    approaches     or     (see Figure 7.5). The function 

selected to provide this variation is: 

    [  
            ]     

      |  | 

|  |
                                                                    

where   
  and   are soil constants.   

  represents the value of    at     .  This takes 

two different values (   
  and    

 ), depending on whether Equation 7.22 is being used to 

predict   
  or   

 . Figure 7.6 shows the variation of    with    predicted by Equation 

7.22 for the case    
      ,          and       . 

 

Figure 7.6 Variation of    with    for different   values  
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7.8.2 VERSION  :     CONSTANT AND NON-ASSOCIATED FLOW RULE 

The second version of the model assumes that   
  and   

  are both constant, independent 

of the value of   : 

     
                                                                                                                                                                  

where   
  takes two different values (   

  and    
 ), depending upon whether Equation 

7.23 is being used to predict   
  or   

 .  If the aspect ratio    of the    yield surface is 

assumed constant (Equation 7.23), then a non-associated flow rule is required in order to 

predict critical states for      . The proposed version of non-associated flow rule is: 

   
 

   
  

        

         
                                                                                                                                             

Equation 7.24 is equivalent to the flow rule assumed in         model (see Equation 

2.32). This means that Version   of the model, assumes a plastic potential that has the 

same shape as the yield curve in the         model. The equation of the plastic 

potential is thus given by: 

                             
                                                                                         

where   
  is a dummy variable defining the current size of the plastic potential so that it 

passes through the current stress point. The plastic potential described by Equation 7.25 

always has a horizontal tangent at       (irrespective of the value of   ). Figure 7.7 

shows the plastic potential and yield surface for Version   of the model, defined 

respectively by Equation 7.25 and by Equations 7.3 and 7.23. 

 

Figure 7.7 Yield surface and plastic potential surface for Version   of the model  
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7.9 CRITICAL STATES 

Both versions of the model predict a unique critical state line in the      plane, defined 

by: 

                                                                                                                                                                      

Critical states must lie on the    yield surface but do not have to lie on the edge 

between    and    yield surfaces. However, the coupled movements of the yield 

surfaces during shearing to a critical state will mean that it is very common for the soil 

state to be on this edge when a critical state is achieved (see the explanation given for 

the model of Wheeler et al., 2003a, in Section 2.9.6). For critical states that lie on the 

edge between    and    surfaces, both versions of the model predict a unique critical 

state planar surface in             space (similar to the model of Wheeler et al., 2003a).  

Figure 7.8 shows the form of the    yield curve (in the      plane) for Version   and 

Version    of the model, when a critical state is achieved (with the same value of   
  for 

both curves). This shows that the stress ratio   
     at critical states takes different 

values for the two versions of the model, because of the difference in aspect ratio of the 

yield curve. For Version   of the model, at critical states (     ,         and 

              ), the yield curve expression (Equation 7.3) gives: 

  
 

  
 

 

   
                                                                                                                                                            

In contrast, for Version   of the model, at critical states (     ,         and 

     
 ), the yield curve expression (Equation 7.3) gives: 

  
 

  
 

         

  
                                                                                                                                           

Insertion of   
     and the critical state expression for   

     from Equation 7.27 in the 

general expression for    of Equation 7.16 means that the unique critical state planar 

surface predicted by Version   of the model (for critical states at the edge between the 

   and    surfaces) is given by: 

              (
 

   
)           
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Figure 7.8 The    yield curve for Version   and Version   of the model 

Similarly, insertion of   
     and the critical state expression for   

     from Equation 

7.28 in the general expression for   of Equation 7.16 means that the unique critical state 

planar surface predicted by Version   of the model (for critical states at the edge 

between    and    surfaces) is given by: 

              (
         

  
    )           

                                                                      

Equations 7.29 and 7.30 show that both versions of the model predict a unique critical 

state planar surface in             space that is parallel to the corresponding unique 

isotropic normal compression surface (for an isotropic soil) (see Equation 7.13). Both 

versions of the anisotropic model predict a vertical spacing between the two surfaces 

that is smaller than the spacing predicted by the isotropic model of Wheeler et al. 

(2003a) (see Equation 2.83), and the two versions of the anisotropic model predict 

slightly different spacing to each other.    

7.10 SATURATED CONDITIONS  

To describe saturated behaviour (    ), mean Bishop’s stress    is substituted by mean 

effective stress    in all model expressions (remembering that     ̅          when 

    ). Model expressions describing elastic behaviour under unsaturated conditions (see 

Equations 7.1 and 7.2) therefore still apply under saturated conditions. The    yield 

surface expression given by Equation 7.3 still applies (given that       when     ), 

remembering that the yield curves always passes through the origin in the      plane 

regardless of suction. The hardening law for changes of size of the    yield surface when 

yielding on the    surface alone, given by Equation 7.10, also applies to saturated 

conditions. The hardening law for change of     given by Equation 7.17 is also valid for 
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saturated conditions (with       still given by Equation 7.19, remembering that    

            when     ).  

For Version   of the model, the associated flow rule of Equation 7.21 still applies for 

saturated conditions (remember that      when     ). The aspect ratio of the yield 

curve for the different sections of the curve,   
  and   

  (which apply for       and 

      respectively), each varies with    according to Equation 7.22. For Version 2 of 

the model, the non-associated flow rule of Equation 7.24 still applies with the   
  and   

  

each now constant at    
  and    

  respectively. 

For isotropic soil (     , the variation of   during virgin isotropic loading under 

saturated conditions is described by the following expression of the isotropic normal 

compression line in the        plane (remembering  that       for     ): 

                                                                                                                                                                

where   and   are the intercept and gradient of the saturated isotropic normal 

compression line.  

For general stress states, the variation of   under saturated conditions is described by 

the following expression: 

          
      (

  
 

  
)                                                                                                                           

Equation 7.31 defines a planar surface, for isotropic saturated conditions in the 

            space, that has zero gradient along the      axis (see Figure 7.9).  

The line of intersection of the isotropic normal compression planar surfaces for saturated 

and unsaturated conditions defines a line referred to as the “line of saturation”. An 

expression for the “line of saturation” can be obtained by equating Equation 7.13 

(defining the unsaturated planar surface in             space) and Equation 7.31 (defining 

the saturated planar surface in             space), which leads to:   

     
               

  
                                                                                                                         

Inserting the definition of    and   
  from Equations 7.14 and 7.15 respectively, Equation 

7.33 can be simplified to: 
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If an unsaturated isotropic soil (    ) was subjected to a stress path involving isotropic 

stress states and simultaneous yielding on the    and    surfaces, a fully saturated 

condition (    ) would be reached on the “line of saturation” defined by Equation 7.34 

and subsequent changes of specific volume would then be obtained from the expressions 

for a saturated soil. Similarly, during virgin isotropic loading of an isotropic saturated 

soil, de-saturation would occur on the “line of saturation” defined by 7.34 and 

subsequent changes of specific volume would then be obtained from the expressions for 

unsaturated behaviour. It is important to note that the “line of saturation” defined by 

Equation 7.34 is not a universal relationship for the boundary between saturated and 

unsaturated conditions; it applies only for the special case of an isotropic soil (    ), 

subjected to isotropic loading, with the soil state on both    and    yield surfaces. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.9 Saturated and unsaturated isotropic normal compression planar surfaces in the 
            space 
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7.11 APPLICATION OF THE MODEL 

Version   of the anisotropic model involves    soil constants:   ,  ,  ,   ,   ,  , 

  ,   ,     ,    
 ,    

  and  . Version   of the model involves one fewer soil constants, 

because the parameter   is omitted. 

In addition, for both versions of the model, specification of the initial state requires 

initial values of the stresses  ,    and    and initial values of the hardening parameters 

  
 ,   

 ,   
  and   

 , defining the initial positions of the three yield surfaces and the initial 

inclination of the    surface. For many simulations, the    yield surface will not be 

reached, and the initial value of   
  is then not required. 

The model (Version   or Version  ) can be used to predict the soil response for any stress 

path that is specified in terms of  ,    and   . However, if the model is to be used to 

predict the soil response for a stress path specified in terms of conventional stresses 

 ,  ̅ and  , it must either be combined with a separate water retention model (in order to 

predict the variation of   , which is required to calculate values of   ) or experimental 

values of    must be used. In the latter case, the model cannot be used for true Class   

predictions. This is the approach taken in Chapter 8 for comparing model simulations 

with experimental results. 
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8 
MODEL SIMULATIONS 

This chapter investigates the performance of the new anisotropic model developed in 

Chapter 7 by performing simulations of the experimental tests presented in Chapter 5. 

Sections 8.1 to 8.4 describe how the simulations were performed, including the 

calibration of the various model constants and the initial states, and simulations are then 

compared with experimental results in Sections 8.6 to 8.9. 

The majority of the simulations were performed with Version 1 of the model (see Chapter 

7) but some comparisons between Version 1 and Version 2 are presented in Section 8.9. A 

limited selection of tests was simulated both with Version 1 of the anisotropic model and 

with an isotropic variant of Version 1 of the model (see Section 8.6). This was to 

investigate whether the incorporation of anisotropy in the model resulted in a significant 

improvement in the accuracy of the simulations.  

In performing all model simulations, experimental values of degree of saturation    were 

employed, so that stress paths could be specified in terms of mean Bishop’s stress   , 

defined by:  

    ̅                                                                                                                                                                

For each stage of every individual test, the experimental values of    were plotted 

against mean net stress  ̅, and the data for each stage were then fitted by a suitable 

polynomial expression relating    to  ̅. This fitted expression for the individual test stage 

(rather than raw experimental values of   ) was then used to give the values of    at any 

point in a test, in order to calculate the corresponding value of    (from Equation 8.1) for 

use in model simulations. Figure 8.1 shows an example of the experimental values of    

from an individual test (Test A300(0)), together with the two polynomial expressions 

fitted separately to the two different stages of this test (the probing stage at [     ̅]  

  and the subsequent shearing stage at [     ̅]      This shows that the fitted curves 

and the raw experimental data are almost indistinguishable. Use of experimental values 

of    in the model simulations in this way is equivalent to investigating how well the new 

anisotropic mechanical model would represent the experimentally observed mechanical 
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behaviour if it was combined with a water retention model which perfectly captured the 

observed variation of   .  

 

Figure 8.1 Typical fitting of the experimental values of    from Test A300(0)  

8.1 CALIBRATION OF SOIL CONSTANTS OTHER THAN   AND   

Referring to Section 7.11, values of    soil constants must be specified in order to 

conduct model simulations with Version   of the model or values of    soil constants 

must be specified in order to conduct model simulations with Version 2 of the model (the 

parameter   is omitted). Values of soil constants other than   and   were determined 

based on the interpretation of experimental results presented in Chapter 6 and these are 

briefly summarised in this section. The values of the final soil constants   and   (which 

control the variation of    during plastic straining, see Section 7.7) where determined by 

fitting model simulations to experimental results, and this procedure is presented in 

Section 8.4.    

Values of the    soil constants in Version 1 of the model and the    soil constants in 

Version 2 are given in Table 8.1. 

The value of elastic shear modulus   was obtained by best-fitting the unloading portions 

of stress-strain curves in the      plane and the average value of   obtained in this way 

was      kPa (see Section 6.1.3). The value of elastic swelling index    was obtained as 

the average of slopes of unloading portions of compression curves in the        plane and 

was       (see Section 6.1.2). 



CHAPTER 8  Model simulations 

255 
 

Values of the gradient   and intercept   of the saturated isotropic compression line in 

the        plane were       and       respectively (see Section 6.2.1). Values of the 

intercept    and gradients    and   
  of the isotropic normal compression planar surface 

in             space were obtained from best-fitting experimental compression data of 

isotropic loading of isotropically compacted samples under unsaturated conditions (see 

Section 6.2.3). The value of the intercept    was       and the values of the gradients    

and   
  were       and       respectively. the values of the soil constants    and    were 

then obtained by rearranging Equations 7.14 and 7.15 to give: 

     
                                                                                                                                                           

            
                                                                                                                                                      

This led to values of        and       for    and    respectively.  

Table 8.1 Values of model constants  

Soil constant Value 

  9960 kPa 

   0.043 

  0.151 

  2.811 

   2.953 

   0.783 

   0.764 

   0.672 

   
  0.85 

   
  0.95 

  (Version 1) 5 

  (Version 1) 10.4 

  (Version 1) 0.52 

  (Version 2) 7.45 

  (Version 2) 0.43 
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The value of the critical state stress ratio    in the      plane was found to be the same 

in both triaxial compression and triaxial extension and was       (see Section 6.3.3). The 

aspect ratio of the    yield surface for isotropic conditions (    ) was    
       for 

the triaxial compression section of the surface and and    
       for the triaxial 

extension section of the surface (see Section 6.5.2). Finally, a value of     was 

selected in Version 1 of the model in order to ensure that the values of    
  and    

  

remained almost constant for values of    between about       and       (see Figure 

7.6 in Section 7.8.1). 

For simulations with the isotropic variant of Version 1 of the model, the hardening law 

for changes of    was de-activated in the simulation code (by setting the hardening 

parameter   and the initial value of    to zero). Also, in order for the isotropic variant of 

the model to predict critical states for       , the aspect ratio of the    yield surface 

for both triaxial compression and triaxial extension sections of the surface (   
  and    

 ) 

had to be equal to    (as in the isotropic model of Wheeler et al., 2003a). In this case, 

the soil constants   and   were no longer required. 

