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Abstract 
 

Spirocyclic piperidines and spirocyclic pyrans are prevalent throughout nature, 

often appearing in natural products which exhibit exciting biological activities. 

Notable examples of spirocyclic piperidine-containing biologically active natural 

products are halichlorine, pinnaic acid and tauropinnaic acid.  

 

 

Despite their structural similarity, halichlorine and the pinnaic acids were isolated 

from separate organisms; halichlorine was isolated from extracts of the marine 

sponge Halichondria okadai while both pinnaic acid and tauropinnaic acid were 

isolated from the Okinawan bivalve mollusc Pinna muricata. 

The complex hybrid molecule polymaxenolide contains a representative spirocyclic 

pyran core.  The biological profile of polymaxenolide is not yet known, however its 

hybrid origins have rendered it a target of significant interest.   
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The work described herein details the development of a methodology capable of 

accessing both spirocyclic pyran and spirocyclic piperidine core structures from a 

common cyclic tertiary furfuryl alcohol intermediate.  The key spirocycle forming 

step involves the oxidative rearrangement of cyclic tertiary furfuryl alcohols and 

amines for the synthesis of spirocyclic pyrans and piperidines, respectively. 

 

 

Efforts towards the synthesis of a complex, africanane-derived Southern fragment, 

with the intention of applying this methodology towards the synthesis of 

polymaxenolide are reported.   

 

 

This methodology has been further elaborated to complete an asymmetric synthesis 

of the upper framework of an oxa-analogue of pinnaic acid.   

 

 

The potential for a spectator protecting group free synthesis of pinnaic acid was 

also explored and the synthesis of an advanced intermediate is also reported.  
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1. Introduction 

 Marine Natural Products 

 
Some of the most fascinating and intricate chemical structures elucidated have 

their origins in marine ecosystems.[1]  Marine life remains an environment not nearly 

understood, a source of speculation and mystery.  Yet, while this domain 

consistently bestows profound discovery and illumination, curiosity is often 

rewarded with further provocation. 

The number of documented species inhabiting the oceans is ~215,000.  Taking into 

account all possible metabolic processes and, accordingly, the number of possible 

metabolites in each metabolic process, the extent of structural diversity contained 

within documented marine life is staggering.[2]   

Unidentified marine life must also be taken into account.  It is said that 10% of 

marine life in European oceans remains unidentified.  This figure rises to 38% for 

the oceans around South Africa.  In Antarctica up to 58% of species are unknown, 

70% in Japan, the Mediterranean deep-sea 75% and Australia an incredible 80%.[3] 

As a result, the most precise estimation possible of the number of species present 

in the oceans lies at approximately 2.2 million.[4]   

Already, from those organisms that are known, the abundance of natural products 

that have been isolated have often perplexed and stimulated organic chemists, 

while frequently finding huge interest in the biological community through 

exhibiting therapeutic potential.[5]  Examples of structures which cater to the 

desires of both groups are the pinnaic acids and halichlorine.   
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Halichlorine and the Pinnaic Acids  

 

Isolation and Characterisation  

 

  Halichlorine 

 
An extensive project for unearthing biologically active species produced by marine 

organisms was undertaken in the coastal waters of Japan.  From the extraction of a 

stock of the black marine sponge Halichondria okadai Kadota, the compound 

halichlorine 1 was discovered in 1996, and was found to exhibit inhibitory activity 

towards the induction of vascular cell adhesion molecule-1 (VCAM-1).[6]  Despite a 

somewhat low recovery of halichlorine 1 (200 kg afforded a mere 70.8 mg of 

halichlorine, corresponding to an isolation yield of 3.5×10-7%) extensive structural 

assignments were made using 1D and 2D NMR and IR spectroscopy, mass 

spectrometry and partial degradation reactions to establish the absolute 

configuration of halichlorine 1 as that shown (Figure 1).    

 

 

Figure 1. Halichlorine 

 

  The Pinnaic Acids  

 

Also revealed through this comprehensive venture were two novel polyketides 

containing structurally similar 6-azaspiro[4.5]decane cores; pinnaic acid 2 and 

tauropinnaic acid 3 (Figure 2).  These related molecules were isolated, also in 

1996, from 10 kg of the Okinawan bivalve mollusc Pinna muricata in quantities of 1 
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mg and 4 mg respectively, and were found to inhibit cytosolic 85 kDa phospholipase 

A2 (cPLA2).[7]  In a similar fashion, 1D and 2D NMR spectroscopy and mass 

spectrometry assisted the elucidation of their structures.  The absolute 

configuration at C14 and C17 was not fully established, however, as partial 

degradation experiments were not possible on the small quantities isolated. 

 

 

Figure 2. The pinnaic acids: pinnaic acid 2 and tauropinnaic acid 3. 

 

Biological Activity 

 

 VCAM-1 Inhibition 

 

Acute inflammation occurs when neutrophils adhere to the vascular endothelium.  

Subsequent neutrophil migration into the surrounding tissues results in damage to 

that tissue.  This sequence of events is mediated by specific adhesion molecules 

such as VCAM-1.[8]  Inhibition of VCAM-1 has been shown to induce anti-

inflammatory effects and as such, therapeutic agents acting at this site show 

potential for the treatment of cardiovascular disorders such as angina, coronary 

artery disease and atherosclerosis.[9]  Halichlorine 1 was found to inhibit VCAM-1 

with an IC50 of 7 μg/mL. A recent study investigated the effects of halichlorine 1 on 

vascular contractility and the result was the disclosure of L-type Ca2+ channel 

inhibitory activity in vascular smooth muscle cells.[10]  Such vasodilatory activity is 

often exhibited by antihypertensive agents.[11]     

In addition, VCAM-1 facilitates the adhesion of cancerous cells to the endothelium 

and as such, is a verified target in an effort to prevent metastasis.[12]    

Comprehensive biological studies have found that many factors in breast cancer 
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propagation and eventual metastasis are directly linked to VCAM-1 expression.  

VCAM-1 was found to mediate the binding of tumour-associated macrophages to 

cancerous cells, while enhancing the seeding of breast tumours and simultaneously 

protecting those breast cancer cells from apoptosis in the lung through the 

induction of survival signals when engaged by integrins (Figure 3).[13]  

 

 

Figure 3.  VCAM-1 triggers the survival signal through phosphorylation of Ezrin, a cytoplasmic linker 
and known docking site for phosphoinositol 3-kinases (PI3K), and subsequent binding to 
serine/threonine kinase Akt, also an identified target for the inhibition of cell proliferation.[13]  

 

Further corroboration of the implication of VCAM-1 over-expression in the survival 

of cancerous tissue is provided by the fact that tumour death was observed in cells 

lacking VCAM-1 expression (Figure 4).[14]   

 

 

Figure 4. Those cells not expressing VCAM-1 were unable to evade the immune response.[14] 
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cPLA2 Inhibition 

 

cPLA2 is pivotal in the release of arachidonic acid, which in turn is involved in the 

biosynthesis of crucial mediators of the inflammatory response and cell 

proliferation pathway.[15]  Arachidonic acid is further metabolised to form both 

prostaglandins and leukotrienes. Prostaglandins, among other functions, trigger 

constriction and dilatation of vascular smooth muscle and leukotrienes are involved 

in asthmatic, allergic and inflammatory reactions.[16,17]  Further metabolic 

modifications generate thromboxanes which are vasoconstrictors and platelet 

aggregation promoters.[18] As such, it appears that each metabolic destiny of 

arachidonic acid contributes to the inflammatory response as a whole, therefore 

compounds capable of specifically inhibiting cPLA2 activity are potential anti-

inflammatory agents (Figure 5). The spirocyclic piperidines pinnaic acid 2 and 

tauropinnaic acid 3 have each displayed inhibitory activity against cPLA2 (200 nM 

and 90 nM respectively).[6] 

 

Figure 5. The role of cytosolic phospholipase A2 in the activation of inflammation.[19]  

 

Structural Relationships and Origins 

 

Despite being isolated from completely distinct organisms, 1500 km apart, 

halichlorine 1 and the pinnaic acids 2 and 3 possess remarkably similar attributes.  

This leads to the supposition that these compounds are the product of metabolic 
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pathways present in a common symbiotic organism or food source, and that they 

may be biosynthetically related.[1a]   

 

Pinnarine 

 

The recent characterisation of pinnarine 4 (Figure 6), also isolated from 

Halichondria okadai, seems to enforce the hypothesis of common biosynthesis as its 

structure represents the macrolactonisation of pinnaic acid 2.[20]  Indeed, Prof. 

Uemura and co-workers demonstrated this transformation from pinnaic acid 2 to 

pinnarine 4 through synthetic manipulation. No biological activity for pinnarine 4 

has been so far reported.  

 

 

Figure 6. Pinnarine 4.  

 

Interest from the Synthetic Community 

 

Given their attractive, yet challenging structures in addition to their potential 

therapeutic value, it is not surprising that halichlorine 1 and the pinnaic acids 2 and 

3 have received significant attention from the synthetic community.  From the time 

of their discovery some 16 years ago, the volume of work dedicated to their 

synthesis is astounding, yet they continue to present attractive synthetic targets, 

maintaining significant interest.[21] 
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Previous Approaches  

 

The Arimoto-Uemura Synthesis of a Complex  

Spirocyclic Piperidine (1999) 

 

The first efforts towards accessing these fascinating spirocyclic alkaloids were 

described, rather fittingly, by those who were responsible for their discovery.[22]  

Uemura and Arimoto reported their strategy for accessing the functionalized 

spirocyclic core structure of halichlorine and pinnaic acid as progressing through the 

stereoselective Michael addition of the lithiate of hydrazone 5 to conjugated ester 

6, stereochemically controlled by the nature of the Enders’ hydrazone (Scheme 

1).[23]  In situ intramolecular cyclisation and hydrazone cleavage afforded aldehyde 

7, which was subsequently reduced and protected as the PMP-ether 8.  Alkylation 

with prenyl bromide 9, followed by saponification of the ester gave carboxylic acid 

10. A subsequent Curtius rearrangement generated the corresponding isocyanate 

which after treatment with benzyl alcohol gave the cyclic tertiary Cbz-amide 11.  

Ozonolysis followed by Horner-Wadsworth-Emmons olefination with phosphonate 12 

afforded enone 13.  An elegant, four-stage transformation was then induced.  

Simultaneously, the olefin was hydrogenated, the Cbz-protection removed, the 

corresponding imine was formed and was then reduced to complete the first 

approach towards the fully functionalized spirocyclic core 14.   
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Scheme 1. The Arimoto-Uemura approach to the functionalised spirocyclic core 14. 

 

At the time of publication, the stereochemistry at C-14 had not been confirmed and 

as such, this stereocentre possessed what is now known to be the opposite 

orientation.  Nevertheless, this first report of the synthetic endeavours towards 

pinnaic acid was to prove very influential, highlighting an exceptionally elegant and 

efficient method to generate the spirocyclic piperidine core.   

 

Danishefsky’s Synthesis of a  

Halichlorine Intermediate (1999) 

 

Shortly following the disclosure of the Arimoto-Uemura methodology, Danishefsky 

and co-workers described their initial approach towards the spirocyclic piperidine 

alkaloids (Scheme 2).[24] Meyers’ lactam 17[25] was obtained via amide coupling of 

aminophenyl ethanol 16 and 2-(2-oxocyclopentyl)acetic acid 15.  Sakurai allylation 

followed and subsequent N-group cleavage and amide reprotection gave Boc-

protected amide 19.[26] Facially selective methylation afforded lactam 20 which 

was subsequently hydrolysed.  Activation of the resulting acid, followed by 

reduction, afforded the corresponding primary alcohol 21.[27]  Silyl protection of the 
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primary alcohol ensued, followed by hydroboration of the terminal double bond, 

and a subsequent Suzuki cross-coupling with vinyl iodide 22.[28]  Upon removal of 

the Boc protection, the corresponding cyclic tertiary amine underwent an 

intramolecular Michael addition, resulting in the spirocyclic piperidine core 24.  A 

two carbon chain extension of spirocycle 24 was achieved via a crossed Claisen 

condensation and a subsequent Mannich reaction effected ring closure to generate 

tricyclic spirocycle 26.  Deoxygenation via the formation of a hydrozirconium 

enolate followed by silyl group removal afforded the tricyclic piperidine core of 

halichlorine 28 (Scheme 1).[29] 

 

 

Scheme 2. The Danishefsky group synthesis of advanced halichlorine intermediate 28 
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The Danishefsky approach was the first to undertake the synthesis of the 

halichlorine tricycle.  Although various succeeding methods for the synthesis of the 

third ring of halichlorine were reported, many subsequent synthetic efforts towards 

halichlorine have adopted the use of a similar intramolecular Michael addition to 

generate the spirocyclic core.  

 

Zhao’s Synthesis of Spirocyclic  

Piperidines (1999) 

 

One such strategy which utilised an analogous intramolecular Michael addition as 

the key spirocyclisation step was reported in 1999 by Zhao and co-workers (Scheme 

3).[30]  Their approach began with the differential double-alkylation of dithiane 29  

to incorporate the protected primary alcohol 30, and olefin-containing 31 chains, 

giving rise to substituted dithiane 32.  Thioketal cleavage followed by treatment 

with hydroxylamine afforded the corresponding oxime 33. Upon heating with benzyl 

acrylate 34 a [3+2]-cycloaddition was triggered between the corresponding in situ 

formed nitrone and the olefin of the alkyl chain to generate, as a single product, 

bicyclic adduct 35.[31]  Deprotection followed by oxidation, and subsequent Wittig 

olefination afforded enoate 38.  Cleavage of the N-O bond followed to afford cyclic 

tertiary amine 39. Heating effected the simultaneous intramolecular Michael 

addition, and liberation of benzyl acrylate, generating the spirocyclic piperidine 

40.  The synthesis of the analogous spirocyclic piperidine, possessing the opposite 

stereochemistry at the pseudo C-14 position, was also described utilising the 

corresponding Z-olefin of alkyl iodide 31.   
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Scheme 3. Zhao’s synthesis of the spirocyclic core 40. 

 

Clive’s Route Towards the Halichlorine  

and Pinnaic Acid Cores (1999) 

 

In the first of many in-depth and imaginative contributions towards the synthesis of 

these alkaloids, Clive and co-workers attempted to utilise a radical cyclisation for 

the synthesis of the halichlorine tricyclic core (Scheme 4).[32]  Coupling of glutamic 

acid derived allylcarbamate 41[33] with aldehyde 42[34] afforded diastereomeric 

alcohols 43.  Oxidation was followed by removal of the allyloxycarbonyl protection, 

resulting in imine formation and tautomerisation to the corresponding cyclic 

enamine 45.  Lactamisation followed by benzyl group removal then afforded 

primary alcohol 46.[35]  Conversion of alcohol 46 to the corresponding iodide then 

enabled the exploration of the key radical cyclisation step.  In contrast to the 

expected outcome, a 6-endo-cyclisation occurred, generating tricycle 48, rather 

than the desired 5-exo-cyclisation product 47.   
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Scheme 4. Clive’s first generation radical cyclisation. 

 

Fortunately, the desired spirocyclisation was found to occur when carried out on an 

earlier substrate.  Debenzylation of 45 afforded the primary alcohol which was 

converted to the corresponding bromide 49.  At this juncture, the radical 

cyclisation conditions were found to give the desired 5-exo ring closure, generating 

spirocyclic piperidine 50.  Subsequent desulfonylation afforded the core structure 

of pinnaic acid 51 (Scheme 5).[36]     

 

 

Scheme 5. Clive’s revised radical cyclisation.  
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This report represents the initial efforts of what would become a truly vast 

contribution from the Clive group towards the synthesis of halichlorine and pinnaic 

acid.  In the following years, several different and creative approaches would be 

disclosed.  

 

Danishefsky’s Asymmetric Total  

Synthesis of Halichlorine (1999) 

 

The first total synthesis of halichlorine 1 was completed by Danishefsky and co-

workers (Scheme 6).[37] Following on from their previously reported tricyclic 

intermediate 28 (Scheme 2), primary alcohol oxidation was found only to be 

achievable using Ley oxidation conditions without epimerisation of the C-14 

stereocentre.[38]  Subsequent Seyferth-Gilbert homologation[39]  afforded alkyne 54, 

which upon hydrozirconation and zinc exchange, followed by addition to aldehyde 

55, gave a 4:1 mixture of diastereoisomers in favour of the desired allylic alcohol 

57.[40,41]  The ratio was achieved through the use of Soai’s chiral amino alcohol 

56.[42]  The mixture of diastereoisomers was carried on without separation to 

undergo ester hydrolysis and simultaneous silyl protection.[43]  Subsequent silyl 

group removal at the carboxyl and primary alcohols afforded seco-acid 59.[44]   

Keck macrolactonisation[45] proceeded to give 14-TBDMS-halichlorine 60, which 

upon a final deprotection completed the first total synthesis of halichlorine 1 in 2% 

overall yield over 30 steps.  
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Scheme 6. The first synthesis of halichlorine 1. 

 

Surprisingly, despite its success, this remains the only route that has utilised a 

directed vinyl zinc addition to introduce the lower side-chain unit 55.   

 

Forsyth’s Synthesis of  

Spirocyclic Piperidines (1999)  

 

A matter of days after the submission of the first total synthesis of halichlorine, 

Forsyth submitted his strategy for the synthesis of spirocyclic piperidines (Scheme 

7).[46]  Forsyth’s route detailed the application of a methodology developed through 

the use of simple starting cyclic tertiary amides as a model system, to a more 

elaborate amine 61, the synthesis of which was not disclosed.  Oxidation of the 
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primary alcohol 61 to give aldehyde 62, followed by in situ imine formation and 

simultaneous allylation afforded substituted spirocyclic piperidine 63 as a single 

diastereoisomer, albeit possessing the opposite stereochemistry at C-5. Due to the 

ambiguity at the time, it also displayed opposite C-14 orientation to that of the 

natural substrate.   

 

 

Scheme 7. The Forsyth approach to spirocyclic piperidines. 

 

Further elaboration was described through the oxidation and Wittig olefination of 

the terminal olefin, however, precise conditions and yields were not reported.   

 

Wright’s Synthesis of  

Spirocyclic Piperidines (2000) 

 

Wright described a concise approach to the synthesis of unsubstituted spirocyclic 

piperidines involving the formation of an allyl imine, and subsequent allylation of 

the imine carbon to give a bis-olefinic species 64 (Scheme 8).  Ring-closing 

metathesis then afforded the desired spirocyclic piperidine 69. [47]   

 

Scheme 8. Wright’s ring-closing metathesis method for forming spirocyclic piperidines.  

 

Of particular note in this strategy is the application of pTsOH during the ring-closing 

metathesis step.  In the absence of this additive, cyclisation proceeded with poor 

yields, likely owing to the deleterious effect naked nitrogen atoms can have on 



Flexible Synthesis of Spirocyclic Pyrans and Piperidines Introduction 

 

 16 

ruthenium catalysts.  The inclusion of pTsOH rendered the now protonated species 

amenable to metathesis reactions, without the need for N-protection. 

 

The Itoh-Shishido Approach to the  

Synthesis of Halichlorine (2000) 

 

Shishido’s approach towards the synthesis of azatricyclic piperidines related to 

halichlorine centred on a tandem intramolecular Michael addition/[3+2]-

cycloaddition[31] of the corresponding oxime of ketone 70 (Scheme 9).[48]  While 

some earlier reports hinged on intramolecular Michael addition protocols as the key 

transformation, and others described a nitrone [3+2]-cycloaddition, this work 

represents the first strategy for the synthesis of the spirocyclic alkaloids through 

the exploitation of both processes in tandem.  Cleavage of the N-O bond with 

concomitant double-bond isomerisation yielded the free alcohol which was 

protected to give silyl ether 73.  Olefin hydrogenation proceeded from the desired 

face, and subsequent ester reduction afforded primary alcohol 75.  A Tsunoda-

Mitsunobu coupling gave rise to ester 78, which was hydrolysed and subsequently 

lactamised affording tricyclic piperidine 79.[49, 50]  Selenoxide elimination afforded 

the corresponding halichlorine core 80.    

 

 

Scheme 9. The Itoh-Shishido route to the halichlorine core 80. 
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The collaborative efforts of Shishido and Itoh also established a number of initial 

biological activities through the evaluation of their spirocyclic piperidine 

intermediates against THP-1 cell lines (Figure 7).[51]  

 

 

Figure 7. Those intermediates found to display activity.  The numbers in parentheses refer to the 

recorded IC50 values against THP-1 cell lines.  

 

Danishefsky’s Asymmetric Total  

Synthesis of Pinnaic Acid (2001) 

 

Despite the plethora of distinct approaches to the spirocyclic cores reported in the 

preceding years, none had emerged detailing the complete synthesis of pinnaic 

acid, until Danishefsky described the first total synthesis of pinnaic acid 2 in 2001 

(Scheme 10).[52]  Danishefsky’s synthesis applied certain aspects of his halichlorine 

synthesis, and was tailored to suit the generation of the open chain spirocyclic 

piperidine.   

As with their halichlorine strategy, Danishefsky and co-workers began their 

synthesis of pinnaic acid 2 starting from Meyer’s lactam 17 (Scheme 2) followed by 

conversion to the protected amino alcohol 85.   Subsequent hydroboration followed 

by Suzuki cross-coupling using alkyl iodide 86, afforded ethyl dienoate 87.[53]  

Amine deprotection followed by 1,6-Michael-type  addition afforded piperidine 88, 

the key spirocyclic core of pinnaic acid.  Trifluoroacetate protection of the amine 

followed by silyl removal and oxidation of the resulting alcohol afforded aldehyde 

90.  Aldehyde 90 was then coupled with phosphonate 91 to obtain dienone 92.[41]  

Stereoselective reduction[54] afforded allylic alcohol 93 which upon global 
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deprotection and hydrolysis completed the first synthesis of pinnaic acid 2 over 21 

steps and in 3% overall yield.   

Scheme 10. The first asymmetric total synthesis of pinnaic acid 2. 

 

This first synthesis of pinnaic acid also served to assign the correct relative 

stereochemistry to the tentatively assigned C-14 and unknown C-17 positions. The 

confirmation was achieved through the synthesis of the four epimers at C-14 and C-

17 of pinnaic acid. Comparisons of the NMR spectra obtained for these analogous 

structures to those spectra obtained for the isolated natural pinnaic acid allowed 

the identification of their synthetic equivalent which most closely corresponded to 

the natural pinnaic acid.  The absolute configuration, however, has not yet been 

confirmed.[20]   
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White’s Strategy Towards  

Pinnaic Acid (2001) 

 

A fine example of a wonderfully imaginative methodology towards accessing 

spirocyclic piperidines was reported by White in 2001 (Scheme 11).[55] In White’s 

approach, macrocyclic azide 95, accessed through ring-closing metathesis, was 

converted to aryl oxaziridine 96. Treatment of 96 with pTsOH generated a keto-

hydroxylamine which spontaneously underwent intramolecular condensation to give 

rise to nitrone 97. A subsequent transannular cycloaddition then afforded the key 

tetracycle 98.  Methanolysis followed by reductive cleavage yielded the advanced 

intermediate diol 99 (Scheme 11).[56]    

 

 

Scheme 11. The White group approach to the synthesis of spirocyclic piperidines. 

 

Unfortunately, further functionalisation to incorporate the C-14 methyl group could 

not be achieved.  Nonetheless, this strategy remains a highly creative method for 

the synthesis of spirocyclic piperidines.  

 

Ihara’s Spirocyclic Core (2003) 

 

Ihara reported a radical translocation/cyclisation strategy towards the spirocyclic 

piperidine core 111 (Scheme 12).[57]  Sulfone 100, readily accessed from 
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glutarimide, underwent Grignard addition and cross-metathesis to afford enoate 

ester 103.[58]  Generation of the aryl radical, followed by translocation gave the 

corresponding α-aminyl radical¸ which upon subsequent intramolecular cyclisation 

afforded spirocycle 104 as the major product.  Benzyl group removal, followed by 

treatment with Lawesson’s reagent 105 afforded the corresponding thiolactam 

which was subsequently coupled with ethyl 2-bromoacetoacetate 106 under 

Eschenmoser’s conditions.[59]  Deacetylation then afforded to conjugated ester 107.  

Hydrogenation of olefin 107 afforded the desired diastereoisomer 108 which after 

ester cleavage followed by lactamisation afforded tricyclic spirocycle 109.  Ester 

reduction generated the primary alcohol, which was silylated to afford TES-ether 

110.  Face-directed methylation and lactam ring opening with simultaneous silyl 

group cleavage afforded the spirocyclic core 111 (Scheme 12).[60]      

 

 

Scheme 12. Ihara’s approach to the spirocyclic core 111. 
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Arimoto and Uemura’s Synthesis of Pinnaic Acid (2003) 

 

Following on from their seminal publication, Arimoto and Uemura completed their 

racemic synthesis of pinnaic acid 2.[61]  Their synthesis proceeded through the cyclic 

tertiary amine 118 which was accessed via the Curtius rearrangement of carboxylic 

acid 116.  Ozonolysis of alkene 118 followed by Horner-Wadsworth-Emmons 

olefination afforded enone 119 which was then subjected to the previously 

developed hydrogenation conditions to effect spirocycle formation.  Sequential 

nitrogen protection followed by desilylation gave primary alcohol 120.  Oxidation of 

alcohol 120 followed by Horner-Wadsworth-Emmons olefination afforded enoate 

122.  PMP-ether cleavage, followed by oxidation and olefination with phosphonate 

91 afforded the corresponding enone which upon reduction under Luche conditions 

afforded allylic alcohol 93 (Scheme 13).  Completion of the synthesis was achieved 

by following a deprotection sequence analogous to Danishefsky’s synthesis of 

pinnaic acid 2.    
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Scheme 13. The Arimoto-Uemura first generation synthesis of pinnaic acid 2. 

 

Kibayashi’s Formal Synthesis of  

Pinnaic Acid and Halichlorine (2003-2004) 

 

Kibayashi reported his efforts towards the synthesis of the spirocyclic cores of 

pinnaic acid and halichlorine, and shortly thereafter described the formal syntheses 

of both natural products starting from cyclopentenone 123 (Scheme 14).[62]  

Iodination of cyclopentenone 123 and subsequent Suzuki cross-coupling gave ester 

126.[63]  Luche reduction followed by MOM-protection afforded cyclic allylic alcohol 

127.  Treatment with hydroxylamine then yielded hydroxamic acid 128, which was 

oxidised to the corresponding N-acylnitroso species and then cyclised to yield the 

spirocyclic core 129.  Hydrogenation of the cyclic olefin followed by benzylation 
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afforded spirocycle 130.  Subsequent alkynylation followed by reduction generated 

the terminal alkyne 132, which upon hydroboration and reduction led to primary 

alcohol 134.  MOM deprotection, followed by selective silylation of the primary 

alcohol and oxidation of the remaining secondary alcohol gave spirocyclic ketone 

135.    

 

 

Scheme 14. The synthesis of Kibayashi’s spirocyclic ketone 135. 

 

Allyl Grignard addition to ketone 135, followed by dihydroxylation/periodate 

cleavage and Pinnick oxidation afforded carboxylic acid 137.  Hydrogenolysis and 

subsequent activation of the acid allowed an intramolecular amide coupling to take 

place, generating the tricyclic core 138.  Dehydroxylation followed by deprotection 

and facially directed methylation afforded primary alcohol 140.  Benzylation of the 

primary alcohol and subsequent lactam ring opening afforded methyl ester 141, 

which was reduced to the primary alcohol 142.[64]  Silylation of alcohol 142, 

followed by nitrogen protection and benzyl group removal afforded primary alcohol 

143.  DMP oxidation and Wittig olefination afforded the Danishefsky intermediate 

88, completing the formal synthesis of pinnaic acid (Scheme 15).   
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Scheme 15. The Kibayashi synthesis of the Danishefsky intermediate 88. 

 

From the same primary alcohol 143, oxidation followed by Wittig methylenation 

afforded allyl substituted spirocyclic piperidine 144 (Scheme 16). Nitrogen 

deprotection followed by alkylation with bromomethyl acrylate 145 afforded bis-

olefin 146, which upon ring-closing metathesis and deprotection afforded tricyclic 

piperidine 147, the ethyl ester analogue of the Danishefsky intermediate 27 

(Scheme 2).[65]  Through this work, the Kibayashi group was the first to 

demonstrate the applicability of ring-closing metathesis for the construction of the 

third ring of the halichlorine core.   
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Scheme 16. Synthesis of the ethyl ester analogue 147 of Danishefsky’s halichlorine intermediate 

 

Clive’s Alternative Route to the  

Spirocyclic Core (2004) 

 

In an alternative method towards the formation of spirocyclic piperidines, Clive 

disclosed an improved radical cyclisation strategy (Scheme 17).[66]  The second 

generation approach concerned the stereoselective allylation of piperidine 148 to 

afford allyl piperidine 150, the diester functionality of which was subsequently 

reduced to afford diol 151.[67, 68]  Differential protection of the two primary 

alcohols followed by hydroboration generated primary alcohol 154, which was 

protected as the TIPS-ether 155.  Pivaloyl reduction followed by oxidation of the 

resulting alcohol afforded aldehyde 156 which was then alkylated to give β-hydroxy 

ester 158.  Benzyl group removal allowed lactamisation to take place affording 

bicycle 160.  Hydroxyl elimination followed by desilylation and treatment with 

phenylselenocyanide afforded the phenylselenide 162.[69]  Ozonolysis, followed by 

intramolecular aldol condensation and dehydration gave enone 163.  Luche 

reduction and acetylation afforded a mixture of acetates 164 which, upon radical 

cyclisation, yielded a mixture of enone 165 and diastereomeric acetates.  This 

mixture was deacetylated and the resultant hydroxyl groups eliminated to afford 

the desired tricyclic enone 165.  Facially selective methylation afforded tricyclic 

piperidine 166.[70]  Lactam ring opening finally afforded the halichlorine and 

pinnaic acid spirocyclic core structure 168.[71]   
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Scheme 17. Clive 2nd generation approach 

 

The Arimoto-Uemura Strategy for the  

Synthesis of Halichlorine (2004) 

 

In addition to the successful completion of their racemic synthesis of pinnaic acid, 

Arimoto and Uemura reported a novel approach to the tricyclic core of 

halichlorine.[72]  From their previously reported cyclic tertiary Cbz-amide 118, 

ozonolysis followed by Horner-Wadsworth-Emmons olefination afforded enone 170.  

Application of their one-pot four-step hydrogenolysis induced cascade afforded 
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spirocyclic piperidine 171 in excellent yield.  N-Alkylation followed by MEM-ether 

cleavage afforded primary alcohol 173, which upon Grieco elimination afforded 

terminal olefin 175.[69]  A key ene-yne metathesis reaction then gave diene 176, 

the exo-olefin of which was subjected to dihydroxylation conditions to give diol 

177.[73]  Oxidative cleavage of diol 177 afforded the α,β-unsaturated aldehyde 178, 

representing the tricyclic core of halichlorine (Scheme 18).   

 

 

Scheme 18. The Arimoto-Uemura route to the halichlorine tricyclic core 178. 

 

Heathcock’s Syntheses of Pinnaic Acid.  

Tauropinnaic Acid and Halichlorine (2004) 

 

Long known for their elegant approaches towards polycyclic alkaloids, Heathcock 

and co-workers disclosed racemic syntheses of all three spirocyclic piperidine 

alkaloids pinnaic acid, halichlorine and tauropinnaic acid.[74] 
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In Heathcock’s synthesis, the key bicyclic hemi-aminal 183 was accessed via an 

enamine alkylation of pyrrolidine 179 followed by a reduction and hydrolysis to give 

a mixture of cyclopentanones 182 in a 2:1 ratio. Cyclisation of the product mixture 

then afforded the desired bicyclic hemi-aminal 183.[75] Alternatively, pyrrolidine 

hemi-aminal 181 was directly converted into the bicyclic Cbz-hemi-aminal 183 in a 

one-pot procedure.   

Nucleophilic addition to the hemi-aminal moiety proved troublesome and was found 

to be possible only when introducing an allyl group under Sakurai-type conditions.  

(Scheme 19).    

 

 

Scheme 19.Synthesis of tertiary Cbz-amide 184.  

 

Protection of the primary alcohol 184 as the acetate 187 followed by cross-

metathesis with enone 188 gave Cbz-amine 189 (Scheme 20).[76]  Hydrogenolysis 

resulted in a similar tandem intramolecular Michael addition to that induced in 

previous syntheses to afford spirocyclic piperidine 190.  Hydrolysis of the ester 

followed by lactamisation gave access to the azatidinone intermediate 192.[77]  

Acetate cleavage followed by oxidation afforded aldehyde 193 which subsequently 

underwent Wittig-olefination with phosphorane 194 to incorporate the lower side-

chain.  Luche reduction of enone 195 followed by silyl protection afforded the silyl 

ether 196.  Lactam opening using Red-Alp[78] afforded aldehyde 197, which 

underwent a Masamune-Roush modified Horner-Wadsworth-Emmons olefination 
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followed by deprotection, hydrolysis and buffer treatment  to afford pinnaic acid 2 

in 20 steps and 3.0% overall yield.[79]   

 

 

Scheme 20. Heathcock’s synthesis of pinnaic acid 2. 