It is worth mentioning that no sensitivity analysis was carried out in terms of the impact 

of changing any of the model parameters on model predictions and that is because the 

current study focuses mainly on qualitative improvement of model predictions by 

incorporating the influence of evolving anisotropy.     

8.2 CALCULATION OF INITIAL STATES 

Initial states for all tests on isotropically compacted samples were determined in an 

internally consistent fashion. In particular the initial value of   
  for all tests on 

isotropically compacted samples conducted at a suction of     kPa (Test Series A300) was 

selected on the basis of experimental evidence, but the initial value of   
  for the 

corresponding tests conducted at suction of     kPa and zero (Test Series A100 and A0) 

were then calculated in a consistent fashion by calculating how much coupled inward 

movement of the    yield surface would be predicted by the model during wetting from 

      kPa to       kPa and    . Similarly, for tests on anisotropically compacted 

samples, the initial value of   
  for Test Series B300 was based on experimental 

evidence, but then initial values of   
  for Test Series B100 and B0 were determined by 

calculating how much coupled inward movement of the LC yield surface would be 

predicted during wetting to       kPa and    .   

In every individual test the initial values of  ̅,   and   were known (see Table 8.2). the 

initial value of    was then taken from the fitted polynomial expression  for the 
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individual test (rather than the raw experimental data point), hence allowing the initial 

value of mean Bishop’s stress    to be calculated from Equation 8.1 for each individual 

test (see Table 8.2). Due to the dependency of    on the experimental value of   , initial 

values of    within a given test series varied by      kPa for tests at       kPa and by 

   kPa for tests at       kPa. 

Table 8.2 Initial states for model simulations with anisotropic model (Version 1 and Version 2)  

Test 
Series 

  
(kPa) 

 ̅ 
(kPa) 

  
(kPa) 

   
   

(kPa) 
  

   
(kPa) 

  
  

(kPa) 
  
  

(kPa) 
   

A300 300 
12 or 

10 
6 or 

0 
                              244         0 

A100 100 
12 or 

10 
6 or 

0 
                            104        0 

A0 0 5 0 1 5 2.488 0 10.4 0 0 

B300 300 
12 or 

10 
6 or 

0 
                              300         0.20 

B100 100 
12 or 

10 
6 or 

0 
                            128        0.20 

B0 0 5 0 1 5 2.428 0 18.2 0 0.20 

1 Values shown are for Tests A300(0), A100(0), B300(0) and B100(0), values for 
other tests in A300, A100, B300 and B100 varied slightly because individual 
values of    were used. 

 

In order to calculate the initial value of modified suction    for each individual test, the 

initial value of porosity had to be predicted. This meant predicting the initial value of 

specific volume   for the individual test, by making use of the general expression for   of 

Equation 7.16: 

            
    

      
      (

  
 

  )                                                                                                           

However, inspection of Equation 8.4 shows that this requires initial values for the 

hardening parameters   
  and   

  (giving the initial positions of the    and    yield 

surfaces respectively). For the initial value of   
 , it was assumed that the initial state in 

all tests was on the    yield surface (  
    ), because of the prior wetting from the 

much higher post-compaction value of suction. This was supported by significant 

experimental increases of    during initial wetting to       kPa,       kPa or    . 

Equation 8.4 could then be expressed as: 

            
    

    [
      

 
]      (

  
 

  
)                                                                                     
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Given that initial values of   and    were known for each test, Equation 8.5 could be 

solved for the initial value of   if the initial value of   
  was known. Alternatively, if the 

initial value of   was known, Equation 8.5 could be solved for the initial value of   
 .  

For tests within Series A300 the initial value   
  was taken as     kPa (see Table 8.2) 

based on the experimental evidence presented in Section 6.5.2. Equation 8.5 was then 

solved for the initial value of   for each test in Series A300. This required an iterative 

procedure, because   appears on both sides of Equation 8.5. This was done using a 

standard solution routine available in Matlab, and led to an initial value of   of 

approximately       (see Table 8.2). Predicted initial values of   varied slightly between 

the individual tests within Test Series A300 (by less than       ), because of the slight 

variation in the initial values of    between tests.  

For tests within Series A100, the initial value of   in each test was calculated by 

considering a previous wetting path from a suction of     kPa (at a state corresponding 

to the initial state for Test A300(0) i.e.           kPa, see Table 8.2). Considering that 

only elastic changes of   would occur along this wetting path (which remained inside the 

   yield surface), this led to the following expression for the initial value of   for each 

test within Test Series A100: 

             (
     

  
)                                                                                                                                 

Equation 8.6 led to initial values of   for all tests in Series A100 of       (see Table 8.2), 

with slight variation between individual tests (less than       ) because of the slight 

variation of initial values of    between tests. This initial value of   was then inserted 

back into Equation 8.5, in order to calculate the corresponding initial value of the 

hardening parameter   
 . This led to an initial value of   

  of     kPa (see Table 8.2). A 

single initial value of   
  was used for all tests in Series A100. The reduction of the initial 

value of   
  from     kPa in Test Series A300 to     kPa in Test Series A100 represented 

the coupled inward movement of the    yield surface caused by yielding on the    

surface during wetting from       kPa (          kPa) to       kPa (         

kPa). Integration of the coupling relationship for yielding on the    surface alone 

(Equation 7.8) during wetting from           kPa to          kPa confirmed this 

coupled inward movement of the    surface from   
      kPa to   

      kPa.    

For tests within Series A0 the initial value of   was calculated from Equation 8.6, using a  

   value of   kPa (see Table 8.2). This led to an initial value of   of       for all tests in 
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Series A0. The corresponding initial value of   
  was then calculated by inserting this 

initial value of   in the general expression for the specific volume of a saturated soil: 

         
      (

  
 

  
)                                                                                                                             

where   and   are the intercept and gradient of the saturated isotropic normal 

compression line (see Section 7.10). This led to an initial value of   
  of      kPa for all 

tests in Series A0 (see Table 8.2). The reduction of the initial value of   
  from     kPa in 

Test Series A300 to 10.4 kPa in Test Series A0 represented the coupled inward movement 

of the    yield surface caused by yielding on the    surface during wetting from       

kPa (          kPa) to the point where the soil became fully saturated (at a non-zero 

value of suction). Further reduction of suction from this point to     corresponded 

simply to elastic swelling of a saturated soil (due to a decrease of effective stress), with 

no further change of   
 . A subsequent check (involving integration of Equation 7.8) 

confirmed that the reduction of   
  from     kPa to      kPa was consistent with the 

coupled inward movement of the    yield surface produced during wetting from    

       kPa to the point where the soil became fully saturated, when the corner between 

the    and    yield curves reached the “line of saturation” described in Section 7.10.  

Similar procedures were used to determine the initial states for the model simulations of 

tests on anisotropic compacted samples. For tests within Series B300, the initial value of 

  
  was taken as     kPa (see Table 8.2) based on the experimental evidence presented 

in Section 6.5.2. This led (from Equation 8.5) to a corresponding initial value of   of 

      (      ), as shown in Table 8.2. For tests in Series B100 and B0, the initial value of 

  was calculated by considering the elastic change of   starting from the initial state of 

Test B300(0): 

             (
     

  
)                                                                                                                                 

This led to initial value of   of       (      ) in Test Series B100 and       in Test Series 

B0. Finally, the initial value of   
  in Series B100 was back calculated from Equation 8.5 

as     kPa and the initial value of   
  in Series B0 was back calculated from Equation 8.7 

as 18.2 kPa (see Table 8.2).  



CHAPTER 8  Model simulations 

260 
 

The initial value of    was taken as zero for all tests in Series A300, A100 and A0, 

whereas the initial value of    was taken as      for all tests in Series B300, B100 and B0. 

These values were based on the experimental evidence presented in Section 6.5.2.  

Table 8.3 shows the initial values of   
  selected or calculated for use in the model 

simulations and compares these with the corresponding experimental values (from 

Section 6.5.2). For Series A300 the initial value of   
  used in the model simulations (    

kPa) was specifically selected to match the corresponding experimental value.  For Test 

Series A100 the initial value of   
  predicted by the model (    kPa) was in close 

agreement with the experimental value (    kPa), indicating excellent model 

performance in predicting the coupled inward movement of the    yield surface while 

the soil remained unsaturated. However, for Test Series A0 the initial value of   
  

predicted by the model (     kPa) was significantly lower than the experimentally 

observed value (   kPa), indicating that the model was less successful in predicting the 

transition from unsaturated to saturated conditions. The initial values of   
  for the tests 

on anisotropically compacted samples show a similar pattern. For Test Series B300 the 

initial value of   
  (    kPa) was selected to match the corresponding experimental 

value, for Test Series B100 the value predicted by the model (    kPa) was a good match 

to the experimental value (    kPa), whereas for Test Series B0 the value predicted by 

the model (     kPa) was significantly lower than experimental value (   kPa).    

Table 8.3 Experimental and model predicted initial values of   
  and   for the anisotropic 

model (Version   and Version  )  

Test 
Series 

  
  (kPa)   

Experimental Model predicted Experimental Model predicted 

A300 244 244 (Input value) 2.345 2.336 

A100 101 104 2.360 2.369 

A0 16 10.4 2.414 2.488 

B300 300 300 (Input value) 2.185 2.270 

B100 122 128 2.214 2.304 

B0 23 18.2 2.273 2.428 

 

Table 8.3 also shows the initial values of   predicted by the model and compares these 

with the corresponding experimental values (from Section 5.4). The initial values of   
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predicted for the unsaturated tests on isotropically compacted samples (Test Series A300 

and A100) show excellent agreement with the corresponding experimental values. This 

makes sense, given that the corresponding values of   
  showed a good match and that 

the experimental data from some of the tests (A300(0) and A100(0)) were used to 

determine the unique isotropic normal compression planar surface in             space 

(which provides the link between   and   
 ). The predicted initial value of   for Test 

Series A0 shows a less good match to the corresponding experimental value (see Table 

8.3). For this saturated test series, the initial value of   is over-predicted because of the 

under-prediction of the initial value of   
 . 

Inspection of Table 8.3 shows that the predicted initial values of   for the unsaturated 

tests on anisotropically compacted samples (Test Series B300 and B100) significantly 

overestimate the corresponding experimental values. This indicates that the model is 

unable to correctly predict or explain the large difference in initial   value between 

isotropically compacted and anisotropically compacted samples. The initial values of   
  

for the unsaturated tests on anisotropically compacted samples are slightly greater than 

the corresponding initial values of   
  for tests on isotropically compacted samples, and 

hence the model predicts slightly lower initial values of   for the anisotropically 

compacted samples than for the isotropically compacted samples. However, the 

experimental results show that the initial values of   for the unsaturated tests on 

anisotropically compacted samples are substantially lower than the corresponding values 

for the tests on isotropically compacted samples. Clearly, the effects of a change from 

isotropic compaction to anisotropic compaction are not being completely captured by the 

model. The over-estimation of the initial value of   for anisotropically compacted 

samples is exacerbated in the saturated tests (Test Series B0), (see Table 8.3), because 

the initial value of   
  is also significantly under-predicted.  

For the model simulations with the isotropic variant of Version 1 of the model, slightly 

different assumed initial states were used, as shown in Table 8.4. The initial value of    

was obviously zero for all tests in the simulations performed with this isotropic variant of 

the model. However, it was also appropriate to re-calibrate the initial values of   
  for 

Test Series A300 and B300 by fitting revised yield curves to the experimental data 

presented in Section 6.5.2. Revised yield curves were obviously necessary in Test Series 

B300 because the assumed initial value of    was now zero instead of     . However, 

revised yield curves were fitted for both Test Series A300 and Test Series B300, because 

the aspect ratio of the yield curve had to be different for this isotropic variant of the 

model (   
     

     for this isotropic variant, as described in Section 8.1). Re-fitting 

yield curves with these conditions to the experimental data resulted in initial values of 
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  of     kPa in Test Series A300 and     kPa for Test Series B300 (see Table 8.4). This, 

then produced slight changes to the initial values of   
  for all remaining tests and to the 

initial values of   for all tests (compare Table 8.4 with Table 8.2).   

Table 8.4 Initial states for model simulations with isotropic variant of Version 1 of the model 

Test 
Series 

  
(kPa) 

 ̅ 
(kPa) 

  
(kPa) 

   
   

(kPa) 
  

   
(kPa) 

  
  

(kPa) 
  
  

(kPa) 
   

A300 300 
12 or 

10 
6 or 

0 
                              255         0 

A100 100 
12 or 

10 
6 or 

0 
                            108.7        0 

A0 0 5 0 1 5 2.475 0 11.7 0 0 

B300 300 
12 or 

10 
6 or 

0 
                              320         0 

B100 100 
12 or 

10 
6 or 

0 
                            136.6        0 

B0 0 5 0 1 5 2.409 0 21.6 0 0 

1 Values shown are for Tests A300(0), A100(0), B300(0) and B100(0), values for 
other tests in A300, A100, B300 and B100 varied slightly because individual 
values of    were used. 