 

The Heathcock group also reported a straightforward one-step coupling of the 

sodium salt of pinnaic acid 198 with taurine to complete the synthesis of 

tauropinnaic acid 3 (Scheme 21).   
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Scheme 21 Heathcock’s synthesis of tauropinnaic acid 3. 

 

In order to access the tricyclic halichlorine, Heathcock subjected aldehyde 197 to a 

Horner-Wadsworth-Emmons olefination with the corresponding in situ formed 

phenylthiomethylphosphonate of phosphonoacrylate 199.[80]  Ring closure was 

affected through the addition/elimination of thiophenoxide and subsequent Michael 

addition of the amine unit to afford tricyclic piperidine 202.  Deprotection and 

saponification followed by Keck macrolactonisation completed the synthesis of 

halichlorine 1 in 21 steps and 0.8% overall yield (Scheme 22).[45]  

 

Scheme 22 Heathcock’s synthesis of halichlorine 1. 
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Feldman’s Formal Synthesis  

of Halichlorine (2004) 

 

In 2004, the Feldman group reported the formal synthesis of halichlorine by 

synthesising the analogous ethyl ester 147 of Danishefsky’s intermediate 28 

(Scheme 23).[81] Their approach commenced with the allylation of pyridine to 

afford bis-allylated piperidine 204.[82]  Hydrostannylation of both terminal olefins, 

followed by hydrogenation of the endo-cyclic olefin afforded the bis-stannane 205.  

Alkylation of amine 205 followed by stannylation of the alkyne intermediate then 

afforded tristannane 207.  The alkynylstannane moiety was then cyclised via a key 

alkynyliodonium salt/alkylidene-carbene cascade sequence to afford bicyclic 

enamide 209.[83]  Selective transmetallation with magnesium bromide then affected 

the closure of the third ring, completing the spirocycle, and reductive methylation 

of the corresponding amidosulfone intermediate afforded the desired methyl amide 

210.  Conversion of the remaining primary stannane to the corresponding 

alcohol,[84] followed by Grieco elimination afforded the desired terminal olefin 

211.[69] Lactam reduction, followed by silylation of the free alcohol gave silyl ether 

212.  Sequential N-alkylation, ring-closing metathesis and silyl group removal 

completed Feldman’s formal synthesis. [62b] 
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Scheme 23 Feldman formal Halichlorine 

 

Simpkins’ Ring-Closing Metathesis  

Approach (2004) 

 

In 2004, Simpkins demonstrated the utility of ring-closing metathesis in his 

approach to the construction of the 5-membered spirocyclic ring (Scheme 24).[85]  

The route explored the synthesis of spirocyclic piperidines via the enantioselective 

allylation and differential functionalisation of diester 148 to eventually afford 

aldehyde 214.[67a, 68b]  Peterson olefination then accessed conjugated ester 216 

which was subsequently reduced to generate allylic alcohol 217.[86]  A Johnson-

Claisen rearrangement furnished bis-olefin 218, which upon ring-closing metathesis 

led to the functionalised spirocyclic piperidine 219.[87]      
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Scheme 24 Simpkins’ ring-closing metathesis approach. 

 

Clive’s Ring-Closing Metathesis Approach 

Intersecting Kibayashi’s Strategy (2005) 

 

In a closely related strategy to that of Simpkins, Clive and co-workers developed a 

ring-closing metathesis based approach (Scheme 25).[88]  Progressing from the 

Simpkins intermediate 220, alcohol oxidation followed by Grignard addition 

afforded bis-olefin 221. Ring-closing metathesis afforded the corresponding cyclic 

allylic alcohol, which was oxidised to enone 222.  Enone hydrogenation generated 

spirocyclic ketone 223, which was then N-alkylated. Subsequent condensation 

proceeded to afford tricyclic enoate 225, which was selectively reduced to 

generate the primary alcohol 226.  Alcohol 226 was converted to the corresponding 

iodide 227 and subsequently reduced to afford tricyclic piperidine 228.[89]  Silyl 

group removal followed by oxidation of the resultant primary alcohol generated 

aldehyde 230 which was homologated into aldehyde 232. Final reduction of 

aldehyde 232 yielded primary alcohol 140, an intermediate in Kibayashi’s formal 

synthesis.[62b]   
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Scheme 25 Clive’s ring-closing metathesis approach. 

 

Pilli (2005) and Paquette (2005); The Beckmann Rearrangement in 

Spirocyclic Piperidine Synthesis  

 

Pilli and co-workers began their synthesis of spirocyclic piperidine cores from the 

Heathcock diester 236.[90, 91] Subsequent Dieckmann condensation of diester 236 

followed by decarboxylation afforded bicyclic ketone 237.  Complete reduction of 

both ketone and amide units afforded the bicyclic diol intermediate 238 which was 

selectively protected and the resultant alcohol oxidised to afford bicyclic ketone 

239. Oxime formation and subsequent treatment of oxime 240 with pTsCl induced 

the key stereoselective Beckmann rearrangement to afford the spirocyclic amide 

241 (Scheme 26).[92]   
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Scheme 26 Pilli’s Beckmann rearrangement.  

 

A similar synthetic approach based on a Beckmann rearrangement was 

simultaneously adopted by Paquette and co-workers (Scheme 27).[93] In Paquette’s 

approach, oxime 242 was subjected to the Beckmann rearrangement conditions to 

generate spirocyclic lactam 243.[94]  Stereoselective alkylation of the ketone 

afforded the tertiary allylic alcohol 245, which underwent allylic rearrangement to 

generate acetate 246.  Amide protection followed by deacetylation afforded 

spirocycle 247.[95]   

 

 

Scheme 27 Paquette’s Beckmann rearrangement approach 

 

Husson’s “CN(R,S) Building Block” Method (2005) 

 

Husson and co-workers developed a route towards the spirocyclic cores of the 

pinnaic acid series utilising their previously developed “CN(R,S)  building block” 

248 (Scheme 28).[96, 97]  Alkylation of the bicyclic unit 248 followed by lithium-
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halogen exchange effected a spiroannulation process to afford the tricyclic core 

251.[98]  Lewis-acid mediated hydrolysis, followed by Horner-Wadsworth-Emmons 

olefination afforded the unsaturated nitrile 253.[99, 100]  Silyl ketene acetal 254 

addition to an in situ generated iminium ion, with simultaneous desilylation 

afforded ester 255.[101]  Alcohol protection followed by ester reduction and 

silylation afforded the bis-silylated spirocyclic piperidine 256.   Methylation 

resulted in the expected olefin migration giving rise to substituted cyclopentenone 

257, which after two reduction rounds was converted into primary alcohol 258. [102]   

Final hydrogenation completed the approach to the spirocyclic core 259 in 

possession of the opposite stereochemistry at C-14 with respect to the natural 

analogue.   

 

 

Scheme 28. Husson’s use of the “CN(R,S) Building Block”. 
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Zhao’s Formal Synthesis of Pinnaic Acid (2005) 

 

Building on their earlier work, Zhao and co-workers described a formal synthesis of 

pinnaic acid in 2005 (Scheme 29).[103]  Their route began with the epoxidation of 

cyclopentene, to afford cyclopentanyl epoxide 260, followed by ring opening and 

enzymatic resolution to obtain enantiopure cyclopentanol 263. [104]  Lactonisation 

and facially-directed methylation of lactone 264 generated lactone 265.  Lactone 

reduction followed by chemoselective benzylation accessed the benzyl protected 

alcohol 266.   Oxidation of the free secondary alcohol gave cyclopentanone 267 

which was then converted to the nitro cyclopentane 268 via oxidation of an oxime 

intermediate.  Deprotonation and Michael addition onto methyl acrylate gave ester 

270 which was subsequently reduced and converted into iodide 272.[105]  The iodide 

was displaced by substituted dithiane 273 and the thioketal hydrolysed to generate 

ketone 274.[106]  Attempted reduction of the nitro group with an aim to generate 

the corresponding amine was expected to induce cyclic imine formation akin to the 

method of ring closure described by Arimoto and Uemura.[107, 61]  Instead, 

cyclisation yielded the corresponding nitrone which was subsequently reduced to 

give hydroxylamine 275.[108]  Cleavage of the N-O bond followed by trifluoroacetate 

protection and desilylation afforded piperidine 276.[109]  Alcohol oxidation followed 

by olefination and debenzylation afforded the spirocyclic piperidine intermediate 

279 originally described by Danishefsky as part of his total synthesis.   
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Scheme 29. The Zhao group formal synthesis of pinnaic acid. 
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Martin’s Formal Syntheses of  

Pinnaic Acid and Halichlorine (2005) 

 

Martin reported the formal syntheses of both pinnaic acid and halichlorine from 

dihydroxycyclopentane 282.[110]  Densely functionalised cyclopentane 281 was 

accessed through the three-component alkylation between pyrrolidine 233, 

cyclopentenecarboxylate 234 and alkyl iodide 280 first reported by Heathcock 

(Scheme 26).[111]  Subsequent three-step overall reduction of the pyrrolidine and 

ester functionalities led to the bis-primary alcohol species 282.  Regiospecific 

protection followed by oxidation afforded the carboxylic acid 283, which then 

underwent a Curtius rearrangement with subsequent protection to generate the 

cyclic tertiary Boc-amide 284.[112] Cross-metathesis of alkene 284 with dienoate 

285 afforded the doubly conjugated ester 87,[113] which upon removal of the 

nitrogen protecting group, underwent Danishefsky’s intramolecular 1,6-conjugate 

addition to generate spirocyclic piperidine 88.  TFA protection of the nitrogen 

completed the synthesis of fully protected spirocyclic piperidine 89 (Scheme 30).    

 

 

Scheme 30 Martin’s formal synthesis of pinnaic acid 
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Martin’s formal synthesis of halichlorine began with the common advanced 

intermediate 284 which underwent cross-metathesis with but-2-enal 285 to afford 

conjugated aldehyde 286 (Scheme 31).  Deprotection of the nitrogen induced the 

aza-Michael cyclisation to afford spirocyclic piperidine 287.  Completion of the 

halichlorine core was achieved by applying Ramachandran’s vinylalumination 

conditions to aldehyde 287 to give allylic alcohol 289 as a mixture of 

diastereoisomers.[114]  Subsequent acetylation of the diastereomeric mixture 289 

affected a cyclisation/displacement event.  Final silyl group removal completed the 

synthesis of the ethyl ester analogue 147 of the Danishefsky intermediate 28.[65]  

 

 

Scheme 31 Martin’s formal synthesis of Halichlorine 

 

Zhao’s Enantioselective Total  

Synthesis of Pinnaic Acid (2007) 

  

In 2007, Zhao and co-workers completed the enantioselective total synthesis of 

pinnaic acid.[115]  Their initial steps in the synthesis followed the previous route, 

save for an optimised approach to the intermediate lactone 264.  Adoption of the 

previously reported approach led to the synthesis of cyclic tertiary nitro 

cyclopentane 274.[116, 103]  In contrast to their previous route, the Zhao group 

utilised Raney nickel for the reduction of the nitro group to the corresponding 

amine.  This resulted in spontaneous formation of the cyclic imine 291.  Sodium 
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borohydride reduction then gave the desired piperidine 276 as a single 

diastereoisomer.  In keeping with the previous strategy, side chain extension was 

achieved by Horner-Wadsworth-Emmons olefination with phosphonate 121, 

affording unsaturated ester 278.  In Zhao’s approach, the lower side chain unit was 

incorporated following a similar olefination strategy to that employed by the 

Heathcock group.  Wittig olefination with phosphorane 194 gave the desired enone 

which upon Luche reduction afforded a separable 3:1 mixture of diastereoisomers 

in favour of the desired allylic alcohol 293.  Global deprotection then completed 

the total synthesis of pinnaic acid 2 in 3% overall yield over 27 steps (Scheme 32).   

 

Scheme 32 Zhao’s total synthesis of pinnaic acid 
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Arimoto and Uemura’s Asymmetric  

Total Synthesis of Pinnaic Acid (2007) 

 

Arimoto and Uemura also reported an asymmetric total synthesis of pinnaic acid 

which utilised cross-metathesis reactions to incorporate both upper and lower side 

chains (Scheme 33).[117]  Construction of the cyclopentenone starting block 294 was 

achieved in 5 steps from (R)-(+)-pulegone.  A Pd-catalysed trimethylenemethane 

[3+2]-cyclisation then gave bicyclic ketone 296 which upon regioselective 

Beckmann rearrangement afforded lactam 298.[118, 119]  Removal of the unwanted 

exo-olefin was achieved through ozonolysis, followed by Caglioti-modified Wolff-

Kishner deoxygenation[120] to afford pyridinone 299.  Amide protection followed by 

reductive lactam ring opening afforded alcohol 300 which was subsequently silyl-

protected.  Removal of the PMP-protection followed by oxidation and Horner-

Wadsworth-Emmons olefination yielded enone 303.  At this point, the key tandem 

hydrogenation-cyclisation cascade, characteristic of the Arimoto-Uemura approach, 

was employed.  Amine protection and selective removal of the TBDMS protecting 

group followed by Grieco elimination afforded the terminal olefin 304.[121, 122]  

Cross-metathesis with ethyl methacrylate 305, in the presence of Hoveyda-Grubbs 

second-generation catalyst 306 afforded the ethyl enoate 307.  Subsequent TBDPS 

removal, followed by a second Grieco elimination[122] afforded terminal olefin 308.  

A final cross-metathesis with the custom allylic alcohol 309 in the presence of 

Grubbs 2nd generation ruthenium catalyst 68 incorporated the lower side-chain unit 

in a single step.  Sequential deprotection and saponificaion completed the synthesis 

of pinnaic acid 2 in 3% yield over 26 steps. 
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Scheme 33 Arimoto-Uemura second generation asymmetric synthesis of pinnaic acid 

 

Dake’s Convergent Approach to  

Spirocyclic Piperidines (2008) 

 

A particularly unique and extremely convergent approach to the spirocyclic core of 

pinnaic acid was described by Dake in 2008 (Scheme 34).[123]  Vinyl iodide 311 was 

lithiated and coupled with bespoke cyclobutanone 312.  Under treatment with N-

bromosuccinimide, sterically crowded allylic alcohol 313 smoothly underwent a 

semipinacol rearrangement to generate the spirocyclic core 314.   



Flexible Synthesis of Spirocyclic Pyrans and Piperidines Introduction 

 

 44 

 

Scheme 34 Dake’s convergent, radical approach to the synthesis of spirocyclic piperidines.  

 

Keck’s Approach to the Spirocyclic Core (2008) 

 

In 2008, Keck reported his efforts towards the synthesis of the pinnaic acid core 

structure utilising an intramolecular Mitsunobu displacement (Scheme 35).[124]  

Keck’s approach begins with ketone 315, which upon oxidative cleavage of the 

terminal olefin afforded the corresponding carboxylic acid 316.  Exposure of acid 

316 to methyl hydrazine resulted in the formation of the N-methyl pyridazinone 

317.[125] Facially-selective methylation then afforded methyl pyridazinone 318. A 

Finkelstein conversion allowed the formation of the corresponding iodide which 

underwent radical cyclisation to generate bicyclic pyridazinone 319.  Nitrogen 

protection followed by reductive N-N bond cleavage afforded amide 320.[126]  

Selective desilylation gave rise to primary alcohol 321, which suitably cyclised 

under Mitsunobu conditions to generate spirocyclic piperidine 322.  Unfortunately, 

while the use of the Mitsunobu reaction was successfully applied to primary alcohol 

321, its application to an equivalent homoallylic secondary alcohol was entirely 

unfruitful.   
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Scheme 35 Keck’s synthesis of a spirocyclic piperidine core. 

 

Martin’s Strategy Towards the  

Halichlorine Core (2009) 

 

In 2009,  Martin and co-workers reported a unique approach to the synthesis of the 

halichlorine core (Scheme 36).[127]  In their approach, the key bicycle 325 was 

accessed via coupling of amine 323 and aldehyde 324 through imine formation 

followed by intramolecular allylation.  Nucleophilic addition of sodium cyanide 

afforded the key bicycle 325.  Grignard addition to bicyclic piperidine 325 afforded 

terminal olefin 327, which underwent ene-yne ring-closing metathesis to afford the 

tricyclic core of halichlorine 328.  
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Scheme 36 Martin’s ene-yne metathesis strategy for the synthesis of the halichlorine tricycle 328. 

 

Tomioka’s Formal Synthesis of  

Halichlorine (2009) 

 

In 2009 Tomioka reported a formal synthesis of halichlorine from the 

polyfunctionalised cyclopentane unit 333.[128]  The synthesis of cyclopentane unit 

333 followed a similar three component transformation to that employed previously 

by Pilli (Scheme 37).[90] Hydrolysis of ester 333 followed by optical resolution 

afforded carboxylic acid 335, which subsequently underwent Curtius rearrangement 

to yield cyclic tertiary amide 336.[112, 129]  Isopropyl ester reduction and protection 

of the resulting alcohol gave silylated alcohol 337, the opposite enantiomer to the 

intermediate accessed by the Danishefsky group.  Alkene hydroboration followed by 

Suzuki cross-coupling with iodide 338 gave the corresponding dienoate, which upon 

Boc deprotection underwent intramolecular 1,6-conjugate addition to yield 

spirocyclic piperidine 339.  Olefin hydrogenation and lactamisation then afforded 

the tricyclic core 341 of halichlorine.   
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Scheme 37 The Tomioka group synthesis of the halichlorine core 341. 

 

Caprio’s Approach to the Spirocyclic Piperidine Cores of  

Pinnaic Acid and Halichlorine (2009) 

 

Caprio described an approach to the spirocyclic piperidine cores of pinnaic acid and 

halichlorine[130] which utilised nitrone 342[131] as the reactive intermediate.  Nitrone 

342 underwent a 1,3-dipolar cycloaddition with terminal olefin 343 to yield 

isoxazolidine 344 as a 1:1 mixture of diastereoisomers.[132] Oxidative ring opening 

afforded substituted nitrone 345 which was subsequently reduced to the 

corresponding hydroxylamine 346.  Cleavage of the N-O bond afforded piperidine 

347,[133] which underwent primary alcohol protection, and elimination of the 
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secondary hydroxyl via the corresponding mesylate to afford the spirocyclic 

piperidine core of pinnaic acid 348 (Scheme 38).  

 

 

Scheme 38 Caprio’s approach to the pinnaic acid core 348. 

 

Caprio’s efforts towards the halichlorine core also began with nitrone 342 which 

underwent a 1,3-dipolar cycloaddition to generate isoxazolidine 350.[134]  Alcohol 

protection followed by oxidative cleavage and N-O bond cleavage then afforded 

piperidine 352.  Mesylation of both primary and secondary alcohols then facilitated 

cyclisation, the regiospecificity arising from the formation of the more 

energetically favourable 6-membered ring, to generate tricycle 353.  Debenzylation 

followed by oxidation and mesylate elimination afforded unsaturated aldehyde 354.  

Finally, Pinnick oxidation, followed by esterification and desilylation afforded the 

tricyclic spiropiperidine core 355 (Scheme 39).    
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Scheme 39 Caprio’s approach to the halichlorine core 355. 

 

Clive’s Total Synthesis of Halichlorine (2009) 

 

In 2009, Clive reported a total synthesis of halichlorine[135]  which utilised the 

previously reported tricyclic amide 166 (Scheme 40).  MOM ether cleavage 

followed by oxidation and Wittig olefination afforded the homologated aldehyde 

358.[38]  Baylis-Hillman reaction of aldehyde 358 with acrylonitrile 359 followed by 

acetylation afforded a mixture of acetates 361.  Lactam ring opening and 

spontaneous intramolecular conjugate displacement afforded the tricyclic core of 

halichlorine 362.[71, 136]  Two sequential reductions followed by ketalisation of the 

resultant aldehyde 363 and oxidation of the primary alcohol afforded aldehyde 

365.  Aldehyde 365 was treated with Bu3SnLi and the resultant mixture of stannyl 

alcohols were immediately converted to the corresponding selenides 366.  

Treatment of stannyl selenides 366 with BuLi then generated a selenium-stabilised 

carbanion[137] and addition to known β-chloroaldehyde 55 accessed a mixture of β-

hydroxyselenides 367.  Selenoxide elimination followed by alcohol protection gave 
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the bis-silyloxy intermediate 368.  Ketal hydrolysis[138]  followed by oxidation of the 

resulting aldehyde then gave the desired carboxylic acid 369.[139]     

 

 

Scheme 40 Clive’s total synthesis of halichlorine 1.  
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Selective desilylation[140] of the primary alcohol, followed by Keck 

macrolactonisation[45] afforded known macrocyclic intermediate 60 and a final 

deprotection afforded halichlorine 1 as a mixture of isomers in 0.07% over 46 steps, 

based on the desired isomer. 

At a well-developed point of this synthesis, it became apparent that the initial 

stereoselective allylation (Scheme 17) had not proceeded with the high level of 

enantioselectivity desired (~67% ee).  Not content with these results, the Clive 

group proceeded to establish a novel, alternative route to the synthesis of an 

optically pure intermediate (Scheme 41).  Clive’s new approach began with serine-

derived iodide 370[141] which was converted to aldehyde 371 and then elongated 

into the internal alkyne 373.[142]  Alkyne 373 was then cyclised and the primary 

alcohol protected to afford piperidinone 374.  Cbz-protection followed by Luche 

reduction afforded cyclic allylic alcohol 375.  Allyl alcohol 375 was then converted 

into the vinyl ether and subjected to a Claisen-type rearrangement, affording 

aldehyde 377.[143]  Subsequent chain homologation of aldehyde 377 afforded 

aldehyde 378 which underwent reduction followed by protection of the resulting 

alcohol to afford the differentially protected triol 379.   
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Scheme 41 Clive’s novel route to chiral piperidines 161.   

 

Removal of the PMB group, followed by oxidation yielded aldehyde 380. Aldehyde 

alkylation followed by alkene hydrogenation afforded the diastereomeric alcohols 

381 possessing the fully saturated, unprotected piperidine.  Lactamisation followed 

by hydroxyl elimination afforded the enamide 382.  Protecting group manipulation 

then completed the synthesis of optically pure intermediate 161. 

 

Padwa’s Formal Synthesis of Halichlorine (2010) 

 

Padwa reported a formal synthesis of halichlorine based on a tandem conjugate 

addition/dipolar cycloaddition  between oxime 383 and 2,3-bis(phenylsulfonyl)-1,3-

butadiene 384. [144]  The cycloaddition yielded an inconsequential mixture of  

diastereoisomeric spirocycles 385a and 385b (Scheme 42).[145]  The mixture was 
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reduced with sodium amalgam to generate α-phenylsulfonyl piperidinone 386 which 

was reduced under radical conditions to afford tricyclic amide 387.[146]  Saegusa 

oxidation gave enone 388, which then underwent conjugate addition to yield allyl 

piperidinone 390 as the major diastereoisomer (15:1).[147] Thioketal protection of 

the ketone unit, followed by diastereoselective methylation, and subsequent 

thioketal reduction afforded tricyclic piperidine 211, completing the formal 

synthesis of pinnaic acid.  

 

Scheme 42 The Padwa strategy for the synthesis of Feldman intermediate 211.  

 

Stockman’s Formal Synthesis of Halichlorine (2012) 

 

In 2012, Stockman and co-workers reported a formal synthesis of halichlorine 

through the utilisation of their elegant tandem cyclisation of a symmetrical 

ketodiester 393 as the key spirocycle forming step (Scheme 43).[148]  In their 

synthesis, ketodiester 393 was accessed via the double addition of 

pentenylmagnesium bromide to ethyl formate, followed by oxidation of the 

resultant alcohol.  Cross-metathesis with ethyl acrylate then afforded the key 

symmetrical ketodiester 393.[149]  Conversion of ketoester 393 into the 

corresponding oxime allowed a Michael addition to take place with one of the 

conjugated ester moieties, generating a nitrone intermediate, which then 

underwent [3+2]-cyclisation with the remaining conjugated ester to afford the 
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desired tricyclic alkoxylamine 394.  Regioselective ester reduction[150] followed by 

hydrogenation and epimerisation gave the 1,2-diol 396, the ethyl ester analogue of 

Prof. White’s terminal intermediate 99 (Scheme 11). Subsequent periodate 

cleavage and Ando olefination afforded the desired Z-double bond isomer 398 as 

the major product.[151]  Acid catalysed lactamisation yielded amide 399 which upon 

cuprate addition gave the tricyclic piperidine 400.[152]  A final ester reduction 

afforded the known aldehyde 356, intersecting Clive’s synthesis of halichlorine.  

 

 

Scheme 43 Stockman’s synthesis of Clive’s aldehyde 356. 

 

Aubé’s Formal Synthesis of Halichlorine (2012)  

 

In the most recent contribution to date based on the synthesis of pinnaic acid-

related spirocyclic piperidines, Aubé reported his formal synthesis based on 

accessing the Kibayashi group intermediate 140 (Scheme 44).[153]  In the Aubé 

group approach, the carboxylic acid 401[154] was coupled with chiral pyrrolidine 402 

to afford bis-olefinic amide 403.  A [2+2]-cycloaddition with subsequent imine 

hydrolysis led to the [3.2.0] bicycle 405.[155]  Olefin metathesis with allyl bromide 
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113, followed by azide displacement afforded a mixture of allylic azides 406a and 

406b.[156]  Treatment of the amide mixture with TiCl4 promoted a key Schmidt 

reaction, upon which a separable 10:1 mixture of diastereoisomers in favour of the 

desired spirocycle 407 was obtained.  A final hydroboration afforded Kibayashi’s 

previously reported intermediate alcohol 140.   

 

 

Scheme 44. Aubé’s synthesis of the Kibayashi alcohol 140. 

  

In conclusion, the hugely diverse range of efforts that have been disclosed detailing 

the pursuit of these synthetically demanding natural products is a credit to their 

complex and fascinating structures. The strategies employed have been highly 

imaginative and elegant, both extending the scope of existing transformations and 

also describing the development of novel processes to overcome the challenges 

contained within these structures.  Although a number of the strategies employed 

have not, for different reasons, ventured as far as the total syntheses, or indeed 

formal syntheses, the contribution of these works must not be considered with any 

less importance.  Each approach described was born from ingenuity, invention or 

inspiration, and only through equal consideration of all previous efforts can the 

ultimate goal of the development of efficient syntheses, capable of furnishing 

significant quantities of these bioactive natural products, be achieved so that the 

scientific community can better understand their biological role.    



Flexible Synthesis of Spirocyclic Pyrans and Piperidines Introduction 

 

 56 

Polymaxenolide  

 

While spirocyclic piperidine-containing natural products like those extensively 

described have been the subject of numerous synthetic endeavours and biological 

evaluation, polymaxenolide 408 (Figure 8), a representative spirocyclic pyran-

containing natural product, has never before been synthesised, nor is its biological 

profile known. 

 

 

Figure 8. Polymaxenolide 408. 

 

Polymaxenolide 408 was isolated from the hybrid soft coral Sinularia maxima x 

Sinularia polydactyla in 2004 by Kamel and co-workers. [157] While polymaxenolide 

408 has not exhibited any known biological activity, its hybrid origins have 

rendered it a target of interest; a significant proportion (18%) of terrestrial 

metabolites so far isolated from hybrid species have exhibited biological activity 

entirely distinct from that encountered in their associated parent species.[158] 
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2. Results and Discussion 

 Spirocyclic Pyrans and Piperidines 
 

The similar structural features present in the spirocyclic cores of halichlorine 1 

pinnaic acid 2, tauropinnaic acid 3 and polymaxenolide 408 suggested that it might 

be possible to approach the spirocyclic piperidine and spirocyclic pyran cores with 

the concept of a divergent synthesis in mind. Hence, it was postulated that the 

syntheses of both spirocyclic cores might, in fact, be achievable from a common 

synthetic intermediate (Figure 9). 

 

Figure 9.  Entry to spirocyclic pyran and piperidine cores may be possible from a common synthetic 

precursor. 

Previous Methodology 
 

The use of 2,5-disubstituted furan rings 412 to generate pyran units via the 

Achmatowicz rearrangement was previously explored for the synthesis of spirocyclic 

pyrans (Figure 10).[159]  In the original approach, it was envisioned that ring-closing 

metathesis of a pyran 410 bearing two terminal olefins, connected to the same 

quaternary carbon, would furnish the desired spirocyclic structures 409.  The bis-

olefinated pyran 410 could potentially result from the Sakurai allylation of lactol 

411, the product of oxidative rearrangement of furfuryl alcohol 412.   

 

 

Figure 10. Retrosynthetic analysis of the first generation route to spirocyclic pyrans 
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The Achmatowicz Oxidative Rearrangement 

 
Mechanism 

 

 
The rearrangement of furfuryl alcohols 413 to give hydroxypyranones 414 under 

oxidative conditions is commonly referred to as the Achmatowicz oxidative 

rearrangement, after its founder Osman Achmatowicz Jr.[160]  The rearrangement 

was originally induced by the treatment of furfuryl alcohols with bromine, however, 

a variety of milder conditions have since found widespread employment including 

N-bromosuccinimide in water.[161]  Most commonly, however, the oxidative 

rearrangement is affected by the use of epoxidising agents, for example mCPBA and 

VO(acac)2/
tBuOOH.[162]  Sharpless asymmetric epoxidations are conventionally used 

in cases where either resolution or enantiomeric induction is desired.[163]   

The rearrangement itself presumably proceeds via the formation of epoxide A, 

directed by the presence of the hydroxyl group α- to the furyl ring, which 

subsequently induces ring decomposition via zwitterionic intermediate B (Scheme 

45).  As a result, 1,4-dicarbonyl species C is generated, which then undergoes ring-

closure to form the hemi-acetal product 414.   

 

 

Scheme 45. The mechanism of the Achmatowicz oxidative rearrangement 

 

This versatile rearrangement has found widespread application in organic chemistry 

and, in particular, natural product synthesis (Scheme 46).  Examples range from 

the synthesis of saccharide analogues such as daumone (A),[164] through unsaturated 

lactone derivative phomopsolide C (B),[165] to more complex macrostructures, for 

example, norhalichondrin B (C).[166] 



Flexible Synthesis of Spirocyclic Pyrans and Piperidines Results and Discussion 

 

 57 

 

 

Scheme 46. Applications of the Achmatowicz oxidative rearrangement in total synthesis. 

  

The plentiful instances of this reaction in the literature rightly illustrate its 

standing as a powerful tool in organic chemistry.  Its use as a comprehensive 

method for the assembly of spirocyclic structures however, has so far been mostly 

limited to the synthesis of spiroketals.[167]   

  

First Generation Spirocyclic Pyran Syntheses 

 

Utilising the first generation methodology developed within the group, a selection 

of spirocyclic pyran structures was prepared starting from furan 415.[159]  The 
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synthesis of the oxaspiro[5.4]decenone 423 began with the addition of lithiofuran 

to isobutyraldehyde to afford furfuryl alcohol 416 which was subsequently 

protected as silyl ether 417.  A second lithiation and trapping with allyl bromide 

113 allowed access to 2,5-disubstituted furan 418.  Deprotection of the furfuryl 

alcohol 418 followed by exposure to oxidative conditions effected the Achmatowicz 

rearrangement to generate hemi-acetal 420.  Lewis acid mediated Sakurai-type 

allylation followed by ring-closing metathesis then afforded the desired spirocyclic 

product 423 in 43% overall yield over the 7 step sequence (Scheme 47).   

 

 

Scheme 47. The first generation synthesis of [5.4]-spirocyclic pyran 423, 

 

The synthesis of the subsequent spiro[5.5], [5.6] and [5.7] ring systems followed a 

slightly different route.  In this case the alkylation stages were reversed, such that 

the terminal alkenyl substituent was introduced before furyl lithiation and addition 

to isobutyraldehyde.  This more concise route was not applicable for the synthesis 

of the [5.4] ring system 423 due to the risk of competing allylic deprotonation in 

place of furyl lithiation.  This new approach avoided the need for hydroxyl 

protecting group manipulation.  Thus, in the case of the [5.5] ring system, the 

desired spirocyclic dihydropyranone product 429 was accessed in 26% yield over 5 

steps from furan.  Similarly, the [5.6] spirocyclic pyranone 430 was accessed in 5 

steps in 25% overall yield. For the larger ring systems, however, the ring closing 
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metathesis step proved troublesome, and the synthesis of oxaspiro[5.7]tridecenone 

431 proceeded in 7% overall yield (Scheme 48). 

 

Scheme 48. Application of the methodology to larger spirocyclic pyrans 

 

This early strategy demonstrated the selectivity of the oxidative rearrangement, 

affording the desired lactols in the presence of various functionalities, including 

olefins, without detrimental effect. In addition, the Lewis-acid promoted allylation 

afforded single diastereoisomers, with the addition being dictated by the 

orientation of the isopropyl substituent.   

Despite the poor yield observed for the larger ring-closing metathesis, this strategy 

provided access to spirocyclic pyrans in relatively few steps from commercially 

available starting materials.  The true viability of this strategy for the divergent 

approach to spirocyclic cores would, however, be determined based on its 

transferability to the synthesis of analogous spirocyclic piperidines. 