 

8.3 METHOD OF PERFORMING SIMULATIONS 

A simulation code was developed in Matlab in order to perform model simulations of the 

experimental tests presented in Chapter 5. Simulations involved an incremental 

procedure for each test stage. For test stages which did not finish at a critical state, 

defined increments of mean net stress (  ̅) were normally applied (  ̅    kPa), to a 

defined final value of  ̅ (i.e. stress-controlled simulation). In a small number of cases, 

where a wetting or drying stage was being simulated, defined increments of suction (  ) 

were applied to a defined final value of  , instead of increments of  ̅. For test stages 

which finished at a critical state, defined increments of shear strain (   ) were applied 

(typically          ) to a defined (very large) final value of    (i.e. a strain-controlled 

simulation). It is worth mentioning that different values for the increments   ̅ and     

were investigated and the increments of   ̅    kPa and           were considered 

adequate for the current simulation work.   

Figure 8.2 shows a flow chart of the simulation code. For each increment of stress or 

strain, there are four possibilities:   

(a) Elastic behaviour; 

(b) Yielding on    yield surface alone; 

(c) Yielding on    yield surface alone; 
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(d) Yielding on both    and    yield surfaces 

 

The simulation code considers each of these possibilities in turn, until it finds the one 

that is correct (see Figure 8.2). In each case, the relevant set of equations is solved, and 

then the calculated state at the end of the increment is checked against an appropriate 

set of conditions to see if it is acceptable and consistent. If the conditions are satisfied, 

the simulation code stores the calculated values, updates all relevant variables and 

moves on to the next increment. However, if the conditions are not satisfied, the code 

moves on to the next of the four possibilities in sequence.  

For each of the four possible cases, a set of 17 simultaneous equations is solved for 17 

unknown quantities, using a standard Matlab routine. The relevant equations for 

unsaturated tests with Version 1 of the model are shown in Tables 8.5 and 8.6. In these 

tables      represents the unknown value of variable   at the end of the current 

increment,        represents the known value of variable   at the start of the current 

increment and       represents the unknown increment of variable   over the current 

increment.       

Tables 8.5 and 8.6 involve 17 unknown quantities. For both stress-controlled simulations 

(where increments of  ̅ are applied, i.e.  ̅    is known) and strain-controlled simulations 

(where increments of shear strain are applied, i.e.         is known),   is generally 

constant (i.e. known) and  [     ̅] is specified (i.e. known). The    unknown quantities 

in the    simultaneous equations are:      ,      ,     ,       ,      ,       ,     
    , 

    
    ,    

    ,     
    ,        ,    

    ,     
    ,      ,      ,        and either        (for a 

stress-controlled simulation, when  ̅    is a known quantity) or   ̅    (for a strain-

controlled simulation, when        is a known quantity). 17 equations are therefore 

required, in order to solve for these 17 unknowns. 15 of these 17 equations are common 

to all four of the possible cases discussed above (see Table 8.5). The final 2 equations 

differ, depending on which of the four cases is being considered (see Table 8.6).    

It is worth mentioning a few comments about the 15 common equations shown in Table 

8.5. Firstly, Equation 4 in the table represents the polynomial expression (of first to 

fourth order) relating    to  ̅, determined by fitting the experimental variation of    

observed in the individual test stage, as described at the start of this chapter. Secondly, 

whereas the elastic volumetric strain increment is calculated from the change of    over 

the increment in the expected fashion (see Equation 6 in Table 8.5), the plastic 

volumetric strain is not calculated from direct application of the relevant hardening law,  
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Figure 8.2 Flow chart for the model simulation of a single test stage 
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Table 8.5 Simulation equations used in all four cases (model Version  ) 
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Table 8.6 Final two simulation equations for each of the four cases 

 

as might be expected. Instead, the value of   at the end of the increment is calculated 

from the general expression for   (see Equation 8 in the table) and then this is used to 

calculate the total volumetric strain increment (Equation 9 in the table) and finally the 

plastic volumetric strain increment is calculated by subtracting the elastic volumetric 

strain increment (Equation 10 in the table). This produces the same results as applying 

the relevant hardening law directly, but is considered less susceptible to accumulation of 

numerical errors over successive increments. 

For the case of an elastic increment, Equations 16a and 17a in Table 8.6 simply state that 

there is no movement of either yield surface over the increment. For the case of an 

increment involving yielding on the    surface only, Equation 16b relatres the coupled 

movement of the    surface to the movement of the    surface, and Equation 17b states 

that the stress state at the end of the increment must be on the    surface.  For the 

case of yielding on the    surface alone, Equation 16c states that the stress state at the 

end of the increment must be on the    surface, and Equation 17c relates the coupled 
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movement of the    surface to the movement of the    surface. For the case of yielding 

on both    and    surfaces, Equations 16d and 17d state that the stress state at the end 

of the increment must lie on both surfaces.    

For simulations performed with Version 2 of the anisotropic model, the only changes 

required to the equations shown in Tables 8.5 and 8.6 were to the flow rule on the    

surface (see Equation 11 in Table 8.5) and the expression for the aspect ratio    of the 

   yield surface (see Equation 15 in Table 8.5). These changes arise from Equations 7.24 

and 7.23 respectively in Section 7.8.2. As shown in Figure 8.2, after solving for the 17 

unknown quantities the simulation code checks whether appropriate conditions were 

satisfied and hence whether the correct assumption had been made about the form of 

behaviour within the increment (i.e. elastic, yielding on the    surface alone, yielding on 

the    surface alone). These conditions are set out in Table 8.7.    

In Table 8.7,    
  gives the size of an equivalent curve passing through the current stress 

point (of the same shape as the current cross-section of the    yield surface), defined 

by: 

   
  (

[      ] 

     
  )                                                                                                                                 

Table 8.7 Conditions checks for each of the four cases  

Case Conditions to be satisfied 

Elastic behaviour 

   
       

     
 

        
     

 

Yielding on    surface alone 

   
       

    

   
             

 

 

Yielding on    surface alone 

        
     

 

|   
 
                 |  |   

 
   |  |             | 

 

 
 
Hence, the two conditions shown in Table 8.7 for the elastic case are checks that the 

stress state at the end of the increment does not lie outside either the    surface or the 

   surface. For yielding on the    surface alone, the first condition is a check that the 

stress state at the end of the increment is not outside the    surface (Equation 17b in 

Table 8.6 has already imposed that the stress state at the end of the increment is on the 
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   surface). The second condition is a check that the calculated movement of the    

surface is of the correct sign. For yielding on the    surface alone, the first condition is a 

check that the stress state at the end of increment is not outside the    surface 

(Equation 16c in Table 8.6 has already imposed that the stress state at the end of 

increment is on the    surface). The second condition is a check that the signs of    
 
 and 

   
 
 are individually correct (rather than that simply the ratio    

 
    

 
 is correct). This is 

achieved by checking that    
 
 is positive for       and that    

 
 is negative for       (by 

checking that    
 
 and (     ) are of the same sign).  

For simulations of saturated tests (Test Series A0 and B0), a simplified version of the 

simulation code was employed, with appropriate equations in Table 8.5, 8.6 and 8.7 

either modified or omitted. In particular only two possible cases (rather than four) had to 

be considered for the simulation of saturated tests: 

(a) Elastic behaviour; 

(b) Yielding on    yield surface. 

 

8.4 CALIBRATION OF SOIL CONSTANTS   AND   

The first model simulations were performed to calibrate the values of the two final soil 

constants   and  , which control the hardening for changes of    (see Equation 7.17). 

This was done by running model simulations of the initial loading stages of Test Series 

Ba300 (conducted at [     ̅]     ) , Bb300 (conducted at [     ̅]   ) and Bc300 

(conducted at [     ̅]    ) with different values of   and  . The objective of these 

simulations was to find a combination of   and   that gave the best estimate of the final 

inclination    of the    yield curve in the      plane for Test Series Ba300, Bb300 and 

Bc300. In all three of these cases the initial value of    was      whereas the value of    

at the end of the initial loading stage had changed to      in Test Series Ba300,      in 

Test Series Bb300 and       in Test Series Bc300 (see Section 6.5.2). It is worth 

mentioning that experimental results of Test Series Bd100 were not used in the 

calibration of   and   and, instead, they were used independently to investigate model 

performance when plastic straining was caused by a reduction of suction, as will be 

shown in Section 8.8.   

In performing these model simulations of the initial loading stage in a given test series, 

the fitted polynomial expression for    (see Equation 4 in Table 8.5) was based on the 

average for all the experimental curves in the given test series. An example is presented 

in Figure 8.3 for Test Series Ba300.  
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Figure 8.3 Best fitting of experimental    data for the initial loading stages of Test Series 
Ba300  

The method used to calibrate the values of   and   for Version   of the model is 

presented first. Inspection of Equations 7.17 and 7.19 show that the change of    is not 

affected by the soil constant   for the case where    is zero and hence tests of this type 

are ideal for calibrating for the soil constant  . Values of    were very small in Test 

Series Bb300 (remember that the initial loading stages were conducted at [     ̅]    

but under a small constant value of     kPa in Tests Bb300(1.2) and Bb300(0.5) and 

under a constant value of      in Tests Bb300(-0.5), Bb300(-1) and Bb300(-1.5), see 

Section 5.1.2). For the case where     kPa,    contributes slightly to the predicted 

change of   , but the influence of   is extremely small (because the value of    never 

exceeded     ). For the first simulation, the value of    was assumed at      (note that in 

the         model of Wheeler et al. 2003b, the equivalent value for   essentially 

varies between     and    , see Section 2.7.2). Model simulations were performed for 

several different values of   for the two cases of     kPa (relevant to two tests) and 

    (relevant to three tests). Figure 8.4a shows the variation with    of the predicted 

final value of    at the end of initial loading stage (for simulations performed at the two 

different values of  ). The experimental results showed a final value of    of     , and 

inspection of Figure 8.4a shows that, in order to correctly predict this final value of   , a 

  value of    was required for tests with     kPa and  a   value of     was required for 

tests with    . An average value of        was therefore provisionally calculated. 

Subsequently, the value of        was used when calibrating the value of the final 

model parameter   by performing simulations of the initial loading stages of Test Series 

Ba300 and Bc300. Again model simulations were performed for each test series using 
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several different values of  . For Test Series Ba300 the initial loading stages were as a 

stress ratio [     ̅]      from an initial stress state of either     kPa (Tests 

Ba300(0.5) and Ba300(0)) or     (Tests Ba300(-0.5), Ba300(-1) and Ba300(-1.5)). For 

Test Series Bc300 initial loading stages were at [     ̅]    , starting from an initial 

stress state with     in all cases.  The experimental results showed values of    at the 

end of the initial loading stage of      for Test Series Ba300 and       for Test Series 

Bc300 (see Section 6.5.2). Inspection of Figures 8.4b and 8.4c shows that these 

experimental values were matched by the model predictions with        (Test Series 

Ba300 with            kPa),        (Test Series Ba300 with           ) or        

(Test Series Bc300). An average value of        was therefore selected.  

As a final check, the selected values of   and   (     and      respectively) were used to 

simulate again the initial loading stage of Test Series Bb300. It was found that the 

modest change in the value of   (from the initial guess of        shown in Figure 8.4a 

to the final value of        ) had an insignificant effect on the predicted final value of 

   (as expected, because the value of    was so low in this stage). The values of        

and        were therefore considered satisfactory and were employed in all subsequent 

model simulations with Version 1 of the model (see Table 8.1). 

For Version   of the model, revised values of    and   were obtained by following the 

same procedure as for Version   (remembering that initial states and model equations 

are slightly different for Version  , see Sections 8.2 and 8.3). This led to slightly different 

values of        and        (see Table 8.1).  

8.5 CONFIRMATION THAT CONSTANT SUCTION PROBING TESTS WERE 

ACCEPTABLE FOR DETERMINING INITIAL SIZE AND SHAPE OF THE    

SURFACE   

In Section 6.5.2, results from sets of constant suction probing stages on isotropically 

compacted samples (Test Series A300, A100 and A0) and on anisotropically compacted 

samples (Test Series B300, B100 and B0) were used to investigate the initial size and 

shape of the    yield curve in the      plane (i.e. values of   
 ,   ,   

  and   
 ) following 

wetting to different initial states. These experimental results were subsequently used in 

Section 8.1 for the selection of values for model constants    
  and    

 , and in Section 

8.2 for the selection of initial values of   
  and    for model simulations.  
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Figure 8.4 Calibration of   and  : (a) from loading stages of Test Series Bb300, (b) from loading 
stages of Test Series Ba300, (c) from loading stages of Test Series Bc300 
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The constitutive model presented in Chapter 7 suggests that all these probing stages 

commenced at stress states on the    yield surface, because of the prior wetting from 

the higher as-compacted suction to the suction value of     kPa,     kPa or zero. The 

model then predicts small amounts of yielding on the    surface from the outset of each 

probing stage, because of the small decrease of    as porosity decreased (due to elastic 

compression). This small amount of yielding on the    surface results in the prediction of 

a small coupled inward movement of the    surface. This means that the model predicts 

that, in each probing stage, the    yield surface would have moved slightly inwards 

before the yield point on this surface was reached, and the magnitude of this inward 

movement of the surface prior to arriving at the yield point would be different for each 

probing stage. As a consequence, it was strictly incorrect to simply join the various 

experimental yield points within a single test series in order to define the initial form of 

the    yield curve in the      plane. 