  

Application to Spirocyclic Piperidines 

 

It was believed that 5-substituted furfuryl amines 432 would behave similarly to 

their oxa-counterparts, however, in an extension of the first generation 

methodology, the oxidative rearrangement of the furfuryl amine precursors proved 

to be temperamental; its success was highly influenced by the nature of the C5 

furan substituent.[159b]  While most groups were tolerated α- to the furfuryl amine, 

those compounds in possession of a substituent larger than a methyl at the C5 

position of the furan ring failed to undergo the oxidative rearrangement and, as a 
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result, did not afford any of the desired hemi-aminals 433 (Scheme 49).  The 

precise reasons for the difference in behaviour between the oxa- and aza-systems 

are not fully understood. 

 

 

Scheme 49. Furfuryl amines possessing C5-substituent larger than Me did not undergo oxidative 

rearrangement 

  

A New Strategy for the Synthesis of Spirocycles 

 

Faced with an unreliable approach to the synthesis of the hemi-aminal intermediate 

433, a new strategy for the synthesis of the spirocyclic amine cores was required.  

In the devised second generation approach, spirocyclic pyranones 434 and 

spirocyclic piperidinones 435 were envisioned as having originated from the 

oxidative rearrangement of cyclic tertiary furfuryl alcohols 436 and cyclic tertiary 

amines 437 respectively (Figure 12).  If successful, this approach would potentially 

provide a concise route to the desired spirocyclic pyrans and piperidines.   

 

 

Figure 12. Retrosynthetic analysis of second generation approach to spirocyclic pyrans and 

piperidines. 

 

This methodology was strongly inspired by a solitary example of the synthesis of 

spirocycles found in the work of Couladouros.[168]  It was reported that 
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cyclohexylfuryl carbinol 438 underwent oxidative rearrangement to generate the 

corresponding spirocyclic hydroxypyranone 439. The analogous tosyl-amide 440, 

however, unexpectedly afforded the spirolactam unit 441 as the sole product in 

place of the anticipated hydroxypyridinone 442 (Scheme 50). 

 

 

Scheme 50. Couladouros’ example of the oxidative rearrangement methodology 

 

 Initial Model Systems 

 

The initial model studies began with cyclopentanone 443 which, upon lithiofuran 

addition, afforded the known furfuryl alcohol 444 in reasonable (40%) yield.[169]  It 

was found that by using an excess (5 eq.) of the lithiated furan the cyclic tertiary 

furfuryl alcohol 444 could be obtained in near-quantitative yield. As expected, 

treatment of the furfuryl carbinol 444 with mCPBA effected an oxidative 

rearrangement to yield lactol 445.  Unfortunately, the lactol intermediate 445 was 

found to decompose upon contact with silica gel, and as such the crude was taken 

forward without purification to the following transformation.  Boron trifluoride 

promoted Sakurai-type allylation of lactol 445 with allyltrimethylsilane afforded 

the functionalised [5.4] spirocyclic pyran 446 unit in moderate yield over the three 

step sequence (Scheme 51).[170] 

 

 

Scheme 51. The synthesis of a functionalised spirocyclic pyran unit 446. 



Flexible Synthesis of Spirocyclic Pyrans and Piperidines Results and Discussion 

 

 62 

 Scope of the Methodology 

 

In order to ascertain its flexibility, the methodology was applied to the synthesis of 

the corresponding [5.3] 449, [5.5] 450, [5.6] 453 and [5.7] 456 spirocyclic 

dihydropyranones (Table 1).   

The results obtained were satisfactory with the exception of the attempted 

formation of the highly strained [5.3] spirocyclic dihydropyranone 449.  While all 

remaining ring systems were obtained as the major product over the entire 

sequence, this system afforded a complex mixture from which the desired allyl 

spirocyclic dihydropyranone 449 was isolated in very low yield.[171]  

 

 

Table 1. The application of the second generation approach to the synthesis of spirocyclic pyrans. 
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Despite the difficulty in generating the [5.3] ring system 449, this revised strategy 

compared favourably with the previous methodology.  This new approach allowed 

improved access into spirocyclic ring systems, particularly for the generation of 

larger ring systems.  

Having achieved the desired spirocyclic pyran core 446, subsequent modification of 

the functionality within the pyran unit was explored in order to access the desired 

fully saturated spirocyclic units.   

 

 Synthesis of a Spirocyclic Pyran Core of Polymaxenolide 

  Pyran Functionalisation 

 

As part of the initial studies the 5-membered spirocycle 446 was subjected to a 

variety of reduction conditions in an effort to entirely reduce the enone unit. 

Enone reduction was thought of as potentially proceeding via one of two routes: A) 

sequential ketone reduction followed by elimination; or B) conjugate reduction 

followed by deoxygenation of the remaining ketone moiety (Figure 13).    

 

 

Figure 13. The possible pathways for enone reduction.  

 Birch Reduction   

 

The sequential reduction strategy rested on the use of a Birch reduction.  Such 

reductions have been shown to reduce enones to aliphatic alcohols in a single step.  

A closely related precedent which suggested that a Birch reduction would be ideal 
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for the reduction of the spirocyclic dihydropyranone system involved the reduction 

of enone 460 to aliphatic alcohol 461 without detrimental effect on the terminal 

olefin (Scheme 52).[172] 

 

 

Scheme 52. Example of the Birch reduction in synthesis.  

 

Dihydropyranone 446 was then subjected to Birch reduction conditions (Scheme 

53).  Unfortunately, although the desired alcohol 457 was generated in a single 

step the poor yield made the transformation unviable in a total synthesis context.   

 

 

Scheme 53. Birch reduction of enone 446.  

Sodium Borohydride Reduction 

 

There is ample literature precedence for enones undergoing conjugate hydride 

addition followed by a subsequent 1,2-addition to afford the corresponding 

aliphatic alcohol when treated with excess sodium borohydride (Scheme 54, A and 

B).[173]   

 

 

Scheme 54. One-pot 1,4- and 1,2-reduction of enones by NaBH4.  
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It was envisioned that this reduction strategy, when applied to the spirocyclic 

dihydropyranone system, would afford alcohol 457 in improved yields compared to 

the initial Birch reduction conditions.  Unfortunately, sodium borohydride 

treatment of enone 446 resulted in selective 1,2-reduction in excellent yield to 

afford allylic alcohol 462 as a single diastereoisomer, the relative stereochemistry 

of which was not unambiguously assigned (Scheme 55).  Despite repeated attempts 

under a variety of modified conditions, no 1,4-reduction was detected.   

 

 

Scheme 55. Treatment of enone 446 with NaBH4 resulted in exclusive 1,2-reduction.  

  Wilkinson’s Directed Hydrogenation 

 

Possessing significant quantities of the allylic alcohol 462 as a result of the NaBH4 

reduction attempts, it was surmised that hydroxyl directed hydrogenation using 

Wilkinson’s rhodium catalyst may afford the desired cyclic alcohol product 457 

(Scheme 56).  Once the aliphatic alcohol is obtained, the final deoxygenation 

conditions could be investigated.   

 

  

Scheme 56. The proposed hydroxyl-directed hydrogenation of allylic alcohol 462.  

 

Wilkinson’s catalyst ((Ph3P)3RhCl) has been utilised to achieve regioselective 

hydrogenations whereby allylic and homoallylic alcohols direct hydrogenation to 

occur at their proximal site in the presence of additional double bonds (Scheme 

57).[174]  
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Scheme 57. Hydroxyl-directed hydrogenation with Wilkinson’s catalyst.  

 

Chirality present at the site of the alcohol can also be exploited to induce 

stereoselectivity to the newly hydrogenated site.  Hydrogenation, facilitated by the 

coordination 466 between the catalyst and the hydroxyl unit, was found to occur 

stereoselectively, directed by allylic 1,3-strain (Scheme 58).[175]   

 

 

Scheme 58. Exploiting chirality with Wilkinson’s catalyst.  

 

Wilkinson’s catalyst has also been shown to be selective in a different way whereby 

the catalyst has been used to facilitate the selective hydrogenation of the less 

substituted double bonds in polyunsaturated species (A,B Scheme 59).[176]   
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Scheme 59. Wilkinson’s selective hydrogenation in total synthesis.  

 

Unfortunately, when the hydrogenation of spirocyclic dihydropyranol 462 was 

explored, the bias towards less substituted olefins was found to trump the hydroxyl-

directed selectivity.  As a result, the terminal olefin was the only double bond to be 

hydrogenated in quantitative yield (Scheme 60).   

 

 

Scheme 60. Hydrogenation resulted in selective removal of the terminal olefin.  
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Hence, it was deemed necessary to investigate and develop an alternative synthetic 

pathway in which conjugate reduction of the enone could be followed by a ketone 

deoxygenation sequence.   

  Stryker's Copper Hydride Hexamer 

 

Conjugate reductions using copper hydride sources have been shown to be very 

effective in a variety of substrates.[177]  Furthermore, Stryker has also described 

that the desired 1,4-reduction can take place in the presence of additional olefin 

functionality (Table 2).[178]   

 

 

Table 2. Examples of Stryker’s conjugate reduction.  

a - Stereochemistry not unambiguously assigned  

 

Gratifyingly, conjugate hydride addition using Stryker’s reagent (triphenylphosphine 

copper hydride hexamer) was highly successful, affording the desired spirocyclic 

pyranone 458 in good yield.  Having achieved the desired conjugate reduction, two 

options became apparent to achieve the desired deoxygenation.  In the first option, 

reduction of the ketone unit would deliver alcohol 457 which could then potentially 

be removed via the corresponding xanthate 469 under Barton-McCombie 

conditions.[179]  Alternatively, the direct reduction of the carbonyl was also 

considered (Scheme 61).   
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Scheme 61. Stryker’s reduction of enone 446.  

 

The increased number of steps associated with the Barton-McCombie strategy 

prompted efforts to be focussed on a possible one-step carbonyl reduction.  For 

such reasons, a direct deoxygenation was investigated whereby complete removal 

of the carbonyl unit might be achieved in a single operation.    

  Deoxygenation 

 

The two most common ‘named-reaction’ deoxygenations which will entirely reduce 

a carbonyl compound to the corresponding methylene unit are the Clemmensen 

reduction[180] and the Wolff-Kishner reduction.[181]   

  

Clemmensen Reduction 

 

The reduction of carbonyl compounds to their corresponding alkanes in the 

presence of zinc and concentrated acid is known as the Clemmensen reduction.  

Such conditions are relatively harsh, and as a result, various modifications have 

been developed whereby the same original concept can be carried out in a milder 

environment. These modified procedures have assisted this method of 

deoxygenation to become popular in natural product synthesis. An example of its 

use is found in Kibayashi’s synthesis of 5-epi-pumiliotoxin C (Scheme 62).[182] 
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Scheme 62. Clemmensen reduction in Kibayashi’s route to 5-epi-pumiliotocin C. 

 

Wolff-Kishner Reduction 

 

While Clemmensen reduction has the benefit of being carried out in a single step, 

the Wolff-Kishner reduction usually proceeds via the initial formation of the 

equivalent hydrazone intermediate.  Subsequent reduction of the hydrazone, driven 

by the deprotonation and elimination of N2, affords the desired, fully reduced 

methylene unit.  The Wolff-Kishner reduction has found common use in natural 

product synthesis including, for example, Marino’s synthesis of aspidospermidine 

(Scheme 63).[183] 

 

 

Scheme 63. Wolff-Kishner deoxygenation in the synthesis of apidospermidine.  

 

Both deoxygenation reactions are carried out using fairly harsh, yet opposing 

conditions.  The Clemmensen reduction uses strongly acidic conditions, often at 

high temperatures. Although recent modifications have enabled the reaction to be 

carried out at lower temperatures, there is still the necessity for an acidic 

environment. The Wolff-Kishner reduction, on the other hand, requires strongly 

basic conditions and high temperatures. A milder variant of this two-step process is 

the Caglioti-modified Wolff-Kishner reduction.[184]  

The Caglioti-modified Wolff-Kishner reduction exploits tosyl-hydrazide in place of 

hydrazine to generate a tosyl-hydrazone intermediate. This intermediate can then 

be reduced using a variety of mild reducing agents.     
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This latter method for deoxygenation was deemed to carry the least risk of 

unwanted side-reactions and as such was applied to the spirocyclic pyran system.   

   

Completing the Core 

 

Following Padwa’s conditions for Caglioti-Wolff-Kishner deoxygenation,[185] 

pyranone 458 was converted to the corresponding tosyl-hydrazone by treatment 

with tosyl-hydrazide in ethanol.  Subsequent DIBAL-H reduction of the crude tosyl-

hydrazone afforded the oxa-spirocyclic pyran 459 in good yield.  Further 

elaboration of the spirocyclic core was realised in the cross-metathesis of fully 

saturated pyran 459 with ethyl methacrylate 305 in the presence of Grubbs 2nd 

generation catalyst 68.  This afforded the trisubstituted conjugated ethyl ester 470 

as a single double bond isomer, completing the synthesis of the oxa-pinnaic acid 

core (Scheme 64).[171] 

 

 

Scheme 64. Completing the spirocyclic pyran core 470.  

 

The next task was to investigate whether this methodology could be transferable to 

the synthesis of a spirocyclic piperidine counterpart, which would display those 

same functionalities present in halichlorine and the pinnaic acids.   
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Application to the Synthesis of Spirocyclic Piperidines 

 

  From the Common Synthetic Precursor 

 

In order to tailor the recently developed methodology to the synthesis of spirocyclic 

piperidines, it became necessary to access a cyclic tertiary furfuryl amine 

precursor.   

Pleasantly, treatment of furfuryl alcohol 444 under Couladouros’ conditions 

effectively converted it to the corresponding amine via the formation, and 

subsequent reduction, of cyclic tertiary furfuryl azide 472.[168]  Mechanistically, the 

reaction requires treatment with hydrazoic acid in the presence of sulphuric acid 

which suggests that elimination of water first affords the planar furanium 

intermediate 471 (Scheme 65). Subsequent addition of the nucleophilic azide then 

leads to the formation of the desired cyclic tertiary furfuryl azide 472.   

 

 

Scheme 65. Proposed mechanism of cyclic tertiary furfuryl azide formation.  

 

Hydrogenation over Pd/C generated the cyclic tertiary amine 473 cleanly, paving 

the way for the oxidative rearrangement conditions to be applied (Scheme 66). 

 

 

Scheme 66. Conversion of the tertiary furfuryl alcohol 444 to the corresponding amine 473.  
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The Aza-Achmatowicz Oxidative Rearrangement in Synthesis   

 

The equivalent oxidative rearrangement of furfuryl amines to that previously 

utilised is often referred to as the aza-Achmatowicz oxidative rearrangement, a 

term coined by Ciufolini who was first to explore its use.[186]  The mechanism 

proceeds in the same fashion as the traditional oxa-counterpart, forming the 

pyridinone product 475 (Scheme 67).   

 

 

Scheme 67. The aza-Achmatowicz oxidative rearrangement mechanism.  

 

The rearrangement of furfuryl amines has, similarly, found widespread application 

in organic synthesis with its use being described in Padwa’s syntheses of members 

of the Cassia and Prosopis family (A),[185] Ciufolini’s synthesis of desoxoprosopinine 

(B)[187] among many other examples from his group and the synthesis of aza-sugars 

as reported by O’Doherty (C) (Scheme 68).[188]   
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Scheme 68. The aza-Achmatowicz oxidative rearrangement in synthesis. 

 

Synthesis of the Spirocyclic Piperidine Core of Pinnaic Acid 

 

Unfortunately, exposing the free amine 473 to the oxidative rearrangement 

conditions afforded no discernable product.  Indeed, the majority of examples of 

the aza-Achmatowicz oxidative rearrangement being utilised involve tosyl- 

protected amine precursors.[185]  Many carbamate- and amide-protected furfuryl 

amines have also been shown to tolerate the oxidative rearrangement conditions, 

however, the subsequent allylation step involves the use of a Lewis-acid, which 

could potentially cause undesired protecting group removal.[186-188]  Hence, tosyl-

protection of the newly formed tertiary amine 473 was deemed the safer route.  

Treatment of tosyl-amide 476 with mCPBA proceeded to afford the desired hemi-

aminal crude 477, which was immediately subjected to Sakurai-type allylation 

conditions to afford dihydropiperidinone 478.[170]   
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As was in the case of the corresponding spirocyclic pyran, selective 1,4-reduction 

was achieved using Stryker’s reagent to afford piperidone 479.[178]  Piperidone 

deoxygenation under Caglioti-Wolff-Kishner conditions then produced the desired 

spirocyclic piperidine 480.[185]  Finally, cross-metathesis in the presence of Grubbs 

2nd generation catalyst 68 afforded 33% yield of enoate ester 481.  Optimisation of 

the cross-metathesis using Hoveyda-Grubbs 2nd generation catalyst 306 improved 

the efficiency of the cross-coupling and afforded the spirocyclic piperidine core 481 

of pinnaic acid in 48% yield as a single E-isomer (Scheme 69).[171]   

 

 

Scheme 69. Synthesis of the pinnaic acid spirocyclic piperidine core 481.  

 

The synthesis of the spirocyclic piperidine core of pinnaic acid 481 illustrates the 

transferability of this methodology between oxa- and aza-systems.   

In possession of a flexible synthesis of spirocyclic pyrans and piperidines, more 

elaborate structures were sought to test the applicability of the methodology.   
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Complex Natural Product Synthesis 

 

The ultimate goal from the development of this methodology was its applicability to 

the syntheses of complex natural products.  In the case of spirocyclic pyrans, 

polymaxenolide 408 was the primary target while the bioactive marine alkaloids 

halichlorine 1, pinnaic acid 2 and tauropinnaic acid 3 were the spirocyclic 

piperidine-containing targets. 

 

Towards Polymaxenolide  

 

Proposed Biosynthetic Pathway 

 

A potential biosynthetic pathway leading to polymaxenolide 408 has been 

proposed.[157a]  As polymaxenolide 408 is a hybrid metabolite, it could be thought of 

as originating from the coupling of the known cembranoid skeleton A, and naturally 

occurring 9α,15-epoxyafricanene 482 (Figure 14).  Enol addition to the epoxide 

followed by hemi-acetal formation, and finally elimination would give rise to the 

spirocyclic hybrid metabolite.   

 

 

Figure 14. The proposed biosynthetic entry to polymaxenolide 408.  
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Retrosynthetic Analysis  

 

Despite the likelihood of the two species reacting in nature in the described fashion 

to deliver polymaxenolide, the spirocyclic core of the hybrid metabolite was of 

particular synthetic interest.   

Retrosynthetically, polymaxenolide was envisioned as originating from the oxidative 

rearrangement of tricyclic tertiary furfuryl alcohol 484 (Scheme 70). The 

Achmatowicz oxidative rearrangement product appeared to be perfectly suited for 

further manipulation through a Lewis-acid mediated alkylation to afford 

functionalised spirocyclic dihydropyranone 483. The enone functionality could then 

potentially be remodelled to incorporate the Northern, cembranoid fragment.    

 

 

Scheme 70. Retrosynthetic analysis for the synthesis of polymaxenolide 408. 

 

Ketone 485, in turn, was thought of as having originated through a one-pot, three-

component, conjugate addition/alkylation reaction would incorporate useful 

functionality with the desired anti-relationship at the ring junction (Scheme 71). 

 

 

Scheme 71. The proposed retrosynthesis of key tricyclic ketone 485.  
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Towards the Synthesis of the Africanane Core 

 

In order to incorporate the previously developed spirocyclic pyran methodology for 

the synthesis of polymaxenolide 408, the construction of the more complex, 

tricyclic ketone 485 was undertaken. The proposed route was supported by the 

efforts of both Vanderwal and Fürstner who had independently developed similar 

reaction sequences to successfully generate α,β-difunctionalised cyclopentanones.   

 

Fürstner’s Synthesis of Dactylol 

 

Fürstner’s synthesis of dactylol contained a three-component-one-pot conjugate 

addition/trapping approach in which methyl cuprate was introduced to 

cyclopentenone 123, followed by trapping of the resultant enolate with the neo-

pentyl aldehyde 486.[189]  A subsequent elimination was effected by treatment with 

MsCl in the presence of DMAP.   

Enone reduction then gave, exclusively, the anti-product 490 using a palladium 

catalysed tributyltin hydride addition.  In order to complete the synthesis of 

dactylol, Fürstner used a Grignard addition to introduce a methylallyl substituent 

which gave rise to a 1.2:1.0 mixture of alcohol products 492.  After separation, 

each diastereoisomer was treated independently however only that which led to 

the desired target molecule is shown.  Alcohol protection was found to be necessary 

in order for the Schrock molybdenum carbene catalysed ring-closing metathesis to 

take place.  Final deprotection afforded dactylol 496 in 92% yield (Scheme 72). 
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Scheme 72. Fürstner’s synthesis of dactylol 496. 

 

  Vanderwal’s Synthesis of Teucladiol 

 

Vanderwal utilised a similar initial transformation for his synthesis of teucladiol 

whereby a substituted isopropenyl cuprate was added in a 1,4-fashion to 

cyclopentenone 123.[190]  Subsequent trapping of the enolate with aldehyde 498 

afforded the anti-aldol product 500; the orientation of the hydroxyl group is 

dictated through Felkin-Anh control.  Subsequent alcohol protection was carried 

out, followed by ring-closing metathesis in the presence of Grubbs 2nd generation 

catalyst 68 provided the bicyclic ketone 502.  Final alkylation and desilylation with 

simultaneous protodesilylation completed Vanderwal’s concise approach to 

teucladiol 503 (Scheme 73).  
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Scheme 73. Vanderwal’s synthesis of teucladiol 503. 

 

Efforts Towards the Synthesis of Africanane-Derived Natural 
Products 

 

Buoyed by the precedence for conjugate addition/trapping, followed by medium-

sized ring-closing metathesis to generate similar cyclic structures, it was postulated 

that application of this type of chemistry could lead to the synthesis of a variety of 

africanane-derived natural products (Figure 15) through simple alterations in a 

number of steps.[191]   

 

Figure 15. Africanane-derived natural products. 
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It was anticipated that up to eight africanane natural products could be accessed 

from key tricyclic ketone 485 (Scheme 74). For instance, nucleophilic addition of 

methyllithium to ketone 485 could potentially lead to both leptographiol 504 and 

isoleptographiol 505.  Methylenation of ketone 485 would lead to the exo-cyclic 

methylene derivative  Δ9(15)-africanene 506.  Subsequent epoxidation of the exo-

cyclic methylenated tricycle 506 could then lead to the postulated biosynthetic 

precursor to polymaxenolide, 9α,15-epoxyafricanane 482. Similarly dihydroxylation 

of the exo-cyclic methylene unit could be envisioned to afford 9α,15-

dihydroxyafricanane 507. 

Africanol 509 itself could be accessed via an initial Rubottom-type oxidation to 

afford the α-hydroxy ketone 512.  Subsequent methylenation, followed by 

Wilkinson’s hydroxyl-directed hydrogenation of the exo-cyclic double bond should 

afford the desired natural product 509.  Alternatively, it may be possible to induce 

hydrogenation to occur from the opposite face if the tertiary alcohol is protected 

with a bulky substituent to afford protected alcohol 514. This could potentially 

allow the generation of isoafricanol 510. 

Finally, it may be possible to influence the Rubottom oxidation to take place with 

the opposite regiochemistry using TMS-enolate 516, to afford the less substituted α-

hydroxy ketone 517.  Final methylenation would complete the synthesis of 10α-

hydroxy-Δ9(15)-africanene 508 (Scheme 74).  
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Scheme 74. Proposed access to a variety of Africanane-derived natural products from key tricyclic 

ketone 485. 
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 Towards the Synthesis of the Tricyclic Ketone 

 

The synthesis of the key tricyclic ketone 485 began with cyclopentenone 123 which 

was treated with the in situ formed isopropenyl cuprate under Snyder’s 

conditions.[192]  The resulting enolate was trapped by the neo-pentyl aldehyde 487 

used by Fürstner in his synthesis of dactylol.[189]  Interestingly, the addition yielded 

a mixture, not of diastereoisomers, but of the expected β-hydroxyketone product 

518 and elimination product 519.  The original intention was to eliminate the β-

hydroxyl moiety using Fürstner’s elimination protocol, followed by a facially 

selective palladium catalysed reduction.  A pleasant observation, however, was 

that simply allowing the reaction mixture to stir for an extended period at room 

temperature formed the elimination product 519 cleanly. The result of this was a 

one-pot conjugate addition/alkylation/elimination reaction which accessed enone 

519 in 78% overall yield, affording the reduction precursor in a single operation.  

Subsequent palladium catalysed tributyltin hydride reduction proceeded smoothly 

to regio- and stereoselectively reduce the enone, affording bis-olefin 520 (Scheme 

75).   

 

 

Scheme 75. Synthesis of the ring-closing metathesis precursor 520. 

 

Surprisingly, the ring-closing metathesis step proved to be problematic with initial 

attempts resulting in, largely, recovered starting material 520 with traces of 

dimerisation product 522 (Table 3).  Subjecting bis-olefin 520 to conditions 

identical to those reported in Vanderwal’s synthesis of teucladiol, resulted only in 

traces of dimer 522 (entry 1).[190] Simultaneous application of Taber’s conditions, 

reported in his synthesis of africanol, afforded no reaction after 1h, and trace 

dimerisation product 522 after longer reaction time (entries 2 and 3).[193] A slight 
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increase in catalyst concentration also failed to yield satisfactory results (entry 

4),[194] while increased substrate concentration merely induced increased 

dimerisation (entry 5).  The use of conditions described for the ring-closing 

metathesis of structurally divergent [4.6]-bicyclic compounds also failed to give the 

desired cyclisation product 521, instead affording traces of dimerisation adduct 

522 as the only product (entry 6).[195] Increasing the reaction temperature and 

substrate concentration by applying Romo’s conditions described in his synthesis of 

oomphadiol induced greater dimerisation (entry 7).[196]  Dilution reduced the 

quantity of dimer 522 formed, however, similarly afforded no detectable amounts 

of ring-closed product 521 (entry 8).  Adopting Paquette’s conditions using Grubbs 

1st generation catalyst 422 afforded similar results over prolonged reaction times 

(entry 9), with increased concentrations leading to increased dimerisation (entry 

10).[197]  Lewis-acids have been shown to prevent catalyst degradation, however, in 

this case, the use of Lewis-acids resulted in no reaction being observed (entry 

11).[198] Disappointingly, the use of the recently developed Zhan 1B catalyst 523 led 

to increased dimerisation (entry 12).[199]   

Conversely, Lei’s conditions for a similar ring-closing metathesis with Grubbs 2nd 

generation catalyst 68, required the reaction taking place under an inert 

atmosphere for 1h, then stirred open to the air overnight presumably to 

purposefully, yet gradually induce catalyst degradation in an effort to suppress its 

reactivity. Unfortunately, such conditions were found to be equally unsuccessful 

(entry 13).[200] 

Particularly surprising was the lack of success granted when the reaction was 

carried out in 4.5 mM dilution with 5% Grubbs 2nd generation ruthenium catalyst 68 

(entry 14).  During the course of these investigations, a report emerged from the 

Nakata group in which they describe their strategy towards the same tricyclic 

ketone 485 utilising precisely the approach described herein.[201]  In Nakata’s 

report, ring-closing metathesis using 5% catalyst 68 at a dilution of 4.5 mM was 

successful, albeit in lower yield (53%) than was perhaps expected, demonstrating 

the difficulties in encouraging bis-olefin 520 to form the bicyclic ketone 521.   
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a - +1.5 eq. Ti(O
i
Pr)3 b - then 18h open to air 

Table 3. Conditions attempted for ring-closing metathesis of bis-olefin 520. 

 

Subsequent Simmons-Smith reaction proved successful in affording the desired 

cyclopropane 524 (Scheme 76).  As anticipated (Scheme 74), methyllithium 

addition was reported to provide a separable mixture of the leptographiols 504 and 

505, while methylenation using the Tebbe reagent 525 smoothly generated Δ9(15)-

africanene 506.  Subsequent epoxidation, or dihydroxylation, afforded 9α,15-

epoxyafricanane 482 and 9α,15-dihydroxy-africanane 507, respectively.[201]  

 

Entry Catalyst Conc. Conditions Products 

1 5% + 2.5% 68 15mM CH2Cl2, Δ, 2.5h + 4h 520, trace 522  

2 2% 68 5mM CH2Cl2, Δ,1h 520 

3 2% 68 5mM CH2Cl2, Δ,18h 520, trace 522 

4 5% 68 5mM CH2Cl2, Δ, 18h 520, trace 522 

5 5% 68 15mM CH2Cl2, Δ, 18h 35% 522 

6 10% 68 5mM CH2Cl2, Δ, 2h 520, trace 522 

7 3% 68 25mM  PhMe, Δ, 3h 40% 522 

8 3% 68 5mM PhMe, Δ, 3h 25% 522 

9 30% 422 3mM CH2Cl2, Δ,36h 520, trace 522 

10 30% 422 5mM CH2Cl2, Δ, 72h 18% 522 

11 30% 422 5mM CH2Cl2, Δ, 18ha
 520 

12 5% 523 5mM CH2Cl2, Δ, 18h 45% 522 

13 1% 68 5mM CH2Cl2, Δ, 1hb  520 

14 5% 68 4.5mM CH2Cl2, Δ, 1.5h 30% 522 
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Scheme 76. Nakata’s synthesis of tricyclic ketone 485 and subsequent entry to 9α,15-

epoxyafricanane 482 and 9α,15-dihydroxy-africanane 507. 
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Future Work  

 

In order to progress the synthesis of polymaxenolide, following the completion of 

the synthesis of tricyclic ketone 485, a disubstituted furan 526 should be 

introduced to afford cyclic tertiary furfuryl alcohol 527.  Subsequent Achmatowicz 

oxidative rearrangement should afford the tertiary hemi-acetal product 528, upon 

which elimination could provide the driving force required to achieve alkene 

isomerisation, leading to the tetrasubstituted olefin 529.  This isomerisation event 

should expose the position α-to the ketone for deprotonation and alkylation.  A 

subsequent deoxygenation followed by oxidation should afford the fully substituted 

Southern section of polymaxenolide 533 (Scheme 77).   

 

 

Scheme 77. Proposed entry to an advanced intermediate 533 in the synthesis of polymaxenolide.  
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Spirocyclic Piperidines  

 

The synthesis of the halichlorine and pinnaic acid family of alkaloids was envisioned 

as proceeding through the oxidative rearrangement of furfuryl amine 536 which, in 

turn, was thought of as originating from cyclopentanone 537 bearing a 

functionalisable side-chain at the α-position.  This substituent should then be 

capable of functionalisation so as to eventually incorporate the entire C15-C21 

subunit (Scheme 78).  

 

 

Scheme 78. Retrosynthetic analysis for the synthesis of pinnaic acid 2.  

 

The insertion of the C-14 stereocentre proved a challenge in a number of 

approaches to halichlorine and the pinnaic acids[55} and as such, it was decided to 

incorporate this troublesome stereocentre at the outset.   

 

 Synthesis of the Parent Ketone  

 

The synthesis of the key functionalised cyclopentanone 544a began with 

commercially available chiral Roche ester 538 which was protected as the 

corresponding TBDPS-ether 539.  The ester unit was then converted to aldehyde 

541 via a sequential DIBAL-H reduction and subsequent Swern oxidation.  Corey-

Fuchs homologation afforded the terminal alkyne 542 in excellent yield over the 
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four-step process.[202]  Alkyne 542 was subjected to an intermolecular Pauson-

Khand cycloaddition to generate the substituted cyclopentenone 543.[203]  

Hydrogenation of enone 543 afforded the diastereomeric cyclopentanones 544a 

and 544b in a 3:1 ratio (Scheme 79).   

 

 

Scheme 79. Synthesis of key cyclopentanone 544a.  

 

The diastereomers could be separated by chiral HPLC or, alternatively, removal of 

the TBDPS protecting group afforded the corresponding known primary alcohols 

182a and 182b which were separable by column chromatography.[74]  In 

Heathcock’s case, each diastereoisomer was characterised as a mixture of the 

mono-cyclic ketoalcohol and bicyclic hemiacetal forms.  The ratio in which the 

bicyclic acetal was present in each diastereoisomeric mixture was indicative of the 

relative stereochemistry present in the molecule.  For example, diastereoisomer 

182a was present as a 1.2:1.0 mixture in favour of the ketoalcohol, however, 

diastereoisomer 182b was present as a 10:1 mixture in favour of the ketoalcohol 

form.  This difference in ratio could be attributed to the orientation of the methyl 

group when in the bicyclic form.  The bicyclic acetal form of diastereoisomer 182a 

orientates this methyl group in an equatorial position while the equivalent methyl 

group in the bicyclic acetal form of diastereoisomer 182b is orientated in the 

unfavourable axial position.  From the hydrogenation of cyclopentenone 543 and 

subsequent deprotection, the major diastereoisomer was identified as 182a by 

comparison of the NMR spectra obtained with that published by Heathcock and 



Flexible Synthesis of Spirocyclic Pyrans and Piperidines Results and Discussion 

 

 90 

Christie.  Alcohol 182a could then be reprotected without incident to afford 

diastereomerically pure cyclopentanone 544a (Scheme 80).   