Model simulations of the various probing stages were used to investigation whether the 

coupled inward movements of the    yield surface prior to arriving at the    surface 

were sufficiently small to be considered insignificant. The simulations demonstrated that 

the decrease of   
  due to coupled inward movements of the    surface prior to arriving 

at the    surface were typically less than   kPa (e.g.      kPa and      kPa in Tests 

A300(0) and A100(0) respectively and      kPa and      kPa in Tests A300(2) and A100(2) 

respectively). This was within the precision with which yield points could be 

experimentally determined (see Section 6.5.2). Hence it was confirmed that it was 

acceptable to use the constant suction probing tests for the determination of the initial 

size and shape of the    yield surface, even though these probing tests commenced on 

the    yield surface.  

8.6 SIMULATIONS OF TESTS ON ISOTROPICALLY COMPACTED SAMPLES 

Model simulations of selected tests on isotropically compacted samples from Test Series 

A300, A100 and A0 are shown in this section, together with the corresponding 

experimental results, in order to investigate the capabilities of the new anisotropic 

model. This is followed by Section 8.7, which shows simulations of selected tests on 

anisotropically compacted samples from Test Series B300, B100 and B0. Section 8.7 

includes an examination of whether the new anisotropic model is able to capture 

observed differences in behaviour between isotropically compacted and anisotropically 

compacted samples. Section 8.8 shows simulations of selected tests incorporating a 

previous loading or wetting stage (from Test Series Ba300, Bb300, Bc300 and Bd100). The 

test simulations presented in Sections 8.6, 8.7 and 8.8 employ Version 1 of the new 

anisotropic model (involving an associated flow rule and values of   
  and   

  that vary 
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with   ), whereas Section 8.9 includes some comparisons of simulations with both 

Version 1 and Version 2 of the model (involving a non-associated flow rule and constant 

values of   
  and   

 ), in order to compare the performance of the two versions.  

8.6.1 Test Series A100 (all values of [     ̅]) 

Model simulations (using Version 1 of the new anisotropic model) are compared with the 

corresponding experimental results for the full set of   tests within Test Series A100 

(      kPa), in order to explore the model performance over a wide range of stress 

path directions. Also shown for comparison are simulations with the isotropic variant of 

the model (with the soil constant   and the initial value of    both set to zero), in order 

to investigate whether incorporation of anisotropy in the model results in significant 

improvement in the accuracy of the model simulations (even for tests on samples that 

are initially isotropic). 

Figure 8.5 shows the model simulations and experimental results for Test A100(0). This 

test involved an initial probing stage at [     ̅]   , followed by conventional shearing 

at [     ̅]   .  

Inspection of Figure 8.5a and 8.5b shows that the anisotropic model accurately predicts 

the small positive value of shear strain observed during the initial probing stage at 

[     ̅]    (i.e. prior to the start of the shearing stage), whereas the isotropic model 

over-predicts the shear strain during the probing stage. Inspection of Figure 8.5b and 

8.5c shows that the volumetric strain during the initial probing stage (i.e. prior to the 

start of the shearing stage) is well captured by both anisotropic and isotropic models. 

Figure 8.5c shows that both anisotropic and isotropic model predict well the gradient of 

the    , which is expected as the isotropic normal compression surface in             

space was fitted through experimental data points from isotropic normal compression 

probing stages on isotropic unsaturated samples (see Section 6.2.3). 

Figures 8.5b and 8.5c show that both anisotropic model and isotropic model over-predict 

the volumetric strain observed during the shearing stage. However, this over-prediction 

of volumetric strain during the shearing stage is much less severe for the anisotropic 

model than for the isotropic model.  

For the shearing stage of the test, the experimental curve in Figure 8.5a shows a 

dramatic post-peak reduction in deviator stress, and similar behaviour is observed in all 

other tests. This can be attributed to post-peak strain localisation. The model simulations  
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Figure 8.5 Model simulations and experimental results for Test A100(0)  
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cannot, of course, account for such strain localisation effects, and therefore when 

comparing model simulations and experimental results, this part of the experimental      

curve should be ignored.   

Both anisotropic and isotropic model simulations in Figure 8.5 predict the same critical 

state value of deviator stress  , but this is not reached until extremely large values of 

shear strain for the isotropic model (     ). The anisotropic model predicts a peak in 

the      curve and then a modest post-peak reduction of   to a critical state, whereas 

the isotropic model predicts a monotonic increase of   to the critical state. The peak 

deviator stress predicted by the anisotropic model is an excellent match to the peak 

deviator stress observed in the experimental results, whereas the match to the peak 

value of   is less good for the isotropic model.  

Figure 8.5a shows that the development of shear strain during the shearing stage and 

prior to reaching peak deviator stress is very well predicted by the anisotropic model. 

This suggests that the associated flow rule is performing well when combined with an 

anisotropic yield curve (where    can increase from zero during the shearing stage). In 

contrast, the isotropic model grossly over-predicts the generation of shear strain during 

the shearing stage. This indicates that the combination of an associated flow rule with an 

isotropic yield curve (with    remaining at zero) does not work well (compounded by the 

fact that plastic volumetric strains have already been significantly over-predicted by the 

isotropic model). 

Overall, it is clear from Figure 8.5 that the anisotropic model provides a significantly 

better match to the experimental results of Test A100(0) than the isotropic model. 

Figures 8.6, 8.7 and 8.8 show the model simulations and experimental results for Tests 

A100(1), A100(2) and A100(3) respectively. These three tests involved probing stages in 

triaxial compression continued right through to critical states, with [     ̅]   ,   and   

respectively. 

Inspection of Figures 8.6b and 8.6c shows that the anisotropic model gives better 

predictions of the volumetric strains than the isotropic model at [     ̅]   . However, 

inspection of Figures 8.7b, 8.7c, 8.8b and 8.8c shows that, at [     ̅]    or  , although 

the anisotropic model provides better modelling of volumetric strains in the early part of 

shearing, the isotropic model predicts the final values of volumetric strains better than 

the anisotropic model. 
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Anisotropic and isotropic model simulations in Figures 8.6a, 8.7a and 8.8a predict the 

same critical state value of deviator stress   for a given value of [     ̅], but again this 

is not reached until extremely large values of shear strain for the isotropic model. At 

high [     ̅] values (i.e.   or  ) the anisotropic model predicts a peak in the      curve 

followed by a modest post-peak reduction of  , whereas at [     ̅]    the anisotropic 

model predicts a monotonic increase of   to a critical state. In contrast, the isotropic 

model predicts a monotonic increase of   to the critical state in all three tests. The peak 

value of   is reasonably well predicted by the anisotropic model with the exception of 

Test A100(1), where the peak value of   is significantly under-predicted by the 

anisotropic model. This is attributed to the fact that with [     ̅]    the stress path is 

approaching the critical state line at a very acute angle in the      plane, and a small 

error in the predicted position of the critical state line can result in a large error in the 

predicted critical state value of  . Figures 8.6a, 8.7a and 8.8a show that the isotropic 

model significantly under-predicted the peak value of   at all three values of [     ̅].    

Figures 8.6a, 8.7a and 8.8a show clearly that the anisotropic model captures reasonably 

well the evolution of shear strains prior to reaching peak deviator stress, whereas the 

isotropic model considerably over-predicts the evolution of shear strain. This confirms 

that the associated flow rule is performing well when combined with a yield curve with 

evolving anisotropy but that the combination of an associated flow rule with an isotropic 

yield curve does not work well, as already observed in the discussion of Figure 8.5.  

Figures 8.9, 8.10 and 8.11 show the model simulations and experimental results for Tests 

A100(-0.5), A100(-1) and A100(-1.5), which all involved testing in triaxial extension. Test 

A100(-0.5) involved a probing stage at [     ̅]       followed by shearing to a critical 

state in triaxial extension at [     ̅]   .Tests A100(-1) and A100(-1.5) involved probing 

stages in triaxial extension continued right through to critical states, at [     ̅]     

and      respectively. 

Figure 8.9b and 8.9c show that the anisotropic model gives slightly better prediction of 

the final volumetric strain than the isotropic model during the probing stage at [     ̅]  

    , and the anisotropic model gives significantly better prediction of the volumetric 

strain observed during the subsequent shearing stage than the isotropic model (although 

even the anisotropic model does over-predict the final volumetric strain during the 

shearing stage). Figures 8.10c and 8.11c show that the anisotropic model captured well 

the final volumetric strains the stress path at [     ̅]     and     , whereas the 

isotropic model always over-predicts the final volumetric strain. 
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Figure 8.6 Model simulations and experimental results for Test A100(1)  
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Figure 8.7 Model simulations and experimental results for Test A100(2)  
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Figure 8.8 Model simulations and experimental results for Test A100(3)  
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Anisotropic and isotropic model simulations in Figures 8.9a, 8.10a and 8.11a predict the 

same critical state value of deviator stress   for a given value of [     ̅], but this is not 

reached until extremely large values of shear strain for the isotropic model (e.g.       

in A100(-1)). The anisotropic model predicts a peak in the      curves of A100(-0.5) (i.e. 

during the shearing stage at [     ̅]   ) and Test A100(-1.5) and then a modest post-

peak reduction of   to a critical state, but no peak in the      curve is predicted for Test 

A100(-1). In contrast, the isotropic model predicts a monotonic increase of   to the 

critical state in all of these simulations. The peak deviator stress predicted by the 

anisotropic model for the probing at [     ̅]     is a good match to the experimental 

peak deviator stress, whereas the anisotropic model slightly over-predicts the peak 

deviator stress for the probing stage at [     ̅]        and for the shearing stage at 

[     ̅]    (in Test A100(-0.5)) However, the critical state values of   predicted by the 

model match very well the experimental peak values of  .  

Figure 8.9a shows that the anisotropic model captures very well the generation of shear 

strain during the probing stage at [     ̅]      . Figures 8.10a and 8.11a show that the 

anisotropic model does reasonably well in predicting the development of shear strains 

during the probing stages at [     ̅]     and      (shear strains are slightly under-

predicted). In contrast, the generation of shear strains is considerably over-predicted by 

the isotropic model during the probing stages at [     ̅]          and      (see Figures 

8.9a, 8.10a and 8.11a). The over-prediction of shear strain by the isotropic model 

suggests that the combination of an associated flow rule with an isotropic yield curve 

(with    remaining at zero) does not work well.    

In general, Figures 8.5 to 8.11 indicate that predictions of the anisotropic model are 

significantly better than those of the isotropic model in capturing the soil behaviour 

observed in the experimental tests, even for isotropically compacted samples. This 

supports the argument that it is important to represent the evolution of anisotropy 

during plastic straining. Figure 8.12 combines the results for three tests in Test Series 

A100 (Tests A100(0), A100(1) and A100(-1), previously shown in Figures 8.5, 8.6 and 8.10 

respectively), to illustrate the overall performance of the anisotropic model over a wide 

range of stress paths. Setting aside strain localisation effects in the experimental results, 

it is clear that the anisotropic model does a satisfactory overall job in predicting the soil 

behaviour, with the only significant mismatches being under- prediction of the peak 

value of deviator stress in Test A100(1) (attributed to the very acute angle of approach to 

the critical state line in the      plane) and over-prediction of the volumetric strain in 

the final shearing stage of Test A100(0).     
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Figure 8.9 Model simulations and experimental results for Test A100(-0.5)  
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Figure 8.10 Model simulations and experimental results for Test A100(-1)  
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Figure 8.11 Model simulations and experimental results for Test A100(-1.5)  
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Many of the anisotropic model simulations in Figures 8.5 to 8.11 show a peak value of 

deviator stress and then a modest post-peak reduction of   to a critical state. Anisotropic 

model simulations for these tests show that the stress path in the      plane initially 

progresses beyond the critical state line, before returning to a final state on the critical 

state line. This occurs because when the stress path first crosses the critical state line in 

the      plane, the inclination    and aspect ratio    of the    yield surface have not 

yet attained their critical state values (see Sections 7.7 and 7.8 respectively). As a 

consequence, when the stress path first crosses the critical state line in the      plane, 

positive plastic volumetric strains are still being predicted, and hence the    yield 

surface continues to increase in size and the stress path is temporarily able to continue 

beyond the critical state line in the      plane.          

This type of anisotropic model simulation is illustrated in Figure 8.13, which shows 

simulation of Test A100(3). Figure 8.13a show the stress path in the      plane, and 

Figures 8.13b, 8.13c and 8.13d show the predicted variations of   ,    and   
  

respectively. Yielding on the    surface is predicted from the start of the test, with 

simultaneous yielding on the    surface commencing at Point  . From Point   onwards 

significant increases of    are predicted (see Figure 8.13b). However, when the stress 

path first crosses the critical state line in the      plane at Point   (see Figure 8.13a), 

the value of     is still significantly below its final critical state value (see Figure 8.13b).  

As a consequence, at Point  , the aspect ratio    of the    surface is still much greater 

than the final critical state value (see Figure 8.13c) (this is particularly marked because 

the expression selected for the variation of    with    (see Equation 7.22) means that    

only begins to decrease significantly once    gets relatively close to its critical state 

value). With    below its critical state value and    above its critical state value, the 

cross-section of the    yield surface does not have a horizontal tangent at Point   and 

hence positive plastic volumetric strains are still predicted, together with corresponding 

continuing increase in the size of the    surface (see the variation of   
  in Figure 8.13d). 