 

 

Scheme 80. Separation of the diastereoisomers 544 by deprotection and flash column 

chromatography. 

 

While reduction of the enone had afforded the desired ketone 544a as the major 

product, the possibility of an increased diastereomeric ratio was explored (Table 

4). Based on the initial reduction results, a large variety of non-chiral conditions 

were investigated in an effort to direct reduction from the desired face. It was 

hypothesised that the use of a sterically hindered catalyst could enhance the facial 

bias.      

 

  Hydrogenations 

 

Initial hydrogenation attempts using Pd/C and Pd(OH)2 afforded similar results 

(entries 1 and 2).  Use of poisoned catalysts (Lindlar’s catalyst), however, resulted 

in a reduction in facial selectivity (entry 3).  Homogeneous catalysts (Wilkinson’s 

rhodium catalyst and Crabtree’s iridium catalyst) gave no reaction (entries 4 and 

5).  The results with Crabtree’s catalyst are surprising given its common use in 

hydrogenating tri-substituted double bonds.[204]   
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  Transfer Hydrogenations 

 

An alternative method was to increase the size of the hydrogen donor.  Ammonium 

formate was used in a series of transfer hydrogenation reactions.  Carrying out the 

reduction at room temperature afforded a 2.5:1 ratio in favour of the desired 

product (entry 6), however, this ratio could be improved to 2.9:1 by lowering the 

reaction temperature.  Reducing the temperature to −78 °C, however, suppressed 

the reaction completely.  After much experimentation, it was determined that the 

optimal ratio could be obtained when the reaction was carried out between 0 °C 

and −78 °C (entries 8 and 9).  Conversely, warming the reaction to 50 °C showed a 

decline in the selectivity to 1.9:1 in favour of the desired product (entry 7).   

 

 

  Conjugate Hydride Addition 

 

Conjugate hydride additions carried out by Stryker’s reagent were also investigated 

whereby the variance was the proton source used to quench the enolate 

intermediate.  It was hypothesised that using a bulkier proton source might 

influence the facial selectivity for protonation.  With this in mind, a number of 

quenching methods were used including (i) quenching by exposing the reaction to 

air, (ii) quenching by the addition of water, (iii) quenching by the addition of 

methanol and (iv) quenching by the addition of t-butanol.   

It was believed that quenching with air would afford the lowest ratio, increasing 

through to quenching with t-butanol.  Surprisingly, the reverse selectivity was 

observed.  Quenching with air afforded a 3:1 ratio in favour of the desired product 

(entry 10).  Quenching with water resulted in a 2.7:1 ratio (entry 11).  This ratio 

decreased to 2.1:1 when quenching with methanol (entry 12) and finally, to 1:1 

when t-butanol was used (entry 13).  
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Entry Conditions Yield a : b 

1 H2, Pd/C 97% 3.0:1.0 

2 H2, Pd(OH)2 >99% 3.0:1.0 

3 H2, Pd/BaSO4 88% 2.2:1.0 

4 H2, (Ph3P)3RhCl - - 

5 H2, [(py)(PCy3Ir(cod)][PF6] - - 

6 HCO2NH4, Pd/C 89% 2.5:1.0 

7 HCO2NH4, Pd/C (50 °C) 86% 1.9:1.0 

8 HCO2NH4, Pd/C (−21 °C) 87% 2.9:1.0 

9 HCO2NH4, Pd/C (−78 → 0 °C) 88% 2.9:1.0 

10 [(Ph3P)CuH]6/Air 82% 3.0:1.0 

11 [(Ph3P)CuH]6/H2O N.D. 2.7:1.0 

12 [(Ph3P)CuH]6/MeOH N.D. 2.1:1.0 

13 [(Ph3P)CuH]6/
tBuOH 80% 1.0:1.0 

Table 4. Reduction conditions employed for the reduction of cyclopentenone 543. 

The maximal ratio obtained was 3:1 in favour of the desired product which, without 

the use of complex chiral reducing agents, was deemed acceptable. 

 

Towards the Synthesis of the Furfuryl Amine 

 

With the functionalised cyclopentanone 544a in hand, the key furfuryl addition was 

attempted.  Lithiofuran addition occurred with complete selectivity to generate a 

single addition product 545, together with ~14% unreacted starting ketone 544a in 

an inseparable mixture.  It is believed that the facial selectivity of the addition was 

dictated by the recently installed α-stereocentre.  Unfortunately, treatment of 

carbinol 545 with hydrazoic acid in the presence of sulphuric acid afforded a 1:1 

mixture of azides 546a and 546b.  Should steric bulk be the only directing factor 

involved during conversion to the azide 546, the sole product expected would be 

the undesired diastereoisomer 546a, i.e. the isomer displaying the nitrogen on the 

opposite face from that of pinnaic acid.  Taking this result into consideration, it 

was postulated that a certain degree of pseudoaxial attack was also occurring to 

generate desired azide 546b (Scheme 81).  
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Scheme 81. Competing lithiofuran addition leading to azides 546a and 546b. 

 

It was reasoned that tailoring the reaction conditions may favour formation of the 

desired diastereoisomer 546b.    

The initial, most straightforward variable to be considered was reaction 

temperature.  Parallel reactions were simultaneously carried out at room 

temperature and −78 °C as opposed to the regular 0 °C employed in an effort to 

ascertain the thermal effect on this transformation. Disappointingly, the ratio was 

not affected by the change in temperature, however, the reaction yield did exhibit 

a marked enhancement at lower temperatures.  In the interests of testing the 

applicability of the oxidative rearrangement in a complex system, the 1:1 mixture 

of azides 546 was carried forward to the reduction step with the intention of 

separating at a later stage, if possible.  Surprisingly, this crowded system resisted 

hydrogenation and returned only unreacted azide mixture 546 (Scheme 82).   

 

 

Scheme 82. Attempted conversion of tertiary alcohol 545 into tertiary amine 547. 
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This result, coupled with the disappointing 1:1 ratio of azides obtained forced the 

decision to abandon azide formation and reduction as a strategy for the synthesis of 

pinnaic acid.  Alternative tertiary amine formation strategies were sought.   

 

Towards an Oxa-Analogue of Pinnaic Acid 

  

Synthesis of a Complex Spirocyclic Pyran 

 

In the meantime, exploiting the excellent selectivity obtained in the lithiofuran 

addition step, it was decided to seize the opportunity to develop the first synthesis 

of an oxa-analogue of pinnaic acid.  It was postulated that substituting the 

spirocyclic piperidine core with an analogous spirocyclic pyran unit might clarify the 

biological role of the piperidine and, therefore, after biological testing, allow for a 

set of structure-activity relationships to be developed.  Achmatowicz 

rearrangement of carbinol 545 was smoothly executed using NBS/H2O as these 

conditions were found to affect the oxidative rearrangement in much shorter 

reaction times.[205] The previous use of mCPBA implemented a reaction which was 

complete in four hours, whereas the newly employed conditions achieved complete 

conversion to the corresponding lactol 548 in only ten minutes. 

Subsequent Sakurai-type allylation afforded the desired allyl spirocyclic 

dihydropyranone 549, as a single diastereoisomer (Scheme 83).   

 

 

Scheme 83. Synthesis of allyl spirocyclic dihydropyranone 549. 

 

NOESY analysis identified a correlation between the proton in the pseudo-C-5 

anomeric position and the methyl group at the pseudo-C-14 position (Figure 16, A, 
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green), while none was observed between the same C5 proton and the protons at 

either the pseudo-C13 or C-14 stereocentres (Figure 16, A, cyan).  Basic molecular 

modelling suggested that, while such a correlation between C-5 and the C-14 

methyl group may also arise in the undesired diastereoisomer, additional 

correlations between the C-5 proton and the C-13 and C-14 protons would also be 

expected (Figure 16, B).  As a result, it was tentatively considered that the 

incumbent allyl group adopted the desired conformation.   

 

     

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Proposed 3D representations of the possible diastereoisomers.  NOESY correlations were 

observed between between C-5 and C-14 methyl substituent (green) while none were observed with 

C-13 and C-14 proton (cyan). 
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The Directing Effect of a Single Stereocentre 

 

Allylspirocyclic pyran 549 represents the core structure of oxa-pinnaic acid in which 

four of the five stereocentres of the target appear to have been induced by the 

single stereocentre present in the Roche ester 538 starting material.  The facial 

bias shown during hydrogenation of cyclopentenone 543 arose as a direct result of 

the orientation of the methyl at C-14.  This C-13 stereocentre then directed, 

exclusively, lithiofuran addition, inserting the correct stereochemistry at C-9, which 

was retained through oxidative rearrangement.  Finally, the ring conformation, 

dictated by stereocentre C-9, then directed allylation to occur from one, desired 

face inserting the C-5 stereocentre (Scheme 84). 

 

 

Scheme 84. The directing effect of pseudo C-14.  

 

Enone Reduction, Caglioti Deoxygenation and Cross-Metathesis 

 

Another change to the methodology applied in the model system concerns the 

conjugate reduction step.  Stryker’s reagent was previously used, to good effect, 

however, employing this reagent in 40 mol% to essentially deliver one hydride to 

the system, with quenching of the resultant enolate responsible for the 

incorporation of the α-proton, given its molecular weight exceeds 1960 mass units, 

was considered to be very atom inefficient (Scheme 85).   
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Scheme 85. Atom inefficient conjugate reduction. 

 

For such reasons, the use of a palladium catalysed tributyltin hydride reduction was 

investigated.[189]  Certainly, tributyltin hydride is toxic, and tin impurities can be 

troublesome to remove from a reaction mixture, however, the previous reduction 

of the enone with Stryker’s reagent would take place overnight in deoxygenated 

benzene, which is also toxic.   

The palladium catalysed reduction was complete within one hour, and work-up 

followed by chromatography was straightforward.  The time reduction, coupled 

with the newly applied N-bromosuccinimide-mediated oxidative rearrangement 

gave rise to an overall procedure whereby the Achmatowicz oxidative 

rearrangement, Sakurai-type allylation and palladium catalysed tributyltin hydride 

reduction were performed, and purified to afford spirocyclic pyranone 550, 

comfortably in a single day.  

The previously utilised Caglioti-modified Wolff-Kishner reduction conditions were 

ineffectual on this complex, rendering it necessary to heat the reaction vessel to 50 

°C in order to achieve a reasonable rate of reaction.[117]  As a consequence, it is 

believed that the tosyl-hydrazide dissociated to form diimide, which then 

proceeded to carry out undesired hydrogenation of the terminal double bond.  This 

resulted in, after treatment of the in situ formed hydrazone with DIBAL-H, an 

inseparable mixture of desired allyl spirocyclic pyran 551, and propyl spirocyclic 

pyran 552 in a 1:1 ratio. 

The pyran mixture was subjected to cross-metathesis using Grubbs 2nd generation 

ruthenium catalyst 68 in an excess of ethyl methacrylate 305. As expected, the 
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terminal olefin reacted in the presence of the fully reduced spirocycle without 

incident to afford enoate 553 (Scheme 86). 

  

 

Scheme 86. Synthesis of the oxa-pinnaic acid core 553. 

 

Incorporating the Lower Side-Chain Unit 
 

Oxa-pinnaic acid core 553 was desilylated to afford the corresponding primary 

alcohol 554.  Careful oxidation with Dess-Martin periodinane afforded aldehyde 

555.  The oxidation of similar aza-analogues accessed as intermediates in total 

syntheses of pinnaic acid and halichlorine, were found to pose problems, 

particularly with regard to epimerisation.[37]  Fortunately, through the use of Dess-

Martin periodinane, no epimerisation was observed, affording aldehyde 555 as a 

single product.  Wittig olefination of aldehyde 555 then afforded the terminal 

olefin 556 in good yield over both steps (Scheme 87).   
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Scheme 87. Conversion of the primary alcohol to the terminal olefin 556.  

 
The necessity for a long reaction time during the olefination step came as no 

surprise considering that olefination conditions described during the synthesis of 

aza-analogues were reported to require in excess of 48 h reaction time.[52, 61, 74]   

 

 The C15-C21 Side Chain  

 

The synthesis of the side chain unit 562 was achieved following a similar route to 

that reported by Uemura.[117]  The only exception was that the alkyne addition was 

carried out on acryloyl chloride 559 instead of acrolein (Scheme 88).  This subtle 

modification afforded enone 560 directly, without the need for an additional 

oxidation step. Reagent controlled reduction followed by chlorohydride addition 

across the alkyne unit afforded the desired cross-metathesis coupling partner 562. 

While Uemura and Arimoto performed their cross-metathesis on the TBDMS-

protected substrate, it was decided to attempt the cross-metathesis on the free 

secondary alcohol 562.  Recent reports by Hoveyda have indicated that the 

presence of an unprotected allylic alcohol was beneficial for maximising reaction 

rate and E-selectivity.[206]   
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Scheme 88. Synthesis of the C15-C21 side-chain unit 562.  

 

 Cross-Metathesis Between the Upper and Lower Fragments  

 

Having completed the synthesis of the chloroalkene unit 562 the key cross-

metathesis reaction with alkene 556 was attempted using the Zhan 1B catalyst 

523.[199]  Unfortunately, an unexpected, concomitant elimination was found to 

occur affording, in place of the desired oxa-pinnaic acid framework 563, the 

corresponding triene 564 (Scheme 89).  

 

 

Scheme 89. Cross-metathesis afforded the unexpected triene 564. 
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Towards Pinnaic Acid 

 

Incorporating the Nitrogen 

 

During the synthesis of the spirocyclic pyran and spirocyclic piperidine model 

systems, it was observed that oxidative rearrangement and subsequent 

functionalisation used to generate the spirocyclic pyran core 470 was transferable 

to the synthesis of a direct aza-equivalent 481. This led to the hypothesis that, 

should the synthesis of an equivalent cyclic tertiary amine 566 be achieved, the 

route to the pinnaic acid series could progress by directly transferring the chemistry 

which successfully led to the synthesis of the oxa-pinnaic acid cross-metathesis 

precursor 556.   

Given that lithiofuran addition to cyclopentanone 544a afforded the desired 

tertiary alcohol 545 as a single product, it was, therefore, postulated that a 

similar, facially selective result might arise from the reaction between lithiofuran 

and an analogous ketimine 565 (Scheme 90).  

 

 

Scheme 90. Postulated lithiofuran addition to an analogous ketimine 565. 

 

Examples of aldimine formation are plentiful in the literature; less so in the case of 

ketimine formation.[207]  Naturally, aldehydes are more reactive than ketones, and 

as such, imines of this type can be easily generated.  Examples of ketimine 

formation tend to involve substrates in which there no acidic protons in the α-

position (Scheme 91, A, B and C).[208]  Nevertheless, it was decided to investigate 

simple imine formation using benzyl amine as the nitrogen source in the first 

instance. 

 



Flexible Synthesis of Spirocyclic Pyrans and Piperidines Results and Discussion 

 

 102 

 

Scheme 91. Examples of ketimine formation are usually limited to those without α-protons.  

 

Benzyl Imine Formation 

 

The coupling between substituted cyclopentanone 544a and benzyl amine, under 

Dean-Stark conditions afforded the desired imine 567, together with the two 

enamine isomers 568 and 569 in a 1:1:1 ratio (Scheme 92).   

 

 

Scheme 92. Attempted benzyl-imine formation. 

 

This result suggested that the use of electron rich nitrogen sources would likely 

result in enamine formation and as such would lead to the destruction of the 

recently installed α-stereocentre.  For such reasons, it was decided to investigate 

the formation of an imine in which the electrons are tied up in a conjugated 

system.  It was proposed that, should such an intermediate be accessible, the 

double-bond would be less likely to isomerise, and therefore, less likely to destroy 

the stereocentre.  This brings with it separate issues however, as reducing the 

reactivity of the amine component would make imine formation even more 

difficult.   
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Forming a Tosylimine  

 

As part of the investigations into the formation of a suitable imine, the possible 

formation of a tosyl-imine was explored.  It was desirable to afford an eventual 

tosyl-protected cyclic tertiary furfuryl amine 578 as this group was known to 

withstand the proposed synthetic sequence.   

The generation of a tosyl ketimine in the traditional fashion using tosyl-amide has 

been documented as unfeasible.[209] The reason cited is that the nitrogen source 

exhibits too poor nucleophilicity to undergo addition to the carbonyl unit and to 

subsequently eliminate water.  There are, however, alternative methods to access 

the same tosyl-imine intermediate.  Treatment of an oxime 570 with toluene 

sulfinyl chloride 571 was reported to generate the tolyl-sulfinyloxime intermediate 

572, which spontaneously rearranged to the corresponding tosyl-imine 573.[210]  

Such sulfinyl chlorides are notoriously unstable, as are the tosyl-imine 

intermediates themselves, therefore, the resultant tosyl-imine 573 was directly 

oxidised to the corresponding oxaziridine 574 (Scheme 93).   

 

 

Scheme 93. Reported rearrangement of sulfinyloxime 572 to sulfinylimine 573. 

 

Ketone 544a was converted to the corresponding oxime 575 in good yield.  The 

oxime 575 was treated with toluene sulfinyl chloride 571, at 0 °C, followed by 

stirring at ambient temperature in an effort to effect the reported rearrangement 

(Scheme 94).  Lithiofuran was then added to the putatively formed imine 577.  

Unfortunately, formation of the desired product 578 was never observed.  In an 

effort minimise any issues related to the inherent instability of the reagents and 

intermediates, the sulfinyl chloride 571 was generated in situ, and oxime 575 was 

added.  The solution was allowed to warm up to room temperature and treated 



Flexible Synthesis of Spirocyclic Pyrans and Piperidines Results and Discussion 

 

 104 

with lithiofuran.  At no point were any of the unstable intermediates ever isolated, 

and every effort was taken to, as far as it possible without the use of a glove-box, 

maintain a completely dry atmosphere.  Despite such precautions, no imine 577 

was ever detected using this approach and as such no tertiary furfuryl amine 578 

was formed, instead a complex mixture of indiscernible degradation products was 

observed. 

 

 

Scheme 94. Attempted synthesis of tosyl-protected cyclic tertiary furfuryl amine 578.  

 

Alternatively, alkyllithium addition to oximes has been reported, although the 

reaction appears to be somewhat substrate dependent.[211] While the reported n-

butyllithium addition to benzophenone-derived oxime 579 afforded the desired 

product 580 in 63% yield (Scheme 95), the corresponding methyllithium addition 

afforded no reaction.  Similarly, the chemical nature of the oxime exhibits an 

effect on the success of the addition.  For example, in contrast to the earlier 

result, an acetone-derived ketoxime underwent n-butyllithium addition in 17% 

yield, while aldoxime derivatives such as p-anisaldehyde oxime and cinnamaldehyde 

oxime afforded the expected products in 40% and 55% yield respectively. 

 

 

Scheme 95. Alkyllithium addition to oximes has been reported. 
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Unfortunately, the attempted addition of 5 eq. lithiofuran to oxime 575 was 

entirely unsuccessful, returning only unreacted oxime starting material (Scheme 

96). 

 

 

Scheme 96. Attempted lithiofuran addition to oxime 575.  

 

Alternative Entry to a Tosyl-Imine  

 

It has been reported that carbon nucleophiles successfully add to sulfinyl imines, to 

give tertiary amines after acidic work-up.[212]  Of specific relevance was the success 

reported upon formation of the cyclic sulfinylamine 584.  Grignard addition to the 

imine carbon followed by subsequent sulfinyl cleavage afforded a variety of 

substituted benzyl aminopiperidines 585 (Scheme 97).   

 

 

Scheme 97. Collins synthesis of substituted benzyl aminopiperidines 585. 

 

The oxidation of sulfinamides to sulfonamides in the presence of mCPBA has also 

been reported.[213] Hence, two distinct routes could potentially lead to the same 

desired tosyl-protected cyclic tertiary furfuryl amine 578 based on this 

methodology; one route would concern oxidation of the sulfinyl imine 587 to the 

corresponding sulfonyl imine 577 prior to lithiofuran addition (Scheme 98).  

Alternatively, addition could be carried out prior to oxidation.  Given the instability 

observed during the previous investigations, it was deemed that the route with the 

best potential for success relied on addition to the sulfinylimine 587.  In the 
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interests of eventually accessing the desired tosyl-protected cyclic tertiary amine, 

the Ellman t-butane sulfinamide was replaced with toluene sulfinamide 586.[213]   

 

 

Scheme 98. The potential routes to tosyl-protected cyclic tertiary furfuryl amine 578.  

 

Unfortunately, the initial reaction proved unsuccessful.  It was postulated that the 

toluene sulfinylimine 587 generation was likely to be responsible for the observed 

failure.  Indeed, toluene sulfinylamide 586, while commercially available, is 

reasonably expensive and is known to be, in itself, unstable.  For such reasons, the 

sulfinylamide 586 was formed in situ and therefore its quality could not be 

determined prior to the reaction attempt.  

 

Ellman Chiral Sulfinylimine Formation 

 

It was then decided to investigate alternative sulfinylimine forming conditions.  Of 

particular interest was the Ellman procedure in which he described the use of t-

butane sulfinamines 582 as nitrogen sources for the formation of imines 589 

(Scheme 99).[214]  Chiral sulfinyl amines 582 were also reported as a way to direct 

the incumbent nucleophile with good stereocontrol. 
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Scheme 99. Ellman sulfinylimine 589 generation and subsequent addition. 

 

Sulfinyl imine 589 formation was reported to proceed without incident, with a wide 

variety of substrates.  Furthermore, a number of nucleophiles have also been 

successfully added to these sulfinylimines.  The examples in which furanyllithium 

species were successfully added to a series of sulfinyl ketimines 589 were 

specifically relevant.  In each case the addition proceeded to give tertiary furfuryl 

sulfinylamines 591 in good to excellent yield, and with very good 

diastereoselectivity (Table 5).[214]   

 

 

Table 5. Examples of Ellman’s tertiary furfuryl sulfinylamine 591 formation. 

 

In addition, Ellman has reported that the use of AlMe3 can also enhance the 

selectivity of addition.[214]  Mechanistically, it is proposed that coordination 

between the imine nitrogen and aluminium occurs, while a second interaction 

between lithium and the sulfinyl oxygen also takes place, to generate a chair-like 
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transition state A (Scheme 100). The nucleophile, therefore, is encouraged to 

approach from the same face as the sulfinyl oxygen, resulting in an enhanced 

selectivity.  Experimentally, Ellman reported that it is necessary to expose the 

imine 589 to AlMe3 prior to inclusion of the lithiofuran.  In fact, mixing the 

lithiofuran with the Lewis acid prior to introduction of the imine species did not 

afford the same results.  This observation further supports the hypothesis that the 

reaction proceeds via a chair-like transition state where the nitrogen is coordinated 

with the aluminium.   

 

 

Scheme 100. Ellman’s proposed transition state A. 

 

Ketone 544a was treated with commercially available t-butanesulfinyl amine 582 in 

the presence of Ti(OEt)4.  Imine 592 formation occurred smoothly, and subsequent 

lithiofuran addition was attempted after prior exposure of the imine 592 to AlMe3 

in the first instance (Scheme 101).  

 

 

Scheme 101. Attempted lithiofuran addition to sulfinylimine 592. 

 

The reaction was sluggish, affording, largely, unreacted starting material, with a 

trace of a species displaying characteristic furyl signals based on 1H NMR analysis.  
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Further investigation of these products led to the realisation that the lithiofuran 

was not adding to the desired imine carbon.  Instead, the only product 595, 

isolated in trace amounts, possessing furyl signals was the product of lithiofuran 

abstraction of the sulfinyl moiety (Scheme 102).  

 

 

Scheme 102. Formation of undesired by-product 595. 

 

In depth mechanistic studies were not performed due to time constraints, and this 

route was, for the time being, abandoned in favour of other alternatives.   

 

The Aza-Wittig Strategy 

 

The aza-Wittig reaction has found utility in natural product synthesis, being 

exploited during Wang’s synthesis of hamacanthin B, for example (Scheme 

103).[215]  In this case, an intramolecular aza-Wittig reaction was induced to 

assemble the central dihydropyrazinone ring.  The key aza-Wittig olefination was 

achieved via the formation of the iminophosphorane intermediate 597, accessed by 

exposing azide 596 to tributylphosphine. Subsequent intramolecular condensation 

completed the aza-Wittig coupling.  
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Scheme 103. The aza-Wittig reaction in Wang’s synthesis of hamacanthin B. 

 

A number of iminophosphoranes 601 were synthesised according to literature 

procedures (Scheme 104).[216] These included acetamide derived iminotriphenyl- 

and tributylphosphoranes 601a and 601b, and t-butyl-carbamate derived 

iminotriphenyl- and tributylphosphoranes 601c and 601d. These iminophosphoranes 

601 were generated in a straightforward manner by treatment of the corresponding 

alkyl chlorides 599 with sodium azide to generate the corresponding acyl or 

carbamoyl azides 600.  Subsequent exposure to triphenylphosphine afforded the 

desired iminophosphoranes. 

 

 

Scheme 104. General synthesis of iminophosphoranes 601. 

 

The rationale behind the choice of iminophosphoranes concerned the documented 

differences in reactivity and also the utility of their potential products.[217]  For 

example, the carbamate derivatives 601b should be more nucleophilic than the 

corresponding amide 601a, however, the incorporation of an amide is preferable 

given its increased stability to some of the stronger, Lewis acidic conditions which 

the proposed product would subsequently be exposed to.  Tributylphosphine-

derived iminophosphoranes 601c and 601d are reportedly more reactive than their 
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triphenylphosphine counterparts 601a and 601b, and this modification was 

postulated as a possible way to circumvent the reduced reactivity of acetamide by 

combining it with a more reactive phosphine component. 

Unfortunately, in the case of cyclopentanone, no combination of amide and 

phosphine resulted in any product formation.  Prolonged reaction times and 

elevated temperatures either with conventional or microwave heating also resulted 

in no reaction (Table 6).  

 

Ylid THF PhH Yield 

 
601aa 

65 °C, 12 h 90 °C, 12 h - 

MW, 150 °C, 12 h MW, 150 °C, 12 h - 

 
601b 

65 °C, 12 h 90 °C, 12 h - 

MW, 150 °C, 12 h MW, 150 °C, 12 h - 

 
601c 

65 °C, 12 h 90 °C, 12 h - 

MW, 150 °C, 12 h MW, 150 °C, 12 h - 

 
601db 

65 °C, 12 h 90 °C, 12 h - 

MW, 150 °C, 12 h MW, 150 °C, 12 h - 

a no reaction observed in THF after 10 days at 65 °C; b no reaction observed in m-xylenes at 125 °C  

after 12 h or after 12 h at 250 °C with MW irradiation. 

Table 6. Aza-Wittig reaction conditions employed. 

While the aza-Wittig reaction initially appeared to be a promising method for 

nitrogen incorporation, examples of intermolecular aza-Wittig reactions with cyclic 

ketones are limited.   

It is believed that the lack of reactivity is likely due to a large steric barrier which 

must be overcome.  The formation of the desired oxaphosphetidine transition state 

A (Figure 17) potentially demands too high an energy input in order to proceed.  

The failure to generate any product on the simple cyclic ketone, led to the 

postulate that attaining the transition state in the more sterically encumbered 

cyclopentanone was unlikely.   
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Figure 17. Proposed sterically hindered oxaphosphetidine transition state A.  

 

Forming an Acetamide Imine 

 

In tandem, the formation of an acetamide derived imine 602 was investigated. It 

was envisioned that the imine 602 could be formed by treatment of cyclopentanone 

443 with acetamide in refluxing benzene, in the presence of a catalytic amount of 

PPTS, under Dean-Stark conditions (Scheme 105).[74]  Addition of furan 415 

followed by boron trifluoride-diethyl etherate was expected to yield the tertiary 

furfuryl amine 603 via imine activation.[218]  It was postulated that the natural 

reactivity of furan 415 might facilitate its addition to the imine carbon, without 

necessity for lithiation.  Unfortunately, only traces of the desired cyclic tertiary 

furfuryl acetamide 603 were detected by analysis of the crude 1H NMR.  

Interestingly, there was no evidence of cyclic tertiary furfuryl alcohol 444 

formation. This suggested that allowing the natural reactivity of the furyl ring to 

gently carry out the reaction, rather than forcing the addition with a stronger 

nucleophile, led to the selective furan addition to the in situ formed imine 602 in 

the presence of the corresponding ketone 443.   

 

 

Scheme 105. Attempted formation of cyclic tertiary furfuryl acetamide 603. 

 

In an effort to confirm this hypothesis, cyclopentanone 443, furan 415 and 

acetamide were stirred together in the presence of molecular sieves to aid in the 

removal of water.  A catalytic amount of boron trifluoride-diethyl etherate was 
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added at room temperature, and the reaction was allowed to stir overnight 

(Scheme 106). 

The desired product 603 was obtained in low yield after purification but, most 

importantly, there was no trace of the cyclic tertiary furfuryl alcohol 444.  This 

result supported the hypothesis that it was possible to preferentially form the cyclic 

tertiary furfuryl acetamide 603 over the corresponding cyclic tertiary furfuryl 

alcohol 444.   

 

 

Scheme 106. One-pot synthesis of cyclic tertiary furfuryl acetamide 603.  

   

The reasons given for the inability to form tosyl-ketimines are based on the poor 

nucleophilicity of tosyl-amide.[213] As a result, it seems contradictory that 

acetamide should be capable of forming the corresponding imine as acetamide is a 

source of less nucleophilic nitrogen than tosyl-amide.  It was, therefore, 

hypothesised that a different mechanism must have taken place in order to afford 

the small quantities of cyclic tertiary furfuryl acetamide 603 observed: one which 

does not involve the formation of an imine species 602. It is postulated that 

reversible formation of the hemi-aminal intermediate 604 takes place, which could 

rapidly hydrolyse back to the starting ketone 443.  Slow furan 415 addition would 

provide an alternative reaction pathway for hemi-aminal 604 to irreversibly 

generate the observed furfuryl acetamide product 603 (Scheme 107).  This 

equilibrium would be consistent to that described by Hiemstra in his comprehensive 

overview of N-acyl iminium chemistry.[219]  
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Scheme 107. Proposed hemi-aminal intermediate in the synthesis of cyclic tertiary furfuryl 

acetamide 603. 

 

In practice, confirmation of this hypothesis is provided by Heathcock’s synthesis of 

pinnaic acid (Scheme 19).[74]  The bicyclic hemi-aminal intermediate 183 can be 

considered as an alkylated representation of the hemi-aminal intermediate 604, its 

stability enhanced by the alkoxide component which renders issues of hydrolysis 

back to a starting ketone inconsequential. 

It was proposed, then, that allowing longer reaction times might afford improved 

yields of the desired tertiary acetamide 603.  Before optimisation was carried out, 

however, the methodology was applied to the substituted ketone 544a in order to 

assess the suitability of this transformation for the generation of the elaborated 

cyclic tertiary furfuryl acetamide 605 (Scheme 108).  Unfortunately, in the case of 

this more hindered system, no trace of product was observed during 48 h of 

reaction time.   

 

 

Scheme 108. Attempted synthesis of the more elaborate cyclic tertiary furfuryl acetamide 605. 

 

Attempts for One-pot Tosyl Amide Synthesis 

 

Given the potential for the addition of furan to hemi-aminal units to generate 

tertiary furfuryl amines, the synthesis of tosyl-substituted hemi-aminals was 

investigated.  It was proposed that, as tosyl-amide is more nucleophilic than 

acetamide, a tosyl-hemi-aminal might be more readily formed than the acetamide 
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counterpart.  Displacement of the hydroxyl component with furan could then lead 

to the formation of the desired cyclic tertiary tosyl-protected furfuryl amide 

product 476.  A variety of acid catalysts (BF3.OEt2, pTsOH, PPTS, Ti(OiPr)3, 

Yb(OTf)3, Eu(FOD)3, HCl) were screened, along with variations in solvent (CH2Cl2, 

Et2O, THF, PhMe) and drying agent (MgSO4, 4Å-MS). Unfortunately, no combination 

resulted in product formation after 24h at room temperature (Scheme 109).  

Eventually, formation of the more stable substituted ethyl hemi-aminal was also 

attempted by carrying out the reaction in EtOH, however, this, too, afforded no 

reaction.   

 

 

Scheme 109. Attempted one-pot synthesis of tosyl-protected furfuryl amine 476 via hemi-aminal 

intermediate 606. 

 

An Alternative Approach to the Cyclic Tertiary Furfuryl Amine 

 

Addition to a Hemi-aminal  

 

An alternative strategy for nitrogen incorporation was investigated whereby a 

bicyclic hemi-aminal underwent Lewis acid-catalysed nucleophilic addition.  This 

approach was heavily inspired by Heathcock’s synthesis of pinnaic acid.[74]  In his 

approach, Heathcock’s bicycle hemi-aminal 183 was formed by treating alcohol 

182 with benzylcarbamate in the presence of pyridinium p-toluenesulfonate 

(Scheme 110).  The resultant bicyclic hemi-aminal 183 was then coupled with 

allyltrimethylsilane in the presence of titanium tetrachloride.  Heathcock reports 

that addition of more elaborate nucleophiles was attempted to no avail, however, 

the identity of the nucleophiles was not reported. 

One of the most noteworthy observations was the fact that while the starting 

material was present as a 2:1 ratio of diastereoisomers 182, a 6:1 ratio of 
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diastereoisomers in favour of the desired product 183 was obtained from the 

reaction.  This demonstrated the tendency for the C13-stereocentre to epimerise 

towards the desired product. In fact, when a diastereoisomerically pure sample of 

182 was used in the reaction the same diastereoisomeric ratio was afforded upon 

bicyclic hemi-aminal formation, illustrating that separation of alcohols 182 was not 

necessary.   

 

 

Scheme 110. Heathcock’s bicyclic hemi-aminal 183 from diastereoisomeric alcohols 182. 

 

These observations led to the consideration of an alternative approach to a cyclic 

tertiary furfuryl amine intermediate.   

During the synthesis of the key substituted cyclopentanone 544a, the separation of 

a 3:1 diastereoisomeric mixture of alcohols 182a and 182b was described, followed 

by reprotection of the desired isomer 182a to afford silylated alcohol 544a 

(Scheme 111).   

The observations made by Heathcock highlighted the potential for using the 

undesired isomer 182b to investigate bicyclic hemi-aminal formation. 

 

 

Scheme 111. The potential for undesired diastereoisomer 182b to be used for the synthesis of 

bicyclic hemi-aminal 183. 
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The bicyclic hemi-aminal 183 was synthesised according to Heathcock’s procedure 

and the incorporation of a furan nucleophile in the presence of boron trifluoride-

diethyl etherate, was attempted (Scheme 112).  Unfortunately, all attempts 

resulted in a complex mixture of products, none of which were identifiable as the 

desired tertiary furfuryl amine, likely due to the lability of the Cbz group.  

Heathcock also reported a significant portion N-deprotected product, which was 

subsequently reprotected.  It was conceivable that the use of the more rigorous 

conditions (i.e. BF3) resulted in a considerable degree of Cbz removal prior to furan 

addition.  

 

 

Scheme 112. Attempted furyl addition to Heathcock hemi-aminal 183. 

  

In an attempt to minimise the potential deprotection taking place, the use of a 

more stable protecting group was considered.  It was, therefore, anticipated that 

using the more nucleophilic tosyl-amide would not have a detrimental effect on the 

formation of the bicyclic hemi-aminal, but would result in a more stable substrate 

upon which the furan addition could be attempted.  Indeed, formation of the 

corresponding bicyclic hemi-aminal 608 was successful, however, all attempts to 

incorporate the furan were unsuccessful (Scheme 113).   

 

 

Scheme 113. Attempted furyl addition to tosyl-protected hemi-aminal 608. 

 

The only identifiable by-product obtained was tosyl-amide; a result which suggested 

that the recently introduced protected nitrogen was eliminating preferentially to 

the ether component.  In addition, no furyl signals were detected by 1H NMR 
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spectroscopy, indicating that the elimination of tosyl-amide was occurring 

independently of the addition of the furyl nucleophile. 

 

Summary of Efforts Towards a Cyclic Tertiary Amine 

 

The failure of the aza-Wittig strategy was most likely due to steric hindrance.  As a 

result, a substituted amide together with a bulky phosphine group proved too 

hindered to allow formation of a four-membered oxaphosphetidine A with a cyclic 

ketone 443 (Scheme 114, A).   

Formation of a cyclic tertiary furfuryl acetamide 603 was achieved, albeit in low 

yield, on a simple cyclopentanone 443 model system, however, application of these 

same conditions to the more elaborate substituted cyclopentanone 544a failed to 

afford even trace amounts of the desired cyclic tertiary furfuryl amide 605 

(Scheme 114, B).   

All attempts to open the bicyclic hemi-aminals 183 with furan also proved fruitless.   

Changing the protecting group to afford hemi-aminal 608 also proved futile as no 

addition product 607 or 609 was afforded (Scheme 114, C).    

Coupling these observations with the failure to add lithiofuran to either the oxime 

575, or the Ellman sulfinylimine 592 (Scheme 114, D and E), while relatively 

similar systems have been shown to undergo this type of reaction successfully, 

tentatively led to the conclusion that in the case of substituted cyclopentanone 

544a, the environment was simply too sterically hindered to allow the 

incorporation of a furan ring together with any kind of substituted amine. 

This argument is perhaps further supported by the presence of ~14% residual 

starting material when lithiofuran was added to the equivalent ketone 544a.  

Substituting the carbonyl oxygen with any kind of substituted nitrogen created a 

more sterically hindered environment, and as such turned an incomplete reaction 

into no reaction at all.   
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Scheme 114.Summary of efforts towards a cyclic tertiary furfuryl amine.  

 

Faced with such compelling evidence, the addition of furan to an imine species, 

with the intention of further functionalisation towards pinnaic acid, halichlorine 

and tauropinnaic acid was abandoned in favour of an alternative strategy.    

 

Alternative Strategies Investigated  

 

Heathcock reported that an allyl group could be successfully introduced to the Cbz-

protected hemi-aminal 183.[74]  It was postulated that if an allyl chain could be 

introduced to the corresponding tosylated hemi-aminal 608 in the same fashion, 
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subsequent allylation of the nitrogen would afford bis-olefinated intermediate 611.  

Ring-closing metathesis could then lead to the desired spirocyclic piperidine 612 

(Scheme 115).  Further elaboration may be achieved by means of oxidation to the 

corresponding imine followed by a Sakurai-type allylation.   

 

 

Scheme 115. Postulated ring-closing metathesis approach from bicyclic hemi-aminal 608.  

 

Unfortunately, as was the case when furan was used as the nucleophile, treatment 

of tosyl-hemi-aminal 608 with allyltrimethylsilane under Lewis acid mediated 

conditions resulted in none of the desired product 610.  1H NMR analysis simply 

indicated the presence of tosyl-amide suggesting that elimination had taken place.  

 

Potential for a Protecting-Group Free Synthesis 

 

In tandem with the described efforts towards pinnaic acid, the potential for a 

protecting group free approach was being pursued.  For each of the described 

pathways towards pinnaic acid, there are two sites of protection: the nitrogen and 

the primary alcohol.  It was proposed that the necessity for protecting groups would 

be removed if these two units were tethered by means of a cyclic amide (Figure 

18).   

 

 

Figure 18.The potential for a protecting-group free synthesis.  
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Furthermore, the previously developed strategy hinging on the aza-Achmatowicz 

rearrangement could still be applied provided a furyl substituent could be 

introduced (Scheme 116, A).[171]  Alternatively, it could also be possible to 

assemble the third ring by way of inducing an intramolecular cyclisation to occur 

from a suitable substituent present on the nitrogen (Scheme 116, B).  

 

 

Scheme 116. Two potential routes for protecting-group free synthesis.  

 

During his first generation synthesis of methyl homodaphniphyllate, Heathcock 

formed a very similar three-ring spirocyclic piperidine 614 to that which would be 

desired for the synthesis of pinnaic acid.[220]  Heathcock achieved the elegant 

cyclisation of amide 613 through formation of the N-acyliminium species A 

(Scheme 117).  Closure of the spirocycle, possible only by participation of the 

acetal unit, afforded, in a single pot, the desired tricyclic spirocycle 614 in very 

good yield.  This rearrangement would not have taken place in the absence of the 

acetal unit and as such, this structure does not constitute a spectator protecting 

group, rather it is an essential functionality for the formation of the desired 

product.    

 

 

Scheme 117.Heathcock’s synthesis of tricyclic core 614.  
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Tricyclic Spirocycle Formation  

 

In order to test the feasibility of this chemistry for the synthesis of pinnaic acid, the 

same species 614 was synthesised and carried forth via acetal hydrolysis which 

exposed ketone 387 (Scheme 118).  Padwa reported that Saegusa-type oxidation 

followed by allylation afforded tricyclic piperidine 390 as a 15:1 mixture of 

diastereoisomers, however, in this instance a single product was obtained.[144]   

Arimoto recently described a convenient method for deoxygenation using zinc dust 

and chloro(trimethyl)silane.[221]  Pleasantly, application of Arimoto’s conditions on 

the tricyclic piperidine substrate 390 resulted in complete deoxygenation without 

detrimental effect to either the amide functionality, or the terminal olefin to 

afford the fully saturated tricyclic piperidine unit 616. 

 

 

Scheme 118. Synthesis of novel tricyclic core 616.  

 

At this point, a subsequent methylation should occur with facial selectivity to 

afford the Feldman intermediate 211 (Scheme 119).[81]  Cross-metathesis with 

ethyl methacrylate would then afford an advanced intermediate towards pinnaic 

acid without the use of spectator protecting groups.  Unfortunately, these latter 

steps were not performed due to time constraints.  
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Scheme 119. Proposed elaboration to fully functionalised pinnaic acid core 617.  
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Future Work  

 

Enantioselective Protecting Group Free Total Synthesis of Pinnaic 

Acid 

 

Future work on the development of an enantioselective synthesis of pinnaic acid 

which benefits from the use of no spectator protecting groups should focus on the 

formation of an enantiopure substituted cyclopentanone which possesses the key 

amide functionality.  This could potentially be achieved by the use of an 

enantioselective intramolecular Stetter reaction, catalysed by either Rovis’ catalyst 

619,[222] or Enders’ catalyst 620 (Scheme 120).[223]  This type of reaction has been 

shown to effectively generate enantioenriched cyclopentanones by using an easy to 

access chiral catalyst.  The previous chemistry should then be applicable, with the 

exception of the now redundant methylation step.   

 

 

Scheme 120. Proposed enantioselective synthesis of intermediate 617.  

 

Practically, completion of the synthesis could be realised by the partial reduction of 

lactam 617 to the hemi-aminal 624 which could, in the open chain form, undergo a 

Wittig reaction to form the corresponding terminal olefin 625. Olefin 625 could 

then undergo a subsequent cross-metathesis with lower side-chain unit 626.  

Alternatively, the entire lower side chain could be incorporated via Wittig reaction 

with phosphorane 627. Luche reduction would lead to the same allylic alcohol 
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intermediate 94 (Scheme 121).  Final ester hydrolysis would then complete the 

synthesis of pinnaic acid 2.  

 

 

Scheme 121. Completing the synthesis of pinnaic acid.  
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Summary 

 

To conclude, a divergent approach to the synthesis of spirocyclic pyran 470 and 

spirocyclic piperidine 481 cores has been developed through the Achmatowicz and 

aza-Achmatowicz oxidative rearrangements, respectively.  Each core was accessed  

via common cyclic tertiary furfuryl alcohol 444 (Scheme 122).[171]  

 

 

Scheme 122. Synthesis of pyran core 470 and piperidine core 481 from common synthetic 

intermediate 444.  

 

The partial synthesis of a more elaborate parent structure has been undertaken for 

the application of the developed methodology to the synthesis of polymaxenolide 

408.  Early results have afforded bis-olefinic species 520 (Scheme 123). 

 

 

Scheme 123. Early work towards applying the developed methodology for the synthesis of 

polymaxenolide.  

 

The developed methodology was successfully applied to the synthesis of a triene 

derivative of an oxa-pinnaic acid analogue 564, representing the entire carbon 

framework of a pyran analogue of pinnaic acid 2 (Scheme 124).  While the final 

cross-metathesis resulted in elimination, this approach utilised the solitary 

stereocentre present in the Roche ester starting material 538 to direct the 

orientation of each additional stereocentre present in advanced intermediate 553.  
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Scheme 124. The synthesis of the oxa-pinnaic acid triene 564.   

 

A novel route to an advanced intermediate 616 related to pinnaic acid has been 

completed without the use of spectator protecting groups (Scheme 125).  This 

route was heavily inspired by the cyclisation reported by Heathcock.[220]  

 

 

Scheme 125. Synthesis of advanced pinnaic acid precursor 616 without the use of spectator 

protecting groups.  
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3. Experimental 
 

All reactions were performed in oven-dried glassware under an inert argon 

atmosphere unless otherwise stated. Tetrahydrofuran (THF), diethyl ether and 

dichloromethane were purified through a Pure Solv 400-5MD solvent purification 

system (Innovative Technology, Inc).  All reagents were used as received, unless 

otherwise stated. Solvents were evaporated under reduced pressure at 40 °C using 

a Büchi Rotavapor. IR spectra were recorded neat using a JASCO FT/IR410 Fourier 

Transform spectrometer.  Only significant absorptions (νmax) are reported in 

wavenumbers (cm-1).  Proton magnetic resonance spectra (1H NMR) and carbon 

magnetic resonance spectra (13C NMR) were recorded using a Bruker DPX Avance400 

instrument.  Chemical shifts (δ) are reported in parts per million (ppm) and are 

referenced to the residual solvent peak.  The order of citation in parentheses is (1) 

number of equivalent nuclei (by integration), (2) multiplicity (s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, b = broad, dm = doublet of 

multiplet, dd = doublet of doublet, dt = doublet of triplet) and (3) coupling 

constant (J) quoted in Hertz to the nearest 0.1Hz. High resolution mass spectra 

were recorded on a JEOL JMS-700 spectrometer by electrospray (ESI), fast atom 

bombardment (FAB), electron impact (EI) and chemical ionisation (CI) mass 

spectrometer operating at a resolution of 15000 full widths at half height.  Where a 

100% peak was not observed in low resolution mass spectra the highest peak was 

taken to be 100%. Flash chromatography was performed using silica gel (Apollo 

Scientific Silica Gel 60, 40-63 mm) as the stationary phase. 

TLC was performed on aluminium sheets pre-coated with silica (Merck Silica Gel 

60 F254). The plates were visualised by the quenching of UV fluorescence (λmax 

254 nm) and/or by staining with either anisaldehyde or potassium permanganate 

followed by heating. 
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1-(Furan-2-yl)cyclobutanol 447 

 

 

 

Furan 415 (465 mg, 6.83 mmol) was added to a stirred solution of n-butyllithium 

(2.7 mL, 2.5 M in hexanes) and N,N,N’,N’-tetramethylethylenediamine (794 mg, 

6.83 mmol) in tetrahydrofuran (10 mL) at −78 °C under argon.  The resultant 

solution was stirred at −78 °C under argon for 1 hour.   Cyclobutanone (96 mg, 1.37 

mmol) was added and the solution was stirred at −78 °C under argon for a further 1 

hour.   

The reaction was quenched with ice-cold saturated aqueous ammonium chloride (15 

mL) and extracted with diethyl ether (3 × 15 mL).  The combined organic phases 

were dried over sodium sulfate, filtered and concentrated.  Flash column 

chromatography (silica gel, elution gradient petroleum ether-diethyl ether 9:1 → 

petroleum ether-diethyl ether 5:1) of the crude residue afforded 1-(furan-2-

yl)cyclobutanol 447 (188 mg, 1.36 mmol, >99%) as a colourless oil. 

1H NMR (400 MHz; CDCl3) δH: 7.38 (1H, dd, J = 1.7, 0.5 Hz), 6.33 (1H, dd, J = 3.2, 

1.7 Hz), 6.28 (1H, dd, J = 3.2, 0.5 Hz), 2.55 (1H, brs), 2.53-2.46 (2H, m), 1.90-1.81 

(2H, m), 1.70-1.58 (2H, m); 13C NMR (100 MHz; CDCl3) δC: 158.1, 142.1, 110.0, 

104.9, 72.2, 35.6, 12.1; IR (neat) νmax = 3352 (OH), 2989 (C—H), 2947 (C—H), 1504 

(Furan C=C), 1080 (C—O), 1006 (Furan) cm-1; HRMS (CI) observed [M-OH]+ 121.0650, 

calculated for C8H9O 121.0653. 

 

 

 

 

 

 

 

 

 

 

 

 



Flexible Synthesis of Spirocyclic Pyrans and Piperidines References 

 

 130 

1-(Furan-2-yl)cyclopentanol 444[169] 

 

 

 

Cyclopentanone 443 (1.90 g, 22.61 mmol) was added to a stirred suspension of 

magnesium sulphate (13.61 g, 113.05 mmol) in tetrahydrofuran (140 mL) under 

argon.  The resulting mixture was then allowed to stir at room temperature for 2 

hours before being cooled to −78 °C.   

In a separate flask, furan 415 (7.70 g, 113.05 mmol) was added to a −78 °C solution 

of n-butyllithium (2.5M in hexanes, 45 mL, 113.05 mmol) and N,N,N’,N’-

tetramethylethylenediamine (13.14 g, 113.05 mmol) in tetrahydrofuran (100 mL) 

under argon.  The resulting solution was stirred at −78 °C for 1h, and was then 

transferred dropwise via cannula into the flask containing the cyclopentanone - 

magnesium sulphate mixture in tetrahydrofuran at −78 °C.   

The reaction was then allowed to warm to room temperature overnight before 

being quenched by the addition of ice water (100 mL) and extracted with diethyl 

ether (3 x 75 mL).  The combined organic layers were washed with saturated 

aqueous sodium hydrogen carbonate (100 mL), dried over sodium sulfate and 

concentrated under vacuum.  Purification of the crude residue by flash column 

chromatography (silica gel, isocratic elution petroleum ether-diethyl ether 9:1) of 

the crude residue afforded 1-(furan-2-yl)cyclopentanol 444 (3.33 g, 21.86 mmol, 

97%) as a colourless oil. 

1H NMR (400 MHz; CDCl3) δH: 7.32 (1H, dd, J = 1.8, 0.8 Hz), 6.28 (1H, dd, J = 3.2, 

1.8 Hz), 6.18 (1H, dd, J = 3.2, 0.8 Hz), 2.23 (1H, brs), 2.06-2.00 (2H, m), 1.88-1.95 

(4H, m), 1.74-1.70 (2H, m); 13C NMR (100 MHz; CDCl3) δC: 159.4, 141.5, 110.0, 

104.1, 79.5, 39.6, 23.6; IR (neat) νmax = 3342 (OH), 2966, 2874, 1504 (Furan C=C), 

1074 (C—O), 1001 (Furan) cm-1; HRMS (EI) observed M+ 152.0834, calculated for 

C9H12O2 152.0837. 
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1-(Furan-2-yl)cyclohexanol 438[168] 

 

 

 

Furan 415 (328 mg, 4.83 mmol) was added to a stirred solution of n-butyllithium 

(1.9 mL, 2.5 M in hexanes) and N,N,N’,N’-tetramethylethylenediamine (561 mg, 

4.83 mmol) in tetrahydrofuran (10 mL) at −78 °C under argon.  The resultant 

solution was stirred at −78 °C under argon for 1 hour.  Cyclohexanone (95 mg, 0.97 

mmol) was added and the solution was stirred at −78 °C under argon for a further 1 

hour.   

The reaction was quenched with ice-cold saturated aqueous ammonium chloride (5 

mL) and extracted with diethyl ether (3 × 5 mL).  Combined organics were dried 

over sodium sulfate, filtered and concentrated.  Flash column chromatography 

(silica gel, elution gradient petroleum ether-diethyl ether 9:1 → petroleum ether-

diethyl ether 5:1) of the crude residue afforded 1-(furan-2-yl)cyclohexanol 438 (154 

mg, 0.93 mmol, 96%) as a colourless oil. 

1H NMR (400 MHz; CDCl3) δH: 7.34-7.32 (1H, m), 6.30 (1H, dd, J = 3.2, 1.8 Hz), 6.19 

(1H, d, J = 3.2 Hz), 2.02-1.92 (3H, m), 1.87-1.78 (2H, m), 1.77-1.66 (2H, m), 1.57-

1.26 (4H, m); 13C NMR (100 MHz; CDCl3) δC: 160.0, 141.3, 110.0, 104.4, 70.0, 36.5, 

25.5, 22.2; IR (neat) νmax = 3407 (OH), 2935, 2859, 1501 (Furan C=C), 1342 (C—OH), 

1057 (C—O), 1008 (Furan)cm-1; HRMS (CI) observed [M-OH]+ 149.0963, calculated for 

C10H13O 149.0966. 
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1-(Furan-2-yl)cycloheptanol 451 

 

 

 

Furan 415 (289 mg, 4.24mmol) was added to a stirred solution of n-butyllithium 

(1.7 mL, 2.5 M in hexanes) and N,N,N’,N’-tetramethylethylenediamine (493 mg, 

4.24 mmol) in tetrahydrofuran (10 mL) at −78 °C under argon.  The resultant 

solution was stirred at −78 °C under argon for 1 hour.  Cycloheptanone (145 mg, 

1.29 mmol) was added and the solution was stirred at −78 °C under argon for a 

further 1 hour.  

The reaction was quenched with ice-cold saturated aqueous ammonium chloride (10 

mL) and extracted with diethyl ether (3 × 10 mL).  The combined organic extracts 

were dried over sodium sulfate, filtered and concentrated.  Flash column 

chromatography (silica gel, elution gradient petroleum ether-diethyl ether 9:1 → 

5:1 petroleum ether-diethyl ether 5:1 ) of the crude residue afforded 1-(furan-2-

yl)cycloheptanol 451 (231 mg, 1.28 mmol, 99%) as a colourless oil. 

1H NMR (400 MHz; CDCl3) δH: 7.35 (1H, appd, J = 1.7 Hz), 6.30 (1H, dd, J = 3.2, 1.7 

Hz), 6.19 (1H, brd, J = 3.2 Hz), 2.14 (2H, ddd, J = 14.4, 9.6, 1.3 Hz), 1.97 (2H, ddd, 

J = 14.4, 9.0, 1.3 Hz), 1.91 (1H, brs), 1.77-1.41 (8H, m); 13C NMR (100 MHz; CDCl3) 

δC: 160.8, 141.5, 109.9, 104.1, 74.1, 40.1, 29.4, 22.1; IR (neat) νmax = 3460 (OH), 

2924, 2859, 1504 (Furan C=C), 1084 (C—O), 1014 (Furan) cm-1; HRMS (CI) observed 

[M-OH]+ 163.1119, calculated for C11H15O 163.1123. 
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1-(Furan-2-yl)cyclooctanol 454 

 

 

 

Furan 415 (465 mg, 6.55 mmol) was added to a stirred solution of n-butyllithium 

(2.6 mL, 2.5 M in hexanes) and N,N,N’,N’-tetramethylethylenediamine (761 mg, 

6.55 mmol) in tetrahydrofuran (10 mL) at −78 °C under argon.  The resultant 

solution was stirred at −78 °C under argon for 1 hour.  Cyclooctanone (165 mg, 1.31 

mmol) was added and the solution was stirred at −78 °C under argon for a further 1 

hour.  

The reaction was quenched with ice-cold saturated aqueous ammonium chloride (10 

mL) and extracted with diethyl ether (3 × 10 mL).  The combined organic layers 

were dried over sodium sulfate, filtered and concentrated.  Flash column 

chromatography (silica gel, elution gradient petroleum ether-diethyl ether 9:1 → 

petroleum ether-diethyl ether 5:1) of the crude residue afforded 1-(furan-2-

yl)cyclooctanol 454 (248 mg, 1.28 mmol, 98%) as a colourless oil. 

1H NMR (400 MHz; CDCl3) δH: 7.35 (1H, dd, J = 1.8, 0.7 Hz), 6.30 (1H, dd, J = 3.2, 

1.8 Hz), 6.20 (1H, dd, J = 3.2, 0.7 Hz), 2.14-2.01 (4H, m), 1.88 (1H, brs), 1.75-1.59 

(5H, m), 1.55-1.41 (5H, m); 13C NMR (100 MHz; CDCl3) δC: 159.9, 141.5, 109.9, 

104.8, 73.8, 34.8, 28.1, 24.6, 21.9; IR (neat) νmax = 3398 (OH), 2924, 2854, 1504 

(Furan C=C), 1087 (C—O), 1018 (Furan) cm-1; HMRS (CI) observed [M-OH]+ 177.1274, 

calculated for C12H17O 177.1279. 

 

 

 

 

 

 

 



Flexible Synthesis of Spirocyclic Pyrans and Piperidines References 

 

 134 

6-Hydroxy-5-oxaspiro[3.5]non-7-en-9-one 448 

 

 

 

1-(Furan-2-yl)cyclobutanol 447 (189 mg, 1.37 mmol) was dissolved in chloroform (7 

mL) and cooled to 0 °C under argon. 3-Chloroperbenzoic acid (354 mg, 2.05 mmol) 

was added portionwise.  The resultant solution was stirred at 0 °C for 30 minutes, 

then for 3 hours at room temperature.  The reaction was quenched with saturated 

aqueous sodium hydrogen carbonate (10 mL) and extracted with chloroform (3 × 10 

mL).  Combined organics were washed with brine (10 mL), then dried over sodium 

sulfate, filtered and concentrated to afford 6-hydroxy-5-oxaspiro[3.5]non-7-en-9-

one 448 as a colourless oil, which was carried forward without further purification.  

 

6-Allyl-5-oxaspiro[3.5]non-7-en-9-one 449 

 

 

 

6-Hydroxy-5-oxaspiro[3.5]non-7-en-9-one 448 was dissolved in anhydrous 

dichloromethane (3 mL) and cooled to 0 °C under argon.  Allyltrimethylsilane (469 

mg, 4.10 mmol) was added, followed by boron trifluoride-diethyl etherate (194 mg, 

1.37 mmol) dropwise.  The resultant solution was stirred at 0 °C under argon for 15 

minutes.  The reaction was quenched with saturated aqueous ammonium chloride 

(5 mL), and extracted with diethyl ether (3 × 5 mL).  Combined organics were dried 

over sodium sulfate, filtered and concentrated.  Flash column chromatography 

(silica gel, isocratic elution hexane-diethyl ether 9:1) of the crude residue afforded 

6-allyl-5-oxaspiro[3.5]non-7-en-9-one 449 (24 mg, 0.13 mmol, 10% over two steps) 

as a colourless oil.   
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1H NMR (400 MHz; CDCl3) δH: 6.85 (1H, dd, J = 10.2, 1.5 Hz), 6.00 (1H, dd, J = 10.2, 

2.4 Hz), 5.86 (1H, ddt, J = 17.2, 10.2, 7.1 Hz), 5.21-5.19 (1H, m), 5.18-5.14 (1H, 

m), 4.43 (1H, tt, J = 6.6, 1.9 Hz), 2.74-2.65 (1H, m), 2.53-2.44 (1H, m), 2.40 (1H, 

dd, J = 14.2, 7.1 Hz), 2.37-2.28 (1H, m), 2.13-2.01 (2H, m), 1.93-1.79 (2H, m); 13C 

NMR (100 MHz; CDCl3) δC: 197.0, 149.6, 133.0, 125.1, 118.3, 80.8, 69.0, 39.0, 30.0, 

29.9, 12.6; IR (neat) νmax = 3078 (CH2CH=CH2), 2953, 2848, 1687 (C=C—C=O), 1642 

(CH2CH=CH2), 1072 (C—O),996 (C=CH2), 959, 916 (C=CH2), 746 (cis C=C) cm-1; HRMS 

(CI) observed [M+H]+ 179.1067, calculated for C11H15O2 179.1072. 

 

7-Hydroxy-6-oxaspiro[4.5]dec-8-en-10-one 445 

 

 

 

A 0 °C solution of 1-(furan-2-yl)cyclopentanol 444 (811 mg, 5.33 mmol) in 

chloroform (30 mL) under argon was treated with the portion-wise addition of m-

chloroperoxybenzoic acid (≤77%, 1.79 g, 7.99 mmol).  The rate of addition was such 

that the temperature of the reaction was not allowed to exceed 10 °C throughout 

the process.  Once the addition was complete, the reaction was stirred at 0 °C for 

30 min, then for 3 hours at room temperature.  

The reaction was diluted with chloroform (25 mL) and washed with 20% potassium 

iodide (25 mL).  The aqueous phase was then extracted with chloroform (3 × 25 

mL).  The combined organic extracts were washed successively with 30% sodium 

thiosulfate (25 mL), saturated aqueous sodium hydrogen carbonate (25 mL), water 

(25 mL) and brine (25 mL).  The organic phases was dried over sodium sulfate, 

filtered and concentrated under reduced pressure to yield 7-hydroxy-6-

oxaspiro[4.5]dec-8-en-10-one 445 as a colourless oil which was taken on to the next 

step without further purification. 
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7-Allyl-6-oxaspiro[4.5]dec-8-en-10-one 446 

 

 

 

7-Hydroxy-6-oxaspiro[4.5]dec-8-en-10-one 445 was dissolved in dichloromethane 

(15 mL) and allyltrimethylsilane (939 mg, 8.22 mmol) was added.  The resultant 

solution was cooled to −78 °C and boron trifluoride-diethyl etherate (583 mg, 4.11 

mmol) was added.   The reaction mixture was stirred at −78 °C until for 1 hour and 

was then diluted with dichloromethane (15 mL), and quenched by the slow addition 

of saturated aqueous ammonium chloride (25 mL).  The phases were separated, and 

the aqueous layer was extracted with dichloromethane (3 × 15 mL).  The combined 

organic layers were combined, washed with saturated aqueous sodium hydrogen 

carbonate (25 mL), brine (25 mL), dried over sodium sulfate, filtered and 

concentrated under vacuum.  Flash column chromatography (silica gel, isocratic 

elution petroleum ether-diethyl ether 9:1) of the crude residue afforded the 7-allyl-

6-oxaspiro[4.5]dec-8-en-10-one 446 (556 mg, 2.89 mmol, 54% over two steps) as a 

colourless oil. 

1H NMR (400 MHz; CDCl3) δH: 6.85 (1H, ddd, J = 10.3, 1.5, 0.4 Hz), 6.02 (1H, dd, J = 

10.3, 2.4 Hz), 5.83 (1H, ddt, J = 17.3, 10.3, 6.8 Hz), 5.17-5.15 (1H, m), 5.14-5.09 

(1H, m), 4.41 (1H, tt, J = 6.8, 2.0 Hz), 2.49-2.40 (1H, m), 2.40-2.30 (2H, m), 2.14-

2.06 (1H, m), 1.82-1.62 (5H, m), 1.53-1.44 (1H, m); 13C NMR (125 MHz; CDCl3) δC: 

198.0, 148.7, 132.3, 125.1, 117.1, 88.3, 67.8, 38.2, 35.0, 31.8, 23.9, 23.3; IR (neat) 

νmax = 3080 (CH2CH=CH2), 2956, 2932, 2872, 1685 (C=C—C=O), 1643 (CH2CH=CH2), 

1073 (C—O), 996 (C=CH2), 955, 917 (C=CH2), 748 (cis C=C) cm-1; HRMS (CI) observed 

[M+H]+ 193.1228, calculated for C12H17O2 193.1229. 
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2-Hydroxy-1-oxaspiro[5.5]undec-3-en-5-one 439[168] 

 

 

 

1-(Furan-2-yl)cyclohexanol 438 (154 mg, 0.93 mmol) was dissolved in chloroform (7 

mL) and cooled to 0 °C under argon. 3-Chloroperbenzoic acid (311 mg, 1.39 mmol) 

was added portionwise.  The resultant solution was stirred at 0 °C for 30 minutes, 

then for 3 hours at room temperature.  The reaction was quenched with saturated 

aqueous sodium hydrogen carbonate (10 mL) and extracted with chloroform (3 × 10 

mL).  Combined organics were washed with brine, then dried over sodium sulfate, 

filtered and concentrated to afford 2-hydroxy-1-oxaspiro[5.5]undec-3-en-5-one 439 

as a colourless oil, which was carried forward without further purification. 

 

2-Allyl-1-oxaspiro[5.5]undec-3-en-5-one 450 

 

 

 

2-Hydroxy-1-oxaspiro[5.5]un-7-en-9-one 439 was dissolved in anhydrous 

dichloromethane (2 mL) and cooled to 0 °C under argon.  Allyltrimethylsilane (317 

mg, 2.78 mmol) was added, followed by boron trifluoride-diethyl etherate (131 mg, 

0.93 mmol) dropwise.  The resultant solution was stirred at 0 °C under argon for 30 

minutes.  The reaction was quenched with saturated aqueous ammonium chloride 

(5 mL), and extracted with diethyl ether (3 × 5 mL).  Combined organics were dried 

over sodium sulfate, filtered and concentrated.  Flash column chromatography 

(silica gel, isocratic elution hexane-diethyl ether 9:1) afforded 2-allyl-1-

oxaspiro[5.5]undec-3-en-5-one 450 (120 mg, 0.58 mmol, 63% over two steps) as a 

colourless oil.  
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1H NMR (400 MHz; CDCl3) δH: 6.84 (1H, dd, J = 10.3, 1.4 Hz), 5.97 (1H, dd, J = 10.3, 

2.4 Hz), 5.91 (1H, dddd, J = 17.0, 13.9, 7.4, 6.4 Hz), 5.22-5.10 (2H, m), 4.38 (1H, 

tt, J = 6.7, 1.9 Hz), 2.52-2.35 (2H, m), 2.05-1.88 (2H, m), 1.72-1.44 (6H, m), 1.34-

1.20 (2H, m); 13C NMR (100 MHz; CDCl3) δC: 199.6, 149.5, 133.6, 125.3, 118.0, 79.1, 

67.5, 39.3, 31.7, 28.4, 25.4, 21.5, 20.6; IR (neat) νmax = 3076 (CH2CH=CH2), 2930, 

2855, 1683 (C=C—C=O), 1642 (CH2CH=CH2),  1084 (C—O),  989 (C=CH2), 944, 914 

(C=CH2), 776 (cis C=C) cm-1; HRMS (CI) observed [M+H]+ 207.1389, calculated for 

C13H19O2 207.1385. 