The increase of    
  finally ceases at Point  , when the value of    and    have become 

relatively close to their respective critical state values. The final part of the simulation 

shows a post-peak reduction of   to a final critical state at  . During this part of the 

simulation, negative plastic volumetric strains are predicted,   
  decreases (see Figure 

8.13d) and hence coupled downward movement of the    yield surface is predicted. This 

means that the    surface moves away from the current stress point and no yielding on 

the    surface is predicted for this final part     of the test. 
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Figure 8.12 Anisotropic model simulations and experimental results for Tests A100(1), A100(0) 
and A100(-1)  
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Figure 8.13 Evolution of    and   
  during anisotropic model simulation of Test A100(3)  
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In those tests where the magnitude of the stress gradient [     ̅] was relatively low, the 

anisotropic model did not predict the occurrence of a peak deviator stress and a post-

peak reduction to a critical state. In these tests, where the critical state line was 

approached at a relatively acute angle in the      plane, there was a much greater 

length of stress path before the critical state line was reached for the first time. This 

gave much more opportunity for the values of    and    to attain their critical state 

values before the critical state line in the      plane was reached for the first time. 

The isotropic variant of the model does not predict the occurrence of a peak value of 

deviator stress and a subsequent post-peak reduction of   to a critical state in any of the 

simulations because in this isotropic variant of the model the values of    and    are 

always at their critical state values of zero and    respectively. 

8.6.2 Influence of suction (at one value of [     ̅]) 

The anisotropic model simulations for the probing stages of Tests A100(2), A300(2) and 

A0(2) are shown together with the experimental results in Figure 8.14, to illustrate the 

influence of suction on tests with the same stress path in the [     ̅]) plane. 

Inspection of Figure 8.14a shows that the model accurately predicts the failure value of 

deviator stress at suction of 100 kPa (in Test A100(2)), but significantly over-predicts the 

failure value of   at a suction of       kPa (Test A300(2)) and under-predicts the 

failure value of   at zero suction (Test A0(2)). This is a consequence of assuming a unique 

critical state line in the    ̅ plane, which is clearly not entirely correct (see Section 

6.3.3).  

Figure 8.14 shows that the anisotropic model accurately predicts the yield value of   in 

Test A0(2) but tends to over-predict the yield values of   in Tests A100(2) and A300(2). 

This is also clear in Figure 8.14c, where close inspection shows that yield value of    is 

well-predicted in Test A0(2) but over-predicted in Tests A100(2) and A300(2).   

Inspection of Figures 8.14b and 8.14c shows that final volumetric strains are under-

predicted by the anisotropic model at all suction values and particularly for     (this 

sever under-prediction of volumetric strain at     occurs because of the under-

prediction of the critical state values of   and    in the test at    ). The predicted 

final value of volumetric strain (see Figure 8.14b) is bigger for the simulation at       

kPa than at       kPa which contradicts the experimental observation. It is also clear 

in Figure 8.14c that pre-yield elastic volumetric strains are over-predicted in Test A0(2). 

This is because the model assumes a variable elastic bulk modulus of the form    
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      , and this bulk modulus takes very low values in Test A0(2) (because the range of 

   is very low). Inspection of Figure 8.14b shows that the ratio of shear strain to 

volumetric strain is well-predicted by the model for Tests A100(2) and A300(2). This 

suggests that for these unsaturated tests, the associated flow rule is working well, when 

combined with a yield curve with evolving anisotropy. It is not possible to draw the same 

conclusion for the saturated Test A0(2), because the predictions of volumetric strain is so 

poor.  

A general conclusion that can be drawn from Figure 8.14 is that the model appears to be 

more successful in predicting the results of unsaturated tests (A100(2) and A300(2)) than 

in predicting the results of a saturated test (A0(2)).         

8.7 SIMULATIONS OF TESTS ON ANISOTROPICALLY COMPACTED SAMPLES 

The influence of the stress path slope [     ̅] and suction are investigated for the 

anisotropically compacted samples in Section 8.7.1. A comparison is made between 

model predictions for the isotropically and anisotropically compacted samples in Section 

8.7.2 to investigate whether the model is able to capture the observed differences in the 

responses of isotropically and anisotropically compacted samples. 

8.7.1 Influence of the value of [     ̅] and suction  

Figures 8.15 demonstrates the effect of stress path slope (i.e. the value of [     ̅]) on 

model predictions for Tests  B100(1), B100(0) and B100(-1). By the time the stress state 

arrived at the final critical state, the predicted    value was        in Tests B100(1) and 

B100(0) and        in Test B100(-1). Knowing that the initial value of    for the 

anisotropically compacted samples was     , arriving at the final critical state required 

only a modest change to anisotropy (i.e. from      to      ) for [     ̅]    but required 

significant change to anisotropy (i.e. from      to       ) for [     ̅]    .  The 

anisotropic model predicts that the isotropic loading of B100(0) (from the initial state to 

 ̅      kPa) causes erasure of anisotropy (i.e. a decrease of   ) from      to     , then 

during the shearing stage (performed at [     ̅]   ), the predicted value of    increases 

to       .  

The anisotropic model captures very well the peak deviator stress in all tests and 

predicts a modest post-peak reduction of   during the shearing stage of B100(0).The 

anisotropic model over-predicts the generation of volumetric strains at [     ̅]  

 ,   and    (see Figure 8.15c). A contributory factor in this is simply that the model 

over-predicts the initial values of   for anisotropic samples (see Figure 8.15c). It is also  
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Figure 8.14 Anisotropic model simulations and experimental results for Tests A300(2), A100(2) 
and A0(2)  
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Figure 8.15 Anisotropic model simulations and experimental results for Tests B100(1), B100(0) 
and B100(-1)  
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clear however that the model over-predicts the volumetric strain during the final 

shearing stage of Test B100(0) because the critical state value of   is under-predicted. 

Generally, the anisotropic model gives excellent predictions of the evolution of shear 

strains (see Figure 8.15a), suggesting that the combination of an associated flow rule and 

the anisotropic yield curve with evolving anisotropy works well (as observed in Section 

8.6 for the isotropically compacted samples). 

Generally, Figure 8.15 shows that the anisotropic model performs reasonably well in 

simulating the behaviour of anisotropically compacted samples over a wide range of 

stress paths.  

The anisotropic model simulations for the probing stage of Tests B100(2), B300(2) and 

B0(2) (i.e. at       kPa,       kPa and     respectively) are shown together with 

the experimental results in Figure 8.16. 

Inspection of Figure 8.16a shows that the peak value of deviator stress   is reasonably 

well-predicted in the unsaturated tests (B100(2) and B300(2)) but significantly under-

predicted (in percentage terms) in the saturated test (B0(2)). However, inspection of 

Figures 8.16a and 8.16c show that the yield values of   and    are well-predicted in Tests 

B0(2) and B300(2) but over-predicted in Test B100(2). 

Inspection of Figure 8.16b and 8.16c shows that the final volumetric strain is reasonably 

well predicted in Test B300(2) but somewhat under-predicted in Test B100(2). However, 

the comparison is complicated by the fact that the model significantly over-predicts the 

initial values of   for these anisotropically compacted samples. The predicted volumetric 

strain in Test B0(2) is an extremely poor match to the observed behaviour, because the 

model predicts significant dilation after yielding, whereas the experimental results show 

compressive behaviour through the test (see Figure 8.16b and 8.16c). 

8.7.2 Comparison of isotropically and anisotropically compacted samples 

Figure 8.17 shows anisotropic model simulations for A100(2) and B100(2) (i.e. in triaxial 

compression) and for A100(-1) and B100(-1) (i.e. in triaxial extension) in order to 

investigate whether the anisotropic model captures the differences and similarities 

between isotropically compacted and anisotropically compacted samples. 

For the tests in triaxial compression the model predicts the same final critical state value 

of deviator stress for both tests (A100(2) and B100(2)) (see Figure 8.17a), because the  
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Figure 8.16 Anisotropic model simulations and experimental results for Tests B300(2), B100(2) 
and B0(2)  
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model predicts a unique critical state value of   , which is independent of the initial 

value of   . In contrast, the experimental results show a higher failure value of   for the 

anisotropically compacted sample than for the isotropically compacted sample. The 

model does however capture (at least qualitatively) the differences in pre-failure 

behaviour in the      plot, where the model predicts a stiffer pre-failure response for the 

anisotropically compacted sample than for the isotropically compacted sample (because 

it predicts that yield will occur at a higher value of   for the anisotropically compacted 

sample). 

In triaxial extension, the anisotropic model predicts not only that the final failure values 

of   will be the same for the two samples it also predicts that the pre-failure responses 

of the two samples will be indistinguishable in the      plot (see Figure 8.17a). The 

experimental results show the same failure value of   for both samples, but a slightly 

stiffer pre-failure response for the anisotropically compacted sample than for the 

isotropically compacted sample. 

In qualitative terms, the model correctly predicts that the volumetric strain will be 

greater for the isotropically compacted samples than for isotropically compacted samples 

(for tests in both triaxial compression and triaxial extension). In the model simulations 

this is simply attributed to the isotropically compacted samples starting at higher initial 

values of   than the anisotropically compacted samples, whereas the predicted final 

values of   are the same for both types of samples. The inability of the model to 

accurately predict the initial values of   for the anisotropically compacted samples (as 

discussed in Section 8.2) is again clear in Figure 8.17c. In absolute terms, the model 

under-predicts the volumetric strain for the tests in triaxial compression (for both 

samples) and over-predicts the volumetric strain for the tests in triaxial extension (for 

both samples) (see Figure 8.17b). 

8.8 SIMULATING THE INFLUENCE OF A PREVIOUS LOADING OR WETTING 

STAGE 

This section investigates the anisotropic model performance on simulating soil behaviour 

observed in the experimental work when the initial anisotropy is altered by stress paths 

including plastic straining (i.e. by the loading/wetting stages of Test Series Ba300, 

Bb300, Bc300 and Bd100, see Section 5.1.2). For comparison, simulations are also 

performed with the isotropic model in order to investigate whether incorporation of 

anisotropy in the model results in a significant improvement in the accuracy of the model 

simulations. Among a large number of model simulations performed with the anisotropic 

model and isotropic model, four representative simulations are presented, which are  
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Figure 8.17 Anisotropic model simulations and experimental results for Tests A100(2), 
B100(2), A100(-1) and B100(-1)  
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those for Tests Ba300(-1.5), Bb300(-1.5), Bc300(-1.5) and Test Bd100(-1.5).  Each of 

these involved a final probing stage in triaxial extension, with [     ̅]      , but 

preceded either by previous loading and unloading stages (at different values of [     ̅]) 

or by a previous wetting stage (Test Bd100(-1.5)). In each case, the model simulations 

and experimental results are compared with those for an equivalent test without the 

preceding loading/unloading or wetting stages. 

Figure 8.18 shows the model simulations and experimental results for Test Ba300(-1.5). 

This test involved initial loading and unloading stages at [     ̅]      followed by a final 

probing stage at [     ̅]      . Also shown for comparison are the results from Test 

B300(-1.5) which involved a probing stage at [     ̅]      , but without preceding 

loading and unloading stages. Anisotropic model simulations are presented for both tests 

with isotropic model simulations only for Test Ba300(-1.5). For simplicity the results are 

shown only in the      plot.  

Figure 8.18 shows that the anisotropic model captures well the development of positive 

shear strain during the initial loading stage of Test Ba300(-1.5), whereas the isotropic 

model grossly over-predicts the development of shear strain during this stage. The 

anisotropic model predicts a peak value of deviator stress and then a drop to a final 

critical state value of   for the final probing stages in triaxial extension of both Test 

Ba300(-1.5) and B300(-1.5), and the model predicts that the peak value of   is higher for 

Test Ba300(-1.5) than for Test B300(-1.5). This last feature seems to fit the 

experimentally observed behaviour (although the model does over-predict the peak 

values of   for both tests). In contrast, the isotropic model predicts a monotonic increase 

of   to a critical state (for both tests) and hence the same peak value of   for both tests. 

The isotropic model also predicts a relatively high yield value of   for the final probing 

stage of Test Ba300(-1.5), whereas the anisotropic model predicts a significantly lower 

yield value of  , which is a better match to the observed behaviour.  

Figure 8.19 shows the corresponding results for Test Bb300(-1.5), where the final probing 

stage was preceded by loading and unloading stages at [     ̅]   . For the final probing 

stage, the anisotropic model predicts a higher peak value of   for Test Bb300(-1.5) than 

for the equivalent test without previous loading and unloading stages (Test B300(-1.5)). 

This feature is not seen in the experimental results. The anisotropic model also 

significantly over-predicts the peak value of   for both tests. The anisotropic model does 

predict the values of negative shear strain to peak   with reasonable accuracy, whereas 

the isotropic model grossly over-predicts the values of negative shear strain. Both 
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anisotropic and isotropic models predict yield values of   during the final probing stage 

of Test Bb300(-1.5) which over-predict the observed value.     

 

Figure 8.18 Model simulations and experimental results for Tests Ba300(-1.5) and B300(-1.5)  

Figure 8.20 shows the results for Test Bc300(-1.5), where the final probing stage was 

preceded by loading and unloading stages at [     ̅]    . The results show that the 

anisotropic model slightly under-predicts the value of negative shear strain during the 

initial loading stage in triaxial extension, whereas the isotropic model grossly over-

predicts this negative shear strain. During the final probing stage, the anisotropic model 

predicts a higher peak value of   for Test Bc300(-1.5) than for Test B300(-1.5). This 

feature matches the observed behaviour, although the peak values of   are over-

estimated by the model in both tests.  Figure 8.21 shows the results for Test Bd100(-1.5). 