 

2-Hydroxy-1-oxaspiro[5.6]dodec-3-en-5-one 452 

 

 

 

1-(Furan-2-yl)cycloheptanol 451 (231 mg, 1.28 mmol) was dissolved in chloroform 

(10 mL) and cooled to 0 °C under argon. 3-Chloroperbenzoic acid (355 mg, 2.06 

mmol) was added portionwise.  The resultant solution was stirred at 0 °C for 30 

minutes, then for 3 hours at room temperature.  The reaction was quenched with 

saturated aqueous sodium hydrogen carbonate (10 mL) and extracted with 

chloroform (3 × 10 mL).  Combined organics were washed with brine (10 mL), then 

dried over sodium sulfate, filtered and concentrated to afford 2-hydroxy-1-

oxaspiro[5.6]dodec-3-en-5-one 452 as a colourless oil, which was carried forward 

without further purification.  
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2-Allyl-1-oxaspiro[5.6]dodec-3-en-5-one 453 

 

 

 

2-Hydroxy-1-oxaspiro[5.6]dodec-3-en-5-one 452 was dissolved in anhydrous 

dichloromethane (2 mL) and cooled to 0 °C under argon.  Allyltrimethylsilane (439 

mg, 3.85 mmol) was added, followed by boron trifluoride-diethyl etherate (182 mg, 

1.28 mmol) dropwise.  The resultant solution was stirred at 0 °C under argon for 30 

minutes.  The reaction was quenched with saturated aqueous ammonium chloride 

(5 mL), and extracted with diethyl ether (3 × 5 mL).  The combined organic extracts 

were dried over sodium sulfate, filtered and concentrated.  Flash column 

chromatography (silica gel, isocratic elution hexane-diethyl ether 9:1) afforded 2-

allyl-1-oxaspiro[5.6]dodec-3-en-5-one 453 (178 mg, 0.81 mmol, 63% over two steps) 

as a colourless oil.  

1H NMR (400 MHz; CDCl3) δH: 6.83 (1H, dd, J = 10.3, 1.4 Hz), 5.94 (1H, dd, J = 10.3, 

2.4 Hz), 5.88 (1H, ddt, J = 17.2, 10.3, 6.9 Hz), 5.20-5.10 (2H, m), 4.39 (1H, tt, J = 

6.9, 1.8 Hz), 2.51-2.42 (1H, m), 2.42-2.33 (1H, m), 2.19-2.10 (1H, m), 2.04-1.94 

(1H, m), 1.74-1.48 (10H, m); 13C NMR (100 MHz; CDCl3) δC: 200.2, 149.4, 133.5, 

125.0, 118.0, 82.5, 67.8, 39.3, 36.4, 31.7,  29.3, 29.1, 22.1, 21.7; IR (neat) νmax = 

3078 (CH2CH=CH2), 2924, 2857, 2702, 1683 (C=C—C=O), 1642 (CH2CH=CH2), 1064 

(C—O), 986 (C=CH2), 957, 916 (C=CH2), 782 (cis C=C) cm-1; HRMS (CI) observed 

[M+H]+ 221.1544, calculated for C14H21O2 221.1542. 
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2-Hydroxy-1-oxaspiro[5.7]dodec-3-en-5-one 455 

 

 

 

1-(Furan-2-yl)cyclooctanol 454 (248 mg, 1.28 mmol) was dissolved in chloroform (10 

mL) and cooled to 0 °C under argon. 3-Chloroperbenzoic acid (429 mg, 1.92 mmol) 

was added portionwise.  The resultant solution was stirred at 0 °C for 30 minutes, 

then for 3 hours at room temperature.  The reaction was quenched with saturated 

aqueous sodium hydrogen carbonate (10 mL) and extracted with chloroform (3 × 10 

mL).  The combined organic layers were washed with brine (10 mL), then dried over 

sodium sulfate, filtered and concentrated to afford 2-hydroxy-1-oxaspiro[5.7]dodec-

3-en-5-one 455 as a colourless oil, which was carried forward without further 

purification.  

 

2-Allyl-1-oxaspiro[5.7]dodec-3-en-5-one 456 

 

 

 

2-Hydroxy-1-oxaspiro[5.7]dodec-3-en-5-one 455 was dissolved in anhydrous 

dichloromethane (3 mL) and cooled to 0 °C under argon.  Allyltrimethylsilane (438 

mg, 3.83 mmol) was added, followed by boron trifluoride-diethyl etherate (181 mg, 

1.28 mmol) dropwise.  The resultant solution was stirred at 0 °C under argon for 30 

minutes.  The reaction was quenched with saturated aqueous ammonium chloride 

(5 mL), and extracted with diethyl ether (3 × 5 mL).  Combined organics were dried 

over sodium sulfate, filtered and concentrated.  Flash column chromatography 

(silica gel, isocratic elution hexane-diethyl ether 9:1) afforded 2-allyl-1-
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oxaspiro[5.7]dodec-3-en-5-one 456 (182 mg, 0.78 mmol, 61% over two steps) as a 

colourless oil.  

1H NMR (400 MHz; CDCl3) δH: 6.82 (1H, dd, J = 10.3, 1.4 Hz), 5.94 (1H, dd, J = 10.3, 

2.4 Hz), 5.88 (1H, dddd, J = 17.0, 13.8, 7.3, 6.5 Hz), 5.19-5.11 (2H, m), 4.37 (1H, 

tt, J = 6.5, 1.8 Hz), 2.50-2.42 (1H, m), 2.41-2.33 (1H, m), 2.16-2.09 (1H, m), 1.97-

1.89 (1H, m), 1.82-1.45 (12H, m); 13C NMR (100 MHz; CDCl3) δC: 200.1, 149.3, 133.5, 

124.9, 117.9, 81.4, 67.8, 39.3, 32.2, 31.6,  28.5, 27.3, 22.6, 20.8, 20.7; IR (neat) 

νmax = 3077 (CH2CH=CH2), 2967, 2922, 2850, 1683 (C=C—C=O), 1642 (CH2CH=CH2), 

1060 (C—O), 992 (C=CH2), 915 (C=CH2), 781 (cis C=C) cm-1; HRMS (CI) observed 

[M+H]+ 235.1701, calculated for C15H23O2 235.1698. 

 

 

7-Allyl-6-oxaspiro[4.5]dec-8-en-10-ol 462  

 

 

 

Sodium borohydride (24 mg, 0.63 mmol) was dissolved in methanol (0.7 mL) and 

cooled to 0 °C under argon.  7-Allyl-6-oxaspiro[4.5]dec-8-en-10-one 446 (100 mg, 

0.52 mmol) in methanol (0.3 mL) was  added dropwise and the resultant solution 

was allowed to stir at 0 °C for 30 mins and then at room temperature for a further 

12 hours.  The reaction mixture was quenched by the slow addition of 6M HCl (1 

mL) and was stirred for 15 mins.  The resultant mixture was diluted with water (2 

mL) and extracted diethyl ether (2 × 2 mL).  The combined organic layers were 

dried over sodium sulfate, filtered and concentrated to afford 7-allyl-6-

oxaspiro[4.5]dec-8-en-10-ol 462 (91 mg, 0.47 mmol, 83%) as a colourless oil which 

was not purified further. 

1H NMR (400 MHz; CDCl3): δH 5.82 (1H, dddd, J = 16.8, 10.2, 7.2, 6.6 Hz), 5.71 (2H, 

m), 5.11-5.00 (2H, m), 4.17 (1H, brs), 4.11 (1H, m) 2.34-2.18 (2H, m), 1.91-1.79 

(2H, m), 1.77-1.56 (7H, m); 13C NMR (100 MHz; CDCl3): δC 134.4, 130.2, 129.5, 

117.1, 85.9, 69.5, 68.1, 39.8, 37.1, 27.3, 24.8, 23.9. 
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7-Propyl-6-oxaspiro[4.5]dec-8-en-10-ol 468 

 

 

 

7-Allyl-6-oxaspiro[4.5]dec-8-en-10-ol 462 (144 mg, 0.74 mmol) was dissolved in 

benzene (29 mL) under an atmosphere of hydrogen and 

tris(triphenylphosphine)rhodium chloride (14.5 mg, 0.02 mmol) was added.  The 

resultant suspension was allowed to stir at room temperature for 12 hours.  The 

reaction mixture was then concentrated and azeotroped twice with toluene to 

remove any residual benzene.  The brown residue was then taken up in diethyl 

ether and filtered through Florisil before being concentrated to afford 7-propyl-6-

oxaspiro[4.5]dec-8-en-10-ol 468 (145 mg, 0.74 mmol, quant.) 

1H NMR (400 MHz; CDCl3): δH 5.70-5.61 (2H, qt, J = 10.3, 1.8 Hz), 4.15 (1H, br s), 

4.02 (1H, m), 1.95-1.94 (1H, m), 1.89-1.82 (1H, m), 1.77-1.53 (7H, m), 1.46-1.36 

(4H, m), 0.90 (3H, t, J = 7.4 Hz). 

 

7-Allyl-6-oxaspiro[4.5]decan-10-one 458 

 

 

 

A solution of 7-allyl-6-oxaspiro[4.5]dec-8-en-10-one 446 (488 mg, 2.54 mmol) in a 

deoxygenated benzene : water mixture (70 mL : 141 μL) was transferred via 

cannula to a flask containing (triphenylphosphine)copper hydride hexamer (1.0 g, 

0.51 mmol) under argon.  The resultant red/brown suspension was stirred at room 

temperature overnight before being opened to the air, and being allowed to stir for 

30 minutes.  The suspension was filtered through Celite®, concentrated under 

vacuum, and azeotroped with toluene to remove any residual benzene.  Flash 

column chromatography (silica gel, elution gradient hexane → hexane-ethyl acetate 
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19:1) of the crude residue afforded 7-allyl-6-oxaspiro[4.5]decan-10-one 458 (476 

mg, 2.45 mmol,  96%) as a colourless oil. 

1H NMR (400 MHz; CDCl3) δH: 5.73-5.55 (1H, m), 5.05-4.99 (2H, m), 3.79-3.71 (1H, 

m), 2.51 (1H, dm, J = 16.1 Hz), 2.41 (1H, dm, J = 16.1 Hz), 2.34-2.25 (1H, m), 2.22-

2.13 (2H, m), 2.01-1.91 (2H, m), 1.88-1.76 (1H, m), 1.74-1.55 (6H, m); 13C NMR (100 

MHz; CDCl3) δC: 212.3, 134.6, 117.0, 91.6, 70.4, 40.2, 36.7, 36.0, 35.1, 30.5, 24.9, 

24.4; IR (neat) νmax = 3077 (CH2CH=CH2), 2955, 2870, 2858, 1714 (C=O), 1642 

(CH2CH=CH2),  1078 (C—O), 995 (C=CH2), 971, 914 (C=CH2), cm-1; HRMS (CI) observed 

[M+H]+ 195.1387, calculated for C12H19O2 195.1385. 

 

7-Allyl-6-oxaspiro[4.5]decane 459 

 

 

 

A room temperature solution of 7-allyl-6-oxaspiro[4.5]decan-10-one 458 (109 mg, 

0.56 mmol) in absolute ethanol (6 mL) under argon was treated with tosyl-hydrazide 

(110 mg, 0.59 mmol), and the resultant solution was stirred for 18.5 hours.   The 

reaction mixture was concentrated under vacuum and the residue was dissolved in 

anhydrous dichloromethane (5.4 mL) and cooled to 0 °C.  DIBAL-H (1M in hexanes, 2 

mL, 2.0 mmol) was then added over 15 min and the resultant yellow solution was 

allowed to warm up to room temperature over 1.5 hours.   The mixture was diluted 

with dichloromethane (10 mL), and quenched by the slow addition of 3M sodium 

hydroxide (15 mL).  The organic layer, was separated and the aqueous phase was 

extracted with diethyl ether (3 × 10 mL).  The combined organic layers were dried 

over sodium sulphate, filtered and concentrated under vacuum.  Flash column 

chromatography of the crude residue (silica gel, isocratic elution petroleum ether) 

afforded 7-allyl-6-oxaspiro[4.5]decane 459 (71 mg, 0.39 mmol, 70%) as a colourless 

oil. 

1H NMR (400 MHz; CDCl3) δH: 5.52 (1H, dddd, J = 17.3, 10.2, 7.5, 6.4 Hz), 5.04 (1H, 

dm, J = 17.2 Hz), 4.99 (1H, dm, J = 10.2 Hz), 3.44 (1H, dtd, J = 11.1, 6.4, 2.1 Hz), 
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2.24 (1H, dtt, J = 14.2, 6.5, 1.5 Hz), 2.10 (1H, dm, J = 14.2 Hz), 1.92-1.84 (1H, m), 

1.76-1.62 (4H, m), 1.61-1.39 (9H, m); 13C NMR (100 MHz; CDCl3) δC: 135.7, 116.1, 

83.9, 71.4, 41.6, 41.4, 35.0, 32.7, 31.4, 24.4, 23.3, 21.4; IR (neat) νmax = 3074 

(CH2CH=CH2), 2956, 2932, 2863, 2847, 1641 (CH2CH=CH2), 1084 (C—O), 997 (C=CH2), 

911 (C=CH2) cm-1; HRMS (CI) observed [M+H]+ 181.1590, calculated for C12H21O 

181.1592. 

 

(E)-Ethyl 2-methyl-4-(6-oxaspiro[4.5]decan-7-yl)but-2-enoate 470 

 

 

 

A mixture of 7-allyl-6-oxaspiro[4.5]decane 459 (100 mg, 0.56 mmol), Grubbs 2nd 

generation catalyst (13.3 mg, 17 μmol) and ethyl methacrylate (1.4 mL, 11.2 mmol) 

was heated to reflux overnight.  The reaction mixture was then concentrated under 

vacuum and the crude residue was purified by flash column chromatography (silica 

gel, elution gradient petroleum ether → petroleum ether-diethyl ether 9:1) to yield 

(E)-ethyl 2-methyl-4-(6-azaspiro[4.5]decan-7-yl)but-2-enoate 470 (123 mg, 0.46 

mmol, 83%) as a colourless oil. 

1H NMR (400 MHz; CDCl3) δH: 6.76 (1H, t, J = 6.9 Hz), 4.25 (2H, q, J = 6.9 Hz), 3.53-

3.41 (1H, m), 2.34-2.18 (2H, m), 1.91-1.83 (1H, m), 1.80 (3H, brs), 1.75-1.62 (4H, 

m), 1.60-1.35 (9H, m), 1.26 (3H, t, J = 6.9 Hz); 13C NMR (100 MHz; CDCl3) δC: 168.2, 

138.8, 128.9, 84.1, 70.8, 60.4, 41.5, 36.2, 34.8, 32.6, 31.6, 24.3, 23.2, 21.3, 14.3, 

12.7; IR (neat) νmax = 2955, 2931, 2867, 2848, 1708 (O=COEt), 1650 (C=C—CO2Et), 

1082 (C—O) 991 (trans C=C—CO2Et), 803 (R2C=CHR) cm-1; HRMS (CI) observed [M+H]+ 

267.1957, calculated for C16H27O3 requires 267.1960. 
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2-(1-Azidocyclopentyl)furan 472 

 

 

 

Ice-cold hydrazoic acid was generated in situ in four batches as follows: luke warm 

water (4.25 mL) was added to sodium azide (4.25 g, 65.44 mmol) and the resultant 

suspension was stirred for 15 minutes.  Benzene (25 mL) was added and the biphasic 

suspension was cooled to 0 °C. Concentrated H2SO4 (2.63 mL) was added dropwise 

and the mixture was allowed to stir at 0 °C for 20 minutes.  The organic phase was 

carefully syringed into a dry flask at 0 °C and 1-(furan-2-yl)cyclopentanol 444 (600 

mg, 3.94 mmol) was added followed by H2SO4 (132 μl).  The resulting solution was 

stirred for 5 minutes at 0 °C before being quenched with ice-cold ammonium 

hydroxide solution.  The four quenched batches were combined in a separatory 

funnel and extracted with ethyl acetate (3 × 25 mL).  The combined organic layers 

were washed with saturated aqueous ammonium chloride (20 mL), dried over 

sodium sulfate and concentrated.  Flash column chromatography (silica gel, 

isocratic elution hexane) of the crude residue afforded 2-(1-azidocyclopentyl)furan 

472 (2.11 g, 11.91 mmol, 76%) as a colourless oil. 

1H NMR (400 MHz; CDCl3): δH 7.39 (1H, dd, J = 1.8, 0.8 Hz), 6.34 (1H, dd, J = 3.2, 

1.8 Hz), 6.28 (1H, dd, J = 3.2, 0.8 Hz), 2.14-2.03 (4H, m), 1.93-1.73 (4H, m); 13C 

NMR (100 MHz; CDCl3): δC 155.4, 142.4, 110.1, 106.1, 70.5, 36.6, 23.3; IR (neat) νmax 

= 2962, 2875,  2092 (N3), 1500 (Furan C=C) 1074 (C—N), 1014 (Furan) cm-1; HRMS 

(EI) observed M+ 177.0906, calculated for C9H11N3O 177.0902. 
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1-(Furan-2-yl)cyclopentanamine 473 

 

 

 

2-(1-Azidocyclopentyl)furan 472 (2.0 g, 11.29 mmol) was dissolved in ethyl acetate 

(16 mL) and Pd/C 10% (200 mg) was added. A balloon filled with H2 was applied to 

this stirred solution.  Repeated bubbling of H2 through the Pd catalyst, or loading, 

was performed at 10 min intervals for a total of 1 hour.  At such times, the reaction 

mixture was filtered through a Celite® pad and concentrated to afford 1-(furan-2-

yl)cyclopentanamine 473 (1.66 g, 10.98 mmol, 97%) as a colourless oil which was 

used without further purification. 

1H NMR (400 MHz; CDCl3): δH 7.31 ( 1H, dd, J = 1.8, 0.8 Hz), 6.27 (1H, dd, J = 3.2, 

1.8 Hz), 6.08 (1H, dd, J = 3.2, 0.8 Hz), 2.08-2.00 (2H, m), 1.92-1.83 (2H, m), 1.77-

1.70 (6H, m); 13C NMR (100 MHz; CDCl3): δC 162.3, 141.1, 109.9, 102.8, 60.5, 40.1, 

24.0; IR (neat) νmax = 2956, 2924, 2870, 2854, 1458 (C=C), 1074 (C—N), 1014 

(Furan), 800 (NH) cm-1; HRMS (EI) observed M+ 151.0991, C9H13NO requires 151.0997. 

 

N-(1-Furan-2-yl)cyclopentyl-4-toluenesulfonamide 476 

 

 

 

1-(Furan-2-yl)cyclopentanamine 473 (1.66 g, 10.98 mmol) was dissolved in 

dichloromethane (25 mL) and triethylamine (1.93 mL, 13.72 mmol) was added to 

the solution under argon.  The reaction mixture was cooled to 0 °C and p-

toluenesulfonyl chloride (2.62 g, 13.72 mmol) was added.  The solution was allowed 

to warm to room temperature and was stirred overnight under argon.  The reaction 

mixture was then diluted with dichloromethane (15 mL) and washed sequentially 

with saturated aqueous sodium hydrogen carbonate (10 mL) and brine (10 mL).  The 
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organic layers were combined, dried over sodium sulfate, filtered and 

concentrated.  Flash column chromatography (silica gel, isocratic elution hexane-

ethyl acetate 4:1) of the crude residue afforded N-(1-furan-2-yl)cyclopentyl-4-

toluenesulfonamide 476 (2.29 g, 7.51 mmol, 68%) as a white solid (m.p. 149 °C). 

1H NMR (400 MHz; CDCl3): δH 7.47 (2H, d, J = 8.3 Hz), 7.10 (2H, d, J = 8.3 Hz), 6.91 

(1H, appdd, J = 1.8, 0.7 Hz), 6.00 (1H, dd, J = 3.2, 1.8 Hz) 5.98 (1H, dd, 3.2, 0.7 

Hz), 5.18 (1H, bs), 2.35 (3H, s), 2.23-2.17 (2H, m), 2.10-2.03 (2H, m), 1.82-1.76 

(2H, m), 1.62-1.58 (2H, m); 13C NMR (100 MHz; CDCl3): δC 155.0, 142.4, 141.6, 

138.4, 129.2, 127.1, 109.7, 106.8, 64.2, 38.1, 22.4, 21.4; IR (neat) νmax = 3254 (NH), 

2972, 2953, 2918, 2875, 1599 (NH), 1460 (Furan C=C), 1315 (Ts), 1153 (Ts), 1096 

(C—N), 1004 (Furan) cm-1; HRMS (EI) observed M+ 305.1085, calculated for 

C16H19NO3S 305.1086. 

 

7-Hydroxy-6-tosyl-6-azaspiro[4.5]dec-8-en-10-one 477 

 

 

 

N-(1-Furan-2-yl)cyclopentyl-4-toluenesulphonamide 476 (427 mg, 1.40 mmol) was 

dissolved in chloroform (7 mL) and m-chloroperoxybenzoic acid (≤77%, 470 mg, 2.10 

mmol) was added portion-wise at 0 °C under an argon atmosphere.  The 

temperature was not allowed to exceed 10 °C during the addition.  Once addition 

was complete, the reaction was allowed to warm to room temperature and stirred 

for 3 hours.   After such time, the solution was diluted with chloroform and washed 

with 20% potassium iodide (10 mL), 30% sodium thiosulfate (10 mL), sodium 

hydrogen carbonate (10 mL), water (10 mL) and brine (10 mL) sequentially.  The 

organic layer was dried over sodium sulfate, filtered and concentrated to afford 

crude 7-hydroxy-6-tosyl-6-azaspiro[4.5]dec-8-en-10-one 477 as a yellow foam which 

was taken forward without further purification. 

 

 



Flexible Synthesis of Spirocyclic Pyrans and Piperidines References 

 

 148 

7-Allyl-6-tosyl-azaspiro[4.5]dec-8-en-10-one 478 

 

 

 

7-Hydroxy-6-tosyl-6-azaspiro[4.5]dec-8-en-10-one 477 (449 mg, 1.40 mmol) was 

dissolved in dichloromethane (7 mL) and allyltrimethylsilane (319 mg, 2.79 mmol) 

was added and the solution was cooled to −78 °C under an inert atmosphere.  Boron 

trifluoride diethyl etherate (198 mg, 1.40 mmol) was added and the solution was 

allowed to stir under an argon atmosphere at −78 °C for 45 minutes.  After such 

time, the reaction mixture was diluted with Dichloromethane (10 mL) and washed 

with cold saturated aqueous ammonium chloride (2 × 10 mL).  The organic phase 

was then dried over sodium sulfate, filtered and concentrated.  Flash column 

chromatography (silica gel, elution gradient petroleum ether-diethyl ether 9:1 → 

petroleum ether-diethyl ether 3:1) of the crude residue afforded 7-allyl-6-tosyl-

azaspiro[4.5]dec-8-en-10-one 478 (311mg, 0.90 mmol, 64% over two steps) as a 

white solid (m.p. 89-90 °C). 

1H NMR (400 MHz; CDCl3): δH 7.56 (2H, d, J = 8.3 Hz), 7.21 (2H, d, J = 8.3 Hz), 6.85 

(1H, dd, J = 10.2, 4.6 Hz), 6.00-5.91 (1H, m), 5.88 (1H, dd, J = 10.2, 1.8 Hz), 5.22-

5.20 (1H, m), 5.19-5.16 (1H, m), 5.11-5.04 (1H, m), 2.82 (1H, dtt, J = 13.4, 6.4, 1.3 

Hz), 2.60 (1H, dtm, J = 13.4, 8.1 Hz), 2.37 (3H, s), 2.13-2.02 (3H, m), 1.80-1.71 

(3H, m), 1.44-1.32 (2H, m); 13C NMR (100 MHz; CDCl3): δC 196.4, 146.2, 143.6, 

139.0, 133.9, 129.8, 126.8, 124.8, 118.9, 73.1, 57.3, 42.5, 41.5, 32.2, 23.9, 22.6, 

21.6; IR (neat) νmax = 3069 (CH2CH=CH2), 2957, 2874, 1642 (C=C—C=O), 1598 

(CH2CH=CH2), 1329 (Ts), 1166 (Ts), 1089 (C—N), 1000 (C=CH2), 911 (C=CH2), 816 (cis 

C=C) cm-1; HRMS (CI) observed [M+H]+ 346.1476, calculated for C19H24NO3S 346.1477. 
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7-Allyl-6-azaspiro[4.5]decan-10-one 479 

 

 

 

7-Allyl-6-azaspiro[4.5]dec-8-en-10-one 478 (300 mg, 1.89 mmol) was dissolved in a 

deoxygenated solution of benzene (100 mL) and water (0.2 mL) under argon.  The 

resulting solution was then transferred via cannula to a flask containing 

(triphenylphosphine)copper hydride hexamer (1 g, 0.51 mmol) under argon.  The 

resultant red/brown suspension was stirred at room temperature for 18 hours.   The 

reaction mixture was opened to the air and was allowed to stir for 1 hour before 

being filtered through a pad of Celite® and concentrated.  Flash column 

chromatography (silica gel, elution gradient hexane → hexane-ethyl acetate 9:1) of 

the crude residue afforded 7-allyl-6-azaspiro[4.5]decan-10-one 479 (258 mg, 0.74 

mmol, 85%) as a white solid (m.p. 88-90 °C). 

1H NMR (400 MHz; CDCl3): δH 7.74 (2H, d, J = 8.2 Hz), 7.29 (2H, d, J = 8.2 Hz), 5.69-

5.57 (1H, m), 5.06-5.04 (1H, m), 5.03-5.00 (1H, m), 4.05 (1H, ddt, J = 10.7, 6.3, 4.6 

Hz), 2.66 (1H, dt, J = 15.7, 7.4 Hz), 2.50 (1H, ddd, J = 16.9, 9.3, 6.8 Hz), 2.42 (3H, 

s), 2.41-2.30 (3H, m), 2.20-2.03 (3H, m), 1.98-1.88 (1H, m), 1.86-1.76 (3H, m), 

1.74-1.64 (1H, m), 1.57-1.45 (1H, m); 13C NMR (100 MHz; CDCl3): δC 209.5, 143.4, 

139.2, 139.1, 134.2, 129.8, 129.7, 127.2, 118.2, 76.5, 53.9, 39.4, 38.2, 36.6, 31.9, 

25.5, 24.5, 24.1, 21.6; IR (neat) νmax = 3070 (CH2CH=CH2), 2955, 2877, 1712 (C=O), 

1597 (CH2CH=CH2), 1311 (Ts), 1149 (Ts), 1095 (C—N), 1003 (C=CH2), 964, 902 

(C=CH2) cm-1; HRMS (CI) observed [M+H]+ 348.1632, calculated for C19H26NO3S 

348.1633. 
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7-Allyl-6-azaspiro[4.5]decane 480 

 

 

 

Tosyl-hydrazide (315 mg, 1.69 mmol) was added to 7-allyl-6-azaspiro[4.5]decan-10-

one 479 (535 mg, 1.54 mmol) in absolute ethanol (15 mL) at room temperature 

under argon.  The resultant solution was allowed to stir at room temperature 

overnight.  The solvent was evaporated and the tosyl-hydrazone was dissolved in 

dry dichloromethane (20 mL) then cooled to 0 °C.  DIBAL-H (5.4 mL, 1M in hexanes) 

was added dropwise over a period of 45 minutes.  The resultant solution was 

allowed to stir at 0 °C for 2 hours.   At such times, the reaction mixture was diluted 

with dichloromethane (20 mL) and quenched by the dropwise addition of 15% 

sodium hydroxide solution (15 mL).  Dilution with water (10 mL) allowed the 

formation of a biphasic solution which was extracted with diethyl ether (3 × 15 mL).  

The combined organic layers were dried over sodium sulphate, filtered and 

concentrated.  Flash column chromatography (silica gel, elution gradient petroleum 

ether → petroleum ether-diethyl ether 17:3 → diethyl ether) of the crude residue 

afforded 7-allyl-6-azaspiro[4.5]decane 480 (281 mg, 0.84 mmol, 55%) as a yellow 

oil. 

1H NMR (400 MHz; CDCl3): δH 7.65 (2H, d, J = 8.3 Hz), 7.24 (2H, d, J = 8.2 Hz), 5.87-

5.71 (1H, m), 5.12-5.05 (2H, m), 4.32-4.22 (1H, m), 3.52-3.40 (1H, m), 2.66-2.50 

(2H, m), 2.43-2.34 (1H, m), 2.40 (3H, s), 2.16-1.42 (8H, m); 13C NMR (100 MHz; 

CDCl3): δC 142.7, 142.5, 142.4, 129.7, 129.6, 126.6, 126.4, 117.6, 69.2, 55.1, 40.7, 

40.0, 38.5, 36.5, 36.1, 23.4, 23.2, 21.5, 20.3; IR (neat) νmax = 3070 (CH2CH=CH2), 

2947, 2877, 1597 (CH2CH=CH2), 1311 (Ts), 1149 (Ts), 1095 (C—N), 1003 (C=CH2), 

964, 902 (C=CH2) cm-1; HRMS (CI) observed [M + H2O − H]+ 350.1788, calculated for 

C19H28NO3S 348.1790. 
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(E)-Ethyl 2-methyl-4-(6-azaspiro[4.5]decan-7-yl)but-2-enoate 481 

 

 

 

To a solution of 7-allyl-6-azaspiro[4.5]decane 480 (25 mg, 0.075 mmol) in neat 

ethyl methacrylate (187 μl, 1.50 mmol) was added Hoveyda-Grubbs 2nd generation 

ruthenium catalyst (5 mg, 0.008 mmol).  The resulting mixture was heated to reflux 

overnight.  The reaction mixture was concentrated.  Flash column chromatography 

(silica gel, elution gradient hexane-ethyl acetate 4:1 → hexane-ethyl acetate 1:1) 

of the crude residue afforded ethyl 2-methyl-4-(6-azaspiro[4.5]decan-7-yl)but-2-

enoate 481 (15 mg, 0.036 mmol, 48%) as a yellow oil.  

1H NMR (400 MHz; CDCl3): δH 7.65 (2H, d, J = 8.4 Hz), 7.25 (2H, d, J = 8.1 Hz), 6.70 

(1H, t, J = 6.8 Hz), 4.37-4.29 (1H, m),  4.18 (2H, q, J = 7.0 Hz), 3.55-3.44 (1H, m), 

2.88-2.59 (2H, m), 2.41 (3H, s), 2.43-2.34 (2H, m), 2.26-1.94 (4H, m), 1.89 (3H, 

brs), 1.86-1.41 (7H, m) 1.29 (3H, t, J = 7.0 Hz); 13C NMR (100 MHz; CDCl3): δC 168.1, 

142.6, 138.5, 138.4, 130.1, 130.0,  129.8, 129.7, 125.9, 72.9, 60.7, 56.3, 38.8, 

36.9, 35.1, 34.5, 34.0, 25.9, 25.2, 23.1, 21.5, 14.4, 12.9; IR (neat) νmax = 2947, 

2870, 1705 (O=COEt), 1653 (C=C—CO2Et), 1373 (Ts), 1149 (Ts), 1095 (C—N), 972 

(trans C=C—CO2Et), 810 (R2C=CHR) cm-1; HRMS (FAB) observed [M + H2O − H]+ 

436.2155, calculated for C23H34NO5S 436.2158. 
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(E)-2-(2,2-Dimethylpent-4-enylidene)-3-(prop-1-en-2-yl)cyclopentanone 
519 

 

 

 

Bromopropene 244 (1.47 g, 12.18 mmol) was dissolved in diethyl ether (150 mL) 

under argon and cooled to −78 °C.  t-Butyllithium (12.8 mL, 1.9 M in hexanes) was 

added dropwise and the resultant solution was stirred at −78 °C for 30 minutes.  

Copper iodide (1.16 g, 6.09 mmol) was added in one portion and the reaction flask 

was removed from the cooling bath and stirred at room temperature for precisely 3 

minutes.  During this time the suspension steadily grew darker towards black.  The 

reaction mixture was recooled to −78 °C and cyclopentenone (500 mg, 6.09 mmol) 

was added.  The resultant brown suspension was stirred at −78 °C for 2 hours.   2,2-

Dimethylpentenal (683 mg, 6.09 mmol) was added and the reaction mixture was 

stirred, warming gradually to room temperature for 12 hours.  

The reaction was quenched with saturated aqueous Ammonium chloride (75 mL) 

and extracted with diethyl ether (3 × 75 mL).   

The combined organic layers were dried over sodium sulfate, filtered and 

concentrated.  Flash column chromatography (silica gel, elution gradient petroleum 

ether → petroleum ether-diethyl ether 4:1) of the residue afforded (E)-2-(2,2-

dimethylpent-4-enylidene)-3-(prop-1-en-2-yl)cyclopentanone 519 (1.03 g, 4.74 

mmol, 78%) as a yellow oil. 

1H NMR (500 MHz, CDCl3) δH: 6.55 (1H, t, J = 2.6 Hz), 5.76-5.66 (1H, m), 5.05-5.00 

(2H, m), 4.79-4.73 (2H, m), 3.01 (1H, ddd, J = 16.3, 7.3, 2.1 Hz), 2.77-2.69 (1H, 

m), 2.55-2.43 (2H, m), 2.23 (1H, dd, J = 17.6, 10.0 Hz), 2.17 (2H, brd, J = 7.4 Hz), 

1.76 (3H, s), 1.13 (6H, s); 13C NMR (125 MHz, CDCl3) δC: 206.7, 146.5, 144.7, 134.6, 

134.5, 117.7, 110.0, 47.1, 42.5, 40.3, 36.6, 33.0, 27.1, 27.0, 20.7; IR (neat) νmax 

3077 (CH2CH=CH2), 2964, 2916, 2874, 1722 (C=C—C=O), 1641 (CH=CH2), 1412 

(C=CH2), 1364 (C(CH3)2), 1152 (C(CH3)2), 995 (CH=CH2), 889 (R2C=CH2) cm-1; HRMS: 

(CI) observed [M+H]+ 219.1745, calculated for C15H23O 219.1749. 



Flexible Synthesis of Spirocyclic Pyrans and Piperidines References 

 

 153 

2-(2,2-Dimethylpent-4-enyl)-3-(prop-1-en-2-yl)cyclopentanone 520 

 

 

 

2-(2,2-Dimethylpent-4-enylidene)-3-(prop-1-en-2-yl)cyclopentanone 519 (500 mg, 

2.29 mmol) was dissolved in tetrahydrofuran (5 mL) and zinc chloride (468 mg, 3.44 

mmol) was added followed by palladium tetrakis(triphenylphosphorane) (5.5 mg, 

4.6 μmmol).  Tributyltin hydride (800 mg, 2.75 mmol) was added dropwise and the 

resultant yellow solution was stirred for 1 hour at ambient temperature under 

argon.   

The reaction was quenched with saturated aqueous ammonium chloride (10 mL) and 

extracted with diethyl ether (3 × 10 mL).  The combined organic phases were 

washed with saturated aqueous potassium fluoride (3 × 10 mL), then dried over 

sodium sulfate, filtered and concentrated. 

Flash column chromatography (silica gel, elution gradient petroleum ether → 

petroleum ether-diethyl ether 9:1) of the crude residue afforded 2-(2,2-

dimethylpent-4-enyl)-3-(prop-1-en-2-yl)cyclopentanone 520 (424 mg, 1.92 mmol, 

84%). 

1H NMR (500 MHz, CDCl3) δH: 5.82 (1H, ddt, J = 17.6, 10.2, 7.4 Hz), 5.04-4.97 (2H, 

m), 4.79 (1H, dd, J = 2.5, 1.4 Hz), 4.77-4.76 (1H, m), 2.68 (1H, ddd, J = 18.4, 12.3, 

6.5 Hz), 2.52-2.44 (2H, m), 2.17-2.11 (1H, m), 2.03 (1H, dd, J = 18.5, 12.3 Hz), 

1.98-1.93 (3H, m), 1.77 (3H, s), 1.40 (1H, dd, J = 14.3, 7.5 Hz), 1.10 (1H, dd, J = 

14.2, 9.1 Hz), 0.89 (6H, s); 13C NMR (125 MHz, CDCl3) δC:  219.9, 146.3, 135.4, 

117.3, 109.8, 47.8, 47.2, 42.7, 42.3, 41.8, 38.2, 33.3, 27.4, 27.2, 20.9; IR (neat) 

νmax 3077 (CH2CH=CH2), 2957, 2920, 2870, 1742 (C=O), 1645 (CH=CH2),  1409 

(C=CH2), 1150 (C(CH3)2), 995 (CH=CH2), 912 (CH=CH2), 889 (R2C=CH2) cm-1; HRMS: 

(CI) observed [M+H]+ 221.1908, calculate for C15H25O 221.1905. 
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(S)-Methyl 3-(tert-butyldiphenylsilyloxy)-2-methylpropanoate 539 

 

 

 

(S)-Methyl 3-hydroxy-2-methylpropanoate 538 (2.14 g, 18.13 mmol) and imidazole 

(5.48 g, 19.95 mmol) were dissolved in dichloromethane (24 mL) and cooled to 0 °C 

under argon.  TBDPSCl (1.48 g, 21.76 mmol) was added dropwise and the resultant 

solution was stirred, warming to room temperature overnight. 

The reaction mixture was diluted with saturated aqueous sodium hydrogen 

carbonate (20 mL) and extracted with dichloromethane (3 × 20 mL).  The combined 

organic extracts were dried over sodium sulfate, filtered and concentrated.  Flash 

column chromatography (silica gel, elution gradient petroleum ether → petroleum 

ether-ethyl acetate 9:1) of the crude residue afforded (S)-methyl 3-(tert-

butyldiphenylsilyloxy)-2-methylpropanoate 539 (6.45 g, 18.09 mmol, >99%) as a 

colourless oil.   

1H NMR (400 MHz, CDCl3) δH: 7.65 (4H, d, J = 7.1 Hz), 7.43-7.37 (6H, m), 3.83 (1H, 

dd, J = 9.7 Hz, 8.0 Hz), 3.72 (1H, dd, J = 9.3 Hz, 6.2 Hz), 3.69 (3H, s), 2.76-2.68 

(1H, m), 1.15 (3H, d, J = 7.1 Hz), 1.03 (9H, s); 22][ Da + 6.8 (c 1.0, CHCl3);  
13C NMR 

(100 MHz, CDCl3) δC: 175.5, 135.7, 135.7, 133.7, 133.6, 129.8, 127.8, 66.0, 51.7, 

42.5, 26.8, 19.4, 13.6; IR (neat): νmax 2953, 2931, 2858, 1740 (O=COMe), 1471 

(CH2O), 1197 (C(CH3)3), 1105 (Si—O), 1026 (OMe) cm-1; HRMS: (CI) observed [M+H]+ 

357.1891, calculated for C21H29O3Si 357.1886. 

 

(R)-3-(tert-Butyldiphenylsilyloxy)-2-methylpropan-1-ol 540 

 

 

 

(S)-Methyl 3-(tert-butyldiphenylsilyloxy)-2-methylpropanoate 539 (7.80 g, 21.88 

mmol) was dissolved in dichloromethane (90 mL) under argon and cooled to 0 °C.  
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DIBAL-H (48.1 mmol, 48.1 mL, 1M in hexanes) was added dropwise.  The resultant 

solution was stirred warming to room temperature under argon for 1 hour.    

A saturated aqueous solution of Rochelle’s salt (150 mL) was added for quenching 

and the resultant biphasic solution was stirred vigorously until the organic phase 

became clear.   

The organic phase was separated and the aqueous phase was extracted with ethyl 

acetate (3 × 75 mL).  The combined organic extracts were washed with brine (50 

mL), dried over sodium sulfate, filtered and concentrated.  Flash column 

chromatography (silica gel, elution gradient hexane → hexane-ethyl acetate 9:1) of 

the crude residue afforded (R)-3-(tert-butyldiphenylsilyloxy)-2-methylpropan-1-ol 

540 (7.19 g, 21.88 mmol, 99%) as a colourless oil.  

1H NMR (400 MHz, CDCl3) δH: 7.67 ( 4H, d, J = 7.0 Hz), 7.45-7.38 (6H, m), 3.73 (1H, 

dd, J = 10.1, 4.4 Hz), 3.68 (2H, t, J = 5.7 Hz), 3.59 (1H, dd, J = 9.8, 7.9 Hz), 2.55 

(1H, t, J = 5.7 Hz), 2.04-1.96 (1H, m), 1.06 (9H, s), 0.83 (3H, d, J = 7.1 Hz); 13C NMR 

(100 MHz, CDCl3) δC: 135.7, 135.7, 133.3, 133.2, 129.9, 127.9, 69.0, 67.9, 37.4, 

27.0, 19.3, 13.3; 25][ Da + 4.0 (c 1.0, CHCl3); IR (neat): νmax 3369 (OH), 2958, 2929, 

2856, 1471 (CH2O), 1188 (C(CH3)3), 1111 (Si—O), cm-1; HRMS: (CI) observed [M+H]+ 

329.1934, calculated for C20H29O2Si 329.1937. 

 

(S)-3-(tert-Butyldiphenylsilyloxy)-2-methylpropanal 541 

 

 

 

Oxalyl chloride (6.00g, 47.24 mmol) was dissolved in dichloromethane (320 mL) and 

cooled to −78 °C under argon.  Dimethylsulfoxide (7.38 g, 94.48 mmol) in 

dichloromethane (10 mL) was slowly added and the resultant solution was stirred at 

−78 °C for 30 minutes.  A solution of (R)-3-(tert-butyldiphenylsilyloxy)-2-

methylpropan-1-ol 540 (7.76 g, 23.62 mmol) in  dichloromethane (45 mL) was 

added dropwise and the resultant solution was stirred at −78 °C for 1 hour.   At 

such time, triethylamine (19.12 g, 188.97 mmol) was added dropwise and the 

reaction mixture was stirred, venting through bleach, at −78 °C for 15 minutes, 
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then warmed gradually towards room temperature over 45 minutes.  The reaction 

was quenched with saturated aqueous sodium hydrogen carbonate (500 mL) and the 

biphasic solution was extracted with dichloromethane (3 × 200 mL).  The combined 

organic extracts were washed with brine, then dried over sodium sulfate, filtered 

and concentrated to afford (S)-3-(tert-butyldiphenylsilyloxy)-2-methylpropanal 541 

as a colourless oil which was used without further purification. 

 

(R)-tert-Butyl(2-methylbut-3-ynyloxy)diphenylsilane 542[202] 

 

 

 

Triphenylphosphine (18.59 g, 70.86 mmol) and zinc dust (4.63 g, 70.86 mmol) were 

suspended in dichloromethane (40 mL) under argon and cooled to 0 °C.  

Tetrabromomethane (23.50 g, 70.86 mmol) in dichloromethane (15 mL) was added 

dropwise and the resultant mixture was stirred at 0 °C under argon for 1.5 hours.  

Crude (R)-3-(tert-butyldiphenylsilyloxy)-2-methylpropan-1-ol 541 (ca. 23.62 mmol) 

in dichloromethane (20 mL) was added dropwise at 0 °C and the suspension was 

stirred warming to room temperature overnight. 

The reaction mixture was poured into hexane (150 mL) and the precipitate was 

removed by filtration.  The filtrate was concentrated in vacuo at room temperature 

then dissolved in anhydrous tetrahydrofuran (50 mL).  The resultant solution was 

cooled to −78 °C under argon. n-Butyllithium (24 mL, 2.5 M in hexanes) was added 

dropwise and the solution was stirred at −78 °C under argon for 1.5 hours. 

The reaction mixture was quenched with saturated aqueous sodium hydrogen 

carbonate (40 mL) and extracted with diethyl ether (3 x 45 mL).  The combined 

organic extracts were dried over sodium sulfate, filtered and concentrated.  Flash 

column chromatography (silica gel, isocratic elution hexane) of the crude residue 

afforded (R)-tert-butyl(2-methylbut-3-ynyloxy)diphenylsilane 542 (7.15 g, 22.17 

mmol, 94% over two steps).  

1H NMR (400 MHz, CDCl3) δH: 7.69 (4H, appdt, J = 7.7, 1.3 Hz), 7.46-7.37 (6H, m), 

3.75 (1H, dd, J = 9.7, 5.8 Hz), 3.55 (1H, dd, J = 9.4, 7.6 Hz), 2.72-2.63 (1H, m), 
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2.04 (1H, d, J = 2.4 Hz), 1.25 (3H, d, J = 6.8 Hz), 1.08 (9H, s); 13C NMR (100 MHz, 

CDCl3) δC: 135.8, 135.7, 133.7, 129.8, 127.8, 86.7, 69.2, 67.6, 28.9, 26.9, 19.4, 

17.5; 22][ Da + 2.4 (c 1.0, CHCl3); IR (neat): νmax 3308 (CCH), 2959, 2932, 2859, 1362 

(CCH), 1188 (C(CH3)3), 1111 (Si—O), 937 (CCH) cm-1; HRMS: (CI) observed [M+H]+ 

323.1830, calculated for C21H27OSi 323.1831. 

 

(R)-2-(1-(tert-Butyldiphenylsilyloxy)propan-2-yl)cyclopent-2-enone 543 

 

 

 

Co2(CO)8 (1.06 g, 3.10 mmol) was dissolved in dichloromethane (25 mL) at room 

temperature under argon with vigorous stirring.  A solution of (R)-tert-butyl(2-

methylbut-3-ynyloxy)diphenylsilane 542 (1.00 g, 3.10 mmol) in dichloromethane (10 

mL) was added dropwise and the resultant dark red solution was stirred at room 

temperature under argon for 2 hours.  The reaction mixture was then filtered 

through a pad of silica using dichloromethane as the eluent.  The filtrate was 

concentrated and passed through a second pad of silica using 10% diethyl ether in 

petroleum ether as the eluent.  The resulting filtrate was concentrated, taken up in 

vinyl benzoate (20 mL) and warmed gently to 27 °C under argon.  A solution of 

NMO.H2O (2.56 g, 18.91 mmol) in dichloromethane (35 mL) was added over the 

course of 1 hour.  The resultant dark solution was stirred at 27 °C under argon 

overnight.  The reaction mixture was filtered through a pad of silica using diethyl 

ether as the eluent and concentrated.  Flash column chromatography (silica gel, 

elution gradient petroleum ether → petroleum ether-diethyl ether 9:1) of the crude 

residue afforded (R)-2-(1-(tert-butyldiphenylsilyloxy) propan-2-yl) cyclopent-2-

enone 543 (846 mg, 2.36 mmol, 76%) as a colourless oil.   

1H NMR (400 MHz, CDCl3) δH: 7.63-7.60 (4H, m), 7.43-7.33 (7H, m), 3.72 (1H, dd, J = 

9.7, 5.3 Hz), 3.61 (1H, dd, J = 9.7, 6.0 Hz), 2.83-2.77 (1H, m), 2.54-2.50 (2H, m), 

2.36-2.33 (2H, m), 1.16 (3H, d, J = 7.21 Hz), 1.16 (9H, s); 13C NMR (100 MHz, CDCl3) 
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δC: 209.5, 158.0, 148.3, 135.7, 133.9, 129.7, 127.7, 66.8, 34.9, 32.7, 27.0, 26.7, 

19.5, 16.1; 22][ Da + 1.6 (c 1.0, CHCl3); IR (neat): νmax 3071, 2959, 2930, 2859, 1701 

(C=C—C=O), 1630 (C=C—C=O),  1200 (C(CH3)3), 1111 (Si—O), 990 (RC=C—C=O), 926 

(C=C—C=O), 824 (R2C=CH2), 700 (cis C=C) cm-1. HRMS: (CI) observed [M+H]+ 

379.2092, calculated for C24H31O2Si 379.2093.  

 

(R)-2-((R)-1-(tert-Butyldiphenylsilyloxy)propan-2-yl)cyclopentanone 544a 

 

 

 

(R)-2-(1-(tert-Butyldiphenylsilyloxy) propan-2-yl) cyclopent-2-enone 543 (1.42 g, 

3.75 mmol) was dissolved in absolute ethanol (20 mL) at room temperature and 

palladium 5% on charcoal (390 mg) was added.  An atmosphere of hydrogen was 

generated and the resultant suspension was stirred at room temperature under 

hydrogen for 2 hours.  The reaction mixture was passed through Celite® and 

concentrated before being dissolved in tetrahydrofuran (10 mL) and cooled to 0 °C 

under argon.  Tetrabutylammonium fluoride solution (7.50 mmol, 7.50 mL, 1M in 

tetrahydrofuran) was added dropwise and the resultant solution was stirred 

warming to room temperature under argon overnight.  The reaction was quenched 

with water and the aqueous phase was extracted with ethyl acetate (2 x 10 mL), 

followed by diethyl ether (2 x 10 mL) and finally twice with dichloromethane (2 x 

10 mL).  The combined organic extracts were dried over sodium sulfate, filtered 

and concentrated.  Careful flash column chromatography of the crude residue 

(silica gel, isocratic elution diethyl ether-hexane 3:1) afforded the desired 

diastereoisomer (R)-2-((R)-1-(tert-butyldiphenylsilyloxy)propan-2-yl)cyclopent-

anone 182a (387 mg, 2.72 mmol, 72%)[74] which was dissolved in dichloromethane 

(15 mL) and cooled to 0 °C under argon.  Imidazole (222 mg, 3.26 mmol) was 

added, followed by TBDPSCl (822 mg, 2.99 mmol) dropwise.  The resultant cloudy 

solution was stirred, warming to room temperature, under argon overnight.  The 
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reaction was quenched with saturated aqueous sodium hydrogen carbonate  (10 mL) 

and the aqueous phase was extracted with dichloromethane (3 x 10 mL).  The 

combined organic extracts were dried over sodium sulfate, filtered and 

concentrated to afford (R)-2-((R)-1-(tert-butyldiphenylsilyloxy)propan-2-

yl)cyclopentanone 544a (1.04 g, 2.72 mmol, >99%) which was used without further 

purification.  

1H NMR (400 MHz, CDCl3) δH: 7.68-7.64 (4H, m), 7.43-7.36 (6H, m), 3.60 (1H, dd, J = 

9.9, 5.5 Hz), 3.46 (1H, dd, J = 9.9, 8.1 Hz), 2.48-2.29 (3H, m), 2.06-1.89 (3H, m), 

1.75-1.59 (2H, m), 1.04 (9H, s), 0.72 (3H, d, J = 6.9 Hz); 13C NMR (125 MHz, CDCl3) 

δC: 221.8, 135.7, 134.9, 129.8, 127.8, 67.4, 50.8, 39.2, 34.7, 27.0, 24.0, 20.9, 19.4, 

12.3; 22][ Da + 26.8 (c 1.0, CHCl3); IR (neat): νmax 3073, 2961, 2859, 1732 (C=O), 1155 

(C(CH3)3), 1111 (Si—O), cm-1; HRMS: (CI) observed [M+H]+ 381.2247, calculated for 

C24H33O2Si 381.2250. 

 

(1R,2R)-2-((R)-1-(tert-Butyldiphenylsilyloxy)propan-2-yl)-1-(furan-2-yl)- 
cyclopentanol 545 

 

 

 

Furan 415 (613 mg, 9.00 mmol) was added to a stirred solution of n-butyllithium 

(9.00 mmol, 3.6 mL, 2.5 M in hexanes) and N,N,N’,N’-tetramethylethylenediamine 

(1.05 g, 9.00 mmol) in tetrahydrofuran (40 mL) at −78 °C under argon, and stirring 

was continued for 1 hour.  (R)-2-((R)-1-(tert-Butyldiphenylsilyloxy)propan-2-yl) 

cyclopentanone 544a (685 mg, 1.80 mmol) was dissolved in tetrahydrofuran (5 mL) 

and cooled to −78 °C under argon.  The lithiofuran solution was added to the 

solution of ketone and stirring was continued under argon, warming to room 

temperature overnight. 

The reaction as quenched with saturated aqueous ammonium chloride and 

extracted with diethyl ether (3 × 50 mL).  Combined organic extracts were dried 
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over sodium sulfate, filtered and concentrated.  Flash column chromatography 

(silica gel, elution gradient petroleum ether → petroleum ether-diethyl ether 9:1) 

afforded (1R,2R)-2-((R)-1-(tert-butyldiphenylsilyloxy)propan-2-yl)-1-(furan-2-

yl)cyclopentanol 545 (638 mg, 1.42 mmol) as an inseparable mixture (>6:1) of 

desired furfuryl alcohol and unreacted ketone.   

1H NMR (400 MHz, CDCl3) δH: 7.63-7.60 (2H, m), 7.53-7.50 (2H, m), 7.45-7.33 (6H, 

m), 7.29 (1H, dd, J = 1.8, 0.9 Hz), 6.29 (1H, dd, J = 3.2, 1.8 Hz), 6.19 (1H, dd, J = 

3.2, 0.9 Hz), 3.82 (1H, d, J = 1.2 Hz), 3.32 (1H, dd, J = 10.5, 7.0 Hz), 3.27 (1H, dd, 

J = 10.5, 4.2 Hz), 2.26-2.20 (1H, m), 2.11-2.01 (1H, m), 1.99-1.84 (4H, m), 1.74-

1.61 (2H, m), 1.01 (9H, s), 0.84 (3H, d, J = 7.0 Hz);  13C NMR (100 MHz, CDCl3) δC: 

160.4, 140.9, 135.8, 133.3, 129.8, 127.8, 110.4, 104.4, 80.4, 68.3, 52.2, 42.8, 37.2, 

29.9, 26.8, 22.1, 19.2, 17.0. 

 

(1R,5R)-1-((R)-1-(tert-Butyldiphenylsilyloxy)propan-2-yl)-7-hydroxy-6-
oxaspiro[4.5]dec-8-en-10-one 548 

 

 

 

(1R,2R)-2-((R)-1-(tert-butyldiphenylsilyloxy)propan-2-yl)-1-(furan-2-yl)cyclopent-

anol 545 (400 mg, 0.89 mmol) was taken up in a mixture of tetrahydrofuran (4.5 

mL) and water (1.2 mL) and cooled to 0 °C.  Sodium hydrogen carbonate (150 mg, 

1.78 mmol) and sodium acetate (73 mg, 0.89 mmol) were added, followed by N-

bromosuccinimide (175 mg, 0.98 mmol) in one portion.  Stirring was continued for 

10 minutes.   

The reaction was quenched with saturated aqueous sodium thiosulfate (10 mL) and 

extracted with diethyl ether (3 × 10 mL).  The combined organic extracts were 

washed with saturated aqueous ammonium chloride (10 mL), then dried over 

sodium sulfate, filtered and concentrated to afford (1R,5R)-1-((R)-1-(tert-
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butyldiphenylsilyloxy)propan-2-yl)-7-hydroxy-6-oxaspiro[4.5]dec-8-en-10-one 548 as 

a colourless oil which was used without further purification.  

 

(1R,5R,7S)-7-Allyl-1-((R)-1-(tert-butyldiphenylsilyloxy)propan-2-yl)-6-
oxaspiro[4.5]dec-8-en-10-one 549 

 

 

 

Crude (1R,5R)-1-((R)-1-(tert-butyldiphenylsilyloxy)prop-an-2-yl)-7-hydroxy-6-

oxaspiro[4.5]dec-8-en-10-one 548 was dissolved in dichloromethane (15 mL) and 

cooled to 0 °C under argon.  Allyltrimethylsilane (204 mg, 1.78 mmol) was added 

followed by boron trifluoride-diethyl etherate (127 mg, 0.89 mmol) dropwise.  The 

resultant solution was stirred at 0 °C for 30 minutes.   

The reaction was quenched with saturated aqueous ammonium chloride (10 mL) and 

extracted with dichloromethane (3 × 10 mL).  The combined organic extracts were 

dried over sodium sulfate, filtered and concentrated.  Flash column 

chromatography (silica gel, elution gradient petroleum ether → petroleum ether-

diethyl ether 19:1) of the crude residue afforded (1R,5R,7S)-7-allyl-1-((R)-1-(tert-

butyldiphenylsilyloxy) propan-2-yl)-6-oxaspiro[4.5]dec-8-en-10-one 549 (285 mg, 

0.58 mmol, 65% over two steps) as a colourless oil. 

1H NMR (400 MHz, CDCl3) δH: 7.62-7.59 (4H, m), 7.41-7.32 (6H, m), 6.60 (1H, dd, J = 

10.5, 2.9 Hz), 5.84-5.75 (1H, m), 5.80 (1H, dd, J = 10.5, 2.0 Hz), 5.14-5.10 (2H, m), 

4.26 (1H, ddd, J = 9.7, 7.2, 2.5 Hz), 3.47 ( 1H, dd, J = 9.7, 4.9 Hz), 3.20 (1H, dd, J 

= 9.5, 8.7 Hz), 2.48-2.42 (1H, m), 2.35-2.29 (1H, m), 2.28-2.23 (1H, m) 1.99-1.90 

(2H, m), 1.88-1.82 (2H, m), 1.79-1.71 (1H, m), 1.65-1.50 (2H, m), 1.02 (9H, s), 1.01 

(3H, d, J = 6.5 Hz); 13C NMR (100 MHz, CDCl3) δC: 198.8, 149.2, 135.8, 135.7, 134.3, 

134.2, 133.8, 129.6, 129.5, 127.7, 127.6, 124.9, 118.1, 89.2, 71.3, 68.3, 50.6, 41.4, 

40.9, 36.6, 28.6, 27.0, 22.9, 19.4, 15.8; 22][ Da  −64.0  (c 0.1, CHCl3) IR (neat): νmax 
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3071 (CH2CH=CH2), 2959, 2857, 1678 (C=C—C=O), 1641 (CH2CH=CH2), 1186 (C(CH3)3), 

1109 (Si—O), 1088 (C—O), 997 (C=CH2), 937, 920 (C=CH2),  698 (cis C=C) cm-1; HRMS: 

(CI) observed [M+H]+ 489.2824, calculated for C31H41O3Si 489.2825. 

 

(1R,5R,7R)-7-Allyl-1-((R)-1-(tert-butyldiphenylsilyloxy)propan-2-yl)-6-
oxaspiro[4.5]decan-10-one 550 

 

 

 

(1R,5R,7S)-7-allyl-1-((R)-1-(tert-butyldiphenylsilyloxy)propan-2-yl)-6-oxaspiro-

[4.5]dec-8-en-10-one 549 (270 mg, 0.55 mmol) was dissolved in tetrahydrofuran (3 

mL) at room temperature under argon.  Zinc chloride (113 mg, 0.83 mmol) and 

palladium tetrakis(triphenylphosphorane) (1.3 mg, 0.001 mmol) were added 

followed by tributyltin hydride (193 mg, 0.66 mmol) dropwise.  The resultant yellow 

solution was stirred at room temperature for 1 hour.   

The reaction was quenched with saturated aqueous ammonium chloride (5 mL) and 

extracted with diethyl ether (3 × 5 mL).  The combined organic layers were dried 

over sodium sulfate, filtered and concentrated.  Flash column chromatography 

(silica gel, elution gradient petroleum ether → petroleum ether-diethyl ether 19:1) 

of the crude residue afforded (1R,5R,7R)-7-allyl-1-((R)-1-(tert-

butyldiphenylsilyloxy)-propan-2-yl)-6-oxaspiro[4.5]decan-10-one 550 (244 mg, 0.50 

mmol, 90%) as a colourless oil.   

1H NMR (400 MHz, CDCl3) δH: 7.66-7.62 (4H, m), 7.42-7.35 (6H, m), 5.84-5.76 (1H, 

m), 5.11-5.05 (2H, m), 3.64-3.60 (1H, m), 3.34 (1H, dd, J = 9.6, 5.4 Hz), 3.23 (1H, 

dd, J = 9.6, 8.0 Hz), 2.37-2.26 (3H, m), 2.21-2.15 (1H, m), 2.06-1.94 (2H, m), 1.87-

1.49 (7H, m), 1.39-1.29 (1H, m), 1.05 (9H, s), 0.99 (3H, d, J = 6.8 Hz); 13C NMR (100 

MHz, CDCl3) δC: 213.8, 135.8, 135.7, 134.7, 134.2, 129.6, 127.7, 117.2, 91.0, 72.8, 

68.6, 48.5, 41.7, 41.0, 35.6, 28.2, 27.6, 27.0, 22.5, 19.4, 15.2; 22][ Da  +24.0 (c 0.1, 
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CHCl3); IR (neat): νmax 3071 (CH2CH=CH2), 2859, 2930, 2857, 1715 (C=O), 1643 

(CH2CH=CH2),  1186 (C(CH3)3), 1105 (Si—O), 1086 (C—O), 1007, 997 (C=CH2), 941, 

914 (C=CH2) cm-1; HRMS: (CI) observed [M+H]+ 491.2985, calculated for C31H43O3Si 

491.2981. 

 

((R)-2-((1R,5S,7R)-7-allyl-6-oxaspiro[4.5]decan-1-yl)propoxy)(tert-
butyl)diphenylsilane 551 

 

 

 

(1R,5R,7R)-7-allyl-1-((R)-1-(tert-butyldiphenylsilyloxy)prop-an-2-yl)-6-oxaspiro-

[4.5]decan-10-one 550 (120 mg, 0.24mmol) was dissolved in absolute ethanol (1.5 

mL) under argon and cooled to 0 °C.  Tosyl-hydrazide (91 mg, 0.49mmol) was added 

in one portion and the resultant solution was heated to 50 °C overnight.  The 

reaction mixture was concentrated and dissolved in dry dichloromethane (2.5 mL) 

and cooled to 0 °C.  DIBAL (0.86 mmol, 0.86 mL, 1M in hexanes) was added 

dropwise over 1 hour and the resultant solution was stirred for 2 hours at 0 °C.  The 

reaction was quenched with saturated aqueous Rochelle’s salt (5 mL) and the 

biphasic mixture was stirred until the organic phase became clear (~1.5 h).  The 

phases were separated and the aqueous layer was extracted with ethyl acetate (3 × 

5 mL).  The combined organic layers were washed with brine, then dried over 

sodium sulfate, filtered and concentrated.  Flash column chromatography (silica 

gel, elution gradient petroleum ether → petroleum ether-diethyl ether 19:1) of the 

crude residue afforded ((R)-2-((1R,5S,7R)-7-allyl-6-oxaspiro[4.5]decan-1-

yl)propoxy)(tert-butyl)diphenylsilane 551 (70 mg, 1:1 mixture desired product 

0.088 mmol, 37%) as a colourless oil which was carried forward without further 

purification.  
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(E)-Ethyl 4-((1R,5S,7R)-1-((R)-1-(tert-butyldiphenylsilyloxy)propan-2-yl)-6-
oxa-spiro[4.5]decan-7-yl)-2-methylbut-2-enoate 553 

 

 

 

To a deoxygenated solution of ((R)-2-((1R,5S,7R)-7-allyl-6-oxaspiro[4.5]decan-1-

yl)propoxy)(tert-butyl)diphenylsilane 551 in ethyl methacrylate was added Grubbs 

2nd generation ruthenium catalyst.  The resultant green solution was heated to 125 

°C overnight.   

Excess ethyl methacrylate was removed in vacuo and flash column chromatography 

(silica gel, elution gradient petroleum ether → petroleum ether-diethyl ether 9:1) 

of the resultant crude residue afforded (E)-ethyl 4-((1R,5S,7R)-1-((R)-1-(tert-

butyldiphenylsilyloxy)propan-2-yl)-6-oxaspiro[4.5]-decan-7-yl)-2-methylbut-2-

enoate 553 (28 mg, 0.050 mmol, 57%) as a colourless oil. 

1H NMR (500 MHz, CDCl3) δH: 7.66-7.64 (4H, m), 7.42-7.35 (6H, m), 6.90-6.87 (1H, 

m), 4.19-4.13 (2H, m), 3.62-3.57 (1H, m), 3.45 (1H, dd, J = 9.5, 5.4 Hz), 3.37 (1H, 

appt, J = 9.5 Hz), 2.49 (1H, br s), 2.37-2.25 (2H, m), 2.08-2.01 (1H, m), 1.91-1.83 

(1H, m), 1.85 (3H, s), 1.71-1.49 (8H, m), 1.32-1.17 (3H, m), 1.23 (3H, t, J = 7.4 Hz), 

1.05 (9H, s), 0.81 (3H, d, J = 6.9 Hz); 13C NMR (125 MHz, CDCl3) δC: 168.2, 138.7, 

135.7, 134.1, 129.7, 128.9, 127.8, 84.5, 72.2, 68.5, 60.5, 40.6, 39.5, 36.3, 36.0, 

33.5, 31.4, 27.0, 23.0, 20.4, 20.0, 19.3, 14.4, 12.8, 12.7; 22][ Da  +24.0 (c 0.1, CHCl3); 

IR (neat): νmax 3071, 2957, 2932, 2859, 2359, 2330, 1735, 1709 (O=COEt), 1628 

(C=C—CO2Et), 1209 (C(CH3)3), 1111 (Si—O), 1082 (C—O), 992 (trans C=C—CO2Et) 804 

(R2C=CHR)cm-1; HRMS (CI/ISO) observed [M+H]+ 563.3551, calculated for C35H51O4Si 

563.3557. 
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(E)-Ethyl 4-((1R,5S,7R)-1-((R)-1-hydroxypropan-2-yl)-6-
oxaspiro[4.5]decan-7-yl)-2-methylbut-2-enoate 554 

 

 

 

(E)-Ethyl 4-((1R,5S,7R)-1-((R)-1-(tert-butyldiphenylsilyloxy) propan-2-yl)-6-

oxaspiro[4.5]decan-7-yl)-2-methylbut-2-enoate 553 (25 mg, 0.044 mmol) was 

dissolved in tetrahydrofuran (1 mL) under argon and cooled to 0 °C.  

Tetrabutylammonium fluoride solution (0.088 mmol, 88 μl, 1M in tetrahydrofuran) 

was added slowly.  The resultant solution was stirred warming to room temperature 

over 12 hours.  