This test involved an initial loading stage at       kPa and [     ̅]    to  ̅     kPa, 

followed by a wetting stage at  ̅     kPa to       kPa and then unloading at       

kPa before a final probing stage at       kPa with [     ̅]      . Collapse-

compression occurred during the wetting stage, so that there was the opportunity for this 

plastic straining during wetting to cause a change of anisotropy of the soil. Also, shown in 

Figure 8.21 are the corresponding results for Test B100(-1.5), which involved the same 

final probing stage, but without the preceding wetting and unloading stages. Inspection 

of the figure shows that the anisotropic model captures the observed behaviour 

reasonably well, including the negative shear strain during the wetting stage of Test 

Bd100(-1.5), the higher peak value of   in the final probing stage of Test Bd100(-1.5) 
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than in Test B100(-1.5) and the fact that the yield value of   in the final probing stage is 

higher in Test Bd100(-1.5) than in Test B100(-1.5). These features are not captured by 

the isotropic model, which also grossly over-predicts the negative value of shear strain 

required to reach peak   in the final probing stage. 

 

Figure 8.19 Model simulations and experimental results for Tests Bb300(-1.5) and B300(-1.5)  

 

Figure 8.20 Model simulations and experimental results for Tests Bc300(-1.5) and B300(-1.5)  
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Figure 8.21 Model simulations and experimental results for Tests Bd100(-1.5) and B100(-1.5)  

Overall, it is clear from Figures 8.18 to 8.21 that the anisotropic model provides a better 

qualitative match to the experimental results of Tests Ba300(-1.5), Bb300(-1.5), Bc300(-

1.5) and Bd100(-1.5) than the isotropic model, although the anisotropic model does over-

predict the peak values of   in the final probing stages in triaxial extension of many of 

these tests. 

Table 8.8 compares average anisotropic model predicted and experimentally measured 

values of   
  and    at the end of the loading/wetting stages for Test Series Ba300, 

Bb300, Bc300 and Bd100. The excellent match between the predicted and measured    

values for Test Series Ba300, Bb300 and Bc300 is expected because of the inclusion of 

these tests series in the calibration of   and   for the hardening law for changes of 

anisotropy (see Section 8.4). The excellent match between the predicted and measured 

   values for Test Series Bd100 (which was not included in the calibration of   and  ) 

provides further validation to the proposed form of hardening law for changes of 

anisotropy.  

Inspection of the predicted and experimentally observed values of   
  in Table 8.8 shows, 

again, that the anisotropic model gives excellent predictions of the size of the    yield 

surface for all test series (remembering that values of   
  of these test series were not 

involved in any model calibration). In addition, the data presented in Table 8.8 and in 

Figures 8.18 to 8.21 suggest that the anisotropic model is capable of predicting 
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unsaturated soil behaviour under stress and strain paths where anisotropy is changing 

(increasing or decreasing) and when the plastic straining is caused by mechanical loading 

or by wetting.           

Table 8.6 Predicted and experimental values of   
  and    at the end of the initial loading or 

wetting stages 

Test Series 
     

  (kPa) 

Model predicted Experimental Model predicted Experimental 

Ba300 0.245 0.25 470 468 

Bb300 0.115 0.12 407 398 

Bc300 -0.107 -0.10 471 470 

Bd100 0.115 0.12 175 179 

 

8.9 COMPARISON OF VERSIONS 1 AND 2 OF THE ANISOTROPIC MODEL 

This section compares predictions performed with Version 1 of the anisotropic model 

(which adopts an associated flow rule and a variable aspect ratio of the    yield curve) 

and Version 2 (which adopts a non-associated flow rule with a constant aspect ratio of 

the    yield curve).  

8.9.1 Example simulations 

Figures 8.22 and 8.23 show simulations for Tests A100(0) and Ba300(-1.5) respectively, to 

demonstrate the performance of Version 2 of the anisotropic model. Simulations of these 

test performed with Version 1 of the anisotropic model are shown also for comparison.  

Figure 8.22b and 8.22c shows that both anisotropic model versions predict well the 

volumetric strains during the initial probing stage of Test A100(0) (at [     ̅]    with 

    kPa). This is expected for an isotropic material loaded along an almost isotropic 

stress path, where almost no change of fabric anisotropy is expected. For this nearly 

isotropic stress path, the stress state remains almost on the isotropic normal compression 

planar surface once yielding is occurring on both the    and    surfaces. Figures 8.22b 

and 8.22c also show that both model versions over-predict volumetric strains during the 

final shearing stage, but the over-prediction is less for Version 2 that for Version 1  

In Figure 8.22a both model versions predict the same critical state value of deviator 

stress  . Version 1 of the anisotropic model predicts a peak in the      curve and then a 

modest post-peak reduction of   to a critical state, whereas Version 2 of the anisotropic 
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model predicts a monotonic increase of   to the critical state. The peak deviator stress 

predicted by Version 1 is an excellent match to the peak deviator stress observed in the 

experimental results, whereas the match to the peak value of   is less good for Version 

2. Figure 8.22a also show that Version 1 predicts the evolution of shear strain during the 

shear stage significantly better than Version 2, suggesting that the combination of an 

anisotropic    yield curve (with evolving anisotropy and aspect ratio) and an associated 

flow rule is better than the combination of an anisotropic    yield curve (with evolving 

anisotropy but with constant aspect ratio) and a non-associated flow rule.     

Figures 8.23a and 8.23b show that for the initial loading stage of Test Ba300(-1.5) at 

     ̅     , both model versions provide a good prediction of the volumetric strains, but 

Version 1 predicts the generation of shear strain significantly better than Version 2. The 

over-prediction of shear strains in the initial loading stage by Version 2 of the model is 

because that the term           which appears in the non-associated flow rule (see 

Equation 7.24) is much smaller than the term               which appears in the 

associated flow rule (see Equation 7.21), which means that for a given plastic volumetric 

strain increment the non-associated flow rule predicts a larger increment of the plastic 

shear strain than the associated flow rule. 

Figures 8.23b and 8.23c show that Version   of the anisotropic model predicts the 

volumetric strain during the final probing stage better than Version  . In Figure 8.23a, 

both model versions predict the same critical state value of deviator stress  . Version 1 

of the anisotropic model predicts a peak in the      curve and then a modest post-peak 

reduction of   to a critical state, whereas Version 2 of the anisotropic model predicts a 

monotonic increase of   to the critical state. The peak deviator stress observed in the 

experimental results is over-predicted by Version 1 of the anisotropic model but well 

predicted by Version 2 of the model. Figure 8.23a also shows that Version 1 under-

predicts the evolution of shear strain during the shear stage in contrast to Version 2 of 

the model.  

Overall, it is clear from Figures 8.22 and 8.23 that Version 1 of the anisotropic model 

provides a rather better match to the experimental results of Tests A100(0) and Ba300(-

1.5) than Version 2 of the model. 
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Figure 8.22 Version 1 and Version 2 model simulations and experimental results for Test 
A100(0)  
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Figure 8.23 Version 1 and Version 2 model simulations and experimental results for Test 
Ba300(-1.5)  
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8.9.2 Critical state planar surface in             space 

Referring to Section 7.9, both versions of the model predict a unique critical state planar 

surface in             space (when critical states coincide with the intersection between 

   and    surfaces) that is parallel to the unique isotropic normal compression surface 

for an isotropic soil. The critical state planar surface is defined by Equation 7.29 for 

Version 1 of the anisotropic model and by Equation 7.30 for Version 2 of the anisotropic 

model.  

The vertical spacing between the isotropic normal compression surface and critical state 

surface, depends on the value of   for Version   of the model (see Equation 7.29) and 

depends on the values of  ,    and   
  for Version 2 of the model (see Equation 7.30). 

For the latter, two unique planar surfaces can exist, one corresponds to triaxial 

compression (i.e. with   
     

 ) and one corresponds to triaxial extension (i.e. with 

  
     

 ). For the plots shown in Figure 8.24, the value of   
     

       is used to 

show the position of the critical state surface for Version 2 of the model, however, the 

planar surface  with    
     

       was investigated and appeared slightly above the 

one shown in Figure 8.24. 

The unique isotropic normal compression planar surface in             space, fitted to 

experimental data points, was already presented in Section 6.2.3. Figure 8.24 shows 

orthogonal two-dimensional views of the critical state planar surfaces in             

space predicted by both anisotropic model versions as well as the critical state planar 

surface predicted by the isotropic model, together with critical state points obtained 

from the experimental work presented in Chapter 5.  

There is considerable scatter in the experimental data, but on average Figure 8.24a 

shows that while the isotropic model over-predicts the spacing between the isotropic 

normal compression surface and the critical state surface, both anisotropic model 

versions under-predict the spacing, with Version 1 gives better prediction than Version 2.  

In Figure 8.24b the experimental data appear in two groups, one corresponding to 

      kPa (at high values of   ) and one corresponding to       kPa (at low values of 

  ). Figure 8.24b shows that the isotropic model significantly over-predicts the spacing 

between the isotropic normal compression surface and the critical state surface for both 

values of  . Version 1 and Version 2 of the anisotropic model under-predict the spacing 

for those tests at       kPa, but seem to match the correct average spacing at       

kPa. Overall, Figure 8.24 shows that the critical state surfaces, as predicted by the 
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anisotropic model versions, are shifted vertically in the right direction as compared as to 

the critical state surface predicted by the isotropic model.  

 

Figure 8.24 Orthogonal two-dimensional views of the unique critical state planar surface for 
Version 1 and Version 2 of the model with experimental critical state points  
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9 
CONCLUSIONS AND RECOMMENDATIONS 

The influence of evolving anisotropy on unsaturated soil behaviour was investigated 

experimentally in this work. An extensive campaign of tests on isotropically and 

anisotropically compacted samples under a wide range of stress paths was conducted. 

Test data were interpreted to investigate the forms of yield surfaces and critical states 

for isotropically and anisotropically compacted samples at different suctions. 

A new constitutive model incorporating the role of evolving anisotropy was also 

developed, based on concepts first put forward by Wheeler et al. (2003a) for isotropic 

unsaturated soils. The role of evolving anisotropy was incorporated in the new elasto-

plastic model through a kinematic hardening law that relates the value of the hardening 

parameter (  ) to plastic straining. Two versions of the anisotropic model were 

presented; Version 1 assumes that the aspect ratio of the    curve can evolve during 

plastic straining combined with an associated flow rule, while Version 2 assumes a    

curve with constant aspect ratio and a non-associated flow rule.  

9.1 EXPERIMENTAL WORK 

9.1.1 Experimental equipment 

 The use of a double wall triaxial cell (System 1 and System 2, see Section 3.1) 

with a glass inner cell allowed accurate measurement of the sample volume 

change under unsaturated conditions. Equipment was assembled under water to 

avoid trapping air in the system. Proof of the excellent quality and repeatability 

of volume change measurement was confirmed by the very close similarity of the 

volume change measurements of a saturated soil sample achieved by this 

technique and by conventional measurement of the pore water inflow or outflow 

(see Section 3.3.7).    

 An effective design of the pore water drainage and flushing system was adopted 

(see Section 3.1), particularly the spiral shaped groove beneath the     filters, 

which provided sufficient contact area between the filter and the water in the 

drainage lines and a single flushing path. Moreover, any trapped air beneath the 
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filters could be easily removed as no corners exist in the water flow path during 

flushing.  

 The capability to conduct tests with loading stages in triaxial extension as well as 

in triaxial compression (see Section 3.1), for unsaturated and saturated soil 

samples, allowed investigation of soil behaviour under a wide range of stress 

paths.   

 The method of controlling radial net stress and suction (i.e. holding cell pressure 

constant while varying pore air pressure and pore water pressure as necessary, 

see Section 4.4) resulted in highly accurate measurements of sample volume 

change. This is because the imposition of a constant cell pressure eliminated the 

need of correcting changes of cell water volume caused by pressure variations. 

Furthermore, errors in the measurement of axial load by the load cell, due to 

varying cell pressure, were avoided by use of this procedure.  

 

9.1.2 Compaction technique 

 The compaction technique that was employed (see Section 4.1) allowed 

compaction along predefined stress path by controlling both the radial stress and 

deviator stress. Two methods of compaction were used: isotropic compaction 

(conducted at    ̅   ) and anisotropic compaction (conducted at    ̅     ).  

 The isotropic compaction produced nearly isotropic samples (any very small 

anisotropy was due to unavoidable frictional behavior at the top and bottom of 

the sample), whereas the anisotropic compaction produced only moderately 

anisotropic samples (as shown in the subsequent experimental investigations).   

 The relatively small amount of fabric anisotropy produced by the anisotropic 

compaction method can be explained by the high suction (more than     kPa, see 

Section 5.3) which provides high stability at inter-particle contacts during 

compaction. 

 The post-compaction value of specific volume was noticeably lower for the 

anisotropically compacted samples than for the isotropically compacted ones (see 

Section 5.2). This indicates substantial rearrangement and reorientation of soil 

particles and aggregates during anisotropic compaction, to a form of fabric which 

gives a lower specific volume than isotropic compaction. 