The reaction mixture was quenched with water (2 mL) and extracted with ethyl 

acetate (2 × 5 mL), diethyl ether (2 × 5 mL) and chloroform (2 × 5 mL).  The 

combined organic extracts were dried over sodium sulfate, filtered and 

concentrated.  Flash column chromatography (silica gel, elution gradient petroleum 

ether-diethyl ether 5:1 → petroleum ether-diethyl ether 1:1) of the crude residue 

afforded (E)-ethyl 4-((1R,5S,7R)-1-((R)-1-hydroxypropan-2-yl)-6-oxaspiro[4.5]decan-

7-yl)-2-methylbut-2-enoate 554 (12 mg, 0.037 mmol, 84%) as a colourless oil.  

1H NMR (500 MHz, CDCl3) δH: 6.86-6.83 (1H, m), 4.17 (2H, q, J = 7.1 Hz), 3.60-3.55 

(1H, m), 3.39-3.43 (2H, m), 2.40-2.32 (1H, m), 2.31-2.25 (1H, m), 2.20-2.18 (1H, 

m), 1.99-1.85 (3H, m), 1.83 (3H, d, J = 0.9 Hz), 1.73-1.46 (9H, m), 1.35-1.19 (2H, 

m), 1.29 (3H, t, J = 7.1 Hz), 0.90 (3H, d, J = 6.9 Hz); 13C NMR (125 MHz, CDCl3) δC: 

168.4, 138.7, 129.2, 84.5, 72.8, 68.2, 60.6, 41.3, 40.6, 36.2, 35.9, 34.5, 31.2, 23.9, 

20.2, 20.1, 14.5, 13.2, 12.7; 22][ Da  +48.0 (c 0.05, CHCl3); IR (neat) νmax 3374 (OH), 

2938, 2863, 1708 (O=COEt), 1653 (C=C—CO2Et), 1060 (C—O) cm-1; HRMS: (EI) 

observed [M]+ 324.2306, calculated for C19H32O4 324.2301.  
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(E)-Ethyl 4-((1R,5S,7R)-1-((S)-but-3-en-2-yl)-6-oxaspiro[4.5]decan-7-yl)-2-
methylbut-2-enoate 556 

 

 

 

(E)-Ethyl 4-((1R,5S,7R)-1-((R)-1-hydroxypropan-2-yl)-6-oxa-spiro[4.5]decan-7-yl)-2-

methylbut-2-enoate 554 (10 mg, 0.031 mmol) was dissolved in dichloromethane (1 

mL) under argon at room temperature.  Dess-Martin periodinane (20 mg, 0.046 

mmol) was added and the resultant solution was stirred at room temperature under 

argon for 5 hours.  The reaction mixture was quenched with saturated aqueous 

Na2S2O3 (5 mL) and extracted with dichloromethane (3 x 5 mL).  The combined 

organic extracts were dried over sodium sulfate, filtered and concentrated to 

afford (E)-ethyl 2-methyl-4-((1R,5S,7R)-1-((R)-1-oxopropan-2-yl)-6-

oxaspiro[4.5]decan-7-yl)but-2-enoate 555 as a colourless oil which was used 

without further purification.   

Methyltriphenylphosphonium bromide (16 mg, 0.046 mmol) was taken up in 

tetrahydrofuran (0.5 mL) and cooled to 0 °C under argon.  n-Butyllithium (0.046 

mmol, 18 μl, 2.5 M in hexanes) was added dropwise and the resultant suspension 

was stirred for 1 hour.   Crude (E)-ethyl 2-methyl-4-((1R,5S,7R)-1-((R)-1-oxopropan-

2-yl)-6-oxaspiro-[4.5]de-can-7-yl)but-2-enoate 555 was dissolved in tetrahydrofuran 

(0.5 mL) and cooled to −78 °C.  The ylid containing solution was added dropwise to 

the stirred solution of aldehyde and solution was stirred, warming to room 

temperature under argon, for 12 hours.   A further 1.5 equiv. ylid was added and 

the reaction mixture was stirred for a further 24 hours.   As the reaction had still 

not gone to completion, 3 equiv ylid was added with stirring at room temperature 

for 6 h, followed by heating to reflux for 12 hours.   Another 3 equiv. ylid was 

added, followed by heating to reflux for 48 hours was required to obtain complete 

conversion of the starting material.  The reaction mixture was concentrated in 

vacuo and flash column chromatography (silica gel, elution gradient petroleum 
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ether → petroleum ether-diethyl ether 9:1 → petroleum ether-diethyl ether 17:3) 

of the crude residue afforded (E)-ethyl 4-((1R,5S,7R)-1-((S)-but-3-en-2-yl)-6-

oxaspiro[4.5]decan-7-yl)-2-methylbut-2-enoate 556 (8 mg, 0.025 mmol, 81% over 

two steps) as a colourless oil. 1H NMR (500 MHz, CDCl3) δH: 6.89-6.85 (1H, m), 5.84-

5.77 (1H, m), 4.96-4.91 (2H, m), 4.18 (2H, q, J = 7.3 Hz), 3.58-3.53 (1H, m), 2.51-

2.48 (1H, m), 2.38-2.25 (2H, m), 2.10-2.08 (1H, m), 1.97-1.90 (1H, m), 1.83 (3H, d, 

J = 0.9 Hz), 1.73-1.54 (8H, m), 1.32-1.26 (3H, m), 1.28 (3H, t, J = 7.3 Hz), 1.02 (3H, 

d, J = 6.8 Hz); 13C NMR (125 MHz, CDCl3) δC: 168.3, 145.5, 138.7, 129.9, 112.1, 84.6, 

72.9, 68.3, 60.5, 44.1, 40.9, 36.3, 35.9, 31.3, 24.2, 20.4, 20.0, 15.1, 14.5, 12.7; 

22][ Da  +16.0 (c 0.05, CHCl3); IR (neat) νmax 2924, 2857, 1711 (O=COEt), 1068 (C—O), 

996 (C=CH2), 910 (C=CH2) cm-1; HRMS: (EI) observed [M]+ 320.2355, calculated for 

C20H32O3 320.2351. 

 

But-3-ynyloxy)(tert-butyl)diphenylsilane 558[117] 

 

 

 

Butyn-1-ol 557 (556 mg, 7.93 mmol) was dissolved in dichloromethane (9 mL) and 

DMAP (97 mg, 0.79 mmol) was added.  The resultant solution was cooled to 0 °C 

and Et3N (1.55 mL, 11.10 mmol) was added followed by TBDPSCl (1.96 g, 7.13 

mmol).  The resultant solution was then stirred, warming to room temperature, for 

12 hours.   The crude reaction mixture was filtered through a pad of silica, using 

dichloromethane as the eluent, and concentrated to afford (but-3-ynyloxy)(tert-

butyl)diphenylsilane 558 (2.08 g, 6.74 mmol, 95%). 

1H NMR (500 MHz, CDCl3) δH: 7.74-7.72 (4H, m), 7.48-7.41 (6H, m), 3.84 (2H, t, J = 

7.1 Hz), 2.50 (2H, dt, J = 7.1, 2.6 Hz), 1.99 (1H, t, J = 2.6 Hz), 1.11 (9H, s). 
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7-(tert-Butyldiphenylsilyloxy)hept-1-en-4-yn-3-one 560[117] 

 

 

 

(But-3-ynyloxy)(tert-butyl)diphenylsilane 558 (500 mg, 1.62 mmol) was dissolved in 

tetrahydrofuran (3.3 mL) and cooled to −78 °C.  n-Butyllithium (1.6 M in hexane, 

1.92 mmol) was added dropwise and the resultant solution was stirred for 20 min at 

−78 °C, the allowed to warm to room temperature.  LiBr (71 mg, 0.81 mmol) was 

added and the suspension was stirred at room temperature for a further 20 min 

before being cooled to −78 °C.  Acryloyl chloride 559 (186 mg, 2.06 mmol) in 

tetrahydrofuran (0.5 mL) was added dropwise over 1 hour.   The reaction mixture 

was then stirred at −78 °C for 1 hour.    

The reaction was quenched at −78 °C with saturated aqueous Ammonium chloride 

(10 mL) and diethyl ether (10 mL) was added.  The layers were separated and the 

aqueous phase was extracted with diethyl ether (3 × 10 mL).  The combined organic 

phases were dried over sodium sulfate, filtered and concentrated.  

Flash column chromatography (silica gel, elution gradient petroleum ether → 

petroleum ether-diethyl ether 9:1) of the crude residue afforded 7-(tert-

butyldiphenylsilyloxy)hept-1-en-4-yn-3-one 560 (429 mg, 1.18 mmol, 73%) as a 

colourless oil. 

1H NMR (500 MHz, CDCl3) δH: 7.69-7.67 (4H, m), 7.47-7.37 (6H, m), 6.55 (1H, dd, J = 

17.1, 1.0 Hz), 6.38 (1H, dd, J = 17.4, 10.2 Hz), 6.13 (1H, dd, J = 10.2, 1.0 Hz), 3.85 

(2H, t, J = 6.6 Hz), 2.66 (2H, t, J = 6.6 Hz), 1.07 (9H, s); 13C NMR (125 MHz, CDCl3) 

δC: 197.1, 138.1, 136.0, 135.7, 133.7, 133.4, 130.0, 127.9, 92.7, 79.5, 61.6, 26.9, 

23.4, 19.3. 
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(R)-7-(tert-Butyldiphenylsilyloxy)hept-1-en-4-yn-3-ol 561[117] 

 

 

 

(R)-Methyl-CBS (371 mg, 1.34 mmol) was dissolved in tetrahydrofuran (6 mL) and 

BH3-THF (1.1 mL, 1.10 mmol) was added.  The resultant solution was stirred at 

room temperature for 30 min before being cooled to −40 °C.  7-(tert-

Butyldiphenylsilyloxy)hept-1-en-4-yn-3-one 560 (661 mg, 1.83 mmol) in 

tetrahydrofuran (5 mL) was added dropwise over 20 minutes.  The resultant mixture 

was stirred at −40 °C for 1.5 hours.   The reaction mixture was quenched by the 

addition of methanol (5 mL) and concentrated.  Flash column chromatography 

(silica gel, elution gradient hexane → hexane-ethyl acetate 19:1) of the crude 

residue afforded (R)-7-(tert-butyldiphenylsilyloxy)hept-1-en-4-yn-3-ol 561 (397 mg, 

1.09 mmol, 60%) as a colourless oil. 

1H NMR (500 MHz, CDCl3) δH: 7.69-7.67 (4H, m), 7.43-7.37 (6H, m), 5.94 (1H, ddd, J 

= 17.0, 10.1, 5.4 Hz), 5.42 (1H, td, J = 17.0, 1.3 Hz), 5.18 (1H, td, J = 10.1, 1.3 Hz), 

4.85-4.80 (1H, m), 3.78 (2H, t, J = 7.0 Hz), 2.51 (2H, dt, J = 7.0, 2.0 Hz), 1.74 (1H, 

d, J = 6.3 Hz), 1.05 (9H, s). 

 

7-(tert-Butyldiphenylsilyloxy)-5-chlorohepta-1,4-dien-3-ol 562[117] 

 

 

 

(R)-7-(tert-Butyldiphenylsilyloxy)hept-1-en-4-yn-3-ol 561 (100 mg, 0.27 mmol) was 

dissolved in diethyl ether (6 mL) and cooled to −78 °C.  Red-Al (≥ 65% wt. in 

toluene, 132 μl, 0.44 mmol) was added dropwise and the reaction mixture was 

stirred, warming to room temperature for 12 hours.   The reaction mixture was 

cooled to −78 °C and N-chlorosuccinimide (48 mg, 0.36 mmol) was added.  The 
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resultant solution was protected from light and stirred, warming to room 

temperature, for a further 12 hours.    

The reaction was quenched with methanol (2 mL) and concentrated.  Flash column 

chromatography (silica gel, isocratic elution benzene-acetone 100:1) of the crude 

residue afforded (R,Z)-7-(tert-butyldiphenylsilyloxy)-5-chlorohepta-1,4-dien-3-ol 

562 (69 mg, 0.17 mmol, 64%) as a colourless oil.   

1H NMR: 7.67-7.64 (4H, m), 7.43-7.37 (6H, m), 5.88 (1H, ddd, J = 17.1, 10.4, 5.7 

Hz), 5.62 (1H, d, J = 7.9 Hz), 5.34 (1H, d, J = 17.2 Hz), 5.15 (1H, d, J = 10.4 Hz), 

5.11-5.08 (1H, m), 3.85 (1H, dd, J = 11.9, 5.9 Hz), 2.61-2.50 (2H, m), 1.67 (1H, dd, 

J = 14.7, 3.5 Hz), 1.04 (9H, s); 13C NMR (125 MHz, CDCl3) δC: 138.0, 135.7, 133.8, 

129.8, 128.8, 127.8, 115.4, 70.5, 61.0, 42.8, 27.0, 19.4. 

 

(E)-Ethyl 4-((1R,5S,7R)-1-((2S,3E,5R,6Z)-9-(tert-butyldiphenylsilyloxy)-7-
chloro-5-hydroxynona-3,6-dien-2-yl)-6-oxaspiro[4.5]decan-7-yl)-2-
methylbut-2-enoate 563 

 

 

 

(E)-Ethyl-4-((1R,5S,7R)-1-((S)-but-3-en-2-yl)-6-oxaspiro[4.5]decan-7-yl)-2-

methylbut-2-enoate 577 (7 mg, 0.022 mmol) and Zhan 1B catalyst 523 (5 mg, 0.007 

mmol) were dissolved in freeze-thaw degassed dichloromethane (0.5 mL) in a 0.5 – 

2 mL microwave vial under argon.  (R,Z)-7-(tert-Butyldiphenylsilyloxy)-5-

chlorohepta-1,4-dien-3-ol 562 (23 mg, 0.057 mmol) in freeze-thaw degassed 

dichloromethane (0.25 mL) was added and the resultant green solution was stirred 

at 40 °C for 24 hours.   At such times, a further portion of Zhan 1B catalyst 523 (5 

mg, 0.007 mmol) in freeze-thaw degassed dichloromethane (0.5 mL) was added.  

The brown solution was stirred at 40 °C for a further 24 hours.   The reaction 

mixture was concentrated and flash column chromatography (silica gel, elution 
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gradient petroleum ether → petroleum ether-diethyl ether 37:3) of the crude 

residue afforded (E)-ethyl 4-((1R,5S,7R)-1-((2S,3E,5R,6Z)-9-(tert-butyldiphenyl-

silyloxy)-7-chloro-5-hydroxynona-3,6-dien-2-yl)-6-oxaspiro[4.5]decan-7-yl)-2-meth-

ylbut-2-enoate 563 (9 mg, 0.013 mmol, 61%) as a yellow oil.  

1H NMR (500 MHz, CDCl3) δH: 7.66-7.63 (4H, m), 7.42-7.36 (6H, m), 6.70 (1H, tq, J = 

7.4, 1.3 Hz), 6.48 (1H, dd, J = 14.9, 10.8 Hz), 6.40 (1H, dd, J = 15.1, 9.9 Hz), 6.17 

(1H, d, J = 9.9 Hz), 6.02 (1H, d, J = 10.8 Hz), 4.20-4.15 (2H, m), 3.85 (2H, t, J = 6.5 

Hz), 3.67-3.62 (1H, m), 2.74 (1H, dd, J = 7.0, 4.0 Hz), 2.65-2.57 (2H, m), 2.21-1.89 

(7H, m), 1.88 (3H, s), 1.72-1.63 (9H, m), 1.28 (3H, t, J = 7.1 Hz), 1.03 (9H, s); 13C 

NMR (125 MHz, CDCl3) δC: 170.7, 142.9, 139.2, 139.1, 135.7, 134.9, 132.1, 130.6, 

129.8, 129.7, 127.9, 127.8, 127.6, 77.7, 72.0, 61.6, 60.4, 53.3, 43.2, 42.4, 38.9, 

36.7, 36.3, 31.4, 30.5, 29.9, 26.7, 20.3, 15.0, 14.6, 12.7; 27][ Da  −2.7 (c 0.15, 

CH3CN); IR (neat) νmax 2957, 2928, 2901, 2855, 1713 (O=COEt), 1263 (cis RCH=CHR), 

1113 (Si—O), 1084 (C—O), 997 (trans C=C—CO2Et), 966 (C=C), 824 (R2C=CHR), 741 

(CCl), 702 (RC=CR) cm-1; HRMS: (ESI) observed [M+H]+ 675.3605, calculated for 

C41H56ClO4Si 675.3631. 

 

4-Methyl-N-((3R,3aR,6aR)-3-methylhexahydro-2H-cyclopenta[b]furan-6a-
yl)benzenesulfonamide 608 

 

 

 

A mixture of alcohols 182 (215 mg, 1.51 mmol) was dissolved in benzene (1 mL) and 

pTsNH2 (388 mg, 2.27 mmol) was added followed by PPTS (38 mg, 0.15 mmol).  The 

reaction mixture was then heated to reflux with Dean-Stark assisted removal of 

water for 2 hours.    

The solution was cooled to room temperature and ethyl acetate (5 mL) was added 

followed by saturated aqueous sodium hydrogen carbonate (5 mL).  The layers were 

separated and the aqueous phase was extracted with ethyl acetate (3 × 5 mL).  The 

combined organic extracts were dried over sodium sulfate, filtered and 

concentrated.  Flash column chromatography (silica gel, elution gradient petroleum 
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ether → petroleum ether-ethyl acetate 9:1) of the crude residue afforded a 5:1 

ratio of diastereoisomers in favour of 4-methyl-N-((3R,3aR,6aR)-3-methylhexahydro-

2H-cyclopenta[b]furan-6a-yl)benzenesulfon-amide 608 (242 mg, 0.82 mmol, 54%) as 

a thick colourless oil.   

1H NMR (400 MHz, CDCl3) δH: 7.80 (2H, d, J = 8.4 Hz), 7.28 (2H, d, J = 8.7 Hz), 5.35 

(1H, brs), 3.67 (1H, dd, J = 8.6, 7.3 Hz), 2.97 (1H, dd, J = 10.6, 8.9 Hz), 2.42 (3H, 

s), 2.21 (1H, t, J = 7.5 Hz), 1.91-1.57 (6H, m), 1.45 (1H, ddd, J = 12.2, 5.8, 1.2 Hz), 

0.94 (3H, d, J = 6.7 Hz); 13C NMR (100 MHz, CDCl3) δC: 143.2, 129.5, 127.4, 127.3, 

104.9, 73.8, 58.7, 42.6, 40.2, 31.1, 24.7, 21.7, 15.8; IR (neat) νmax 3273, 3023, 

2960, 2869, 1726, 1600, 1326, 1306, 1154, 1094, 1045, 1018, 946, 930, 896, 878, 

813, 750, 664 cm-1; HRMS: (CI) observed [M+H]+ 296.1315, calculated for C15H22NO3S 

296.1320. 

 

4-Phthalimidobutan-2-one[224] 

 

 

 

Phthalimide (18.0 g, 122.34 mmol) was dissolved in ethyl acetate (70 mL) and 

methyl vinyl ketone (10 mL, 123.27 mmol) was added followed by 

benzyltrimethylammonium hydroxide (3 mL, 19.57 mmol).  The reaction mixture 

was heated to reflux for 1 h, before being concentrated to afford 4-

phthalimidobutan-2-one (24.1 g, 110.95 mmol, 91%) as a white solid. 

1H NMR (500 MHz, CDCl3) δH: 7.83 (2H, dd, J = 5.5, 3.0 Hz), 7.71 (2H, dd, J = 5.4, 

3.1 Hz), 3.97-3.93 (2H, m), 2.87 (2H, t, J = 7.4 Hz), 2.18 (3H, s). 
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2-Methyl-2-(2-phthalimidoethyl)-1,3-dioxolane[225] 

 

 

 

4-Phthalimidobutan-2-one (10 g, 46.04 mmol) was dissolved in benzene (60 mL) and 

ethylene glycol (7.26 mL, 130.2 mmol) was added followed by pTsOH (4.1 g, 23.8 

mmol).  The reaction mixture was then heated to reflux for 48 hours with Dean-

Stark assisted removal of water.  The reaction mixture was poured into ice-water 

and extracted with toluene (3 x 30 mL).  The combined organic phase was washed 

sequentially with saturated aqueous sodium hydrogen carbonate, water and brine 

before being dried over sodium sulfate, filtered and concentrated to afford 2-

methyl-2-(2-phthalimidoethyl)-1,3-dioxolane (8.66 g, 33.15 mmol, 72%) as a white 

solid. 

1H NMR (400 MHz, CDCl3) δH: 7.83 (2H, dd, J = 5.5, 3.1 Hz), 7.70 (2H, dd, J = 5.4, 

3.0 Hz), 3.95-3.92 (4H, m), 3.85-3.79 (2H, m), 2.09-2.05 (2H, m), 1.38 (3H, s).   

 

2-(2-Methyl-1,3-dioxolan-2-yl)ethylamine 615[225] 

 

 

 

2-Methyl-2-(2-phthalimidoethyl)-1,3-dioxolane (2 g, 7.65 mmol) was dissolved in 

methanol (20 mL) and hydrazine hydrate (400 mg, 8.00 mmol) was added.  The 

reaction mixture was heated to reflux for 15 h, and then concentrated.  The 

resultant residue was cooled to 0 °C while 20% aqueous sodium hydroxide (5 mL) 

was added dropwise.  The resultant solution was stirred for 30 min before being 

extracted with CHCl3 (3 x 15 mL).  The combined organic phase was washed with 

water, dried over sodium sulfate, filtered and concentrated to afford 2-(2-methyl-

1,3-dioxolan-2-yl)ethylamine 615 (813 mg, 6.20 mmol, 81%) as a colourless oil.   
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1H NMR (400 MHz, CDCl3) δH: 3.86-3.82 (4H, m), 2.72 (2H, t, J = 7.0 Hz), 1.73 (2H, t, 

J = 7.0 Hz), 1.22 (3H, s). 

 

N-(2-(2-Methyl-1,3-dioxolan-2-yl)ethyl)-2-(2-oxocyclopentyl)acetamide 
613[220] 

 

 

 

2-(2-Oxocyclopentyl)acetic acid 15 (500 mg, 3.52 mmol) was dissolved in dry 

dichloromethane (15 mL) and HBTU (1.60 g, 4.22 mmol) was added.  2-(2-Methyl-

1,3-dioxolan-2-yl)ethylamine 615 (554 mg, 4.22 mmol) was then added, followed by 

DIPEA (1.53 mL, 8.79 mmol).  The resultant cloudy suspension was allowed to stir, 

gradually becoming clearer, at room temperature for 16 hours.   

The reaction mixture was quenched by the addition of saturated aqueous 

ammonium chloride (20 mL) and extracted with dichloromethane (3 × 20 mL).  The 

combined organic phases were washed with brine, then dried over sodium sulfate, 

filtered and concentrated.  Flash column chromatography (silica gel, elution 

gradient petroleum ether-ethyl acetate 3:1 → petroleum ether-ethyl acetate 1:1) 

of the crude residue afforded N-(2-(2-methyl-1,3-dioxolan-2-yl)ethyl)-2-(2-

oxocyclopentyl)acetamide 613 (772 mg, 3.02 mmol, 86%) as a colourless oil. 

1H NMR (500 MHz, CDCl3) δH: 6.35 (1H, brs), 3.94 (4H, d, J = 2.2 Hz), 3.33 (2H, q, J 

= 6.0 Hz), 2.77 (2H, s), 2.54 (1H, dd, J = 14.9, 5.1 Hz), 2.47-2.42 (1H, m), 2.35-2.09 

(4H, m), 1.94-1.42 (2H, m), 1.29 (3H, s); 13C NMR (125 MHz, CDCl3) δC: 220.6, 170.3, 

108.8, 64.5, 46.0, 37.6, 37.3, 36.9, 36.5, 29.6, 23.7, 20.7. 
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Hexahydro-1H-spiro[cyclopenta[i]indolizine-2,2'-[1,3]dioxolan]-6(7H)-one 
614[220] 

 

 

 

N-(2-(2-Methyl-1,3-dioxolan-2-yl)ethyl)-2-(2-oxocyclopentyl)acetamide 613 (500 

mg, 1.96 mmol) was dissolved in toluene (10 mL) and pTsOH (20 mg, 0.16 mmol) 

was added.  The resultant solution was heated to reflux with Dean-Stark removal of 

water for 18 hours.  

The reaction mixture was concentrated, then taken up in dichloromethane (10 mL) 

and washed with saturated aqueous sodium hydrogen carbonate (2 × 15 mL).  The 

organic phase was then washed successively with water and brine.  The combined 

organic extracts were dried over sodium sulfate, filtered and concentrated.  Flash 

column chromatography (silica gel, elution gradient petroleum ether-ethyl acetate 

3:1 → petroleum ether-ethyl acetate 1:1) of the crude residue afforded hexahydro-

1H-spiro[cyclopenta[i]indolizine-2,2'-[1,3]dioxolan]-6(7H)-one 614 (376 mg, 1.58 

mmol, 81%) as a colourless oil.   

1H NMR (400 MHz, CDCl3) δH: 4.08 (1H, dd, J = 13.5, 5.1, 1.7 Hz), 3.96 (4H, dd, J = 

15.2, 5.2 Hz), 2.79 (1H, dd, J = 13.5, 2.4 Hz), 2.64 (1H, dd, J = 17.8, 10.6 Hz), 2.27-

2.19 (1H, m), 2.04 (1H, dd, J = 17.8, 3.2 Hz), 1.98-1.93 (1H, m), 1.79-1.35 (9H, m). 

 

Hexahydrocyclopenta[i]indolizine-2,6(1H,7H)-dione 387[144] 

 

 

 

Hexahydro-1H-spiro[cyclopenta[i]indolizine-2,2'-[1,3]di-oxolan]-6(7H)-one 614 (200 

mg, 0.84 mmol) was dissolved in acetone (4 mL) at room temperature and 
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concentrated HCl (1 mL) was added.  The resultant solution was stirred for 12 

hours.   The reaction mixture concentrated then treated with water and carefully 

made basic with solid K2CO3. The aqueous mixture was then extracted with ethyl 

acetate (3 × 10 mL).  The combined organic phases were dried over sodium sulfate, 

filtered and concentrated.  Flash column chromatography (silica gel, elution 

gradient petroleum ether-ethyl acetate 3:1 → petroleum ether-ethyl acetate 5:2) 

of the crude residue afforded hexahydrocyclopenta[i]indolizine-2,6(1H,7H)-dione 

387 (148 mg, 0.77 mmol, 92%) as a colourless oil. 

1H NMR (500 MHz, CDCl3) δH: 4.44 (1H, ddd, J = 13.5, 7.6, 1.9 Hz), 2.91 (1H, tdd, J = 

11.7, 4.8, 1.2 Hz), 2.78 (1H, dd, J = 17.9, 10.3 Hz), 2.53 (1H, d, J = 13.2 Hz), 2.41-

2.30 (4H, m), 2.21 (1H, ddd, J = 17.9, 3.4, 1.4 Hz), 2.02-1.93 (1H, m), 1.76-1.69 

(1H, m), 1.66-1.60 (2H, m), 1.53-1.40 (2H, m). 

 

7a,8,9,10-Tetrahydrocyclopenta[i]indolizine-2,6(1H,7H)-dione 388[144] 

 

 

 

Hexahydrocyclopenta[i]indolizine-2,6(1H,7H)-dione 387 (100 mg, 0.52 mmol) was 

dissolved in dichloromethane (5 mL) at room temperature and triethylamine ( 173 

μL, 1.24 mmol) was added followed by TMSOTf (112 μL, 0.62 mmol).  The resultant 

solution was stirred at room temperature for 12 hours.   The reaction mixture was 

quenched by the addition of saturated aqueous sodium hydrogen carbonate (5 mL) 

and extracted with dichloromethane (3 × 5 mL).  The combined organic extracts 

were washed with brine, then dried over sodium sulfate, filtered and concentrated.   

The crude residue was then dissolved in a mixture of MeCN (1.5 mL) and DMSO (0.5 

mL).  Pd(OAc)2 (139 mg, 0.62 mmol) was added and the resultant black suspension 

was stirred at room temperature for 36 hours.    

The crude suspension was filtered through Celite® and washed with ethyl acetate.  

The filtrate was concentrated then dissolved in ethyl acetate (10 mL) and washed 
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with water.  The organic phase was washed with brine, and then dried over sodium 

sulfate, filtered and concentrated.  Flash column chromatography (silica gel, 

isocratic elution petroleum ether-ethyl acetate 1:1) of the crude residue afforded 

7a,8,9,10-tetrahydrocyclopenta[i]indolizine-2,6(1H,7H)-dione 388 (70 mg, 0.37 

mmol, 71%) as a colourless oil.   

1H NMR (500 MHz, CDCl3) δH: 7.63 (1H, dd, J = 7.8, 0.7 Hz), 5.45 (1H, dd, J = 7.8, 

0.7 Hz), 2.90 (1H, dd, J = 18.7, 10.7 Hz), 2.73 (1H, d, J = 15.7 Hz), 2.58-2.53 (1H, 

m), 2.48 (1H, dd, J = 15.6, 0.9 Hz), 2.25 (1H, dd, J = 18.7, 6.7 Hz), 1.96-1.61 (6H, 

m); 13C NMR (125 MHz, CDCl3) δC: 193.7, 171.4, 137.5, 110.0, 71.5, 48.6, 41.2, 38.1, 

36.9, 32.6, 24.2. 

 

4-Allylhexahydrocyclopenta[i]indolizine-2,6(1H,7H)-dione 390[144] 

 

 

 

7a,8,9,10-tetrahydrocyclopenta[i]indolizine-2,6(1H,7H)-dione 388 (70 mg, 0.37 

mmol) was dissolved in dichloromethane (2 mL) and cooled to 0 °C under argon.  

Allyltributyltin (133 mg, 0.40 mmol) was added, followed by TMSOTf (73 μL, 0.40 

mmol).  The resultant solution was allowed to stir at 0 °C for 1 h, and then was 

warmed to room temperature and stirred for a further 15 minutes.  6 M HCl (5 mL) 

was added to the mixture and the resultant biphasic solution was stirred for 30 

minutes.  The phases were separated and the aqueous layer was extracted with 

dichloromethane (3 × 10 mL).  The combined organic phases were dried over sodium 

sulfate, filtered and concentrated.  Flash column chromatography (silica gel, 

elution gradient petroleum ether-ethyl acetate 3:1 → petroleum ether-ethyl 

acetate 5:2) of the crude residue afforded 4-allylhexahydrocyclopenta[i]indolizine-

2,6(1H,7H)-dione 390 (61 mg, 0.26 mmol, 71%) as a colourless oil.   

1H NMR 5.75-5.67 (1H, m), 5.11-5.07 (2H, m), 4.70-4.64 (1H, m), 2.74 (1H, ddd, J = 

17.7, 10.4, 1.3 Hz), 2.57 (1H, dd, J = 14.7, 7.8 Hz), 2.45 (2H, brs), 2.44-2.38 (2H, 
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m), 2.35-2.23 (3H, m), 2.08-2.02 (1H, m), 1.83-1.71 (3H, m), 1.62-1.56 (1H, m), 

1.43-1.36 (1H, m); 13C NMR (125 MHz, CDCl3) δC: 206.9, 174.1, 134.1, 118.6, 72.5, 

53.2, 49.0, 43.3, 43.1, 39.5, 39.2, 37.4, 34.1, 25.8. 

 

4-Allyloctahydrocyclopenta[i]indolizin-6(7H)-one 616 

 

 

 

4-Allylhexahydrocyclopenta[i]indolizine-2,6(1H,7H)-dione 390 (50 mg, 0.21 mmol) 

was dissolved in a mixture of dichloromethane (7.5 mL) and isopropanol (22.5 mL).  

Zinc dust (1.37 g, 21.0 mmol) was added, followed by chloro(trimethyl)silane (2.67 

mL, 21.0 mmol).  The resultant suspension was stirred at room temperature for 3 

hours.  The reaction mixture was quenched by the addition of sodium hydrogen 

carbonate (2.10 g, 25.0 mmol) and the suspension was stirred for 10 min before 

being filtered and the filtrate concentrated.  The residue was dissolved in CHCl3 (10 

mL) and washed with saturated aqueous ammonium chloride (15 mL).  The organic 

phase was dried over sodium sulfate, filtered and concentrated.  Flash column 

chromatography (silica gel, isocratic elution dichloromethane-ethyl acetate 9:1) of 

the crude residue afforded 4-allyloctahydrocyclopenta[i]indolizin-6(7H)-one 616 (32 

mg, 0.15 mmol, 69%) as a colourless oil.  

1H NMR (500 MHz, CDCl3) δH: 5.75 (1H, tdd, J = 17.1, 10.2, 6.9 Hz), 5.06-5.01 (2H, 

m), 4.36 (1H, q, J = 7.2 Hz), 2.61 (1H, dd, J = 17.1, 10.3 Hz), 2.40-2.26 (2H, m), 

2.20-2.14 (1H, m), 2.10 (1H, dd, J = 17.2, 5.8 Hz), 1.96-1.89 (1H, m), 1.82-1.30 

(11H, m); 13C NMR (125 MHz, CDCl3) δC: 173.6, 135.9, 117.1, 70.7, 47.9, 43.6, 38.4, 

38.1, 37.9, 37.3, 33.5, 27.3, 25.7, 17.3. 
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