 The proposed compaction technique produced homogeneous samples in terms of 

soil fabric. The initial values of water content, specific volume and degree of 

saturation measured on a large set of samples reflected the high repeatability of 

the sample preparation technique and its suitability for triaxial testing (see 

Section 5.2). 
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 Compression curves showed reasonably large pre-yield and post-yield parts, so 

that the shape of the initial yield surface (i.e. the shape of the yield surface of 

the as-compacted material) could be clearly identified (see Section 6.4). 

 

9.2 EXPERIMENTAL RESULTS 

9.2.1 Wetting stages 

 All samples showed an increase in water content, specific volume and degree of 

saturation during wetting to       kPa,     kPa and  . No collapse compression 

was observed during these stages (see Section 5.4).  

 During wetting, both isotropically and anisotropically compacted samples showed 

the same pattern of increase of moisture content, specific volume and degree of 

saturation with time (see Section 5.4).   

 The average increase of moisture content was nearly the same for the 

isotropically and the anisotropically compacted samples during wetting to       

kPa or       kPa. The average increase of specific volume for a given suction 

was sometimes higher for isotropically compacted than the anisotropically 

compacted samples and vice versa. The average increase of degree of saturation 

was slightly higher for the anisotropically compacted samples than for the 

isotropically compacted samples during wetting to       kPa or       kPa 

(see Section 5.4). It was not clear whether the differences in the results of the 

wetting stage of isotropically and anisotropically compacted samples were due to 

the influence of anisotropy or due to slight lack of sample repeatability.    

 During wetting, no apparent effect of small changes of the initial stress state (i.e. 

 ̅     kPa and     kPa for tests with loading stages in triaxial compression or 

 ̅     kPa and     kPa for tests with loading stages in triaxial extension) was 

observed on the change of moisture content, specific volume and degree of 

saturation. 

 

9.2.2 Yielding behaviour 

 Volumetric behaviour was contractant in all probing/shearing stages. However, in 

some cases, after strain localisation (causing the sample to split into two parts), 

an increase in specific volume was recorded and was therefore ignored.  

 The curves in the      plane showed that anisotropically compacted samples were 

stiffer than isotropically compacted samples at the beginning of loading and this 

was attributed to the lower initial specific volume of the former samples (see 

Sections 5.5 and 5.6). 
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 The elastic behaviour appears independent of fabric anisotropy, within the level 

of accuracy attainable with the equipment used in the current work. The values 

of the elastics soil constants (i.e.  ,    and   or    and  ) obtained from different 

test series (i.e. from samples with different amounts of anisotropy) were relatively 

similar (see Section 6.1). 

 Evolution of fabric anisotropy was evident from results of the probing stages 

plotted in the      plane and      ̅ plane, especially when following different 

stress paths from those followed during previous loading stages. Evolution of 

fabric anisotropy was attributed to the reorientation of soil particles and 

aggregates (see Sections 5.5 and 5.6).  

 The compression curves of isotropically and anisotropically compacted samples, 

when loaded along the same stress path, showed a tendency to merge in both the 

     ̅ plane and the        plane as loading progressed. This suggested that any 

memory of the initial fabric had been almost entirely erased by the end of 

loading and that final anisotropy was controlled only by the most recent stress 

history (see Sections 5.5 and 5.6). 

  The slopes of the isotropic normal compression curves of isotropically compacted 

samples increased with increasing suction (see Section 6.2).  

 The degree of saturation increased in a consistent manner with deceasing specific 

volume, indicating the dominant influence of void compression on the change of 

degree of saturation.  

 Several methods for identifying yield stresses were investigated, with the bi-

linear method in the semi-log planes      ̅ or        being the most satisfactory 

for both isotropically and anisotropically compacted samples. Moreover, it was 

found that the bi-linear method in the semi-log planes      ̅ or         could be 

used systematically for any stress path, unlike other methods (e.g. strain energy 

method, see Section 6.4). 

 Comparison of experimental results from tests on isotropically and anisotropically 

compacted samples at different suctions suggested that anisotropy is suction 

independent. This is supported by large number of observations showing that 

yielding of isotropically or anisotropically compacted samples tend to follow 

similar patterns of behaviour regardless of suction value. 

 Comparison of results from probing stages in Test Series Bb300 and Test Series 

Bd100 shows very similar yielding patterns. This suggests that the mechanical 

properties induced by plastic collapse-compression during wetting at constant 

isotropic stress in Test Series Bd100 were very similar to those induced by 

isotropic loading at       kPa in Test Series Bb300 (see Section 5.6). 
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 Post-yield data from tests on isotropically compacted samples isotropically loaded 

under constant suction confirmed the existence of two unique planar surfaces in 

            space and       
       space, respectively (see Section 6.2.3).  

 

9.2.3 Critical states 

 During shearing to failure, all samples showed very sharp post-peak reductions of 

deviator stress, which was attributed to strain localization, as confirmed by 

observation of shear bands at the end of the tests (see Sections 5.5 and 5.6). 

 The peak deviator stress was taken as critical state, based on the observation 

that the specific volume had almost stopped changing when the peak deviator 

stress was reached. 

 Inspection of critical state data in the    ̅ plane and      plane shows no evident 

influence of differences of initial anisotropy on critical state behaviour. This is 

supported by the observation that results from tests on anisotropically compacted 

samples fall within the same scatter band as results from tests on isotropically 

compacted samples at the same suction (see Section 6.3).  

 Critical states in triaxial compression or triaxial extension can be represented in 

the    ̅ plane by a series of parallel lines corresponding to different suctions. 

Each pair of constant suction lines, describing critical states in triaxial 

compression and extension respectively, have the same intercept with the  ̅ axis 

(see Section 6.3.2).  

 Alternatively, critical states in triaxial compression or triaxial extension can be 

represented in the      plane by a single straight line (for all values of suction) 

passing through the origin, with the same slope in triaxial compression and 

triaxial extension (see Section 6.3.3). 

 At a given suction, experimental critical state data for unsaturated samples can 

be adequately fitted by a single line in the      ̅ or        plane, with no evident 

influence of anisotropy (see Section 6.3).  

 In contrast, when experimental critical state data for saturated samples were 

plotted in the      ̅ plane, there was evidence of influence of initial anisotropy, 

with critical state values of   for anisotropically compacted samples falling below 

these for isotropically compacted samples (see Section 6.3).  

 For probing/shearing stages at high stress ratio ([     ̅]    ,   and     ), the 

isotropically and anisotropically compacted samples showed similar peak deviator 

stress at any given suction value. Conversely, for probing/shearing stages at lower 

stress ratio [     ̅]    , in some cases the isotropically and anisotropically 

compacted samples showed different peak deviator stress. These differences in 

peak deviator stress are mainly due to slight lack of samples repeatability, which 
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is amplified when samples are sheared which approach sub-parallel to the critical 

state line at a very acute angle in the    ̅ plane. 

 

9.2.4 Yield curves and plastic flow vectors  

 Constant suction cross-sections of the anisotropic yield surface can be 

represented in the    ̅ plane by distorted ellipses passing through the 

intersection of the corresponding critical state line with the negative mean net 

stress axis (at  ̅        ). 

  Alternatively, constant suction cross-sections of the anisotropic yield surface can 

be represented in the      plane by distorted ellipses of inclination    passing 

through the origin.  

 In the    ̅ plane, different values of the aspect ratio   are necessary for the 

upper and lower sections of the constant suction yield curve (i.e.        for  

  ( ̅       )     and       for   ( ̅       )    ). The same values of      

and      can be used for all yield curves at different values of suction, regardless 

of the current level of anisotropy. The fitted values of the aspect ratios     and  

    were greater than the critical state ratio  .  

 In the      plane, as in the    ̅ plane, different values of aspect ratio    were 

necessary for the upper and lower sections of each constant suction yield curve 

(i.e.      
  for         and       

  for         ). Again, the same values 

of   
  and   

  can be used for all constant-suction yield curves and regardless of 

the current level of anisotropy. The fitted values of the aspect ratios   
  and   

  

were greater than the critical state ratio   . 

 For isotropically compacted samples, the initial values of   and    were equal to 

zero in accordance with the isotropic nature of the compacted soil. For the 

anisotropically compacted samples, initial values of        and         were 

found adequate for all values of suction (see Section 9.2.2). 

 The first loading stage in Test Series Ba300, Bb300 and Bc300 increased or 

decreased the values of    and    . In the former case, the initial value of 

       changed to       ,          or          at the end of 

probing/shearing, for Test Series Ba300, Bb300 and Bc300 respectively. In the 

latter case, the initial value of         changed to        ,         or 

         at the end of probing/shearing, for Test Series Ba300, Bb300 and 

Bc300 respectively. This confirms that fabric anisotropy can evolve during plastic 

straining.  

 The wetting stage in Test Series Bd100 reduced the initial values of        and 

        to        and         at the end of probing/shearing. The reduction 
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of anisotropy indicates that plastic collapse-compression produces a change of 

the mechanical properties of the anisotropic soil, which is similar in nature to the 

change produced by external loading. Further confirmation of this is provided by 

the fact that the final values of   (or the final values of   ) were the same for 

Test Series Bb300 and Bd100, which fits the experimentally observed similarities 

between these two test series (see Section 9.2.2). 

 At any suction level, the initial size of the yield curve, measured by the value of 

 ̅  or   
 , was greater for the anisotropically compacted samples than for the 

isotropically compacted samples. This is qualitatively consistent with the fact 

that the initial values of specific volume   were lower for the anisotropically 

compacted samples than for the isotropically compacted samples. However, 

subsequent analysis indicated that the difference in initial   values was greater 

than could be explained simply by the difference in the initial size of the yield 

surface (see Section 9.3.3). 

 No conclusive evidence of the normality of plastic flow vectors to the constant 

suction yield ellipses was obtained. Normality was evident in some cases (for 

example, Test Series Ba300, Bb300 and Bd100) but not in other cases (for 

example, Test Series A100, A0 and Be100). 

 

9.3 DEVELOPMENT OF A CONSTITUTIVE MODEL FOR ANISOTROPIC 

UNSATURATED SOILS 

The proposed anisotropic elasto-plastic constitutive model for unsaturated soils combines 

features from the isotropic model for unsaturated soils of Wheeler et al. (2003a) (see 

Section 2.9) with features from the anisotropic model for saturated soils         (see 

Section 2.7.2). The proposed constitutive model employs Bishop’s stresses and modified 

suction as stress variables (rather than net stresses and suction) for the following 

reasons: 

 

 Elastic strains can be solely related to changes of Bishop’s stresses, i.e. there is 

no need to separately take into account elastic strains caused by changes of 

suction (as suction is already included in the Bishop’s stress definition);  

 Shear strength can be solely related to Bishop’s stress (see Section 6.3); 

 Formulation of yield curves (at constant  ) is simpler in the      plane (e.g. they 

always pass through the origin) than in the    ̅ plane (see Section 6.5); 

 Coupling between mechanical and water retention behaviour is easier if the 

constitutive model is formulated in terms of Bishop’s stresses rather than net 

stresses and suction (see Section 2.9). 
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This project has developed an anisotropic version of the mechanical part of the Wheeler 

et al. (2003a) model (i.e. excluding the water retention part of that model). 

Experimental values of degree of saturation   , instead of predicted values, have 

therefore been used in the simulations presented in this work (see Section 8.3). By using 

experimental values of    it was possible to investigate the performance of the 

mechanical part of the model alone. If a fully coupled mechanical and water retention 

model had instead been used, it would have been unclear whether any inaccuracy in 

prediction of strains was attributable to the mechanical or water retention parts of the 

constitutive formulation. 

9.3.1 Aspects of the new anisotropic constitutive model 

The main aspects of the constitutive model can be summarised as follows (see Sections 

7.2 to 7.9): 

 Elastic volumetric and shear strains are given by the same equations as in the 

extended version of the Wheeler et al (2003a) model (see Section 7.2). 

 The model includes three yield surfaces in         space, like the Wheeler et al. 

(2003a) model: the Loading Collapse (  ) yield surface to represent irreversible 

mechanical behaviour (onset of plastic volumetric strains and plastic shear 

strains) and the    and    yield surfaces to represent irreversible water retention 

behaviour (onset of plastic changes of degree of saturation) (see Section 7.3). 

 The coupled movements of the    and    yield surfaces (caused by yielding on 

the    surface) and the coupled movements of the    yield surface (caused by 

yielding on the    or    surface) are governed by the same coupling relationships 

as in the Wheeler et al. (2003a) model (see Section 7.4).  

 The general hardening law that links the occurrence of plastic volumetric strains 

to movements of the yield surfaces, takes the same form as in the model of 

Wheeler et al. (2003a) (see Section 7.5). 

 Under unsaturated normal compression conditions, of an isotropic soil under 

isotropic loading, a unique planar surface is predicted in             space (see 

Section 7.6). 

 Similarly, under saturated normal compression conditions, a unique planar 

surface exists in             space (see Section 7.10).  

 The change of anisotropy, represented by the hardening parameter   , is 

governed by a law that relates the change of    to both plastic volumetric strains 

and plastic shear strains, with both types of plastic strain attempting to change 

   to the same current target value. The current target value of    (which is a 
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function of the current stress ratio   ) is for simplicity, governed by a tri-linear 

relationship between the target for    and    (see Section 7.7).  

 Over the experimentally investigated range of    (i.e. from       to      , see 

Section 6.4), the aspect ratio    of the constant suction yield curves (i.e. 

constant suction cross-sections of the    yield surface) is constant for both the 

upper and lower sections of the distorted elliptical yield curves and equal to 

  
     

  and at   
     

  respectively. No experimental information about the 

variation of    beyond the above range of    and prior to arrive at critical states 

is available.  Two possibilities were investigated for the variation of the aspect 

ratio    of the constant suction yield curves. The first possibility (Version 1 of the 

new model) assumes that   
  and   

  both remain constant at   
     

  or at 

  
     

  for    ranging from       to       but then both decrease sharply 

towards a limiting critical state value. The second possibility (Version 2 of the 

new model) assumes that   
  and   

  both remain approximately constant over 

the full range of   . Additional details regarding the variation of the yield curve 

aspect ratio    are given in Section 7.8. 

 Version 1 of the model assumes an associated flow rule (the critical state aspect 

ratio of the yield curve is calculated to ensure zero plastic volumetric strains at 

critical state) while Version 2 of the model assumes a non-associated flow rule to 

satisfy zero plastic volumetric strains at critical state (see Section 7.8). For the 

latter case, the plastic potential takes the same form as the yield curve in the 

        model.  

 Both versions of the model predict a unique critical state planar surface in 

            space that is parallel to the isotropic normal compression planar 

surface in the same space (see Section 7.9). The vertical spacing between the 

normal compression and critical state planar surfaces (i.e. the difference in 

specific volume at a given value of mean Bishop’s stress and modified suction) is 

slightly different between the two versions. However, both versions predict a 

vertical spacing between the normal compression and critical state planar 

surfaces that is smaller than the spacing predicted by the isotropic model of 

Wheeler et al. (2003a) (see Section 2.9.6). 

 

9.3.2 Model Calibration 

 Version   of the anisotropic model involves    soil constants (see Section 7.11) 

including: 2 constants to describe elastic behaviour (  and  ), 2 constants to 

describe saturated isotropic normal compression behaviour (  and  ), 3 

additional constants to describe unsaturated isotropic normal compression 

behaviour (  ,    and   ), 1 constant to describe shear strength (  ), 2 constants 
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to describe the aspect ratios of the upper and lower sections of constant suction 

yield curves at low values of    (   
  and    

 ), 1 constant to describe the rate of 

change of this aspect ratio with    ( ) and 2 constants to describe the variation 

of    due to plastic straining (  and  ). Version   of the model involves one fewer 

soil constant, because parameter   is omitted. 

 The values of the soil constants   ,  ,  ,  ,   ,   ,    
  and    

  were obtained 

by interpreting the soil behaviour observed during laboratory tests. The value of 

the constant   was selected to give the required variation of   
  and   

  with   .   

 The values of the constants    and    were worked out by knowing the values of 

  
 ,   ,   and     where   

  and     are the gradients of the isotropic normal 

compression planar surface in             space. 

 The values of the constants   and   were worked out indirectly (independently for 

Version 1 and Version 2) by performing model simulations of Test Series Ba300, 

Bb300 and Bc300 using different values of   and   and comparing these 

simulations with the corresponding experimental results. Further details were 

given in Section 8.4.  

 

9.3.3 Performance of Version 1 of the anisotropic model 

The model (either Version   or Version  ) can be used to predict the soil response for any 

stress path  in terms of  ,     and    . However, if the model is to be used to predict the 

soil response for a stress path specified in terms of  ,   ̅  and   , it must either be 

combined with a separate water retention model (in order to predict the variation of    

required to calculate   ) or experimental values of    must be used. The latter approach 

was used in the model simulations presented in Sections 8.6 to 8.9.  

The following conclusions regarding model performance were drawn from a large number 

of laboratory test simulations conducted with Version 1 of the anisotropic model and with 

the isotropic variation of the model (corresponding to the anisotropic model but with the 

value of the soil constant   and the initial value of    both set to zero): 

 Incorporation of the effect of evolving anisotropy results in significant 

improvement of model predictions.  

 The anisotropic model predicts with almost the same precision the behaviour of 

isotropically and anisotropically compacted soils. This confirms that the quality of 

model predictions is independent of the initial soil state (i.e. initial anisotropy).   

 The predictions of unsaturated soil behaviour by the anisotropic model are 

equally good at       kPa and        kPa and better than under saturated 

conditions.   
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 The anisotropic model captures well the small positive or negative shear strains 

generated during isotropic loading of isotropically and anisotropically compacted 

samples under a nominal positive deviator stress. 

 In the majority of simulations, the anisotropic model predicts well volumetric 

strains, in contrast to the isotropic model which over-predicts plastic volumetric 

strains. 

 The development of shear strain during probing, wetting and shearing is well 

predicted by the anisotropic model in the majority of simulations. This suggests 

that the associated flow rule performs well when combined with an anisotropic 

yield surface (with constant suction cross-sections in the form of distorted 

ellipses), the inclination of which evolves during plastic straining.  

 In contrast, the isotropic model grossly over-predicts the shear strains during the 

various loading stages. This indicates that the combination of an associated flow 

rule with an isotropic yield surface (with elliptical constant suction cross-

sections) does not produce accurate predictions.  

 The anisotropic model performs reasonably well in simulating the behaviour of 

isotropically and anisotropically compacted samples over a wide range of stress 

paths. 

 In some cases, Version 1 of the anisotropic model predicts a peak deviator stress 

in the      plane, followed by a modest post-peak reduction to critical state. In 

contrast, the isotropic model predicts, for the same cases, a monotonic increase 

of deviator stress to critical state.  

 The peak deviator stress observed in the experiments is in some cases well 

matched by the anisotropic model, although it is over-predicted in other cases. 

The experimentally observed post-peak reduction of deviator stress caused by 

strain localisation cannot be captured by the model. It is therefore not possible to 

confirm the accuracy of the prediction of peak and post-peak deviator stress. 

 

Despite the significant improvement of predictions by the anisotropic model compared to 

the isotropic model, some weaknesses were also found and these are detailed below:  

 The anisotropic model under-predicts the differences in initial specific volume 

between isotropically compacted and anisotropically compacted samples. The 

model predicts that initial values of   for anisotropically compacted samples 

should be slightly lower than those for corresponding isotropically compacted 

samples, because experimental results indicate that the anisotropic compaction 

results in slightly greater expansion of the yield surface than isotropic 
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compaction. However, the initial value of   were actually substantially lower for 

anisotropically compacted samples than for isotropically compacted samples.    

 The anisotropic model predictions under saturated conditions are less precise 

than under unsaturated conditions and the transition from unsaturated to 

saturated conditions is not well-matched by the anisotropic model. One clear 

shortcomings is the assumption of unique critical state line in the      plane, 

regardless of suction. Under saturated conditions, the experimental critical state 

values of deviator stress were always greater than those predicted by the model 

relationship        , which also leads to significant under-prediction of the 

final volumetric strains during shearing of saturated samples to critical states.    

  

9.3.4 Performance of Version 2 of the anisotropic model 

 Although both versions of the model predict the same values of deviator stress at 

critical state, Version 2 of the model requires larger values of shear strain before 

critical state is attained during probing/shearing. 

 The peak values of deviator stress are predicted less accurately by Version 2 than 

by Version 1 of the anisotropic model.  

 Version 2 of the anisotropic model predicts similar amounts of volumetric strains 

during loading, wetting, probing and shearing stages as Version 1.  

 Version 2 of the model grossly over-predicts shear strains during loading, wetting, 

probing and shearing stages. This suggests that the proposed form of non-

associated flow rule is less accurate than an associated flow rule.  

 Both versions of the model predict a unique critical state planar surface in 

            space that is parallel to the unique planar normal compression surface 

for an isotropic soil (as mentioned in Section 9.3.1). However, both versions of 

the anisotropic model under-predict the difference in specific volume between 

normal compression and critical state surfaces. 

 

9.4 RECOMMENDATIONS FOR FUTURE WORK 

9.4.1 Experimental equipment 

 For the unsaturated triaxial cells (i.e. System 1 and System 2), original 

calibrations of pressure, volume, force and displacement gauges were done by 

the manufacturer and stored in the data logger without being visible to the user 

(see Section 3.3). Subsequent calibrations performed within this project indicated 

the need to adjust these calibrations. After consulting the manufacturer (who 

advised that pressure and volume would be more stable if controlled directly 

from the controller), it was decided to conduct the tests by applying a correction 
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to the raw readings of pressure and volume from the controller panel (the 

correction was however not significant). A better way would be to define 

pressure, volume, and other variables inside the software based on the 

calibration of voltage outputs from the transducers.     

 

9.4.2 Compaction technique 

 During compaction, a double-layer rubber sheet (with silicon lubricant in-

between) was used at the top and bottom of the wet kaolin (see Section 4.1.3) 

but unfortunately this did not completely eliminate friction. Although all samples 

for triaxial tests were obtained from the middle part of the compacted material, 

the presence of end friction might slightly affect homogeneity of the compacted 

material. In particular, for isotropic compaction, it is recommended that the 

compaction arrangement is modified in such a way that a confining all-round 

pressure can be applied on the soil without friction at either end. 

 Experimental results from anisotropically compacted samples showed that initial 

anisotropy was modest (see Section 6.5) which was attributed to the high suction 

levels present in the material during compaction. The creation of anisotropic 

samples consolidated from slurry would be a better way to develop a soil fabric 

with significant amount of anisotropy. However, this might result in a fabric with 

very low valued of unsaturated water permeability, which would mean that very 

long test durations would be required in order to achieve satisfactory suction 

equalisation during unsaturated tests (especially for tests at high suction levels).  

 

9.4.3 Experimental testing 

 This experimental programme investigated the influence of anisotropy on the 

mechanical behaviour of unsaturated soils. Further experimental work should 

however be conducted to study the effects of anisotropy on water retention 

behaviour. This could include performing drying and wetting cycles at different 

levels of stress and void ratio.  

 The current study assumed an isotropic elastic law while, in reality, fabric 

anisotropy can manifest itself through both the elastic and plastic behaviour of 

the soil. However, it is likely that different aspects of fabric anisotropy control 

the elastic and plastic response. In addition, the study of elastic anisotropy 

requires additional instrumentation to measure small strain stiffness such as, for 

example, bender elements. 

 The current study performed a phenomenological investigation of anisotropy in 

unsaturated soils based on the mechanical aspects of macroscopic material 

behaviour as observed in the laboratory. Future research might also investigate 
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the effects of mechanical loading on evolving fabric anisotropy from a 

microstructural level by using techniques such as scanning electron microscopy 

(   ) and mercury intrusion porosimetry (   ). This type of study provides 

better insight into the physical changes of soil fabric in terms of orientation of 

particles and aggregates, which can further add to knowledge at macrostructural 

level. 

 

9.4.4 Constitutive modelling 

 The proposed constitutive modelling approach employs Bishop’s stresses and 

modified suction as constitutive variables. An alternative mechanical constitutive 

model could, however, be developed by using net stresses and suction. The 

results from this study suggest that experimental yield points at constant suction 

can be fitted with similar ease and precision in both the       and    ̅ planes (see 

Section 6.5).     

 The anisotropic model developed in this study is solely a mechanical model, but it 

cannot be employed in isolation for Class   predictions because it requires values 

of degree of saturation in the definition of Bishop’s stress (as explained in Section 

8.1). It is therefore necessary either to combine the proposed mechanical model 

with a separate water retention model or to extend the model to a fully coupled 

mechanical and water retention model, as in the original isotropic model of 

Wheeler et al. (2003a). The latter development is recommended.  

 For anisotropically compacted samples, the predicted initial specific volume was 

substantially greater than the experimentally observed value, which reflected a 

weakness in the hardening law of the    curve (see Section 7.5). Addressing this 

weakness would result in significantly better predictions of initial states (in terms 

of both   and   ) for anisotropic soils. 

 The predictions of the proposed anisotropic model are less satisfactory under 

saturated conditions than unsaturated conditions. Therefore, further work is 

required to improve modelling of the transition from unsaturated to saturated 

states or vice versa.  

 For Version 1 of the anisotropic model, the proposed variation of aspect ratio    

with inclination    for the constant suction yield curves (see Section 7.8.1) is not 

simple. However, simulations with this version of the model have showed good 

predictions of soil behaviour. It would therefore be useful to look for alternative, 

and mathematically simpler, expressions describing the variation of aspect ratio 

   with inclination   . 

 Predictions by Version 2 of the model were not as good as predictions by Version 

1, especially with respect to the prediction of shear strains during plastic loading. 
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This is partly attributable to the chosen form of plastic potential, and 

investigation of the alternative forms of plastic potential might solve this 

problem.  

 Both Versions 1 and 2 of the anisotropic model under-predict the spacing between 

the normal compression planar surface and the critical state planar surface in 

            space. This is because both versions of the model predict a relatively 

high critical state value of   . A lower critical state value of    could be 

predicted by employing a suitable non-linear expression for the target function 

      (see Section 7.7). This would produce a lower critical state value of   , 

more similar to that predicted by the saturated anisotropic model         (see 

Figure 7.3). This point would be worth exploring, in order to try to improve the 

prediction of volumetric strains during shearing.   
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